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ABSTRACT

The accident at the Fukushima Dai-ichi nuclear power plant in 2011 demonstrated that external
events could cause loss of all safety systems. In the Europe stress tests were performed and
the need was identified to further improve the safety of the existing operating reactors.
Therefore the safety upgrade programs were started. The objective of this study was to
demonstrate that developed input model of two-loop pressurized water reactor (PWR) for
TRACE thermal-hydraulic systems code can be used for independent calculations to be
compared with RELAPS computer code calculations. For demonstration the response of PWR
to loss-of-coolant accident (LOCA) break spectrum from 10.16 cm (4 inch) to 30.48 cm (12 inch)
was simulated. Only passive accumulators were assumed available. For calculations the latest
TRACE Version 5.0 Patch 4 and RELAP5/MOD3.3 Patch 4 using both break flow models were
used. The results showed that RELAPS5 calculations using different break flow models are rather
similar, therefore also other parameters are similar. The accumulators discharge was faster in
TRACE calculation than in RELAPS calculations. It can be concluded that different accumulator
discharge influencing the break flow seems to be the largest contributor to the differences in the
results between RELAPS and TRACE.
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EXECUTIVE SUMMARY

The accident at the Fukushima Dai-ichi nuclear power plant in 2011 demonstrated that external
events could cause loss of all safety systems. In the Europe stress tests were performed and
the need was identified to further improve the safety of the existing operating reactors.
Therefore the safety upgrade programs were started. The objective of this study was to
demonstrate that developed input model of two-loop pressurized water reactor (PWR) for
TRACE thermal-hydraulic systems code has the capability for independent assessment of
RELAP5 computer code calculations. Namely, in the frame of the safety upgrade program the
RELAPS5 analyses have been performed by the plant to determine pressure and flow
requirements for alternative safety injection pump for design extension conditions A (DEC-A)
loss of coolant accidents (LOCA). For demonstration the response of PWR to loss-of-coolant
accident (LOCA) was simulated. The break spectrum consists of 30.48 cm (12 inch), 20.32 cm
(8 inch), 15.24 cm (6 inch), 12.7 cm (5 inch) and 10.16 cm (4 inch) equivalent diameter cold leg
breaks. The initiating event was opening of the valve simulating the break. The reactor trip on
(compensated) low pressurizer pressure (12.99 MPa) further caused the turbine trip. The safety
injection (SI) signal was generated on the low-low pressurizer pressure signal at 12.27 MPa. On
Sl signal no active safety systems started (e.g. high pressure safety injection pumps and low
pressure safety injection pumps and motor driven auxiliary feedwater pumps). Only passive
components were assumed available, i.e. accumulators. All these LOCA scenarios with above
assumptions lead to the core heatup. In this way the time available before significant core
heatup could be obtained.

For calculations the latest TRACE Version 5.0 Patch 4 using extension of Ransom and Trapp
critical flow model (default) and RELAP5/MOD3.3 Patch 4 using Henry-Fauske critical flow
model (default) and Ransom-Trapp critical flow model (Option 50) were used.

The results showed that RELAPS5 calculations using different break flow models are rather
similar, therefore also other parameters are similar. When comparing TRACE results to
RELAPS results, the accumulators discharge was consistently faster in TRACE calculations
than in RELAPS5 calculations. Therefore the calculated TRACE break flow was also larger than
RELAPS calculated break flow during this period. This further leads to qualitative differences at
the 30.48 cm break size scenario. It can be concluded that the different accumulator discharge
influencing the break flow seems to be the largest contributor to the differences in the results
between RELAP5 and TRACE.
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1. INTRODUCTION

Slovenian Krsko nuclear power plant is a one unit plant with pressurized water reactor (PWR), a
two-loop Westinghouse design with thermal power 1994 MW. In the frame of Krsko Safety
Upgrade Program the RELAPS calculations have been also used to define requirements for
alternative safety injection pump. To support independent assessment of Kr§ko Safety Upgrade
Program there was a need to make code comparison, therefore TRACE code has been
proposed for comparison calculations.

To define requirements for safety injection pump, loss of coolant accidents (LOCA) were
simulated in a two-loop PWR by Krsko nuclear power plant (NPP). Therefore in this study
independent analyses of loss-of-coolant accident (LOCA) break spectrum by RELAPS and
TRACE computer codes have been performed for comparison purposes. In Section 2 first the
LOCA scenarios are described. Then the RELAP5 and TRACE thermal-hydraulic system
computer codes are briefly described, followed by input model description for both computer
codes. Then the initial and boundary conditions, resulting from steady state calculations are
presented. Five break sizes ranging from 10.16 cm to 30.48 cm equivalent diameter break size
in cold leg were simulated and for each break size three calculations were performed, one with
TRACE using default option for critical flow model and two with RELAPS using Henry-Fauske
and Ransom-Trapp critical flow models. Then, results of the LOCA calculations are presented in
Section 3, including discussion of the result. Finally, main conclusions are drawn.






2. METHODS USED

2.1 LOCA Scenario Description

In the LOCAs simulated at the beginning of transient only passive components were assumed
available: two accumulators, pressurizer safety valves (not needed during LOCAs), and steam
generator safety valves (not needed during LOCAS). All the LOCA scenarios simulated with
above assumptions lead to the core heatup.

The initiating event is opening of the valve simulating the break in the cold leg with reactor
operating at 100% power. The reactor trip on (compensated) low pressurizer pressure (12.99
MPa) further causes the turbine trip. The safety injection (SI) signal is generated on the low-low
pressurizer pressure signal at 12.27 MPa. On Sl signal no active safety systems start (e.g. high
pressure safety injection (HPSI) pumps and low pressure safety injection (LPSI) pumps and
motor driven (MD) AFW pumps). When pressure drops below 49.55 bars, both accumulators
start to inject. Larger is the break size, faster is the accumulator discharge. When both
accumulators are emptied, the reactor coolant system (RCS) mass inventory is again
decreasing, resulting in core uncovering. The core starts to heat up and the calculations are
terminated at 2100 K, if calculation is not aborted earlier.

2.2 Computer Codes Used

At the time of calculations the latest RELAP5 and TRACE thermal hydraulic system codes were
used: U.S. NRC RELAP5/MOD3.3 Patch 4 (Ref. 1) and TRACE Version 5.0 Patch 4 (Ref. 2),
respectively. In June 2016 new RELAP5/MOD3.3 Patch 5 (Ref. 3) was released as a result of
maintenance of the code, without any new critical flow models. The RELAP5/MOD3.3 Patch 4
has built in two models for critical flow: Henry-Fauske critical flow model which is default and
Ransom-Trapp critical flow model (Option 50 need to be used). The TRACE has built in as default
the critical flow model which is extension of Ransom and Trapp critical flow model.

2.3 RELAPS Input Model

To perform the analyses, the base RELAP5 input model of Kr§ko NPP has been used. Krdko
NPP is a two loop PWR, Westinghouse type, with reactor power uprated to 1994 MW. The input
model has been validated by plant transients (e.g. Ref. 4). It has been used for several safety
analyses including reference calculations for Krsko full scope simulator verification (Refs. 5 and
6). The base model consists of 469 control volumes, 497 junctions and 378 heat structures with
2107 radial mesh points. When imported ASCI file into SNAP, the hydraulic components view
has been generated semi automatically (hydraulic components with connections generated
automatically, annotations and layout manually). In terms of SNAP this gives 304 hydraulic
components and 108 heat structures. Hydraulic components in SNAP consist of both volumes
and junctions, where pipe with more volumes is counted as one component. Each heat structure
in SNAP connected to pipe is counted as one component in SNAP and not as many heat
structures as pipe volumes like counted in RELAPS5 output file. This explains the difference in
numbers of heat structures in Figure 1 and that reported in RELAP5 output file.
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Figure 1 RELAPS5 Krsko NPP Hydraulic Components View

Modeling of the primary side includes the reactor pressure vessel (RPV), both loops (LOOP 1
and 2), the pressurizer (PRZ) vessel, pressurizer surge line (SL), pressurizer spray lines and
valves, two pressurizer power operated relief valves (PORVs) and two pressurizer safety
valves, chemical and volume control system (CVCS) charging and letdown flow, and reactor
coolant pump (RCP) seal flow. Emergency core cooling system (ECCS) piping includes high
pressure safety injection (HPSI) pumps, accumulators (ACCs), and low pressure safety injection
(LPSI) pumps. The secondary side consists of the SG secondary side, main steam line, main
steam isolation valves (MSIVs), SG relief and safety valves, and main feedwater (MFW) piping.
The turbine valve is modeled by the corresponding logic. The turbine is represented by time
dependent volume. The MFW and AFW (auxiliary feedwater) pumps are modeled as time
dependent junctions.

2.4 TRACE Input Model

The one-dimensional TRACE plant input model was obtained from an existing RELAP5/MOD3.3
plant input deck (Ref. 9). The conversion of the RELAPS input model to TRACE input model
was performed using SNAP (Ref. 8) and following the JSI RELAP5 to TRACE conversion
method. A detailed description regarding the conversion procedure can be found in Ref. 7.
Several modifications were manually brought to the TRACE input model during the conversion



process, mostly related to Heat Structures boundary conditions, Accumulator model option and
Hydraulic connections of Pipe components that originated from RELAPS Branch components.
Several Control Block Data have been modified too. For more details refer to Ref. 10.

TRACE input model is shown in Figure 2. The number of SNAP hydraulic components is 473
and the number of heat structures is 108.
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Figure 2 TRACE Krsko NPP Hydraulic Components View

2.5 Initial and Boundary Conditions

Table 1 shows initial and boundary conditions at the beginning of simulation. Initial values
and boundary conditions are given for both loops (where applicable). It can be seen that RELAP5S
initial and boundary conditions are a bit closer to reference PWR values than TRACE initial and
boundary conditions. When looking TRACE values there is significant deviation in steam
generator levels only due to separator model problems.



Table 1 Initial and Boundary Conditions

. Reference PWR | RELAP5/MOD3.3 | TRACE
Parameter (unit) Value

Core power (MW) 1994 1994 1994
Pressurizer pressure (MPa) 15.513 15.513 15.512
Pressurizer level (%) 55.7 55.8 55.24
Average RCS temperature no. 1 (K) 578.15 578.15 579.26
Average RCS temperature no. 2 (K) 578.15 578.06 579.33
Cold leg temperature no. 1 (K) 558.75 559.51 561.34
Cold leg temperature no. 2 (K) 558.75 559.32 561.48
Hot leg temperature no. 1 (K) 597.55 596.79 597.22
Hot leg temperature no. 2 (K) 597.55 596.79 597.22
Cold leg flow no. 1 (kg/s) 4694.7 4721.2 4888.9
Cold leg flow no. 2 (kg/s) 4694.7 4719.6 4886.5
Steam generator pressure no. 1 (MPa) 6.281 6.438 6.619
Steam generator pressure no. 2 (MPa) 6.281 6.415 6.635
Steam generator NR level no. 1 (%) 69.3 69.3 6.2
Steam generator NR level no. 2 (%) 69.3 69.3 6.5
Steam flow no. 1 (kg/s) 544.5 541.3 539.9
Steam flow no. 2 (kg/s) 544.5 544.5 532.3
Main feedwater temperature (K) 492.6 492.8 493.7

Namely, besides expected steam flow there appears also liquid mass flow of 84.1 kg/s and 123.7
kg/s in steam line no. 1 and 2, respectively. The reason seems to be separator model in TRACE
which needs improvement (bug report has been sent in December 2015). The plant TRACE input
model of SG may also need some improvements. The problems of separator model to correctly
separate steam and liquid at all possible boundary conditions caused that artificial steam
generator level control during steady state calculation could not fill the steam generator levels to
PWR reference values. As already mentioned, the liquid is flowing also to steam lines. Such
separator model is serious limitation to perform calculation of any transient occurring on the
secondary side. In LOCA calculations the influence of the secondary side is typically smaller than
in the secondary side initiated transients because due to break the primary side empties and the
natural circulation is terminated. Due to this fact and information that new version of TRACE wiill
be released soon it was decided to perform comparison calculations with the current version,
being aware of TRACE separator model limitation. It was judged that in spite of this deficiency
LOCA calculations could be performed for larger breaks while at smaller break sizes the influence
of secondary side on the primary side is expected to be larger and larger.



2.6 Simulated LOCA Break Cases

The breaks simulated were 10.16 cm (4 inch), 12.7 cm (5 inch), 15.24 cm (6 inch), 20.32
cm (8 inch) and 30.48 cm (12 inch) equivalent diameter cold leg breaks. For each break size three
simulations were performed, two by RELAPS5 and one by TRACE as can be seen from Table 2.
In case of 30.48 cm break size additional TRACE calculation was performed, in which the TRACE
accumulator discharge flow was tuned to RELAPS accumulator discharge flow. In all simulations

default values for break flows were used.

Table 2 LOCA Scenario Cases Simulated with RELAP5 and TRACE

Break size diameter | RELAP5/MOD3.3 RELAP5/MOD3.3 TRACE using
using HF critical flow | using RT critical flow | extended RT critical
model model flow model

10.16 cm (4 inch) 4 R5-HF 4 R5-RT 4 TRACE

12.7 cm (5 inch) 5 R5-HF 5 R5-RT 5_TRACE

15.24 cm (6 inch) 6_R5-HF 6_R5-RT 6_TRACE

20.32 cm (8 inch) 8 R5-HF 8 R5-RT 8_TRACE

30.48 cm (12 inch) 12_R5-HF 12_R5-RT 12_TRACE,

12_TRACE (ACC)*

" - TRACE accumulator discharge flow tuned to RELAP5 accumulator discharge flow







3. RESULTS

The results of LOCA break spectrum calculations are shown in Figures 3 through 62. For each
break size the following parameters are shown: pressurizer pressure, cold leg no. 1
temperature, leg no. 1 temperature, break flow, core collapsed liquid level, core exit
temperature, fuel cladding temperature, RCS mass, integrated break flow, mass injected by
accumulators, accumulator no. 1 flow and accumulator no. 2 flow. Finally, in the discussion
section additional Figures 63 and 63 are shown to explain the accumulator discharge flow.

3.1 LOCA with 10.16 cm Break Size

As has been indicated, at 10.16 cm break size (see Figures 3 through 14) there is some
pressure plateau in primary pressure in RELAPS calculations. It means that in this period
secondary side is important. Due to explained limitations of TRACE separator model, the
secondary side pressure drops and primary pressure follows it. Therefore the time sequence of
further events in TRACE is faster. It should be noted that in the BETHSY LOCA calculations
performed in the past (see Ref. 7), the mass discharged through accumulators was also much
faster in TRACE simulation comparing to RELAPS. Both these facts resulted in earlier core
heatup comparing to both RELAPS calculations. Due to faster accumulator discharge the break
flow significantly changes (increases) in the time period of accumulator discharging, influencing
further the pressure, RCS mass, core collapsed liquid level, hot and cold leg temperatures, core
exit temperature and fuel cladding temperature.

On the other hand, the influence of break flow model in case of RELAP5 calculations is more
significant during initial blowdown. Therefore, slightly earlier heatup is predicted by Henry-
Fauske (HF) critical flow model, which is higher in the initial period.

16 T |
14 ¢ R6-RT |
5 ——R5-HF
12 TRACE |
gh A
= 8+
g 6\
= C
2 .0\
o 4T N
o 2 f \
0 E 1 1 1 1 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 I I i + + L L
0 500 1000 1500 2000 2500 3000

Time (s)
Figure 3 Pressurizer Pressure (10.16 cm)
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3.2 LOCA with 12.7 cm Break Size

In case of 12.7 cm break size (see Figures 15 through 26) the pressure plateau is shorter and
also the accumulator influence on RCS mass is smaller, therefore also the difference between
TRACE and RELAPS simulations is smaller (see RCS mass, core collapsed liquid level, hot and
cold leg temperatures, core exit temperature and fuel cladding temperature).

In all calculated case the core heatup started in about 30 minutes.

13



—_
(o))
H

14§ —R&5RT |
—R5-HF
12 4 TRACE |~
< 10 4
o E
S 81
e a \
2 O \
S 4 \
0 - L L L L L ! L L L L ! L L I L e —— n
0 500 1000 1500 2000 2500
Time (s)
Figure 15 Pressurizer Pressure (12.7 cm)
600 — 5
- —R5-RT
550 -+ —R5HF |
QSOO : TRACE
© 450 ﬂ| ﬂf m;‘ “HJV_T{[ ....... ———
Rt |1 JHUREMIRTE T P
5 400 + N -
ol LTI
5 il
2 350 i VV
300 + ' e e ——— e
0 500 1000 1500 2000 2500
Time (s)
Figure 16 Cold Leg no. 1 Temperature (12.7 cm)
600 i
r —R5-RT
550 1 \\ —R5HF |
r TRACE
500 \
e h
o 450 +
5 L e
% C o
o 400 + Iy
o L
5
2 350 i
300 + ' ——— e e e
0 500 1000 1500 2000 2500

Time (s)
Figure 17 Hot Leg no. 1 Temperature (12.7 cm)

14



1200

—__R5-RT

1000 + —R5HF |
800 \ TRACE
5 ol
2 600 1
= :\
o B
= 400 -
® : \
@ I .
0. "‘Qa"‘v.@%mw £50em, S
0 500 1000 1500 2000 2500
Time (s)
Figure 18 Break Flow (12.7 cm)
—_RB5RT
——Rb5-HF
Y ( TRACE |
............ LW
1 Sy
\/-\W\¥
0 500 1000 1500 2000 2500
Time (s)
Figure 19 Core Collapsed Liquid Level (12.7 cm)
900 T g
B —R5RT
800 R5-HF “/\ﬁ. -----
N TRACE
< 700 A
=71 /f
§ 600 - ZA
S //
500 >
k) - L/
400 : : : e : : :
0 500 1000 1500 2000 2500
Time (s)

Figure 20 Core Exit Temperature (12.7 cm)

15



1500 5
. —R5-RT
1200 < —R5-HF |
- TRACE /
< 900 £
5 %
e C /,
oo —
E’_ F —
£ 300
|_
0 B L L L L L L L L
0 500 1000 1500 2000 2500
Time (s)
Figure 21 Fuel Cladding Temperature (12.7 cm)
200 T i
—R5-RT
—R5-HF
150 T TRACE |~
= \
E _ \\
50 "
\ = %\%"—'————___
—
0 500 1000 1500 2000 2500
Time (s)
Figure 22 RCS Mass (12.7 cm)
200 + T
: S
F =
150 +
= / ——R5RT
@ 100 Z —R5-HF |
= TRACE
50 +
0 - : : : : : : : : :
0 500 1000 1500 2000 2500
Time (s)

Figure 23 Integrated Break Flow (12.7 cm)

16



100 1
75 1
PR / ——RGRT
g 907 r —R5HF |
= i / TRACE
25 /
0 __ L L /I/ I I I I I I I I I I
0 500 1000 1500 2000 2500
Time (s)
Figure 24 Mass Injected by Accumulators (12.7 cm)
500 5
—R5-RT
400 + R5-HF |-
- TRACE
» 300
2
§ 200
7 I
@ 100 L B
E .
0 A ) I \ I I L
1000 1500 2000 2500
Time (s)
Figure 25 Accumulator no. 1 Flow (12.7 cm)
500 5
—R5-RT
400 + R5-HF |-
- TRACE
» 300
2
§ 200
g
@ 100
- "
0 il : : : : . —
1000 1500 2000 2500
Time (s)

Figure 26 Accumulator no. 2 Flow (12.7 cm)

17



3.3 LOCA with 15.24 cm Break Size

In case of 15.24 cm break size (see Figures 27 through 38) the pressure plateau is even shorter
and the difference between TRACE and RELAPS simulations is smaller than in 12.7 cm break
size case. The difference is now mainly due to faster accumulator emptying in case of TRACE
calculation. This has further influence on pressurizer pressure, break flow, RCS mass, core

collapsed liquid level, hot and cold leg temperatures, core exit temperature and fuel cladding
temperature.

In all calculated case the core heatup started in about 20 minutes.
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3.4 LOCA with 20.32 cm Break Size

In case of 20.32 cm break size (see Figures 39 through 50) the pressure plateau is negligible
and the difference between TRACE and RELAP5 simulations is again very small. The
differences started after accumulator injection. The period of accumulator emptying is short, but
in the case of TRACE this period is significantly shorter comparing to RELAPS.

The faster accumulator discharge (higher injection flow) caused higher break flow (much of the
injected water is thus lost through the break), the pressure drops faster and there is also less
mass in the RCS in that period. However, later the break flow is smaller due to lower pressure
and so the TRACE calculation after approximately 450 s agrees well with RELAPS calculations.

In all calculated case the core heatup started in about 15 minutes.
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3.5 LOCA with 30.48 cm Break Size

Looking results for smaller breaks, it would be expected that TRACE results for 30.48 cm (see
Figures 51 through 62) would be even closer to RELAPS results. However, in original TRACE
calculation faster accumulator discharge so much influences the break flow that RCS mass (see
Figure 58) was so low after the accumulators are emptied that another core heatup starts 1
minute after break occurrence and the TRACE results are qualitatively very much different from
RELAPS5 results. Therefore it was decided to reduce the accumulator flow area in such a way to
get comparable accumulator discharge between TRACE and RELAPS (see Figures 60, 61 and
62). As can be seen from Figure 54 showing results for 30.48 cm break size for reduced
accumulator line area (label “TRACE (ACC)”), the TRACE break flow (and its integrated value
shown in Figure 59) is now similar to RELAPS5 calculations with some differences in the time of
core heatup start. Slightly smaller break flow (Figure 54) means less RCS mass discharged
(Figure 58) and by this the core heatup is delayed (Figure 57).
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In case of RELAPS using RT and HF critical flow model the core heatup occurred in 6 minutes
and 8 minutes, respectively, while in TRACE in 11 minutes after break occurrence (not seen
from Figure 57, but TRACE calculated results are available until 905 s). The results showed that
accumulator emptying should be further studied.
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3.6 Discussion of Results

In the performed TRACE LOCA analysis of 30.48 cm (case labeled “TRACE”) faster
accumulator discharge (see Figure 60) so much influences the break flow (see Figure 54) that
RCS mass was so low that heatup starts after 1 minute and is qualitatively very much different
from RELAPS5 calculation. Therefore it was decided to reduce the accumulator flow area in such
a way to get comparable accumulator discharge between TRACE and RELAPS. As can be seen
from Figures 61 and 62 showing results for 30.48 cm break size for reduced accumulator line
area (label “TRACE (ACC)”), the TRACE break flow is now similar to RELAP5 calculations with
differences in the time of core heatup start. In case of RELAPS using RT and HF critical flow
model the core heatup occurred in 6 minutes and 8 minutes, respectively, while in TRACE in

11 minutes after break occurrence.

As was already indicated the results showed that accumulator emptying should be further
studied. Therefore the BETHSY 6.2TC calculation (Refs. 7 and 11) has been checked as shown
in Figure 63. The accumulator discharge was faster in the case of TRACE comparing to
RELAP5 calculation, which was in reasonable agreement with experimental data. The TRACE
calculation of the same BETHSY 6.2TC test described in the TRACE code development
assessment manual (Ref. 12) similarly shows that TRACE calculated accumulator discharge is
faster than in the experiment as can be seen from Figure 64. In the Reference 12, page C-491 it
is further explained:

“Calculated and measured integrated accumulator injection flows into both loops are shown in
Figure C.8-65. In the test, the accumulator injection starts at 345 seconds and is isolated at
approximately 950 seconds. In the calculation, the accumulator injection begins at about 350
seconds and is isolated at about 650 seconds. As indicated in Reference 9, the combination of
the larger amount of water inventory loss out the break and the earlier time that the
accumulators complete their injection results in the earlier calculated core heatup at
approximately 1330 seconds.”
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0

When comparing TRACE predictions in Figures 63 and 64, it can be seen that also in the case
of TRACE assessment using TRACE Patch 01 code (Ref. 12), the accumulator discharge was
predicted faster than in case of BETHSY 6.2TC experiment. Calculated accumulator water flow
over prediction of TRACE for integral experiments presented in the Assessment Manual,
Appendix C (Ref. 12), is seen in Figures C.5-99, C.5-100, C.5-204, C.5-205, C.6-16, C.6-17 and
C.6-37 of Reference 12, and indirectly from integrated accumulator flow in Figure C.8-65 of
Reference 12.
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4. CONCLUSIONS

In the study it was demonstrated that developed input model of two-loop pressurized water reactor
(PWR) for TRACE thermal-hydraulic systems code has the capability for independent assessment
of RELAPS computer code calculations. For demonstration the response of PWR to loss-of-
coolant accident (LOCA) was simulated for five break sizes ranging from 10.16 cm to 30.48 cm
equivalent diameter break size in cold leg. Two RELAPS5 code calculations were performed to see
the influence of critical flow break model, while in case of TRACE default critical flow model was
used.

The results showed that RELAPS calculations using different break flow models are rather similar
between each other, therefore also other parameters are similar. The accumulators discharge
was faster in TRACE calculations than in RELAPS calculations for whole LOCA spectrum.
Therefore the calculated TRACE break flow was also larger than RELAPS calculated break flow
during this period. This further influences the accident progression. In the case of smaller breaks
also secondary side more significantly influences the primary pressure, but this could not be
properly simulated with TRACE due to problems with separator component. It can be concluded
that different accumulator discharge influencing the break flow seems to be the largest contributor
to the differences between RELAP5 and TRACE for the performed LOCA calculations.
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