

Marty L. Richey Site Vice President Beaver Valley Power Station P.O. Box 4 Shippingport, PA 15077

> 724-682-5234 Fax: 724-643-8069

June 6, 2017 L-17-071

ATTN: Document Control Desk U. S. Nuclear Regulatory Commission Washington, DC 20555-0001

SUBJECT: Beaver Valley Power Station, Unit No. 2 Docket No. 50-412, License No. NPF-73 Cycle 20 Core Operating Limits Report

Pursuant to the requirements of Beaver Valley Power Station, Unit No. 2 Technical Specification 5.6.3, "CORE OPERATING LIMITS REPORT (COLR)," FirstEnergy Nuclear Operating Company hereby submits the COLR for Cycle 20. Technical Specification 5.6.3.d requires, in part, that the COLR be provided to the Nuclear Regulatory Commission upon issuance for each reload cycle. The Cycle 20 COLR was made effective on May 4, 2017.

There are no regulatory commitments contained in this submittal. If there are any questions or if additional information is required, please contact Mr. Thomas A. Lentz, Manager – Fleet Licensing, at (330) 315-6810.

Sincerely,

Marty L. Ridhey

Enclosure:

Beaver Valley Power Station, Unit No. 2, Core Operating Limits Report, Cycle 20

L-17-071 Page 2 of 2

cc: NRC Region I Administrator NRC Resident Inspector NRC Project Manager Director BRP/DEP Site BRP/DEP Representative

Enclosure L-17-071

Beaver Valley Power Station, Unit No. 2 Core Operating Limits Report, Cycle 20 (16 Pages Follow)

5.0 ADMINISTRATIVE CONTROLS

5.1 Core Operating Limits Report

This Core Operating Limits Report provides the cycle specific parameter limits developed in accordance with the NRC approved methodologies specified in Technical Specification Administrative Control 5.6.3.

5.1.1 SL 2.1.1 Reactor Core Safety Limits

See Figure 5.1-1.

5.1.2 SHUTDOWN MARGIN (SDM)

- a. In MODES 1, 2, 3, and 4, SHUTDOWN MARGIN shall be \geq 1.77% Δ k/k.⁽¹⁾
- b. Prior to manually blocking the Low Pressurizer Pressure Safety Injection Signal, the Reactor Coolant System shall be borated to ≥ the MODE 5 boron concentration and shall remain ≥ this boron concentration at all times when this signal is blocked.
- c. In MODE 5, SHUTDOWN MARGIN shall be $\geq 1.0\% \Delta k/k$.

5.1.3 LCO 3.1.3 Moderator Temperature Coefficient (MTC)

- a. Upper Limit MTC shall be maintained within the acceptable operation limit specified in Technical Specification Figure 3.1.3-1.
- b. Lower Limit MTC shall be maintained less negative than 4.29×10^{-4} $\Delta k/k/^{\circ}F$ at RATED THERMAL POWER.
- c. 300 ppm Surveillance Limit: (- 35 pcm/°F)
- d. The revised predicted near-EOL 300 ppm MTC shall be calculated using Figure 5.1-5 and the following algorithm from Reference 10 :

Revised Predicted MTC = Predicted MTC* + AFD Correction** + Predictive Correction***

where,

* Predicted MTC is calculated from Figure 5.1-5 at the burnup corresponding to the measurement of 300 ppm at RTP conditions,

** AFD Correction is the more negative value of :

 $\{0 \text{ pcm/°F or } (\Delta AFD * AFD \text{ Sensitivity})\}$

where: △AFD is the measured AFD minus the predicted AFD from an incore flux map taken at or near the burnup corresponding to 300 ppm.

and

AFD Sensitivity = 0.10 pcm/°F / Δ AFD

***Predictive Correction is -3 pcm/°F.

(1) The MODE 1 and MODE 2 with $k_{eff} \ge 1.0$ SDM requirements are included to address SDM requirements (e.g., MODE 1 Required Actions to verify SDM) that are not within the applicability of LCO 3.1.1, SHUTDOWN MARGIN (SDM).

If the revised predicted MTC is less negative than the SR 3.1.3.2 limit (COLR 5.1.3.c) and all of the benchmark data contained in the surveillance procedure are met, then an MTC measurement in accordance with SR 3.1.3.2 is not required.

- e. 60 ppm Surveillance Limit: (- 40.5 pcm/°F)
- 5.1.4 LCO 3.1.5 Shutdown Bank Insertion Limits

The Shutdown Banks shall be withdrawn to at least 225 steps.⁽²⁾

5.1.5 LCO 3.1.6 Control Bank Insertion Limits

- a. Control Banks A and B shall be withdrawn to at least 225 steps.⁽²⁾
- b. Control Banks C and D shall be limited in physical insertion as shown in Figure 5.1-2.⁽²⁾
- c. Sequence Limits The sequence of withdrawal shall be A, B, C and D bank, in that order.
- d. Overlap Limits⁽²⁾ Overlap shall be such that step 129 on banks A, B, and C corresponds to step 1 on the following bank. When C bank is fully withdrawn, these limits are verified by confirming D bank is withdrawn at least to a position equal to the all-rods-out position minus 128 steps.

5.1.6 LCO 3.2.1 Heat Flux Hot Channel Factor (FQ(Z))

The Heat Flux Hot Channel Factor - $F_Q(Z)$ limit is defined by:

$$F_{Q}(Z) \leq \left[\frac{CFQ}{P}\right]^{*} K(Z) \qquad \text{for } P > 0.5$$

$$F_{Q}(Z) \leq \left[\frac{CFQ}{0.5}\right]^{*} K(Z) \qquad \text{for } P \leq 0.5$$
THEBMAL POWER

Where: CFQ = 2.40

P = THERMAL POWER RATED THERMAL POWER

$$\begin{split} \mathsf{K}(\mathsf{Z}) &= \text{the function obtained from Figure 5.1-3.} \\ \mathsf{F}^{\mathsf{C}}_{\mathsf{Q}}(\mathsf{Z}) &= \mathsf{F}^{\mathsf{M}}_{\mathsf{Q}}(\mathsf{Z}) \, * \, 1.0815^{\$} \\ \mathsf{F}^{\mathsf{W}}_{\mathsf{Q}}(\mathsf{Z}) &= \mathsf{F}^{\mathsf{C}}_{\mathsf{Q}}(\mathsf{Z}) \, * \, \mathsf{W}(\mathsf{Z}) \end{split}$$

- (2) As indicated by the group demand counter
- \$ An additional uncertainty is to be applied if the number of measured thimbles for the moveable incore detector system is less than 75% of the total number of thimbles. If there are less than 75% of the total number of thimbles and at least 50% of the total number of thimbles measured, and additional uncertainty of (0.01)*(3-T/12.5) is added to the measurement uncertainty, 1.05, where T is the total number of measured thimbles. This adjusted measurement uncertainty is then multiplied by 1.03 to obtain the total uncertainty to be applied. At least three measured thimbles per core quadrant are also required.

Beaver Valley Unit 2

The W(Z) values are provided in Tables 5.1-1 and 5.1-2. The W(Z) values in Table 5.1-1 were generated assuming that they will be used for a full power surveillance. The W(Z) values in Table 5.1-2 were generated assuming that they will be used for a part power surveillance during initial cycle startup following the refueling outage. When a part power surveillance is performed, the W(Z) values should be multiplied by the factor 1/P, when P > 0.5. When P is \leq 0.5, the W(Z) values should be multiplied by the factor 1/(0.5), or 2.0. This is consistent with the adjustment in the F_Q(Z) limit at part power conditions.

The $F_Q(Z)$ penalty function, applied when the analytic $F_Q(Z)$ function increases from one monthly measurement to the next, is provided in Table 5.1-3.

5.1.7 LCO 3.2.2 Nuclear Enthalpy Rise Hot Channel Factor (
$$F_{\Delta H}^{N}$$
)

F ^N ΔH ≤CF _{ΔH} *	(1+PF ۵۱	_⊣ (1−P))\$
Where:	$CF_{\Delta H}$	= 1.59 up to 6,000 MWD/MTU
	And,	
	$CF_{\Delta H}$	= 1.62 from 6,000 MWD/MTU to EOL
	PF_∆H	= 0.3
	P = F	THERMAL POWER

- 5.1.8 <u>LCO 3.2.3 Axial Flux Difference (AFD)</u> The AFD acceptable operation limits are provided in Figure 5.1-4.
- 5.1.9 LCO 3.3.1 Reactor Trip System Instrumentation Overtemperature and Overpower △T Parameter Values from Table Notations 3 and 4

a. <u>Overtemperature ΔT Setpoint Parameter Values</u>:

Parameter	Value
Overtemperature ΔT reactor trip setpoint	K1 ≤ 1.239
Overtemperature ΔT reactor trip setpoint Tavg coefficient	K2 ≥ 0.0183/°F
Overtemperature ΔT reactor trip setpoint pressure coefficient	K3 ≥ 0.001/psia
Tavg at RATED THERMAL POWER	T' ≤ 574.2°F ⁽¹⁾

^{\$} An additional uncertainty is to be applied if the number of measured thimbles for the moveable incore detector system is less than 75% of the total number of thimbles. If there are less than 75% of the total number of thimbles and at least 50% of the total number of thimbles measured, and additional uncertainty of (0.01)*(3-T/12.5) is added to the standard uncertainty on FNΔH of 1.04, where T is the total number of measured thimbles. At least three measured thimbles per core guadrant are also required.

(1) T' represents the cycle-specific Full Power Tavg value used in core design.

	Nominal pressurizer pressure		P' ≥ 2250 psia
	Measured reactor vessel ∆T lead/lag time ((* The response time is toggled off to meet value of zero.)	constants the analysis	$\begin{array}{l} \tau_1=0 \text{ sec}^* \\ \tau_2=0 \text{ sec}^* \end{array}$
	Measured reactor vessel ΔT lag time const	tant	$\tau_3 \leq 6 \text{ secs}$
	Measured reactor vessel average tempera time constants	ture lead/lag	$\begin{array}{l} \tau_4 \geq 30 \; secs \\ \tau_5 \leq 4 \; secs \end{array}$
	Measured reactor vessel average tempera constant	ture lag time	$\tau_6 \leq 2 \; \text{secs}$
	f (ΔI) is a function of the indicated difference detectors of the power-range nuclear ion ch selected based on measured instrument res such that:	e between top a ambers, with g sponse during	and bottom jains to be plant startup tests
	(i) For $q_t - q_b$ between -37% and +15%, for percent RATED THERMAL POWER in the core respectively, and $q_t + q_b$ is tot percent of RATED THERMAL POWER	$h(\Delta I) = 0$, where in the top and b al THERMAL F R.	e q₁ and qь are ottom halves of POWER in
	 (ii) For each percent that the magnitude of trip setpoint shall be automatically red RATED THERMAL POWER. 	of (q _t - q _b) excee uced by 2.52%	eds -37%, the ΔT of its value at
	 (iii) For each percent that the magnitude of trip setpoint shall be automatically red RATED THERMAL POWER. 	of (q _t - q _b) excenu uced by 1.47%	eds +15%, the ΔT of its value at
b.	Overpower <u>AT Setpoint Parameter Values</u> :		
	Parameter	<u>Value</u>	
	Overpower ΔT reactor trip setpoint	$K4 \leq 1.094$	
	Overpower ΔT reactor trip setpoint Tavg rate/lag coefficient	$K5 \ge 0.02/°F$ the average temption $K5 = 0/°F$ for a for a set temption $K5 = 0.02/°F$ for a set temption $K5 = 0.02/~F$ for a set temption $K5$	for increasing perature decreasing perature
	Overpower ∆T reactor trip setpoint Tavg heatup coefficient	$K6 \ge 0.0021/^{\circ}$ $K6 = 0/^{\circ}F$ for	°F for T > T" T ≤ T"
	Tavg at RATED THERMAL POWER	T" ≤ 574.2°F ^{(†}	1)
	Measured reactor vessel ΔT lead/lag	$\tau_1 = 0 \text{sec}^\star$	
	time constants	$\tau_2=0\text{sec}^\star$	
(* The response time is toggled off to meet the analysis v			alue of zero.)

⁽¹⁾ T" represents the cycle-specific Full Power Tavg value used in core design.

	Measured reactor vessel ∆T lag time constant	$\tau_3 \leq 6$ secs
	Measured reactor vessel average temperature lag time constant	$\tau_6 \leq 2 \; \text{secs}$
	Measured reactor vessel average temperature rate/lag time constant	$\tau_7 \ge 10 \text{ secs}$
5.1.10	LCO 3.4.1, RCS Pressure, Temperature, and Boiling (DNB) Limits	Flow Departure from Nucleate
	Parameter	Indicated Value
	Reactor Coolant System Tavg	Tavg \leq 577.8°F ⁽¹⁾
	Pressurizer Pressure	Pressure \geq 2214 psia ⁽²⁾
	Reactor Coolant System Total Flow Rate	Flow \geq 267,483 gpm ⁽³⁾
5.1.11	LCO 3.9.1 Boron Concentration (MODE 6)	

The boron concentration of the Reactor Coolant System, the refueling canal, and the refueling cavity shall be maintained \geq 2400 ppm. This value includes a 50 ppm conservative allowance for uncertainties.

⁽¹⁾ The Reactor Coolant System (RCS) indicated Tavg value is determined by adding the appropriate allowances for rod control operation and verification via control board indication (3.6°F) to the cycle specific full power Tavg used in the core design.

⁽²⁾ The pressurizer pressure value includes allowances for pressurizer pressure control operation and verification via control board indication.

⁽³⁾ The RCS total flow rate includes allowances for normalization of the cold leg elbow taps with a beginning of cycle precision RCS flow calorimetric measurement and verification on a periodic basis via control board indication.

5.1.12 <u>References</u>

- 1. WCAP-9272-P-A, "WESTINGHOUSE RELOAD SAFETY EVALUATION METHODOLOGY," July 1985 (Westinghouse Proprietary).
- 2. WCAP-8745-P-A, "Design Bases for the Thermal Overpower ΔT and Thermal Overtemperature ΔT Trip Functions," September 1986.
- 3. WCAP-12945-P-A, Volume 1 (Revision 2) and Volumes 2 through 5 (Revision 1), "Code Qualification Document for Best Estimate LOCA Analysis," March 1998 (Westinghouse Proprietary).
- 4. WCAP-10216-P-A, Revision 1A, "Relaxation of Constant Axial Offset Control-F_Q Surveillance Technical Specification," February 1994.
- 5. WCAP-14565-P-A, "VIPRE-01 Modeling and Qualification for Pressurized Water Reactor Non-LOCA Thermal-Hydraulic Safety Analysis," October 1999.
- 6. WCAP-12610-P-A, "VANTAGE+ Fuel Assembly Reference Core Report," April 1995 (Westinghouse Proprietary).
- 7. WCAP-15025-P-A, "Modified WRB-2 Correlation, WRB-2M, for Predicting Critical Heat Flux in 17x17 Rod Bundles with Modified LPD Mixing Vane Grids," April 1999.
- 8. Caldon, Inc. Engineering Report-80P, "Improving Thermal Power Accuracy and Plant Safety While Increasing Operating Power Level Using the LEFM√[™] System," Revision 0, March 1997.
- 9. Caldon, Inc. Engineering Report-160P, "Supplement to Topical Report ER-80P: Basis for a Power Uprate With the LEFM√[™] System," Revision 0, May 2000.
- 10. WCAP-13749-P-A, "Safety Evaluation Supporting the Conditional Exemption of the Most Negative EOL Moderator Temperature Coefficient Measurement," March 1997 (Westinghouse Proprietary).
- 11. WCAP-16045-P-A, "Qualification of the Two-Dimensional Transport Code PARAGON," August 2004.
- 12. WCAP-16045-P-A, Addendum 1-A, "Qualification of the NEXUS Nuclear Data Methodology," August 2007.

Figure 5.1-1 (Page 1 of 1)

REACTOR CORE SAFETY LIMIT THREE LOOP OPERATION

(Technical Specification Safety Limit 2.1.1)

CONTROL ROD INSERTION LIMITS AS A

FUNCTION OF RATED POWER LEVEL

Figure 5.1-3 (Page 1 of 1)

Figure 5.1-4 (Page 1 of 1)

AXIAL FLUX DIFFERENCE LIMITS AS A FUNCTION OF

PERCENT OF RATED THERMAL POWER FOR RAOC

Beaver Valley Unit 2

AS A FUNCTION OF CYCLE BURNUP

WHEN 300 PPM IS ACHIEVED

Zone Point (leet) (MWD/M10) (MUD/M10) (MUD/M10) (MUD/M10)<	000 000 000 000 000 000
* 1 12.1 1.0000	000 000 000 000 000
2 11.9 1.0000	000 000 000 000
* 3 11.7 1.0000	000
* 4 11.5 1.0000	000
* 5 11.3 1.0000	000
* 6 11.1 1.0000	~ ~ ~ '
* 7 10.9 1.0000	000
8 10.7 1.1275 1.1787 1.2521 1.2179 1.2 9 10.5 1.1226 1.1755 1.2449 1.2119 1.2 10 10.3 1.1166 1.1701 1.2362 1.2077 1.2 11 10.1 1.1095 1.1630 1.2261 1.2056 1.2	000
9 10.5 1.1226 1.1755 1.2449 1.2119 1.2 10 10.3 1.1166 1.1701 1.2362 1.2077 1.2 11 10.1 1.1095 1.1630 1.2261 1.2056 1.2	248
<u>10 10.3 1.1166 1.1701 1.2362 1.2077 1.2</u> 11 10.1 1.1095 1.1630 1.2261 1.2056 1.2	180
	112
11 10.1 1.1050 1.1050 1.2201 1.2030 1.2	054
12 9.9 1.1025 1.1608 1.2156 1.2087 1.1	990
13 9.7 1.0974 1.1611 1.2086 1.2095 1.1	921
14 9.5 1.0979 1.1596 1.2109 1.2083 1.1	850
15 9.3 1.1035 1.1543 1.2091 1.2057 1.1	789
16 9.1 1.1103 1.1501 1.2097 1.2029 1.1	827
17 8.9 1.1155 1.1467 1.2091 1.2028 1.1	869
18 8.7 1.1232 1.1523 1.2145 1.2064 1.1	884
19 8.5 1.1306 1.1580 1.2188 1.2156 1.1	931
20 8.3 1.1363 1.1618 1.2210 1.2218 1.2	051
21 8.1 1.1409 1.1640 1.2207 1.2256 1.2	143
22 7.9 1.1442 1.1650 1.2189 1.2275 1.2	215
23 7.6 1.1452 1.1636 1.2145 1.2267 1.2	261
24 7.4 1.1452 1.1612 1.2088 1.2243 1.2	292
25 7.2 1.1435 1.1567 1.2002 1.2187 1.2	286
26 7.0 1.1409 1.1511 1.1899 1.2109 1.2	256
27 6.8 1.1371 1.1443 1.1785 1.2025 1.2	212
28 6.6 1.1316 1.1360 1.1656 1.1924 1.2	154
29 6.4 1.1256 1.1269 1.1528 1.1808 1.2	077
30 6.2 1.1190 1.1169 1.1435 1.1678 1.1	
31 6.0 1.1158 1.1104 1.1332 1.1538 1.1	981
32 5.8 1.1122 1.1040 1.1222 1.1391 1.1	981 871

Table 5.1-1 (Page 1 of 2) F_{Q} Surveillance W(Z) Function versus Burnup at 100% RTP

			*				
Exclusion	Axial	Elevation	150	3000	8000	12000	16000
Zone	Point	(feet)	(MWD/MTU)	(MWD/MTU)	(MWD/MTU)	(MWD/MTU)	(MWD/MTU)
	33	5.6	1.1083	1.1005	1.1107	1.1237	1.1616
	34	5.4	1.1091	1.1001	1.1021	1.1144	1.1455
	35	5.2	1.1150	1.1001	1.0975	1.1101	1.1357
	36	5.0	1.1217	1.1019	1.0954	1.1066	1.1315
	37	4.8	1.1281	1.1051	1.0926	1.1027	1.1259
	38	4.6	1.1342	1.1086	1.0898	1.0984	1.1199
	39	4.4	1.1401	1.1119	1.0868	1.0938	1.1132
	40	4.2	1.1455	1.1149	1.0838	1.0893	1.1064
	41	4.0	1.1503	1.1176	1.0809	1.0848	1.0996
	42	3.8	1.1552	1.1207	1.0775	1.0794	1.0914
	43	3.6	1.1596	1.1255	1.0740	1.0747	1.0830
	44	3.4	1.1660	1.1303	1.0704	1.0715	1.0757
	45	3.2	1.1740	1.1347	1.0697	1.0701	1.0748
	46	3.0	1.1796	1.1384	1.0704	1.0686	1.0808
	47	2.8	1.1971	1.1540	1.0757	1.0726	1.0933
	48	2.6	1.2239	1.1770	1.0888	1.0830	1.1069
	49	2.4	1.2498	1.1988	1.1038	1.0946	1.1211
	50	2.2	1.2762	1.2215	1.1190	1.1077	1.1357
	51	2.0	1.3026	1.2440	1.1338	1.1200	1.1492
	52	1.8	1.3285	1.2663	1.1482	1.1318	1.1618
	53	1.6	1.3523	1.2869	1.1619	1.1431	1.1741
	54	1.4	1.3739	1.3057	1.1743	1.1535	1.1855
*	55	1.2	1.0000	1.0000	1.0000	1.0000	1.0000
*	56	1.0	1.0000	1.0000	1.0000	1.0000	1.0000
*	57	0.8	1.0000	1.0000	1.0000	1.0000	1.0000
*	58	0.6	1.0000	1.0000	1.0000	1.0000	1.0000
*	59	0.4	1.0000	1.0000	1.0000	1.0000	1.0000
*	60	0.2	1.0000	1.0000	1.0000	1.0000	1.0000
*	61	0.0	1.0000	1.0000	1.0000	1.0000	1.0000

Table 5.1-1 (Page 2 of 2) $F_{\rm Q}$ Surveillance W(Z) Function versus Burnup at 100% RTP

Exclusion Zone	Axial Point	Elevation (feet)	75% RTP
*	1	12.1	1.0000
*	2	11.9	1.0000
*	3	11.7	1.0000
*	4	11.5	1.0000
*	5	11.3	1.0000
*	6	11.1	1.0000
*	7	10.9	1.0000
	8	10.7	1.2169
	9	10.5	1.1980
	10	10.3	1.1775
	11	10.1	1.1555
	12	9.9	1.1333
	13	9.7	1.1134
	14	9.5	1.1003
··	15	9.3	1.0940
	16	9.1	1.0895
	17	8.9	1.0856
	18	8.7	1.0863
	19	8.5	1.0870
	20	8.3	1.0856
	21	8.1	1.0867
	22	7.9	1.0860
	23	7.6	1.0841
	24	7.4	1.0828
	25	7.2	1.0782
	26	7.0	1.0765
	27	6.8	1.0734
	28	6.6	1.0678
	29	6.4	1.0629
	30	6.2	1.0587
	31	6.0	1.0579
	32	5.8	1.0559

-	Table 5.1-2 (Page	1 of 2)	
F _Q Surveillance W(Z)	Function at Initial	Cycle Startup	o at 75% RTP

Exclusion Zone	Axial Point	Elevation (feet)	75% RTP
	33	5.6	1.0541
	34	5.4	1.0579
	35	5.2	1.0650
	36	5.0	1.0731
	37	4.8	1.0816
	38	4.6	1.0901
	39	4.4	1.0992
	40	4.2	1.1080
	41	4.0	1.1170
	42	3.8	1.1253
	43	3.6	1.1336
	44	3.4	1.1438
	45	3.2	1.1554
	46	3.0	1.1647
	47	2.8	1.1858
	48	2.6	1.2161
	49	2.4	1.2458
	50	2.2	1.2766
	51	2.0	1.3076
	52	1.8	1.3379
	53	1.6	1.3662
	54	1.4	1.3923
*	55	1.2	1.0000
*	56	1.0	1.0000
*	57	0.8	1.0000
*	58	0.6	1.0000
*	59	0.4	1.0000
*	60	0.2	1.0000
*	61	0.0	1.0000

	Table 5.1-2 (Page 2 of 2)	
F _Q Surveillance W(Z) Function at Initial Cycle Star	tup at 75% RTP

Table 5.1-3 (Page 1 of 1) $F_{\Omega}(Z)$ Penalty Factor versus Burnup

Cycle Burnup (MWD/MTU)	F _Q (Z) Penalty Factor
0 - 450	1.0237
> 450	1.0200

Note: The Penalty Factor, to be applied to $F_Q(Z)$ in accordance with Technical Specification Surveillance Requirement (SR) 3.2.1.2, is the maximum factor by which $F_Q(Z)$ is expected to increase over a 39 Effective Full Power Day (EFPD) interval (surveillance interval of 31 EFPD plus the maximum allowable extension not to exceed 25% of the surveillance interval per Technical Specification SR 3.0.2) starting from the burnup at which the $F_Q(Z)$ was determined.