T}

Tennessee Valley Authority, 1101 Market Street, Chattanooga, TN 37402

CNL-17-082
July 3, 2017
10 CFR 52, Subpart A

ATTN: Document Control Desk
U.S. Nuclear Regulatory Commission
Washington, DC 20555-0001

Clinch River Nuclear Site
NRC Docket No. 52-047

Subject: Submittal of Supplemental Information Associated with Site Safety Analysis
Report Section 2.5 in Support of the Clinch River Nuclear Site Early Site Permit
Application

References: 1. Letter from TVA to NRC, CNL-16-081, “Application for Early Site Permit for
Clinch River Nuclear Site,” dated May 12, 2016

2. NRC Memorandum, “Audit Plan for Areas Covered in Section 2.5 of the Site
Safety Analysis Report, Clinch River Nuclear Site Early Site Permit
Application,” issued April 19, 2017

By letter dated May 12, 2016 (Reference 1), Tennessee Valley Authority (TVA) submitted an
application for an early site permit for the Clinch River Nuclear (CRN) Site in Oak Ridge, TN.
Between May 8 and 9, 2017, the NRC conducted an audit of the geology, seismology, and
geotechnical engineering information contained in the CRN Site Early Site Permit Application
(ESPA) (Reference 2). During the face-to-face portion of the NRC audit held at the TVA offices
in Knoxville, TN, and at the CRN Site, the NRC requested that TVA provide supplemental
information associated with SSAR Section 2.5, “Geology, Seismology, and Geotechnical
Engineering,” to reflect the information that TVA provided during the NRC audit.

The enclosure to this letter provides supplemental information discussed during the NRC audit
for geotechnical engineering (GE) information needs GE-01, GE-02, and GE-03. Attachments 1
and 2 of the enclosure provide copies of technical reports related to information needs GE-01
and GE-02. Attachment 3 of the enclosure provides SSAR markups for information needs
GE-01, GE-02, and GE-03. The SSAR markups will be incorporated in a future revision of the
early site permit application.
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There are no new regulatory commitments associated with this submittal. If any additional
information is needed, please contact Dan Stout at (423) 751-7642.

| declare under penalty of perjury that the foregoing is true and correct. Executed on this
3rd day of July 2017.
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ENCLOSURE

Supplemental Information Regarding
Site Safety Analysis Report (SSAR)
Section 2.5, “Geology, Seismology and Geotechnical Engineering”

By letter dated May 12, 2016 (Reference 1), Tennessee Valley Authority (TVA) submitted an
application for an early site permit for the Clinch River Nuclear (CRN) Site in Oak Ridge, TN.
Between May 8 and 9, 2017, the NRC conducted an audit of the geology, seismology, and
geotechnical engineering information contained in the CRN Site Early Site Permit Application
(ESPA) (Reference 2). During the face-to-face portion of the NRC audit held at the TVA offices
in Knoxville, TN, and at the CRN Site, the NRC requested that TVA provide supplemental
information associated with SSAR Section 2.5, “Geology, Seismology, and Geotechnical
Engineering,” to reflect the information that TVA provided during the NRC audit.

This enclosure provides supplemental information discussed during the NRC audit for
geotechnical engineering (GE) information needs GE-01, GE-02, and GE-03. Attachments 1
and 2 of this enclosure provide copies of technical reports related to information needs GE-01
and GE-02. Attachment 3 of this enclosure provides SSAR markups for information needs
GE-01, GE-02, and GE-03. The SSAR markups included in Attachment 3 of this enclosure will
be incorporated in a future revision of the ESPA.

References:

1. Letter from TVA to NRC, CNL-16-081, "Application for Early Site Permit for Clinch River
Nuclear Site," dated May 12, 2016

2. NRC Memorandum from Mallecia Sutton to Allen Fetter, "Audit Plan for Areas Covered
in Section 2.5 of the Site Safety Analysis Report, Clinch River Nuclear Site Early Site
Permit Application," issued April 19, 2017

3. Letter from TVA to NRC, CNL-16-184, “Submittal of Additional Supplemental Information
Related to Stability of Subsurface Materials and Foundation in Support of Early Site
Permit Application for Clinch River Nuclear Site,” dated December 15, 2016

Attachments:
1. Non-Proprietary Report Foundation Assessment Clinch River Nuclear Site, Revision 0
2. Addendum to Non-Proprietary Report Foundation Assessment Clinch River Nuclear Site

Revision 0
3. Site Safety Analysis Report Subsection 2.5 Markups
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Supplemental Information Associated with NRC Audit Information Needs:

Following the face-to-face portion of the NRC audit, TVA is providing the following supplemental
information associated with the referenced audit Information Need:

Supplemental Information associated with NRC Information Need GE-01

During the face-to-face discussions regarding the PLAXIS 2D analysis, the NRC
requested a copy of the PLAXIS model report. A copy of the report, “Non-Proprietary
Report, Foundation Assessment, Clinch River Nuclear Site,” Revision 0, is provided in
Attachment 1. In addition, TVA proposed a SSAR change to include a summary of and
reference to the report. A summary and reference to the PLAXIS model is being added
in new SSAR Subsection 2.5.4.13, “Foundation Assessment Model.” This summary also
adds new SSAR tables and figures. The current SSAR Subsection 2.5.4.13,
“‘References,” is being renumbered as SSAR Subsection 2.5.4.14. See the SSAR
markup provided in Subsections 2.5.4.13 and 2.5.4.14 in Attachment 3.

Supplemental Information associated with NRC Information Need GE-02

Following face-to-face discussion regarding the bearing capacity and settlement
packages, an assessment using PLAXIS 2D analysis software was performed to
estimate the ultimate bearing capacity at the CRN Site. The assessment is documented
as an addendum to the report provided in the Information Need GE-01 response. A
copy of the addendum, “Addendum to Non-Proprietary Report, Foundation Assessment,
Clinch River Nuclear Site,” Revision 0, is provided in Attachment 2. A summary of the
analysis has been included in the last paragraph of the SSAR Subsection 2.5.4.13. See
the SSAR markup provided in Attachment 3.

Supplemental Information associated with NRC Information Need GE-03

Prior to the seismic audit, TVA had provided in Reference 3 a SSAR Subsection
2.5.1.2.3.4, “Estimation of Hypothetical Large Void,” mark-up. After face-to-face
discussions during the audit and because TVA established a critical void size as
provided in the SSAR Subsection 2.5.4.13 markup provided in the supplemental
information associated with NRC Information Need GE-01, SSAR Subsection 2.5.1.2.3.4
is being revised and renamed “Karst Evaluation.” See the SSAR markup provided in
Subsection 2.5.1.2.3.4 and 2.5.1.2.9 in Attachment 3.
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NON-PROPRIETARY REPORT
FOUNDATION ASSESSMENT
CLINCH RIVER NUCLEAR SITE

1.0 INTRODUCTION

This Report discusses a foundation assessment for proposed Small Modular Reactors (SMRs) at
the Tennessee Valley Authority (TVA) Clinch River Nuclear (CRN) Site, in support of TVA’s
Early Site Permit (ESP) Application for the SMRs. This assessment involves finite element (FE)
modeling, using PLAXIS 2D analysis software, to determine potential karstic cavity impacts on

SMR foundations.

1.1 PROJECT DESCRIPTION

Proposed development of the CRN Site includes four SMRs configured as pairs (Units 1&2 and
Units 3&4) in a northwest to southeast orientation. Units 1&2, located to the north, are
identified as SMR Site A as shown on Figure I-1. Units 3&4, in a more southerly location, are

identified as SMR Site B.

In general, information on foundation loads, foundation dimensions, foundation thicknesses, and
deformation limits (e.g., angular distortion or differential settlement) are required in a PLAXIS
2D or similar analysis to determine the minimum size of an undetected cavity that could
adversely affect foundation performance. These parameters are technology dependent. Since an
SMR technology has not yet been selected for the CRN Site, the structures in the PLAXIS 2D
model presented here reflect a typical nuclear power plant layout. In the model, the major safety
related structures are assumed to rest on a common basemat. A Final Plant Grade at EL 821 feet
(ft) North American Vertical Datum of 1988 (NAVDSS) is used for the common basemat area.
Multiple foundation embedment depths (40 ft, 90 ft, and 140 ft below the ground surface) were

considered.
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The site is characterized as having karst features that include open and clay filled cavities, and
weathered and fractured zones with dissolution. Cavities are encountered primarily in the
Rockdell Formation and the Eidson Formation, and in smaller numbers in near surface exposures
(to depths of approximately 100 ft below ground surface) of the Benbolt Formation and
Blackford Formations. Using PLAXIS 2D FE modeling, critical CRN Site karst cavity sizes and
locations were evaluated. In particular, three different cavity sizes (5 ft, 10 ft, and 15 ft
diameters) and two different cavity depths below foundation level (5 ft and 30 ft) were evaluated,
as were multiple cavity locations (namely on the edge of the Nuclear Island (NI), the center of

the NI, and along bedding planes) for both Site A and Site B with static stress conditions.

1.2 GEOLOGIC CONDITIONS

Detailed information related to the physical geography (physiography) and geology of the CRN
Site is provided in Section 2.5.1.2 of the ESP Application Site Safety Analysis Report (SSAR).
Stratigraphic relationships and geologic features and geologic engineering conditions critical to
modeling of safety-related foundations at the CRN Site are summarized hereinafter in Section
1.2.1 and Section 1.2.2, respectively using information from the CRN Site ESP SSAR and from
published studies on geologic conditions in eastern Tennessee and wider CRN Site area,

including data from Site geotechnical investigations.

1.2.1 Stratigraphy

Surface exposed stratigraphic units in the proposed location of Site A and Site B power block
areas include (from northwest to southeast and oldest to youngest) undifferentiated Kingsport
Formation and Mascot Dolomite (Newala Formation) rocks of the Knox Group, and rock masses
assigned to the Blackford Formation, Eidson and Fleanor members of the Lincolnshire
Formation, and Rockdell and Benbolt Formations of the Chickamauga Group, as summarized in
Table 1-1 and shown on Figure 1-2. In general, Newala Formation rocks are estimated as
lower Ordovician in age (488.3 mega-annum [Ma] to 471.8 Ma). Unconformable Chickamauga
Group rocks are middle Ordovician in age (471.8 Ma to 460.9 Ma).
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TABLE 1-1
STRATIGRAPHIC UNITS ENCOUNTERED AT THE
CLINCH RIVER NUCLEAR SITE

Group AGE ? FORMATION &

Moccasin Formation

Witten Formation

Bowen Formation

Chickamauga . .. Benbolt Formation
Group Middle Ordovician Rockdell Formation
Lincolnshire Fleanor Member
Formation Eidson Member

Blackford Formation

Mascot Dolomite

Knox Group Lower Ordovician Newala Formation

Kingsport Formation

Notes:

(" Newala Formation rock represents only the uppermost component of the Knox Group in the larger Clinch River

Site region.

@ Estimated age.

) Moccasin Formation and Witten Formation rocks do not specifically crop out in Site A and Site B power block

areas and consequently are not discussed here. Also, the Mascot Dolomite and Kingsport Formation are
generally not differentiated at the Clinch River Site.

Deformation related to the Alleghanian Orogeny (ca. 330 Ma to 265 Ma) has resulted in a
relatively uniform strike and dip directions (i.e., structural orientations) in Knox and
Chickamauga Group rocks underlying Site A and Site B power block locations. In particular,
acoustic televiewer (ATV) logging data suggest a prominent 063° strike and 33° (southeast) dip
to bedding planes under the proposed locations of Units 1&2 and 3&4 (SSAR Section
2.5.1.2.4.3.2) (Figure 1-2).

Strike and dip directions estimated from borehole orientations for Fleanor Member and Rockdell
Formation upper contacts (i.e., upper bound) similarly suggest a 051° to 053° strike and
southeast (32° to 36°) dip to Site A and Site B rock (Bechtel, 2014). Detailed geologic mapping

and inspection in northern and southern portions of the Clinch River Breeder Reactor Plant
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GEOLOGIC CROSS SECTION FOR THE CLINCH RIVER NUCLEAR SITE

CRBRP Nuclear Island (NI), and CRBRP equalization basin excavations adjacent to Site A and
Site B also revealed average bedding strike and dip orientations of 060° and 33° southeast, 053°

and 33° southeast, and 053° 35° southeast, respectively (Drakulich, 1984).

It is important to note that excavations for SMR Units 1&2 (Site A) and 3&4 (Site B) at the CRN
Site are expected to be located entirely in Chickamauga Group formations. Nevertheless,
bedding orientations are expected to expose different Chickamauga Group strata at power block
excavation levels in Site A and Site B. Specifically, Units 1&2 are expected to be founded on
Benbolt Formation rock mass, whereas Units 3&4 are expected to be founded on rock ascribed to
the Fleanor Member of the Lincolnshire Formation.

Each of the stratigraphic units exposed at the CRN Site (as shown on Figure 1-2) or encountered
in the core (per Appendix A) is described in more detail, below, in Section 1.2.1.1 through
Section 1.2.1.5.

1.2.1.1 Newala Formation (Knox Group)

Both the Kingsport Formation and Mascot Dolomite (i.e., undifferentiated Newala Formation)

are primarily composed of medium-gray to light-gray, fine-grained to medium-grained dolomite
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(Hatcher et al., 1992). Fine-grained pale-pink to grayish-pink dolomite is also common in the
uppermost Kingsport Formation, and in the Mascot Dolomite. Massively bedded calcilutite
(lime mudstone) is similarly common in the lowermost Kingsport Formation, but is less common

in the Mascot Formation.

Hatcher et al. (1992) have suggested that Mascot Dolomite thickness ranges from 250 feet (ft) to
500 ft in CRN Site areas, owing to erosional topographic relief on the unconformable contact
with the overlying Blackford Formation, as further described hereinafter in Section 1.2.1.2.
Kingsport Formation rocks, in turn are reportedly 300 ft to 500 ft thick in the greater CRN Site
area (Hatchet al., 1992).

Data from borings positioned near Site A and Site B (i.e., data specific to Units 1&2 and 3&4)
do not provide information on the full extent of the Mascot Dolomite or Kingsport Formation, as
no SMR project related borings fully penetrated Newala Formation rocks at the CRN Site
(Appendix A).

1.2.1.2 Blackford Formation (Chickamauga Group)

Unconformably overlying Newala Formation rock units, the Blackford Formation includes a
lowermost pale-olive limestone and a purplish-maroon dolomitic limestone overlain by a
relatively thick upper sequence of purplish to maroon siltstone, pale-olive limestone, and
(Hatcher et al., 1992). SSAR Section 2.5.1.2.3.3 similarly describes a Lower Blackford
Formation rock unit containing moderately to thickly bedded gray micritic limestone, and an
Upper Blackford Formation containing gray, laminated to moderately bedded, calcareous

siltstone.

Total Blackford Formation thickness in the greater CRN Site area has been estimated to range
from 230 ft to 260 ft (Hatcher et al., 1992). The average apparent thickness of the Blackford
Formation under Units 1&2 and 3&4 (Sites A and B) is estimated to be approximately 254 ft
(Table 1-2).
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TABLE 1-2

AVERAGE TRUE AND APPARENT STRATIGRAPHIC UNIT THICKNESS
(FROM SSAR TABLE 2.5.4-26)

UnITs 1&2 @ UNITS 3&4 @
THICKNESS @ Top Top
unit THICKNESS DEPTH | ELEVATION THICKNESS DEPTH | ELEVATION
ft
(ft) (fo) (ft bgs) () (ft) b(gs) (fo)
Benbolt 330 (277) 147 41 780 - - -
Rockdell 287 (241) 287 188 633 - - -
Fleanor 257 (216) 257 475 346 128 41 780
Eidson 102 (86) 102 732 89 102 169 652
Blackford 254 (213) 254 834 -13 254 271 550
Newala - - 1,088 -267 - 525 296
Notes:
ft = feet

ft bgs = ft below ground surface

(" Stratigraphic unit. Rocks of the Benbolt Formation, the Rockdell Formation, the Fleanor and Eidson members
of the Lincolnshire Formation, and the Blackford Formation are considered part of the larger Chickamauga
Group in the CRN Site area. Newala Formation rock represents the uppermost component of the Knox Group.

@ The average apparent vertical thickness and true thickness (parenthetical value) for critical stratigraphic units in
the CRN Site area. According to SSAR Section 2.5.4.1.1, the apparent (vertical) thickness of each stratigraphic
unit was estimated from projections of contacts between stratigraphic units assuming an average bedding plane
dip of 33° (see also Section 1.2.1, herein). True stratigraphic unit thickness is calculated as the product of the
apparent thickness and the cosine of the 33° average bedding plane dip (0.83867) (SSAR Section 2.5.4.1.1).

@ The stratigraphic unit vertical thickness and top depth and elevation under SMR Units 1&2 (Site A). The
thickness and top depth and elevation for the Benbolt Formation are estimated for a truncated subsurface profile
considering only sound rock.

@ The stratigraphic unit vertical thickness and top depth and elevation under SMR Units 3&4 (Site B). The
thickness and top depth and elevation for the Fleanor Formation are estimated for a truncated subsurface profile
considering only sound rock. Benbolt Formation and Rockdell Formation rock are not exposed in Site B.

Laboratory and field material testing suggest no significant difference in lower and Upper
Blackford Formation physical properties (SSAR Section 2.5.4.2.1.9). As a result, from an
overall engineering characterization standpoint, both the lower and Upper Blackford Formation
can be considered as a single unit.

1.2.1.3 Lincolnshire Formation (Chickamauga Group)

Across most of eastern Tennessee, the Lincolnshire Formation includes three distinct lithologies

identified as the Eidson, Fleanor, and Hogskin members, although only Eidson Member and
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Fleanor Member rocks are exposed in CRN Site areas (Hatcher et al., 1992). Rock of the Eidson
and Fleanor members is specifically expected to be exposed in Site B (Units 3&4) power block

excavations (Figure 1-2).

Hatcher et al. (1992) described Eidson Member rock in CRN Site areas as a massive to nodular
limestone containing bedded and nodular cherts, and indicated a laterally variable average
thickness of 65 ft for the unit. In CRN Site borings, Eidson Member rock maintains an average
apparent thickness of approximately 102 ft (Table 1-2) and is described as a gray colored,
laminated to thinly-bedded, argillaceous, micritic limestone (SSAR Sections 2.5.1.2.3.3).

Fleanor Member rock in turn is described in CRN Site borings as a red (or maroon) calcareous
siltstone containing gray limestone interbeds (SSAR Section 2.5.1.2.3.3). Lowermost and
uppermost portions of the Fleanor Member have been described as including a distinct olive-gray

calcareous siltstone (Hatcher et al., 1992).

The average apparent thickness of the Fleanor Member of the Lincolnshire Formation is
estimated to be approximately 257 ft in the overall CRN Site area (7Table 1-2) (SSAR Section
2.5.4.2.1.7).

1.2.1.4  Rockdell Formation (Chickamauga Group)

Overlying the Eidson and Fleanor members of the Lincolnshire Formation, the Rockdell Formation
is a thick (approximately 260 ft to 280 ft) limestone mass that grades upward from light-gray
calcarenite, dark-gray calcareous siltstone, and fossiliferous nodular and micritic limestone to

dense calcarenite containing abundant bedded and nodular chert (Hatcher et al., 1992).

Based on recent field investigations, SSAR Section 2.5.1.2.3.3 describes the lowermost Rockdell
Formation as a gray to bluish-gray to dark-gray thinly to moderately bedded limestone
containing some thin calcareous siltstone interbeds and chert beds, lenses, and nodules, and the
uppermost Rockdell Formation as a light-brownish-gray, gray, bluish-gray, or dark-gray
laminated to moderately bedded micritic limestone containing minimal calcareous siltstone

interbeds and few chert beds and lenses.

The average apparent thickness of the Rockdell Formation (based on recent borings) is estimated
to be approximately 287 ft (Table 1-2) (SSAR Section 2.5.4.2.1.6).

Non-Proprietary Report
Foundation Assessment '
Clinch River Nuclear Site Page 20 of 95

165737/17, Rev. 0 (June 16, 2017)



1.2.1.5 Benbolt Formation (Chickamauga Group)

Hatcher et al. (1992) described the Benbolt Formation as an interbedded mass of fossiliferous
nodular limestone, un-fossiliferous amorphous micrite in a dark-gray siltstone matrix, more
massive dark-gray siltstone, and un-fossiliferous calcarenite. SSAR Sections 2.5.1.2.3.3 and
2.5.4.2.1.5 describe the Benbolt Formation (in core) as a gray to bluish- to dark bluish-gray, very
thinly- to thinly-bedded nodular limestone. Borings also indicate two distinct calcareous
siltstone interbeds located approximately 16 ft and 44 ft above the Benbolt Formation’s contact

with the underlying Rockdell Formation.

The apparent vertical thickness of the Benbolt Formation based on recent borings is
approximately 330 ft (Table 1-2). Hatcher et al. (1992) similarly suggested that the Benbolt
Formation is roughly 360 ft to 380 ft in thick.

1.2.2 Subsurface Material Properties

Best estimate engineering properties values for Newala Formation, Blackford Formation, Eidson
and Fleanor members of the Lincolnshire Formation, and Rockdell Formation and Benbolt
Formation rock masses are provided in Appendix B, as based on field investigation and material
testing data presented in SSAR Section 2.5.4.

It should be noted that Appendix B includes material properties weathered rock and existing fill
and residual soil expected to be excavated from Site A and Site power block areas prior to
foundation construction. Accordingly, Appendix B materials properties are not entirely
relevant to the FE modeling. Instead, rock mass properties based on the Geological Strength
Index (GSI) are used in the PLAXIS 2D models for Sites A and B, and thus include
considerations for bedding plane discontinuities, joints, shear fractures, and other structures, as
described below, in Section 1.2.3. Specific details related to GSI-based rock mass properties are

provided in Section 2.0.

1.2.3 Other Critical Geologic Features Influencing Engineering Conditions

Other critical geologic features in Site A and Site B power block areas potentially influencing
SMR Units 1&2 and 3&4 foundation performance include bedding planes and joints,
deformation (shear fracture) zones, and potential karst features (i.e., cavities). Brief discussions

of each geologic structure are provided hereinafter, in Section 1.2.3.1 through Section 1.2.3.3.
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Corresponding implications for subsurface stability (resulting from geologic features) are in turn

discussed in Section 1.2.4.

1.2.3.1 Bedding Planes and Joints/Fractures (Discontinuities)

As described in Section 1.2.1, field mapping and ATV logging data indicate that bedding planes
under Units 1&2 and 3&4 (i.e., in Site A and Site B) and in other CRN Site areas strike
predominantly from 050° to 065° and dip roughly 30° to 40° southeast.

ATV logs also indicate two principal fracture (i.e., joint) sets in CRN Site areas, one set oriented
(on average) parallel to bedding plane strike and perpendicular to bending plane dip, striking
240° and dipping 59° north-northwest, and another set oriented parallel to both bedding plane
strike and dip, on average striking 060° and dipping 38° southeast (Table 1-3). Secondary joint
sets observed in ATV logs are reported as near vertical (73° to 74°, on average) and oriented
both parallel and normal to bedding plane strike. In core, most joints are described as hairline or

open joints, and characterized as planar, discontinuous, or irregular.

It should be noted that ATV data indicate that joints occur in highest frequency in the upper 100
ft of rock under Site A and Site B (as shown on Figure 1-3). Per SSAR Section 2.5.4.1.3.1,
primary joint sets (Sets 1 and 2 in Table 1-3) occur in each stratigraphic unit. Secondary joint

sets (Sets 3, 4, and 5) in contrast are observed primarily in the Newala Formation.

TABLE 1-3
PRIMARY AND SECONDARY JOINTING OBSERVED IN ATV DATA LOGS
(ADAPTED FROM SSAR SECTION 2.5.1.2.4.3.3)
Joint SET STRIKE ? Dip ® Dip DIRECTION ¢
1 240° 59°¢ 330°
2 060° 38° 150°
3 060° 73° -
4 140° 74° -
5 322° 73° -

Notes:
(" Joint sets 1 and 2 are described in SSAR Section 2.5.1.2.4.3.3 as primary joint (fracture) sets. Sets 3, 4, and 5

represent secondary joint sets.
@ As reported in SSAR Section 2.5.1.2.4.3.3.

@ As reported in SSAR Section 2.5.1.2.4.3.3.
@ As reported in SSAR Figure 2.5.1-38, Sheet 5. Secondary joint dip directions were not directly reported and are

not provided here.
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CRBRP related excavation mapping per Drakulich (1984) and Kummerle and Benvie (1987)
likewise indicated major bedding plane joints striking 052° and 050° and dipping 37°
southeast and 58° northwest, respectively, similar to Joint Sets 1 and 2 in Table 1-3. Drakulich
(1984) and Kummerle and Benvie (1987) also identified joint sets striking 335° and 295° and
dipping 80° southwest and 75° northeast, respectively.

Excluding bedding separation related joints, Drakulich (1984) ascribed joint formation primarily

to syndepositional settlement, or syndeformational (synorogenic) compression and tension.

1.2.3.2 Shear Fracture Zones

Previous CRBRP drilling investigations provided evidence for multiple slickensided joint and
bedding surfaces in CRN Site areas, including a prominent re-healed shear zone in Eidson
Member (Lincolnshire Formation) rock from 37 borings, ranging from 19 ft to 46 ft in total
thickness (SSAR Section 2.5.1.2.4.3.4 and CRBRP PSAR Section 2.5.1.2.4.3).
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Drakulich (1984) similarly identified shear fracture zones in CRBRP foundation excavations, but
suggested that the aforementioned deformation in Eidson Member limestone units extended into
Blackford Formation siltstone (Appendix C). Drakulich (1984) also mapped a prominent shear
zone in Rockdell Formation exposures. According to Drakulich (1984), both zones provide
evidence for bedding plane slips that transition to upright or overturned folds and small-scale

thrust or reverse faults.

Similar structures (multiple zones of bedding-parallel, closely spaced calcite-healed fractures)
were identified in the core from the Eidson Member of the Lincolnshire Formation and in the
core from the Rockdell and Benbolt formations during field investigations specific to SMR Units
1&2 and 3&4 (Figure 1-4) (SSAR Sections 2.5.1.2.4.3.4,2.5.1.2.6.4, and 2.5.4.1.3.2). Eidson
Member deformational zones (i.e., shear fracture zones) range in thickness from 1 ft to 18 ft, and
average 4 ft. Shear joint zone thickness in the Rockdell and Benbolt formations ranges from 1 ft
to 7 ft (and average 3 ft).

It should be noted that the most significant (thickest) shear fracture zone reported in Eidson
Member core collected from SMR Units 1&2 and 3&4 areas is interpreted to be the same

structure observed in CRBRP drilling and excavation mapping.
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FIGURE 1-4
BAR GRAPH OF SHEAR FRACTURE ZONE THICKNESSES IN SITE BORINGS
(ADAPTED FROM SSAR TABLE 2.5.1-17)
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1.2.3.3 Karst Features

In general, cavity systems in Knox Group rocks in the greater CRN Site area are well developed
and extensive. Cavities in Chickamauga Group rocks are less extensive, but have been reported
in each stratigraphic unit underlying Site A and Site B. More relevant to SMR Sites A and B,
Drakulich (1984) reported a general absence of cavities in Chickamauga Group exposures at
bedrock depths greater than 75 ft in CRBRP foundation excavations, but suggested that rock
cavities could be found at almost any depth in the underlying Knox Group. Nevertheless,
Drakulich (1984) did note cavities in Eidson Member equivalent rock units, and in Rockdell

Formation equivalent rock.

Field investigations for SMR Units 1&2 and 3&4 similarly suggest that cavities are present in
each of the stratigraphic units at the CRN Site, but occur most frequently in the Rockdell
Formation and Eidson Member of the Lincolnshire Formation (Figure 1-5). Most cavities in
Site A and Site B area borings (75 percent of the cavities identified in borings) are estimated
or interpreted to be less than 1.6 ft in height, and rarely exceed 5.0 ft in height. Excepting one
6.3 ft cavity in the Newala Formation, larger cavities (in excess of 5.0 ft, but less than 17 ft)

occur only in borings from the Rockdell Formation and Eidson Member.

1.2.4 Engineering Considerations Related to Critical Geologic Features

Kummerle and Benvie (1987) previously suggested that the intersection of bedding planes and/or
joint sets and excavations in general created potential failure planes for CRBRP foundations.
However, Drakulich (1984) noted that fractures in CRBRP excavations became actual
detachment surfaces only on direct physical impact (namely blasting). In particular, excavation
damage was described as only slight displacements of rock blocks bounded by discontinuities
(e.g., fracture/joint sets). Sub-horizontal rock surfaces (i.e., CRBRP excavation bases and floors)
and rock surfaces sloping normal to (opposite in direction to) bedding was also apparently

blasted effectively without damage, excepting some large over-breaks.

Non-Proprietary Report
Foundation Assessment '
Clinch River Nuclear Site Page 25 of 95

165737/17, Rev. 0 (June 16, 2017)



160 80.0%
|
140 70.0%
120 H | 60.0%
s 100 + 50.0%
§ L
3 80 40.0%
g
“ 60 - 30.0%
40 - 20.0%
20 - 10.0%
O =1 T T T I=I T T T T T T T T O-O%
1 2 3 45 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Estimated Cavity Size (ft)
@ Benbolt MRockdell @Fleanor O Eidson OBlackford m Newala

FIGURE 1-5
BAR GRAPH OF CAVITIES IN SITE BORINGS
(ADAPTED FROM SSAR TABLE 2.5.1-11)

Notwithstanding the above, Drakulich (1984) indicated that bedding separation represented the
most frequent rock discontinuity in CRBRP excavations, and suggested that most beds in
excavation areas were detached via partings. Accordingly, bedding surface slip is plausible in
Site A and Site B, in particular, due to reactivation (opening or shearing) of the significant shear
fracture zones located on or near the Blackford Formation and Eidson Member contact and in the

Rockdell Formation (as shown in Appendix C).

As previously noted in Section 1.2.3.2, a conspicuous shear fracture zone was also identified in
Rockdell Formation exposures during CRBRP foundation excavations, and is evident in CRN
Site borings. Depth distributions of shear fracture zones specifically suggest generalized clusters
of sheared rock centered on (roughly) depths of 150 ft and 300 ft in the Rockdell Formation, and
at 160 ft in the Eidson Member of the Lincolnshire Formation and 50 ft and 150 ft in the Benbolt
Formation (Figure 1-6).

Aforementioned shallower (50 ft, 150 ft, and 160 ft) shear zones in the Rockdell and Benbolt
formations and Eidson Member roughly coincide with alternatively proposed 40 ft, 90 ft and 150

ft foundation excavation levels for Site A and Site B, and could present potential foundation
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failure planes. However, it should be noted that SSAR Section 2.5.4.10.1.2 dismissed general
shear failure of the foundation (including sliding along bedding and/or fracture planes) given
expected net decreases in bearing pressures (i.e., unloading) at foundation levels. Unloading is
expected to result from net changes in pressure from overburden removal during excavation,
relative to foundation load (SSAR Section 2.5.4.10.1.2).

0
_ ®
(%]
100 o) o
& ® ®
= we?® o ©
*é 200 +—¢ )
[a) ® ®
(]
g 300 L 00 e O.
N [ ® o
5 ® L
B o
& 400
c
0
e
o 500
S

600 ‘ ‘ ‘
0.0 5.0 10.0 15.0 20.0
Estimated Shear Zone Thickness (ft)
© Benbolt Formation @ Rockdell Formation O Eidson Formation O Blackford Formation

FIGURE 1-6
SHEAR FRACTURE ZONE THICKNESS AND DEPTH DISTRIBUTION
(ADAPTED FROM SSAR FIGURE 2.5.1-60)

Cavities in Site A and Site B areas also present potential failure loci for SMR Units 1&2 and
3&4 foundations. Numerous cavities occur in Rockdell Formation, Eidson Member, and
Blackford Formation rock (10 or more cavities in each of the aforementioned units) at depth
equivalents near the proposed 40 ft foundation excavation levels for SMR Units 1&2 and 3&4
(i.e., at 30 ft to 50 ft depths) (Figure 1-7). Fewer cavities occur at depths proximal to the
alternatively proposed 90 ft foundation level, and include only six cavities each in the Eidson
Member of the Lincolnshire Formation and the Blackford Formation, and four in the Rockdell
Formation. Only one cavity (in the Rockdell Formation) is inferred for depths between 130 ft
and 150 ft (generally equivalent to the proposed 140 ft Units 1&2 and 3&4).
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Cavity development in CRN Site areas is generally limited to the most markedly weathered zone
immediately below ground surface (to depths less than 100 ft) (Figure 1-7). To wit, 75 percent
of the reported cavities in CRN Site borings occurred at depths less than approximately 55 ft
(Appendix D). Consequently, cavity-related failure potential is likely greatest at relatively
shallow depth, perhaps to a depth less than about 30 ft.

It should be noted that rock weathering depth limits in Units 1&2 and 3&4 areas, and in CRBRP
foundation excavations in particular, have previously been attributed to the general
imperviousness of Chickamauga Group siltstone sequences (Drakulich, 1984). Interstitial
porosity in the siltstone sequences is considered to be effectively negligible, and much
groundwater flow is confined to bedrock discontinuities, namely bedding plane separations and
joints and fractures. In the Rockdell Formation, for example, larger cavities in more massive
limestone layers appear to be aligned to bedding, in particular at contacts with calcareous
siltstone interbeds (SSAR Section 2.5.1.2.5.1.2).

Given the aforementioned conditions, the geologic engineering condition most critical to SMR
Units 1&2 and 3&4 safety-related foundations is likely potential cavities located on or along

bedding planes, especially more impervious siltstone interbed contacts.
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FIGURE 1-7
CAVITY HEIGHT AND DEPTH DISTRIBUTION FOR CRN SITE BORINGS
(ADAPTED FROM SSAR FIGURE 2.5.1-52)
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2.0 FINITE ELEMENT MODELING OF FOUNDATION CONDITIONS

As described in Section 1.2.4, potential cavities located on or along bedding planes or in shear
fracture zones are considered to be the most critical safety-related engineering conditions for
CRN Site SMR Units 1&2 and 3&4. Accordingly, the impact of various cavity sizes and

locations on SMR foundation performance were evaluated using PLAXIS 2D FE modeling.

Specifically, the following cavity size and location scenarios were considered in Site A and Site
B FE models, for foundation embedment depths of 40 ft, 90 ft, and 140 ft:

e Cavity diameters of 5 ft, 10 ft, and 15 ft;
e Cavity depths of 5 ft and 30 ft below foundation embedment depths; and

e Cavity locations on the edge of the common basemat , the center of the
common basemat, and along bedding planes conservatively assumed to
feature shear fracture zones or significant discontinuities.

Analyzed cavity diameters were selected based on preliminary analyses that show what size is

likely to fail, and observed cavity sizes at the Site.

Model scenarios assumed plane strain in two-dimensional space, static loading conditions, and
circular cavity geometries. Conservatively, cavities were modeled as infinitely long tunnels. On
the other hand, CRN Site cavities more likely have finite lengths and more ellipsoidal shapes

(elongated perpendicular to groundwater flow) owing to phreatic origin.

2.1 MODEL LAYERING

As previously indicated in Section 1.2.1, excavations for SMR Site A and Site B are expected to
be located entirely in Chickamauga Group formations. However, bedding orientations are
expected to expose different Chickamauga Group strata at power block excavation levels in
Sites A and B. Specifically, Units 1&2 (Site A) are expected to be founded on Benbolt
Formation rock, whereas Units 3&4 (Site B) are expected to be founded on rock ascribed to the

Fleanor Member of Lincolnshire Formation.

Bedding plane orientations (i.e., dips) and formation thicknesses used in FE models for Sites A

and B were specifically derived from four geologic sections provided in SSAR Section 2.5.4
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supporting calculations, as shown on Figure 2-1 through Figure 2-4 (from Bechtel, 2014).
Locations of the cross sections in plant north-south and east-west directions are shown on Figure
2-5.

2.1.1 Discontinuity and Shear Fracture Zone Cases Considered

As described in Section 1.2.3.2, multiple zones of bedding-parallel, closely spaced calcite-healed
fractures were identified in core from the Eidson Member of the Lincolnshire Formation and in
core from the Rockdell and Benbolt formations during field investigations specific to Site A and
Site B. Development of such shear fracture zones in Site A and Site B strata, identified via
slickensided surfaces and/or severely warped or brecciated rock, suggests differential movement
resulting from regional-scale folding and faulting.

Significant shear fracture zones and arguably less significant bedding plane or general rock mass
discontinuities (bedding plane coincident fracture zones, zones of slightly to highly weathered
jointing, etc.) were evaluated in the PLAXIS 2D FE analyses by introducing model interface
elements. Specifically, these modeled interface elements allow for delineation of potentially
weaker planes (strata) in the subsurface, and application of rock strength or stiffness reduction
factors to the modeled strata located immediately above or below potential shear fracture zones

or bedding discontinuities (assuming fair to poor quality rock).

In particular, PLAXIS 2D modeling for Site A included simulation of discrete interface element
located long the Rockdell Formation and Benbolt Formation contact, and simulation of a
second interface element approximately 15 ft above the Rockdell and Benbolt formations
contact, as summarized in Table 2-1 and Figure 2-6. It should be noted that the second (latter)
interface element was designed to simulate the lowermost of two potentially weaker calcareous

siltstone layers identified in Benbolt Formation cores, as described in Section 1.2.1.5.
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GEOLOGIC CROSS SECTION A-A’ FOR SITE A
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GEOLOGIC CROSS SECTION E-E’ FOR SITE A
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FIGURE 2-5
LOCATION OF SECTIONS USED IN SITE A AND SITE B MODELS

For Site B, as summarized in Table 2-1 and Figure 2-7, an interface element was included along
the bedding plane separating the Fleanor and Eidson members of the Lincolnshire Formation to
simulate the shear zone identified in CRN Site borings and CRBRP borings and foundation
excavations, as previously described in Section 1.2.3.2. Although inferred to extend into Lower
Blackford Formation rock, Site B FE foundation models included this prominent shear zone at
the contact of the Eidson and Fleanor members, in order to more conservatively simulate shear

zone coincidence with the common basemat for Units 3&4.

More detailed descriptions of interface element implementation and corresponding reduction

factors are provided in Section 2.1.3.3.
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TABLE 2-1
ANALYZED CASES FOR SITE A

FOUNDATION | ¢\ vty Size @
Site SECTION @ DepTH © CaAvity LocatioN © REMARKS ©
(ft) (ft)
Center of common basemat 5 ft below basemat
Center of common basemat 30 ft below basemat
40 5,10,15 Bedding (Benbolt-Rockdell) 1 Interface
AA" Bedding (Benbolt-Rockdell) 2 interfaces
Edge of common basemat 5 ft below basemat
90 5.10.15 Center of common basemat 5 ft below basemat
A > Bedding (Benbolt-Rockdell) 1 Interface
140 5,10,15 Bedding (Benbolt-Rockdell) 1 Interface
40 51015 Center of common basemat 5 ft below basemat
T Center of common basemat 30 ft below basemat
E-E' 90 5.10.15 Center of common basemat 5 ft below basemat
7 Bedding (Benbolt-Rockdell) 1 Interface
140 5,10,15 Bedding (Benbolt-Rockdell) 1 Interface
Center of common basemat 5 ft below basemat
40 51015 Center. of common bgsemat 30 ft below basemat
T Bedding (Fleanor-Eidson) 1 Interface
B-B' Edge of common basemat 5 ft below basemat
90 5.10.15 Cente1.r of common bgsemat 5 ft below basemat
B T Bedding (Fleanor-Eidson) 1 Interface
140 5,10,15 Bedding (Fleanor-Eidson) 1 Interface
40 51015 Center of common basemat 5 ft below basemat
o Center of common basemat 30 ft below basemat
F-F' 90 5.10.15 Center. of common bgsemat 5 ft below basemat
T Bedding (Fleanor-Eidson) 1 Interface
140 5,10,15 Bedding (Fleanor-Eidson) 1 Interface
Notes:
ft = feet

M

@

(©)

4)

(©)

(©6)

Units 1&2 (Site A) or 3&4 (Site B).

Modeled Site A and Site B cross sections (see Figure 2-1 through Figure 2-4).

Modeled foundation embedment depth (feet below ground surface).

Modeled cavity diameters.

Modeled cavity locations.

Additional detail related to cavity location. For Site A, “1 interface” indicates a single interface element introduced

on both sides of the contact between the Benbolt and Rockdell formations. In turn, “2 interfaces” indicates
simulation of an interface element on both sides of the Benbolt Formation and Rockdell Formation contact, and
simulation of a second interface element located approximately 15 ft above the contact between the Benbolt and
Rockdell formations. For Site B, “I interface” indicates a single interface element introduced on both sides of the
contact between the Fleanor and Eidson members of the Lincolnshire Formation.

Non-Proprietary Report
Foundation Assessment

Clinch River Nuclear Site

165737/17, Rev. 0 (June 16, 2017)

Page 36 of 95




/~ Cross

Apparent Dip

A-A

Section

S

SITEA

/~ Cross Section
E-E’

visualization —
\_ - 4 i
Cavity diameters sft | 10ft | 15ft st | 10ft | 15ft
Cavity below
foundation [ ot 30t Sft 30ft ]
T T ( Center NI | Edge of NI ] Center NI | Edge of NI
VY _ocations L Bedding |Shear Zone y Bedding |Shear Zone

/

V—

Cross Section A-A’ is more critical than Cross Section E-E’ under the same
loading conditions.

FIGURE 2-6

FOUNDATION EVALUATION CASES CONSIDERED FOR SITE A

S

ITEB

/" Cross

#

Section

-

/~  Cross Section

F-F’
Apparent Dip angle =
visualization
. : X :
Cavity diameters sft | 10ft | 15ft | sft | 10ft | 15ft
Cavity below
foundation [ oft 30t Sft 30ft
Caiitalocat ( Center NI | Edge of NI ] f Center NI | Edge of NI ]
QVITY, OEAHIONS L Bedding |Shear Zone) Bedding | Shear Zone

/

Y

Cross Section B-B’ is more critical than Cross Section F-F’ under the same
loading conditions.

FIGURE 2-7

FOUNDATION EVALUATION CASES CONSIDERED FOR SITE B

Non-Proprietary Report
Foundation Assessment
Clinch River Nuclear Site

165737/17, Rev. 0 (June 16, 2017)

Page 37 of 95




2.1.2 Stress Conditions

Regional folding and faulting suggest a rotation of principal stresses such that horizontal stresses
represent the major stress component at Sites A and B. An assumption of principal stress in the
vertical direction is nonetheless considered more conservative for the evaluation of bedding
plane stresses, given inferred bedding inclinations. Accordingly, a gravitational stress field with
o1 1n the vertical direction was used in the PLAXIS 2D simulations, with horizontal stresses as

given in Equation 2-1:

o3 =0'1(1—sin®) Equation 2-1

The impact of this vertical o; assumption was checked in a sensitivity analysis wherein

horizontal stress was assumed to be much larger (at least four times) than vertical stress.

2.1.3 2-D PLAXIS Models for Site A and Site B

Foundation and bedding plane stress conditions related to dewatering and excavation and
structural loads were specifically evaluated for Sites A and B using the PLAXIS 2D models
detailed in Section 2.1.3.1 through Section 2.1.3.6, below.

Results from the modeling are described in Section 3.0.

2.1.3.1 Material Constitutive Model

Geologic parameters from field and the laboratory measurements were taken into account in
classifying rock masses for inclusion in the Site A and Site B Models, and are reported and
considered as a range of GSI values, rather than single values, as presented in Appendix B and
the CRN Site ESP Application (i.e., the SSAR).

GSI, in addition to unconfined compressive strength (UCS), is used directly in the empirical
calculations of deformation moduli (E,,;,) and shear strength parameters (¢’ and ¢") for

settlement analysis.

Mohr-Coulomb failure parameters ¢’ and ¢’ (i.e., shear strength parameters) are calculated using

UCS laboratory test results, overburden stress characterization information, and material
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parameter data. This is typically achieved using the Generalized Hoek-Brown Criterion as
expressed by Equation 2-2:

a

!
o1=0'3+0, (mb % + s) Equation 2-2
Ccl

where,

o', and o' are major and minor effective principal stresses, respectively, and

o,; 1s the uniaxial compressive strength, reported from UCS testing.

In Equation 2-2, m,, s and a represent material properties given by the following additional

equations:
my, = m; exp (221__1140;) Equation 2-3
S = exp (Gil__;;o) Equation 2-4
a= % + %(exp % —exp _TZO) Equation 2-5

Where,
m; 1s a material property for intact rock,
GSI is the geologic strength index, and

D is a disturbance factor related to the method of excavation or other potential disturbances.

The Mohr-Coulomb failure parameters ¢’ and ¢’ are subsequently found using the following

equations:
6amp(s+mpo} )a_l
p'= arcsin( R UL a_l) Equation 2-6
2(1+a)(2+a)+6amp(s+mposy,)
¢ = Uci[(1+2a)5+(1—a)mb0'én](S"'mbaén)a_l Equation 2.7

(1+a)(2+a)\/1+(6amb(s+mbaén)a_l)/((1+a)(2+a))
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where,

a, s, my,, and o,; are material properties defined previously, and

O3y 1S given by:
O3n = 0 3max/Oci Equation 2-8

The upper limit of confining stress (03,4 ), for which the Hoek-Brown criterion is calculated, is
determined according to the geotechnical application. For the disturbed zone around a cavity,
material properties are typically per Hoek-Brown failure criterion (Hoek-Brown, 2002)
determined by assuming shallow tunnel conditions (such that the depth below the surface is less
than 3 tunnel [cavity] diameters). This is a different assumption than the general stress condition

assumption made in the CRN Site ESP Application, and it is only for the zone around the cavity.

Global rock mass strength, as estimated by Mohr-Coulomb relationships, is denoted as ¢’.,,,. For

the case of tunnel design these two parameters are defined as follows:

o—é o' —-0.94

—smax cm . i

O¢m 0'47( oo ) Equation 2-9
- [mp+4s—a(mp—8s)|(mp/4+s)*~" .

Tem = Oci 2(1+a)(2+a) Equation 2-10

where,

a, s, my, and o,; are material properties defined previously, and
0y 1s the vertical stress from overburden, including effects of ground water.

All three derived material properties (a, s, m;) depend on GSI values for calculation. In
defining the material properties, both qualitative and quantitative methodologies are

implemented.

In turn, rock mass modulus (E;-,;) can be calculated from GSI values using the methodology of
Hoek and Diederichs (2006):

1-D/2 .
E,.m =E; (0.02 + —(60+15D_Gs,)> Equation 2-11
1+e 11
Non-Proprietary Report
Foundation Assessment '
Clinch River Nuclear Site Page 40 of 95

165737/17, Rev. 0 (June 16, 2017)



where,

E.m 1s the rock mass modulus,

E; is the intact rock elastic modulus calculated as the product of a UCS value and the modulus
ratio MR,

D is the disturbance factor as used in calculation of ¢’ and ¢’, and

GSI is the geologic strength index.

For Sites A and B, rock masses were modeled using an elasto-plastic Mohr-Coulomb model,
since the strain levels are expected to be low and within the elastic range prior to cavity
collapse. The use of Mohr-Coulomb model also dictates the use of a constant stiffness in all

layers.

GSI values for the CRN Site are provided in SSAR Section 2.5.1.2.6 as a range of values for each
stratigraphic unit. The lower range rock mass properties from the CRN Site ESP Application
(SSAR Section 2.5.1.2.6) were used in the FE models, as shown in Table 2-2.

Disturbed rock mass properties calculated using Equation 2-6 and Equation 2-7 above,

assuming a disturbance factor (D) of 0.7, are presented in Table 2-3.

2.1.3.2 Material Geometry and Boundary Conditions

Settlement was obtained from the 2D finite element method (FEM) in PLAXIS 2D version 9.02
(PLAXIS 2D).

The foundation in the model is considered as a plate element representing a basemat thickness of
6 ft. The plate element has no self-weight, as the applied loads are assumed to be inclusive of
the foundation weight. The structural stiffness is limited to the basemat without the inclusion of
any other superstructure elements. This is a conservative assumption since superstructural

elements would likely increase rigidity and reduce angular distortion or differential settlement.

A finished plant grade elevation of 821 ft NAVD88 was assumed for the power block area. The
plan dimensions considered for the models are 1,200 ft (horizontal) by 1,200 ft (vertical). Stress
increments at the model boundaries are less than 10% of the initial stress, confirming an

adequate model extent. Boundary conditions for the sides of the model were set to allow for
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vertical displacement, but the bottom of the model was restrained in both vertical and horizontal

directions.

As shown on Figure 2-8, 15-node triangle elements were used in the analysis, with a total of

approximately 3,000 elements for the design mesh model. The size of the triangular FE is about

2 ft in finely meshed areas around modeled cavities, and 80 ft in the coarsely meshed areas

outside of the excavation zone. In the vertical plane, the element length varies between

approximately 2 ft and 80 ft.

TABLE 2-2
ROCK MASS PROPERTIES FOR SITES A AND B USED IN FE MODELING
ROCK MAsS PROPERTIES ¥

SLT)E LAYER @ UNIT WEIGHT COHESION FRICTION POISSON’S ELASTIC MODULUS
(peh (psf) (psi) ANGLE RATIO (ksf) (ksi)

Granular Fill 135 0 0 36 0.35 16,000 111

Existing Fill 120 150 1 20 0.40 3,750 26
A Benbolt 168 59,760 415 33 0.32 643,680 4,470
Rockdell 168 56,592 393 31 0.31 452,736 3,144
Fleanor 168 42912 298 32 0.34 454,896 3,159

Granular Fill 135 0 0 36 0.35 16,000 111

Existing Fill 120 150 1 20 0.40 3,750 26
Rockdell 168 56,592 393 31 0.31 452,736 3,144
B Fleanor 168 42912 298 32 0.34 454,896 3,159
Eidson 168 48,672 338 30 0.31 340,560 2,365
Blackford 168 34,848 242 30 0.31 479,232 3,328
Newala 175 201,024 1,396 35 0.29 1,202,976 8,354

Notes:

pcf = pounds per cubic foot
psf = pounds per square foot
psi = pounds per square inch
ksf'= kips per square foot

ksi = kips per square inch

(" Units 1&2 (Site A) or Units 3&#4 (Site B).
(2)

Geologic layer or material expected to be exposed in the given Site A or Site B location. Units 1&2 in Site A

are expected to be founded on Benbolt Formation rock. Units 3&4 in Site B are expected to be founded on rock
ascribed to the Fleanor Member of the Lincolnshire Formation.

@ Rock mass properties from SSAR Section 2.5.4 Table 2.5.4-21, and Table 2.5.4-22.
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TABLE 2-3
DISTURBED ROCK MASS PROPERTIES (D=0.7)

ROCK MASS PROPERTIES ¥
LAYER UNIT WEIGHT COHESION FRICTION POISSON’S ELASTIC MODULUS
(pcf) (psh) (psi) ANGLE RATIO (ksf) (ksi)
Benbolt 168 16,704 116 55 0.32 296,496 2,059
Rockdell 168 5,328 37 61 0.31 163,728 1,137
Fleanor 168 8,928 62 56 0.34 191,088 1,327
Eidson 168 3,312 23 61 0.31 118,958 826
Blackford 168 5,328 37 56 0.31 184,896 1,284
Notes:

pct = pounds per cubic foot
psf = pounds per square foot
psi = pounds per square inch
kst = kips per square foot
ksi = kips per square inch

" Geologic layer or material expected to be exposed in the given Site A or Site B location. Units 1&2 in Site A

are expected to be founded on Benbolt Formation rock. Units 3&4 in Site B are expected to be founded on rock
ascribed to the Fleanor Member of the Lincolnshire Formation.

@ Rock mass properties calculated from Table 2-3 data, using disturbed rock mass properties from SSAR Section

2.5.4 Table 2.5.4-23 using Equation 2-6 and Equation 2-7.

2.1.3.3 Interface Elements

It is noted that the use of GSI and Hoek-Brown failure criteria (as described in Section 2.1.3.1)
assume a homogeneous and isotropic rock mass behavior. However, rock mass discontinuities
and fracture zones located along stratigraphic boundaries (such as the contact between the
Benbolt and Rockdell formations and the contact between the Eidson and Fleanor members of
the Lincolnshire Formation at the CRN Site) can influence or change the failure direction pattern
of a rock mass.

Conservatively, interface elements (as introduced in Section 2.1.1) were thus included in the
PLAXIS 2D models for Sites A and B to represent potential planes of weakness resulting from

rock mass discontinuities or bedding plane shear zones at foundation elevations.

In the model, a “virtual thickness” dimension was assigned to each interface to define the material
properties of the interface, calculated as the product of a virtual thickness factor and the average

element size defined by the mesh generation. A default value of 0.1 was used for the virtual
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thickness factor in each of the PLAXIS 2D models with interfaces. Higher virtual thickness

factor values resulted in more elastic deformations.

A typical interface element implemented in a CRN Site PLAXIS 2D model is shown on Figure

2-9 as a dashed line paralleling layer geometries.
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FIGURE 2-8

A TYPICAL MODEL WITH REFINED MESH

In the model, interfaces were placed on both sides of the bedding planes for Site A and Site B. It

is important to note that placing interfaces on both sides of the bedding planes enables full

interaction between the interface and the surrounding rock. Two possible interfaces are
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distinguished by a plus-sign (+) and/or a minus-sign (-). The signs are just for identification

purposes for both sides of the interface element and they do not have any influence on the

results.
B
E B ;
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FIGURE 2-9

TYPICAL MODEL INTERFACE ELEMENT LOCATED ALONG A BEDDING PLANE

The primary interface parameter is the interface strength, R;,.. The strength properties of

interfaces are directly linked to the strength properties of the adjacent stratigraphic layers via

an assigned reduction factor as follows:

I ’
c = Rintercrock

tan@' = Rinter tan Q;ock

Equation 2-12

Equation 2-13
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Interface elements located along (or just above) the contact between the Benbolt and Rockdell
formations in Site A were specifically assigned an interface strength factor of 50 percent. Shear
fracture zones modeled on the contact between the Fleanor and Eidson members of the
Lincolnshire Formation in Site B in turn were assigned an interface strength factor of 30 percent.
These calculated parameters using interface strength factors are considered to represent the
properties of bedding plane discontinuities (e.g., weathered bedding plane joint zones) and shear

fracture zones along stratigraphic contacts for both Site A and Site B.

2.1.3.4 Finite Element Model Characteristics

PLAXIS 2D simulates dewatering, excavation, and other construction steps as individual phases.
Accordingly, differential settlement can be visually examined using contour plots provided for
discrete construction steps. Alternatively, numerical values along any given axis can be

extracted using calculated nodal displacements.

The PLAXIS 2D models for Site A and Site B specifically included the following simulation

phases:

¢ [Initial Conditions: Initial effective stresses for the Site are obtained. Cavities
are imposed after gravity loading, to simulate development within the rock
mass before the initiation of construction activities such as dewatering or
excavation.

e Dewatering: The water level, initially assumed to be at the top of existing fill
for all models, is lowered to the level of embedment depth considered for the
analysis.

e Excavation: Upon dewatering down to embedment depth, the material
between ground surface (EL 821 ft) and embedment depth elevation is
removed.

e Loading: Average loads on the footprints of support building 1, reactor
building, and support building 2 equal to 7.7 ksf, 11.8 ksf, and 5.1 ksf,
respectively, are applied. It is important to note that the loads on the footprint
of the common basemat are applied while the pore pressure is assumed to be
zero at the bottom of the foundation. This condition is kept for conservative
purposes.
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2.1.3.5  PLAXIS 2D Models for Site A

Site A PLAXIS 2D models included two different cross sections, A-A’, and E-E’, as described in
Section 2.1. The dip of the stratigraphic layers varies for these sections slightly, as illustrated on
Figure 2-1 and Figure 2-2. In the model, a disturbed zone was introduced around the simulated
cavity with material properties (cohesion and friction angle) calculated using the equations
presented in Section 2.1.3.1 and assuming a disturbance factor of 0.7. Similarly, a bedding plane
discontinuity (a weathered, jointed zone) was established along the contact between the Benbolt

and Rockdell formations using interface elements (as explained in Section 2.1.3.3).

Figure 2-10 through Figure 2-20 present the individual PLAXIS 2D models evaluated for Site
A.

Rockdell

il Fleanor

FIGURE 2-10
SITE A, CROSS SECTION: A-A’, CAVITY DIAMETER: 15FT, EMBEDMENT DEPTH:
40FT, CAVITY DEPTH: 5FT BELOW FOUNDATION,
CAVITY LOCATION: CENTER OF NI
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FIGURE 2-11
SITE A, CROSS SECTION: A-A’, CAVITY DIAMETER: 15FT, EMBEDMENT DEPTH:
40FT, CAVITY DEPTH: 30FT BELOW FOUNDATION, CAVITY LOCATION:
CENTER OF COMMON BASEMAT

P tat

Fleanor

~

'Weaker Plane

FIGURE 2-12
SITE A, CROSS SECTION A-A’°
SITE A, CROSS SECTION: A-A’, CAVITY DIAMETER: 15FT, EMBEDMENT DEPTH:
40FT, CAVITY DEPTH: 30FT BELOW FOUNDATION, CAVITY LOCATION: EDGE
OF COMMON BASEMAT, ON BEDDING PLANE
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FIGURE 2-13
SITE A, CROSS SECTION: A-A’, CAVITY DIAMETER: 15FT, EMBEDMENT DEPTH:
40FT, CAVITY DEPTH: 30FT BELOW FOUNDATION CAVITY LOCATION: EDGE
OF COMMON BASEMAT, ON BEDDING PLANE, TWO SHEAR JOINT INTERFACES
BASED ON BORING LOGS AND WEAK SILTSTONE REPRESENTATION

,,,,,

Fleanor

 Weaker Plane

FIGURE 2-14
SITE A, CROSS SECTION: A-A’, CAVITY DIAMETER: 15FT, EMBEDMENT DEPTH:
90FT, CAVITY LOCATION: 30FT BELOW EDGE OF COMMON BASEMAT,
BEDDING PLANE, SHEAR JOINT INTERFACE
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Fleanor

Weaker Plane

FIGURE 2-15
SITE A, CROSS SECTION: A-A’, CAVITY DIAMETER: 15FT, EMBEDMENT DEPTH:
140FT, CAVITY DEPTH: SFT BELOW FOUNDATION,
CAVITY LOCATION: EDGE OF COMMON BASEMAT, ON BEDDING PLANE,
SHEAR JOINT INTERFACE

Ulo

Rockdell

Fleanor

FIGURE 2-16
SITE A, CROSS SECTION: E-E’, CAVITY DIAMETER: 15FT, EMBEDMENT DEPTH:
40FT, CAVITY DEPTH: SFT BELOW FOUNDATION,
CAVITY LOCATION: CENTER OF COMMON BASEMAT
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Fleanor

FIGURE 2-17
SITE A, CROSS SECTION: E-E’, CAVITY DIAMETER: 15FT, EMBEDMENT DEPTH:
40FT, CAVITY DEPTH: 30FT BELOW FOUNDATION,
CAVITY LOCATION: CENTER OF COMMON BASEMAT

FIGURE 2-18
SITE A, CROSS SECTION: E-E’, CAVITY DIAMETER: 15FT, EMBEDMENT DEPTH:
90FT, CAVITY DEPTH: SFT BELOW FOUNDATION,
CAVITY LOCATION: CENTER OF COMMON BASEMAT
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FIGURE 2-19
SITE A, CROSS SECTION: E-E’, CAVITY DIAMETER: 15FT, EMBEDMENT DEPTH:
90FT, CAVITY DEPTH: >30FT BELOW FOUNDATION,
CAVITY LOCATION: EDGE OF COMMON BASEMAT, ON THE BEDDING PLANE

J Rockdell

FIGURE 2-20
SITE A, CROSS SECTION: E-E’, CAVITY DIAMETER: 15FT, EMBEDMENT DEPTH:
140FT, CAVITY DEPTH: 30FT BELOW FOUNDATION,
CAVITY LOCATION: EDGE OF COMMON BASEMAT
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2.1.3.6 PLAXIS 2D Models for Site B

PLAXIS 2D models were created for Site B based on cross sections B-B’ and F-F’, as shown on
Figure 2-3 and Figure 2-4 (and as described in Section 2.1). Similar to Site A, a zone of
disturbed material properties was introduced around simulated cavities assuming a disturbance

factor equal to 0.7, using the Mohr-Coulomb parameter equations previously described in
Section 2.1.3.1.

PLAXIS 2D interface elements (discontinuities and shear fracture zones) and cavity diameter
and location scenarios for Site B are depicted on Figure 2-21 through Figure 2-31.

Blackford
Newala

FIGURE 2-21
SITE B, CROSS SECTION: B-B’, CAVITY DIAMETER: 15FT, EMBEDMENT DEPTH:
40FT, CAVITY DEPTH: SFT BELOW FOUNDATION,
CAVITY LOCATION: CENTER OF COMMON BASEMAT
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Fleanor

Eidson
Blackford

Newala

FIGURE 2-22
SITE B, CROSS SECTION: B-B’, CAVITY DIAMETER: 15FT, EMBEDMENT DEPTH:
40FT, CAVITY DEPTH: 30FT BELOW FOUNDATION, CAVITY LOCATION:
CENTER OF COMMON BASEMAT

Newala Blackford Fleanor

FIGURE 2-23
SITE B, CROSS SECTION: B-B’, CAVITY DIAMETER: 15FT, EMBEDMENT DEPTH:
40FT, CAVITY DEPTH: 30FT BELOW FOUNDATION, CAVITY LOCATION: EDGE
OF COMMON BASEMAT WITH SHEAR FRACTURE ZONE INTERFACE
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Weaker Plane

Newala Fleanor

FIGURE 2-24
SITE B, CROSS SECTION: B-B’, CAVITY DIAMETER: 15FT, EMBEDMENT DEPTH:
90FT, CAVITY DEPTH: SFT BELOW FOUNDATION, CAVITY LOCATION: CENTER
OF COMMON BASEMAT WITH SHEAR FRACTURE ZONE INTERFACE

* Y —
. PR

» : [ l %
. . . J .
) " b B - [ %
| J
— S

Weéker Plane

-
B N

Newala Blackford S HEanor el |

Eidson N\

29

FIGURE 2-25
SITE B, CROSS SECTION: B-B’, CAVITY DIAMETER: 15FT, EMBEDMENT DEPTH:
90FT, CAVITY DEPTH: SFT BELOW FOUNDATION, CAVITY LOCATION: EDGE
OF COMMON BASEMAT WITH SHEAR FRACTURE ZONE INTERFACE
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Weaker Plane

Newala Blackford Eidson\"u::-‘~ Fleanor

24

FIGURE 2-26
SITE B, CROSS SECTION: B-B’, CAVITY DIAMETER: 15FT, EMBEDMENT DEPTH:
140FT, CAVITY DEPTH: SFT BELOW FOUNDATION, CAVITY LOCATION: ON
BEDDING PLANE WITH SHEAR FRACTURE ZONE INTERFACE

Fleanor

Eidson

Blackford

20
/

Newala

FIGURE 2-27
SITE B, CROSS SECTION: F-F’, CAVITY DIAMETER: 15FT, EMBEDMENT DEPTH:
40FT, CAVITY DEPTH: SFT BELOW FOUNDATION CAVITY LOCATION: CENTER
OF COMMON BASEMAT

Non-Proprietary Report

Foundation Assessment '
Clinch River Nuclear Site Page 56 of 95
165737/17, Rev. 0 (June 16, 2017)



Blackford

\\
21
Newala

FIGURE 2-28

SITE B, CROSS SECTION: F-F’, CAVITY DIAMETER: 15FT, EMBEDMENT DEPTH:

40FT, CAVITY DEPTH: 30FT BELOW FOUNDATION, CAVITY LOCATION:
CENTER OF COMMON BASEMAT

Blackford -

Newala -

FIGURE 2-29

SITE B, CROSS SECTION: F-F’, CAVITY DIAMETER: 15FT, EMBEDMENT DEPTH:
90FT, CAVITY DEPTH: 5FT BELOW FOUNDATION, CAVITY LOCATION: CENTER

OF COMMON BASEMAT WITH SHEAR FRACTURE ZONE INTERFACE
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Blackford ..

Newala w

FIGURE 2-30
SITE B, CROSS SECTION: F-F’, CAVITY DIAMETER: 15FT, EMBEDMENT DEPTH:
90FT, CAVITY DEPTH: 30FT BELOW FOUNDATION, CAVITY LOCATION: EDGE
OF COMMON BASEMAT ON THE BEDDING PLANE WITH SHEAR FRACTURE
ZONE INTERFACE

| I
. p— " Fleanor

Blackford

*

Newala - .

FIGURE 2-31
SITE B, CROSS SECTION: F-F’, CAVITY DIAMETER: 15FT, EMBEDMENT DEPTH:
140FT, CAVITY DEPTH: SFT BELOW FOUNDATION, CAVITY LOCATION: ON THE
BEDDING PLANE WITH SHEAR FRACTURE ZONE INTERFACE
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3.0 RESULTS

The results of the FE models were evaluated with one primary goal: to identify a cavity size that

may potentially collapse under static excavation, dewatering, and structural loads.

Anticipated foundation host rocks, namely the Fleanor Member of the Lincolnshire Formation
and the Benbolt and Rockdell formations, are all relatively stiff/competent rocks. Excluding
potential cavity collapses, these rock formations are not expected to undergo large strains or
deformation under excavation, dewatering, or structural static loads (i.e., foundation
deformations are expected to be negligible). As such, the foundations should be safe provided

that potential cavities do not collapse.

Here, the collapse potential of cavities is evaluated in terms of relative shear. Relative shear is
the ratio of induced shear stress (due to static loads) to shear strength. As/if this ratio reaches
100 percent, a plastic zone (Mohr-Coulomb failure) starts to develop around a cavity, and
collapse is initiated. For Site A and Site B modeling purposes, a critical relative shear ratio value

of 0.85 (85 percent) was conservatively selected to provide a margin of safety of 15 percent:

All model results after loading phase were specifically evaluated in terms of relative shear and
vertical deformation, with consideration for cavity diameters, depths, and locations, and

foundation embedment depths.

3.1 CAVITY DIAMETERS

For model scenarios featuring 15 ft cavity diameters, relative shear values are about 10 percent
higher relative to models utilizing 5 ft cavity diameter, as shown on Figure 3-1. Vertical
deformation resulting from a 15 ft cavity diameter is also about 2 percent higher than the vertical

deformations resulting from a 5 ft diameter cavity (Figure 3-2).
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FIGURE 3-1
EXAMPLE RELATIVE SHEAR VALUE RESULTS FOR
15 FT (LEFT), 10 FT (CENTER), AND 5 FT (RIGHT) CAVITY HEIGHTS

(=103

Sveem s 0.000

FIGURE 3-2
EXAMPLE VERTICAL DEFORMATION VALUE RESULTS FOR
15 FT (LEFT), 10 FT (CENTER), AND 5 FT (RIGHT) CAVITY HEIGHTS
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The computational results suggest that models of 15 ft cavity diameters represent the most
critical case of failure, relative to models of 10 ft and 5 ft cavity diameters. However, the effect
of cavity size on deformation is negligible given that calculated critical ratios indicate that

collapse is not initiated, and is only near the critical limit for the 15 ft cavity size.

3.2 CAvITY DEPTHS

Relative shear values are about 10 percent higher for PLAXIS 2D models of cavities located 30
ft below foundation basemat, relative to models featuring cavity depths 5 ft below the basemat
(Figure 3-3). However, vertical deformations resulting from cavities located 5 ft below the
foundation basemat are approximately 6% higher than vertical deformations resulting from
cavities located 30 ft below the foundation basemat (Figure 3-4).

FIGURE 3-3
EXAMPLE RELATIVE SHEAR VALUE RESULTS FOR CAVITY DEPTHS OF 5 FT
(LEFT) AND 30 FT (RIGHT) BELOW FOUNDATION BASEMAT
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FIGURE 3-4
EXAMPLE VERTICAL DEFORMATION RESULTS FOR CAVITY DEPTHS OF 5 FT
(LEFT) AND 30 FT (RIGHT) BELOW FOUNDATION BASEMAT

3.3 CAVITY LOCATIONS

Models of cavities located below the center of the common basemat or below the edge of
common basemat exhibit nearly comparable relative shear values. In contrast, models featuring
cavities positioned on a stratigraphic contact (i.e., a bedding plane) demonstrate relative shear
values about 40% higher (Figure 3-5).

As regards vertical deformations, models of cavity location 5 ft below foundation basemat levels
exhibit deformations roughly 50% higher than models of cavities located on bedding plane
discontinuities (Figure 3-6).
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FIGURE 3-5
EXAMPLE RELATIVE SHEAR VALUE RESULTS FOR CAVITY LOCATIONS 5 FT
BELOW FOUNDATION BASEMAT (LEFT) AND ON A BEDDING PLANE
DISCONTINUITY (RIGHT)

FIGURE 3-6
EXAMPLE VERTICAL DEFORMATION RESULTS FOR CAVITY LOCATIONS 5 FT
BELOW FOUNDATION BASEMAT (LEFT) AND ON A BEDDING PLANE
DISCONTINUITY (RIGHT)
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34 EMBEDMENT DEPTHS

For the foundation embedment depths of 40 ft, 90 ft, and 140 ft, consideration was provided for
the most critical cavity diameter (15 ft) and cavity location (bedding planes). Vertical

deformation and relative shear values were compared under static loading.

For all embedment depths, relative shear values are about the same (Figure 3-7). Vertical
deformations, in contrast, appear to increase with decreasing depth of bedding planes, relative to

excavation surfaces (Figure 3-8).

0.900
___________________________________ 0.855
0.810
................................... H 0.765
0.720

1
[}
[
' [
' ' 1 0.675
H ]
[
'

FIGURE 3-7
EXAMPLE RELATIVE SHEAR VALUE RESULTS FOR FOUNDATION
EMBEDMENT DEPTHS OF 40 FT (LEFT), 90 FT (CENTER), AND 140 FT (RIGHT)
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FIGURE 3-8
EXAMPLE RESULTS FOR VERTICAL DEFORMATIONS FOR FOUNDATION
EMBEDMENT DEPTHS OF 40 FT (LEFT), 90 FT (CENTER), AND 140 FT (RIGHT)

3.5 OVERALL MODEL LOADING RESULTS

Table 3-1 presents the most critical cases in terms of relative shear and vertical deformation for
Site A and Site B respectively. From the static analysis, the maximum relative shear observed
for Sites A and B is 0.90 and 0.92, respectively.

Relative shear results from the PLAXIS 2D models are shown on Figure 3-9 through Figure 3-
14 for both Site A and Site B. Model results suggest that relative shear is highest at the edges of

the simulated cavities, as expected.

Interface element sensitivity analyses in turn are presented on Figure 3-15 and Figure 3-16, and
demonstrate clearly the increase in vertical deformation associated with bedding plane
discontinuities and shear fracture zones. Specifically, Figure 3-15 shows model results with an
interface element located on a bedding plane, whereas Figure 3-16 shows the same model

considered on Figure 3-15 without the interface element.
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Maximum estimated vertical deformation shown on Figure 3-15 is -9.34E-3 ft. Maximum

vertical displacement shown on Figure 3-16 is nearly 50 percent lower (-6.27E-3 ft).

Non-Proprietary Report

Foundation Assessment

Clinch River Nuclear Site Page 66 of 95
165737/17, Rev. 0 (June 16, 2017)



$6J0 L9 93ed

(L10T 91 2unf) 0 "AY “LT/LELSIT
QIS IBI[ONN] JOATY [oul])
JUQWISSASS Y GOE&@CSO@

110day A1ejorrdord-uoN

“UOTJBULIOJOP [BINIOA PIJE[NO[R)D)

“JeQUS 9AIJB[I PIJB[NOR)D)

"UOIJBWLIO,] dIIYSU[OOUTT Y} JO SIOQUISW UOSPIH pue
JOUBO[,] 9} Ud9M]Oq JOBIUOD dU} JO SOPIS JOq UO PIINPOIIUL JUSWID[O 99BJIOJUT J[TUIS B SOJBIIPUT  00BJIOUI [,, ‘g 9IS 10 'SUOIIBULIOJ [[OP3O0Y pue jjoquog
o) U2OMIIq JOBIUOD AU} JO SOPIS [JOq UO PAONPOJIUT JUSWI[O 998JIdIUI J[SUIS B SOJBIIPUI , 90BJIOUI [,, Y 9}IS JO,] "UONEIO] AJIABD 0) PIJe[dl [1B}oP [eUONIPPY

‘SUOI}BO0[ AJIABD [BO1LID)

“I0JOWeRIP AJIABD [BO1LI))

‘(9oepIns punoi3 mojeq 3199)) Yidap jJuswpaquid uonepunoj PA[OPOIN

(p-g 24n31,] ySnoayy [-z 24n81,J 99S) SUOIIS SSOIO g IS PUB Y IS PO[OPON

(g aMS) ¢ 10 (V AS) T SHun

(8)

L)

(9)

()

()

(€)

@

(1

19 =Y
:SJON
9000 06°0 90BLI] | ([19p3100Y-1[0quag) SuIppog ol 06
0100 0L0 Jewrdseq MO[dq I § JeWIdSBq UOWIO0D JO IAU)) A q 9IS
L0070 SL0 JeWIdSEq MOTaq ) § JeWIdSEq UOWIO0) JO I ST [1]4
110°0 60 odBLIU] | ([19p3100Y-1[0quag) SuIppog Sl ov1
L00°0 06°0 00LI] | ([19p3100Y-1[0quag) SuIppog ol 06
11070 SL0 JeUIdSeq MOJaq Y § JelIdSeq UOWIO0) JO IQJUQ)) g4 q 9IS
60070 $6°0 Q0YINU | ([19p3100Y-3[0quUdg) SUIppag c
80070 08°0 Jewrdseq MO[dq ) § JRWIdSBQ UOWIO0) JO IU)) I or
9000 06°0 908LINU] | ([1op300Y-310quag) SuIppag SI ovl
) ) QJeLId1u AP0 -1oqua Suippa

moo.o oo.o 21Uy | ([19p3[20Y-)[0quag) SuIppag ol 06 - v ons
800°0 09°0 Jewrdseq MO[dq ) § JRWIdSB( UOWIO0) JO IIU))
800°0 09°0 Jewrdseq MO[dq ) § JRWIdSBQ UOWIO0) JO IAU)) Sl [0} %
L0070 06°0 Q0LINU] | ([1op300Y-310quag) SUIppag Sl ovl
9000 06°0 Q03I | ([[op300Y-310quag) SUIppag c
800°0 0L°0 Jewrdseq MO[dq ) § JRWIdSB( UOWWIO0) JO IAU)) I 06 V-V V IS
9000 06°0 Q08I | ([1op300Y-3[0quag) SuIppag ol ob
800°0 09°0 Jewdseq MO[Rq Y ¢ JelIdSeq UOWIIIO) JO IJUQ))

G.E AVAHS FALLVITTY SMAVIANTY NOILVDOTT ALIAV)) TVIILIY)) C.C C.E NOILDJS ALIS

@ NoLLvWyogaq | @ ©) ©) » TZIS ALIAVD | () HLAAQ NOILVANNOg | @ m

4 ANV V SALIS HOd SHSYVHd ONIAVO'T NI SL'INSHY THAON

I-€ A'19V.L




360,00 380.00 400.00 420.00 440.00 )
coca v b b b b b b b aa by Lo
L:]

p— -~
1080.00 7
1060.00 7 H|
1040.00 7
1020.00 7
1000.00 =an

. y
930,00 -

p— K\

] -~
960,00

= .

3 |« [t

Relative shear stresses
Extreme relative shear stress 1.00

0.850
0.807
0.765

0,722
0.680

0.637
0.585
0.552
0.510
0.467
0.425
0.382
0.340

0.297
0.255

0.212
0.170

0,128
0.085

0.043

0.000

CAVITY (15 FT) ON THE BEDDING PLANE INTERFACE

FIGURE 3-9
SITE A CROSS SECTION A-A’
FOUNDATION DEPTH 40 FT

RELATIVE SHEAR=0.85
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FIGURE 3-10
SITE A CROSS SECTION A-A’
FOUNDATION DEPTH 90 FT
CAVITY (15 FT) ON THE BEDDING PLANE INTERFACE
RELATIVE SHEAR=0.90
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FIGURE 3-11
SITE A CROSS SECTION A-A’
FOUNDATION DEPTH 140 FT
CAVITY (15 FT) ON THE BEDDING PLANE INTERFACE
RELATIVE SHEAR=0.85
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FIGURE 3-12
SITE B CROSS SECTION B-B’
FOUNDATION DEPTH 40 FT
CAVITY (15 FT) LOCATED 30 FT BELOW EDGE OF COMMON BASEMAT
RELATIVE SHEAR=0.95
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FIGURE 3-13
SITE B CROSS SECTION B-B’
FOUNDATION DEPTH 90 FT
CAVITY (15 FT) LOCATED 5 FT BELOW EDGE OF COMMON BASEMAT
RELATIVE SHEAR=0.90
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FIGURE 3-14
SITE B CROSS SECTION B-B’
FOUNDATION DEPTH 140 FT
CAVITY (15 FT) LOCATED 5 FT BELOW CENTER OF COMMON BASEMAT
ON BEDDING PLANE INTERFACE
RELATIVE SHEAR=0.92

Non-Proprietary Report

Foundation Assessment

Clinch River Nuclear Site Page 73 of 95
165737/17, Rev. 0 (June 16, 2017)



30,00 400.00 420.00 440.00 400.00

2

=

(=)
1111
=

el

e
-
e
g

AN\ [10f
X MOhhI: 0.500

0.000

L1l
Tl
ek
Tl

-0.500

:

-1.000
-1.500

-2.000

-2.500

-3.000

3
C!;
[t

-3.500

||||||
I

-4.000

[
s

T -4.500

=)
=
=]
=]
/
+

-5.000
-5.500

-6.000

-6.500

:

-7.000

-7.500

-8.000

-8.500

=
&=
=]
=]

-9.000

-9.500

:

‘ ] 3
Vertical phase displacements (dUy)
Extreme dUy -9.34=10 2 ft

FIGURE 3-15
EFFECT OF INTERFACE ON SITE B RESPONSE
CROSS SECTION B-B’,
CAVITY 30 FT BELOW EDGE OF COMMON BASEMAT, ON SHEAR ZONE
INTERFACE
MAXIMUM VERTICAL DEFORMATION =-9.34E-3 FT

Non-Proprietary Report

Foundation Assessment ' \
Clinch River Nuclear Site Page 74 of 95

165737/17, Rev. 0 (June 16, 2017) \ ‘



380.00 400.00 420.00 440.00 450.00 0.0

o THHATH ARRRARRE N
800.00 - \:\\\“\\\\\\
] || BB
- \
= A
E K
780.00

g
||||||B
[T

740.00 ™
720.00
700,00 7
530,00
S BE I »
Vertical phase displacements (dUy)

Extreme dUy -6.27%10 2> ft

[*10 2]

0.400

0.000
-0.400
-0.800
-1,200
-1.600
-2,000
-2.400
-2,800
-3.200
-3.600

-4.000
-4,400
-4,800
-5.200
-5.600
-0.000

-6.400

FIGURE 3-16
EFFECT OF INTERFACE ON SITE B RESPONSE
CROSS SECTION B-B’

CAVITY 30 FT BELOW EDGE OF COMMON BASEMAT, ON SHEAR ZONE

INTERFACE
MAXIMUM VERTICAL DEFORMATION =-6.27E-3 FT (RIGHT)
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4.0 SUMMARY AND RECOMMENDATIONS

Postulated collapse of karstic cavities is a geologic hazard to be addressed for the proposed
SMR Units 1&2 and 3&4 at the Clinch River Nuclear Site. Accordingly, the impact of various
postulated cavity sizes and locations on SMR foundation performance were evaluated using a
PLAXIS 2D model. Specifically, the PLAXIS 2D model developed for Units 1&2 (Site A) and
3&4 (Site B) considered

e cavity diameters equal to 5 ft, 10 ft, and 15 ft (selected based on what size is
likely to fail and based on observed cavity sizes),

e cavity depths of 5 ft and 30 ft below foundation embedment depths,
e foundation embedment depths of 40 ft, 90 ft, and 140 ft, and

e cavity locations on the edge of the common basemat, the center of the
common basemat, and on or along bedding planes conservatively assumed to
feature significant discontinuities or shear fracture zones.

For all cases considered, we draw the following main conclusions:

1. For all model simulations, the largest cavity diameter (15 ft) was determined to be
most critical as expected.

2. Deeper cavities produce increased relative shear around the cavity, which is
attributed to the larger initial in situ stresses.

3. Relative shears around the cavities are comparable for individual embedment
depths. However, vertical deformation increases with decreasing depth of a
cavity relative to foundation embedment depths/excavation surfaces.

4. Cavities located on bedding plane discontinuities or in bedding plane shear
fracture zones are most critical and result in highest relative shear around the
cavity.

Approximately 99 percent of the cavities observed in Site A and Site B borings are less than 11 ft
in inferred height. Maximum observed cavity height does not exceed 17 ft. Moreover, cavity
development in CRN Site areas is generally limited to the most markedly weathered zone
immediately below ground surface, to depths less than 100 ft; 75 percent of reported cavities in

CRN Site A and B borings occur at depths less than 55 ft. Consequently, cavity-related failure
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has a higher potential to occur at relatively shallow depths, less than about 30 ft. Given that
foundation embedment depths are deeper than 30 ft and that the 15 ft critical cavity diameter
determined by PLAXIS 2D modeling is significantly larger than the 11 ft height that bounds 99
percent of the cavities observed in CRN Site borings, Sites A and B are generally suitable for
SMR foundation.

Nonetheless, foundation performance should be re-evaluated on selection of a final technology,
taking into account specific plant design, specific plant loads, and any potential ground
improvement or grouting plans. Final foundation locations should also be re-evaluated using
specific plant information, with consideration for specific Site stratigraphy, subsurface layering

orientation, and specific shear fracture or bedding plane discontinuity zonation.

During the combined operating license application, it is recommended to conduct targeted
supplemental field investigations to further define geological discontinuities, including potential
shear zones. The following activities are recommended to be conducted during the targeted
supplemental field investigation:

e The targeted field investigation should be conducted in areas with less soil
cover, and with drill angles that take into account the dip and strike of the
considered discontinuity.

e Samples should be obtained with the least disturbance, to retain cavity and/or
discontinuity filling materials. Joint fill material and bedding plane material
are important to recover for testing, recognizing that will require special
sampling techniques.

e Collected samples should be subjected to direct shear tests to obtain additional
interface friction parameters to refine model assumptions.

e Field tests may be required to measure in situ stress conditions and define in
situ stress fields.

e High resolution (an inch or two-inch resolution) topographic mapping with
LiDAR or photogrammetric methods should be conducted to identify potential
depression areas.

Finally, the analysis conducted in this Report should be repeated for the Combined Operating
License Application (COLA) process, for the selected technology and based on the results
obtained from the targeted supplemental field investigation and using existing ESP Application
data.
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APPENDIX A

STRATIGRAPHIC UNIT DEPTHS IN INDIVIDUAL
CLINCH RIVER NUCLEAR SITE BORINGS
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ADDENDUM TO NON-PROPRIETARY REPORT
FOUNDATION ASSESSMENT
CLINCH RIVER NUCLEAR SITE

1.0 INTRODUCTION

This Addendum discusses a foundation assessment for proposed Small Modular Reactors
(SMRs) at the Tennessee Valley Authority (TVA) Clinch River Nuclear (CRN) Site, in support
of TVA’s Early Site Permit (ESP) Application for the SMRs. This assessment involves finite-
element (FE) modeling, using PLAXIS 2D analysis software, to estimate the ultimate bearing

capacity at the CRN Site.
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2.0 FINITE-ELEMENT MODELING OF BEARING CAPACITY

Bearing capacity is evaluated using the 2D finite-element method (FEM) in PLAXIS 2D version
9.02 (PLAXIS 2D). The following subsections provide an overview of the analysis and the FE

models.

2.1 CASES EVALUATED

Bearing capacity models are developed for Section A-A’ from Site A and Section B-B’ from Site
B, as depicted on Figure 2-1. For each Section, two embedment depths are considered: 80 feet
(ft) embedment and 138 ft embedment.

i
B A ot —i—

FIGURE 2-1
LOCATION OF SECTIONS USED IN SITE A AND SITE B MODELS

2.2 DESCRIPTION OF MODELS

Material constitutive models, geologic layering, and the modeling of shear fracture zones follow

the same methodology used in the PLAXIS settlement model described in the Non-Proprietary
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Foundation Assessment (RIZZO, 2017). Model scenarios assume plane strain in two-

dimensional space and static loading conditions.

2.2.1 Material Properties and Geometry

Material properties used for this analysis are presented in Table 2-1. Consistent with the
settlement and voids analysis, a discrete interface element located along the Rockdell Formation
and Benbolt Formation contact is modeled for Site A, and a similar interface element is modeled

along the Fleanor and Eidson formation contact for Site B.

It is noted that the material properties in Table 2-1 correspond to the lower GSI values presented
in Site Safety Analysis Report (SSAR) Table 2.5.4-22 and Table 2.5.4-23. Using these lower

values provides a conservative estimate of ultimate bearing capacity.

Figure 2-2 and Figure 2-3 present the individual PLAXIS models considered for Site A.
Figure 2-4 and Figure 2-5 present the individual PLAXIS models considered for Site B. The
following changes are implemented to the bearing capacity model compared to the settlement
model reported in the non-proprietary Report to make sure the bearing capacity analysis assumes

similar conditions to those assumed in the SSAR:

e For excavation into rock, the excavation slope is modeled at 0.5H:1V with a
35 ft setback from the toe of the excavation to the edge of the basemat. For
excavation in soil, the excavation slope is modeled as 2H:1V.

e The bearing capacity evaluation does not consider potential subsurface voids.
As such, the voids modeled in the settlement analysis have been eliminated.

e The tunnel rock mass properties surrounding the voids have been eliminated,
and all material properties correspond to general Hoek-Brown rock mass
material.

e The depths of embedment evaluated are 80 ft and 138 ft, compared to the
settlement model embedment depths of 90 ft and 140 ft. The 40 ft embedment
depth for the settlement model is not evaluated in the bearing capacity model.

e The width of the foundation basemat is 221 ft.
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TABLE 2-1

ROCK MASS PROPERTIES FOR SITES A AND B USED IN FE MODELING

ROCK MASS PROPERTIES @

SflT)E LAYER @ UNIT WEIGHT COHESION FRICTION POISSON’S ELASTIC MODULUS
(pef) (psf) (psi) ANGLE RATIO (ksf) (ksi)

Granular Fill 135 0 0 36 0.35 16,000 111

Existing Fill 120 150 1 20 0.40 3,750 26
A Benbolt 168 59,760 415 33 0.32 643,680 4,470
Rockdell 168 56,592 393 31 0.31 452,736 3,144
Fleanor 168 42912 298 32 0.34 454,896 3,159

Granular Fill 135 0 0 36 0.35 16,000 111

Existing Fill 120 150 1 20 0.40 3,750 26
Rockdell 168 56,592 393 31 0.31 452,736 3,144
B Fleanor 168 42912 298 32 0.34 454,896 3,159
Eidson 168 48,672 338 30 0.31 340,560 2,365
Blackford 168 34,848 242 30 0.31 479,232 3,328
Newala 175 201,024 1,396 35 0.29 1,202,976 8,354

Notes:

pct = pounds per cubic foot
psf = pounds per square foot
psi = pounds per square inch
ksf'= kips per square foot

ksi = kips per square inch

" Units 1&2 (Site A) or Units 3&#4 (Site B).
)

Geologic layer or material expected to be exposed in the given Site A or Site B location. Units 1&2 in Site A

are expected to be founded on Benbolt Formation rock. Units 3&4 in Site B are expected to be founded on rock

ascribed to the Fleanor Member of the Lincolnshire Formatio

n.

) Rock mass properties from SSAR Section 2.5.4 Table 2.5.4-21, and Table 2.5.4-22.
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FIGURE 2-2

SITE A, CROSS SECTION: A-A’, EMBEDMENT DEPTH: 80 FT

Fleanor

FIGURE 2-3
SITE A, CROSS SECTION: A-A’, EMBEDMENT DEPTH: 138 FT
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FIGURE 2-4
SITE B, CROSS SECTION: B-B’, EMBEDMENT DEPTH: 80 FT

FIGURE 2-5
SITE B, CROSS SECTION: B-B’, EMBEDMENT DEPTH: 138 FT
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2.2.2 Finite-Element Mesh

As shown on Figure 2-6, 15-node triangle elements are used in the analysis, with a total of
approximately 5,000 elements for the design mesh model. The size of the triangular FE is about
2 ft in finely meshed areas near the foundation elevation, and 80 ft in the coarsely meshed areas
outside of the excavation zone. In the vertical plane, the element length varies between
approximately 2 ft and 80 ft. The effect of mesh size in the bearing capacity results was
investigated during the calculations. The sensitivity analysis showed that the estimated bearing
capacity values obtained with different mesh configurations would not change significantly. The
choice of mesh configuration proved to have more influence on the distribution of the plastic
points. However, for the purpose of estimating the ultimate bearing capacity for the foundation,

the mesh configuration selected proved to be adequate.

5 7 o T L I AL P

oL .

:r_f ++ ++ ++ + +—+ ++ 4+t UL L L L UL L

FIGURE 2-6
A TYPICAL MODEL WITH REFINED MESH

2.2.3 Loading

PLAXIS 2D simulates dewatering, excavation, and other construction steps as individual phases.

Accordingly, differential settlement can be visually examined using contour plots provided for
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discrete construction steps. Alternatively, numerical values along any given axis can be

extracted using calculated nodal displacements.

The PLAXIS 2D models for Site A and Site B specifically included the following simulation

phases:

e Initial Conditions: Initial effective stresses for the Site are obtained.

e Dewatering: The water level, initially assumed to be at the top of existing fill
for all models, is lowered to the level of embedment depth considered for the
analysis.

e Excavation: Upon dewatering down to embedment depth, the material
between ground surface (EL 821 ft) and embedment depth elevation is
removed.

e [Initial Loading: A load of 10ksf is applied to the foundation basemat. It is
important to note that the load on the footprint of the common basemat is
applied while the pore pressure is assumed to be zero at the bottom of the
foundation. This condition is kept for conservative purposes.

e Incremental Loading: The load on the basemat is increased incrementally up
to more than 70 times the initial loading.
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3.0 RESULTS

The results of the FE models are evaluated with one primary goal: to identify the bearing

capacity for the embedment depth and foundation size considered.

The ultimate bearing capacity is determined by inspecting the load-displacement curves for
nodes immediately beneath the foundation basemat. The load at which a significant decrease in
the stiffness of the subsurface is observed is considered the bearing capacity. At the ultimate
bearing capacity, general failure criterion, a plastic zone develops beneath the foundation,
typically starting on the corner, and propagates to the other end away from the foundation, as
shown on Figure 3-1. If this behavior is not yet observed, the assumed bearing capacity level is

conservative, as it corresponds to a partially developed general failure surface.

PLASTIC ZONES

FIGURE 3-1
TYPICAL BEARING CAPACITY FAILURE WITH PLASTIC ZONES
(FROM BOWLES, 1997)

Results for the incremental analysis for Site A are shown on Figure 3-2 and Figure 3-3. Results
for the incremental analysis for Site B are shown on Figure 3-4 and Figure 3-5. Results for
both Sites are summarized in Table 3-1. On Figure 3-2 through Figure 3-5, deformation values

are not shown in the x-axis, since close to the failure, deformation levels become meaningless.
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Instead the drop in the stiffness denoting the initiation of failure is important for bearing capacity

purposes.
TABLE 3-1
ULTIMATE BEARING CAPACITY FROM PLAXIS 2D
EMBEDMENT ULTIMATE
SITE CROSS
DEPTH BEARING CAPACITY
SECTION
(FT) (KSF)
80 499
A-A’°
138 441
80 526
B-B’
138 320
700

600 /

499 ksf /
500 /

g 400 /
=
g 300
q /
200 -

/ —— Site A, 80' Embedment
100 / = = =PLAXIS 2D - Ultimate BC

Deformation

FIGURE 3-2
LOAD DEFORMATION CURVE FOR SECTION A-A’, 80 FT EMBEDMENT
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700 /
600 /
441 ksf /
/ = Site A, 138" Embedment
100 = = =P AXIS 2D - Ultimate BC

/

W
S
o

N
S
o

w
S
[e)

Load (ksf)

[y}
S
o

Deformation

FIGURE 3-3
LOAD DEFORMATION CURVE FOR SECTION A-A’, 138 FT EMBEDMENT

700

600 -~

526 ksf /
500 /

g 400
T /
3 300 /
200 / = Site B, 80' Embedment
100 / - -EIEAXIS 2D - Ultimate
0
Deformation
FIGURE 3-4

LOAD DEFORMATION CURVE FOR SECTION B-B’, 80 FT EMBEDMENT
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700 /

600 /

500 /
g 400
-g 320 ksf
S 300 /

200 —

/ —— Site B, 138' Embedment
100 / = = = P AXIS 2D - Ultimate BC [—
0
Deformation
FIGURE 3-5

LOAD DEFORMATION CURVE FOR SECTION B-B’, 138 FT EMBEDMENT

Figure 3-6 through Figure 3-17 present the progression of the failure surface with increasing

load, as illustrated by the red Mohr-Couloumb plastic points. For each case evaluated, three

figures are presented:

e aview of the plastic points when the load is relatively small and the response
1s elastic,

e aview of the plastic points at the conservatively defined ultimate bearing

capacity load, and

e aview of the plastic points at a load beyond the defined ultimate bearing
capacity.

The failure progression for Section A-A’ with 80 ft embedment is illustrated on Figure 3-6

through Figure 3-8. Figure 3-6 corresponds to a 100 ksf loading with an elastic response,

Figure 3-7 corresponds to a 500 ksf load near the conservatively defined ultimate bearing

capacity, and Figure 3-8 corresponds to a 1,500 ksf load beyond the defined ultimate bearing

capacity.
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FIGURE 3-6
PLASTIC POINTS FOR SECTION A-A’, 80 FT EMBEDMENT
100 KSF LOAD (ELASTIC RESPONSE)

[] Mohr-Coulomb paint Tension cut-off point

FIGURE 3-7
PLASTIC POINTS FOR SECTION A-A’, 80 FT EMBEDMENT
500 KSF LOAD (DEFINED ULTIMATE BEARING CAPACITY)
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FIGURE 3-8

PLASTIC POINTS FOR SECTION A-A’, 80 FT EMBEDMENT
1500 KSF LOAD (BEYOND ULTIMATE BEARING CAPACITY)

The failure progression for Section A-A’ with 138 ft embedment is illustrated on Figure 3-9
through Figure 3-11. Figure 3-9 corresponds to a 100 ksf loading with an elastic response,
Figure 3-10 corresponds to a 440 ksf load near the assumed ultimate bearing capacity, and

Figure 3-11 corresponds to a 1,200 ksf load beyond the assumed ultimate bearing capacity.
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FIGURE 3-9
PLASTIC POINTS FOR SECTION A-A’, 138 FT EMBEDMENT
100 KSF LOAD (ELASTIC RESPONSE)

D%; Plastic points
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FIGURE 3-10
PLASTIC POINTS FOR SECTION A-A’, 138 FT EMBEDMENT
440 KSF LOAD (DEFINED ULTIMATE BEARING CAPACITY)
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FIGURE 3-11
PLASTIC POINTS FOR SECTION A-A’, 138 FT EMBEDMENT
1200 KSF LOAD (BEYOND ULTIMATE BEARING CAPACITY)

The failure progression for Section B-B’ with 80 ft embedment is illustrated on Figure 3-12
through Figure 3-14. Figure 3-12 corresponds to a 100 ksf loading with an elastic response,
Figure 3-13 corresponds to a 520 ksf load near the conservatively defined ultimate bearing
capacity, and Figure 3-14 corresponds to a 620 ksf load beyond the ultimate bearing capacity.
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FIGURE 3-12
PLASTIC POINTS FOR SECTION B-B’, 80 FT EMBEDMENT
100 KSF LOAD (ELASTIC RESPONSE)

Plastic points
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FIGURE 3-13
PLASTIC POINTS FOR SECTION B-B’, 80 FT EMBEDMENT
520 KSF LOAD (DEFINED ULTIMATE BEARING CAPACITY)
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FIGURE 3-14
PLASTIC POINTS FOR SECTION B-B’, 80 FT EMBEDMENT
620 KSF LOAD (BEYOND ULTIMATE BEARING CAPACITY)

The failure progression for Section B-B’ with 138 ft embedment is illustrated on Figure 3-15
through Figure 3-18. Figure 3-15 corresponds to a 100 ksf loading with an elastic response,
Figure 3-16 corresponds to a 320 ksf load near the defined ultimate bearing capacity, and
Figure 3-17 corresponds to a 1,500 ksf load beyond the ultimate bearing capacity.
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FIGURE 3-15
PLASTIC POINTS FOR SECTION B-B’, 138 FT EMBEDMENT
100 KSF LOAD (ELASTIC RESPONSE)

Plastic points
[ Mohr-Coulomb paint Tension cut-off point

FIGURE 3-16
PLASTIC POINTS FOR SECTION B-B’, 138 FT EMBEDMENT
320 KSF LOAD (DEFINED ULTIMATE BEARING CAPACITY)
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FIGURE 3-17
PLASTIC POINTS FOR SECTION B-B’, 138 FT EMBEDMENT
1500 KSF LOAD (BEYOND ULTIMATE BEARING CAPACITY)
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4.0 SUMMARY

A PLAXIS 2D FE model is used to estimate the ultimate bearing capacity at the CRN Site for
various embedment depths. As expected from a competent rock foundation, the ultimate bearing
capacity for the CRN Site is high, ranging from 320 kips per square foot (ksf) to 526 ksf for the
sections and embedment depths evaluated. The ultimate bearing capacity for Site A is estimated
as 441 ksf, and the ultimate bearing capacity for Site B is estimated as 320 ksf. Please note that
these bearing capacities are estimates with the purpose of showing that the site does not present
bearing capacity issues for ESP application. We recommend these calculations to be repeated

once the technology is selected, and the following factors are addressed in more detail:

e The foundation embedment depth and foundation

e The lateral location of the foundation with respect to the bedding planes and
shear fracture zones

e The shear strength at the bedding planes, and shear fracture zones

e In situ stresses

The PLAXIS model geometry is slightly modified compared to the settlement model in the non-
proprietary Report, as summarized in Section 2.2.1. The geometry modifications primarily serve
to make the bearing capacity model more consistent with the traditional bearing capacity
calculations presented in the SSAR. When a factor of safety of 3 is considered to determine the
allowable bearing capacity, the values obtained from this analysis compare well with the
allowable capacities reported in the SSAR, as shown in Table 4-1.

TABLE 4-1
COMPARISON OF PLAXIS AND SSAR BEARING CAPACITY
MINIMUM PLAXIS ALLOWABLE ALLOWABLE SSAR
ULTIMATE BEARING | PLAXIS BEARING | BEARING CAPACITY,
SITE
CAPACITY CAPACITY BOWLES METHOD
(ksf) (ksf) (ksf)
A 441 147 149
B 320 107 108
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Attachment 3
Site Safety Analysis Report Subsection 2.5 Markups

The following SSAR Subsection 2.5.1.2.3.4, “Estimate of Hypothetical Large Void,” is
being revised and renamed “Karst Evaluation. A sentence in SSAR Subsection 2.5.1.2.9,
under “Conclusions,” is being removed. Underlines indicate text to be added.
Strikethroughs indicate text to be deleted.

2.5.1.2.3.4  Estimate-of Hypothetical Large VoidKarst Evaluation

Data review

A review of the cavity data from the CRN and CRBRP Site drilling programs reveal several
trends illustrated in Figures 2.5.1-75 through 2.5.1-77. The data are segregated by geologic
formation to assess the likelihood of the presence of cavities, as well as to estimate cavity size
within each geologic unit. Each data plot presents the cavity center-point elevation versus cavity
length within the borehole. For this analysis, karst cavity data were partitioned into three
elevation intervals. Intervals were as follows: (1) above the CRN Site proposed plant grade of
elevation 821 ft NAVD88; (2) between elevations 821 ft NAVD88 and 740 ft NAVD88, the
shallowest embedment depth considered and also the Watts Bar Reservoir pool elevation; and
(3) lower than elevation 740 ft NAVD88. A comparison of the compiled borehole data shows that
the majority of cavities: (1) occur above the elevation 740 ft NAVD88 pool elevation of the Watts
Bar Reservoir, and (2) are less than 2 ft in height. The Eidson and Rockdell units show the
largest and greatest frequency of cavities. The largest cavity encountered in any borehole has a
height of 16.5 ft and occurs at elevation 789 ft NAVD88.

The cavities that occur below the current Watts Bar Reservoir elevation of 740 ft NAVD8S,
which is the current Watts Bar Reservoir elevation as well as the shallowest embedment depth
considered in this investigation, are assumed to reflect dominantly phreatic development below
the water table. Cavities in the vadose zone, the area above the water table, may be related to
either vadose processes only, or vadose dissolution overprinted on originally phreatic cavities.
The relative amount of dissolution attributed to vadose versus phreatic processes in the latter
case cannot be determined or quantified from borehole data.

Based on the compiled borehole data, the highest frequency and largest size of cavities occur
within the Rockdell and the Eidson units (Table 2.5.1-19, Figure 2.5.1-51). These two units also
contain the greatest thicknesses of pure limestone beds relative to other Chickamauga Group
strata encountered at the site. More detail regarding the variability of carbonate content by

CNL-17-082 A3-1



stratigraphic unit is demonstrated in the geophysical logs for these units (Reference 2.5.1-214).
Natural gamma radiation increases with the proportion of silt and clay in the formation and the
alternating high and low levels reflect the locations of siltstone and limestone beds, respectively
(Figure 2.5.1-78; Reference 2.5.1-9). Additionally, carbonate contents were determined from
rock core samples during the CRN subsurface investigation (Figure 2.5.1-49). These methods
demonstrate the variability of carbonate content both between and within the stratigraphic units
at the CRN Site.

The spatial distribution of cavities is consistent with the trends discussed above. A map

of boreholes indicating the presence and elevation interval of cavities is presented in

Figure 2.5.1-79. Several boreholes within the Rockdell Formation in the south-center of the
power block area exhibit cavities in the middle and lower elevation intervals. The boreholes and
cavities occur along strike with bedding. However, elevations of individual cavities within this
cluster do not appear to correlate directly. Boreholes B-144 and B-145, spaced approximately
33 ft apart, have cavities at elevation 781 ft NAVD88, although connectivity between cavities is
uncertain.

Theoretical-Conduit Shape

Karst cavity shapes can vary widely, but their morphology is determined by several basic
principles. The three dimensional shape of any cavity is governed by its environment of
formation, hydrogeologic setting, and rock characteristics. For example, dissolution within the
vadose zone, where water is moving downward toward the water table, tends to create slots,
shafts, canyons, and passages oriented down dip or following steep joint planes

(Reference 2.5.1-305). By contrast, dissolution within the phreatic zone, where water is moving
at and below the water table following the hydraulic gradient, tends to create an integrated
conduit system with subhorizontal tubular passages that tend to be circular, the most efficient
shape for transmittal of water (Reference 2.5.1-305).

The common phreatic tube shape can be modified by factors such as variations in rock
solubility, bed thickness, structural discontinuities, geometry of the fracture pathway where
dissolution initiated, and the degree to which the initial fractures have been enlarged

(Reference 2.5.1-305). The conduit system follows available fractures in response to the
hydraulic gradient and may descend or ascend as needed to respond to that gradient, while at
the same time following the more open or connected fractures. The resulting pathway enlarges
by dissolution, tending toward a circular cross section as dissolution proceeds assuming uniform
solubility of the rock.
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251.2.9 Relational Analysis
Conclusions
The aforementioned relational analysis provides a comparison of the CRN Site with the CRBRP

Site with respect to geologic formation, rock type, geologic structure and occurrence and
character of karst and v0|ds/caV|t|es encountered at and below the depth of foundatlons TFhe

A A : The geologlc units
mapped in the CRBRP Site excavatlon (Fleanor member and Rockdell Formation) are the same
as those occurring in Location B of the CRN Site power block area. Except for the Mascot
Formation, the karst depression densities and area ratios for the other stratigraphic units within
the power block area are all less than those in the stratigraphic units noted above as occurring
to the northwest and southeast of the power block area; indicating that the power block area
carbonates appear to have similar dissolution characteristics to the Rockdell Formation.

CNL-17-082 A3-3



As a result of removing Subsection 2.5.1.2.3.4, the reference 2.5.1-304 is being removed
from SSAR Subsection 2.5.1.3 and the note “Reference number 2.5.1-304 is not used” is
being added:

2.5.1-303. Drakulich, N. S., Geologic mapping of the Clinch River Breeder Reactor plant
excavations, prepared for the U. S. Department of Energy and CRBRP
Project Management Corporation: Stone and Webster Engineering
Company, Cherry Hill, NJ, Report No. 12720.50-G(C)-1, 1984

Maﬁetta—Energy—Systems,—hqu%—éH-gg%Referen’ce number 2.5.1-304 is
not used.

2.5.1-305. Lauritzen, S.E., and J. Lundberg, Solutional and erosional morphology,
Chapter 6.1 in: Speleogenesis, Evolution of Karst Aquifers, A. B. Klimchouk,

D. C. Ford, A. N. Palmer, W. Dreybrodt, National Speleological Society, Inc.
p. 408-426, 2000.

As a result of removing Subsection 2.5.1.2.3.4, the following tables are being removed
from SSAR Subsection 2.5.1:

Table 2.5.1-20 Hypothetical Large Void below Foundation Level
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SSAR Subsection 2.5.4.13, “References,” is being renamed “Foundation Assessment
Model,” and new text is being added. Current Subsection 2.5.4-13, “References,” is
being renumbered 2.5.4-14. Strikethroughs indicate text to be deleted. Underlines
indicate text to be added.

2.5.4.13 ReferencesFoundation Assessment Model

A PLAXIS 2D model was developed to determine potential karstic cavity impacts on SMR
foundations. The details of the analysis are contained within Reference 2.5.4-59. Cases were
performed at 40 ft, 90 ft and 140 ft depths for 5 foot, 10 foot and 15 foot cavity sizes at varying
locations under the foundation. Table 2.5.4-33 provides the cases for Location A and B.

The PLAXIS model for Location A and B was performed at two different cross-sections, to
account for varying dip of the stratigraphic layers. The model included a disturbed zone around
the simulated cavity to include the appropriate material properties for cohesion and friction
angle. The model also included initial conditions, dewatering assumptions, excavation
assumptions and loading similar to currently approved Large Light Water Reactor designs. The
results of the foundation assessment model are provided in Table 2.5.4-34.

The results of the FE models were evaluated with one primary goal: to identify a cavity size that
may potentially collapse under static excavation, dewatering, and structural loads. Anticipated
foundation host rocks, namely the Fleanor Member of the Lincolnshire Formation and the
Benbolt and Rockdell formations, are all relatively stifffcompetent rocks. Excluding potential
cavity collapses, these rock formations are not expected to undergo large strains or deformation
under excavation, dewatering, or structural static loads (i.e., foundation deformations are
expected to be negligible). As such, the foundations should be safe provided that potential
postulated critical (large enough size) cavities do not collapse.

The collapse potential of cavities is evaluated in terms of relative shear. Relative shear is the
ratio of induced shear stress (due to static loads) to shear strength. If this ratio reaches 100
percent, a plastic zone (Mohr-Coulomb failure) starts to develop around a cavity, and collapse is
initiated. Initiation of plastic zone does not denote impending failure, and further loading is
needed to propagate the failure zone to the surface. Therefore, this approach provides
additional conservatism. For Location A and B modeling purposes, a critical relative shear ratio
value of 0.85 (85 percent) was conservatively selected to provide a margin of safety of at least

15 percent.

All model results after loading phase were specifically evaluated in terms of relative shear and
vertical deformation, with consideration for cavity diameters, depths, and locations, and
foundation embedment depths.

For model scenarios featuring 15 ft cavity diameters, relative shear values are about 10 percent
higher relative to models utilizing 5 ft cavity diameter. Vertical deformation resulting from a 15 ft
cavity diameter is also about 2 percent higher than the vertical deformations resulting from a 5 ft
diameter cavity.

The computational results suggest that models of 15 ft cavity diameters represent the most
critical case of failure, relative to models of 10 ft and 5 ft cavity diameters. However, the effect
of cavity size on deformation is negligible given that calculated critical ratios indicate that
collapse is not initiated, and is only near the critical limit for the 15 ft cavity size.
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Relative shear values are about 10 percent higher for PLAXIS 2D models of cavities located
30 ft below foundation basemat, relative to models featuring cavity depths 5 ft below the
basemat. However, vertical deformations resulting from cavities located 5 ft below the
foundation basemat are approximately 6% higher than vertical deformations resulting from
cavities located 30 ft below the foundation basemat.

Models of cavities located below the center of the foundation or below the edge of foundation
exhibit nearly comparable relative shear values. In contrast, models featuring cavities
positioned on a stratigraphic contact (i.e., a bedding plane) demonstrate relative shear values
about 40% higher. With regards to vertical deformations, models of cavity location 5 ft below
foundation basemat levels exhibit deformations roughly 50% higher than models of cavities
located on bedding plane discontinuities.

Postulated collapse of karstic cavities is a geologic hazard to be addressed for the proposed
SMR Units 1 and 2 and 3 and 4 at the CRN Site. Accordingly, the impact of various postulated
cavity sizes and locations on SMR foundation performance were evaluated using a PLAXIS 2D
model. Specifically, the PLAXIS 2D model developed for Location A and Location B
considered:

- cavity diameters equal to 5 ft, 10 ft, and 15 ft (selected based on what size is
likely to fail and based on observed cavity sizes),

- cavity depths of 5 ft and 30 ft below foundation embedment depths,

- foundation embedment depths of 40 ft, 90 ft, and 140 ft, and

- cavity locations on the edge of the nuclear island, the center of the nuclear island, and
on or along bedding planes conservatively assumed to feature significant discontinuities
or fracture zones.

For all cases considered, the following main conclusions can be drawn:

1. For all model simulations, the largest cavity diameter (15 ft) was determined to be most
critical as expected.

2. Deeper cavities produce increased relative shear around the cavity, which is attributed to
the larger initial in situ stresses.

3. Relative shears around the cavities are comparable for individual embedment depths.
However, vertical deformation increases with decreasing depth of a cavity relative to
foundation embedment depths/excavation surfaces.

4. Cavities located on bedding plane discontinuities or in bedding plane fracture zones are
most critical and result in highest relative shear around the cavity.

Approximately 99 percent of the cavities observed in Location A and B borings are significantly
less than 11 ft in inferred height. Maximum observed cavity height does not exceed 17 ft.
Moreover, cavity development in CRN Site areas is generally limited to the most markedly
weathered zone immediately below ground surface, to depths less than 100 ft; 75 percent of
reported cavities in Location A and B borings occur at depths less than 55 ft. Consequently,
cavity-related failure has a higher potential to occur at relatively shallow depth, less than about
30 ft. Given that foundation embedment depths are deeper than 30 ft and that the 15 ft critical
cavity diameter determined by PLAXIS 2D modeling is significantly larger than the 11 ft height
that bounds 99 percent of the cavities observed in CRN Site borings, Location A and B are
generally suitable for SMR foundation.
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Nonetheless, at COLA, foundation performance will be re-evaluated on selection of a final
technology, taking into account specific plant design, specific plant loads, and any potential
ground improvement or grouting plans. Final foundation locations will also be re-evaluated
using specific plant information, with consideration for specific site stratigraphy, subsurface
layering orientation, and specific fracture or bedding plane discontinuity zonation.

In addition to the karst evaluation performed in the PLAXIS 2D analysis, an additional analysis
of the site bearing capacity was performed for Location A and B at 80 and 138 foot depths.

This analysis included a finite-element model to determine the ultimate bearing capacity at the
CRN Site. The analysis is provided in Reference 2.5.4-60. The ultimate bearing capacity for
the CRN Site is high, ranging from 320 kips per square foot to 526 kips per square foot for the
sections and embedment depths evaluated. The ultimate bearing capacity for Location A is
estimated as 441 kips per square foot, and the ultimate bearing capacity for Location B is
estimated as 320 kips per square foot, Geometry modifications were made to allow the
PLAXIS model to be more consistent with the bearing capacity calculations presented in
Subsection 2.5.4.10.1.2 and Table 2.5.4-27. When a factor of safety of 3 is considered to
determine the allowable bearing capacity, the values from this analysis compare very well with
the previously performed allowable bearing capacity analysis as presented in Subsection
2.5.4.10. For Location A, the PLAXIS bearing capacity is 147 kips per square foot as compared
to the SSAR bearing capacity of 149 kips per square foot. For Location B, the PLAXIS bearing
capacity is 107 kips per square foot as compared to the SSAR bearing capacity of 108 kips per
square foot. In general, the comparison of these two methodologies and the subsequent results
demonstrates a reasonable agreement for the allowable bearing capacity.
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New references 2.5.4-59 and 2.5.4-60, new tables 2.5.4-33 and 2.5.4-34, and new figures
2.5.4-27 through 2.5.4-30 are being added.

2.5.4-14 References

2.5.4-59. Rizzo Associates, “Non-Proprietary Report Foundation Assessment Clinch River
Nuclear Site,” Revision 0, June 16, 2017

2.5.4-60 Rizzo Associates, “Addendum to Non-Proprietary Report Foundation
Assessment Clinch River Nuclear Site,” Revision 0, June 15, 2017
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Table 2.5.4-33
Analyzed Cases for Location A and B

FOUNDATION CAvITY
LocatioN® | Section @ DEpTH Size ¥ CaviTy LocaTion ® REMARKS ©
(ft) (ft)
Center of common basemat 5 ft below basemat
Center of common basemat 30 ft below basemat
40 5,10,15 Bedding (Benbolt-Rockdell) 1 Interface
AAY Bedding (Benbolt-Rockdell) 2 interfaces
Edge of common basemat 5 ft below basemat
90 5.10.15 Center of common basemat 5 ft below basemat
A > Bedding (Benbolt-Rockdell) 1 Interface
140 5,10,15 Bedding (Benbolt-Rockdell) 1 Interface
40 5.10.15 Center of common basemat 5 ft below basemat
7 Center of common basemat 30 ft below basemat
E-E’ 90 5.10.15 Center of common basemat 5 ft below basemat
7 Bedding (Benbolt-Rockdell) 1 Interface
140 5,10,15 Bedding (Benbolt-Rockdell) 1 Interface
Center of common basemat 5 ft below basemat
40 5.10.15 Center. of common bgsemat 30 ft below basemat
e Bedding (Fleanor-Eidson) 1 Interface
B-B’ Edge of common basemat 5 ft below basemat
90 510.15 Center' of common bgsemat 5 ft below basemat
B 7 Bedding (Fleanor-Eidson) 1 Interface
140 5,10,15 Bedding (Fleanor-Eidson) 1 Interface
40 5.10.15 Center of common basemat 5 ft below basemat
7 Center of common basemat 30 ft below basemat
F-F° 90 51015 Center of common basemat 5 ft below basemat
7 Bedding (Fleanor-Eidson) 1 Interface
140 5,10,15 Bedding (Fleanor-Eidson) 1 Interface

Notes:

O
(@)

3)
(C)
(©)
()

Reference 2.5.4-59 Table 2-1

The CRN Site contains two potential locations for safety related structures.
Typical Modeled Location A and B cross sections, shear values and vertical deformations (see Figure 2.5.4-27

through Figure 2.5.4-30).

Modeled foundation embedment depth (ft below ground surface).
Modeled cavity diameters.

Modeled cavity locations.

Additional detail related to cavity location. For Location A, “1 interface” indicates a single interface element
introduced on both sides of the contact between the Benbolt and Rockdell formations. In turn, “2 interfaces”
indicates simulation of an interface element on both sides of the Benbolt Formation and Rockdell Formation
contact, and simulation of a second interface element located approximately 15 ft above the contact between the
Benbolt and Rockdell formations. For Location B, “1 interface” indicates a single interface element introduced on
both sides of the contact between the Fleanor and Eidson members of the Lincolnshire Formation.
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Benbolt
Rockdell
Fleanor

Weaker Plane

Note: Reference 2.5.4-59 Figure 2-14

Figure 2.5.1-27
Location A, Cross Section: A-A’
Cavity Diameter: 15 ft, Embedment Depth: 90 ft
Cavity Location: 30 ft Below Edge of Common Basemat, Bedding Plane,
Shear Joint Interface
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Note: Reference 2.5.4-59 Figure 2-29

Figure 2.5.4-28
Location B, Cross Section: F-F’
Cavity Diameter: 15 ft, Embedment Depth: 90 ft, Cavity Depth: 5 ft Below Foundation,
Cavity Location: Center of Common Basemat with Shear Fracture Zone Interface
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Note: Reference 2.5.4-59 Figure 3-7

Figure 2.5.4-29
Example Relative Shear Value Results for Foundation Embedment depths of 140 ft (Left),
90 ft (Center), and 40 ft (Right)
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Note: Reference 2.5.4-59 Figure 3-8

Figure 2.5.4-30
Example Results for Vertical Deformations for Foundation Embedment depths of 140 ft
(Left), 90 ft (Center), and 40 ft (Right)
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