Official Transcript of Proceedings NUCLEAR REGULATORY COMMISSION

Title:	643rd Meeting Advisory Committee on Reactor Safeguards
Docket Number:	N/A
Location:	Rockville, Maryland
Date:	May 4, 2017

Work Order No.: NRC-3060

Pages 1-188

NEAL R. GROSS AND CO., INC. Court Reporters and Transcribers 1323 Rhode Island Avenue, N.W. Washington, D.C. 20005 (202) 234-4433

	1
1	
2	
З	
4	DISCLAIMER
5	
6	
7	UNITED STATES NUCLEAR REGULATORY COMMISSION'S
8	ADVISORY COMMITTEE ON REACTOR SAFEGUARDS
9	
10	
11	The contents of this transcript of the
12	proceeding of the United States Nuclear Regulatory
13	Commission Advisory Committee on Reactor Safeguards,
14	as reported herein, is a record of the discussions
15	recorded at the meeting.
16	
17	This transcript has not been reviewed,
18	corrected, and edited, and it may contain
19	inaccuracies.
20	
21	
22	
23	
	1323 RHODE ISLAND AVE., N.W.
	(202) 234-4433 WASHINGTON, D.C. 20005-3701 www.nealrgross.com

	1
1	UNITED STATES OF AMERICA
2	NUCLEAR REGULATORY COMMISSION
3	+ + + +
4	643RD MEETING
5	ADVISORY COMMITTEE ON REACTOR SAFEGUARDS
6	(ACRS)
7	+ + + +
8	THURSDAY
9	MAY 4, 2017
10	+ + + +
11	ROCKVILLE, MARYLAND
12	+ + + +
13	The Advisory Committee met at the Nuclear
14	Regulatory Commission, Two White Flint North, Room
15	T2B1, 11545 Rockville Pike, at 8:30 a.m., Dennis Bley,
16	Chairman, presiding.
17	
18	COMMITTEE MEMBERS:
19	DENNIS C. BLEY, Chairman
20	MICHAEL L. CORRADINI, Vice Chairman
21	PETER RICCARDELLA, Member-at-Large
22	RONALD G. BALLINGER, Member
23	CHARLES H. BROWN, JR. Member
24	MARGARET CHU, Member
25	WALTER L. KIRCHNER, Member

1	JOSE MARCH-LEUBA, Member
2	DANA A. POWERS, Member
3	JOY REMPE, Member
4	GORDON R. SKILLMAN, Member
5	JOHN W. STETKAR, Member
6	MATTHEW W. SUNSERI, Member
7	
8	DESIGNATED FEDERAL OFFICIAL:
9	CHRISTOPHER BROWN
10	DEREK WIDMAYER
11	
12	ALSO PRESENT:
13	ALI AZARM, IESS
14	STEVE BLOSSOM, STPNOC
15	KEVIN COYNE, RES
16	VICTOR CUSUMANO, NRR
17	CANDACE DE MESSIERES, NRR
18	ROB ENGEN, STPNOC
19	CJ FONG, NRR
20	MIRELA GAVRILAS, NRR
21	FELIX GONZALES, RES
22	WAYNE HARRISON, STPNOC
23	SHANA HELTON, NRR
24	RAJ IYENGAR, RES
25	JOSHUA KAIZER, NRR*
	1

2

		3
1	ERNIE KEE, STPNOC	
2	PAUL KLEIN, NRR	
3	MICHAEL MARSHALL, NRR	
4	DOMINIC MUNOZ, Alion*	
5	MICHAEL MURRAY, STPNOC	
6	ROBERT PASCARELLI, NRR	
7	OSVALDO PENSADO, SWRI	
8	LISA REGNER, NRR	
9	DREW RICHARDS, STPNOC	
10	ANDREA RUSSELL, NRR	
11	SELIM SANCAKTAR, RES	
12	MICHAEL SALAY, RES	
13	RAY SCHNEIDER, Westinghouse*	
14	WES SCHULZ, STPNOC	
15	ASHLEY SMITH, NRR	
16	STEPHEN SMITH, NRR	
17	MARK THAGGARD, RES	
18	ANDREA D. VEIL, Executive Director, ACRS	
19	DON WAKEFIELD, ABS*	
20	MATTHEW YODER, NRR	
21		
22	*Present via telephone	
23		
24		
25		
	1	

	4
1	<u>CONTENTS</u>
2	Page
3	Opening Remarks by ACRS Chairman 5
4	
5	Risk-Informed South Texas Project License
6	Amendment Request
7	
8	Remarks by Subcommittee Chairman 7
9	NRC Staff Briefing
10	Licensee Briefing
11	
12	Consequential Steam Generator Tube Rupture
13	
14	Remarks by Subcommittee Chairman 133
15	Briefings 133
16	
17	Preparation of ACRS Reports 141
18	
19	
20	
21	
22	
23	
24	
25	
I	I contract of the second se

	5
1	PROCEEDINGS
2	8:30 a.m.
3	CHAIRMAN BLEY: The meeting will now come
4	to order. This is the first day of the 643rd meeting
5	of the Advisory Committee of Reactor Safeguards.
6	During today's meeting, the Committee will
7	consider the following: number one, Risk-Informed
8	South Texas Project License Amendment Request. That's
9	GSI-191. Two, Consequential Steam Generator Tube
10	Rupture. Three, preparation of ACRS reports.
11	The ACRS was established by Statute. And
12	is governed by the Federal Advisory Committee Act. As
13	such, the meeting is conducted in accordance with the
14	provisions of FACA.
15	That means that the Committee can only
16	speak through its published letter reports. We hold
17	meetings to gather information to support our
18	deliberations.
19	Interested parties who wish to provide
20	comments can contact our offices requesting time after
21	the Federal Register Notice describing the meeting is
22	published. With that said, we also set aside ten
23	minutes for spur of the moment comments for members of
24	the public attending or listening to our meetings.
25	Written comments are also welcome. Mr.
	1

(202) 234-4433

	6
1	Derek Widmayer is the designated Federal Official for
2	the initial portion of the meeting.
3	The ACRS section of the US NRC public
4	website provides our charter bylaws, letter reports,
5	and full transcripts of all our full and subcommittee
6	meetings, including slides presented at the meetings.
7	We have received no written comments or
8	requests to make oral statements from members of the
9	public regarding today's sessions. There will be a
10	telephone bridge-line. To preclude interruption of
11	the meeting, the phone will be placed in a listen-in
12	mode during presentations and the Committee
13	discussion.
14	A transcript of the portions of the
15	meeting is being kept. And it is requested that the
16	speakers use one of the microphones, identify
17	themselves, and speak with sufficient clarity and
18	volume to be readily heard.
19	I also want to make you aware that this
20	meeting is being webcast with the ability to view our
21	presentation slides on the web. If you're on the
22	bridge line and want to do that, you can dial you
23	can connect through the NRC's public meeting website,
24	and click on the link.
25	It seems to work well, and the sound when
	I

(202) 234-4433

	7
1	I tried it, is better than the sound on the bridge
2	line. If you have any problems, please call our
3	office.
4	At this point, I'm going to turn the
5	meeting over to Professor Corradini to lead us through
6	the discussion on the South Texas issue.
7	VICE CHAIRMAN CORRADINI: Okay. Thank you
8	Mr. Chair. So, for the members, this is, I guess, the
9	culmination of, I'm sure Lisa and Steve will tell us,
10	I can remember at least a few years. A hand full.
11	Maybe two handfuls of years in discussing GSI-191 with
12	a risk informed methodology.
13	To remind the members, we had meetings
14	back in 2012, '14, '15, and then two recently which
15	culminated in the staff's SE. Which essentially goes
16	through and analyzes and I think confirms, what STP
17	has suggested is their approach for risk informed.
18	So, I'll turn it over to Lisa. No. I'm
19	sorry. Excuse me.
20	MEMBER SUNSERI: Yes. And Dr. Corradini,
21	before you do that, may
22	VICE CHAIRMAN CORRADINI: I'm sorry, I
23	forgot to turn to
24	MEMBER SUNSERI: Yes. So, due to some
25	prior associations, I find that I need to recuse
1	I Contraction of the second

(202) 234-4433

	8
1	myself from the deliberations on this topic. Thank
2	you.
3	VICE CHAIRMAN CORRADINI: Okay. Thank you
4	Matt. I forgot to turn it over to you. I forgot.
5	Shana?
6	MS. HELTON: Thank you. I'll just give
7	some brief opening remarks before handing off to Lisa
8	Regner.
9	To provide the Committee some additional
10	background. In 2010 the Commission directed the staff
11	to consider a risk informed method for closing GSI-
12	191. The Commission direction included specific
13	direction to be creative and innovative.
14	That led in 2012 to what is now known as
15	closure option 2B for generic letter 2004-02. Which
16	is the potential impact of debris blockage and
17	emergency recirculation during design basis accidents
18	at pressurized water reactors.
19	South Texas Project was the pilot plant
20	for exercising this option for closure of the generic
21	letter. The lessons learned from this pilot effort
22	have already benefitted and influenced the remaining
23	plants using the risk informed closure option.
24	We recently received a submittal from
25	Vogtle and expect preliminary closure documentation

(202) 234-4433

for review from at least one additional plant in the next few months.

I'd like to take a minute to thank some 3 4 key staff, two of whom are sitting in front of you at 5 the table here. Lisa Regner is the Doral Project Steve Smith is our technical expert 6 Manager. in 7 deterministic debris analysis. C.J. Fong, who is 8 sitting in the audience, and Candace Pfeffercorn-De 9 Messieres, have been instrumental on the PRA analysis. There are a number of other people who 10 have been involved, some of whom are on the phone, who 11 instrumental to the effort 12 have been well. as

Technical staff who are not presenting today in the Division of Engineering, and the Division of Safety Systems.

16 It's taken a lot of people for us to get 17 here today. And a lot of good efforts on behalf of 18 the staff. And additionally, I'd like to commend the 19 South Texas project staff and NRC contractors for 20 being creative and collaborative in addressing the 21 challenges that inevitably arose along the way.

The many meetings, audits and site visits conducted over the last few years were critical in ensuring mutual understanding. And led to the hybrid method you will hear about today.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

(202) 234-4433

9

	10
1	And finally, I'd like to express
2	appreciation to the ACRS members past and present who
3	have led us where we are with many thoughtful
4	insights. And we've presented to the committees and
5	subcommittees several times throughout the review
6	process over the past four years or so.
7	We've really taken the ACRS insights to
8	heart. And I think what you see in this staffs' SE is
9	a reflection of how we've addressed the ACRS concerns
10	to date.
11	With that, I'd like to turn things over to
12	Lisa Regner. Thank you for the opportunity to be here
13	today.
14	MS. REGNER: Thank you Shana. Good
15	morning. I moved it so I wouldn't forget. Sorry.
16	Thank you Shana. Good morning. I'm Lisa
17	Regner, the Project Manager for the South Texas
18	Project pilot licensing. I'm the Licensing Project
19	Manager for the South Texas Project.
20	As Shana stated, we're here today to
21	present the staffs' results of a pioneering action to
22	risk informed compliance with the regulatory
23	requirements for emergency core and containment
24	cooling considering debris.
25	Like most pilot projects, this review was
	I

(202) 234-4433

	11
1	a series of stops and starts and course corrections.
2	But over the past year we've been able to make several
3	leaps forward. My goal for the first few minutes is
4	to share that voyage with you.
5	But before I start, I would also like to
6	acknowledge the NRC team, both present and absent,
7	that got us here. This is the best group of
8	professionals that I have ever had the pleasure to
9	work with.
10	And I would also like to acknowledge the
11	South Texas Project Nuclear Operating Station staff
12	and contractors. They are responsive, hardworking and
13	intelligent professionals. And big-hearted Texans as
14	well. For the agenda
15	CHAIRMAN BLEY: And what?
16	(Laughter)
17	MS. REGNER: For the agenda today, we'll
18	cover the background of the risk informed option to
19	address GSI-191. And an overview of the STP review
20	project.
21	You'll hear from the STP team. And then
22	the staff will get into the fun technical aspects of
23	the review. For the first few minutes however, I want
24	to cover a bit of the history, the methods used by the
25	licensee and the staff, and the remaining actions for
	I contraction of the second

(202) 234-4433

	12
1	us to complete this action.
2	So, in terms of the background, Shana gave
3	you a real nice, high level quick look. I'm just
4	going to go just below the surface.
5	And the first the staff first
6	identified concerns with debris and containment as far
7	back as the 1970s. Over the last 40 years, important
8	efforts have been made by the industry in analysis,
9	testing, and redesign.
10	And installation of upgraded design
11	features for sumps and strainers to try to resolve the
12	issue. Progress has been made. But, not enough to
13	close the generic safety issue for our plans.
14	In fact, new concerns were identified
15	along the way. Such that closure of the generic
16	letter associated with GSI-191, involves licensee to
17	licensees to demonstrate compliance with 10 CFR
18	50.46, which, as I had said before, is the emergency
19	core cooling system performance criteria considering
20	debris and containment as well for both strainer
21	impacts and in-vessel effects.
22	And I'll talk a little bit more about
23	that. That those two separate issues to resolve GSI-
24	191. Because I want to make that clear for everybody
25	that hasn't been involved in the subcommittee

(202) 234-4433

	13
1	discussions.
2	In 2010 the Commission directed the staff
3	to provide options to resolve GSI-191 and close the
4	generic letter, 2004-02. And consider risk informed
5	opportunities to do so.
6	And the staff developed three options, as
7	Shana mentioned. Option one provided the traditional
8	closure method based on existing models, using
9	deterministic methods and providing near term closure.
10	In fact, all 18 of those plants choosing option one,
11	have been closed.
12	Option two, was to provide uses a
13	graded approach based on the amount of insulation in
14	the plant. And provides licensees with two paths
15	allowing longer term closure.
16	The first aspect of option two is
17	mitigative measures as well as either 2A, term 2A, the
18	deterministic option, which allows for refined in-
19	vessel testing. And then 2B as you know, is a new
20	methodology employing risk information. Which STP
21	choose.
22	VICE CHAIRMAN CORRADINI: So just a
23	clarification. Under 2A, how many plants do you
24	expect?
25	MS. REGNER: Twenty-eight units.

(202) 234-4433

	14
1	VICE CHAIRMAN CORRADINI: Under 2A? Okay.
2	MS. REGNER: Yes, sir.
3	VICE CHAIRMAN CORRADINI: Okay.
4	MS. REGNER: Okay. Any other questions?
5	(No response)
6	MS. REGNER: Option three, plants may use
7	deterministic methods for strainer impacts. And a
8	risk informed resolution for in-vessel impacts. And
9	that's two units that are want to use that.
10	In addition to STP's use of option 2B,
11	mitigative measures and risk informed evaluation, this
12	slide also provides some of the other plants that have
13	submitted their intent to use option 2B.
14	VICE CHAIRMAN CORRADINI: So, just to
15	clarify. So under 2A, 28. Under 2B, the list is
16	here?
17	MS. REGNER: Correct.
18	VICE CHAIRMAN CORRADINI: Okay.
19	MS. REGNER: Yes. Okay. So, was far as
20	now
21	VICE CHAIRMAN CORRADINI: How many under
22	three? Two?
23	MS. REGNER: Two plants.
24	VICE CHAIRMAN CORRADINI: I'm sorry. I
25	missed that. Excuse me. I'm sorry.

	15
1	MS. REGNER: Yes. Two plants under option
2	three. Okay?
3	MR. SMITH: I'll just say option three,
4	the one plant that's two units that came in under
5	option three is probably not going to actually use
6	option three. So they maybe 2B.
7	They just came in and they were doing it.
8	They proposed something that was different then was in
9	the SRM. So, we're probably not going to accept them
10	as option three.
11	So, they're probably going to have to
12	change. But that's what they've declared.
13	MS. REGNER: Thanks Steve. So now
14	focusing a little more on the South Texas review
15	specifically, they the STP pilot project began six
16	years ago in late 2010, early 2011 when STP formally
17	submitted its intent to use a risk informed option to
18	resolve GSI-191.
19	The staff hosted several public meetings
20	to discuss STP's risk informed approach. In fact the
21	STP method was developed enough that a description was
22	included in the staffs' proposal to the Commission on
23	GSI-191 closure options.
24	Shortly after the Commission's approval of
25	the closure options, of the three resolution options,
	1

(202) 234-4433

	16
1	STP submitted its licensing action request for review.
2	Now, originally the STP request was fully risk
3	informed, providing the estimated change in risk,
4	without removing debris generating material in
5	containment.
6	And the most detrimental debris of concern
7	is fibrous insulation on piping and components. The
8	STP approach attempted to characterize the physical
9	behavior of debris generation and transport over a
10	full range of conditions using a platform called
11	containment accident stochastic analysis or CASA
12	Grande.
13	And I'm sure the STP staff will go into a
14	little more detail then I intend to for this platform.
15	The CASA Grande platform developed by STP's contractor
16	Alion, is designed to model up to 50 different
17	parameters to compile a spectrum of time dependent
18	results for many thousands of postulated accident
19	sequences.
20	Ultimately, CASA Grande can provide the
21	change in risk for the actual 3-D modeled STP plant
22	compared to the postulated clean plant without debris
23	generating material.
24	Now, the full risk informed model proved
25	to have too many uncertainties for the staff. And an
1	I

(202) 234-4433

	17
1	alternate method was developed. But I'll talk about
2	that in just a minute.
3	As expected, this project has become one
4	of the most resource intensive, risk informed reviews
5	undertaken by the staff. For example, experts from
6	five divisions, 14 branches in the Office of Nuclear
7	Reactor Regulation have contributed to this safety
8	evaluation or supporting document such as the
9	environmental assessment, which was issued yesterday
10	for publication in the FRN.
11	And that will show up in about two weeks
12	in the Federal Register Notice. And that is
13	associated with the exemptions that STP has requested.
14	We posted over 40 public meetings. And
15	asked more than 400 questions. Although many of those
16	questions answered by STP have been superseded when
17	they submitted their alternate methodology.
18	MEMBER POWERS: Lisa, you identify this as
19	a resource intensive for the agency. And but you
20	have about ten more plants that propose to do this.
21	Have you attempted to identify areas where
22	improved methods and technology, say generated by
23	research, could reduce the resource intensity of these
24	reviews?
25	MS. REGNER: Absolutely. I would probably

(202) 234-4433

	18
1	turn to either Vic or Steve if they'd like to provide,
2	you know, details of that.
3	MEMBER POWERS: Yes. I mean, I ask
4	because it might help us identify where research
5	resources could be focused and what not. And in lieu
6	of, I mean, if you have a quick response, that's fine.
7	But it would be useful perhaps to document
8	it in a memorandum or something like that. What
9	the general areas where some additional research
10	intensity could reduce these resources.
11	Because you do have ten plants looking to
12	do this. And I don't think you want to have five
13	years and 43 meetings and six thousand pages of RAIs
14	going out if we can with just a little bit of research
15	effort give you put in your hands, better
16	technology for doing this.
17	MS. REGNER: Um-hum. Well, obviously the
18	overall project the overall project itself, there
19	were many, many lessons learned on uncertainties and
20	correlations that the staff just won't accept.
21	And so that information is out there.
22	There have been several plants that have followed in
23	the public meetings, so they already know that they
24	don't have to go down that road.
25	So just in simple terms, in those terms,
	1

(202) 234-4433

	19
1	we have
2	MEMBER POWERS: Well, yes. This new
3	there's no question there's some learning goes through
4	anybody that goes through the first of a kind
5	operation will learn something that other people will
6	take advantage of.
7	But, my question is more pertinent to the
8	agency.
9	MS. REGNER: Right.
10	MEMBER POWERS: And how it goes about
11	doing its work to review these materials. The idea
12	being if there's improved technology that would just
13	make it easier and more efficient to do the mechanics
14	of the work that and at the cost of doing a little
15	research, we ought to do it.
16	MS. REGNER: Um-hum.
17	MEMBER POWERS: In preference to research
18	that's not so useful or something like that.
19	MR. CUSUMANO: Yes. If you don't mind.
20	This is Vic Cusumano. I'm over way over here.
21	The efficiencies that we expect to gain
22	are going to come from, in my opinion, the WCAP 17788
23	that we're looking at. The vast majority of the
24	follow up plans if you will, are going to rely on that
25	WCAP.
	1

(202) 234-4433

	20
1	So we're going to have one methodology
2	that they all can use. South Texas Project was
3	basically a one off of that. Which is why it was so
4	resource intensive.
5	So, just having a topical report that all
6	the plants can use and in addition to that, as we
7	develop it, we fully expect to have a model submittal
8	worked out with industry. So it will be a
9	standardized submittal and as much as possible, a
10	standardized response.
11	So yes, efficiency has been forefront in
12	our mind with this many plants to go. Both on Two
13	Alpha and Two Bravo. We did leverage research to some
14	degree during this. Especially as it related to some
15	of the issues in the core that weren't being modeled
16	all that well.
17	And Trace was a big help to us there.
18	Thanks to Dr. Steve Pajoric (phonetic) in large part.
19	MEMBER KIRCHNER: May I ask a question
20	just to your choice of words in the first bullet
21	make me ask almost that fully risk informed would lead
22	one to believe what?
23	MS. REGNER: Yes. All it provided was a
24	change in risk. In considering the effects of degree.
25	Okay?
	1

(202) 234-4433

21 1 So those -- and now -- and that's where 2 the CASA Grande, you know, instead of developing a 3 threshold that they, you know, when I get into this 4 hybrid methodology as Shana called it, that develops 5 a threshold that showed that the majority of the possible breaks meet the deterministic criteria. 6 7 Which is our traditional acceptance methodology. Okay? However, when they first developed 8 9 this, they compared their existing plant with a clean 10 plant. Okay? And then analyzed the debris and generation -- debris generation in transport, right, 11 for all of the possible breaks to determine the risk 12 13 change. 14 Maybe I'll let --15 MR. FONG: Yes I was -- maybe I can weigh in on that a little bit. CJ Fong from the Division of 16 Risk Assessment. 17 If you look at the original submittal, it 18 19 treated a lot more of the variables probabilistically. But it also considered a lot more sequences. 20 21 And the newer version of the submittal 22 uses, in certain cases, more conservative screening 23 values, point estimates for some of the variables. 24 And screens a lot of the sequences deterministically 25 based on test data.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	22
1	So, they're both risk informed. It's just
2	that the scope of the original submittal in terms of
3	risk information was wider.
4	MEMBER KIRCHNER: Okay. Thank you. No,
5	it's just I think what we heard in previous meetings
6	makes a lot of sense. You use both techniques to
7	advantage.
8	I just the implication is it's not so
9	well risk informed when you go to option 2A or 2B or
10	whatever. I just I'm just reacting to the choice
11	of words. Thank you.
12	So is the new method called CASA Pequeno?
13	(Laughter)
14	MS. REGNER: We should use that. We'll
15	do. As expected, we talked about that.
16	The NRC conducted 13 audits at various
17	sites to support the review. Including several in
18	2008 and '09 to observe STP specific testing.
19	More recently the staff conducted audits
20	to observe piping layouts, quantity of insulation and
21	debris flow paths in STP containment. As well as
22	thermal-hydraulics and risk audits. These were
23	invaluable in understanding the details of the new
24	methodology and resolving concerns.
25	So the licensee's methodology, and again,
	1

(202) 234-4433

	23
1	this is the post-methodology change, the well, and
2	let me go back to the original risk informed approach
3	did have merit.
4	It became apparent however that there was
5	just too much uncertainty even with plant specific
6	testing requested by the staff to support some of the
7	statistical distributions. The STP model was not able
8	to show accurate modeling in several areas such as
9	head loss, chemical effects, debris transport timing,
10	and others. There were issues as well with epoxy
11	coatings and the in-core analysis of debris impacts.
12	The licensee's methodology change was the
13	significant turning point. As you said, that was when
14	they did leverage the deterministic testing that they
15	had done, to simplify the process.
16	This new process was termed risk over
17	deterministic, or RoverD. And it provided the
18	benefits of simplifying the staff's review and
19	reducing a significant amount of uncertainty.
20	This graphic created by STP provides a
21	good overview of the key elements which the licensee
22	will discuss in more detail. The first element, the
23	deterministic test data incorporates the licensee's
24	plant specific testing.
25	As I said, they used staff approved

(202) 234-4433

	24
1	methods. And the staff observed some of the testing.
2	This testing established the debris threshold for the
3	emergency core cooling and containment spray systems.
4	Both of which rely on the containment sumps to remain
5	functional through long term core cooling.
6	CASA Grande used it a more limited scope
7	then before. Evaluated several thousand break
8	scenarios to determine the amount of debris generated
9	and transported for each break size, orientation, and
10	location in containment.
11	These calculations and so that's the
12	CASA Grande calculated degree for individual breaks.
13	These two were then tested.
14	So, if above the threshold it went into
15	the risk informed analysis. If below the threshold,
16	it met the traditional deterministic acceptability
17	bin.
18	It's important to distinguish between the
19	two separate evaluation segments. However, to be
20	addressed in GSI-191, first the impacts of debris
21	clogging at the sump strainer, and second, the debris
22	impacts to the in-core thermal-hydraulic environment.
23	The evaluations overlap and
24	deterministically dispositioning a majority of those
25	breaks. And both in-vessel and strainer segments use
l	1

(202) 234-4433

	25
1	risk to disposition all large hot leg breaks. Those
2	are breaks greater than 16 inches.
3	Where they diverge is in the deterministic
4	methods for each. For the strainer evaluation
5	calculated debris amounts from CASA Grande are
6	compared to deterministic testing thresholds, as is
7	represented here in the graphic.
8	For the cold leg in-vessel evaluation, the
9	debris amounts are compared to previously established
10	debris thresholds in NRC approved guidance. That's
11	WCAP 16793.
12	For the hot leg in-vessel evaluation for
13	small and medium sized breaks, the licensee choose to
14	use a calculational platform. And that's RELAP5 3-D.
15	Since RELAP5 3-D has not been approved for
16	this application, the staff's safety evaluation, as
17	you probably saw in enclosure two, provides our review
18	of the plant specific simulations using RELAP5 3-D.
19	And this will be discussed in a little more detail
20	following STP's presentation.
21	I do what to note however that the staff's
22	SE did not approve the evaluation methodology for
23	generic use. It only looked at simulations specific
24	to STP.
25	Slide seven is the staffs' methodology.
1	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

1 And what we were comparing against, our acceptance 2 criteria, obviously is 50.46, the ECCS performance criteria. Everything else is guidance associated with 3 4 our evaluation in NEI 0407, the WCAP I mentioned 5 earlier, Reg Guide 1.182 and Reg Guide 1.174, which provides the criteria. It's based on the Commission's 6 7 safety goal policy statement for risk. 8 The technical specification is relatively 9 recognizes debris simple. Ιt the assessment 10 specifically for the emergency core cooling and containment spray systems. 11 action 12 down The new shut statement provides for immediate compensatory actions if debris 13 14 is identified in containment in excess of the analyzed 15 And requires the system to return amounts. to operable status within 90 days. 16 The structure of the staffs' SE uses the 17 five key principals of risk informed regulation. 18 19 Which is from Reg Guide 1.174. 20 quidance provides an acceptable This 21 method to assess the impact of licensing basis changes 22 using risk. And provides consistency in areas where risk is used in regulatory decisions. 23 24 It specifies a method that compliments the 25 deterministic approach and supports the NRC's

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

26

	27
1	traditional defense in depth philosophy.
2	MEMBER SKILLMAN: Lisa, will we have an
3	opportunity to discuss how the operators will
4	interpret the new technical specification?
5	MS. REGNER: Sure.
6	MEMBER SKILLMAN: Will it be with the
7	staff or with the with STP?
8	MS. REGNER: I guess we'll let STP start.
9	And if they can't answer your questioning, we can talk
10	more.
11	MEMBER SKILLMAN: Thank you. Thank you.
12	MS. REGNER: The staff methodology again,
13	this is a graphic, a simple graphic that shows you the
14	five key principals of risk informed regulation.
15	Which is how we structured the SE.
16	The let's see, and again, this whole
17	review was specific to the effects of debris on 50.46
18	as specified in the generic letter.
19	The primary guidance documents to show
20	compliance with 50.46 ECCS oh, I'm sorry. I went
21	backwards. Excuse me.
22	This slide again, provides a graphic of
23	the five key principals. The first key principal in
24	white involves meeting existing regulations or
25	modifying the rules through rule making.
	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

	28
1	Key principals two and three, the blue
2	boxes, leverage deterministic criteria. And for this
3	review, involved the staff from Division of Safety
4	Systems and Division of Engineering.
5	Key principals four and five, the tan
6	boxes, oh, risk expectations. And appropriately
7	involve staff from the Division of Risk Assessment.
8	The NRC staffs' technical presentation
9	following South Texas Project reflects the structure
10	of the SE by presenting each key principal. These are
11	not our final conclusions, but a summary of the
12	staffs' preliminary results for your consideration.
13	Concerning remaining actions, the staff is
14	completing the legal review to finalize the
15	concurrence process for the licensing action requests.
16	The final environmental assessment was issued
17	yesterday as I said.
18	Once we address the ACRS items of concern,
19	the staff will be ready to issue the final decision
20	sometime this spring. And this concludes the
21	background and overview portion of the staffs'
22	presentation.
23	Unless there are questions, we will return
24	following the licensee's presentation.
25	VICE CHAIRMAN CORRADINI: Questions by the

(202) 234-4433

	29
1	members?
2	(No response)
3	VICE CHAIRMAN CORRADINI: Okay. Why don't
4	we switch then who's up front? Who's going to kick
5	it off? Wayne or Mike? Fine. Sorry. Excuse me. Go
6	ahead.
7	MR. MURRAY: So, good morning. I
8	appreciate the opportunity to address the ACRS again.
9	I'd like to second Lisa's I'm Mike Murray,
10	Regulatory Affairs Manager at South Texas Project.
11	I'd like to second Lisa's comments of the
12	collaborative nature of the effort that we've all put
13	in. We've had a lot of industry expertise that's been
14	involved with it.
15	And interacting with the NRC staff is
16	always in a collaborative nature. The audits went
17	very well. Were very beneficial to all of us on that.
18	And also I'd like to appreciate the ACRS
19	for the interactions and challenging questions as
20	we've gone through it. So much appreciate it for that
21	opportunity.
22	So I'll let the rest of the team introduce
23	themselves, starting with Ernie.
24	MR. KEE: Ernie Kee, South Texas
25	MR. HARRISON: Wayne Harrison, South Texas
	1

(202) 234-4433

	30
1	Project.
2	MR. KEE: I'm sorry. Ernie Kee, South
3	Texas Project.
4	MR. HARRISON: Wayne Harrison, South Texas
5	project.
6	MR. SCHULZ: Wes Schultz, Mechanical
7	Engineer at South Texas.
8	MR. MURRAY: We have some other members
9	from South Texas Project that would like to introduce
10	themselves.
11	MR. RINKEREL: Good morning. My name is
12	Dave Rinkerel. I'm the Executive response for the
13	effort.
14	MR. INGAN: Rob Ingan, Manager of
15	Engineering Projects at South Texas Project.
16	MR. BLOSSOM: Steve Blossom, GSI-191
17	Project Manager, South Texas Project.
18	MR. RICHARDS: Drew Richards. I'm STP
19	Licensing Engineer.
20	MR. MURRAY: And on the phone we have Don
21	Wakefield with ABS if we should need his assistance
22	from him. And Dominic Munoz from Alion. They're
23	available as well. Next slide, please.
24	So meeting purpose, review and overview,
25	which was the request of the process we went through

(202) 234-4433

31 1 and the technical information. And we'll also 2 describe the risk informed treatment of debris and the current risk over deterministic, RoverD methodology. 3 4 Next slide, please. 5 So in our agenda what we'll touch on so you can see where we're planning to drive through 6 7 this, is we will look at the STP GSI-191, generic 8 letter 2004-02, option two bravo. We'll general 9 overview of the evolution of the application. Which Lisa had covered a good bit of it as with -- on with 10 the opening. 11 And then general overview of the RoverD 12 Testing, deterministic element of it. 13 methodology. 14 Determining and the determination of the governing 15 brake size. How we went about that. And in-vessel effects. 16 Ouantitative 17 results and regulatory implementation. And that's --I think that's where we'll be able to answer your 18 19 question on -- in that area, so. And then I'll do the closure comments on 20 21 it. So with that, I'll turn it over to Wayne Harrison 22 to start carrying us through the first part of the 23 presentation. 24 MR. HARRISON: Thank you Mike. As Lisa 25 mentioned, South Texas Project, Unit Two, we have a

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	32
1	large amount of fibrous insulation in the reactor
2	coolant system. And in order to meet a deterministic
3	threshold value for containment debris loading, the
4	amount of debris generating contributors in the plant
5	design would need to be significantly reduced.
6	This would result in a real burden with
7	respect to occupational dose. Primarily with respect,
8	it would be almost 88 rim per cycle, per unit or for
9	that cycle for removing and banding insulation.
10	Compared to a like a 20 rim normal cycle dose.
11	So we're talking about real dose to real
12	people to do this modification. The cost was not
13	insignificant at about 55 million dollars.
14	And I'd also point out that as Lisa had
15	mentioned also in hers, her presentation, that we had
16	already taken a number of mitigative actions,
17	significant mitigative actions. Primarily the
18	replacement of our three original 155 square foot
19	strainers with three new 18 hundred and 18 square foot
20	strainers.
21	And in addition to the generic letter of
22	2002-02 2004-02 response, South Texas Project has
23	been very proactive with respect to the initiating
24	event, the pipe break frequency. We replaced the
25	steam generator safe in wells with alloy 690 material
	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

1 when we replaced our steam generators. 2 We overlaid the pressurizer wells with 3 alloy 690 material. And in Unit One we just finished 4 doing the mechanical stress improvement process on the 5 reactor pressure vessel butt wells, or the nozzle 6 wells. 7 And we will be doing that in our coming 8 outage on Unit Two. So we've been very proactive in 9 our activities. 10 Lisa covered most of going onto seven. 11 VICE CHAIRMAN CORRADINI: Wait, before you 12 go can you just go back? I know you've said it. 13 But I can't remember when. When did you replace the 14 strainers from 155 to 1818? 15 MR. HARRISON: Wes, do you 16 MR. SCHULZ: I believe it was in 2006. 17 VICE CHAIRMAN CORRADINI: Yes. I was 18 guessing it was a while ago. 19 MR. SCHULZ: Yes. It was. 20 VICE CHAIRMAN CORRADINI: This was part of 21 the industry's 22 MR. SCHULZ: In 2006 and 2007, we replaced 23 them. <		33
2 We overlaid the pressurizer wells with 3 alloy 690 material. And in Unit One we just finished 4 doing the mechanical stress improvement process on the 5 reactor pressure vessel butt wells, or the nozzle 6 wells. 7 And we will be doing that in our coming 8 outage on Unit Two. So we've been very proactive in 9 our activities. 10 Lisa covered most of going onto seven. 11 VICE CHAIRMAN CORRADINI: Wait, before you 12 go can you just go back? I know you've said it. 13 But I can't remember when. When did you replace the 14 strainers from 155 to 1818? 15 MR. HARRISON: Wes, do you 16 WICE CHAIRMAN CORRADINI: Yes. I was 17 WICE CHAIRMAN CORRADINI: Yes. I was 18 guessing it was a while ago. 19 MR. SCHULZ: Yes. It was. 20 VICE CHAIRMAN CORRADINI: This was part of 21 the industry's 22 MR. SCHULZ: In 2006 and 2007, we replaced 23 them. 24 VICE CHAIRMAN CORRADINI: But this was <td< td=""><td>1</td><td>when we replaced our steam generators.</td></td<>	1	when we replaced our steam generators.
3 alloy 690 material. And in Unit One we just finished 4 doing the mechanical stress improvement process on the 5 reactor pressure vessel butt wells, or the nozzle 6 wells. 7 And we will be doing that in our coming 8 outage on Unit Two. So we've been very proactive in 9 our activities. 10 Lisa covered most of going onto seven. 11 VICE CHAIRMAN CORRADINI: Wait, before you 12 go can you just go back? I know you've said it. 13 But I can't remember when. When did you replace the 14 strainers from 155 to 1818? 15 MR. HARRISON: Wes, do you 16 WICE CHAIRMAN CORRADINI: Yes. I was 17 VICE CHAIRMAN CORRADINI: Yes. I was 18 guessing it was a while ago. 19 MR. SCHULZ: Yes. It was. 20 VICE CHAIRMAN CORRADINI: This was part of 21 the industry's 22 MR. SCHULZ: In 2006 and 2007, we replaced 23 them. 24 VICE CHAIRMAN CORRADINI: But this was 25 part of an industry, this is not just you all? <td>2</td> <td>We overlaid the pressurizer wells with</td>	2	We overlaid the pressurizer wells with
4 doing the mechanical stress improvement process on the 5 reactor pressure vessel butt wells, or the nozzle 6 wells. 7 And we will be doing that in our coming 8 outage on Unit Two. So we've been very proactive in 9 our activities. 10 Lisa covered most of going onto seven. 11 VICE CHAIRMAN CORRADINI: Wait, before you 12 go can you just go back? I know you've said it. 13 But I can't remember when. When did you replace the 14 strainers from 155 to 1818? 15 MR. HARRISON: Wes, do you 16 WICE CHAIRMAN CORRADINI: Yes. I was 17 WICE CHAIRMAN CORRADINI: Yes. I was 18 guessing it was a while ago. 19 MR. SCHULZ: Yes. It was. 20 VICE CHAIRMAN CORRADINI: This was part of 21 the industry's 22 MR. SCHULZ: In 2006 and 2007, we replaced 23 them. 24 VICE CHAIRMAN CORRADINI: But this was 25 part of an industry, this is not just you all?	3	alloy 690 material. And in Unit One we just finished
5 reactor pressure vessel butt wells, or the nozzle wells. 7 And we will be doing that in our coming outage on Unit Two. So we've been very proactive in our activities. 10 Lisa covered most of going onto seven. 11 VICE CHAIRMAN CORRADINI: Wait, before you go can you just go back? I know you've said it. 13 But I can't remember when. When did you replace the strainers from 155 to 1818? 15 MR. HARRISON: Wes, do you 16 MR. SCHULZ: I believe it was in 2006. 17 VICE CHAIRMAN CORRADINI: Yes. I was 18 guessing it was a while ago. 19 MR. SCHULZ: Yes. It was. 20 VICE CHAIRMAN CORRADINI: This was part of 21 the industry's 22 MR. SCHULZ: In 2006 and 2007, we replaced 23 them. 24 VICE CHAIRMAN CORRADINI: But this was 25 part of an industry, this is not just you all?	4	doing the mechanical stress improvement process on the
 wells. And we will be doing that in our coming outage on Unit Two. So we've been very proactive in our activities. Lisa covered most of going onto seven. VICE CHAIRMAN CORRADINI: Wait, before you go can you just go back? I know you've said it. But I can't remember when. When did you replace the strainers from 155 to 1818? MR. HARRISON: Wes, do you MR. SCHULZ: I believe it was in 2006. VICE CHAIRMAN CORRADINI: Yes. I was guessing it was a while ago. MR. SCHULZ: Yes. It was. VICE CHAIRMAN CORRADINI: This was part of the industry's MR. SCHULZ: In 2006 and 2007, we replaced them. VICE CHAIRMAN CORRADINI: But this was part of an industry, this is not just you all? 	5	reactor pressure vessel butt wells, or the nozzle
7And we will be doing that in our coming outage on Unit Two. So we've been very proactive in our activities.10Lisa covered most of going onto seven.11VICE CHAIRMAN CORRADINI: Wait, before you12go can you just go back? I know you've said it.13But I can't remember when. When did you replace the14strainers from 155 to 1818?15MR. HARRISON: Wes, do you16MR. SCHULZ: I believe it was in 2006.17VICE CHAIRMAN CORRADINI: Yes. I was18guessing it was a while ago.19MR. SCHULZ: Yes. It was.20VICE CHAIRMAN CORRADINI: This was part of21the industry's22MR. SCHULZ: In 2006 and 2007, we replaced23them.24VICE CHAIRMAN CORRADINI: But this was25part of an industry, this is not just you all?	6	wells.
8 outage on Unit Two. So we've been very proactive in 9 our activities. 10 Lisa covered most of going onto seven. 11 VICE CHAIRMAN CORRADINI: Wait, before you 12 go can you just go back? I know you've said it. 13 But I can't remember when. When did you replace the 14 strainers from 155 to 1818? 15 MR. HARRISON: Wes, do you 16 MR. SCHULZ: I believe it was in 2006. 17 VICE CHAIRMAN CORRADINI: Yes. I was 18 guessing it was a while ago. 19 MR. SCHULZ: Yes. It was. 20 VICE CHAIRMAN CORRADINI: This was part of 21 the industry's 22 MR. SCHULZ: In 2006 and 2007, we replaced 23 them. 24 VICE CHAIRMAN CORRADINI: But this was 25 part of an industry, this is not just you all?	7	And we will be doing that in our coming
9our activities.10Lisa covered most of going onto seven.11VICE CHAIRMAN CORRADINI: Wait, before you12go can you just go back? I know you've said it.13But I can't remember when. When did you replace the14strainers from 155 to 1818?15MR. HARRISON: Wes, do you16MR. SCHULZ: I believe it was in 2006.17VICE CHAIRMAN CORRADINI: Yes. I was18guessing it was a while ago.19MR. SCHULZ: Yes. It was.20VICE CHAIRMAN CORRADINI: This was part of21the industry's22MR. SCHULZ: In 2006 and 2007, we replaced23them.24VICE CHAIRMAN CORRADINI: But this was25part of an industry, this is not just you all?	8	outage on Unit Two. So we've been very proactive in
10 Lisa covered most of going onto seven. 11 VICE CHAIRMAN CORRADINI: Wait, before you 12 go can you just go back? I know you've said it. 13 But I can't remember when. When did you replace the 14 strainers from 155 to 1818? 15 MR. HARRISON: Wes, do you 16 MR. SCHULZ: I believe it was in 2006. 17 VICE CHAIRMAN CORRADINI: Yes. I was 18 guessing it was a while ago. 19 MR. SCHULZ: Yes. It was. 20 VICE CHAIRMAN CORRADINI: This was part of 21 the industry's 22 MR. SCHULZ: In 2006 and 2007, we replaced 23 them. 24 VICE CHAIRMAN CORRADINI: But this was 25 part of an industry, this is not just you all?	9	our activities.
VICE CHAIRMAN CORRADINI: Wait, before you go can you just go back? I know you've said it. But I can't remember when. When did you replace the strainers from 155 to 1818? MR. HARRISON: Wes, do you MR. SCHULZ: I believe it was in 2006. VICE CHAIRMAN CORRADINI: Yes. I was guessing it was a while ago. MR. SCHULZ: Yes. It was. VICE CHAIRMAN CORRADINI: This was part of the industry's MR. SCHULZ: In 2006 and 2007, we replaced them. VICE CHAIRMAN CORRADINI: But this was part of an industry, this is not just you all?	10	Lisa covered most of going onto seven.
<pre>12 go can you just go back? I know you've said it. 13 But I can't remember when. When did you replace the 14 strainers from 155 to 1818? 15 MR. HARRISON: Wes, do you 16 MR. SCHULZ: I believe it was in 2006. 17 VICE CHAIRMAN CORRADINI: Yes. I was 18 guessing it was a while ago. 19 MR. SCHULZ: Yes. It was. 20 VICE CHAIRMAN CORRADINI: This was part of 21 the industry's 22 MR. SCHULZ: In 2006 and 2007, we replaced 23 them. 24 VICE CHAIRMAN CORRADINI: But this was 25 part of an industry, this is not just you all?</pre>	11	VICE CHAIRMAN CORRADINI: Wait, before you
 But I can't remember when. When did you replace the strainers from 155 to 1818? MR. HARRISON: Wes, do you MR. SCHULZ: I believe it was in 2006. VICE CHAIRMAN CORRADINI: Yes. I was guessing it was a while ago. MR. SCHULZ: Yes. It was. VICE CHAIRMAN CORRADINI: This was part of the industry's the industry's MR. SCHULZ: In 2006 and 2007, we replaced them. VICE CHAIRMAN CORRADINI: But this was part of an industry, this is not just you all? 	12	go can you just go back? I know you've said it.
<pre>14 strainers from 155 to 1818? 15 MR. HARRISON: Wes, do you 16 MR. SCHULZ: I believe it was in 2006. 17 VICE CHAIRMAN CORRADINI: Yes. I was 18 guessing it was a while ago. 19 MR. SCHULZ: Yes. It was. 20 VICE CHAIRMAN CORRADINI: This was part of 21 the industry's 22 MR. SCHULZ: In 2006 and 2007, we replaced 23 them. 24 VICE CHAIRMAN CORRADINI: But this was 25 part of an industry, this is not just you all?</pre>	13	But I can't remember when. When did you replace the
MR. HARRISON: Wes, do you MR. SCHULZ: I believe it was in 2006. VICE CHAIRMAN CORRADINI: Yes. I was guessing it was a while ago. MR. SCHULZ: Yes. It was. VICE CHAIRMAN CORRADINI: This was part of the industry's MR. SCHULZ: In 2006 and 2007, we replaced them. VICE CHAIRMAN CORRADINI: But this was part of an industry, this is not just you all?	14	strainers from 155 to 1818?
MR. SCHULZ: I believe it was in 2006. VICE CHAIRMAN CORRADINI: Yes. I was guessing it was a while ago. MR. SCHULZ: Yes. It was. VICE CHAIRMAN CORRADINI: This was part of the industry's MR. SCHULZ: In 2006 and 2007, we replaced them. VICE CHAIRMAN CORRADINI: But this was part of an industry, this is not just you all?	15	MR. HARRISON: Wes, do you
17 VICE CHAIRMAN CORRADINI: Yes. I was guessing it was a while ago. 19 MR. SCHULZ: Yes. It was. 20 VICE CHAIRMAN CORRADINI: This was part of 21 the industry's 22 MR. SCHULZ: In 2006 and 2007, we replaced 23 them. 24 VICE CHAIRMAN CORRADINI: But this was 25 part of an industry, this is not just you all?	16	MR. SCHULZ: I believe it was in 2006.
<pre>18 guessing it was a while ago. 19 MR. SCHULZ: Yes. It was. 20 VICE CHAIRMAN CORRADINI: This was part of 21 the industry's 22 MR. SCHULZ: In 2006 and 2007, we replaced 23 them. 24 VICE CHAIRMAN CORRADINI: But this was 25 part of an industry, this is not just you all?</pre>	17	VICE CHAIRMAN CORRADINI: Yes. I was
MR. SCHULZ: Yes. It was. VICE CHAIRMAN CORRADINI: This was part of the industry's MR. SCHULZ: In 2006 and 2007, we replaced them. VICE CHAIRMAN CORRADINI: But this was part of an industry, this is not just you all?	18	guessing it was a while ago.
20 VICE CHAIRMAN CORRADINI: This was part of 21 the industry's 22 MR. SCHULZ: In 2006 and 2007, we replaced 23 them. 24 VICE CHAIRMAN CORRADINI: But this was 25 part of an industry, this is not just you all?	19	MR. SCHULZ: Yes. It was.
<pre>21 the industry's 22 MR. SCHULZ: In 2006 and 2007, we replaced 23 them. 24 VICE CHAIRMAN CORRADINI: But this was 25 part of an industry, this is not just you all?</pre>	20	VICE CHAIRMAN CORRADINI: This was part of
22 MR. SCHULZ: In 2006 and 2007, we replaced 23 them. 24 VICE CHAIRMAN CORRADINI: But this was 25 part of an industry, this is not just you all?	21	the industry's
23 them. 24 VICE CHAIRMAN CORRADINI: But this was 25 part of an industry, this is not just you all?	22	MR. SCHULZ: In 2006 and 2007, we replaced
24 VICE CHAIRMAN CORRADINI: But this was25 part of an industry, this is not just you all?	23	them.
25 part of an industry, this is not just you all?	24	VICE CHAIRMAN CORRADINI: But this was
	25	part of an industry, this is not just you all?

(202) 234-4433

	34
1	MR. SCHULZ: That's correct.
2	VICE CHAIRMAN CORRADINI: Okay. Fine.
3	MR. HARRISON: That's correct.
4	VICE CHAIRMAN CORRADINI: And then the
5	third bullet, I remember that this one I had not
6	caught. And one of our consultants caught it.
7	When was that replacement made? Do you
8	know?
9	MR. SCHULZ: You know, I
10	MR. HARRISON: The Marinite replacement,
11	Wes.
12	MR. SCHULZ: That was about two years
13	after the strainers. So, it was about 2009 time
14	frame.
15	VICE CHAIRMAN CORRADINI: Okay. All
16	right. Thank you.
17	MR. HARRISON: Thanks Wes. Lisa covered
18	most of this. So, I'm not going to go through the
19	detail of the original.
20	As she said, the original application was
21	a full risk informed where CASA Grande basically
22	provided conditional failure probabilities to the PRA.
23	And with respect in that there were issues with the
24	modeling as Lisa described.
25	And so we reduced the complexity. So we

(202) 234-4433
	35
1	determined that we could take advantage of our good
2	deterministic testing that we had performed, and apply
3	the tools that we had with CASA Grande, which does
4	other then which does a good bit of analytical work
5	for us.
6	And to show that there was a small risk of
7	having a break that generates more debris then what
8	our deterministic test showed. And that's what we
9	ended up with.
10	And that's a bounded analysis that we
11	used, RoverD. And Ernie Kee is going to describe
12	that. Just give a brief overview of the RoverD
13	analysis.
14	MR. KEE: So this is Ernie Kee. And we'll
15	move to slide nine.
16	And Lisa's already described this in some
17	detail. I might mention here that the basic
18	deterministic test data were WCAP 16793 for in-core
19	hot leg breaks oh, cold leg breaks. And we have
20	the strainer tests of 2008 that Wes Schulz will go
21	into in detail later.
22	I might mention also that CASA Grande, it
23	basically is a flexible analytic framework that can be
24	used in a to support a full risk informed mode. To
25	your question, Dr. Kirchner.
1	

(202) 234-4433

	36
1	So earlier, in fact at the end of 2011, I
2	would say that full risk informed also implies maybe
3	best estimate inputs into the into a PRA. And we
4	used that CASA Grande framework in that mode to supply
5	those inputs.
6	And so it's more of a best estimate. For
7	instance we, based on previous testing, didn't take
8	into account chemical effects that both NRC tests.
9	And then later we confirmed that we could reasonably
10	ignore that kind of effect on a best estimate basis.
11	So we use CASA Grande now in what we call
12	a deterministic mode. Where we obey all the guidance
13	that was mentioned in the IO-407. These kinds of
14	guidance in that application.
15	And then we basically generate many, many
16	scenarios. And as Lisa also mentioned, some of these
17	meet deterministic criteria, others don't. And the
18	ones that don't, we put into the category of risk
19	informed.
20	So we've kind of devolved this problem
21	into two kinds of categories. Either risk informed or
22	deterministic. And that was the main simplification
23	that came about with this RoverD. Slide ten then.
24	So I think this has been said. That the
25	RoverD framework simplifies this very complex risk

(202) 234-4433

	37
1	assessment of many thousands of scenarios by using
2	deterministic test data and bounding analysis.
3	So we've talked about in-core analysis.
4	And for example a hot leg breaks, we assume a full and
5	complete blockage of the core and core bypass. Which
6	is a theoretically bounding approach to that in-core
7	behavior.
8	We bound them we create bounds on
9	uncertainties to make the assessment tractable,
10	reviewable, and easily understood. I think that's the
11	kind of a core idea here that we have an
12	understandable way to view this, this risk.
13	And the PRA from the South Texas Project
14	along with CASA Grande was actually used quite
15	extensively in this project. Primarily now we have
16	the ability to look at the success frequencies.
17	For example, different thousands and
18	thousands of configurations of equipment for example.
19	And so that's how we use the PRA for that. And to
20	understand the largely release frequency, given a core
21	damage frequency. And now we're on slide 11.
22	So at a high level we ensure the tested
23	fine fiber which we've ensured bounding all other
24	types of debris species, is either met or if it's not,
25	we assign it we assign those scenarios that don't
	I. Contraction of the second se

(202) 234-4433

	38
1	meet that criteria to risk inform.
2	And those that are in the risk informed
3	the scenarios that land in the risk informed category,
4	we do some additional analysis. But we basically
5	assign those to core damage.
6	So it's again, kind of a bounding concept.
7	And finally, we confirm the containment integrity is
8	maintained for defense in depth. Even though we don't
9	expect to get there, but should we get there, we check
10	to make sure that the concerns raised in GSI-191 don't
11	lead to a containment failure.
12	And with that, I'll turn it over to Wes
13	Schulz.
14	VICE CHAIRMAN CORRADINI: So, I didn't
15	know where to bring this up. But since you brought up
16	containment.
17	So, other members in particular who know
18	the system better then I sometimes, reminded me that
19	South Texas, I'll use the word unique, but has
20	essentially the containment fan coolers. Which if
21	containment spray failed, containment fan coolers
22	could provide the appropriate heat decay removal
23	function that allows bullet three to be maintained.
24	MR. KEE: Yes, sir.
25	VICE CHAIRMAN CORRADINI: Is that a fair
	1

(202) 234-4433

	39
1	
2	MR. KEE: Yes, sir. They're independent
3	if you will, from those kind of concerns that are
4	VICE CHAIRMAN CORRADINI: Okay. So this
5	doesn't apply to you, but eventually we're going to
6	get around too somewhere if we have time, how what you
7	do can be applied to others.
8	But this containment fan cooler attribute
9	is unique to South Texas. It doesn't apply across the
10	board in many of the PWR containments.
11	MR. KEE: I can't make a claim for other
12	plants. But I think the
13	VICE CHAIRMAN CORRADINI: I don't remember
14	it's
15	MR. KEE: Many have a similar.
16	MEMBER STETKAR: In my experience
17	VICE CHAIRMAN CORRADINI: The only one I
18	remember is Zion.
19	MEMBER STETKAR: It's neither unique to
20	South Texas nor is it ubiquitous throughout the fleet.
21	Some plants
22	VICE CHAIRMAN CORRADINI: In between.
23	MEMBER STETKAR: Have them, some plants
24	don't. So, the plants that don't, have containment
25	fan coolers that would be available during these types
	I

(202) 234-4433

	40
1	of scenarios.
2	The conditional large release probability
3	would be, I don't want to say guaranteed, but it would
4	be very close to one given core damage and sump plug
5	in.
6	VICE CHAIRMAN CORRADINI: Right. Okay.
7	MEMBER STETKAR: So that it's you need
8	to look they're fortunate because they do have it.
9	So therefore there's a distinct numerical separation
10	between the amount of if all of the sumps plug,
11	they still have a lot of margin before they can reach
12	containment failure.
13	VICE CHAIRMAN CORRADINI: And that was
14	one. The second things, because you can guess the
15	member who reminded me of all this, you have three
16	sumps. That also, I won't say use he was very good
17	at not unique versus ubiquitous.
18	But three is not necessarily what I'd see
19	in others. I don't remember any plants with four.
20	But I remember, and I've been reminded that most
21	plants have probably two sumps.
22	Is that fair?
23	MR. KEE: Yes, sir.
24	VICE CHAIRMAN CORRADINI: Okay. Okay.
25	Fine. The only reason I'm bringing that up is, how
1	I contract of the second se

(202) 234-4433

	41
1	this, which I'm somebody used the word hybrid,
2	which I liked, this hybrid risk informed approach is,
3	to me, quite interesting.
4	But then it's applicability very much
5	determined, is a function of what equipment and
6	geometry it's applied to.
7	MEMBER STETKAR: Now just, I'd say that
8	the approach is applicable to any plant with any
9	configuration with any number of trains. The
10	complexity of applying it becomes more difficult as I
11	have larger numbers of trains and let's just say
12	interesting configurations of the sumps. Interesting
13	hydraulic configurations now of the sumps.
14	VICE CHAIRMAN CORRADINI: Well, I think
15	John said it better then I. But thanks. Let's keep
16	on going. I just wanted to make sure your third
17	bullet that I had it in my mind.
18	MR. SCHULZ: Good morning. This is Wes
19	Schulz. I'm going to talk about a deterministic
20	element of our RoverD approach. And also a head loss
21	the strainer head loss testing.
22	Let's go to slide 13. And that's a photo
23	inside containment. South Texas is called the high
24	fiber plant because we have fiberglass insulation over
25	virtually all of our insulated piping and equipment
	1

(202) 234-4433

	42
1	inside containment.
2	You can see from the photo here we have
3	fiberglass blankets on the piping. The trade name is
4	NUCON.
5	On the right-hand side there is in the
6	back, is the reactor coolant pumps. So the equipment
7	has fiberglass insulation on it also. The stream
8	generators have fiberglass insulation on them.
9	In the foreground there is, I think that
10	might be my head. I was showing this slide to my
11	wife. I told her that's definitely me. But to make
12	her happy, but okay. Let's go to slide 14.
13	This is a picture of our original design
14	strainer, we mentioned that. Put some scale on this,
15	the top of the strainer is about four and a half feet
16	off the floor.
17	Underneath that strainer is a sump pit.
18	The pits are below floor level. And we have three
19	individual sump pits, one for each train.
20	The strainer consists of perforated plate
21	on four sides. The hole size is a quarter inch.
22	Let's go to the next slide.
23	Fifteen shows our new strainers, which we
24	installed like the rest of the industry, in response
25	to the generic letter. These we have 20 strainer

(202) 234-4433

	43
1	modules per sump. You can see them here.
2	Again, the scale of this, the top of the
3	strainer is about two and a half feet of the floor.
4	And again the sump pit is underneath, is below this.
5	The bottom right picture shows some
6	protective grading in front of the sump. That's not
7	for hydraulic reasons. That's more just to protect it
8	during outages when we're moving equipment and
9	material in that area. So we want to protect our
10	sumps there.
11	And the whole size for these is .095
12	inches. A much smaller hole size for the new designed
13	strainers. Let's go to slide 16.
14	This is a figure from our CAD model. We
15	developed this CAD model through the years. It's
16	become very sophisticated.
17	We modeled the configuration of all the
18	piping inside containment with the associated
19	insulation type and the insulation thickness. We
20	modeled in the equipment, equipment supports,
21	equipment insulation.
22	And we show where the coatings are, the
23	type of coatings. We've got the structural steel in
24	there. We also modeled in the concrete walls, the
25	floors, the grating of the floors.
I	

(202) 234-4433

	44
1	A very sophisticated picture of our
2	physical configuration at South Texas. And this
3	picture shows the zone of influence for a 31-inch pipe
4	break. That you can see that. Get some perspective
5	on what the ZOI for this 31-inch pipe break is.
6	Let's go to slide 17.
7	MEMBER MARCH-LEUBA: So wait. Can you go
8	back in there? So some of us are not familiar with
9	the whole methodology.
10	You will assume that all of the insulation
11	in that sphere goes down the drain?
12	MR. SCHULZ: Yes. All that insulation in
13	that sphere is affected by the pipe break. And we
14	would apply the transport rules for moving that debris
15	to the sump.
16	I mean,
17	MEMBER MARCH-LEUBA: And that transfer
18	rule is two percent of it? Or five percent?
19	MR. SCHULZ: Well, it depends on, for a
20	given size there's some we get large pieces, we get
21	small pieces, and we get fine. So, depending on how
22	far away it is from the break, there's a certain
23	amount of insulation.
24	And each insulation has its own transport
25	type. But for our purposes, for our RoverD approach,
I	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

45 1 we're looking at fiber fines, which readily transport. 2 They're the small fibers that will clog stuff. So, that's what we'll do. 3 4 VICE CHAIRMAN CORRADINI: But to answer 5 Jose's question, the testing in 2008 determined, was meant to determine what gets there versus what settles 6 7 out on the way there. Is that a fair point? 8 9 MR. SCHULZ: Well, the 2008 test showed that for this amount of fiber fines, we had 10 an acceptable strainer head loss. So, transport didn't 11 really enter into it. 12 Did I answer your questions? 13 14 MEMBER MARCH-LEUBA: Yes. But that's not 15 the transport. That is how much fiber gets into the 16 mesh. MR. SCHULZ: The actual mesh. Yes. 17 MEMBER MARCH-LEUBA: But in other monitor, 18 19 you run these calculations? Did you transport five 20 percent of the mesh? Or the fibers? Or none --21 MR. SCHULZ: Oh, no. Like over 95 percent 22 of the -- all goes yes. About everything goes. 23 MEMBER MARCH-LEUBA: Okay. So you use 95 24 percent then. 25 MR. SCHULZ: Yes.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

46 1 MEMBER RICCARDELLA: And was that 2 established by testing? What -- you said there was 3 different amounts depending on how far you are from 4 the break. 5 How was that established? 6 MR. SCHULZ: That was established by a 7 test, right. Alion did some testing for that. Which the staff reviewed and --8 9 VICE CHAIRMAN CORRADINI: But not the 10 2008? Not the 2008 testing? Separate testing. MR. SCHULZ: How we -- for a given -- for 11 the zone of influence, how much large pieces, small 12 13 pieces, fine fibers are generated. That's the 14 standard that there is. 15 MR. RICCARDELLA: And for different types of insulation too, you said? 16 17 MR. SCHULZ: Yes. It would apply too different. Particularly ZOI for the particular debris 18 type. This is for NUCON insulation. There's another 19 20 one for coatings. There's another one for our Marinite and 21 another one for Insulite. And those are established 22 23 in the guidance that we've evolved. 24 VICE CHAIRMAN CORRADINI: And part of the 25 reason I went back to one of the bullets that Wayne

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

```
(202) 234-4433
```

	47
1	had mentioned, in the calculations done, Marinite is
2	still considered.
3	MR. SCHULZ: Yes. I'll address that.
4	Yes. I'll get there.
5	VICE CHAIRMAN CORRADINI: Okay. Fine. I
6	just wanted to make sure to connect it back to the
7	bullet that what had been removed but is still
8	considered in the analysis.
9	MR. SCHULZ: Right.
10	MR. KEE: This is Ernie Key. I just
11	wanted to make sure that we understand. That zone of
12	influence that is indeed spherical, but we do CASA
13	takes care of this.
14	If there's a big concrete wall in the way,
15	it doesn't go through that. But the pipes themselves
16	are transparent to that. So, but
17	MR. SCHULZ: Yes. So there's wall
18	shadowing but not equipment shadowing.
19	MR. KEE: Correct.
20	MR. SCHULZ: Okay. Right. Okay. Let's
21	go to slide 17, Wayne.
22	So this is the a deterministic
23	evaluation followed the NEI guidance approved by the
24	staff. And we submitted that in the format to as
25	the staff put out this content guide.
1	

(202) 234-4433

	48
1	So these are the elements of our response,
2	of our deterministic evaluation. And these our
3	break selection initially for the test we had back in
4	2007, we had three or four, we actually had four
5	different large breaks.
6	And we took the maximum, looked at the
7	debris for each break. And we took the maximum amount
8	for a particular debris type for our test. We tried
9	to use a bounding amount in our test that would
10	overlap that.
11	But again, that's sort of immaterial going
12	forward. Because the test is just the test for that
13	amount of debris. And we used that as a benchmark
14	going forward.
15	Now, as Ernie mentioned, break selection,
16	we have breaks at thousands of places and thousands of
17	different size breaks at those locations.
18	VICE CHAIRMAN CORRADINI: But just to
19	repeat so that for the members that weren't at the
20	April 5 subcommittee. These tests determine a
21	threshold limit that above which strainers have are
22	challenged, below which strainers are not challenged.
23	MR. SCHULZ: Yes. It was the limit that
24	was successful. We didn't test to a
25	VICE CHAIRMAN CORRADINI: I understand.
	1

(202) 234-4433

	49
1	MR. SCHULZ: That's official. That
2	threshold mark
3	VICE CHAIRMAN CORRADINI: That's a
4	threshold limit.
5	MR. SCHULZ: That's a measure for success.
6	VICE CHAIRMAN CORRADINI: Okay. Thank
7	you.
8	MR. SCHULZ: We assume it fails after.
9	Everything about that fails.
10	So, the same thing with debris generation.
11	Well, we talked about the different COIs. We have all
12	that in our current analysis for that.
13	Debris characteristics per the NEI
14	guidance, latent debris, we did a walk down to confirm
15	that the number we used from the NEI guidance was in
16	fact bounding.
17	Debris transport, again, in our current
18	analysis we assume all the fiber most of the fiber
19	finds are readily transported. The particulates
20	readily transport.
21	Head loss, vortexing, that positive
22	suction head, we evaluated the debris head loss on the
23	strainer to show that the strainer would perform
24	adequately. And that it was acceptable.
25	Coatings evaluation and all of these
1	

(202) 234-4433

	50
1	elements are in the NEI guidance. We assume that
2	coating fail particulates in a couple of locations, we
3	assumed there were chips.
4	And we went used the REI process to
5	evaluate this with the staff. So they were acceptable
6	with the once we had that dialog.
7	Screen modification, knowing
8	modifications, hardware modification, we did when we
9	installed the new strainers. And then we removed the
10	Marinite insulation on the reactor vessel nozzles.
11	Marinite is a trade name for calcium
12	silicate. Which is a very problematic insulation.
13	So, we took that and removed that.
14	And put the NUCON fiberglass insulation on
15	the reactor vessel nozzles. So those are the only
16	hardware modifications that we did for this paper.
17	Upstream effects, we looked at choke
18	points. Count all the break flow, and it came
19	straight flow, get to the strainers. And that was
20	acceptable. And we have a very favorable lay out for
21	that.
22	Downstream effects, we looked at our
23	components and our safety injection system and our
24	containment spray system to make sure that the
25	insulation fibers and the particulate debris is
1	

(202) 234-4433

51 1 acceptable. These components again, perform 2 acceptably with this debris being recirculated. 3 MEMBER SKILLMAN: Did you make any changes 4 to your equipment? 5 MR. SCHULZ: No. We did not. 6 MEMBER SKILLMAN: Okay. Thank you. 7 MR. SCHULZ: We didn't have to. We showed 8 everything was acceptable. 9 MEMBER RICCARDELLA: Excuse me, but on the 10 break selection, does your model include different frequencies for different break sizes? Or how's that 11 12 MR. SCHULZ: Yes. Ernie you want -- about 13 14 here? 15 MR. sir. KEE: Yes, We basically interpret the NUREG-1829 frequency tables for -- based 16 on the size of the break that we estimate what that 17 18 frequency is. 19 MEMBER RICCARDELLA: Yes. I was part of 20 the 1829 effort. Thank you. 21 MR. SCHULZ: Last thing is debris source We based our evaluation on information in the 22 stream. 23 And we want to make sure that that's valid, plant. 24 still valid going forward. 25 So we have programs, instituted programs

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	52
1	to help maintain that. We have a containment closeout
2	inspection. Which is really a surveillance at the end
3	of an outage.
4	We'll go through and make sure we remove
5	all the items that don't belong there. And we'll look
6	for loose debris and remove that from containment.
7	And then our design change process, we've
8	added steps in there to make sure that when we
9	evaluate changes we need to address we want to
10	maintain the insulation types. And the cooling types,
11	the same as the analysis. If not, we have to justify
12	them with respect to the analysis.
13	And we also looked at an addition of
14	metals, including aluminum. Which is a contributor to
15	a source for our chemical particulates.
16	So it's in our design change process to
17	evaluate future changes to make sure that our
18	evaluation here is still valid.
19	MEMBER SKILLMAN: So Wes, what do you do
20	when you close out your outage? Do you go in there
21	with mops and brooms and take out every tiny little
22	piece of stuff that the carpenters left behind when
23	they were making scaffolding?
24	MR. MURRAY: Let me answer that. This is
25	Mike Murray. I'm on the I actually have to sign
I	

(202) 234-4433

	53
1	off the surveillance for an area. So I can tell you
2	exactly what we do.
3	So during the outage, and when we get into
4	closeout, we have a phase that's call the containment
5	cleanup. And at that point we have coordinators that
6	are basically working with teams that do, in some
7	cases, mop, clean up.
8	And then I go through three times during
9	the later part of an outage. For example, from my
10	area, and I'll look for every nit to pick. Tie wraps,
11	anything. I'll look in cabinets, I'll look in
12	stanchions. I look everywhere, behind things.
13	We then identify any punch list items.
14	They get cleaned up. And then prior to mode four
15	entry, we go through, there's a team that has
16	different areas, area managers we're called.
17	And we go back through containment the
18	last time before we actually enter mode four and sign
19	off the surveillance. And if there's any outstanding
20	items, there's a punch list that has to be taken care
21	of before entry into mode four.
22	And that is and then our resident
23	inspector goes behind us and takes a look. And gives
24	us feedback in anything that he may have found that we
25	may have missed.
	•

(202) 234-4433

	54
1	And we take that into our lessons learned
2	for future outages.
3	MEMBER SKILLMAN: Thank you, Mike. Thank
4	you.
5	MR. SCHULZ: Thanks Mike. Yes. Let's
6	move onto slide 18. And talk about our strainer head
7	loss testing.
8	This was conducted in July 2008 at Alden
9	Labs up in Massachusetts. We used a one of our
10	spare strainer models. So we had a full size strainer
11	module there with the design flow for the module.
12	Debris loading was based on two trains in
13	operation. So we're going to just scale the debris
14	for this one module based on the total debris load.
15	And then we scaled it for the two trains, we scaled
16	it down.
17	And Alden constructed the flume channel to
18	emulate the approach velocity and turbulence that we
19	would expect in inside containment. Let's go to
20	VICE CHAIRMAN CORRADINI: I don't
21	remember. I remember the meeting. I don't remember.
22	So did Alden do it so that because the way you
23	describe these things, here's the sump, here's all the
24	strainers.
25	So did Alden do them like this? Or like

(202) 234-4433

	55
1	this?
2	MR. SCHULZ: They did both ways.
3	VICE CHAIRMAN CORRADINI: They did?
4	MR. SCHULZ: Yes. I mean, they picked a
5	velocity field near the strainer so some's coming this
6	way, some comes that way. So they
7	VICE CHAIRMAN CORRADINI: And they took
8	the lowest value that's
9	MR. SCHULZ: They did a bounding thing.
10	Yes. To make sure.
11	VICE CHAIRMAN CORRADINI: Okay. Right.
12	I didn't remember. So this threshold limit which
13	you're eventually going to talk about, is from all
14	these kind of here versus here as the lower limit of
15	those.
16	MR. SCHULZ: Right.
17	VICE CHAIRMAN CORRADINI: Okay.
18	MR. SCHULZ: And they tried to simulate
19	that in our test. To make sure we got a close
20	velocity.
21	VICE CHAIRMAN CORRADINI: Okay. That's
22	fine. I just couldn't remember.
23	MR. SCHULTZ: Let's go to slide 19. This
24	is the debris we used during the test. We had our
25	fiberglass debris. We had the fiberglass fine and had
	1

(202) 234-4433

	56
1	the smalls.
2	We had particulates from our Microtherm
3	insulation. Microtherm is another trade name, brand
4	name, of a high density microporous insulation. We
5	have very little of it.
6	But it's another problematic insulation.
7	We use that in pipe penetrations through concrete
8	walls. So we do have some of that.
9	And we had the Marinite particulates, the
10	Marinite calcium silicate. We used that in our test.
11	And we had latent dust and dirt particulates also.
12	The chemical debris, we used I didn't
13	talk about that earlier. We need was based on very
14	conservative calculation from through Westinghouse
15	methodology.
16	We used 30 days of containment spray to
17	maximize the amount of chemical precipitants. And
18	there's some precipitants, there's another way of
19	two ways of doing it is a minimum pool volume and a
20	maximum pool volume.
21	And depending on that, the particular
22	precipitants would they'd be maximized. And again,
23	we picked the worst of each from the two different
24	ones. So we get a maximum chemical debris loading.
25	And our coatings, we represented the
	I

(202) 234-4433

	57
1	different various types of coatings that we have
2	inside the plant. So that's for the strainer debris.
3	Let's go onto slide 20.
4	MEMBER MARCH-LEUBA: So when you talk
5	about coatings and you talk about flaking of paint and
6	that flake blocking the strainer? Or is there a
7	MR. SCHULZ: Right. Within the zone of
8	influence, the particulates fail the coatings fail
9	as particulates. You know, 10 micron particulates.
10	And our unqualified coatings, we assume
11	they all fail not matter where they are. Whether
12	they're inside the ZOI or outside the ZOI. They're
13	still
14	MEMBER MARCH-LEUBA: More then flakes.
15	You're talking about grains of sand that fall out.
16	MR. SCHULZ: Right. Small particulates.
17	Yes.
18	MEMBER MARCH-LEUBA: Yes.
19	MR. SCHULZ: and in one case we had chips.
20	And we in one location we treated that was again
21	with the staff, we agreed on the methodology for
22	treating those particulates.
23	MEMBER MARCH-LEUBA: And those typically
24	go into the vessel? Or they stay on the strainer?
25	MR. SCHULZ: Well they can they go to
	I contract of the second se

(202) 234-4433

	58
1	the strainer. They can be captured on the debris bed.
2	They form a debris bed on the strainer.
3	But some fibers and some particulates pass
4	through. And that's what our downstream effects look
5	at, both in-vessel and for other confluence too.
6	So some of it does get through the
7	strainer, yes.
8	MEMBER MARCH-LEUBA: All right.
9	MR. SCHULZ: So back on slide 20, we do
10	a reconciliation of the debris using the tests. And
11	these test amounts were calculated back in 2007.
12	And since then, we did use Marinite
13	insulation in the test. However, we removed it so we
14	had the test had more extra Marinite in it.
15	We also subsequent analysis showed that
16	the Microtherm insulation that we used in the test was
17	much more then what actually transport. On the other
18	hand we showed that some of our coding particulate
19	debris, more is calculated to transport compared.
20	It was under the predicted amount compared
21	to what we had in our test. So we that credit here
22	with from the Microtherm and the Marinite. And we
23	had a debit from our particulates.
24	And we did a reconciliation of that to the
25	again, reviewed by the staff in the REI process, to
	I contract of the second se

(202) 234-4433

	59
1	show that they compensated. And so that's how we
2	reconciled our test amounts of debris.
3	Let's go to slide 21. So the results of
4	our strainer head loss testing, the debris preparation
5	and the conduct of the test were acceptable to the
6	staff.
7	The staff witnessed the test back in July
8	2008. We had a debris bed formed of a large quantity
9	of particulate with the chemical loading and it did
10	not show the need for additional thin bed testing.
11	So the test showed about half the head
12	loss was due to the chemical debris. The other half
13	was due to the fibers and particulates.
14	We added them in sequence. We had
15	particulates and the fibers first. The test took
16	about two and a half days.
17	We had them in batches. We added the
18	fibers and particulates in batches. And then we added
19	the chemicals. And about half of the head loss was
20	due to the chemical precipitous.
21	Although the test shows that it was
22	acceptable. And it shows we have satisfactory
23	performance of our equipment up to the level of the
24	amount of debris that we tested.
25	So that's our benchmark going forward.
	I contract of the second se

(202) 234-4433

60 And also this eliminated the need for head loss 1 2 Our very first fully risk informed correlation. 3 approach we used a head loss correlation to calculate 4 debris loss. 5 But we -- that was getting too many 6 questions from the staff. And there was too much 7 uncertainty there. So we're actually using actual 8 test results was about that uncertainty if you were us 9 a correlation. 10 MEMBER MARCH-LEUBA: And sorry to ask these questions this late in the review, because I 11 wasn't here. But, on the testing will you use two 12 foot flow into the channel? 13 14 Because in real life, you will have two 15 inches. And those two inches will clog. And then the 16 level will rise. And you'll have clean strain then 17 that will clog. And then --MR. SCHULZ: Oh. Yes. We had full level. 18 19 To do what we had. Yes. Yes. 20 MEMBER MARCH-LEUBA: So that's 21 fairly conservative. I would expect most of the 22 fibers to deposit on the first two inches. Right? 23 MR. SCHULZ: No. We don't turn the pumps 24 on until we get the level above the strainers. So --25 Oh. You have to MEMBER MARCH-LEUBA:

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	61
1	cover it completely?
2	MR. SCHULZ: We have a containment spray
3	and safety injection takes selection from a fueling
4	wash storage tank. And that tank gets depleted and
5	gets ends up on the containment floor and fills
6	that up.
7	When that tank's nearly depleted, then we
8	switch over to recirculation mode. And then we
9	then the flow goes through the strainer then.
10	MEMBER MARCH-LEUBA: Oh, they explained it
11	
12	MR. SCHULZ: So those will, yes. There's
13	about the minimum amount is about ten inches above
14	the strainers when we turn the pumps on.
15	MEMBER MARCH-LEUBA: And is there
16	MR. SCHULZ: At least one of the pumps.
17	MEMBER MARCH-LEUBA: Then is there enough
18	time for it to settle into the floor?
19	MR. SCHULZ: Yes. There is some set
20	maybe some settling to it. Yes. We didn't query that
21	too much in our transport. But we have to
22	MEMBER MARCH-LEUBA: Okay.
23	MR. SCHULZ: So, the strainer head loss
24	testing established a benchmark of this quantity of
25	debris, the various debris types resulted in a
	1

(202) 234-4433

	62
1	successful strainer operation head loss testing.
2	And now Ernie is going to continue with
3	how we use those. Our benchmark.
4	MR. KEE: And so this is Ernie Kee. We
5	can move to slide 23.
6	So we've already said this that RoverD
7	scenarios begin with a break at a particular location.
8	At each location there's many thousands of scenarios
9	examined.
10	And this was for the purpose of finding a
11	certain value. Which I'll address here in a minute.
12	But, so we look at break sizes and orientation of the
13	break to find a particular one we're interested in.
14	Or to exclude as deterministic that whole location.
15	I mentioned already that we'll use CASA
16	Grande in the deterministic mode to calculate the
17	generation transport and erosion to the floor pool.
18	And this is where we get the limit of we look to
19	see if all that material that gets into the floor pool
20	is greater than or less than what Wes has described in
21	his test.
22	And if it's greater than that amount in
23	terms of fine fiber, which is the most readily
24	transported debris, then if it's more then what Wes
25	has tested, then we relegate those scenarios to the
	I Contraction of the second

(202) 234-4433

	63
1	risk-informed category.
2	I might mention now I can't recall who
3	asked this question. But, about the particulate being
4	cat was that you Dr. March-Leuba?
5	MEMBER MARCH-LEUBA: Call me Jose.
6	MR. KEE: Yes. I'm sorry. That debris is
7	actually counted twice by virtue of the way the tests
8	are done. So, we put all the particulate in Wes'
9	test. And collect it as it will be collected on the
10	screen.
11	But then also the WCAP at 16793 test,
12	which we used for the cold leg break criteria for
13	adequate core cooling, it uses all the particulate in
14	its test as well. And all the chemicals.
15	So it kind of those things get counted
16	twice. And that's an area of conservatism or
17	uncertainty quantification.
18	And then scenarios that have to meet the
19	deterministic criteria upstream, as Wes talked about
20	that downstream. Wes talked about that in-vessel and
21	reactor containment building integrity criteria. Or
22	else they're categorized as risk informed.
23	So we're moving onto slide 24. Of these
24	scenarios that we put in the risk-informed category,
25	and this goes to Dr. Riccardella's question about how
1	

(202) 234-4433

	64
1	do we determine these frequencies.
2	So this is one of the great
3	simplifications we make in the RoverD analysis. We
4	only have to look at well, you could look at many.
5	But what we've done is we only look at one of those
6	at each location, we only look at one of the scenarios
7	that's in the risk informed category.
8	What one is that? That's the one that by
9	carefully looking in a very fine mesh for the break
10	that just exceeds the break size. It just exceeds the
11	amount of debris that was tested.
12	So, we only have to look at one. Because
13	any other break will create more. You could think of
14	it that way. In fact, it's another conservative
15	assumption in terms of risk estimation that we make
16	because of how we do that.
17	I don't think we need to get into that.
18	But the point is, we've degenerated this into one
19	scenario that just exceeds the break, the tested
20	deterministic amount, and we find the highest
21	frequency by virtue of the smallest break size on that
22	scenario.
23	MEMBER RICCARDELLA: Wouldn't a larger
24	break create more debris? And be more of a concern?
25	MR. KEE: Absolutely.
	I contract of the second se

(202) 234-4433

	65
1	MEMBER RICCARDELLA: But it's a lower
2	frequency? Is that what you're saying?
3	MR. KEE: It's a well, those larger
4	breaks are also in the risk informed category. And so
5	
6	MEMBER RICCARDELLA: Oh, I see. That's
7	fine.
8	MR. KEE: Exactly right that it would have
9	a much lower frequency as they become larger and
10	larger. So we're looking for the
11	MEMBER RICCARDELLA: And this is the
12	determinant.
13	MR. KEE: A risk estimate. Yes.
14	MEMBER RICCARDELLA: All right. All
15	right. I've got it. Just a comment.
16	You know, there's another big program
17	going on now called, oh, what is it? XLRP? You know
18	XLPR, or extra low probability of rupture which is a
19	big quantificative quantified study that try to
20	replace leak before break and come up with, you know,
21	more accurate pipe break frequencies then what's in
22	this.
23	There's NUREG-1829 which was kind of an
24	expert solicitation effort. But, I don't know.
25	That's we're not there yet. But just so you're

(202) 234-4433

	66
1	aware, there is more research going on in that area.
2	MR. KEE: Yes, sir. We've kind of looked
3	into that in a very early time of this addressing
4	this problem. And tried to look at probabilistic
5	fracture mechanics. And what kind of causal models
6	are out there for these breaks.
7	And there's not much information. I think
8	it's still the best source today is this NUREG-1829.
9	MEMBER RICCARDELLA: I'm sure.
10	MEMBER SKILLMAN: Ernie, before you go on,
11	that second bullet. Kind of building on Pete's
12	question, relative to the break size.
13	Fetch smallest break size. Why isn't that
14	fetch the most probable break size? Or the most
15	likely break size? Regardless of its orientation?
16	MR. KEE: Actually, that is the most
17	probable, based on the way these curves are developed.
18	The smaller the break size the greater the frequency
19	estimate is for currents.
20	So, there actually can be larger breaks
21	I don't know if we want to get mired down. But there
22	actually can be larger break sizes that don't fail
23	this tested amount of material. We know that.
24	MEMBER SKILLMAN: Yes. I can understand
25	that.

(202) 234-4433

67 1 MR. KEE: Yes. So -- but we still --2 still we look for the smallest one. So that's a --3 MEMBER SKILLMAN: Because it's most 4 likely. 5 MR. KEE: Yes. And it produces a conservative estimate. 6 7 MEMBER SKILLMAN: The greatest amount of fiber. 8 9 MR. KEE: Yes. For the risk. So we want 10 to know are -- we want to have a good sense that we've bounded the risk shall we say. 11 MR. HARRISON: The smallest break that 12 exceeds the tested amount. 13 14 VICE CHAIRMAN CORRADINI: And anything 15 above that is assumed to also fail. 16 MR. KEE: All those -- yes. We assume 17 they all fail. VICE CHAIRMAN CORRADINI: Could go larger 18 19 ones and a different orientation would be --20 MR. KEE: Might not. VICE CHAIRMAN CORRADINI: Master tool 21 22 might not. 23 They may not. MR. KEE: 24 VICE CHAIRMAN CORRADINI: Okay. Verv 25 Thank you. qood.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	68
1	MR. KEE: Yes, sir. So why don't we
2	we're on slide 24 now.
3	VICE CHAIRMAN CORRADINI: Next bullet.
4	MR. KEE: Oh. Wayne changed the slide on
5	me.
6	MR. HARRISON: No, I didn't.
7	(Laughter)
8	VICE CHAIRMAN CORRADINI: Very crafty
9	Wayne.
10	MR. KEE: So we look at all these smallest
11	breaks at each location. And we interpret we say
12	we interpret the NUREG-1829 tables to arrive at the
13	total frequency across all the risk informed
14	scenarios.
15	And we assign that frequency to core
16	damage. So, that's another kind of area that is a
17	conservative estimate if you think in terms of PRA.
18	There would be other failures along the way that could
19	occur.
20	And then we use the probabilistic risk
21	assessment from the South Texas Project. The same one
22	we developed early and like we were talking about in
23	2011, to get the change in large early release
24	frequency.
25	Now I already said that this the
	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

ĺ	69
1	containment integrity is maintained independent of
2	this the concerns raised in GSI-191. The concerns
3	raised in GSI-191 do not lead to containment failure.
4	But of course since the core damage
5	frequency increases, these other kinds of scenarios
6	that exist, you know, for isolation and so forth,
7	those are still out there that are in the PRA. And so
8	we there's an increase in learn from that effect.
9	So, we need to this we're moving to
10	slide 25. And we need to look at in-core reactor
11	vessel scenarios. We've talked about all the others
12	so far.
13	And in this case, in this vessel
14	situation, we look at two kinds of breaks, hot leg
15	breaks and cold leg breaks. Because they're different
16	in terms of how the debris flows into the core and the
17	driving head.
18	So looking first at the hot leg break
19	scenarios, and I've already mentioned this, we're
20	using peak clad temperature. Which is a common
21	acceptance criteria for success.
22	And in this case, the theoretically
23	bounding assumption that we make here is that for all
24	the fuel assemblies and the core barrel bypass channel
25	are blocked fully at the time of sump recirculation
	I contract of the second se

(202) 234-4433

(202) 234-4433

	70
1	switch over. We do take credit for the build up to 15
2	grams of per fuel assembly that's in the WCAP 1693
3	testing.
4	MEMBER MARCH-LEUBA: So Ernie, is there
5	any flow path for water to get into the reactor core
6	after you block those?
7	MR. KEE: Yes. There is. And there's
8	flow paths that have large enough holes in them. For
9	instance, the upper head spray flow and then of course
10	the flow through the other intact loops of steam
11	generator can come around eventually and come into the
12	top of the core.
13	MEMBER MARCH-LEUBA: They'll go from up in
14	the hot leg?
15	MR. KEE: Correct. Correct. And so we
16	show that we meet the thermal hydraulic requirements
17	with this kind of a limiting of function. And so we
18	move to slide 26.
19	MR. HARRISON: And those were the RELAP5
20	3-D analysis that Lisa was talking to. And we don't
21	use the 3-D function as I recall.
22	MR. KEE: That's correct. Although we
23	have looked at that.
24	VICE CHAIRMAN CORRADINI: But just to
25	clarify for the members, you I don't think you said
I	

(202) 234-4433
ĺ	71
1	it for the out of for the strainers. But this
2	large of a break is already covered from a failure
3	standpoint because by that time the pipe diameter that
4	would have caused suctions and strainer blockage is
5	smaller than the 16 inches.
6	MR. KEE: Yes, sir.
7	VICE CHAIRMAN CORRADINI: So you don't
8	in some sense this is included in the failures that
9	already would have occurred by just blocking the
10	strainers?
11	MR. KEE: Yes. So we're looking at the
12	ones that we said passed deterministically through the
13	strainers. And now do they pass in-vessel? Yes, sir.
14	VICE CHAIRMAN CORRADINI: Okay.
15	MEMBER MARCH-LEUBA: So every single break
16	that passes deterministic that is accepted
17	deterministic from the strainers will also be
18	acceptable for in-core.
19	MR. KEE: That's what we have to make
20	sure. Yes, sir.
21	MEMBER RICCARDELLA: And then those get
22	eliminated from your eventual probabilistic
23	assessment, PRA assessment? Is that the is that
24	the way it works?
25	They're acceptable deterministically, then
1	

(202) 234-4433

	72
1	you don't consider them?
2	MR. KEE: That's correct. All those
3	scenarios that meet the to Wes' test level. Tested
4	them out of the fiber level. And also are acceptable
5	in-core in-vessel.
6	MEMBER RICCARDELLA: Okay.
7	MR. KEE: They have to meet all these
8	deterministic criteria. Yes, sir.
9	MEMBER RICCARDELLA: And that's 16 inches
10	for a hot leg break?
11	MR. KEE: Yes. When we look at 16 inches
12	and below.
13	MEMBER RICCARDELLA: Sixteen inches and
14	below.
15	MR. KEE: They all pass. Yes, sir.
16	MEMBER RICCARDELLA: Okay. And then for
17	things greater than 16 inches, you're going to include
18	that in the probabilistic, in the PRA model?
19	MR. KEE: Yes. We did that. Yes, sir.
20	MEMBER RICCARDELLA: Got it. Got it.
21	MR. KEE: So moving to slide 26 now. So
22	the cold leg break only has a driving head of the down
23	comer of course, the excess water from the ECCS just
24	flows out the break in this case.
25	And because of that characteristic, you

(202) 234-4433

	73
1	accumulate much less fiber on the core. And we
2	analyzed that with a mass conservation three linear
3	different well actually they're nonlinear.
4	But anyway, three differential equations
5	for the strainers, the core and the pool with how much
6	is allocated all throughout. And then we check to
7	make sure that the we look at many scenarios and
8	check to make sure that we don't exceed the WCAP 16793
9	criteria, 15 grams per fuel assembly.
10	And in fact we couldn't conjure up a
11	scenario that came even close to that level.
12	MEMBER MARCH-LEUBA: Okay. So what you're
13	saying is that for all the cold break cold leg
14	breaks, none of them are produce enough fiber in the
15	core to block it.
16	MR. KEE: That are below the deterministic
17	criteria. Yes, sir. So both hot leg and cold leg are
18	acceptable from that point of view in-vessel.
19	MEMBER RICCARDELLA: And what is it that
20	makes the cold leg less critical? Cold leg breaks
21	less critical?
22	MR. KEE: They're not less critical. But
23	
24	MEMBER RICCARDELLA: Create less debris.
25	MR. KEE: It's the same amount of debris
I	I construction of the second se

(202) 234-4433

	74
1	in the pool. But what happens is, the all that
2	flow that's being bypassed right out through the cold
3	leg, the broken cold leg, goes right through and gets
4	restrained through the strainers.
5	It gets strained again
6	MEMBER MARCH-LEUBA: It then runs right
7	through the filter.
8	MR. KEE: Yes. And we've done
9	MEMBER MARCH-LEUBA: So you've the
10	water pump get into the cold leg leaks out, goes back
11	to the filter again. And that's all. The filter has
12	a chance for catching it again.
13	MEMBER RICCARDELLA: I see.
14	VICE CHAIRMAN CORRADINI: The flow can
15	I try it a different way? Also the flow from through
16	the core is reduced since it's not a hot leg break,
17	it's a cold leg break.
18	So whatever is there, a lot of it doesn't
19	get transported to the core. It gets transported back
20	out the cold leg break. Back to the strainer.
21	MR. KEE: That's even a better yes.
22	And it's governed by the decay heat level. Which
23	doesn't demand near the we have a huge amount of
24	flow from our emergency core cooling system.
25	MEMBER RICCARDELLA: So it's less critical

(202) 234-4433

ĺ	75
1	from the standpoint of in-vessel effects. It's not
2	no different for the strainers. It's still a concern
3	to the strainer.
4	MR. KEE: Yes, sir. Yes. It has to pass.
5	Yes. So, we're moving onto slide 27 now.
6	This question came up with regard to
7	single train assumption in our last in the
8	subcommittee. So some people weren't here.
9	And the question is regarding taking into
10	account the extra amount of flow that you realize in
11	the containment spray system in single train
12	operation. And whether or not that extra flow under
13	the assumption of half the debris load criteria, which
14	we adopted for single train, if that would be
15	acceptable.
16	And the answer is no, using the using
17	that half amount. So we turned back to the PRA. And
18	we asked again, remember we've done all these
19	different equipment configurations already.
20	So we know the answer to this as to what
21	the level of risk is. Which was when you add up all
22	the scenarios that represent the single train
23	configuration, they're like on the order of 18 to the
24	minus 9.
25	So, these kind of in terms of success.
	I contract of the second se

(202) 234-4433

ĺ	76
1	And these kind of scenarios contribute very little to
2	the total problem where we're looking at 18 to the
3	minus 7 numbers.
4	So moving onto slide 28.
5	MEMBER MARCH-LEUBA: So then go back to
6	the last bullet. You said the single terms then it
7	could be added to risk informed integrity.
8	But how do you do it?
9	MR. KEE: No. Well, just add 18 to the
10	minus 9 to 15 to the minus 7.
11	MEMBER MARCH-LEUBA: You did add it, and
12	it was inconsequential.
13	MR. KEE: Yes. It's so small. Yes. So
14	now we're on slide 28.
15	And this just summarizes all the
16	information that we've talked about so far. Basically
17	the measures we took at South Texas when we replaced
18	the strainers and insulation and so forth, did achieve
19	the desired result that we have a very low expectation
20	for any kind of problems related to the concerns
21	raised in GSI-191.
22	And these risk estimates include a
23	significant safety margin. We talked about that and
24	Wes has talked about that.
25	Also, we maintained defense in depth. So
	1

(202) 234-4433

1 even in the unlikely event that we see something like 2 this happening, we're relatively sure that the 3 containment is not going to be conditionally failed 4 due to the same cause.

5 We've done, as Lisa mentioned, many, many different approaches of many different -- incorporated 6 7 many different analyses using this best estimate and 8 modified best estimate. And now with this RoverD 9 approach, hybrid approach is, I think Ms. Shelton mentioned, Helton mentioned, we consistently see the 10 kind of low risk estimates in all these 11 same 12 approaches.

13 So moving to slide 29. Just to summarize 14 RoverD as a framework. It makes GSI-191 risk 15 assessment understandable, easy to review.

We use conservative testing and bounding analysis to accomplish that kind of simplification. Scenarios fall into just two categories. And that -by applying accepted test methods and bounding analysis.

We've done many supporting additional tests and analysis throughout the six-year life of this project. I think it's about six years. That confirm for example, the morphology and the quantity of chemicals and so forth that we made publically

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	78
1	available.
2	It's on Adams. A lot of this information
3	is on Adams. Or we've also published in the academic
4	literature.
5	With that I'll turn it back to the
6	discussion back to Wayne Harrison.
7	MEMBER MARCH-LEUBA: Not so fast Eric.
8	MR. KEE: Okay.
9	MEMBER MARCH-LEUBA: All these conclusions
10	that you have here in the summary, how much do they
11	depend on the fact that you increase the size of those
12	filters from 155 to 1800?
13	MR. KEE: Oh, it's no, and that is
14	that observation that was made in the generic letter
15	asking us to review whether or not we expected that we
16	would be successful with that current strainer design,
17	I mean, that was instrumental in everything we've done
18	since then.
19	We've changed our design change package
20	approach to make sure we control this aluminum and
21	nefarious kind of debris types. And then Wes replaced
22	these strainers with these enormous things to
23	accommodate large amounts of debris.
24	MEMBER MARCH-LEUBA: I don't think you
25	take enough credit for the positive steps you took to

(202) 234-4433

	79
1	make your plant safer.
2	VICE CHAIRMAN CORRADINI: I think I know
3	where Jose is going. But I think just to put it in
4	context, I think the PWR community, the population as
5	a whole, not just South Texas, made these equipment
6	changes early up front.
7	And then I'll get confused about the right
8	name, the generic letter I'm sorry, I've got it
9	wrong. But, a second communication concern about
10	downstream in-vessel effects, et cetera, then led to.
11	So I think South Texas took the initiative
12	to look at a combined holistic look at the problem.
13	That's my kind of way of thinking about it.
14	But the population of all the plants had
15	to do the first thing in terms of strainer change out.
16	MR. KEE: Yes, sir. And that led to these
17	lowered risk estimates for the for problems.
18	MEMBER RICCARDELLA: It would be
19	interesting to see what these Delta CDF and Delta LERF
20	values would be if you went through the full analysis
21	with the old trains. Did you do that?
22	MR. KEE: We've done that actually. I
23	believe that was that maybe in one of our
24	applications. I think it is.
25	And it maybe the supplement two.

(202) 234-4433

	80
1	MEMBER RICCARDELLA: I don't recall that.
2	MR. KEE: We've done that.
3	MEMBER MARCH-LEUBA: Your critical break
4	size will go down to one or two inches instead of 16.
5	MR. KEE: Yes. And downstream effects are
6	in other words, these in-core effects with these
7	larger holes would bypass much more debris into the
8	MEMBER MARCH-LEUBA: You might still make
9	a risk informed argument that you're okay. But you
10	wouldn't feel comfortable with a one inch break
11	critical effects.
12	MR. KEE: Yes. I'm not sure. Yes. It
13	was pretty high I recall, for the number.
14	MEMBER MARCH-LEUBA: But where there is a
15	13, 14-inch break, critical break size with
16	conservative assumptions, it makes you feel very
17	comfortable. It does to me.
18	MR. KEE: Yes, sir. Yes, sir.
19	MEMBER BALLINGER: To pick up on what
20	Pete's mentioned, I was pouring through 1829 to try to
21	find out what probabilities of failure are for the
22	larger pipes. I mean, the XLPR program is going to
23	basically eliminate those as failure modes, I think.
24	So, I don't know which ones dominate the
25	CDF here. I don't remember.
	I Contraction of the second

(202) 234-4433

	81
1	MR. HARRISON: All break lower, it's about
2	13 inches basically.
3	MR. KEE: Twelve point eight.
4	MR. HARRISON: Twelve point eight.
5	MR. KEE: And above.
6	MR. HARRISON: Yes.
7	MR. KEE: See that's not surprising.
8	MEMBER RICCARDELLA: I wouldn't try to
9	predict what it's not surprising either. But I
10	wouldn't try to predict what's going to come out of
11	it.
12	MEMBER STETKAR: It's probably safe to say
13	the numbers will be different.
14	(Laughter)
15	MEMBER BALLINGER: However, you can assume
16	leak before break.
17	VICE CHAIRMAN CORRADINI: Okay, Wayne?
18	Wayne?
19	MR. HARRISON: I will talk about this
20	is Wayne Harrison. I will take about the regulatory
21	implementation starting on slide 31.
22	And basically our regulatory information
23	implementation included three elements. We had a
24	debris specific action, promote three and above, and
25	our emergency core cooling system and containment
1	

(202) 234-4433

	82
1	spray system technical specifications.
2	Those are the only two systems that we
3	have that have any dependencies on the emergency
4	sumps. We have a set of updated final safety analysis
5	report changes that help us as a licensee in our
6	implementation process.
7	We will change for instance, I'm going
8	to talk just briefly about the exemptions field to
9	change the description of how we comply with the
10	regulations using the risk informed process.
11	We will explain the program. What we just
12	went through here, we will have an appendix in Chapter
13	6 of our USFAR that explains the analysis that we went
14	through and the rules of engagement for that analysis
15	with our plant.
16	And it also has elements of change control
17	that you've seen in the draft rule, 50.46(c), and the
18	things that are analogous to 50.59 that we can't
19	change without prior staff approval.
20	Because there's some of these things that
21	are fundamental to our methodology that we that
22	would require prior staff approval to change it. And
23	that's outlined in our USFAR changes as well.
24	We have requested exemption to four of the
25	regulations, 50.46(a)(1), the other properties portion
	I

(202) 234-4433

	83
1	of that. Basically the basis for all these exemptions
2	is that we're using a risk informed methodology
3	instead of the deterministic methodology that's
4	implicitly if not explicitly required by the
5	regulations.
6	So, we can the basis is that we can
7	achieve the underlying purpose of the rule without
8	using the deterministic method that the risk informed
9	still achieves the basic purpose of the rule.
10	And I mentioned the burden associated with
11	it, but the basic reason is that we can achieve the
12	rule's purpose using the risk informed approach.
13	General design criteria in 35 for
14	emergency core cooling system, general design criteria
15	in 38 for containment heat removal, and general design
16	criteria in 41 for containment cleanup. And they all
17	have the same basis.
18	I'll go on and talk about the regulatory
19	information implementation of the technical
20	specification change. Because I think you had a
21	question on that. And I can we can talk about
22	that.
23	This is what the emergency core cooling
24	system tech spec looks like. The containment spray
25	system is very similar to this.
I	

(202) 234-4433

84 1 And this is in addition to the already -the existing action statements that we already have. 2 But we have a statement for -- with less then the 3 4 required flow paths operable solely do the potential 5 effects of LOCA generated and transported debris that exceeds analyzed amounts perform the following, and 6 7 that's to implement action to -- action for a --8 compensatory actions. And then has a 90-day action statement on 9 10 that. You'll notice that there are a couple of things that are important here. One is this only applies --11 12 it can only be applied for effects of debris. If it's something else that's broke with 13 14 that strainer or that emergency core cooling system or 15 containment spray system, you have to apply the other 16 tech spec actions. But does the tech 17 MEMBER MARCH-LEUBA: spec tell you how to evaluate this? 18 19 MR. HARRISON: The basis will. And we --20 This tells you what the requirements are. And we no. 21 don't -- but we get additional guidance to the 22 in the basis for the technical operators 23 specifications, where we will explain what we mean by debris effects. 24 25 So they will, for instance, say well I've

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

85 1 got a tarp over the strainer. Is that a debris 2 a tarp over the strainer effect? Well no. is 3 something worse then the debris effect. Okav? 4 But if it's something out there in the 5 containment that's covered by Wes' analysis, well 6 that's debris. And you can go assess that in 7 accordance with the analysis. 8 Now, we do this in accordance with our 9 corrective action program in how we address degraded, 10 non-conforming conditions. Nothing's really changed in that program. 11 There's a guidance in that that we are 12 currently applying for debris. And this will actually 13 14 -- so the operators you see -- and it's in that 15 procedure and it's also in another procedure that says 16 the kind of debris and the quantities of debris that 17 they're -- that they have when they do those walk downs Mike's talking about. 18 Well, they're doing this in accordance 19 20 with a walk down procedure. And there's quidance in 21 that procedure on the amounts of debris that you can 22 have. 23 As part of our implementation of this, Wes 24 is going to go in and polish those. Or update those 25 debris instructions. I think he's probably going to

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	86
1	make it simpler.
2	So the process that we've always been
3	using is essentially the same process we're going to
4	use. If they find something, they're going to make an
5	immediate operability determination and a prompt
6	operability determination necessary in accordance with
7	that procedure.
8	Engineering will get involved in the
9	evaluation, is that in conformance with our what we
10	did in this evaluation. And make a determination is
11	there too much debris or is it okay?
12	And there's margin in the calculations
13	that Wes has. And there can be some room for
14	evaluations. No really no different from any other
15	engineering assisted operability determination.
16	MEMBER KIRCHNER: Pragmatically though,
17	you wouldn't have this kind of occurrence except after
18	you've gone to shut down and refueling and
19	maintenance, right?
20	MR. HARRISON: That would be
21	MEMBER KIRCHNER: Or are there other I
22	mean, where I'm going with this question is, during
23	the normal operation of the plant, when the
24	containment's buttoned up, what's going to change the
25	status?

(202) 234-4433

	87
1	MR. HARRISON: Probably the only way you
2	would have that occurring, and Wes can chime in, is
3	that if something comes out and you say, oh, my gosh,
4	I found a calculation that we didn't account for this
5	debris. Or we found this piece of thing that came in
6	here that has this insulation on it or this other
7	debris source that we didn't it was a calculational
8	error that we
9	MEMBER KIRCHNER: That would be in the
10	engineering department, not in the operation of the
11	plant.
12	MR. HARRISON: Yes. That's right.
13	MEMBER SKILLMAN: Yes. That's where I was
14	going when I introduced this topic an hour or two
15	hours ago.
16	Mike described the close out, the cleanup,
17	and I presume, you secure the door. You lock the
18	containment.
19	MR. MURRAY: So this is Mike Murray.
20	There's one thing I thought about that I didn't add.
21	Is once we get the containment closed out, there's
22	also a procedure for every entry into containment
23	after it's closed.
24	I think that may close the gap there. And
25	in that procedure, you have to account for what you
	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

	88
1	take in. You have to account for what you bring out.
2	And you also have to keep your one of
3	the requirements is you look for other things that
4	someone else may have missed.
5	And that is a briefing that happens with
6	every entry team after we've established containment
7	integrity. Which was the surveillance when we signed
8	it off. And operations accepts that surveillance.
9	Containment integrity is then set. The
10	door interlocks are in. And then you go into the
11	process of every entry team has to be accountable for
12	what's taken in and brought out.
13	MEMBER SKILLMAN: Here's what prompted my
14	question. Presuming that we're on watch. All of us
15	have gone one. Let's go to nuclear one.
16	It's three o'clock in the morning on a 24-
17	month fuel cycle. We're out four hundred days. We're
18	doing great.
19	And at three o'clock in the morning one of
20	us says, you know, I forgot. I think we're inoperable
21	because there's something down there that just struck
22	me would render that one strainer inoperable.
23	What do you do? And the way this
24	surveillance is written or the way this tech spec is
25	written, potential effects of debris generated and

(202) 234-4433

	89
1	transported.
2	And it just seems to me that that is
3	first of all, I understand the words. But it's
4	certainly vague for a practical operator.
5	You're sitting there on at power. And
6	you're saying, I think something's wrong down on that
7	strainer.
8	But if you're like most PWRs, you do not
9	do in power containment entries.
10	MR. HARRISON: We do.
11	MEMBER SKILLMAN: Do you do it often?
12	MR. HARRISON: Absolutely.
13	MEMBER SKILLMAN: Yes? You don't go into
14	the primary shield.
15	MR. HARRISON: No.
16	MEMBER SKILLMAN: Okay. So you're on the
17	operating flat or you're in a shielded area. But this
18	probably not something that's done a lot.
19	MR. HARRISON: No. And remember, you
20	know, we're this is something that is that's not
21	debris that's not unique to debris.
22	You know, that could be anything that is
23	becomes an operability question. And that's where
24	you go back to your procedures.
25	You go back to this degraded non-
1	

(202) 234-4433

	90
1	conforming condition procedure. You go back to your
2	basics of the presumption of operability.
3	That it's the shift manager's call. And
4	it's based on his presumption of operability. And
5	there's a process you go by that operations will
6	drive.
7	And we have confidence in that process.
8	It's worked for us for a long time. You know, a very
9	depending upon the level of assurance that shift
10	manager has with what he believes is in that
11	containment, he may say well, I'm going to enter this
12	action statement.
13	And then they can go do a confirmation.
14	They determine that it's okay. They can exit the
15	action statement.
16	MEMBER SKILLMAN: That's fair enough. I
17	understand what you're saying. And I understand the
18	authority risks with the shift manager to make the
19	call.
20	And I understand you can also go too
21	operably degraded and continue to operate. So, I
22	really do understand that.
23	I was just intrigued at what could be the
24	interpretational vagueness of this wording.
25	MR. HARRISON: And we and I'm glad you
1	I contract of the second se

(202) 234-4433

	91
1	brought that up. Because we will get we hadn't got
2	we will train operations on this.
3	And we will sit with them in their
4	classroom, here's this new tech spec change. And they
5	reviewed this by the way, also. So this shouldn't be
6	news to them. They were part of the review.
7	But there will be questions from the
8	various shift managers and license operators. And we
9	will respond to those questions. It might result in
10	some additional clarification in the basis.
11	MEMBER SKILLMAN: Yes. Okay. Okay.
12	Thank you. That's fine.
13	MR. MURRAY: We've answered those questions
14	I think that they're are you all ready are you
15	ready to move on?
16	MR. HARRISON: The only thing that I was
17	going to add to this was with I think there was
18	some question with compensatory actions.
19	And those are the our typical risk
20	management compensatory actions that might mean we'll
21	if we know what the debris is, we can remove the
22	debris or take action that would prevent transport of
23	the debris.
24	We can defer maintenance that would affect
25	availability of effective mitigation systems. We can

(202) 234-4433

	92
1	increase the frequency of leak detection monitoring
2	and brief operators.
3	There are a number of risk management
4	actions that we can take as compensatory actions. And
5	the 90 days is based on the very low likelihood of a
6	break that would challenge our or exceed our tested
7	amount.
8	And that also gives additional time if we
9	do find that to have if, you know, we need
10	additional regulatory relief from the Nuclear
11	Regulatory Commission, we would have additional time
12	to do that.
13	But it's analogous to what was done
14	previously with the containment I mean, the control
15	room cleanup system.
16	So, with that, I'm done and ready to turn
17	it over to Mike.
18	MR. MURRAY: All right. Change the slide,
19	please. Next. Mike Murray. I'd like to do the
20	conclusion statement on it.
21	From the RoverD process incorporates
22	all aspects of the debris. It allows closure of the
23	generic letter of 2004-02. It has deterministic
24	testing, debris generation and transport, core effects
25	and risk informed evaluation.
1	

(202) 234-4433

	93
1	All being said, we have confidence that
2	we've established through our extensive analysis,
3	debris transport modeling, testing and risk analysis,
4	that the change in risk is a result of the LOCA
5	generated debris meets the risk acceptance guidelines
6	established in REG Guide 1.174.
7	VICE CHAIRMAN CORRADINI: Okay. Questions
8	by the members? Otherwise, we're scheduled for a
9	break. So they can change out, staff will come up.
10	Questions?
11	(No response)
12	VICE CHAIRMAN CORRADINI: Okay. We'll
13	take a break. Come back here at 10:30.
14	(Whereupon, the above-entitled matter went
15	off the record at 10:18 a.m. and resumed at 10:30
16	a.m.)
17	VICE-CHAIRMAN CORRADINI: Okay, let's get
18	back in session, and staff will begin. Lisa, I guess
19	you're up.
20	MS. REGNER: Yes, sir.
21	VICE-CHAIRMAN CORRADINI: Green light.
22	Yeah, you're fine.
23	MS. REGNER: At this point, the staff will
24	go into more details. The safety evaluation, starting
25	with Key Principle One of the five Key Principles of

(202) 234-4433

	94
1	Risk-Informed Regulation. The proposed change meets
2	current regulations, unless it is explicitly related
3	to a requested exemption or rule change.
4	The proposed change does not meet current
5	regulations, since the NRC has interpreted the
6	regulations in 50.46 as requiring a deterministic
7	approach to show compliance. In 2012, the staff
8	proposed a change to 50.46 to allow licensees to use
9	risk without meeting an exemption from the use of the
10	deterministic approach.
11	The rule change would allow licensees, on
12	a case-by-case basis, to use risk information, risk-
13	informed-alternatives to assess the impact of debris.
14	In March 2016, the staff submitted the final rule and
15	is awaiting commission vote.
16	In the meantime, since the rule-making has
17	not been promulgated, STP requested four exemptions,
18	which Wayne talked about. So I don't intend to go
19	into those again, unless you have questions.
20	MEMBER MARCH-LEUBA: I do. It may be a
21	novice question, and you may be the wrong person to
22	ask. But why is this a change? The reactor hasn't
23	changed. You haven't done anything but re-analyze an
24	erroneous analysis that you did before.
25	MS. REGNER: That is true. However,

(202) 234-4433

	95
1	again, ECC your question is, Nothing is changed,
2	why do we need
3	MEMBER MARCH-LEUBA: The reactor yesterday
4	was just as good as the reactor tomorrow.
5	MS. REGNER: Correct.
6	MEMBER MARCH-LEUBA: Exactly the same
7	reactor.
8	MS. REGNER: Correct.
9	MEMBER MARCH-LEUBA: Nothing has changed.
10	MS. REGNER: Correct.
11	MEMBER MARCH-LEUBA: Only we found out
12	there was a bad calculation on the record, and they're
13	redoing it.
14	MS. REGNER: Correct.
15	MEMBER MARCH-LEUBA: So maybe, as I said,
16	maybe it is a logic question. I would consider a
17	change if I want to replace my insulation, I want to
18	put in new insulation. Then it's a change. But they
19	didn't change anything.
20	MS. REGNER: Right. It was a series of
21	accidents, both here and abroad, that brought the
22	MEMBER MARCH-LEUBA: Could this have been
23	handled through a Part 21, for example? I mean, I
24	have an analysis on the record.
25	MS. REGNER: Right.
	1

(202) 234-4433

	96
1	MEMBER MARCH-LEUBA: Which I now know to
2	be incorrect. And I'm fixing it.
3	MS. REGNER: Right, right. There are
4	alternative ways. However, this, and I don't know as
5	much history as Steve does. But from a regulatory
6	standpoint, there usually are alternative ways to
7	handle things. In this case, since ECCS is such a
8	safety significant part of our design bases
9	MEMBER MARCH-LEUBA: I'm not in any way
10	insinuating that we're wasting our time.
11	MS. REGNER: Right, right. No, no, no,
12	understood.
13	MEMBER MARCH-LEUBA: Absolutely, we need
14	to do it.
15	MS. REGNER: You are right, and
16	ultimately, people keep asking me what's changed,
17	what's changed. Nothing has changed but the
18	paperwork.
19	MEMBER MARCH-LEUBA: The analysis of
20	record has found something incorrect, and we are
21	fixing it.
22	MS. REGNER: Right, right. Now, there has
23	been a lot of work in terms of replacing the strainers
24	and in terms of replacing insulation. The licensees
25	have taken, as I said, a lot of effort. However, this
	1

(202) 234-4433

	97
1	exercise right here that we're talking about today is
2	ultimately a paperwork exercise. A really, really
3	expensive paperwork exercise.
4	Yeah. And when I was doing the
5	environmental assessment, there are no design it
6	was a hard concept to get across. Why are you doing
7	an environmental assessment for no changes to the
8	plant?
9	So it didn't need to be done. The
10	environmental assessment did not need to be done. But
11	we did it because this is a significant departure from
12	the way we've done business before for compliance with
13	50.46. Does that help?
14	MEMBER MARCH-LEUBA: Yeah, as I say, this
15	is probably a question for the lawyers more than for
16	you.
17	MS. REGNER: Oh. Do we have any lawyers
18	here?
19	MEMBER MARCH-LEUBA: No, no, we don't want
20	them.
21	MS. REGNER: No, we don't, but. So I
22	won't go into the exemptions any more, unless there
23	are questions. And again, but I will say that if the
24	staff grants these exemptions, the only departure is
25	for STP to use the risk-informed methodology to show
	1

(202) 234-4433

	98
1	compliance considering the impacts of debris.
2	At this point, I'd like to introduce Mr.
3	Steve Smith to talk about Key Principles Two and
4	Three.
5	MR. SMITH: All right, next slide. All
6	right, for the deterministic part of the review, we
7	concentrated on the colored slides on the right. Two
8	and three is defense in-depth and safety margins. And
9	we also have to input to the risk evaluation, so
10	that's block four.
11	I'm not going to take too much time, I
12	don't want to repeat things that have already been
13	said. I'm just going to kind of go over the major
14	differences between how STP did things and how things
15	were done in the past, because that might be of
16	interest. And if you have any questions, please ask.
17	Next one.
18	This slide we've seen, and this just shows
19	where the deterministic review went into the test. It
20	went into how the debris amounts are calculated, and
21	then we determine if the scenario is acceptable or
22	not.
23	The next slide, safety margins and
24	defense-in-depth is the staff's evaluation of that is
25	detailed in the SE. And we had input from a lot of

(202) 234-4433

I	99
1	branches on the safety margin and defense-in-depth,
2	and we appreciated that help.
3	I'm not going to talk about this in
4	detail, but if there's any questions about safety
5	margins or defense-in-depth, I can try to answer
6	those. All right, next slide.
7	This talks about the debris source term.
8	And the way that STP calculated the debris source term
9	was in accordance with staff guidance, and it's
10	conservative guidance. First, they performed a test
11	with a known amount of debris under which the strainer
12	performance was acceptable. And they talked about
13	that.
14	Then they performed evaluations for
15	thousands of break scenarios and compared the amount
16	of debris from those scenarios with that which was
17	tested. And if any scenarios ended up with more
18	debris, then that was tested. Then that scenario was
19	assumed to go to core damage and had an impact on
20	risk.
21	The way typical evaluations for this are
22	done, for example, like the option 1 plans or the
23	options 2A plans, they would go and they would
24	identify two or three breaks that were the most likely
25	ones to create the largest amount of debris, or the
I	1

(202) 234-4433

	100
1	most problematic combination of debris, and they would
2	put all that debris in a test and show that the test
3	was acceptable.
4	So in STP's case, they couldn't show that.
5	So then they had to, anything that was more than what
6	was acceptable was considered to be core damage.
7	The way we've talked about this, and they
8	did calculate those amounts of debris using the CASA
9	Grande code, which automated it, made it so that it
10	could be done in a reasonable amount of time.
11	Otherwise, we'd probably still be cranking out
12	calculations.
13	VICE-CHAIRMAN CORRADINI: So just to stop
14	you. You said something that I've been trying to
15	understand. So the difference between and 2A and 2B
16	for strainers is strictly the comprehensive nature of
17	the analysis that STP used, versus picking what are
18	obviously bounding break sizes at particular locations
19	in containment.
20	MR. SMITH: Right.
21	VICE-CHAIRMAN CORRADINI: That's really
22	the difference between 2A and 2B.
23	MR. SMITH: 2A plants, every break would
24	be deterministically okay.
25	VICE-CHAIRMAN CORRADINI: Fine.
I	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

	101
1	MR. SMITH: 2B plants, some breaks might
2	not be deterministically okay.
3	VICE-CHAIRMAN CORRADINI: All right, thank
4	you.
5	MEMBER RICCARDELLA: But isn't what South
6	Texas is doing is some combination of 2A and 2B, in
7	effect?
8	MR. SMITH: Yeah, we lump them in the 2B
9	category. If the plant had one scenario that was not
10	deterministically acceptable, we would lump them in
11	the 2B category, yeah.
12	The other thing we talked about a little
13	bit was for partial breaks, they chose the break
14	orientation that created the largest amount of debris,
15	sort of. Anyway, they chose the orientation that
16	produced the smallest break, which is the most likely
17	break to occur.
18	So that cranked their risk values up, you
19	know, higher than they normally would be. So we
20	thought that was a good margin that they had there.
21	And then the last thing I'll say about
22	this slide is that we had some good help from
23	Southwest Research. They independently verified the
24	calculations, they exercised the CASA Grande software
25	to make sure it was working properly, and gave us a

(202) 234-4433

	102
1	lot of confidence in our evaluation.
2	This slide 19 is about debris transport.
3	I'm not going to talk about the strainer debris
4	transport. That was all done with CASA Grande. The
5	debris transport for in-vessel effects was done
6	separately from CASA Grande. So what they did was
7	they tested how much debris could get through the
8	strainer under various conditions.
9	They chose a conservative value from those
10	tests. And then what they did was they took the
11	amount that could get through the strainer, and then
12	they calculated where that might go. How much is
13	going to go to the vessel, how much is going to go out
14	the break, how much is going to go to the containment
15	spray.
16	And what they found was that in general,
17	the fewer pumps that were running would have more
18	fiber reach the core for a cold leg break. Because
19	the lower the flow, the more of that flow has to go
20	into the core, so the more debris is going to go into
21	the core. If you have a lot of pumps running, there's
22	a lot more flow going out the break.
23	And what they found was that as far as
24	debris amounts, is that under design basis cases, the
25	debris amount is very low. And then if you start

(202) 234-4433

	103
1	getting into some other cases, they did one case where
2	they had only HHSI, high head safety injection, pump
3	running.
4	And that increased it a little bit, but it
5	still was much lower than the values that we found
6	acceptable when we did some evaluation for WCAP-16793.
7	And again, Southwest did independent calculations to
8	verify that they had calculated these transport
9	amounts correctly.
10	Okay, then we talked about the impact of
11	debris in the strainer. One thing I did want to say,
12	I thought maybe during the discussion with South Texas
13	there was a little bit of, I don't know if it was well
14	understood how much of the debris that's generated
15	actually gets to the strainer.
16	So it's actually about, of all the debris
17	that's generated or even knocked off in whole pieces,
18	about 20-30% of that debris is going to be fine debris
19	that's going to get to the strainer. And that
20	accounts for the amount of debris that's generated as
21	fine. And then when it gets in the pool, some of that
22	is considered to be eroded.
23	Now, in the very first phase, the amount
24	of debris that got to the strainer was way higher.
25	Because we said 40% would be generated as what we call
1	I I I I I I I I I I I I I I I I I I I

(202) 234-4433

	104
1	small fines. And that had to be treated as fine.
2	And then 90% of whatever was left would
3	erode. So almost all of it got to the strainer. But
4	there's been testing done since then that gives us
5	more realistic values.
6	So as far as impact of debris on the
7	strainer, what they did was, when they did their test,
8	they came up with a head loss for the amount of
9	debris.
10	They put all the debris and all the
11	chemicals on, and then they evaluated various aspects
12	of the strainer or the pumps, net positive suction
13	head, structural vortexing, and also flashing. And
14	they found that at load, the strainer would pass when
15	you considered staff guidance and you did things in
16	accordance with staff guidance.
17	ACRS had previously questioned that South
18	Texas had done a test before this with a lot more
19	debris in it. And ACRS had questioned why the head
20	loss was so much higher than the second test. And it
21	was basically just the amount of fiber that was in the
22	test.
23	And if we look at the next slide, we can
24	see in the circle, I tried to fix this up since the
25	last meeting, in the circle are all the breaks that
	1

(202) 234-4433

	105
1	fail, all the weld locations that produce debris
2	amounts great enough to cause the strainer to have too
3	much debris on it, okay.
4	And the one, most of them are, the ones
5	that are about 400 pounds of fiber fines, are all loop
6	piping breaks. So big breaks. And these are all
7	double-ended breaks, these are not the single end
8	breaks, because the whole chart would be filled up and
9	we wouldn't be able to see anything.
10	The one small, the one break that's just
11	above the 200 line, that's the pressurizer surge line
12	break. And that's the only non-loop piping break that
13	can cause an excessive amount of debris on the
14	strainer. And all the other breaks below the 200
15	pound line are, those all would result in a
16	deterministic success.
17	Now, the arrow up on the upper left side
18	
19	VICE-CHAIRMAN CORRADINI: Just for some of
20	the members, so that's literally near the, that is the
21	threshold limit that was
22	MR. SMITH: About 200, it's just below
23	200 is the threshold limit. And then, and that's what
24	the test, that's what the 2008 test was done with,
25	just below 200 191, 192 pounds. If you see the
	I

(202) 234-4433

106 1 arrow up on the left, that's what the original test --2 so it had about almost four times as much fiber in it. And that's why that first test was unsuccessful. 3 4 Yeah. 5 Okay, and then we want to talk about the 6 impact of debris on the in-vessel. And this is only 7 talking about the cold leg break. We'll get into the 8 hot leg break in a minute. But for the cold leg break, the amount of 9 debris reaching the core at STP is much lower than the 10 amounts that we found to be acceptable when we did a 11 review on WACP-16793. 12 That WCAP did not evaluate the potential 13 14 need for changes in boric acid precipitation calculations due to debris effect. 15 16 And the problem that could occur when you 17 have debris in the core, at the inlet of the core, most plants credit both the core water volume and the 18 19 volume below the core inlet, like it's called the 20 lower plenum in the PWR, as a mixing volume for, basically to reduce the concentration of the boric 21 acid. 22 23 So if you have debris at the core inlet, 24 it could split those two volumes up. You might get a 25 very high concentration in the core and a low

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433
107 1 concentration in the lower plenum. So that's a 2 concern. 3 The staff doesn't have any kind of 4 information on what kind of debris amount would 5 actually cause that segregation between the lower We think the amounts of debris 6 plenum and the core. 7 that South Texas has would not cause that issue. We're still searching for a good answer 8 9 for boric acid. And the Option One plants are going to have to address this in the future as well. 10 So basically, what we're saying is that 11 we're not going to say that it's bad, but we're not 12 going to say that it's good. 13 And we're going to expect STP to come back and evaluate boric acid 14 15 precipitation with the effects of debris at some later 16 time. 17 The Option One plants are also going to have to come back and do that. 18 And we think the 19 answer to that will be in WCAP-17788. We're not sure, but we're still looking at that. 20 21 VICE-CHAIRMAN CORRADINI: So I quess I 22 didn't catch that in the, what you just said, I didn't 23 catch in the subcommittee meeting. 24 MR. SMITH: Okay. 25 VICE-CHAIRMAN CORRADINI: Maybe I missed

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	108
1	it. So how is this going to be resolved, or is the
2	resolution to be determined?
3	MR. SMITH: The resolution is to be
4	determined. We think that WCAP-17788, which is the
5	new in-vessel for the two alpha plants, which is under
6	staff review at this time, addresses it.
7	We haven't said it, we haven't come to the
8	point where we're agreeing with what the PWR Owners
9	Group is saying yet. You know, we have some RAIs on
10	it. So we have to see how those RAIs are responded to
11	before we can write an SE on it.
12	MEMBER POWERS: The boric acid
13	precipitation issue is supersaturation in boric acid,
14	or is it chemical reaction with all the junk?
15	MR. SMITH: Supersaturation.
16	MEMBER POWERS: And you don't worry about
17	precipitation by precipitating Loctite and things like
18	that.
19	MR. SMITH: The other chemical effects are
20	evaluated separately. We haven't attempted to try to
21	combine the two phenomena and, you know, evaluate them
22	together.
23	MEMBER POWERS: And the reason for not
24	combining the two effects?
25	MR. SMITH: The reason to have to do it?
	1

(202) 234-4433

	109
1	UNIDENTIFIED SPEAKER: The reason you're
2	not doing it, I think he's asking.
3	MR. SMITH: Well, I have Paul Klein here
4	from the audience to hopefully jump it.
5	MR. KLEIN: Paul Klein from NRR. The
6	reason we're not concerned boric acid precipitation is
7	designed not to happen. So the hot log switchover
8	time is designed to flush the core out before we get
9	to the point where the boric acid reaches the point
10	where it will precipitate.
11	MEMBER POWERS: Yeah, but I think what I'm
12	asking is you're now going to sweep in to your sump
13	liquid a lot of goethite and a variety of other stuff,
14	a little calcium, magnesium. Other things that just
15	love to glomp onto a borate ion and drop out of
16	solution in a nice flocculate precipitate that's nice
17	and soft and pushes through any hole that it can. Why
18	wouldn't you recognize that?
19	MR. KLEIN: I think I maybe I
20	misunderstood your question, Dr. Powers. I was
21	talking about global boric acid precipitation in a
22	cold leg break scenario, where you concentrate it over
23	a period of time until you reach a point where it
24	begins to precipitate.
25	I think, if I understand you correctly,

(202) 234-4433

	110
1	you're more considering local effects, perhaps
2	deposits on fuel rods of borates and other species
3	that are dissolved in solution?
4	MEMBER POWERS: I mean, you can expect
5	this stuff in, you're going to have certain, I mean,
6	you put a lot of junk down into the sump. Now you're
7	into recirc mode, you're putting a lot of junk into
8	your core along with boric acid.
9	Zinc just loves to precipitate out of zinc
10	borate. Iron loves to precipitate out of ferric
11	borate. Calcium likes to drop out of calcium borate.
12	Why wouldn't you recognize that?
13	MR. KLEIN: That is considered as part of
14	the analysis of the LOCA DM part of WCAP-16793.
15	VICE-CHAIRMAN CORRADINI: So that is being
16	considered now.
17	MR. KLEIN: It is considered as part of
18	the
19	VICE-CHAIRMAN CORRADINI: That's part of
20	the LOCA DM calculation?
21	MR. KLEIN: LOCA DM, yes.
22	VICE-CHAIRMAN CORRADINI: Okay.
23	MEMBER POWERS: Thanks, Paul.
24	MR. SMITH: Let's see, did I finish this
25	one? Yep, I think I did get to the bottom. So I

(202) 234-4433

	111
1	think we're now going to move on to the thermal
2	hydraulic part of the presentation.
3	MS. REGNER: Dr. Kaizer, are you able to
4	hear us? Josh Kaizer? Dr. Josh Kaizer's supposed to
5	be on the phone
6	VICE-CHAIRMAN CORRADINI: Let's make sure,
7	yeah, I hear it start crackling. Something's going to
8	happen. Josh, are you out there?
9	MR. KAIZER: I am. Can you hear me?
10	VICE-CHAIRMAN CORRADINI: We can now.
11	MS. REGNER: Thanks, Josh.
12	MR. KAIZER: Excellent.
13	MR. SMITH: Okay, so Josh isn't here.
14	He's at ASME's main V&V conference, making a
15	presentation. And one of the V stands for Vegas,
16	because it's in Vegas. I don't know what the other V
17	stands for.
18	VICE-CHAIRMAN CORRADINI: Verification.
19	Are you really in Vegas?
20	MR. KAIZER: I am.
21	MR. SMITH: And the other reviewer, Reed
22	Anzalone, he isn't here today because he's home taking
23	care of a newborn baby. So therefore, I get to
24	present these slides.
25	VICE-CHAIRMAN CORRADINI: But we can call
l	I

(202) 234-4433

	112
1	upon them as needed.
2	MR. SMITH: Yes, we can call on Josh.
3	Let's go to the next one. Okay, the goal of the
4	thermal hydraulic evaluation was to determine whether
5	the LTCC, long-term core cooling, model used by South
6	Texas was acceptable.
7	When they started doing the evaluation,
8	they determined that large breaks, greater than 16
9	inches, were too complex to evaluate, and they were
10	not evaluate with the evaluation model, the RELAP5.
11	So the evaluation only focused on the
12	long-term portion of the event, which requires the
13	evaluation of fewer phenomena. And then the phenomena
14	that are evaluated are a lot less complex than the
15	typical LOCA evaluations. So this reduced the
16	complexity of the evaluation and made the review much
17	more reasonable.
18	And then the next slide shows what portion
19	of the in-vessel evaluation was done by the long-term
20	core cooling evaluation model. And that small and
21	medium, medium is less than 16-inch, I know that's not
22	a typical medium, but that's what we called for the
23	long-term core cooling evaluation model, that's what
24	where that evaluation model came in.
25	The big, greater than 16-inch, hot leg

(202) 234-4433

	113
1	breaks were risk-informed, that means they were
2	assumed to go to core damage, just so that they didn't
3	have to do a RELAP5 evaluation of those. And the cold
4	leg evaluations were all done by RoverD by comparing
5	with WCAP-16793.
6	One thing I think I heard perhaps during
7	the STP discussion was it was asked if all the greater
8	than 16-inch breaks already went to failures due to
9	debris effects. And they do not.
10	There are some hot leg 16-inch breaks that
11	do not result in a debris failure. So they added a
12	few breaks, I think maybe five for the two train case,
13	to the core damage bin. I don't know if that was
14	clear during the earlier discussion.
15	VICE-CHAIRMAN CORRADINI: Well, actually,
16	I said it, and I probably said it wrong. So what I
17	thought was occurring was that when I'm larger than 16
18	inches, I would have already covered that failure from
19	the strainer failures. That's what I thought I was
20	trying to say, but that didn't
21	MR. SMITH: But you don't. That's
22	incorrect. There's a few greater than 16 inch hot leg
23	breaks that don't generate enough debris to cause the
24	strainer to be considered to go to core damage. So it
25	added a few large breaks to the risk.

(202) 234-4433

114 1 VICE-CHAIRMAN CORRADINI: Okay, then, 2 actually, I'm going to, don't move your slides, but I want to take a step back. Because you guys did a 3 4 bounding analysis, which I think properly, in notes to 5 myself and how I'm trying to inform the members. But in the staff's bounding analysis, you took some 6 7 number, I think 12 point whatever. 8 MR. SMITH: Twelve point eight. 9 VICE-CHAIRMAN CORRADINI: For the two 10 train and operations. And anything above that, you said, Let there be a failure. 11 12 That's right. MR. SMITH: VICE-CHAIRMAN CORRADINI: And that's your 13 14 bounding analysis. 15 MR. SMITH: Correct. 16 VICE-CHAIRMAN CORRADINI: Okay, and that 17 delta CDF and delta LERF was all, of course, higher but still -- so do I have that correct? 18 19 MR. SMITH: Yes, you do. 20 VICE-CHAIRMAN CORRADINI: Okav. 21 MR. SMITH: So that analysis would have 22 accounted for all those breaks, all the breaks that 23 we're talking about. And then the other part of this slide is that the review concentrated on the criteria 24 25 which came from WCAP-16793, for a maximum PCT and a

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	115
1	deposit thickness.
2	VICE-CHAIRMAN CORRADINI: All right, look
3	what I wrote.
4	MR. SMITH: And the next slide, this is
5	just a summary of the conservatisms and
6	simplifications that were used in the evaluation
7	model. For the first one, the full core blockage,
8	it's unlikely that it would occur, especially at the
9	early time of five minutes. Very unlikely that it
10	would occur at that time, or that it would be full
11	core blockage.
12	The other thing is that the flow through
13	the barrel baffle region was ignored. That would have
14	allowed more coolant into the core. Other than, what
15	was assumed was it just spilled over the steam
16	generator tubes. There's other paths that the coolant
17	could take that were just assumed not to be available.
18	VICE-CHAIRMAN CORRADINI: And just to ask
19	there, because I think you guys made a point of this.
20	It's just too hard to evaluate what the flow was. So
21	because it didn't affect the end result, it
22	conservatively was ignored. But for sure, there'll be
23	some flow through the first two, the second and third
24	bullet. Correct?
25	MR. SMITH: Yes.
	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

	116
1	VICE-CHAIRMAN CORRADINI: It's just too
2	hard to know what it is?
3	MR. SMITH: And actually, looking into the
4	future, 17788 is trying to quantify some of those
5	flows through the barrel baffle region to credit them.
6	VICE-CHAIRMAN CORRADINI: Okay, fine.
7	Thank you.
8	MR. SMITH: So that's a later topic I'm
9	we'll be back talking about.
10	MEMBER MARCH-LEUBA: What I think you have
11	told us is not hard to get an estimate of what those
12	numbers are, it's how to validate that estimate. And
13	that would have been a very large effort to validate.
14	MR. SMITH: Yes. And the flow, the
15	trouble is that the flow those are relatively, I'm
16	not going to say high resistance, but higher
17	resistance flow passed through the barrel baffle.
18	So the flow actually doesn't, it's complex
19	because the flow doesn't actually start going through
20	those until you start getting debris built up at the
21	core inlet. So it's a, you know, it's a dynamic
22	problem.
23	VICE-CHAIRMAN CORRADINI: Okay, thank you.
24	MR. SMITH: They biased the key input
25	parameter conservatively, and they also used a counter
	I Contraction of the second

(202) 234-4433

	117
1	current flow model. It was a conservative model, it
2	was implemented conservatively to reduce the flow
3	through the core. So the implementation maximized the
4	effects of the counter current flow, which would tend
5	to reduce the flow through the core.
6	And the bottom line is this ended up in a
7	simplified hot leg break simulation, which the staff
8	was able to review and find to be acceptable. Is
9	there any questions on the thermal hydraulics? Josh,
10	I think you're off the hook.
11	Now I'm going to turn it over to CJ for
12	the risk portion of the presentation.
13	MR. FONG: Thanks, Steve. My name's CJ
14	Fong, I'm a team leader for risk-informed licensing at
15	NRR.
16	Candace De Messieres, who you heard it
17	from at the subcommittee meeting, couldn't be here
18	today, but I did want to take a moment and thank her
19	on the record. She was instrumental in producing not
20	just these slides, but also the safety evaluation.
21	So, certainly appreciate her help. Next slide,
22	please.
23	As you heard mentioned earlier today,
24	this was a very integrated review. So I'm going to
25	talk about Principles Four and Five, which talk about
	I contraction of the second seco

(202) 234-4433

ĺ	118
1	risk and long-term performance monitoring. But of
2	course, a lot of topics Steve just mentioned really
3	fed into how we calculated that risk.
4	And then on topic five, or Principle Five
5	rather, what we wanted to monitor and what portions of
6	the licensee's analysis, that was really a team
7	decision. So, again, these are presented as kind of
8	five individual or independent principles, but in this
9	review, the concept was that we did a very integrated,
10	team-focused approach. Next slide, please.
11	So a little background. This is sometimes
12	affectionately referred to as the most famous figure
13	in risk, figure 4 from Reg. Guide 1.174. What we did
14	here was we wanted to rely on the existing framework
15	for risk-informed changes to a plant's licensing
16	basis. So you see this stair step figure here, this
17	defines how much of an increase in risk is acceptable
18	to the staff.
19	And so for a GSI 191 evaluation, we look
20	at the delta CDF, which is the CDF from the as-built
21	as-operated plant, as realistically as possible with
22	all the debris that's there, minus the CDF from a
23	plant, a hypothetical clean plant, where debris would
24	not present a challenge.
25	And of course, there's a corresponding

(202) 234-4433

	119
1	figure for LERF. I didn't show it here, but the risk
2	thresholds are a factor of ten lower. Next slide,
3	please.
4	So the major areas reviewed by the staff,
5	again, kind of a recap. We looked both at the
6	increase in risk with a delta CDF, and also the
7	plant's baseline risk, in order to do a comparison
8	with our acceptance guidelines. And so very
9	comprehensive review.
10	We looked at the initiating event
11	frequencies; what plant configurations were in place,
12	in other words, the pump combinations; how the
13	licensee identified the breaks to be evaluated;
14	scenarios; what hazard groups were in play. A whole
15	litany of things here.
16	I have highlighted two in red that we're
17	going to talk about in a little more detail on future
18	slides. And we also looked at the licensee's base
19	PRA, and of course we leveraged Reg. Guide 1.200, and
20	the results of previous looks at South Texas's PRA.
21	And so for the most part, the base PRA
22	evaluation the staff did was to verify the CDF results
23	and LERF results presented by the licensee, i.e., the
24	X-axis.
25	Although I'll point out that some portions
	I

(202) 234-4433

of the base model were used, both in identifying which 1 2 sequences to look at it and also the percentage of 3 time that the licensees was in, for example, a two train operation versus one train. So that base model 4 5 did feed into the delta CDF calc a little bit. So maybe I should have had a dash there or going up 6 7 there, but kept it clean. 8 And then, of course, we took a long, hard 9 look at the delta CDF and delta LERF. And to do that, 10 all the bulleted items that you see here were evaluated by the staff. 11 In fairness, CJ, it did 12 MEMBER STETKAR: affect the conditional probability of being in a 13 14 single train configuration versus not a single train 15 configuration. But it also affected something that 16 Corradini brought up before the fact, the Dr. 17 likelihood that those containment fan coolers are 18 running. 19 MR. FONG: Sure. 20 MEMBER STETKAR: Which substantially affects their delta LERF calculation. 21 22 MR. FONG: Yeah. 23 MEMBER STETKAR: And that came directly 24 out of your base PRA model also. 25 Absolutely. MR. FONG: So yeah, it's,

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

120

	121
1	like I said, you could argue there should be another
2	arrow there, but just trying to illustrate the
3	concept. Yup. Next slide, please.
4	So the really, the key assumptions that we
5	noticed South Texas made in order to calculate the
6	increase in risk, as was mentioned earlier, they
7	relied on NUREG 1829, LOCA frequencies. And if you
8	read NUREG 1829, there's a bunch of those. There's 25
9	year, 40 year, PWR, BWR, there's different aggregation
10	schemes. It's not kind of a one-stop shop, it's more
11	like a large menu.
12	So the staff took a long, hard look at
13	which frequencies were actually used, and we noted
14	that there's been a lot of discussion about
15	aggregating the opinions of experts in different
16	schemes, mainly geometric arithmetic.
17	And of course, we're aware of the ACRS
18	feedback on that topic, both in this case, and also
19	with 50.46(a) proposed rulemaking. So I think it was
20	important to note that the licensee presented their
21	results using both schemes, which is an approach
22	recommended by the ACRS on several occasions, and the
23	staff agreed with that.
24	Number two, you heard earlier a little bit
25	about how the licensee took plant-wide LOCA

(202) 234-4433

	122
1	frequencies that are provided by NUREG 1829 and
2	allocated them onto individual locations.
3	So you'll get, for example, a value out of
4	NUREG 1829 that says, Large break low frequency at a
5	PWR is 5E minus 6. But it doesn't tell you how to
6	allocate that onto individual breaks.
7	So South Texas did that using what we call
8	the top-down approach, which assumes that the
9	likelihood of a break is a function only of its size
10	and doesn't look at location-specific factors, for
11	example, what kind of weld it is, what shape it is,
12	that sort of thing.
13	And there is some information in the
14	literature that suggests that that can make a
15	difference. And we'll talk about how that was
16	addressed in a future slide.
17	The third topic is what South Texas called
18	their continuum break assumption. And what they did
19	was, they did consider partial breaks under this
20	model. And they assumed that a break, for example, a
21	partial break of six inches, has the same likelihood
22	as a complete break of six inches.
23	Again, if you read NUREG 1829, there's
24	some kind of qualitative thoughts on that. It's
25	difficult to assign a numeric value to that.
	I contract of the second s

(202) 234-4433

1 And so what South Texas also did was 2 consider an alternate assumption, which was that only 3 double-ended guillotine breaks occur, or only complete 4 breaks. And again, the staff felt that, lacking a 5 clear-cut consensus approach, exploring these two sort of ends of the spectrum was a reasonable solution. 6 7 Next slide, please. 8 MEMBER RICCARDELLA: So they did that as 9 sort of a sensitivity study, and determined that it 10 didn't affect the result? MR. FONG: Right. They did both cases. 11 12 It's kind of interesting, because you really can't say that one's more conservative than the other. It kind 13 14 of depends on what scheme you are in and, you know --MEMBER KIRCHNER: CJ, given what they were 15 16 using it for, wasn't location more important that? MR. FONG: 17 Yeah, they always look at all For each location -the locations, right. 18 19 MEMBER KIRCHNER: Debris source term is the real issue here. 20 21 MR. FONG: It is, yup. 22 MEMBER RICCARDELLA: But thev didn't 23 consider, well, if something's a dissimilar metal weld 24 that has known susceptibility to a mechanism. 25 MR. FONG: Right.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	124
1	MEMBER RICCARDELLA: They didn't treat
2	that differently than another on that doesn't have
3	that concern, right?
4	MR. FONG: Exactly. And there are other
5	approaches out there, albeit not endorsed by the NRC
6	staff, but in academic literature, for example. It'd
7	say, Hey, if it's a dissimilar metal, well, you should
8	bump it up by a factor of ten.
9	Or if it's been recently, you recently had
10	a weld overlay, you can reduce it by a factor of ten.
11	So there's some thoughts out there on how to do that,
12	but there's not a clear-cut consensus approach.
13	VICE-CHAIRMAN CORRADINI: But geometry
14	dominated, and then if I understand this I still
15	want to get to how they tried to do it compared to
16	your bounding calculation. Geometry dominated, they
17	came in said, If I had a double-ended at some scale,
18	12 point whatever, anything like that bigger would
19	have failed, even though geometrically, it may not
20	have produced as much debris.
21	You came in and then did a bounding on top
22	of that and said, Okay, I'm not really sure about
23	whether it's how you weight these, so anything above
24	the 12 point whatever failed. And now did that the
25	delta CDF or delta LERF enough to be concerned. And
	1

(202) 234-4433

	125
1	the conclusion was not.
2	MR. FONG: Right, and we'll show you
3	numerically what that looks like in a second, Dr.
4	Corradini.
5	VICE-CHAIRMAN CORRADINI: There are two
6	kind of check calculations, one by them, one by you.
7	MR. FONG: Right, and then another way to
8	look at it is we both felt that the 12.8 double-ended
9	guillotine of the pressurizer surge line would be a
10	core damage scenario under the conservative
11	assumptions analysis, etc.
12	If you start going up and looking at
13	bigger breaks, they have a number of them where they
14	said, There's no core damage here because of where
15	it's located. As a conservative assumption, we said,
16	No, anything bigger than that goes to core damage. So
17	we're kind of bounding all that with our approach.
18	VICE-CHAIRMAN CORRADINI: Okay, thank you.
19	MR. FONG: Next slide, please. So here's
20	what we did, and this has been shared with the ACRS on
21	a couple different occasions. We just assumed,
22	conservatively, that the portion of risk attributable
23	to debris, or delta CDF, is equal to the frequency of
24	the smallest what we're calling critical break size.
25	Critical break means it can produce and

(202) 234-4433

	126
1	transport debris in excess of the tested amount. And
2	it's not shown here, but we looked at this under the
3	two train and single train configurations and used the
4	appropriate waiting factors.
5	The graph I'm going to show you uses the
6	arithmetic mean, but in our safety evaluation, we
7	present several other cases as well. Next slide,
8	please.
9	So what you saw at the subcommittee, we'll
10	kind of work from the bottom up, there's a range of
11	licensee-reported values. As I mentioned, they looked
12	at arithmetic mean, geometric mean, continuum break,
13	double-ended guillotine. And depending on what
14	combination of assumptions you want to look at, those
15	kind of light blue diamonds, thanks Lisa, indicate the
16	increase in CDF.
17	The bounding calculation in our safety
18	evaluation, using the method I just described, Dr.
19	Corradini, is the blue diamond here. So it does make
20	a difference, but still, substantial margin to the
21	acceptance guidelines.
22	And then, in response to some of the
23	discussion at the follow-up subcommittee, which is I
24	think on April 18 or around then, I wanted to include
25	we'd already performed this calculation, our
1	

(202) 234-4433

127 consultant had already performed it. 1 2 But I want to include what happens if you 3 assume that for the single train case, any break two 4 inches and up goes straight to core damage. And 5 that's the orange diamond you see there. So again, there is certainly an increase, which makes sense. 6 7 But it's not something that challenges the acceptance 8 guidelines. Next slide, please. 9 summarize, looked So to we at the licensee's base PRA and determined that it was of the 10 appropriate scope level of detail and technical 11 adequacy for this application. the 12 We looked at approach they used to quantify that portion of risk 13 attributable to debris, that was not initially in 14 15 their base PRA, of course. And we compared the calculated risk to the 16 17 acceptance guidelines in Reg. Guide 1.174 under a variety of different assumptions, and we performed our 18 19 bounding calculation and sensitivity, own and 20 confirmed that the acceptance guidelines are met. Next slide, please. 21 22 Moving on to Principle Five, which is 23 long-term performance monitoring, so we took a look at 24 the risk assessment provided by the licensee. Of 25 course, that's kind of a snapshot.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

And so the concept behind the Fifth Principle in Risk-Informed Decisionmaking is you want to make sure that there aren't changes to the plant down the road that could erode the safety gains that were made or could undermine the assumptions that went into the risk calculation.

7 MEMBER STETKAR: CJ, I'm, sorry, can you 8 back? You said something that caught my attention, 9 and I want to make sure that I understand it. Can you 10 go back to that picture that you showed on, that What is that orange diamond, that 11 picture there. sensitivity thing? Can you explain that again? 12

MR. FONG: Yes, that's a sensitivity calculation provided by Southwest which assumes that, for the two train case, 12.8 is still the threshold. But for the one train case, instead of the nine inches and change, it goes down to two.

MEMBER STETKAR: Thank you for clarifying 18 19 that, because when you first said it, I got the 20 impression that you assumed that any two-train break, 21 two-inch break went to core damage regardless of --22 (Simultaneous speaking.) 23 MR. FONG: That'd be off scale high, I believe. 24 25 MEMBER RICCARDELLA: But when you say --

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

	129
1	MEMBER STETKAR: It wouldn't be off scale
2	high, it would be on the order of a couple times ten
3	to the minus five. Off this scale.
4	MR. FONG: Yeah, yeah.
5	MEMBER RICCARDELLA: But when you say goes
6	to core damage, that doesn't go to core damage with a
7	probability of one, does it?
8	MEMBER STETKAR: Yeah. That would, the
9	assumption is, that break generates enough debris that
10	you would plug the strainers, that you would not have
11	if you only had one train available, one set of
12	pumps running. That's all you have, the other pumps
13	all failed because they didn't have electric power or
14	they, you know.
15	MR. FONG: Out for maintenance, whatever.
16	MEMBER STETKAR: Out for maintenance or,
17	you know, whatever. If you only had one train running
18	and you had a two-inch break, that would be the core
19	damage frequency.
20	MR. FONG: Correct.
21	MEMBER STETKAR: Because you would plug
22	the strainer for that one train.
23	MEMBER MARCH-LEUBA: No, it's a
24	conditional probability of core damage where you need
25	to multiply times the frequency.
	1

(202) 234-4433

	130
1	MEMBER STETKAR: That's right.
2	UNIDENTIFIED SPEAKER: The frequency of
3	the two-inch break.
4	MEMBER KIRCHNER: But that's the frequency
5	of the two-inch break.
6	MR. FONG: Don't forget it's kind of a
7	weighted value, right. Because the likelihood of
8	being in a configuration where only one train's
9	available is small.
10	Can we go back to the future here? Okay,
11	so performance monitoring, as I said, it's a process
12	to ensure that long-term, the assumptions made in the
13	risk analysis remain valid. So the information
14	provided by South Texas is that they're going to
15	update their analysis every 48 months.
16	The staff looked at the procedures and
17	controls they have in place to ensure that debris is
18	prevented or mitigated if it's discovered. You heard
19	about the tech spec this morning, and also the design
20	control process.
21	There's also a provision that the NRC
22	would be notified if the acceptance guidelines are
23	exceeded. And that's all spelled out in the SR,
24	again, as you heard this morning. Next slide, please.
25	So to summarize these last two principles,
	1

(202) 234-4433

	131
1	we feel that, you know, just kind of in plain English,
2	the licensee provided a credible calculation for risk
3	that met the acceptance guidelines. We acknowledged
4	there were some portions of their analysis that didn't
5	use a consensus method.
6	We felt they addressed that adequately,
7	either through credible, reasonable, alternative
8	calculations, or the staff's bounding calculations and
9	sensitivity calculations.
10	And we took a look at their performance
11	monitoring approach and determined that it was
12	consistent with our guidance in Reg. Guide 1.174.
13	Next slide. That's it.
14	MS. REGNER: So this is a summary.
15	VICE-CHAIRMAN CORRADINI: Green light.
16	That's right, you're no worse than some of us.
17	MEMBER POWERS: Actually, you just provide
18	an exercise for him.
19	MS. REGNER: Just trying to make you feel
20	good, doctor.
21	VICE-CHAIRMAN CORRADINI: Thank you. I
22	need everything I can get.
23	MS. REGNER: This is a summary of some of
24	the major topics that were discussed during the
25	subcommittee and where questions were answered by the
I	I

(202) 234-4433

	132
1	South Texas project. I didn't necessarily want to go
2	into them unless there are questions.
3	MEMBER STETKAR: Lisa, are those
4	supplements now on the docket with this application?
5	MS. REGNER: Both the email response is
6	publicly available on the docket.
7	MEMBER STETKAR: Okay, but the second?
8	MS. REGNER: The second was submitted
9	under oath and affirmation as a formal document, and
10	that is recognized in our SE, correct. And there
11	right. Okay, any other questions about these topics?
12	So in summary, STP acceptably evaluated
13	the impact of debris, appropriately considered both
14	risk and deterministic aspects. Most of the break
15	scenarios are addressed using the traditional
16	deterministic methods.
17	Their long-term core cooling evaluation,
18	in this case that's the in-vessel thermal hydraulic
19	analysis, those simulations are conservative. They
20	meet the acceptance criteria. Their debris analysis
21	meets the key principles of risk-informed regulation.
22	And their probabilistic risk assessment results show
23	that the change in risk is very small.
24	What questions do you have on what the
25	staff has presented?
I	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

	133
1	VICE-CHAIRMAN CORRADINI: Thank you, Lisa.
2	Any questions from the members? They haven't been
3	shy. Okay, so no more questions from the members.
4	I'll thank the staff. And I think now we want to turn
5	and see if there's members of the public, either
6	inside the room or the phone line, and
7	UNIDENTIFIED SPEAKER: Bridge open.
8	VICE-CHAIRMAN CORRADINI: Thank you. So
9	are the members of the public, if you could please
10	give us your comment. First identify yourself,
11	please. Going once, going twice. Okay, why don't you
12	close the line. Okay. I'll turn it back to our
13	chairman.
14	CHAIRMAN BLEY: Thank you, Mr. Corradini.
15	We will go off the record at this time until 12:45,
16	when we'll reconvene. Members, wait. Off the record.
17	(Whereupon, the above-entitled matter went
18	off the record at 11:19 a.m. and resumed at 12:44
19	a.m.)
20	CHAIRMAN BLEY: We are back in session.
21	At this point, I'll turn it over to Dr. Rempe to take
22	us through the work on our Consequential Steam
23	Generator Tube Rupture. Joy.
24	MEMBER REMPE: Colleagues, today we are
25	going to receive what I believe will be our final
1	I contract of the second se

(202) 234-4433

134 1 briefing on the report Consequential Steam Generator 2 Tube Rupture Analysis for Westinghouse and Combustion Engineering Plants with Thermally Treated Alloy 600 3 4 and 690 Steam Generator Tubes, or NUREG 2195. 5 This report documents results from a multi-year and multi-disciplinary effort that the 6 7 staff completed to address the user need concerning 8 CSGTR phenomena. The last time we met about this 9 topic as a full committee was way back in May 2013. 10 But since that -- really. Since that time, we've 11 had several 12 subcommittee meetings with the materials, on 13 metallurgy, and reactor fuels. And during our last 14 meeting, which was December 2106, the members of the 15 subcommittee that were present agreed that this effort was ready to be presented to the full committee for 16 17 comment. And I believe today that we're going to be 18 19 starting by hearing from Kevin Coyne from the Office of Research. 20 Okay, thank you, Dr. Rempe. 21 MR. COYNE: 22 My name is Kevin Coyne, I'm with the Office of Nuclear 23 Regulatory Research, and am their branch chief 24 responsible for this effort since it kicked off in 25 late 2009.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	135
1	Thank you again for the opportunity to
2	brief the full committee this afternoon. We're
3	looking forward to the briefing and any additional
4	comments we get from the committee.
5	Just to go through some very brief
6	history, I believe Raj Iyengar will go through some of
7	it in his presentation. But just to put this in
8	context, this work was initially kicked off after the
9	agency closed the Steam Generator Action Plan in
10	December of 2009.
11	The focus of this effort was to take all
12	that we learned from the Steam Generator Action Plan
13	and focus on developing a better and more integrated
14	and traceable approach for assessing the risk from
15	consequential steam generator tube rupture events.
16	Needless to say, we had several challenges
17	along the way. Most notably, we had diversion of
18	staff to address higher priority work, such as the
19	Fukushima follow-up, and we had some budget
20	challenges. So the schedule for this work became much
21	longer than we had initially assumed, and the scope of
22	the work had changed.
23	So when you look through some of the user
24	need documents, maybe some questions of how the work
25	today looks as how it was initially envisioned. And
1	

(202) 234-4433

136 1 it's because we kind of dynamically re-scoped things 2 as the regulatory picture evolved over time. Despite those efforts, there are several 3 4 advancements that we came out with through this 5 effort. We have а much better and improved understanding of how to characterize steam generator 6 7 flaws in the steam generators based on operating 8 experience, and the ability to align that flaw 9 characterization to an actual operating plan, which is 10 a significant advancement over what we had with the previous approach. 11 We have a full analysis of the combustion 12 engineering steam generator geometries to complement 13 14 the previous work we did on Westinghouse steam 15 generators. We have a much better integration of the thermal hydraulic work, the CFD and MELCOR work that 16 17 underpins the PRA analysis. And improved validation of the structural 18 19 modeling we use in our steam generator tube rupture 20 calculator that helps us calculate the probabilities. So we've talked about some of this in 21 22 previous subcommittee meetings, and I won't go through 23 that anymore. And we'll discuss portions of that as 24 we go through the briefing today. But with that, and 25 my remarks, and turn it over to the staff. And again,

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	137
1	appreciate the opportunity to brief the committee
2	today.
3	VICE-CHAIRMAN CORRADINI: Kevin, can I ask
4	a question?
5	MR. COYNE: Sure.
6	VICE-CHAIRMAN CORRADINI: Maybe I'm, I
7	want to understand. So assuming all of this is good,
8	and it seems quite good to me, where is this going to
9	be used? How is this going to be used? I'm vague on
10	that.
11	MR. COYNE: So this is one of the things
12	that was one of the big evolutions in our thinking
13	when this work started. So if we go back to 2009, we
14	had initially presumed there may be issues with the
15	combustion engineering designs, with the geometry of
16	the steam generator and how they would respond these
17	severe accident conditions.
18	However, the staff hadn't fully documented
19	the technical basis for that concern. So the thinking
20	at that time was that this work would lead to a much
21	better technical basis to support a potential
22	backfitting analysis, for CE plants or at least a
23	generic communication of stressing the need to keep
24	water on the secondary side of the steam generators to
25	prevent creep failure.

(202) 234-4433

	138
1	So that was before the Fukushima accident.
2	As we progressed with the work in the Fukushima
3	follow-up, the Flex Initiative came through. And in
4	large part the Flex Initiative did for the steam
5	generators what we were hoping this effort would do.
6	So the regulatory purpose of this work
7	evolved from that, and so we have NRR here today to
8	speak to their regulatory view and how this would be
9	used. But right now, our focus is on developing
10	improved tools to underpin the significance
11	determination process. So some of the things we use
12	for assessing steam generator issues
13	VICE-CHAIRMAN CORRADINI: Can you stop
14	there? Just help me, significant determination for
15	current operating plan?
16	MR. COYNE: Yes, yes, the ROP.
17	VICE-CHAIRMAN CORRADINI: Okay, okay. All
18	right, and that currently is the main point of
19	application.
20	MR. COYNE: Right. In addition to making
21	sure we fully document the staff work completed today,
22	that would be one of the potential outcomes of this
23	effort.
24	VICE-CHAIRMAN CORRADINI: Okay. The
25	reason I'm asking the question is, for example, would

(202) 234-4433

139 1 it be used as part of an audit tool when the staff is 2 looking at PRAs from other plants? Like APR 1400? 3 MR. COYNE: It's a good question. Ιt 4 could certainly inform that. And one of the initial purposes, and it's still useful to support this, is 5 6 when we first had the user need from NRR, one of the 7 questions, in addition to reactor oversight, was the 8 evaluation of the SAMDA analysis for license renewal. 9 And so these types of scenarios come up in 10 the SAMDA analysis. And the staff lacked an independent assessment tool to really look at some of 11 12 the consequential steam generator scenarios that were coming up in the license renewal review. 13 So part of 14 the purpose of this was to provide an updated and 15 independent evaluation of those methods. 16 MEMBER STETKAR: Okay, let me just say, 17 from my perspective, Mike, I would hope that the staff would use it in that context. Because in particular, 18 19 for anybody under Part 52, they are supposed to do a level two assessment of large release frequency. 20 21 VICE-CHAIRMAN CORRADINI: Right. 22 MEMBER STETKAR: As part of their PRA 23 that's audited by the staff. And if this issue was 24 not addressed at all, that could conceivably be an 25 omission from the scope of their level two analyses.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	140
1	Because this isn't, you know, it's not
2	going to affect core damage frequency, but it could
3	conceivably have a measurable effect on conditional
4	large release frequency. So in terms of auditing, at
5	least, you know, a question I would ask is, Have you
6	considered it, and if not, that's not so good.
7	VICE-CHAIRMAN CORRADINI: But you wouldn't
8	go so far as to change?
9	MEMBER STETKAR: I've got it for now. So
10	for right now, significant determination, possibly
11	PRAs for those that have geometric similarities to
12	what you're considering.
13	VICE-CHAIRMAN CORRADINI: Any PRA should
14	address it.
15	MEMBER STETKAR: Right, but it might not
16	be important, for some plants, depending on their
17	design, how many, you know, all of the other factors
18	that feed into this. But it ought to be addressed.
19	In terms of staff auditing, in terms of big picture
20	things.
21	MEMBER REMPE: But this topic did come up
22	in our review of the APR. And yeah, so I think it is
23	important to have the staff make sure that all of the
24	staff is aware of it. During our last subcommittee
25	meeting, we did mention that this work is being used
I	I

(202) 234-4433

	141
1	as part of the level three PRA?
2	MR. COYNE: That's correct. And notably,
3	the tools that we developed as part of this work were
4	applied for the global project.
5	VICE-CHAIRMAN CORRADINI: Thank you.
6	MR. IYENGAR: Okay, thank you, Kevin. I
7	think Kevin already walked through some of these
8	steps. When you start in 2009 and went through some
9	tough times because of re-prioritization of our work.
10	But we pulled through, and we engaged with you in a
11	full committee meeting in 2013.
12	Since then, we prepared a NUREG, and we
13	came and talked to you in 2015. But I want to tell
14	you interim, we always had some informal meetings with
15	Dr. Rempe and some of her colleagues present here.
16	And then since then, we have prepared the NUREG. We
17	came to you, we briefed you on the public comments.
18	Yes?
19	MEMBER STETKAR: Just for the record,
20	informal meetings with members of the ACRS have no
21	bearing on the committee's deliberations. I just want
22	to make that clear on the public record.
23	MR. IYENGAR: Right. Well, I'll come back
24	to it, why I mentioned that. So now, I think after
25	the meeting late last year, we had kind of a path

(202) 234-4433

forward with you.

1

2

3

4

5

6

7

And then we have certain things that we wanted to address in front of the committee, full committee, particularly focused on some thermal hydraulic issues that Mike Salay would be giving an overview on. Because other things that I guess have been satisfactorily addressed in the NUREG.

8 Before I turn over to Mike, I just wanted 9 to mention that throughout that six-year period since 10 2009, or a seven-year period, we have been very fortunate to have the guidance and support from you, 11 12 and the feedback has been very important. And we've had differing priorities. Some of us have actually 13 14 taken on other assignments or other responsibilities 15 in the agency.

But I wanted to highlight this, a single commitment of a staff is because we are still here. All of us are in a very different, some, like Kevin is in a different office and a different branch. But we are still here because we want to make sure this happens and this is closed satisfactorily.

It's very important, and just shows, this is probably only one of the many hundreds of examples you have seen of staff commitment. And throughout the process I also, I'm thankful to the ACRS committee

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433
	143
1	members, in particular Dr. Rempe and Dr. Dana Powers.
2	I want to highlight they've been guiding
3	us and prodding, if I may say, throughout the process,
4	and ensuring that we are here at this stage. Thank
5	you all very much. Mike.
6	MR. SALAY: Good afternoon, I'm Mike
7	Salay, and I'll talk about thermal hydraulic overview
8	and some response to the questions about the thermal
9	hydraulic analysis.
10	Hadn't seen this before, so I will talk
11	about CSGTR scenario description, the TH analyses that
12	were done, briefly go over the method, and just a
13	bullet on the experimental basis, and then discuss
14	some of the differences between CE and Westinghouse
15	plants.
16	The scenario that we're looking at is the
17	station blackout. It's a low probability event, and
18	combined with a loss of feed water to steam
19	generators. The reactor inventory boils off, the
20	system is at high pressure, and it starts heating up.
21	And something in the RCS is going to fail.
22	It's either going to be the tubes or
23	something else in the RCS. If the tubes fail, it can
24	provide half-efficient products to the environment,
25	bypassing the containment. If something else fails,
	I contract of the second se

(202) 234-4433

	144
1	the containment can contain what is released.
2	And so here you see Westinghouse, a fast
3	Westinghouse scenario for oh, it's the PDF. Okay,
4	for a fast Westinghouse scenario. This actually was
5	an animation, but, oh well. Yeah, so you start with
6	a full system, then you lose offsite power, the
7	secondary starts draining down.
8	Your primary is lost only through a pump
9	leakage, if any. When your secondary side inventory
10	depletes, then your primary inventory starts boiling
11	off. Then when your primary sedimentary hits the top
12	of the U tube, your recirculation, the primary, of
13	water, stops.
14	And the whole thing boils off, and you
15	release, you develop a steam recirculation with, if
16	your loop seals are closed, then the recirculation
17	pattern goes up through the hot leg, through the steam
18	generator tubes, back through the steam generator
19	tubes, and back.
20	This occurs within four hours, and this is
21	for a situation where AFW fails immediately. And this
22	is from NUREG 6995, this work. And more likely
23	scenarios involve operator actions to delay or prevent
24	this from happening. So it will delay failure time.
25	And here the temperature traces for the
	I

(202) 234-4433

hot leg, hottest tube and average tube for the scenario. It shows steam generator dry-out, where we start delaying super-heated steam, and it shows the temperature difference between the hot leg hottest tube and your average tube. And then, your oxidation accelerates and temperatures rise rapidly before failure.

And there are a few points on the RCS that are of special interest. You have, it should be noted that you have different materials with different oxidation and melting temperatures. Another important aspect is your wall thicknesses.

Your thermal response time is quicker for lower thickness materials. Your steam generator tubes would provide a path for fission products containment if they fail to bypass containment, are very thin, five hundredths of an inch. Whereas your hot leg's about two and a half inches.

19 a bunch of other points There's of 20 I've listed them before and just put them interest. 21 on a slide here. And the situation that we're looking 22 at is the so-called high dry low scenario, where your 23 primary side of your steam generator is at high 24 pressure. Your secondary side is dry and at low 25 pressure.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

	146
1	MEMBER KIRCHNER: Do you have any sense
2	for how strong any validation of this recirculation of
3	the superheated steam in the steam generator?
4	MR. SALAY: Yeah, the
5	MEMBER KIRCHNER: Have there been any
6	experiments?
7	MR. SALAY: There've been the Westinghouse
8	one-seventh scale experiments.
9	MEMBER KIRCHNER: I'm just curious how
10	much the flow might stagnate rather than recirculate.
11	MR. SALAY: In? Well, if you have
12	buoyant.
13	MEMBER KIRCHNER: No, I understand the
14	thermal hydraulics. I'm just curious how strong this
15	effect might be in the actual condition that you're
16	describing.
17	MEMBER POWERS: Pretty effective.
18	MEMBER KIRCHNER: It is pretty effective?
19	MEMBER POWERS: Yeah, all the questions
20	you have running through your mind like crazy right
21	now arose when it was first proposed. And
22	Westinghouse did their one-seventh scale with sulphur
23	hexafluoride, and they tried, to the limits that you
24	can, to scale things properly. They got pretty
25	healthy flows, and stable flows.
	I

(202) 234-4433

	147
1	Now, you ask what are the potentials.
2	Well, clearly they didn't have the kind of radiant
3	heat transfer that you would have in these accidents
4	here, which is going to affect things.
5	MEMBER KIRCHNER: Well, I'm thinking of
6	the pressurizer sitting there too, as to how that
7	heats up.
8	MEMBER POWERS: Yeah, there's limits to
9	how they do things, and I think they did have some
10	simulation of the pressurizer. It's one of those
11	tests that's kind of receded into the folklore of
12	reactor safety. So it's a bit of a struggle to find
13	things, but I think I do actually have the topic
14	report if you want to see it.
15	VICE-CHAIRMAN CORRADINI: The assumption,
16	though, in the cartoon is the loop seal is closed.
17	MR. SALAY: Here you're looking at two
18	flow paths. There's one where the loop seal's closed,
19	and one where your loop seal's open.
20	VICE-CHAIRMAN CORRADINI: But in terms of
21	the analyses, the cartoon calculation you showed
22	before, that's assuming it was closed.
23	MR. SALAY: The loop seal's closed, yeah.
24	VICE-CHAIRMAN CORRADINI: So
25	MR. SALAY: If the loop seal opens, you

(202) 234-4433

	148
1	know, there's a
2	VICE-CHAIRMAN CORRADINI: And the analysis
3	you guys are doing considers either path?
4	MR. SALAY: No, we only look at closed.
5	If the loop seal's open, you get, I mean, you're going
6	to get a release. And was the assumption with
7	Westinghouse, because your tubes get to much higher
8	temperatures.
9	VICE-CHAIRMAN CORRADINI: No, I understand
10	that. What I guess I'm kind of asking is, is there
11	any deterministic, or how do you know if it's open or
12	closed? That's what I guess I'm getting at.
13	MR. SALAY: Well, they looked at it in
14	NUREG CR6995, they looked at it in quite a lot of
15	detail. And I do go over it a little bit, but it's
16	basically say they look at it as detail. Lots of
17	parameters, they came up with little parameter maps
18	to, when it, they calculated it to clear or not.
19	And so they came up with maps. And when
20	it would and wouldn't clear, they point out that there
21	were lots of things that would affect behavior that
22	wasn't even in there, such as bypass leakage area
23	between the downcomer and the upper core internals.
24	Because you need to have a sealed lower head and a
25	sealed loop seal to, it has to come up.
	I

(202) 234-4433

	149
1	And the flow, if you have enough leakage,
2	you don't have a pressure differential to, but
3	VICE-CHAIRMAN CORRADINI: You don't have
4	a pressure differential to blow it out.
5	MR. SALAY: Yeah.
6	VICE-CHAIRMAN CORRADINI: Well, the reason
7	I'm asking the question, one is when we did small
8	break LOCA spectrum analysis for Westinghouse, and I
9	guess I can't say anything more than that in this
10	meeting, the loop seal was forced to clear because
11	that made it worse, right.
12	MR. SALAY: Yeah.
13	VICE-CHAIRMAN CORRADINI: In this case,
14	I'm just trying to understand it. So the other
15	question is, so Westinghouse is in the topical, they
16	actually had, not criteria, but regions where it was
17	clear and not clear. And so is it a race with the
18	loop seal clearing also with, in terms of the hot leg
19	heating up and opening, versus the tube?
20	That is, the prediction is both the mostly
21	likely scenario is, in a Westinghouse design, is that
22	I start this natural circulation, the loop is not
23	cleared, I overheat somewhere near the pressurizer
24	surge line, and I pop a hole. That's the likely
25	scenario.
	I

(202) 234-4433

	150
1	MR. SALAY: Yeah.
2	VICE-CHAIRMAN CORRADINI: And then how can
3	I, in a Westinghouse geometry, get the loop seal to
4	clear early because of the bypass? That's what I
5	can't remember.
6	MR. SALAY: Well, if they had no bypass at
7	all, I think Chris mentioned. I wasn't involved in
8	that.
9	VICE-CHAIRMAN CORRADINI: Oh, okay.
10	MR. SALAY: This was in the steam
11	generator action plan.
12	VICE-CHAIRMAN CORRADINI: Okay, how would
13	you stabilized it.
14	MR. SALAY: But, no, it would have caused
15	clearing almost every time. So if you have area, you
16	don't get the DP, because
17	MEMBER MARCH-LEUBA: Yeah, but first
18	principle, without revealing any proprietary
19	information, same as the bypass, it's clearing one
20	seal. Once you clear one seal, you release the
21	pressure in the upper plenum.
22	So if I were going to bet on something,
23	it's at most one we clear. Because once one clears,
24	the pressure in the upper plenum releases, and there
25	is no pressure to push that wire on the other two

(202) 234-4433

151 1 loops or one loop. So there will be always one or two 2 loops that will be closed. If there is sufficient 3 bypass where you were pointing on core value then none 4 will clear. 5 VICE-CHAIRMAN CORRADINI: Well, that's 6 what I was thinking. 7 MEMBER MARCH-LEUBA: Yeah, that's а 8 possible situation too. 9 MR. SALAY: This is one of the things that 10 was deferred. We started looking at how we'd look at it and how we'd adjust the model to make, check the 11 model deck to verify how it'd be. But then we never 12 ended up doing that work. 13 14 MEMBER MARCH-LEUBA: Yeah, but my first 15 principle modeling is that that drawing that you have 16 in there, you don't need to put the dotted line in the 17 middle. That's what you really have in the reactor. Half of it is clear, the other half is not. 18 19 (Laughter.) 20 MEMBER POWERS: Except that if you've got 21 one loop that's clear, you're going to have such a 22 ferocious flow through there, it's going to pop on the 23 open line. 24 MEMBER MARCH-LEUBA: I mean, if you are 25 going to pop, I'm not planning, but I would assume

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	152
1	it's possible.
2	MEMBER POWERS: It don't take much.
3	MEMBER MARCH-LEUBA: If it's possible and
4	likely to clear it, you should assume it cleared,
5	unless you know better.
6	MR. SALAY: They also notice some effects
7	with the pump suction elevation and nodalization would
8	affect it. So they included that there was
9	considerable uncertainty in whether it clears or not.
10	MEMBER MARCH-LEUBA: And your models, how
11	long does it take to boil that? I mean, you have
12	really, really hot steam out there. How come is that
13	water staying liquid there? How long does it take to
14	boil?
15	MR. SALAY: Yeah, this, well, had the
16	previous, this actually was a little step through each
17	step. So, you got dry-outs, steam generator dries out
18	in 100 minutes.
19	MEMBER MARCH-LEUBA: That's the steam
20	not the steam. I'm talking on the loop seal. The
21	loop seal is leaking water in there and you have steam
22	
23	MR. SALAY: Leaking water, you have hot
24	steam here, and then you have heat losses to the
25	environment.
	I

(202) 234-4433

	153
1	MEMBER MARCH-LEUBA: In your models, they
2	never boil?
3	MR. SALAY: In ours, they didn't, and I'm
4	not sure about the previous analysis. And I think the
5	loops, in some analyses, the loop seals, in the ones
6	we were using, the loop seals, were net condensing.
7	But, okay.
8	Anyway, the full loop seal, full loop
9	natural circulation occurs if your loop seal has been
10	cleared. It's a severe challenge to your tubes. And
11	I mentioned some of these things.
12	And the other scenario is the counter
13	current, natural circulation. And if you're looking
14	at, see whether you'd have a bypass, you'd expect the
15	bypass in the full loop seal.
16	So you look at the counter current natural
17	circulation to see if you get a bypass in those
18	scenarios. And these are the analyses. So we ended
19	up analyzing these rather than the others, unless
20	you're actually looking at releases.
21	MEMBER KIRCHNER: What's your sense of how
22	the pressurized and surge line play in this scenario?
23	MR. SALAY: Well, there is actually water
24	level. It actually goes up and down. It actually
25	went down, and then starts bubbling up and then gets
	I

(202) 234-4433

Í	154
1	full and then I can't remember. I have actually an
2	animation that I wasn't planning to show, but I could
3	show.
4	MEMBER KIRCHNER: Is that a heat sink
5	effect that the pressurizer level goes up and down?
6	MR. SALAY: Well, you're having steam come
7	up through here, and so it keeps it up. And so if
8	you're, I mean, it depends how much your loss is.
9	Could be heat losses, could be. I mean it was one of
10	things, again, that we would have liked to look at,
11	but.
12	MEMBER KIRCHNER: Okay.
13	MEMBER MARCH-LEUBA: I don't know, it's
14	hard to believe that you have steam hard enough to
15	melt the steel and keep water liquid.
16	VICE-CHAIRMAN CORRADINI: I think the
17	point that Mike is getting at is, is that you've got
18	your saturated water down here at the given pressure,
19	but you're cooking it and it never sees that way down
20	in the loop seal. You see it
21	MEMBER MARCH-LEUBA: No, no
22	MR. SALAY: He's talking about how do you
23	still have water in the pressurizer.
24	MEMBER MARCH-LEUBA: You're bubbling
25	superheated steam through that liquid in the
	1

(202) 234-4433

	155
1	pressurizer, and the liquid remains? I mean, you're
2	not going to evaporate all of it soon.
3	VICE-CHAIRMAN CORRADINI: But the
4	pressurized empties. I don't remember this station
5	blackout scenario, but I think the pressurizer empties
6	
7	MR. SALAY: We had it. It would go up
8	down. Yeah, and I think in Three Mile Island, it was
9	water
10	MEMBER POWERS: There was water all the
11	time in TMI. In the pressurizer.
12	VICE-CHAIRMAN CORRADINI: It wasn't this
13	long cooking it at these temperatures, was it?
14	MEMBER POWERS: No.
15	VICE-CHAIRMAN CORRADINI: Okay.
16	MEMBER POWERS: TMI was a wet plant.
17	There was water going in nearly all the time.
18	MR. SALAY: So TH, there are two analyses.
19	There is the Westinghouse analysis that was performed
20	for the steam generator action plan. And this is
21	documented in NUREG 699 CR 6995.
22	They did perform some CE analyses, but it
23	didn't receive the same level of attention. And so
24	they didn't update some of the models the way they
25	updated their Westinghouse models.
	I

(202) 234-4433

156
Babcock and Wilcox plants were not
analyzed because vigorous natural circulation flows
were not expected. So both Westinghouse and
Combustion Engineering TH analyses were used for the
current work, and we did the CE TH analysis under this
project.
We used a system code, MELCOR, and CFD
code. CFD predicts the spatial flow and temperature
distributions.
Your system code predicts the whole
overall transient behavior. It uses the CFD results
from both modeling and the results on the transient
results can also be combined with those of the CFD to
develop a transient spatial temperature distribution
for your steam generator tubes.
So the CFD analyses were validated against
Westinghouse one-seventh scale experiments, and they
built up from those models to prototypic steam
generator geometries. Multiple sensitivity studies
were performed at the CFD.
And so here you see both CFD and system
analyses. That's from NUREG 1922. So you have a CFD
analysis, and then you have a much coarser
nodalization in your system code, and you sort of have

to transfer information from one to the other. They

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	157
1	used parameters that were based on previous hand
2	calculations.
3	And the CFD provides the hot leg flow rate
4	by the use of the discharge coefficient based on the
5	approved number of correlations. Inlet plenum mixing
6	amount, hot tube fraction, recirc ratio. And it also
7	provides the distribution of temperatures entering
8	your tubes.
9	And this is shown by, given by a
10	distribution, and it's normalized temperature. And
11	there are differences between C and Westinghouse
12	plants. In CE, there's considerably less mixing of
13	the hot gasses before it reaches the steam generator
14	tube inlets. This is because there's a lower hot leg
15	length to diameter ratio.
16	And some CE plants have shallow inlet
17	plena. There are few other effects in the CE plant
18	analyzed. The hot leg comes in normal to the plates
19	separating the steam generator plena. And whereas it
20	comes in at an angle from Westinghouse, which adds
21	additional mixing.
22	MEMBER REMPE: Mike?
23	MR. SALAY: Yeah.
24	MEMBER REMPE: For some reason, in our
25	subcommittee meeting, I thought when we discussed how

(202) 234-4433

	158
1	representative the example plans were of the whole
2	fleet, that we heard back about ten percent responded
3	back. But the geometries are about the same.
4	And now I see the words some CE plants
5	have shallower inlet plena. Have you identified some
6	CE plants that differ?
7	MR. SALAY: I know Chris asked around, and
8	he's the one who answered that question. I can't,
9	Chris Boyd is not here.
10	MEMBER REMPE: He did answer at the
11	meeting. I just am puzzled because I thought you guys
12	said, Well, as far as we know, but we only have ten
13	percent. And now do you have knowledge that says
14	MR. SALAY: No, no, I don't have any
15	additional knowledge.
16	MEMBER REMPE: Okay, thank you.
17	MR. SALAY: Yeah, so under certain
18	conditions, I mean because your temperatures are
19	nearly as hot as your steam, the gas temperatures that
20	your steam generator tubes are seeing are nearly as
21	hot as the gas temperatures of the hot legs you're
22	seeing. There is a potential for unflawed tubes being
23	ruptured before the hot leg.
24	And since you have a lot of unflawed
25	tubes, multiple unflawed tubes could potentially reach
	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

	159
1	the failure condition at the same time.
2	And so here you see the Westinghouse model
3	51 and CE inlet plenum showing about the plume
4	diameter. And you have about a one and a half plume
5	diameters before you hit the tube sheet for CE, where
6	you have four and a half plume diameters, hot plume
7	diameters, before you hit the tube sheet. So there's
8	more opportunity for mixing there.
9	And here you see CFD results for both CE
10	and Westinghouse. And if you look, you can see at the
11	hottest temperatures reaching the Westinghouse steam
12	generator at about 0.6.
13	Whereas, the hottest for the CE are about
14	one. And this is normalized temperature relative to
15	the temperature difference between what the hot leg
16	sees to the cold side of the steam generator.
17	So one means that the steam generator
18	tubes are seeing hot leg temperatures. And so for the
19	MELCOR CE calculations, the objectives were to provide
20	thermal hydraulic results for CE plants to calculate
21	failure using the CSGTR calculator and finite element
22	calculations.
23	It's also to provide some scoping
24	component failure calculations and to calculate some
25	fission product releases, although that was de-scoped.
1	I contract of the second se

(202) 234-4433

160
On the analyses, so for each case, you had
to run for each event, you had to run two analyses.
One for scoping, to see what MELCOR would predict to
fail, and one in which component failure was
suppressed to allow the other codes to, to provide
input for the other codes to calculate.
And that short-term station blackout,
long-term station blackout where the auxiliary feeding
water were assumed to operate for four hours. And
there were variations assumed, operator action and
relief valve behavior and variation on reactor coolant
pump seal leakage. Yeah.
MEMBER KIRCHNER: During the transit, what
do you assume happens at the reactor coolant pumps

11 relief valve behav 12 pump seal leakage MEMBE

13 14 do you assume hap 15 seals when you're in the steaming configuration? Is there any loss of pressure there that's measurable? 16 17 Or do you make a very conservative assumption that the seals block any steam release? 18

19 Essentially, it modeled the MR. SALAY: 20 flow path. So, and with a flow area that would match 21 the expected seal leakage rate and allowed the code to 22 calculate. So it didn't --

23 MEMBER KIRCHNER: No, I understand seal 24 leakage when you have water. I'm thinking now you're 25 in a steaming condition. So what are the seals doing?

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

	161
1	MR. SALAY: Yeah, so we just take the same
2	hole and assume gas leakage from there. So
3	MEMBER KIRCHNER: That doesn't help
4	depressurize the system at all?
5	MR. SALAY: So, yeah, you would lose some
6	gas. That's calculated by the flow solver.
7	VICE-CHAIRMAN CORRADINI: But to answer
8	your question directly, everything is leaking. PRVs
9	are opening, this thing is leaking. And so it's kind
10	of sitting there.
11	UNIDENTIFIED SPEAKER: It's just
12	chattering away.
13	VICE-CHAIRMAN CORRADINI: There is a
14	surface station blackout analysis with MELCOR actually
15	shows the seal leakage starting off at its prescribed
16	ring then getting saturated. Pops up, water exits,
17	steams comes in, and it kind of goes back down again,
18	as Michael suggested.
19	MR. SALAY: And there was also an
20	uncertainty analysis to determine the impact of
21	thermal hydraulic uncertainty on failure timing. And
22	here is some example of the MELCOR CE results, which
23	this is RTP leak, reactor coolant pump seal leakage
24	sensitivity on both pressure and temperature. And so
25	that's what they look like.

(202) 234-4433

	162
1	MEMBER REMPE: So let's go back to that
2	one just for a minute. As I recall in our
3	subcommittee meeting, the reason that you are, what
4	motivated that analysis was the comment from the PWR
5	Owners Group, where they said, Hey, you've made the
6	wrong assumption about the seal leakage.
7	And, again, my recollection was that you
8	said, Well, okay, let's assume we don't have any
9	leakage, and what happens.
10	MR. SALAY: Yeah, that's exactly.
11	MEMBER REMPE: And that was the reason you
12	did this analysis and why you went forward with the
13	same conclusion.
14	MR. SALAY: Yes.
15	MEMBER REMPE: Okay, thanks.
16	MEMBER BALLINGER: Do you assume that the
17	seal leaks but remains intact?
18	MR. SALAY: Yeah.
19	MEMBER BALLINGER: Because the seals at
20	least contain some stuff that'll handle pretty high
21	temperatures, but some stuff which will erode very
22	quickly. And so you end up with parts of the seal
23	which are basically gone, and parts of the seal
24	surfaces that are still there.
25	And so I'm guessing that you would get a
	1

(202) 234-4433

	163
1	lot of flow after a while. A lot of those seals are
2	but they assume that they remain intact. They leak
3	but remain intact.
4	VICE-CHAIRMAN CORRADINI: I'm not familiar
5	with their analysis, but the MELCOR analysis for
6	SOARCA has three levels based on time and temperature,
7	if my
8	MEMBER BALLINGER: Okay, because the
9	graphite's going to be gone.
10	CHAIRMAN BLEY: If they get up to 500 GPM,
11	that's going to add another seal there.
12	UNIDENTIFIED SPEAKER: That's about right.
13	CHAIRMAN BLEY: I don't know what they
14	get.
15	UNIDENTIFIED SPEAKER: 500 GPM is an O
16	seal.
17	MR. SALAY: Yeah, I think we just use a
18	single seal leakage, and then yeah, the PWR Owners
19	Group, they said you really wouldn't get any, or much,
20	and I don't know. Do any of you have anything to do
21	add or no? About seal leakage.
22	MR. AZARM: Yeah, I do. First if I might
23	confirm what Mike said, we basically assumed an
24	initial clearance of the seal, the spacing tack
25	doesn't grow as the accident goes on. That's a
	I contraction of the second

(202) 234-4433

	164
1	question or assumption when you are in the regime of
2	severe accidents and you are dealing with high
3	temperature. As mentioned, lot of seals are going to
4	fail.
5	I think we also, we haven't done the
6	analysis but we talked about the a lot. The timing of
7	failure becomes really important. So you know, like
8	as Dr. Corradini was saying, you can have three
9	phases, but it is important when is the threshold of
10	those phases.
11	Because when your seal fails
12	catastrophically, we are worried about the loop seal
13	to get cleared. And if that happens, basically it's
14	end of the run for us.
15	So, no, the analysis has been done, we
16	have done quite a bit of thinking about it. We
17	haven't done what SOARCA has done, and I'm not even
18	aware of it, but we do understand the timing of seal
19	failure plays an important role. And might be
20	expecting high temperatures, but it was not within the
21	scope of this analysis.
22	MR. COYNE: Mike, if I, Kevin Coyne from
23	the Office of Research. If I could add when we re-
24	scoped this work several years ago to try to finish it
25	more efficiently, and I know this always dangerous to

(202) 234-4433

	165
1	say in the severe accident space, but we tried to bias
2	some of the assumptions towards minimizing the
3	likelihood of CSGTR issues for the CE plant.
4	In other words, if we changed the
5	assumption, the presumption would be it would get
6	worse if we move the assumption.
7	And I know it's hard to necessarily hit
8	that sweet spot in the severe accident modeling, but
9	this is one case where loop seal clearing for the CE
10	plant is just going to make the consequential steam
11	generator tube rupture probability higher than what we
12	calculate if we assume the loop seals are intact.
13	Now in the end, the temperatures the tube
14	sees wouldn't change dramatically between the loop
15	seal intact and the loop seal cleared. Is that
16	correct?
17	MR. SALAY: Yeah, and so some engines in
18	possible works
19	MEMBER MARCH-LEUBA: Can you rephrase
20	that? I mean are we talking about the loop seal or
21	the pump seal?
22	MR. SALAY: The loop seal. He was
23	mentioning the loop seal.
24	MEMBER MARCH-LEUBA: He was mentioning the
25	loop seal. You weren't mentioning the pump seal.
	I

(202) 234-4433

	166
1	MR. SALAY: Initially, yeah, we switched
2	seals.
3	MEMBER MARCH-LEUBA: So if the pump seals
4	or doesn't fail has not consequence that you can see
5	with any certainty?
6	UNIDENTIFIED SPEAKER: We haven't done
7	that.
8	MEMBER MARCH-LEUBA: But if the loop seal
9	is open, then you have a lot more consequences. It's
10	bad. Loop seal clearing is bad, pumps it clean,
11	inconsequential. Is that correct?
12	MR. AZARM: I don't think I said that.
13	MEMBER STETKAR: In general, if the pump
14	seals fail, the loop seal is going to clear it.
15	MEMBER MARCH-LEUBA: So that's really bad.
16	MEMBER STETKAR: That's not a good day.
17	MEMBER MARCH-LEUBA: Why would it clear?
18	MEMBER STETKAR: Because the pump's at the
19	bottom of the loop seal.
20	MEMBER MARCH-LEUBA: No, no, no.
21	MEMBER STETKAR: It's a low pressure spot,
22	and it'll flash it out through the seals.
23	MEMBER MARCH-LEUBA: If you say so.
24	MR. SALAY: Another factor is that your
25	temperatures in CE are already that hot, so the loop

(202) 234-4433

	167
1	seal clearing isn't going to make that big of a
2	difference because you can't really increase the
3	temperatures relative to the Westinghouse
4	VICE-CHAIRMAN CORRADINI: I think the
5	reason we're asking, or some are asking all these
6	questions, is that these can change your timing. So
7	I want to go back to what Kevin said to make sure I
8	understood it.
9	So at least with the CE plant, or maybe
10	for both Westinghouse and CE, you chose a set of
11	conditions which would delay steam generator tube
12	rupture, or enhance its timing compared to the hot leg
13	creep rupture. That's what I didn't understand.
14	MR. SALAY: To paraphrase, I think Kevin
15	is, we looked at Westinghouse and CE, tried to make
16	what's the worst Westinghouse can get and what's the
17	best CE can get, sort of take that.
18	VICE-CHAIRMAN CORRADINI: Okay, all right,
19	so I did hear it right. What the best CE did.
20	MR. COYNE: With the presumption that if
21	the reality was different from the assumption, it
22	would only make the probability of the CSGTR get
23	worse.
24	We were trying to get kind of a lower,
25	these are dangerous terms for me to use, but a lower
	1

(202) 234-4433

	168
1	estimate of what the probability would be or a best
2	estimate assuming optimistic
3	VICE-CHAIRMAN CORRADINI: What if you say
4	that, I was just asking it again because I didn't
5	think I heard that, so I.
6	MR. SALAY: Would it be bad, even with the
7	optimistic assumptions?
8	VICE-CHAIRMAN CORRADINI: Okay, you said
9	it right. I'm with you, thank you.
10	MEMBER REMPE: To go back, just to make
11	sure I understand in my mind, a long time ago when
12	they did the Westinghouse plant, they did have a
13	situation where you had a seal leakage rate and you
14	increased it for the pump.
15	But I believe for your MELCOR
16	calculations, you just left it at 21 gallons per
17	minute until you did this thing for the PWR Owners
18	Group. Is that a true statement?
19	MR. SALAY: We left it at the hole size
20	that would give 21 gallons per minute.
21	MEMBER REMPE: Okay, so you did not
22	increase the hole size.
23	MR. SALAY: We did not.
24	MEMBER REMPE: And so that's why your
25	answer might have seemed a little fuzzy to some folks.

(202) 234-4433

	169
1	I was trying to clarify that. Thank you.
2	MR. SALAY: So it was interesting, but a
3	lot of it was determined to potentially not be worth
4	the effort. But some of the things that could be done
5	in more detailed spatial temperature distribution,
6	assessment of TH factors that impact relative failure
7	timing, analysis of loop seal clearing.
8	Look at water hold-up in the steam
9	generator and flooding counter current flows is known,
10	so water was also held up in the previous steam
11	generator action plan calculations. And a detailed
12	evaluation of fission product release.
13	I mean, this analysis focused on thermal
14	hydraulic input, not fission product release. So we
15	didn't re-run cases when they failed solely for
16	purposes of extracting of the fission product release
17	behavior.
18	Now I'll go over some of the questions
19	that were asked since the last meeting. So the recent
20	questions were, temperature distributions, the impact
21	of loop seal clearing. I'll sort of reiterate what I
22	already said. And expected impact of models that have
23	been subsequently added to MELCOR after this analysis,
24	and a little bit on the TH uncertainty analysis that
25	was done.

(202) 234-4433

1 And so here you see the Combustion 2 Engineering tube sheet inlet temperature distribution. 3 This was calculated using fluent, anti-fluent, and 4 what it shows is the normalized temperature 5 distribution in terms of percentage of tubes of the whole bundle. 6 7 There are five data sets captured at the transient CFD calculations. And there are five data 8 9 sets, so this gives you an indication of how the size 10 of the plume changes and moves around. One thing I should mention is for the 11 12 Westinghouse, your distribution looks like this, where the maximum is about 0.5, 0.6. So here the hottest 13 14 tubes for Westinghouse around up here, at 0.5, 0.6. 15 hottest for CE, Whereas your tube 16 temperatures are essentially the hot leg temperature. It's about 1.5-2% of eight thousand-some tubes. 17 So it's about 160 tubes up here are about as hot as the 18 19 hot leg, the basic temperature is about as hot as the 20 hot leq. 21 When your loop seal clears, in 22 Westinghouse, from this distribution you qo to 23 something more that looks like what's on the screen 24 now. And so your hottest tubes become as hot as hot 25 leg.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	171
1	MEMBER MARCH-LEUBA: Sorry, Mike, I'm
2	confused. That represents five different
3	calculations?
4	MR. SALAY: The same calculation, but it's
5	a transient calculation.
6	MEMBER MARCH-LEUBA: This is a histogram.
7	MR. SALAY: It's a histogram, so the first
8	one is some period within the calculations. It's as
9	it's increasing in temperature.
10	MEMBER MARCH-LEUBA: So it's the same
11	calculation.
12	MR. SALAY: It's the same calculation, but
13	it's a transient calculation. But it's different
14	snapshots of the same calculation. So
15	UNIDENTIFIED SPEAKER: Of each?
16	MR. AZARM: I'm sorry, I shouldn't say,
17	but think about this a time-dependent calculation. Do
18	you remember that plume he was showing you
19	MR. SALAY: The plumes moving around.
20	MR. AZARM: That thing is moving, and the
21	number of tubes within that tube is moving. So he has
22	taken five snapshots.
23	MEMBER MARCH-LEUBA: Five snapshots.
24	MR. AZARM: You know, between 0.2 to 0.25,
25	you see five lines. In each of those snapshots,
1	

(202) 234-4433

	172
1	that's what I saw.
2	MEMBER MARCH-LEUBA: If I take the left
3	line of every one of those histograms, that will be
4	one of the
5	MR. AZARM: One, yes.
6	MR. SALAY: Next one is ten seconds later,
7	the next one is ten seconds later, the next one's ten
8	seconds later, and the next one's ten seconds later.
9	And so it gives an indication of how much it changes
10	over time.
11	MEMBER MARCH-LEUBA: You have significant
12	number on the high end, which is
13	MR. SALAY: Yeah, I mean, that's
14	important. And also concerned, at least in CFD
15	analysis, was whether, for the Westinghouse CFD
16	analysis, to what extent are your same tubes hot, and
17	are the same tubes hot at different times.
18	So another thing about loop seal clearing,
19	it was pointed out that many studies out there
20	conclude that loop seals would clear before core
21	damage. Do any scenarios indicate that, and discussed
22	it earlier.
23	I mean, it was looked at in steam
24	generator action plan and documented in NUREG 6995.
25	They generated parameter maps that were based on pump
l	I contract of the second se

(202) 234-4433

	173
1	seal leak rate, feed water operation time, number of
2	PORV openings, and number of PORV opens, and when
3	operator action started.
4	It was also found that it was sensitive to
5	nodalization and core bypass area. And they concluded
6	that uncertainty still remains on loop seal clearing.
7	The loop seals did not clear in any of the
8	calculations we did for CE. However, it is a
9	shallower. The initial scoping work, we did initial
10	scoping work, but analysis of loop seal clearing was
11	one of the things that was cut during the work scope
12	reduction. So we never actually looked in detail.
13	It's also more important for Westinghouse
14	plants because, again, it takes that normalized
15	temperature and brings it nearly as hot as hot legs.
16	Whereas for CE, you've got some tubes always at that
17	high temperature.
18	And another question was that their models
19	were added and were used in SOARCA. And these models
20	were added after the version of the code used in this
21	analysis. And the question was, Do these changes
22	affect the conclusions of the study? And those
23	analyses were done for CSGTR were done in 2011, 2012,
24	there was some recalculation in early 2013.
25	MELCOR-186 was used for the CE CSGTR
1	I contract of the second se

(202) 234-4433

analysis. There were different MELCOR-2 versions used 1 2 in different SOARCA analyses. So the Surry SOARCA 3 analysis, they did a comparison, they formed a 4 comparison, well, they compared 186 and 2.1 timings. 5 And we can see here station blackout, 6 station dry-out. It's a few minutes off, but the 7 fission product gap releases were at the same time hot 8 leg creep failure within a minute, even though the 9 calculation was nearly four hours. 10 And I mean, all the way to accumulator injection, you're pretty close. So major event timing 11 for that version, you wouldn't expect any changes for 12 CE, since it's the same version. There have been some 13 14 further model changes subsequent to that analysis. 15 And the ones that could potentially affect behavior are the upgrade, update to the dry-out model and 16 17 update of the declension models. Both of these models, they affect behavior 18 19 when you're reflooding or when the accumulators kicked in. And for interest for this analysis, we're looking 20 21 at the situation before accumulator injection. And so 22 don't expect that these updated models would we 23 significantly affect or alter the report conclusions. 24 And there was а request for more 25 information on certainty analysis. So the impact on

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

174

	175
1	certainties on thermal hydraulic-caused uncertainties
2	was looked at upon initial decreation (phonetic),
3	essentially how much do uncertainties in TH affect
4	failure timing releases.
5	This is, people put a calculator, Ali was
6	asking. And so Sandia performed uncertainty analysis
7	on an early station blackout models prior to addition
8	of hot tube final flows and prior to addition of heat
9	structures for the tube sheet.
10	So they used an average hot tube for steam
11	generators, it's a stress multiplier of two. Expect
12	results to be reasonably representative of failure
13	timing variation resulting from TH variations, but we
14	don't necessarily expect the actual values to be
15	representative.
16	So the analysis performed by sampling from
17	the hydraulic parameters, and observed the effect on
18	absolute and relative failure timing using a Monte
19	Carlo sampling, 100 realizations. It was analyzed
20	with the STEPWISE (phonetic) code.
21	MEMBER STETKAR: Mike?
22	MR. SALAY: Yeah.
23	MEMBER STETKAR: A hundred samples from
24	any kind of reasonable analysis won't give you any
25	sense of what the uncertainty is. So I'm curious what

(202) 234-4433

	176
1	anyone learned from that exercise.
2	MR. SALAY: Well, just giving the results.
3	And so
4	MEMBER STETKAR: It is 100, that's not a
5	typo somehow, that it was really 1,000 or 10,000?
6	MR. SALAY: I think it was 100.
7	MEMBER STETKAR: 100.
8	MR. SALAY: And these were the parameters.
9	They were sampled, the discharge coefficients for PORV
10	and SRV, the oxidation rate constant. The mixing
11	parameters that were applied from the CFD. So, what
12	if the CFDs off a little bit? Heat transferred
13	multipliers for the outer tube wall and RCS
14	containment heat transfer.
15	And these were distributions that they got
16	out that with a 95% confidence interval for hot leg,
17	and for the tube and hot leg. And this is the
18	distribution for the relative failure timing in both.
19	MEMBER REMPE: But can you confirm that it
20	is 100 is all you did for sampling or what was done?
21	MR. SALAY: I'm pretty it was 100.
22	MEMBER POWERS: I think you can be
23	positive it was 100, not 1,000.
24	MEMBER MARCH-LEUBA: One hundred MELCOR
25	calculations?
	1

(202) 234-4433

	177
1	UNIDENTIFIED SPEAKER: MELCOR
2	calculations, yes.
3	MEMBER MARCH-LEUBA: Of a thousand, two
4	thousand seconds each? They were not a thousand.
5	MR. SALAY: The short-term station
6	blackouts take about a week to run each.
7	MEMBER MARCH-LEUBA: I would have run only
8	59 myself. Which is the minimum number you're
9	supposed to do.
10	VICE-CHAIRMAN CORRADINI: He's, 59.
11	MR. SALAY: And these are what they found
12	to affect the failure timing. It was the RCS to
13	containment, heat transfer multiple, see our oxidation
14	rate, recirculation ratio in order of importance.
15	Didn't look at, although it would have been better to
16	look at also was the relative, what impacted the
17	relative failure timing.
18	So these are the standard deviations for
19	absolute failure timing. About six minutes, nearly
20	seven minutes for steam generator absolute failure
21	timing. Eight and a half minutes for hot leg absolute
22	failure timing. And if you take the difference of the
23	two distributions, well not the difference of the
24	distributions, the difference in timing actually. The
25	distribution of the difference in timing, and it's
1	

(202) 234-4433

	178
1	about seven minutes.
2	MR. COYNE: Mike, can I interrupt for a
3	second? On the uncertainty analysis you just covered,
4	was that, is SOARCA uncertainty analysis?
5	MR. SALAY: No, no, this was done at the
6	beginning of the CSGTR project.
7	MR. COYNE: Okay, just wanted to clarify.
8	Thanks.
9	MR. SALAY: Yeah, so we did perform MELCOR
10	calculations for CE plant with replacement steam
11	generators and provide that input to the CSGTR
12	calculator and find out element component failure
13	analyses.
14	Relative temperature increase rates and
15	relative component failure time between steam
16	generator tubes and other components is more important
17	for releases than absolute failure time.
18	Some work was deferred because of limited
19	resources, and many of these, the benefit was
20	determined not to be worth the expense. And we
21	received and incorporated useful feedback from both
22	the ACRS and the public.
23	MEMBER MARCH-LEUBA: Can you go back to
24	slide 38? All right, so am I reading this correctly
25	that the tubes break before the hot leg?

(202) 234-4433
	179
1	MR. SALAY: Again, this was done before
2	the models were completed, and I think that one of the
3	major things that hadn't been added is the heat
4	structures of the tube sheet. So it seems there is
5	some heat loss there.
6	MEMBER MARCH-LEUBA: So with improved
7	models, this would not be
8	MR. SALAY: No, no, there were some cases
9	where you did get, but most of the cases it was the
10	hot leg that failed first.
11	MEMBER MARCH-LEUBA: I mean, if I look at
12	that, some tubes fail at time 20, some hot legs fail
13	at time 19. But those are different parameters here.
14	Use the same parameters, the tube always fails before?
15	MR. SALAY: In this one, yeah. This is
16	the difference of failure times. For this set of
17	analyses, yes, the tube always failed first. But for
18	the final analyses, it wasn't.
19	MEMBER MARCH-LEUBA: Maybe not 100%
20	probability, but 25.
21	MR. SALAY: The point was to get how much
22	variation in TH would affect them. So how much
23	uncertainty in timing would this give them, for the
24	failure calculator.
25	MEMBER MARCH-LEUBA: But no matter how you

(202) 234-4433

	180
1	change parameters of conductants to containment or
2	this and that or all the parameters you change, the
3	tube always failures earlier.
4	MR. SALAY: For this one. But for the
5	later analyses, it was the other way.
6	MR. COYNE: Mike, is it a true statement
7	that you're using the MELCOR calculation to determine
8	hot leg and tube failure for this calculation?
9	MR. SALAY: For this one, yeah. And this
10	was also earlier too. Even for MELCOR with subsequent
11	analyses, it went the other way when you added heat
12	structures.
13	MR. COYNE: So these are simplified
14	correlations that predict tube failure in hot leg and
15	MELCOR. The actual for the project and the results
16	presented in NUREG 2195, we used the steam generator
17	calculator, which takes a thermal hydraulic output
18	from MELCOR and represents the actual flaw
19	distribution in the tube.
20	So it's a more realistic manner of doing
21	that. What is the relative timing between hot leg and
22	tube failure?
23	MR. SALAY: And this, yeah, just gives how
24	much variations in TH would affect the relative and
25	absolute time
	I

(202) 234-4433

	181
1	MEMBER KIRCHNER: Since he brought it up,
2	may I ask, the flaw distribution, did that change the
3	time to failure significantly?
4	MR. SALAY: For?
5	MEMBER KIRCHNER: Within the band of these
6	kind of results you're showing, did the factoring that
7	added level of fidelity, so to speak, into the
8	calculations, did that have a significant effect?
9	MR. COYNE: So I'll start, and then I'll
10	immediately turn to Ali Azarm, but one of the, I
11	think, giveaways on this graph for me was this MP=2.
12	So previous work used a pressure multiplier to
13	represent degradation in the tubes.
14	And to be honest, it's very hard to
15	correlate a pressure multiplier to an actual observed
16	flaw characterization you get from a steam generator
17	tube. So it was practically hard to work with,
18	particularly if we were going to use this for, say, a
19	STP-type determination for a particular plant. So
20	it's hard to speak for the relative timing.
21	But the more recent work that Ali Azarm
22	had led was to use operating experience to come up
23	with distributions to characterize the flaw
24	distribution. And then we can use that within the
25	steam generator calculator to get a more, what I think
ļ	1

(202) 234-4433

	182
1	it is a realistic prediction of the failure.
2	MEMBER KIRCHNER: Yeah, but Ali, when you
3	did that, did you see a marked impact on the time to
4	failure within the scope of the overall?
5	MR. AZARM: Let me first clarify, if I
6	may, if you look at your NUREG document, I believe
7	there's a bunch of graphs, like 7-25, 7-26, that has
8	the distribution or the probability of public failure
9	graph.
10	And then it has the graph for leak area.
11	Because when we do the PRA for us, the two failures
12	wasn't good enough. We needed to accumulate leak area
13	of three centimeters squared, six centimeters squared,
14	etc.
15	So yes, those graphs have been generated
16	showing more or less similar behavior that with high
17	likelihood that you're going to fail first. And you
18	will get those leak areas. Now, the only problem with
19	those graphs in NUREG is that it accounted for no
20	uncertainty from thermal hydraulic.
21	I don't want to get for us, most of the
22	system uncertainly, model uncertainty, it's epistemic.
23	So basically, the graph stays the same, the confidence
24	bound will be added. But right now, your NUREG gives
25	you the blue curve, but not the confidence bound that
	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

	183
1	is coming from the thermal hydraulic.
2	So the picture, you know, the glass is
3	half-full. You have the uncertainty from material,
4	from all other stuff, but you do not have the
5	uncertainty from thermal hydraulic.
6	MR. SALAY: This is a scoping calc that
7	doesn't include the flaw distribution. It just
8	assumes a single large flaw.
9	MEMBER BALLINGER: In answer to your
10	question, the answer is no. If you look at figure 5-6
11	in 2195, it shows predicted versus observed time to
12	fail for flawed and unflawed tubes. And they lay on
13	top of one another, the scatter is
14	MEMBER KIRCHNER: It's almost like putting
15	too much information into the estimate, given all the
16	other variables and uncertainty.
17	MEMBER BALLINGER: At those temperatures,
18	the creep rate is so high.
19	MEMBER KIRCHNER: Yeah, exactly. So I'm
20	not a metallurgist, but I'm just saying.
21	MEMBER BALLINGER: The creep rate is so
22	high that
23	MEMBER KIRCHNER: That defect history is
24	probably matched right away at these high
25	temperatures.

(202) 234-4433

	184
1	MEMBER BALLINGER: Because you don't get
2	cracks.
3	MEMBER POWERS: Not your problem there.
4	MEMBER BALLINGER: Not.
5	(Simultaneous speaking.)
6	MR. IYENGER: I did skip Selim's slide, I
7	am sorry. I apologize for that.
8	MR. SANCAKTAR: That's okay. So after the
9	fact, let me quickly say couple of closing things.
10	The first bullet is already I guess obvious that we
11	had multiple branches and fields involved in this,
12	with its benefits and challenges.
13	And as we said in the past, most of the
14	work was done in-house. PRA work was contracted out
15	to IESS eventually, although it started without our
16	vendor, it basically transferred to IESS.
17	Okay, and this we talked about, Fukushima,
18	seven years. There was one more thing I wanted to
19	mention. Not this, oh, here. The two bullets at the
20	bottom.
21	So the next actions we have are have the
22	draft NUREG go through NRC technical editing process,
23	which turns out to be rather hefty. And then we will
24	send it, the edited version, to NRC publishing, and
25	then cross our fingers that it will go through the
1	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

	185
1	competing other publications and finish, hopefully we
2	will finish it in the calendar year, not the school
3	year but the calendar year this year.
4	And I keep mentioning this, because it's
5	very dear to me, we are trying to get this
6	grandfathered format-wise, because there is a new
7	NUREG format.
8	MEMBER POWERS: God help us.
9	MR. SANCAKTAR: I don't know what else
10	will happen. So we will ask for mercy and we
11	grandfather this and use the existing format.
12	Otherwise, we'll introduce all kinds of new challenges
13	into the process.
14	So that's our expectation, and that's
15	pretty much the scope that relates to this.
16	MEMBER REMPE: The one thing I didn't hear
17	you discuss but you did discuss at the last
18	subcommittee meeting is the guidance document that
19	will be generated after this NUREG is done. And so
20	could I have your
21	MR. SANCAKTAR: Yes, I asked, and as I
22	mentioned at the time, what form they are interested
23	in seeing it. And they at that sorry. They
24	indicated interest in a RAS section
25	MEMBER STETKAR: Just for RASP? What is
	1

(202) 234-4433

	186
1	RASP?
2	MR. SANCAKTAR: That's a very good
3	question. Risk Assessment Standard
4	UNIDENTIFIED SPEAKER: Risk Assessment
5	Standard
6	MR. COYNE: Standardization Process. It's
7	a name that had meaning. He's said LOCA. No, I know
8	what it is, but it's not like LOCA for the public.
9	This is a public meeting.
10	MR. SANCAKTAR: Oh, yeah, you're right,
11	sorry.
12	MR. COYNE: Risk Assessment
13	Standardization Project.
14	MR. SANCAKTAR: Section, a technical
15	description of RASP handbook, so that they can take it
16	and put it in their format of more guidance for the
17	actual practitioners. And I already put together, I
18	distilled the PRA portion of this to about 50 pages.
19	So I prepared something which I thought was pretty,
20	which I hoped to be useful in a practical way.
21	And so we are going to see how the
22	response will be, if that's a satisfactory format and
23	detail, then we'll have that document that will be
24	consistent with this NUREG.
25	MEMBER REMPE: Thank you. So are there
	I Contraction of the second

(202) 234-4433

	187
1	any other questions from members?
2	At this point, I believe we should ask if
3	there's any comments that the members in the audience
4	or the public would like to provide. And if so,
5	either come up to the microphone and state your name,
6	or, assuming that the line is open
7	UNIDENTIFIED SPEAKER: It's open.
8	MEMBER REMPE: Thank you, please state
9	your name and provide your comment. And not hearing
10	any comments
11	MR. SCHNEIDER: Well, hang on. Hang on.
12	I just wasn't sure who's actually there. This is Ray
13	Schneider from Westinghouse. I do have one question
14	to ask. When you did the, I noticed the plot for the
15	heat trays where you basically, it looks like you
16	started to there's feedback on the line.
17	But when you started the calculation, it
18	looks like the finite element or the finite difference
19	calculation, whatever, was done assuming some kind of
20	boundary condition on the detailed model
21	MEMBER REMPE: Ray, I need to stop you
22	right now because, one, you're breaking up a little
23	bit. But two, you do need to realize that this is not
24	a question and answer period. This is an opportunity
25	to provide comments, okay.

(202) 234-4433

	188
1	MR. SCHNEIDER: Well, right, so I guess
2	the, okay. I guess the comment is it doesn't look
3	like the model considers the detailed upper head and
4	upper plenum models for the combustion design, which
5	may have resulted in mixing. Which would then change
6	possibly the distribution that you're getting in the
7	hot leg, which may make the feeding of the steam
8	generator plenum a little different.
9	MEMBER REMPE: Thank you for that comment.
10	Are there any other members of the public that would
11	like to provide a comment? And hearing none, I'd like
12	to turn it back to the chairman.
13	CHAIRMAN BLEY: Thank you very much.
14	Thank you, John. Thanks, sorry for the at this
15	point, we're almost on schedule. We're a little bit
16	early. We are going to go off the record for the day.
17	(Whereupon, the above-entitled matter went
18	off the record at 1:57 p.m.)
19	
20	
21	
22	
23	
24	
25	
	I

South Texas Project Generic Safety Issue 191 Risk-Informed Resolution Background and Overview

Lisa Regner, Senior Project Manager

Office of Nuclear Reactor Regulation Division of Operating Reactor Licensing

Agenda

- Background
- Overview
- Licensee Methodology
- Staff Methodology
- Remaining Actions

Background Generic Safety Issue 191

- Identification of safety issue
 - Sump Strainer Impacts
 - In-Vessel Impacts
- Staff developed three options, approved by the Commission <u>Option 1</u> Compliance based on approved models <u>Option 2</u> Mitigative measures and alternative methods
 - A. Deterministic refined in-vessel testing
 - B. Risk-informed STPNOC pilot

<u>Option 3</u> Different treatment for suction strainer and in-vessel effects

• Other plants that plan to use Option 2B:

Calvert Cliffs, Vogtle, St. Lucie, Diablo Canyon, Point Beach, Turkey Point, Palisades, Callaway, Wolf Creek, Seabrook

Overview South Texas Project Review

- Original request fully risk-informed
- CASA Grande
- Requests for additional information
- Public meetings
- Audits

Licensee Methodology Risk over Deterministic (RoverD)

- Problems with original submittal
 - Uncertainties with head loss, chemical effects, debris transport timing, others
 - Epoxy coatings contributions
 - In-core thermal-hydraulic analysis
- RoverD was the significant turning point
- RoverD uses deterministic testing and analysis combined with probabilistic risk analysis (PRA)
- Reduced uncertainty in original submittal

Risk over Deterministic Methodology

Staff Methodology

Bases of review

- 10 CFR 50.46 ECCS Performance Criteria
- NEI 04-07 "Pressurized Water Reactor Containment Sump Evaluation Methodology,"
- WCAP-16793 "Evaluation of Long Term Cooling Considering Particulate, Fibrous and Chemical Debris in the Recirculating Fluid,"
- Regulatory Guide (RG) 1.182 "Water Sources for Long-Term Recirculation Cooling Following a Loss-of-Coolant Accident;"
- RG 1.174 "An Approach for Using Probabilistic Risk Assessment in Risk-Informed Decision on Plant-Specific Changes to the Licensing Basis"
- Technical Specifications change
- Structure of the staff's safety evaluation
- 5 Key Principles of Risk-Informed Regulation

Staff Methodology Five Key Principles of Risk-Informed Regulation

Remaining Actions

- Complete concurrence process
- Resolve ACRS comments
- Coordinate issuance of final decision with internal and external stakeholders
- Issue final decision

STP Nuclear Operating Co. Risk-Informed Approach to Generic Safety Issue-191 and Closure of GL2004-02: Assessment of Debris Accumulation on PWR Sump Performance

> ACRS Full Committee Meeting May 4, 2017

Introductions

Introductions, Speakers

- Mike Murray, Manager Regulatory Affairs, STPNOC
- Ernie Kee, Risk-Informed GSI-191 Technical Team Lead, STPNOC
- Wes Schulz, Design Engineering, STPNOC
- Wayne Harrison, Risk-Informed GSI-191 Licensing, STPNOC

Additional STPNOC Attendees

- David Rencurrel, Senior Vice President, Operations, STPNOC
- Rob Engen, Engineering Projects Manager, STPNOC
- Steve Blossom, Risk-Informed GSI-191 Project Manager, STPNOC
- Drew Richards, Licensing, STPNOC

Meeting Purpose

- Brief overview of history of STPNOC's riskinformed GSI-191 application
- Describe the risk-informed treatment of debris in the current "Risk over Deterministic" (RoverD) methodology and present results of the RoverD analysis

Agenda

- STP GSI-191/GL2004 Related Actions Wayne Harrison
- General overview of the evolution of the STPNOC licensing application Wayne Harrison
- General overview of the RoverD methodology Ernie Kee
- Testing and deterministic element of RoverD Wes Schulz
- Determination of governing break size and description of process for risk quantification – Ernie Kee
- In-vessel effects and thermal hydraulic analyses Ernie Kee
- Quantitative Results Ernie Kee
- Regulatory implementation Wayne Harrison
- Closure Mike Murray

STP GSI-191/GL2004 Related Actions

General overview of the evolution of the STPNOC licensing application

Wayne Harrison

STP GSI-191/GL2004-02 Related Actions

- STP Units 1 & 2 have fibrous insulation on RCS
 - Large burden associated with insulation removal
 - Real occupational dose
 - Cost
- Actions taken
 - Replaced original three 155 ft² strainers with three new 1818 ft² strainers
 - Weld mitigation (overlay, replacement SG welds with low PWSCC susceptibility material, MSIP)
 - Replaced Marinite[®] insulation with NUKON

STPNOC Licensing Application

- January 2013: STPNOC requests exemptions from regulations that would enable the use of risk-informed methods where deterministic methods were previously required.
- Comprehensive model of debris generation and transport phenomena
- Coupled thermal hydraulic analyses
- Conditional failure probabilities input to STP PRA
- In order to reduce the complexity and scope of scenarios to review, in December 2014, STPNOC began a RoverD approach to bound uncertainties

General overview of the RoverD methodology

Ernie Kee

General Overview of RoverD Methodology

- RoverD simplifies complex risk assessment by using deterministic test data and bounding analyses
- Bounds on uncertainties make the assessment tractable, reviewable, and easily understood
- The STP PRA used to supplement the RoverD assessment with a few, easily understood evaluations

High Level Overview

- Ensure tested fine fiber amounts bound all tested debris species on filter screens and fuel assemblies
- Assume scenarios that exceed tested fine fiber amounts lead to core damage and assess risk
- Confirm containment integrity is maintained for defense-in-depth

Testing and Deterministic Element of RoverD

Wes Schulz

Insulation

Original Strainer (155 Sq. Ft.)

New Strainer (1818 Sq.Ft.)

Zone of Influence for 31" Pipe Break

Figure 5.4.1 - Illustration of 17D Nukon ZOI for a 31" DEGB

Elements of Nov 2007 GL2004-02 Response Content Guidance

- Break Selection
- Debris Generation (ZOI)
- Debris Characteristics
- Latent Debris
- Debris Transport
- Head Loss and Vortexing
- Net Positive Suction Head

- Coatings Evaluation
- Screen Modification Package
- Sump Structural Analysis
- Upstream Effects
- Downstream Effects
- Chemical Effects
- Debris Source Term
Flume Test Description

- July 2008 flume testing at Alden Research Laboratory to satisfy GL 2004-02
- One full-size STP strainer module at design flow (20 modules per sump)
- Fiber, particle, and chemical loads scaled for 2 trains (out of 3) operating
- Flume channel designed to emulate approach velocity and turbulence

Strainer Head Loss Test Debris

Debris forms included in test:

- Low Density Fiber Glass fine and small fibers
- Particulates, Microtherm[®], and Marinite[®] board particulates, latent dust and dirt
- Chemical precipitates representing 30 days of containment spray operation
- Coatings, zinc, epoxy, polyamide primer, alkyds, baked enamel

Reconciliation of Debris Used in Test

- Calcium Silicate (Marinite[®]) insulation was used in test. However this insulation type has since been removed from the containment building
- Subsequent analysis showed that the Microtherm[®] test amount exceeded that calculated to transport
- Subsequent analysis showed that the amounts of coatings particulate debris calculated to transport were under-predicted compared to the test
- The tested amounts of Marinite[®] and Microtherm[®] were shown to compensate for the under-prediction for the coatings particulates

Results

- Debris preparation and introduction procedures acceptable to NRC Staff
- Debris bed that formed with large quantity of particulate in combination with chemical load did not show need for additional thin bed testing
- Approximately half of head loss was due to chemical precipitates
- Successful test satisfies failure concerns up to the level of the tested debris loading
- Direct comparison of break spectrum to test results eliminates need for head-loss correlation

RoverD Risk Element and Results

Ernie Kee

Risk Element of RoverD

- RoverD scenarios begin with a break at a particular location (many thousands of scenarios are created)
- Use CASA Grande to deterministically calculate debris generation, transport, and erosion to the RCB floor pool
- Scenarios must meet deterministic criteria (upstream, downstream, in-vessel, RCB integrity criteria are met) or be categorized as risk-informed

Risk Element of RoverD

- Scenarios that introduce more fine fiber than tested are assigned to the risk-informed category
- Fetch the smallest break size among any at the location to be used for risk estimates
- Interpret NUREG 1829 for total frequency of risk-informed scenarios and assign to core damage to determine ΔCDF
- Calculate Δ LERF from PRA assessment

HLB PCT Simulations

- Assumes core fuel assemblies and core barrel bypass channels are fully blocked
- Thermal-hydraulic simulations show core cooling requirements are met for largest HLB break that is deterministically acceptable (16")

CLB - Core Fiber Analyses

- Uncertainty in core fiber buildup in CLB is assessed using bounding limiting analyses for strainer flow and RCB floor pool fiber concentrations
- The worst case fiber buildup cases show that the industry bounding fuel fiber cooling test (WCAP 16793) criteria are met

Single Train Assumption (ACRS Subcommittee Question)

- With CS and ECCS pumps running, the total strainer flow in the strainer is 7220 gpm, or about 200 gpm more than for the tested, 2 train flow
- Using the deterministic test, full flow on a single strainer is not bounded.
- Single train scenarios can be added to the riskinformed category or screened based on risk evaluation

Risk Assessment Results

- Measures taken by STPNOC minimize the risk of concerns raised in GSI-191 (ΔCDF - 1.50E-07, ΔLERF - 3.75E-10)
- Significant safety margin is included
- Defense in depth is maintained
- Results from different approaches consistently show minimal risk from the concerns raised in GSI-191

Summary

- RoverD is a framework that makes GSI-191 risk assessment understandable and easy to review through use of conservative testing and bounding analyses.
- Scenarios fall into two categories by application of accepted testing methods and bounding analyses
- Many additional supporting tests and analyses help support the conclusions and are publically available on the docket and other academic literature

Regulatory implementation

Wayne Harrison

Regulatory Implementation

- Debris-specific action for Mode 3 and above ECCS and CSS Technical Specifications
- UFSAR changes
- Exemptions to permit use of risk-informed approach instead of prescribed deterministic methodology

Regulatory Implementation

ECCS Technical Specification change (CSS similar)

With less than the required flow paths OPERABLE solely due to potential effects of LOCA generated and transported debris that exceeds analyzed amounts, perform the following:

- 1. Immediately initiate action to implement compensatory actions,
 - AND
- 2. Within 90 days restore the affected flowpath(s) to OPERABLE status,

OR

Be in at least HOT STANDBY within the next 6 hours and in HOT SHUTDOWN within the following 6 hours.

Closure

Mike Murray

Conclusions

- The RoverD process incorporates all aspects of the debris issue
 - GL2004-02 closure
 - Deterministic (testing for fiber and chemical effects)
 - Debris generation and transport
 - In-core effects
 - Risk-informed evaluation
- RoverD meets RG 1.174 acceptance guidelines with defense in depth and safety margin

Staff Review of STP GSI-191 LAR

Principle 1: Meets Current Regulations

Lisa Regner, Senior Project Manager

Office of Nuclear Reactor Regulation

Staff Methodology

* Principles of Risk-informed Integrated Decisionmaking from Regulatory Guide 1.174, Rev. 2, "An Approach for Using Probabilistic Risk Assessment in Risk-Informed Decisions on Plant Specific Changes to the Licensing Basis" (ADAMS ML100910006).

Principle 1 Risk-Informed Regulation

"The proposed change meets current regulations unless it is explicitly related to a requested exemption or rule change."

- 10 CFR 50.46c rulemaking status
- Exemptions requested from use of deterministic analysis method
 - Acceptance Criteria for emergency core cooling systems (ECCS)
 - General Design Criteria associated with ECCS, containment heat removal, and containment atmosphere cleanup

Staff Review of STP GSI-191 LAR

Principle 2: Defense-In-Depth Principle 3: Safety Margins

Steve Smith, Senior Reactor Systems Engineer

Office of Nuclear Reactor Regulation

Integrated Decisionmaking

* Principles of Risk-informed Integrated Decisionmaking from Regulatory Guide 1.174, Rev. 2, "An Approach for Using Probabilistic Risk Assessment in Risk-informed Decisions on Plant specific Change to the Licensing Basis" (ADAMS ML100910006).

Risk over Deterministic Methodology

Principles 2 and 3 Safety Margins Defense-In-Depth

- Licensee met guidance of RG 1.174 and listed significant Safety Margins and Defense-In-Depth (DiD)
- Safety Margins include construction and inspection per industry codes and the use of licensing basis values when assigning strainer failure criteria.
- DiD includes actions identified that are taken in response to the loss of the normal ECCS function. DiD also includes verification that balance is maintained among prevention and mitigation, redundancy is maintained, barrier independence is maintained, etc.

Debris Source Term

- Used NRC approved guidance for all areas
- Calculations performed in CASA Grande
- Differences from typical deterministic evaluations
 - For partial breaks, all weld locations evaluated for multiple orientations instead of focusing on the limiting large break
 - Double-ended guillotine break (DEGB) source term uses the same method as typical deterministic calculations
- Source term calculated for each break and compared against tested amount
- The most conservative orientation was selected for partial breaks at each weld location
- Assumptions and calculations independently verified by SwRI

- Debris Transport Strainer Evaluation
 - Used NRC approved guidance implemented via CASA Grande
- Debris Transport In-Vessel Effects
 - Fiber penetration determined via testing
 - Used conservative bypass values from testing
 - Calculated fiber amounts arriving at the core for cold-leg breaks considering varying plant states (pump combinations)
 - Determined fiber amount reaching the core is small in all cases (2 g/FA design basis, 4 g/FA 1 LHSI, 7 g/FA 1 HHSI)
 - Calculations independently validated by SwRI

- Impact of Debris Strainer
 - Strainer evaluated at tested debris load/dP for net positive suction head, structural, deaeration, vortexing, and flashing
 - Testing and evaluations were performed using staff approved guidance
 - Testing shows that increasing fiber amounts results in greater head losses
 - Majority of breaks were bounded by 2008 test results
 - Some breaks generate much larger debris amounts

Principle 4 Debris Generation Amount

- Impact of Debris In-vessel Cold-Leg Break
 - Debris amounts low enough to permit adequate cooling flow to the core based on WCAP-16793 findings
 - Boric Acid Precipitation not resolved by the LAR because staff has no basis to conclude that any amount of debris will not reduce mixing with the lower plenum
 - Previous staff conclusions indicate that the STP debris amounts do not result in a significant impact to boric acid precipitation (BAP) timing conclusions currently assumed by STP
 - Licensee to address BAP for the CL break at a later time

Staff Review of STP GSI-191 LAR

Deterministic In-vessel

Steve Smith Joshua Kaizer, PhD Division of Safety Systems Office of Nuclear Reactor Regulation

In-Vessel Deterministic: Review Goal

<u>Goal</u>

 To determine if the LTCC Evaluation Model (EM) provided credible results which could be trusted for reactor safety analysis.

<u>Solution</u>

- All large breaks were treated with risk (removes the need to model complex phenomena)
- Focus only on "long term" portion of the event (removes the need to validate complex phenomena associated with blowdown, refill, reflood)

In-Vessel Deterministic: Review Scope

Break Size	Hot-Leg	Cold-Leg
Small	LTCC EM	RoverD
Medium (< 16")	LTCC EM	RoverD
Large (<u>></u> 16")	Risk Informed	RoverD

Criteria (WCAP-16793)

- 1. Max PCT < 800 $^{\circ}F^{*}$ LTCC EM (SRP 15.0.2)
- 2. Deposit thickness < 0.050 inches
- * Preferably, not above saturation (reduces complexity)

In-Vessel Deterministic: Summary

Conservatisms / Simplifications

- full core blockage
- ignoring flow through the barrel-baffle region
- ignoring flow through the holes between the barrel-baffle region and the core
- biasing key input parameters conservatively
- using a conservative counter current flow limitation model and core modeling

Simplified hot leg break simulation

Staff Review of STP GSI-191 LAR

Principle 4: Risk Principle 5: Performance Monitoring

CJ Fong, PE, Team Leader Candace Pfefferkorn de Messieres, PhD, Reliability and Risk Analyst

> Office of Nuclear Reactor Regulation Division of Risk Assessment Risk Informed Licensing

Integrated Decisionmaking

* Principles of Risk-informed Integrated Decisionmaking from Regulatory Guide 1.174, Rev. 2, "An Approach for Using Probabilistic Risk Assessment in Risk-informed Decisions on Plant-specific Change to the Licensing Basis" (ADAMS ML100910006).

Staff relied on existing framework in RG 1.174

Major areas reviewed by the staff

- Was risk attributable to debris (ΔCDF, ΔLERF) calculated in an acceptable manner?
 - Initiating Event Frequencies
 - Plant configurations (pump combinations)
 - Break selection
 - Scenario development
 - • •
 - Sensitivity and Uncertainty Analyses
- Is the base PRA model acceptable?
 - Scope
 - Level of detail
 - Technical adequacy

The STPNOC Systematic Risk Assessment Key Assumptions

- 1. Considered both the geometric and arithmetic mean aggregation schemes
- LOCA frequency allocated to various break locations according only to break size (e.g. "Top down")
- 3. Considered complete vs. partial breaks.
 - In the "continuum break" assumption a complete break of a given size in one pipe is equally as likely as a partial break of the same size in a larger pipe.
 - In the "DEGB only" assumption, only complete, DEGBs were evaluated.

Staff Performed a Bounding Calculation to Evaluate all Key Assumptions

 Staff applied the conservative, upper bound approach presented to the ACRS during discussions on draft RG 1.229*

$$\Delta CDF_{debris} = f(x_{min})$$

 x_{min} = smallest critical break size

 $f(x_{min})$ = exceedance frequency using arithmetic mean

* ACRS Meeting April 7, 2016 (ADAMS ML16110A150)

Staff Explored Various Models and Assumptions when Evaluating Risk

Risk Attributable to Debris (Delta CDF) 1.2E-05 RG 1.174 acceptance 1.0E-05 guideline Delta CDF (per year) 8.0E-06 6.0E-06 Sensitivity performed by staff consultant, SWRI* 4.0E-06 Staff's bounding calculation (AM) 2.0E-06 Range of licensee-reported values using various assumptions 0.0E + 00

Principle 4 Summary of Key Criteria

- The licensee PRA is of the appropriate scope, level of detail, and technical adequacy.
- The risk-informed approach used by the licensee to address the effects of debris on long-term core cooling is consistent with approved practices.
- The increase in risk meets the risk acceptance guidelines as defined RG 1.174.

Principle 5 Performance Monitoring

- Risk analysis reviewed/updated every 48 months
- Procedures/controls have been developed to prevent/mitigate debris in containment (e.g. new TS and programs)
- NRC is notified if acceptance guidelines exceeded
- STP licensing basis (UFSAR) will specify key methods and assumptions that impact results

Principles 4 and 5 Summary

- STPNOC appropriately identified the scenarios that contribute to the increase in risk due to debris (ΔCDF_{debris}, ΔLERF_{debris})
- There is a lack of consensus for some assumptions in STPNOC's risk calculations
- Bounding calculation addresses lack of consensus and provides confidence that risk is within acceptance guidelines
- Performance monitoring approach is consistent with NRC guidance

ACRS Subcommittee Topics

- Containment Spray System flow rate for single train operation and resulting net positive suction head for sump pump
- Reason for delta CDF decrease for continuum break model when critical break size decreased
- Expected primary pressure transitioning from Mode 3 to Mode 4 and required number of ECCS trains

Overall Summary

- STP acceptably evaluated the impact of debris
- STP appropriately considered both risk and deterministic aspects in the submittal
- Most break scenarios are addressed using conservative deterministic methods
- STP's LTCC evaluation method and simulations are conservative and meet acceptance criteria
- STP's debris analyses meet the key principles of riskinformed regulation
- STP's PRA results show that the change in risk is very small

Questions?

A Probabilistic Risk Assessment of Consequential SGTR (C-SGTR) for a Westinghouse and a Combustion Engineering Plants

With Thermally-Treated Alloy 600 and 690 Steam Generator Tubes

U.S. NRC/RES, IESS presentation to ACRS

May 4, 2017

Purpose and Background

 NRR User Need Request "Developing Analytical Bases and Guidance for Future Risk Assessments of Consequential Steam Generator Tube Rupture (C-SGTR) Events" issued December 2009

- Requested development of improved analytical bases and guidance for probabilistic risk assessments of C-SGTR events
- Subsequent to an April 2011 ACRS sub-committee briefing, NRR Management requested RES to restructure project to focus on near-term deliverables and to allow for an incremental approach
- Informal meetings with lead ACRS member for C-SGTR issues (Dr. Rempe) held January 2012, January 2013, and April 2013

Purpose and Background - 2

- ACRS full-committee meeting in May 2013
- Staff prepared a draft NUREG-2195
- ACRS Sub-committee briefing in April 2015
- Since the last meeting:
 - ACRS member comments reviewed and addressed (ML16315A250)
 - Draft NUREG-2195 processed and issued for public comment (ML16134A029) May 2016
 - Public comments reviewed and addressed (ML16315A251)
 - NUREG-2195 revised (ML16315A253)

Recent Work and Path Forward

- ACRS Subcommitte meeting held on December 2016
- ACRS member comments were addressed and NUREG was further revised (ML17082A324)
- Next actions in the project are
 - Have the draft NUREG 2195 go through NRC technical editing process
 - Send the edited version to NRC publishing
- Expect to publish NUREG 2195 in the calendar year 2017

Outline of today's presentation

- Today's presentation focuses on current status and Thermal Hydraulic aspects of the C-SGTR project
- Presentation contains 3 sections:
 - Current status of C-SGTR Project
 - Thermal Hydraulic Overview of C-SGTR
 - Overview and proposed resolution of comments on thermal hydraulic work

C-SGTR Project

Pilot Risk Assessment of Consequential SG tube rupture (Pressure Induced/Creep Rupture) for a Westinghouse and a CE plant consisting of three elements

Deterministic based Element

- ➤ TH evaluation (MELCOR/RELAP) informed by CFD
- Finite element Analysis (Abaqus)
- Performance based Element
 - ➢ Failure probabilities (Calculator)
 - Flaw Characteristics/Statistics
- Risk-Informed Element
 - ➢ Simplified CDF
 - Conservative LERF

C-SGTR Project (2)

- Involved work scope by 3 RES divisions including 4 branches
- T&H and structure/materials related studies were mostly done in-house; PRA work was contracted out
- During its current work period of 7 years, the project competed for resources with other projects, including Fukushima-related ones.

Severe Accident-Induced Steam Generator Tube Rupture (SGTR)

Thermal Hydraulic Overview of CSGTR

Michael Salay NRC – Office of Nuclear Regulatory Research

Consequential Steam Generator Tube Rupture (C-SGTR) ACRS Briefing May 4, 2017

Topics

- CSGTR Scenario Description
- TH analyses
- Method (CFD & System Code)
- Experimental Basis
- Differences Between CE and Westinghouse Plants

The Station Blackout

- A low probability station blackout event with immediate or subsequent loss of feed water to the steam generators.
- Reactor inventory boils off resulting in fuel damage and high temperature and high pressure conditions within RCS.
- Failure of the RCS boundary is induced by these conditions.
- If SG tubes fail first, then a flow path is created that bypasses the containment
- Failures of other RCS components (hot leg or surge line),
 RCS blow down into the containment
- Determining SG tubes failure is important in consequence analysis

A Fast Westinghouse Scenario RCS failure within 4 hours

- loss of offsite power, failure of diesels, and failure of auxiliary feedwater systems
- primary inventory lost through reactor coolant pump seals. Secondary side boils off
- secondary side dry, primary inventory lost through safety valve cycling and pump seals
- loop natural circulation stops as primary inventory falls in SG tubes.
- natural circulation of superheated steam begins as inventory falls below hot leg. Core and system heat up.
- Core uncovers, core oxidizes and produces significant power, system heat up accelerates and induced failure is predicted for RCS components.
- More likely scenarios involve some auxiliary feedwater or operator actions that significantly delay the failure time.

RCS Structure Temperatures – Fast Westinghouse Scenario

time (minutes since station blackout)

RCS Points of interest and modeling considerations

Rapid temperature rise and pressure difference leads to induced failure.

failure location affects consequences

RCS Points of interest and modeling considerations

Rapid temperature rise and pressure difference leads to induced failure.

• failure location affects consequences

High-Dry-Low

Primary Side

High Pressure

no significant
 leakage to reduce
 pressure

SG tube wall

Secondary Side

Dry * Loss of water allows tubes to heat up

Low Pressure * Secondary side leakage increases pressure difference (i.e. mechanical load on tube wall)

Two Flow Patterns - PWRs with U-Tube SGs

Full-Loop Natural Circulation

- Water cleared from the reactor coolant pump loop seal (and lower downcomer).
- Loop seal clearing is affected by:
 - depth of the pump loop seal and water temperature
 - reactor coolant pump seal leakage rate and elevation
 - primary side depressurization rates
 - downcomer bypass flows
- Westinghouse PWR studies have indicated that loop seals are more likely to remain blocked with water.
- Careful modeling and benchmarking is important to build confidence in predictions of loop seal clearing.
- Full loop circulation reduces mixing of the hot gasses that enter the SG tube bundle. A severe thermal challenge.
- System analysis tools such as MELCOR or SCDAP/RELAP5 are used to predict the system flows and heat transfer.

Counter-Current Natural Circulation

- With the pump loop seal filled with water, a counter-current flow field is established.
 - This flow pattern mixes the hot gases with cooler flows returning from the SG. The thermal challenge to the tubes is reduced but not eliminated.
- System code models require external information to ensure consistency:
 - hot leg flows, mixing, and heat transfer
 - inlet plenum mixing and entrainment
 - pressurizer surge line mixing
 - SG tube bundle flows, temperatures, and distribution
- System codes account for the overall response but are not designed to explicitly predict the three dimensional mixing and entrainment.
 - MELCOR and SCDAP/R5 models are adjusted to ensure consistency with experiments and/or CFD predictions

TH Analyses

- Westinghouse TH analyses performed for the Steam Generator Action Plan (SGAP)
 - Documented in NUREG/CR-6995
 - TH analyses for Combustion Engineering (CE) plants did not receive the same level of attention
- B&W plants not analyzed vigorous natural circulation flows not expected
- Westinghouse and Combustion Engineering TH analyses used for current work
 - TH analyses conducted with CE under CSGTR project

TH Analyses (2)

- Use system code and CFD code
 - CFD predicts spatial flow and temperature distributions
 - System code predicts transient behavior
 - Uses CFD results for modeling
 - Results can be combined with those of CFD to obtain a transient spatial temperature distribution
- CFD Validated against Westinghouse 1/7th scale experiments

– Built up to prototypical SG geometries

• Multiple sensitivity studies on parameters

CFD Support Modeling

Tube Average Inlet Ter

SGTR Behavior Differences between CE and Westinghouse Plants

- CE has Less mixing of hot gases before reaching SG tube inlets
 - Lower hot leg Length/Diameter ratio
 - Some CE plants have shallower inlet plena
- In CE SG tubes are exposed to similar gas temperatures as hot legs
- Under certain conditions unflawed tubes could rupture before hot legs
- Unlike for the rupture of a flawed tube, multiple unflawed tubes could potentially reach the failure condition nearly simultaneously resulting in a rupture large enough to depressurize the RCS sufficiently fast to prevent failure of other RCS components.

The CE inlet plenum (compared to W model 51)

CFD Predictions - Westinghouse and CE (hottest tube region circled)

(temperature contours on vertical centerline plane of hot leg)

MELCOR CE Calculations

- Objectives:
 - Provide TH results for CE plants to be used to calculate component failure using:
 - CSGTR Calculator
 - Finite Element calculations
 - Provide scoping component failure calculations
 - Provide FP releases
- Analyses (scoping and component-failure-suppressed calculations)
 - Accidents
 - Short terms station blackout (stsbo) (AFW fails to start)
 - Long term station blackout (ltsbo)
 - Variations
 - Operator actions/relief valve behavior
 - RCP seal leakage
- Comparison against RELAP5 CE calculation
- Uncertainty analysis to determine impact of TH uncertainty on failure timing

Example MELCOR CE results Impact of RCP seal leakage sensitivity

pressure (Pa)
Possible future CE TH work

- Interesting but deferred work because of resource limitations
 - More detailed spatial temperature distribution
 - Assessment of TH factors that impact relative component failure timing
 - Analysis of loop seal clearing
 - Water hold up in SG, flooding / counter-current flow
 - Water also held up in previous SGAP calculations
 - Detailed evaluation of FP release
 - Current focus on TH input, not FP release
 - Didn't rerun cases to solely extract FP release behavior

Severe Accident-Induced Steam Generator Tube Rupture (SGTR)

Overview and Proposed Resolution of Comments on TH Work

Michael Salay NRC – Office of Nuclear Regulatory Research

Consequential Steam Generator Tube Rupture (C-SGTR) ACRS Briefing May 24, 2017

Recent ACRS questions

- CE tubesheet inlet T distributions
- Impact on Loop seal clearing
- Expected impact of models in later versions of MELCOR
- Uncertainties in TH analyses

CE tubesheet inlet T distribution

Loop seal clearing (1/2)

- Q: Many studies out there conclude that loops seals would clear before core damage. Do any of scenarios indicate that?
- Loop seal clearing was studied extensively for Westinghouse for SGAP and several mechanisms studied and documented in NUREG/CR-6995
 - Generated parameter maps for conditions under which loop seals would clear or stay intact
 - f(RCP pump seal leak rate, TDAFW operation time, number of PORV opened, time of operator action)
 - Found to also be affected by core bypass area and nodalization
 - Concluded that uncertainty remains regarding whether loop seals would clear.

Loop seal clearing (2/2)

- Loop seals did not clear in any of the MELCOR CE calculations
- Initial scoping work for loop seal clearing CE built upon the SGAP analyses
- Analysis of loop seal clearing eliminated upon work scope reduction - Issue not explored fully for CE
 - Loop seal clearing is more important for Westinghouse plants because this clearing exposes SG tubes to gases nearly as hot as those in the hot leg
 - For the CE geometry studied, the hottest gases entering SG tube bundle are nearly as hot as those in the hot leg
 - Loop seal clearing not as important

Impact of Updated MELCOR Models (1/3)

- Q: MELCOR models used in the SOARCA analysis resulted in significant changes in timing of events. Do these changes affect the conclusions of this study?
- Most TH analysis work done primarily in 2011 and 2012. Some cases recalculated in 2013.
- MELCOR 1.8.6 used for CE CSGTR analysis
- Different MELCOR 2 versions used in different SOARCA analyses

Impact of Updated MELCOR Models (2/3)

- SOARCA Uncertainty Analysis for Surry short term station blackout compared event timing of MELCOR 1.8.6 to MELCOR 2.1
- Major event timing very close up to and beyond component creep failure
- No significant change expected to CE MELCOR calculations models

Event times for Surry STSBO (hh:mm)

Event	1.86	2.1
SBO	00:00	00:00
SG dryout	01:16	01:14
Start of fuel heatup	02:19	02:20
RCP seal failure	02:45	02:47
First FP gap releases	02:57	02:57
HL creep rupture failure	03:45	03:45
Accumulators start	03:45	03:46

Impact of Updated MELCOR Models (3/3)

- There have been phenomenon model updates in MELCOR subsequent to Surry analysis:
 - Update to Lipinski debris bed dryout model
 - Update to quenching models
- Both of these models affect behavior during reflood
- The CE analysis concerns system behavior at high pressure before accumulator injection
- The use of the updated models are not expected to alter report conclusions

CE TH Uncertainty Analysis (1/6)

- Additional detail on MELCOR uncertainty analysis requested
- The impact of uncertainties in TH considered upon initial deck creation: "How much do uncertainties in TH affect failure timing and releases?"
- SNL performed TH uncertainty analysis on early stsbo model with deck prior to addition of hot tube and other modifications
 - Used Average Hot tube for SG with stress multiplier of 2
 - Expect results to be representative of failure timing variation resulting from TH variations
 - NOT necessarily expected to be representative of component or relative failure time
- Sampled TH parameters and observed effect on predicted absolute component failure timing and relative SG-tube-to-RCS-component failure timing
 - "simple" Monte Carlo sampling
 - 100 realizations
 - Analyzed with STEPWISE regression software
- TH uncertainty analysis parameters chosen based on those in NUREG/CR-6285 and NUREG/CR-6995:

CE TH Uncertainty Analysis (2/6)

Sampled Parameters

Parameter	Range
PORV and SRV Valve discharge coefficients	0.7 - 1.1
Zr oxidation rate constant	14.8 -44.4
Mixing parameters	
Cd	0.064 - 0.0863
Recirculation ratio	1.1 - 1.4
SG tube outer wall heat transfer multiplier	0.5 - 1.5
Hot leg wall emissivity	0.3 – 0.9
RCS to containment heat transfer multiplier	2.8075 - 8.4225

CE TH Uncertainty Analysis (3/6) Component failure time distributions

Probabilities at 95% Confidence Interval

38

CE TH Uncertainty Analysis (4/6) Relative component failure time distribution

Probabilities at 95% Confidence Interval

CE TH Uncertainty Analysis (5/6) What affected absolute failure timing? \mathbb{R}^2

Parameter (SG)	SG tube	Parameter (HL)	Hot Leg
RCS to Cont HTC mult	0.585	RCS to Cont HTC mult	0.784
SG wall HTC mult	0.279	Mixing Cd	0.113
Zr oxidation rate	0.06	Zr oxidation rate	0.049
Recirc. ratio	0.023	SG wall HTC mult	0.014
Mixing Cd	0.012	Recirc. ratio	0.01
PORV/SRV discharge	0.002		

(Higher numbers indicate greater importance)

What affected relative failure timing?

CE TH uncertainty Analysis (6/6)

- Distribution of failure timings resulting from TH variation uncertainty analysis had standard deviations of:
 - $-\pm400$ s (6 min 40 s) SG absolute failure timing
 - $-\pm511$ s (8.5 min) HL absolute failure timing
 - Approximately ±420 s (7 min) relative SG-to-RCS component failure timing

CE TH Conclusions

- MELCOR calculations for a CE plant with replacement SGs provide input to CSGTR calculator and finiteelement component failure analysis
- Relative temperature increase rates and relative component failure timing between SG tubes and other components more important for releases than absolute failure time
- Some work was deferred because of limited resources
 - Benefit determined to not be worth the expense for the project
- Received and incorporated useful feedback from ACRS and public

A Probabilistic Risk Assessment of Consequential SGTR (C-SGTR) for a Westinghouse and a Combustion Engineering Plants

With Thermally-Treated Alloy 600 and 690 Steam Generator Tubes

> U.S. NRC/RES, IESS presentation to ACRS

> > May 4, 2017

Purpose and Background

 NRR User Need Request "Developing Analytical Bases and Guidance for Future Risk Assessments of Consequential Steam Generator Tube Rupture (C-SGTR) Events" issued December 2009

- Requested development of improved analytical bases and guidance for probabilistic risk assessments of C-SGTR events
- Subsequent to an April 2011 ACRS sub-committee briefing, NRR Management requested RES to restructure project to focus on near-term deliverables and to allow for an incremental approach
- Informal meetings with lead ACRS member for C-SGTR issues (Dr. Rempe) held January 2012, January 2013, and April 2013

Purpose and Background - 2

- ACRS full-committee meeting in May 2013
- Staff prepared a draft NUREG-2195
- ACRS Sub-committee briefing in April 2015
- Since the last meeting:
 - ACRS member comments reviewed and addressed (ML16315A250)
 - Draft NUREG-2195 processed and issued for public comment (ML16134A029) May 2016
 - Public comments reviewed and addressed (ML16315A251)
 - NUREG-2195 revised (ML16315A253)

Recent Work and Path Forward

- ACRS Subcommitte meeting held on December 2016
- ACRS member comments were addressed and NUREG was further revised (ML17082A324)
- Next actions in the project are
 - Have the draft NUREG 2195 go through NRC technical editing process
 - Send the edited version to NRC publishing
- Expect to publish NUREG 2195 in the calendar year 2017

Outline of today's presentation

- Today's presentation focuses on current status and Thermal Hydraulic aspects of the C-SGTR project
- Presentation contains 3 sections:
 - Current status of C-SGTR Project
 - Thermal Hydraulic Overview of C-SGTR
 - Overview and proposed resolution of comments on thermal hydraulic work

C-SGTR Project

Pilot Risk Assessment of Consequential SG tube rupture (Pressure Induced/Creep Rupture) for a Westinghouse and a CE plant consisting of three elements

Deterministic based Element

- ➤ TH evaluation (MELCOR/RELAP) informed by CFD
- Finite element Analysis (Abaqus)
- Performance based Element
 - ➢ Failure probabilities (Calculator)
 - Flaw Characteristics/Statistics
- Risk-Informed Element
 - ➢ Simplified CDF
 - Conservative LERF

C-SGTR Project (2)

- Involved work scope by 3 RES divisions including 4 branches
- T&H and structure/materials related studies were mostly done in-house; PRA work was contracted out
- During its current work period of 7 years, the project competed for resources with other projects, including Fukushima-related ones.

Severe Accident-Induced Steam Generator Tube Rupture (SGTR)

Thermal Hydraulic Overview of CSGTR

Michael Salay NRC – Office of Nuclear Regulatory Research

Consequential Steam Generator Tube Rupture (C-SGTR) ACRS Briefing May 4, 2017

Topics

- CSGTR Scenario Description
- TH analyses
- Method (CFD & System Code)
- Experimental Basis
- Differences Between CE and Westinghouse Plants

The Station Blackout

- A low probability station blackout event with immediate or subsequent loss of feed water to the steam generators.
- Reactor inventory boils off resulting in fuel damage and high temperature and high pressure conditions within RCS.
- Failure of the RCS boundary is induced by these conditions.
- If SG tubes fail first, then a flow path is created that bypasses the containment
- Failures of other RCS components (hot leg or surge line),
 RCS blow down into the containment
- Determining SG tubes failure is important in consequence analysis

A Fast Westinghouse Scenario RCS failure within 4 hours

- loss of offsite power, failure of diesels, and failure of auxiliary feedwater systems
- primary inventory lost through reactor coolant pump seals. Secondary side boils off
- secondary side dry, primary inventory lost through safety valve cycling and pump seals
- loop natural circulation stops as primary inventory falls in SG tubes.
- natural circulation of superheated steam begins as inventory falls below hot leg. Core and system heat up.
- Core uncovers, core oxidizes and produces significant power, system heat up accelerates and induced failure is predicted for RCS components.
- More likely scenarios involve some auxiliary feedwater or operator actions that significantly delay the failure time.

RCS Structure Temperatures – Fast Westinghouse Scenario

time (minutes since station blackout)

RCS Points of interest and modeling considerations

Rapid temperature rise and pressure difference leads to induced failure.

failure location affects consequences

RCS Points of interest and modeling considerations

Rapid temperature rise and pressure difference leads to induced failure.

• failure location affects consequences

High-Dry-Low

Primary Side

High Pressure

no significant
 leakage to reduce
 pressure

SG tube wall

Secondary Side

Dry * Loss of water allows tubes to heat up

Low Pressure * Secondary side leakage increases pressure difference (i.e. mechanical load on tube wall)

Two Flow Patterns - PWRs with U-Tube SGs

Full-Loop Natural Circulation

- Water cleared from the reactor coolant pump loop seal (and lower downcomer).
- Loop seal clearing is affected by:
 - depth of the pump loop seal and water temperature
 - reactor coolant pump seal leakage rate and elevation
 - primary side depressurization rates
 - downcomer bypass flows
- Westinghouse PWR studies have indicated that loop seals are more likely to remain blocked with water.
- Careful modeling and benchmarking is important to build confidence in predictions of loop seal clearing.
- Full loop circulation reduces mixing of the hot gasses that enter the SG tube bundle. A severe thermal challenge.
- System analysis tools such as MELCOR or SCDAP/RELAP5 are used to predict the system flows and heat transfer.

Counter-Current Natural Circulation

- With the pump loop seal filled with water, a counter-current flow field is established.
 - This flow pattern mixes the hot gases with cooler flows returning from the SG. The thermal challenge to the tubes is reduced but not eliminated.
- System code models require external information to ensure consistency:
 - hot leg flows, mixing, and heat transfer
 - inlet plenum mixing and entrainment
 - pressurizer surge line mixing
 - SG tube bundle flows, temperatures, and distribution
- System codes account for the overall response but are not designed to explicitly predict the three dimensional mixing and entrainment.
 - MELCOR and SCDAP/R5 models are adjusted to ensure consistency with experiments and/or CFD predictions

TH Analyses

- Westinghouse TH analyses performed for the Steam Generator Action Plan (SGAP)
 - Documented in NUREG/CR-6995
 - TH analyses for Combustion Engineering (CE) plants did not receive the same level of attention
- B&W plants not analyzed vigorous natural circulation flows not expected
- Westinghouse and Combustion Engineering TH analyses used for current work
 - TH analyses conducted with CE under CSGTR project

TH Analyses (2)

- Use system code and CFD code
 - CFD predicts spatial flow and temperature distributions
 - System code predicts transient behavior
 - Uses CFD results for modeling
 - Results can be combined with those of CFD to obtain a transient spatial temperature distribution
- CFD Validated against Westinghouse 1/7th scale experiments

– Built up to prototypical SG geometries

• Multiple sensitivity studies on parameters
CFD Support Modeling

Tube Average Inlet Ter

SGTR Behavior Differences between CE and Westinghouse Plants

- CE has Less mixing of hot gases before reaching SG tube inlets
 - Lower hot leg Length/Diameter ratio
 - Some CE plants have shallower inlet plena
- In CE SG tubes are exposed to similar gas temperatures as hot legs
- Under certain conditions unflawed tubes could rupture before hot legs
- Unlike for the rupture of a flawed tube, multiple unflawed tubes could potentially reach the failure condition nearly simultaneously resulting in a rupture large enough to depressurize the RCS sufficiently fast to prevent failure of other RCS components.

The CE inlet plenum (compared to W model 51)

CFD Predictions - Westinghouse and CE (hottest tube region circled)

(temperature contours on vertical centerline plane of hot leg)

MELCOR CE Calculations

- Objectives:
 - Provide TH results for CE plants to be used to calculate component failure using:
 - CSGTR Calculator
 - Finite Element calculations
 - Provide scoping component failure calculations
 - Provide FP releases
- Analyses (scoping and component-failure-suppressed calculations)
 - Accidents
 - Short terms station blackout (stsbo) (AFW fails to start)
 - Long term station blackout (ltsbo)
 - Variations
 - Operator actions/relief valve behavior
 - RCP seal leakage
- Comparison against RELAP5 CE calculation
- Uncertainty analysis to determine impact of TH uncertainty on failure timing

Example MELCOR CE results Impact of RCP seal leakage sensitivity

pressure (Pa)

Possible future CE TH work

- Interesting but deferred work because of resource limitations
 - More detailed spatial temperature distribution
 - Assessment of TH factors that impact relative component failure timing
 - Analysis of loop seal clearing
 - Water hold up in SG, flooding / counter-current flow
 - Water also held up in previous SGAP calculations
 - Detailed evaluation of FP release
 - Current focus on TH input, not FP release
 - Didn't rerun cases to solely extract FP release behavior