RENEWED AMENDMENT NUMBER 13 TO COC 1004

REVISION 1

TECHNICAL SPECIFICATIONS FOR THE STANDARDIZED NUHOMS® HORIZONTAL MODULAR STORAGE SYSTEM

DOCKET NO. 72-1004

TABLE OF CONTENTS

<u>Sec</u>	<u>tion</u>		<u>Page</u>
1.0	Use a	nd Application	1-1
	1.1	Definitions	1-1
	1.2	Logical Connectors	1-3
	1.3	Completion Times	1-5
	1.4	Frequency	1-8
2.0	Funct	ional and Operating Limits	2-1
	2.1	Fuel to be Stored in the Standardized NUHOMS® System	2-1
	2.2	Functional and Operating Limits Violations	2-2
3.0	Limitir	ng Condition for Operation (LCO) and Surveillance Requirement (SR)	
	Applic	ability	3-1
	3.1	Fuel Integrity	
		3.1.1 DSC Bulkwater Removal Medium and Vacuum Drying Pressure .	3-3
		3.1.2 DSC Helium Backfill Pressure	3-5
		3.1.3 Time Limit for Completion of DSC Transfer (24PTH, 61BTH	
		Type 2, 32PTH1, 69BTH, or 37PTH DSC Only)	3-7
		3.1.4 HSM Maximum Air Exit Temperature with a Loaded DSC	3-9
	3.2	Cask Criticality Control	3-11
4.0	Desig	n Features	4-1
	4.1	Canister Criticality Control	4-2
	4.2	Codes and Standards	4-4
		4.2.1 Horizontal Storage Module (HSM)	4-4
		4.2.2 Dry Shielded Canister (DSC	4-4
		4.2.3 Transfer Cask (TC)	4-5
		4.2.4 ASME Code Alternatives	4-6
	4.3	Storage Location Design Features	4-37
		4.3.1 Storage Configuration	4-37
		4.3.2 Concrete Storage Pad Properties to Limit DSC Gravitational	
		Loadings Due to Postulated Drops	4-37
		4.3.3 Site Specific Parameters and Analyses	4-38
	4.4	TC Design Features	4-40
	4.5	Leakage Testing of the Confinement Boundary	4-41
5.0	Admir	nistrative Controls	5-1
	5.1	Procedures	5-1
		5.1.1 DSC Loading, Unloading and Preparation Program	5-2
		5.1.2 ISFSI Operations Program	5-2
		5.1.3 Aging Management Program Procedures and Reporting	5-2
	5.2	Programs	5-3
		5.2.1 10 CFR 72.48 Evaluation Program	5-3
		5.2.2 Training Program	5-4
		5.2.3 Radiological Environmental Monitoring Program	5-4
		5.2.4 Radiation Protection Program	5-5

Standardized NUHOMS[®] Technical Specifications Renewed Amendment No. 13, Revision No. 1 i

5.2.5	HSM or HSM-H Thermal Monitoring Program	5-9
5.2.6	Hydrogen Gas Monitoring for 24P, 52B, 24PHB, 61BT, 32PT,	
	24PTH, 61BTH, 32PTH1, 69BTH, and 37PTH DSCs	5-10
Cask ⁻	Transfer Controls	5-11
5.3.1	TC/DSC Lifting/Handling Height Limits	5-11
5.3.2	Cask Drop	5-12
5.3.3	TC Alignment with HSM or HSM-H	5-13
5.3.4	Trailer Shielding Drop onto OS197L TC	5-13
HSM o	or HSM-H Dose Rate Evaluation Program	5-14
Concr	ete Testing for HSM-H	5-16
HSM-I	H Configuration Changes	5-17
	5.2.6 Cask 7 5.3.1 5.3.2 5.3.3 5.3.4 HSM 0 Concre	 5.2.5 HSM or HSM-H Thermal Monitoring Program

LIST OF TABLES

<u>Table</u>		<u>Page</u>
Table 1-1a	PWR Fuel Specifications for Fuel to be Stored in the Standardized NUHOMS [®] -24P DSC	T-1
Table 1-1b	BWR Fuel Specifications for Fuel to be Stored in the Standardized NUHOMS [®] -52B DSC	T-2
Table 1-1c	BWR Fuel Specifications for Fuel to be Stored in the Standardized NUHOMS [®] -61BT DSC	T-3
Table 1-1d	BWR Fuel Assembly Design Characteristics ^{(1) (2)} for the NUHOMS [®] -61BT DSC	T-4
Table 1-1e	PWR Fuel Specifications for Fuel to be Stored in the NUHOMS [®] -32PT DSC	T-5
Table 1-1f	PWR Fuel Assembly Design Characteristics for the NUHOMS [®] -32PT DSC	T-6
Table 1-1g	Maximum Planar Average Initial Enrichment and Required Number of PRAs and Minimum Soluble Boron Loading (NUHOMS [®] -32PT DSC)	T-7
Table 1-1g1	Maximum Planar Average Initial Enrichment for Type A1 and A2 Basket and Minimum Soluble Boron Loading (NUHOMS [®] -32PT DSC)	T-8
Table 1-1h	B10 Specification for the NUHOMS®-32PT Poison Plates	T-9
Table 1-1i	PWR Fuel Specifications for Fuel to be Stored in the Standardized NUHOMS [®] -24PHB DSC	T₋10
Table 1-1	BWR Fuel Specification of Damaged Fuel to be Stored in the Standardized NUHOMS [®] -61BT DSC	b
Table 1-1k	B10 Specification for the NUHOMS [®] -61BT Poison Plates	
Table 1-1I	PWR Fuel Specification for the Fuel to be Stored in the NUHOMS [®] -24PTH DSC	T-15
Table 1-1m	PWR Fuel Assembly Design Characteristics for the NUHOMS [®] -24PTH DSC	T-18
Table 1-1n	Thermal and Radiological Characteristics for Control Components Stored in the NUHOMS [®] -24PTH DSC and 24PHB DSC	T-19
Table 1-1o	(Not Used)	T-19
Table 1-1p	Maximum Planar Average Initial Enrichment v/s Neutron Poison Requirem for the NUHOMS [®] -24PTH DSC (Intact Fuel)	
Table 1-1q	Maximum Planar Average Initial Enrichment v/s Neutron Poison Requirem for the NUHOMS [®] -24PTH DSC (Damaged Fuel)	
Table 1-1q1	Maximum Planar Average Initial Enrichment v/s Neutron Poison Requirem for the NUHOMS [®] -24PTH DSC (up to 8 Damaged/Failed Fuel)	
Table 1-1r	B10 Specification for the NUHOMS®-24PTH Poison Plates	
Table 1-1s	(Deleted)	T-25
Table 1-1t	BWR Fuel Specification for the Fuel to be Stored in the NUHOMS [®] -61BTH DSC	T-26
Table 1-1u	BWR Fuel Assembly Design Characteristics ⁽¹⁾ for the NUHOMS [®] -61BTH DSC	T-29

Table 1-1v	Maximum Fuel Assembly Lattice Average Initial Enrichment v/s Minimum B10 Requirements for the NUHOMS [®] -61BTH DSC Poison Plates	
	(Intact Fuel)	. T-30
Table 1-1w	Maximum Fuel Assembly Lattice Average Initial Enrichment v/s Minimum B10 Requirements for the NUHOMS [®] -61BTH DSC Poison Plates (Damaged Fuel)	T-31
Table 1-1w1	BWR Fuel Assembly Initial Lattice Average Initial Enrichment v/s Minimum B10 Requirements for the NUHOMS [®] -61BTH DSC Poison Plates	
	(Failed and Damaged Fuel)	. T-32
Table 1-1x	(Not Used)	. T-32
Table 1-1y	(Not Used)	. T-32
Table 1-1z	(Not Used)	. T-32
Table 1-1aa	PWR Fuel Specification for the Fuel to be Stored in the NUHOMS [®] -32PTH1 DSC	T 22
Table 1-1bb		. 1-33
	PWR Fuel Assembly Design Characteristics for the	Т 25
Table 1 1ee	NUHOMS [®] -32PTH1 DSC	. 1-35
Table 1-1cc	Maximum Planar Average Initial Enrichment v/s Neutron Poison Requirements for 32PTH1 DSC (Intact Fuel)	т 26
Table 1-1dd	Maximum Planar Average Initial Enrichment v/s Neutron Poison	. 1-30
	Requirements for 32PTH1 DSC (Damaged Fuel)	т 20
Table 1-1ee	Thermal and Radiological Characteristics for Control Components	. 1-30
	Stored in the NUHOMS [®] -32PT and NUHOMS [®] -32PTH1 DSCs	т 11
Table 1-1ff	B10 Specification for the NUHOMS [®] -32PTH1 DSCS	
Table 1-111 Table 1-1gg	BWR Fuel Specification for the Fuel to be Stored in the	. 1-42
Table 1-199	NUHOMS [®] -69BTH DSC	т /3
Table 1-1hh	Not Used	
Table 1-1111 Table 1-111	BWR Fuel Assembly Design Characteristics for the	. 1-45
	NUHOMS [®] -69BTH DSC	т 16
Table 1-1jj	BWR Fuel Assembly Lattice Average Initial Enrichment vs Minimum	. 1-+0
	B10 Requirements for the NUHOMS [®] -69BTH DSC Poison Plates	
	(Intact Fuel)	T-47
Table 1-1kk	BWR Fuel Assembly Lattice Average Initial Enrichment vs Minimum	,
	B10 Requirements for the NUHOMS [®] -69BTH DSC Poison Plates	
	(Damaged Fuel)	T-48
Table 1-1II	PWR Fuel Specification for the Fuel to be Stored in the	. 1 10
	NUHOMS [®] -37PTH DSC	т_49
Table 1-1mm	Not Used	
Table 1-1nn	PWR Fuel Assembly Design Characteristics for the	
	NUHOMS®-37PTH DSC	T-52
Table 1-1oo	Maximum Planar Average Initial Enrichment vs. Minimum Soluble Boron	
	Concentration for 37PTH DSC (Intact and Damaged Fuel)	. T-53
Table 1-1pp	Not Used	

Table 1-1qq	Thermal and Radiological Characteristics for Control Components	
	Stored in the NUHOMS®-37PTH DSC	
Table 1-1rr	B10 Specification for the NUHOMS®-37PTH Poison Plates	. T-56
Table 1-2a	PWR Fuel Qualification Table for the Standardized NUHOMS [®] -24P DSC	
	(Fuel Without BPRAs)	
Table 1-2b	BWR Fuel Qualification Table for the Standardized NUHOMS®-52B DSC	. T-58
Table 1-2c	PWR Fuel Qualification Table for the Standardized NUHOMS [®] -24P DSC	
	(Fuel with BPRAs)	. T-59
Table 1-2d	PWR Fuel Qualification Table for 1.2 kW per Assembly for the	
	NUHOMS®-32PT DSC (Fuel with or without CCs)	. T-60
Table 1-2e	PWR Fuel Qualification Table for 0.87 kW per Assembly for the	
	NUHOMS®-32PT DSC (Fuel with or without CCs)	. T-61
Table 1-2f	PWR Fuel Qualification Table for 0.7 kW per Assembly for the	
	NUHOMS®-32PT DSC (Fuel with or without CCs)	. T-62
Table 1-2g	PWR Fuel Qualification Table for 0.63 kW per Assembly for the	
	NUHOMS®-32PT DSC (Fuel with or without CCs)	. T-63
Table 1-2h	PWR Fuel Qualification Table for 0.6 kW per Assembly for the	
	NUHOMS®-32PT DSC (Fuel with or without CCs)	. T-64
Tables 1-2i th	rough 1-2m are deleted	. T-66
Table 1-2n	PWR Fuel Qualification Table for Zone 1 with 0.7 kW per Assembly,	
	Fuel with or without CCs, for the NUHOMS®-24PHB DSC	. T-67
Table 1-2o	PWR Fuel Qualification Table for Zone 2 with 1.0 kW per Assembly,	
	Fuel with or without CCs, for the NUHOMS [®] -24PHB DSC	. T-68
Table 1-2p	PWR Fuel Qualification Table for Zone 3 with 1.3 kW per Assembly,	
	Fuel with or without CCs, for the NUHOMS®-24PHB DSC	. T-69
Table 1-2q	BWR Fuel Qualification Table for NUHOMS®-61BT DSC	. T-70
Table 1-3a	PWR Fuel Qualification Table for Zone 1 Fuel with 1.7 kW per Assembly	
	for the NUHOMS [®] -24PTH DSC (Fuel without CCs)	. T-71
Table 1-3b	PWR Fuel Qualification Table for Zone 2 Fuel with 2.0 kW per Assembly	
	for the NUHOMS [®] -24PTH DSC (Fuel without CCs)	. T-72
Table 1-3c	PWR Fuel Qualification Table for Zone 3 Fuel with 1.5 kW per Assembly	
	for the NUHOMS [®] -24PTH DSC (Fuel without CCs)	. T-73
Table 1-3d	PWR Fuel Qualification Table for Zone 4 Fuel with 1.3 kW per Assembly	
	for the NUHOMS [®] -24PTH DSC (Fuel without CCs)	. T-74
Table 1-3e	PWR Fuel Qualification Table for Zone 1 Fuel with 1.7 kW per Assembly	
	for the NUHOMS [®] -24PTH DSC (Fuel with CCs)	. T-75
Table 1-3f	PWR Fuel Qualification Table for Zone 2 Fuel with 2.0 kW per Assembly	
	for the NUHOMS [®] -24PTH DSC (Fuel with CCs)	. T-76
Table 1-3g	PWR Fuel Qualification Table for Zone 3 Fuel with 1.5 kW per Assembly	
0	for the NUHOMS [®] -24PTH DSC (Fuel with CCs)	. T-77
Table 1-3h	PWR Fuel Qualification Table for Zone 4 Fuel with 1.3 kW per Assembly	
	for the NUHOMS [®] -24PTH DSC (Fuel with CCs)	. T-78
Table 1-4a	BWR Fuel Qualification Table for Zone 1 Fuel with 0.22 kW per Assembly	-
	for the NUHOMS [®] -61BTH DSC	. T-80

Standardized NUHOMS® Technical Specifications Renewed Amendment No. 13, Revision No. 1 v

I

Table 1-4b	BWR Fuel Qualification Table for Zone 2 Fuel with 0.35 kW per Assembly for the NUHOMS [®] -61BTH DSC	Т 91
Table 1-4c	BWR Fuel Qualification Table for Zone 3 Fuel with 0.393 kW per Assembly	. 1-01
	for the NUHOMS [®] -61BTH DSC	T-82
Table 1-4d	BWR Fuel Qualification Table for Zone 4 Fuel with 0.48 kW per Assembly	. 1 02
	for the NUHOMS [®] -61BTH DSC	. T-83
Table 1-4e	BWR Fuel Qualification Table for Zone 5 Fuel with 0.54 kW per Assembly	
	for the NUHOMS [®] -61BTH DSC	. T-84
Table 1-4f	BWR Fuel Qualification Table for Zone 6 Fuel with 0.7 kW per Assembly	
	for the NUHOMS [®] -61BTH DSC	. T-85
Table 1-5a	PWR Fuel Qualification Table for Zone 1 Fuel with 0.6 kW per Assembly	
	for the NUHOMS [®] -32PTH1 DSC	. T-87
Table 1-5b	PWR Fuel Qualification Table for Zone 2 Fuel with 0.8 kW per Assembly	
	for the NUHOMS [®] -32PTH1 DSC	. T-88
Table 1-5c	PWR Fuel Qualification Table for Zone 3 or Zone 4 Fuel with 1.0 kW per	
	Assembly for the NUHOMS [®] -32PTH1 DSC	. T-89
Table 1-5d	PWR Fuel Qualification Table for Zone 5 Fuel with 1.3 kW per Assembly	
	for the NUHOMS [®] -32PTH1 DSC (Fuel without CCs)	. T-90
Table 1-5e	PWR Fuel Qualification Table for Zone 5 with Damaged Fuel with 1.2 kW	
	per Assembly for the NUHOMS [®] -32PTH1 DSC (Fuel without CCs)	. T-91
Table 1-5f	PWR Fuel Qualification Table for Zone 6 Fuel with 1.5 kW per Assembly	
	for the NUHOMS [®] -32PTH1 DSC	. T-92
Table 1-6a	Fuel Qualification Table for 0.3 kW BWR FAs in Zone 1 of a	
	NUHOMS [®] -61BT DSC Contained in an OS197L TC	. T-94
Table 1-6b	Fuel Qualification Table for 0.17 kW BWR FAs in Zone 2 of a	
	NUHOMS [®] -61BT DSC Contained in an OS197L TC	. T-95
Table 1-6c	Fuel Qualification Table for 0.6 kW PWR FAs in Zone 1 of a	
	NUHOMS [®] -32PT DSC Contained in an OS197L TC	
	(Fuel with or without CCs)	. T-96
Table 1-6d	Fuel Qualification Table for 0.4 kW PWR FAs in Zone 2 of a	
	NUHOMS [®] -32PT DSC Contained in an OS197L TC	
	(Fuel with or without CCs)	. T-97
Table 1-7a	BWR Fuel Qualification Table for Fuel with 0.10 kW per Assembly for the	
	NUHOMS [®] -69BTH DSC	. T-99
Table 1-7b	BWR Fuel Qualification Table for Fuel with 0.22 kW per Assembly for the	
	NUHOMS [®] -69BTH DSC	T-101
Table 1-7c	BWR Fuel Qualification Table for Fuel with 0.25 kW per Assembly for the	
	NUHOMS [®] -69BTH DSC	T-103
Table 1-7d	BWR Fuel Qualification Table for Fuel with 0.30 kW per Assembly for the	
	NUHOMS [®] -69BTH DSC	T-105
Table 1-7e	BWR Fuel Qualification Table for Fuel with 0.35 kW per Assembly for the	
	NUHOMS [®] -69BTH DSC	T-107
Table 1-7f	BWR Fuel Qualification Table for Fuel with 0.393 kW per Assembly for the	
	NUHOMS [®] -69BTH DSC	T-109

Table 1-7g	BWR Fuel Qualification Table for Fuel with 0.40 kW per Assembly for the NUHOMS [®] -69BTH DSC	T-111
Table 1-7h	BWR Fuel Qualification Table for Fuel with 0.45 kW per Assembly for the NUHOMS [®] -69BTH DSC.	
Table 1-7i	BWR Fuel Qualification Table for Fuel with 0.488 kW per Assembly for the NUHOMS [®] -69BTH DSC	
Table 1-7j	BWR Fuel Qualification Table for Fuel with 0.55 kW per Assembly for the NUHOMS [®] -69BTH DSC.	
Table 1-7k	BWR Fuel Qualification Table for Fuel with 0.60 kW per Assembly for the NUHOMS [®] -69BTH DSC	
Table 1-7I	BWR Fuel Qualification Table for Fuel with 0.70 kW per Assembly for the NUHOMS [®] -69BTH DSC	
Table 1-7m	Not Used	
Table 1-7n	Not Used	.T-125
Table 1-7o	Not Used	.T-126
Table 1-8a	PWR Fuel Qualification Table for Fuel with 0.4 kW per Assembly for the	
	NUHOMS®-37PTH DSC	
Table 1-8b	Not Used	T-128
Table 1-8c	PWR Fuel Qualification Table for Fuel with 0.6 kW per Assembly for the	
	NUHOMS [®] -37PTH DSC	T-129
Table 1-8d	PWR Fuel Qualification Table for Fuel with 0.7 kW per Assembly for the NUHOMS [®] -37PTH DSC	T-130
Table 1-8e	PWR Fuel Qualification Table for Fuel with 1.2 kW per Assembly for the	
	NUHOMS®-37PTH DSC	.T-131
Table 1-8f	Not Used	.T-133
Table 1-8g	Not Used	.T-134
Table 1-8h	Not Used	.T-135

LIST OF FIGURES

<u>Page</u>

I

<u>Figure</u>

Figure 1-1	PWR Fuel Criticality Acceptance Curve for the 24P DSC	F-1
Figure 1-2	Heat Load Zoning Configuration 1 for the NUHOMS®-32PT DSC	F-2
Figure 1-3	Heat Load Zoning Configuration 2 for the NUHOMS®-32PT DSC	
Figure 1-4	Heat Load Zoning Configuration 3 for the NUHOMS®-32PT DSC	F-4
Figure 1-5	Required PRA Locations for the NUHOMS [®] -32PT DSC Configuration	
-	with Four PRAs	F-5
Figure 1-6	Required PRA Locations for the NUHOMS®-32PT DSC Configuration	
-	with Eight PRAs	F-6
Figure 1-7	Required PRA Locations for the NUHOMS®-32PT DSC Configuration	
-		F-7
Figure 1-8	Heat Load Zoning Configuration for Fuel Assemblies (with or without	
-	Control Components) Stored in NUHOMS®-24PHB DSC-Configuration 1	F-8
Figure 1-9	Heat Load Zoning Configuration for Fuel Assemblies (with or without	
-	Control Components) Stored in NUHOMS®-24PHB DSC-Configuration 2	F-9
Figure 1-10	Soluble Boron Concentration vs. Fuel Initial U-235 Enrichment	
-	(Intact Fuel) for the NUHOMS [®] 24PHB System	. F-10
Figure 1-10a	Soluble Boron Concentration vs. Fuel Initial U-235 Enrichment	
	(Damaged Fuel) for the NUHOMS [®] -24PHB System	. F-11
Figure 1-11	Heat Load Zoning Configuration Number 1 for 24PTH-S and	
	24PTH-L DSCs (with or without Control Components)	. F-12
Figure 1-12	Heat Load Zoning Configuration Number 2 for 24PTH-S and	
	24PTH-L DSCs (with or without Control Components)	. F-13
Figure 1-13	Heat Load Zoning Configuration Number 3 for 24PTH-S and	
	24PTH-L DSCs (with or without Control Components)	. F-14
Figure 1-14	Heat Load Zoning Configuration Number 4 for 24PTH-S and	
	24PTH-L DSCs (with or without Control Components)	. F-15
Figure 1-15	Heat Load Zoning Configuration Number 5 for 24PTH-S-LC DSC	
	(with or without Control Components) ⁽²⁾	
Figure 1-16	Location of Failed or Damaged Fuel Inside 24PTH DSC ⁽¹⁾⁽²⁾⁽³⁾	. F-17
Figure 1-17	Heat Load Zoning Configuration Number 1 for Type 1 or Type 2	
	61BTH DSCs	. F-18
Figure 1-18	Heat Load Zoning Configuration Number 2 for Type 1 or Type 2	
	61BTH DSCs	. F-19
Figure 1-19	Heat Load Zoning Configuration Number 3 for Type 1 or Type 2	
	61BTH DSCs	. F-20
Figure 1-20	Heat Load Zoning Configuration Number 4 for Type 1 or Type 2	
	61BTH DSCs	
Figure 1-21	Heat Load Zoning Configuration Number 5 for Type 2 61BTH DSCs	. F-22
Figure 1-22	Heat Load Zoning Configuration Number 6 for Type 2 61BTH DSCs	
Figure 1-23	Heat Load Zoning Configuration Number 7 for Type 2 61BTH DSCs	
Figure 1-24	Heat Load Zoning Configuration Number 8 for Type 2 61BTH DSCs	. F-25

Figure 1-25	Location of Damaged and Failed Fuel Inside 61BTH DSC	F-26
Figure 1-26	Heat Load Zoning Configuration Number 1 for 32PTH1-S, 32PTH1-M	
-	and 32PTH1-L DSCs (Type 1 Baskets)	F-27
Figure 1-27	Heat Load Zoning Configuration Number 2 for 32PTH1-S, 32PTH1-M	
•	and 32PTH1-L DSCs (Type 1 or Type 2 Baskets)	F-28
Figure 1-28	Heat Load Zoning Configuration Number 3 for 32PTH1-S, 32PTH1-M	
•	and 32PTH1-L DSCs (Type 1 or Type 2 Baskets)	F-29
Figure 1-29	Heat Load Zone Configuration for the 61BT DSC Contained	
•	in an OS197L TC	F-30
Figure 1-30	Heat Load Zone Configuration for the 32PT DSC Contained in an	
-	OS197L TC	F-31
Figure 1-31	Heat Load Zoning Configuration Number 1 for 69BTH DSCs	F-32
Figure 1-32	Heat Load Zoning Configuration Number 2 for 69BTH DSCs	F-33
Figure 1-33	Heat Load Zoning Configuration Number 3 for 69BTH DSCs	
Figure 1-34	Heat Load Zoning Configuration Number 4 for 69BTH DSCs	F-35
Figure 1-35	Heat Load Zoning Configuration Number 5 for 69BTH DSC	
Figure 1-36	Heat Load Zoning Configuration Number 6 for 69BTH DSC	
Figure 1-37	Location of Damaged Fuel Assemblies Inside 69BTH DSC	
Figure 1-38	Not Used	
Figure 1-39	Heat Load Zoning Configuration Number 2 for 37PTH-S and	
0	37PTH-M DSCs	F-40
Figure 1-40	Heat Load Zoning Configuration Number 3 for 37PTH-S and	
2	37PTH-M DSCs	F-41

1.0 USE AND APPLICATION

1.1 Definitions

NOTE			
The defined terms of this section appear in capitalized type and are applicable throughout these Technical Specifications and Bases.			
<u>Term</u>	Definition		
ACTIONS	ACTIONS shall be that part of a Specification that prescribes Required Actions to be taken under designated Conditions within specified Completion Times.		
HORIZONTAL STORAGE MODULE (HSM)	The HSM (Standardized HSM, HSM-H, high seismic option for HSM-H or other models enveloped by these designs) is a reinforced concrete structure for storage of a loaded DSC at a spent fuel storage installation. e.g., Standardized HSM includes HSM Model 80, Model 102, Model 152 or Model 202 as described in the Updated Final Safety Analysis Report (UFSAR). The generic term "HSM-H" refers to HSM-H or high seismic option for HSM-H except where a specific HSM-H configuration is called out.		
DRY SHIELDED CANISTER (DSC)	A DSC (Model 24P, 52B, 61BT, 32PT, 24PHB, 24PTH, 61BTH, 32PTH1, 69BTH, 37PTH or other models enveloped by these designs) is a welded vessel that provides confinement of fuel assemblies in an inert atmosphere.		
INDEPENDENT SPENT FUEL STORAGE INSTALLATION (ISFSI)	A complex designed and constructed for the interim storage of spent nuclear fuel, solid reactor-related GTCC waste, and other radioactive materials associated with spent fuel and reactor-related GTCC waste storage.		
INTACT FUEL ASSEMBLY, DAMAGED FUEL ASSEMBLY FAILED FUEL ASSEMBLY	The definitions for intact or damaged or failed fuel assemblies are in the fuel specification tables for each DSC referred to in Technical Specification 2.1.		
LOADING OPERATIONS	LOADING OPERATIONS include all licensed activities on a DSC in a TC while it is being loaded with fuel assemblies. LOADING OPERATIONS begin when the first fuel assembly is placed in the DSC and end when the TC is ready for TRANSFER OPERATIONS (i.e., when the cask is in a horizontal position on the trailer). The placement of the Outer Top Trailer Shielding onto the OS197L TC is considered part of the LOADING OPERATIONS. LOADING OPERATIONS do not include DSC transfer between the TC and the HSM		

(continued)

STORAGE OPERATIONS	STORAGE OPERATIONS include all licensed activities that are performed at the ISFSI while a DSC containing fuel assemblies is located in an HSM on the storage pad within the ISFSI perimeter. STORAGE OPERATIONS do not include DSC transfer between the TC and the HSM.
TRANSFER CASK (TC)	The TC (Standardized TC, OS197, OS197H, OS197L, OS197FC, OS197FC-B, OS197HFC, OS197HFC-B, OS200, OS200FC TC) consists of a licensed NUHOMS [®] onsite transfer cask.
TRANSFER OPERATIONS	TRANSFER OPERATIONS include all licensed activities involving the movement of a TC loaded with a DSC containing fuel assemblies. TRANSFER OPERATIONS begin after the TC has been placed horizontal on the transfer trailer (and for the OS197L, the supplemental trailer shielding has been put in place) ready for TRANSFER OPERATIONS and end when the DSC is at its destination and no longer horizontal on the transfer trailer. TRANSFER OPERATIONS include transfer of a DSC between the TC and the HSM.
UNLOADING OPERATIONS	UNLOADING OPERATIONS include all licensed activities on a DSC to unload fuel assemblies. UNLOADING OPERATIONS begin when the TC is no longer horizontal on the transfer trailer and end when the last fuel assembly has been removed from the DSC. UNLOADING OPERATIONS do not include DSC transfer between the TC and the HSM.
FUEL BUILDING	The FUEL BUILDING is the site-specific area or a facility where the LOADING OPERATIONS take place.
BLEU FUEL MATERIAL	Blended Low Enriched Uranium (BLEU) fuel material is identical to UO_2 fuel material except for the presence of higher cobalt impurity.

1.2 Logical Connectors

PURPOSE	The purpose of this section is to explain the meaning of logical connectors.			
	Logical connectors are used in Technical Specifications (TS) to discriminate between, and yet connect, discrete Conditions, Required Actions, Completion Times, Surveillances, and Frequencies. The only logical connectors that appear in TS are <u>AND</u> and <u>OR</u> . The physical arrangement of these connectors constitutes logical conventions with specific meanings.			
BACKGROUND	Several levels of logic may be used to state Required Actions. These levels are identified by the placement (or nesting) of the logical connectors and by the number assigned to each Required Action. The first level of logic is identified by the first digit of the number assigned to a Required Action and the placement of the logical connector in the first level of nesting (i.e., left justified with the number of the Required Action). The successive levels of logic are identified by additional digits of the Required Action number and by successive indentations of the logical connectors. When logical connectors are used to state a Condition, Completion Time, Surveillance, or Frequency, only the first level of logic is used, and the logical connector is left justified with the statement of the Condition, Completion Time, Surveillance, or Frequency.			
EXAMPLES	The following examples illustrate the use of logical connectors.			
	EXAMPLE 1.2-1			
	ACTIONS			
	CONDITION	REQUIRED ACTION	COMPLETION TIME	
	1. LCO (Limiting Condition	A.1 Verify		

In this example the logical connector <u>AND</u> is used to indicate that when in Condition A, both Required Actions A.1 and A.2 must be completed.

Restore . . .

(continued)

I

A.2

for

Operation)

not met.

1.2 Logical Connectors

EXAMPLES (continued)

EXAMPLE 1.2-2

ACTIONS

CONDITION	REQUIRED ACTION	COMPLETION TIME
1. LCO not met.	A.1 Stop OR A.2 A.2.1 Verify AND A.2.2 A.2.2.1 Reduce OR A.2.2 Perform OR A.3 Remove	

This example represents a more complicated use of logical connectors. Required Actions A.1, A.2, and A.3 are alternative choices, only one of which must be performed as indicated by the use of the logical connector <u>OR</u> and the left justified placement. Any one of these three Actions may be chosen. If A.2 is chosen, then both A.2.1 and A.2.2 must be performed as indicated by the logical connector <u>AND</u>. Required Action A.2.2 is met by performing A.2.2.1 or A.2.2.2. The indented position of the logical connector <u>OR</u> indicates that A.2.2.1 and A.2.2.2 are alternative choices, only one of which must be performed.

1.3 Completion T	imes
PURPOSE	The purpose of this section is to establish the Completion Time convention and to provide guidance for its use.
BACKGROUND	Limiting Conditions for Operation (LCOs) specify minimum requirements for ensuring safe operation of the unit. The ACTIONS associated with an LCO state Conditions that typically describe the ways in which the requirements of the LCO can fail to be met. Specified with each stated Condition are Required Action(s) and Completion Time(s).
DESCRIPTION	The Completion Time is the amount of time allowed for completing a Required Action. It is referenced to the time of discovery of a situation (e.g., equipment or variable not within limits) that requires entering an ACTIONS Condition unless otherwise specified, providing the Cask System is in a specified condition stated in the Applicability of the LCO. Required Actions must be completed prior to the expiration of the specified Completion Time. An ACTIONS Condition remains in effect and the Required Actions apply until the Condition no longer exists or the Cask System is not within the LCO Applicability.

(continued)

1.3 Completion Times

EXAMPLES The following examples illustrate the use of Completion Times with different types of Conditions and changing Conditions. EXAMPLE 1.3-1

ACTIONS

CONDITION	RE	QUIRED ACTION	COMPLETION TIME
B. Required Action and associated	B.1	Complete Action B.1	12 hours
Completion Time not met.	<u>AND</u>		36 hours
	B.2	Complete Action B.2	

Condition B has two Required Actions. Each Required Action has its own separate Completion Time. Each Completion Time is referenced to the time that Condition B is entered.

The Required Actions of Condition B are to complete action B.1 within 12 hours <u>AND</u> complete action B.2 within 36 hours. A total of 12 hours is allowed for completing action B.1 and a total of 36 hours (not 48 hours) is allowed for completing action B.2 from the time that Condition B was entered. If action B.1 is completed within 6 hours, the time allowed for completing action B.2 is the next 30 hours because the total time allowed for completing action B.2 is 36 hours.

EXAMPLES <u>EXAMPLE 1.3-2</u>

ACTIONS

CONDITION		REQUIRED ACTION	COMPLETION TIME	
Α.	One system not within limit.	A.1 Restore system to within limit.	7 days	
B.	Required Action and associated Completion Time not met.	B.1 Complete Action B.1. <u>AND</u>	12 hours	
		B.2 Complete Action B.2.	36 hours	

When a system is determined to not meet the LCO, Condition A is entered. If the system is not restored within 7 days, Condition B is also entered and the Completion Time clocks for Required Actions B.1 and B.2 start. If the system is restored after Condition B is entered, Conditions A and B are exited, and therefore, the Required Actions of Condition B may be terminated.

1.3 Completion Times

EXAMPLES (continued)

EXAMPLE 1.3-3

ACTIONS

------ NOTE ------ Separate Condition entry is allowed for each component.

CONDITION	REQUIRED ACTION	COMPLETION TIME
1. LCO not met.	A.1 Restore compliance with LCO.	4 hours
B. Required Action and associated Completion Time not met.	 B.1 Complete Action B.1. <u>AND</u> B.2 Complete Action B.2. 	6 hours 12 hours

The Note above the ACTIONS Table is a method of modifying how the Completion Time is tracked. If this method of modifying how the Completion Time is tracked was applicable only to a specific Condition, the Note would appear in that Condition rather than at the top of the ACTIONS Table.

The Note allows Condition A to be entered separately for each component, and Completion Times tracked on a per component basis. When a component is determined to not meet the LCO, Condition A is entered and its Completion Time starts. If subsequent components are determined to not meet the LCO, Condition A is entered for each component and separate Completion Times start and are tracked for each component.

IMMEDIATEWhen "immediately" is used as a Completion Time, the Required ActionCOMPLETIONshould be pursued without delay and in a controlled manner.TIME

1.4	Frequency	
PUR	POSE	The purpose of this section is to define the proper use and application of Frequency requirements.
DESCRIPTION		Each Surveillance Requirement (SR) has a specified Frequency in which the Surveillance must be met in order to meet the associated Limiting Condition for Operation (LCO). An understanding of the correct application of the specified Frequency is necessary for compliance with the SR.
		The "Specified Frequency" is referred to throughout this section and each of the Specifications of Section 3.0, Limiting Condition for Operation (LCO) and Surveillance Requirement (SR) Applicability. The "Specified Frequency" consists of the requirements of the Frequency column of each SR as well as certain Notes in the Surveillance column that modify performance requirements.
		Situations where a Surveillance could be required (i.e., its Frequency could expire), but where it is not possible or not desired that it be performed until sometime after the associated LCO is within its Applicability, represent potential SR 3.0.4 conflicts. To avoid these conflicts, the SR (i.e., the Surveillance or the Frequency) is stated such that it is only "required" when it can be and should be performed. With an SR satisfied, SR 3.0.4 imposes no restriction.
		(continued)

EXAMPLES

The following examples illustrate the various ways that Frequencies are specified.

EXAMPLE 1.4-1

SURVEILLANCE REQUIREMENTS

SURVEILLANCE	FREQUENCY
Verify pressure within limit.	12 hours

Example 1.4-1 contains the type of SR most often encountered in the Technical Specifications (TS). The Frequency specifies an interval (12 hours) during which the associated Surveillance must be performed at least one time. Performance of the Surveillance initiates the subsequent interval. Although the Frequency is stated as 12 hours, an extension of the time interval to 1.25 times the stated Frequency is allowed by SR 3.0.2 for operational flexibility. The measurement of this interval continues at all times, even when the SR is not required to be met per SR 3.0.1 (such as when the equipment is determined to not meet the LCO, a variable is outside specified limits, or the unit is outside the Applicability of the LCO). If the interval specified by SR 3.0.2 is exceeded while the facility is in a condition specified in the Applicability of the LCO, the LCO is not met in accordance with SR 3.0.1.

If the interval as specified by SR 3.0.2 is exceeded while the unit is not in a condition specified in the Applicability of the LCO for which performance of the SR is required, the Surveillance must be performed within the Frequency requirements of SR 3.0.2 prior to entry into the specified condition. Failure to do so would result in a violation of SR 3.0.4

(continued)

EXAMPLES (continued)

EXAMPLE 1.4-2

SURVEILLANCE REQUIREMENTS

SURVEILLANCE	FREQUENCY
Verify flow is within limits.	Once within 12 hours prior to starting activity
	AND
	24 hours thereafter

Example 1.4-2 has two Frequencies. The first is a one time performance Frequency, and the second is of the type shown in Example 1.4-1. The logical connector "<u>AND</u>" indicates that both Frequency requirements must be met. Each time the example activity is to be performed, the Surveillance must be performed prior to starting the activity.

The use of "once" indicates a single performance will satisfy the specified Frequency (assuming no other Frequencies are connected by "<u>AND</u>"). This type of Frequency does not qualify for the 25% extension allowed by SR 3.0.2.

"Thereafter" indicates future performances must be established per SR 3.0.2, but only after a specified condition is first met (i.e., the "once" performance in this example). If the specified activity is canceled or not performed, the measurement of both intervals stops. New intervals start upon preparing to restart the specified activity.

2.0 FUNCTIONAL AND OPERATING LIMITS

2.1 Fuel to be Stored in the Standardized NUHOMS[®] System

The spent nuclear fuel to be stored in the Standardized NUHOMS[®] System is specific to each DSC model as listed below and shall meet all the requirements of the applicable Fuel Specification Tables, including the cross-referenced figures and tables listed in their applicable Fuel Fuel Specification Tables.

DSC MODEL	Applicable Fuel Specification
24P	Table 1-1a
52B	Table 1-1b
61BT	Table 1-1c and Table 1-1j
32PT	Table 1-1e
24PHB	Table 1-1i
24PTH	Table 1-1I
61BTH	Table 1-1t
32PTH1	Table 1-1aa
69BTH	Table 1-1gg
37PTH	Table 1-1II

DSC models are listed in the CoC. If the model number has a variant which specifically has certain limitations, then those are specifically called out in the TS. Information concerning the fuel types, dose rate limits, or other technical specifications applies to all variants if they are not explicitly mentioned in the CoC or technical specifications. An example is the 24PTH DSC. In this case, 24PTH is the model number. The 24PTH-S, -L and –S-LC are variants with specific limitations, which are called out in the TS.

2.1.1 Each of the DSC models listed above may be stored inside an HSM model in accordance with LCO 3.1.4.

2.2 Functional and Operating Limits Violations

If any Functional and Operating Limit of 2.1 is violated, the following actions shall be completed:

- 2.2.1 The affected fuel assemblies shall be placed in a safe condition
- 2.2.2 Notify the NRC Operations Center per the requirements of 10 CFR 72.75.
- 2.2.3 Within 30 days, submit a separate report which describes the cause of the violation and the actions taken to restore compliance and prevent recurrence.

Limiting Condition For Operation (LCO) And Surveillance Requirement (SR) Applicability 3.0

- 3.0 LIMITING CONDITION FOR OPERATION (LCO) AND SURVEILLANCE REQUIREMENT (SR) APPLICABILITY
- LCO 3.0.1 LCOs shall be met during specified conditions in the Applicability, except as provided in LCO 3.0.2.
- LCO 3.0.2 Upon discovery of a failure to meet an LCO, the Required Actions of the associated Conditions shall be met.

If the LCO is met or is no longer applicable prior to expiration of the specified Completion Time(s), completion of the Required Action(s) is not required unless otherwise stated.

- LCO 3.0.3 Not applicable to a spent fuel storage cask.
- LCO 3.0.4 When an LCO is not met, entry into a specified condition in the Applicability shall not be made except when the associated ACTIONS to be entered permit continued operation in the specified condition in the Applicability for an unlimited period of time. This Specification shall not prevent changes in specified conditions in the Applicability that are required to comply with ACTIONS, or that are related to the unloading of a DSC.

Exceptions to this Specification are stated in the individual Specifications. These exceptions allow entry into specified conditions in the Applicability when the associated ACTIONS to be entered allow operation in the specified condition in the Applicability only for a limited period of time.

LCO 3.0.5 Not applicable to a spent fuel storage cask.

(continued)

3.0 Limiting Condition for Operation (LCO) and Surveillance Requirement (SR) Applicability

SR 3.0.1	SRs shall be met during the specified conditions in the Applicability for individual LCOs, unless otherwise stated in the SR. Failure to meet a Surveillance, whether such failure is experienced during the performance of the Surveillance or between performances of the Surveillance, shall be failure to meet the LCO. Failure to perform a Surveillance within the specified Frequency shall be failure to meet the LCO except as provided in SR 3.0.3. Surveillances do not have to be performed on equipment or variables outside specified limits.
SR 3.0.2	The specified Frequency for each SR is met if the Surveillance is performed within 1.25 times the interval specified in the Frequency, as measured from the previous performance or as measured from the time a specified condition of the Frequency is met.
	For Frequencies specified as "once," the above interval extension does not apply. If a Completion Time requires periodic performance on a "once per" basis, the above Frequency extension applies to each performance after the initial performance.
	Exceptions to this Specification are stated in the individual Specifications.
SR 3.0.3	If it is discovered that a Surveillance was not performed within its specified Frequency, then compliance with the requirement to declare the LCO not met may be delayed, from the time of discovery, up to 24 hours or up to the limit of the specified Frequency, whichever is greater. This delay period is permitted to allow performance of the Surveillance.
	If the Surveillance is not performed within the delay period, the LCO must immediately be declared not met, and the applicable Condition(s) must be entered.
	When the Surveillance is performed within the delay period and the Surveillance is not met, the LCO must immediately be declared not met, and the applicable Condition(s) must be entered.
SR 3.0.4	Entry into a MODE or other specified condition in the Applicability of an LCO shall only be made when the LCO's Surveillances have been met within their specified Frequency. This provision shall not prevent entry into specified conditions in the Applicability that are required to comply with ACTIONS of that are related to the unloading of a DSC.

I

3.1 Fuel Integrity

3.1.1 DSC Bulkwater Removal Medium and Vacuum Drying Pressure

LCO 3.1.1	Medium:
	Helium shall be used for all drainage of liquid water from the DSC.
	Pressure:
	The DSC vacuum drying pressure shall be sustained at or below 3 Torr (3 mm Hg) absolute for a period of at least 30 minutes following evacuation.
APPLICABILITY:	During LOADING OPERATIONS but before TRANSFER OPERATIONS.
	(continued)

I

3.1 Fuel Integrity

ACTIONS

CONDITION	CONDITION REQUIRED ACTION		COMPLETION TIME	
Note: Not applicable until SR 3.1.1 is performed A. If the required vacuum pressure cannot be obtained.	A.1 A.1.1	Confirm that the vacuum drying system is properly installed. Check and repair the vacuum drying system as necessary.	30 days	
		OR		
	A.1.2	Check and repair the seal weld between the inner top cover plate/ top shield plug assembly and the DSC shell.		
	<u>OR</u>			
	A.2	Establish helium pressure of at least 1.0 atm and no greater than 15 psig in the DSC.	30 days	
	<u>OR</u>			
	A.3	Flood the DSC with spent fuel pool water or water meeting the requirements of LCO 3.2.1 if applicable submerging all fuel assemblies.	30 days	

SURVEILLANCE REQUIREMENTS

	SURVEILLANCE	FREQUENCY
SR 3.1.1.1	Verify that the DSC vacuum pressure is less than, or equal to, 3 Torr (3 mm Hg) absolute for at least 30 minutes following evacuation.	Once per DSC, after an acceptable NDE of the inner top cover plate/top shield plug assembly.

3.1Fuel Integrity
3.1.2DSC Helium Backfill Pressure

LCO 3.1.2 (a) 24P or 52B DSC helium backfill pressure shall be 2.5 psig ± 2.5 psig (stable for 30 minutes after filling) after completion of vacuum drying. (b) 61BT, 32PT, 24PHB, 24PTH, 61BTH, 32PTH1, 69BTH, or 37PTH DSC helium backfill pressure shall be 2.5 psig ± 1.0 psig (stable for 30 minutes after filling) after completion of vacuum drying.

APPLICABILITY: During LOADING OPERATIONS but before TRANSFER OPERATIONS.

ACTIONS

CONDITION	REQUIRED ACTION	COMPLETION TIME
Note: Not applicable until SR 3.1.2 is performed. A. The required backfill pressure cannot be obtained or stabilized.	 A.1 A.1.1 Maintain helium atmosphere in the DSC cavity. <u>AND</u> A.1.2 Confirm, check and repair or replace as necessary the vacuum drying system, helium source and pressure gauge. <u>AND</u> A.1.3 Check and repair as necessary the seal weld between the inner top cover 	14 days
	plate/top shield plug assembly and the DSC shell. <u>OR</u>	
	A.2 Establish the DSC helium backfill pressure to within the limit. If pressure exceeds the criterion, release a sufficient quantity of helium to lower the DSC cavity pressure.	14 days

(continued)

CONDITION	REQUIRED ACTION	COMPLETION TIME
	OR	
	A.3 Flood the DSC with spent fuel pool water or water meeting the requirements of LCO 3.2.1, if applicable, submerging all fuel assemblies	14 days

SURVEILLANCE REQUIREMENTS

	SURVEILLANCE	FREQUENCY
SR 3.1.2	 (a) Verify that the 24P or 52B DSC helium backfill pressure is 2.5 psig ± 2.5 psig stable for 30 minutes after filling. (b) Verify that the 61BT, 32PT, 24PHB, 24PTH, 61BTH, 32PTH1, 69BTH, or 37PTH DSC helium backfill pressure is 2.5 psig ± 1 psig stable for 30 minutes after filling. 	Once per DSC, after the completion of LCO 3.1.1 actions.

3.1 Fuel Integrity

3.1.3 Time Limit for Completion of DSC Transfer (24PTH, 61BTH Type 2, 32PTH1, 69BTH, or 37PTH DSC Only).

LCO 3.1.3

DSC Model	Basket Type	Heat Load Zoning Configuration Number (HLZC)	Time Limit (hours)
24PTH-S or 24PTH-L DSC	1A, 1B or 1C (with Aluminum Inserts)	4	No limit
	1A, 1B or 1C	1,2 or 3	9.5
	2A, 2B or 2C (without Aluminum Inserts)	1, 2, 3 or 4	25
61 BTH, Type 2	NA	1, 2, 3, or 4	No limit
DSC Only		5, 6 or 8	26
		7	13
32PTH1 DSC	NA	3	No limit
		1	13
		2	14 (Intact Fuel) 10 (Damaged Fuel)
69BTH DSC	NA	1, 2, 3, 4, or 5	13
		6	No limit
37PTH DSC	NA	2	No limit
		3	14

NOTE

The time limit for completion of a DSC transfer is defined as the time elapsed in hours after the initiation of draining of TC/DSC annulus water until the completion of insertion of the DSC into the HSM-H.

APPLICABILITY: During LOADING OPERATIONS AND TRANSFER OPERATIONS.

(continued)

ACTIONS

CONDITION	REQUIRED ACTION	COMPLETION TIME
Note: Not applicable until SR 3.1.3 is performed.A. The required time limit for completion of a DSC transfer not met.	A.1 If the TC is in the cask handling area in a vertical orientation, remove the TC top cover plate and fill the TC/DSC annulus with clean water.	2 hours
	<u>OR</u>	
	A.2 If the TC is in a horizontal orientation on transfer skid, initiate air circulation in the TC/DSC annulus by starting one of the blowers provided on the transfer skid.	2 hours*
	<u>OR</u>	
	A.3 Return the TC to the cask handling area and follow action A.1 above.	2 hours

*After the blowers are turned off, the time limit for completion of DSC transfer is as indicated in the LCO 3.1.3 table.

SURVEILLANCE REQUIREMENTS

	SURVEILLANCE	FREQUENCY
SR 3.1.3	Verify that the time limit for completion of DSC transfer is met.	Once per DSC, after the completion of LCO 3.1.2 actions or after the initiation of draining of TC/DSC annulus water.
		(continued)

3.1 Fuel Integrity

3.1.4 HSM Maximum Air Exit Temperature with a Loaded DSC

LCO 3.1.4	The maximum air temperature rise through the HSM allowed is a function
	of the decay heat load of the DSC and the HSM model as listed below:

HSM	DSC Model	Maximum Decay Heat Load, kW	Maximum Air Temperature Rise Allowed, °F
Standardized HSM	24P, 52B, 61BT, 32PT, 24PHB, 24PTH-S-LC or 61BTH, Type 1	24.0	100
HSM-H	24PTH-S or 24PTH-L	40.8	100
	24 PTH-S-LC	24.0	70
	61BTH, Type 2	31.2	90
	61BTH, Type 1	22.0	70
	32PTH1	40.8	110
	69BTH	35.0	100
	37PTH	30.0	90

APPLICABILITY: During STORAGE OPERATIONS.

NOTE

If a DSC placed within a HSM has a heat load less than the maximum heat load listed above, the maximum air temperature rise allowed shall be determined by a calculation using the same methodology and input documents in the UFSAR. Air temperatures must be measured in such a manner as to obtain representative values of inlet and outlet air temperatures.

(continued)

ACTIONS

CONDITION	REQUIRED ACTION	COMPLETION TIME
Note: Not applicable until SR 3.1.4 is performed. A. The air temperature rise is greater than the above specification.	A.1 Check the inlets and outlets for any blockage and remove blockage if found. <u>AND</u>	24 hours
	A.2 If the inlets or outlets were not blocked, determine if environmental factors are causing the temperature rise to exceed limits. If environmental factors are the cause then take additional measurements and perform analysis to assess the actual performance of the system.	Determined by the analysis. The analysis completion time is 30 days.
B. Excessive temperatures cause the system to perform in an unacceptable manner and/or the temperatures cannot be controlled to acceptable limits.	 B.1 Unload the DSC from the HSM into the TC for a certain amount of time. Verify that condition of HSM interior cavity is not the cause of excessive temperatures and correct if necessary. 	Determined by the analysis. The analysis completion time is 30 days.
	DR B.2 Return the TC/ DSC to the FUEL BUILDING.	Determined by the analysis. The analysis completion time is 30 days.

SURVEILLANCE REQUIREMENTS

SURVEILLANCE	FREQUENCY
SR 3.1.4 The temperature rise between the ambient temperature and the vent outlet temperature will be measured and recorded verifying that HSM maximum air temperature rise limit is satisfied.	24 hours after DSC insertion into the HSM. These measurements are repeated on a daily basis after insertion into the HSM or every 24 hours following the occurrence of an accident event, until an equilibrium condition is achieved.

3.2 Cask Criticality Control

LCO 3.2.1 The boron concentration of the spent fuel pool water and the water added to the cavity of a loaded DSC (24P, 32PT, 24PHB, 24PTH, 32PTH1, or 37PTH) shall be greater than or equal to the boron concentration below:

DSC	Minimum Boron Concentration
Model	
24P	a. 2000 ppm for fuel with an equivalent unirradiated
	maximum planar average enrichment of less than or
	equal to 1.45 wt. % U-235 per Figure 1-1.
	b. 2350 ppm for fuel with an equivalent unirradiated
	maximum planar average enrichment of greater than
	1.45 wt. % U-235 per Figure 1-1.
32PT	Per Table 1-1g or Table 1-1g1
24PHB	a. 2350 ppm for fuel with the maximum planar average
	enrichment of less than or equal to 4.0 wt. % U-235
	based on the spent fuel assembly with the highest
	maximum planar average initial enrichment in the
	DSC.
	b. Per Figure 1-10 and Figure 1-10a for fuel with the
	maximum planar average initial enrichment of
	greater than 4.0 wt. % U-235 based on the spent fuel
	assembly with the highest maximum planar average
	initial enrichment in the DSC.
24PTH	Per Table 1-1p or Table 1-1q or Table 1-1q1
32PTH1	Per Table 1-1cc or Table 1-1dd.
37PTH	Per Table 1-100

APPLICABILITY: During LOADING OPERATIONS and UNLOADING OPERATIONS with fuel and liquid water in the DSC Cavity.

ACTIONS

ACTIONS		1			
CONDITION		REQUIRED ACTION		ON	COMPLETION TIME
A. Dissolved boron concentration limit not met.		A.1 Suspend loading of fuel assemblies into DSC.		Immediately	
		A.2 A.2.1	Add boron and res and test the conce until the boron con is shown to be gre that required.	ntration centration	Immediately
			<u>OR</u> Remove all fuel as from DSC.	semblies	Immediately
SURVEILLAN	CE REQUIREMEN	115			
	SURVEILL	ANCE			FREQUENCY
SR 3.2.1	1 Verify dissolved boron concentration limit in spent fuel pool water and water to be added to the DSC cavity is met using two independent measurements (two samples analyzed by different individuals) for LOADING OPERATIONS.			fuel assem <u>AND</u> Every 48 h is in the sp	ours before insertion of the first ably into the DSC. nours thereafter while the DSC pent fuel pool or until the fuel removed from the DSC.
SR 3.2.2	SR 3.2.2 Verify dissolved boron concentration limit in spent fuel pool water and water to be added to the DSC cavity is met using two independent measurements (two samples analyzed by different individuals) for UNLOADING OPERATIONS.			DSC durin OPERATIO <u>AND</u> Every 48 h is in the sp	n 4 hours prior to flooding g UNLOADING DNS. hours thereafter while the DSC bent fuel pool or until the fuel removed from the DSC.

4.0 DESIGN FEATURES

The specifications in this section include the design characteristics of special importance to each of the physical barriers and to maintenance of safety margins in the Standardized NUHOMS[®] System design. The principal objective of this section is to describe the design envelope that may constrain any physical changes to essential equipment. Included in this section are the site environmental parameters that provide the bases for design, but are not inherently suited for description as LCOs.

4.1 Canister Criticality Control

The Standardized NUHOMS[®] DSC models listed below are designed to take credit of the boron content in the neutron absorber plates provided in the DSC basket and/or soluble boron in the spent fuel pool per LCO 3.2. The DSCs have multiple basket configurations, based on the absorber material type (Borated Aluminum alloy, Metal Matrix Composite (MMC) or Boral[®]), number of Poison Rod Assemblies or PRAs (for 32PT DSC only) and boron content in the absorber plates, as listed below.

DSC Model	Basket Type	Minimum B10 Areal Density for Absorber Plates
61BT ⁽¹⁾	A, B or C	Per Table 1-1k
32PT ⁽²⁾	A, A1, A2, B, C or D	Per Table 1-1h
-		
24PTH ⁽³⁾	1A, 1B, or 1C	Per Table 1-1r
	2A, 2B or 2C	
61BTH ⁽⁴⁾	A, B, C, D, E or F	Per Table 1-1v or Table 1-1w
		or Table 1-1w1
32PTH1 ⁽⁵⁾	1A, 1B, 1C, 1D or 1E	Per Table 1-1ff
	2A, 2B, 2C, 2D, or 2E	
69BTH ⁽⁶⁾	A, B, C, D, E, or F	Per Table 1-1jj or Table 1-1kk
37PTH ⁽⁷⁾	There is just one basket	Per Table 1-1rr

Notes:

- (1) For the 61BT DSC, Borated Aluminum, MMC, or Boral[®] shall be supplied in accordance with UFSAR Sections K.9.1.7.1, K.9.1.7.2, K.9.1.7.3, K.9.1.7.4, portions of Section K.9.1.7.7, portions of Section K.9.1.7.8.4, and all of Sections K.9.1.7.8.5, K.9.1.7.9.1 and K.9.1.7.9.2, with the minimum B10 areal density specified in Table 1-1k. These sections of the UFSAR are hereby incorporated into the NUHOMS[®] 1004 CoC.
- (2) For the 32PT DSC, Borated Aluminum or MMC shall be supplied in accordance with UFSAR Sections M.9.1.7.1, M.9.1.7.2, M.9.1.7.3, M.9.1.7.4, portions of Section M.9.1.7.7, portions of Section M.9.1.7.8.4, and all of Sections M.9.1.7.8.5, M.9.1.7.9.1, and M.9.1.7.9.2, with the minimum B10 areal density specified in Table 1-1h. These sections of the UFSAR are hereby incorporated into the NUHOMS[®] 1004 CoC.
- (3) For the 24PTH DSC, Borated Aluminum, MMC, or Boral[®] shall be supplied in accordance with UFSAR Sections P.9.1.7.1, P.9.1.7.2, P.9.1.7.3, P.9.1.7.4, portions of Section P.9.1.7.7, portions of Section P.9.1.7.8.4, and all of Sections P.9.1.7.8.5, P.9.1.7.9.1 and P.9.1.7.9.2, with the minimum B10 areal density specified in Table 1-1r. These sections of the UFSAR are hereby incorporated into the NUHOMS[®] 1004 CoC.
- (4) For the 61BTH DSC, Borated Aluminum, MMCs, or Boral[®] shall be supplied in accordance with UFSAR Sections T.9.1.7.1, T.9.1.7.2, T.9.1.7.3, T.9.1.7.4, portions of Section T.9.1.7.7, portions of Section T.9.1.7.8.4, and all of Sections T.9.1.7.8.5, T.9.1.7.9.1 and T.9.1.7.9.2, with the minimum B10 areal density specified in Table 1-1v or Table 1-1w, or Table 1-1W1. These sections of the UFSAR are hereby incorporated into the NUHOMS[®] 1004 CoC.

- (5) For the 32PTH1 DSC, Borated Aluminum, MMCs, or Boral[®] shall be supplied in accordance with UFSAR Sections U.9.1.7.1, U.9.1.7.2, U.9.1.7.3, U.9.1.7.4, portions of Section U.9.1.7.7, portions of Section U.9.1.7.8.4, and all of Sections U.9.1.7.8.5, U.9.1.7.9.1 and U.9.1.7.9.2, with the minimum B10 areal density in Table 1-1ff. These sections of the UFSAR are hereby incorporated into the NUHOMS[®] 1004 CoC.
- (6) For the 69BTH DSC, Borated Aluminum, MMCs, or Boral[®] shall be supplied in accordance with UFSAR Sections Y.9.1.7.1, Y.9.1.7.2, Y.9.1.7.3, Y.9.1.7.4, portions of Section Y.9.1.7.7, portions of Section Y.9.1.7.8.4, and all of Sections Y.9.1.7.8.5, Y.9.1.7.9.1, and Y.9.1.7.9.2, with the minimum B10 areal density specified in Table 1-1jj or Table 1-1kk. These sections of the UFSAR are hereby incorporated into the NUHOMS[®] 1004 CoC.
- (7) For the 37PTH DSC, Borated Aluminum, MMCs, or Boral[®] shall be supplied in accordance with UFSAR Sections Z.9.1.7.1, Z.9.1.7.2, Z.9.1.7.3, Z.9.1.7.4, portions of Section Z.9.1.7.7, portions of Section Z.9.1.7.8.4, and all of Sections Z.9.1.7.8.5, Z.9.1.7.9.1, and Z.9.1.7.9.2, with the minimum B10 areal density in Table 1-1rr. These sections of the UFSAR are hereby incorporated into the NUHOMS[®] 1004 CoC.

The sections of the UFSAR incorporated by reference contain specification, qualification and acceptance testing requirements for the neutron absorber materials. Proposed alternatives to these requirements listed in these UFSAR sections other than those aforementioned requirements may be used when authorized by the Director of the Office of Nuclear Material Safety and Safeguards, or designee. The applicant should demonstrate that:

- 1. The proposed exceptions involve an acceptable level of quality and safety, or
- 2. Compliance with the specified requirements would result in hardship or unusual difficulty without a compensating increase in the level of quality and safety.

However, any changes to the minimum B10 areal density requirements listed in these technical specifications shall not be the subject of these exceptions.

Requests for exceptions in accordance with this section should be submitted in accordance with 10 CFR 72.4.

4.2 Codes and Standards

4.2.1 <u>Horizontal Storage Module (HSM)</u>

The Standardized HSM and HSM-H reinforced concrete are designed to meet the requirements of ACI 349-85 and ACI 349-97 Editions respectively.

Load combinations specified in ANSI 57.9-1984, Section 6.17.3.1 are used for combining normal operating, off-normal, and accident loads for the HSM.

If an ISFSI site is located in a coastal salt water marine atmosphere, then any loadbearing carbon steel DSC support structure rail components of any associated HSM shall be procured with a minimum of 0.20 percent copper content or stainless steel material shall be used for corrosion resistance. For weld filler material used with carbon steel, 1% or more nickel bearing weld material would also be acceptable in lieu of 0.20% copper content.

4.2.2 Dry Shielded Canister (DSC)

The DSCs are designed, fabricated and inspected to the maximum practical extent in accordance with ASME Boiler and Pressure Vessel Code Section III, Division 1, Subsections NB, NF, and NG for Class 1 components and supports. The ASME code edition years and any addenda for the various DSC types are provided in the table below. The Code alternatives are discussed in Section 4.2.4.

ASME code requirements for basket assemblies apply only to important to safety category A components.

DSC Type	Applicable Code Edition/Year			
24P/ 52B/ 24PHB	ASME B&PV Code, Section III, Division	1983 Edition with		
	1, Subsections NB and NF	Winter 1985 Addenda		
61BT	ASME B&PV Code, Section III, Division	1998 Edition with 1999		
	1, Subsections NB, NG and NF,	Addenda		
	including Code Case N-595-1			
32PT, 24PTH	ASME B&PV Code, Section III, Division	1998 Edition with		
	1, Subsections NB, NG and NF,	Addenda through 2000		
	including Code Case N-595-2			
61BTH, 32PTH1	ASME B&PV Code, Section III, Division	1998 Edition with		
	1, Subsections NB, NG and NF	Addenda through 2000		
69BTH, 37PTH	ASME B&PV Code, Section III, Division	2004 Edition with		
	1, Subsections NB, NG and NF	Addenda through 2006		

(continued)

4.2.3 Transfer Cask (TC)

The TC is designed, to the maximum practical extent in accordance with ASME Boiler and Pressure Vessel Code Section III, Subsection NC for Class 2 vessels.

The ASME Code edition year and any addenda are provided in the table below. *The Code alternatives are discussed in Section 4.2.4.*

ТС	Applicable Code	Edition/Year
OS197/OS197H	ASME B&PV Code,	1983 Edition with Winter
OS197FC/OS197HFC	Section III, Division 1,	1985 Addenda
OS197L/OS197FC-B	Subsections NC	
OS197HFC-B		
OS200	ASME B&PV Code,	1998 Edition with
OS200FC	Section III, Division 1, Subsections NC	Addenda through 2000

For the OS197L TC, the supplementary trailer shield is designed to resist the normal operating dead weight and handling loads in accordance with "Manual of Steel Construction Allowable Stress Design", 9th Edition, American Institute of Steel Construction, Inc.

For the OS197L TC, the decontamination area shielding is designed to resist the normal operation dead weight, lifting loads, and seismic load in accordance with "Manual of Steel Construction Allowable Stress Design", 9th Edition, American Institute of Steel Construction, Inc.

(continued)

4.2.4 ASME Code Alternatives

Reference ASME Code	Code Requirement	Alternatives, Justification and Compensatory Measures
Section/Article	All	Not compliant with NCA. Quality Assurance is provided according to
NCA-1140	Use of Code editions and addenda	 10 CFR 72 Subpart G in lieu of NCA-4000 Code edition and addenda other than those specified in Section 4.2.2 may be used for construction but in no case earlier than 3 years before that specified in the Section 4.2.2 table. Materials produced and certified in accordance with ASME Section II material specification from Code Editions and Addenda other than those specified in Section 4.2.2 may be used, so long as the materials meet all the requirements of Article 2000 of the applicable Subsection of the Section III Edition and Addenda used for construction.
NB-1100	Requirements for Code Stamping of Components, Code reports and certificates, etc.	Code Stamping is not required. As Code Stamping is not required, the fabricator is not required to hold an ASME "N" or "NPT" stamp, or to be ASME Certified.
NB-1132	Attachments with a pressure retaining function, including stiffeners, shall be considered part of the component.	Bottom shield plug and outer bottom cover plate are outside code jurisdiction; these components together are much larger than required to provide stiffening for the inner bottom cover plate; the weld that retains the outer bottom cover plate and with it the bottom shield plug is subject to root and final PT examination.
NB-2130	Material must be supplied by ASME approved material suppliers	Material is certified to meet all ASME Code criteria but is not eligible for certification or Code Stamping if a non-ASME fabricator is used. As the fabricator is not required to be ASME certified, material certification to NB-2130 is not possible. Material traceability and
NB-4121	Material Certification by Certificate Holder	certification are maintained in accordance with TN's NRC approved QA program.
NB-4240	Full penetration welds are required for pressure boundary closure joints	DSC Pressure Boundary Welds The joint details at the top and bottom end of the DSCs are not full penetration welds and thus do not comply with the requirements of figure NB-4243-1 for Category C flat head closure pressure and
NB-5230	Weld examination shall be UT or RT with surface PT	containment boundary welds. Volumetric weld inspection (RT or UT) is not practical due to the DSC geometry at the top and bottom closures and due to high radiation at the top closure after fuel loading (ALARA consideration). The inner and outer cover plate closure welds provide redundant closure welds, which are required by the 10 CFR 72 license. These welds are partial penetration welds that have been designed using a conservative "weld efficiency" factor of 0.6. Breach of the DSC confinement barriers due to an undetected flaw of any single weld layer is implausible due to the requirement for multi- layer welds. The top and bottom outer cover plate to shell welds and the inner bottom cover plate to shell weld received a root and final PT. The top cover plate to shell weld, which is leak tested, has a final PT only.

ASME Code Alternatives for NUHOMS[®] -24P, 24PHB and 52B DSC Pressure Boundary Components

(continued)

ASME Code Alternatives for NUHOMS[®] -24P, 24PHB and 52B DSC Pressure Boundary Components

Reference		
ASME Code	Code Requirement	Alternatives, Justification and Compensatory Measures
Section/Article		
NB-6111	All completed pressure retaining systems shall be pressure tested	The pressure retaining system of the DSC consists of the following components: shell, bottom inner cover plate, siphon and vent block siphon and vent port covers, and top inner cover plates. The bottom cover plates are welded to the shell at the fabricator shop, whereas the top cover plates are field-welded to the shell at the nuclear power plant, following the loading of irradiated nuclear fuel. All other welds made to the pressure boundary, such as the support ring to shell weld, are not part of the pressure boundary and, thus, are not pressure tested.
		DSC Shell and Bottom Cover Plate Welds
		The DSC Shell and inner bottom cover plate are pressure tested during fabrication to the requirements of NB-6000. A helium leak test is performed to demonstrate leakage integrity of this boundary. Since the outer bottom cover plate is installed after the inner bottom cover plate is installed, it cannot be pressure tested.
		DSC Top Cover Plates Closure Welds:
		The top closure welds are not completed until the DSC is loaded with irradiated nuclear fuel; therefore, a pressure test is nor performed. Multi-layer welds are used for these joints to eliminate potential leakage paths. The inner and outer top closure welds are tested as follows:
		Inner Top Confinement Boundary Welds:
		The inner top confinement boundary welds include the following: (1) field weld of inner cover plate to shell weld (including inner top cover plate to vent and siphon block), (2) top of siphon and vent block to shell weld, and (3) field weld of siphon and vent port cover plates to vent and siphon block ports. Weld (1) is helium leak tested in the field. Weld (2) is made in the fabricator shop under controlled conditions and receives a final PT. A pressure test and helium leak test are not practical because of its location. A field leak test of weld (2) is not performed because the current 10 CFR 72 license does not require it. Weld (3) is performed in the field with a final PT and without a leak test. A helium leak test cannot be performed on these welds because the vent and siphon ports are covered by the plates. Pressurization would require cutting a hole in the DSC creating a potential leakage point for the long-term storage canister.
		Outer Top Cover Plate Weld:
		The outer top cover plate to shell weld receives a root and final PT. It is not leak tested because it is installed following the inner top cover plate.

(continued)

ASME Code Alternatives for NUHOMS[®] -24P, 24PHB and 52B DSC Pressure Boundary Components

Reference ASME Code Section/Article	Code Requirement	Alternatives, Justification and Compensatory Measures
NB-7000	Overpressure Protection	No overpressure protection is provided for the NUHOMS [®] DSCs. The function of the DSC is to contain radioactive materials under normal, off-normal and hypothetical accident conditions postulated to occur during transportation and storage. The DSC is designed to withstand the maximum possible internal pressure considering 100% fuel rod failure at maximum accident temperature.
NB-8000	Requirements for nameplates, stamping & reports per NCA- 8000.	The NUHOMS [®] DSC nameplate provides the information required by 10 CFR 71, 49 CFR 173 and 10 CFR 72 as appropriate. Code stamping is not required for the DSC. QA data packages are prepared in accordance with the requirements of TN's approved QA program.
NB-5520	NDE personnel must be qualified to a specific edition of SNT-TC-1A	Permit use of the Recommended Practice SNT-TC-1A to include up to the most recent 2011 edition.

(continued)

ASME Code Alternatives for NUHOMS[®] -24P, 24PHB and 52B DSC Basket Assembly

Reference ASME Code Section/Article	Code Requirement	Alternatives, Justification and Compensatory Measures
NCA	All	Not compliant with NCA. Quality Assurance is provided according to 10 CFR 72 Subpart G in lieu of NCA-4000
NCA-1140	Use of Code editions and addenda	Code edition and addenda other than those specified in Section 4.2.2 may be used for construction but in no case earlier than 3 years before that specified in the Section 4.2.2 table. Materials produced and certified in accordance with ASME Section II material specification from Code Editions and Addenda other than those specified in Section 4.2.2 may be used, so long as the materials meet all the requirements of Article 2000 of the applicable Subsection of the Section III Edition and Addenda used for construction.
NF-2130	Material must be supplied by ASME approved material suppliers.	 All DSC Basket Assembly sub-components designated as ASME on the DSC drawings are obtained from TN approved suppliers with Certified Material Test Reports (CMTR's). The DSC basket subcomponents listed below have been designated as non-Code. Guide Sleeves, Oversleeves, and extraction stops (PWR only) Neutron Absorber Plates and misc. hardware, such as antirotation pin, screws and locknuts, (BWR Only) Coating for Spacer Discs
NF-4121	Material Certification by Certificate Holder	Material traceability and certification are maintained in accordance with TN's NRC approved QA program.
NF-8000	Requirements for nameplates, stamping & reports per NCA- 8000	The NUHOMS [®] DSC nameplate provides the information required by 10 CFR 71, 49 CFR 173 and 10 CFR 72 as appropriate. Code stamping is not required for the DSC. QA data packages are prepared in accordance with the requirements of TN's approved QA program.
NF-5520	NDE personnel must be qualified to a specific edition of SNT-TC-1A	Permit use of the Recommended Practice SNT-TC-1A to include up to the most recent 2011 edition.

(continued)

Reference ASME Code Section/Article	Code Requirement	Alternatives, Justification & Compensatory Measures
NCA	All	Not compliant with NCA. Quality Assurance is provided according to 10 CFR 72 Subpart G in lieu of NCA-4000
NCA-1140	Use of Code editions and addenda	Code edition and addenda other than those specified in Section 4.2.2 may be used for construction but in no case earlier than 3 years before that specified in the Section 4.2.2 table. Materials produced and certified in accordance with ASME Section II material specification from Code Editions and Addenda other than those specified in Section 4.2.2 may be used, so long as the materials meet all the requirements of Article 2000 of the applicable Subsection of the Section III Edition and Addenda used for construction.
NB-1100	Requirements for Code Stamping of Components, Code reports and certificates, etc.	Code Stamping is not required. As Code Stamping is not required, the fabricator is not required to hold an ASME "N" or "NPT" stamp, or to be ASME Certified.
NB-1132	Attachments with a pressure retaining function, including stiffeners, shall be considered part of the component.	Bottom shield plug and outer bottom cover plate are outside code jurisdiction; these components together are much larger than required to provide stiffening for the inner bottom cover plate; the weld that retains the outer bottom cover plate and with it the bottom shield plug is subject to root and final PT examination.
NB-2130	Material must be supplied by ASME approved material suppliers.	Material is certified to meet all ASME Code criteria but is not eligible for certification or Code Stamping if a non-ASME fabricator is used. As the fabricator is not required to be ASME certified, material certification to NB-2130 is not possible. Material traceability and
NB-4121	Material Certification by Certificate Holder	certification are maintained in accordance with TN's NRC approved QA program.
NB-4243 and NB-5230	Category C weld joints in vessels and similar weld joints in other components shall be full penetration joints. These welds shall be examined by UT or RT and either PT or MT.	The joints between the top and inner cover plates and containment shell are designed and fabricated per ASME Code Case N-595-1. This includes the inner top cover plate weld around the vent and siphon block. The welds are partial penetration welds and the root and final layer are PT examined. The weld between the vent and siphon block and the shell is made at the fabricator's shop and receives a final PT examination.
NB-6100 and 6200	All completed pressure retaining systems shall be pressure tested	The vent and siphon block is not pressure tested due to the manufacturing sequence. The siphon block weld is helium leak tested when fuel is loaded and then covered with the outer top closure plate.
NB-7000	Overpressure Protection	No overpressure protection is provided for the NUHOMS® DSCs. The function of the DSC is to contain radioactive materials under normal, off-normal and hypothetical accident conditions postulated to occur during transportation and storage. The DSC is designed to withstand the maximum possible internal pressure considering 100% fuel rod failure at maximum accident temperature.

(continued)

Admit odde Alternatives for Norrowid -orbit boo commement boundary		
Reference ASME Code Section/Article	Code Requirement	Alternatives, Justification & Compensatory Measures
NB-8000	Requirements for nameplates, stamping & reports per NCA- 8000	The NUHOMS [®] DSC nameplate provides the information required by 10 CFR 71, 49 CFR 173 and 10 CFR 72 as appropriate. Code stamping is not required for the DSC. QA data packages are prepared in accordance with the requirements of TN's approved QA program.
NB-5520	NDE personnel must be qualified to a specific edition of SNT-TC-1A	Permit use of the Recommended Practice SNT-TC-1A to include up to the most recent 2011 edition.

ASME Code Alternatives for NUHOMS[®] -61BT DSC Confinement Boundary

(continued)

Reference ASME Code Section/Article	Code Requirement	Alternatives, Justification & Compensatory Measures
NCA	All	Not compliant with NCA. Quality Assurance is provided according to 10 CFR 72 Subpart G in lieu of NCA-4000
		Code edition and addenda other than those specified in Section 4.2.2 may be used for construction but in no case earlier than 3 years before that specified in the Section 4.2.2 table.
NCA-1140	Use of Code editions and addenda	Materials produced and certified in accordance with ASME Section II material specification from Code Editions and Addenda other than those specified in Section 4.2.2 may be used, so long as the materials meet all the requirements of Article 2000 of the applicable Subsection of the Section III Edition and Addenda used for construction.
NG/NF-1100	Requirements for Code Stamping of Components, Code reports and certificates, etc.	Code Stamping is not required. As Code Stamping is not required, the fabricator is not required to hold an ASME "N" or "NPT" stamp, or to be ASME Certified.
NG/NF-2000	Use of ASME Code Material	Some baskets include neutron absorber and aluminum plates that are not ASME Code Class 1 material. They are used for criticality safety and heat transfer, and are only credited in the structural analysis with supporting their own weight and transmitting bearing loads through their thickness.
NG/NF-5520	NDE personnel must be qualified to a specific edition of SNT-TC-1A	Permit use of the Recommended Practice SNT-TC-1A to include up to the most recent 2011 edition.
NG/NF-2130	Material must be supplied by ASME approved material suppliers.	Material is certified to meet all ASME Code criteria but is not eligible for certification or Code Stamping if a non-ASME fabricator is used. As the fabricator is not required to be ASME certified, material certification to NG/NF-2130 is not possible. Material traceability and
NG/NF-4121	Material Certification by Certificate Holder	certification are maintained in accordance with TN's NRC approved QA program.
NG/NF-8000	Requirements for nameplates, stamping & reports per NCA- 8000	The NUHOMS [®] DSC nameplate provides the information required by 10 CFR 71, 49 CFR 173 and 10 CFR 72 as appropriate. Code stamping is not required for the DSC. QA data packages are prepared in accordance with the requirements of TN's approved QA program.

ASME Code Alternatives for NUHOMS[®] -61BT DSC Basket

(continued)

Alternatives to the ASME Code for the NUHOMS[®] -32PT DSC Confinement Boundary

Reference ASME Code Section/Article	Code Requirement	Alternatives, Justification & Compensatory Measures
NCA	All	Not compliant with NCA. Quality Assurance is provided according to 10 CFR 72 Subpart G in lieu of NCA-4000
NCA-1140	Use of Code editions and addenda	Code edition and addenda other than those specified in Section 4.2.2 may be used for construction but in no case earlier than 3 years before that specified in the Section 4.2.2 table. Materials produced and certified in accordance with ASME Section II material specification from Code Editions and Addenda other than those specified in Section 4.2.2 may be used, so long as the materials meet all the requirements of Article 2000 of the applicable Subsection
NB-1100	Requirements for Code Stamping of Components, Code reports and certificates, etc.	of the Section III Edition and Addenda used for construction. Code Stamping is not required. As Code Stamping is not required, the fabricator is not required to hold an ASME "N" or "NPT" stamp, or to be ASME Certified.
NB-1132	Attachments with a pressure retaining function, including stiffeners, shall be considered part of the component.	Bottom shield plug and outer bottom cover plate are outside code jurisdiction; these components together are much larger than required to provide stiffening for the inner bottom cover plate; the weld that retains the outer bottom cover plate and with it the bottom shield plug is subject to root and final PT examination.
NB-2130	Material must be supplied by ASME approved material suppliers.	Material is certified to meet all ASME Code criteria but is not eligible for certification or Code Stamping if a non-ASME fabricator is used. As the fabricator is not required to be ASME certified, material certification to NB-2130 is not possible. Material traceability and
NB-4121	Material Certification by Certificate Holder	certification are maintained in accordance with TN's NRC approved QA program.
NB-4243 and NB-5230	Category C weld joints in vessels and similar weld joints in other components shall be full penetration joints. These welds shall be examined by UT or RT and either PT or MT.	

(continued)

Reference ASME Code Section/Article	Code Requirement	Alternatives, Justification & Compensatory Measures
NB-6100 and 6200	All pressure retaining components and completed systems shall be pressure tested. The preferred method shall be hydrostatic test.	The NUHOMS [®] -32PT DSC is pressure tested in accordance with ASME Code Case N-595-2. The shield plug support ring and the vent and siphon block are not pressure tested due to the manufacturing sequence. The support ring is not a pressure-retaining item and the vent and siphon block weld is helium leak tested after fuel is loaded to the same criteria as the inner top closure plate-to-shell weld (ANSI N14.5-1997 leaktight criteria).
NB-7000	Overpressure Protection	No overpressure protection is provided for the NUHOMS [®] DSCs. The function of the DSC is to contain radioactive materials under normal, off-normal and hypothetical accident conditions postulated to occur during transportation and storage. The DSC is designed to withstand the maximum possible internal pressure considering 100% fuel rod failure at maximum accident temperature.
NB-8000	Requirements for nameplates, stamping & reports per NCA- 8000.	The NUHOMS [®] DSC nameplate provides the information required by 10 CFR 71, 49 CFR 173 and 10 CFR 72 as appropriate. Code stamping is not required for the DSC. QA data packages are prepared in accordance with the requirements of TN's approved QA program.
NB-5520	NDE Personnel must be qualified to a specific edition of SNT-TC-1A.	Permit use of more recent edition of SNT-TC-1A

Alternatives to the ASME Code for the NUHOMS[®] -32PT DSC Confinement Boundary

(continued)

Alternatives to the ASME Code Exceptions for the NUHOMS[®] -32PT DSC Basket Assembly

Аззенныў		
Reference ASME Code Section/Article	Code Requirement	Alternatives, Justification & Compensatory Measures
NCA	All	Not compliant with NCA. Quality Assurance is provided according to 10 CFR 72 Subpart G in lieu of NCA-4000
NCA-1140	Use of Code editions and addenda	Code edition and addenda other than those specified in Section 4.2.2 may be used for construction but in no case earlier than 3 years before that specified in the Section 4.2.2 table. Materials produced and certified in accordance with ASME Section II material specification from Code Editions and Addenda other than those specified in Section 4.2.2 may be used, so long as the materials meet all the requirements of Article 2000 of the applicable Subsection of the Section III Edition and Addenda used for construction.
NG-1100	Requirements for Code Stamping of Components, Code reports and certificates, etc.	Code Stamping is not required. As Code Stamping is not required, the fabricator is not required to hold an ASME "N" or "NPT" stamp, or to be ASME Certified.
NG-2000	Use of ASME Material	Some baskets include neutron absorber and aluminum plates that are not ASME Code Class 1 material. They are used for criticality safety and heat transfer, and are only credited in the structural analysis with supporting their own weight and transmitting bearing loads through their thickness. Material properties in the ASME Code for Type 6061 aluminum are limited to 400°F to preclude the potential for annealing out the hardening properties. Annealed properties (as published by the Aluminum Association and the American Society of Metals) are conservatively assumed for the solid aluminum rails for use above the Code temperature limits.
NG-2130	Material must be supplied by ASME approved material suppliers.	Material is certified to meet all ASME Code criteria but is not eligible for certification or Code Stamping if a non-ASME fabricator is used. As the fabricator is not required to be ASME certified, material certification to NG-2130 is not possible. Material traceability and
NG-4121	Material Certification by Certificate Holder	certification are maintained in accordance with TN's NRC approved QA program.
NG-8000	Requirements for nameplates, stamping & reports per NCA- 8000	The NUHOMS [®] DSC nameplate provides the information required by 10 CFR 71, 49 CFR 173 and 10 CFR 72 as appropriate. Code stamping is not required for the DSC. QA data packages are prepared in accordance with the requirements of TN's approved QA program.
NG-3000/ Section II, Part D, Table 2A	Maximum temperature limit for XM-19 plate material is 800°F	Not compliant with ASME Section II Part D Table 2A material temperature limit for XM-19 steel for the postulated transfer accident case (117°F, loss of sunshade, loss of neutron shield). This is a post-drop accident scenario, where the calculated maximum steady state temperature is 852°F, the expected reduction in material strength is small (less than 1 ksi by extrapolation), and the only primary stresses in the basket grid are deadweight stresses. The recovery actions following the postulated drop accident are as described in Section 8.2.5 of the UFSAR.
NG-5520	NDE personnel must be qualified to a specific edition of SNT-TC-1A	Permit use of the Recommended Practice SNT-TC-1A to include up to the most recent 2011 edition.

(continued)

Reference ASME Code Section/Article	Code Requirement	Alternatives, Justification & Compensatory Measures
NCA	All	Not compliant with NCA. Quality Assurance is provided according to 10 CFR 72 Subpart G in lieu of NCA-4000
NCA-1140	Use of Code editions and addenda	Code edition and addenda other than those specified in Section 4.2.2 may be used for construction but in no case earlier than 3 years before that specified in the Section 4.2.2 table. Materials produced and certified in accordance with ASME Section II material specification from Code Editions and Addenda other than those specified in Section 4.2.2 may be used, so long as the materials meet all the requirements of Article 2000 of the applicable Subsection of the Section III Edition and Addenda used for construction.
NB-1100	Requirements for Code Stamping of Components, Code reports and certificates, etc.	Code Stamping is not required. As Code Stamping is not required, the fabricator is not required to hold an ASME "N" or "NPT" stamp, or to be ASME Certified.
NB-1132	Attachments with a pressure retaining function, including stiffeners, shall be considered part of the component.	Bottom shield plug, outer bottom cover plate, lifting posts, grapple ring, grapple ring support are outside code jurisdiction; these components together are much larger than required to provide stiffening for the inner bottom cover plate; the weld that retains the outer bottom cover plate and with it the bottom shield plug is subject to root and final PT examination.
NB-2130	Material must be supplied by ASME approved material suppliers.	Material is certified to meet all ASME Code criteria but is not eligible for certification or Code Stamping if a non-ASME fabricator is used. As the fabricator is not required to be ASME certified, material certification to NB-2130 is not possible. Material traceability and
NB-4121	Material Certification by Certificate Holder	certification are maintained in accordance with TN's NRC approved QA program.
NB-4243 and NB-5230	Category C weld joints in vessels and similar weld joints in other components shall be full penetration joints. These welds shall be examined by UT or RT and either PT or MT.	The joints between the top outer and inner cover plates (or top forging assembly for the 24PTH-S-LC) and containment shell are designed and fabricated per ASME Code Case N-595-2, which provides alternative requirements for the design and examination of spent fuel canister closures. This includes the inner top cover plate weld around the vent and siphon block and the vent and siphon block welds to the shell. The closure welds are partial penetration welds and the root and final layer are subject to PT examination (in lieu of volumetric examination) in accordance with the provisions of ASME Code Case N-595-2. The 24PTH closure system employs austenitic stainless steel shell, lid materials, and welds. Because austenitic stainless steels are not subject to brittle fracture at the operating temperatures of the DSC, crack propagation is not a concern. Thus, multi-level PT examination provides reasonable assurance that flaws of interest will be identified. The PT examination is done by qualified personnel, in accordance with Section V and the acceptance standards of Section III, Subsection NB-5000. The alternative does not apply to other shell confinement welds, i.e., the longitudinal and circumferential welds applied to the DSC shell, and the inner bottom cover plate-to-shell weld (or bottom forging to shell weld, as applicable) which comply with NB-4243 and NB-5230.

Alternatives to the ASME Code for the NUHOMS[®] -24PTH DSC Confinement Boundary

(continued)

Alternatives to the ASME Code for the NUHOMS® -24PTH DSC Confinement Boundary

Reference ASME Code Section/Article	Code Requirement	Alternatives, Justification & Compensatory Measures
NB-6100 and 6200	All pressure retaining components and completed systems shall be pressure tested. The preferred method shall be hydrostatic test.	The NUHOMS [®] -24PTH DSC is pressure tested in accordance with ASME Code Case N-595-2. The shield plug support ring and the vent and siphon block are not pressure tested due to the manufacturing sequence. The support ring is not a pressure-retaining item and the vent and siphon block weld is helium leak tested after fuel is loaded to the same criteria as the inner top closure plate-to-shell weld (ANSI N14.5-1997 leaktight criteria).
NB-7000	Overpressure Protection	No overpressure protection is provided for the NUHOMS [®] DSCs. The function of the DSC is to contain radioactive materials under normal, off-normal and hypothetical accident conditions postulated to occur during transportation and storage. The DSC is designed to withstand the maximum possible internal pressure considering 100% fuel rod failure at maximum accident temperature.
NB-8000	Requirements for nameplates, stamping & reports per NCA- 8000.	The NUHOMS [®] DSC nameplate provides the information required by 10 CFR 71, 49 CFR 173 and 10 CFR 72 as appropriate. Code stamping is not required for the DSC. QA data packages are prepared in accordance with the requirements of TN's approved QA program.
NB-5520	NDE Personnel must be qualified to a specific edition of SNT-TC-1A.	Permit use of more recent edition of SNT-TC-1A

(continued)

Alternatives to the ASME Code for the NUHOMS[®] -24PTH DSC Basket Assembly

Reference ASME Code Section/Article	Code Requirement	Alternatives, Justification & Compensatory Measures
NCA	All	Not compliant with NCA. Quality Assurance is provided according to 10 CFR 72 Subpart G in lieu of NCA-4000
		Code edition and addenda other than those specified in Section 4.2.2 may be used for construction but in no case earlier than 3 years before that specified in the Section 4.2.2 table.
NCA-1140	Use of Code editions and addenda	Materials produced and certified in accordance with ASME Section II material specification from Code Editions and Addenda other than those specified in Section 4.2.2 may be used, so long as the materials meet all the requirements of Article 2000 of the applicable Subsection of the Section III Edition and Addenda used for construction.
NG-1100	Requirements for Code Stamping of Components, Code reports and certificates, etc.	Code Stamping is not required. As Code Stamping is not required, the fabricator is not required to hold an ASME "N" or "NPT" stamp, or to be ASME Certified.
NG-2000	Use of ASME Material	Some baskets include neutron absorber and aluminum plates that are not ASME Code Class 1 material. They are used for criticality safety and heat transfer, and are only credited in the structural analysis with supporting their own weight and transmitting bearing loads through their thickness. Material properties in the ASME Code for Type 6061 aluminum are limited to 400°F to preclude the potential for annealing out the hardening properties. Annealed properties (as published by the Aluminum Association and the American Society of Metals) are conservatively assumed for the solid aluminum rails for use above the Code temperature limits.
NG-2130	Material must be supplied by ASME approved material suppliers.	Material is certified to meet all ASME Code criteria but is not eligible for certification or Code Stamping if a non-ASME fabricator is used. As the fabricator is not required to be ASME certified, material certification to NG-2130 is not possible. Material traceability and
NG-4121	Material Certification by Certificate Holder	certification are maintained in accordance with TN's NRC approved QA program.
NG-8000	Requirements for nameplates, stamping & reports per NCA- 8000	The NUHOMS [®] DSC nameplate provides the information required by 10 CFR 71, 49 CFR 173 and 10 CFR 72 as appropriate. Code stamping is not required for the DSC. QA data packages are prepared in accordance with the requirements of TN's approved QA program.

(continued)

Alternatives to the ASME Code for the NUHOMS® -24PTH DSC Basket Assembly

Reference ASME Code Section/Article	Code Requirement	Alternatives, Justification & Compensatory Measures
NG-3000/ Section II, Part D, Table 2A	Maximum temperature limit for Type 304 plate material is 800°F	Not compliant with ASME Section II Part D Table 2A material temperature limit for Type 304 steel for the postulated transfer accident case (117°F, loss of sunshade, loss of neutron shield). This is a post-drop accident scenario, where the calculated maximum steady state temperature is 862°F, the expected reduction in material strength is small (less than 1 ksi by extrapolation), and the only primary stresses in the basket grid are deadweight stresses. The recovery actions following the postulated drop accident are as described in Section 8.2.5 of the UFSAR.
NG-3352	Table NG-3352-1 lists the permissible welded joints.	The fusion (spot) type welds between the stainless steel insert plates (straps) and the stainless steel fuel compartment tubes are not permissible welds per Table NG-3352-1. These welds are qualified by testing. The required minimum tested capacity of the welded connection (at each side of the tube) shall be 36 kips (at room temperature). This value is based on a margin of safety (test-to-design) of 1.6, which is larger than the Code-implied margin of safety for Level D loads. The minimum capacity shall be determined by shear tests of individual specimens made from production material. The tests shall be corrected for temperature differences (test-to-design) and for material properties (actual-to-ASME Code minimum values) to demonstrate that the capacity of the welded connection with ASME minimum properties, tested at design temperatures, will meet the 36 kips test requirement. The capacity of the welded connection is determined from the test of the weld pattern of a typical insert plate to the tube connection. The welds will be visually inspected to confirm that they are located over the insert plates, in lieu of the visual acceptance criteria of NG-5260 which are not appropriate for this type of weld. A joint efficiency (quality) factor of 1.0 is utilized for the fuel compartment longitudinal seam welds. Table NG-3352-1 permits a joint efficiency (quality) factor of 0.5 to be used for full penetration weld examined by ASME Section V visual examination (VT). For the 24PTH DSC, the compartment seam weld is thin and the weld will be made in one pass. Both surfaces of weld is thin and the stainles steel material that comprises the fuel compartment tubes is very ductile.
NG-5520	NDE personnel must be qualified to a specific edition of SNT-TC-1A	Permit use of the Recommended Practice SNT-TC-1A to include up to the most recent 2011 edition.

(continued)

Alternatives to the ASME Code for the NUHOMS® -32PTH1 DSC Confinement Boundary

Reference ASME Code Section/Article	Code Requirement	Alternatives, Justification & Compensatory Measures
NCA	All	Not compliant with NCA. Quality Assurance is provided according to 10 CFR 72 Subpart G in lieu of NCA-4000
NCA-1140	Use of Code editions and addenda	Code edition and addenda other than those specified in Section 4.2.2 may be used for construction but in no case earlier than 3 years before that specified in the Section 4.2.2 table. Materials produced and certified in accordance with ASME Section II material specification from Code Editions and Addenda other than those specified in Section 4.2.2 may be used, so long as the materials meet all the requirements of Article 2000 of the applicable Subsection of the Section III Edition and Addenda used for construction.
NB-1100	Requirements for Code Stamping of Components, Code reports and certificates, etc.	Code Stamping is not required. As Code Stamping is not required, the fabricator is not required to hold an ASME "N" or "NPT" stamp, or to be ASME Certified.
NB-2130	Material must be supplied by ASME approved material suppliers.	Material is certified to meet all ASME Code criteria but is not eligible for certification or Code Stamping if a non-ASME fabricator is used. As the fabricator is not required to be ASME certified, material certification to NB-2130 is not possible. Material traceability and
NB-4121	Material Certification by Certificate Holder	certification are maintained in accordance with TN's NRC approved QA program.
NB-4243 and NB-5230	Category C weld joints in vessels and similar weld joints in other components shall be full penetration joints. These welds shall be examined by UT or RT and either PT or MT.	The shell to the outer top cover weld, the shell to the inner top cover/shield plug weld (including optional design configurations for the inner top cover as described in the 32PTH1 DSC drawings), the siphon/vent cover welds, and the vent and siphon block welds to the shell are all partial penetration welds. As an alternative to the NDE requirements of NB-5230, for Category C welds, all of these closure welds are multi-layer welds and receive a root and final PT examination, except for the shell to the outer top cover weld. The shell to the outer top cover weld will be a multi-layer weld and receive multi-level PT examination in accordance with the guidance provided in ISG-15 for NDE. The multi-level PT examination provides reasonable assurance that flaws of interest will be identified. The PT examination is done by qualified personnel, in accordance with Section V and the acceptance standards of Section III, Subsection NB-5000. All of these welds are designed to meet the guidance provided in ISG-15 for stress reduction factor.
NB-1132	Attachments with a pressure retaining function, including stiffeners, shall be considered part of the component.	Bottom shield plug and outer bottom cover plate are outside code jurisdiction; these components together are much larger than required to provide stiffening for the inner bottom cover plate; the weld that retains the outer bottom cover plate and with it the bottom shield plug is subject to root and final PT examination.

(continued)

Alternatives to the ASME Code for the NUHOMS® -32PTH1 DSC Confinement Boundary

Reference ASME Code Section/Article	Code Requirement	Alternatives, Justification & Compensatory Measures
NB-6100 and 6200	All pressure retaining components and completed systems shall be pressure tested. The preferred method shall be hydrostatic test.	The NUHOMS [®] -32PTH1 DSC is not a complete vessel until the top closure is welded following placement of fuel assemblies within the DSC. Due to the inaccessibility of the shell and lower end closure welds following fuel loading and top closure welding, as an alternative, the pressure testing of the DSC is performed in two parts. The DSC shell and inner bottom plate/forging (including all longitudinal and circumferential welds), are pressure tested and examined at the fabrication facility. The shell to the inner top cover/shield plug closure weld (including optional design configurations for the inner top cover as described in the 32PTH1 DSC drawings) is pressure tested and examined for leakage in accordance with NB-6300 in the field. The siphon/vent cover welds are not pressure tested; these welds and the shell to the inner top cover/shield plug closure weld (including Optional design configurations for the inner top cover as described in the 32PTH1 DSC drawings) are helium leak tested after the pressure test. Per NB-6324 the examination for leakage shall be done at a pressure test. Per NB-6324 the examination for leakage shall be done at a pressure test. Per NB-6324 the examination for leakage shall be done at a pressure test. Jis pressure. As an alternative, if the examination for leakage of these field welds, following a pressure test, is performed using helium leak detection techniques, the examination pressure may be reduced to ≥1.5 psig. This is acceptable given the significantly greater sensitivity of the helium leak detection method.
NB-7000	Overpressure Protection	No overpressure protection is provided for the NUHOMS [®] DSCs. The function of the DSC is to contain radioactive materials under normal, off-normal and hypothetical accident conditions postulated to occur during transportation and storage. The DSC is designed to withstand the maximum possible internal pressure considering 100% fuel rod failure at maximum accident temperature.
NB-8000	Requirements for nameplates, stamping & reports per NCA- 8000.	The NUHOMS [®] DSC nameplate provides the information required by 10 CFR 71, 49 CFR 173 and 10 CFR 72 as appropriate. Code stamping is not required for the DSC. QA data packages are prepared in accordance with the requirements of TN's approved QA program.
NB-5520	NDE Personnel must be qualified to a specific edition of SNT-TC-1A.	Permit use of more recent edition of SNT-TC-1A

(continued)

Alternatives to the ASME Code for the NUHOMS® -32PTH1 DSC Basket Assembly

Reference ASME Code Section/Article	Code Requirement	Alternatives, Justification & Compensatory Measures
NCA	All	Not compliant with NCA. Quality Assurance is provided according to 10 CFR 72 Subpart G in lieu of NCA-4000
NCA-1140	Use of Code editions and addenda	Code edition and addenda other than those specified in Section 4.2.2 may be used for construction but in no case earlier than 3 years before that specified in the Section 4.2.2 table. Materials produced and certified in accordance with ASME Section II material specification from Code Editions and Addenda other than those specified in Section 4.2.2 may be used, so long as the materials meet all the requirements of Article 2000 of the applicable Subsection of the Section III Edition and Addenda used for construction.
NG-1100	Requirements for Code Stamping of Components, Code reports and certificates, etc.	Code Stamping is not required. As Code Stamping is not required, the fabricator is not required to hold an ASME "N" or "NPT" stamp, or to be ASME Certified.
NG-2000	Use of ASME Material	Some baskets include neutron absorber and aluminum plates that are not ASME Code Class 1 material. They are used for criticality safety and heat transfer, and are only credited in the structural analysis with supporting their own weight and transmitting bearing loads through their thickness. Material properties in the ASME Code for Type 6061 aluminum are limited to 400°F to preclude the potential for annealing out the hardening properties. Annealed properties (as published by the Aluminum Association and the American Society of Metals) are conservatively assumed for the solid aluminum rails for use above the Code temperature limits.
NG-2130	Material must be supplied by ASME approved material suppliers.	Material is certified to meet all ASME Code criteria but is not eligible for certification or Code Stamping if a non-ASME fabricator is used. As the fabricator is not required to be ASME certified, material certification to NG-2130 is not possible. Material traceability and
NG-4121	Material Certification by Certificate Holder	certification are maintained in accordance with TN's NRC approved QA program.
NG-8000	Requirements for nameplates, stamping & reports per NCA- 8000	The NUHOMS® DSC nameplate provides the information required by 10 CFR 71, 49 CFR 173 and 10 CFR 72 as appropriate. Code stamping is not required for the DSC. QA data packages are prepared in accordance with the requirements of TN's approved QA program. Not compliant with ASME Section II Part D Table 2A material temperature limit for Type 304 steel for the postulated transfer accident case (117°F, loss of sunshade, loss of neutron shield) and blocked vent accident (117°F, 40 hr). The calculated maximum steady state temperature for transfer accident case and blocked vent accident case are less than 1000°F. The only primary stresses in the basket grid are deadweight stresses. The ASME Code allows use of SA240 Type 304 stainless steel to temperatures up to 1000°F, as shown in ASME Code, Section II, Part D, Table 1A. In the temperature range of interest (near 800°F), the Sm values for SA240 Type 304 shown in ASME Code, Section II Part D, Table 2A are identical to the allowable S values for the same material shown in Section B, Part D, Table 1A. The recovery actions following the postulated drop accident are as described in the UFSAR.
NG-3000/ Section II, Part D, Table 2A	Maximum temperature limit for Type 304 plate material is 800°F	

(continued)

Reference ASME Code Section/Article	Code Requirement	Alternatives, Justification & Compensatory Measures
NG-3352	Table NG-3352-1 lists the permissible welded joints.	The fusion (spot) type welds between the stainless steel insert plates (straps) and the stainless steel fuel compartment tubes are not included in Table NG-3352-1. These welds are qualified by testing. The required minimum tested capacity of the welded connection (at each side of the tube) shall be 45 kips (at room temperature). The capacity shall be demonstrated by qualification and production testing. Testing shall be performed using, or corrected to, the lowest tensile strength of material used in the basket assembly or to minimum specified tensile strength. Testing may be performed on individual welds, or on weld patterns representative of one wall of the tube. ASME Code Section IX does not provide tests for qualification of these types of welds. Therefore, these welds are qualified using Section IX to the degree applicable together with the testing described here. The welds will be visually inspected to confirm that they are located over the insert plates, in lieu of the visual acceptance criteria of NG-5260 which are not appropriate for this type of weld. A joint efficiency (quality) factor of 1.0 is utilized for the fuel compartment longitudinal seam welds. Table NG-3352-1 permits a joint efficiency (quality) factor of 0.5 to be used for full penetration weld examined by ASME Section V visual examination (VT). For the 32PTH1 DSC, the compartment seam weld is thin and the weld will be made in one pass. Both surfaces of weld inside and outside) will be fully examined by VT and therefore a factor of 2 x 0.5 = 1.0, will be used in the analysis. This is justified as both surfaces of the single weld pass/layer will be fully examined, and the stainless steel material that comprises the fuel compartment tubes is very ductile.
NG-5520	NDE personnel must be qualified to a specific edition of SNT-TC-1A	Permit use of the Recommended Practice SNT-TC-1A to include up to the most recent 2011 edition.

Alternatives to the ASME Code for the NUHOMS[®] -32PTH1 DSC Basket Assembly

(continued)

Reference ASME Code Section/Article	Code Requirement	Alternatives, Justification & Compensatory Measures
NCA	All	Not compliant with NCA. Quality Assurance is provided according to 10 CFR 72 Subpart G in lieu of NCA-4000
NCA-1140	Use of Code editions and addenda	Code edition and addenda other than those specified in Section 4.2.2 may be used for construction but in no case earlier than 3 years before that specified in the Section 4.2.2 table. Materials produced and certified in accordance with ASME Section II material specification from Code Editions and Addenda other than those specified in Section 4.2.2 may be used, so long as the materials meet all the requirements of Article 2000 of the applicable Subsection
NB-1100	Requirements for Code Stamping of Components, Code reports and certificates, etc.	of the Section III Edition and Addenda used for construction. Code Stamping is not required. As Code Stamping is not required, the fabricator is not required to hold an ASME "N" or "NPT" stamp, or to be ASME Certified.
NB-1132	Attachments with a pressure retaining function, including stiffeners, shall be considered part of the component.	Bottom shield plug and outer bottom cover plate are outside code jurisdiction; these components together are much larger than required to provide stiffening for the inner bottom cover plate; the weld that retains the outer bottom cover plate and with it the bottom shield plug is subject to root and final PT examination.
NB-2130	Material must be supplied by ASME approved material suppliers.	Material is certified to meet all ASME Code criteria but is not eligible for certification or Code Stamping if a non-ASME fabricator is used. As the fabricator is not required to be ASME certified, material certification to NB-2130 is not possible. Material traceability and
NB-4121	Material Certification by Certificate Holder	certification are maintained in accordance with TN's NRC approved QA program.
NB-4243 and NB-5230	Category C weld joints in vessels and similar weld joints in other components shall be full penetration joints. These welds shall be examined by UT or RT and either PT or MT.	The shell to the outer top cover weld, the shell to the inner top cover/weld, the siphon/vent cover welds and the vent and siphon block welds to the shell are all partial penetration welds. As an alternative to the NDE requirements of NB-5230, for Category C welds, all of these closure welds are multi-layer welds and receive a root and final PT examination, except for the shell to the outer top cover weld. The shell to the outer top cover weld will be a multi-layer weld and receive multi-level PT examination in accordance with the guidance provided in ISG-15 for NDE. The multi-level PT Examination provides reasonable assurance that flaws of interest will be identified. The PT examination is done by qualified personnel, in accordance with Section V and the acceptance standards of Section III, Subsection NB-5000. All of these welds are designed to meet the guidance provided in ISG-15 for stress reduction factor.

(continued)

Alternatives to the ASME Code for the NUHOMS[®] -61BTH DSC Confinement Boundary

Reference ASME Code Section/Article	Code Requirement	Alternatives, Justification & Compensatory Measures
NB-6100 and 6200	All pressure retaining components and completed systems shall be pressure tested.	The 61BTH is not a complete or "installed" pressure vessel until the top closure is welded following placement of Fuel Assemblies with the DSC. Due to the inaccessibility of the shell and lower end closure welds following fuel loading and top closure welding, as an alternative, the pressure testing of the DSC is performed in two parts. The DSC shell (including all longitudinal and circumferential welds), is pressure tested and examined at the fabrication facility. The shell to the inner top cover closure weld is pressure tested and examined for leakage in accordance with NB-6300 in the field. The siphon/vent cover welds are not pressure tested; these welds and the shell to the inner top cover closure weld are helium leak tested after the pressure test. Per NB-6324 the examination for leakage shall be done at a pressure equal to the greater of the design pressure or three-fourths of the test pressure. As an alternative, if the examination for leakage of these field welds, following a pressure test, is performed using helium leak detection techniques, the examination pressure may be reduced to ≥1.5 psig. This is acceptable given the significantly greater sensitivity of the helium leak detection method.
NB-7000	Overpressure Protection	No overpressure protection is provided for the NUHOMS [®] DSCs. The function of the DSC is to contain radioactive materials under normal, off-normal and hypothetical accident conditions postulated to occur during transportation and storage. The DSC is designed to withstand the maximum possible internal pressure considering 100% fuel rod failure at maximum accident temperature.
NB-8000	Requirements for nameplates, stamping & reports per NCA- 8000.	The NUHOMS [®] DSC nameplate provides the information required by 10 CFR 71, 49 CFR 173 and 10 CFR 72 as appropriate. Code stamping is not required for the DSC. QA data packages are prepared in accordance with the requirements of TN's approved QA program.
NB-5520	NDE Personnel must be qualified to a specific edition of SNT-TC-1A.	Permit use of more recent edition of SNT-TC-1A

(continued)

ASME Code Alternatives for the NUHO	MS [®] -61BTH DSC Basket
-------------------------------------	-----------------------------------

Reference ASME Code Section/Article	Code Requirement	Alternatives, Justification & Compensatory Measures
NCA	All	Not compliant with NCA. Quality Assurance is provided according to 10 CFR 72 Subpart G in lieu of NCA-4000
NCA-1140	Use of Code editions and addenda	Code edition and addenda other than those specified in Section 4.2.2 may be used for construction but in no case earlier than 3 years before that specified in the Section 4.2.2 table. Materials produced and certified in accordance with ASME Section II material specification from Code Editions and Addenda other than those specified in Section 4.2.2 may be used, so long as the materials meet all the requirements of Article 2000 of the applicable Subsection of the Section III Edition and Addenda used for construction.
NG/NF-1100	Requirements for Code Stamping of Components, Code reports and certificates, etc.	Code Stamping is not required. As Code Stamping is not required, the fabricator is not required to hold an ASME "N" or "NPT" stamp, or to be ASME Certified.
NG/NF-2000	Use of ASME Material	Some baskets include neutron absorber and aluminum plates that are not ASME Code Class 1 material. They are used for criticality safety and heat transfer, and are only credited in the structural analysis with supporting their own weight and transmitting bearing loads through their thickness. Material properties in the ASME Code for Type 6061 aluminum are limited to 400°F to preclude the potential for annealing out the hardening properties. Annealed properties (as published by the Aluminum Association and the American Society of Metals) are conservatively assumed for the solid aluminum rails for use above the Code temperature limits.
NG/NF-2130	Material must be supplied by ASME approved material suppliers.	Material is certified to meet all ASME Code criteria but is not eligible for certification or Code Stamping if a non-ASME fabricator is used. As the fabricator is not required to be ASME certified, material certification to NG/NF-2130 is not possible. Material traceability and
NG/NF-4121	Material Certification by Certificate Holder	certification are maintained in accordance with TN's NRC approved QA program.
NG-3352	Table NG-3352-1 lists the permissible welded joints and quality factors.	The fuel compartment tubes may be fabricated from sheet with full penetration seam weldments. Per Table NG-3352-1 a joint efficiency (quality) factor of 0.5 is to be used for full penetration weldments examined in accordance with ASME Section V visual examination (VT). A joint efficiency (quality) factor of 1.0 is utilized for the fuel compartment longitudinal seam welds (if present) with VT examination. This is justified because the compartment seam weld is thin and the weldment is made in one pass; and both surfaces of the weldment (inside and outside) receive 100% VT examination. The 0.5 quality factor of 1.0 since both surfaces are 100% examined. In addition, the fuel compartments have no pressure retaining function and the stainless steel material that comprises the fuel compartment tubes is very ductile.
NG/NF-8000	Requirements for nameplates, stamping & reports per NCA- 8000	The NUHOMS [®] DSC nameplate provides the information required by 10 CFR 71, 49 CFR 173 and 10 CFR 72 as appropriate. Code stamping is not required for the DSC. QA data packages are prepared in accordance with the requirements of TN's approved QA program.
NG/NF-5520	NDE personnel must be qualified to a specific edition of SNT-TC-1A	Permit use of the Recommended Practice SNT-TC-1A to include up to the most recent 2011 edition.

(continued)

Alternatives to the ASME Code for the NUHOMS® 37PTH DSC Confinement Boundary

Reference ASME Code Section/Article	Code Requirement	Alternatives, Justification & Compensatory Measures
NCA	All	Not compliant with NCA. Quality Assurance is provided according to 10 CFR 72 Subpart G in lieu of NCA-4000
NCA-1140	Use of Code editions and addenda	Code edition and addenda other than those specified in Section 4.2.2 may be used for construction but in no case earlier than 3 years before that specified in the Section 4.2.2 table. Materials produced and certified in accordance with ASME Section II material specification from Code Editions and Addenda other than those specified in Section 4.2.2 may be used, so long as the materials meet all the requirements of Article 2000 of the applicable Subsection of the Section III Edition and Addenda used for construction.
NB-1100	Requirements for Code Stamping of Components, Code reports and certificates, etc.	Code Stamping is not required. As Code Stamping is not required, the fabricator is not required to hold an ASME "N" or "NPT" stamp, or to be ASME Certified.
NB-2130	Material must be supplied by ASME approved material suppliers.	Material is certified to meet all ASME Code criteria but is not eligible for certification or Code Stamping if a non-ASME fabricator is used. As the fabricator is not required to be ASME certified, material certification to NB-2130 is not possible. Material traceability and
NB-4121	Material Certification by Certificate Holder	certification are maintained in accordance with TN's NRC approved QA program.
NB-4243 and NB-5230	Category C weld joints in vessels and similar weld joints in other components shall be full penetration joints. These welds shall be examined by UT or RT and either PT or MT.	The shell to the outer top cover weld, the shell to the inner top cover/shield plug weld (including optional design configurations for the inner top cover as described in the 37PTH DSC drawings), the siphon/vent cover welds, and the vent and siphon block welds to the shell are all partial penetration welds. As an alternative to the NDE requirements of NB-5230, for Category C welds, all of these closure welds are multi-layer welds and receive a root and final PT examination, except for the shell to the outer top cover weld. The shell to the outer top cover weld will be a multi-layer weld and receive multi-level PT examination in accordance with the guidance provided in ISG-15 (which is incorporated in NUREG-1536, Revision 1) for NDE. The multi-level PT examination provides reasonable assurance that flaws of interest will be identified. The PT examination is done by qualified personnel, in accordance with Section V and the acceptance standards of Section III, Subsection NB-5000. All of these welds are designed to meet the guidance provided in ISG-15 (which is incorporated in NUREG-1536, Revision 1) for stress reduction factor.
NB-1132	Attachments with a pressure retaining function, including stiffeners, shall be considered part of the component.	Bottom shield plug and outer bottom cover plate are outside code jurisdiction; these components together are much larger than required to provide stiffening for the inner bottom cover plate; the weld that retains the outer bottom cover plate and with it the bottom shield plug is subject to root and final PT examination.

(continued)

Alternatives to the ASME Code for the NUHOMS® 37PTH DSC Confinement Boundary

Reference ASME Code Section/Article	Code Requirement	Alternatives, Justification & Compensatory Measures
NB-6100 and 6200	All pressure retaining components and completed systems shall be pressure tested. The preferred method shall be hydrostatic test.	The NUHOMS [®] 37PTH DSC is not a complete vessel until the top closure is welded following placement of fuel assemblies within the DSC. Due to the inaccessibility of the shell and lower end closure welds following fuel loading and top closure welding, as an alternative, the pressure testing of the DSC is performed in two parts. The DSC shell and inner bottom plate/forging (including all longitudinal and circumferential welds), are pressure tested and examined at the fabrication facility. The shell to the inner top cover/shield plug closure weld (including optional design configurations for the inner top cover as described in the 37PTH DSC drawings) is pressure tested and examined for leakage in accordance with NB-6300 in the field. The siphon/vent cover welds are not pressure tested; these welds and the shell to the inner top cover/shield plug closure weld (including Optional design configurations for the inner top cover as described in the 37PTH DSC drawings) are helium leak tested after the pressure test. Per NB-6324 the examination for leakage shall be done at a pressure equal to the greater of the design pressure or three-fourths of the test pressure. As an alternative, if the examination for leakage of these field welds, following a pressure test, is performed using helium leak detection techniques, the examination pressure may be reduced to ≥1.5 psig. This is acceptable given the significantly greater sensitivity of the helium leak detection method.
NB-7000	Overpressure Protection	No overpressure protection is provided for the NUHOMS [®] DSCs. The function of the DSC is to contain radioactive materials under normal, off-normal and hypothetical accident conditions postulated to occur during transportation and storage. The DSC is designed to withstand the maximum possible internal pressure considering 100% fuel rod failure at maximum accident temperature.
NB-8000	Requirements for nameplates, stamping & reports per NCA- 8000.	The NUHOMS [®] DSC nameplate provides the information required by 10 CFR 71, 49 CFR 173 and 10 CFR 72 as appropriate. Code stamping is not required for the DSC. QA data packages are prepared in accordance with the requirements of TN's approved QA program.
NB-5520	NDE Personnel must be qualified to a specific edition of SNT-TC-1A.	Permit use of the Recommended Practice SNT-TC-1A to include up to the most recent 2011 edition.

(continued)

Alternatives to the ASME Code for the NUHOMS® 37PTH DSC Basket Assembly

Reference ASME Code Section/Article	Code Requirement	Alternatives, Justification & Compensatory Measures
NCA	All	Not compliant with NCA. Quality Assurance is provided according to 10 CFR 72 Subpart G in lieu of NCA-4000
NCA-1140	Use of Code editions and addenda	Code edition and addenda other than those specified in Section 4.2.2 may be used for construction but in no case earlier than 3 years before that specified in the Section 4.2.2 table. Materials produced and certified in accordance with ASME Section II material specification from Code Editions and Addenda other than those specified in Section 4.2.2 may be used, so long as the materials meet all the requirements of Article 2000 of the applicable Subsection of the Section III Edition and Addenda used for construction.
NG-1100	Requirements for Code Stamping of Components, Code reports and certificates, etc.	Code Stamping is not required. As Code Stamping is not required, the fabricator is not required to hold an ASME "N" or "NPT" stamp, or to be ASME Certified.
NG-2000	Use of ASME Material	Some baskets include neutron absorber and aluminum plates that are not ASME Code Class 1 material. They are used for criticality safety and heat transfer, and are only credited in the structural analysis with supporting their own weight and transmitting bearing loads through their thickness. Material properties in the ASME Code for Type 6061 aluminum are limited to 400°F to preclude the potential for annealing out the hardening properties. Annealed properties (as published by the Aluminum Association and the American Society of Metals) are conservatively assumed for the solid aluminum transition rails for use above the Code temperature limits.
NG-2130	Material must be supplied by ASME approved material suppliers.	Material is certified to meet all ASME Code criteria but is not eligible for certification or Code Stamping if a non-ASME fabricator is used. As the fabricator is not required to be ASME certified, material certification to NG-2130 is not possible. Material traceability and
NG-4121	Material Certification by Certificate Holder	certification are maintained in accordance with TN's NRC approved QA program.
NG-8000	Requirements for nameplates, stamping & reports per NCA- 8000	The NUHOMS [®] DSC nameplate provides the information required by 10 CFR 71, 49 CFR 173 and 10 CFR 72 as appropriate. Code stamping is not required for the DSC. QA data packages are prepared in accordance with the requirements of TN's approved QA program.
NG-5520	NDE personnel must be qualified to a specific edition of SNT-TC-1A	Permit use of the Recommended Practice SNT-TC-1A to include up to the most recent 2011 edition.

(continued)

Reference ASME Code Section/Article	Code Requirement	Alternatives, Justification & Compensatory Measures
NCA	All	Not compliant with NCA. Quality Assurance is provided according to 10 CFR 72 Subpart G in lieu of NCA-4000
NCA-1140	Use of Code editions and addenda	Code edition and addenda other than those specified in Section 4.2.2 may be used for construction but in no case earlier than 3 years before that specified in the Section 4.2.2 table. Materials produced and certified in accordance with ASME Section II material specification from Code Editions and Addenda other than those specified in Section 4.2.2 may be used, so long as the materials meet all the requirements of Article 2000 of the applicable Subsection of the Section III Edition and Addenda used for construction.
NB-1100	Requirements for Code Stamping of Components, Code reports and certificates, etc.	Code Stamping is not required. As Code Stamping is not required, the fabricator is not required to hold an ASME "N" or "NPT" stamp, or to be ASME Certified.
NB-1132	Attachments with a pressure retaining function, including stiffeners, shall be considered part of the component.	Bottom shield plug and outer bottom cover plate are outside code jurisdiction; these components together are much larger than required to provide stiffening for the inner bottom cover plate; the weld that retains the outer bottom cover plate and with it the bottom shield plug is subject to root and final PT examination.
NB-2130	Material must be supplied by ASME approved material suppliers. Material Certification	Material is certified to meet all ASME Code criteria but is not eligible for certification or Code Stamping if a non-ASME fabricator is used. As the fabricator is not required to be ASME certified, material certification to NB-2130 is not possible. Material traceability and certification are mainteined in accordance with TN's NDC approved
NB-4121	by Certificate Holder	certification are maintained in accordance with TN's NRC approved QA program.
NB-4243 and NB-5230	Category C weld joints in vessels and similar weld joints in other components shall be full penetration joints. These welds shall be examined by UT or RT and either PT or MT.	The shell to the outer top cover weld, the shell to the inner top cover/weld (including optional design configurations for the inner top cover as described in the 69BTH DSC drawings), the siphon/vent cover welds and the vent and siphon block welds to the shell are all partial penetration welds. As an alternative to the NDE requirements of NB-5230, for Category C welds, all of these closure welds are multi-layer welds and receive a root and final PT examination, except for the shell to the outer top cover weld. The shell to the outer top cover weld will be a multi-layer weld and receive multi-level PT examination in accordance with the guidance provided in ISG-15 (which is incorporated in NUREG-1536, Revision 1) for NDE. The multi-level PT Examination provides reasonable assurance that flaws of interest will be identified. The PT examination is done by qualified personnel, in accordance with Section V and the acceptance standards of Section III, Subsection NB-5000. All of these welds are designed to meet the guidance provided in ISG-15 (which is incorporated in NUREG-1536, Revision 1) for stress reduction factor.

(continued)

ASME Code Alternatives for the NUHOMS[®] -69BTH DSC Confinement Boundary

Reference ASME Code Section/Article	Code Requirement	Alternatives, Justification & Compensatory Measures
NB-6100 and 6200	All completed pressure retaining systems shall be pressure tested.	The 69BTH is not a complete or "installed" pressure vessel until the top closure is welded following placement of Fuel Assemblies with the DSC. Due to the inaccessibility of the shell and lower end closure welds following fuel loading and top closure welding, as an alternative, the pressure testing of the DSC is performed in two parts. The DSC shell (including all longitudinal and circumferential welds), is pressure tested and examined at the fabrication facility. The shell to the inner top cover closure weld is pressure tested and examined for leakage in accordance with NB-6300 in the field. The siphon/vent cover welds are not pressure tested; these welds and the shell to the inner top cover closure weld are helium leak tested after the pressure test. Per NB-6324 the examination for leakage shall be done at a pressure equal to the greater of the design pressure or three-fourths of the test pressure. As an alternative, if the examination for leakage of these field welds, following a pressure test, is performed using helium leak detection techniques, the examination pressure may be reduced to ≥1.5 psig. This is acceptable given the significantly greater sensitivity of the helium leak detection method.
NB-7000	Overpressure Protection	No overpressure protection is provided for the NUHOMS [®] DSCs. The function of the DSC is to contain radioactive materials under normal, off-normal and hypothetical accident conditions postulated to occur during transportation and storage. The DSC is designed to withstand the maximum possible internal pressure considering 100% fuel rod failure at maximum accident temperature.
NB-8000	Requirements for nameplates, stamping & reports per NCA- 8000.	The NUHOMS [®] DSC nameplate provides the information required by 10 CFR 71, 49 CFR 173 and 10 CFR 72 as appropriate. Code stamping is not required for the DSC. QA data packages are prepared in accordance with the requirements of TN's approved QA program.
NB-5520	NDE Personnel must be qualified to a specific edition of SNT-TC-1A.	Permit use of the Recommended Practice SNT-TC-1A to include up to the most recent 2011 edition.

(continued)

ASME Code Alternatives for the NL	UHOMS [®] -69BTH DSC Basket
-----------------------------------	--------------------------------------

Reference ASME Code Section/Article	Code Requirement	Alternatives, Justification & Compensatory Measures
NCA	All	Not compliant with NCA. Quality Assurance is provided according to 10 CFR 72 Subpart G in lieu of NCA-4000
NCA-1140	Use of Code editions and addenda	Code edition and addenda other than those specified in Section 4.2.2 may be used for construction but in no case earlier than 3 years before that specified in the Section 4.2.2 table. Materials produced and certified in accordance with ASME Section II material specification from Code Editions and Addenda other than those specified in Section 4.2.2 may be used, so long as the materials meet all the requirements of Article 2000 of the applicable Subsection of the Section III Edition and Addenda used for construction.
NG/NF-1100	Requirements for Code Stamping of Components, Code reports and certificates, etc.	Code Stamping is not required. As Code Stamping is not required, the fabricator is not required to hold an ASME "N" or "NPT" stamp, or to be ASME Certified.
NG/NF-2000	Use of ASME Material	Some baskets include neutron absorber and aluminum plates that are not ASME Code Class 1 material. They are used for criticality safety and heat transfer, and are only credited in the structural analysis with supporting their own weight and transmitting bearing loads through their thickness. Material properties in the ASME Code for Type 6061 aluminum are limited to 400°F to preclude the potential for annealing out the hardening properties. Annealed properties (as published by the Aluminum Association and the American Society of Metals) are conservatively assumed for the solid aluminum transition rails for use above the Code temperature limits.
NG/NF-2130	Material must be supplied by ASME approved material suppliers.	Material is certified to meet all ASME Code criteria but is not eligible for certification or Code Stamping if a non-ASME fabricator is used. As the fabricator is not required to be ASME certified, material certification to NG/NF-2130 is not possible. Material traceability and
NG/NF-4121	Material Certification by Certificate Holder	certification are maintained in accordance with TN's NRC approved QA program.
NG-3352	Table NG-3352-1 lists the permissible welded joints and quality factors.	The fuel compartment tubes may be fabricated from sheet with full penetration seam weldments. Per Table NG-3352-1 a joint efficiency (quality) factor of 0.5 is to be used for full penetration weldments examined in accordance with ASME Section V visual examination (VT). A joint efficiency (quality) factor of 1.0 is utilized for the fuel compartment longitudinal seam welds (if present) with VT examination. This is justified because the compartment seam weld is thin and the weldment is made in one pass; and both surfaces of the weldment (inside and outside) receive 100% VT examination. The 0.5 quality factor of 1.0 since both surfaces are 100% examined. In addition, the fuel compartments have no pressure retaining function and the stainless steel material that comprises the fuel compartment tubes is very ductile.
NG/NF-8000	Requirements for nameplates, stamping & reports per NCA- 8000	The NUHOMS [®] DSC nameplate provides the information required by 10 CFR 71, 49 CFR 173 and 10 CFR 72 as appropriate. Code stamping is not required for the DSC. QA data packages are prepared in accordance with the requirements of TN's approved QA program.
NG/NF-5520	NDE personnel must be qualified to a specific edition of SNT-TC-1A	Permit use of the Recommended Practice SNT-TC-1A to include up to the most recent 2011 edition.

(continued)

ASME Code Alternatives for the Standardized NUHOMS[®] System TCs Except for the OS200 and OS200FC TCs

(Applies to TC structural components only; lead shielding, neutron shielding, and neutron shield jacket of the TC are not addressed by this table)

Reference ASME Code Section/Article	Code Requirement	Alternatives, Justification & Compensatory Measures
NCA	All	Not compliant with NCA. Quality Assurance is provided according to 10 CFR 72 Subpart G in lieu of NCA-4000
NCA-1140	Use of Code editions and addenda	Code edition and addenda other than those specified in Section 4.2.3 may be used for construction but in no case earlier than 3 years before that specified in the Section 4.2.3 table. Materials produced and certified in accordance with ASME Section II material specification from Code Editions and Addenda other than those specified in Section 4.2.3 may be used, so long as the materials meet all the requirements of Article 2000 of the applicable Subsection of the Section III Edition and Addenda used for construction.
NC-1100	Requirements for Code Stamping of Components.	The cask is designed and fabricated to the requirements of Subsection NC, to the maximum extent practical. However, the TC does not have a Code stamp. Code Stamping is not required by 10 CFR 72 regulation. Therefore, the fabricator is not required to be ASME Certified.
NC-2000	ASME Code Materials are to be used	The Cask bottom ram access cover plate is made of ASTM A240, a non-ASME material. This cover plate is a water tight closure used during fuel LOADING/UNLOADING OPERATIONS in the fuel/reactor building only. This is not a pressure boundary component, and its failure does not result in any public safety concerns.
NC-2130	Material must be supplied by ASME approved material suppliers.	Material designated as ASME on UFSAR Appendix E drawings are obtained by TN approved suppliers with Certified Material Test Reports (CMTR's). Material is certified to meet all ASME Code criteria but is not eligible for Certification or Code Stamping, if a non-ASME fabricator is used. As the fabricator is not required to be ASME certified, material certification to NC-2130 is not possible.
NC-4120	Material Certification by Certificate Holder	Material traceability and certification are maintained in accordance with TN's NRC approved QA program.
NC-4240	Full penetration welds are required for pressure boundary closure joints.	The joint between the ram access penetration forging and the bottom end plate consists of partial penetration welds, while NC-3200 would require full penetration welds. This cover plate is a water tight closure used during fuel LOADING/UNLOADING OPERATIONS in the fuel/reactor building only. This is not a pressure boundary component, and its failure does not result in any public safety concerns.
NC-5250	Category A and B weld joints shall be fully radiographed.	UFSAR Appendix E drawing NUH-03-8001 permits weld examination of (a) the circumferential and longitudinal welds for the structural shell and (b) the weld between the bottom end plate and the bottom support ring to be done using radiography (RT) or ultrasound (UT) while NC- 5250 allows full penetration welds to be examined by RT only. Since the structural shell is not a pressure boundary, this code exception is acceptable.

(continued)

ASME Code Alternatives for the Standardized NUHOMS[®] System TCs Except for the OS200 and OS200FC TCs

(Applies to TC structural components only; lead shielding, neutron shielding, and neutron shield jacket of the TC are not addressed by this table)

Reference ASME Code Section/Article	Code Requirement	Alternatives, Justification & Compensatory Measures
NC-6000	All completed pressure retaining systems shall be pressure tested	With respect to pressure testing requirements, the TC is considered a non pressure retaining component. Therefore, no pressure testing is required. However, liquid neutron shield cavity, cask bottom neutron shield cavity, and the bottom cover plate assembly are pressure and leak tested.
NC-7000	Overpressure Protection	The TC is considered a non pressure retaining component. Therefore, no overpressure protection is provided for the TC, except that a pressure relief valve is provided for the annular neutron shielding.
NC-8000	Requirements for nameplates, stamping & reports per NCA- 8000.	The TC nameplate provides the information required by 10 CFR 72. Code stamping is not required for the TC. QA Data packages are prepared in accordance with the requirements of 10 CFR 72 and TN's NRC approved QA program.
NC-5520	NDE personnel must be qualified to a specific edition of SNT-TC-1A.	Permit use of the Recommended Practice SNT-TC-1A to include up to the most recent 2011 edition.

(continued)

ASME Code Alternatives for the Standardized NUHOMS[®] System OS200 and OS200FC TCs

(Applies to TC structural components only; lead shielding, neutron shielding, and neutron shield jacket of the TC are not addressed by this table)

Reference ASME		
Code Section/Article	Code Requirement	Alternatives, Justification & Compensatory Measures
NCA	All	Not compliant with NCA. Quality Assurance is provided according to 10 CFR 72 Subpart G in lieu of NCA-4000
NCA-1140	Use of Code editions and addenda	Code edition and addenda other than those specified in Section 4.2.3 may be used for construction but in no case earlier than 3 years before that specified in the Section 4.2.3 table. Materials produced and certified in accordance with ASME Section II material specification from Code Editions and Addenda other than those specified in Section 4.2.3 may be used, so long as the materials meet all the requirements of Article 2000 of the applicable Subsection of the Section III Edition and
NC-1100	Requirements for Code Stamping of Components.	Addenda used for construction. The OS200/OS200FC TC is designed and fabricated to the requirements of Subsection NC, to the maximum extent practical. However, the TC does not have a Code stamp. Code Stamping is not required by 10 CFR 72 regulation.
NC-2000	ASME Code Materials are to be used	Therefore, the fabricator is not required to be ASME Certified. The TC bottom ram access cover plate is made of ASTM A240, a non-ASME material. This cover plate is a water tight closure used during fuel LOADING/UNLOADING OPERATIONS in the fuel/reactor building only. This is not a pressure boundary component, and its failure does not result in any public safety concerns.
NC-2130	Material must be supplied by ASME approved material suppliers.	Material designated as ASME on UFSAR U.1 drawings are obtained by TN approved suppliers with Certified Material Test Reports (CMTR's). Material is certified to meet all ASME Code criteria but is not eligible for Certification or Code Stamping, if a non-ASME fabricator is used. As the fabricator is not required to be ASME certified, material certification to NC-2130 is not possible.
NC-4120	Material Certification by Certificate Holder	Material traceability and certification are maintained in accordance with TN's NRC approved QA program.
NC-5254	Category D joints shall be RT or UT examined.	The trunnion-to-shell weld is a Category D joint which does not allow adequate UT or RT examination. This weld is not a pressure boundary but serves as lifting point for the TC. During fabrication, this weld is progressive PT examined and then load- tested to three times the design load. The weld between the ram access penetration forging and bottom end plate is a Category D joint which does not allow meaningful RT or UT examination. This weld is PT examined root and final layers. This is not a pressure boundary component and its failure does not result in any public safety concerns.
NC-6000	All completed pressure retaining systems shall be pressure tested.	With respect to pressure testing requirements, the TC is not a pressure retaining component. Therefore, no pressure testing is required. However, the liquid neutron shield cavity, cask bottom neutron shield cavity, and the bottom cover plate assembly are pressure and leak tested.
NC-7000	Overpressure Protection	The TC is not a pressure retaining component. Therefore, no overpressure protection is provided for the TC, except that a pressure relief valve is provided for the annular neutron shielding.
NC-8000	Requirements for nameplates, stamping & reports per NCA- 8000.	The TC nameplate provides the information required by 10 CFR 72. Code stamping is not required for the TC. QA data packages are prepared in accordance with the requirements of 10 CFR 72 and TN's NRC approved QA program.
NC-5520	NDE personnel must be qualified to a specific edition of SNT-TC-1A.	Permit use of the Recommended Practice SNT-TC-1A to include up to the most recent 2011 edition.

(continued)

Proposed alternatives to the ASME code, other than the aforementioned ASME Code alternatives may be used when authorized by the Director of the Office of Nuclear Material Safety and Safeguards, or designee. The applicant should demonstrate that:

- 1. The proposed alternatives would provide an acceptable level of quality and safety, or
- 2. Compliance with the specified requirements of ASME Code, Section III, Edition year and Addenda indicated in Section 4.2.2 or Section 4.2.3 would result in hardship or unusual difficulty without a compensating increase in the level of quality and safety.

Requests for exceptions in accordance with this section should be submitted in accordance with 10 CFR 72.4.

4.3 Storage Location Design Features

The following storage location design features and parameters shall be verified by the system user to assure technical agreement with the UFSAR.

4.3.1 Storage Configuration

HSMs are placed together in single rows or back-to-back arrays. An end shield wall is placed on the outside end of any loaded outside HSM. A rear shield wall is placed on the rear of any single row loaded HSM.

A minimum of two (2) HSM-H modules are required to be placed adjacent to each other for stability during design basis flood loads.

A minimum of three (3) high seismic option HSM-H modules are to be connected with each other.

4.3.2 <u>Concrete Storage Pad Properties to Limit DSC Gravitational Loadings Due to Postulated</u> <u>Drops</u>

The TC/DSC has been evaluated for drops of up to 80 inches onto a reinforced concrete storage pad.

4.3 Storage Location Design Features

4.3.3 <u>Site Specific Parameters and Analyses</u>

The potential Standardized NUHOMS[®] System user (general licensee) shall perform the verifications and evaluations in accordance with 10 CFR 72.212 before the use of the system under the general license. The following parameters and analyses shall be verified by the system user for applicability at their specific site. Other natural phenomena events, such as lightning (damage to electrical system, e.g., thermal performance monitoring), tsunamis, hurricanes, and seiches, are site specific and their effects are generally bounded by other events, but they should be evaluated by the user.

- 1. The analyzed Flood conditions of 50 ft. height of water (full submergence of the loaded HSM with DSC) and water velocity of 15 fps.
- 2. One-hundred year roof snow load of 110 psf.
- 3. The maximum yearly average temperature shall be 70°F for the 24P, 52B and 61BT DSCs only. The average daily ambient temperature shall be 100°F or less for the 52B, 61BT, 32PT, 24PHB, 24PTH, 61BTH, 69BTH, and 37PTH DSCs. For the 32PTH1 DSC, the average daily ambient temperature shall be 106°F or less.
- 4. The temperature extremes either of 125°F (for the 24P, 52B and 61BT DSCs) or 117°F (for the 32PT, 24PHB, 24PTH, 61BTH, 32PTH1, 69BTH, and 37PTH DSCs). The 117°F extreme ambient temperature corresponds to a 24 hour calculated average temperature of 102°F for the 32PT DSC only. The extreme minimum ambient temperature is –40°F for storage of the DSC inside HSM.
- 5. The potential for fires and explosions shall be addressed, based on site-specific considerations.
- 6. Supplemental Shielding: In cases where supplemental shielding and engineered features (i.e., earthen berms, shield walls) are used to ensure that the requirements of 10 CFR 72.104(a) are met, such features are to be considered important to safety and must be evaluated to determine the applicable Quality Assurance Category.
- 7. Seismic restraints shall be provided to prevent overturning of a loaded TC in a vertical orientation in the plant's FUEL BUILDING during a seismic event if a certificate holder determines that the horizontal acceleration is 0.4g or greater. The determination of the horizontal acceleration acting at the center of gravity (CG) of the loaded TC must be based on a peak horizontal ground acceleration at the site.
- 8. Site design spectra seismic Zero Period Acceleration (ZPA) levels of 0.25g horizontal and 0.17g vertical for the systems using the Standardized HSMs. Site design spectra seismic ZPA for systems using the HSM-H modules are payload specific as follows:
 - 0.3g horizontal and 0.2g vertical for the 24PTH and 61BTH DSCs
 - 0.3g horizontal and 0.25g vertical for the 32PTH1, 69BTH, and 37PTH DSCs

(continued)

- Site design spectra seismic ZPA levels for the 32PT, 61BT, 24PTH, 61BTH, 32PTH1, 69BTH, and 37PTH DSC systems when stored within the "high seismic option" HSM-H modules are 1.0g horizontal and 1.0g vertical.
- 9. The storage pad location shall have no potential for liquification at the sitespecific Safe Shutdown Earthquake (SSE) level.
- 10. Any other site parameters or considerations that could decrease the effectiveness of cask systems important to safety.
- 11. The storage pad location shall be evaluated for the effects of soil structure interaction which may affect the response of the loaded HSMs.

4.4 TC Design Features

The OS197L TC shall only be used with DSC models 61BT and 32PT with a maximum heat load of 12 kW per DSC or less, and 13 kW per DSC or less, respectively. The following TC design features and parameters for the OS197L TC shall be verified by the system user to assure technical agreement with the UFSAR:

- 4.4.1 The OS197L TC decontamination area shielding shall be used for all LOADING OPERATIONS when the TC is not in the spent fuel pool or suspended on the crane. The OS197L TC trailer shielding shall be used for all TRANSFER OPERATIONS. This shielding is necessary to ensure the OS197L TC system provides adequate radiation protection when the TC is not in the pool, or when the TC is not handled by remote operations.
- 4.4.2 The bare OS197L TC shall be handled using remote operations, including the use of laser/optical targeting and camera for confirmation of the cask location.
- 4.4.3 The placement of the Outer Top Shield of the Transfer Trailer Shield on the loaded OS197L TC shall take place in the FUEL BUILDING unless the FUEL BUILDING load limits would be exceeded. In that case, the placement of the Outer Top Shield takes place outside the FUEL BUILDING. If the placement of the Outer Top Shield is delayed due to building load limits, it must occur as soon as the Transfer Trailer has been moved to an area with acceptable load limits. The licensee must plan accordingly to minimize, to the greatest extent practicable, the delay of the placement of this Outer Top Shield.
- 4.4.4 During TRANSFER OPERATION of a loaded OS197L TC, every hour, visually monitor the Outer Top Trailer Shield vents and the opening around the cask ends for any sign of steaming which may indicate leakage of water from the cask neutron shield. If steaming is determined to be due to leakage of neutron shield water and not due to any rain or snow or other ambient conditions, then licensee must take appropriate corrective actions including use of supplemental cooling or replenishing the neutron shield water or terminating the transfer operation and returning the loaded cask to the FUEL BUILDING for further assessment.

4.5 Leakage Testing of the Confinement Boundary

The DSC shell (including the inner bottom cover plate) base metal and associated confinement boundary welds are tested during fabrication to 1×10^{-7} ref cm³/s. The inner seal welds, inner top cover and port covers are tested upon closure of the loaded DSC as specified in Section 5.2.4c of the Technical Specifications.

5.0 ADMINISTRATIVE CONTROLS

5.1 Procedures

Each user of the standardized NUHOMS[®] System shall prepare, review, and approve written procedures for all normal operations (cask handling, loading movement and surveillance) and maintenance at the ISFSI prior to its operation. The operating procedures suggested generically in the UFSAR should provide the basis for the user's written operating procedures. Written procedures shall be established, implemented, and maintained covering the following activities that are important to safety:

- Organization and management
- Routine ISFSI operations
- Alarms and annunciators
- Emergency operations
- Design control and facility change/modification
- Control of surveillances and tests
- Control of special processes
- Maintenance
- Health physics, including ALARA practices
- Special nuclear material accountability
- Quality assurance, inspection, and audits
- Physical security and safeguards
- Records management
- Reporting
- All programs specified in Section 5.2

The fuel removal procedure which shall be part of the users operating procedures as a minimum shall include:

If fuel needs to be removed from the DSC, either at the end of service life or for inspection after an accident, precautions must be taken against the potential for the presence of damaged or oxidized fuel and to prevent radiological exposure to personnel during this operation. This can be achieved with this design by the use of the purge and fill valves which permit a determination of the atmosphere within the DSC before the removal of the inner top cover and shield plugs, prior to filling the DSC cavity with water (borated water for the 24P, 32PT, 24PHB, 24PTH, 32PTH1, or 37PTH). If the atmosphere within the DSC is helium and radioactivity check of the atmosphere in the DSC cavity did not detect the presence of any airborne radioactive particulates, then operations should proceed normally with fuel removal either via the TC or in the pool, if available. However, if air or airborne radioactive particulates are present within the DSC, then appropriate filters should be in place to preclude the uncontrolled release of any potential airborne radioactive particulate from the DSC via the purge-fill valves. This will protect both personnel and the operations area from potential contamination. For the accident case, personnel protection in the form of respirators or supplied air should be considered in accordance with licensee's Radiation Protection Program.

(continued)

5.1.1 DSC Loading, Unloading and Preparation Program

Each user of the standardized NUHOMS[®] System shall establish a program to implement the UFSAR requirements for loading fuel and components into the DSC, unloading fuel and components from the DSC, and preparing the DSC for storage. The requirements of the programs for loading and preparing the DSC shall be complete prior to removing the DSC from the 10 CFR Part 50 structure. At a minimum, the program shall establish criteria that need to be verified to address UFSAR commitments and regulatory requirements for LCOs listed in Technical Specifications 3.1.1, 3.1.2, 3.2.1, 4.3.3, 5.2.4b, 5.2.4c, 5.2.4d, 5.2.4e, 5.2.6, and 5.4.

During unloading of fuel from the DSC, appropriate precautions shall be taken to limit the oxidation of the fuel. The recommendations of ISG-22, Revision 0 can be used as a guideline to address fuel oxidation concerns.

The program shall include compensatory measures and appropriate completion times if the program requirements are not met.

5.1.2 ISFSI Operations Program

A program shall be established to implement the UFSAR requirements for ISFSI operations.

At a minimum, the program shall verify that:

- 1. The HSMs are placed together in single rows or back-to-back arrays in accordance with the storage configuration specified in Technical Specification 4.3.1.
- 2. The concrete storage pad parameters are consistent with the UFSAR analysis.
- 3. The maximum lifting heights for the cask system meet Technical Specification 5.3.1 requirements.

5.1.3 Aging Management Program Procedures and Reporting

Each general licensee shall have a program to establish, implement, and maintain written procedures for each AMP described in the UFSAR. The program shall include provisions for changing AMP elements, as necessary, and within the limitations of the approved licensing bases to address new information on aging effects based on inspection findings and/or industry operating experience provided to the general licensee during the renewal period. Each procedure shall contain a reference to the specific aspect of the AMP element implemented by that procedure, and that reference shall be maintained even if the procedure is modified.

The general licensee shall establish and implement these written procedures within 180 days of the effective date of the renewal of the CoC or 180 days of the 20th anniversary of the loading of the first dry storage system at its site, whichever is later. The general licensee shall maintain these written procedures for as long as the general licensee continues to operate Standardized NUHOMS® Horizontal Modular Storage Systems in service for longer than 20 years.

5.2 Programs

Each user of the NUHOMS® System will implement the following programs:

- 10 CFR 72.48 Evaluation Program
- Training Program
- Radiological Environmental Monitoring Program
- Radiation Protection Program
- HSM Thermal Monitoring Program

5.2.1 10 CFR 72.48 Evaluation Program

Users shall conduct evaluations in accordance with 10 CFR 72.48 to determine whether proposed changes, tests, and experiments require NRC approval before implementation. Changes to the Technical Specification Bases and other licensing basis documents shall be conducted in accordance with approved administrative procedures.

Changes may be made to Technical Specification Bases and other licensing basis documents without prior NRC approval, provided the changes meet the criteria of 10 CFR 72.48.

The evaluation process shall contain provisions to ensure that the Technical Specification Bases and other licensing basis documents are maintained consistent with the UFSAR.

Proposed changes that do not meet the criteria above shall be reviewed and approved by the NRC before implementation. Changes to all of the licensing basis documents, including the Technical Specification Bases, implemented without prior NRC approval shall be provided to the NRC in accordance with 10 CFR 72.48.

(continued)

5.2.2 Training Program

Training modules shall be developed as required by 10 CFR Part 72. Training modules shall require a comprehensive program for the operation and maintenance of the standardized NUHOMS[®] System and the ISFSI. The training modules shall include the following elements, at a minimum:

- Standardized NUHOMS[®] System design (overview)
- ISFSI Facility design (overview)
- Structures, Systems, and Components Important to Safety (overview)
- NUHOMS[®] System UFSAR (overview)
- NRC Safety Evaluation Report (overview)
- Certificate of Compliance conditions (overview)
- NUHOMS[®] System Technical Specifications
- Applicable Regulatory Requirements (e.g.,10 CFR Part 72, Subpart K, 10 CFR Part 20, 10 CFR Part 73, 10 CFR Part 50)
- Required Instrumentation and Use
- Operating Experience Reviews
- NUHOMS[®] System and Maintenance procedures, including:
 - Fuel qualification and loading,
 - Rigging and handling,
 - Applicable LOADING OPERATIONS as described in Chapters 5, K.8, M.8, N.8, P.8, R.8, T.8, U.8, W.8, Y.8, and Z.8 of the UFSAR,
 - UNLOADING OPERATIONS including reflooding,
 - Auxiliary equipment operations and maintenance (i.e., welding operations, vacuum drying, helium backfilling and leak testing, reflooding),
 - TRANSFER OPERATIONS including loading and unloading of the Transfer Vehicle,
 - ISFSI Surveillance operations,
 - Radiation Protection,
 - Maintenance, as described in the UFSAR,
 - Security, and
 - Off-normal and accident conditions, responses and corrective actions.

5.2.3 Radiological Environmental Monitoring Program

- a) A radiological environmental monitoring program shall be implemented to verify that the annual dose equivalent to an individual located outside the ISFSI controlled area does not exceed the annual dose limits specified in 10 CFR 72.104(a).
- b) Operation of the ISFSI does not create any radioactive materials or result in any credible liquid or gaseous effluent release.

(continued)

5.2.4 Radiation Protection Program

The Radiation Protection Program shall establish administrative controls to limit personnel exposure to As Low As Reasonably Achievable (ALARA) levels in accordance with 10 CFR Part 20 and Part 72.

a) As part of its evaluation pursuant to 10 CFR 72.212, the licensee shall perform an analysis to confirm that the limits of 10 CFR 20 and 10 CFR 72.104 will be satisfied under the actual site conditions and configurations considering the planned number of DSCs/HSMs to be used and the planned fuel loading conditions.

A dose assessment shall also be performed to account for occupational exposures during normal LOADING and TRANSFER OPERATIONS. If remote handling devices are used for movement of a TC during LOADING OPERATIONS then the dose assessment shall include recovery from the off-normal event of a potential malfunction of these devices. The licensee shall perform this dose assessment including occupational and public exposures from off-normal and accident conditions as a part of their 10 CFR 72.212 evaluations and augment their 10 CFR 20 radiation protection plan as required. The licensee shall develop appropriate measures (such as use of remote camera monitoring, use of temporary shielding etc.) to keep the dose rates ALARA during recovery from these potential malfunctions if needed. The licensee shall provide appropriate training to personnel involved in the possible repair/recovery operations.

When using an OS197L TC, the ALARA assessment shall include at least the assessment of occupational and public exposures associated with the following:

- 1. The off-normal event of cask handling crane hangup during the movement of a loaded OS197L TC from the spent fuel pool to the decontamination area and from the decontamination area to the transfer trailer.
- 2. Surface, 100-meter and in the most affected unrestricted area (if any) dose rates from the transfer trailer without the top outer trailer shield in place for their impact on compliance with 10 CFR 72.104 and 10 CFR 20.1301(a)(2) dose values.
- 3. Worker doses associated with visual inspection of the openings at the top and bottom of the decontamination area shields.
- 4. Any other operation that has credible potential for high worker or public exposure.

For the OS197L, approved written procedures shall be developed and followed that address normal, off-normal, and accident conditions. Specifically, these procedures shall address the impact on plant operations due to potentially-increased radiation levels from the unshielded loaded OS197L. These may include operator actions required by 10 CFR Part 50 TSs, security guard actions, control room habitability, and response to alarms set off by the loaded OS197L.

(continued)

Remote operations and appropriate ALARA practices shall be used due to very high dose rates during movement of the loaded OS197L TC from fuel pool to the decontamination area and from the decontamination area to the transfer trailer. When remote operations are used, approved written procedures shall be in place to govern these operations. When remote operations are used redundancy of equipment and their quality standards shall be considered and appropriate quality standards for the remote handling equipment shall be assigned.

When using an OS197L TC, the neutron shield (NS) shall be verified to be filled when DSC cavity draining or TC/DSC annulus draining operations are initiated and continually monitored during the first five minutes of the draining evolution to ensure the NS remains filled. The NS shall also be verified to be filled prior to movement of the loaded TC from the decontamination area (before the shield bell is removed). Observation of water level in the expansion tank or some other means can be used to verify compliance to this requirement.

When using a TC with a liquid NS, other than the OS197L TC, if draining the NS is required to meet the plant lifting crane capacity limits, the NS shall be verified to be filled after completion of the lift. If DSC cavity draining or TC/DSC annulus draining operations, as applicable, are initiated after the lift, the NS shall be verified to be filled before these draining operations are initiated and continually monitored during the first five minutes of the draining evolution to ensure the NS remains filled. Observation of water level in the expansion tank or some other means can be used to verify compliance to this requirement.

b) All DSC closure welds except those subjected to full volumetric inspection shall be dye penetrant tested in accordance with the requirements of the ASME Boiler and Pressure Vessel Code Section III, Division 1, Article NB-5000. The liquid penetrant test acceptance standards shall be those described in Subsection NB-5350 of the Code.

This criteria is applicable to all DSCs. The welds include inner and outer top and bottom covers, and vent and siphon port covers.

If the liquid penetrant test indicates that the weld is unacceptable:

- 1. The weld shall be repaired in accordance with approved ASME procedures, and
- 2. The new weld shall be re-examined in accordance with this specification.
- c) Following completion of the seal weld of the DSC inner top cover plate/top shield plug assembly, (including vent and siphon port cover) this weld shall be leak tested with a helium leak detection device. The leak testing is performed to the criteria as listed below:

(continued)

DSC Model	Leak Test Criterion
24P, 52B	≤1x10 ^{-₄} atm.cm ³ /sec
61BT, 32PT,	≤1x10 ⁻⁷ Ref.cm³/sec
24PHB, 24PTH,	
61BTH, 32PTH1,	
69BTH, or 37PTH	

If the leakage rate of the inner seal weld exceeds the specified criterion, check and repair (a) the inner seal welds (b) the inner top cover and port covers for any surface indications resulting in leakage.

d) Following placement of each loaded TC/DSC into the cask decontamination area but prior to seal weld of the DSC inner top cover plate/top shield plug assembly to DSC shell, the DSC smearable surface contamination levels on the outer top 1 foot surface of the DSC shall be less than 2,200 dpm/100 cm² from beta and gamma sources, and less than 220 dpm/100 cm² from alpha sources.

If the required limits are not met, any available commercial decontamination technique may be used on the entire length of the DSC outer surface to reduce the DSC surface contamination levels to below the required limits. If contamination levels are still not met, remove the fuel assemblies from the DSC and put them back in the fuel pool, remove the DSC from the TC and decontaminate as necessary. Insert the clean DSC back in the TC. Check and replace the TC/DSC annulus seal if needed and repeat the canister loading process.

e) The TC total dose rate shall be less than or equal to the value specified below for the various DSCs. The dose rates should be measured as soon as possible after the TC is removed from the spent fuel pool when in the configuration defined below but before the TC is downended on the transfer trailer to be transferred to the ISFSI.

DSC Model	TC, Axial Surface Dose	TC, Radial Surface Dose		
	Rate Limit (mrem/hour)	Rate Limit (mrem/hour)		
24P	600	600		
52B	600	600		
61PT	800	1200		
32BT	900	1000		
24PHB	1200	1200		
24PTH	900	1500*		
61BTH	2200	1350		
32 PTH1	800	650		
69BTH	2050	700		
37PTH	800	650		

Dose Rate Limits for the TC (except OS197L TC)

(continued)

Dose Rate Limits for the OS197L TC

DSC Model	TC, Axial Surface Dose Rate Limit (mrem/hour)	TC, Radial Decontamination Area Surface Dose Rate Limit (mrem/hour)
61BT	800	70
32PT	900	70

The following configuration shall be employed for all TC axial dose rate measurements:

- Neutron shielding material present in the TC neutron shield cavity
- TC/DSC annulus filled with water and water level in the annulus is at least up to the top of the fuel assembly level
- Bulk water removed from the DSC cavity. For the 24PHB DSC only, the DSC cavity is filled with water such that the fuel assemblies are submerged.
- DSC shield plug installed
- DSC inner top cover plate installed
- Temporary shielding present above the inner top cover plate minimum effective equivalent to 3" NS-3 and 1" steel combined

The following locations shall be employed for all TC axial dose rate measurements:

- Five locations are chosen within a radius of 10 to 25 inches (diameter of 20 to 50 inches) around the DSC centerline on the top surface of the temporary shielding (as described earlier).
- None of these measurements shall exceed the specified dose rate limits.

The following configuration shall be employed for all TC radial dose rate measurements:

- Neutron shielding material present in the TC neutron shield cavity
- TC/DSC annulus water drained
- DSC cavity vacuum drying is complete
- DSC outer top cover plate welding completed
- TC top lid installed
- TC is in a vertical position

In addition to the configuration above, the decontamination area shielding is installed in the radial direction with a nominal thickness of 6 inches of steel only for the OS197L TC.

The following locations shall be employed for all TC radial dose rate measurements:

- Eight approximately equally spaced locations around the radial surface of the cask at an axial location corresponding to within approximately 24" of the center of the TC.
- For the OS197L TC only, dose rate measurements are taken on the surface of the decontamination area shielding.
- None of these measurements shall exceed the specified dose rate limits.

(continued)

The TC dose rate limits are specified to maintain dose rates as-low-as-reasonablyachievable during DSC TRANSFER OPERATIONS. Additional temporary shielding can be employed before and/or after dose rate measurements to further reduce dose rates. These dose rate limits are based on the shielding analysis for the various DSCs included in the UFSAR Chapter 7 and Appendix J, Appendix K, Appendix M, Appendix N, Appendix P, Appendix T, Appendix U, Appendix W, Appendix Y and Appendix Z with some added margin for uncertainty.

If the measured dose rates exceed above values, place temporary shielding around the affected areas of the TC and review plant records of the fuel assemblies which have been placed in the DSC to ensure that they conform to the fuel specification of Technical Specification 2.1 for the applicable DSCs. Submit a letter report to the NRC within 30 days summarizing actions taken and the results of the surveillance, investigation and findings. The report must be submitted using instructions in 10 CFR 72.4 with a copy sent to the administrator of the appropriate NRC regional office.

5.2.5 HSM or HSM-H Thermal Monitoring Program

This program provides guidance for temperature measurements that are used to monitor the thermal performance of each HSM.

Note: Only one of the two alternate surveillance activities listed below (5.2.5a or 5.2.5b) shall be performed for monitoring the HSM or HSM-H thermal performance.

a) Daily Visual Inspection of the HSM or HSM-H Air Inlets and Outlets (Front Wall and Roof Bird Screens)

A daily visual surveillance shall be conducted of the exterior of the air inlets and outlets to ensure that HSM air vents are not blocked for periods longer than assumed in the safety analysis.

In addition, a visual inspection shall be performed to ensure that no materials accumulate between the modules (only applicable for HSM designs with gap between adjacent modules) that could block the air flow.

If the surveillance shows blockage of air vents (any blockage of the outlet vents or more than 50% of the inlet vents), they shall be cleared. If the bird screen is damaged, it shall be replaced.

(continued)

b) Daily HSM or HSM-H Temperature Measurement

Verify the thermal performance of each HSM or HSM-H via a direct temperature measurement on a daily basis. The temperature measurement could be any parameter such as (1) a direct measurement of the HSM or HSM-H temperatures, (2) a direct measurement of the DSC temperatures, (3) a comparison of the inlet and outlet temperature difference to predicted temperature differences for each individual HSM or HSM-H, or (4) other means that would identify and allow for the correction of off-normal thermal conditions that could lead to exceeding the concrete and fuel clad temperature criteria. If air temperatures are measured, they must be measured in such a manner as to obtain representative values of inlet and outlet air temperatures. Also, due to the proximity of adjacent HSM or HSM-H modules, care must be exercised to ensure that measured air temperatures reflect only the thermal performance of an individual module, and not the combined performance of adjacent modules.

If the temperature measurement shows a significant unexplained difference, so as to indicate the approach to the concrete material or fuel clad temperature criteria, take appropriate action to determine the cause and return the canister to normal operation. If the measurement or other evidence suggests that the concrete accident temperature criteria (350 °F for HSM or the elevated temperature used in Section 5.5 to perform concrete testing for HSM-H) has been exceeded for more than 24 hours, the licensee can provide analysis results and/or test results in accordance with ACI-349, appendix A.4.3, demonstrating that the structural strength of the HSM or HSM-H has an adequate margin of safety. Take additional appropriate actions if necessary based on the results of the evaluation above.

The temperature measurement program should be of sufficient scope to provide the licensee with a positive means to identify conditions which threaten to approach temperature criteria for proper HSM or HSM-H operation and allow for the correction of off-normal thermal conditions that could lead to exceeding the concrete and fuel clad temperature criteria.

5.2.6 Hydrogen Gas Monitoring for 24P, 52B, 24PHB, 61BT, 32PT, 24PTH, 61BTH, 32PTH1, 69BTH, and 37PTH DSCs

For the 24P, 52B, 24PHB, 61BT, 32PT, 24PTH, 61BTH, 32PTH1, 69BTH and 37PTH DSCs, while welding the inner top cover plate during LOADING OPERATIONS, and while cutting the outer or inner top cover plates during UNLOADING OPERATIONS, hydrogen monitoring of the space under the shield plug in the DSC cavity is required, to ensure that the combustible mixture concentration remains below the flammability limit of 4%.

5.3.1 TC/DSC Lifting/Handling Height Limits

The requirements of 10 CFR Part 72 apply to TC/DSC lifting/handling height limits outside the FUEL BUILDING. The requirements of 10 CFR Part 50 apply to TC/DSC lifting/handling height limits inside the FUEL BUILDING.

A. TC/DSC Lifting/Handling Height at Low Temperature and Location

Confirm the basket temperature and ambient temperature before the TRANSFER OPERATIONS of the loaded TC/DSC.

The lifting/handling height of a loaded TC/DSC, is limited as a function of location and low temperature as follows:

- No lifts or handling of the TC/DSC at any height are permissible at DSC basket temperatures below -20°F inside the FUEL BUILDING.
- The maximum lift height of the TC/DSC shall be 80 inches if the basket temperature is below 0°F but higher than -20°F inside the FUEL BUILDING.
- No lift height restriction is imposed on the TC/DSC if the basket temperature is higher than 0°F inside the FUEL BUILDING and a special lifting device that has at least twice the normal stress design factor for handling heavy loads, or a single failure proof handling system is used. If the special lifting device or single failure proof handling system is not used, measures shall be taken such that the drop g loads do not exceed those analyzed for the TC/DSC.
- When handling a loaded TC/DSC at a height greater than 80 inches outside the FUEL BUILDING, a special lifting device that has at least twice the normal stress design factor for handling heavy loads, or a single failure proof handling system shall be used and the basket temperature may not be lower than 0°F.

The requirements of 10 CFR Part 72 apply when the TC/DSC is in horizontal orientation on the transfer trailer. The requirements of 10 CFR Part 50 apply when the TC/DSC is being lifted/handled using the cask handling crane/hoist. (This distinction is valid only with respect to lifting/handling height limits.) If calculation or measurement of the basket temperature is unavailable, then the ambient temperature may be conservatively used.

B. TC/DSC TRANSFER OPERATIONS at High Ambient Temperatures

- The ambient temperature for TRANSFER OPERATIONS of a loaded TC/DSC (24P, 52B, 61BT, 32PT, 24PHB, 24PTH, 61BTH, 69BTH, or 37PTH DSC) shall not be greater than 100°F (when the cask is exposed to direct insolation). The corresponding ambient temperature limit for a TC with a loaded 32PTH1 DSC is 106°F.
- For TRANSFER OPERATIONS when ambient temperature exceeds 100°F (106°F for 32PTH1 TC/DSC), a solar shield shall be used to provide protection against direct solar radiation.

(continued)

5.3 Cask Transfer Controls

- This ambient temperature limit applies to all TRANSFER OPERATIONS of a loaded TC/DSC outside the FUEL BUILDING.
- Confirm what the ambient temperature is before transfer of the TC/DSC and every 2 hours when the loaded cask is exposed to direct insolation during TRANSFER OPERATIONS. If the ambient temperature before the transfer operation is greater than 100 °F or if the ambient temperature is expected to exceed the above limits provide an appropriate solar shield.

5.3.2 Cask Drop

Inspection Requirement

The DSC will be inspected for damage after any TC drop of fifteen inches or greater.

Background

TC/DSC handling and loading activities are controlled under the 10 CFR Part 50 license until a loaded TC/DSC is placed on the transfer trailer, at which time fuel handling activities are controlled under the 10 CFR Part 72 license. Although the probability of dropping a loaded TC/DSC while en route from the Fuel Handling Building to the ISFSI is small, the potential exists to drop the TC 15 inches or more.

Safety Analysis

The analysis of bounding drop scenarios shows that the TC will maintain the structural integrity of the DSC confinement boundary from an analyzed side drop height of 80 inches. The 80-inch drop height envelopes the maximum vertical height of the TC when secured to the transfer trailer while en route to the ISFSI.

Although analyses performed for TC drop accidents at various orientations indicate much greater resistance to damage, requiring the inspection of the DSC after a side drop of 15 inches or greater ensures that:

- 1. The DSC will continue to provide confinement.
- 2. The TC can continue to perform its design function regarding DSC transfer and shielding.

5.3.3 TC Alignment with HSM or HSM-H

The TC shall be aligned with respect to the HSM or HSM-H such that the longitudinal centerline of the DSC in the TC is within $\pm \frac{1}{8}$ inch of its true position when the TC is docked with the HSM front access opening. This specification is applicable during the insertion and retrieval of all DSCs from the TC to HSM and back.

If the alignment tolerance is exceeded, the following actions should be taken:

a. Confirm that the transfer systems is properly configured,

b. Check and repair the alignment equipment, or

c. Confirm the locations of the alignment targets on the TC and HSM.

5.3.4 Trailer Shielding Drop onto OS197L TC

The DSC and the OS197L TC and the trailer shielding shall be inspected for damage and evaluated for further use after the accident drop of the trailer shielding onto the OS197L TC.

The lifting of outer top trailer shielding is restricted such that the bottommost part of the body of the outer top trailer shielding is less than 4 inches above the inner top trailer shielding.

5.4 HSM or HSM-H Dose Rate Evaluation Program

- 5.4.1 The licensee shall establish a set of HSM dose rate limits which are to be applied to DSCs used at the site to ensure the limits of 10 CFR 20 and 10 CFR 72.104 are met. Limits shall establish peak dose rates at the following three locations:
 - 1) HSM front bird screen,
 - 2) Outside HSM door, and
 - 3) End shield wall exterior.
- 5.4.2 Notwithstanding the limits established in 5.4.1, the dose rate limits listed below for the Standardized HSM and HSM-H shall be met when a specific DSC model loaded with fuel is stored within a module:

DSC Model	HSM Model	Dose Rate Limit HSM Front Bird Screen (mrem/hour)	Dose Rate Limit Outside HSM Door (mrem/hour)	Dose Rate Limit End Shield Wall Exterior (mrem/hour)
24P	Standardized HSM	350	70	55
52B	Standardized HSM	350	70	55
61BT	Standardized HSM	1300	200	15
32PT	Standardized HSM	850	200	6
24PHB	Standardized HSM	525	20	275
24PTH*	Standardized HSM	525	70	300
61BTH	Standardized HSM	200	100	15
24PTH	HSM-H	1300	2	5
61BTH	HSM-H	650	2	4
32PTH1	HSM-H	525	2	2
69BTH	HSM-H	250	2	4
37PTH	HSM-H	525	2	4

Dose Rate Limits for the Standardized HSM and HSM-H

* Applicable only to 24PTH-S-LC.

The number and locations of the dose rate measurements on the surface of front bird screen of the HSM are indicated below:

- Two dose rate measurements are taken for each front bird screen for the HSM-H. These dose rate measurements are approximately within 24 inches measured from the surface of the ISFSI pad and are approximately 6 inches from the centerline of each front bird screen.
- For the standardized HSM models, three dose rates are taken on the surface of each front bird screen. The central dose location shall be at the approximate centerline of the front bird screen. The other two dose locations are spaced at approximately equal distance on either side of the central dose location. All dose locations shall be at least 24 inches above the pad surface.
- None of these measurements shall exceed the specified dose rate limits.

(continued)

The number and locations of the dose rate measurements on the outside surface of the HSM door are indicated below:

- Five locations within a radius of approximately 25 inches (diameter of approximately 50 inches) around the door centerline.
- None of these measurements shall exceed the specified dose rate limits.

The number and locations of the dose rate measurements on the exterior surface of the HSM end shield wall are indicated below:

- Five dose rate measurements are taken for every end shield wall. The central dose location shall be approximately 10 feet from the HSM front surface and at an elevation corresponding to the approximate door centerline. The remaining four dose locations shall be within a radius of approximately 25 inches (diameter of approximately 50 inches) around the central dose location.
- None of these measurements shall exceed the specified dose rate limits.
- 5.4.3 If the measured dose rates do not meet the limits of 5.4.1 or 5.4.2, whichever are lower, the licensee shall take the following actions until compliance is achieved:
 - a. Ensure proper installation of the HSM door and check for any streaming around the door, AND
 - b. Administratively verify that the spent fuel assemblies loaded in the DSC meet Section 2.0 limits, AND
 - c. Ensure that the DSC is properly positioned on the support rails. If compliance is not achieved then proceed to d and e.
 - d. Perform an analysis to determine that placement of the as-loaded DSC at the ISFSI will not cause the ISFSI to exceed the radiation exposure limits of 10 CFR Part 20 and 10 CFR 72.104(a) and ALARA and/or provide additional temporary or permanent shielding to assure exposure limits are not exceeded, and
 - e. Notify the U.S. Nuclear Regulatory Commission (Director of the Office of Nuclear Material Safety and Safeguards) within 30 days, summarizing the actions taken and the results of the surveillance, investigation and findings. This report must be submitted using instructions in 10 CFR 72.4 with a copy sent to the administrator of the appropriate NRC regional office

HSM-H concrete shall be tested during the fabrication process for elevated temperatures to verify that there are no significant signs of spalling or cracking and that the concrete compressive strength is greater than that assumed in the structural analysis. Tests shall be performed at or above the calculated peak temperature and for a period no less than the 40 hour duration of HSM-H blocked vent transient for components exceeding 350 °F.

HSM concrete temperature testing shall be performed whenever there is a significant change in the cement, aggregates or water-cement ratio of the concrete mix design.

The use of HSM-H thermal performance methodology is allowed for evaluating HSM-H configuration changes except for changes to the HSM-H cavity height, cavity width, elevation and cross-sectional areas of the HSM-M air inlet/outlet vents, total outside height, length and width of HSM-H if these changes exceed 8% of their nominal design values shown on the approved CoC Amendment Number 8 drawings.

Table 1-1a					
PWR Fuel Specifications for Fuel to be Stored in the					
Standardized NUHOMS [®] -24P DSC					

PHYSICAL PARAMETERS					
Fuel	Only intact, unconsolidated PWR fuel assemblies (with or without BPRAs) with the following requirements:				
Physical Parameters (without BPRAs)					
Maximum Assembly Length (unirradiated)	165.75 in (standard cavity) 171.71 in (long cavity)				
Nominal Cross-Sectional Envelope	8.536 in				
Maximum Assembly Weight	1682 lbs				
Number of Assemblies per DSC	≤ 24 intact assemblies				
Fuel Cladding	Zircaloy-clad fuel with no known or suspected gross cladding breaches				
Physical Parameters (with BPRAs)					
Maximum Assembly + BPRA Length (unirra	diated)				
With Burnup > 32,000 and ≤ 45,000 MWd/MTU	171.71 in (long cavity)				
With Burnup ≤ 32,000 MWd/MTU	171.96 in (long cavity)				
Nominal Cross-Sectional Envelope	8.536 in				
Maximum Assembly + BPRA Weight	1682 lbs				
Number of Assemblies per DSC	≤ 24 intact assemblies				
Number of BPRAs per DSC	≤ 24 BPRAs				
Fuel Cladding	Zircaloy-clad fuel with no known or suspected gross cladding breaches				
NUCLEAR PARAMETERS	<u> </u>				
Maximum Planar Average Initial Fuel Enrichment	≤ 4.0 wt. % U-235 Soluble boron requirements per Figure 1-1				
Assembly Average Burnup, Initial Enrichment, and Cooling Time	Per Table 1-2a (without BPRAs) or Per Table 1- 2c (with BPRAs)				
BPRA Cooling Time (Minimum)	5 years for B&W Designs 10 years for Westinghouse Designs				
ALTERNATE NUCLEAR PARAMETERS					
Maximum Planar Average Initial Fuel Enrichment	≤ 4.0 wt. % U-235 Soluble boron requirements per Figure 1-1				
Assembly Average Burnup	≤ 40,000 MWd/MTU				
Decay Heat (Fuel + BPRA)	≤ 1.0 kW per assembly				
Neutron Fuel Source	≤ 2.23 x 10 ⁸ n/sec per assy with spectrum bounded by that in Chapter 7 of UFSAR				
Gamma (Fuel + BPRA) Source	\leq 7.45 x 10 ¹⁵ g/sec per assy with spectrum bounded by that in Chapter 7 of UFSAR				

Table 1-1b
BWR Fuel Specifications for Fuel to be Stored in the
Standardized NUHOMS [®] -52B DSC

PHYSICAL PARAMETERS					
Fuel	Only intact, unconsolidated BWR fuel assemblies with the following requirements:				
Physical Parameters					
Maximum Assembly Length (unirradiated)	176.16 in				
Nominal Cross-Sectional Envelope*	5.454 in				
Maximum Assembly Weight	725 lbs				
Number of Assemblies per DSC	≤ 52 intact channeled assemblies				
Fuel Cladding	Zircaloy-clad fuel with no known or suspected gross cladding breaches				
NUCLEAR PARAMETERS	· · · · ·				
Maximum Lattice Average Initial	≤ 4.0 wt. % U-235				
Enrichment					
Assembly Average Burnup, Initial	Per Table 1-2b				
Enrichment, and Cooling Time					
ALTERNATE NUCLEAR PARAMETERS					
Maximum Lattice Average Initial Enrichment	≤ 4.0 wt. % U-235				
Assembly Average Burnup	≤ 35,000 MWd/MTU				
Decay Heat	≤ 0.37 kW per assembly				
Neutron Source	\leq 1.01 x 10 ⁸ n/sec per assy with spectrum bounded by that in Chapter 7 of UFSAR				
Gamma Source	\leq 2.63 x 10 ¹⁵ g/sec per assy with spectrum bounded by that in Chapter 7 of UFSAR				

*Cross-Sectional Envelope is the outside dimension of the fuel channel.

Table 1-1c				
BWR Fuel Specifications for Fuel to be Stored in the				
Standardized NUHOMS [®] -61BT DSC				

PHYSICAL PARAMETERS						
Fuel Design	7x7, 8x8, 9x9, or 10x10 BWR fuel assemblies manufactured					
	by General Electric or equivalent reload fuel that are					
	enveloped by the fuel assembly design characteristics listed					
	in Table 1-1d.					
Cladding Material	Zircaloy					
Fuel Damage	Cladding damage in excess of pinhole leaks or hairline					
J. J	cracks is not authorized to be stored as "Intact BWR Fuel."					
Channels	Fuel may be stored with or without fuel channels.					
Maximum Assembly Length	176.2 in					
Nominal Assembly Width (excluding channels)	5.44 in					
Maximum Assembly Weight	705 lbs					
RADIOLOGICAL PARAMETERS ⁽³⁾ : No interpolation of R	adiological Parameters is permitted between Groups.					
Group 1	· · · ·					
Maximum Burnup	27,000 MWd/MTU					
Minimum Cooling Time	5-years ⁽²⁾					
Maximum Lattice Average Initial Enrichment	See Minimum Boron Loading below.					
Minimum Initial Assembly Average Enrichment	2.0 wt. % U-235					
Maximum Initial Uranium Content	198 kg/assembly					
Maximum Decay Heat	300 W/assembly ⁽¹⁾					
Group 2						
Maximum Burnup	35,000 MWd/MTU					
Minimum Cooling Time	8-years ⁽²⁾					
Maximum Lattice Average Initial Enrichment	See Minimum Boron Loading below.					
Minimum Initial Assembly Average Enrichment	2.65 wt. % U-235					
Maximum Initial Uranium Content	198 kg/assembly					
Maximum Decay Heat	300 W/assembly ⁽¹⁾					
Group 3	Soo Wassembly					
Maximum Burnup	37,200 MWd/MTU					
Minimum Cooling Time	6.5-years ⁽²⁾					
Maximum Lattice Average Initial Enrichment	See Minimum Boron Loading below.					
Minimum Initial Assembly Average Enrichment	3.38 wt. % U-235					
Maximum Initial Uranium Content	198 kg/assembly					
Maximum Decay Heat	300 W/assembly ⁽¹⁾					
Group 4	Sou wassembly					
Maximum Burnup	40,000 MWd/MTU					
Minimum Cooling Time	10-years ⁽²⁾					
Maximum Lattice Average Initial Enrichment	See Minimum Boron Loading below.					
Minimum Initial Assembly Average Enrichment	3.4 wt. % U-235					
Maximum Initial Uranium Content	198 kg/assembly					
Maximum Decay Heat	300 W/assembly ⁽¹⁾					
MINIMUM BORON LOADING	SUU W/assembly					
Maximum Lattice Average Enrichment (wt. % U-235)	Minimum D40 On the tim Deiner Distant (Destated Tarte (4))					
	Minimum B10 Content in Poison Plates (Basket Type ⁽⁴⁾)					
4.4	Type C Basket					
4.1	Type B Basket					
3.7 ALTERNATE RADIOLOGICAL RARAMETERS:	Type A Basket					
ALTERNATE RADIOLOGICAL PARAMETERS: Maximum Initial Enrichment:	See Minimum Peren Leading shave					
	See Minimum Boron Loading above					
Fuel Burnup, Initial Assembly Average Enrichment, and Cooling Time: ⁽²⁾	See Table 1-2q, except that for a 61BT DSC contained in an					
Maximum Initial Uranium Content:	OS197L TC, see Tables 1-6a and 1-6b, and Figure 1-29.					
	198 kg/assembly					
Maximum Decay Heat:	300 W/assembly ⁽¹⁾					

(1) For FANP9 9x9-2 fuel assemblies, the maximum decay heat is limited to 0.21 kW/assembly.

(2) For fuel assemblies containing BLEU fuel pellets, add 3.0 years additional cooling time to the minimum values shown in this table.

(3)When the OS197L TC is employed, apply the requirements of Table 1-6a, Table 1-6b and Figure 1-29.

(4) Basket Type is specified in Table 1-1k.

Standardized NUHOMS® Technical Specifications Renewed Amendment No. 13, Revision No. 1

Table 1-1dBWR Fuel Assembly Design Characteristics (1) (2)for the NUHOMS®-61BT DSC

Transnuclear, ID	7x7- 49/0 ⁽⁵⁾	8x8- 63/1 ⁽⁵⁾	8x8- 62/2 ⁽⁵⁾	8x8-60/4 ⁽⁵⁾	8x8- 60/1 ⁽⁵⁾	9x9- 74/2	10x10- 92/2	7x7- 49/0 ⁽⁵⁾	7x7- 48/1Z ⁽⁵⁾	8x8- 60/4Z ⁽⁵⁾	9x9- 79/2
GE Designations	GE1 GE2 GE3	GE4	GE-5 GE-Pres GE-Barrier GE8 Type I	GE8 Type II	GE9 GE10	GE11 GE13	GE12	ENC III-A	ENC III ⁽³⁾	ENC Va & ENC Vb	FANP9 9x9-2
Maximum Length (in) (Unirradiated)	176.2	176.2	176.2	176.2	176.2	176.2	176.2	176.2	176.2	176.2	176.2
Nominal Width (in) (excluding channels)	5.44	5.44	5.44	5.44	5.44	5.44	5.44	5.44	5.44	5.44	5.44
Fissile Material	UO ₂	UO ₂	UO ₂	UO ₂	UO2	UO ₂	UO ₂	UO ₂	UO ₂	UO ₂	UO ₂
Number of Fuel Rods	49	63	62	60	60	66 – Full 8 – Partial	78 – Full 14 – Partial	49	48	60	79
Number of Water Holes	0	1	2	4	1	2	2	0	1 ⁽⁴⁾	4(4)	2

(1) Any fuel channel average thickness up to 0.120 inch is acceptable on any of the fuel designs.

(2) Maximum fuel assembly weight with channel is 705 lb.

(3) Includes ENC III-E and ENC III-F.

(4) Solid Zirconium alloy rods instead of water holes.

(5) May be stored as damaged fuel.

Table 1-1ePWR Fuel Specifications for Fuel to be Stored in the NUHOMS®-32PT DSC

T	
PHYSICAL PARAMETERS: Fuel Assembly Class	Only intact (including reconstituted) B&W 15x15, WE 17x17, CE 15x15, WE 15x15, CE 14x14 and WE 14x14 class PWR assemblies or equivalent reload fuel manufactured by other vendors that are enveloped by the fuel assembly design characteristics listed in Table 1-1f.
Reconstituted Fuel Assemblies	≤ 32 assemblies per DSC with up to 56 stainless steel rods per assembly or unlimited number of lower enrichment UO₂ rods per assembly.
Fuel Cladding Material	Zircaloy
Fuel Damage	Cladding damage in excess of pinhole leaks or hairline cracks is not authorized to be stored as "Intact PWR Fuel."
Control Components (CCs)	 Up to 32 CCs are authorized for storage in the 32PT DSC. Authorized CCs include Burnable Poison Rod Assemblies (BPRAs), Thimble Plug Assemblies (TPAs), Control Rod Assemblies (CRAs), Rod Cluster Control Assemblies (RCCAs), Axial Power Shaping Rod Assembly (APSRAs), Orifice Rod Assemblies (ORAs), Vibration Suppression Inserts (VSIs), Neutron Source Assemblies (NSAs) and Neutron Sources. Non-fuel hardware that are positioned within the fuel assembly after the fuel assembly is discharged from the core such as Guide Tube or Instrument Tube Tie Rods or Anchors, Guide Tube Inserts, BPRA Spacer Plates or devices that are positioned and operated within the fuel assembly during reactor operation such as those listed above are also considered as CCs. Design basis thermal and radiological characteristics for the CCs are listed in Table 1-1ee.
Maximum Assembly plus CC Weight	-1365 lbs for 32PT-S100 & 32PT-L100 System -1682 lbs for 32PT-S125 & 32PT-L125 System
CC Damage	CCs with cladding failures are acceptable for loading.
THERMAL/RADIOLOGICAL PARAMETERS: Fuel Burnup and Cooling Time with or without CCs ¹	Per Table 1-2d, Table 1-2e, Table 1-2f, Table 1-2g, Table 1-2h, and Figure 1-2 or Figure 1-3 or Figure 1-4, except that for a 32PT DSC contained in an OS197L TC, see Tables 1-6c and 1-6d, and Figure 1-30.
Maximum Planar Average Initial Fuel Enrichment	Per Table 1-1g, 1-1g1, and Figure 1-5 or Figure 1-6 or Figure 1-7, as applicable.

¹ BPRAs are considered as being representative of all CCs.

Table 1-1f
PWR Fuel Assembly Design Characteristics for the NUHOMS [®] -32PT DSC

Assembly Class	B&W 15x15	WE 17x17	CE 15x15 ^{(3), (4)}	WE 15x15	CE 14x14	WE 14x14
DSC Configuration		Maxi	mum Unirrad	diated Lengt	h (in)	•
32PT-S100/32PT-S125	165.75 ⁽¹⁾	165.75 ⁽¹⁾	165.75	165.75 ⁽¹⁾	165.75 ⁽¹⁾	165.75 ⁽¹⁾
32PT-L100/32PT-L125	171.71 ⁽¹⁾	171.71 ⁽¹⁾	171.71	171.71 ⁽¹⁾	171.71 ⁽¹⁾	171.71 ⁽¹⁾
Fissile Material	UO2	UO ₂	UO ₂	UO ₂	UO ₂	UO ₂
Maximum MTU/assembly ⁽²⁾	0.475	0.475	0.475	0.475	0.475	0.475
Maximum Number of Fuel Rods	208	264	216	204	176	179
Maximum Number of Guide/ Instrument Tubes	17	25	9	21	5	17

(1) Maximum Assembly + CC Length (unirradiated)(2) The maximum MTU/assembly is based on the shielding analysis. The listed value is higher than the actual.

(3) CE 15x15 assemblies with stainless steel plugging clusters installed are acceptable.

(4) Control Components that extend into the active fuel region are not authorized for storage with CE 15x15 class assemblies.

Table 1-1g

Maximum Planar Average Initial Enrichment and Required Number of PRAs and Minimum Soluble Boron Loading (NUHOMS[®]-32PT DSC)

	Soluble		PRAs	4 PRAs	8 PRAs	16 PRAs
	Boron	<u>(1yp</u>	be A)	(Type B)	(Type C)	(Type D)
Assembly Class	Loading		n Plate	Poison Plate	Poison Plate	Poison Plate
	(ppm)	16	uration 24	Configuration 24	Configuration 24	Configuration 24
WE 17x17 Fuel Assembly						
(with and without CC)	2500	3.40	3.40	4.00	4.50	5.00
B&W 15x15 Mark B Fuel						
Assembly (with and without	2500	3.30	3.30	3.90	NE	5.00
CC)	2000	0.00	0.00	0.00		0.00
WE 15x15 Fuel Assembly						
(without CC)	2500	3.40	3.40	4.00	4.60	5.00
WE 15x15 Fuel Assembly						
(with CC)	2500	3.40	3.40	4.00	4.55	5.00
	1800	3.35	3.50	4.00	4.35	NE
	2000	3.50	3.70	4.20	4.55	NE
CE 14x14 Fuel Assembly	2100	3.60	3.80	4.30	4.70	NE
(without CC)	2200	3.70	3.90	4.40	4.80	NE
(without CC)	2300	3.75	4.00	4.50	4.90	NE
	2400	3.80	4.05	4.60	5.00	NE
	2500	3.90	4.15	4.70		NE
	1800	3.30	3.45	3.90	4.25	NE
	2000	3.45	3.65	4.10	4.50	NE
CE 14x14 Fuel Assembly	2100	3.55	3.75	4.20	4.60	NE
(with CC)	2200	3.60	3.80	4.30	4.70	NE
(with 66)	2300	3.65	3.90	4.40	4.80	NE
	2400	3.80	4.00	4.50	4.90	NE
	2500	3.90	4.05	4.60	5.00	NE
	1800	3.55	3.75	4.40	NE	NE
	2000	3.75	3.90	4.60	NE	NE
WE 14x14 Fuel Assembly	2100	3.80	4.00	4.75	NE	NE
(with and without CC)	2200	3.90	4.10	4.85	NE	NE
(with and without 00)	2300	4.00	4.20	5.00	NE	NE
	2400	4.10	4.30		NE	NE
	2500	4.15	4.40		NE	NE
CE 15x15 Fuel Assembly	1800	3.00	3.15	NE	NE	NE
	2000	3.15	3.30	NE	NE	NE
	2100	3.20	3.40	NE	NE	NE
	2200	3.30	3.50	NE	NE	NE
	2300	3.35	3.55	NE	NE	NE
	2400	3.40	3.60	NE	NE	NE
NOTES	2500	3.50	3.70	NE	NE	NE

NOTES:

PRAs = Poison Rod Assemblies. Figure 1-5, Figure 1-6 and Figure 1-7 provide the required PRA configurations. CC = Control Components. CCs shall not be stored in basket location where a PRA is required.

Type = Basket Types are specified in Table 1-1h.

NE = Not Evaluated.

Table 1-1g1

Maximum Planar Average Initial Enrichment for Type A1 and A2 Basket and Minimum Soluble Boron Loading (NUHOMS[®]-32PT DSC)

Assembly Class and Type	Soluble Boron	0 PRAs (Type A1 and A2) 24 Poison Plate Configuration	
	Loading	Type A1 (0.015g	Type A2 (0.020g
	(ppm)	B10/cm ²)	B10/cm ²)
WE 17x17 Fuel Assembly (without CC)	2500	4.05	4.20
WE 17x17 Fuel Assembly (with CC)	2500	4.00	4.15
B&W 15x15 Mark B Fuel Assembly (without CC)	2500	4.00	4.10
B&W 15x15 Mark B Fuel Assembly (with CC)	2500	3.90	4.10
WE 15x15 Fuel Assembly (without CC)	2500	4.10	4.20
WE 15x15 Fuel Assembly (with CC)	2500	4.10	4.20
• • • •	1800	3.95	4.10
CE 14/14 Evel Assembly (without CC)	2100	4.30	4.45
CE 14x14 Fuel Assembly (without CC)	2300	4.50	4.70
	2500	4.70	4.90
	1800	3.80	3.95
CE 14x14 Eucl Accomply (with CC)	2100	4.10	4.25
CE 14x14 Fuel Assembly (with CC)	2300	4.30	4.50
	2500	4.50	4.70
	1800	4.20	4.20
WE 14x14 Fuel Assembly (without CC)	2100	4.55	4.60
WE 14X14 Fuel Assembly (without CC)	2300	4.80	5.00
	2500	5.00	5.00
	1800	4.20	4.35
WE 14x14 Eucl Accomply (with CC)	2100	4.60	4.75
WE 14x14 Fuel Assembly (with CC)	2300	4.80	5.00
	2500	5.00	5.00
	1800	3.50	3.60
CE 15x15 Fuel Assembly	2100	3.75	3.90
	2300	3.95	4.10
	2500	4.10	4.30

Notes:

CC = Control Components Type = Basket Types are specified in Table 1-1h

Table 1-1h B10 Specification for the NUHOMS [®] -32PT Poison Plates			
NUHOMS [®] -32PT DSC Basket Type	Number of PRAs	Minimum B10 Areal Density, (grams/cm ²)	
A	0	0.007	
A1	0	0.015	
A2	0	0.020	
В	4	0.007	
С	8	0.007	
D	16	0.007	

Table 1-1i PWR Fuel Specifications for Fuel to be Stored in the Standardized NUHOMS[®]-24PHB DSC

PHYSICAL PARAMETERS	
Fuel Class	Intact or damaged, unconsolidated B&W 15x15 (with or without CCs), intact WE 17x17, intact WE 15x15, intact CE 14x14, and intact WE 14x14 Class PWR fuel assemblies (all without CCs) or equivalent reload fuel manufactured by other
Maximum Number of Reconstituted Assemblies	vendor, with the following requirements: Damaged fuel assemblies beyond the definition contained below are not authorized for storage 4
per DSC with Stainless Steel rods Maximum Number of Stainless Steel Rods per Reconstituted Assembly	10
Maximum Number of Reconstituted Assemblies per DSC with low enriched uranium oxide rods	24
Fuel Damage	Damaged PWR fuel assemblies are assemblies containing missing or partial fuel rods or fuel rods with known or suspected cladding defects greater than hairline cracks or pinhole leaks. The extent of damage in the fuel assembly is to be limited such that a fuel assembly is being able to be handled by normal means. Missing fuel rods are allowed. Damaged fuel assemblies shall also contain top and bottom end fittings or nozzles or tie plates depending on the fuel type.
Control Components	 Up to 24 CCs are authorized for storage in 24PHBL DSCs only. Authorized CCs include Burnable Poison Rod Assemblies (BPRAs), Thimble Plug Assemblies (TPAs), Control Rod Assemblies (CRAs), Rod Cluster Control Assemblies (RCCAs), Axial Power Shaping Rod Assemblies (APSRAs), Orifice Rod Assemblies (ORAs), Vibration Suppression Inserts (VSIs), Neutron Source Assemblies (NSAs), and Neutron Sources. Non-fuel hardware that are positioned within the fuel assembly after the fuel assembly is discharged from the core such as Guide Tube or Instrument Tube Tie Rods or Anchors, Guide Tube Inserts, BPRA Spacer Plates or devices that are positioned and operated within the fuel assembly during reactor operation such as those listed above are also considered as CCs. Design basis thermal and radiological characteristics for the CCs are listed in Table 1-1n⁽¹⁾.
Physical Parameters (without CCs) Maximum Assembly Length (unirradiated, intact assembly with Maximum Burnup ≤ 55 GWd/MTU)	165.785 in (Standard Cavity) 171.23 in (Long Cavity)
Maximum Assembly Length (unirradiated, damaged assembly with Maximum Burnup ≤ 45 GWd/MTU)	165.785 in (Standard Cavity) 171.23 in (Long Cavity)

(continued)

Table 1-1iPWR Fuel Specifications for Fuel to be Stored in the
Standardized NUHOMS®-24PHB DSC

Physical Parameters (without CCs)	
Maximum Assembly Length (unirradiated, damaged assembly with Maximum Burnup > 45 GWd/MTU and \leq 55 GWd/MTU)	164.785 in (Standard Cavity) 170.23 in (Long Cavity)
Physical Parameters (with CCs) Maximum Assembly + CC Length (unirradiated, intact assembly with Maximum Burnup ≤ 55	171.23 in (Long Cavity)
GWd/MTU) Maximum Assembly Length (unirradiated, damaged assembly with Maximum Burnup ≤ 45 GWd/MTU)	171.23 in (Long Cavity)
Maximum Assembly Length (unirradiated, damaged assembly with Maximum Burnup > 45 GWd/MTU and ≤ 55 GWd/MTU).	170.23 in (Long Cavity)
Fuel Cladding	Zirconium alloy clad fuel
Nominal Cross-Sectional Envelope	8.536 in
Number of Intact Assemblies	≤ 24
Number and Location of Damaged Assemblies	Up to 4 damaged fuel assemblies. Balance may be intact fuel assemblies or empty slots depending on the specific heat load zone configuration. Damaged fuel assemblies are to be placed in locations as shown in Figure 1-8 or Figure 1-9. The basket cells which store damaged fuel assemblies are provided with top and bottom end caps.
Maximum Assembly plus CC Weight	1682 lbs.
NUCLEAR PARAMETERS Maximum Planar Average Initial Fuel Enrichment Minimum Boron Loading Maximum Initial Uranium loading per assembly Allowable loading configurations for each 24PHB DSC Burnup, Enrichment, and Minimum Cooling Time	Per Figure 1-10 or Figure 1-10a Per Figure 1-10 or Figure 1-10a 0.490 MTU As specified in Figure 1-8 or Figure 1-9 Table 1-2n for Zone 1 fuel; Table 1-2o for Zone
for Configuration 1 (Figure 1-8) Burnup, Enrichment, and Minimum Cooling Time for Configuration 2 (Figure 1-9)	2 fuel; Table 1-2p for Zone 3 fuel Table 1-2p for Zone 3 fuel
Minimum Cooling Time for CCs Total Decay Heat per DSC Decay Heat Limits for Zone 1, 2 and 3 fuel	5 years 24 kW As specified in Figure 1-8 and Figure 1-9.
(1) Thermal and radialogical characteristics for CCs listed in	

(1) Thermal and radiological characteristics for CCs listed in this table for 24PTH DSC are also applicable to 24PHB DSC.

Table 1-1jBWR Fuel Specification of Damaged Fuel to be Stored in the StandardizedNUHOMS®-61BT DSC

PHYSICAL PARAMETERS:	7x7 9x9 DW/D domogod fiel cocomplice			
Fuel Design:	7x7, 8x8 BWR damaged fuel assemblies manufactured by General Electric or Exxon/ANF or equivalent reload fuel that are enveloped by the Fuel assembly design characteristics listed in Table 1-1d for the 7x7 and 8x8 designs only. Damaged fuel assemblies beyond the definition contained below are not authorized for storage.			
Cladding Material:	Zircaloy			
Fuel Damage:	Damaged BWR fuel assemblies are fuel assemblies containing fuel rods with known or suspected cladding defects greater than hairline cracks or pinhole leaks. Missing cladding and/or crack size in the fuel pins is to be limited such that a fuel pellet is not able to pass through the gap created by the cladding opening during handling and retrievability is assured following Normal/Off- Normal conditions. Damaged fuel shall be stored with Top and Bottom Caps. Damaged fuel may only be stored in the 2x2 compartments of the "Type C" NUHOMS [®] -61BT Canister described in Table 1-1k.			
Channels:	Fuel may be stored with or without fuel channels.			
Maximum Assembly Length (unirradiated)	176.2 in			
Nominal Assembly Width (excluding channels)	5.44 in			
Maximum Assembly Weight	705 lbs			
RADIOLOGICAL PARAMETERS ⁽²⁾ :	No interpolation of Radiological Parameters is permitted between groups.			
Group 1:				
Maximum Burnup:	27,000 MWd/MTU			
Minimum Cooling Time:	5-years ⁽¹⁾			
Maximum Initial Lattice Average Enrichment:	4.0 wt. % U-235			
Maximum Pellet Enrichment:	4.4 wt. % U-235			
Minimum Initial Assembly Average Enrichment:	2.0 wt. % U-235			
Maximum Initial Uranium Content:	198 kg/assembly			
Maximum Decay Heat:	300 W/assembly			
Group 2:				
Maximum Burnup:	35,000 MWd/MTU			
Minimum Cooling Time:	8-years ⁽¹⁾			
Maximum Initial Lattice Average Enrichment:	4.0 wt. % U-235			
Maximum Pellet Enrichment:	4.4 wt. % U-235			
Minimum Initial Assembly Average Enrichment:	2.65 wt. % U-235			
Maximum Initial Uranium Content:	198 kg/assembly			
Maximum Decay Heat:	300 W/assembly			
Group 3:	27 200 MW/d/MTU			
Maximum Burnup:	37,200 MWd/MTU			
Minimum Cooling Time:	6.5-years ⁽¹⁾			
Maximum Initial Lattice Average Enrichment:	4.0 wt. % U-235			
Maximum Pellet Enrichment:	4.4 wt. % U-235			
Minimum Initial Assembly Average Enrichment:	3.38 wt. % U-235			
Maximum Initial Uranium Content:	198 kg/assembly			
Maximum Decay Heat:	300 W/assembly			

Standardized NUHOMS[®] Technical Specifications Renewed Amendment No. 13, Revision No. 1 T-12

Table 1-1jBWR Fuel Specification of Damaged Fuel to be Stored in the StandardizedNUHOMS®-61BT DSC

RADIOLOGICAL PARAMETERS ⁽²⁾ :		
Group 4:		
Maximum Burnup:	40,000 MWd/MTU	
Minimum Cooling Time:	10-years ⁽¹⁾	
Maximum Initial Lattice Average Enrichment:	4.0 wt. % U-235	
Maximum Pellet Enrichment:	4.4 wt. % U-235	
Minimum Initial Assembly Average Enrichment:	3.4 wt. % U-235	
Maximum Initial Uranium Content:	198 kg/assembly	
Maximum Decay Heat:	300 W/assembly	
ALTERNATE RADIOLOGICAL PARAMETERS:		
Maximum Initial Lattice Average Enrichment:	4.0 wt. % U-235	
Fuel Burnup, Initial Assembly Average	See Table 1-2q, except that for a 61BT DSC contained in	
Enrichment, and Cooling Time ⁽¹⁾ :	an OS197L TC, see Tables 1-6a and 1-6b, and Figure 1-29.	
Maximum Pellet Enrichment:	4.4 wt. % U-235	
Maximum Initial Uranium Content:	198 kg/assembly	
Maximum Decay Heat:	300 W/assembly	

(1) For fuel assemblies containing BLEU fuel pellets, add 3.0 years additional cooling time to the minimum values shown in this table.

(2) When the OS197L TC is employed, apply the requirements of Table 1-6a, Table 1-6b and Figure 1-29.

Table 1-1k
B10 Specification for the NUHOMS [®] -61BT Poison Plates

NUHOMS [®] -61BT DSC Basket	Minimum B10 Areal Density, (grams/cm ²)		
Туре	Borated Aluminum or MMC	Boral [®]	
A	0.021	0.025	
В	0.032	0.038	
С	0.040	0.048	

 Table 1-1I

 PWR Fuel Specification for the Fuel to be Stored in the NUHOMS[®]-24PTH DSC

PHYSICAL PARAMETERS:	Intact or damaged or failed unconsolidated B&W 15x15, WE 17x17, CE 15x15, WE 15x15, CE 14x14 and WE
Fuel Class	14x14 class PWR assemblies (with or without control
	components) that are enveloped by the fuel assembly
	design characteristics listed in Table 1-1m. Equivalent reload fuel manufactured by other vendors but
	enveloped by the design characteristics listed in Table
	1-1m is also acceptable. Damaged and/or failed fuel
	assemblies beyond the definition contained below are
	not authorized for storage.
	Damaged PWR fuel assemblies are assemblies
	containing missing or partial fuel rods or fuel rods with
Fuel Damage	known or suspected cladding defects greater than
5	hairline cracks or pinhole leaks. The extent of cladding damage in the fuel rods is to be limited such that a fuel
	assembly needs to be handled by normal means.
	Failed fuel is defined as ruptured fuel rods, severed fuel
	rods, loose fuel pellets, or fuel assemblies that cannot
	be handled by normal means. Fuel assemblies may
	contain breached rods, grossly breached rods, and
	other defects such as missing or partial rods, missing
	grid spacers, or damaged spacers to the extent that the assembly cannot be handled by normal means.
	Fuel debris and fuel rods that have been removed from
	a fuel assembly and placed in a rod storage basket are
	also considered as failed fuel. Loose fuel debris, not
Failed Fuel	contained in a rod storage basket must be placed in a
	failed fuel can for storage, provided the size of the
	debris is larger than the failed fuel can screen mesh
	opening and it is located at a position of at least 10"
	above the top of the bottom shield plug of the DSC. Fuel debris may be associated with any type of UO ₂ fuel
	provided that the maximum uranium content and initial
	enrichment limits are met. The total weight of each
	failed fuel can plus all its contents shall be less than
	1682 lb.
	WE 15x15 class PLSAs which have only ever been
Partial Length Shield Assemblies (PLSAs)	irradiated in peripheral core locations with following
	characteristics are authorized:
	 Maximum burnup, 40 GWd/MTU Minimum cooling time, 6.5 years
	Maximum decay heat, 900 watts
L	(continued)

(continued)

Table 1-1I
PWR Fuel Specification for the Fuel to be Stored in the NUHOMS [®] -24PTH DSC

Reconstituted Fuel Assemblies:	
 Maximum Number of Reconstituted 	4
Assemblies per DSC with Irradiated	
Stainless Steel Rods	
Maximum Number of Irradiated Stainless	10
Steel Rods per Reconstituted Fuel	
Assembly	
 Maximum Number of Reconstituted 	24
Assemblies per DSC with unlimited	
number of low enriched UO2 rods and/or	
Unirradiated Stainless Steel Rods and/or	
Zr Rods or Zr Pellets	
	 Up to 24 CCs are authorized for storage in 24PTH-L,
	24PTH-S, and 24PTH-S-LC DSCs only.
	Authorized CCs include Burnable Poison Rod Assemblies
	(BPRAs), Thimble Plug Assemblies (TPAs), Control Rod
	Assemblies (CRAs), Rod Cluster Control Assemblies
	(RCCAs), Axial Power Shaping Assembly Rods (APSRAs),
	Orifice Rod Assemblies (ORAs), Vibration Suppression
	Inserts (VSIs), Neutron Source Assemblies (NSAs), and
Control Components (CCs)	Neutron Sources. Non-fuel hardware that are positioned
	within the fuel assembly after the fuel assembly is
	discharged from the core such as Guide Tube or Instrument
	Tube Tie Rods or Anchors, Guide Tube Inserts, BPRA
	Spacer Plates or devices that are positioned and operated
	within the fuel assembly during reactor operation such as
	those listed above are also considered as CCs.
	 Design basis thermal and radiological characteristics for the CCs are listed in Table 1-1n.
Nominal Accombly Width for Intest and	
Nominal Assembly Width for Intact and Damaged Fuel Only	8.536 inches
Number of Intact Assemblies	≤24
	Maximum of 12 damaged fuel assemblies. Balance may be intact
Number and Location of Damaged Assemblies	fuel assemblies, empty slots, or dummy assemblies depending
	on the specific heat load zoning configuration.
	Damaged fuel assemblies are to be placed in Location A and/or
	B as shown in Figure 1-16. The DSC basket cells which store
	damaged fuel assemblies are provided with top and bottom end
	caps to assure retrievability.
Number and Location of Failed Assemblies	Up to 8 failed fuel assemblies. Balance may be intact and/or
	damaged fuel assemblies, empty slots, or dummy assemblies
	depending on the specific heat load zoning configuration.
	Failed fuel assemblies are to be placed in Location A as shown in
	Figure 1-16. Failed fuel assembly/fuel debris is to be
	encapsulated in an individual failed fuel can (FFC) provided with
	a welded bottom closure and a removable top closure.
Maximum Assembly plus CC Weight	1682 lbs
	(continued)

(continued)

Table 1-1I PWR Fuel Specification for the Fuel to be Stored in the NUHOMS[®]-24PTH DSC

THERMAL/RADIOLOGICAL PARAMET	ERS:
Allowable Heat Load Zoning Configurations for each 24PTH DSC	Per Figure 1-11 or Figure 1-12 or Figure 1-13 or Figure 1-14 or Figure 1-15.
Burnup, Enrichment, and Minimum Cooling Time for Configuration 1 (Without CCs)	Per Table 1-3a for Zone 1 for intact or damaged fuel. Per Table 1-5c ⁽²⁾ for Zone 1 failed fuel.
Burnup, Enrichment, and Minimum Cooling Time for Configuration 2 (Without CCs)	Per Table 1-3b for Zone 2 for intact or damaged fuel. Per Table 1-5c ⁽²⁾ for Zone 2 failed fuel.
Burnup, Enrichment, and Minimum Cooling Time for Configuration 3 (Without CCs)	Per Table 1-3b for Zone 2 for intact or damaged fuel and Table 1-3c for Zone 3 intact or damaged fuel. Per Table $1-5c^{(2)}$ for Zone 2 failed fuel.
Burnup, Enrichment, and Minimum Cooling Time for Configuration 4 (Without CCs)	Per Table 1-3d for Zone 4 for intact or damaged fuel. Per Table 1 5a ⁽²⁾ for Zone 4 failed fuel.
Burnup, Enrichment, and Minimum Cooling Time for Configuration 5 (Without CCs)	Per Table 1-3c for Zone 3 for intact or damaged fuel and Table 1-3d for Zone 4 for intact or damaged fuel. Per Table $1-5a^{(2)}$ for Zone 3 and 4 failed fuel. Per Table $1-5a^{(2)}$ for Zone 3 and 4 damaged fuel, if loaded with failed fuel.
Burnup, Enrichment, and Minimum Cooling Time for Configuration 1 (With CCs)	Per Table 1-3e for Zone 1 for intact or damaged fuel. Per Table 1- $5c^{(2)}$ for Zone 1 failed fuel ⁽¹⁾ .
Burnup, Enrichment, and Minimum Cooling Time for Configuration 2 (With CCs)	Per Table 1-3f for Zone 2 for intact or damaged fuel. Per Table $1-5c^{(2)}$ for Zone 2 failed fuel ⁽¹⁾ .
Burnup, Enrichment, and Minimum Cooling Time for Configuration 3 (With CCs)	Per Table 1-3f for Zone 2 for intact or damaged fuel and per Table 1- 3g for Zone 3 intact or damaged fuel. Per Table 1-5c ⁽²⁾ for Zone 2 failed fuel ⁽¹⁾ .
Burnup, Enrichment, and Minimum Cooling Time for Configuration 4 (With CCs)	Per Table 1-3h for Zone 4 for intact or damaged fuel. Per Table 1- $5a^{(2)}$ for Zone 4 failed fuel ⁽¹⁾ .
Burnup, Enrichment, and Minimum Cooling Time for Configuration 5 (With CCs)	Per Table 1-3g for Zone 3 for intact or damaged fuel and per Table 1- 3h for Zone 4 intact or damaged fuel. Per Table $1-5a^{(2)}$ for Zone 3 and 4 failed fuel ⁽¹⁾ . Per Table $1-5a^{(2)}$ for Zone 3 and 4 damaged fuel, if loaded with failed fuel ⁽¹⁾ .
Maximum Planar Average Initial Fuel Enrichment	Per Table 1-1p or Table 1-1q or Table 1-1q1
	Type 1 Basket: ≤ 40.8 kW for 24PTH-S and 24PTH-L DSCs with decay heat limits for Zones 1, 2, 3 and 4 as specified in Figure 1-11 or Figure 1-12 or Figure 1-13 or Figure 1-14.
Decay Heat	Type 2 Basket: Same as Type 1 Basket except \leq 31.2 kW/DSC and \leq 1.3 kW/fuel assembly for 24PTH-S and 24PTH-L DSCs. \leq 24.0 kW for 24PTH-S-LC DSC with decay heat limits as specified in Figure 1-15.
Minimum Boron Loading	Per Table 1-1p or Table 1-1q or Table 1-1q1.

(1) For a fuel assembly with control components for a given enrichment and burnup, increase the cooling time obtained from an FQT by one year.

(2) These tables from 32PTH1 DSC are also applicable to 24PTH DSC.

Table 1-1m			
PWR Fuel Assembly Design Characteristics for the NUHOMS [®] -24PTH DSC			

Assemb	oly Class	B&W 15x15	WE 17x17	CE 15x15	WE 15x15	CE 14x14	WE 14x14
Maximum	24PTH-S	165.75	165.75	165.75	165.75	165.75	165.75
Unirradiated	24PTH-L	171.93	171.93	171.93	171.93	171.93	171.93
Length (in) ⁽¹⁾	24PTH-S-LC	171.93	N/A ⁽³⁾	N/A ⁽³⁾	N/A ⁽³⁾	N/A ⁽³⁾	N/A ⁽³⁾
Fissile	Material	UO ₂	UO ₂	UO ₂	UO2	UO2	UO2
Maximum MT	U/Assembly ⁽²⁾	0.49	0.49	0.49	0.49 ⁽⁴⁾	0.49	0.49
Maximum Numb	per of Fuel Rods	208	264	216	204	176	179
	mber of Guide/ ent Tubes	17	25	9	21	5	17

(1) Maximum Assembly + Control Component Length (unirradiated)
(2) The maximum MTU/assembly is based on the shielding analysis. The listed value is higher than the actual.
(3) Not authorized for storage.
(4) The maximum MTU/assembly for WE 15x15 PLSA = 0.33.

Table 1-1n

Thermal and Radiological Characteristics for Control Components Stored in the NUHOMS $^{\odot}$ -24PTH and 24PHB DSC

Parameter	BPRAs, NSAs, CRAs, RCCAs, VSIs, Neutron Sources and APSRAs	TPAs and ORAs
Maximum Gamma Source (γ/sec/DSC)	9.3E+14	9.8E+13
Decay Heat (Watts/DSC)	192.0	192.0

Note: NSAs and Neutron Sources shall only be stored in the interior compartments of the basket. Interior compartments are those compartments that are completely surrounded by other compartments, including the corners. There are four interior compartments in the 24PTH DSC.

Table 1-1o

(Not Used)

Table 1-1pMaximum Planar Average Initial Enrichment v/s Neutron Poison Requirements for the NUHOMS[®] -
24PTH DSC (Intact Fuel)

Fuel Assembly	Maximum Planar Average Initial Enrichment (wt. % U-235) as a Function o Soluble Boron Concentration and Basket Type (Fixed Poison Loading)				
Class	Minimum	•	Basket Type ⁽³⁾	Type ⁽³⁾	
	Soluble Boron (ppm)	1A or 2A	1B or 2B	1C or 2C	
	2100	4.50	4.90	NR	
	2200	4.60	5.00	NR	
	2300	4.70	NR	NR	
CE 14x14 ⁽¹⁾	2400	4.80	NR	NR	
	2500	4.90	NR	NR	
	2600	5.00	NR	NR	
	2100	4.80	5.00	NR	
WE 14x14 ⁽²⁾	2200	4.90	NR	NR	
	2300	5.00	NR	NR	
	2100	3.90	4.20	4.60	
CE 15x15 ⁽²⁾	2200	4.00	4.40	4.70	
	2300	4.10	4.50	4.80	
	2400	4.20	4.60	4.90	
	2500	4.30	4.70	5.00	
	2600	4.40	4.80	NR	
	2700	4.50	4.90	NR	
	2800	4.50	5.00	NR	
	2900	4.60	NR	NR	
	3000	4.70	NR	NR	
	2100	3.80	4.20	4.60	
	2200	3.90	4.30	4.70	
	2300	4.00	4.40	4.80	
	2400	4.10	4.50	4.90	
ME 45-45 (2)	2500	4.20	4.60	5.00	
WE 15x15 ⁽²⁾	2600	4.30	4.70	NR	
	2700	4.30	4.80	NR	
	2800	4.40	4.90	NR	
	2900	4.50	5.00	NR	
	3000	4.60	NR	NR	

(continued)

Table 1-1p

Maximum Planar Average Initial Enrichment v/s Neutron Poison Requirements for the NUHOMS[®] -24PTH DSC (Intact Fuel)

	Maximum Planar Average Initial Enrichment (wt. % U-235) as a Function of Soluble Boron Concentration and Basket Type (Fixed Poison Loading)					
Fuel Assembly Class	Minimum	Basket Type ⁽³⁾				
01855	Soluble Boron (ppm)	1A or 2A	1B or 2B	1C or 2C		
	2100	3.80	4.10	4.50		
	2200	3.90	4.20	4.60		
	2300	4.00	4.30	4.70		
	2400	4.00	4.40	4.80		
WE 17x17 ⁽²⁾	2500	4.10	4.50	4.90		
VVE 1/X1/ (=/	2600	4.20	4.60	5.00		
	2700	4.30	4.70	NR		
	2800	4.40	4.80	NR		
	2900	4.50	4.90	NR		
	3000	4.60	5.00	NR		
	2100	3.60	4.00	4.30		
	2200	3.70	4.10	4.50		
	2300	3.80	4.20	4.60		
	2400	3.90	4.30	4.70		
B&W 15x15 ⁽²⁾	2500	4.00	4.40	4.80		
B&W 15X15 (*)	2600	4.10	4.50	4.90		
	2700	4.20	4.60	5.00		
	2800	4.20	4.70	NR		
	2900	4.30	4.80	NR		
	3000	4.40	4.90	NR		

Notes:

(1) When CCs that extend into the active fuel region are stored, the maximum planar average initial enrichment shall be reduced by 0.2 wt. %.

(2) When CCs that extend into the active fuel region are stored, the maximum planar average initial enrichment shall be reduced by 0.05 wt. % or the soluble boron concentration shall be increased by 50 ppm.

(3) The fixed poison loading requirements as a function of Basket Type are specified in Table 1-1r.

NR = Not Required.

Table 1-1q

Maximum Planar Average Initial Enrichment v/s Neutron Poison Requirements for the NUHOMS[®] -24PTH DSC (Damaged Fuel)

Assembly Class	Maximum Number of Damaged Fuel	Maximum Planar Average Initial Enrichment (wt. % U-235) Damaged Fuel Assemblies ⁽³⁾ as a Function of Soluble Bor Concentration and Basket Type (Fixed Poison Loading			
Class	Assemblies per DSC	Minimum Soluble Boron (ppm)	1A or 2A	Basket Type ⁽⁴⁾ 1B or 2B	1C or 2C
CE 14x14 ⁽¹⁾	12	2150	NR	4.70	NR
CE 14X14 (7	12	2450	4.50	5.00	NR
WE 14x14 ⁽²⁾	12	2150	4.50	5.00	NR
CE 15x15 ⁽²⁾	12	2150	NR	NR	4.50
	12	2550	NR	NR	5.00
WE 15x15 ⁽²⁾	12	2250	NR	NR	4.50
WE ISXIS	12	2650	NR	NR	5.00
B&W 15x15 (2)	12	2350	NR	NR	4.50
	12	2800	NR	NR	5.00
WE 17x17 ⁽²⁾	12	2250	NR	NR	4.50
	12	2650	NR	NR	5.00

Notes:

- (1) When CCs that extend into the active fuel region are stored, the maximum planar average initial enrichment shall be reduced by 0.2 wt. %.
- (2) When CCs that extend into the active fuel region are stored, the maximum planar average initial enrichment shall be reduced by 0.05 wt. % or the soluble boron concentration shall be increased by 50 ppm.
- (3) Enrichment limits are applicable when more than 8 damaged fuel assemblies are loaded.
- (4) The fixed poison loading requirements as a function of Basket Type are specified in Table 1-1r.

NR = Not Required.

Table 1-1q1Maximum Planar Average Initial Enrichment v/s Neutron Poison Requirements for the NUHOMS® -
24PTH DSC (Up to 8 Damaged/Failed Fuel)

Fuel Assembly Class	Maximum Planar Average Initial Enrichment (wt. % U-235) for Loading up to Eight Damaged and/or Failed Fuel Assemblies ⁽³⁾ as a Function of Soluble Boron Concentration and Basket Type (Fixed Poison Loading)				
-	Minimum		Basket Type ⁽⁴⁾		
	Soluble Boron (ppm)	1A or 2A	1B or 2B	1C or 2C	
	2100	4.40	4.90	5.00	
	2200	4.55	5.00	NR	
	2300	4.60	NR	NR	
CE 14x14 ⁽²⁾	2400	4.60	NR	NR	
	2500	4.90	NR	NR	
	2600	5.00	NR	NR	
	2100	4.75	5.00	NR	
WE 14x14 ⁽¹⁾	2200	4.90	NR	NR	
WE 14X14 (7)	2300	4.90	NR	NR	
	2400	5.00	NR	NR	
	2100	3.90	4.20	4.60	
	2200	4.00	4.40	4.70	
	2300	4.10	4.50	4.80	
	2400	4.20	4.60	4.90	
CE 15x15 ⁽¹⁾	2500	4.30	4.70	5.00	
CE 15X15 (9	2600	4.40	4.80	NR	
	2700	4.50	4.90	NR	
	2800	4.50	5.00	NR	
	2900	4.60	NR	NR	
	3000	4.70	NR	NR	
	2100	3.80	4.20	4.60	
	2200	3.90	4.25	4.70	
	2300	4.00	4.40	4.80	
	2400	4.10	4.50	4.90	
WE 15x15 ⁽¹⁾	2500	4.20	4.60	5.00	
WE ISAIS	2600	4.30	4.70	NR	
	2700	4.30	4.80	NR	
	2800	4.40	4.90	NR	
	2900	4.50	5.00	NR	
	3000	4.60	NR	NR	

(continued)

Table 1-1q1

Maximum Planar Average Initial Enrichment v/s Neutron Poison Requirements for the NUHOMS[®] -24PTH DSC (Up to 8 Damaged/Failed Fuel)

Fuel Assembly Class	Maximum Planar Average Initial Enrichment (wt. % U-235) for Loading up to Eight Damaged and/or Failed Fuel Assemblies ⁽³⁾ as a Function of Soluble Boron Concentration and Basket Type (Fixed Poison Loading)				
	Minimum		Basket Type ⁽	4)	
	Soluble Boron (ppm)	1A or 2A	1B or 2B	1C or 2C	
	2100	3.80	4.10	4.50	
	2200	3.90	4.20	4.60	
	2300	4.00	4.30	4.70	
	2400	4.00	4.40	4.80	
WE 17x17 ⁽¹⁾	2500	4.10	4.50	4.90	
	2600	4.20	4.60	5.00	
	2700	4.30	4.70	NR	
	2800	4.40	4.80	NR	
	2900	4.50	4.90	NR	
	3000	4.60	5.00	NR	
	2100	3.60	4.00	4.20	
	2200	3.70	4.10	4.20	
	2300	3.80	4.20	4.50	
	2400	3.90	4.30	4.70	
B&W 15x15 ⁽¹⁾	2500	4.00	4.40	4.70	
	2600	4.10	4.40	4.90	
	2700	4.20	4.50	5.00	
	2800	4.20	4.70	NR	
	2900	4.30	4.70	NR	
	3000	4.40	4.70	NR	

(1) When CCs that extend into the active fuel region are stored, the maximum planar average initial enrichment shall be reduced by 0.05 wt. % or the soluble boron concentration shall increased by 50 ppm.

(2) When CCs that extend into the active fuel region are stored, the maximum planar average initial enrichment shall be reduced by 0.2 wt. %.

(3) Enrichment limits are applicable when up to 8 damaged and/or failed fuel assemblies are loaded.

(4) The fixed poison loading requirements as a function of basket type are specified in Table 1-1r.

 Table 1-1r

 B10 Specification for the NUHOMS[®]-24PTH Poison Plates

NUHOMS [®] -24PTH DSC	Minimum B10 Areal	Density, (grams/cm²)
Basket Type ⁽¹⁾	Borated Aluminum or MMC	Boral®
1A or 2A	0.007	0.009
1B or 2B	0.015	0.019
1C or 2C	0.032	0.040

(1) Basket Type 1 contains aluminum inserts in the R45 transition rails of the basket, Type 2 does not contain aluminum inserts.

Table 1-1s

(Deleted)

Table 1-1t
BWR Fuel Specification for the Fuel to be Stored in the NUHOMS [®] -61BTH DSC

PHYSICAL PARAMETERS:	
Fuel Class	Intact or damaged or failed 7x7, 8x8, 9x9 or 10x10 BWR assemblies manufactured by General Electric or Exxon/ANF or FANP or reload fuel manufactured
	by other vendors that are enveloped by the fuel
	assembly design characteristics listed in Table 1-1u. Damaged and/or failed fuel assemblies beyond the
	definition contained below are not authorized for
	storage.
	Damaged BWR fuel assemblies are assemblies
	containing fuel rods with known or suspected
	cladding defects greater than hairline cracks or pinhole leaks. The extent of cladding damage in the
Fuel Damage	fuel assembly is to be limited such that the fuel
	assembly needs to be handled by normal means
	and retrievability is assured following normal and off-
	normal conditions. Missing fuel rods are allowed.
	Failed fuel is defined as ruptured fuel rods, severed fuel rods, loose fuel pellets, or fuel assemblies that
	cannot be handled by normal means. Failed fuel
	assemblies may contain breached rods, grossly
	breached rods, and other defects such as missing or
	partial rods, missing grid spacers, or damaged spacers to the extent that the assembly cannot be
	handled by normal means.
	Fuel debris and fuel rods that have been removed
	from a fuel assembly and placed in a rod storage
Failed Fuel	basket are also considered as failed fuel. Loose fuel
	debris, not contained in a rod storage basket must be placed in a failed fuel can for storage, provided
	the size of the debris is larger than the failed fuel
	can screen mesh opening and it is located at a
	position of at least 10" above the top of the bottom
	shield plug of the DSC.
	Fuel debris may be associated with any type of UO ₂ fuel provided that the maximum uranium content
	and initial enrichment limits are met. The total weight
	of each failed fuel can plus all its content shall be
	less than 705 lb.
RECONSTITUTED FUEL ASSEMBLIES:	
 Maximum Number of Reconstituted Assemblies per DSC with Irradiated Stainless Steel Rods 	4
 Maximum Number of Irradiated Stainless Steel 	10
Rods per Reconstituted Fuel Assembly	
Maximum Number of Reconstituted Assemblies	61
per DSC with unlimited number of low enriched	
UO2 rods or Zr Rods or Zr Pellets or	
Unirradiated Stainless Steel Rods Number of Intact Assemblies	≤ 61
	(continued)

(continued)

 Table 1-1t

 BWR Fuel Specification for the Fuel to be Stored in the NUHOMS[®]-61BTH DSC

Number and Location of Damaged Assemblies	Up to 16 damaged fuel assemblies, with balance intact or dummy assemblies, are authorized for storage in 61BTH DSC. Damaged fuel assemblies may only be stored in the 2x2 compartments as shown in Figure 1-25. The DSC basket cells which store damaged fuel assemblies are provided with top and bottom end caps to assure retrievability.
Number and Location of Failed Assemblies	Up to 4 failed fuel assemblies. Balance may be intact and/or damaged fuel assemblies, empty slots, or dummy assemblies depending on the specific heat load zoning configuration. Failed fuel assemblies are to be placed in Location A as shown in Figure 1-25. Failed fuel assembly/fuel debris is to be encapsulated in an individual failed fuel can (FFC) provided with a welded bottom closure and a removable top closure.
Channels	Fuel may be stored with or without channels, channel fasteners, or finger springs.
Maximum Initial Uranium Content	198 kg/assembly
Maximum Assembly Weight with Channels	705 lbs

(continued)

Table 1-1t BWR Fuel Specification for the Fuel to be Stored in the NUHOMS[®]-61BTH DSC

THERMAL/RADIOLOGICAL PARAMETERS:Allowable Heat Load Zoning Configurations for each Type 1 61BTH DSC:Per Figure 1-17 or Figure 1-18 or Figure 1-19 or Figure 1-20.Allowable Heat Load Zoning Configurations for each Type 2 61BTH DSC:Per Figure 1-17 or Figure 1-18 or Figure 1-19 or Figure 1-20 or Figure 1-21 or Figure 1-22 or Figure 1-20 or Figure 1-22.Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 3 Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 3 Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 5 Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 5 Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 6Per Table 1-4a for Zone 1 fuel, Table 1-4b for Zone 2 fuel.Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 7 Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 7Per Table 1-4a for Zone 1 fuel, Table 1-4e for Zone 2 fuel.Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 7Per Table 1-4d for Zone 2 fuel and Table 1-4e for Zone 5 fuel.Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 7Per Table 1-4d for Zone 2 fuel, Table 1-4e for Zone 2 fuel.Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 7Per Table 1-4d for Zone 2 fuel, Table 1-4e for Zone 5 fuel.Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 7Per Table 1-4d for Zone 2 fuel, Table 1-4e for Zone 2 fuel, Table 1-4e for Zone 5 fuel.Maximum Lattice Average Initial Enrichment <th></th> <th>1</th>		1
each Type 1 61BTH DSCAllowable Heat Load Zoning Configurations for each Type 2 61BTH DSC:Figure 1-20.Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 1Figure 1-23 or Figure 1-14 or Zone 3 fuel.Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 3Per Table 1-4b for Zone 2 fuel, Table 1-4d for Zone 4 fuel, and Table 1-4e for Zone 2 fuel.Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 3Per Table 1-4a for Zone 1 fuel, Table 1-4b for Zone 2 fuel, Table 1-4d for Zone 4 fuel, and Table 1-4e for Zone 5 fuel.Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 5Per Table 1-4a for Zone 1 fuel, Table 1-4d for Zone 5 fuel.Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 6Per Table 1-4a for Zone 1 fuel, Table 1-4d for Zone 5 fuel.Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 7Per Table 1-4a for Zone 1 fuel, Table 1-4d for Zone 5 fuel.Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 7Per Table 1-4b for Zone 4 fuel, and Table 1-4e for Zone 5 fuel.Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 8Per Table 1-4b for Zone 4 fuel, and Table 1-4e for Zone 5 fuel.Maximum Lattice Average Initial EnrichmentPer Table 1-4b for Zone 4 fuel, and Table 1-4e for Zone 5 fuel.Maximum Decay Heat Limits for Zones 1, 2, 3, 4, 5 and 6 FuelPer Figure 1-17 or Figure 1-18 or Figure 1-19 or Figure 1-20 or Figure 1-20 or Figure 1-20 or Figure 1-20 or Figure 1-20 or Figure 1-20 or Figure 1-20 or Figure		
Allowable Heat Load Zoning Configurations for each Type 2 61BTH DSC:Per Figure 1-17 or Figure 1-18 or Figure 1-19 or Figure 1-20 or Figure 1-21 or Figure 1-22 or Figure 1-23 or Figure 1-24 or Figure 1-22 or Figure 1-23 or Figure 1-24.Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 2 Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 3 Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 4Per Table 1-4b for Zone 2 fuel, Table 1-4d for Zone 4 fuel, and Table 1-4b for Zone 2 fuel.Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 4Per Table 1-4a for Zone 1 fuel, Table 1-4b for Zone 2 fuel.Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 6Per Table 1-4b for Zone 2 fuel and Table 1-4e for Zone 5 fuel.Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 7 Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 7 Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 7 Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 8Per Table 1-4d for Zone 4 fuel and Table 1-4e for Zone 5 fuel.Maximum Lattice Average Initial Enrichment Maximum Decay Heat Limits for Zones 1, 2, 3, 4, 5 and 6 FuelPer Table 1-17 or Figure 1-18 or Figure 1-20 or Figure 1-20 or Figure 1-20 or Figure 1-22 or Figure 1-20 or Figure 1-24 or S 20. kW for Type 1 DSC S 21.2 kW for Type 2 DSC	3 3	v v v
each Type 2 61BTH DSC:Figure 1-20 or Figure 1-21 or Figure 1-22 or Figure 1-23 or Figure 1-24.Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 2 Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 3 Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 4Per Table 1-4c for Zone 2 fuel, Table 1-4d for Zone 4 fuel, and Table 1-4e for Zone 5 fuel.Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 4Per Table 1-4b for Zone 2 fuel, Table 1-4b for Zone 2 fuel, Table 1-4d for Zone 4 fuel, and Table 1-4e for Zone 5 fuel.Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 5 Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 6Per Table 1-4a for Zone 2 fuel and Table 1-4e for Zone 5 fuel.Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 7 Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 7 Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 7 Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 8Per Table 1-4e for Zone 4 fuel and Table 1-4e for Zone 5 fuel.Maximum Lattice Average Initial Enrichment 5.0 wt. % U-235Per Fable 1-1w or Table 1-1w or Table 1-1w or Table 1-1w or Table 1-1w or Figure 1-22 or Figure 1-20 or Figure 1-21 or Figure 1-22 or Figure 1-23 or Figure 1-24 or Figure 1-22 or Figure 1-23 or Figure 1-24 or Figure 1-22 or Figure 1-23 or Figure 1-24 or Figure 1-24 or S and 6 FuelDecay Heat per DSC\$22.0 kW for Type 1 DSC		Figure 1-20.
Figure 1-23 or Figure 1-24.Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 2Per Table 1-4c for Zone 2 fuel, Table 1-4d for Zone 4 fuel, and Table 1-4e for Zone 5 fuel.Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 3Per Table 1-4b for Zone 2 fuel.Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 4Per Table 1-4b for Zone 2 fuel.Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 5Per Table 1-4b for Zone 2 fuel.Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 5Per Table 1-4b for Zone 2 fuel.Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 6Per Table 1-4a for Zone 1 fuel, Table 1-4d for Zone 5 fuel.Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 6Per Table 1-4b for Zone 5 fuel.Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 7Per Table 1-4d for Zone 6 fuel.Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 7Per Table 1-4d for Zone 4 fuel, and Table 1-4e for Zone 5 fuel.Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 7Per Table 1-4b for Zone 4 fuel, and Table 1-4e for Zone 5 fuel.Maximum Lattice Average Initial EnrichmentPer Table 1-4b for Zone 4 fuel, and Table 1-4e for Zone 5 fuel.Maximum Decay Heat Limits for Zones 1, 2, 3, 4, 5 and 6 FuelPer Table 1-1v or Table 1-1w or Table 1-1w or Figure 1-20 or Figure 1-21 or Figure 1-22 or Figure 1-23 or Figure 1-22 or Figure 1-23 or Figure 1-24D	Allowable Heat Load Zoning Configurations for	Per Figure 1-17 or Figure 1-18 or Figure 1-19 or
Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 1Per Table 1-4c for Zone 3 fuel.Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 2Per Table 1-4b for Zone 2 fuel, Table 1-4d for Zone 4 fuel, and Table 1-4e for Zone 5 fuel.Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 4Per Table 1-4b for Zone 1 fuel, Table 1-4b for Zone 2 fuel.Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 4Per Table 1-4a for Zone 1 fuel, Table 1-4b for Zone 2 fuel.Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 5Per Table 1-4a for Zone 2 fuel and Table 1-4e for Zone 5 fuel.Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 6Per Table 1-4a for Zone 1 fuel, Table 1-4d for Zone 5 fuel.Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 7Per Table 1-4a for Zone 1 fuel, Table 1-4d for Zone 4 fuel, Table 1-4d for Zone 5 fuel.Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 7Per Table 1-4d for Zone 4 fuel and Table 1-4e for Zone 5 fuel.Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 7Per Table 1-4d for Zone 4 fuel, and Table 1-4e for Zone 5 fuel.Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 7Per Table 1-4d for Zone 4 fuel, and Table 1-4e for Zone 5 fuel.Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 8Per Table 1-4d for Zone 4 fuel, and Table 1-4e for Zone 5 fuel.Maximum Lattice Average Initial EnrichmentPer Tabl	each Type 2 61BTH DSC:	Figure 1-20 or Figure 1-21 or Figure 1-22 or
for Heat Load Zoning Configuration 1Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 3Per Table 1-4b for Zone 2 fuel, Table 1-4d for Zone 4 fuel, and Table 1-4e for Zone 5 fuel.Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 4Per Table 1-4b for Zone 1 fuel, Table 1-4b for Zone 2 fuel, Table 1-4b for Zone 2 fuel.Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 5Per Table 1-4a for Zone 1 fuel, Table 1-4b for Zone 2 fuel.Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 6Per Table 1-4a for Zone 2 fuel and Table 1-4e for Zone 5 fuel.Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 6Per Table 1-4a for Zone 1 fuel, Table 1-4d for Zone 5 fuel.Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 6Per Table 1-4a for Zone 1 fuel, Table 1-4d for Zone 5 fuel.Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 7Per Table 1-4a for Zone 4 fuel, and Table 1-4e for Zone 5 fuel.Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 7Per Table 1-4b for Zone 2 fuel, Table 1-4c for Zone 5 fuel.Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 7Per Table 1-4b for Zone 2 fuel, Table 1-4c for Zone 5 fuel.Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 7Per Table 1-4b for Zone 4 fuel, and Table 1-4e for Zone 5 fuel.Maximum Lattice Average Initial EnrichmentPer Table 1-4b for Zone 2 fuel.Maximum Decay Heat Limits for Zones 1, 2, 3		Figure 1-23 or Figure 1-24.
Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 2 Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 4Per Table 1-4b for Zone 2 fuel.Per Table 1-4b for Zone 4 fuel, and Table 1-4b for Zone 2 fuel.Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 5 Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 5 Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 6Per Table 1-4a for Zone 1 fuel, Table 1-4b for Zone 2 fuel, Table 1-4d for Zone 4 fuel, and Table 1-4e for Zone 5 fuel.Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 6Per Table 1-4b for Zone 2 fuel and Table 1-4e for Zone 4 fuel, Table 1-4d for Zone 4 fuel, Table 1-4d for Zone 5 fuel.Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 7 Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 7 Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 7 Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 8Per Table 1-4b for Zone 4 fuel and Table 1-4e for Zone 4 fuel, Table 1-4d for Zone 4 fuel, and Table 1-4f for Zone 5 fuel.Maximum Lattice Average Initial Enrichment Maximum Decay Heat Limits for Zones 1, 2, 3, 4, 5 and 6 FuelPer Table 1-1v or Table 1-1w or Table 1-1w or Figure 1-20 or Figure 1-21 or Figure 1-22 or Figure 1-20 or Figure 1-21 or Figure 1-22 or Figure 1-23 or Figure 1-24Decay Heat per DSC≤ 22.0 kW for Type 1 DSC ≤ 31.2 kW for Type 2 DSC	Burnup, Enrichment, and Minimum Cooling Time	Per Table 1-4c for Zone 3 fuel.
for Heat Load Zoning Configuration 2Zone 4 fuel, and Table 1-4e for Zone 5 fuel.Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 3Per Table 1-4b for Zone 2 fuel.Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 5Per Table 1-4a for Zone 1 fuel, Table 1-4b for Zone 2 fuel, Table 1-4d for Zone 4 fuel, and Table 1-4e for Zone 2 fuel.Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 5Per Table 1-4b for Zone 2 fuel and Table 1-4e for Zone 5 fuel.Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 6Per Table 1-4a for Zone 1 fuel, Table 1-4d for Zone 5 fuel.Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 7 Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 7 Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 7 Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 7 Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 7 Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 8Per Table 1-4b for Zone 2 fuel, Table 1-4e for Zone 5 fuel.Maximum Lattice Average Initial Enrichment Maximum Decay Heat Limits for Zones 1, 2, 3, 4, 5 and 6 FuelPer Table 1-1v or Table 1-1w or Table 1-19 or Figure 1-17 or Figure 1-22 or Figure 1-23 or Figure 1-24Decay Heat per DSC< 22.0 kW for Type 1 DSC	for Heat Load Zoning Configuration 1	
Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 3 Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 4Per Table 1-4b for Zone 2 fuel.Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 5 Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 6Per Table 1-4b for Zone 1 fuel, Table 1-4b for Zone 5 fuel.Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 6Per Table 1-4b for Zone 2 fuel and Table 1-4e for Zone 5 fuel.Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 7 Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 7 Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 7 Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 8Per Table 1-4b for Zone 2 fuel and Table 1-4e for Zone 4 fuel, Table 1-4e for Zone 4 fuel, and Table 1-4e for Zone 5 fuel.Maximum Lattice Average Initial EnrichmentPer Table 1-4b for Zone 2 fuel, Table 1-4c for Zone 3 fuel, Table 1-4d for Zone 4 fuel, and Table 1-4e for Zone 5 fuel.Maximum Decay Heat Limits for Zones 1, 2, 3, 4, 5 and 6 FuelPer Figure 1-17 or Figure 1-18 or Figure 1-19 or Figure 1-20 or Figure 1-22 or Figure 1-23 or Figure 1-24Decay Heat per DSC< 22.0 kW for Type 1 DSC < 31.2 kW for Type 2 DSC	Burnup, Enrichment, and Minimum Cooling Time	Per Table 1-4b for Zone 2 fuel, Table 1-4d for
for Heat Load Zoning Configuration 3 Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 4Per Table 1-4a for Zone 1 fuel, Table 1-4b for Zone 2 fuel, Table 1-4d for Zone 4 fuel, and Table 1-4e for Zone 5 fuel.Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 6Per Table 1-4b for Zone 2 fuel and Table 1-4e for Zone 5 fuel.Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 6Per Table 1-4a for Zone 1 fuel, Table 1-4d for Zone 5 fuel.Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 7 Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 7 Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 8Per Table 1-4b for Zone 4 fuel and Table 1-4e for Zone 5 fuel.Maximum Lattice Average Initial Enrichment Maximum Decay Heat Limits for Zones 1, 2, 3, 4, 5 and 6 FuelPer Figure 1-17 or Figure 1-18 or Figure 1-19 or Figure 1-20 or Figure 1-22 or Figure 1-20 or Figure 1-22 or Figure 1-20 or Figure 1-24Decay Heat per DSC≤ 22.0 kW for Type 1 DSC ≤ 31.2 kW for Type 2 DSC	for Heat Load Zoning Configuration 2	Zone 4 fuel, and Table 1-4e for Zone 5 fuel.
Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 4Per Table 1-4a for Zone 1 fuel, Table 1-4b for Zone 2 fuel, Table 1-4d for Zone 4 fuel, and Table 1-4e for Zone 5 fuel.Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 6Per Table 1-4b for Zone 2 fuel and Table 1-4e for Zone 5 fuel.Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 7Per Table 1-4a for Zone 1 fuel, Table 1-4d for Zone 4 fuel, Table 1-4e for Zone 5 fuel.Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 7Per Table 1-4d for Zone 4 fuel and Table 1-4e for Zone 5 fuel.Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 7Per Table 1-4d for Zone 4 fuel and Table 1-4e for Zone 5 fuel.Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 8Per Table 1-4d for Zone 4 fuel and Table 1-4e for Zone 5 fuel.Maximum Lattice Average Initial EnrichmentPer Table 1-4d for Zone 4 fuel, and Table 1-4w for Zone 5 fuel.Maximum Decay Heat Limits for Zones 1, 2, 3, 4, 5 and 6 FuelPer Figure 1-17 or Figure 1-18 or Figure 1-19 or Figure 1-20 or Figure 1-21 or Figure 1-22 or Figure 1-23 or Figure 1-24Decay Heat per DSC $\leq 22.0 kW$ for Type 1 DSC $\leq 31.2 kW$ for Type 2 DSC	Burnup, Enrichment, and Minimum Cooling Time	Per Table 1-4b for Zone 2 fuel.
for Heat Load Zoning Configuration 4Zone 2 fuel, Table 1-4d for Zone 4 fuel, and Table 1-4e for Zone 5 fuel.Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 5Per Table 1-4b for Zone 2 fuel and Table 1-4e for Zone 5 fuel.Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 6Per Table 1-4a for Zone 1 fuel, Table 1-4d for Zone 5 fuel.Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 7Per Table 1-4d for Zone 4 fuel and Table 1-4e for Zone 6 fuel.Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 7Per Table 1-4b for Zone 2 fuel, Table 1-4c for Zone 5 fuel.Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 8Per Table 1-4b for Zone 2 fuel, Table 1-4c for Zone 5 fuel.Maximum Lattice Average Initial Enrichment Maximum Decay Heat Limits for Zones 1, 2, 3, 4, 5 and 6 FuelPer Table 1-17 or Figure 1-18 or Figure 1-19 or Figure 1-20 or Figure 1-21 or Figure 1-22 or Figure 1-23 or Figure 1-24Decay Heat per DSC≤ 22.0 kW for Type 1 DSC ≤ 31.2 kW for Type 2 DSC	for Heat Load Zoning Configuration 3	
Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 51-4e for Zone 5 fuel.Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 6Per Table 1-4b for Zone 1 fuel, Table 1-4d for Zone 5 fuel.Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 7Per Table 1-4d for Zone 6 fuel.Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 7Per Table 1-4d for Zone 4 fuel and Table 1-4e for Zone 5 fuel.Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 8Per Table 1-4d for Zone 2 fuel, Table 1-4c for Zone 5 fuel.Maximum Lattice Average Initial EnrichmentPer Table 1-4b for Zone 2 fuel, Table 1-4c for Zone 3 fuel, Table 1-4d for Zone 4 fuel, and Table 1-4e for Zone 5 fuel.Maximum Decay Heat Limits for Zones 1, 2, 3, 4, 5 and 6 FuelPer Figure 1-1v or Table 1-1w or Table 1-19 or Figure 1-20 or Figure 1-21 or Figure 1-22 or Figure 1-23 or Figure 1-24Decay Heat per DSC\$ 22.0 kW for Type 1 DSC \$ 31.2 kW for Type 2 DSC	Burnup, Enrichment, and Minimum Cooling Time	Per Table 1-4a for Zone 1 fuel, Table 1-4b for
Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 5 Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 6Per Table 1-4b for Zone 2 fuel and Table 1-4e for Zone 5 fuel.Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 7 Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 7 Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 8Per Table 1-4b for Zone 1 fuel, Table 1-4d for Zone 4 fuel, Table 1-4e for Zone 5 fuel.Maximum Lattice Average Initial EnrichmentPer Table 1-4b for Zone 2 fuel, Table 1-4c for Zone 5 fuel.Maximum Decay Heat Limits for Zones 1, 2, 3, 4, 5 and 6 FuelPer Table 1-1v or Table 1-1w or Table 1-1w or Figure 1-20 or Figure 1-21 or Figure 1-22 or Figure 1-23 or Figure 1-24Decay Heat per DSC $\leq 22.0 kW$ for Type 1 DSC	for Heat Load Zoning Configuration 4	Zone 2 fuel, Table 1-4d for Zone 4 fuel, and Table
for Heat Load Zoning Configuration 5Zone 5 fuel.Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 6Per Table 1-4a for Zone 1 fuel, Table 1-4d for Zone 4 fuel, Table 1-4e for Zone 5 fuel.Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 7Per Table 1-4d for Zone 4 fuel and Table 1-4e for Zone 5 fuel.Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 7Per Table 1-4b for Zone 2 fuel, Table 1-4c for Zone 5 fuel.Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 8Per Table 1-4b for Zone 2 fuel, Table 1-4c for Zone 3 fuel, Table 1-4d for Zone 4 fuel, and Table 1-4e for Zone 5 fuel.Maximum Lattice Average Initial EnrichmentPer Table 1-1v or Table 1-1w or Table 1-1w1 5.0 wt. % U-235Maximum Decay Heat Limits for Zones 1, 2, 3, 4, 5 and 6 FuelPer Figure 1-17 or Figure 1-18 or Figure 1-19 or Figure 1-20 or Figure 1-21 or Figure 1-22 or Figure 1-23 or Figure 1-24Decay Heat per DSC< 22.0 kW for Type 1 DSC < 31.2 kW for Type 2 DSC		1-4e for Zone 5 fuel.
Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 6Per Table 1-4a for Zone 1 fuel, Table 1-4d for Zone 4 fuel, Table 1-4e for Zone 5 fuel, and Table 1-4f for Zone 6 fuel.Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 7 Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 8Per Table 1-4d for Zone 4 fuel and Table 1-4e for Zone 5 fuel.Maximum Lattice Average Initial Enrichment Maximum Decay Heat Limits for Zones 1, 2, 3, 4, 5 and 6 FuelPer Table 1-1v or Table 1-1w or Table 1-1w or Figure 1-18 or Figure 1-20 or Figure 1-20 or Figure 1-24Decay Heat per DSC ≤ 22.0 kW for Type 1 DSC	Burnup, Enrichment, and Minimum Cooling Time	Per Table 1-4b for Zone 2 fuel and Table 1-4e for
for Heat Load Zoning Configuration 6Zone 4 fuel, Table 1-4e for Zone 5 fuel, and Table 1-4f for Zone 6 fuel.Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 7Per Table 1-4d for Zone 4 fuel and Table 1-4e for Zone 5 fuel.Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 8Per Table 1-4b for Zone 2 fuel, Table 1-4c for Zone 5 fuel.Maximum Lattice Average Initial EnrichmentPer Table 1-4d for Zone 4 fuel, and Table 1-4e for Zone 5 fuel.Maximum Decay Heat Limits for Zones 1, 2, 3, 4, 5 and 6 FuelPer Figure 1-17 or Figure 1-18 or Figure 1-19 or Figure 1-20 or Figure 1-21 or Figure 1-22 or Figure 1-23 or Figure 1-24Decay Heat per DSC ≤ 22.0 kW for Type 1 DSC ≤ 31.2 kW for Type 2 DSC	for Heat Load Zoning Configuration 5	Zone 5 fuel.
Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 71-4f for Zone 6 fuel.Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 8Per Table 1-4d for Zone 4 fuel and Table 1-4e for Zone 5 fuel.Maximum Lattice Average Initial EnrichmentPer Table 1-4b for Zone 2 fuel, Table 1-4c for Zone 3 fuel, Table 1-4d for Zone 4 fuel, and Table 1-4e for Zone 5 fuel.Maximum Pellet EnrichmentPer Table 1-1v or Table 1-1w or Table 1-1w1 5.0 wt. % U-235Maximum Decay Heat Limits for Zones 1, 2, 3, 4, 5 and 6 FuelPer Figure 1-17 or Figure 1-18 or Figure 1-19 or Figure 1-20 or Figure 1-21 or Figure 1-22 or Figure 1-23 or Figure 1-24Decay Heat per DSC<22.0 kW for Type 1 DSC < 31.2 kW for Type 2 DSC	Burnup, Enrichment, and Minimum Cooling Time	Per Table 1-4a for Zone 1 fuel, Table 1-4d for
Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 7 Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 8Per Table 1-4d for Zone 4 fuel and Table 1-4e for Zone 5 fuel.Maximum Lattice Average Initial Enrichment Maximum Decay Heat Limits for Zones 1, 2, 3, 4, 5 and 6 FuelPer Table 1-17 or Figure 1-18 or Figure 1-19 or Figure 1-20 or Figure 1-21 or Figure 1-22 or Figure 1-23 or Figure 1-24Decay Heat per DSC ≤ 22.0 kW for Type 1 DSC ≤ 31.2 kW for Type 2 DSC	for Heat Load Zoning Configuration 6	Zone 4 fuel, Table 1-4e for Zone 5 fuel, and Table
for Heat Load Zoning Configuration 7 Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 8Zone 5 fuel. Per Table 1-4b for Zone 2 fuel, Table 1-4c for Zone 3 fuel, Table 1-4d for Zone 4 fuel, and Table 1-4e for Zone 5 fuel.Maximum Lattice Average Initial EnrichmentPer Table 1-1v or Table 1-1w or Table 1-1w1 5.0 wt. % U-235Maximum Decay Heat Limits for Zones 1, 2, 3, 4, 5 and 6 FuelPer Figure 1-17 or Figure 1-18 or Figure 1-19 or Figure 1-20 or Figure 1-21 or Figure 1-22 or Figure 1-23 or Figure 1-24Decay Heat per DSC ≤ 22.0 kW for Type 1 DSC ≤ 31.2 kW for Type 2 DSC		1-4f for Zone 6 fuel.
Burnup, Enrichment, and Minimum Cooling Time for Heat Load Zoning Configuration 8Per Table 1-4b for Zone 2 fuel, Table 1-4c for Zone 3 fuel, Table 1-4d for Zone 4 fuel, and Table 1-4e for Zone 5 fuel.Maximum Lattice Average Initial EnrichmentPer Table 1-1v or Table 1-1w or Table 1-1w1Maximum Pellet Enrichment5.0 wt. % U-235Maximum Decay Heat Limits for Zones 1, 2, 3, 4, 5 and 6 FuelPer Figure 1-17 or Figure 1-18 or Figure 1-19 or Figure 1-20 or Figure 1-21 or Figure 1-22 or Figure 1-23 or Figure 1-24Decay Heat per DSC \leq 22.0 kW for Type 1 DSC \leq 31.2 kW for Type 2 DSC	Burnup, Enrichment, and Minimum Cooling Time	Per Table 1-4d for Zone 4 fuel and Table 1-4e for
for Heat Load Zoning Configuration 8Zone 3 fuel, Table 1-4d for Zone 4 fuel, and Table 1-4e for Zone 5 fuel.Maximum Lattice Average Initial EnrichmentPer Table 1-1v or Table 1-1w or Table 1-1w1Maximum Pellet Enrichment5.0 wt. % U-235Maximum Decay Heat Limits for Zones 1, 2, 3, 4, 5 and 6 FuelPer Figure 1-17 or Figure 1-18 or Figure 1-19 or Figure 1-20 or Figure 1-21 or Figure 1-22 or Figure 1-23 or Figure 1-24Decay Heat per DSC \leq 22.0 kW for Type 1 DSC \leq 31.2 kW for Type 2 DSC	for Heat Load Zoning Configuration 7	Zone 5 fuel.
Indeximum Lattice Average Initial Enrichment1-4e for Zone 5 fuel.Maximum Lattice Average Initial EnrichmentPer Table 1-1v or Table 1-1w or Table 1-1w1Maximum Pellet Enrichment5.0 wt. % U-235Maximum Decay Heat Limits for Zones 1, 2, 3, 4, 5 and 6 FuelPer Figure 1-17 or Figure 1-18 or Figure 1-19 or Figure 1-20 or Figure 1-21 or Figure 1-22 or Figure 1-23 or Figure 1-24Decay Heat per DSC $\leq 22.0 \text{kW}$ for Type 1 DSC $\leq 31.2 \text{kW}$ for Type 2 DSC	Burnup, Enrichment, and Minimum Cooling Time	Per Table 1-4b for Zone 2 fuel, Table 1-4c for
Maximum Lattice Average Initial EnrichmentPer Table 1-1v or Table 1-1w or Table 1-1w1Maximum Pellet Enrichment5.0 wt. % U-235Maximum Decay Heat Limits for Zones 1, 2, 3, 4, 5 and 6 FuelPer Figure 1-17 or Figure 1-18 or Figure 1-19 or Figure 1-20 or Figure 1-21 or Figure 1-22 or Figure 1-23 or Figure 1-24Decay Heat per DSC $\leq 22.0 kW$ for Type 1 DSC $\leq 31.2 kW$ for Type 2 DSC	for Heat Load Zoning Configuration 8	Zone 3 fuel, Table 1-4d for Zone 4 fuel, and Table
Maximum Pellet Enrichment5.0 wt. % U-235Maximum Decay Heat Limits for Zones 1, 2, 3, 4, 5 and 6 FuelPer Figure 1-17 or Figure 1-18 or Figure 1-19 or Figure 1-20 or Figure 1-21 or Figure 1-22 or Figure 1-23 or Figure 1-24Decay Heat per DSC< 22.0 kW for Type 1 DSC < 31.2 kW for Type 2 DSC		1-4e for Zone 5 fuel.
Maximum Decay Heat Limits for Zones 1, 2, 3, 4, 5 and 6 FuelPer Figure 1-17 or Figure 1-18 or Figure 1-19 or Figure 1-20 or Figure 1-21 or Figure 1-22 or Figure 1-23 or Figure 1-24Decay Heat per DSC< 22.0 kW for Type 1 DSC < 31.2 kW for Type 2 DSC	Maximum Lattice Average Initial Enrichment	Per Table 1-1v or Table 1-1w or Table 1-1w1
5 and 6 Fuel Figure 1-20 or Figure 1-21 or Figure 1-22 or Figure 1-23 or Figure 1-24 Figure 1-24 Decay Heat per DSC ≤ 22.0 kW for Type 1 DSC ≤ 31.2 kW for Type 2 DSC	Maximum Pellet Enrichment	
5 and 6 Fuel Figure 1-20 or Figure 1-21 or Figure 1-22 or Figure 1-23 or Figure 1-24 Figure 1-24 Decay Heat per DSC ≤ 22.0 kW for Type 1 DSC ≤ 31.2 kW for Type 2 DSC	Maximum Decay Heat Limits for Zones 1, 2, 3, 4,	Per Figure 1-17 or Figure 1-18 or Figure 1-19 or
Decay Heat per DSC ≤ 22.0 kW for Type 1 DSC ≤ 31.2 kW for Type 2 DSC	5 and 6 Fuel	
≤ 31.2 kW for Type 2 DSC		Figure 1-23 or Figure 1-24
	Decay Heat per DSC	≤ 22.0 kW for Type 1 DSC
Minimum B10 Concentration in Poison Plates Per Table 1-1v or Table 1-1w or Table 1-1w1		
	Minimum B10 Concentration in Poison Plates	Per Table 1-1v or Table 1-1w or Table 1-1w1

Table 1-1u BWR Fuel Assembly Design Characteristics⁽¹⁾ for the NUHOMS[®]-61BTH DSC

Transnuclear ID	7x7- 49/0	8x8- 63/1	8x8- 62/2	8x8- 60/4	8x8- 60/1	9x9- 74/2	10x10- 92/2	7x7- 49/0	7x7- 48/1Z	8x8- 60/4Z	8x8- 62/2	9x9- 79/2	Siemens QFA	10x10- 91/1
Initial Design or Reload Fuel Designation	GE1 GE2 GE3	GE4	GE-5 GE-Pres GE-Barrier GE8 Type I	GE8 Type II	GE9 GE10	GE11 GE13	GE12 GE14	ENC- IIIA	ENC- III ⁽²⁾	ENC Va ENC Vb	FANP 8x8-2	FANP9 9x9-2	9x9	ATRIUM- 10
Maximum Length (in) (Unirradiated)	176.51	176.51	176.51	176.51	176.51	176.51	176.51	176.51	176.51	176.51	176.51	176.2	176.51	176.51
Fissile Material	UO ₂	UO ₂	UO ₂	UO ₂	UO ₂	UO ₂	UO ₂	UO ₂	UO ₂	UO ₂	UO ₂	UO ₂	UO ₂	UO ₂
Maximum Number of Fuel Rods	49	63	62	60	60	74	92	49	48	60	62	79	72	91

(1) Any fuel channel average thickness up to 0.120 inch is acceptable on any of the fuel designs.(2) Includes ENC-IIIE and ENC-IIIF.

Table 1-1vMaximum Fuel Assembly Lattice Average Initial Enrichment v/s Minimum B10Requirements for the NUHOMS®-61BTH DSC Poison Plates (Intact Fuel)

61BTH DSC Type	Basket Type	Maximum Lattice Average	Minimum B10 Areal Density, (grams/cm²)			
отвти востуре	Daskel Type	Enrichment (wt. % U-235)	Borated Aluminum/MMC	Boral®		
	А	3.7	0.021	0.025		
	В	4.1	0.032	0.038		
1	С	4.4	0.040	0.048		
I	D	4.6	0.048	0.058		
	E	4.8	0.055	0.066		
	F	5.0	0.062	0.075		
	А	3.7	0.022	0.027		
	В	4.1	0.032	0.038		
2	С	4.4	0.042	0.050		
2	D	4.6	0.048	0.058		
	E	4.8	0.055	0.066		
	F	5.0	0.062	0.075		

Table 1-1wMaximum Fuel Assembly Lattice Average Initial Enrichment v/s Minimum B10 Requirements for
the NUHOMS®-61BTH DSC Poison Plates (Damaged Fuel)

		Maximum La Enrichment	ttice Average (wt% U-235)	Minimum B10 Areal Density, (grams/cm²)			
61BTH DSC Type	Basket Type	Up to 4 Damaged Assemblies ⁽¹⁾	Five or More Damaged Assemblies ⁽¹⁾ (16 Maximum)	Borated Aluminum/MMC	Boral®		
	A	3.7	2.80	0.021	0.025		
	В	4.1	3.10	0.032	0.038		
1	С	4.4	3.20	0.040	0.048		
I	D	4.6	3.40	0.048	0.058		
	E	4.8	3.50	0.055	0.066		
	F	5.0	3.60	0.062	0.075		
	A	3.7	2.80	0.022	0.027		
	В	4.1	3.10	0.032	0.038		
2	2 C		3.20	0.042	0.050		
2 D		4.6	3.40	0.048	0.058		
	E	4.8	3.50	0.055	0.066		
	F	5.0	3.60	0.062	0.075		

Note 1: See Figure 1-25 for the location of damaged fuel assemblies within the 61BTH DSC.

Table 1-1w1 BWR Fuel Assembly Lattice Average Initial Enrichment v/s Minimum B10 Requirements for the NUHOMS[®]-61BTH DSC Poison Plates (Failed and Damaged Fuel)

	Maximum Lattice Average Enrichment Minimum B10 Areal Densir (wt% U-235) (grams/cm ²)						
61BTH DSC Type	Basket Type	Up to 4 Failed Assemblies (Corner Locations) ⁽¹⁾	Up to 4 Failed Assemblies (Corner Locations) and up to 12 Damaged Assemblies (Interior Locations) ⁽¹⁾	Borated Aluminum/MMC	Boral®		
	Α	3.7 2.8		0.022	0.027		
	В	4.0	3.1	0.032	0.038		
2	С	4.4	3.2	0.042	0.050		
2	D	4.6	3.4	0.048	0.058		
	E	4.8 3.4		0.055	0.066		
	F	5.0 3.5		0.062	0.075		

Note 1: See Figure 1-25 for the location of the failed and damaged fuel assemblies within the 61BTH DSC.

Table 1-1x (Not Used)

Table 1-1y (Not Used)

Table 1-1z (Not Used)

Table 1-1aa
PWR Fuel Specification for the Fuel to be Stored in the NUHOMS [®] -32PTH1 DSC

Fuel Class Intact or damaged unconsolidated B&W 15x15, WE 17x17, C Fuel Class CE 15x15, WE 15x17, CE 14x14, WE 14x14 and CE 15x16 dass. FWR assembles (with or without control components) that are enveloped by the fuel assembly design characteristics listed in Table 1-tb. Reload fuel manufactured by other vendors but enveloped by the design characteristics listed in Table 1-tb. Reload fuel manufactured by other vendors but enveloped by the design characteristics listed in Table 1-tb. Reload fuel manufactured by other vendors but enveloped by the design characteristics listed in Table 1-tb. Reload fuel manufactured by other vendors but enveloped by the design characteristics listed in Table 1-tb. Reload fuel manufactured by other vendors but enveloped by the design characteristics listed in Table 1-tb. Reload fuel manufactured by other vendors but enveloped by the design characteristics listed in Table 1-tb. Reload fuel manufactured by other vendors but enveloped by the design characteristics listed in Table 1-tb. Reload fuel manufactured by other vendors but enveloped by the design characteristics listed in Table 1-tb. Reload fuel manufactured by other vendors by the fuel assembly is to be limited such that the fuel assembly is to be limited such that the fuel assemblies or suspected cladding defects greater than halfine cracks or suspected listed stainless Steel Rods Reconstituted Fuel Assemblies per DSC with unlimited number of low enriched U02 rods, or Zr Rods or Zr Pellets or Uniradiated Stainless Steel Rods 4 Outrol Components (CCs) • Up to 32 CCs are authorized for storage in 32PTH1. S 32PTH1-M and 32PTH1-L DSCs. Control Components (CCs) • Up to 32 CCs are authorized for storage in 32PTH1. S 32PTH1-M and 32PTH1-L DSCs. Control Componen	PWR Fuel Specification for the Fuel to be Stored in PHYSICAL PARAMETERS:	
Fuel Class CE 15x15, WE ¹ 5x15, CE 14x14, WE 14x14 and CE 16x16 class PWR assemblies (with or without control components) that are enveloped by the classemoly design characteristics listed in Table 1-tab. Reload fuel 	PHISICAL PARAMIETERS.	Intact or damaged unconsolidated B&W 15x15 WE 17x17
Fuel Damage missing or partial fuel rods or fuel rods with known or suspected cladding defects greater than harine cracks or pinhole leaks. The extent of damage in the fuel assembly is to be limited such that the fuel assembly will still be able to be handled by normal and off-normal conditions. Missing fuel rods are allowed. Damaged fuel assemblies is to be limited such that the fuel assemblies or tie plates depending on the fuel type. Reconstituted Fuel Assemblies: 4 • Maximum Number of Reconstituted Assemblies per DSC with Irradiated Stainless Steel Rods 4 • Maximum Number of Reconstituted Assemblies per DSC with Irradiated Stainless Steel Rods 10 • Maximum Number of Reconstituted Assemblies per DSC with Irradiated Stainless Steel Rods 32 • Up to 32 CCs are authorized for storage in 32PTH1-S, 32PTH1-M and 32PTH1-L DSCs. 4 • Semblies (RFAs), Thimble Plug Assemblies (TPAs), Control Rod Assemblies (RCRAs), Rod Culturable Poison Rod Assemblies (RCRAs), Not Rod Assemblies (RCRAs), Not Rod Culture Control Rod Assemblies (RCRAs), Not Rod	Fuel Class	CE 15x15, WE 15x15, CE 14x14, WE 14x14 and CE 16x16 class PWR assemblies (with or without control components) that are enveloped by the fuel assembly design characteristics listed in Table 1-1bb. Reload fuel manufactured by other vendors but enveloped by the design characteristics listed in Table 1-1bb is also acceptable. Damaged fuel assemblies beyond the definition contained below are not authorized for storage
 Maximum Number of Reconstituted Assemblies per DSC With Irrediated Stainless Steel Rods Maximum Number of Irradiated Stainless Steel Rods Maximum Number of Reconstituted Assemblies per DSC with unlimited number of low enriched UO2 rods, or Zr Rods or Zr Pellets or Unirradiated Stainless Up to 32 CCs are authorized for storage in 32PTH1-S, 32PTH1-M and 32PTH1-L DSCs. Authorized CCs include Burnable Poison Rod Assemblies (RPRAs), Thinble Plug Assemblies (TPAs), Control Rod Assemblies (CRAs), Avial Power Shaping Rod Assemblies (RPCAs), Notifice Rod Assemblies (ORAs), Vibration Supression Inserts (VSIs), Neutron Sources, Non-fuel hardware that are positioned within the fuel assembly after the fuel assembly is discharged from the core such as Guide Tube or Instrument Tube Tie Rods or Anchors, Guide Tube or Instrument Tube Tie Rods or Anchors, Guide Tube or Instrument Tube Tie Rods or Anchors, Guide Tube or Instrument Tube Tie Rods or Anchors, Guide Tube or Instrument Tube Tie Rods or Anchors, Guide Tube or Instrument Tube Tie Rods or Anchors, Guide Tube or Instrument Tube Tie Rods or Anchors, Guide Tube or Instrument Tube Tie Rods or Anchors, Guide Tube or Instrument Tube Tie Rods or Anchors, Guide Tube or Instrument Tube Tie Rods or Anchors, Guide Tube Inserts (PCS) Number of Intact Assemblies Number of Intact Assemblies Number and Location of Damaged Assemblies Sage Steel Rods or Damaged Assemblies Sage Steel Rods or Anchors, Core are also considered as CCS. Design basis thermal and radiological characteristics for the CCS are listed in Table 1-1ee. Sage Steel Rods and the Assemblies are authorized for storage in 32PTH1 DSC. Damaged fuel assemblies are to be placed in the center 16 locations as shown in Figures 1-26 through 1-28. The DSC basket cells which store damaged fuel assemblies are provided with top and bottom end caps. 		missing or partial fuel rods or fuel rods with known or suspected cladding defects greater than hairline cracks or pinhole leaks. The extent of damage in the fuel assembly is to be limited such that the fuel assembly will still be able to be handled by normal means and retrievability is assured following normal and off-normal conditions. Missing fuel rods are allowed. Damaged fuel assemblies shall also contain top and bottom end fittings or nozzles or
DSC With Irradiated Stainless Steel Rods 10 Maximum Number of Irradiated Stainless Steel Rods 10 Maximum Number of Reconstituted Assemblies per DSC with unlimited number of low enriched UO2 rods, or Zr Rods or Zr Pellets or Unirradiated Stainless Steel Rods 32 Up to 32 CCs are authorized for storage in 32PTH1-S, 32PTH1-M and 32PTH1-L DSCs. Authorized CCs include Burnable Poison Rod Assemblies (BPRAs), Thimble Plug Assemblies (TPAs), Control Rod Assemblies (CRAs), Rod Cluster Control Rod Assemblies (APSRAs), Orfice Rod Assemblies (APSRAs), Orfice Rod Assemblies (RCAs), Neutron Source Assemblies (NSAs) and Neutron Source Assemblies (SAS) and Neutron Source Assemblies (CCS). Number of Intact Assemblies Steel Rods Umber of Intact Assemblies Up to 32 CCs are authorized for storage in 32PTH1-S, 32PTH1-M and 32PTH1-DSCs. Authorized CCs include Burnables (NCAs), Rod Cluster Control Rod Assemblies (PCRAs), Nedron Source Assemblies (NCAs), Nor Close Rods (NCAs), Nor Close Rods (NCAs), Nor Close Rods (NCAs), Neutron Source Assemblies (NSAs) and Neutron Source Assemblies (DCAs), Control Components (CCs) Number of Intact Assemblies Design basis thermal and radiological characteristics for the CCs are listed in Table 1-1ee. Numbe		
 Maximum Number of Irradiated Stainless Steel Rods per Reconstituted Fuel Assembly Maximum Number of Reconstituted Assemblies per DSC with unlimited number of low enriched UO2 rods, or Zr Rods or Zr Pellets or Unirradiated Stainless Steel Rods Up to 32 CCs are authorized for storage in 32PTH1- S, 32PTH1-M and 32PTH1-L DSCs. Authorized CCs include Burnable Poison Rod Assemblies (BPRAs), Thimble Plug Assemblies (TPAs), Control Rod Assemblies (RCAs), Rod Cluster Control Assemblies (RCAs), Axial Power Shaping Rod Assemblies (RCAs), Vibration Supression Inserts (VSIs), Neutron Source Assemblies (RCAs), Axial Power Storage In Start Internet Tube Tie Rods or Anchors, Guide Tube Inserts, BPRA Spacer Plates or devices that are positioned and operated within the fuel assembly during reactor operation such as those listed above are also considered as CCs. Design basis thermal and radiological characteristics for the CCs are listed in Table 1-1ee. 32 Number of Inta		4
• Maximum Number of Reconstituted Assemblies per DSC with unlimited number of low enriched UO2 rods, or Zr Rods or Zr Pellets or Unirradiated Stainless Steel Rods 32 • Up to 32 CCs are authorized for storage in 32PTH1-S, 32PTH1-M and 32PTH1-L DSCs. • Up to 32 CCs are authorized for storage in 32PTH1-S, 32PTH1-M and 32PTH1-L DSCs. • Authorized CCs include Burnable Poison Rod Assemblies (BPRAs), Thimble Plug Assemblies (TPAs), Control Rod Assemblies (ICRAs), Rod Cluster Control Assemblies (ICRAs), Rod Cluster Control Assemblies (RCCAs), Axial Power Shaping Rod Assemblies (ORAs), Vibration Suppression Inserts (VSIs), Neutron Sources, Non-fuel hardware that are positioned within the fuel assembly after the fuel assembly is discharged from the core such as Guide Tube or Instrument Tube Te Rods or Anchors, Guide Tube or Instrument Tube Te Rods or Anchors, Guide Tube or Instrument Tube Te Rods or Anchors, Guide Tube or Instrument Tube Ta Rods or Anchors, Guide Tube or Instrument and considered as CCs. Number of Intact Assemblies \$ 32 Number of Intact Assemblies \$ 32 Number and Location of Damaged Assemblies \$ 32		10
DSC with unlimited number of low enriched UO2 rods, or Zr Rods or Zr Pellets or Unirradiated Stainless Steel Rods Up to 32 CCs are authorized for storage in 32PTH1-S, 32PTH1-L and 32PTH1-L DSCs. Authorized CCs include Burnable Poison Rod Assemblies (BPRAs), Thimble Plug Assemblies (TPAs), Control Rod Assemblies (CRAs), Rod Cluster Control Rod Assemblies (APSRAs), Orffice Rod Assemblies (ORAs), Vibration Suppression Inserts (VSIs), Neutron Source Assemblies (NSAs) and Neutron Source Assemblies (NSAs) and Neutron Sources. Non-fuel hardware that are positioned within the fuel assembly is discharged from the core such as Guide Tube or Instrument Tube Tie Rods or Anchors, Guide Tube Inserts, BPRA Spacer Plates or devices that are positioned and operated within the fuel assembly during reactor operation such as those listed above are also considered as CCs. Design basis thermal and radiological characteristics for the CCs are listed in Table 1-1ee. Number of Intact Assemblies Sage Number and Location of Damaged Assemblies Sage Sage Summer and Location of Damaged Assemblies Sage Sage	per Reconstituted Fuel Assembly	
• Up to 32 CCs are authorized for storage in 32PTH1-S, 32PTH1-M and 32PTH1-L DSCs. • Authorized CCs include Burnable Poison Rod Assemblies (BPRAs), Thimble Plug Assemblies (TPAs), Control Rod Assemblies (RCCAs), Axial Power Shaping Rod Assemblies (APSRAs), Orifice Rod Assemblies (ORAs), Vibration Suppression Inserts (VSIs), Neutron Source Assemblies (NSAs) and Neutron Sources. Non-fuel hardware that are positioned within the fuel assembly is discharged from the core such as Guide Tube or Instrument Tube Tie Rods or Anchors, Guide Tube or Instrument Tube Tie Rods or Anchors, Guide Tube or Instrument Tube Tie Rods or Anchors, Guide Tube or Instrument Tube Tie Rods or Anchors, Guide Tube or Instrument Tube Tie Rods or Anchors, Guide Tube Inserts, BPRA Spacer Plates or devices that are positioned and operated within the fuel assembly during reactor operation such as those listed above are also considered as CCs. • Design basis thermal and radiological characteristics for the CCs are listed in Table 1-1ee. Number of Intact Assemblies ≤ 32 Number and Location of Damaged Assemblies ≤ 32 Number and Location of Damaged Assemblies Damaged fuel assemblies are authorized for storage in 32PTH1 DSC. Damaged fuel assemblies are to be placed in the center 16 locations as shown in Figures 1-26 through 1-28. The DSC basket cells which store damaged fuel assemblies are provided with top and bottom end caps.	DSC with unlimited number of low enriched UO2 rods, or Zr Rods or Zr Pellets or Unirradiated Stainless	32
S, 32PTH1-M and 32PTH1-L DSCs. Authorized CCs include Burnable Poison Rod Assemblies (BPRAs), Thimble Plug Assemblies (TPAs), Control Rod Assemblies (ICRAs), Rod Cluster Control Assemblies (RCCAs), Axial Power Shaping Rod Assemblies (APSRAs), Orifice Rod Assemblies (ORAs), Vibration Suppression Inserts (VSIs), Neutron Source Assemblies (NSAs) and Neutron Sources. Non-fuel hardware that are positioned within the fuel assembly after the fuel assemblies isocharged from the core such as Guide Tube or Instrument Tube Tie Rods or Anchors, Guide Tube Inserts, BPRA Spacer Plates or devices that are positioned and operated within the fuel assembly during reactor operation such as those listed above are also considered as CCs. Design basis thermal and radiological characteristics for the CCs are listed in Table 1-1ee. Number of Intact Assemblies S 32 Number and Location of Damaged Assemblies Damaged fuel assemblies are to be placed in the center 16 locations as shown in Figures 1-26 through 1-28. The DSC basket cells which store damaged fuel assemblies are provided with top and bottom end caps.	Steel Rods	
Number of Intact Assemblies ≤ 32 Up to 16 damaged fuel assemblies with balance intact fuel assemblies, or dummy assemblies are authorized for storage in 32PTH1 DSC. Number and Location of Damaged Assemblies Damaged fuel assemblies are to be placed in the center 16 locations as shown in Figures 1-26 through 1-28. The DSC basket cells which store damaged fuel assemblies are provided with top and bottom end caps.	Control Components (CCs)	 S, 32PTH1-M and 32PTH1-L DSCs. Authorized CCs include Burnable Poison Rod Assemblies (BPRAs), Thimble Plug Assemblies (TPAs), Control Rod Assemblies ((CRAs), Rod Cluster Control Assemblies (RCCAs), Axial Power Shaping Rod Assemblies (APSRAs), Orifice Rod Assemblies (ORAs), Vibration Suppression Inserts (VSIs), Neutron Source Assemblies (NSAs) and Neutron Sources. Non-fuel hardware that are positioned within the fuel assembly after the fuel assembly is discharged from the core such as Guide Tube or Instrument Tube Tie Rods or Anchors, Guide Tube Inserts, BPRA Spacer Plates or devices that are positioned and operated within the fuel assembly during reactor operation such as those listed above are also considered as CCs. Design basis thermal and radiological characteristics
Number and Location of Damaged Assembliesassemblies, or dummy assemblies are authorized for storage in 32PTH1 DSC. Damaged fuel assemblies are to be placed in the center 16 locations as shown in Figures 1-26 through 1-28. The DSC basket cells which store damaged fuel assemblies are provided with top and bottom end caps.	Number of Intact Assemblies	≤ 32
Maximum Assembly plus CC Weight 1715 lbs		assemblies, or dummy assemblies are authorized for storage in 32PTH1 DSC. Damaged fuel assemblies are to be placed in the center 16 locations as shown in Figures 1-26 through 1-28. The DSC basket cells which store damaged fuel assemblies are provided with top and bottom end caps.
(continued)	Maximum Assembly plus CC Weight	1715 lbs

(continued)

 Table 1-1aa

 PWR Fuel Specification for the Fuel to be Stored in the NUHOMS[®]-32PTH1 DSC

THERMAL/RADIOLOGICAL PARAMETERS: Allowable Heat Load Zoning Configurations for each 32PTH1 DSC	Per Figure 1-26 or Figure 1-27 or Figure 1-28.
Burnup, Enrichment, and Minimum Cooling Time for Configuration 1	Per Table 1-5a for Zone 1 fuel, Per Table 1-5d and Table 1-5e for Zone 5 fuel, and Per Table 1-5f for Zone 6 fuel.
Burnup, Enrichment, and Minimum Cooling Time for Configuration 2	Per Table 1-5c for Zone 4 and Zone 3 fuel.
Burnup, Enrichment, and Minimum Cooling Time for Configuration 3	Per Table 1-5b for Zone 2 fuel.
Maximum Planar Average Initial Fuel Enrichment	Per Table 1-1cc or Table 1-1dd
Maximum Decay Heat Limits for Zones 1, 2, 3, 4, 5 and 6 Fuel	Per Figure 1-26 or Figure 1-27 or Figure 1-28.
Decay Heat per DSC	 ≤ • 40.8 kW for 32PTH1-S, 32PTH1-M and 32PTH1-L DSCs (Type 1 Basket). ≤ 31.2 kW for 32PTH1-S, 32PTH1-M and 32PTH1-L DSCs (Type 2 Basket).
Minimum Boron Loading	Per Table 1-1cc or Table 1-1dd.

Table 1-1bb
PWR Fuel Assembly Design Characteristics for the NUHOMS [®] -32PTH1 DSC

Assembly Class		B&W 15x15	WE 17x17	CE 15x15	WE 15x15	CE 14x14	WE 14x14	CE 16x16
Maximum	32PTH1-S	162.6	162.6	162.6	162.6	162.6	162.6	162.6
Unirradiated Length (in) ⁽¹⁾		170.0	170.0	170.0	170.0	170.0	170.0	170.0
(11)* /	(III) 32PTH1-L		178.3	178.3	178.3	178.3	178.3	178.3
Fissile Material		UO ₂	UO ₂	UO2	UO2	UO2	UO ₂	UO2
Maximum MTU/Assembly ⁽²⁾		0.49	0.49	0.49	0.49	0.49	0.49	0.49
Maximum Number of Fuel Rods		208	264	216	204	176	179	236
Maximum Number of Guide/ Instrument Tubes		17	25	9	21	5	17	5

Notes:

(1) Maximum Assembly + Control Component Length (unirradiated).

(2) The maximum MTU/assembly is based on the shielding analysis. The listed value is higher than the actual.

Table 1-1cc
Maximum Planar Average Initial Enrichment v/s Neutron Poison Requirements for
32PTH1 DSC (Intact Fuel)

Maximum Planar Average Initial Enrichment (wt. % U-235) as a Fu Soluble Boron Concentration and Basket Type (Fixed Poison L						
Fuel Assembly Class	Minimum Soluble Boron	Basket Type ⁽¹⁾				
	(ppm)	1A or 2A	1B or 2B	1C or 2C	1D or 2D	1E or 2E
	2000	3.40	3.80	3.90	4.10	4.30
	2300	3.70	4.00	4.20	4.40	4.70
WE 17x17 Assembly	2400	3.70	4.10	4.30	4.50	4.80
Class ⁽⁴⁾	2500	3.80	4.20	4.40	4.60	4.90
01055	2800	4.00	4.50	4.70	5.00	5.00
	3000	4.20	4.60	4.80	5.00	5.00
	2000	3.90	4.30	4.50	4.80	5.00
CE 16x16 Assembly Class ⁽⁵⁾	2300	4.10	4.60	4.80	5.00	5.00
	2400	4.20	4.70	4.90	5.00	5.00
	2500	4.30	4.80	5.00	5.00	5.00
	2800	4.60	5.00	5.00	5.00	5.00
	3000	4.70	5.00	5.00	5.00	5.00
	2000	3.30	3.60	3.80	4.00	4.20
BW 15x15	2300	3.50	3.90	4.10	4.30	4.60
Assembly	2400	3.60	4.00	4.20	4.40	4.70
Class ⁽⁵⁾	2500	3.70	4.10	4.30	4.50	4.80
Class	2800	3.90	4.30	4.50	4.80	5.00
	3000	4.10	4.50	4.70	5.00	5.00
	2000	3.50	3.90	4.00	4.20	4.40
CE 15x15	2300	3.80	4.10	4.30	4.60	4.80
Assembly	2400	3.90	4.30	4.40	4.70	4.90
Class ⁽⁵⁾	2500	3.90	4.35	4.50	4.80	5.00
01000	2800	4.20	4.60	4.80	5.00	5.00
	3000	4.30	4.80	5.00	5.00	5.00

(continued)

Table 1-1ccMaximum Planar Average Initial Enrichment v/s Neutron Poison Requirements for
32PTH1 DSC (Intact Fuel)

Fuel Assembly Class	Minimum Soluble Boron	Maximum Planar Average Initial Enrichment (wt. % U-235) as a Function of Soluble Boron Concentration and Basket Type (Fixed Poison Loading) Basket Type ⁽¹⁾				
	(ppm)	1A or 2A	1B or 2B	1C or 2C	1D or 2D	1E or 2E
	2000	3.50	3.80	3.90	4.20	4.40
	2300	3.70	4.10	4.20	4.50	4.80
WE 15x15	2400	3.80	4.20	4.40	4.60	4.90
Assembly Class ⁽⁵⁾	2500	3.90	4.30	4.50	4.70	5.00
	2800	4.10	4.50	4.70	5.00	5.00
	3000	4.20	4.70	4.90	5.00	5.00
	2000	3.90	4.40	4.60	4.90	5.00
	2300	4.20	4.70	5.00	5.00	5.00
CE 14x14	2400	4.30	4.80	5.00	5.00	5.00
Assembly Class ⁽⁶⁾	2500	4.40	5.00	5.00	5.00	5.00
	2800	4.60	5.00	5.00	5.00	5.00
	3000	4.80	5.00	5.00	5.00	5.00
	2000	4.20	4.70	4.90	5.00	5.00
	2300	4.50	5.00	5.00	5.00	5.00
WE 14x14	2400	4.60	5.00	5.00	5.00	5.00
Assembly Class ⁽⁷⁾	2500	4.70	5.00	5.00	5.00	5.00
	2800	5.00	5.00	5.00	5.00	5.00
	3000	5.00	5.00	5.00	5.00	5.00

Notes:

- (1) The fixed poison loading requirements as a function of Basket Type are specified in Table 1-1ff.
- (2) Not used.
- (3) Not used.
- (4) Reduce Maximum Planar Average Initial Enrichment by 0.05 wt. % U-235 for assemblies with CCs that extend into the active fuel region.
- (5) Reduce Maximum Planar Average Initial Enrichment by 0.10 wt. % U-235 for assemblies with CCs that extend into the active fuel region.
- (6) Reduce Maximum Planar Average Initial Enrichment by 0.25 wt. % U-235 for assemblies with CCs that extend into the active fuel region.
- (7) No reduction in Maximum Planar Average Initial Enrichment required for assemblies with CCs that extend into the active fuel region.

Table 1-1dd Maximum Planar Average Initial Enrichment v/s Neutron Poison Requirements for 32PTH1 DSC (Damaged Fuel)							
	Maximum Planar Average Initial Enrichment (wt. % U-235) as a Function of Soluble Boron Concentration and Basket Type (Fixed Poison Loading)						
Fuel Assembly Class	Minimum Soluble Basket Type ⁽¹⁾) (1)		
	Boron (ppm)	1A or 2A	1B or 2B	1C or 2C	1D or 2D	1E or 2E	
	2000	3.40	3.70	3.80	4.05	4.25	
WE 17x17	2300	3.60	3.95	4.10	4.35	4.65	
Assembly Class	2400	3.70	4.05	4.20	4.45	4.75	
(without CCs)	2500	3.75	4.15	4.30	4.55	4.85	
(minout 000)	2800	4.00	4.40	4.60	4.85	5.00	
	3000	4.15	4.55	4.75	5.00	5.00	
	2000	3.35	3.65	3.75	4.00	4.20	
WE 17x17	2300	3.55	3.90	4.05	4.30	4.55	
Assembly Class	2400	3.65	4.00	4.15	4.40	4.70	
(with CCs)	2500	3.70	4.10	4.25	4.50	4.75	
(with 003)	2800	3.95	4.35	4.55	4.80	5.00	
	3000	4.10	4.50	4.70	5.00	5.00	
	2000	3.65	4.05	4.20	4.50	4.75	
	2300	3.90	4.30	4.50	4.80	5.00	
CE 16x16 Assembly	2400	4.00	4.40	4.60	4.90	5.00	
Class (without CCs)	2500	4.05	4.50	4.70	5.00	5.00	
	2800	4.30	4.80	5.00	5.00	5.00	
	3000	4.50	4.95	5.00	5.00	5.00	
	2000	3.60	3.95	4.10	4.40	4.65	
	2300	3.80	4.20	4.40	4.70	4.90	
CE 16x16 Assembly	2400	3.90	4.30	4.50	4.80	5.00	
Class (with CCs)	2500	4.00	4.40	4.60	4.80	5.00	
	2800	4.20	4.70	4.90	5.00	5.00	
	3000	4.40	4.85	5.00	5.00	5.00	

(continued)

Table 1-1dd

Maximum Planar Average Initial Enrichment v/s Neutron Poison Requirements for 32PTH1 DSC (Damaged Fuel)

Fuel Assembly Class	Minimum Soluble Boron	Maximum Pla Function of	ment (wt. % L tion and Bas ing)				
	(ppm)	Basket Type ⁽¹⁾ 1A or 2A 1B or 2B 1C or 2C 1D or 2D 1E 0					
	2000	3.30	3.60	3.75	3.95	4.20	
BW 15x15	2300	3.50	3.90	4.05	4.30	4.50	
Assembly	2400	3.60	4.00	4.15	4.40	4.65	
Class (without	2500	3.65	4.05	4.20	4.50	4.75	
CCs)	2800	3.90	4.30	4.50	4.75	5.00	
	3000	4.05	4.45	4.65	5.00	5.00	
	2000	3.20	3.50	3.65	3.90	4.10	
BW 15x15	2300	3.40	3.80	3.95	4.20	4.40	
Assembly	2400	3.50	3.90	4.05	4.30	4.55	
Class (with	2500	3.60	4.00	4.15	4.40	4.65	
CCs)	2800	3.80	4.20	4.40	4.65	4.90	
	3000	3.95	4.40	4.55	4.90	5.00	
	2000	3.35	3.70	3.80	4.05	4.25	
CE 15x15	2300	3.60	3.95	4.10	4.30	4.60	
Assembly	2400	3.65	4.05	4.20	4.45	4.70	
Class (without	2500	3.75	4.15	4.30	4.55	4.80	
CCs)	2800	4.00	4.40	4.60	4.85	5.00	
	3000	4.15	4.55	4.75	5.00	5.00	
	2000	3.30	3.65	3.80	4.00	4.20	
CE 15x15	2300	3.55	3.90	4.05	4.30	4.55	
Assembly	2400	3.65	4.00	4.15	4.45	4.65	
Class (with	2500	3.70	4.10	4.25	4.50	4.80	
CCs)	2800	3.95	4.35	4.55	4.80	5.00	
	3000	4.10	4.55	4.70	5.00	5.00	
	2000	3.40	3.75	3.90	4.15	4.30	
WE 15x15	2300	3.65	4.00	4.20	4.45	4.70	
Assembly	2400	3.75	4.10	4.30	4.55	4.80	
Class (without	2500	3.80	4.20	4.40	4.65	4.90	
CCs)	2800	4.05	4.45	4.60	4.90	5.00	
	3000	4.20	4.60	4.80	5.00	5.00	

(continued)

Table 1-1ddMaximum Planar Average Initial Enrichment v/s Neutron Poison Requirements for
32PTH1 DSC (Damaged Fuel)

Minimum Planar Average Initial Enrichment (wt. % U-235) as a						
	Minimum Eunction of Soluble Boron Concentration and Bask					
Fuel Assembly	Soluble	(Fixed Poison Loading)				
Class	Boron	Basket Type ⁽¹⁾				
	(ppm)	1A or 2A	1C or 2C	1D or 2D	1E or 2E	
	2000	3.35	1B or 2B 3.65	3.80	4.00	4.20
WE 15x15	2300	3.55	3.90	4.10	4.35	4.60
Assembly	2400	3.65	4.00	4.20	4.45	4.70
Class (with	2500	3.70	4.10	4.30	4.55	4.80
CCs)	2800	3.95	4.35	4.50	4.80	5.00
,	3000	4.10	4.50	4.70	5.00	5.00
	2000	3.70	4.10	4.30	4.60	4.85
CE 14x14	2300	3.95	4.40	4.60	4.95	5.00
Assembly	2400	4.05	4.50	4.70	5.00	5.00
Class (without	2500	4.15	4.60	4.80	5.00	5.00
CCs)	2800	4.40	4.90	5.00	5.00	5.00
	3000	4.55	5.00	5.00	5.00	5.00
	2000	3.55	3.95	4.10	4.35	4.60
CE 14x14	2300	3.80	4.20	4.40	4.70	4.90
Assembly	2400	3.9	4.30	4.50	4.80	5.00
Class (with	2500	4.00	4.40	4.60	4.90	5.00
CCs)	2800	4.20	4.65	4.90	5.00	5.00
	3000	4.35	4.85	5.00	5.00	5.00
	2000	3.75	4.15	4.30	4.60	4.85
WE 14x14	2300	3.95	4.45	4.65	5.00	5.00
Assembly	2400	4.05	4.55	4.75	5.00	5.00
Class (without	2500	4.15	4.65	4.85	5.00	5.00
CCs)	2800	4.40	4.90	5.00	5.00	5.00
	3000	4.60	5.00	5.00	5.00	5.00
	2000	3.70	4.10	4.20	4.50	4.75
WE 14x14	2300	3.90	4.40	4.60	4.90	5.00
Assembly	2400	4.00	4.50	4.65	5.00	5.00
Class (with	2500	4.10	4.55	4.80	5.00	5.00
CCs)	2800	4.30	4.80	5.00	5.00	5.00
	3000	4.50	5.00	5.00	5.00	5.00

Note:

(1) The fixed poison loading requirements as a function of Basket Type are specified in Table 1-1ff.

Table 1-1eeThermal and Radiological Characteristics for Control Components Stored in the
NUHOMS®-32PT and NUHOMS®-32PTH1 DSCs

Parameter	BPRAs, NSAs, CRAs, RCCAs, VSIs, Neutron Sources, and APSRAs	TPAs and ORAs
Maximum Gamma Source (γ/sec/Assembly)	3.91E+13	4.1E+12
Decay Heat (Watts/Assembly)	8	8

<u>Note</u>: NSAs and Neutron Sources shall only be stored in the interior compartments of the basket. Interior compartments are those that are completely surrounded by other compartments, including the corners. There are twelve interior compartments in the 32PT and 32PTH1 DSCs.

Table 1-1ff
B10 Specification for the NUHOMS [®] -32PTH1 Poison Plates

NUHOMS [®] -32PTH1 DSC	Minimum B10 Areal Density, (grams/cm ²)		
Basket Type	Borated Aluminum or MMC	Boral [®]	
1A or 2A	0.007	0.009	
1B or 2B	0.015	0.019	
1C or 2C	0.020	0.025	
1D or 2D	0.032	N/A	
1E or 2E	0.050	N/A	

Table 1-1gg
BWR Fuel Specification for the Fuel to be Stored in the NUHOMS [®] -69BTH DSC

PHYSICAL PARAMETERS: Fuel class	Intact or damaged 7x7, 8x8, 9x9 or 10x10 BWR assemblies manufactured by General Electric or Exxon/ANF or FANP or ABB or reload fuel manufactured by other vendors that are enveloped by the fuel assembly design characteristics listed in Table 1-1ii. Damaged fuel assemblies beyond the definition contained below are not authorized for storage.
Fuel damage RECONSTITUTED FUEL ASSEMBLIES:	Damaged BWR fuel assemblies are assemblies containing fuel rods with known or suspected cladding defects greater than hairline cracks or pinhole leaks. The extent of damage in the fuel assembly is to be limited such that the fuel assembly will still be able to be handled by normal means. Missing fuel rods are allowed. Damaged fuel assemblies shall also contain top and bottom end fittings or nozzles or tie plates depending on the fuel type.
 Maximum Number of Reconstituted Assemblies per DSC with Irradiated Stainless Steel Rods Maximum Number of Irradiated Stainless Steel Rods per Reconstituted Fuel Assembly Maximum Number of Reconstituted Assemblies per DSC with unlimited number of low enriched UO2 rods or Zr rods or Zr pellets or Unirradiated Stainless Steel Rods 	4 10 69
Number of intact assemblies Number and location of damaged assemblies	 ≤ 69 Up to 24 damaged fuel assemblies, with balance intact or dummy assemblies, are authorized for storage in 69BTH DSC. Damaged fuel assemblies may only be stored in the locations shown in Figure 1-37. The DSC basket cells which store damaged fuel assemblies are provided with top and bottom end caps.
Channels	Fuel may be stored with or without channels, channel fasteners or finger springs.
Fissile Material	UO ₂
UO ₂	198 kg/assembly
Maximum assembly weight including channels	705 lb

(continued)

Table 1-1ggBWR Fuel Specification for the Fuel to be Stored in the NUHOMS[®]-69BTH DSC

THERMAL/RADIOLOGICAL PARAMETERS:	
Allowable heat load zoning configurations with UO2	Per Figure 1-31 or Figure 1-32 or Figure 1-33 or
fuel for each 69BTH DSC	Figure 1-34 or Figure 1-35 or Figure 1-36.
Burnup, enrichment, and minimum cooling time for	Per Table 1-7a for Zone 1 fuel or Table 1-7c for
heat load zoning configuration 1	Zone 2 fuel or Table 1-7d for Zone 3 fuel or Table
	1-7g for Zone 4 fuel or Table 1-7j for Zone 5 fuel or
	Table 1-7h for Zone 6 fuel.
Burnup, enrichment, and minimum cooling time for	Per Table 1-7c for Zone 1 fuel or Table 1-7g for
heat load zoning configuration 2	Zone 3 fuel or Table 1-7k for Zone 4 fuel or Table
	1-7i for Zone 5 fuel.
Burnup, enrichment, and minimum cooling time for	Per Table 1-7c for Zone 1 fuel or Table 1-7g for
heat load zoning configuration 3	Zone 3 fuel or Table 1-7k for Zone 4 fuel or Table
	1-7i for Zone 5 fuel.
Burnup, enrichment, and minimum cooling time for	Per Table 1-7h for Zone 2 fuel or Table 1-7I for
heat load zoning configuration 4	Zone 4 fuel or Table 1-7k for Zone 5 fuel.
Burnup, enrichment, and minimum cooling time for	Per Table 1-7b for Zone 1 fuel or Table 1-7e for
heat load zoning configuration 5	Zone 2 fuel or Table 1-7f for Zone 3 fuel or Table 1-
	7l for Zone 4 fuel or Table 1-7i for Zone 5 fuel.
Burnup, enrichment, and minimum cooling time for	Per Table 1-7b for Zone 1 fuel or Table 1-7e for
heat load zoning configuration 6	Zone 2 and Zone 4 fuel or Table 1-7f for Zone 3
	fuel.
Maximum Lattice Average Initial Enrichment	Per Table 1-1jj or Table 1-1kk
Maximum Pellet Enrichment	5.0 wt. % U-235
Maximum decay heat limits for HLZCs 1, 2, 3, 4, 5	Per Figure 1-31 or Figure 1-32 or Figure 1-33 or
and 6	Figure 1-34 or Figure 1-35 or Figure 1-36.
Decay heat per DSC	≤ 35.0 kW
Minimum B10 Concentration in Poison Plates	Per Table 1-1jj or Table 1-1kk

Table 1-1hh Not Used

 Table 1-1ii

 BWR Fuel Assembly Design Characteristics for the NUHOMS[®]-69BTH DSC

Transnuclear ID	Initial Design or Reload Fuel Designation ⁽¹⁾	Maximum Length (in) (Unirradiated)
7x7-49/0	GE1 GE2 GE3	176.6
8x8-63/1	GE4	176.6
8x8-62/2	GE-5 GE-Pres, GE-6 GE-Barrier, GE-7 GE8 Type I	176.6
8x8-60/4	GE8 Type II	176.6
8x8-60/1	GE9 GE10	176.6
9x9-74/2	GE11 GE13	176.6
10x10-92/2	GE12 GE14	176.6
7x7-49/0	ENC-IIIA	176.6
7x7-48/1Z	ENC-III ⁽²⁾	176.6
8x8-60/4Z	ENC Va ENC Vb	176.6
8x8-62/2	FANP 8x8-2	176.6
FANP 9x9	FANP9 9x9 ⁽³⁾	176.6
Siemens QFA	9x9	176.6
10x10-91/1	ATRIUM 10, ATRIUM 10XM	176.6
ABB-8x8	SVEA-64	176.6
ABB-10x10	SVEA-100 ⁽⁴⁾	176.6
LaCrosse ⁽⁵⁾	Allis Chalmers-10x10 Exxon/ANF 10x10	125

(1) Any fuel channel average thickness up to 0.120 inch is acceptable on any of the fuel designs.

(2) Includes ENC-IIIE and ENC-IIIF.

(3) Includes FANP 9.9-72, 9x9-79, 9x9-80, and 9x9-81.

(4) Includes SVEA-92, SVEA-96, SVEA-96+, SVEA-96 OPTIMA, SVEA-96 OPTIMA 2.

(5) The maximum initial uranium content is limited to 125 Kg.

Table 1-1jj

BWR Fuel Assembly Lattice Average Initial Enrichment vs Minimum B10 Requirements for the NUHOMS[®]-69BTH DSC Poison Plates (Intact Fuel)

Basket Type	Maximum Lattice Average	Minimum B10 Areal Density (grams/cm ²)			
	Enrichment ⁽¹⁾ (wt. % U-235)	Borated Aluminum/MMC	Boral®		
A	3.70	0.021	0.025		
В	4.10	0.031	0.037		
С	4.40	0.039	0.047		
D	4.60	0.046	0.055		
E	4.80	0.053	0.064		
F	5.00	0.061	0.073		

(1) For LaCrosse fuel assemblies, the enrichment shall be reduced by 0.1 wt. % U-235.

l

Table 1-1kk

BWR Fuel Assembly Lattice Average Initial Enrichment vs Minimum B10 Requirements for the NUHOMS[®]-69BTH DSC Poison Plates (Damaged Fuel)

	Maximum Lattice Average Initial Enrichment ⁽¹⁾ (wt.% U-235)				Minimum B10 Areal Density (grams/cm²)	
Basket ID	Intact Assemblies	Up to 4 Damaged Assemblies ⁽²⁾	5 to 8 Damaged Assemblies ⁽²⁾	9 to 24 Damaged Assemblies ⁽²⁾	Borated Aluminum/MMC	Boral®
Α	3.70	3.70	3.30	2.80	0.021	0.025
В	4.10	4.10	3.60	3.00	0.031	0.037
С	4.40	4.20	3.60	3.10	0.039	0.047
D	4.60	4.40	3.70	3.20	0.046	0.055
E	4.80	4.40	3.70	3.20	0.053	0.064
F	5.00	4.80	3.90	3.40	0.061	0.073

(1) For LaCrosse fuel assemblies, the enrichment shall be reduced by 0.1 wt. % U-235.

(2) Allowable locations for damaged assemblies within the 69BTH basket are per Figure 1-37.

Table 1-1II PWR Fuel Specification for the Fuel to be Stored in the NUHOMS[®]-37PTH DSC

	T1		
PHYSICAL PARAMETERS: Fuel Class	Intact or damaged unconsolidated WE 17x17, CE 16X16, CE 15x15, WE 15x15, CE 14x14, and WE 14x14 class PWR assemblies (with or without control components) that are enveloped by the fuel assembly design characteristics listed in Table 1-1nn. Reload fuel manufactured by other vendors but enveloped by the design characteristics listed in Table 1-1nn is also acceptable. Damaged fuel assemblies beyond the definition contained below are not authorized for storage.		
Fuel Damage	Damaged PWR fuel assemblies are assemblies containing missing or partial fuel rods or fuel rods with known or suspected cladding defects greater than hairlin cracks or pinhole leaks. The extent of damage in the fue assembly is to be limited such that a fuel assembly is being able to be handled by normal means. Missing fuel rods are allowed. Damaged fuel assemblies shall also contain top and bottom end fittings or nozzles or tie plates depending on the fuel type.		
Reconstituted Fuel Assemblies:	the fuel type.		
 Maximum Number of Reconstituted Assemblies per DSC with Irradiated Stainless Steel Rods Maximum Number of Irradiated Stainless Steel Rods per Reconstituted Fuel Assembly Maximum Number of Reconstituted Assemblies per DSC with Unlimited Number of Low Enriched UO2 Rods, or Zr Rods or Zr Pellets or Unirradiated Stainless Steel Rods 	4 10 37		
Control Components (CCs)	 Up to 37 CCs are authorized for storage in 37PTH-S, and 37PTH-M DSCs. Authorized CCs include Burnable Poison Rod Assemblies (BPRAs), Thimble Plug Assemblies (TPAs), Control Rod Assemblies (CRAs), Rod Cluster Control Assemblies (RCCAs), Axial Power Shaping Rod Assemblies (APSRAs), Orifice Rod Assemblies (ORAs), Neutron Source Assemblies (NSAs), Vibration Suppression Inserts (VSIs) and Neutron Sources. Non-fuel hardware that are positioned within the fuel assembly after the fuel assembly is discharged from the core such as Guide Tube or Instrument Tube Tie Rods or Anchors, Guide Tube Inserts, BPRA Spacer Plates or devices that are positioned and operated within the fuel assembly during reactor operation such as those listed above are also considered as CCs. Design basis thermal and radiological characteristics for the CCs are listed in Table 1-1qq. (continued) 		

(continued)

 Table 1-1II

 PWR Fuel Specification for the Fuel to be Stored in the NUHOMS[®]-37PTH DSC

Number of Intact Assemblies	≤ 37			
Number and Location of Damaged Assemblies	Up to 4 damaged fuel assemblies. Balance may be			
	intact fuel assemblies, or dummy assemblies			
	which are authorized for storage in 37PTH DSC.			
	Damaged fuel assemblies are to be placed in the			
	outer 4 locations as shown in Figure 1-39 and			
	Figure 1-40. The DSC basket cells which store			
	damaged fuel assemblies are provided with top			
	and bottom end caps.			
Fissile Material	UO ₂			
Maximum Initial Uranium Content ⁽¹⁾	490 kg/assembly			
Maximum Assembly plus CC Weight ⁽²⁾	1665 lbs			
Thermal/Radiological Parameters:				
Allowable Heat Load Zoning Configurations	Per Figure 1-39 or Figure 1-40.			
(HLZCs) for each 37PTH DSC				
HLZC 1 is not used				
Burnup, Enrichment, and Minimum Cooling Time	Per Table 1-8a for Zone 1 and Zone 2 fuel, per			
for HLZC 2	Table 1-8c for Zone 3 fuel and per Table 1-8d for			
	Zone 4 fuel.			
Burnup, Enrichment, and Minimum Cooling Time	Per Table 1-8a for Zone 1 and Zone 2 fuel, per			
for HLZC 3	Table 1-8d for Zone 3 fuel and per Table 1-8e for			
	Zone 4 and Zone 5 fuel.			
Maximum Planar Average Initial Fuel Enrichment	Per Table 1-100			
Maximum Decay Heat Limits for Zones 1, 2, 3, 4	Per Figure 1-39 or Figure 1-40.			
and 5	-			
Decay Heat per DSC	≤ 30.0 kW			
Minimum Boron Loading	Per Table 1-100			

Notes:

1. The maximum initial uranium content is based on the shielding analysis. The listed value is higher than the actual.

2. The maximum assembly plus cc weight is based on the structural analysis.

Table 1-1mm Not Used

Table 1-1nn PWR Fuel Assembly Design Characteristics for the NUHOMS[®]-37PTH DSC

Assembly Class		WE 17x17	CE 15x15	WE 15x15	CE 14x14	WE 14x14	CE 16x16
Maximum unirradiated	37PTH-S	162.6	162.6	162.6	162.6	162.6	162.6
length (in.) ⁽¹⁾	37PTH-M	170.0	170.0	170.0	170.0	170.0	170.0
Maximum number of fuel rods		264	216	204	176	179	236
Maximum number of guide/instrument tubes		25	9	21	5	17	5

(1) Maximum assembly + control component length (unirradiated)

Table 1-1oo

Maximum Planar Average Initial Enrichment vs. Minimum Soluble Boron Concentration
for 37PTH DSC (Intact and Damaged Fuel)

Fuel Assembly Class	Maximum	Planar Average Enrichme (wt. % U-235)	ent ⁽²⁾⁽³⁾
ruel Assembly Class	Minimum Soluble Boron Concentration (PPM)	Without CCs	With CCs
	2000	4.50	4.35 ⁽¹⁾
	2300	4.90	4.65
CE 14x14	2400	5.00	4.75
GE 14X14	2500	5.00	4.85
	2800	5.00	5.00
	3000	5.00	5.00
	2000	4.05	4.00 ⁽¹⁾
	2300	4.35	4.30 ⁽¹⁾
05 45-45	2400	4.45	4.40
CE 15x15	2500	4.55	4.50
	2800	4.85 ⁽¹⁾	4.75
	3000	5.00	4.95
	2000	4.40	4.30
	2300	4.75	4.60
05 40-40	2400	4.90 ⁽¹⁾	4.75
CE 16x16	2500	5.00 ⁽¹⁾	4.85
	2800	5.00	5.00
	3000	5.00	5.00
	2000	4.75	4.75
	2300	5.00	5.00
	2400	5.00	5.00
WE 14x14	2500	5.00	5.00
	2800	5.00	5.00
	3000	5.00	5.00
	2000	3.90	3.85
	2300	4.20	4.15
	2400	4.30	4.20
WE 15x15	2500	4.40	4.30
	2800	4.70	4.60
	3000	4.85	4.75
	2000	3.90	3.85
	2300	4.20	4.15
	2400	4.30	4.25
WE 17x17	2500	4.40	4.35
	2800	4.65	4.60
	3000	4.85	4.80

(1) For damaged fuel assemblies, the maximum planar average initial enrichment is reduced by 0.05 wt.
 % U-235.

(2) There is only one basket type. The fixed poison loading is per Table 1-1rr.

(3) Linear interpolation is allowed between adjacent maximum planar average initial enrichments and soluble boron concentration levels.

Table 1-1pp Not Used

l

Table 1-1qqThermal and Radiological Characteristics for Control Components Stored in the
NUHOMS®-37PTH DSC

Parameter	BPRAs, NSAs, CRAs, RCCAs, VSIs, APSRAs and Neutron Sources	TPAs and ORAs
Maximum gamma source (γ/sec/assembly)	3.91E+13	4.1E+12
Decay heat (watts/assembly)	8.0	8.0

Note: NSAs and neutron sources shall only be stored in the interior compartments of the basket. Interior compartments are those compartments that are completely surrounded by other compartments, including the corners. There are thirteen interior compartments in the 37PTH DSC.

Table 1-1rr
B10 Specification for the NUHOMS [®] -37PTH Poison Plates

37PTH DSC Type	Minimum B10 Areal Density for Boral [®] (grams/cm²)	Minimum B10 Areal Density for Borated Aluminum or MMC (grams/cm ²)
37PTH-M or 37PTH-S	0.024	0.020

Table 1-2a

PWR Fuel Qualification Table for the Standardized NUHOMS[®]-24P DSC (Fuel Without BPRAs)

BU						Ass	emb	ly Av	erage	e Initi	al En	richn	nent ((wt. %	6 U-2	35)					
(GWd/ MTU)	2.0	2.1	2.2	2.3	2.4	2.5	2.6	2.7	2.8	2.9	3.0	3.1	3.2	3.3	3.4	3.5	3.6	3.7	3.8	3.9	4.0
10	а	а	а	а	а	а	а	а	а	а	а	а	а	а	а	а	а	а	а	а	а
15	5	5	а	а	а	а	а	а	а	а	а	а	а	а	а	а	а	а	а	а	а
20	5	5	5	5	5	а	а	а	а	а	а	а	а	а	а	а	а	а	а	а	а
25		5	5	5	5	5	5	5	5	а	а	а	а	а	а	а	а	а	а	а	а
28				5	5	5	5	5	5	5	5	5	а	а	а	а	а	а	а	а	а
30						5	5	5	5	5	5	5	5	а	а	а	а	а	а	а	а
32							5	5	5	5	5	5	5	5	5	а	а	а	а	а	а
34								6	5	5	5	5	5	5	5	5	5	а	а	а	а
36									6	6	6	6	5	5	5	5	5	5	5	а	а
38											7	6	6	6	6	6	6	6	5	5	5
40				No	t Acc	epta	ble					8	8	8	7	6	6	6	6	6	6
41					0							9	9	9	8	8	8	8	8	8	8
42				N	ot An	alyze	ed						10	9	9	9	9	9	9	8	8
43													10	10	10	10	10	9	9	9	9
44														11	11	11	11	10	10	10	10
45														12	12	11	11	11	11	11	11

(Minimum required years of cooling time after reactor core discharge)

 a) Minimum Cooling Time 5 years, and Minimum 2350 ppm soluble boron required in the DSC cavity water during loading or unloading.

Notes:

- BU = Assembly average burnup.
- Use burnup and enrichment to look up minimum cooling time in years. Licensee is responsible for ensuring that uncertainties in fuel enrichment and burnup are correctly accounted for during fuel qualification.
- Round burnup UP to next higher entry, round enrichments DOWN to next lower entry.
- Fuel with an initial enrichment less than 2.0 wt. % U-235 must be qualified for storage using the alternate nuclear parameters specified in Table 1-1a. Fuel with an initial enrichment greater than 4.0 wt. % U-235 is unacceptable for storage.
- Fuel with a burnup greater than 45 GWd/MTU is unacceptable for storage.
- Example: An assembly with an initial enrichment of 3.65 wt. % U-235 and a burnup of 42.5 GWd/MTU is acceptable for storage after a ten-year cooling time as defined at the intersection of 3.6 wt. % U-235 (rounding down) and 43 GWd/MTU (rounding up) on the qualification table.

Standardized NUHOMS® Technical Specifications Renewed Amendment No. 13, Revision No. 1

Table 1-2b BWR Fuel Qualification Table for the Standardized NUHOMS[®]-52B DSC

(Minimum required years of cooling time after reactor core discharge)

BU						Ass	semb	ly Av	erage	e Initi	al En	richn	nent ((wt. %	6 U-2	35)					
(GWd/ MTU)	2.0	2.1	2.2	2.3	2.4	2 .5	<mark>2.</mark> 6	2.7	2.8	2.9	3.0	3.1	3.2	3.3	3.4	3.5	3.6	3.7	3.8	3.9	4.0
15	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
20	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
25	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
30				5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
32					6	6	6	5	5	5	5	5	5	5	5	5	5	5	5	5	5
34						8	8	8	8	8	8	8	8	7	6	6	6	6	6	6	6
35							10	10	10	10	9	8	8	8	8	8	8	8	6	6	6
36							11	11	11	11	11	10	10	10	10	10	10	9	8	8	8
37								13	13	12	12	12	12	11	11	11	11	11	10	10	10
38								15	14	14	14	13	13	13	13	12	12	12	12	12	11
39			No	t Acc	epta:	ble		18	17	17	16	16	16	15	14	14	14	14	13	13	13
40					r				21	21	20	20	19	18	17	17	16	16	16	16	15
42			N	ot An	alyz	ed				22	22	22	21	21	20	20	20	19	18	17	17
44										24	24	23	23	23	22	22	21	21	21	20	20
45											25	24	24	23	23	23	22	22	22	21	21

Notes:

- BU = Assembly average burnup.
- Use burnup and enrichment to look up minimum cooling time in years. Licensee is responsible for ensuring that uncertainties
 in fuel enrichment and burnup are correctly accounted for during fuel qualification.
- Round burnup UP to next higher entry, round enrichments DOWN to next lower entry.
- Fuel with an initial enrichment less than 2.0 wt. % U-235 must be qualified for storage using the alternate nuclear parameters specified in Table 1-1b. Fuel with an initial enrichment greater than 4.0 wt. % U-235 is unacceptable for storage.
- Fuel with a burnup greater than 45 GWd/MTU is unacceptable for storage. Fuel with a burnup less than 15 GWd/MTU is
 acceptable after three years cooling time provided the physical parameters from Table 1-1b have been met.
- Example: An assembly with an initial enrichment of 3.05 wt. % U-235 and a burnup of 34.5 GWd/MTU is acceptable for storage after a nine-year cooling time as defined at the intersection of 3.0 wt. % U-235 (rounding down) and 35 GWd/MTU (rounding up) on the qualification table.

Table 1-2c PWR Fuel Qualification Table for the Standardized NUHOMS[®]-24P DSC (Fuel with BPRAs)

(Minimum required years of cooling time after reactor core discharge)

BU						Ass	semb	ly Av	erage	e Initi	al En	richn	nent ((wt. %	6 U-2	35)					
(GWd/ MTU)	2.0	2.1	2.2	2.3	2.4	2.5	2.6	2.7	2.8	2.9	3.0	3.1	3.2	3.3	3.4	3.5	3.6	3.7	3.8	3.9	4.0
10	а	а	а	а	а	а	а	а	а	а	а	а	а	а	а	а	а	а	а	а	а
15	5	5	а	а	а	а	а	а	а	а	а	а	а	а	а	а	а	а	а	а	а
20	5	5	5	5	5	а	а	а	а	а	а	а	а	а	а	а	а	а	а	а	а
25		5	5	5	5	5	5	5	5	а	а	а	а	а	а	а	а	а	а	а	а
28				5	5	5	5	5	5	5	5	5	а	а	а	а	а	а	а	а	а
30						6	6	6	5	5	5	5	5	а	а	а	а	а	а	а	а
32							6	6	6	6	6	6	5	5	5	а	а	а	а	а	а
34								7	6	6	6	6	6	6	6	6	6	а	а	а	а
36									8	7	7	7	6	6	6	6	6	6	6	а	а
38											8	8	7	7	7	7	6	6	6	6	6
40				No	t Acc	epta	ble					9	9	8	8	8	7	7	7	7	6
41					c	-						10	9	9	9	9	8	8	8	8	8
42				N	ot An	alyz	ed						10	10	9	9	9	9	9	9	9
43													11	11	11	10	10	10	10	9	9
44														12	11	11	11	11	10	10	10
45														13	12	12	12	11	11	11	11

 Minimum Cooling Time 5 years, and Minimum 2350 ppm soluble boron required in the DSC cavity water during loading or unloading.

Notes:

- BU = Assembly average burnup.
- BPRA Burnup shall not exceed that of a BPRA irradiated in fuel assemblies with a total burnup of 36,000 MWd/MTU.
- Minimum cooling time for a BPRA is 5 years for B&W designs and 10 years for Westinghouse designs, regardless of the required assembly cooling time.
- Use burnup and enrichment to look up minimum cooling time in years. Licensee is responsible for ensuring that uncertainties
 in fuel enrichment and burnup are correctly accounted for during fuel qualification.
- Round burnup UP to next higher entry, round enrichments DOWN to next lower entry.
- Fuel with an initial enrichment less than 2.0 wt. % U-235 must be qualified for storage using the alternate nuclear parameters specified in Table 1-1a. Fuel with an initial enrichment greater than 4.0 wt. % U-235 is unacceptable for storage.
- Fuel with a burnup greater than 45 GWd/MTU is unacceptable for storage.
- Example: An assembly with an initial enrichment of 3.65 wt. % U-235 and a burnup of 42.5 GWd/MTU is acceptable for storage after a ten-year cooling time as defined at the intersection of 3.6 wt. % U-235 (rounding down) and 43 GWd/MTU (rounding up) on the qualification table.

Standardized NUHOMS® Technical Specifications Renewed Amendment No. 13, Revision No. 1

Table 1-2d PWR Fuel Qualification Table for 1.2 kW per Assembly for the NUHOMS[®]-32PT DSC (Fuel with or without CCs)

BU													As	sem	bly	Aver	age I	nitial I	Enrich	ment	(wt. 9	6 U-2	35)														
GWd/MTU	1.1	1.2	1.4	1.6	1.8	1.9	2.0	2.1	2.2	2.3	2.4	2.5	2.6	2.7	2.8			3.1	3.2	3.3	3.4	3.5	3.6	3.7	3.8	3.9	4.0	4.1	4.2	4.3	4.4	4.5	4.6	4.7	4.8	4.9	5.0
10	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
15	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
20	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
25	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
28	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0			5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0		5.0			5.0				5.0
30	6.0	6.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
32	6.0	6.0	6.0	6.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0	_	_	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	_	5.0		5.0		5.0			5.0			5.0	
34	7.0	7.0	6.0	6.0	6.0	6.0	6.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0	5.0	5.0		5.0	5.0				5.0
36	8.0	8.0	7.0	7.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	5.0	5.0	5.0	_		5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0		5.0			5.0				5.0
38	9.0	9.0	8.0	7.0	7.0	7.0	7.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	_	5.0	5.0	5.0	5.0	5.0	5.0	_	5.0	5.0	5.0		5.0	5.0	5.0		5.0	5.0				5.0
39	10.0	9.0	8.0	8.0	7.0	7.0	7.0	7.0	7.0	6.0	6.0	6.0	6.0	6.0	_	_	5.0	5.0	5.0	5.0	5.0	5.0		5.0	5.0	5.0		5.0		5.0			5.0				5.0
40	10.0	10.0	9.0	8.0	8.0	8.0	7.0	7.0	7.0	7.0	7.0	6.0	6.0	6.0	_		6.0	5.0	5.0	5.0	5.0	5.0		5.0	5.0	5.0		5.0		5.0	_		5.0				
41	11.0	10.0	10.0	9.0	8.0	8.0	8.0	7.0	7.0	7.0	7.0	7.0		6.0			6.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0		5.0		5.0		5.0				5.0	
42	11.5	11.0	10.0	9.0	9.0	8.0	8.0	8.0	8.0	7.0	7.0	7.0	7.0	7.0	7.0	_	6.0	6.0	6.0	6.0	6.0	6.0	_	6.0	5.0	5.0		5.0	5.0	5.0		5.0	5.0				5.0
43	13.0	11.5	10.5	10.0	9.0	9.0	9.0	8.0	8.0	8.0	8.0	7.0	7.0	7.0	7.0	7.0	7.0	6.0	6.0	6.0	6.0	6.0		6.0	6.0	6.0		6.0	6.0	6.0			5.0				5.0
44	13.5	12.5	11.5	10.5	10.0	9.0	9.0	9.0	8.0	8.0	8.0	8.0	8.0	7.0	7.0	7.0	7.0	7.0	7.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0		6.0	6.0	6.0		6.0	6.0				6.0
45	14.5	14.0	12.0	11.0	10.0	10.0	10.0	9.0	9.0	9.0	8.0	8.0	8.0	8.0	+		7.0	7.0	7.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0		6.0	6.0	6.0			6.0				6.0
46														8.0	8.0		7.0	7.0	7.0	6.5	6.5	6.5	6.5	6.0	6.0	6.0		6.0	6.0	6.0		6.0	6.0	6.0	6.0		6.0
47	4													8.0	_	_	7.5	7.5	7.0	7.0	7.0	6.5	6.5	6.5		6.0		6.0		6.0			6.0				6.0
48	4													8.5	8.5	8.0		7.5	7.5	7.5	7.0	7.0	7.0	6.5	6.5	6.5		6.5	6.5	6.5		6.0	6.0	6.0	6.0		6.0
49	4																8.5	8.0	8.0	7.5	7.5	7.5	7.0	7.0	7.0	6.5	6.5	6.5	6.5	6.5		6.5	6.5	6.5	6.5		6.5
50	4				VOT .	ANA	LYZ	ED									9.0	8.5	8.5	8.0	8.0	7.5	7.5	1.5	7.0	7.0	7.0	7.0	7.0	7.0		6.5	6.5	6.5	6.5	6.5	
51	4																9.5	9.0	8.5	8.5	8.0	8.0	8.0	1.5	7.5	7.5	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0		7.0
52	4																10.0		9.0	9.0	8.5	8.5	8.0	8.0	8.0	7.5		7.5	7.5	7.5	7.5	7.0	7.0	7.0	7.0		7.0
53	4																10.5	10.0		9.5	9.0	9.0	8.5	8.5		8.0		8.0	7.5	7.5	7.5	7.5	7.5	7.5	7.5		7.5
54																			10.0	10.0	9.5	9.5	9.0	9.0		8.5		8.0		8.0		8.0	8.0	8.0	7.5	7.5	1.5
55																			11.0	10.5	10.0	10.0	9.5	9.5	9.0	9.0	8.5	8.5	8.5	8.5	8.5	8.0	8.0	8.0	8.0	8.0	8.0

(Minimum required years of cooling time after reactor core discharge)

Table 1-2e

PWR Fuel Qualification Table for 0.87 kW per Assembly for the NUHOMS[®]-32PT DSC (Fuel with or without CCs)

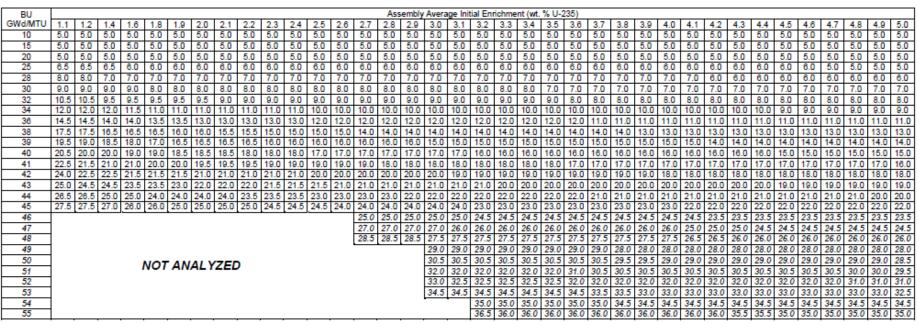
(Minimum required years of cooling time after reactor core discharge)

BU															Ass	embly	Avera	ge Init	tial En	ichme	nt (wt.	% U-:	235)														
GWd/MTU	1.1	1.2	1.4	1.6	1.8	1.9	2.0	2.1	2.2	2.3	2.4	2.5	2.6	2.7	2.8	2.9	3.0	3.1	3.2	3.3	3.4	3.5	3.6	3.7	3.8	3.9	4.0	4.1	4.2	4.3	4.4	4.5	4.6	4.7	4.8	4.9	5.0
10	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
15	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
20	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
25	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
28	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
30	6.0	6.0	6.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
32	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
34	7.0	7.0	7.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0		5.0
36	9.0	8.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
38	9.0	9.0	8.5	8.0	8.0	8.0	8.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	6.0	6.0	6.0	6.0	6.0
39	10.0	9.0	9.0	8.5	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0
40	10.0	10.0	9.0	9.0	9.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0
41	11.0	10.5	10.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0
42	12.0	11.5	11.0	10.5	10.0	10.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0		8.0
43	13.0	12.0	10.5	10.5	10.5	10.5	10.5	10.5	10.0	10.0	10.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0		8.0
44	13.0	13.0	12.5	12.0	11.5	10.5	10.5			10.0	10.0	10.0	9.5	9.5	9.5	9.5	9.5	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0		8.0
45	14.0	13.5	13.0	12.5	12.5	12.0	12.0	12.0	12.0	10.5	10.5	11.5	10.5	10.5	10.5	10.0	10.0	10.0	9.5	10.0	10.0	10.0	10.0	10.0	10.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0
46														11.0	11.0	10.5	10.5	10.5	10.5	10.5	10.0	10.0	10.0	10.0	10.0	10.0	9.5	9.5	9.5	9.5	9.5	9.5	9.5	9.5	9.5	9.5	9.5
47														11.5		11.5	11.5	11.5	11.5	11.0	11.0	11.0	10.5	10.5	10.5	10.5	10.5	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0		9.5
48														12.5	12.5	12.0	12.0	12.0	12.0	11.5	11.5	11.5	11.5	11.5	11.5	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	10.5	10.5	_	10.5
49																	13.0	13.0	13.0	13.0	12.5	12.5		12.0	12.0	12.0	12.0	11.5	11.5	11.5	11.5	11.5	11.0	11.0	11.0		11.0
50					NOT	- AN	ALY	ZED	0								14.0	13.5	13.5	13.5	13.5	13.0	13.0	13.0	13.0	12.5	12.5	12.5	12.5	12.5	12.0	12.0	12.0	12.0	12.0		12.0
51																	15.0	14.5	14.5	14.5	14.0	14.0	14.0	14.0	13.5	13.5	13.5	13.5	13.5	13.0	13.0	13.0		13.0	13.0		12.5
52	{																16.0	15.5	15.5	13.5	15.0	13.0	15.0	15.0	14.5	14.5	14.5	14.5	14.0	14.0	14.0	14.0	14.0	14.0	13.5		13.5
53	-																17.0	16.5		16.5	16.0	16.0	16.0	15.5	15.5	15.5	15.5	15.0		15.0	-	15.0	-	14.5	14.5		
54 55																			17.5	17.5	17.0	17.0	17.0	17.0	17.0	17.0	16.5	16.0	-	16.0				15.5	15.5		15.0
22																			18.5	18.5	18.5	18.0	18.0	18.0	11.5	17.5	17.5	17.0	17.0	17.0	17.0	17.0	17.0	16.5	16.5	16.5	10.0

Table 1-2f PWR Fuel Qualification Table for 0.7 kW per Assembly for the NUHOMS[®]-32PT DSC (Fuel with or without CCs)

BU															Acc	omblu	Auge	an Ini	tial Env	richme	nt (urt	9/11	2251														
GWd/MTU		10	1.4	1.8	10	10	2.0	2.4	2.2	2.2	24	2.5	2.8	27	2.8	2.9	3.0	ge mi	3.2	2.2	2.4	3.5	3.6	3.7	3.8	2.0	4.0	4.4	4.2	4.2	4.4	4.5	4.8	47	4.8	4.9	5.0
10	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0
15	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0
20	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0
25	6.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0
28	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0
30	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0		6.0
32	8.0	8.0	8.0	8.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	6.0	6.0		6.0
34	9.0	9.0	9.0	9.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0
36	10.5	10.0	10.0	10.0	10.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0
38	13.0	13.0	11.5	11.5	11.0	11.0	11.0	10.5	10.5	10.5	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0
39	14.0	14.0	13.5	13.0	12.0	11.5	11.5	11.5	11.5	11.5	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
40	14.5	14.5	14.0	14.0	13.5	13.5	13.0	13.0	12.0	12.0	12.0	12.0	11.5	11.5	11.5	11.5	11.5	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	10.0	10.0	10.0	10.0	10.0	10.0
41	16.5	16.0	15.5	14.5	14.0	14.0	14.0	14.0	14.0	13.5	13.5	13.5	13.5	13.5	12.5	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0
42	18.0	16.5	16.5	16.0	15.5	15.5	14.5	14.5	14.5	14.5	14.0	14.0	14.0	14.0	14.0	14.0	13.5	13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0
43	18.5	18.0	18.0	16.5	16.5	16.5	16.5	16.0	16.0	16.0	16.0	15.5	15.5	14.5	14.5	14.5	14.5	14.5	14.0	14.0	14.0	14.0	14.0	14.0	14.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0
44	20.0	19.0	18.5			18.0	18.0		16.5			16.5		16.0	16.0	16.0	16.0	16.0	16.0	15.0	15.0	15.0	15.0	15.0		15.0	14.0	14.0	14.0	14.0	14.0	1.11.00	14.0	14.0	14.0		14.0
45	21.0	21.0	20.0	19.0	19.0	19.0	18.5	18.5	18.0	18.0	18.0	18.0	18.0	18.0	17.5	16.5	16.5	16.5	16.5	16.0	16.0	16.0	16.0	16.0		16.0	15.0	15.0	15.0	15.0	15.0		15.0	15.0			15.0
46														18.0	18.0	18.0	18.0	18.0	18.0	17.5	17.5	17.5	17.5	16.5		16.5	16.5	16.5	16.5	16.0	16.0	16.0	16.0	16.0			16.0
47														19.5	19.5	19.0	19.0	19.0	19.0	19.0	18.5	18.5	18.5	18.5	18.5	18.0	18.0	18.0	18.0	18.0	18.0	17.0	17.0	17.0	17.0		17.0
48														21.0	20.5	20.5		20.5	20.0	20.0	20.0	20.0	19.5	19.5		19.5	19.5	19.0	19.0	19.0	19.0	19.0	19.0	18.0			18.0
49																	21.5	21.5	21.0	21.0	21.0	21.0	21.0	21.0	21.0	20.5	20.5		20.5	20.5	19.5			19.5			19.5
50					N	OT A	NA	LYZ	ED								22.5	22.5	22.5	22.0	22.0	22.0	22.0	22.0		21.5					21.5			21.0			21.0
51																	24.5	24.0	24.0	24.0				23.5		23.5	22.5	22.5		22.5	22.5	22.0	22.0	22.0			22.0
52																	25.5	25.5	25.5	25.5			24.5			24.0	24.0				23.5			23.5			23.0
53																	27.0	26.5	26.5	26.5	26.5	26.0	26.0	26.0	26.0	26.0	25.0	25.0	25.0		25.0	25.0	24.5	24.5			24.5
54																			28.0	27.5	27.5	27.5	27.5	26.5		26.5	26.5				26.0			26.0			25.5
55																			28.5	28.5	28.0	28.0	28.0	28.0	28.0	28.0	28.0	28.0	28.0	27.5	27.5	27.5	27.5	27.5	27.5	26.5	26.5

(Minimum required years of cooling time after reactor core discharge)


Table 1-2g

PWR Fuel Qualification Table for 0.63 kW per Assembly for the NUHOMS[®]-32PT DSC (Fuel with or without CCs)

(Minimum required years of c	ooling time after reacto	or core discharge)
------------------------------	--------------------------	--------------------

BU															Ass	sembly	Avera	age Ini	tial En	richme	nt (wt.	% U-3	235)														
GWd/MTU	1.1	1.2	1.4	1.6	1.8	1.9	2.0	2.1	2.2	2.3	2.4	2.5	2.6	2.7	2.8	2.9	3.0	3.1	3.2	3.3	3.4	3.5	3.6	3.7	3.8	3.9	4.0	4.1	4.2	4.3	4.4	4.5	4.6	4.7	4.8	4.9	5.0
10	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
15	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
20	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
25	6.5	6.5	6.5	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
28	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
30	8.0	8.0	8.0	8.0	8.0	8.0	8.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0
32	9.5	9.5	9.5	9.5	9.0	9.0	9.0	9.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	7.0
34	11.0	11.0	11.0	10.5	10.0	10.0	10.0	10.0	10.0	10.0	10.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0
36	13.5	13.5	13.0	12.0	12.0	11.5	11.5	11.5	11.5	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
38	16.5	15.5	14.5	14.5	14.5	13.5	13.5	13.5	13.5	13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	11.0	11.0	11.0	11.0
39	17.5	17.0	16.5	16.0	15.0	15.0	14.5	14.5	14.5	14.5	14.5	14.0	14.0	14.0	14.0	14.0	14.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	12.0	12.0	12.0	12.0
40	19.0	18.0	18.0	17.0	16.5	16.5	16.5	16.5	16.0	16.0	16.0	16.0	16.0	15.0	15.0	15.0	15.0	15.0	15.0	14.0	14.0	14.0	14.0	14.0	14.0	14.0	14.0	14.0	14.0	14.0	14.0	14.0	14.0	13.0	13.0	13.0	13.0
41	20.5	19.5	19.0	19.0	18.0	18.0	17.5	17.5	17.5	17.0	17.0	17.0	17.0	17.0	16.0	16.0	16.0	16.0	16.0	16.0	16.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	14.0
42	22.0	20.5	20.5	19.5	19.5	19.5	19.0	19.0	18.5	18.5	18.5	18.0	18.0	18.0	18.0	18.0	18.0	17.0	17.0	17.0	17.0	17.0	17.0	16.0	16.0	16.0	16.0	16.0	16.0	16.0	16.0	16.0	16.0	16.0	16.0	16.0	16.0
43	23.0	22.5	22.5	21.5	21.5	21.0	20.0	20.0	19.5	19.5	19.5	19.0	19.0	19.0	19.0	19.0	19.0	19.0	18.0	18.0	18.0	18.0	18.0	18.0	18.0	18.0	18.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0
44				23.0	22.0	22.0		22.0	21.5	21.5	21.5	21.0	21.0	21.0	20.0	20.0	20.0	20.0	20.0	20.0	19.0	19.0	19.0	19.0	19.0	19.0	19.0	19.0	19.0	19.0	18.0	18.0	18.0	18.0	18.0		18.0
45	25.5	25.5	25.0	24.0	23.0	23.0	23.0	23.0	23.0	22.5	22.5	22.5	22.0	22.0	22.0	22.0	22.0	21.0	21.0	21.0	21.0	21.0	21.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0		20.0				19.0
46														23.0	23.0	23.0	23.0	22.5	22.5	22.5	22.5		22.0	22.0	22.0	22.0	22.0	22.0	21.5	21.5	21.5	21.5	21.5	21.5			20.5
47														25.0		24.5			23.5		23.5			23.0	23.0	23.0	23.0	23.0	23.0	22.5		22.5	22.5	22.5			22.0
48														25.5	25.5	25.5			25.0		25.0			24.5					24.5		24.0	24.0	24.0	24.0			23.5
49																	26.5	26.5	26.0		26.0			25.5					25.5		25.0		25.0		25.0		
50					ΝΟΤ	- ΔΝ			2								28.0	27.5	27.5	27.5	27.0	27.0	27.0	27.0	27.0	27.0	27.0	27.0	27.0	27.0							26.5
51						An											29.5	29.5	29.5		29.0		29.0		29.0		28.0	28.0	28.0				28.0				27.5
52																	30.5		30.0		30.0			29.5													29.0
53																	31.5	31.5			31.0	31.0	31.0		31.0	31.0	31.0	31.0	31.0								30.5
54																			33.0	33.0	33.0	33.0	33.0	32.0	32.0	32.0	32.0	32.0	32.0			31.5	31.5				31.5
55																			33.5	33.5	33.5	33.5	33.5	33.0	33.0	33.0	33.0	33.0	33.0	33.0	33.0	33.0	33.0	33.0	32.5	32.5	32.5

Table 1-2h PWR Fuel Qualification Table for 0.6 kW per Assembly for the NUHOMS[®]-32PT DSC(Fuel with or without CCs)

(Minimum required years of cooling time after reactor core discharge)

Notes for Tables 1-2d through 1-2h:

- BU = Assembly average burnup
- Use burnup and enrichment to look up minimum cooling time in years. Licensee is responsible for ensuring that uncertainties in fuel enrichment and burnup are correctly accounted for during fuel qualification.
- For fuel assemblies reconstituted with up to 10 stainless steel rods, increase the indicated cooling time by 1.5 years. If more than 10 stainless steel rods are present, increase the indicated cooling time by 6 years.
- Round burnup UP to next higher entry, round enrichments DOWN to next lower entry.
- Fuel with an initial enrichment less than 1.1 and greater than 5.0 wt.% U-235 is unacceptable for storage.
- Fuel with a burnup greater than 55 GWd/MTU is unacceptable for storage.
- Fuel with a burnup less than 10 GWd/MTU is acceptable for storage after 5-years cooling.
- For fuel assemblies containing BLEU fuel pellets, add 3.0 years of additional cooling time to the values shown in Table 1-2d through 1-2h.
- Example: An intact assembly with or without CCs, with a decay heat of 1.2kW, an initial enrichment of 3.75 wt. % U-235 and a burnup of 41.5 GWd/MTU is acceptable for storage after a six-year cooling time as defined by 3.7 wt. % U-235 (rounding down) and 42 GWd/MTU (rounding up) in Table 1-2d.

Tables 1-2i through 1-2m are deleted.

Table 1-2n

PWR Fuel Qualification Table for Zone 1 with 0.7 kW per Assembly, Fuel with or without CCs, for the NUHOMS[®]-24PHB DSC

BU										As	ssembly	Averag	e Initial	Enrich	ment (w	rt. % U-:	235)									
(GWd/																										
MTU)	2.0	2.1	2.2	2.3	2.4	2.5	2.6	2.7	2.8	2.9	3.0	3.1	3.2	3.3	3.4	3.5	3.6	3.7	3.8	3.9	4.0	4.1	4.2	4.3	4.4	4.5
10	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
15	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
20	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
25		5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
28			5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5
30						6.5	6.5	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
32							7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5
34								8.0	8.0	8.0	8.0	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5
36									9.0	9.0	9.0	9.0	9.0	9.0	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5
38											10.5	10.5	10.5	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	9.5	9.5	9.5	9.5
39											11.5	11.0	11.0	11.0	11.0	11.0	11.0	11.0	10.5	10.5	10.5	10.5	10.5	10.5	10.5	10.5
40											12.0	12.0	12.0	12.0	12.0	12.0	11.5	11.5	11.5	11.5	11.5	11.5	11.5	11.0	11.0	11.0
41											13.0	13.0	13.0	13.0	13.0	13.0	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.0	12.0	12.0
42											14.5	14.5	14.0	14.0	14.0	14.0	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.0	13.0	13.0
43				Not An	alvzed						15.5	15.5	15.5	15.0	15.0	15.0	15.0	15.0	14.5	14.5	14.5	14.5	14.5	14.5	14.0	14.0
44					arjzoa						17.0	16.5	16.5	16.5	16.5	16.0	16.0	16.0	16.0	16.0	15.5	15.5	15.5	15.5	15.5	15.5
45													18.0	17.5	17.5	17.5	17.5	17.0	17.0	17.0	17.0	17.0	16.5	16.5	16.5	16.5
46													18.8	18.7	18.5	18.5	18.3	18.2	18.1	18.0	17.9	17.8	17.7	17.6	17.5	17.4
47													20.1	20.0	19.9	19.6	19.6	19.5	19.4	19.2	19.1	19.0	18.9	18.8	18.7	18.7
48													21.4	21.3	21.1	21.0	20.8	20.8	20.7	20.5	20.4	20.3	20.2	20.1	20.0	19.9
49													22.7	22.6	22.4	22.3	22.1	22.1	21.9	21.8	21.7	21.6	21.5	21.4	21.3	21.2
50															23.7	23.6	23.5	23.4	23.3	23.2	23.0	22.9	22.8	22.7	22.6	22.5
51															25.0	24.9	24.8	24.6	24.5	24.4	24.3	24.2	24.0	23.9	23.8	23.7
52															26.3	26.2	26.0	25.9	25.8	25.7	25.6	25.4	25.3	25.2	25.2	25.0
53															27.5	27.3	27.2	27.1	27.0	26.9	26.8	26.7	26.5	26.4	26.4	26.2
54															28.8	28.6	28.5	28.3	28.2	28.1	28.0	28.0	27.8	27.7	27.6	27.5
55															29.9	29.8	29.7	29.6	29.5	29.3	29.2	29.1	29.0	28.9	28.8	28.7

(Minimum required years of cooling time after reactor core discharge)

BU = Assembly average burnup.

Use burnup and enrichment to look up minimum cooling time in years. For fuel assemblies reconstituted with up to 10 stainless steel rods only, if the look up cooling time is less
than 9.0 years then a minimum cooling time of 9.0 years shall be used. Licensee is responsible for ensuring that uncertainties in fuel enrichment and burnup are correctly
accounted for during fuel qualification.

- Round burnup UP to next higher entry, round enrichments DOWN to next lower entry.
- Fuel with an initial enrichment greater than 4.5 wt.% U-235 is unacceptable for storage.
- Fuel with a burnup less than 10 GWd/MTU is acceptable for storage after 5-years cooling.
- Example: An assembly with an initial enrichment of 3.75 wt. % U-235 and a burnup of 46.5 GWd/MTU is acceptable for storage after a 19.5 years cooling time as defined by 3.7 wt. % U-235 (rounding down) and 47 GWd/MTU (rounding up) on the qualification table.
- See Figure 1-8 for a description of zones.
- For fuel assemblies reconstituted with Zirconium-alloy clad uranium-oxide rods use the assembly average enrichment to determine the minimum cooling time.
- The cooling times for damaged and intact assemblies are identical.
- · For fuel assemblies containing BLEU fuel pellets, add 3 years of additional cooling time to the values shown in this table.

Standardized NUHOMS® Technical Specifications Renewed Amendment No. 13, Revision No. 1

Table 1-2o PWR Fuel Qualification Table for Zone 2 with 1.0 kW per Assembly, Fuel with or without CCs, for the NUHOMS[®]-24PHB DSC

(Minimum	required	vears of	cooling	time	after	reactor	core	discharge)	

BU										As	sembly	Average	e Initial	Enrichn	nent (wt	. % U-2	35)									
(GWd/MTU)	2.0	2.1	2.2	2.3	2.4	2.5	2.6	2.7	2.8	2.9	3.0	3.1	3.2	3.3	3.4	3.5	3.6	3.7	3.8	3.9	4.0	4.1	4.2	4.3	4.4	4.5
10	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
15	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
20	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
25		5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
28			5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
30						5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
32							5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
34								5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
36									5.5	5.5	5.5	5.5	5.5	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
38											6.0	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5
39											6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	5.5	5.5	5.5	5.5	5.5	5.5	5.5
40											6.5	6.5	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
41											6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.0	6.0	6.0	6.0	6.0	6.0	6.0
42											7.0	7.0	7.0	7.0	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5
43											7.5	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	6.5	6.5	6.5	6.5
44											7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0
45				Not An	alyzed								8.0	8.0	8.0	8.0	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.4
46													8.2	8.1	8.0	8.0	7.9	7.8	7.8	7.7	7.7	7.6	7.6	7.5	7.5	7.4
47													8.7	8.6	8.5	8.4	8.4	8.3	8.2	8.2	8.1	8.0	8.0	7.9	7.9	7.8
48													9.2	9.1	9.0	9.0	8.9	8.8	8.7	8.6	8.6	8.5	8.5	8.4	8.3	8.3
49													9.8	9.7	9.6	9.5	9.4	9.3	9.2	9.2	9.1	9.0	9.0	8.9	8.8	8.7
50															10.2	10.1	10.0	9.9	9.8	9.7	9.6	9.6	9.5	9.4	9.3	9.3
51															10.9	10.8	10.7	10.6	10.5	10.3	10.3	10.2	10.1	10.0	9.9	9.9
52															11.6	11.5	11.3	11.2	11.1	11.0	10.9	10.8	10.7	10.6	10.5	10.5
53															12.4	12.2	12.1	12.0	11.9	11.8	11.6	11.5	11.4	11.3	11.2	11.1
54															13.2	13.1	13.0	12.8	12.7	12.5	12.4	12.3	12.2	12.1	12.0	11.9
55															14.1	13.9	13.8	13.6	13.5	13.4	13.2	13.1	13.0	12.9	12.8	12.6

BU = Assembly average burnup.

Use burnup and enrichment to look up minimum cooling time in years. For fuel assemblies reconstituted with up to 10 stainless steel rods only, if the look up
cooling time is less than 9.0 years then a minimum cooling time of 9.0 years shall be used. Licensee is responsible for ensuring that uncertainties in fuel
enrichment and burnup are correctly accounted for during fuel qualification.

- Round burnup UP to next higher entry, round enrichments DOWN to next lower entry.
- Fuel with an initial enrichment greater than 4.5 wt.% U-235 is unacceptable for storage.
- Fuel with a burnup less than 10 GWd/MTU is acceptable for storage after 5-years cooling.
- Example: An assembly with an initial enrichment of 3.75 wt. % U-235 and a burnup of 46.5 GWd/MTU is acceptable for storage after a 8.3 years cooling time as defined by 3.7 wt. % U-235 (rounding down) and 47 GWd/MTU (rounding up) on the qualification table.
- See Figure 1-8 for a description of zones.
- · For fuel assemblies reconstituted with Zirconium-alloy clad uranium-oxide rods use the assembly average enrichment to determine the minimum cooling time.
- The cooling times for damaged and intact assemblies are identical.
- For fuel assemblies containing BLEU fuel pellets, add 3 years of additional cooling time to the values shown in this table.

Table 1-2p PWR Fuel Qualification Table for Zone 3 with 1.3 kW per Assembly, Fuel with or without CCs, for the NUHOMS[®]-24PHB DSC

BU										As	sembly	Averag	e Initial	Enrichn	nent (wt	. % U-2	35)									
(GWd/MTU)	2.0	2.1	2.2	2.3	2.4	2.5	2.6	2.7	2.8	2.9	3.0	3.1	3.2	3.3	3.4	3.5	3.6	3.7	3.8	3.9	4.0	4.1	4.2	4.3	4.4	4.5
10	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
15	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
20	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
25		5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
28			5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
30						5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
32							5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
34								5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
36									5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
38											5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5
39											5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5
40											5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5
41											5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5
42											6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
43											6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
44											6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
45				Not An	alyzed								6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
46													6.1	6.1	6.1	6.1	6.1	6.1	6.1	6.1	6.1	6.1	6.1	6.1	6.1	6.1
47													6.2	6.2	6.2	6.2	6.2	6.2	6.2	6.2	6.2	6.2	6.2	6.2	6.2	6.2
48													6.3	6.3	6.3	6.3	6.3	6.3	6.3	6.3	6.3	6.3	6.3	6.3	6.3	6.3
49													6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5
50															6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5
51															6.7	6.6	6.6	6.6	6.6	6.6	6.6	6.6	6.6	6.6	6.6	6.6
52															7.0	6.9	6.9	6.8	6.8	6.8	6.8	6.8	6.8	6.8	6.8	6.8
53															7.3	7.2	7.2	7.1	7.1	7.0	6.9	6.9	6.9	6.9	6.9	6.9
54															1.1	7.6	7.5	7.4	7.4	7.3	7.3	7.2	7.1	7.1	7.0	7.0
55															8.0	8.0	7.9	7.8	7.7	7.7	7.6	7.5	7.5	7.4	7.3	7.3

(Minimum required years of cooling time after reactor core discharge)

BU = Assembly average burnup.

- Use burnup and enrichment to look up minimum cooling time in years. For fuel assemblies reconstituted with up to 10 stainless steel rods only, if the look up cooling time is less
 than 9.0 years then a minimum cooling time of 9.0 years shall be used. Licensee is responsible for ensuring that uncertainties in fuel enrichment and burnup are correctly
 accounted for during fuel qualification.
- · Round burnup UP to next higher entry, round enrichments DOWN to next lower entry.
- Fuel with an initial enrichment greater than 4.5 wt.% U-235 is unacceptable for storage.
- Fuel with a burnup less than 10 GWd/MTU is acceptable for storage after 5-years cooling.
- Example: An assembly with an initial enrichment of 3.75 wt. % U-235 and a burnup of 46.5 GWd/MTU is acceptable for storage after a 6.2 years cooling time as defined by 3.7 wt.
 % U-235 (rounding down) and 47 GWd/MTU (rounding up) on the qualification table.
- See Figure 1-8 and 1-9 for a description of zones.
- For fuel assemblies reconstituted with Zirconium-alloy clad uranium-oxide rods use the assembly average enrichment to determine the minimum cooling time.
- The cooling times for damaged and intact assemblies are identical.
- For fuel assemblies containing BLEU fuel pellets, add 3 years of additional cooling time to the values shown in this table.

Table 1-2q BWR Fuel Qualification Table for NUHOMS[®]-61BT DSC

(Minimum required years of cooling time after reactor core discharge)

BU											Ass	semb	ly Av	erag	e Initi	al En	richn	nent ((wt. %	6 U-2	35)										
(GWd/ MTU	1.4	1.5	1.6	1.7	1.8	1.9	2.0	2.1	2.2	2.3	2.4	2.5	2.6	2.7	2.8	2.9	3.0	3.1	3.2	3.3	3.4	3.5	3.6	3.7	3.8	3.9	4.0	4.1	4.2	4.3	4.4
10	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
15	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
20	5	5	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
25	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	4	4	4
28					6	6	6	6	6	6	6	6	6	6	6	6	6	5	5	5	5	5	5	5	5	5	5	5	5	5	5
30					7	7	7	7	7	7	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6
32	N	ot A or	ontob		8	8	8	8	8	7	7	7	7	7	7	7	7	7	7	7	7	7	6	6	6	6	6	6	6	6	6
34	IN	ot Acc o		ne	9	9	9	9	9	9	8	8	8	8	8	8	8	8	8	7	7	7	7	7	7	7	7	7	7	7	7
36		Not An		d	11	11	11	10	10	10	10	10	9	9	9	9	9	9	9	9	8	8	8	8	8	8	8	8	8	8	8
38		NUL AII	alyze	u	14	13	13	12	12	12	12	11	11	11	11	11	10	10	10	10	10	10	9	9	9	9	9	9	9	9	9
39					15	14	14	14	13	13	13	12	12	12	12	11	11	11	11	11	10	10	10	10	10	10	10	9	9	9	9
40					16	16	15	15	15	14	14	14	13	13	13	12	12	12	12	12	11	11	11	11	11	10	10	10	10	10	10

This table provides an alternate methodology as cross referenced in Tables 1-1c and 1-1j for determination of fuel assemblies qualified for storage in NUHOMS[®]-61BT DSC.

- BU = Assembly average burnup
- Use burnup and enrichment to look up minimum cooling time in years. Licensee is responsible for ensuring that uncertainties in fuel enrichment and burnup
 are conservatively applied in determination of actual values for these two parameters.
- Round burnup UP to next higher entry, round enrichments DOWN to next lower entry.
- Fuel with an initial enrichment less than 1.4 and greater than 4.4 wt.% U-235 is unacceptable for storage.
- Fuel with a burnup greater than 40 GWd/MTU is unacceptable for storage.
- Fuel with a burnup less than 10 GWd/MTU is acceptable for storage after 4 years cooling.
- Example: An assembly with an initial enrichment of 3.75 wt. % U-235 and a burnup of 39.5 GWd/MTU is acceptable for storage after a eleven-year cooling time as defined by 3.7 wt. % U-235 (rounding down) and 40 GWd/MTU (rounding up) on the qualification table.
- For fuel assemblies containing BLEU fuel pellets, add 3 years of additional cooling time to the values shown in this table.

Table 1-3a

PWR Fuel Qualification Table for Zone 1 Fuel with 1.7 kW per Assembly for the NUHOMS[®]-24PTH DSC (Fuel without CCs)

(Minimum required years of cooling time after reactor core discharge)

BU										Δ٩	ser	nbl	/ Δν	era	ne l	nitia	al Fr	nrich	nme	ent (wt	% I	-23	5)									
GWd /MTU	0.7	1.5	2.0	2.1	2.2	2.3	2.4	2.5	2.6			2.9	_	_	×	3.3		3.5				_	4.0	_	4.2	4.3	4.4	4.5	4.6	4.7	4.8	4.9	5.0
10				3.0	3.0	3.0	3.0		3.0		3.0			3.0				3.0															3.0
15		3.0			3.0		3.0					3.0					3.0			3.0	<u> </u>						3.0		3.0				3.0
20	3.0	_					3.0	<u> </u>				3.0					3.0			3.0		3.0					3.0		3.0			_	3.0
25		3.0					3.0			3.0							3.0			3.0		3.0			3.0		3.0		3.0				3.0
28		3.0	3.0	3.0	3.0	3.0	3.0				3.0		3.0	3.0			3.0			3.0		3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
30		3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0				3.0	3.0		3.0		3.0			3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
32		3.5	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
34		3.5	3.5	3.5	3.5	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
36		4.0	3.5	3.5			3.5								3.0	3.0	3.0	3.0		3.0		3.0		3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
38		4.5 4.0 4.0 3.5 <td></td> <td></td> <td></td> <td></td> <td>3.0</td>																			3.0												
39		4.5 4.0 4.0 4.0 4.0 3.5 <td></td> <td></td> <td></td> <td>3.5</td>																		3.5													
40	4.5 4.0 4.0 4.0 4.0 3.5 <td></td> <td></td> <td></td> <td>3.5</td>																		3.5														
41		4.5 4.0 4.0 4.0 4.0 3.5 <td></td> <td></td> <td></td> <td>3.5</td>																		3.5													
42										4.0	4.0		4.0							3.5													3.5
43										4.0							4.0			4.0		4.0					3.5						3.5
44										4.0		4.0		4.0							4.0	4.0					4.0				4.0		4.0
45												4.5				4.0				4.0		4.0					4.0		4.0				4.0
46												4.5					4.5		4.0		4.0	4.0					4.0		4.0				4.0
47												4.5					4.5					4.5				4.0			4.0		4.0		4.0
48										5.0	5.0	4.5					4.5										4.5		4.5				4.0
49													5.0	5.0			4.5					4.5				4.5			4.5				4.5
50					NO	t An	alyz	zed					5.0	5.0			5.0										4.5		4.5				4.5
51													5.0	5.0			5.0			5.0							4.5		4.5				4.5
52														5.5 5.5			5.0			5.0													4.5
53 54														5.5			5.5			5.0 5.5		5.0					5.0						5.0 5.0
55		Ne	ote:	If in	rod	into	d of	ainl		oto	ol re	do		1						5.5							5.5						5.0
56			e pr														5.5 6.0			5.5							5.5						5.0
			sem												0.0	0.0																5.5	
57			olin			u di	n au	and	ond	yea	ai 0						6.0			6.0		6.0					6.0						5.5
58 59				y ui	iie.												6.5	6.5		6.5		6.0					6.0						5.5
59 60																	6.5			6.5							6.0		6.0				6.0
61																	7.0			6.5							6.5						6.0
62																	7.0			7.0	<u> </u>	7.0					6.5		6.5				6.5
02																	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Note: The page that follows Table 1-3h provides the explanatory notes and limitations regarding the use of this table.

Standardized NUHOMS[®] Technical Specifications Renewed Amendment No. 13, Revision No. 1

Table 1-3b

PWR Fuel Qualification Table for Zone 2 Fuel with 2.0 kW per Assembly for the NUHOMS[®]-24PTH DSC (Fuel without CCs)

(Minimum required years of cooling time after reactor core discharge)

BU										As	sser	nbly	/ Av	era	ge I	nitia	al Ei	nric	hme	ent (wt.	%ι	J-23	5)									
GWd/ MTU	0.7	1.5	2.0	2.1	2.2	2.3	2.4	2.5	2.6	2.7	2.8	2.9	3.0	3.1	3.2	3.3	3.4	3.5	3.6	3.7	3.8	3.9	4.0	4.1	4.2	4.3	4.4	4.5	4.6	4.7	4.8	4.9	5.0
10	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
15	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
20	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
25		3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
28		3.0	3.0		3.0	3.0	3.0	3.0		3.0	3.0		3.0		3.0	3.0			3.0	3.0	3.0	3.0		3.0	3.0	3.0				3.0	3.0	3.0	3.0
30	Į	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0	3.0		3.0		<u> </u>		3.0	3.0	3.0	3.0		3.0	3.0	3.0		3.0	3.0	3.0			3.0
32		3.0	3.0			<u> </u>		3.0		3.0	3.0	3.0	3.0		3.0				3.0	3.0	3.0	3.0			3.0	3.0	3.0		3.0	3.0			3.0
34	Į	3.0	3.0		3.0	3.0		3.0		3.0	3.0	3.0	3.0		3.0				3.0	3.0	3.0	3.0		3.0	3.0	3.0		3.0		3.0			3.0
36		3.5	3.0			3.0	<u> </u>	<u> </u>		3.0	3.0	3.0	3.0		3.0				3.0	3.0	3.0	3.0			3.0	3.0	<u> </u>	3.0	3.0	3.0			3.0
38	Į	3.5	3.5		3.0	3.0		3.0		3.0	3.0	3.0	3.0		3.0				3.0	3.0	3.0	3.0		3.0	3.0	3.0		3.0		3.0		3.0	3.0
39	Į	3.5				<u> </u>				3.0	3.0	3.0	3.0		3.0				3.0	3.0	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0	3.0			3.0
40	Į						3.5			3.5	3.5		3.0		3.0				3.0	3.0	3.0	3.0			3.0		<u> </u>	3.0		3.0		3.0	
41		4.0	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5		3.5		_	3.0				3.0				3.0		3.0				3.0	
42										3.5	3.5	3.5	3.5		3.5					3.5		3.0			3.0	3.0				3.0			3.0
43										3.5	3.5	3.5	3.5		3.5					3.5												3.0	
44										3.5	3.5	_	3.5		3.5			3.5		3.5		3.5						3.5			_	3.5	
45										4.0	3.5		3.5		3.5					3.5					3.5		3.5					3.5	
46	Į									4.0	4.0	4.0	4.0			3.5		3.5	<u> </u>	3.5	<u> </u>	3.5						3.5	3.5				3.5
47										4.0	4.0		4.0	4.0	4.0	4.0			4.0		3.5				3.5							3.5	
48										4.0	4.0	4.0	4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0			3.5							3.5
49													4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0		4.0				3.5	3.5
50					N	lot /	Anal	lyze	d				4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0		4.0			4.0	4.0				4.0
51													4.5		4.5			4.0	4.0	4.0	4.0	4.0			4.0				4.0			4.0	_
52															4.5			4.5		4.5					4.0			4.0	4.0	<u> </u>		4.0	
53														4.5	4.5	4.5		4.5	4.5	4.5		4.5						4.0					4.0
54															4.5	4.5		4.5		4.5	4.5	4.5							4.5			4.0	
55							d st								_	5.0				4.5	<u> </u>				4.5	<u> </u>	<u> </u>					4.5	
56	Į						e re								5.0	5.0	_			5.0					5.0		5.0					4.5	
57	Į					d a	n ad	diti	ona	l ye	ar o	f					5.0		5.0		5.0				5.0		<u> </u>	<u> </u>		<u> </u>		5.0	
58		CO	olin	<u>g tir</u>	ne.												5.0			5.0					5.0		5.0					5.0	
59																	5.5		<u> </u>	5.0					<u> </u>		5.0					5.0	
60																	6.0		5.5		5.5				5.0							5.0	
61																	6.0		<u> </u>	<u> </u>		5.5											
62																	6.0	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5

Table 1-3c

PWR Fuel Qualification Table for Zone 3 Fuel with 1.5 kW per Assembly for the NUHOMS[®]-24PTH DSC (Fuel without CCs)

(Minimum required years of cooling time after reactor core discharge)

BU										As	ser	nbly	/ Av	era	qe I	nitia	al Ei	nrich	nme	ent (wt.	%ι	J-23	35)									
GWd/ MTU	0.7	1.5	2.0	2.1	2.2	2.3	2.4	2.5	2.6	2.7	2.8	2.9	3.0	3.1	3.2	3.3	3.4	3.5	3.6	3.7	3.8	3.9	4.0	4.1	4.2	4.3	4.4	4.5	4.6	4.7	4.8	4.9	5.0
10	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
15	3.0	3.0	3.0	3.0	3.0	3.0							3.0		3.0	3.0	3.0	3.0	3.0	3.0	-	3.0		3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
20	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0	3.0				3.0	3.0	3.0	3.0	3.0
25		3.0	3.0	3.0	3.0	3.0	3.0	3.0						3.0	3.0	3.0	3.0		3.0		3.0			3.0	3.0	3.0				3.0	3.0	3.0	3.0
28		3.5	3.0	3.0	3.0	3.0	3.0	3.0							3.0	3.0	3.0		3.0		3.0			3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
30		3.5	3.5	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
32		4.0	3.5	3.5	3.5	3.5	3.5	3.5	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
34		4.0	4.0	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
36		4.5	4.0	4.0	4.0	4.0	4.0	4.0	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5				3.5												3.5
38		5.0	4.5	4.5	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	3.5	3.5	3.5	3.5	3.5	3.5	3.5							3.5		3.5
39		5.0 4.5 4.5 4.5 4.0 <td>4.0</td> <td>4.0</td> <td>4.0</td> <td>4.0</td> <td>4.0</td> <td>4.0</td> <td>3.5</td>															4.0	4.0	4.0	4.0	4.0	4.0	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	
40		5.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0															4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	3.5		
41		5.5 4.5 4.5 4.5 4.5 4.5 4.0 <td></td> <td>4.0</td> <td></td> <td>4.0</td> <td></td> <td>4.0</td> <td>4.0</td> <td>4.0</td> <td>4.0</td> <td></td> <td></td> <td></td> <td>4.0</td> <td></td> <td></td> <td>4.0</td>																4.0		4.0		4.0	4.0	4.0	4.0				4.0			4.0	
42										4.5				4.5		4.5	4.5	4.0	4.0		4.0			4.0	4.0					4.0			4.0
43										4.5				4.5		4.5	4.5		4.5		4.5			4.0	4.0		_			4.0			4.0
44										5.0				4.5		4.5		4.5	4.5						4.5		4.5			4.0			4.0
45										5.0			5.0		4.5	4.5	4.5		4.5		4.5			4.5	4.5								4.5
46										5.0		5.0							5.0		4.5						4.5				4.5		4.5
47													-		5.0		5.0		5.0								4.5						4.5
48										5.5	5.5	5.5	5.5	5.5	5.0	5.0	5.0		5.0		5.0			_		5.0					5.0		4.5
49				Mai		- h							5.5						5.0					5.0							5.0		5.0
50				NOI	An	alyz	zea						5.5	5.5		5.5			5.5		5.5										5.0 5.0		5.0
51													6.0		6.0						5.5			5.5									5.0
52 53														6.0 6.0		6.0 6.0			6.0 6.0		5.5 6.0						5.5 5.5						5.5 5.5
54														0.0		6.5											5.5 6.0						5.5
55		No	te:	If in	rad	iate	d st	ainl	855	ste	el ro	bds				6.5		6.5			6.5			6.0							5.5 6.0		5.5 6.0
56							e re									7.0					6.5				<u> </u>		6.5						6.0
57							n ad								1.0	1.0	7.0	7.0	7.0		7.0						6.5						6.5
58			oling			u ai	au	nanu	ona	ye							7.5				7.0						7.0						6.5
59	ļ		- In Ig	<u>, </u>													7.5	7.5	7.5	7.5	7.5				7.0	7.0				7.0			7.0
60																	8.0	8.0		-	7.5						7.5				7.0		7.0
61																	8.5		8.0		8.0						7.5			7.5			7.5
62																	8.5				8.5						8.0						7.5
																				o.o nd l	· · · · ·			0.0					of the	1.0	1.0	1.0	1.0

Note: The page that follows Table 1-3h provides the explanatory notes and limitations regarding the use of this table.

Standardized NUHOMS[®] Technical Specifications Renewed Amendment No. 13, Revision No. 1 T-73

Table 1-3d

PWR Fuel Qualification Table for Zone 4 Fuel with 1.3 kW per Assembly for the NUHOMS®-24PTH DSC (Fuel without CCs)

(Minimum required years of cooling time after reactor core discharge)

BU										As	sser	mbl	/ Av	era	qe I	nitia	al Ei	nrich	nme	ent (wt.	%ι	J-23	5)									
GWd/ MTU	0.7	1.5	2.0	2.1	2.2	2.3	2.4	2.5	2.6		2.8	_	3.0					3.5		3.7		_		- <u> </u>	4.2	4.3	4.4	4.5	4.6	4.7	4.8	4.9	5.0
10	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
15	3.0			3.0	3.0	3.0	3.0	3.0	3.0		3.0					3.0				3.0		3.0			3.0		<u> </u>	3.0	3.0	3.0	3.0	3.0	3.0
20	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
25		3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
28		3.5	3.5	3.5	3.0		3.0			3.0			3.0				3.0		3.0	3.0	3.0	3.0		3.0	3.0	3.0			3.0				3.0
30		4.0	3.5	3.5	3.5	3.5	3.5		3.5											3.0		3.0		3.0					3.0			3.0	3.0
32		4.5	4.0	4.0	4.0	3.5	3.5	3.5	3.5											3.5		3.5					3.5		3.5				3.5
34		4.5	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
36		5.0	4.5	4.5	4.5	4.5	4.0						4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
38		5.5	6.0 5.0 5.0 5.0 4.5 <td>4.0</td>															4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
39		6.0	6.0 5.0 5.0 5.0 4.5 <td></td> <td>4.5</td> <td>4.5</td> <td></td> <td></td> <td></td> <td></td> <td>4.5</td> <td></td> <td>4.0</td> <td>4.0</td> <td><u> </u></td> <td>4.0</td> <td></td> <td></td> <td>4.0</td>																4.5	4.5					4.5		4.0	4.0	<u> </u>	4.0			4.0
40			6.0 5.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5																4.5	4.5		4.5	4.5		4.5			4.5		4.5			4.5
41		6.5	6.0 5.5 5.0 5.0 5.0 5.0 5.0 5.0 4.5 <td></td> <td></td> <td>4.5</td> <td></td> <td></td> <td></td> <td></td> <td>4.5</td> <td></td> <td></td> <td></td> <td></td> <td>4.5</td> <td></td> <td></td> <td>4.5</td>																	4.5					4.5					4.5			4.5
42										5.0			5.0							5.0		5.0							4.5				4.5
43										5.5			5.0							5.0		5.0							5.0				4.5
44										5.5		5.5						5.0	5.0		5.0	5.0							5.0				5.0
45												5.5								5.5									5.0				5.0
46											6.0		6.0		<u> </u>			5.5		5.5									5.0				5.0
47											6.0									5.5							5.5						5.5
48										6.5	6.5	6.5				6.0				6.0		6.0					5.5						5.5
49													6.5					6.5		6.0	<u> </u>	6.0					6.0		<u> </u>	<u> </u>			5.5
50				N	lot /	Ana	lyze	d					7.0					6.5				6.5					6.0						6.0
51													7.0					7.0		6.5							6.5						6.0
52														7.5		7.0	7.0	7.0		7.0		7.0					6.5						6.5
53														7.5		7.5				7.0		7.0		7.0					7.0				6.5
54		_														8.0			7.5		7.5	7.5		7.5				7.0	7.0		7.0		7.0
55									ess						<u> </u>		<u> </u>			8.0		8.0					7.5	7.5			7.0		7.0
56									stitu						8.5	8.5		8.5		8.5		8.0		8.0				7.5		7.5			7.5
57									ona									9.0									8.0		<u> </u>		-		8.0
58				<u> </u>	ne f	for c	:ooli	ing	time	es le	ss t	thar	1				9.5	9.5	9.0	9.0	<u> </u>	9.0					8.5						8.0
59		10	yea	ars.													10.0			9.5				9.0				9.0		8.5			8.5
60																				10.0													9.0
61																	<u> </u>			10.5	—	-			_		<u> </u>		—	<u> </u>			9.5
62																	11.5	11.5	11.5	11.5	11.0	11.0	11.0	10.5	10.5	10.5	10.5	10.5	10.0	10.0	10.0	10.0	10.0

Note: The page that follows Table 1-3h provides the explanatory notes and limitations regarding the use of this table.

Standardized NUHOMS[®] Technical Specifications Renewed Amendment No. 13, Revision No. 1

 Table 1-3e

 PWR Fuel Qualification Table for Zone 1 Fuel with 1.7 kW per Assembly for the NUHOMS[®]-24PTH DSC (Fuel with CCs)

(Minimum required years of cooling time after reactor core discharge)

BU										As	sser	nbl	/ Av	era	ae I	nitia	al Er	nrich	nme	ent (wt.	%ι	J-23	5)									
GWd/ MTU	0.7	1.5	2.0	2.1	2.2	2.3	2.4	2.5	2.6									3.5			3.8				4.2	4.3	4.4	4.5	4.6	4.7	4.8	4.9	5.0
10	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
15	3.0			3.0	3.0	3.0		3.0	<u> </u>			3.0		3.0		3.0			3.0		3.0	3.0		<u> </u>	3.0		<u> </u>	<u> </u>	3.0	<u> </u>	<u> </u>		3.0
20	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0			3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
25		3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
28		3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
30		3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0		3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3. 0	3.0		3.0
32		3.5		3.0	3.0			3.0				3.0		3.0		3.0		3.0	3.0	3.0	3.0	3.0	3.0						3.0		3.0		3.0
34		3.5		3.5	3.5				1			3.0				3.0		3.0	3.0	3.0	3.0	3.0	3.0		3.0				3.0		3.0		3.0
36		4.0			3.5				3.5					3.0		3.0				3.0	3.0	3.0	3.0		3.0				3.0		3.0		3.0
38		4.5	4.5 4.0 4.0 4.0 4.0 4.0 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5																	3.5	3.5	3.5					3.5		3.0		3.0		3.0
39			4.5 4.0 4.0 4.0 4.0 4.0 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5																3.5	3.5	3.5	3.5					3.5						3.5
40			4.5 4.0 4.0 4.0 4.0 4.0 4.0 4.0 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5																3.5	3.5		3.5					3.5						3.5
41		5.0	4.5 4.0 4.0 4.0 4.0 3.5 3																		3.5	3.5					3.5	_					3.5
42										4.0		4.0									4.0	3.5					3.5						3.5
43										4.0		4.0		4.0	4.0	4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0				<u> </u>	<u> </u>	<u> </u>		3.5
44										4.0		4.0		4.0	<u> </u>	4.0			4.0	4.0		4.0	4.0	<u> </u>			4.0		4.0		4.0		4.0
45										4.5		<u> </u>		4.0	4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0		4.0				4.0	<u> </u>	4.0		4.0
46										4.5			4.5			4.5			4.0			4.0	4.0		4.0				4.0	<u> </u>	4.0		4.0
47													4.5						4.5						4.0				4.0		4.0		4.0
48										5.0	5.0	4.5	4.5					4.5		4.5							4.5						4.0
49													5.0	5.0				4.5									4.5						4.5
50				NO	t An	alyz	zea						5.0	5.0				5.0									4.5						4.5
51													5.0	5.0 5.5	5.0 5.0			5.0 5.0		5.0 5.0	5.0	5.0 5.0	5.0 5.0		5.0		4.5 5.0			4.5	4.5		4.5 4.5
52 53														5.5				5.5			5.0 5.0	5.0	5.0				5.0		5.0				4.5 5.0
53 54														5.5	5.5			5.5			5.5	5.5	5.5				5.0		5.0		5.0		5.0
55		No	ote:	If in	rad	iato	d et	ainl		cto	olice	de			_			5.5			5.5		5.5				5.5				5.0		5.0
			e pr															5.5 6.0		5.5							5.5						5.5
56 57															10.0	0.0		6.0			6.0	6.0	6.0				5.5						5.5
			sem olin			u al	n ao	ulu	ona	i ye	ar o							6.0		6.0							5.5 6.0						5.5
58 59				y ul	iie.													6.5		6.5	<u> </u>						6.0						6.0
																		6.5		6.5							6.0						6.0
60 61																		7.0									6.5						6.0
																		7.0	7.0	<u> </u>	<u> </u>	7.0		<u> </u>			6.5		<u> </u>	<u> </u>	<u> </u>		6.5
62																	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Note: The page that follows Table 1-3h provides the explanatory notes and limitations regarding the use of this table.

Standardized NUHOMS[®] Technical Specifications Renewed Amendment No. 13, Revision No. 1 T-75

Table 1-3f

PWR Fuel Qualification Table for Zone 2 Fuel with 2.0 kW per Assembly for the NUHOMS[®]-24PTH DSC (Fuel with CCs) (Minimum required years of cooling time after reactor core discharge)

BU										As	ser	nbly	/ Av	era	ge I	nitia	al Ei	nricl	nme	ent (wt.	%ι	J-23	5)									
GWd/ MTU	0.7	1.5	2.0	2.1	2.2	2.3	2.4	2.5	2.6	2.7	2.8	2.9	3.0	3.1	3.2	3.3	3.4	3.5	3.6	3.7	3.8	3.9	4.0	4.1	4.2	4.3	4.4	4.5	4.6	4.7	4.8	4.9	5.0
10	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
15	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
20	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
25		3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
28		3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
30		3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
32		3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0			3.0	3.0	3.0	3.0	3.0	3.0
34		3.0	3.0	3.0	3.0	3.0	3.0	3.0				3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0			3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0			3.0
36			3.0	_					3.0			3.0		3.0	3.0		3.0	3.0		3.0		<u> </u>	3.0		3.0	<u> </u>		3.0		3.0			3.0
38			3.5		3.0					3.0			3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0		3.0		<u> </u>	3.0	<u> </u>	3.0			3.0
39			3.5									3.0	3.0	3.0	3.0		3.0	3.0		3.0	<u> </u>		3.0	3.0	3.0		<u> </u>	3.0	<u> </u>	3.0			3.0
40		4.0 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5															3.0	3.0	3.0		3.0			3.0	3.0	3.0	3.0	3.0	3.0			3.0	
41		4.0 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5															3.0	3.0	3.0	<u> </u>	<u> </u>			3.0			3.0	<u> </u>	3.0			3.0	
42		4.0 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5															3.5		3.5		3.0			3.0	3.0		3.0	3.0	3.0			3.0	
43		3.5 3.5 <td>3.5</td> <td></td> <td>3.5</td> <td></td> <td></td> <td></td> <td></td> <td>3.5</td> <td></td> <td></td> <td></td> <td>3.0</td> <td>3.0</td> <td></td> <td></td> <td>3.0</td>															3.5		3.5					3.5				3.0	3.0			3.0	
44		3.5 3.5 <td>3.5</td> <td></td> <td>3.5</td> <td></td> <td>3.5</td> <td></td> <td></td> <td>3.5</td> <td></td> <td>3.5</td> <td></td> <td></td> <td>3.5</td> <td></td> <td></td> <td>3.5</td>															3.5		3.5		3.5			3.5		3.5			3.5			3.5	
45										4.0			3.5	3.5		3.5	3.5	3.5		3.5		3.5			3.5					3.5			3.5
46										4.0		4.0	4.0	4.0	4.0	3.5	3.5	3.5		3.5	-	3.5			3.5		3.5	<u> </u>	<u> </u>	3.5	-		3.5
47										4.0			4.0	4.0	4.0	4.0	4.0	4.0	<u> </u>	4.0		3.5			3.5					3.5			3.5
48										4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0		4.0		4.0	4.0		4.0		3.5	<u> </u>	<u> </u>		+		3.5
49													4.0	4.0	4.0	4.0	4.0	<u> </u>	4.0	4.0		4.0			4.0	4.0	4.0	4.0	4.0	4.0			3.5
50				Not	t An	alyz	zed						4.0	4.0	4.0	4.0	4.0	4.0		4.0		4.0	4.0		4.0		<u> </u>	4.0	<u> </u>	<u> </u>			4.0
51													4.5	4.5	4.5	4.5	4.5	4.0		4.0		4.0	4.0		4.0			<u> </u>	<u> </u>				4.0
52														4.5	<u> </u>	4.5	4.5	4.5		4.5	<u> </u>	4.5	4.0		4.0	4.0		4.0	<u> </u>				4.0
53														4.5			4.5	4.5		4.5		4.5			4.5			4.0		4.0	4.0		4.0
54															4.5		4.5	4.5		4.5	<u> </u>	4.5			4.5			4.5	<u> </u>	<u> </u>			4.0
55			te:												5.0		4.5		4.5	4.5		4.5			4.5			4.5	<u> </u>		-		4.5
56			e pre												5.0	5.0	5.0	5.0		5.0					5.0		5.0					<u> </u>	4.5
57			sem			d ar	n ad	diti	onal	l yea	ar o	f					5.0	5.0	5.0	5.0	-	<u> </u>			5.0	<u> </u>					-		5.0
58		CO	oling	y tin	ne.		_										5.0	5.0	5.0	5.0					5.0		5.0						5.0
59																	5.5	5.5	5.5	5.0					5.0								5.0
60																	6.0		5.5	5.5					5.0					5.0			5.0
61																	6.0	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5
62																	6.0	6.0	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5

Note: The page that follows Table 1-3h provides the explanatory notes and limitations regarding the use of this table.

Standardized NUHOMS® Technical Specifications Renewed Amendment No. 13, Revision No. 1

Tables

Table 1-3g

PWR Fuel Qualification Table for Zone 3 Fuel with 1.5 kW per Assembly for the NUHOMS[®]-24PTH DSC (Fuel with CCs)

(Minimum required years of cooling time after reactor core discharge)

BU										As	sser	mblv	/ Av	era	ae I	nitia	al Er	nric	nme	ent (wt.	%ι	J-23	5)									
GWd/ MTU	0.7	1.5	2.0	2.1	2.2	2.3	2.4	2.5	2.6		2.8		3.0	_	×		_	3.5	-	3.7				4.1	4.2	4.3	4.4	4.5	4.6	4.7	4.8	4.9	5.0
10	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
15	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0					3.0		3.0	3.0	3.0						3.0	3.0	3.0			3.0	3.0	3.0		3.0	
20	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0			3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
25		3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
28		3.5	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
30		3.5	3.5	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
32		4.0	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.0	3.0	3.0	3.0		3.0	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
34		4.0	4.0	3.5	3.5	3.5	3.5								3.5	3.5	3.5		3.5	3.5	3.5	3.5	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
36		4.5	4.0	4.0	4.0	4.0	4.0	4.0		3.5					3.5	3.5			3.5	3.5	3.5					3.5			3.5			3.5	
38		5.0	4.5	4.5		4.0	4.0	4.0			4.0	4.0	4.0	4.0	4.0	4.0	4.0		3.5	3.5	3.5	3.5		3.5	3.5		3.5		3.5			3.5	
39		5.0						<u> </u>	<u> </u>					4.0	4.0	4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0		3.5		<u> </u>		3.5	3.5
40		5.5 5.0 5.0 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0															4.0	4.0	4.0	4.0	4.0	4.0		4.0			4.0	4.0			4.0		
41		4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5															4.0	4.0	4.0	4.0	4.0	4.0		4.0				4.0		4.0			
42		4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5															4.0	4.0	4.0	4.0	4.0	4.0		4.0						4.0	4.0		
43		4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5															4.5	4.5	4.5	4.5		4.5		4.0				4.0			4.0		
44		5.0 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5																				4.5				4.5				4.5			
45										5.0		5.0							4.5	4.5		4.5	4.5					4.5				4.5	
46												5.0				5.0		<u> </u>	5.0	5.0		4.5						4.5				4.5	
47												5.0				5.0			5.0	5.0	5.0	5.0						4.5				4.5	
48										5.5	5.5	5.5			5.5				5.0	5.0	5.0					5.0	<u> </u>					5.0	
49													5.5	5.5		5.5			5.5	5.0	5.0	5.0		5.0				5.0		5.0		5.0	
50				Not	t An	aly	zed						5.5	5.5	5.5					5.5		5.5				5.0						5.0	
51													6.0	6.0	<u> </u>	6.0			5.5	5.5	5.5	5.5				5.5							5.0
52														6.0	6.0	6.0			6.0	6.0	5.5	5.5				5.5			5.5				5.5
53														6.0		6.0			6.0	6.0	6.0					6.0							5.5
54																		6.5								6.0						6.0	
55							d st								<u> </u>			6.5		6.5						6.0						6.0	
56							e re								7.0	7.0	_			6.5						6.5						6.0	
57						ld a	n ac	lditi	ona	l ye	ar o	f					7.0	<u> </u>	7.0	7.0	7.0					6.5						6.5	
58		СО	olin	<u>g tir</u>	ne.												7.5	7.5	7.5	7.0	7.0	7.0		7.0								6.5	
59																	7.5	7.5	7.5	7.5				7.5		7.0	7.0		7.0	7.0			7.0
60																	8.0	8.0	8.0		8.0			7.5		7.5			7.0	7.0	-		7.0
61																	8.5		<u> </u>	<u> </u>				8.0			<u> </u>		7.5	7.5		7.5	7.5
62																	9.0	8.5	8.5	8.5	8.5	8.5	8.5	8.0	8.0	8.0	8.0	8.0	8.0	8.0	7.5	7.5	7.5

Note: The page that follows Table 1-3h provides the explanatory notes and limitations regarding the use of this table.

Standardized NUHOMS[®] Technical Specifications Renewed Amendment No. 13, Revision No. 1

Assembly Average Initial Enrichment (wt. % U-235) BU GWd/ 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2 4.3 4.4 4.5 4.6 0.7 1.5 2.0 4.8 4.9 5.0 MTU 10 3.0 3.0 3.0 303030303030 30 30 30 30 3.0 3.0 3.0 30 30 3.0 30 30 3030 3030303030 30 30 3.0 30 30 30 15 3.0 20 3.0 25 3.0 3.0 3.0 28 3.5 3.5 3.5 3.0 30 4.0 3.5 3.5 32 4.5 4.0 4.0 4.0 3.5 34 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 36 4.0 4.0 4.0 38 39 4.0 4.0 4.0 6.0 5.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0 4.5 4.5 4.5 4.5 4.5 4.5 4.5 40 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 41 4.5 4.5 42 43 44 5.0 45 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 46 5.5 5.5 5.5 5.5 5.5 5.0 47 5.5 5.5 5.5 48 49 50 Not Analyzed 51 6.5 6.5 6.0 52 53 7.5 7.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 7.5 7.5 7.5 7.5 54 8.0 8.0 8.0 8.0 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.0 7.0 7.0 7.0 7.0 7.0 55 8.5 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 Note: If irradiated stainless steel rods 7.5 7.5 7.0 56 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.0 8.0 8.0 8.0 8.0 8.0 8.0 7.5 are present in the reconstituted fuel 7.5 57 9.0 9.0 9.0 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.0 8.0 8.0 8.0 8.0 8.0 assembly, add an additional year of 9.5 9.5 9.5 9.5 9.0 9.0 9.0 9.0 9.0 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 58 cooling time for cooling times less than 59 10.0 10.0 9.5 10.0 9.5 9.5 9.5 9.5 9.5 9.0 9.0 9.0 9.0 9.0 8.5 8.5 10 years. 60 61 62

(Minimum required years of cooling time after reactor core discharge)

Notes: Tables 1-3a through 1-3h:

- BU = Assembly Average burnup.
- Use burnup and enrichment to look up minimum cooling time in years. Licensee is responsible for ensuring that uncertainties in fuel enrichment and burnup are correctly accounted for during fuel qualification.
- Round burnup UP to next higher entry, round enrichments DOWN to next lower entry.
- Fuel with an assembly average initial enrichment less than 0.7 wt. % U-235 (or less than the minimum provided above for each burnup) and greater than 5.0 wt.% U-235 is unacceptable for storage.
- Fuel with a burnup greater than 62 GWd/MTU is unacceptable for storage.
- Fuel with a burnup less than 10 GWd/MTU is acceptable for storage after 3-years cooling.
- WE 15x15 PLSAs shall be limited to a minimum assembly average enrichment of 1.2 wt. % U-235.
- See Figures 1-11 through 1-15 for the description of zones.
- For reconstituted fuel assemblies with UO2 rods and/or Zr rods or Zr pellets and/or stainless steel rods, use the assembly average equivalent enrichment to determine the minimum cooling time.
- The cooling times for failed, damaged and intact assemblies are identical.
- For fuel assemblies containing BLEU fuel pellets, add 3.0 years of additional cooling time to the values shown in Tables 1-3a through 1-3h.
- *Example*: An INTACT FUEL ASSEMBLY without CCs, with a decay heat load of 1.7 kW or less, an initial enrichment of 3.65 wt. % U-235 and a burnup of 41.5 GWd/MTU is acceptable for storage after a 4.0 year cooling time as defined by 3.6 wt. % U-235 (rounding down) and 42 GWd/MTU (rounding up) in Table 1-3a.

Table 1-4a BWR Fuel Qualification Table for Zone 1 Fuel with 0.22 kW per Assembly for the NUHOMS[®]-61BTH DSC

(Minimum required years of cooling time after reactor core discharge)

BU diverge introl kind/miles kin				
MTU 0.9 12 1	BU		Assembly Average Initial Enrichment (wt. % U-235)	
15 40 40 40 40 33 35 <th< td=""><td></td><td>0.9 1.2 1.5 2.0 2.1 2.2 2.3 2.4 2.5</td><td>2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7</td><td>4.8 4.9 5.0</td></th<>		0.9 1.2 1.5 2.0 2.1 2.2 2.3 2.4 2.5	2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7	4.8 4.9 5.0
20 50 50 50 50 50 50 50 50 50 50 50 50 50 50 55<	10	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	3.0 3.0 3.0
23 60 <td< td=""><td>15</td><td>4.0 4.0 4.0 4.0 3.5 3.5 3.5 3.5 3.5</td><td>3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5</td><td>3.5 3.5 3.5</td></td<>	15	4.0 4.0 4.0 4.0 3.5 3.5 3.5 3.5 3.5	3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5	3.5 3.5 3.5
25 7.0 7.0 7.0 6.5 7.5 7.	20	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	4.5 4.5 4.5
28 8.5	23	6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 5.5	5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5	5.5 5.5 5.5
30 10.5 10.6 9.5 9.5 9.5 9.0	25	7.0 7.0 6.5 6.5 6.5 6.5 6.5 6.5 6.5	6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5	6.0 6.0 6.0
32 11.0 <	28	8.5 8.5 8.5 8.0 8.0 8.0 8.0 8.0 8.0 8.0	8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	7.5 7.5 7.5
34 14.0 <	30	10.5 10.0 9.5 9.5 9.5 9.5 9.5 9.5 9.0	9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	8.5 8.5 8.5
36 16.5 16.0 16.0 16.0 16.0 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.0 <	32	11.0 11.0 11.0 11.0 11.0 11.0	11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0	0 10.0 10.0 10.0
38 19.5 19.0 <	34	14.0 14.0 14.0 14.0 14.0 14.0	14.0 13.0 13.0 13.0 13.0 13.0 13.0 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5	5 12.5 12.5 12.5
39 21.0 21.0 20.5 20.5 20.5 20.0 20.0 20.0 19.5 <	36	16.5 16.0 16.0 16.0 16.0 16.0	15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5	5 14.5 14.5 14.5
40 22.0 21.5 21.5 21.0 22.0 <	38	19.5 19.0 19.0 19.0 19.0 18.5	18.5 18.5 18.5 18.5 18.5 18.5 18.5 18.5	5 17.5 17.5 17.5
41 42 42 43 44 44 44 45 46 47 46 47 48 49 49 49 41 48 49 40 49 41 41 41 42 44 45 46 47 48 11 10 irradiated stainless steel reconstituted fue assembly, add an additional 5.0 years of 50 51 30.5 30.5 30.5 30.5 30.5 30.5 30.3 30.0 30.0	39	21.0 21.0 20.5 20.5 20.5 20.5	20.5 20.5 20.0 20.0 20.0 20.0 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5	19.0 19.0 19.0
42 43 Not Analyzed 44 44 45 26.0 26.0 26.0 25.5	40	1	22.021.521.521.521.521.521.521.021.021.021.021.021.021.021.021.021.0	5 20.5 20.5 20.5
43 Not Analyzed 44 44 44 45 46 11 ¹ 0 irradiated stainless steel rods are present in the reconstituted fuel assembly, add an additional 5.0 years of cooling time. 30. 30. 30. 30. 30. 30. 30. 30. 30. 30.	41	1	23.5 23.5 23.0 23.0 23.0 23.0 23.0 23.0 22.5 22.5 22.5 22.5 22.5 22.5 22.0 22.0	22.0 22.0 21.5
44 45 46 47 16 47 17 170 18 19 31.5	42	1	24.5 24.5 24.5 24.5 24.5 24.5 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0	23.5 23.5 23.5
44 45 46 47 16 47 17 170 18 19 31.5	43	Not Analyzed	26.0 26.0 26.0 26.0 26.0 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25	25.0 25.0 24.5
46 47 47 If 10 irradiated stainless steel rods are present in the reconstituted fuel assembly, add an additional 5.0 years of cooling time. 31.5	44	1 1	27.527.527.527.527.527.527.527.527.527.027.027.027.027.027.027.027.027.026.526.526.526.526.526.526.526.526.526.5	26.0 26.0 26.0
47 If 10 inducted statutes stell rods are present in the reconstituted fuel assembly, add an additional 5.0 years of cooling time. 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.0	45	1	29.0 29.0 29.0 29.0 29.0 28.5 28.5 28.5 28.5 28.5 28.5 28.5 28.5	27.5 27.5 27.5
47 If 10 inducted statutes stell rods are present in the reconstituted fuel assembly, add an additional 5.0 years of cooling time. 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.0	46	If 40 implicited steinlass steel	30.5 30.5 30.5 30.5 30.0 30.0 30.0 30.0	5 29.0 29.0 29.0
48 reconstituted fuel assembly, add an additional 5.0 years of cooling time. 33.0 <td>47</td> <td></td> <td>31.531.531.531.531.531.531.531.531.531.5</td> <td>5 30.5 30.5 30.5</td>	47		31.531.531.531.531.531.531.531.531.531.5	5 30.5 30.5 30.5
43 cooling time. 34.3	48		33.0 33.0 33.0 33.0 33.0 33.0 33.0 33.0	32.0 32.0 32.0
50 cooling time. 36.0 35.5	49	add an additional 5.0 years of	34 5 34 5 34 5 34 0 34 0 34 0 34 0 34 0	33 0 33 0 33 0
51 37.0 <		cooling time.		
52 38.5 38.0 38.0 38.0 38.0 38.0 38.0 38.0 37.5 <	51	{		
53 39.5 39.5 39.5 39.5 39.5 39.0 <		4		
54 41.0 41.0 40.5 41.5 <		1		
55 41.5 <		1		
56 43.0 43.0 43.0 43.0 42.5 <				
57 44.0 <				
58 45.0 46.0 4				
59 46.0 4		1		
60 47.0 4				
61 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0				

Table 1-4b BWR Fuel Qualification Table for Zone 2 Fuel with 0.35 kW per Assembly for the NUHOMS[®]-61BTH DSC

(Minimum required years of cooling time after reactor core discharge)

BU	1	Assembly Average Initial Enrichment (wt. % U-235)	
GWd/ MTU	0.9 1.2 1.5 2.0 2.1 2.2 2.3 2.4 2.5	5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9	9 5.0
10	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	0 3.0
15			
20	3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5		
23	4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0		
25	4.5 4.5 4.5 4.0 4.0 4.0 4.0 4.0 4.0 4.0		0 4.0
28	5.0 5.0 5.0 4.5 4.5 4.5 4.5 4.5 4.5	i 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5	
30	5.5 5.5 5.5 5.0 5.0 5.0 5.0 5.0 5.0	0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.	5 4.5
32	6.0 5.5 5.5 5.5 5.5 5.5 5.5	i 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.	0 5.0
34	6.0 6.0 6.0 6.0 6.0 6.0		5 5.5
36	6.5 6.5 6.5 6.5 6.5 6.5	6 6.5 6.5 6.5 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	0 6.0
38	7.0 7.0 7.0 7.0 7.0 7.0 7.0		
39	7.5 7.5 7.5 7.5 7.5 7.5		
40		7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	
41		8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	
42		8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0	
43	Not Analyzed	9.0 9.0 9.0 9.0 9.0 9.0 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5	
44		9.5 9.5 9.5 9.5 9.5 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	
45	!	10.5 10.5 10.0 10.0 10.0 10.0 10.0 10.0	
46	If 10 irradiated stainless steel	11.0 11.0 10.5 10.5 10.5 10.5 10.5 10.5	
47	rods are present in the	12.0 11.5 11.5 11.5 11.0 11.0 11.0 11.0 11	
48	reconstituted fuel assembly,	12.5 12.5 12.5 12.5 12.5 12.5 12.0 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11	
49	add an additional 5.0 years of	13.5 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0	.5 11.5
50	cooling time.	14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5	.0 12.0
51		15.5 15.0 15.0 15.0 15.0 15.0 15.0 15.0	.0 13.0
52		16.5 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0	
53		17.5 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0	
54		18.5 18.5 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0	
55		20.5 20.5 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0	
56		21.5 21.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20	
57 58		22.5 22.5 22.5 21.5 21.5 21.5 21.5 21.5	
58		22.5 22.5 22.5 22.5 22.5 22.5 22.5 22.5	
59 60		23.5 23.5 23.5 23.5 23.5 23.5 23.5 23.5	
61		24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5	
62		20.5 20.5 20.5 20.5 25.5 25.5 25.5 25.5	
02			0 24.0

Table 1-4c BWR Fuel Qualification Table for Zone 3 Fuel with 0.393 kW per Assembly for the NUHOMS[®]-61BTH DSC

(Minimum required years of cooling time after reactor core discharge)

BU		Assembly Average Initial Enrichment (wt. % U-235)	
GWd/ MTU	0.9 1.2 1.5 2.0 2.1 2.2 2.3 2.4 2.5	5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8	4.9 5.0
10	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.	3.0 3.0
15	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0		3.0 3.0
20	3.5 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0		3.0 3.0
23	4.0 4.0 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5		3.0 3.0
25	4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0		
28	4.5 4.5 4.5 4.5 4.0 4.0 4.0 4.0 4.0 4.0		4.0 4.0
30	5.0 5.0 5.0 4.5 4.5 4.5 4.5 4.5 4.5	5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.	4.0 4.0
32	5.0 5.0 5.0 5.0 5.0 5.0	0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5	4.5 4.5
34	5.5 5.5 5.5 5.0 5.0 5.0		4.5 4.5
36	6.0 6.0 6.0 6.0 5.5 5.5		5.0 5.0
38	6.5 6.0 6.0 6.0 6.0 6.0		5.5 5.5
39	6.5 6.5 6.5 6.5 6.5 6.5	5 6.5 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	6.0 6.0
40			6.0 6.0
41			6.0 6.0
42		7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	
43	Not Analyzed		6.5 6.5
44			7.0 7.0
45			7.5 7.0
46	If 10 irradiated stainless steel		7.5 7.5
47	rods are present in the		8.0 8.0
48	reconstituted fuel assembly,	10.0 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5	8.5 8.5
49	add an additional 5.0 years of	10.5 10.5 10.0 10.0 10.0 10.0 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5	9.0 9.0
50	cooling time.	11.0 11.0 11.0 10.5 10.5 10.5 10.5 10.5	9.0 9.0
51		11.5 11.5 11.5 11.5 11.5 11.0 11.0 11.0	9.5 9.5
52		12.5 12.5 12.0 12.0 12.0 12.0 12.0 12.0 11.5 11.5 11.5 11.0 11.0 11.0 11.0 11	0.5 10.5
53		13.5 13.0 13.0 13.0 13.0 12.5 12.5 12.5 12.5 12.0 12.0 12.0 12.0 12.0 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11	1.0 11.0
54]	14.0 14.0 14.0 13.5 13.5 13.5 13.0 13.0 13.0 13.0 13.0 13.0 13.0 12.5 12.5 12.5 12.5 12.5 12.0 12.0 12.0 12.0 12.0 12.0 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11	1.5 11.5
55		15.0 15.0 14.5 14.5 14.5 14.0 14.0 14.0 14.0 13.5 13.5 13.5 13.5 13.0 13.0 13.0 13.0 13.0 13.0 13.0 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5	
56		<u>16.0 16.0 15.5 15.5 15.5 15.0 15.0 15.0 15.0 15</u>	3.0 13.0
57			4.0 14.0
58			4.5 14.5
59		19.5 18.5 18.5 18.0 18.0 18.0 17.5 17.5 17.5 17.5 17.0 17.0 17.0 17.0 16.5 16.5 16.5 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0	
60		20.0 19.5 19.5 19.5 19.0 19.0 18.5 18.5 18.5 18.5 18.5 18.5 18.5 17.5 17.5 17.5 17.0 17.0 17.0 17.0 17.0 16.5 16.5 1	
61			7.5 17.5
62		21.521.521.021.021.021.020.520.520.520.020.020.019.519.519.519.019.019.019.019.019.019.019.019.019.0	8.5 18.0

 Table 1-4d

 BWR Fuel Qualification Table for Zone 4 Fuel with 0.48 kW per Assembly for the NUHOMS[®]-61BTH DSC

(Minimum required years of cooling time after reactor core discharge)

GWord MTU 0.9 1.2 1.5 2.0 1.2 2.8 2.8 2.8 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0 10 3.0<	BU	<u> </u>													nbbe	Auce	0.00	nitio	Enr	ichm	ont /	unt 0/		251											ī
Image: Normal base of the second se			<u> </u>	—		<u> </u>		<u> </u>	-	-	<u> </u>	<u> </u>	A	sser	libiy	Aver	age i	mua	EIII	cnin	ent (WL 7	0 - 2	3 <i>3)</i>					<u> </u>		. —			,,	
15 30<	MTU																																		
20 3.5 3.5 3.0	10		3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
23 35 35 30 <td< td=""><td>15</td><td></td><td>3.0</td><td>3.0</td><td>3.0</td><td>3.0</td><td>3.0</td><td>3.0</td><td>3.0</td><td>3.0</td><td>3.0</td><td>3.0</td><td>3.0</td><td>3.0</td><td>3.0</td><td>3.0</td><td>3.0</td><td>3.0</td><td>3.0</td><td>3.0</td><td>3.0</td><td>3.0</td><td>3.0</td><td>3.0</td><td>3.0</td><td>3.0</td><td>3.0</td><td>3.0</td><td>3.0</td><td>3.0</td><td>3.0</td><td>3.0</td><td>3.0</td><td>3.0</td><td>3.0</td></td<>	15		3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
25 35 35 35 35 36 30<	20	3.5	3.5	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
28 40<	23	3.5	3.5	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0			3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
30 4.5 4.0	25	3.5	3.5	3.5	3.5	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
32 4.5	28	4.0	4.0	4.0	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5		3.5	3.5	3.5	3.5	3.5	3.5
34 4.5 4.	30	4.5	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
36 50 5.0 4.5	32		-	-	4.5	4.5	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	3.5	3.5	3.5
38 5.0	34	1			4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
39 5.5	36				5.0	5.0	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
40 5.5 5.0	38	1			5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
41 42 43 44 44 44 45 46 170 60	39	1			5.5	5.5	5.5	5.5	5.5	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
42 Not Analyzed 6.0 5.5 <th< td=""><td>40</td><td>1</td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td><u> </u></td><td>-</td><td>5.5</td><td>5.0</td><td>5.0</td><td>5.0</td><td>5.0</td><td>5.0</td><td>5.0</td><td>5.0</td><td>5.0</td><td>5.0</td><td>5.0</td><td>5.0</td><td>5.0</td><td>5.0</td><td>5.0</td><td>5.0</td><td>5.0</td><td>5.0</td><td>5.0</td><td>5.0</td><td>5.0</td><td>5.0</td><td>5.0</td><td>5.0</td><td>5.0</td></th<>	40	1					-	-	<u> </u>	-	5.5	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
43 Not Analyzed 60	41	1									5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
44 60<	42	1									6.0	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
44 6.0	43	1		N	lot A	Ana	lyze	ed			6.0	6.0	6.0	6.0	6.0	6.0	6.0	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5
46 If 10 irradiated stainless steel 65 6.5 6	44						Ĩ.,				6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5
47 rods are present in the reconstituted fuel assembly, add an additional 5.0 years of cooling time. 7.0	45										6.5	6.5	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	5.5	5.5	5.5	5.5
47 reconstituted fuel assembly, add an additional 5.0 years of cooling time. 7.0	46		lf 1	0 irra	diate	d sta	inles	s stee	el		6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
48 add an additional 5.0 years of cooling time. 7.0 <td< td=""><td>47</td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>7.0</td><td>7.0</td><td>7.0</td><td>7.0</td><td>6.5</td><td>6.5</td><td>6.5</td><td>6.5</td><td>6.5</td><td>6.5</td><td>6.5</td><td>6.5</td><td>6.5</td><td>6.5</td><td>6.0</td><td>6.0</td><td>6.0</td><td>6.0</td><td>6.0</td><td>6.0</td><td>6.0</td><td>6.0</td><td>6.0</td><td>6.0</td><td>6.0</td></td<>	47	1									7.0	7.0	7.0	7.0	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
49 cooling time. 7.5 7.5 7.0	48										7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.0	6.0	6.0
50 7.5 7.	49	1				onal:	5.U y	ears	oi		7.5	7.5	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5
51 8.0 8.0 8.0 8.0 8.0 7.5 7.	50	1			-			-		·		7.5	7.5	7.5		7.5													<u> </u>					6.5	
52 8.5 8.5 8.5 8.5 8.0 8.0 8.0 8.0 8.0 8.0 8.0 7.5 7.																																			
53 9.0 9.																																			
54 9.5 9.0 9.												<u> </u>	<u> </u>																						
55 10.0 9.5 9																																			
56 10.5 10.0 10.0 10.0 9.5 9.5 9.5 9.5 9.0<															_	_																			
57 11.0 10.5 1		1																																	
58 11.5 11.5 11.0 11.0 11.0 10.1 10.5 10.5 10.5 10.0 10.0 10.0 9.5											11.0																								
59 12.0 12.0 12.0 11.5 11.5 11.0 11.0 11.0 10.5 1		1									11.5	11.5	11.0	11.0	11.0	11.0	11.0																		
60 13.0 12.5 12.5 12.0 12.0 12.0 11.5 11.5 11.5 11.0 11.0 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.0 1											12.0	12.0	12.0	11.5	11.5	11.5	11.0	11.0																	
<u>61</u> <u>13.5</u> <u>13.5</u> <u>13.0</u> <u>13.0</u> <u>13.0</u> <u>12.5</u> <u>12.5</u> <u>12.5</u> <u>12.5</u> <u>12.0</u> <u>12.0</u> <u>12.0</u> <u>11.5</u> <u>11.5</u> <u>11.5</u> <u>11.5</u> <u>11.5</u> <u>11.0</u> <u>1.0</u> <u></u>											13.0	12.5	<u> </u>					12.0																	
															-											-									
	62	1																						_											11.0

 Table 1-4e

 BWR Fuel Qualification Table for Zone 5 Fuel with 0.54 kW per Assembly for the NUHOMS[®]-61BTH DSC

(Minimum required years of cooling time after reactor core discharge)

BU												A	ssen	nbly	Aver	age l	nitia	Enri	ichm	ent (wt. %	6 U-2	35)											
GWd/	0.9	1.2	1.5	2.0	2.1	2.2	2.3	2.4	2.5	2.6	27	2.8	29	3.0	3.1	3.2	3.3	3.4	3.5	3.6	3.7	3.8	3.9	4.0	4.1	4.2	4.3	4.4	4.5	4.6	4.7	4.8	4.9	5.0
MTU																																		
10	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0	3.0					3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0			3.0
15	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0			3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0
20	3.0	3.0	3.0	3.0	3.0						3.0	3.0		3.0		3.0				3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0							3.0
23	3.0					3.0	3.0		3.0	3.0		3.0		3.0		3.0				3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0				3.0
25	3.0 3.5			3.0	3.0	3.0	3.0		3.0	3.0	3.0	3.0		3.0		3.0			3.0	3.0	3.0 3.0	3.0	3.0	3.0	3.0 3.0	3.0	3.0	3.0	3.0 3.0	3.0	3.0 3.0	3.0 3.0		3.0 3.0
28 30			3.5 4.0	3.5 3.5	3.5 3.5		3.5		3.0 3.5	3.0	3.0 3.5	3.0 3.5	3.0	3.0	3.0 3.5		3.0 3.5	3.0 3.5		3.0 3.5		3.0		3.0								3.0		3.0
	4.0	4.0	4.0					<u> </u>																	3.5		3.5							
32				4.0	4.0				3.5		3.5	3.5			3.5					3.5		3.5		3.5	3.5			3.5						3.5
34				4.0	4.0	4.0			4.0		4.0	4.0			4.0	4.0			4.0	4.0	3.5	3.5		3.5	3.5									3.5
36	ł			4.5		4.5		4.5			4.5	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0		4.0			4.0	4.0		4.0	4.0
38				4.5						4.5	4.5	4.5	4.5	4.5		4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.0	4.0	4.0	4.0	4.0	4.0		4.0	4.0
39	1			5.0	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5			4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
40										4.5	4.5	4.5	4.5	4.5			4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5		4.5	4.5
41	4									5.0		5.0					4.5		4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5				4.5
42				- + 0						5.0							5.0		5.0	5.0	5.0	4.5	4.5	4.5	4.5	4.5	4.5	4.5		4.5				4.5
43			IN	OL P	\na	lyze	ea			5.5	5.5	5.0		5.0	5.0		5.0		5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	4.5				4.5
44	ł									5.5 5.5	5.5 5.5	5.5 5.5		5.5 5.5		5.5 5.5	5.5	5.0 5.5	5.0 5.5	5.0 5.0	5.0 5.0	5.0	5.0 5.0	5.0 5.0	5.0 5.0	5.0 5.0	5.0	5.0 5.0	5.0 5.0	5.0 5.0	5.0 5.0	5.0 5.0		5.0 5.0
46		If 10	0 irra	diate	ed sta	ainle	ss st	teel		6.0	<u> </u>			5.5			5.5			5.5	5.5	5.5		5.5	5.5	5.5	5.0	5.0		5.0				5.0
47			s are							6.0	6.0	6.0		6.0						5.5	5.5	5.5		5.5	5.5	5.5	5.5							5.0
48	Į		onsti									6.0				6.0				6.0	6.0			5.5	5.5		5.5		5.5			5.5		5.5
49			l an a		ional	5.0	year	s of		6.5	6.5	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	5.5	5.5	5.5	5.5
50		C00	ling t	time						6.5	6.5	6.5	6.5	6.5	6.5		6.5	6.5	6.5	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	5.5
51] '						-			7.0	7.0	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
52	1									7.0	7.0	7.0	7.0	7.0	7.0	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.0	6.0
53	1									7.5	7.5	7.5	7.5	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	6.5		6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5
54	1									8.0	7.5	7.5	7.5	7.5	7.5	7.5	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	6.5	6.5	6.5	6.5	6.5	6.5	6.5
55	1									8.0	8.0	8.0	8.0	8.0	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	6.5
56	1									8.5	8.5	8.0	8.0	8.0	8.0	8.0	8.0	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.0	7.0	7.0	7.0	7.0	7.0	7.0
57										9.0	8.5	8.5	8.5	8.5	8.5	8.0	8.0		8.0	8.0	8.0	8.0		7.5	7.5	7.5	7.5	7.5	7.5	7.5				7.5
58										9.0	9.0	9.0	9.0	8.5			8.5		8.5	8.5	8.5	8.0		8.0	8.0	8.0	8.0	8.0	8.0	8.0			7.5	7.5
59										9.5	9.5	9.5	9.5	9.0	9.0	9.0	9.0	9.0	8.5	8.5	8.5				8.5					8.0			8.0	8.0
60										10.0		10.0					9.0			9.0	9.0			8.5					8.5	8.5	8.5			8.0
61												10.5								9.5		9.5		9.0	9.0		9.0	9.0	8.5	8.5				8.5
62							_		_	11.0	11.0	10.5	10.5	10.5	10.5	10.5	10.0	10.0	10.0	10.0	10.0	9.5	9.5	9.5	9.5	9.5	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0

Table 1-4f

BWR Fuel Qualification Table for Zone 6 Fuel with 0.7 kW per Assembly for the NUHOMS[®]-61BTH DSC

(Minimum required years of cooling time after reactor core discharge)

BU													Ass	embly	Averag	e Initia	al Enric	hment	t (wt. 9	6 U-23	35)													
GWd/MTU	0.9	1.2	1.5	2.0	2.1	2.2	2.3	2.4	2.5	2.6	2.7	2.8	2.9	3.0	3.1	3.2	3.3	3.4	3.5	3.6	3.7	3.8	3.9	4.0	4.1	4.2	4.3	4.4	4.5	4.6	4.7	4.8	4.9	5.0
10	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
	3.0	3.0		3.0		3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
	3.0	3.0	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
	3.0	3.0	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
28	3.0	3.0	3.0	3.0	3.0	3.5	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
30	3.5	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
32				3.5		3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0
34				3.5		3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
36				3.5		3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5		3.5	3.5	3.5	3.5	3.5	3.0	3.0	3.0	3.0	3.0
38				3.5		3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5		3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
39				4.0	4.0	4.0	4.0	4.0	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5		3.5		3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
40										4.0 4.0	4.0 4.0	4.0	4.0 4.0	4.0 4.0	3.5 4.0	3.5 4.0	3.5 4.0	3.5 4.0	3.5 4.0	3.5 3.5	3.5 3.5		3.5 3.5		3.5 3.5	3.5 3.5	3.5 3.5	3.5 3.5	3.5 3.5	3.5 3.5	3.5	3.5	3.5 3.5	3.5 3.5
41										4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0		4.0	3.5 4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
42			N	ot /	\no	lyze	od			4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
43				017	۱Ia	iyze	eu			4.5	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
45										4.5	4.5	4.5	4.5	4.5	4.5	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
46		r	•			•	•	•		4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
47										4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5		4.5	4.5	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
48										5.0	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
49		If 1	0 irr	adia	ated	l sta	inle	222		5.0	5.0	5.0	5.0	5.0	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
50										5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
51			el ro					tin		5.5	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
52		the	rec	ons	titut	ed f	fuel			5.5	5.5	5.5	5.5	5.5	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	4.5	4.5	4.5	4.5
53		ass	eml	blv	add	lan				5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
54		ade	litio		5 0	voo		f		5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
55						yea	15 0	1		6.0	6.0	6.0	6.0	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
56		COC	ling	tim	e.					6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.0	5.0	5.0
57										6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5
58										6.5	6.5	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	5.5	5.5	5.5	5.5	5.5	5.5	5.5
59										6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	5.5	5.5	5.5	5.5	5.5	5.5
60										6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	5.5
61										7.0	7.0	7.0	7.0	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
62										7.5	7.0	7.0	7.0	7.0	7.0	7.0	7.0	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.0	6.0	6.0

Notes: Tables 1-4a through 1-4f:

- BU = Assembly Average burnup.
- Use burnup and enrichment to look up minimum cooling time in years. Licensee is responsible for ensuring that uncertainties in fuel enrichment and burnup are correctly accounted for during fuel qualification.
- Round burnup UP to next higher entry, round enrichments DOWN to next lower entry.
- Fuel with a lattice average initial enrichment less than 0.9 (or less than the minimum provided above for each burnup) or greater than 5.0 wt.% U-235 is unacceptable for storage.
- Fuel with a burnup greater than 62 GWd/MTU is unacceptable for storage.
- Fuel with a burnup less than 10 GWd/MTU is acceptable for storage after 3-years cooling.
- See Figure 1-17 through Figure 1-24 for a description of the zones.
- For reconstituted fuel assemblies with UO2 rods and/or Zr rods or Zr pellets and/or stainless steel rods, use the lattice average equivalent enrichment to determine the minimum cooling time.
- The cooling times for failed, damaged and intact assemblies are identical.
- For fuel assemblies containing BLEU fuel pellets, add 3.0 years of additional cooling time to the values shown in Tables 1-4a through 1-4f.
- Example: An INTACT FUEL ASSEMBLY, with a decay heat load of 0.22 kW or less, an initial enrichment of 3.65 wt. % U-235 and a burnup of 41.5 GWd/MTU is acceptable for storage after a 24 year cooling time as defined by 3.6 wt. % U-235 (rounding down) and 42 GWd/MTU (rounding up) in Table 1-4a.

Table 1-5a PWR Fuel Qualification Table for Zone 1 Fuel with 0.6 kW per Assembly for the NUHOMS[®]-32PTH1 DSC

(Minimum required years of cooling time after reactor core discharge)

BU	Assembly Average Initial Enrichment (wt. % U-235)
GWd/MTU	0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 20 21 22 23 24 25 26 27 28 29 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 40 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0
10	30 30 30 30 30 30 30 30 30 30 30 30 30 3
15	35 35 35 35 35 35 35 35 35 35 35 35 35 3
20	5.0 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5
25	6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5
28	7.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0
30	8.5 8.5 8.5 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0
32	10.0 10.0 10.0 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5
34	12.0 12.0 11.5 11.5 11.5 11.5 11.5 11.5 11.0 11.0
36	14.5 14.6 14.0 14.0 14.0 14.0 13.5 13.5 13.5 13.5 13.0 13.0 13.0 13.0 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0
38	17.5 17.0 17.0 17.0 17.0 17.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16
39	18.5 18.5 18.5 18.0 18.0 18.0 18.0 18.0 18.0 17.0 17.0 17.0 16.5 16.5 16.5 16.5 16.5 16.5 16.0 16.0 16.0 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15
40	20.0 20.0 20.0 20.0 20.0 20.0 19.0 19.0 18.5 18.5 18.5 18.5 18.5 18.5 17.5 17.5 17.5 17.5 17.5 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0
41	22.0 21.5 21.5 21.0 21.0 20.5 20.5 20.0 20.0 20.0 20.0 20.0 19.5 19.5 19.5 19.0 19.0 18.5 18.5 18.5 18.5 18.5 18.5 18.5 18.5
42	21.0 21.0 20.5 20.5 20.5 20.5 20.5 20.0 20.0 20
43	
44	
45	25.5 25.0 25.0 25.0 26.5 24.5 24.5 24.5 24.0 24.0 24.0 23.5 <th< td=""></th<>
40	
48	
49	
50	Not Analyzed 31.5 31.5 31.5 31.5 31.0 31.0 31.0 31.0 31.0 31.0 31.0 31.0
51	33.0 33.0 32.5 32.5 32.5 32.5 32.5 32.5 32.0 32.0 32.0 32.0 32.0 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5
52	
53	Note: If irradiated stainless steel rods are
54	365136513651365136513651365136013601360135513551355135513551355135513551355135
55	present in the reconstituted fuel assembly, add
56 57	39.0 39.0 38.5 38.5 38.5 38.5 38.5 38.5 38.5 38.5
	an additional year of cooling time for cooling 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0
58	times less than 10 years.
59	
60	43.5 43.0 43.0 43.0 43.0 43.0 43.0 43.0 43.0
61	44.5 44.5 44.5 44.5 44.5 44.5 44.5 44.5
62	45.5 45.5 45.5 45.5 45.5 45.5 45.5 45.5

Table 1-5bPWR Fuel Qualification Table for Zone 2 Fuel with 0.8 kW per Assembly for the NUHOMS[®]-32PTH1 DSC

																							~ ~																_
BU											Α	\SS6	emb	iy A	vera	age	Init	ial t	Inne	cnm	nent	(Wt	. %	0-2	35)														
GWd/MTU	0.7 0.8 0.1	9 1.0 1.1	1.2 1.3 1.4	1.5	1.6	1.7	1.8	1.9	2.0		2.2	2.3	2.4	2.5	2.6	2.7	2.8	2.9		3.1	3.2		3.4		3.6	3.7	3.8	3.9	4.0	4.1	4.2	4.3	4.4	4.5	4.6	4.7	4.8	4.9	5.0
10	3.0 3.0 3.0		3.0 3.0 3.0	3.0	3.0		3.0		3.0			3.0		3.0			3.0			3.0			3.0	3.0	3.0			3.0		3.0		3.0	3.0	3.0			3.0	3.0	3.0
15	3.5 3.0 3.0			3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
20	4.5 4.5 4.0	0 4.0 4.0	4.0 4.0 4.0	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
25				4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
28				5.5	5.5		5.0			5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	4.5	4.5	4.5		4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
30				6.0	6.0	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.0	5.0	5.0		5.0			5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
32				6.5	6.5	6.5	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	5.5	5.5		5.5			5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5
34				7.5	7.0	7.0	7.0	7.0	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
36				8.0	8.0	8.0	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5
38				9.0		9.0	9.0		8.5	8.5	8.5	8.5	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.0	7.0	7.0	7.0	7.0	7.0	7.0
39				10.0		9.5						9.0		8.5	8.5	8.5	8.5	8.5	8.5	8.5			8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	7.5	7.5	7.5	7.5	7.5	7.5	7.5
40							10.0			9.5		9.5	9.5		9.0	9.0	9.0	9.0	9.0	9.0		8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0
41				11.5	11.5	11.0	11.0	10.5	10.5	10.5	10.5	10.0	10.0	10.0	10.0	10.0	9.5	9.5	9.5	9.5	9.5	9.5	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5
42		10															10.5	10.5	10.0	10.0	10.0	10.0	10.0		10.0	10.0		9.5		9.5		9.5	9.0	9.0			9.0	9.0	9.0
43		11															11.0	11.0	11.0	11.0	11.0	10.5	10.5	10.5	10.5	10.5	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	9.5	9.5	9.5	9.5	9.5
44																	12.0	12.0	12.0	11.5	11.5	11.5	11.5	11.5	11.0	11.0	11.0	11.0	11.0	11.0	11.0	10.5	10.5	10.5	10.5	10.5	10.5	10.5 1	0.5
45																	13.0	13.0	12.5	12.5	12.5	12.5	12.0	12.0	12.0	12.0	12.0	11.5	11.5	11.5	11.5	11.5	11.5	11.5	11.5	11.0	11.0	11.0 1	1.0
46																	14.0	14.0	13.5	13.5	13.5	13.5	13.0	13.0	13.0	13.0	13.0	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.0	12.0	12.0	12.0 1	2.0
47																15.0		15.0		14.5			14.0				14.0					13.5			13.0	13.0	13.0	13.0 1	3.0
48																16.5	16.0	16.0	15.5	15.5	5 15.5	15.5	15.5	15.0	15.0	15.0	15.0	15.0				14.5			14.0	14.0	13.5	13.5 1	3.5
49							N	ot An	alyzeo	1									17.0	17.0	16.5	16.5	16.0	16.0	16.0	16.0	16.0	16.0	16.0	16.0	15.5		15.0	15.0	15.0	15.0	14.5	14.5 1	4.5
50																			18.0	18.0	18.0	17.5	17.5	17.5	17.5	17.0	17.0	17.0	17.0	17.0	16.5	16.5	16.5	16.5	16.5	16.0	15.5	15.5 1	5.5
51														_					19.0	19.0	19.0	19.0	18.5	18.5	18.0	18.0		18.0	17.5	17.5	17.5	17.5	17.5	17.0	17.0	17.0	17.0	17.0 1	7.0
52		Note	: If irra	diat	od a	etair	nloc		tool	L ro	de i	-		- 1						20.0	20.0	20.0	19.5	19.5	19.5	19.5	19.5	19.0			19.0		18.5	18.5	18.5	18.5	18.5	18.5 1	7.5
53														- 1						21.5	21.0	21.0	21.0	20.5	20.5	20.5	20.5	20.5	20.0	20.0	20.0	20.0	20.0	19.5	19.5	19.5	19.5	19.5 1	19.0
54		pres	ent in th	ne re	ecor	nstit	tute	d fu	uel a	ass	em	blv.		- 1							22.5	22.5	22.0	22.0	21.5	21.5	21.5	21.5	21.0	21.0	21.0	21.0	21.0	20.5	20.5	20.5	20.5	20.5 2	20.0
55													·	- 1							23.5	23.5	23.0	23.0	23.0	23.0	23.0	23.0	22.5	22.5	22.5	22.5	22.0	21.5	21.5	21.5	21.5	21.5 2	21.0
56		add	an addi	uon	аг у	ear	01	000	iing	un	le l	O		- 1							25.0	25.0	24.5	24.5	24.5	24.0	24.0	24.0	24.0	23.5	23.0	23.0	23.0	23.0	23.0	22.5	22.5	22.5 2	22.5
57		cool	ing time	s le	ess t	han	n 10	ve	ars					- 1									25.5	25.5	25.5	25.5	25.0	25.0	25.0	25.0		24.5	24.5	24.5	24.5	23.5	23.5	23.5 2	23.5
58		0000				- real		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	aro.					- 1									27.0	27.0	26.0	26.0	26.0	26.0	26.0	25.5	25.5	25.5	25.5	25.5	25.0	25.0	25.0	25.0 2	25.0
59																							27.5	27.5	27.5	27.5	27.5	27.5	27.5	27.0	27.0	27.0	27.0	26.0	26.0	26.0	26.0	26.0 2	25.5
60																							29.0	28.5	28.5						28.0		28.0	27.5		27.5	27.5	27.5 2	27.0
61																							29.5				29.5									28.0			28.0
62																							31.5	30.5	30.5	30.5	30.5	30.5	30.0	30.0	30.0	30.0	30.0	29.5	29.5	29.5	29.5	29.5 2	29.5

(Minimum required years of cooling time after reactor core discharge)

Table 1-5c

PWR Fuel Qualification Table for Zone 3 or Zone 4 Fuel with 1.0 kW per Assembly for the NUHOMS®-32PTH1 DSC

(Minimum required years of cooling time after reactor core discharge)

	Accomply, Average Initial Enrichment (vt. 9/ 11.005)
BU	Assembly Average Initial Enrichment (wt. % U-235)
GWd/MTU	0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0
10	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0
15	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0
20	3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0
25	4.0 4.0 4.0 4.0 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5
28	4.5 4.5 4.5 4.5 4.6 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0
30	5.0 5.0 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5
32	5.5 5.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
34	6.0 6.0 5.5 5.5 5.5 5.5 5.5 5.0 5.0 5.0 5.0 5
36	6.5 6.5 6.0 6.0 6.0 6.0 6.0 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5
38	7.5 7.0 7.0 6.5 6.5 6.5 6.5 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5
39	7.5 7.5 7.0 7.0 7.0 6.5 6.5 6.5 6.5 6.5 6.6 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0
40	8.0 8.0 7.5 7.5 7.0 7.0 7.0 7.0 7.0 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0
41	8.5 8.5 8.0 7.5 7.5 7.5 7.5 7.0 7.0 7.0 7.0 7.0 7.0 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5
42	7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5
43	7.5 7.5 7.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0
44	8.0 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5
45	8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5
46	8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5
47	9.0 9.0 9.0 9.0 9.0 9.0 9.0 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0
48	10.0 9.5 9.5 9.5 9.5 9.5 9.5 9.0 9.0 9.0 9.0 9.0 9.0 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5
49	
50	
51	Note: If irradiated stainless steel rods are present in the
52	reconstituted fuel assembly, add an additional year of
53	cooling time for cooling times less than 10 years.
54	tooling une for cooling unes less than to years.
55	14.5 14.0 14.0 13.5 13.5 13.5 13.5 13.0 13.0 13.0 13.0 12.5 12.5 12.5 12.5 12.5 12.0 12.0 12.0
56	15.5 15.0 15.0 15.0 14.5 14.5 14.5 14.0 14.0 14.0 14.0 13.5 13.5 13.5 13.5 13.5 13.0 13.0 13.0 13.0
57	16.0 15.5 15.5 15.5 15.5 15.0 14.5 14.5 14.5 14.5 14.0 14.0 14.0 14.0 13.5
58	17.0 16.5 16.5 16.5 16.0 16.0 16.0 15.5 15.5 15.5 15.5 15.0 15.0 15.0 15
59	18.0 17.5 17.5 17.5 17.0 17.0 17.0 17.0 16.5 16.5 16.5 16.0 16.0 16.0 16.0 15.5 15.5 15.5
60	19.0 18.5 18.5 18.0 18.0 17.5 17.5 17.5 17.5 17.5 17.0 17.0 17.0 17.0 16.5 18.5 18.5 18.5 18.5 18.5 18.5 18.5 18
61	20.0 19.5 19.5 19.0 19.5 19.0 18.5 18.5 18.5 18.0 18.0 18.5 18.5 18.0 17.5 17.5 17.5 17.5
62	20.5 20.5 20.0 20.0 20.0 20.0 20.0 19.5 19.5 19.5 19.0 19.0 19.0 19.5 18.5 18.5 18.5 18.5

Table 1-5d PWR Fuel Qualification Table for Zone 5 Fuel with 1.3 kW per Assembly for the NUHOMS[®]-32PTH1 DSC (Fuel without CCs)

(Minimum required years of cooling time after reactor core discharge)

	Accombly Average Initial Enrichment (vt. 0/ 11.005)
BU	Assembly Average Initial Enrichment (wt. % U-235)
GWd/MTU	
10	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0
15	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0
20	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0
25	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0
28	3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0
30	4.0 4.0 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5
32	4.5 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5
34	4.5 4.5 4.5 4.5 4.5 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0
36	5.0 5.0 5.0 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0
38	5.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5
39	6.0 5.5 5.5 5.5 5.0 5.0 5.0 5.0 5.0 5.0 5
40	6.0 6.0 5.5 5.5 5.5 5.5 5.5 5.5 5.0 5.0 5.0 5
41	6.5 6.0 6.0 6.0 5.5 5.5 5.5 5.5 5.5 5.5 5.0 5.0 5.0 5
42	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
43	5.5 5.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
44	5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.0 5.0
45	5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5
46	6.0 6.0 6.0 6.0 6.0 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5
47	6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0
48	6.5 6.5 6.5 6.5 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0
49	
50	Not Analyzed 7.0 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5
51	7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5
52	7.5 7.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0
53	7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0
54	8.0 8.0 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0
55	8.5 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.7. 7.7.
56	Note. If irradiated stainless steel roos are 8.5[8.5[8.5[8.5[8.5[8.5[8.5[8.5[8.5[8.5[
57	present in the reconstituted fuel assembly, 9.0 9.0 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0
58	add an additional year of cooling time for 9.5 9.5 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0
59	
60	cooling times less than 10 years.
61] [11.0]11.0]10.5]10.5]10.5]10.0]10.0]10.0]
62	11.511.511.511.511.011.010.510.510.510.5

Table 1-5e PWR Fuel Qualification Table for Zone 5 with Damaged Fuel with 1.2 kW per Assembly for the NUHOMS[®]-32PTH1 DSC (Fuel without CCs)

(Minimum	required	years of	f cooling	time afte	r reactor	core	discharge)
---	---------	----------	----------	-----------	-----------	-----------	------	-----------	---

	Assembly Average Initi	al Enric	hment	(wt. %)	U-235)										
BU GWd/MTU	0.70.80.9 1 1.11.21.31.41.51.61.71.81.9 2 2.12.22.32.42.52.62.72.82.9 3 3	1 3.2 3	.3 3.4	3.5	3.6 3.7	3.8	3.9 4	4.1	4.2	4.3	1.4 4	.5 4.6	6 4.7	4.8 4	.9 5
10	3.013.013.013.013.013.013.013.013.013.01	_			3.0 3.0	_	3.0 3.0	3.0	3.0	_	.0 3.	_	_		0 3.0
15	3.03.03.03.03.03.03.03.03.03.03.03.03.03	03.0 3	0 3.0	3.0	3.0 3.0	3.0	3.0 3.0	3.0	3.0	3.0 3	.0 3.	0 3.0	3.0	3.0 3.0	0 3.0
20	3.53.53.53.53.53.53.53.03.03.03.03.03.03.03.03.03.03.03.03.03	3.0 3	0 3.0	3.0	3.0 3.0	3.0	3.0 3.0	3.0	3.0	3.0 3	.0 3.	0 3.0	3.0	3.0 3.0	0 3.0
25	3.53.53.53.53.53.53.53.53.53.53.53.53.53	53.53	5 3.5	3.5	3.5 3.5	3.5	3.5 3.	5 3.5	3.0	3.0 3	.0 3.	0 3.0	3.0	3.0 3.0	0 3.0
28	4.04.04.04.04.04.04.04.03.53.53.53.53.53.53.53.53.53.53.53.53.53	53.53	5 3.5	3.5	3.5 3.5	3.5	3.5 3.	5 3.5	3.5	3.5 3	.5 3.	5 3.5	3.5	3.5 3.	5 3.5
30	4.54.54.54.04.04.04.04.04.04.04.04.04.04.04.04.04	04.04	0 3.5	3.5	3.5 3.5	3.5	3.5 3.	5 3.5	3.5	3.5 3	.5 3.	5 3.5	3.5	3.5 3.	5 3.5
32	5.0 5.0 4.5 4.5 4.5 4.5 4.5 4.5 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0				4.0 4.0	4.0	4.0 4.0	4.0	4.0	4.0 4	.0 4.	0 4.0	4.0	4.0 4.	0 4.0
34	5.5 5.5 5.0 5.0 5.0 5.0 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5				4.0 4.0	4.0	4.0 4.0) 4.0	4.0	4.0 4	.0 4.			4.0 4.	0 4.0
36	6.06.05.55.55.55.55.05.05.05.05.05.05.05.05.	54.54	5 4.5	4.5 4	4.5 4.5	4.5	4.5 4.	5 4.5	4.5	4.5 4	.5 4.			4.5 4.5	_
38	6.56.56.06.06.06.05.55.55.55.55.55.55.55.55.55.55.55.55.					5.0	5.0 5.0	5.0	5.0	5.0 5	.0 5.			5.0 4.	5 4.5
39	7.06.56.56.56.06.06.06.06.06.05.55.55.55.55.55.55.55.55.55.55.55.55.	+ +		++	5.5 5.0	5.0	5.0 5.0	_	+ +		.0 5.	_		5.0 5.	0 5.0
40	7.07.06.56.56.56.56.06.06.06.06.06.06.06.05.55.55.55.		5 5.5		5.5 5.5		5.5 5.	_			.5 5.	_	_	5.0 5.	_
41	7.57.07.07.06.56.56.56.56.06.06.06.06.06.06.06.06.06.06.06.06.06		5 5.5		5.5 5.5	5.5	5.5 5.				.5 5.	_	_		5 5.5
42	6.06.06.06.06.06.0	+ +	_	+ +	6.0 6.0		6.0 5.	_	++		.5 5.	_	_	5.5 5.	_
43	6.56.56.06.06.0	+ +	_	++	6.0 6.0		6.0 6.0	_	+ +		.0 6.	_		5.5 5.	_
44	6.56.56.56.56.		.5 6.5				6.0 6.0	_	+ +	_	.0 6.	_	_	6.0 6.	_
45	6.5 6.5 6.5 6.5 6.5	+ +	.5 6.5	++			6.5 6.	_	+ +		.0 6.	_		6.0 6.	_
46	7.07.07.07.07.0		5 6.5		6.5 6.5		6.5 6.				.5 6.			6.0 6.	_
47	7.57.57.57.57.5		_		7.0 7.0		6.5 6.	_	+ +		.5 6.			6.5 6.	_
48	8.08.08.08.07.5	+ +	_	++	7.5 7.5	7.5	7.0 7.		+ +		.0 7.	_		6.5 6.	_
49	8.08.0				7.5 7.5		7.5 7.				.5 7.			7.0 7.	_
50	8.58.		_		8.0 8.0	-	8.0 8.	_	+ +		.5 7.	_		7.5 7.	_
51	9.0.9.0				8.0 8.0		8.0 8.				.0 8.	_		7.5 7.	_
52		59.59			9.0 8.5		8.5 8.				.0 8.	_	_	8.0 8.	
53 54	9.		.5 9.5 0.0 10.		9.5 9.0 9.5 9.5		9.0 9.0 9.5 9.		9.0 9.0		.5 8. .0 9.			8.5 8. 9.0 9.	_
55					9.5 9.5						.0 9.	_	_		
55	Note: If irradiated stainless steel rods are				11.0 11.0				9.5			_		9.0 9. 9.5 9.	_
57	present in the reconstituted fuel assembly,	<u>11.0</u>			11.0 11.0										
58	add an additional year of cooling time for		12	++	12.0 12.0			_	++			_			_
59	cooling times less than 10 years.		12.		12.0 12.0	-		_				_	_		_
			13.		13.0 13.0	-		_	++			_	_		
61			13.		14.0 13.0										
62					15.0 14.5	-		_			_	_	_		_
	page that follows Table 1. Ef provides the evplanatory pates and limitations reporting the		15.	015.0	15.0 14.5	14.3	14.5 14	.5 14.0	14.0	14.01	5.5 1.	5.5 13.	513.0	13.013	.0 13.0

Table 1-5f PWR Fuel Qualification Table for Zone 6 Fuel with 1.5 kW per Assembly for the NUHOMS[®]-32PTH1 DSC

BU	Assembly Average Initial Enrichment (wt. % U-235)
GWd/MTU	0.7 10.8 10.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0
10	30 30 30 30 30 30 30 30 30 30 30 30 30 3
15	30 30 30 30 30 30 30 30 30 30 30 30 30 3
20	30 30 30 30 30 30 30 30 30 30 30 30 30 3
25	30 30 30 30 30 30 30 30 30 30 30 30 30 3
28	3.5 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0
30	3,5 3,5 3,5 3,5 3,5 3,5 3,5 3,0 3,0 3,0 3,0 3,0 3,0 3,0 3,0 3,0 3,0
32	4.0 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5
34	4.0 4.0 4.0 4.0 4.0 4.0 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5
36	4.5 4.5 4.5 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5
38	5.0 5.0 4.5 4.5 4.5 4.5 4.5 4.5 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0
39	5.0 5.0 5.0 5.0 5.0 5.0 5.1 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
40	5.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
41	5.5 5.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0
42	4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0
43	4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5
44	5.0 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5
45	5.0 5.0 5.0 5.0 5.0 5.0 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5
46	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
47	5.5 5.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
48	5.5 5.5 5.5 5.5 5.5 5.5 5.0 5.0 5.0 5.0
49	5.5 5.5 5.5 5.5 5.5 5.5 5.0 5.0 5.0 5.0
50	Not Analyzed 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.
51	6.0 6.0 6.0 6.0 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5
52	6.0 6.0 6.0 6.0 6.0 6.0 6.0 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5
53	6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0
54	<u>6.5</u> 6.5 6.5 6.5 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0
55	Note: If irradiated stainloss steel rade are 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5
56	Note: If irradiated stainless steel rods are
57	present in the reconstituted fuel assembly, add 7.0 7.0 7.0 7.0 7.0 7.0 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5
58	an additional year of cooling time.
59	The deductional year of cooling affect 7.5
60	8.0 8.0 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5
61	8.5 8.0 8.0 8.0 8.0 8.0 8.0 8.0 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5
62	8.5 8.5 8.5 8.5 8.6 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 7.5 7.5 7.5 7.5

(Minimum required years of cooling time after reactor core discharge)

Notes: Tables 1-5a through 1-5f

- BU = Assembly Average burnup.
- Use burnup and enrichment to look up minimum cooling time in years. Licensee is responsible for ensuring that uncertainties in fuel enrichment and burnup are correctly accounted for during fuel qualification.
- Round burnup UP to next higher entry, round enrichments DOWN to next lower entry.
- For a fuel assembly with Control Components, for a given enrichment and burnup, increase the cooling time obtained from an FQT by one year.
- Fuel with an assembly average initial enrichment less than 0.7 (or less than the minimum provided above for each burnup) and greater than 5.0 wt.% U-235 is unacceptable for storage.
- Fuel with a burnup greater than 62 GWd/MTU is unacceptable for storage.
- Fuel with a burnup less than 10 GWd/MTU is acceptable for storage after 3-years cooling.
- See Figure 1-26 through Figure 1-28 for a description of the Heat Load Zones.
- For reconstituted fuel assemblies with UO2 rods and/or Zr rods or Zr pellets and/or stainless steel rods, use the assembly average equivalent enrichment to determine the minimum cooling time.
- The cooling times for damaged and intact assemblies are identical.
- For fuel assemblies containing BLEU fuel pellets, add 3.0 years of additional cooling time to the values shown in Tables 1-5a through 1-5f.
- Example: An INTACT FUEL ASSEMBLY without CCs, with a decay heat load of 1.5 kW or less, an initial enrichment of 3.65 wt. % U-235 and a burnup of 41.5 GWd/MTU is acceptable for storage after a 4.0 year cooling time as defined by 3.6 wt. % U-235 (rounding down) and 42 GWd/MTU (rounding up) in Table 1-5f. If the fuel assembly has CCs, the minimum cooling time is increased by an additional one year, resulting in five year minimum cooling time prior to storage.

Table 1-6a Fuel Qualification Table for 0.3 kW BWR FAs in Zone 1 of a NUHOMS[®]-61BT DSC Contained in an OS197L TC

BU										As	sem	bly A	vera	ge In	itial E	Inric	hmer	nt (wt	t. % I	J-23	5)										
GWd/MTU	1.4	1.5	1.6	1.7	1.8	1.9	2.0	2.1	2.2	2.3	2.4	2.5	2.6	2.7	2.8	2.9	3.0	3.1	3.2	3.3	3.4	3.5	3.6	3.7	3.8	3.9	4.0	4.1	4.2	4.3	4.4
10	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
15	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
20	5	5	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
25	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	4	4	4
28					6	6	6	6	6	6	6	6	6	6	6	6	6	5	5	5	5	5	5	5	5	5	5	5	5	5	5
30	1				7	7	7	7	7	7	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6
32					8	8	8	8	8	7	7	7	7	7	7	7	7	7	7	7	7	7	6	6	6	6	6	6	6	6	6
34			aluzo	d	9	9	9	9	9	9	8	8	8	8	8	8	8	8	8	7	7	7	7	7	7	7	7	7	7	7	7
36	"	Not An	nain	u	11	11	11	10	10	10	10	10	9	9	9	9	9	9	9	9	8	8	8	8	8	8	8	8	8	8	8
38]	Don	lanı		14	13	13	12	12	12	12	11	11	11	11	11	10	10	10	10	10	10	9	9	9	9	9	9	9	9	9
39					15	14	14	14	13	13	13	12	12	12	12	11	11	11	11	11	10	10	10	10	10	10	10	9	9	9	9
40					16	16	15	15	15	14	14	14	13	13	13	12	12	12	12	12	11	11	11	11	11	10	10	10	10	10	10

Notes for Tables 1-6a and 1-6b:

BU = Assembly average burnup

• Use burnup and enrichment to look up minimum cooling time in years. Licensee is responsible for ensuring that uncertainties in fuel enrichment and burnup are conservatively applied in determination of actual values for these two parameters.

· Round burnup UP to next higher entry, round enrichments DOWN to next lower entry.

• Fuel with an initial enrichment less than 1.4 and greater than 4.4 wt. % U-235 is unacceptable for storage.

· Fuel with a burnup greater than 40 GWd/MTU is unacceptable for storage.

· Fuel with a burnup less than 10 GWd/MTU is acceptable for storage after 4 years cooling.

. For fuel assemblies containing BLEU fuel pellets, add 3.0 years of additional cooling time to the values shown in these tables.

• Example: An assembly with an initial enrichment of 3.75 wt. % U-235 and a bumup of 39.5 GWd/MTU is acceptable for storage *in Zone 1 locations* after a cooling time of 11 years (per Table 1-6a) and in Zone 2 locations after a cooling time of 37.5 years (per Table 1-6b) as defined by 3.7 wt. % U-235 (rounding down) and 40 GWd/MTU (rounding up) on these *fuel* qualification tables.

Table 1-6b Fuel Qualification Table for 0.17 kW BWR FAs in Zone 2 of a NUHOMS[®]-61BT DSC Contained in an OS197L TC

(Minimum required years of cooling time after reactor core discharge)

									·														·							
BU										Ass	embl	y Ave	erage	Initia	al En	richn	nent ((wt. 9	<u>% U-</u>	235)										
GWd/MTU	1.4 1.5 1	1.6 1	.7	1.8	1.9	2.0	2.1	2.2	2.3	2.4	2.5	2.6	2.7	2.8	2.9	3.0	3.1	3.2	3.3	3.4	3.5	3.6	3.7	3.8	3.9	4.0	4.1	4.2	4.3	4.4
10	21.5 20.5 2	0.5 20	0.5 2	20.5	19.5	19.5	19.5	19.5	19.5	19.5	18.5	18.5	18.5						17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5
11	22.0 22.0 2	2.0 22	2.0 2	21.0	21.0	21.0	21.0	21.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	19.0	19.0	19.0	19.0	19.0	19.0	19.0	19.0	18.0	18.0	18.0	18.0	18.0	18.0	18.0
12	23.0 23.0 2	3.0 23	3.0 2	22.0	22.0	22.0	22.0	22.0	21.0	21.0	21.0	21.0	21.0	21.0	21.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	19.0	19.0	19.0	19.0	19.0	19.0	19.0
13	24.0 24.0 2																													20.0
14	25.0 25.0 2																													
15	26.0 26.0 2																													22.0
16	27.0 26.0 2	6.0 26	6.0 2	26.0	26.0	25.0	25.0	25.0	25.0	25.0	25.0	25.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0
17	27.0 27.0 2		_																											
18	28.0 28.0 2																													24.0
19	28.0 28.0 2																													25.0
20	29.0 29.0 2		_	_																							-			
21	30.0 29.0 2																													
22	30.0 30.0 3		_																								-			
23	30.5 30.5 3																													27.5
	31.5 31.5 3																													
	31.5 31.5 3	1.5 31																												
26																											-	29.5		
27																												30.5		
28																												31.5		
29			E																									31.5		
30																												32.5		
31																												32.5		
32	Not Ana	lvzed																										33.5		
33	Doma																											33.5		
34																												34.5		
35			E															<u> </u>									-	34.5		
36			3																									35.5		
37			3																								-	35.5		
38			3																									36.5		
39																		<u> </u>						<u> </u>		<u> </u>	-	36.5		
40			3	37.5	37.5	37.5	37.5	37.5	37.5	37.5	37.5	37.5	37.5	37.5	37.5	37.5	37.5	37.5	37.5	37.5	37.5	37.5	37.5	37.5	37.5	37.5	37.5	37.5	37.5	37.5

Note: The explanatory notes and limitations provided for Table 1-6a are also applicable to this table.

Table 1-6c Fuel Qualification Table for 0.6 kW PWR FAs in Zone 1 of a NUHOMS[®]-32PT DSC Contained in an OS197L TC (Fuel with or without CCs)

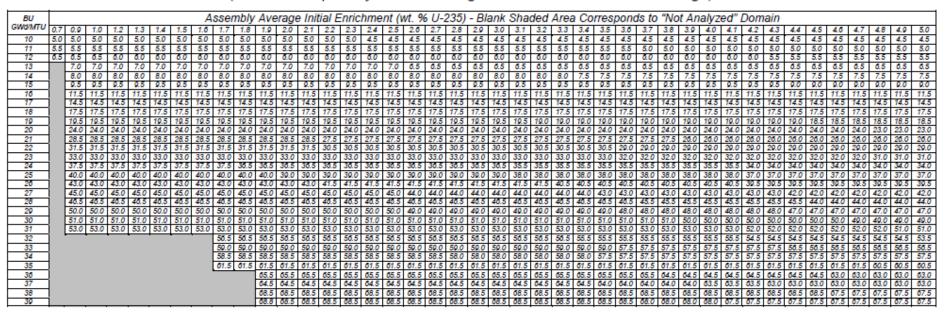
(Minimum required years of cooling time after reactor core discharge)

BU													As	sem	bly i	Aver	age	Initi	al Er	nrich	men	t (w	t. %	U-2	35)												
GWd/																																					
MTU	1.1	1.2	1.4	1.6	1.8	1.9	2.0	2.1	2.2	2.3	2.4	2.5	2.6	2.7	2.8		3.0		3.2			3.5			3.8	3.9	4.0		4.2	4.3	4.4	4.5	4.6	4.7	4.8		
6	5.0		5.0				5.0		5.0		5.0		5.0	5.0	5.0		5.0		5.0		5.0				5.0					5.0	-			5.0			5.0
8	5.0		5.0				5.0		5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0			5.0	5.0		5.0		5.0			5.0				5.0	5.0		5.0
10	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
15	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
20	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
25	6.5	6.5	6.5	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	5.0	5.0	5.0	5.0
28	8.0	8.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
30	9.0	9.0	9.0	9.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0
32	10.5	10.5	9.5	9.5	9.5	9.5	9.5	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0
34	12.0	12.0	12.0	11.5	11.0	11.0	11.0	11.0	11.0	11.0	11.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	9.0	9.0	9.0	9.0	9.0	9.0
36	14.5	14.5	14.0	14.0	13.5	13.5	13.0	13.0	13.0	13.0	13.0	12.0	12.0	12.0	12.0											11.0						11.0	11.0	11.0	11.0	11.0	11.0
38	17.5	17.5	16.5	16.5	16.5	16.0	16.0	15.5	15.5	15.0	15.0	15.0	15.0	14.0	14.0	14.0	14.0	14.0	14.0	14.0	14.0	14.0	14.0	14.0	14.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0
39	19.5	19.0	18.5	18.0	17.0	16.5	16.5	16.5	16.5	16.0	16.0	16.0	16.0	16.0	16.0	16.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	14.0	14.0	14.0	14.0	14.0	14.0	14.0	14.0	14.0
40			20.0			18.5				<u> </u>			17.0	17.0	17.0	17.0	17.0				16.0						16.0	16.0	16.0	16.0	16.0	15.0	15.0	15.0	15.0	15.0	15.0
41			21.0		20.0	20.0	19.5		19.5		19.0		19.0	19.0	18.0	18.0	18.0		18.0		18.0				17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	16.0
42			22.5		21.5	21.5	21.0																		19.0	19.0	18.0	18.0	18.0	18.0	18.0	18.0	18.0	18.0	18.0	18.0	18.0
43					_	23.0								21.0		21.0	21.0	21.0			20.0					20.0						19.0	19.0			19.0	19.0
44						24.0								23.0		22.0	22.0	22.0			22.0				21.0	21.0		21.0	21.0	21.0	21.0	21.0	21.0	21.0	21.0	20.0	20.0
																									23.0	23.0	_		22.0	22.0	22.0	22.0	22.0	22.0	22.0	22.0	22.0
45	27.5	27.5	27.0	26.0	26.0	25.0	25.0	25.0	25.0	24.5	24.5	24.5	24.0	24.0	24.0	24.0	24.0	24.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	22.0	22.0	22.0	22.0	22.0	22.0	22.0	22.0	22.0	22

Table 1-6d Fuel Qualification Table for 0.4 kW PWR FAs in Zone 2 of a NUHOMS[®]-32PT DSC Contained in an OS197L TC (Fuel with or without CCs)

(Minimum required years of cooling time after reactor core discharge)

BU																	A	SS	en	hbly	/ A	/era	ade	e In	itial	En	ric	hme	ent	(wt	%	U-2	235)															
GWd/	\vdash		Т	Т				Т				Т					Т			_	T									Ľ			—											Т				-
MTU	1.1				1.4	1.5	1.6			1.8	1.9			2.1	2.2	2.3	2.4	4 1	2.5	2.6	_		2.8	2.9	3.0			3.2		3.4									.2	4.3	4.4	4.5	4.6	4.	.7 4	.8 4	4.9	5.0
10		17.			-	17.5	-	_		17.5	17.5	_	7.5	17.5	17.5	17.5	17.	51	7.5	17.5	5 17	5 1	7.5	17.5	17.	5 17	_	_			5 17.				5 17		5 17	.5 1	7.5	17.5	17.5	17.5	17.	5 17	.5 17	7.5 1	7.5	17.5
11		i 17.			7.5	17.5		5 17		17.5	17.5	-	7.5	17.5	17.5	17.5	17.	51	7.5	17.5	5 17	5 1	7.5	17.5	17.	5 17			17.5	-	5 17.	_	5 17	-	5 17		5 17	.5 1	7.5	17.5	17.5	17.5	17.	5 17	.5 17	7.5 1	7.5	17.5
12		i 17.	-		_	17.5		5 17		17.5	17.5	_	7.5	17.5	17.5	17.5	17.	5 1	7.5	17.5	17	5 1	7.5	17.5	17.	5 17	_	_	17.5		5 17.	-	-	_	-	-	-	.5 1	7.5	17.5	17.5	17.5	17.	5 17	7.5 17	/.5 1	7.5	17.5
13	17.5		5 17	.5 1	7.5	17.5	17.	5 17	_	17.5	17.5			17.5	17.5	17.5	17.	5 1	7.5	17.5	5 17	5 1	7.5	17.5	17.		-	_	_		5 17.	_	-		5 17	_	5 17	.5 1	7.5	17.5	17.5	17.5	17.	5 17	7.5 17	7.5 1	7.5	17.5
14	17.5		5 17	.5 1	7.5	17.5	17.	5 17	_	17.5	17.5	_	7.5	17.5	17.5	17.5	17.	5 1	7.5	17.5	5 17	5 1	7.5	17.5	17.	5 17	_	_			5 17.	_	_	_	5 17	_	5 17	.5 1	7.5	17.5	17.5	17.5	17.	5 17	7.5 17	7.5 1	7.5	17.5
15	17.5			_	7.5	17.5	-	5 17	_	17.5	17.5	_	7.5	17.5	17.5	17.5	17.	5 1	7.5	17.5	5 17	5 1	7.5	17.5	17.	5 17	-		17.5		5 17.	_	5 17		5 17	5 17.	5 17	.5 1	7.5	17.5	17.5	17.5	17.	5 17	7.5 17	7.5 1	7.5	17.5
16	17.5		5 17	.5 1	7.5	17.5	-	5 17		17.5	17.5		7.5	17.5	17.5	17.5	17.	5 1	7.5	17.5	5 17	5 1	7.5	17.5	17.	5 17	-		17.5		5 17.		5 17	-	5 17	5 17.	5 17	.5 1	7.5	17.5	17.5	17.5	17.	5 17	.5 17	7.5 1	7.5	17.5
17	17.5		5 17	.5 1	7.5	17.5	+	5 1	7.5	17.5	17.5		7.5	17.5	17.5	17.5	17.	5 1	7.5	17.5	17	5 1	7.5	17.5	17.	5 17		7.5	17.5	17.5			5 17	_	5 17	5 17.	5 17	.5 1	7.5	17.5	17.5	17.5	17.	5 17	7.5 17	7.5 1	7.5	17.5
18		i 17.			7.5	17.5	17.	5 17	7.5	17.5	17.5	5 17	7.5	17.5	17.5	17.5	17.	5 1	7.5	17.5	5 17	5 1	7.5	17.5	17.	5 17	.5 1	7.5	17.5	17.5	5 17.	5 17.	5 17.	5 17	5 17.	5 17.	5 17	.5 1	7.5	17.5	17.5	17.5	17.	5 17	7.5 17	7.5 1	7.5	17.5
19		i 17.			7.5	17.5	17.	5 17	7.5	17.5	17.5	5 17	7.5	17.5	17.5	17.5	17.	51	7.5	17.5	5 17	5 1	7.5	17.5	17.	5 17	.5 11	7.5	17.5	17.5	5 17.	5 17.	5 17	5 17	5 17.	5 17.	5 17	.5 1	7.5	17.5	17.5	17.5	17.	5 17	7.5 17	/.5 1	7.5	17.5
20	17.5		5 17	.5 1	7.5	17.5				17.5	17.5		7.5	17.5	17.5	17.5	17.	5 1	7.5	17.5	5 17	5 1	7.5	17.5	17.	-						5 17.			5 17.	_	5 17	.5 1	7.5	17.5	17.5	17.5	17.	5 17	7.5 17	/.5 1	7.5	17.5
21	17.5		5 17	.5 1	7.5	17.5	17.	5 17	7.5	17.5	17.5	5 17	7.5	17.5	17.5	17.5	17.	5 1	7.5	17.5	5 17	5 1	7.5	17.5	17.	5 17	.5 1	7.5	17.5	17.5	5 17.	5 17.	_	_	5 17.	5 17.	5 17	.5 1	7.5	17.5	17.5	17.5	17.	5 17	7.5 17	/.5 1	7.5	17.5
22	17.5				7.5	17.5	17.	5 17	7.5	17.5	17.5	5 17	7.5	17.5	17.5	17.5	17.	51	7.5	17.5	5 17	5 1	7.5	17.5	17.	5 17	.5 11	7.5	17.5	17.5	5 17.	5 17.	5 17		5 17.	5 17.	5 17	.5 1	7.5	17.5	17.5	17.5	17.	5 17	7.5 17	/.5 1	7.5	17.5
23	18.0	_	_	_		17.5		5 17	_	17.5	17.5	_	_	17.5	17.5	17.5	17.	51	7.5	17.5	5 17	5 1	7.5	17.5	17.	5 17	_		17.5		5 17.	-	-	_	5 17.	5 17.	5 17	.5 1	7.5	17.5	17.5	17.5	17.	5 17	7.5 17	7.5 1	_	17.5
24		17.						5 17	_	17.5	17.5			17.5	17.5	17.5	17.	5 1	7.5	17.5	5 17	5 1	7.5	17.5	17.	5 17			_		5 17.		-			-	-	.5 1	7.5	17.5	17.5	17.5	17.	5 17	7.5 17	7.5 1	_	17.5
25		i 18.				17.5		-		17.5	17.5	_	7.5	17.5	17.5	17.5	17.	5 1	7.5	17.5	5 17	5 1	7.5	17.5	17.	5 17					5 17.	-	_	_	5 17.	5 17.	5 17	.5 1	7.5	17.5	17.5	17.5	17.	5 17	7.5 17	7.5 1	7.5	17.5
26		18.			_	18.0	-	_	_	17.5	17.5		7.5	17.5	17.5	17.5	17.	5 1	7.5	17.5	5 17	5 1	7.5	17.5	17.	5 17			17.5		5 17.	_	5 17	_	5 17.	5 17.	5 17	.5 1	7.5	17.5	17.5	17.5	17.5	5 17	7.5 17	7.5 1	7.5	17.5
27		i 19.								18.0			3.0	17.5	17.5	17.5	17.			17.5		5 1				5 17			17.5		5 17.				5 17.		_	.5 1	7.5	17.5	17.5	17.5	17.	5 17	7.5 17	7.5 1	7.5	17.5
28		19.								18.0				17.5						17.5		5 1										5 17.			5 17.		5 17	.5 1	7.5	17.5	17.5	17.5	17.	5 17	7.5 17	7.5 1	7.5	17.5
29		i 19.	5 19	.5 1	9.5	19.5	19.5	5 19	9.0	19.0	19.0	0 19	9.0	19.0	19.0	19.0	19.	0 1	9.0	18.5	5 18	5 1	8.5	18.5	18.	5 18							5 17		5 17	5 17.	5 17	.5 1	7.5	17.5	17.5	17.5	17.	5 17	7.5 17	7.5 1	7.5	17.5
30	21.0	21.	21	.0 2	1.0	21.0	21.0	0 2'	1.0	21.0	21.0	0 21	1.0	20.5	20.5	20.5	20.	5 2	0.5	20.5	5 20	5 2	0.5	20.5	20.	0 20	.0 1	9.5	19.5	19.5	5 19.	5 19	5 19	5 19	5 19	5 19.	5 19	.5 1	9.5	19.5	19.5	19.5	19.	5 19	9.5 19	3.5 1/	9.5	19.5
31										23.0										22.5						5 22						0 22			0 22						21.5	21.5	21.	5 21	1.5 21	1.5 2	1.5	21.5
32				.0 2	5.0	25.0	25.0	0 25	5.0	25.0	25.0	0 24	4.5	24.5	24.5	24.5	24.	5 2	4.5	24.5	5 24	5 2	4.0	24.0	24.	0 24	.0 24	4.0	24.0	24.0	24.	0 24.	0 24	0 23	5 23	5 23.	5 23	.5 2	3.5	23.5	23.5	23.5	23.	5 23	3.5 23	3.5 2	3.5	23.0
33	28.0				7.5	27.5	27.5	5 27	7.5	27.0	27.0	0 27	7.0	27.0	27.0	27.0	26.	5 2	6.5	26.5	5 26	5 2	6.5	26.5	26.	5 26	.5 20	6.5	26.5	25.5	5 25.	5 25.	5 25	5 25	5 25	5 25.	5 25	.0 2	5.0	25.0	25.0	25.0	25.0	0 25	5.0 25	5.0 2	5.0	25.0
34	29.0	29.	29	.0 2	9.0	29.0	29.0	0 29	9.0	29.0	29.0	0 29	9.0	29.0	28.5	28.5	28.	5 2	8.5	28.5	5 28	5 2	8.5	28.5	28.	5 27	5 2	7.5	27.5	27.5	5 27.	5 27.	5 27	5 27	5 27	5 27.	5 27	.0 2	7.0	27.0	27.0	27.0	27.0	0 27	7.0 27	7.0 2	7.0	27.0
35	31.0																																		5 29						29.0	29.0	29.0	0 29	9.0 28	9.0 2	9.0	29.0
36	32.5	j 32.	5 32	.5 3	2.5	32.5	32.5	5 32	2.5	32.5	32.5	5 32	2.5	32.5	32.5	32.5	32.	5 3	2.5	32.0	32	0 3	2.0	32.0	32.	0 32	.0 3:	2.0	32.0	32.0	31.	5 31.	5 31	5 31	5 31.	5 31.	5 31	.5 3	1.5	30.5	30.5	30.5	30.5	5 30).5 30	0.5 3	0.5	30.0
37	34.5	i 34.	5 34	.5 3	4.5	34.5	34.5	5 33	3.5	33.5	33.5	5 33	3.5	33.5	33.5	33.5	33.	5 3	3.5	33.5	5 33	5 3	3.5	33.0	32.	5 32	5 3	2.5	32.5	32.5	5 32.	5 32.	5 32	5 32	5 32	5 32.	5 32	.5 3	2.5	32.5	32.5	31.5	31.	5 31	1.5 31	1.5 3	1.5	31.5
38	36.0	36.	36	.0 3	5.5	35.5	35.5	5 38	5.0	35.0	35.0	0 38	5.0	35.0	35.0	35.0	35.	03	5.0	35.0	35	03	5.0	35.0	35.	0 34	5 34	4.0	34.0	34.0	34.	0 34.	0 34	0 34	0 34	0 34.	0 34	.0 3	4.0	34.0	34.0	34.0	34.0	0 34	1.0 33	3.0 3	3.0	33.0
39	37.5	j 37.	5 37	.5 3	7.5	37.0	37.0	0 37	7.0	37.0	37.0	0 37	7.0	37.0	37.0	37.0	37.	03	7.0	37.0	37	03	7.0	37.0	37.	0 37	.0 31	7.0	36.0	36.0	36.	0 36.	0 36	0 36	0 36	0 36.	0 36	.0 3	6.0	36.0	36.0	36.0	36.0	0 36	3.0 36	3.0 3	6.0	35.0
40	39.5	i 39.	39	.0 3	9.0	39.0	38.5	5 38	8.5	38.5	38.5	5 38	3.5	38.5	38.5	38.5	38.	5 3	8.5	38.5	5 38	5 3	8.5	38.5	38.	5 38	5 3	8.5	38.5	38.5	5 37.	5 37.	5 37	5 37	5 37	5 37.	5 37	.5 3	7.5	37.5	37.5	37.5	37.	5 37	7.5 37	7.5 3	7.5	37.5
41	41.0	41.	0 40	.5 4	0.5	40.5	40.0	0 40	0.0	40.0	40.0	0 40	0.0	40.0	40.0	40.0	40.	04	0.0	40.0) 40	04	0.0	40.0	40.	0 40	0 4	0.0	40.0	40.0	40.	0 40.	0 39	0 39	0 39	0 39.	0 39	.0 3	9.0	39.0	39.0	39.0	39.0	0 39	0.0 38	9.0 3	9.0	39.0
42																41.5			1.5	41.5	5 41	54	1.5	41.5	41.	5 41	5 4	1.5	41.5	41.5	5 41.	5 41.	5 41	5 41	5 41	5 41.	5 41	.5 4	1.5	40.5	40.5	40.5	40.	5 40).5 40	J.5 4	0.5	40.5
43	44.0	44.	0 43	5 4	3.5	43.5	43.	5 43	3.5	43.0	43.0	0 43	3.0	43.0	43.0	43.0	43.	04	3.0	43.0) 43	0 4	3.0	43.0	43.	0 43	0 4:	3.0 4	43.0	43.0	43.	0 43.	0 43	0 43	0 43	0 43.	0 43	.0 4	3.0	42.0	42.0	42.0	42.0	0 42	2.0 42	2.0 4	2.0	12.0
44																																			0 44						44.0	44.0	44.0	0 44	1.0 44	4.0 4	4.0	14.0
45																																			5 46												5.5	45.5


Notes for Tables 1-6c and 1-6d:

- BU = Assembly Average burnup.
- Use burnup and enrichment to look up minimum cooling time in years. Licensee is responsible for ensuring that uncertainties in fuel enrichment and burnup are correctly accounted for during fuel qualification.
- For fuel assemblies with CCs, increase the indicated cooling time by 1.5 years. This applies to 0.6 kW FAs only.
- For fuel assemblies reconstituted with up to 10 stainless steel rods, increase the indicated cooling time by 1.5 years. If more than 10 stainless steel rods are present, increase the indicated cooling time by 6 years.
- Round burnup UP to next higher entry, round enrichments DOWN to next lower entry.
- Fuel with an initial enrichment less than 1.1 and greater than 5.0 wt.% U-235 is unacceptable for storage.
- Fuel with a burnup greater than 45 GWd/MTU is unacceptable for storage.
- Fuel with a burnup less than 10 GWd/MTU is acceptable for storage after 5-years cooling.
- For fuel assemblies containing BLEU fuel pellets, add 3.0 years of additional cooling time to the values shown in Table 1-6c and Table 1-6d.

Example: An assembly with an initial enrichment of 3.75 wt. % U-235 and a burnup of 41.5 GWd/MTU is acceptable for storage in Zone 1 locations after a cooling time of 19 years (per Table 1-6c) and in Zone 2 locations after a cooling time of 41.5 years (per Table 1-6d) as defined by 3.7 wt. % U-235 (rounding down) and 42 GWd/MTU (rounding up) on these fuel qualification tables.

Table 1-7a BWR Fuel Qualification Table for Fuel with 0.10 kW per Assembly for the NUHOMS[®]-69BTH DSC

(Part 1 of 2)

Table 1-7a BWR Fuel Qualification Table for Fuel with 0.10 kW per Assembly for the NUHOMS[®]-69BTH DSC

(Part 2 of 2)

(Minimum required years of cooling time after reactor core discharge)

BU	Assembly Average Ini	itial E	nric	hmer	nt (wt	. % U	-235) - Bl	ank S	hade	d Ar	ea C	orres	pond	s to '	Not A	Analy	zeď"	Dom	ain						\neg
GWWMTU	0.7 0.9 1.0 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5	2.6	2.7	2.8	2.9	3.0	3.1	3.2	3.3	3.4	3.5	3.6	3.7	3.8	3.9	4.0	4.1	4.2	4.3	4.4	4.5	4.0	4.7	4.8	4.9	5.0
40		72.5	72.5	72.5	72.5	72.5	72.5	72.5	72.5	72.5	72.5	72.5	72.5	72.5	72.5	72.5	72.5	72.5	72.5	72.5	72.5	72.5	72.5	72.5	71.5	71.5
41	1 6	72.5	72.5	72.5	72.5	72.5	72.5	72.5	72.5	72.5	72.5	72.0	72.0	72.0	72.0	72.0	72.0	72.0	71.5	71.5	71.5	71.5	71.5	71.5	71.5	71.5
42] [76.5	76.5	76.5	76.5	76.5	76.5	70.5	70.5	76.5	76.5	76.5	70.5	70.5	76.5	76.5	76.5	76.5	70.5	76.5	76.5	76.5	70.5	70.5	70.5	70.5
43		76.5	76.5	76.5	76.5	76.5	76.5	76.5	76.5	76.5	76.5	76.5	76.5	76.5	76.5	76.5	76.5	76.5	76.5	76.5	76.5	76.5	76.5	76.5	76.5	76.5
44		78.0	78.0	78.0	78.0	78.0	78.0	78.0	78.0	78.0	78.0	78.0	78.0	78.0	78.0	78.0	78.0	78.0	77.5	77.5	77.5	77.5	77.0	77.0	77.0	77.0
45		81.5	81.5	81.5	81.5	81.5	81.5	81.5	81.5	81.5	81.5	81.5	81.5	81.5	81.5	81.5	81.5	81.5	81.5	81.5	81.5	81.5	81.5	81.5	81.5	81.5
40		82.0	82.0	82.0	82.0	82.0	82.0	82.0	82.0	82.0	82.0	82.0	82.0	82.0	82.0	81.5	81.5	81.5	81.5	81.5	81.5	81.5	81.5	81.5	81.5	81.5
47	4	83.5	83.5	83.5	83.5	83.5	83.5	83.5	83.5	83.5	83.5	83.5	83.5	83.5	83.5	83.5	83.5	83.5	83.5	83.5	83.0	83.0	83.0	83.0	83.0	83.0
48	4	85.5	85.5	85.5	85.5	85.5	85.5		85.5	85.5	85.5	85.5	85.5	85.5	85.5	85.5	85.5	85.5	85.0	85.0	85.0	85.0	85.0	85.0	85.0	84.5
49	4	87.0	87.0	87.0	87.0	87.0	87.0	87.0	87.0	87.0	87.0	87.0	87.0	87.0	87.0	87.0	87.0	87.0	87.0	87.0	87.0	87.0	87.0	87.0	80.5	80.5
50	4	89.0	89.0	89.0	89.0	89.0	80.0	89.0	89.0	89.0	89.0	89.0	89.0	89.0	89.0	89.0	89.0	80.0	89.0	89.0	89.0	89.0	88.5	88.5	88.5	88.5
51 52	4	90.5	90.5	90.5	90.5	90.5	90.5	90.5	90.5	90.5	90.5	90.5	90.5	90.5	90.5	90.5	90.5	90.5	90.5	90.5	90.5	90.5	90.5	90.5		90.5
53	4	92.5	92.5	92.5	92.5	92.5	92.5	92.5	92.5	92.5	92.5	92.5	92.5	92.5	92.5	92.5	92.5	92.5	92.5	92.5	92.5	92.5	92.0	92.0	92.0	92.0 94.0
54		05.0	05.0	05.0	05.0	94.0	94.0	94.0	05.0	05.0	94.0	94.0	90.0	90.0	05.0	94.0	05.0	00.0	05.0	05.0	05.0	05.0	94.0	05.0	94.0	90.0
55		07.5	07.5	90.0	96.0	00.0	07.5	90.0	00.0	96.0	07.5	07.5	07.5	07.5	96.0	07.5	90.0	07.5	07.5	07.5	07.5	07.5	07.5	96.0	07.5	07.5
50	4	00.0	00.0	99.0	99.0	99.0	99.0	99.0	99.0	00.0	99.0	99.0	99.0	99.0	99.0	99.0	99.0	99.0	00.0	99.0	00.0	99.0	99.0	99.0	99.0	99.0
57	4	101.0	101.0	101.0	101.0	101.0	101.0	101.0	101.0	101.0	101.0	101.0	101.0	101.0	101.0	101.0	101.0	101.0	101.0	101.0	101.0	101.0	101.0	101.0	101.0	101.0
58	4	102.5	102.5	102.5	102.5	102.5	102.5	102.5	102.5	102.5	102.5	102.5	102.5	102.5	102.5	102.5	102.5	102.5	102.5	102.5	102.5	102.5	102.5	102.5	102.5	
50	4	104.0	104.0	104.0	104.0	104.0	104.0	104.0	104.0	104.0	104.0	104.0	104.0	104.0	104.0	104.0	104.0	104.0	104.0	104.0	104.0	104.0	104.0	104.0		104.0
60	4	100.0	100.0	100.0	108.0	106.0	106.0	106.0		108.0	106.0	106.0	100.0	100.0	100.0	106.0	106.0	100.0	108.0	100.0	108.0	108.0	108.0	100.0		100.0
61		106.0	105.0	106.0		106.0	106.0	106.0		106.0	106.0	105.0	106.0	105.0	105.0	105.0	105.0	106.0	106.0	105.0	106.0	105.0	106.0	106.0	106.0	
62		107.5	107.5	107.5	107.5	107.5	107.5	107.5	107.5	107.5	107.5	107.5	107.5	107.5	107.5	107.5	107.5	107.5	107.5	107.5	107.5	107.5	107.5	107.5	107.5	

Table 1-7b BWR Fuel Qualification Table for Fuel with 0.22 kW per Assembly for the NUHOMS[®]-69BTH DSC

BU								1	Asse	emb	bly /	Avei	rage	e Init	ial E	nric	hme	nt (v	vt. %	6 U-2	235)	- Bla	ink S	Shad	ed A	Area	Cor	resp	ond	s to '	"Not	Ana	lyze	d" D	oma	in							
GWW/MTU	07	0.9	1.0	1.2	1.3	1.4	1.5	1.0	1.	7 1	1.8	1.9	2.0	2.1	2.2	2.3	2.4	2.5	2.0	2.7	2.8	2.9	3.0	3.1	3.2	3.3	3.4	3.5	3.0	3.7	3.8	3.9	4.0	4.1	4.2	4.3	4.4	4.5	4.0	4.7	4.8	4.9	5.0
10	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	0 3	3.0	3.0	3.0	3.0	3.0	3.0	-3.0	3.0	3.0	-3.0	3.0	3.0	3.0	3.0	3.0	3.0	-3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
11	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.	0 3	1.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
12	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	0 3	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
13		3.5	3.5	3.5	3.5	3.5	3.5	3.5	5 3.	5 3	1.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	-3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
14		4.0	3.5	3.5	3.5	3.5	3.5	3.5	5 3.	5 3	1.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
15		4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.	0 4	10	4.0	4.0	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
16		4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.	0 4	10	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
17		4.5	4.5	4.5	4.5	4.0	4.0	4.0	4.	0 4	10	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
18		4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.	5 4	1.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
19		5.0	5.0	5.0	5.0	5.0	5.0	5.0) 5.	0 4	1.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.0	4.0	4.0
20		5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	0 5	10	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
21		5.5	5.5	5.5	5.5	5.5	5.5	5.0) 5.	0 5	i.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	4.5	4.5	4.5
22		0.0	0.0	0.0	5.5	5.5	5.5	5.5	5.	5 5	15	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
23		6.0		6.0	6.0	6.0	0.0	0.0	0.0	0 0	1.0	6.0	0.0	6.0	0.0	0.0	6.0	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5
24			0.5	0.5	0.5	0.5	0.5	0.5	5 0 .	0 0	1.0	6.0	0.0	6.0	0.0	6.0	0.0	0.0	0.0	6.0	6.0	0.0	6.0	0.0	0.0	0.0	0.0	6.0	0.0	0.0	6.0	6.0	0.0	0.0	6.0	6.0	5.5	5.5	5.5	5.5	5.5	5.5	5.5
25		7.0	7.0	7.0	6.5	6.5	0.5	0.5	j (j.	5 0	1.5	6.5	0.5	6.5	0.5	0.5	6.5	0.5	0.5	6.5	0.5	6.5	0.5	0.5	6.5	6.5	6.5	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
26		8.0	8.0	7.5	7.5	7.0	7.0	7.0	7.0	0 7	.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
27		8.5	8.0	8.0	8.0	8.0	7.5	7.5	5 7.3	5 7	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0
28		8.5	8.5	8.5	8.5	8.5	8.5	8.0	8.0	0 8	1.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5
29		9.5	9.5	9.5	9.5	9.0	9.0	9.0	2.0	0 8	1.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0
30		10.5		10.0	10.0	10.0	9.5	9.5	5 Q.	5 9	2.5	9.5	Q.5	9.5	9.5	9.5	9.5	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5
31		12.0	11.0	11.0	11.0	11.0	11.0	11.0	0 11.	.0 1	1.0	11.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	9.5	9.5	9.5	9.5	9.5	9.5	9.5	9.5	9.5	Q.5	9.5	9.5	9.5	9.5	9.5	9.5	9.5	9.5	9.5	9.5	9.5	9.5	9.5
32							12.0	12.0	0 11.	.5 1	1.5	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	10.5	10.5	10.5	10.5	10.5	10.5	10.5	10.5	10.5	10.5	10.0	10.0	10.0	10.0	10.0	10.0	10.0
33									13	0 1	3.0	13.0	13.0	13.0	13.0	12.5	12.5	12.0	12.0	12.0	12.0	11.5	11.5	11.5	11.5	11.5	11.5	11.5	11.5	11.5	11.5	11.5	11.5	11.5	11.5	11.5	11.5	11.5	11.5	11.5	11.5	11.5	11.5
34									14	0 1	4.0	14.0	14.0	14.0	14.0	14.0	14.0	14.0	14.0	13.0	13.0	13.0	13.0	13.0	13.0	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5
35									15	5 1	5.5	15.5	15.5	15.5	15.5	15.5	15.5	15.5	15.5	14.0	14.0	14.0	14.0	14.0	14.0	14.0	14.0	14.0	14.0	14.0	14.0	14.0	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5
30												10.5	16.5	16.0	16.0	16.0	16.0	10.0	15.5	15.5	15.5	15.5	15.5	15.5	15.5	15.5	15.5	15.5	15.5	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	14.5	14.5	14.5	14.5
37												18.0	18.0	17.5	17.5	17.5	17.5	17.5	17.0	17.0	17.0	17.0	17.0	17.0	10.5	10.5	10.5	10.5	10.5	10.5	10.5	10.5	10.5	10.5	10.5	10.5	10.5	10.0	10.0	16.0	16.0	16.0	16.0
38												19.5	19.5	19.0	19.0	19.0	19.0	18.5	18.5	18.5	18.5	18.5	18.5	18.5	18.5	18.0	18.0	18.0	18.0	18.0	18.0	18.0	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5
39												21.0	21.0	21.0	20.5	20.5	20.5	20.5	20.5	20.5	20.0	20.0	20.0	20.0	19.5	19.5	19.5	19.5	19.5	19.5	19.5	19.5	19.0	19.0	19.0	19.0	19.0	19.0	19.0	19.0	19.0	19.0	19.0

Table 1-7bBWR Fuel Qualification Table for Fuel with 0.22 kW per Assembly for the NUHOMS®-69BTH DSC

(Part 2 of 2)

(Minimum required years of cooling time after reactor core discharge)

BU		Assembly A	verage Initial Enr	chment (wt	% U-23	5) - Blan	k Shade	d Area Co	rresponds	to "Not	Analvze	d" Domai	n			
GWU/MTU 0.7 0.0	10 12 13 14 15 1		2.0 2.1 2.2 2.3 2					3.3 3.4 3.		3.8 3.9				4.6 4.7	48 49	50
40			2.0 2.1 2.2 2.0 2		5 215	215 215			0 21.0 21.0				0.5 20.5 20.			
41				22.5 2					5 22.5 22.5				2.0 22.0 22.0			
42				24.5 2					0 24.0 24.0				3.5 23.5 23.			22.5
43																23.5
									5 25.5 25.5				5.0 25.0 25.0			24.3
44									0 27.0 27.0				6.5 26.5 26.			26.0
45									5 28.5 28.5				8.0 28.0 27.			27.5
46									0 30.0 30.0				9.5 29.5 29.3			29.0
47				31.5 3					5 31.0 31.0				1.0 31.0 30.			30.5
48				33.0 3					5 32.5 32.5				2.5 32.0 32.0			32.0
49									0 34.0 34.0				3.5 33.5 33.	5 33.5 33.0	33.0 33.0	33.0
50				36.0 3	5 35.5	35.5 35.5	35.5 35.5 3	5.5 35.5 35	5 35.0 35.0	35.0 35.0	35.0	35.0 35.0 3	4.5 34.5 34.3	5 34.5 34.5	34.5 34.5	34.5
51				37.0 37	.0 37.0	37.0 37.0	37.0 36.5	6.5 36.5 36	5 36.5 36.5	36.5 36.5	36.5	36.5 36.0 3	6.0 36.0 36.0	36.0 36.0	36.0 36.0	36.0
52				38.5 38	1.0 38.0	38.0 38.0	38.0 38.0 3	7.5 37.5 37	5 37.5 37.5	37.5 37.5	37.5	37.5 37.5 3	7.5 37.5 37.3	5 37.5 37.5	37.5 37.5	37.0
53				39.5 3	.5 39.5	39.5 39.5	39.5 39.0 3	9.0 39.0 39	0 39.0 39.0	39.0 39.0	39.0	39.0 39.0 3	9.0 39.0 39.0	39.5 39.0	38.5 38.5	38.5
54				41.0 4	0 40.5	40.5 40.5	40.5 40.5 4	0.5 40.5 40	5 40.5 40.5	40.0 40.0	40.0	40.0 40.0 4	0.0 40.0 40.0	40.0 40.0	40.0 40.0	39.5
55				41.5 4					5 41.5 41.5				1.5 41.5 41.			41.0
56				43.0 4					5 42.5 42.5				2.5 42.5 42.			42.5
57				44.0 4					0 44.0 43.5				3.5 43.5 43.			
58				45.0 4					0 45.0 45.0				5.0 45.0 45.			
59				45.0 4					0 46.0 46.0				6.0 46.0 46.			45.5
				40.0 40												47.0
60				47.0 4					0 47.0 47.0				7.0 47.0 47.0			47.0
61				48.0 4					0 48.0 48.0				8.0 48.0 48.0			48.0
62				49.5 4	1.5 49.5	49.5 49.5	49.5 49.5 4	9.5 49.5 49	5 49.5 49.5	49.5 49.5	49.5	49.5 49.5 4	9.5 49.5 49.	49.5 49.5	49.5 49.5	49.5

Table 1-7cBWR Fuel Qualification Table for Fuel with 0.25 kW per Assembly for the NUHOMS[®]-69BTH DSC

(Part 1 of 2)

BU	Т											1	4ss	en	ıbly	A	/er	ag	e In	itial	En	ricl	hme	ent	(W	t. %	U-	23	5) -	Bla	nk :	Sha	ide	d Al	rea	Con	resp	on	ds t	o "N	lot A	Anal	zec	1" D	oma	ain								
GWd/MTU	0.	7 0.	9 1	.0	1.2	1.3	1.	4 1	1.5	1.6	1.	.7	1.8	1	.9	2.0	2	2.1	2.2	2.3	3 2	2.4	2.5	2.	6	2.7	2.8	1 2	2.9	3.0	3.1	3	2	3.3	3.4	3.5	3.6	5 3	3.7	3.8	3.9	4.0	4.1	4.	2 4	4.3	4.4	4.5	4.6	4.	7 4	.8		5.0
10	3.	0 3.	0 3	.0	3.0	3.0	3.	0 3	3.0	3.0	3	.0	3.0	3	1.0	3.0	3	1.0	3.0	3.0) 3	3.0	3.0	3.	0	3.0	3.0) 3	3.0	3.0	3.0	3	0	3.0	3.0	3.0	3.0	0 3	3.0	3.0	3.0	3.0	3.0) 3.	0 3	3.0	3.0	3.0	3.0	3.	0 3	.0 :	3.0	3.0
	3.	0 3.	0 3	.0	3.0	3.0	3.	0 3	3.0	3.0	3	.0	3.0	3	1.0	3.0	3	1.0	3.0	3.0) 3	3.0	3.0	3.	0	3.0	3.0) 3	3.0	3.0	3.0	3.	0	3.0	3.0	3.0	3.0	0 3	3.0	3.0	3.0	3.0	3.0) 3.	0 3	3.0	3.0	3.0	3.0	3.	0 3	.0	3.0	3.0
	3.	0 3.	0 3	.0	3.0	3.0	3.	0 3	3.0	3.0	3	.0	3.0	3	8.0	3.0	3	8.0	3.0	3.0) 3	3.0	3.0	3.	0	3.0	3.0) 3	3.0	3.0	3.0	3	0	3.0	3.0	3.0	3.0	0 3	3.0	3.0	3.0	3.0	3.0) 3.	0 3	3.0	3.0	3.0	3.0	3.	0 3	.0	3.0	3.0
13		3.	0 3	.0	3.0	3.0	3.	0 3	3.0	3.0	3	.0	3.0	3	3.0	3.0	3	8.0	3.0	3.0) 3	3.0	3.0	3.	0	3.0	3.0) 3	3.0	3.0	3.0	3.	0	3.0	3.0	3.0	3.0	0 3	3.0	3.0	3.0	3.0	3.0) 3.	0 3	3.0	3.0	3.0	3.0	3.	0 3.	.0	3.0	3.0
14		3.	5 3	.5	3.5	3.5	i 3.	5 3	3.5	3.5	i 3.	.5	3.0	3	3.0	3.0	3	3.0	3.0	3.0) 3	3.0	3.0	3.	0	3.0	3.0) 3	3.0	3.0	3.0	3.	0	3.0	3.0	3.0	3.0	0 3	3.0	3.0	3.0	3.0	3.0) 3.	0 3	3.0	3.0	3.0	3.0	3.	0 3	.0 :	3.0	3.0
15		3.	5 3	.5	3.5	3.5	i 3.	5 3	3.5	3.5	i 3.	.5	3.5	3	.5	3.5	3	.5	3.5	3.5	5 3	3.5	3.5	3.	5	3.5	3.5	j 3	3.5	3.5	3.5	3.	5	3.5	3.0	3.0	3.0	0 3	3.0	3.0	3.0	3.0	3.0) 3.	0 3	3.0	3.0	3.0	3.0	3.	0 3	.0	3.0	3.0
16		3.	5 3	.5	3.5	3.5	i 3.	5 3	3.5	3.5	i 3.	.5	3.5	3	1.5	3.5	3	1.5	3.5	3.5	5 3	3.5	3.5	3.	5	3.5	3.5	i 3	3.5	3.5	3.5	3.	5	3.5	3.5	3.5	3.5	5 3	3.5	3.5	3.5	3.5	3.5	j 3.	5 3	3.5	3.5	3.5	3.5	i 3.	5 3	.5 :	3.5	3.5
17		4	0 4	.0	4.0	4.0	4	0 4	4.0	4.0	4	.0	4.0		.5	3.5	3	.5	3.5	3.5	5 3	3.5	3.5	3.	5	3.5	3.5	i 3	3.5	3.5	3.5	3	5	3.5	3.5	3.5	3.5	5 3	3.5	3.5	3.5	3.5	3.5	5 3.	5 3	3.5	3.5	3.5	3.5	i 3.	5 3	5	3.5	3.5
18		4	5 4	.0	4.0	4.0	4.	0 4	4.0	4.0	4	.0	4.0	4	.0	4.0	4	.0	4.0	4.0) 4	1.0	4.0	4.	0	4.0	4.0) 4	1.0	4.0	3.5	3	5	3.5	3.5	3.5	3.5	5 3	3.5	3.5	3.5	3.5	3.5	j 3.	5 3	3.5	3.5	3.5	3.5	i 3.	5 3	.5	3.5	3.5
19		4	5 4	.5	4.5	4.5	4.	5 4	4.5	4.5	4.	.5	4.5				4	.0	4.0	4.0) 4	1.0	4.0	4.	0	4.0	4.0) 4	1.0	4.0	4.0	4	0	4.0	4.0	4.0	4.0	0 4	4.0	4.0	4.0	4.0	4.0) 4.	0 4	4.0	4.0	4.0	4.0	4.	0 4	.0	4.0	4.0
20		4	5 4	.5	4.5	4.5	4	5 4	4.5	4.5	4	.5	4.5	4	.5	4.5	4	.5	4.5	4.5	5 4	1.5	4.5	4.	5	4.5	4.5	i 4	1.5	4.5	4.5	4	0	4.0	4.0	4.0	4.0	0 4	4.0	4.0	4.0	4.0	4.0) 4.	0 4	4.0	4.0	4.0	4.0	4.	0 4	.0	4.0	4.0
21		5.	0 5	.0	5.0	5.0	4.	5 4	4.5	4.5	4	.5	4.5	4	.5	4.5	4	.5	4.5	4.5	5 4	1.5	4.5	4.	5	4.5	4.5	i 4	1.5	4.5	4.5	4	5	4.5	4.5	4.5	4.5	5 4	1.5	4.5	4.5	4.5	4.5	5 4.	5 4	4.5	4.5	4.5	4.5	4.	5 4	.5	4.5	4.5
22		5.	0 5	.0	5.0	5.0	5.	0 5	5.0	5.0	5	.0	5.0	5	5.0	5.0	5	5.0	5.0	4.3	5 4	1.5	4.5	4.	5	4.5	4.5	i 4	1.5	4.5	4.5	4	5	4.5	4.5	4.5	4.5	5 4	1.5	4.5	4.5	4.5	4.5	5 4.	5 4	4.5	4.5	4.5	4.5			.5 4	4.5	4.5
23		5.	5 5	.5	5.5	5.5	5.	5 5	5.5	5.5	5	5	5.0	5	i.0	5.0	5	i.0	5.0	5.0) 5	5.0	5.0	5.	0	5.0	5.0) 5	5.0	5.0	5.0	5	0	5.0	5.0	5.0	5.0	0 5	5.0	4.5	4.5	4.5	4.5	i 4.	5 4	4.5	4.5	4.5	4.5	4.	5 4	.5 4	4.5	4.5
24		5.	5 5	.5	5.5	5.5	5.	5 5	5.5	5.5	5	.5	5.5	5	5.5	5.5	5	5.5	5.5	5.5	5 5	5.5	5.5	5.	5	5.5	5.5	i 5	5.0	5.0	5.0	5.	0	5.0	5.0	5.0	5.0	0 5	5.0	5.0	5.0	5.0	5.0) 5.	0 5	5.0	5.0	5.0	5.0			.0	5.0	5.0
25		6.	0 6	.0	6.0	6.0	6.	0 6	6.0	6.0	5.	.5	5.5	5	5.5	5.5	5	5.5	5.5	5.5	5 5	5.5	5.5	5.	5	5.5	5.5	i 5	5.5	5.5	5.5	5.	5	5.5	5.5	5.5	5.5	5 5	5.5	5.5	5.5	5.5	5.5	5 5.	5 5	5.5	5.5	5.5	5.5	i 5.	0 5	.0	5.0	5.0
26			5 6						6.0	6.0			6.0		.0	6.0		.0	6.0				6.0			5.5					5.5						5.5			5.5		5.5	5.5	5 5.	5 5	5.5	5.5	5.5	5.5	5.	5 5	.5	5.5	5.5
27		7.	0 6	.5	6.5	6.5	6	56	6.5	6.5	6	5	6.5	6	.5	6.5	6	.5	6.5	6.5	5 6	5.5	6.0	6.	0	6.0	6.0) 6	6.0	6.0	6.0	6.	0	6.0	6.0	6.0	6.0	0 6	5.0	6.0	6.0	6.0	6.0) 6.	0 (6.0	6.0	6.0	6.0	6.	0 6	.0 (6.0	6.0
28		7.	5 7	.5	7.0	7.0	7.	0 7	7.0	7.0	7.	.0	6.5	6	.5	6.5	6	.5	6.5	6.5	5 6	5.5	6.5	6.	5	6.5	6.5	i (6.5	6.5	6.5	6.	5	6.5	6.5	6.5	6.5	5 6	S.O	6.0	6.0	6.0	6.0) 6.	0 (6.0	6.0	6.0	6.0	6.	0 6	.0 (6.0
29		8.	0 7	.5	7.5	7.5	7.	57	7.5	7.5	i 7.	.5	7.5	7	.0	7.0	7	.0	7.0	7.0) 7	.0	7.0	7.	0	7.0	7.0) 7	7.0	7.0	7.0	7.	.0	7.0	6.5	6.5	6.5	5 6	6.5	6.5	6.5	6.5	6.5	5 6.	5 (6.5	6.5	6.5	6.5	6.	5 6.	.5 (6.5	6.5
-30										8.0			8.0	8	3.0	8.0	8	3.0	8.0	8.0) 7	.5	7.5	7.	5	7.5	7.5	i 7		7.0	7.0	7.	.0	7.0	7.0	7.0	7.0	0 7	7.0	7.0	7.0	7.0	7.0) 7.	0 7	7.0	7.0	7.0	7.0	7.	0 7.	.0	7.0	6.5
31		9.	0 9	.0	9.0	9.0	9.	0 9	9.0	9.0	9	.0	8.5	8	1.5	8.0	8	3.0	8.0	8.0) 8	3.0	8.0	8.	0	7.5	7.5	i 7	7.5	7.5	7.5	7.	5	7.5	7.5	7.5	7.5	5 7	7.5	7.5	7.5	7.5	7.5	5 7.	5 7	7.5	7.5	7.5	7.5	7.	5 7.	.0	7.0	7.0
32											9.	.0	9.0	9	0.0	9.0	8	1.5	8.5	8.5	5 8	3.5	8.5	8.	5	8.5	8.5	i 8	3.5	8.5	8.5	8	5	8.5	8.5	8.0	8.0	2 8	3.0	8.0	8.0	8.0	8.0) 8.	0 8	8.0	8.0	7.5	7.5	7.	5 7.	.5	7.5	7.5
33							Γ	Т			10	0.0	9.5	9	.5	9.5	9	.5	9.5	9.0) 5	9.0	9.0	9.	0	9.0	9.0) 9	9.0	9.0	9.0	9	0	9.0	9.0	9.0	9.0	0 9	9.0	9.0	8.5	8.5	8.5	5 8.	5 8	8.5	8.5	8.5	8.5	i 8.	5 8	.5 /	8.5	8.5
34											10).5	10.5	5 1	0.5	10.5	5 1	0.0	10.0	10.	0 1	0.0	10.0	10	.0	10.0	10.	0 1	0.0	10.0	10.0	10	0.0	10.0	10.0	10.0	10.	0 1	0.0	9.5	9.5	9.0	9.0) 9.	0 5	9.0	9.0	9.0	9.0	9.	0 9	.0 /	9.0	9.0
35											11	1.5	11.5	5 1	1.5	11.5	5 1	1.5	11.5	11.	5 1	1.5	11.5	11	.5	11.5	11.	5 1	1.5	11.5	11.5	5 10	0.0	10.0	10.0	10.0	0 10.	0 1	0.0	10.0	10.0	10.0	10.	0 10	.0 1	0.0	10.0	10.0	10.	0 10.	0 10	0.0 1	10.0	10.0
36							Г							1	2.5	12.5	5 13	2.0	12.0	12.	0 1	2.0	12.0	12	.0	12.0	12.	0 1	2.0	12.0	12.0	12	2.0	12.0	11.0	11.0) 11.	0 1	1.0	11.0	11.0	11.0	11.	0 11	.0 1	1.0	11.0	11.0	11.	0 11.	0 11	1.0 1	11.0	11.0
37														1	4.5	14.5	5 1-	4.5	14.5	13.	0 1	3.0	13.0	13	.0	13.0	13.	0 1	3.0	13.0	13.0) 13	3.0	13.0	13.0	12.0) 12.	0 1	2.0	12.0	12.0	12.0	12.	0 12	.0 1	2.0	12.0	12.0	12.	0 12	0 12	2.0 1	12.0	12.0
-38														1	5.5	15.5	5 1:	5.5	15.5	15.	5 1	5.5	15.5	14	.0	14.0	14.	0 1	4.0	14.0	14.0	14	1.0	14.0	14.0	14.0) 14.	0 1	4.0	14.0	13.0	13.0	13.	0 13	.0 1	3.0	13.0	13.0	13.	0 13	0 13	3.0 1	13.0	13.0
39														1	6.5	16.5	5 1	6.5	16.5	16.	5 1	6.5	16.5	16	.5	15.5	15.	5 1	5.5	15.5	15.5	5 15	5.5	15.5	15.5	15.5	5 15.	5 1	5.5	15.5	14.5	14.5	14.	5 14	.5 1	4.5	14.5	14.5	14.	5 14	5 14	4.5 1	14.5	14.5

Table 1-7cBWR Fuel Qualification Table for Fuel with 0.25 kW per Assembly for the NUHOMS[®]-69BTH DSC

(Part 2 of 2)

(Minimum required years of cooling time after reactor core discharge)

BU										As	sse	mbl	y A	vei	age	e In	itial	En	ricl	hm	ent	(wt.	%	U-2	35)	- Bl	ank	Sha	ade	d Ar	ea C	Corre	spor	nds t	o "No	ot Ar	alyz	ed" [)oma	ain						
GWd/MTU	0.7	0.9	1.0	1.2	1.3	1.4	1.5	1.6	5 1.7	7 1	1.8	1.9	2.0	2.1	2.2	2.3	2.4	2.5	5 2	.6	2.7	2.8	2	9	3.0	3.1	3.2	2 3	.3	3.4	3.5	3.6	3.7	3.8	3.9	4.0	4.1	4.2	4.3	4.4	4.5	4.6	4.7	4.8	4.9	5.0
40																			17	7.0	17.0	17.	0 17	.0	17.0	17.0	17.	0 17	7.0	17.0	17.0	16.0	16.0	16.0	16.0	16.0	16.0	16.0	16.0	16.0	16.0	16.0	16.0	16.0	16.0	16.0
41																			17	7.5	17.5	17.	5 17	.5	17.5	17.5	17.0	0 17	7.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	0 17.0	17.0	17.0	17.0
42																			20																								0 19.0			17.5
43																			21																								20.0			20.0
44																			22																										21.5	
45																			24																										23.0	23.0
46																			25																								5 24.5			23.0
47																																													25.5	25.5
48																																											5 26.0			26.0
49																																													27.5	
50																																													29.0	
51																																													30.0	
52																																													31.5	
53																																											5 33.5			33.5
54																																													33.5	
55																																														
56																																													36.0	
57																																													38.0	
58																			- 39	9.5	39.5	39.	5 39	0.0																					38.0	
59																			41	1.0	41.0	41.	0 41	.0													41.0								41.0	
60																			41																										41.0	
61																																													42.0	
62																			43	3.5	43.5	43.	5 43	8.0	43.0	43.0	43.0	0 43	3.0	43.0	43.0	43.0	43.0	43.0	43.0	43.0	43.0	43.0	43.0	43.0	43.0	43.0	43.0	43.0	43.0	43.0

Tables

Table 1-7dBWR Fuel Qualification Table for Fuel with 0.30 kW per Assembly for the NUHOMS[®]-69BTH DSC

(Part 1 of 2)

BU	Assem	bly Average Initial	Enrichment (wt. % U-235) -	Blank Shaded Area Corresponds to "Not Analyzed" Domain
GWd/MTU	0.7 0.9 1.0 1.2 1.3 1.4 1.5 1.6 1.7 1.8	1.9 2.0 2.1 2.2	2.3 2.4 2.5 2.6 2.7 2.	.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0
10	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	3.0 3.0 3.0 3.0	3.0 3.0 3.0 3.0 3.0 3.	0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.
11	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0		3.0 3.0 3.0 3.0 3.0 3.	
12	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0		3.0 3.0 3.0 3.0 3.0 3.	0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.
13	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0		3.0 3.0 3.0 3.0 3.0 3.	0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.
14	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	3.0 3.0 3.0 3.0	3.0 3.0 3.0 3.0 3.0 3.	0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.
15	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0		3.0 3.0 3.0 3.0 3.0 3.	
16	3.5 3.5 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	3.0 3.0 3.0 3.0	3.0 3.0 3.0 3.0 3.0 3.	
17	3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5	3.5 3.0 3.0 3.0	3.0 3.0 3.0 3.0 3.0 3.	
18	3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5			5 3.5 3.5 3.5 3.6 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0
19	4.0 4.0 4.0 4.0 4.0 4.0 4.0 3.5 3.5		3.5 3.5 3.5 3.5 3.5 3.	
20	4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	4.0 4.0 4.0 4.0	4.0 4.0 4.0 4.0 3.5 3.	5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.
21	4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0		4.0 4.0 4.0 4.0 4.0 4.	.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4
22	4.5 4.5 4.5 4.5 4.5 4.0 4.0 4.0 4.0			.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4
23	4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5		4.5 4.0 4.0 4.0 4.0 4.	
24	5.0 5.0 5.0 5.0 5.0 5.0 4.5 4.5 4.5		4.5 4.5 4.5 4.5 4.5 4.	
25	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0			5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.
26	5.5 5.5 5.5 5.5 5.0 5.0 5.0 5.0 5.0 5.0		5.0 5.0 5.0 5.0 5.0 5.	0 5.0 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5
27	5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5		5.0 5.0 5.0 5.0 5.0 5.	0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.
28	6.0 6.0 5.5 5.5 5.5 5.5 5.5 5.5 5.5		5.5 5.5 5.5 5.5 5.5 5.	
29	6.5 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0		5.5 5.5 5.5 5.5 5.5 5.	
30	6.5 6.5 6.5 6.5 6.5 6.5 6.0 6.0 6.0	6.0 6.0 6.0 6.0	6.0 6.0 6.0 6.0 5.5 5.	
31	7.0 7.0 7.0 6.5 6.5 6.5 6.5 6.5 6.5	6.5 6.5 6.0 6.0	6.0 6.0 6.0 6.0 6.0 6.	
32	7.0 7.0		6.5 6.5 6.5 6.5 6.5 6.	
33		7.0 7.0 7.0 7.0		5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.
34		7.5 7.5 7.5 7.5		0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.
35	8.0 8.0		8.0 7.5 7.5 7.5 7.5 7.	
36		8.5 8.5 8.5 8.5	8.0 8.0 8.0 8.0 8.0 8.	0 8.0 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5
37		9.0 9.0 9.0 9.0	9.0 8.5 8.5 8.5 8.5 8.	5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.
38		10.0 9.5 9.5 9.5	9.5 9.0 9.0 9.0 9.0 9.	
39		10.5 10.5 10.5 10.0	10.0 10.0 10.0 10.0 10.0 10	0.0 10.0 10.0 10.0 10.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0

Table 1-7d BWR Fuel Qualification Table for Fuel with 0.30 kW per Assembly for the NUHOMS[®]-69BTH DSC

(Part 2 of 2)

(Minimum required years of cooling time after reactor core discharge)

BU	Assembly Average Initial Enr	icnm	ient (WT. 9	6 U-2	235)	- Bla	nĸ s	nade	ea Ar	ea c	;orre:	spon	as to	0 "NO	t An	aıyze	a" D	oma	in						
GWd/MTU	0.7 0.9 1.0 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5	2.6	2.7	2.8	2.9	3.0	3.1	3.2	3.3	3.4	3.5	3.6	3.7	3.8	3.9	4.0	4.1	4.2	4.3	4.4	4.5	4.6	4.7	4.8	4.9	5.0
40		10.5	10.5	10.5	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	9.5	9.5	9.5	9.5	9.5	9.5	9.5	9.0	9.0	9.0	9.0	9.0	9.0
41		11.5	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	10.5	10.5	10.5	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
42	1	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0
43		13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0
44		14.5	14.0	14.0	14.0	14.0	14.0	14.0	14.0			14.0		13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0
45		16.5				15.5		15.5	15.5								14.5		14.5	14.5	14.5	14.5	13.5	13.5	13.5	13.5
46		16.5	16.5	16.5	16.5	16.5	16.5	16.5	16.5	16.5	16.5	16.5	16.5	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0
47		19.0	18.0	18.0		_		18.0	18.0	18.0	_		17.0	17.0	17.0	17.0	17.0	17.0	17.0	16.0	16.0	16.0	16.0	16.0	16.0	16.0
48		19.5			19.5			18.5	18.5				18.5		18.5			17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5
49		21.5	20.5					20.5										19.5	18.5	18.5	18.5	18.5	18.5	18.5	18.5	18.5
50			21.5						21.0						21.0				20.0						20.0	
51																								21.5		
52			24.5																			22.0	22.0		22.0	
53																						23.0	23.0	23.0		
54		26.5			26.5			26.5									25.5							24.5		
55		29.0																						25.5		
56		30.0																						26.5		
57		30.0			30.0																			27.5		27.5
58		32.0																			_			28.5		28.5
59		33.0			32.0																	31.0		30.0	30.0	30.0
60		32.5	32.5																			31.0		31.0	31.0	31.0
61		35.0			34.0								34.0		34.0		32.5		32.5	32.5	32.5	32.5		32.5	32.5	32.5
62		24.5																				32.5		33.5		
02		34.3	34.3	34.3	34.3	34.3	34.3	34.3	34.3	34.3	34.3	34.3	34.3	34.3	34.3	34.3	34.3	34.3	34.3	33.3	33.3	33.3	33.3	33.3	33.3	33.3

Explanatory notes and limitations regarding the use of this table follow Table 1-7I.

Tables

Table 1-7eBWR Fuel Qualification Table for Fuel with 0.35 kW per Assembly for the NUHOMS[®]-69BTH DSC

(Part 1 of 2)

BU								4	Asse	emi	bly i	Ave	rage	e Ini	tial E	nric	hme	ent (wt. 9	6 U-	235) - B	lank	k Sh	ade	d Ar	ea C	orres	spon	ds to) "No	ot An	alyz	ed"	Don	nain							
GWd/MTU	0.7	0.9	1.0	1.2	1.3	1.4	1.5																					4 3.5										4.5	4.6	4.7	4.0	3 4.9	5.0
10	3.0	3.0	3.0	3.0	3.0	3.0		3.0																				0 3.0										3.0	3.0	3.0	0 3.0	0 3.0	3.0
15	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	0 3	.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	0 3.	0 3	0 3.	0 3	0 3.	0 3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
16	3.0																											0 3.0														0 3.0	3.0
17		3.0	3.0	3.0	3.0	3.0	3.0	3.0	0 3	.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	0 3.	0 3.	0 3.	.0 3.	0 3.	0 3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	0 3.0	3.0
18																												0 3.0) 3.0	3.0
19		3.5	3.5	5 3.5	3.5	3.5	3.5	5 3.5	5 3	.5	3.5	3.5	3.5	3.5	3.5	3.0	3.0	3.0	3.0	3.0	3.0	3.0	0 3.	0 3	0 3.	.0 3.	.0 3.	0 3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0) 3.0	3.0
20																												5 3.5														0 3.0	3.0
21																												5 3.5														j 3.5	3.5
22																																										5 3.5	3.5
23																												5 3.5														5 3.5	3.5
24		4.5																										0 4.0										4.0				j 3.5	3.5
25																												0 4.0) 4.0	4.0
26																												0 4.0) 4.0	4.0
27																												5 4.5) 4.0	4.0
28																												5 4.5														i 4.5	4.5
29		5.5	5.5	5.0	5.0	5.0	5.0	5.0	0 5	.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	4.5	4.5	5 4.5	5 4.5	5 4.	5 4	5 4.	.5 4.	.5 4.	5 4.5	5 4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	5 4.5	5 4.3	j 4.5	4.5
30										.5	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	0 5.	0 5	0 5.	.0 5.	.0 5.	0 4.5	5 4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.	5 4.3	5 4.3	j 4.5	4.5
31		5.5	5.5	5.5	5.5	5.5		5 5.																				0 5.0) 5.0	4.5
32			<u> </u>			-	6.0	6.0																				5 5.0) 5.0	5.0
33		-	<u> </u>	-		_		_																																		0 5.0	
34																																										5 5.5	5.5
35									6	.5	6.5																	0 6.0														1 5.5	5.5
36																												0 6.0														0 6.0	
37												7.0	7.0																													0 6.0	
38												7.5	7.0	_	7.0		_	_	_	_	7.0																					5 6.5	
39												8.0	7.5	1.5	7.5	7.5	1.5	7.3	7.5	7.0	7.0	7.0	0 7.	0 7.	0 7.	.0 7.	0 7.	0 7.0	7.0	7.0	1.0	1.0	1.0	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	1 6.5	6.5

Table 1-7e BWR Fuel Qualification Table for Fuel with 0.35 kW per Assembly for the NUHOMS[®]-69BTH DSC

(Part 2 of 2)

(Minimum required years of cooling time after reactor core discharge)

BU										A	sse	m	bly	Ave	era	ige	Ini	tial	En	rich	nme	ent ((wt.	%ι	J-2	35)	- Bla	ank	Sha	ded	Are	ea C	orre	spor	ds t	o "No	ot An	alyz	ed" [Doma	ain						
GWd/MTU	0.7	0.9	1.0	1.2	1.3	1.4	1.5	1.	6 1.	7	1.8	1.9	2	0 2	1 2	2.2	2.3	2.4	2.5	2.	6	2.7	2.8	2.5	9	3.0	3.1	3.2	3.3	3 3	3.4	3.5	3.6	3.7	3.8	3.9	4.0	4.1	4.2	4.3	4.4	4.5	4.6	4.7	4.8	4.9	5.0
40																				7.	5	7.5	7.5	7.3	5	7.5	7.5	7.5	7.5	5 7	7.5	7.5	7.5	7.5	7.5	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0
41																				8.	0	8.0	8.0	8.0	0	8.0	8.0	8.0	7.5	5 7	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5
42																				8.	5	8.5	8.5	8.	5 /	8.5	8.5	8.5	8.0	0 8	3.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5
43										Т					Т					9.	0	9.0	9.0	9.0	5	9.0	8.5	8.5	8.5	58	3.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.0	8.0	8.0	8.0	8.0	8.0	8.0
44																				9.	5	9.5											9.0							9.0		8.5	8.5	8.5	8.5	8.5	8.5
45																				10	.5	10.5											10.0									9.0		9.0	9.0	9.0	9.0
46																				11	.0	11.0	10.5	10.	5 1	10.5	10.5	10.5	5 10.	5 10	0.5	10.5	10.5	10.5	10.5	10.0	10.0	10.0	10.0	10.0	9.5	9.5	9.5	9.5	9.5	9.5	9.5
47								Γ		Т					Т					12	.0	11.5	11.5	11.	5 1	11.0	11.0	11.0) 11.	0 1	1.0	11.0	11.0	11.0	11.0	10.5	10.5	10.5	10.5	10.5	10.5	10.5	i 10.0	10.0	10.0	10.0	10.0
48																				12	.5	12.5	12.5	12.	5 1	12.5	12.5	12.0) 11.	5 1	1.5	11.5	11.5	11.5	11.5	11.5	11.5	11.5	11.5	11.5	11.5	11.5	11.5	11.0	10.5	10.5	10.5
49																				13		13.0																								11.5	
50																				14																										12.0	12.0
51																				15																								13.0			13.0
52																				16	.5	16.0																								14.0	14.0
53																				17		17.0																						15.0			15.0
54																				18	.5	18.5	18.0	18.	0 1	18.0	18.0	18.0) 18.	0 1	8.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	16.0	16.0	16.0	16.0	16.0	16.0
55																				20	.5	20.5	19.0	19.	0 1	19.0	19.0	19.0) 19.	0 1	9.0	18.0	18.0	18.0	18.0	18.0	18.0	18.0	18.0	18.0	18.0	17.0	17.0	17.0	17.0	17.0	17.0
56										Т					Т					21	.5	21.5																								18.0	18.0
57																				22		22.5																						19.0			19.0
58																				22																										20.0	
59																				23	.5	23.5	23.5	23.	.5 2	23.5	23.5	23.5	5 23.	5 23	3.5	23.5	23.5	22.0	22.0	22.0	22.0	22.0	22.0	22.0	22.0	22.0	22.0	21.0	21.0	21.0	21.0
60																				24																								22.0			22.0
61																																														23.0	
62																				27	.5	27.5	27.5	27.	5 2	26.0	26.0	26.0	26.	0 2	6.0	26.0	26.0	26.0	25.0	25.0	25.0	25.0	25.0	25.0	25.0	25.0	25.0	25.0	25.0	24.0	24.0

Table 1-7fBWR Fuel Qualification Table for Fuel with 0.393 kW per Assembly for the NUHOMS[®]-69BTH DSC

(Part 1 of 2)

BU									4	455	sen	bly	Av	era	qe	Init	ial E	nri	:hm	nen	nt (w	vt. %	6 U-	-23	5) -	Bla	ank	Sha	ide	d A	rea	Col	rres	pon	ds t	o "N	lot A	\na	lyze	ed"	Doi	naii	n					—			
GWd/MTU	0.7	0.9	1.0	0 1.3	2 1.	3	1.4	1.5	1.	6	1.7	1.8	1.	9 2	0	2.1	2.2	2.3	3 2	4	2.5	2.6	27	7 2	.8	2.9	3.0	3.1	3.	2 3	3.3	3.4	3.5	3.6	3.7	7 3.	8 3.	9 4	4.0	4.1	4.2	2 4.	3 4	1.4	4.5	4.6	4.7	43	8 4	.9	5.0
10	3.0	3.0	3.0	3.0	0 3	0	3.0	3.0	3.	0	3.0	3.0	3.0	0 3	.0	3.0	3.0	3.0) 3.	0	3.0	3.0	3.0) 3	.0	3.0	3.0	3.0) 3.	0 3	3.0	3.0	3.0	3.0	3.0	0 3.0	0 3.	0 3	3.0	3.0	3.0) 3.	0 3	3.0	3.0	3.0	3.0	0 3.0	0 3	0	3.0
11	3.0	3.0	3.0	3.0	0 3.	0	3.0	3.0	3.	0	3.0											3.0												3.0														0 3.0			3.0
12	3.0	3.0	3.0	3.0	0 3.	0	3.0	3.0	3.	0	3.0	3.0	3.0	0 3	.0	3.0	3.0	3.0) 3.	0	3.0	3.0	3.0	3	.0	3.0	3.0	3.0) 3.	0 3	3.0	3.0	3.0	3.0	3.0	0 3.0	0 3.	0	3.0	3.0	3.0) 3.	0 3	3.0	3.0	3.0	3.0	3.0	0 3	0	3.0
13		3.0	3.0	3.0	0 3.	0		3.0			3.0			0 3			3.0				3.0) 3				3.0						3.0						3.0			0 3	3.0	3.0	3.0	3.0	0 3.0	0 3	0	3.0
14		3.0	3.0	3.0	0 3.	0	3.0	3.0	3.	0	3.0	3.0	3.0	0 3	.0	3.0	3.0	3.0) 3.	0	3.0	3.0	3.0	3	.0	3.0	3.0	3.0) 3.	0 3	3.0	3.0	3.0	3.0	3.0	0 3.0	0 3.	0	3.0	3.0	3.0) 3.	0 3	3.0	3.0	3.0	3.0	0 3.0	0 3	0	3.0
15		3.0	3.0	3.0	0 3	0	3.0	3.0	3.	0	3.0	3.0	3.	0 3	.0	3.0	3.0	3.0) 3.	0	3.0	3.0	3.0) 3	.0	3.0	3.0	3.0) 3.	0 3	3.0	3.0	3.0	3.0	3.0	3.0	0 3.	0	3.0	3.0	3.0) 3.	0 3	3.0	3.0	3.0	3.0	3.0	0 3	0	3.0
16																																		3.0									0 3	3.0	3.0	3.0	3.0	0 3.0	0 3	0	3.0
17		3.0	3.0	3.0	0 3.	0	3.0	3.0	3.	0	3.0	3.0	3.0	0 3	.0	3.0	3.0	3.0) 3.	0	3.0	3.0	3.0	3	.0	3.0	3.0	3.0) 3.	0 3	3.0	3.0	3.0	3.0	3.0	0 3.0	0 3.	0	3.0	3.0	3.0) 3.	0 3	3.0	3.0	3.0	3.0	3.0	0 3	0	3.0
18																																												3.0	3.0	3.0	3.0	3.0	0 3	0	3.0
19		3.0	3.0	3.0	0 3.	0	3.0	3.0	3.	0	3.0	3.0	3.0	0 3	.0	3.0	3.0	3.0) 3.	0	3.0	3.0	3.0) 3	.0	3.0	3.0	3.0) 3.	0 3	3.0	3.0	3.0	3.0	3.0	0 3.0	0 3.	0	3.0	3.0	3.0) 3.	0 3	3.0	3.0	3.0	3.0	3.0	0 3	0	3.0
20		3.5	3.5	5 3.0	0 3		3.0	3.0			3.0							3.0										3.0						3.0							3.0		_	_	3.0	3.0	_	_	_	0	3.0
21		3.5	3.5	5 3.	5 3.	5	3.5	3.5	3.	5	3.5	3.5	3.0	0 3	.0	3.0	3.0	3.0) 3.	0	3.0	3.0	3.0) 3	.0	3.0	3.0	3.0) 3.	0 3	3.0	3.0	3.0	3.0	3.0	0 3.0	0 3.	0	3.0	3.0	3.0) 3.	0 3	3.0	3.0	3.0	3.0	3.0	0 3	0	3.0
22		3.5	3.5	5 3.5	5 3.	5	3.5	3.5	3.	5	3.5	3.5	3.	5 3	.5	3.5	3.5	3.	5 3.	5	3.5	3.5	3.0	3	.0	3.0	3.0	3.0) 3.	0 3	3.0	3.0	3.0	3.0	3.0	0 3.0	0 3.	0	3.0	3.0	3.0) 3.	0 3	3.0	3.0	3.0	3.0	0 3.0	0 3	0	3.0
23		4.0	4.0) 4.() 4.	0	3.5	3.5	3.	5	3.5	3.5	3.	5 3	.5	3.5	3.5	3.	5 3.	5	3.5	3.5	3.5	5 3	.5	3.5	3.5	3.5	5 3.	5 3	3.5	3.5	3.5	3.5	3.	5 3.	5 3.	0	3.0	3.0	3.0) 3.	0 3	3.0	3.0	3.0	3.0	3.0	0 3	0	3.0
24		4.0	4.0) 4.() 4.	0	4.0	4.0	4.	0	4.0	4.0	4.	0 3	.5	3.5	3.5	3.	5 3.	.5	3.5	3.5	3.5	5 3	.5	3.5	3.5	3.5	5 3.	5 3	3.5	3.5	3.5	3.5	3.	5 3.	5 3.	5	3.5	3.5	3.5	5 3.	5 3	3.5	3.5	3.5	i 3.5	5 3.5	5 3	5	3.5
25		4.0	4.0) 4.() 4.	0	4.0	4.0	4.	0	4.0	4.0	4.	0 4	.0	4.0	4.0	4.() 4.	0	4.0	4.0	4.0) 4	.0	3.5	3.5	3.5	5 3.	5 3	3.5	3.5	3.5	3.5	3.	5 3.	5 3.	5	3.5	3.5	3.5	5 3.	5 3	3.5	3.5	3.5	i 3.5	5 3.5	5 3	5	3.5
26		4.0	4.0) 4.() 4.	0	4.0	4.0	4.	0	4.0	4.0	4.	0 4	.0	4.0	4.0	4.() 4.	.0	4.0	4.0	4.0) 4	.0	4.0	4.0	4.0) 4.	0 4	1.0	4.0	4.0	4.0	4.(0 4.0	0 4.	0	3.5	3.5	3.5	5 3.	5 3	3.5	3.5	3.5	i 3.5	5 3.5	5 3.	5	3.5
27		4.5	4.5	5 4.3	5 4.	5		4.0			4.0											4.0												4.0						4.0					4.0				0 4	0	4.0
28		4.5	4.5	5 4.	5 4	5	4.5	4.5	4.	5	4.5	4.5	4.	5 4	.5	4.0	4.0	4.() 4.	0	4.0	4.0	4.0) 4	.0	4.0	4.0	4.0) 4.	0 4	1.0	4.0	4.0	4.0	4.(0 4.0	0 4.	.0 4	4.0	4.0	4.0) 4.	0 4	4.0	4.0	4.0	4.0) 4.(0 4	.0	4.0
29		5.0	5.0) 4.	5 4.	5	4.5	4.5	4.	5	4.5	4.5	4.	5 4	.5	4.5	4.5	4.	5 4.	.5	4.5	4.5	4.5	5 4	.0	4.0	4.0	4.0) 4.	0 4	4.0	4.0	4.0	4.0	4.(0 4.0	0 4.	.0 4	4.0	4.0	4.0) 4.	0 4	4.0	4.0	4.0	4.0) 4.(0 4	.0	4.0
30		5.0	5.0) 5.() 5.	0	5.0	5.0	5.	0	5.0	4.5	4.	5 4	.5	4.5	4.5	4.	5 4.	5	4.5	4.5	4.5	5 4	.5	4.5	4.5	4.5	5 4.	5 4	1.5	4.5	4.5	4.5	4.	5 4.3	5 4.	.0	4.0	4.0	4.0) 4.	0 4	4.0	4.0	4.0	4.0) 4.(0 4	.0	4.0
31		5.0	5.0	5.0) 5	0	5.0																											4.5													4.5	5 4.3	5 4	.5	4.5
32								5.0	5.																									4.5														5 4.3			4.5
33																																																5 4.3			4.5
34											5.5	5.5	5.:	5 5	.5	5.5	5.5	5.0) 5.	.0	5.0	5.0																		5.0	5.0) 5.	0 5	5.0	5.0	5.0	5.0	5.0	0 4	.5	4.5
35										(6.0	5.5	5.:	5 5		5.5					5.5							5.0						5.0						5.0			0 5	5.0	5.0	5.0	5.0) 5.(0 5.	0	5.0
36																																		5.5											5.0			5.0	-		5.0
37													6.	0 6	.0	6.0	6.0	6.0) 6.	0	6.0	6.0	6.0	0 6	.0	6.0	6.0	5.5	5 5.	5 5	5.5	5.5	5.5	5.5	5.	5 5.	5 5.	5 3	5.5	5.5	5.5	5 5.	5 5	5.5	5.5	5.5	5.5	5 5.5	5 5	5	5.5
38													6.	56	5	6.0	6.0	6.0) 6.	0	6.0	6.0	6.0	0 6	.0	6.0	6.0	6.0) 6.	0 6	6.0	6.0	6.0	6.0	6.0	0 6.0	0 6.	.0 (6.0	5.5	5.5	5 5.	5 5	5.5	5.5	5.5	5.5	5 5.5	5 5	5	5.5
39													6.	56	5	6.5	6.5	6.:	5 6.	5	6.5	6.5	6.0	0 6	.0	6.0	6.0	6.0) 6.	0 6	6.0	6.0	6.0	6.0	6.0	0 6.0	0 6.	0 (6.0	6.0	6.0) 6.	0 6	6.0	6.0	6.0	6.0	0 6.0	0 6	0	6.0

Table 1-7f BWR Fuel Qualification Table for Fuel with 0.393 kW per Assembly for the NUHOMS[®]-69BTH DSC

(Part 2 of 2)

(Minimum required years of cooling time after reactor core discharge)

BU										A	sse	emt	bly	Ave	era	ge	Init	tial	Eni	rich	me	ent ((wt.	%ι	J-2	35)	- Bla	ank S	Shad	led A	rea	Corr	esp	onds	s to	"No	t An	alyze	d" D)oma	in						
GWd/MTU	0.7	0.9	1.0	1.2	1.3	1.4	1.5	1.	6 1	1.7	1.8	1.9	2.0	0 2.	1 2	2 2	2.3	2.4	2.5	2.	6	2.7	2.8	2.	9	3.0	3.1	3.2	3.3	3.4	3.5	5 3.6	3.	7 3	3.8	3.9	4.0	4.1	4.2	4.3	4.4	4.5	4.6	4.7	4.8	4.9	5.0
40								Г												6.	5	6.5	6.5	6.	5	6.5	6.5	6.5	6.5	6.5	6.0	0 6.0	6.	0 6	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
41																				7.	0	7.0	7.0	7.	0	7.0	6.5	6.5	6.5	6.5	6.5	5 6.5		5 6	5.5	6.5	6.5	6.5	6.5	6.5	6.0	6.0	6.0	6.0	6.0	6.0	6.0
42																				7.	0	7.0	7.0	7.	0	7.0	7.0	7.0	7.0	7.0	7.0	0 7.0	7.	0 7		6.5		6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5
43								Г												7.	5	7.5	7.5	7.	5	7.5	7.5	7.5	7.0	7.0	7.0	0 7.0	7.	0 7	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	6.5	6.5	6.5	6.5	6.5
44																				8.	0	8.0	8.0	7.	5	7.5	7.5	7.5	7.5	7.5	7.5	5 7.5	7.	5 7	7.5	7.5			7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0
45								Γ												8.	5	8.5	8.0	8.	0	8.0	8.0	8.0	8.0	8.0	7.5	5 7.5	7.	5 7	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.0
46																				8.	5	8.5	8.5	8.	5	8.5	8.5	8.5	8.5	8.5	8.0	0 8.0	8.	0 8	3.0	8.0	8.0	8.0	8.0	8.0	8.0	7.5	7.5	7.5	7.5	7.5	7.5
47								Γ												9.	0	9.0	9.0	9.	0	9.0	9.0	9.0	9.0	8.5	8.5	5 8.5	8.	58	3.5	8.5	8.5	8.5	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0
48								\top												10	.0	9.5	9.5	9.	5	9.5	9.5	9.5	9.0	9.0	9.0	9.0	9.	0 9	9.0	9.0	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5
49																				10	.5	10.5	10.0	10	.0	10.0	10.0	9.5	9.5	9.5	9.5	5 9.5			9.5	9.5	9.5	9.5	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0
50								Г												11	.0	11.0	11.0	10	.5	10.5	10.5	10.5	10.5	5 10.5	5 10.	0 10.	0 10	.0 10	0.0	10.0	10.0	10.0	9.5	9.5	9.5	9.5	9.5	9.5	9.5	9.0	9.0
51																				11	.5	11.5	11.5	11	.5	11.5	11.0	11.0	11.0) 11.0) 11.	0 10.	5 10	.5 10	0.5	10.5	10.5	10.0	10.0	10.0	10.0	10.0	10.0	0 10.0	10.0	9.5	9.5
52																				12	.5	12.5	12.0	12	.0	12.0	12.0	12.0	11.	5 11.5	5 11.	5 11.	0 11.	.0 11	1.0	11.0	11.0	11.0	11.0	11.0	11.0	10.5	10.5	5 10.5	10.5	10.5	10.5
53								Г												13	.5	13.0	13.0	13	.0	13.0	12.5	12.5	12.5	5 12.0) 12.	0 12.	0 12	.0 12	2.0	11.5	11.5	11.5	11.5	11.5	11.5	11.5	11.0	0 11.0	11.0	11.0	11.0
54																				14	.0	14.0	14.0	13	.5	13.5	13.5	13.0	13.0	13.0) 13.	0 13.	0 13	.0 12	2.5	12.5	12.5	12.5	12.0	12.0	12.0	12.0	12.0	0 11.5	11.5	11.5	11.5
55																				15	.0	15.0	14.5	14	.5	14.5	14.0	14.0	14.0) 14.0) 13.	5 13.	5 13	5 13	3.5	13.0	13.0	13.0	13.0	13.0	13.0	12.5	12.5	5 12.5	12.5	12.5	12.0
56								Γ												16	.0	16.0	15.5	15	.5	15.5	15.0	15.0	15.0	15.0) 15.	0 14.	5 14	5 14	4.0	14.0	14.0	14.0	13.5	13.5	13.5	13.5	13.0	0 13.0	13.0	13.0	13.0
57								\square												17	.0	16.5	16.5	16	.5	16.0	16.0	16.0	15.5	5 15.5	5 15.	5 15.	5 15	5 15	5.0	15.0	14.5	14.5	14.5	14.5	14.5	14.5	14.0	0 14.0	14.0	14.0	14.0
58																				18	.0	17.5	17.5	17	.5	17.5	17.0	17.0	16.5	16.5	5 16.	5 16.	5 16	5 16	6.0	15.5	15.5	15.5	15.5	15.5	15.5	15.5	15.5	5 15.0	15.0	14.5	14.5
59								Γ												19	.5	18.5	18.5	18	.0	18.0	18.0	17.5	17.5	5 17.5	5 17.	5 17.	0 17.	.0 17	7.0	17.0	16.5	16.5	16.5	16.0	16.0	16.0	16.0	16.0	16.0	15.5	15.5
60																				20	.0	19.5	19.5	19	.5	19.0	19.0	18.5	18.	5 18.5	5 18.	5 18.	5 18	5 18	8.0	17.5	17.5	17.5	17.0	17.0	17.0	17.0	17.0	16.5	16.5	16.5	16.5
61																				20	.5	20.5	20.5	20	.5	20.5	20.0	19.5	19.5	5 19.5	5 19.	0 19.	0 19	.0 18	8.5	18.5	18.5	18.5	18.5	18.0	18.0	18.0	18.0	17.5	17.5	17.5	17.5
62																																														18.5	

Table 1-7gBWR Fuel Qualification Table for Fuel with 0.40 kW per Assembly for the NUHOMS[®]-69BTH DSC

(Part 1 of 2)

BU							A	sse	emb	lv A	ver	age	Init	ial	Enn	chr	ner	nt (v	vt. 9	6 U	1-23	35)	- Bl	ank	Sł	nad	ed /	Area	a Co	orre	spol	nds	to "l	Vot	Ana	alyz	ed"	' Do	me	ain								
GWd/MTU	0.7 0.9	1.0	1.2	1.3	3 1.4	1 1.5																																		4.3	4.4	4.5	4.	6 4.	74	.8	4.9	5.0
10	3.0 3.0	3.0	3.0	3.0	3.0	3.0																																							03	.0	3.0	3.0
11			3.0																																													
12	3.0 3.0																																															
13	3.0	3.0	3.0	3.0	3.0	3.0	03.	03	3.0	3.0	3.0	3.0	3.0	0 3.	03	.0	3.0	3.0) 3.	03	.0	3.0	3.0) 3.	03	3.0	3.0	3.0	3.0	03.	0 3.	0 3.	03	.0 3	3.0	3.0	3.0) 3.	0 3	3.0	3.0	3.0	3.	0 3.	03	.0	3.0	3.0
14	3.0	3.0	3.0	3.0	3.0	3.0	03.	03	3.0	3.0	3.0	3.0	3.0	0 3.	03	.0	3.0	3.0) 3.	03	.0	3.0	3.0	03.	03	3.0	3.0	3.0	3.0	03.	0 3.	0 3.	03	.0 3	3.0	3.0	3.0	3.	03	3.0	3.0	3.0	3.	0 3.	03	.0	3.0	3.0
15	3.0	3.0	3.0	3.0	3.0	3.0	03.	03	3.0	3.0	3.0	3.0	3.0	0 3.	03	.0	3.0	3.0) 3.	03	.0	3.0	3.0	03.	03	3.0	3.0	3.0	3.0	03.	0 3.	0 3.	03	.0 3	3.0	3.0	3.0	3.	03	3.0	3.0	3.0	3.	0 3.	03	.0	3.0	3.0
16	3.0	3.0	3.0	3.0	3.0	3.0	03.	03	3.0	3.0	3.0	3.0	3.0	0 3.	03	.0	3.0	3.0) 3.	03	.0	3.0	3.0	0 3.	03	3.0	3.0	3.0	3.0	03.	0 3.	0 3.	03	.0 3	3.0	3.0	3.0	3.	03	3.0	3.0	3.0	3.	0 3.	03	.0	3.0	3.0
17	3.0	3.0	3.0	3.0	3.0	3.0																																										3.0
18			3.0																																													3.0
19			3.0																																													
20																																																3.0
21				3.5	5 3.5	5 3.5																																					3.	0 3.	03	.0	3.0	3.0
22		j <u>3.5</u>			5 3.5																																			3.0					03			3.0
23																																																3.0
24	4.0	4.0	4.0	3.5	5 3.5	5 3.5	53.	53	3.5	3.5	3.5	3.5	3.	5 3.	53	.5	3.5	3.5	53.	53	.5	3.5	3.5	53.	53	3.5	3.5	3.5	3.5	53.	53.	5 3.	53	53	3.5	3.5	3.5	5 3.	53	3.5	3.5	3.5	3.	5 3.	53	.5	3.5	3.5
25																																																3.5
26) 4.0																																													3.5
27																																																3.5
28	4.5	4.5	5 4.5	4.5	5 4.5	5 4.3	5 4.	5 4	4.5	4.0	4.0	4.0	4.	0 4.	04	.0	4.0	4.() 4.	04	.0	4.0	4.() 4.	0 4	1.0	4.0	4.0	4.0	0 4.	0 4.	0 4.	04	.0 4	1.0	4.0	4.0) 4.	04	4.0	4.0	4.0	4.	0 4.	04	.0	4.0	4.0
29																																																4.0
30			5.0																																													
31	5.0	5.0	5.0	5.0	5.0																																											
32						5.0	0 5.																																								4.5	4.5
33																																								4.5							4.5	4.5
34																																								5.0								
35								5	5.5	5.5																																						5.0
36																																																5.0
37													_	_		_		_	_	_	_	5.5																										5.5
38														_	_	_		-	_	_	_			_	_	_				_	_	_	_	_	_			_	_	_	_			_	_	_	5.5	5.5
39											6.5	6.5	6.	5 6	5 6	.5	6.0	6.0	6.	0 6	.0	6.0	6.0	0 6.	0 6	6. 0	6.0	6.0	6.0	0 6.	0 6.	0 6.	06	06	6.0	6.0	6.0	0 6.	06	6.0	5.0	6.0	5.	5 5.	5 5	.5	5.5	5.5

Table 1-7g BWR Fuel Qualification Table for Fuel with 0.40 kW per Assembly for the NUHOMS[®]-69BTH DSC

(Part 2 of 2)

(Minimum required years of cooling time after reactor core discharge)

BU										As	ser	nbl	y A	ver	age	e Ini	itial	En	rich	me	nt (wt. 9	% U-	235) - E	Blan	k S	hade	d Ar	rea (orre	spon	ds to	o "No	t An	alyze	d" D	oma	in						
GWd/MTU	0.7	0.9	1.0	1.2	1.3	1.4	1.5	1.0	1.1	7 1	.8 1	.9	2.0	2.1	2.2	2.3	2.4	2.5	2.	6	2.7	2.8	2.9	3.0) 3.	1 3	3.2	3.3	3.4	3.5	3.6	3.7	3.8	3.9	4.0	4.1	4.2	4.3	4.4	4.5	4.6	4.7	4.8	4.9	5.0
40										Т									6.	5	6.5	6.5	6.5	6.5	i 6.	0 (6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
41																			7.	0	6.5	6.5	6.5	6.5	i 6.	5 (6.5		6.5	6.5	6.5	6.5	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0		6.0	6.0	6.0
42										Т									7.	0	7.0	7.0	7.0	7.0) 7.	0 7	7.0	7.0	7.0	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.0
43										Т									7.	5	7.5	7.0	7.0	7.0) 7.	0 7	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	6.5	6.5	6.5	6.5	6.5	6.5	6.5
44										\top									8.	0	7.5	7.5	7.5	7.5	i 7.	5 7	7.5	7.5	7.5	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0
45																			8.	0	8.0	8.0	8.0	8.0	8.	0 8	8.0	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.0	7.0	7.0	7.0	7.0	7.0	7.0
46																			8.	5	8.5	8.5	8.5	8.0	8.	0 8	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	7.5	7.5	7.5	7.5	7.5	7.5
47										Т									9.	0	9.0	9.0	9.0	8.5	i 8.	5 8	8.5	8.5	8.5	8.5	8.5	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	7.5	7.5	7.5
48																			9.	5	9.5	9.0	9.0	9.0) 9.	0 5	9.0	9.0	9.0	9.0	9.0	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.0	8.0	8.0
49																			10	.0 1	10.0	10.0	9.5	9.5	i 9.	5 5	9.5	9.5	9.5	9.5	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	8.5	8.5	8.5	8.5	8.5
50										Т									10	.5 1	10.5	10.5	10.5	10.0	0 10	0.0 1	0.0	10.0	10.0	10.0	10.0	9.5	9.5	9.5	9.5	9.5	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0
51																			11	.5 1																10.0								9.5	
52																			12	.5 1	2.5	12.5	11.5	11.	5 11	.5 1	1.0	11.0	11.0	11.0	11.0	11.0	10.5	10.5	10.5	10.5	10.5	10.5	10.5	10.0	10.0	10.0	10.0	10.0	10.0
53										Т									12	.5 1	2.5	12.5	12.5	12.0	0 12	2.0 1	2.0	12.0	12.0	12.0	12.0	12.0	12.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0
54																			13	.5 1	13.5	13.5	13.0	13.	0 13	1.0	3.0	13.0	13.0	12.5	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	11.5	11.5	11.5	11.0	11.0	11.0
55																																				12.5								12.0	
56										Т									15	.5 1	15.5	15.5	15.5	14.	5 14	.5 1	4.5	14.5	14.5	14.5	14.5	14.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5	12.5	12.5	12.5
57										\top									16	0 1	6.0	16.0	16.0	15.	5 15	i.5 1	5.5	15.5	15.5	15.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	13.5	13.5	13.0	13.0
58																			17	.0 1	17.0	17.0	16.5	16.	5 16	.5 1	6.5	16.5	16.5	16.5	16.5	15.5	15.5	15.0	15.0	15.0	15.0	15.0	15.0	15.0	14.5	14.5	14.0	14.0	14.0
59																			18	.0 1	18.0	18.0	17.5	17.	5 17	.0 1	7.0	17.0	17.0	17.0	17.0	17.0	16.0	16.0	16.0	16.0	16.0	16.0	16.0	16.0	15.0	15.0	15.0	15.0	15.0
60																			19	.0 1	19.0	19.0	18.5	18.	5 18	1.0	8.0	18.0	18.0	18.0	18.0	18.0	18.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	16.0	16.0	16.0
61																			20	0 2	20.0	20.0	20.0	20.	0 19	.0 1	9.0	19.0	19.0	19.0	19.0	19.0	18.0	18.0	18.0	18.0	18.0	18.0	18.0	18.0	18.0	17.0	17.0	17.0	17.0
62																																												17.5	

(Part 1 of 2)

	-															-	_						_																-		_							-	-																_
BU																																													s to																				
GWd/MTU								3	1.4	4	1.5																																		3.7															.7	4.8	8	4.9	1 5	i.0
10	З.	0	3.0	З.	0	3.0	3	0	3.0)	3.0	3.	0	3.0	0	3.0	3	.0	3.0) :	3.0	З.	0	3.0	3.	.0	3.0) 3	3.0	3.	0	3.0	3.	0	3.0	3.	0	3.0	3.0	0 3	3.0	3.0	3	.0	3.0	3.0) 3	8.0	3.0	3.	0	3.0	З.	0	3.0	3.	0	3.0	3	.0	3.0	0	3.0	13	.0
11	З.	0	3.0	З.	0	3.0	3	0	3.0)	3.0	3.	0	3.0	0	3.0	3	.0	3.0) :	3.0	З.	0	3.0	3	.0	3.0) 3	3.0	3.	0	3.0	3.	0	3.0	З.	0	3.0	3.0	0 3	3.0	3.0) 3.	.0	3.0	3.0) 3	<u>,0</u>	3.0	3.	0	3.0	З.	0	3.0	З.	0	3.0) 3	.0	3.0	0	3.0) 3	.0
12	З.	0	3.0	З.	0	3.0	3	0	3.0	2	3.0	3.	0	3.0	0	3.0	3	.0	3.0):	3.0	З.	0	3.0	3	.0	3.0) 3	3.0	3.	0	3.0	3.	0	3.0	З.	0	3.0	3.	0 3	3.0	3.0) 3.	.0	3.0	3.0) 3	<u>0</u>	3.0	3.	0	3.0	3.	0	3.0	З.	0	3.0	3	.0	3.0	0	3.0	13	.0
13			3.0	З.	0	3.0	3	0	3.0)	3.0	3.	0	3.0	0	3.0	3	.0	3.0) :	3.0	З.	0	3.0	3	0	3.0) 3	3.0	3.	0	3.0	3.	0	3.0	3.	0	3.0	3.0	0 3	3.0	3.0) 3.	0	3.0	3.0) 3	8.0	3.0	3.	0	3.0	3.	0	3.0	3.	0	3.0	3	.0	3.0	0	3.0	13	.0
14			3.0	З.	0	3.0	3	0	3.0)	3.0	3.	0	3.0	0	3.0	3	.0	3.0) :	3.0	З.	0	3.0	3	.0	3.0) 3	3.0	3.	0	3.0	3.	0	3.0	З.	0	3.0	3.	0 3	3.0	3.0) 3.	.0	3.0	3.0) 3	8.0	3.0	3.	0	3.0	3.	0	3.0	З.	0	3.0	3	.0	3.0	0	3.0	13	.0
15			3.0	З.	0	3.0	3	0	3.0)	3.0	3.	0	3.0	0	3.0	3	.0	3.0) :	3.0	З.	0	3.0	3	0	3.0) 3	3.0	3.	0	3.0	3.	0	3.0	3.	0	3.0	3.0	0 3	3.0	3.0) 3.	0	3.0	3.0) 3	8.0	3.0	3.	0	3.0	3.	0	3.0	3.	0	3.0	3	.0	3.0	0	3.0	13	.0
16			3.0	З.	0	3.0	3	0	3.0)	3.0	3.	.0	3.0	0	3.0	3	.0	3.0) :	3.0	З.	0	3.0	3	.0	3.0) 3	3.0	3.	0	3.0	3.	0	3.0	3.	0	3.0	3.	0 3	3.0	3.0) 3.	0	3.0	3.0) 3	8.0	3.0	3.	0	3.0	3.	0	3.0	3.	0	3.0	3	.0	3.0	0	3.0) 3	.0
17			3.0	З.	0	3.0	3.	0	3.0	2	3.0	3.	0	3.0	0	3.0	3	.0	3.0) :	3.0	З.	0	3.0	3	.0	3.0) 3	3.0	3.	0	3.0	3.	0	3.0	3.	0	3.0	3.0	0 3	3.0	3.0) 3.	.0	3.0	3.0) 3	8.0	3.0	3.	0	3.0	3.	0	3.0	3.	0	3.0	3	.0	3.0	0	3.0	13	.0
18																																													3.0) 3	
19			3.0	З.	0	3.0	3	0	3.0	2	3.0	3.	0	3.0	0	3.0	3	.0	3.0) :	3.0	З.	0	3.0	3	.0	3.0) 3	3.0	3.	0	3.0	3.	0	3.0	З.	0	3.0	3.0	0 3	3.0	3.0) 3.	.0	3.0	3.0) 3	8.0	3.0	3.	0	3.0	3.	0	3.0	3.	0	3.0	3	.0	3.0	0	3.0	13	.0
20			3.0	З.	0	3.0	3	0	3.0	2	3.0	3.	0	3.0	0	3.0	3	.0	3.0) :	3.0	З.	0	3.0	3	0	3.0) 3	3.0	3.	0	3.0	3.	0	3.0	3.	0	3.0	3.0	0 3	3.0	3.0) 3.	.0	3.0	3.0	0 3	8.0	3.0	3.	0	3.0	3.	0	3.0	3.	0	3.0	3	.0	3.0	0	3.0	13	.0
21			3.0	З.	0	3.0	3	0	3.0	2	3.0	3.	0	3.0	0	3.0	3	.0	3.0) :	3.0	З.	0	3.0	3	0	3.0) 3	3.0	3.	0	3.0	3.	0	3.0	3.	0	3.0	3.0	0 3	3.0	3.0) 3.	.0	3.0	3.0	0 3	8.0	3.0	3.	0	3.0	3.	0	3.0	3.	0	3.0	3	.0	3.0	0	3.0	13	.0
22			3.5	З.	0	3.0	3	0	3.0	2	3.0	3.	0	3.0	0	3.0	3	.0	3.0) :	3.0	З.	0	3.0	3	.0	3.0) 3	3.0	3.	0	3.0	3.	0	3.0	3.	0	3.0	3.0	0 3	3.0	3.0) 3.	.0	3.0	3.0) 3	8.0	3.0	3.	0	3.0	3.	0	3.0	3.	0	3.0	3	.0	3.0	0	3.0	13	.0
23																																													3.0																				
24																																													3.0														3) 3	
25			3.5	З.	5	3.5	3	5	3.5	5	3.5	3.	5	3.5	5	3.5	3	.5	3.5	5 :	3.5	3.	5	3.5	3	.5	3.5	i 3	3.5	3.	5	3.5	3.	5	3.5	3.	5	3.0	3.0	0 3	3.0	3.0) 3.	0	3.0	3.0) 3	8.0	3.0	3.	0	3.0	3.	0	3.0	3.	0	3.0	3	.0	3.0	0	3.0	13	.0
26		4	4.0	4	0	3.5	3	5	3.5	5	3.5	3.	5	3.5	5	3.5	3	.5	3.5	5 :	3.5	3.	5	3.5	3	.5	3.5	i 3	3.5	3.	5	3.5	3.	5	3.5	3.	5	3.5	3.	5 3	3.5	3.5	5 3.	.5	3.5	3.5	53	.5	3.5	3.	5	3.5	3.	0	3.0	3.			3		3.0		3.0	13	.0
27		4	4.0	4.	0	4.0	4	0	4.0	2	4.0	4	0	4.0	0	3.5	3	.5	3.5	5 :	3.5	3.	5	3.5	3	.5	3.5	i 3	3.5	3.	5	3.5	3.	5	3.5	3.	5	3.5	3.	5 3	3.5	3.5	5 3.	5	3.5	3.5	53	.5	3.5	3.	5	3.5	3.	5	3.5	3.	5	3.5	i 3.	.5	3.5	5	3.5	5 3	.5
28		4	4.0	4.	0	4.0	4	0	4.0)	4.0	4.	0	4.0	0	4.0	4	.0	4.0	2	4.0	4.	0	4.0	4	.0	3.5	i 3	3.5	3.	5	3.5	3.	5	3.5	3.	5	3.5	3.	5 3	3.5	3.5	5 3.	5	3.5	3.5	53	.5	3.5	3.	5	3.5	3.	5	3.5	3.			i 3.		3.5	5	3.5	i 3	.5
29		4	4.5	4.	5	4.0	4	0	4.0) .	4.0	4.	0	4.0	0	4.0	4	.0	4.0) 4	4.0	4.	0	4.0	4	0	4.0	14	1.0	4.	0	4.0	4.	0	4.0	4.	0	4.0	3.	5 3	3.5	3.5	5 3.	5	3.5	3.5	53	3.5	3.5	3.	5	3.5	3.	5	3.5	3.	5	3.5	i 3.	.5	3.5	5	3.5	13	.5
30																																													4.0												5	3.5	i 3.	.5	3.5	5	3.5	5 3	.5
31		4	4.5	4.	5	4.5	4	5	4.5	5	4.5	4.	5	4.5	5	4.5	4	.5	4.5	5 4	4.5	4.	0	4.0	4	.0	4.0) 4	1.0	4.	0	4.0	4.	0	4.0	4.	0	4.0	4.	0 4	4.0	4.0) 4.	.0	4.0	4.() 4	1.0	4.0	4.	0	4.0	4.	0	4.0	4.	0	4.0	4	.0	4.0	0	4.0	14	.0
32										T																																			4.0) 4	
33					1					1				4.5	5	4.5	4	.5	4.	5 4	4.5	4.	5	4.5	4	.5	4.5	i 4	1.5	4.	5	4.5	4	5	4.5	4.	5	4.5	4.	5 4	4.5	4.5	5 4.	.0	4.0	4.0) 4	1.0	4.0	4.	0	4.0	4	0	4.0	4.	0	4.0	4	.0	4.(0	4.0	14	.0
34										1																																			4.5																				
35										T				5.0	0	5.0	5	.0	5.0) !	5.0	5.	0	5.0	5	.0	5.0) 5	5.0	4.	5	4.5	4	5	4.5	4.	5	4.5	4.	5 4	4.5	4.5	5 4.	.5	4.5	4.5	5 4	1.5	4.5	4.	5	4.5	4	5	4.5	4.	5	4.5	4	.5	4.5	5	4.5	14	.5
36																			5.0																										4.5										4.5	4.	5	4.5	4		4.5		4.5	14	.5
37										+							5	.5	5.5	5 3	5.5	5.	0	5.0	5	0	5.0) 5	5.0	5.	0	5.0	5.	0	5.0	5.	0	5.0	5.0	0 5	5.0	5.0) 5	0	5.0	5.0) 5	5. 0	5.0	4	5	4.5	4	5	4.5	4.	5	4.5	4	.5	4.5	5	4.5	14	.5
38										+																																			5.0												0	5.0	5	.0	5.0	0	5.0	1 5	i.0
39										$^{+}$																																			5.0																				

Table 1-7hBWR Fuel Qualification Table for Fuel with 0.45 kW per Assembly for the NUHOMS[®]-69BTH DSC

(Part 2 of 2)

(Minimum required years of cooling time after reactor core discharge)

BU								A	sse	mbly	y Av	erag	e Ini	tial E	nric	hme	ent (v	rt. %	U-2	35)	- Bla	ank S	Shad	led /	Area	Cor	resp	ond	s to	"Not	Ana	lyze	d" D	oma	ain							
GWd/MTU	0.7	0.9	1.0	1.2	1.3	1.4	1.5	1.6	1.7	1.1	8 1.	9 2.0	2.1	2.2	2.3	2.4	2.5	2.6	2.7	2.8	2.9	3.0	3.1	3.2	3.3	3.4	3.5	3.6	3.7	3.8	3.9	4.0	4.1	4.2	4.3	4.4	4.5	4.6	4.7	4.8	4.9	5.0
40																		5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
41																		6.0		6.0	6.0	6.0	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5
42																		6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5
43																		6.5	6.5	6.5	6.5	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	5.5	5.5	5.5	5.5	5.5	5.5
44																		6.5	6.5	6.5	6.5									6.0												6.0
45																		7.0	7.0	7.0	7.0	7.0	6.5							6.5												
46																		7.5	7.0	7.0	7.0		7.0	7.0						6.5												6.5
47																		7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.0	7.0	7.0	7.0	7.0	7.0	7.0					7.0	7.0	7.0	6.5	6.5	6.5	6.5
48																		8.0	8.0	8.0	8.0	7.5	7.5	7.5			7.5			7.5			7.0			7.0	7.0	7.0	7.0	7.0	7.0	7.0
49																		8.5	8.5	8.5										7.5						7.5	7.5	7.5	7.5	7.5	7.0	7.0
50																		9.0		8.5										8.0							7.5		7.5	7.5	7.5	7.5
51																		9.5		9.0	9.0			9.0						8.5								8.0	8.0	8.0	7.5	7.5
52																														8.5											8.0	8.0
53																		10.5												9.5											8.5	8.5
54																		11.0												10.0											9.0	9.0
55																		12.0												10.0												9.5
56																		12.5	12.5	12.5	12.5	12.5	12.0	12.0	12.0	12.0	11.0	11.0	11.0	11.0	11.0	10.5	10.5	10.5	10.5	10.5	10.0	10.0	10.0	10.0	10.0	10.0
57																		13.5	13.0	13.0	13.0	13.0	12.5	12.5	12.5	12.5	12.0	12.0	12.0	12.0	12.0	11.5	11.5	11.5	11.5	11.5	10.5	10.5	10.5	10.5	10.5	10.5
58																		14.5	14.5	14.5	13.5	13.5	13.5	13.0	13.0	13.0	13.0	12.5	12.5	12.5	12.5	12.5	12.0	12.0	12.0	12.0	11.5	11.5	11.5	11.5	11.5	11.5
59																		15.5												13.0												
60																		16.5	16.5	15.5	15.5	15.5	15.0	15.0	15.0	14.5	14.5	14.5	14.0	14.0	14.0	14.0	14.0	13.5	13.5	13.5	13.5	12.5	12.5	12.5	12.5	12.5
61																														14.5												
62																		18.0	18.0	18.0	17.5	17.5	17.5	16.5	16.5	16.5	16.0	16.0	16.0	15.5	15.5	15.5	15.5	15.0	15.0	15.0	15.0	14.5	14.5	14.5	14.5	14.5

Table 1-7iBWR Fuel Qualification Table for Fuel with 0.488 kW per Assembly for the NUHOMS®-69BTH DSC

(Part 1 of 2)

								A	ssen	nbly	Ave	rage	e Init	ial E	nricl	hme	nt (v	rt. %	U-2	235)	- Bla	ank :	Sha	ded ,	Area	Co	rresj	ono	ls to	"No	t An	alyz	ed"	Dom	nain							
BU GWd/MTU	<u>0.7</u>	0.9	1.0	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2.0	2.1	2.2	2.3	2.4	2.5	2.6	2.7	2.8	2.9	3.0	3.1	3.2	3.3	3.4	3.5	3.6	3.7	3.8	3.9	4.0	4.1	4.2	4.3	4.4	4.5	4.6	4.7	4.8	4.9	5.0
10	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
11	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
12	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
13		3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
14		3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
15		3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
16		3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
17		3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
18		3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
19		3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
20		3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
21		3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
22		3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
23		3.5	3.5	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
24		3.5	3.5	3.5	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
25		3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
26		3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
27		4.0	4.0	4.0	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
28		4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.0	3.0	3.0	3.0	3.0
29		4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
30		4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
31		4.5	4.5	4.5	4.5	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
32							4.5	4.5	4.5	4.5	4.5	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
33									4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
34									4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
35									4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
36											4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
37											5.0	5.0	5.0	5.0	5.0	5.0	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
38											5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
39											5.5	5.5	5.5	5.5	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5

Table 1-7iBWR Fuel Qualification Table for Fuel with 0.488 kW per Assembly for the NUHOMS[®]-69BTH DSC

(Part 2 of 2)

(Minimum required years of cooling time after reactor core discharge)

BU								A	sse	mbl	y A	ver	age	Init	ial E	nric	hme	ent (v	vt. 9	6 U-1	235)	- Bla	ank	Sha	ded	Area	Cor	resp	ond	s to	"Not	Ana	alyze	d" E)oma	ain							
GWd/MTU	0.7	0.9	1.0	1.2	1.3	1.4	1.5	1.6	1.7	7 1.	8 1	1.9	2.0	2.1	2.2	2.3	2.4	2.5	2.6	2.7	2.8	2.9	3.0	3.1	3.2	3.3	3.4	3.5	3.6	3.7	3.8	3.9	4.0	4.1	4.2	4.3	4.4	4.5	4.6		4.8	4.9	5.0
40																			5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
41																			5.5	5.5	5.5	5.5	5.5	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
42																			5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
43																			6.0	6.0	6.0	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.0	5.0	5.0	5.0	5.0	5.0
44																			6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5
45																			6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5
46																			6.5	6.5									6.0													6.0	6.0
47																			7.0	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
48																			7.0	7.0	7.0	7.0	7.0	7.0	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
49																			7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5
50																			7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5
51																			8.0	8.0	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.0	7.0			7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	6.5
52																			8.5	8.0	8.0	8.0	8.0	8.0	8.0	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0
53																			8.5	8.5	8.5	8.5	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	7.5				7.5	7.5	7.5	7.5	7.5	7.5
54																			9.0	9.0	9.0	9.0	9.0	8.5	8.5	8.5	8.5	8.5	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	7.5	7.5	7.5	7.5	7.5
55																			9.5	9.5	9.5	9.5	9.0	9.0	9.0	9.0	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0
56																			10.0	10.0	9.5	9.5	9.5	9.5	9.5	9.5	9.0	9.0	9.0	9.0	9.0	9.0	9.0	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.0	8.0
57																			10.5	5 10.5	5 10.5	5 10.0	10.0	10.0	10.0	9.5	9.5	9.5	9.5	9.5	9.5	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	8.5	8.5	8.5
58																			11.0) 11.0	11.0	0 11.0	10.5	i 10.5	5 10.5	10.5	10.0	10.0	10.0	10.0	9.5	9.5	9.5	9.5	9.5	9.5	9.5	9.5	9.0	9.0	9.0	9.0	9.0
59																			12.0) 11.5	5 11.5	5 11.0	11.0) 11.(11.0	11.0	11.0	10.5	10.5	10.5	10.5	10.0	10.0	10.0	10.0	10.0	9.5	9.5	9.5	9.5	9.5	9.5	9.5
60																			12.5	5 12.0	12.0	0 12.0	12.0) 11.5	5 11.5	5 11.5	11.0	11.0	11.0	11.0	11.0	10.5	10.5	10.5	10.5	10.5	10.5	10.0	10.0	10.0	10.0	10.0	10.0
61																			13.0	13.0	13.0	0 12.5	12.5	12.0	12.0	12.0	12.0	12.0	11.5	11.5	11.5	11.5	11.0	11.0	11.0	11.0	10.5	10.5	10.5	10.5	10.5	10.5	10.0
62																			14.0	13.5	5 13.5	5 13.0	13.0	13.0	13.0	12.5	12.5	12.5	12.5	12.0	12.0	12.0	11.5	11.5	11.5	11.5	11.5	11.0	11.0	11.0	11.0	11.0	11.0

Table 1-7jBWR Fuel Qualification Table for Fuel with 0.55 kW per Assembly for the NUHOMS®-69BTH DSC

(Part 1 of 2)

BU										A	sse	mb	lv A	lve	rad	e In	itia	E	nric	hme	ent	(wt	. %	U-3	235) - E	Blar	nk S	had	ded	Are	a Co	orres	bon	ds ti	o "N	ot A	nalv	zed	" Do	mai	in								
GWd/MTU	0.7	0.9	9 1	0	1.2	1.3	1	4	1.5																							3.4											44	4.5	4.6	4.7	41	8 4.9	9 !	0
		3.0		0	3.0	3.0	3.	0 :		3.0				3.0											3.0			3.0				3.0								0 3				3.0		3.0		0 3.0		30
11	3.0							-		3.0				3.0	3.0		-															3.0																		0
12		3.0						_		3.0	-	_	_		3.0	_																3.0								0 3				3.0		3.0			0 3	0
13			0 3		3.0	3.0	+	_		3.0			_	3.0		_									3.0			3.0				3.0							_	0 3	_	_	_	3.0				0 3.1	0 3	0.0
14		3.0	0 3	0	3.0	3.0	3.	0 3	3.0	3.0	3.0	0 3	.0	3.0	3.0	3.			3.0						3.0		0 3	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	0 3.	0 3.	0 3	.0 :	3.0	3.0	3.0	3.0	3.0	0 3.	0 3	0
15		3.0	0 3	0	3.0	3.0	3.	0 3	3.0	3.0	3.0	0 3	.0	3.0	3.0	3.	0 3	.0	3.0	3.0	3	0	3.0	3.0	3.0) 3.	0 3	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	0 3.	0 3.	0 3	.0 :	3.0	3.0	3.0	3.0	3.0	0 3.0	0 3	8.0
16															3.0		0 3	.0	3.0	3.0	3	0	3.0	3.0	3.0	3.	0 3	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0) 3.0	0 3.	0 3.	0 3	.0 :	3.0	3.0	3.0	3.0	3.0	0 3.1	0 3	0
17		3.0	0 3	0	3.0	3.0	3.	0 3	3.0	3.0	3.0	0 3	.0	3.0	3.0	3.																3.0												3.0				0 3.1	0 3	0
18		3.0	0 3	0	3.0	3.0	3.	0 3	3.0	3.0	3.0																					3.0										.0	3.0	3.0	3.0	3.0	3.0	0 3.0	0 3	8.0
19		3.0	0 3	0	3.0	3.0	3.	0 3	3.0	3.0	3.0	0 3	.0	3.0	3.0	3.	0 3	.0	3.0	3.0	3	0	3.0	3.0	3.0) 3.	0 3	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	0 3.	0 3.	0 3	.0	3.0	3.0	3.0	3.0	3.0	0 3.0	0 3	0
20		3.0	0 3	0	3.0	3.0	3.	0 3	3.0	3.0	3.0	0 3	.0	3.0	3.0	3.	0 3	.0	3.0	3.0	3	0	3.0	3.0	3.0	3.	0 3	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0) 3.0	0 3.	0 3.	0 3	.0 :	3.0	3.0	3.0	3.0	3.0	0 3.1	0 3	0.0
21		3.0	0 3	0	3.0	3.0				3.0				3.0											3.0			3.0				3.0							0 3.					3.0	3.0			0 3.1	0 3	0
22		3.0	0 3	0	3.0	3.0	3.	0 3	3.0	3.0	3.0	0 3	.0	3.0	3.0	3.	0 3	.0	3.0	3.0	3	0	3.0	3.0	3.0) 3.	0 3	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	0 3.	0 3.	0 3	.0	3.0	3.0	3.0	3.0	3.0	0 3.0	0 3	8.0
23															3.0		0 3	.0	3.0	3.0	3	0	3.0	3.0	3.0	3.	0 3	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	0 3.	0 3.	0 3	.0		3.0				0 3.0		0
24		3.0	0 3	0	3.0	3.0	3.	0 3	3.0	3.0	3.0	0 3	.0	3.0	3.0	3.	0 3	.0	3.0	3.0) 3	0	3.0	3.0	3.0) 3.	0 3	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0) 3.(0 3.	0 3.	0 3	.0	3.0	3.0	3.0	3.0	3.0	0 3.0	0 3	8.0
25		3.0	0 3	0	3.0	3.0	3.	0 3	3.0	3.0	3.0	0 3	.0	3.0	3.0	3.	0 3	.0	3.0	3.0) 3	0	3.0	3.0	3.0	3.	0 3	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	0 3.	0 3.	0 3	.0	3.0	3.0	3.0	3.0	3.0	0 3.0	0 3	8.0
26						3.0		0 3	3.0	3.0	3.0) 3	.0	3.0	3.0	3.	0 3	.0	3.0	3.0) 3	0	3.0	3.0	3.0	3.	0 3	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	0 3.	0 3.	0 3	.0	3.0	3.0	3.0	3.0	3.0	0 3.0	0 3	8.0
27						3.5		5 3	3.5	3.5	3.0) 3	.0	3.0	3.0	3.	0 3	.0	3.0	3.0) 3	0	3.0	3.0	3.0	3.	0 3	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	0 3.	0 3.	0 3	.0	3.0	3.0	3.0	3.0	3.0	0 3.0	0 3	8.0
28		3.5	5 3	5	3.5	3.5	3.	5 3	3.5	3.5	3.5	5 3	.5	3.5	3.5	i 3.	5 3	.5	3.0	3.0) 3	0	3.0	3.0	3.0	3.	0 3	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	0 3.	0 3.	0 3	.0	3.0	3.0	3.0	3.0	3.0	0 3.0	0 3	8.0
29		3.5			3.5	3.5	3.	5 3	3.5	3.5	3.5			3.5			-		3.5					3.5			-	3.5				5 3.5							0 3.			.0	3.0	3.0	3.0	3.0	3.0	0 3.(0 3	0
30			0 4	_		4.0	_	_			-	_	_		3.5	_									3.5			3.5				5 3.5												3.5			_	5 3.0	-	8.0
31		4.0	0 4	0	4.0	4.0	4.								3.5										3.5	5 3.	5 3	3.5	3.5	3.5	3.5	5 3.5	3.5	i 3.5	3.5	5 3.5	3.5	5 3.	5 3.	5 3.	5 3	.5	3.5	3.5	3.5			5 3.5		5
32								4	4.0	4.0	4.0	0 4	.0	4.0	4.0	3.	5 3	.5	3.5													5 3.5										.5	3.5	3.5			3.5	5 3.	5 3	5
33											4.0) 4	.0	4.0	4.0	4.			4.0						3.5							5 3.5												3.5				5 3.	5 3	5
34											4.0			4.0											4.0							3.5																5 3.5		.5
35											4.5	5 4) 4.0																		5
36														4.5	4.5																	4.0												4.0		-	-	0 4.0	0 4	1.0
37														4.5	4.5	i 4.			4.5		_	_	_	4.5	_					4.0		4.0					4.(0 4.				4.0	4.0					1.0
38														4.5	4.5		_		4.5	_	_	_		4.5								5 4.5												4.0					-	1.0
39														4.5	4.5	4.	5 4	.5	4.5	4.5	4	5	4.5	4.5	4.5	j 4.	5 4	4.5	4.5	4.5	4.5	5 4.5	4.5	4.5	4.5	5 4.5	4.5	5 4.	5 4.	5 4.	5 4	.5 4	4.5	4.5	4.5	4.0	4.0	0 4.0	0 4	.0

Table 1-7jBWR Fuel Qualification Table for Fuel with 0.55 kW per Assembly for the NUHOMS®-69BTH DSC

(Part 2 of 2)

(Minimum required years of cooling time after reactor core discharge)

Burn-Up								A	sser	nbly	Ave	rage	e Init	ial E	nric	hme	nt (w	t. %	U-2	35)	- Bla	ink S	Shad	led /	Area	Cor	resp	ond	s to	"Not	Ana	alyze	d" E)oma	ain							
GWd/MŤU	0.7	0.9	1.0	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2.0	2.1	2.2	2.3	2.4	2.5	2.6	2.7	2.8	2.9	3.0	3.1	3.2	3.3	3.4	3.5	3.6	3.7	3.8	3.9	4.0	4.1	4.2	4.3	4.4	4.5	4.6	4.7	4.8	4.9	5.0
40																		4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
41																		5.0	5.0	5.0	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
42																		5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0									4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
43																		5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
44																		5.5	5.5	5.5	5.5			5.0		5.0											5.0			5.0	5.0	4.5
45																		5.5	5.5	5.5	5.5					5.0														5.0	5.0	5.0
46																		5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
47																		6.0	6.0	6.0	6.0					5.5														5.0	5.0	5.0
48																		6.0	6.0	6.0	6.0					6.0														5.5	5.5	5.5
49																		6.0	6.0							6.0														5.5		
50																		6.5																							5.5	
51																		6.5	6.5	6.5						6.5																
52																		7.0	7.0	7.0	7.0				6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.0	6.0		6.0		
53																		7.5	7.0	7.0	7.0			7.0	7.0		6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5				
54																		7.5	7.5	7.5	7.5	7.0	7.0																		6.5	
55																		8.0	8.0	7.5	7.5	7.5	7.5	7.5		7.5									_	_	_			6.5	6.5	6.5
56																		8.0	8.0	8.0	8.0	8.0	7.5			7.5								7.5	7.5	7.0	7.0	7.0	7.0	7.0	7.0	7.0
57																		8.5	8.5	8.5	8.0	8.0	8.0				8.0							7.5	7.5	7.5		7.5	7.5	7.0	7.0	7.0
58																		9.0	8.5	8.5						8.5														7.5	7.5	7.5
59																		9.5			9.0					8.5											8.0			8.0	7.5	
60																		10.0			9.5					9.0											8.0			8.0	8.0	8.0
61																																									8.5	
62																		10.5	10.5	10.5	10.5	10.5	10.0	10.0	10.0	10.0	10.0	9.5	9.5	9.5	9.5	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	8.5	8.5

Table 1-7k BWR Fuel Qualification Table for Fuel with 0.60 kW per Assembly for the NUHOMS[®]-69BTH DSC

(Part 1 of 2)

BU										A	SS	em	bly	A	era	ige	In	itial	Е	nric	hm	en	nt (v	vt. 9	%	U-2	235)	- E	Bla	nk	Sha	deo	d A	rea	Со	rres	spor	nds	to	"No	t Ai	naly	zeo	l" D	om	ain									
GWd/MTU	0.7	0.9	1.0	1.	2 1	.3	1.4	1	.5	1.6	i 1	.7	1.8	1.	9	2.0	2	1 2	2	2.3	2	4	2.5	2.0	6 :	2.7	2.8	2	9	3.0	3.1	3.	2 3	3.3	3.4	3.5	5 3.	6 3	3.7	3.8	3.9	4.(0 4	.1	4.2	4.3	4.4	4 4	5	4.6	4.7	4.8	4.	9	5.0
10	3.0	3.0	3.0	3.	0 3	3.0	3.0	3	.0	3.0) 3	8.0	3.0	3.	0	3.0	3.0	0 3	.0	3.0	3.	0	3.0	3.	0 :	3.0	3.0	3.	0	3.0	3.0	3.	0 3	3.0	3.0	3.0) 3.	0 3	3.0	3.0	3.0	3.0	0 3	0	3.0	3.0	3.0	0 3	.0	3.0	3.0	3.0) 3.	.0 :	3.0
11	3.0	3.0	3.0	3.	0 3	3.0	3.0	3	.0	3.0) 3	8.0	3.0	3.	0	3.0	3.0	0 3	.0	3.0	3.	0	3.0	3.	0 :	3.0	3.0	3.	0	3.0	3.0	3.	0 3	3.0	3.0	3.0) 3.	0 3	3.0	3.0	3.0	3.0	0 3	0	3.0	3.0	3.0	0 3	.0	3.0	3.0	3.0	3.	.0 :	3.0
12	3.0	3.0	3.0	3.	0 3	3.0	3.0	3	.0	3.0) 3	1.0	3.0	3.	0	3.0	3.0	0 3	.0	3.0	3.	0	3.0	3.	0 :	3.0	3.0	3.	0	3.0	3.0	3.	0 3	3.0	3.0	3.0) 3.	0 3	3.0	3.0	3.0	3.0	0 3	0	3.0	3.0	3.0	0 3	.0	3.0	3.0	3.0	3.	.0 :	3.0
13		3.0	3.0	3.	0 3	3.0	3.0	3	.0	3.0) 3	8.0	3.0	3.	0	3.0	3.0	0 3	.0	3.0	3.	0	3.0	3.	0 :	3.0	3.0	3.	0	3.0	3.0	3.	0 3	3.0	3.0	3.0) 3.	0 3	3.0	3.0	3.0	3.0	0 3	0	3.0	3.0	3.0	0 3	.0	3.0	3.0	3.0) 3.	.0 :	3.0
14		3.0	3.0	3.	0 3	3.0	3.0	3	.0	3.0) 3	8.0	3.0	3.	0	3.0	3.0	0 3	.0	3.0	3	0	3.0	3.	0 :	3.0	3.0	3.	.0	3.0	3.0	3.	0 3	3.0	3.0	3.0) 3.	0 3	3.0	3.0	3.0	3.0	0 3	0	3.0	3.0	3.0	0 3	.0	3.0	3.0	3.0) 3.	.0 :	3.0
15		3.0																																	3.0												3.0						1 3.	.0	3.0
16		3.0	3.0	3.	0 3	3.0	3.0	3	.0	3.0) 3	8.0	3.0	3.	0	3.0	3.0	0 3	.0	3.0	3.	0	3.0	3.	0 :	3.0	3.0	3.	.0	3.0	3.0	3.	0 3	3.0	3.0	3.0) 3.	0 3	3.0	3.0	3.0	3.0	0 3	0	3.0	3.0	3.0	0 3	.0	3.0	3.0	3.0	1 3.	.0	3.0
17		3.0	3.0	3.	0 3	3.0	3.0	3	.0	3.0) 3	8.0	3.0	3.	0	3.0	3.0	0 3	.0	3.0	3.	0	3.0	3.	0 :	3.0	3.0	3.	.0	3.0	3.0	3.	0 3	3.0	3.0	3.0) 3.	0 3	3.0	3.0	3.0	3.0	0 3	0	3.0	3.0	3.0	0 3	.0	3.0	3.0	3.0	1 3.	.0 :	3.0
18		3.0	3.0	3.	0 3	3.0	3.0	3	.0	3.0) 3	.0	3.0	3.	0	3.0	3.0	0 3	.0	3.0	3.	0	3.0	3.0	0 :	3.0	3.0	3.	0	3.0	3.0	3.	0 3	3.0	3.0	3.0) 3.	0 3	3.0	3.0	3.0	3.0	0 3	0	3.0	3.0	3.0	0 3	.0	3.0	3.0	3.0	13.	.0	3.0
19		3.0	3.0	3.	0 3	3.0	3.0	3	.0	3.0) 3	.0	3.0	3.	0	3.0	3.0	0 3	.0	3.0	3.	0	3.0	3.0	0 :	3.0	3.0	3.	.0	3.0	3.0	3.	0 3	3.0	3.0	3.0) 3.	0 3	3.0	3.0	3.0	3.0	0 3	0	3.0	3.0	3.0	0 3	.0	3.0	3.0	3.0	13.	.0	3.0
20		3.0					3.0						3.0																						3.0														.0						3.0
21		3.0	3.0	3.	0 3	3.0	3.0	3	.0	3.0) 3	.0	3.0	3.	0	3.0	3.0	0 3	.0	3.0	3.	0	3.0	3.	0 :	3.0	3.0	3.	0	3.0	3.0	3.	0 3	3.0	3.0	3.0) 3.	0 3	3.0	3.0	3.0	3.0	0 3	0	3.0	3.0	3.0	0 3	.0	3.0	3.0	3.0	3.	.0 :	3.0
22		3.0	3.0	3.	0 3	3.0	3.0	3	.0	3.0) 3	8.0	3.0	3.	0	3.0	3.0	0 3	.0	3.0	3	0	3.0	3.	0 :	3.0	3.0	3.	.0	3.0	3.0	3.	0 3	3.0	3.0	3.0) 3.	0 3	3.0	3.0	3.0	3.(0 3	0	3.0	3.0	3.0	0 3	.0	3.0	3.0	3.0	1 3.	.0 :	3.0
23		3.0	3.0	3.	0 3	3.0	3.0	3	.0	3.0) 3	8.0	3.0	3.	0	3.0	3.0	0 3	.0	3.0	3	0	3.0	3.	0 :	3.0	3.0	3.	.0	3.0	3.0	3.	0 3	3.0	3.0	3.0) 3.	0 3	3.0	3.0	3.0	3.0	0 3	0	3.0	3.0	3.0	0 3	.0	3.0	3.0	3.0	3.	.0	3.0
24		3.0	3.0	3.	0 3	3.0	3.0	3	.0	3.0) 3	8.0	3.0	3.	0	3.0	3.0	0 3	.0	3.0	3.	0	3.0	3.	0 :	3.0	3.0	3.	.0	3.0	3.0	3.	0 3	3.0	3.0	3.0) 3.	0 3	3.0	3.0	3.0	3.(0 3	0	3.0	3.0	3.0	0 3	.0	3.0	3.0	3.0	3.	.0	3.0
25			3.0							3.0																									3.0								0 3			3.0	3.0	0 3	.0	3.0	3.0	3.0	1 3.	.0	3.0
26		3.0	3.0	3.	0 3	3.0	3.0	3	.0	3.0) 3	8.0	3.0	3.	0	3.0	3.0	0 3	.0	3.0	3	0	3.0	3.	0 :	3.0	3.0	3.	.0	3.0	3.0	3.	0 3	3.0	3.0	3.0) 3.	0 3	3.0	3.0	3.0	3.0	0 3	0	3.0	3.0	3.0	0 3	.0	3.0	3.0	3.0	1 3.	.0	3.0
27			3.0	3.	0 3	3.0	3.0	3	.0	3.0) 3	8.0	3.0	3.	0	3.0	3.0	0 3	.0	3.0	3.	0	3.0	3.	0 :	3.0	3.0	3.	.0	3.0	3.0	3.	0 3	3.0	3.0	3.0) 3.	0 3	3.0	3.0	3.0	3.(0 3	0	3.0	3.0	3.0	0 3	.0	3.0	3.0	3.0	1 3.	.0	3.0
28		3.5		3.	5 3	3.0	3.0	3	.0	3.0) 3	8.0	3.0	3.	0	3.0	3.0	0 3	.0	3.0	3.	0	3.0	3.	0 :	3.0	3.0	3.	0	3.0	3.0	3.	0 3	3.0	3.0	3.0) 3.	0 3	3.0	3.0	3.0	3.(0 3	.0	3.0	3.0	3.0	0 3	.0	3.0	3.0	3.0	1 3.	.0	3.0
29		3.5		3.	5 3	3.5	3.5	3	.5	3.5	i 3	.5	3.0		-	3.0	3.0		.0	3.0	3.	0	3.0	3.	0 :	3.0	3.0	3.	0	3.0	3.0	3.	0 3	3.0	3.0	3.0) 3.	0 3	3.0	3.0	3.0	3.0	0 3	0	3.0	3.0	3.0	0 3	.0	3.0	3.0	3.0	1 3.	.0	3.0
30		3.5		3.	-		_						3.5											3.											3.0								0 3			3.0						3.0			3.0
31		3.5	3.5	3.	5 3	3.5	3.5	3	.5	3.5																																										3.0			3.0
32																																																				3.0			3.0
33																																																				3.0			3.0
34																																																				3.5		.5	3.5
35											4	.0	4.0	4.	0	4.0	4.(0 4	.0	4.0	4.	0	4.0	3.	5	3.5	3.5								3.5												3.5	5 3	5	3.5	3.5	3.5	5 3.	.5	3.5
36														4	0	4.0	4.(0 4	.0	4.0	4.	0	4.0	4.	04	4.0	4.0	4.	0	4.0	4.0	3.	5 3	3.5	3.5	3.5	j 3.	5 3	3.5	3.5	3.5	3.5	5 3	5	3.5	3.5	3.5	5 3	.5	3.5	3.5	3.5	5 3.	.5 3	3.5
37														4	0	4.0	4.(4.			4.0								4.0					4.0					3.5		3.5								3.5
38																								4.											4.0																	3.5	i 3.	.5	3.5
39														4.	5	4.5	4	5 4	.5	4.5	i 4.	5	4.5	4.	0 4	4.0	4.0	4.	0	4.0	4.0	4.	0 4	4.0	4.0	4.0) 4.	0 4	1.0	4.0	4.0	4.(0 4	0	4.0	4.0	4.(0 4	.0	4.0	4.0	4.0	1 4.	.0	4.0

Table 1-7k BWR Fuel Qualification Table for Fuel with 0.60 kW per Assembly for the NUHOMS[®]-69BTH DSC

(Part 2 of 2)

(Minimum required years of cooling time after reactor core discharge)

BU								A	sse	mbly	Ave	erag	e Ini	tial E	nric	hme	ent (v	vt. 9	6 U-1	235)	- Bl	ank	Sha	ded	Area	Cor	res	oond	ls to	"Not	t An	alyze	ed" l	Dom	ain							
GWd/MTU	0.7	0.9	1.0	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2.0	2.1	2.2	2.3	2.4	2.5	2.6	2.7	2.8	2.9	3.0	3.1	3.2	3.3	3.4	3.5	3.6	3.7	3.8	3.9	4.0	4.1	4.2	4.3	4.4	4.5	4.6	4.7	4.8	4.9	5.0
40																		4.5	4.5	4.5	4.5	4.5	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
41																		4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
42																		4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.0	4.0	4.0	4.0	4.0	4.0	4.0
43																		5.0	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
44																		5.0	5.0	5.0	5.0	5.0	5.0	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
45																		5.0	5.0	5.0						5.0																
46																		5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	4.5	4.5	4.5	4.5	4.5	4.5	4.5
47																		5.5	5.5	5.5	5.5	5.5	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
48																		5.5	5.5	5.5		5.5		5.5				5.0										5.0		5.0	5.0	5.0
49																		6.0	5.5	5.5	5.5	5.5				5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		
50																		6.0	6.0	6.0	6.0	6.0	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.0	5.0	5.0	5.0
51																		6.0	6.0	6.0		6.0				6.0														5.5	5.5	5.5
52																		6.5	6.5							6.0														5.5		
53																		6.5	6.5	6.5	6.5	6.5						6.0										6.0		5.5	5.5	5.5
54																		7.0	7.0	6.5		6.5				6.5															6.0	6.0
55																		7.0	7.0	7.0		7.0			7.0																6.0	6.0
56																		7.5	7.5	7.5	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.0	6.0
57																		7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.0	7.0	7.0	7.0	7.0		7.0			6.5			6.5	6.5	6.5	6.5	6.5	6.5
58																		8.0	8.0	8.0	8.0	7.5		7.5	7.5		7.5			7.0			7.0		7.0		7.0	7.0	6.5	6.5		6.5
59																		8.5	8.5	8.0	8.0	8.0	8.0	8.0	8.0	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0
60																		9.0	8.5	8.5		8.5			8.0			8.0							7.5		7.5	7.5	7.0	7.0	7.0	7.0
61																		9.0				9.0				8.5											7.5	7.5		7.5	7.5	7.5
62																		9.5	9.5	9.5	9.5	9.0	9.0	9.0	9.0	9.0	9.0	8.5	8.5	8.5	8.5	8.5	8.0	8.0	8.0	8.0	8.0	8.0	8.0	7.5	7.5	7.5

Table 1-7IBWR Fuel Qualification Table for Fuel with 0.70 kW per Assembly for the NUHOMS[®]-69BTH DSC

(Part 1 of 2)

BU									A	SS	em	blv	Ave	rad	e Ir	nitia	I E	nric	hm	ent	(w	t %	6 U-	-23	5) -	Bla	nk	Sha	ade	d A	rea	Co	rres	pon	ds te	o "N	ot A	nal	vze	d" l	Don	nain	,								
GWd/MTU	0.7	0.9	10	12	13	3 1	4	15				-		-																				3.6					·					4 4	4.5	46	47	41	8 4	.9 5	50
		3.0		30	3.0	0 3																																								3.0	3.0			.0 3	
	3.0																																																	0 3	
12	3.0		3.0					3.0																										3.0													3.0			.0 3	
13		3.0	3.0	3.0	3.0	0 3		3.0															3.0											3.0				0 3				3.0			3.0		3.0	-	_	_	3.0
14		3.0	3.0	3.0	3.0	0 3	3.0	3.0	3.0) 3	.0	3.0	3.0	3.0) 3	0	3.0						3.0					3.0	0 3.	.0	3.0	3.0	3.0	3.0	3.0	3.0) 3.	0 3	.0	3.0	3.0	3.0	0 3.	0 3	3.0	3.0	3.0	3.0	0 3.	0 :	3.0
15		3.0	3.0	3.0	3.0	0 3	3.0	3.0	3.0) 3	.0	3.0																						3.0) 3.	0 3	.0	3.0	3.0	3.0	0 3.	0 3	3.0	3.0	3.0	3.0	0 3.	0 3	3.0
16		3.0	3.0																																														0 3.	0 3	3.0
17		3.0	3.0	3.0	3.0	0 3	3.0	3.0	3.0) 3	0.0	3.0	3.0	3.0) 3.	.0	3.0	3.0	3.0	0 3	3.0	3.0	3.0	0 3	.0	3.0	3.0	3.0	0 3.	.0	3.0	3.0	3.0	3.0	3.0	3.0) 3.	0 3	.0	3.0	3.0	3.0	0 3.	0 3	3.0	3.0	3.0	3.0	0 3.	.0 3	3.0
18		3.0	3.0	3.0	3.0	0 3	3.0	3.0	3.0) 3	0.0	3.0	3.0	3.0) 3.	.0	3.0	3.0	3.0	0 3	3.0	3.0	3.0	0 3	.0	3.0	3.0	3.0	0 3.	.0	3.0	3.0	3.0	3.0	3.0	3.0	3.	0 3	.0	3.0	3.0	3.0) 3.	0 3	3.0	3.0	3.0	3.0	0 3.	.0 3	3.0
19		3.0	3.0	3.0	3.0	0 3	3.0	3.0	3.0) 3	.0	3.0	3.0	3.0) 3.	.0	3.0	3.0	3.0	2 3	3.0	3.0	3.0	0 3	.0	3.0	3.0	3.0	0 3.	.0	3.0	3.0	3.0	3.0	3.0	3.0) 3.	0 3	.0	3.0	3.0	3.0) 3.	0 3	3.0	3.0	3.0	3.0	0 3.	.0 3	3.0
20		3.0	3.0	3.0	3.0	0 3	3.0	3.0	3.0) 3	0.0	3.0	3.0	3.0) 3	.0	3.0	3.0	3.0	0 3	3.0	3.0	3.0	0 3	.0	3.0	3.0	3.0	0 3.	.0	3.0	3.0	3.0	3.0	3.0	3.0) 3.	0 3	.0	3.0	3.0	3.0	0 3.	0 3	3.0	3.0	3.0	3.0	0 3.	.0 3	3.0
21		3.0			3.0			3.0															3.0											3.0				0 3			3.0				3.0		3.0		0 3.	.0 3	3.0
22		3.0	3.0	3.0	3.0	0 3	3.0	3.0	3.0) 3	0.0	3.0	3.0	3.0) 3.	.0	3.0	3.0	3.0	0 3	3.0	3.0	3.0	0 3	.0	3.0	3.0	3.0	0 3.	.0	3.0	3.0	3.0	3.0	3.0	3.0	3.	0 3	.0	3.0	3.0	3.0) 3.	0 3	3.0	3.0	3.0	3.0	0 3.	.0 3	3.0
23		3.0																																3.0										0 3	3.0	3.0	3.0	3.0	0 3.	.0 3	3.0
24		3.0	3.0	3.0	3.0	0 3																																							3. 0	3.0	3.0	3.0	0 3.	.0 3	3.0
25		3.0	3.0	3.0	3.0	0 3	3.0	3.0	3.0) 3	0.0	3.0	3.0	3.0) 3.	.0	3.0	3.0	3.0	0 3	3.0	3.0	3.0	0 3	.0	3.0	3.0	3.0	0 3.	.0	3.0	3.0	3.0	3.0	3.0	3.0	3.	0 3	.0	3.0	3.0	3.0) 3.	0 3	3.0	3.0	3.0	3.0	0 3.	0 3	3.0
26																																												0 3	3.0	3.0	3.0	3.0	0 3.	.0 3	3.0
27			3.0	3.0	3.0	0 3	3.0	3.0	3.0) 3	8.0	3.0																						3.0										0 3	3.0	3.0	3.0	3.0	0 3.	.0 3	3.0
28		3.0		3.0	3.0	0 3	3.0	3.0	3.0			3.0																						3.0						3.0	3.0	3.0) 3.	0 3	3.0	3.0	3.0	3.0	0 3.	0 3	3.0
29		3.0		3.0	3.0	0 3	3.0	3.0	3.0) 3	8.0	3.0											3.0											3.0				0 3			_	3.0	_		3.0	3.0	3.0	3.0	3.	0 3	3.0
30		3.5		-	3.0	-		3.0	3.0			3.0		_	_	.0							3.0											3.0								-	_		3.0		3.0	-			3.0
31		3.5	3.5	3.5	3.5	53		3.0				3.0																						3.0													3.0				3.0
32								3.5	3.5			3.5																						3.0															-		3.0
33											.5	3.5	3.5	3.5									3.0											3.0													3.0		_		3.0
34											.5	3.5		3.5																				3.0) 3.				3.0				3.0
35										3	.5	3.5																						3.5																	3.0
36													3.5	3.5																				3.5																.0 3	
37													3.5	3.5	_	_	3.5	3.5			_	3.5	3.5	53	.5		3.5							3.5			5 3.	_	.5	3.5	3.5	3.5	5 3.	_			3.5	3.5	5 3.		3.5
38														3.5									3.5											3.5		5 3.5						3.5					3.5		-	.5 3	3.5
39													4.0	4.() 4	.0	4.0	4.0	4.(2 3	3.5	3.5	3.5	5 3	.5	3.5	3.5	3.5	5 3.	5	3.5	3.5	3.5	3.5	3.5	j 3.5	5 3.	5 3	.5	3.5	3.5	3.5	5 3.	5 3	3.5	3.5	3.5	3.5	5 3.	5 3	1.5

Table 1-7IBWR Fuel Qualification Table for Fuel with 0.70 kW per Assembly for the NUHOMS[®]-69BTH DSC

(Part 2 of 2)

(Minimum required years of cooling time after reactor core discharge)

BU								A	sse	mbly	Av	erag	e Ini	tial E	Enrio	chme	ent (vt. 9	6 U-	235)	- B	lank	Sha	ded	Area	a Co	rres	pond	ls to	"No	t Ar	nalyz	ed"	Don	nain							
GWd/MTU	0.7	0.9	1.0	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2.0	2.1	2.2	2.3	2.4	2.5	2.6																							4.9	5.0
40																		4.0	4.0	4.0	4.0	4.0	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
41																		4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
42																		4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
43																		4.0																							4.0	4.0
44																		4.5								4.0															4.0	4.0
45																		4.5								4.0															4.0	
46																		4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
47																		4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
48																		5.0																							4.5	
49																		5.0																							4.5	
50																		5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
51																		5.5	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
52																		5.5	5.5	5.5	5.5	5.5	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	4.5	4.5	4.5	4.5
53																		5.5																							5.0	
54																		5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
55																		6.0								5.5															5.0	
56																		6.0																							5.0	
57																		6.0																							5.5	
58																		6.5	6.5	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	5.5	5.5	5.5	5.5	5.5	5.5	5.5
59																		6.5																							5.5	
60																		6.5																							6.0	
61																		7.0	7.0	7.0																						6.0
62																		7.5	7.0	7.0	7.0	7.0	7.0	7.0	7.0	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.0	6.0	6.0

Notes for Tables 1-7a through 1-7I:

- Burnup = assembly average burnup.
- Shaded regions in Tables 1-7a through 1-7I above are not analyzed.
- Use burnup and enrichment to look up minimum cooling time in years. Licensee is responsible for ensuring that uncertainties in fuel enrichment and burnup are correctly accounted for during fuel qualification.
- For fuel assemblies containing blankets, use the bundle average enrichment.
- Round burnup UP to next higher entry, round enrichments DOWN to next lower entry.
- Fuel with an assembly average initial enrichment less than 0.7 (or less than the minimum provided above for each burnup) or greater than 5.0 wt. % U-235 is unacceptable for storage.
- Fuel with a burnup greater than 62 GWd/MTU is unacceptable for storage.
- Fuel with a burnup less than 10 GWd/MTU is acceptable for storage after 3.0 years cooling except for assemblies with 0.1 kW/FA, which require a minimum of 4.5 years cooling (See Table 1-7a).
- See Figure 1-31 through Figure 1-36 for a description of the heat load zone configurations.
- FQTs for 0.27 and 0.50 kW/FA are conservatively represented by those for 0.25 and 0.488 kW/FA respectively in the tables above.
- For reconstituted fuel assemblies with UO₂ and/or Zr rods or Zr pellets and/or stainless steel rods, use the assembly average equivalent enrichment to determine the minimum cooling time.
- If irradiated stainless steel rods are present in the reconstituted fuel assembly, add an additional 5.0 years of cooling time.
- The cooling times for damaged and intact assemblies are identical.
- For fuel assemblies containing BLEU fuel pellets, add 3.0 years of additional cooling time to the values shown in Table 1-7a through Table 1-7I above.
- Example: An intact fuel assembly, with a decay heat load of 0.22 kW or less, an assembly average enrichment of 3.65 wt. % U-235 and a burnup of 41.5 GWd/MTU is acceptable for storage after a 24 year cooling time as defined by 3.6 wt. % U-235 (rounding down) and 42 GWd/MTU (rounding up) in Table 1-7b.

I

Table 1-7m Not Used

Table 1-7n Not Used

Table 1-7o Not Used

 Table 1-8a

 PWR Fuel Qualification Table for Fuel with 0.4 kW per Assembly for the NUHOMS[®]-37PTH DSC

	Assembly Average Initial Enrichment (wt. % U-235)
BU	
	U070.80.91.01.11.21.31.41.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0
10	35 35 35 35 35 35 35 35 36 30 30 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3
15	5.05.05.05.05.05.05.05.05.05.05.0 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5
20	7.5/7.5/7.5/7.5/7.5/7.5/7.5/7.5/7.5 7.5 7.5 7.5 7.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0
25	12 912 912 912 912 912 912 912 912 912 9
26	14.514.514.514.514.514.514.514.514.514.5
27	16.516.516.516.516.516.516.516.516.516.5
27	
29	20. 020. 020. 020. 020. 020. 020. 020.
30	22 022 022 022 022 022 022 022 022 022
31	24.024.024.024.024.024.024.024.024.024.0
32	26. 0/26. 0/26. 0/26. 0/26. 0/26. 0/26. 0/26. 0/26. 0/26. 0/26. 0/26. 0/26. 0/26. 0/26. 0/26. 0/25. 0/2
33	28.028.028.028.028.028.028.028.028.028.0
34	30, 030, 029, 529, 529, 529, 529, 529, 529, 529, 5
35	32 d32 d32 d32 d32 d32 d32 d32 d32 d32 d
36	34. d34. d34. d34. d34. d34. d34. d34. d
37	35 535 535 535 535 535 535 535 535 535
38	37, 037, 037, 037, 037, 037, 037, 037, 0
39	39,039,038,538,538,538,538,538,538,538,538,538,5
40	40.540.540.540.540.540.540.540.540.540.5
40	
42	43.043.043.043.043.043.043.043.043.043.0
43	46.046.044.044.544.544.544.544.544.544.544.544
44	47.047.047.047.047.047.047.047.047.047.0
45	<u>48.0[48.0[48.0[48.0[48.0[48.0[48.0[48.0[</u>
46	50.550.550.550.550.550.549.549.549.549.049.049.049.049.049.049.049.049.049.0
47	52.052.052.052.052.052.052.052.052.052.0
48	52.052.052.052.052.052.052.052.052.052.0
49	54.054.053.553.553.553.553.553.553.553.553.553
50	55, d55, d55, d55, d55, d55, d55, d55,
51	57. 057. 057. 057. 056. 556. 556. 556. 556. 556. 556. 556
52	58. d58. d58. d58. d58. d58. d58. d58. d
53	ico deo deo deo deo deo deo deo deo deo de
54	60, 560, 560, 560, 560, 560, 560, 560, 5
55	63.063.063.063.063.063.063.063.063.063.0
56	64.064.063.563.563.563.563.563.563.563.563.563.5
57	65.5[65.5[65.5[65.5[65.5[65.5[65.5[65.5
58	es olse des des des des des des des des des d
59	<u>67.567.567.567.567.567.567.567.567.567.5</u>
60	<u>69.069.069.069.069.069.069.069.069.069.0</u>
61	70.0/70.0/70.0/70.0/70.0/70.0/70.0/70.0
62	71.571.571.571.571.571.571.571.571.571.5

Explanatory notes and limitations regarding the use of this table follow Table 1-8e.

Table 1-8b Not Used

 Table 1-8c

 PWR Fuel Qualification Table for Fuel with 0.6 kW per Assembly for the NUHOMS[®]-37PTH DSC

BU	Assembly Average Initial Enrichment (wt. % U-235)			
GWd/MTU	0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4	1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0	3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0	
10	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	
15		3.5 3.5 3.5 3.5 3.5 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	
20	5.0 4.5 4.5 4.5 4.5 4.5 4.5 4.5	4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5	4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	
25			5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5	
28		7.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5	
30	1	8.5 8.5 8.5 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0		
32	1	10.0 10.0 10.0 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	9.0 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5	
34		12.0 12.0 11.5 11.5 11.5 11.5 11.5 11.5 11.0 11.0	5 10.5 10.5 10.5 10.0 10.0 10.0 10.0 10.	
36	1	14.5 14.5 14.0 14.0 14.0 14.0 13.5 13.5 13.5 13.0 13.0 13.0 13.0 13.0 13.0 12.5 12.5	5 12.5 12.5 12.5 12.5 12.5 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	
38		17.5 17.0 17.0 17.0 17.0 17.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16	0 15.0 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0	
39		18.5 18.5 18.5 18.0 18.0 18.0 18.0 18.0 18.0 18.0 17.0 17.0 17.0 16.5 16.5 16.5 16.5	5 16.5 16.5 16.0 16.0 16.0 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15	
40		20.0 20.0 20.0 20.0 20.0 20.0 19.0 19.0 18.5 18.5 18.5 18.5 18.5 18.5 18.5 17.5 17.5	5 17.5 17.5 17.5 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0	
41		22.0 21.5 21.5 21.0 21.0 20.5 20.5 20.0 20.0 20.0 20.0 20.0 19.5 19.5 19.5 19.6	0 19.0 19.0 18.5 18.5 18.5 18.5 18.5 18.5 18.5 18.5	
42		21.0 21.0 20.5 20.5	5 20.5 20.5 20.0 20.0 20.0 20.0 20.0 20.	
43			0 22.0 21.5 21.5 21.5 21.5 21.5 21.5 21.5 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0	
44			5 23.0 23.0 23.0 23.0 23.0 23.0 23.0 22.5 22.5 22.5 22.5 22.0 22.0 22.0 22	
45			0 24.5 24.5 24.5 24.5 24.5 24.0 24.0 24.0 24.0 24.0 23.5 23.5 23.5 23.5 23.5 23.5 23.5 23.5	
46			0 26.0 26.0 26.0 26.0 26.0 26.0 25.5 25.5 25.5 25.5 25.0 25.0 25.0 25	
47		28.0 28.0 28.0 27.1	5 27.5 27.5 27.5 27.5 27.0 27.0 27.0 27.0 27.0 26.5 26.5 26.5 26.5 26.5 26.5 26.5 26.5	
48			0 29.0 29.0 28.5 28.5 28.5 28.5 28.5 28.5 28.5 28.5	
49		30.1	5 30.5 30.0 30.0 30.0 30.0 30.0 30.0 29.5 29.5 29.5 29.0 29.0 29.0 29.0 29.0 29.0 29.0 29.0	
50		31.	5 31.5 31.5 31.5 31.0 31.0 31.0 31.0 31.0 31.0 31.0 31.0	
51		33.0	0 33.0 32.5 32.5 32.5 32.5 32.5 32.5 32.5 32.0 32.0 32.0 32.0 32.0 32.0 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5	
52			34.5 34.0 34.0 34.0 34.0 33.5 33.5 33.5 33.5 33.5 33.5 33.5 33	
53			35.5 35.5 35.5 35.5 35.0 35.0 35.0 35.0	
54			36.5 36.5 36.5 36.5 36.5 36.5 36.0 36.0 36.0 36.0 36.0 35.5 35.5 35.5 35.5 35.5 35.5 35.5 35	
55			38.0 38.0 37.5 37.5 37.5 37.5 37.5 37.0 37.0 37.0 37.0 37.0 37.0 37.0 37.0	
56			39.0 39.0 38.5 38.5 38.5 38.5 38.5 38.5 38.5 38.5	
57			40.0 40.0 40.0 40.0 40.0 40.0 39.5 39.5 39.5 39.5 39.5 39.5 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0	
58			41.0 41.0 41.0 41.0 41.0 41.0 41.0 41.0	
59			42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0	
60			43.5 43.5 43.0 43.0 43.0 43.0 43.0 43.0 43.0 43.0	
61			44.5 44.5 44.5 44.5 44.5 44.5 44.5 44.5	
62			45.5 45.5 45.5 45.5 45.5 45.5 45.5 45.5	

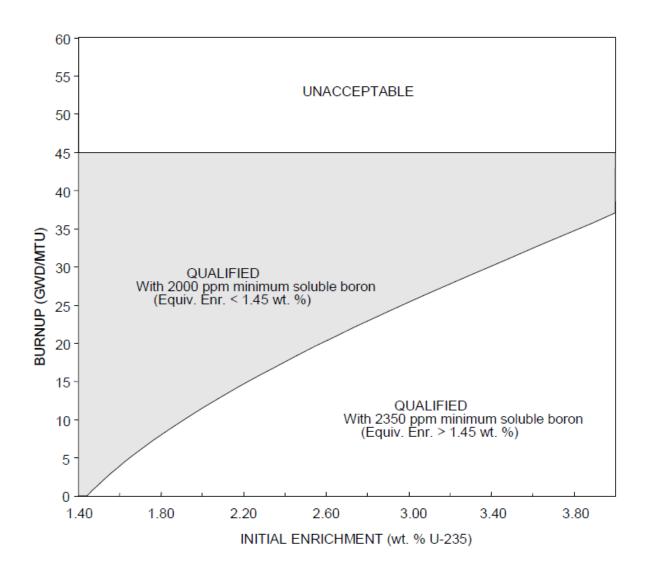
Explanatory notes and limitations regarding the use of this table follow Table 1-8e.

Table 1-8dPWR Fuel Qualification Table for Fuel with 0.7 kW per Assembly for the NUHOMS®-37PTH DSC

BU	Assembly Average Initial Enrichment (wt. % U-235)
GWWIMTU	07 0.5 0.9 7.0 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 20 21 22 23 24 25 20 27 28 20 37 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
10	
15	
20	40 40 40 40 40 40 40 40 40 40 40 40 40 4
25	50 50 50 50 50 50 50 50 50 50 50 50 50 5
20	55 55 55 50 50 50 50 50 50 50 50 50 50 5
27	55 55 55 55 55 55 55 55 55 55 55 55 55
28	<u>4.0</u> <u>4.0</u> <u>4.0</u> <u>4.0</u> <u>4.5</u> <u>5.5</u>
29	8.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
30	0.5 0.5
31	7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5
32	7.5 7.5 7.5 7.5 7.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0
33	8.0 8.0 8.0 8.0 8.0 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5
34	85 85 85 85 85 85 85 88 80 80 80 80 80 80 80 80 80 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5
35	9.5 9.0 9.0 9.0 8.5 8.5 8.5 8.5 8.5 8.0
36	10.0 10.0 10.0 10.0 10.0 25 25 25 25 25 25 25 20 20 20 20 20 20 20 20 20 85 85 85 85 85 85 85 85 85 85 85 85 85
37	11.0 11.0 11.0 10.5 10.5 10.5 10.5 10.0 10.0
38	120 120 11.5 11.5 11.5 11.5 11.0 11.0 11.0 11.
39	13.0 13.0 12.5 12.5 12.5 12.5 12.5 12.5 12.0 12.0 11.5 11.5 11.5 11.5 11.5 11.0 11.0 11
40	14.5 14.0 14.0 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5
41	15.5 15.0 15.0 15.0 15.0 14.5 14.5 14.5 14.0 14.0 14.0 14.0 13.5 13.5 13.5 13.5 13.0 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5
42	14.5 14.5 14.5 14.0 14.0 14.0 14.0 14.0 14.0 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5
43	15.5 15.5 15.5 15.0 15.0 15.0 15.0 15.0
44	17.0 16.5 16.5 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0
45	18.0 18.0 18.0 18.0 18.0 17.5 17.0 17.0 17.0 17.0 17.0 17.0 17.0 15.10.5 10.5 10.5 10.5 10.5 10.0 10.0
40	10.5 10.5 10.5 10.5 10.5 10.5 10.5 18.5 18.0 18.0 18.0 18.0 18.0 18.0 17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5
47	20.5 20.5 20.5 20.5 20.5 20.0 20.0 20.0
48	22.0 22.0 21.5 21.5 21.5 21.5 21.0 21.0 21.0 21.0 21.0 20.5 20.5 20.5 20.0 20.0 20.0 20.0 20
40 50	23.0 23.0 22.5 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 21.0
51	24.0 23.5 23.5 23.5 23.0 23.5 23.5 23.5 23.5 23.5 23.5 23.5 <td< td=""></td<>
52	
53	
54	
55	
50	31.5 31.5 31.5 31.5 31.5 31.5 30.6 30.0 40.0 10.0 10.0 10.0 10.0 10.0 10.0 1
57	
58	320 31.0 31.0 31.0 31.0 31.0 31.0 31.0 31.
50	34.0 34.0 34.0 34.0 34.0 34.0 34.0 34.0
60	35.5 35.5 35.5 35.5 35.5 35.6 35.0 35.0 35.0 35.0 35.0 35.0 35.0 35.0
61	36.5 36.5 36.5 36.5 36.5 36.5 36.6 36.0 36.0 36.0 36.0 36.0 36.0 35.5 35.5 35.5 35.5 35.5 35.5 35.5 35
62	37.5 37.5 37.5 37.5 37.5 37.5 37.5 37.7 37.0 37.0 37.0 37.0 37.0 37.0 37.0

Explanatory notes and limitations regarding the use of this table follow Table 1-8e.

Table 1-8e PWR Fuel Qualification Table for Fuel with 1.2 kW per Assembly for the NUHOMS[®]-37PTH DSC


-	1/1		Joing the area reactor core discharge)
BU		Assembly Avera	age Initial Enrichment (wt. % U-235)
GWd/MTU	0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6		2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0
10	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0		3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0
15	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	1.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0
20	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0
25	3.0 3.0		3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0
28			3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0
29	3.5 3.5	15 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.	3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5
30	4.0 4.0	4.0 4.0 4.0 4.0 4.0 3.5 3.5 3.5 3.5 3.5 3.5 3.5	3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5
31		0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.	3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5
32			4.0 4.0 4.0 4.0 4.0 4.0 4.0 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5
33			4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0
34			4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0
35			4.5 4.5 4.5 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0
36			4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5
37			4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5
38			5.0 5.0 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5
39			5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
40			5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
41	6.0 6.0	10 6.0 6.0 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5	5.5 5.5 5.5 5.5 5.0 5.0 5.0 5.0 5.0 5.0
42			5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5
43			6.0 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5
44			6.0 6.0 6.0 6.0 6.0 6.0 6.0 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5
45			6.5 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0
46			6.5 6.5 6.5 6.5 6.5 6.5 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0
47			7.0 7.0 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5
48 49			7.0 7.0 7.0 7.0 7.0 7.0 7.0 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5
49			7.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 6.5
50	ļ		8.0 8.0 8.0 8.0 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5
52			8.0 8.0 8.0 8.0 8.0 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5
52			9.0 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0
54	ł		9.0 9.0 9.0 9.0 9.0 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0
55	l de la constante de		9.5 9.5 9.5 9.5 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5
56			
57			
58			
59			11.5 11.5 11.5 11.5 11.0 11.0 11.0 11.0
60			125 125 120 120 120 121 115 115 115 115 110 110 110 110 105 105
61			13.0 13.0 12.5 12.5 12.5 12.5 12.0 12.0 12.0 12.0 12.0 12.0 11.5 11.5 11.5 11.5 11.5 11.0 11.0
62			14.0 13.5 13.5 13.5 13.5 13.0 13.0 13.0 13.0 12.5 12.5 12.5 12.5 12.5 12.0 12.0 12.0 12.0 11.5
02			

Explanatory notes and limitations regarding the use of this table follow this table.

Notes for Tables 1-8a and 1-8c through 1-8e

- Burnup = assembly average burnup.
- Shaded regions in Tables 1-8a through 1-8e above are not analyzed.
- Use burnup and enrichment to look up minimum cooling time in years. Licensee is responsible for ensuring that uncertainties in fuel enrichment and burnup are correctly accounted for during fuel qualification.
- Round burnup UP to next higher entry, round enrichments DOWN to next lower entry.
- Fuel with an assembly average initial enrichment less than 0.7 (or less than the minimum provided above for each burnup) and greater than 5.0 wt% U-235 is unacceptable for storage.
- Fuel with a burnup greater than 62 GWd/MTU is unacceptable for storage.
- Fuel with a burnup less than 10 GWd/MTU is acceptable for storage after 3-years cooling.
- See Figures 1-38 through 1-40 for a description of the heat load zoning configurations.
- For reconstituted fuel assemblies with UO₂ rods and/or Zr rods or Zr pellets and/or stainless steel rods, use the assembly average equivalent enrichment to determine the minimum cooling time.
- If irradiated stainless steel rods are present in the reconstituted fuel assembly, add an additional 5.0 years of cooling time.
- The cooling times for damaged and intact assemblies are identical.
- For fuel assemblies containing BLEU fuel pellets, add 3.0 years of additional cooling time to the values shown in Tables 1-8a through 1-8e above.
- Example: An intact fuel assembly without CCs, with a decay heat load of 1.2 kW or less, an initial enrichment of 3.65 wt% U-235 and a burnup of 41.5 GWd/MTU is acceptable for storage after a 5.5 year cooling time as defined by 3.6 wt% U-235 (rounding down) and 42 GWd/MTU (rounding up) in Table 1-8e.

Table 1-8f Not Used Table 1-8g Not Used Table 1-8h Not Used

Note: The maximum planar average initial enrichment is specified as "initial enrichment."

Figure 1-1 PWR Fuel Criticality Acceptance Curve for the 24P DSC

	Zone 2	Zone 2	Zone 2	Zone 2	
Zone 2	Zone 1	Zone 1	Zone 1	Zone 1	Zone 2
Zone 2	Zone 1	Zone 1	Zone 1	Zone 1	Zone 2
Zone 2	Zone 1	Zone 1	Zone 1	Zone 1	Zone 2
Zone 2	Zone 1	Zone 1	Zone 1	Zone 1	Zone 2
	Zone 2	Zone 2	Zone 2	Zone 2	

	Zone 1	Zone 2
Max. Decay Heat / FA (kW)	0.63	0.87
Max. Decay Heat / Zone (kW)	10.08	13.92
Max. Decay Heat / DSC (kW)	24.0	

Figure 1-2 Heat Load Zoning Configuration 1 for the NUHOMS[®]-32PT DSC

	Zone 2	Zone 1	Zone 1	Zone 2	
Zone 2	Zone 1	Zone 1	Zone 1	Zone 1	Zone 2
Zone 1					
Zone 1					
Zone 2	Zone 1	Zone 1	Zone 1	Zone 1	Zone 2
	Zone 2	Zone 1	Zone 1	Zone 2	

	Zone 1	Zone 2
Max. Decay Heat / FA (kW)	0.6	1.2
Max. Decay Heat / Zone (kW)	14.4	9.6
Max. Decay Heat / DSC (kW)	t / DSC 24.0	

Figure 1-3 Heat Load Zoning Configuration 2 for the NUHOMS[®]-32PT DSC

	Zone 1	Zone 1	Zone 1	Zone 1	
Zone 1					
Zone 1					
Zone 1					
Zone 1					
	Zone 1	Zone 1	Zone 1	Zone 1	

	Zone 1
Max. Decay Heat/ FA (kW)	0.7
Max. Decay Heat/ Zone (kW)	22.4
Max. Decay Heat/ DSC (kW)	22.4

Figure 1-4 Heat Load Zoning Configuration 3 for the NUHOMS[®]-32PT DSC

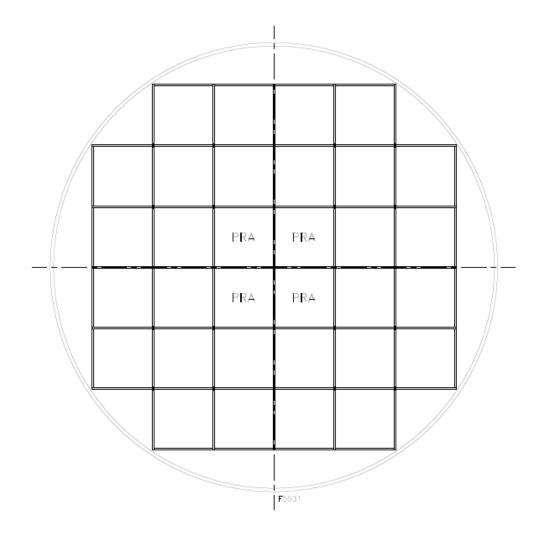
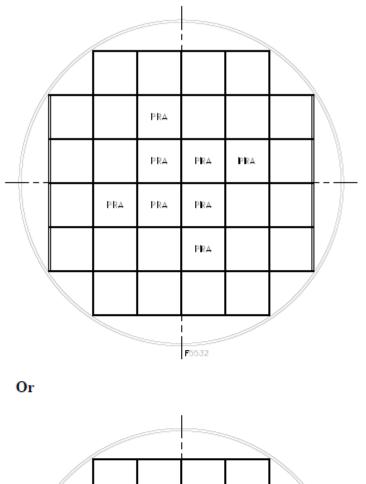



Figure 1-5 Required PRA Locations for the NUHOMS[®]-32PT DSC Configuration with Four PRAs

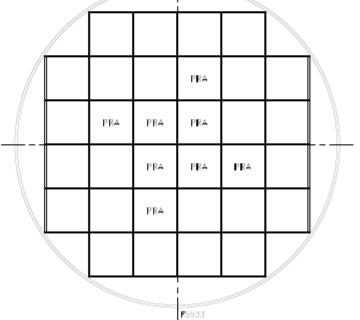


Figure 1-6 Required PRA Locations for the NUHOMS[®]-32PT DSC Configuration with Eight PRAs

Standardized NUHOMS® Technical Specifications Renewed Amendment No. 13, Revision No. 1

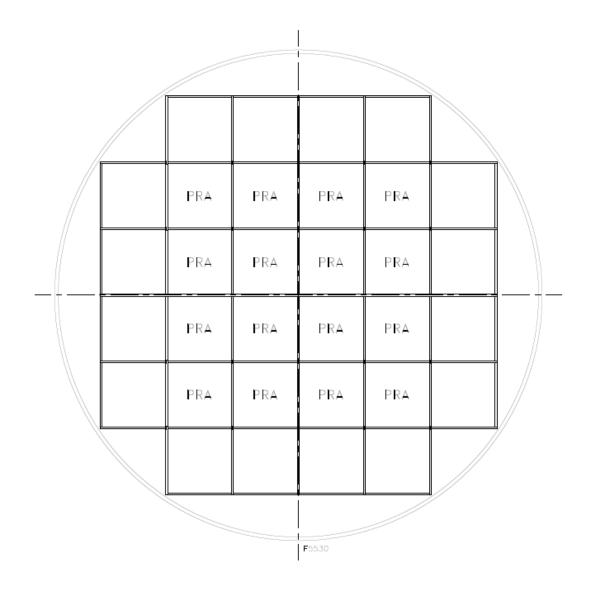
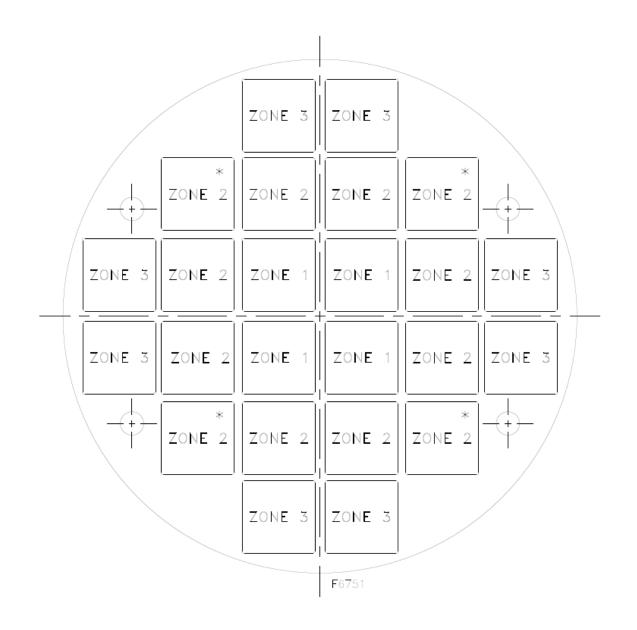
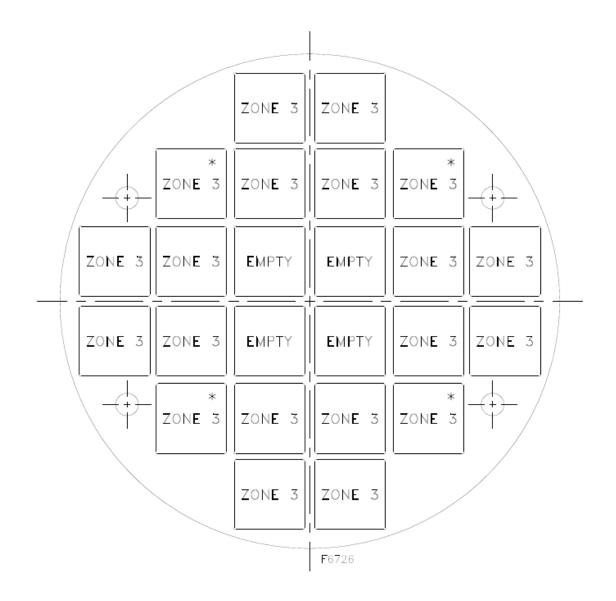



Figure 1-7 Required PRA Locations for the NUHOMS[®]-32PT DSC Configuration with Sixteen PRAs

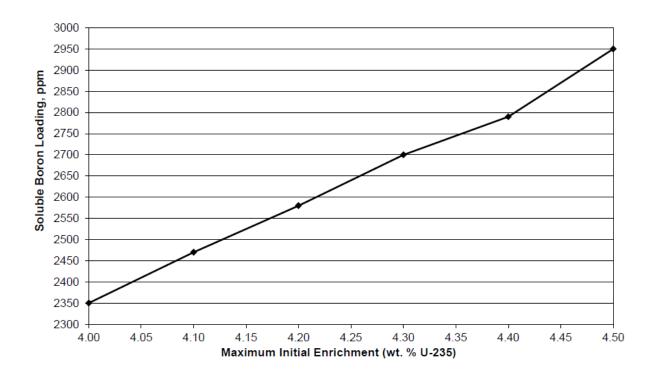


* DENOTES LOCATION WHERE INTACT OR DAMAGED FUEL ASSEMBLY CAN BE STORED.

	Zone 1	Zone 2	Zone 3
Maximum Decay Heat (kW/FA)	0.7	1	1.3
Maximum Decay Heat per Zone (kW)	2.8	10.8	10.4

Figure 1-8 Heat Load Zoning Configurations for Fuel Assemblies (with or without Control Components) Stored in NUHOMS[®]-24PHB DSC – Configuration 1

Standardized NUHOMS® Technical Specifications Renewed Amendment No. 13, Revision No. 1

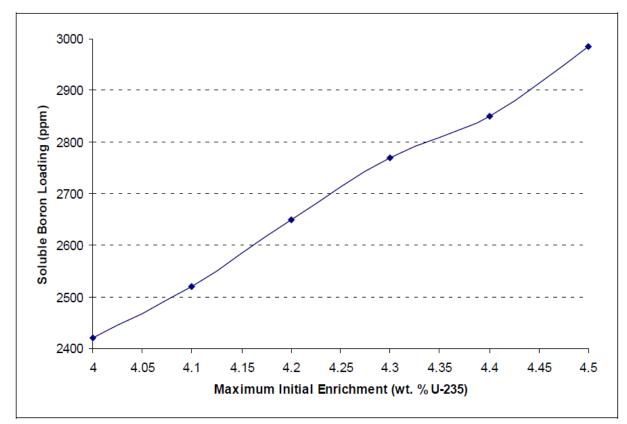

* DENOTES LOCATION WHERE INTACT OR DAMAGED FUEL ASSEMBLY CAN BE STORED.

	Zone 1	Zone 2	Zone 3
Maximum Decay Heat (kW/FA)	N/A	N/A	1.3
Maximum Decay Heat per Zone (kW)	N/A	N/A	24.0

Figure 1-9

Heat Load Zoning Configurations for Fuel Assemblies (with or without Control Components) Stored in NUHOMS[®]-24PHB DSC – Configuration 2

Figures

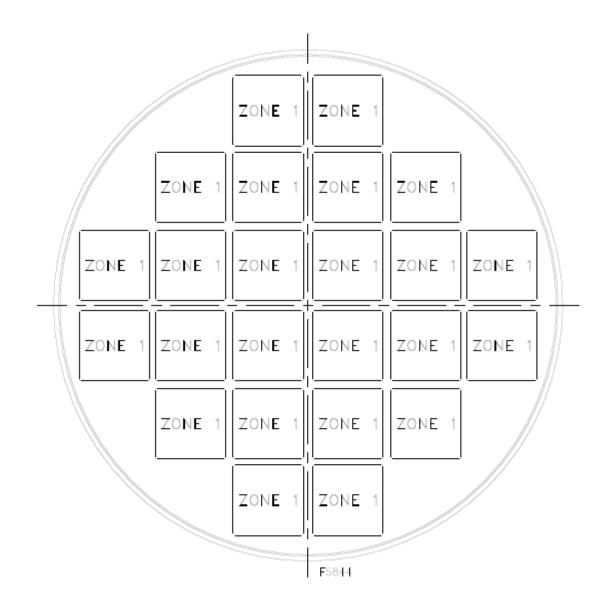


Linear Interpolation allowed between points.

Initial Enrichment	Boron Loading, ppm (when only intact assemblies are loaded)
≤4.0	2350
4.1	2470
4.2	2580
4.3	2700
4.4	2790
4.5	2950

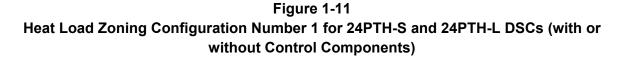
Note: The maximum planar average initial enrichment is specified as "initial enrichment."

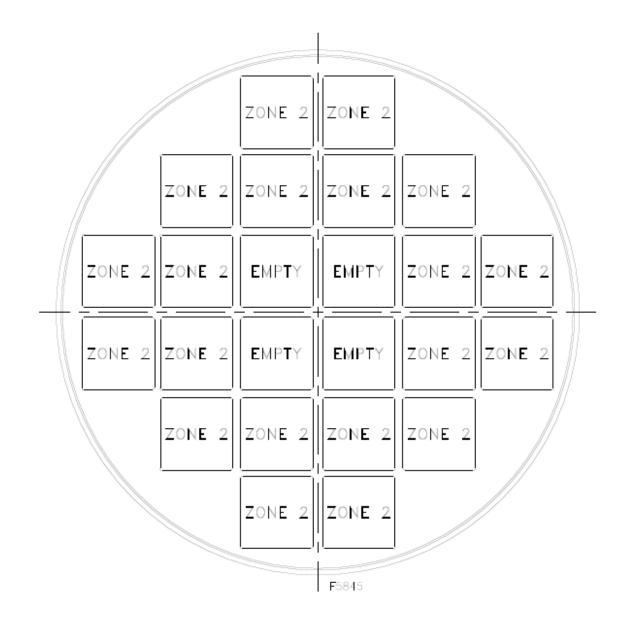
Figure 1-10 Soluble Boron Concentration vs. Fuel Initial U-235 Enrichment (Intact Fuel) for the NUHOMS[®] 24PHB System


Linear Interpolation allowed between points.

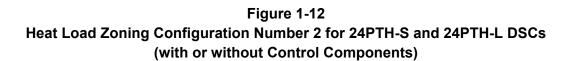
Initial Enrichment	Boron Loading, ppm (whenever damaged assemblies are loaded)
≤4.0	2420
4.1	2520
4.2	2650
4.3	2770
4.4	2850
4.5	2985

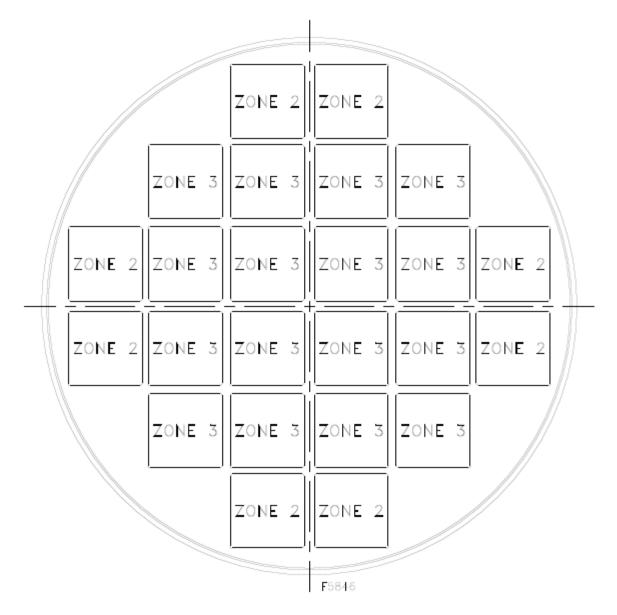
Note: The maximum planar average initial enrichment is specified as "Initial Enrichment."


Figure 1-10a Soluble Boron Concentration vs. Fuel Initial U-235 Enrichment (Damaged Fuel) for the NUHOMS[®] 24PHB System

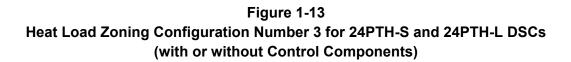

Figures

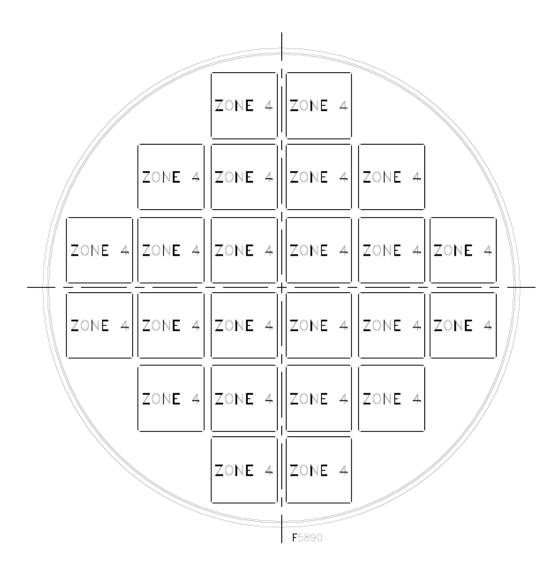
	Zone 1	Zone 2	Zone 3	Zone 4				
Maximum Decay Heat (kW/FA)	1.7 ⁽¹⁾	N/A	N/A	N/A				
Maximum Decay Heat per Zone (kW)	40.8	N/A	N/A	N/A				
(4) The maximum dependence of ellowed for failed fuel approximation is 4.0 WM/FA								


(1) The maximum decay heat load allowed for failed fuel assemblies is 1.0 kW/FA.



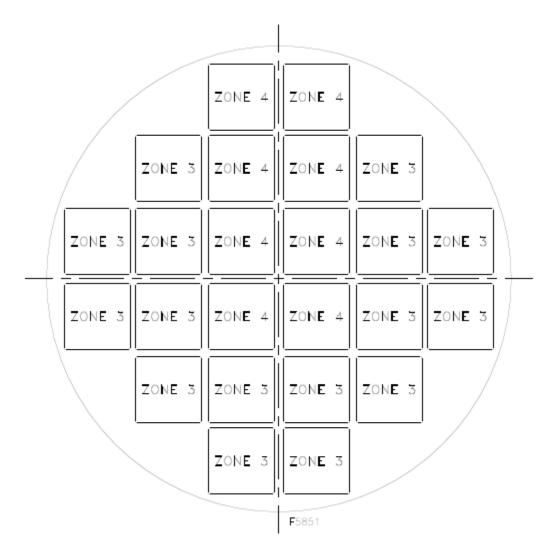
	Zone 1	Zone 2	Zone 3	Zone 4
Maximum Decay Heat (kW/FA)	N/A	2 ⁽¹⁾	N/A	N/A
Maximum Decay Heat per Zone (kW)	N/A	40	N/A	N/A


(1) The maximum decay heat load allowed for failed fuel assemblies is 1.0 kW/FA.



Zone 1	Zone 2	Zone 3	Zone 4
N/A	2 ⁽¹⁾	1.5	N/A
N/A	16	24	N/A
	N/A	N/A 2 ⁽¹⁾	N/A 2 ⁽¹⁾ 1.5

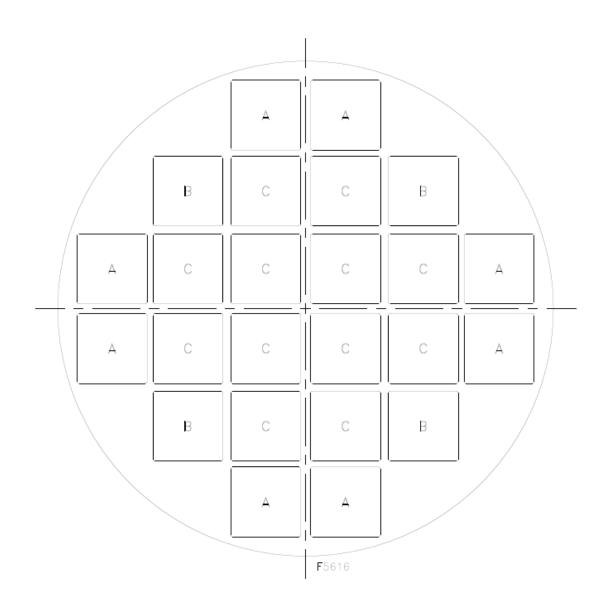
(1) The maximum decay heat load allowed for failed fuel assemblies is 1.0 kW/FA.



Zone 1	Zone 2	Zone 3	Zone 4
N/A	N/A	N/A	1.3 ⁽¹⁾
N/A	N/A	N/A	31.2
	N/A	N/A N/A	N/A N/A N/A

(1) The maximum decay heat load allowed for failed fuel assemblies is 0.6 kW/FA.

Figure 1-14
Heat Load Zoning Configuration Number 4 for 24PTH-S and 24PTH-L DSCs
(with or without Control Components)



	Zone 1	Zone 2	Zone 3	Zone 4
Maximum Decay Heat (kW/FA)	N/A	N/A	1.5 ⁽³⁾	1.3 ⁽³⁾
Maximum Decay Heat per Zone (kW)	N/A	N/A	Note 1	10.4

- 1. Fuel assemblies with a maximum heat load of 1.5 kW are permitted in Zone 3 as long as the total of 24 kW/canister maximum heat load is maintained.
- 2. This configuration is applicable to Basket Types 2A, 2B, or 2C only (without aluminum inserts)
- 3. The maximum decay heat load allowed for failed fuel assemblies is 0.6 kW/FA. If damaged fuel assemblies are loaded with the failed fuel assemblies in the same basket, the maximum decay heat load allowed for damaged fuel assemblies is also 0.6 kW/FA.

Figure 1-15

Heat Load Zoning Configuration Number 5 for 24PTH-S and 24PTH-L DSCs (with or without Control Components)⁽²⁾

Notes:

- 1. Locations identified as "A" are for placement of up to 8 damaged or failed fuel assemblies (balance intact).
- 2. Locations identified as "B" are for placement of up to 4 additional damaged fuel assemblies (Maximum of 12 damaged fuel assemblies allowed, Locations "A" and "B" combined, balance intact).
- 3. Locations identified as "C" are for placement of up to 12 intact fuel assemblies, including 4 empty slots in the center as shown in Figure 1-12.

Figure 1-16 Location of Damaged Fuel Inside 24PTH DSC⁽¹⁾⁽²⁾⁽³⁾

Standardized NUHOMS® Technical Specifications Renewed Amendment No. 13, Revision No. 1

			_						
	_		ZONE 3	ZONE 3	ZONE 3				
	ZONE 3								
	ZONE 3								
ZONE 3									
ZONE 3									
ZONE 3									
	ZONE 3								
	ZONE 3								
			ZONE 3	ZONE 3	ZONE 3				

	Zone 1	Zone 2	Zone 3	Zone 4	Zone 5	Zone 6
Maximum Decay Heat (kW/FA)	NA	NA	0.393	NA	NA	NA
Maximum Decay Heat per Zone (kW)	NA	NA	22.0	NA	NA	NA
Maximum Decay Heat per DSC (kW)	22.0					

Figure 1-17
Heat Load Zoning Configuration Number 1 for Type 1 or Type 2 61BTH DSCs

			ZONE 5	ZONE 5	ZONE 5			
	ZONE 4							
_	ZONE 4	ZONE 2	ZONE 4					
ZONE 5	ZONE 4	ZONE 2	ZONE 4	ZONE 5				
ZONE 5	ZONE 4	ZONE 2	ZONE 4	ZONE 5				
ZONE 5	ZONE 4	ZONE 2	ZONE 4	ZONE 5				
_	ZONE 4	ZONE 2	ZONE 4					
	ZONE 4							
			ZONE 5	ZONE 5	ZONE 5			

	Zone 1	Zone 2	Zone 3	Zone 4	Zone 5	Zone 6			
Maximum Decay Heat (kW/FA)	NA	0.35	NA	0.48	0.54	NA			
Maximum Decay Heat per Zone (kW)	NA	8.75	NA	11.52	6.48	NA			
Maximum Decay Heat per DSC (kW)		22.0 ⁽¹⁾							

Notes

1: Adjust payload to maintain total DSC heat load within the specified limit.

Figure 1-18 Heat Load Zoning Configuration Number 2 for Type 1 or Type 2 61BTH DSCs

			ZONE 2	ZONE 2	ZONE 2				
	ZONE 2								
	ZONE 2								
ZONE 2									
ZONE 2									
ZONE 2									
	ZONE 2	`							
	ZONE 2								
·			ZONE 2	ZONE 2	ZONE 2				
			0						

	Zone 1	Zone 2	Zone 3	Zone 4	Zone 5	Zone 6		
Maximum Decay Heat (kW/FA)	NA	0.35	NA	NA	NA	NA		
Maximum Decay Heat per Zone (kW)	NA	19.4	NA	NA	NA	NA		
Maximum Decay Heat per DSC (kW)	19.4							

Figure 1-19
Heat Load Zoning Configuration Number 3 for Type 1 or Type 2 61BTH DSCs

			ZONE 5	ZONE 5	ZONE 5			
	ZONE 4							
	ZONE 4	ZONE 2	ZONE 4					
ZONE 5	ZONE 4	ZONE 2	ZONE 1	ZONE 1	ZONE 1	ZONE 2	ZONE 4	ZONE 5
ZONE 5	ZONE 4	ZONE 2	ZONE 1	ZONE 1	ZONE 1	ZONE 2	ZONE 4	ZONE 5
ZONE 5	ZONE 4	ZONE 2	ZONE 1	ZONE 1	ZONE 1	ZONE 2	ZONE 4	ZONE 5
	ZONE 4	ZONE 2	ZONE 4					
	ZONE 4							
			ZONE 5	ZONE 5	ZONE 5			-

	Zone 1	Zone 2	Zone 3	Zone 4	Zone 5	Zone 6	
Maximum Decay Heat (kW/FA)	0.22	0.35	NA	0.48	0.54	NA	
Maximum Decay Heat per Zone (kW)	1.98	5.60	NA	11.52	6.48	NA	
Maximum Decay Heat per DSC (kW)	19.4 ⁽¹⁾						

1: Adjust payload to maintain total DSC heat load within the specified limit.

Figure 1-20 Heat Load Zoning Configuration Number 4 for Type 1 or Type 2 61BTH DSC

			Zone	e 1 Zone	2 Zone 3	Zone 4	Zone 5	Zone 6	
	•		ZONE 5	ZONE 5	ZONE 5			_	
ZONE 5		ZONE 5	ZONE 5	ZONE 5	ZONE 5	ZONE 5	ZONE 5		
ZONE 5		ZONE 5	ZONE 5	ZONE 5	ZONE 5	ZONE 5	ZONE 5		
ZONE 5	ZONE 5	ZONE 5	ZONE 2	ZONE 2	ZONE 2	ZONE 5	ZONE 5	ZONE	5
ZONE 5	ZONE 5	ZONE 5	ZONE 2	ZONE 2	ZONE 2	ZONE 5	ZONE 5	ZONE	5
ZONE 5	ZONE 5	ZONE 5	ZONE 2	ZONE 2	ZONE 2	ZONE 5	ZONE 5	ZONE	5
ZONE 5		ZONE 5	ZONE 5	ZONE 5	ZONE 5	ZONE 5	ZONE 5		
ZONE 5		ZONE 5	ZONE 5	ZONE 5	ZONE 5	ZONE 5	ZONE 5		
			ZONE 5	ZONE 5	ZONE 5		_	_	
r	Г			ZONE 5	ZONE 5 ZONE 5	ZONE 5 ZONE 5 ZONE 5			

	Zone 1	Zone 2	Zone 3	Zone 4	Zone 5	Zone 6	
Maximum Decay Heat (kW/FA)	NA	0.35	NA	NA	0.54	NA	
Maximum Decay Heat per Zone (kW)	NA	3.15	NA	NA	28.08	NA	
Maximum Decay Heat per DSC (kW)	31.2 ⁽¹⁾						

1: Adjust payload to maintain total DSC heat load within the specified limit.

Figure 1-21 Heat Load Zoning Configuration Number 5 for Type 2 61BTH DSCs

				ZONE 5	ZONE 5	ZONE 5			
		ZONE 4	ZONE 4	ZONE 4	ZONE 4	ZONE 4	ZONE 4	ZONE 4	
_		ZONE 4	ZONE 6	ZONE 6	ZONE 6	ZONE 6	ZONE 6	ZONE 4	
ZON	E 5	ZONE 4	ZONE 6	ZONE 1	ZONE 1	ZONE 1	ZONE 6	ZONE 4	ZONE 5
ZON	E 5	ZONE 4	ZONE 6	ZONE 1	ZONE 1	ZONE 1	ZONE 6	ZONE 4	ZONE 5
ZON	E 5	ZONE 4	ZONE 6	ZONE 1	ZONE 1	ZONE 1	ZONE 6	ZONE 4	ZONE 5
		ZONE 4	ZONE 6	ZONE 6	ZONE 6	ZONE 6	ZONE 6	ZONE 4	
		ZONE 4	ZONE 4	ZONE 4	ZONE 4	ZONE 4	ZONE 4	ZONE 4	
	·			ZONE 5	ZONE 5	ZONE 5			
ZON	E 5	ZONE 4 ZONE 4 ZONE 4	ZONE 6 ZONE 6 ZONE 6	ZONE 1 ZONE 1 ZONE 6 ZONE 4	ZONE 1 ZONE 1 ZONE 6 ZONE 4	ZONE 1 ZONE 1 ZONE 6 ZONE 4	ZONE 6 ZONE 6 ZONE 6	ZONE ZONE ZONE	4

	Zone 1	Zone 2	Zone 3	Zone 4	Zone 5	Zone 6	
Maximum Decay Heat (kW/FA)	0.22	NA	NA	0.48	0.54	0.70	
Maximum Decay Heat per Zone (kW)	1.98	NA	NA	11.52	6.48	11.20	
Maximum Decay Heat per DSC (kW)	31.2 ⁽¹⁾						

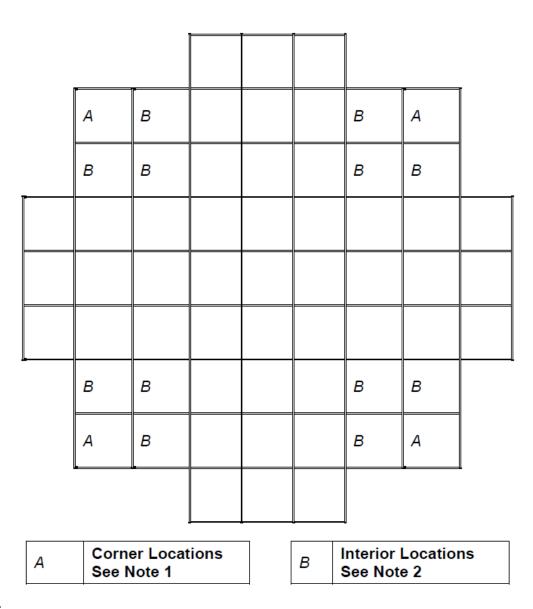
1: Adjust payload to maintain total DSC heat load within the specified limit.

Figure 1-22 Heat Load Zoning Configuration Number 6 for Type 2 61BTH DSCs

							_			
				ZONE 5	ZONE 5	ZONE 5				
		ZONE 5								
		ZONE 5	ZONE 4	ZONE 5						
	ZONE 5	ZONE 5	ZONE 4	ZONE 5	ZONE 5					
	ZONE 5	ZONE 5	ZONE 4	ZONE 5	ZONE 5					
	ZONE 5	ZONE 5	ZONE 4	ZONE 5	ZONE 5					
-		ZONE 5	ZONE 4	ZONE 5		•				
		ZONE 5								
				ZONE 5	ZONE 5	ZONE 5			-	

	Zone 1	Zone 2	Zone 3	Zone 4	Zone 5	Zone 6	
Maximum Decay Heat (kW/FA)	NA	NA	NA	0.48	0.54	NA	
Maximum Decay Heat per Zone (kW)	NA	NA	NA	12.00	19.44	NA	
Maximum Decay Heat per DSC (kW)	31.2 ⁽¹⁾						

2: Adjust payload to maintain total DSC heat load within the specified limit.


Figure 1-23 Heat Load Zoning Configuration Number 7 for Type 2 61BTH DSCs

			ZONE 5	ZONE 5	ZONE 5			_	
	ZONE 4								
_	ZONE 4	ZONE 3	ZONE 4						
ZONE 5	ZONE 4	ZONE 3	ZONE 2	ZONE 2	ZONE 2	ZONE 3	ZONE 4	ZONE 5	
ZONE 5	ZONE 4	ZONE 3	ZONE 2	ZONE 2	ZONE 2	ZONE 3	ZONE 4	ZONE 5	
ZONE 5	ZONE 4	ZONE 3	ZONE 2	ZONE 2	ZONE 2	ZONE 3	ZONE 4	ZONE 5	
	ZONE 4	ZONE 3	ZONE 4						
	ZONE 4								
			ZONE 5	ZONE 5	ZONE 5				

	Zone 1	Zone 2	Zone 3	Zone 4	Zone 5	Zone 6	
Maximum Decay Heat (kW/FA)	NA	0.35	0.393	0.48	0.54	NA	
Maximum Decay Heat per Zone (kW)	NA	3.15	6.288	11.52	6.48	NA	
Maximum Decay Heat per DSC (kW)	27.4 ⁽¹⁾						

1: Adjust payload to maintain total DSC heat load within the specified limit.

Figure 1-24 Heat Load Zoning Configuration Number 8 for Type 2 61BTH DSCs

Note:

- 1.S These corner locations shall only be used to load up to four damaged or failed assemblies with the remaining intact in a 61BTH Basket. The maximum lattice average initial enrichment of assemblies (damaged or intact stored in the 2x2 cells) is limited to the "Up to 4 Damaged Assemblies" column of Table 1-1w. For the Type 2 DSC containing failed fuel assemblies, this enrichment is limited to the "Up to 4 Failed Assemblies" column of Table 1-1w1.
- 2. If loading more than four damaged assemblies, place first four damaged assemblies in the corner locations per Note 1, and up to 12 additional damaged assemblies in these interior locations, with the remaining intact in a 61BTH Basket. The maximum lattice average initial enrichment of assemblies (damaged or intact stored in the 2x2 cells) is limited to the "Five or More Damaged Assemblies" column of Table 1-1w. For the Type 2 DSC containing failed fuel assemblies, this enrichment is limited to the "and up to 12 Damaged Assemblies" column of Table 1-1w1.

Figure 1-25 Location of Damaged and Failed Fuel Inside 61BTH DSC

;

	Zone 6	Zone 6	Zone 6	Zone 6	
Zone 6	Zone 5 *	Zone 5 *	Zone 5 *	Zone 5 *	Zone 6
Zone 6	Zone 5 *	Zone 1 *	Zone 1*	Zone 5 *	Zone 6
Zone 6	Zone 5 *	Zone 1 *	Zone 1*	Zone 5 *	Zone 6
Zone 6	Zone 5 *	Zone 5 *	Zone 5 *	Zone 5 *	Zone 6
	Zone 6	Zone 6	Zone 6	Zone 6	

* denotes location where INTACT or DAMAGED FUEL ASSEMBLY can be stored.

	Zone 1	Zone 2	Zone 3	Zone 4	Zone 5	Zone 6
Max. Decay Heat/ FA (kW)	0.6	N/A	N/A	N/A	1.3 ⁽¹⁾	1.5
Max. Decay Heat/Zone (kW)	2.4	N/A	N/A	N/A	15.6	24.0
Max. Decay Heat/ DSC (kW)			40.	8(2)		

Notes:

1: 1.2 kW per FA is the maximum decay heat allowed for damaged fuel assemblies.

2: Adjust payload to maintain 40.8 kW heat load.

Figure 1-26 Heat Load Zoning Configuration Number 1 for 32PTH1-S, 32PTH1-M and 32PTH1-L DSCs (Type 1 Baskets)

	Zone 4	Zone 4	Zone 4	Zone 4	
Zone 4	Zone 4 *	Zone 4 *	Zone 4 *	Zone 4 *	Zone 4
Zone 4	Zone 4 *	Zone 3 *	Zone 3 *	Zone 4 *	Zone 4
Zone 4	Zone 4 *	Zone 3 *	Zone 3 *	Zone 4 *	Zone 4
Zone 4	Zone 4 *	Zone 4 *	Zone 4 *	Zone 4 *	Zone 4
	Zone 4	Zone 4	Zone 4	Zone 4	

* denotes location where INTACT or DAMAGED FUEL ASSEMBLY can be stored.

	Zone 1	Zone 2	Zone 3	Zone 4	Zone 5	Zone 6
Max. Decay Heat/ FA (kW)	N/A	N/A	0.96 ⁽²⁾	0.98 ⁽²⁾	N/A	N/A
Max. Decay Heat/Zone (kW)	N/A	N/A	3.84	27.44	N/A	N/A
Max. Decay Heat/ DSC (kW)			31.	2(1)		

Notes:

1: Adjust payload to maintain 31.2 kW heat load.

2: The fuel qualification table corresponding to 1.0 kW/FA shall be used to determine burnup, cooling time, and enrichments corresponding to these heat loads.

Figure 1-27

Heat Load Zoning Configuration Number 2 for 32PTH1-S, 32PTH1-M and 32PTH1-L DSCs (Type 1 or Type 2 Baskets)

	Zone 2	Zone 2	Zone 2	Zone 2	
Zone 2	Zone 2 *	Zone 2 *	Zone 2 *	Zone 2 *	Zone 2
Zone 2	Zone 2 *	Zone 2 *	Zone 2 *	Zone 2 *	Zone 2
Zone 2	Zone 2 *	Zone 2 *	Zone 2 *	Zone 2 *	Zone 2
Zone 2	Zone 2 *	Zone 2 *	Zone 2 *	Zone 2 *	Zone 2
	Zone 2	Zone 2	Zone 2	Zone 2	

* denotes location where INTACT or DAMAGED FUEL ASSEMBLY can be stored.

	Zone 1	Zone 2	Zone 3	Zone 4	Zone 5	Zone 6
Max. Decay Heat / FA (kW)	N/A	0.8	N/A	N/A	N/A	N/A
Max. Decay Heat / Zone (kW)	N/A	24.0	N/A	N/A	N/A	N/A
Max. Decay Heat / DSC (kW)			24.0 ⁽¹⁾			

Notes:

1: Adjust payload to maintain 24.0 kW heat load.

Figure 1-28 Heat Load Zoning Configuration Number 3 for 32PTH1-S, 32PTH1-M and 32PTH1-L DSCs (Type 1 or Type 2 Baskets)

						-			
			2	2	2			_	
	2	2	2	2	2	2	2		
	2	2	2	1	2	2	2		
2	2	2	1	1	1	2	2	2	
2	2	1	1	1	1	1	2	2	
2	2	2	1	1	1	2	2	2	
JI	2	2	2	1	2	2	2		1
	2	2	2	2	2	2	2		
	<u> </u>	<u> </u>	2	2	2		<u> </u>	1	
			ļ	ļ]		1	

Heat Zone Level	Zone 1	Zone 2	
Max. Decay Heat/FA (kW)	0.3	0.17	
Number of FAs/Zone	13	48	
Max. Decay Heat/Zone (kW)	3.9	8.2	
Max. Decay Heat/DSC (kW)	12.0		

Figure 1-29 Heat Load Zone Configuration for the 61BT DSC Contained in an OS197L TC

	2	2	2	2	
2	2	1	1	2	2
2	1	1	1	1	2
2	1	1	1	1	2
2	2	1	1	2	2
+	2	2	2	2	

Heat Zone Level	Zone 1	Zone 2
Max. Decay Heat/FA (kW)	0.6	0.4
Number of FAs/Zone	12	20
Max. Decay Heat/Zone (kW)	7.2	8.0
Max. Decay Heat/DSC (kW)	13.0) (1)

(1) Maximum decay heat load allowed in the OS197L TC.

Figure 1-30 Heat Load Zone Configuration for the 32PT DSC Contained in an OS197L TC

		Z 6						
	Z 6	Z 5	Z 5	Z4	Z 5	Z 5	Z 6	
Z 6	Z 5	Z4	Z 4	Z 3	Z4	Z4	Z 5	Z 6
Z 6	Z 5	Z4	Z 3	Z 2	Z 3	Z4	Z 5	Z 6
Z 6	Z4	Z 3	Z 3	Z1	Z 3	Z 3	Z 4	Z 6
Z 6	Z 5	Z4	Z 3	Z 2	Z 3	Z4	Z 5	Z 6
Z 6	Z 5	Z4	Z4	Z 3	Z4	Z4	Z 5	Z 6
	Z 6	Z 5	Z 5	Z4	Z 5	Z 5	Z 6	
		Z 6		•				

	Zone 1	Zone 2	Zone 3	Zone 4	Zone 5	Zone 6
Max. Decay Heat (kW/FA) ⁽³⁾	0.10	0.27	0.30	0.40	0.55	0.45
Number of Fuel Assemblies ⁽¹⁾	1	2	10	16	16	24
Max. Decay Heat per Zone (kW) ⁽³⁾	0.10	0.54	3.0	6.4	8.8	10.8
Max. Decay Heat per DSC (kW)	26.0 ⁽²⁾⁽³⁾					

(1) Total number of fuel assemblies is 69.

(2) Adjust payload to maintain the total DSC heat load within the specified limit.

(3) Reduce the maximum decay heat to 70% of the listed values for LaCrosse fuel assembly. The total decay heat for LaCrosse fuel assembly is 18.2 kW per DSC.

Figure 1-31 Heat Load Zoning Configuration Number 1 for 69BTH DSCs

		Z 5						
	Z 5	Z4	Z 4	Z4	Z4	Z4	Z 5	
Z 5	Z4	Z4	Z 3	Z 3	Z 3	Z4	Z4	Z 5
Z 5	Z4	Z 3	Z 2	Z 2	Z 2	Z 3	Z4	Z 5
Z 5	Z4	Z 3	Z 2	Z1	Z 2	Z 3	Z 4	Z 5
Z 5	Z 4	Z 3	Z 2	Z 2	Z 2	Z 3	Z 4	Z 5
Z 5	Z4	Z4	Z 3	Z 3	Z 3	Z 4	Z4	Z 5
	Z 5	Z4	Z 4	Z 4	Z 4	Z4	Z 5	
		Z 5						

	Zone 1	Zone 2	Zone 3	Zone 4	Zone 5
Max. Decay Heat (kW/FA) ⁽⁴⁾	0.25	0.0 ⁽¹⁾	0.40	0.60	0.50
Number of Fuel Assemblies ⁽²⁾	1	0	12	24	24
Max. Decay Heat per Zone (kW) ⁽⁴⁾	0.25	0	4.8	14.4	12.0
Max. Decay Heat per DSC (kW)	26.0 ⁽³⁾⁽⁴⁾				

(1) Aluminum dummy assemblies replace the fuel assemblies in Zone 2.

(2) Total number of fuel assemblies is 61.
(3) Adjust payload to maintain the total DSC heat load within the specified limit.

(4) Reduce the maximum decay heat to 70% of the listed values for LaCrosse fuel assembly. The total decay heat for LaCrosse fuel assembly is 18.2 kW per DSC.

Figure 1-32 Heat Load Zoning Configuration Number 2 for 69BTH DSCs

		Z 5						
	Z 5	Z4	Z 4	Z 4	Z 4	Z4	Z 5	
Z 5	Z4	Z4	Z 3	Z 3	Z 3	Z4	Z4	Z 5
Z 5	Z4	Z 3	Z 2	Z 2	Z 2	Z 3	Z4	Z 5
Z 5	Z4	Z 3	Z 2	Z1	Z 2	Z 3	Z4	Z 5
Z 5	Z4	Z 3	Z 2	Z 2	Z 2	Z 3	Z4	Z 5
Z 5	Z4	Z4	Z 3	Z 3	Z 3	Z4	Z4	Z 5
	Z 5	Z4	Z4	Z4	Z4	Z4	Z 5	
		Z 5						

	Zone 1	Zone 2	Zone 3	Zone 4	Zone 5
Max. Decay Heat (kW/FA) ⁽⁴⁾	0.25	0.0 ⁽¹⁾	0.40	0.60	0.50
Number of Fuel Assemblies ⁽²⁾	1	0	12	24	24
Max. Decay Heat per Zone (kW) ⁽⁴⁾	0.25	0	4.8	14.4	12.0
Max. Decay Heat per DSC (kW)	29.2 ⁽³⁾⁽⁴⁾				

- (1) Aluminum dummy assemblies replace the fuel assemblies in Zone 2.
- (2) Total number of fuel assemblies is 61.
 (3) Adjust payload to maintain the total DSC heat load within the specified limit.
- (4) Reduce the maximum decay heat to 70% of the listed values for LaCrosse fuel assembly. The total decay heat for LaCrosse fuel assembly is 20.4 kW per DSC.

Figure 1-33 Heat Load Zoning Configuration Number 3 for 69BTH DSCs

		Z 5						
	Z 5	Z4	Z 4	Z4	Z 4	Z4	Z 5	
Z 5	Z4	Z 3	Z 4	Z 5				
Z 5	Z 4	Z 3	Z 2	Z 2	Z 2	Z 3	Z 4	Z 5
Z 5	Z4	Z 3	Z 2	Z1	Z 2	Z 3	Z4	Z 5
Z 5	Z4	Z 3	Z 2	Z 2	Z 2	Z 3	Z4	Z 5
Z 5	Z4	Z 3	Z4	Z 5				
	Z 5	Z4	Z 4	Z4	Z 4	Z4	Z 5	
		Z 5		•				

	Zone 1	Zone 2	Zone 3	Zone 4	Zone 5	
Max. Decay Heat (kW/FA) ⁽³⁾	0.0 ⁽¹⁾	0.45	0.0 ⁽¹⁾	0.70	0.60	
Number of Fuel Assemblies ⁽²⁾	0	8	0	20	24	
Max. Decay Heat per Zone (kW) ⁽³⁾	0	3.6	0	14.0	14.4	
Max, Decay Heat per DSC (kW)	32.0 ⁽³⁾					

(1) Aluminum dummy assemblies replace the fuel assemblies in Zones 1 and 3.

(2) Total number of fuel assemblies is 52.

(3) Reduce the maximum decay heat to 70% of the listed values for LaCrosse fuel assembly. The total decay heat for LaCrosse fuel assembly is 22.4 kW per DSC.

Figure 1-34 Heat Load Zoning Configuration Number 4 for 69BTH DSCs

		Z 5						
_	Z 5	Z4	Z4	Z4	Z4	Z4	Z 5	
Z 5	Z4	Z 3	Z 4	Z 5				
Z 5	Z4	Z 3	Z 2	Z 2	Z 2	Z 3	Z 4	Z 5
Z 5	Z4	Z 3	Z 2	Z1	Z 2	Z 3	Z 4	Z 5
Z 5	Z4	Z 3	Z 2	Z 2	Z 2	Z 3	Z 4	Z 5
Z 5	Z4	Z 3	Z4	Z 5				
	Z 5	Z4	Z 4	Z4	Z4	Z4	Z 5	
		Z 5						

	Zone 1	Zone 2	Zone 3	Zone 4	Zone 5
Max. Decay Heat (kW/FA) ⁽²⁾	0.22	0.35	0.393	0.70	0.488
Number of Fuel Assemblies ⁽¹⁾	1	8	16	20	24
Max. Decay Heat per Zone (kW) ⁽²⁾	0.22	2.80	6.29	14.00	11.71
Max. Decay Heat per DSC (kW)			35.0(2)		

(1) Total number of fuel assemblies is 69.

(2) Reduce the maximum decay heat to 70% of the listed values for LaCrosse fuel assembly. The total decay heat for LaCrosse fuel assembly is 24.5 kW per DSC.

Figure 1-35 Heat Load Zoning Configuration Number 5 for 69BTH DSC

	_	Z 4						
	Z4	Z 3	Z 4	Z 3	Z 3	Z 3	Z4	
Z 4	Z 3	Z 2	Z 3	Z 4				
Z 4	Z 3	Z 2	Z1	Z1	Z1	Z 2	Z 3	Z 4
Z 4	Z 3	Z 2	Z1	Z1	Z1	Z 2	Z 3	Z 4
Z 4	Z 3	Z 2	Z1	Z 2	Z1	Z 2	Z 3	Z 4
Z 4	Z 3	Z 2	Z 3	Z 4				
	Z4	Z 3	Z 4	Z 3	Z 3	Z 3	Z4	
		Z4	Z 4	Z 4	Z 4	Z 4		

	Zone 1	Zone 2	Zone 3	Zone 4	
Max. Decay Heat (kW/FA) ⁽²⁾	0.22	0.35	0.393	0.35	
Number of Fuel Assemblies ⁽¹⁾	9	16	20	24	
Max. Decay Heat per Zone (kW) ⁽²⁾	1.98	5.6	7.86	8.40	
Max. Decay Heat per DSC (kW)	24.0 ⁽²⁾				

(1) Total number of fuel assemblies is 69.

(2) Reduce the maximum decay heat to 70% of the listed values for LaCrosse fuel assembly. The total decay heat for LaCrosse fuel assembly is 16.8 kW per DSC.

Figure 1-36 Heat Load Zoning Configuration Number 6 for 69BTH DSC

							-	
		1*				2**		_
	3	4				4	3	
2**	4	4				4	4	1*
1*	4	4				4	4	2**
	3	4				4	3	
		2**				1*		L
		<u>u</u>	0	(1)	<u>u</u> i			

Configurations⁽¹⁾ 1, 2, 3, and 4

Any one of these three sets of corner locations shall only be utilized to load up to four damaged assemblies with the remaining intact in a 69BTH Basket. The maximum lattice average initial enrichment of fuel assemblies (damaged or intact stored in either set of cells for configuration 1 or configuration 2, or set of cells for configuration 3) is limited to the "up to 4 damaged assemblies" column of Table 1-1kk. Following the placement of damaged fuel assemblies in either configuration 1 or 2, the remaining configuration 2 or configuration 1 locations shall be used to load up to 4 additional damaged Note assemblies, with the remaining intact in a 69BTH Basket. The maximum lattice average initial enrichment for these fuel assemblies (damaged or intact stored in configuration 2 or configuration (1) 1 cells available) is limited to the "5 to 8 damaged assemblies" column of Table 1-1kk. Following the placement of eight damaged fuel assemblies in the set of corner locations marked with a "*" (configuration 1 cells) and a "**" (configuration 2 cells), the locations in configuration 4 cells or configuration 3 cells shall be used to load up to sixteen additional damaged assemblies, with the remaining intact in a 69BTH Basket. The maximum lattice average initial enrichment for all 24 fuel assemblies (damaged or intact stored in these 24 locations) is limited to the "9 to 24 Damaged Assemblies" column of Table 1-1kk.

Figure 1-37

Location of Damaged Fuel Assemblies Inside 69BTH DSC

Standardized NUHOMS® Technical Specifications Renewed Amendment No. 13, Revision No. 1

Figure 1-38 Not Used

		Z4	Z4	Z4		
	Z4*	Z3	Z3	Z3	Z4*	
Z4	Z3	Z2	Z2	Z2	Z3	Z4
Z4	Z3	Z2	Z1	Z2	Z3	Z4
Z4	Z3	Z2	Z2	Z2	Z3	Z4
	Z4*	Z3	Z3	Z3	Z4*	
		Z4	Z4	Z4		

* Denotes locations where damaged fuel assembly can be stored.

	Zone 1	Zone 2	Zone 3	Zone 4
Max. decay heat (kW/FA)	0.40	0.40	0.60	0.70
Number of fuel assemblies	1	8	12	16
Max. decay heat per zone (kW)	0.4	3.2	7.2	11.2
Max. decay heat per DSC (kW)	22.0			

Figure 1-39 Heat Load Zoning Configuration Number 2 for 37PTH-S and 37PTH-M DSCs

		Z4	Z4	Z4		
	Z5*	Z3	Z3	Z3	Z5*	
Z4	Z3	Z2	Z2	Z2	Z3	Z4
Z4	Z3	Z2	Z1	Z2	Z3	Z4
Z4	Z3	Z2	Z2	Z2	Z3	Z4
	Z5*	Z3	Z3	Z3	Z5*	
		Z4	Z4	Z4		

* Denotes locations where either an intact or damaged fuel assembly can be stored.

	Zone 1	Zone 2	Zone 3	Zone 4	Zone 5
Max. decay heat (kW/FA)	0.40	0.40	0.70	1.20	1.20
Number of fuel assemblies	1	8	12	12	4
Max. decay heat per zone (kW)	0.4	3.2	8.4	14.4	4.80
Max. decay heat per DSC (kW)	30.0 ⁽¹⁾				

(1) Adjust payload of fuel assemblies to maintain the total DSC heat load within the specified limit.

