Powering forward. Together.

DPG 17-085

April 20, 2017

U.S. Nuclear Regulatory Commission Attention: Document Control Desk Washington, DC 20555

Docket No. 50-312 Rancho Seco Nuclear Generating Station License No.: DPR-54

Final Status Survey Report Submittal – Clarifying Information

Attention: Zahira Cruz

The purpose of this letter is to submit clarifying information to the Final Status Survey Summary Report submitted previously for NRC review (SMUD letter DPG 17-038, dated February 28, 2017).

In response to comments arising from our April 6, 2017 conference call, SMUD has provided additional descriptive text regarding the application of the ALARA evaluations performed in accordance with Section 4 of the NRC approved Rancho Seco License Termination Plan as well as detailed context associated with survey units that contain additional survey units within their boundaries. SMUD is confident this additional information will clearly demonstrate the relationships between the Class 1, Class 2, and Class 3 survey units evaluated during Final Site Status Survey performance and provide assurance the ALARA requirements of 10CFR20.1402 have been met.

Attachment 1; FSS Final Report Rev. 1, provides a summary of the assessment performed for the remainder of the Part 50 site. SMUD has reviewed the survey area results to ensure that the proposed action will have no adverse impact on the ability of the site, in aggregate, to meet 10 CFR Part 20, Subpart E "Radiological Criteria for License Termination."

Attachment 2; contains the remove and replace page instructions for Final Status Survey Reports not reissued in their entirety.

Attachment 3; contains replacement instructions for Final Status Survey Reports reissued in their entirety.

Following NRC approval of the FSS Final Report and several programmatic and licensing transitions currently being processed under separate docketing, SMUD will

NMSSDI NMSS

submit a License Amendment request that the Nuclear Regulatory Commission (NRC) terminate the Rancho Seco 10 CFR Part 50 License, Number DPR-54. The spent nuclear fuel and the Greater than Class C (GTCC) waste remain stored at the Rancho Seco Independent Spent Fuel Storage Installation (ISFSI), licensed under 10 CFR Part 72.

Members of your staff with questions requiring additional information or clarification may contact me at (916) 732-4893.

Sincerely,

਼

Dan Tallman¹ Manager, Rancho Seco Assets

BG/DT

Attachments (3)

Cc: Jack Parrott (w/o attachment) NRC, Region IV (w/o attachment) RIC: 1F.099 (w/o attachment)

ATTACHMENT 1

RANCHO SECO FSS FINAL REPORT

· · · · ·

Final Status Survey Report Phase II- IOSB

April 13, 2017 rev 1

FSS FINAL REPORT

Final Status Survey Report

1.0 Overview

As discussed in Section 1.4 of the Rancho Seco License Termination Plan (LTP), SMUD intends to release the Rancho Seco site for unrestricted use in two phases, with the license being terminated after completion of the second phase. The first phase included the release of the majority of the site, including impacted and non-impacted areas, except for the Interim Onsite Storage Building (IOSB) and the area immediately surrounding it.

SMUD shipped all Class B & C radioactive waste once stored in the IOSB to a licensed disposal facility in 2014. In accordance with the LTP, after disposing of the Class B & C radioactive waste, SMUD completed the final status survey for the IOSB and the area immediately surrounding the IOSB and will submit a license amendment request to terminate the 10 CFR Part 50 license and release the remainder of the site for unrestricted use. The spent nuclear fuel and the Greater than Class C (GTCC) waste are stored at the Rancho Seco Independent Spent Fuel Storage Installation (ISFSI), which is licensed under 10 CFR Part 72, independent of the 10 CFR Part 50 licensed site.

Section 1.4 of the LTP discusses the information to be provided to support release of land from the Rancho Seco 10 CFR Part 50 license. The information provided in this report includes a discussion of final status survey results for each survey unit completed.

The information contained in this submittal, will be sufficient for the NRC to conclude that, for the land and structures associated with the release, the terminal radiation survey and associated documentation demonstrates that the facility and site are suitable for release in accordance with the criteria for decommissioning in 10 CFR Part 20, Subpart E by meeting a site release criterion of 25 millirem TEDE per year over background.

Once these lands and structures are released, no additional surveys or decontamination of these areas will be required unless the NRC determines that the criteria of 10 CFR Part 20, Subpart E were not met.

2.0 Site Information and Physical Description

2.1 Physical Description of Land or Structures to be Released

The land and structures to be released will be described in the application for license amendment and is unchanged by this submittal.

2.2 Survey Unit Information Included in this Submittal

As discussed in section 1.0 above, this submittal provides detailed discussion on final status survey results for 35 survey units located within the IOSB and surrounding land to be released. Details are provided for each survey unit on survey methods, results, data analysis, and conclusions. In all cases, Rancho Seco is providing a complete package of information relating to each survey unit so that the NRC staff can verify that the License Termination Plan has been fully implemented for each survey unit and that the final status survey results support unrestricted release of the land from License DPR-54 in accordance with the proposed license amendment.

This submittal addresses FSS information for survey units associated with the IOSB and surrounding land. **Table 1** provides a description of the survey units addressed in this submittal.

Survey Unit	Class	General Description of Survey Unit
F8300001	3	DAW Bay- The back bay of the IOSB. The
1.9200001		survey unit has a surface area of 348 m ² .
		DAW Staging Bay - The center bay of the
F8300002	3	IOSB. The survey unit has a surface area of 225
	·	m ² .
		DAW Staging Bay Class 1 – A small elevated
F8300003	1	area located on the DAW Staging Bay floor.
		The survey unit has an area of 0.74 m ² .
	•	DAW Staging Bay Buffer Class 2 – A buffer to
F8300004	2	the class 1 survey unit area located on the DAW
10500004		Staging Bay floor. The survey unit has an area
		of 2.22 m ² .
		Truck Bay – The entry bay of the IOSB where
F8300005	3	vehicles were loaded excluding the loading dock
10500005	5	and the buffer area around the loading dock. The
		survey unit has an area of 379 m ² .
		Hot Cell Class 1 – A segregated area in the Truck
F8300006	1	Bay designed to hold containers with high dose
		rate. The survey unit has an area of 8 m^2 .
		Hot Cell Class 2– A buffer area around the class
F8300006	· 2	1 survey unit. The survey unit has an area of 7.6
		<u>m².</u>
		Loading Dock Class 1 - The area at the end of
F8300007	1	the truck bay used to load material onto vehicles.
		The survey unit has an area of 7.5 m^2 .

Table 1, Survey Unit Description

Survey Unit	Class	General Description of Survey Unit
		Loading Dock Buffer Class 2 – An area
F8300008	2	surrounding the class 1 survey unit at the loading
		dock. The survey unit has an area of 19.9 m^2 .
		Cell Deck – The area above the lids of the
E820000	2	storage cells with the northern end open to the
F8300009	3	Truck Bay. The size of the survey area is 460
		m ² .
		Sumps – The upper and lower sump areas. While
F9200010	2	these were one survey unit, each sump was
F8300010	3	surveyed as a standalone survey unit. The two
		sumps combined survey area is 79.6 m ² .
		Hot Cell Embedded Pipe – The 4-foot-long run
		of drain pipe from the hot cell floor to the 90°
F8300011	1	elbow connection. No size was determined for
		the embedded piping as the survey design was
		the same for all segments of pipes.
		Embedded Piping – All runs of embedded piping
		leading to the sumps from the DAW, DAW
D0200010	2	Staging and Truck Bays. No size was
F8300012	3	determined for the embedded piping as the
		survey design was the same for all segments of
		pipes.
		Office – The area outside the RCA with the
F8300013	3	training and control rooms and the mezzanine.
	-	The size of the area is 370 m^2 .
		Outside Area – The asphalt and soil berm
F8300014	3	surrounding the ISOB. The outside area is 5,853
	-	m^2 .
		Asphalt area Class 1 – Small area where
F8300014	1	remediation occurred of an area less than DCGL.
10000011	-	The survey area is 0.37 m^2 .
		Asphalt Buffer Class 2 - area surrounding the
F8300014	2	class 1 area. The survey area is 1.85 m^2 .
		Roof – The roof of the IOSB. The survey area
F8300015	3	is $1,735 \text{ m}^2$.
		Cell A-1 – The storage cell A-1. The survey area
F8300016	3	is 27.5 m^2 .
		Cell A-2 – The storage cell A-2. The survey area
F8300017	3	is 28.3 m^2 .
	<u>├──</u>	Cell A-3 – The storage cell A-3. The survey
F8300018	3	area is 27.5 m^2 .
		Cell B-1 – The storage cell B-1. The survey area
F8300019	3	is 23.1 m^2 .
		Cell B-2 – The storage cell B-2. The survey area
F8300020	3	is 23.7 m^2 .
		Cell B-3 – The storage cell B-3. The survey area
F8300021	3	is 23.1 m^2 .
		Cell C-1 – The storage cell C-1. The survey area
F8300022	3	1 = 1 = 1 = 1 is $23.1 = 1$.
		Cell C-2 – The storage cell C-2. The survey area
F8300023	3	
		is 23.7 m^2 .
F8300024	3	Cell C-3 – The storage cell C-3. The survey area is 22.1 m^2
L		is 23.1 m ² .

Survey Unit	Class	General Description of Survey Unit
F8300025	3	Cell D-1 – The storage cell D-1. The survey
	-	area is 23.1 m ² .
F8300026	3	Cell D-2 – The storage cell D-2. The survey
		area is 23.7 m ² .
F8300027	3	Cell D-3 – The storage cell D-2. The survey
10500027	5	area is 23.1 m^2 .
F8300028	3	Cell E-1 – The storage cell E-1. The survey
F 8500028	5	area is 26.1 m ² .
F8300029	3	Cell E-2 – The storage cell E-2. The survey
F8300029	5	area is 28.3 m ² .
E9200020	3	Cell E-3 – The storage cell E-3. The survey
F8300030	5	area is 27.5 m^2 .
		Exterior surface of IOSB – The outside wall
F8300031	3	surface of the IOSB. The survey area is 2,750
		m ² .
		Cask Wash Down Area – The cask wash down
F8300032	3	area is located in the Truck Bay separated by a
		berm. The survey area is 13.9 m^2 .

The locations of the structures listed in Table 1 above are shown in Figures 1-3.

3.0 Potential for Cross-Contamination from Subsequent Activities

There were no other decommissioning activities occurring at the site during this survey effort. As each FSS was completed for the individual survey units, the area was posted as required in the LTP to preclude further entry into the area. Where possible, the entry doors were shut and locked or for the storage and hot cells, the lids were placed to preclude entry. Additionally, the entry gate to the area surrounding the IOSB was posted to restrict access to only decommissioning survey crew personnel. Since the number of personnel having access to the IOSB was limited to the survey crew, the potential for cross contamination was low.

4.0 Final Status Survey Report

Rancho Seco LTP section 5.7.3 identifies the contents of the written reports of final status survey results that are to be submitted to the NRC. The contents include the items described in NUREG-1757, Vol. 2, Section 4.5. The survey unit design details and results are provided below in summary fashion. Specific survey unit design details and results are provided in a copy of each survey unit summary report in **Attachment 1** of this submittal.

4.1 Overview of Results

Only the IOSB and surrounding land is included in this report. The summary report for each survey unit contains a description of the survey unit; design information, including classification, size, number of measurements, map, scan coverage, and DCGL; survey results; survey unit investigations (anomalous data); data assessment results, including statistical evaluations, if applicable; changes in initial survey unit assumptions on extent of residual activity, and survey unit conclusions. Note that classification for the embedded piping does not affect the survey density (number of samples) as that is specified in the RSLTP as a measurement every six inches. As such, for the Hot Cell Pipe, the designation of the vertical section of pipe as a Class 1 was made to distinguish that section from the other sections as decontamination was performed on the Hot Cell pipe. No Class 2 buffer was established for this section of piping. The remainder of the embedded piping was designated as a Class 3 to denote the lack of detectable residual radioactivity.

Overall, the attached survey unit summary reports demonstrate that the survey units meet the criteria for release for unrestricted use in accordance with the NRC approved Rancho Seco License Termination Plan.

4.2 Discussion of Changes to FSS Program

The purpose of this section is to discuss changes to the FSS program. At the time of this submittal there have been no changes made to the FSS Program so there are no effects on the surveys.

4.3 Final Status Survey Methodology

This section summarizes the implementation of the LTP Final Status Survey methodology for the survey units that are included in this report supporting the release of the IOSB and surrounding land. **Table 2** is provided below that lists the key FSS design features for each survey unit. These design features include the survey unit classification and size, the standard deviation and Lower Boundary of the Gray Region (LBGR) used for determining the number of direct measurements taken, the percent scan coverage, the design DCGL_{EMC} and the number of measurements required. The standard deviations listed were obtained from site characterization data or survey unit specific measurements. The Type 1 and 2 Errors are the default values of 0.05 and the LBGR is initially based on 50% of the DCGL.

Survey Unit ID	Class	SU Size (m ²)	Standard Deviation	LBGR	Design DCGL _{EMC}	Number of Measurements	% Scan
F830001	3	348	1,055	21,500	NA	14	1
F830002	3	225	598	21,500	NA	14	1
F830003	1	0.74	598	21,500	640,700	5	100
F830004	2	2.22	598	21,500	NA	10	50
F830005	3	379	466	21,500	NA	14	1
F830006	1	8	740	21,500	141,900	14	100
F830006	2	7.6	740	21,500	NA	14	100
F830007	1	7.5	466	21,500	146,200	14	100
F830008	2	19.9	466	21,500	NA	14	50
F830009	3	460	275	21,500	NA	14	1
F830010	3	79.6	466	21,500	NA	14	1

Table 2, Survey Unit Design Parameters

Survey Unit ID	Class	SU Size (m²)	Standard Deviation	LBGR	Design DCGLEMC	Number of Measurements	% Scan
F830011	1	NA	NA	50,000	NA	Every 6 inches	NA
F830012	3	NA	NA	50,000	NA	Every 6 inches	NA
F830013	3	370	334	21,500	NA	14	1
F830014	1	0.37	513	21,500	950,300	5	100
F830014	2	1.85	513	21,500	NA	10	50
F830014	3	5,853	513	21,500	NA	14	1
F830015	3	1,735	707	21,500	NA	14	1
F830016	3	27.5	303	21,500	NA	14	1
F830017	3	28.3	170	21,500	NA	14	1
F830018	3	27.5	175	21,500	NA	14	1
F830019	3	23.1	177	21,500	NA	14	1
F830020	3	23.7	183	21,500	NA	14	1
F830021	3	23.1	136	21,500	NA	14	1
F830022	3	23.1	198	21,500	NA	14	1
F830023	3	23.7	182	21,500	NA	14	1
F830024	3	23.1	365	21,500	NA	14	1
F830025	3	23.1	198	21,500	NA	14	1
F830026	3	23.7	174	21,500	NA	14	1
F830027	3	23.1	145	21,500	NA	14	1
F830028	3	26.1	197	21,500	NA	14	1
F830029	3	28.3	197	21,500	NA	14	1
F830030	3	27.5	182	21,500	NA	14	1
F830031	3	2,750	175	21,500	NA	14	1
F830032	3	13.9	466	21,500	NA	14	1

4.4 Final Status Survey Results

The methods used to determine the number of direct measurements to be taken is described in the LTP and the specific survey unit summary reports provided in **Attachment 1**. Key survey results are given in **Table 3** below.

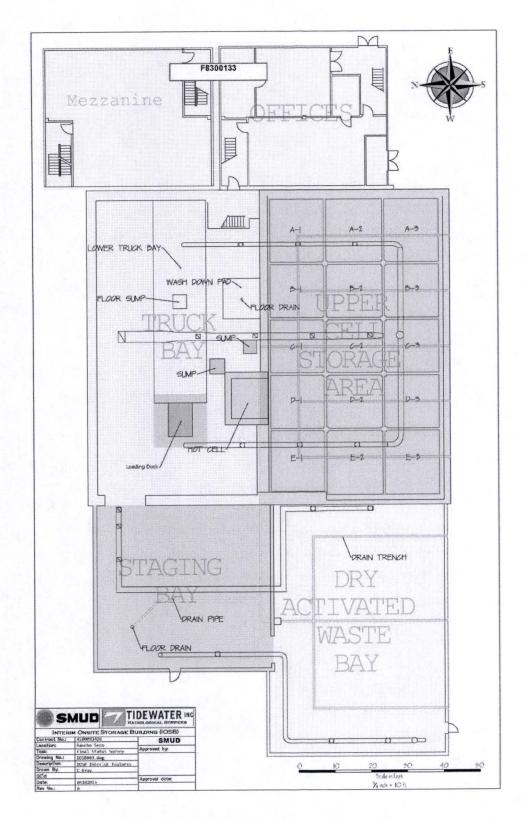
Scan Measurement Range (dpm)	No. Direct Meas. Taken	Mean Direct Result	Maximum Direct Result	Direct Standard Deviation	Units	No. Scan Elevated Areas		
F830001 DAW Bay								
1,717 – 3,017	15	2025	2,535	325	dpm/100 cm ²	0		
and the second		F8300	02 DAW Stag	ing Bay				
1,896 - 3,192	15	2,050	2,961	323	dpm/100 cm ²	0		
			AW Staging		· · · ·			
1,750 ¹	5	2,617	3,946	747	dpm/100 cm ²	0		
	F83	0004 DAV	V Staging Bay	Buffer Clas				
777 ¹	10	2,226	2,357	111	dpm/100 cm ²	0		
	1999 - S. 1997 - S. 1	F8	30005 Truck	Bay				
1,992 - 2,708	15	2,240	3,402	582	dpm/100 cm ²	0		
	3. A.	F830	006 Hot Cell	Class 1				
1,633 - 20,041	15	2,976	4,583	550	dpm/100 cm ²	0		
22. st.	S. 1069 S. 221	F830006	Hot Cell Buf	fer Class 2		Crush		
2,550 - 23,583	15	2,324	2,970	296	dpm/100 cm ²	0		
		F830007	Loading Do	ck Class 1				
1,407 - 4,354	15	3,297	7,265	1,376	$dpm/100 cm^2$	0		
	F	830008 Lo	ading Dock I	Buffer Class 2	2			
1,310 - 6,963	15	2,807	3,106	231	dpm/100 cm ²	0		
	1. 19 No.	F	830009 Cell D	eck				
1,713 - 2,961	15	1,980	2,348	242	dpm/100 cm ²	0		
		÷]	F830010 Sum	ps		t the grade of the		
2,157 - 2,883	30	1,891	2,364	249	dpm/100 cm ²	0		
		F830011	Hot Cell Emb	edded Pipe				
NA	10	15,669	16,718	806	dpm/100 cm ²	NA		
		F830	012 Embedde	ed Pipe				
NA	504	5,038	12,437	1,355	dpm/100 cm ²	NA		
11. Start 12. Start		12.27 (S.S.)	F830013 Offi		· · ·			
1,381 - 2,122	30	1,972	2,409	215	dpm/100 cm ²	0		
		F83	0014 Outside	Area				
1,808-2,115	15	2,676	3,083	223	dpm/100 cm ²	0		
		F830	014 Asphalt	Class 1		1. Sec. 1.		
2,592 ^{1,2}	5	2,626	2,803	158	dpm/100 cm ²	0		
		F830014	Asphalt Buf	fer Class 2				
2,400 - 2,832	10	2,572	2,826	247	dpm/100 cm ²	0		

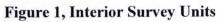
 Table 3, Survey Unit FSS Result Summary

Scan Measurement Range (dpm)	No. Direct Meas. Taken	Mean Direct Result	Maximum Direct Result	Direct Standard Deviation	Units	No. Scan Elevated Areas
	Tunten		F830015 Roof			-
1,692 - 3,317	15	1,552	2,341	425	dpm/100 cm ²	0
			16 Storage Ce		L	
1,986 - 2,645	15	1,850	2,093	145	dpm/100 cm ²	0
<u> </u>			17 Storage Co	ell A-2		
2,192 - 2,858	15	2,010	2,349	165	dpm/100 cm ²	0
<u>, , , , , , , , , , , , , , , , , , , </u>		F8300	18 Storage Ce			
2,367 - 2,858	15	2,012	2,167	91	dpm/100 cm ²	0
<u>, , , , , , , , , , , , , , , , , , , </u>			19 Storage Ce			
1,527 – 2,679	15	1,842	2,078	123	dpm/100 cm ²	0
		F8300	20 Storage Ce	ell B-2	· · · · ·	
2,203 - 2,646	15	2,013	2,333	173	dpm/100 cm ²	0
			21 Storage Ce	ell B-3		
2,225 - 2,709	15	1,926	2,106	124	dpm/100 cm ²	0
<u></u>		· · · · · · · · · · · · · · · · · · ·	22 Storage Ce	II C-1	· · · · · · · · · · · · · · · · · · ·	
1,682 - 2,547	15	1,869	2,078	124	dpm/100 cm ²	0
<u> </u>			23 Storage Ce			
2,125 - 2,658	15	2,011	3,318	383	dpm/100 cm ²	0
<u>, , , , , , , , , , , , , , , , , , , </u>		<u>`</u>	24 Storage Ce	II C-3		
1,961 - 2,512	15	2,045	2,288	127	dpm/100 cm ²	0
		F8300	25 Storage Ce	II D-1	<u> </u>	
1,589 - 2,295	15	1,956	2,295	186	dpm/100 cm ²	0
		F8300	26 Storage Ce	II D-2	<u> </u>	
2,242 - 2,817	15	2,012	2,250	135	dpm/100 cm ²	0
		F8300	27 Storage Ce	ll D-3	<u> </u>	
1,958 - 2,658	15	2,008	2,333	161	dpm/100 cm ²	0
			28 Storage Ce	ell E-1	· · · · ·	
1,566 - 2,171	15	1,901	2,154	170	dpm/100 cm ²	0
		F8300	29 Storage Ce	ell E-2	· · · · · · · · · · · · · · · · · · ·	
2,192 - 2,625	15	2,035	2,326	180	dpm/100 cm ²	0
			30 Storage Ce			
2,230 - 2,795	15	2,088	2,409	118	dpm/100 cm ²	0
		F830031 E	xterior Surfac	ce of IOSB		
1,646 - 2,808	15	2,104	2,380	175	dpm/100 cm ²	0
	1.1	F830032	Cask Wash Do	own Area		
2,518-3,270	15	2,197	2,644	237	dpm/100 cm ²	0

²Data was collected with a large area detector (584 cm²) and normalized to activity per 100 cm² to be consistent with scanning data from other survey units.

NA – Not applicable. For survey units F830011 and F830012 embedded piping, scanning is not performed as measurements are collected every 6 inches of piping.


4.5 Survey Unit Conclusions


Rancho Seco concludes that this information is sufficient for the NRC to make a determination equivalent to 10CFR50.82 (a)(11) regarding the survey units contained in this submittal. The surveys for these survey units and associated documentation demonstrate that these areas of the facility and site are suitable for release in accordance with the criteria for decommissioning in 10CFR20, subpart E by meeting a site release criteria of 25 millirem TEDE per year over background for all dose pathways in accordance with the approved License Termination Plan.

The residual activity within the survey unit is less than the DCGL and meets the ALARA criterion as determined in Chapter 4 of the LTP.

5.0 References

Rancho Seco License Termination Plan, rev. 2, submitted 10/2014.

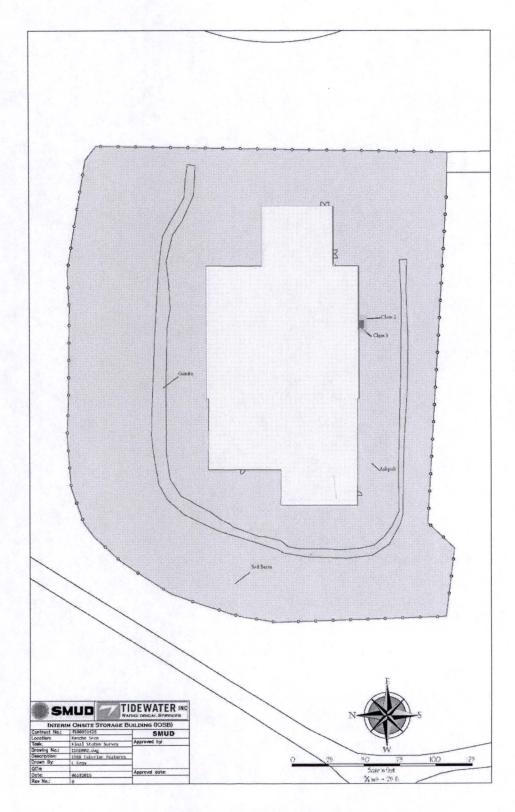


Figure 2, Outside Area Survey Units

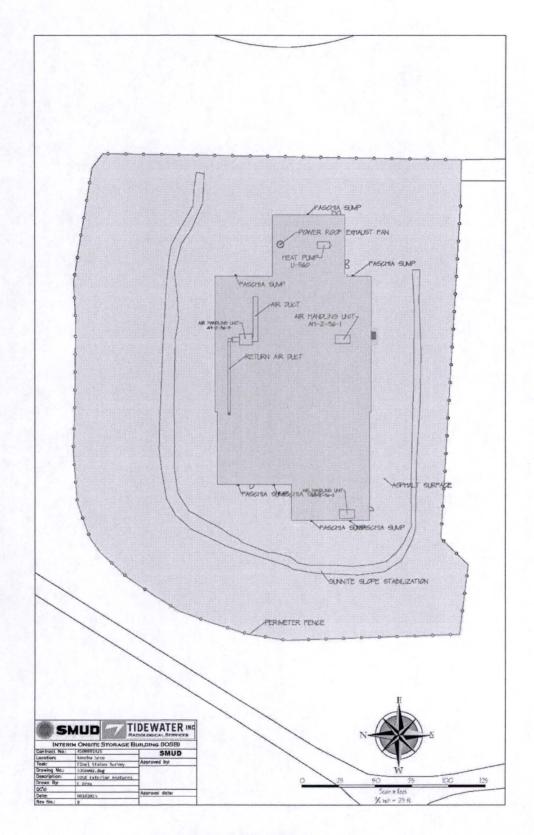


Figure 3, Roof Survey Area

ATTACHMENT 2

A revision was made to each of the following Final Status Survey Reports (FSSR) in the ALARA Statement section. Please replace original **page 4** of the FSSR with the current rev1 of **page 4** provided for the following FSSRs:

- F8300013
- F8300093
- F8300153
- F8300163
- F8300173
- F8300183
- F8300193
- F8300203
- F8300213
- F8300223

- F8300233
- F8300243
- F8300253
- F8300263
- F8300273
- F8300283
- F8300293
- F8300303
- F8300313
- F8300323

Survey Unit Data Assessment:

The survey design required 14 static measurements for the Sign Test. A total of 15 static measurements were collected. The critical value and the results of the Sign Test are presented in **Table 4**. The sample mean and median values were less than the DCGL. The sample standard deviation was greater than the design standard deviation but both values of sigma resulted in a relative shift greater than three (3), no additional samples were required.

Static Data Values		Comments
Number of Samples:	15	
Median:	2,062	
Mean:	2,025	
Static Data Standard Deviation:	325	
Maximum:	2,535	
Sign Test Results		Comments
Adjusted N Value:	14	
S+ Value:	15	
Critical Value:	10	
Criteria Satisfaction		Comments
Sufficient samples collected:	Pass	
Maximum value <dcgl<sub>w:</dcgl<sub>	Pass	
Median value <dcgl<sub>w:</dcgl<sub>	Pass	
Mean value <dcgl<sub>w:</dcgl<sub>	Pass	
Maximum value <dcglemc:< td=""><td>N/A</td><td></td></dcglemc:<>	N/A	
Sign test results:	Pass	
Final Status		Comments
The survey unit passes all conditions:	Pass	

Table 4, Data Assessment Results

Survey Unit Investigations and Results:

No investigations were required for either direct or scan measurements and no investigation results are reported.

ALARA Statement:

The residual activity within the survey unit is less than the DCGL and meets the ALARA criterion as determined in Chapter 4 of the LTP.

Changes in Initial Survey Unit Assumptions:

The survey unit was designed as a Class 3 survey and the sample results are consistent with that classification. The variability of the survey results was greater than the characterization data used for survey design. However this did not affect the relative shift

Survey Unit Data Assessment:

The survey design required 14 static measurements for the Sign Test. A total of 15 static measurements were collected. The critical value and the results of the Sign Test are presented in **Table 4**. The sample mean and median values were less than the DCGL.

Static Data Values		Comments
Number of Samples:	15	
Median:	1,955	
Mean:	1,980	
Static Data Standard Deviation:	242	
Maximum:	2,348	
Sign Test Results		Comments
Adjusted N Value:	14	
S+ Value:	15	
Critical Value:	10	
Criteria Satisfaction	· · · · · · · · · · · · · · · · · · ·	Comments
Sufficient samples collected:	Pass	
Maximum value <dcgl<sub>w:</dcgl<sub>	Pass	
Median value <dcgl<sub>w:</dcgl<sub>	Pass	
Mean value <dcgl<sub>w:</dcgl<sub>	Pass	
Maximum value <dcgl<sub>emc:</dcgl<sub>	N/A	
Sign test results:	Pass	
Final Status		Comments
The survey unit passes all conditions:	Pass	

Table 4, Data Assessment Results

Survey Unit Investigations and Results:

No investigations were required for either direct or scan measurements and no investigation results are reported.

ALARA Statement:

The residual activity within the survey unit is less than the DCGL and meets the ALARA criterion as determined in Chapter 4 of the LTP.

Changes in Initial Survey Unit Assumptions:

The survey unit was designed as a Class 3 survey and the sample results are consistent with that classification. The variability of the survey results was greater than the characterization data used for survey design. However, based upon the adjustment of the relative shift, the calculated number of samples did not change. No potential areas of elevated activity were detected.

Survey Unit Data Assessment:

The survey design required 14 static measurements for the Sign Test. A total of 15 static measurements were collected. The critical value and the results of the Sign Test are presented in **Table 4**. The sample mean and median values were less than the DCGL.

Static Data Values	v 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997	Comments
Number of Samples:	15	
Median:	1,326	
Mean:	1,552	
Static Data Standard Deviation:	425	
Maximum:	2,341	
Sign Test Results	•	Comments
Adjusted N Value:	14	
S+ Value:	15	
Critical Value:	10	
Criteria Satisfaction		Comments
Criteria Satisfaction Sufficient samples collected:	Pass	Comments
	Pass Pass	Comments
Sufficient samples collected:	a di kana santa	Comments
Sufficient samples collected: Maximum value <dcglw:< td=""><td>Pass Pass</td><td>Comments</td></dcglw:<>	Pass Pass	Comments
Sufficient samples collected: Maximum value <dcgl<sub>w: Median value <dcgl<sub>w:</dcgl<sub></dcgl<sub>	Pass Pass	Comments
Sufficient samples collected: Maximum value <dcglw: Median value <dcglw: Mean value <dcglw:< td=""><td>Pass Pass Pass</td><td>Comments</td></dcglw:<></dcglw: </dcglw: 	Pass Pass Pass	Comments
Sufficient samples collected: Maximum value <dcglw: Median value <dcglw: Mean value <dcglw: Maximum value <dcglemc:< td=""><td>Pass Pass Pass N/A</td><td>Comments</td></dcglemc:<></dcglw: </dcglw: </dcglw: 	Pass Pass Pass N/A	Comments

Table 4, Data Assessment Results

Survey Unit Investigations and Results:

No investigations were required for either direct or scan measurements and no investigation results are reported.

ALARA Statement:

The residual activity within the survey unit is less than the DCGL and meets the ALARA criterion as determined in Chapter 4 of the LTP.

Changes in Initial Survey Unit Assumptions:

The survey unit was designed as a Class 3 survey and the sample results are consistent with that classification. The variability of the survey results was higher than the characterization data used for survey design. However the relative shift exceeded 3 and had to be adjusted. No potential areas of elevated activity were detected.

Survey Unit Data Assessment:

The survey design required 14 static measurements for the Sign Test. A total of 15 static measurements were collected. The critical value and the results of the Sign Test are presented in **Table 4**. The sample mean and median values were less than the DCGL. The sample standard deviation was greater than the design standard deviation but both values of sigma resulted in a relative shift greater than three (3), no additional samples were required.

Static Data Values		Comments
Number of Samples:	. 15	
Median:	1,868	
Mean:	1,850	
Static Data Standard Deviation:	145	
Maximum:	2,047	
Sign Test Results		Comments
Adjusted N Value:	14	
S+ Value:	15	
Critical Value:	10	
Criteria Satisfaction		Comments
Sufficient samples collected:	Pass	
Sufficient samples collected: Maximum value <dcgl<sub>w:</dcgl<sub>	Pass Pass	
Maximum value <dcgl<sub>w:</dcgl<sub>	Pass	
Maximum value <dcgl<sub>w: Median value <dcgl<sub>w:</dcgl<sub></dcgl<sub>	`Pass Pass	
Maximum value <dcgl<sub>w: Median value <dcgl<sub>w: Mean value <dcgl<sub>w:</dcgl<sub></dcgl<sub></dcgl<sub>	Pass Pass Pass	
Maximum value <dcgl<sub>w: Median value <dcgl<sub>w: Mean value <dcgl<sub>w: Maximum value <dcgl<sub>emc:</dcgl<sub></dcgl<sub></dcgl<sub></dcgl<sub>	Pass Pass Pass N/A	Comments

Table 4, Data Assessment Results

Survey Unit Investigations and Results:

No investigations were required for either direct or scan measurements and no investigation results are reported.

ALARA Statement:

The residual activity within the survey unit is less than the DCGL and meets the ALARA criterion as determined in Chapter 4 of the LTP.

Changes in Initial Survey Unit Assumptions:

Survey Unit Data Assessment:

The survey design required 14 static measurements for the Sign Test. A total of 15 static measurements were collected. The critical value and the results of the Sign Test are presented in **Table 4**. The sample mean and median values were less than the DCGL.

Static Data Values		Comments
Number of Samples:	15	
Median:	2,023	
Mean:	2,010	
Static Data Standard Deviation:	165_	
Maximum:	2,349	
Sign Test Results		Comments
Adjusted N Value:	14	
S+ Value:	15	
Critical Value:	10	
Criteria Satisfaction		Comments
Sufficient samples collected:	Pass	
Maximum value <dcgl<sub>w:</dcgl<sub>	Pass	
Median value <dcgl<sub>w:</dcgl<sub>	Pass	
Mean value <dcgl<sub>w:</dcgl<sub>	Pass	
Maximum value <dcglemc:< td=""><td>N/A</td><td></td></dcglemc:<>	N/A	
Sign test results:	Pass	
Final Status		Comments
The survey unit passes all conditions:	Pass	

Table 4, Data Assessment Results

Survey Unit Investigations and Results:

No investigations were required for either direct or scan measurements and no investigation results are reported.

ALARA Statement:

The residual activity within the survey unit is less than the DCGL and meets the ALARA criterion as determined in Chapter 4 of the LTP.

Changes in Initial Survey Unit Assumptions:

Survey Unit Data Assessment:

The survey design required 14 static measurements for the Sign Test. A total of 15 static measurements were collected. The critical value and the results of the Sign Test are presented in **Table 4**. The sample mean and median values were less than the DCGL.

Static Data Values		Comments
Number of Samples:	15	
Median:	2,023	
Mean:	2,012	
Static Data Standard Deviation:	91	
Maximum:	2,167	
Sign Test Results		Comments
Adjusted N Value:	14	
S+ Value:	15	
Critical Value:	10	
Criteria Satisfaction	-	Comments
Criteria Satisfaction Sufficient samples collected:	Pass	Comments
	Pass Pass	Comments
Sufficient samples collected:		Comments
Sufficient samples collected: Maximum value <dcgl<sub>w:</dcgl<sub>	Pass	Comments
Sufficient samples collected: Maximum value <dcgl<sub>w: Median value <dcgl<sub>w:</dcgl<sub></dcgl<sub>	Pass Pass	Comments
Sufficient samples collected: Maximum value <dcglw: Median value <dcglw: Mean value <dcglw:< td=""><td>Pass Pass Pass</td><td>Comments The second sec</td></dcglw:<></dcglw: </dcglw: 	Pass Pass Pass	Comments The second sec
Sufficient samples collected: Maximum value <dcglw: Median value <dcglw: Mean value <dcglw: Maximum value <dcglemc:< td=""><td>Pass Pass Pass N/A</td><td>Comments</td></dcglemc:<></dcglw: </dcglw: </dcglw: 	Pass Pass Pass N/A	Comments

Table 4, Data Assessment Results

Survey Unit Investigations and Results:

No investigations were required for either direct or scan measurements and no investigation results are reported.

ALARA Statement:

The residual activity within the survey unit is less than the DCGL and meets the ALARA criterion as determined in Chapter 4 of the LTP.

Changes in Initial Survey Unit Assumptions:

The survey unit was designed as a Class 3 survey and the sample results are consistent with that classification. The variability of the survey results was less than the characterization data used for survey design which would result in a larger relative shift value. Since both values are in excess of 3 the difference in the variability does not affect the power of the survey. No potential areas of elevated activity were detected.

Survey Unit Data Assessment:

The survey design required 14 static measurements for the Sign Test. A total of 15 static measurements were collected. The critical value and the results of the Sign Test are presented in **Table 4**. The sample mean and median values were less than the DCGL.

Static Data Values		Comments
Number of Samples:	15	
Median:	1,868	
Mean:	1,842	
Static Data Standard Deviation:	123	
Maximum:	2,078	
Sign Test Results		Comments
Adjusted N Value:	14	
S+ Value:	15	
Critical Value:	10	
Criteria Satisfaction		Comments
Sufficient samples collected:	Pass	
Maximum value <dcgl<sub>w:</dcgl<sub>	Pass.	
Median value <dcgl<sub>w:</dcgl<sub>	Pass	
Mean value <dcgl<sub>w:</dcgl<sub>	Pass	
Maximum value <dcgl<sub>emc:</dcgl<sub>	N/A	
Sign test results:	Pass	
Final Status		Comments
The survey unit passes all conditions:	Pass	

Table 4, Data Assessment Results

Survey Unit Investigations and Results:

No investigations were required for either direct or scan measurements and no investigation results are reported.

ALARA Statement:

The residual activity within the survey unit is less than the DCGL and meets the ALARA criterion as determined in Chapter 4 of the LTP.

Changes in Initial Survey Unit Assumptions:

Survey Unit Data Assessment:

The survey design required 14 static measurements for the Sign Test. A total of 15 static measurements were collected. The critical value and the results of the Sign Test are presented in **Table 4**. The sample mean and median values were less than the DCGL.

Static Data Values		Comments:
Number of Samples:	15	
Median:	1,977	
Mean:	2,013	
Static Data Standard Deviation:	173	
Maximum:	2,333	
Sign Test Results		Comments
Adjusted N Value:	14	
S+ Value:	15	
Critical Value:	10	
Criteria Satisfaction		Comments
Sufficient samples collected:	Pass	
Maximum value <dcgl<sub>w:</dcgl<sub>	Pass	
Median value <dcgl<sub>w:</dcgl<sub>	Pass	
Mean value <dcgl<sub>w:</dcgl<sub>	Pass	
Maximum value <dcglemc:< td=""><td>N/A</td><td></td></dcglemc:<>	N/A	
Sign test results:	Pass	
Final Status		Comments
The survey unit passes all conditions:	Pass	

Table 4, Data Assessment Results

Survey Unit Investigations and Results:

No investigations were required for either direct or scan measurements and no investigation results are reported.

ALARA Statement:

The residual activity within the survey unit is less than the DCGL and meets the ALARA criterion as determined in Chapter 4 of the LTP.

Changes in Initial Survey Unit Assumptions:

Survey Unit Data Assessment:

The survey design required 14 static measurements for the Sign Test. A total of 15 static measurements were collected. The critical value and the results of the Sign Test are presented in **Table 4**. The sample mean and median values were less than the DCGL.

Static Data Values		Comments
Number of Samples:	15	
Median:	1,909	
Mean:	1,926	
Static Data Standard Deviation:	124	
Maximum:	2,106	
Sign Test Results		Comments
Adjusted N Value:	14	
S+ Value:	15	
Critical Value:	10	
Criteria Satisfaction		Comments
Sufficient samples collected:	Pass	
Maximum value <dcgl<sub>w:</dcgl<sub>	Pass	
Median value <dcgl<sub>w:</dcgl<sub>	Pass	
Mean value <dcgl<sub>w:</dcgl<sub>	Pass	
Maximum value <dcgl<sub>emc:</dcgl<sub>	N/A	
Sign test results:	Pass	
Final Status		Comments
The survey unit passes all conditions:	Pass	

Table 4, Data Assessment Results

Survey Unit Investigations and Results:

No investigations were required for either direct or scan measurements and no investigation results are reported.

ALARA Statement:

The residual activity within the survey unit is less than the DCGL and meets the ALARA criterion as determined in Chapter 4 of the LTP.

Changes in Initial Survey Unit Assumptions:

The survey unit was designed as a Class 3 survey and the sample results are consistent with that classification. The variability of the survey results was less than the characterization data used for survey design which would result in a larger relative shift value. Since both values are in excess of 3 the difference in the variability does not affect the power of the survey. No potential areas of elevated activity were detected.

Survey Unit Data Assessment:

The survey design required 14 static measurements for the Sign Test. A total of 15 static measurements were collected. The critical value and the results of the Sign Test are presented in **Table 4**. The sample mean and median values were less than the DCGL.

Static Data Values		Comments
Number of Samples:	15	
Median:	1,891	
Mean:	1,869	
Static Data Standard Deviation:	124	
Maximum:	2,078	
Sign Test Results		Comments
Adjusted N Value:	14	
S+ Value:	15	
Critical Value:	10	
Criteria Satisfaction		Comments
Sufficient samples collected:	Pass	
Maximum value <dcgl<sub>w:</dcgl<sub>	Pass	
Median value <dcgl<sub>w:</dcgl<sub>	Pass	
Mean value <dcgl<sub>w</dcgl<sub>	Pass	
Maximum value <dcglemo:< td=""><td>N/A</td><td></td></dcglemo:<>	N/A	
Sign test results:	Pass	
Final Status		Comments

Table 4, Data Assessment Results

Survey Unit Investigations and Results:

No investigations were required for either direct or scan measurements and no investigation results are reported.

ALARA Statement:

The residual activity within the survey unit is less than the DCGL and meets the ALARA criterion as determined in Chapter 4 of the LTP.

Changes in Initial Survey Unit Assumptions:

Survey Unit Data Assessment:

The survey design required 14 static measurements for the Sign Test. A total of 15 static measurements were collected. The critical value and the results of the Sign Test are presented in **Table 4**. The sample mean and median values were less than the DCGL.

Static Data Values		Comments
Number of Samples:	15	
Median:	1,899	
Mean:	2,011	
Static Data Standard Deviation:	383	
Maximum:	3,318	
Sign Test Results	N. Star	Comments
Adjusted N Value:	14	
S+ Value:	15	
Critical Value:	10	
Criteria Satisfaction		Comments
Sufficient samples collected:	Pass	
Maximum value <dcgl<sub>w:</dcgl<sub>	Pass	
Median value <dcgl<sub>w:</dcgl<sub>	Pass	
Mean value <dcgl<sub>w:</dcgl<sub>	Pass	
Maximum value <dcgl<sub>emc:</dcgl<sub>	N/A	
Cian toot rooulto:	Pass	
Sign test results:	F d 55	
Final Status	Fd55	Comments

Table 4, Data Assessment Results

Survey Unit Investigations and Results:

No investigations were required for either direct or scan measurements and no investigation results are reported.

ALARA Statement:

The residual activity within the survey unit is less than the DCGL and meets the ALARA criterion as determined in Chapter 4 of the LTP.

Changes in Initial Survey Unit Assumptions:

Survey Unit Data Assessment:

The survey design required 14 static measurements for the Sign Test. A total of 15 static measurements were collected. The critical value and the results of the Sign Test are presented in **Table 4**. The sample mean and median values were less than the DCGL.

Static Data Values		Comments
Number of Samples:	15	
Median:	2,023	
Mean:	2,045	
Static Data Standard Deviation:	127	
Maximum:	2,288	
Sign Test Results		Comments
Adjusted N Value:	14	
S+ Value:	15	
Critical Value:	10	
Criteria Satisfaction		Comments
Sufficient samples collected:	Pass	
	- 400	
Maximum value <dcgl<sub>w:</dcgl<sub>	Pass	
Maximum value <dcgl<sub>w: Median value <dcgl<sub>w:</dcgl<sub></dcgl<sub>	1	
	Pass	
Median value <dcgl<sub>w:</dcgl<sub>	Pass Pass	
Median value <dcgl<sub>w: Mean value <dcgl<sub>w:</dcgl<sub></dcgl<sub>	Pass Pass Pass	
Median value <dcgl<sub>w: Mean value <dcgl<sub>w: Maximum value <dcgl<sub>emc:</dcgl<sub></dcgl<sub></dcgl<sub>	Pass Pass Pass N/A	Comments

Table 4, Data Assessment Results

Survey Unit Investigations and Results:

No investigations were required for either direct or scan measurements and no investigation results are reported.

ALARA Statement:

The residual activity within the survey unit is less than the DCGL and meets the ALARA criterion as determined in Chapter 4 of the LTP.

Changes in Initial Survey Unit Assumptions:

Survey Unit Data Assessment:

The survey design required 14 static measurements for the Sign Test. A total of 15 static measurements were collected. The critical value and the results of the Sign Test are presented in **Table 4**. The sample mean and median values were less than the DCGL.

Static Data Values		Comments
Number of Samples:	15	
Median:	1,922	
Mean:	1,956	
Static Data Standard Deviation:	186	
Maximum:	2,295	
Sign Test Results		Comments
Adjusted N Value:	14	
S+ Value:	15	
Critical Value:	10	
Criteria Satisfaction		Comments
Sufficient samples collected:	Pass	
Maximum value <dcgl<sub>w:</dcgl<sub>	Pass	
Median value <dcgl<sub>w:</dcgl<sub>	Pass	
Mean value <dcgl<sub>w:</dcgl<sub>	Pass	
Maximum value <dcgl<sub>emc:</dcgl<sub>	N/A	
Sign_test_results:	Pass	
Final Status		Comments
The survey unit passes all conditions:	Pass	

 Table 4, Data Assessment Results

Survey Unit Investigations and Results:

No investigations were required for either direct or scan measurements and no investigation results are reported.

ALARA Statement:

The residual activity within the survey unit is less than the DCGL and meets the ALARA criterion as determined in Chapter 4 of the LTP.

Changes in Initial Survey Unit Assumptions:

Survey Unit Data Assessment:

The survey design required 14 static measurements for the Sign Test. A total of 15 static measurements were collected. The critical value and the results of the Sign Test are presented in **Table 4**. The sample mean and median values were less than the DCGL.

Static Data Values		Comments
Number of Samples:	15	
Median:	2,038	
Mean:	2,012	
Static Data Standard Deviation:	135	
Maximum:	2,250	
Sign Test Results		Comments
Adjusted N Value:	14	
S+ Value:	15	
Critical Value:	10	
Criteria Satisfaction		Comments
Criteria Satisfaction Sufficient samples collected:	Pass	Comments
	Pass Pass	Comments
Sufficient samples collected:	Section 1.	Comments
Sufficient samples collected: Maximum value <dcgl<sub>w:</dcgl<sub>	Pass	Comments
Sufficient samples collected: Maximum value <dcgl<sub>w: Median value <dcgl<sub>w:</dcgl<sub></dcgl<sub>	Pass Pass	Comments
Sufficient samples collected: Maximum value <dcgl<sub>w: Median value <dcgl<sub>w: Mean value <dcgl<sub>w:</dcgl<sub></dcgl<sub></dcgl<sub>	Pass Pass Pass	Comments
Sufficient samples collected: Maximum value <dcglw: Median value <dcglw: Mean value <dcglw: Maximum value <dcglemc:< td=""><td>Pass Pass Pass N/A</td><td>Comments</td></dcglemc:<></dcglw: </dcglw: </dcglw: 	Pass Pass Pass N/A	Comments

Table 4, Data Assessment Results

Survey Unit Investigations and Results:

No investigations were required for either direct or scan measurements and no investigation results are reported.

ALARA Statement:

The residual activity within the survey unit is less than the DCGL and meets the ALARA criterion as determined in Chapter 4 of the LTP.

Changes in Initial Survey Unit Assumptions:

Survey Unit Data Assessment:

The survey design required 14 static measurements for the Sign Test. A total of 15 static measurements were collected. The critical value and the results of the Sign Test are presented in **Table 4**. The sample mean and median values were less than the DCGL.

Static Data Values		Comments
Number of Samples:	15	
Median:	1,985	
Mean:	2,008	
Static Data Standard Deviation:	161	
Maximum:	2,333	
Sign Test Results		Comments
Adjusted N Value:	14	
S+ Value:	15	
Critical Value:	10	
Criteria Satisfaction		O a series and a
Unterna Satistaution	<u></u>	Comments
Sufficient samples collected:	Pass	Comments
	Pass Pass	Comments
Sufficient samples collected:	1. S. S. A.	Comments
Sufficient samples collected: Maximum value <dcgl<sub>w:</dcgl<sub>	Pass	Comments
Sufficient samples collected: Maximum value <dcgl<sub>w: Median value <dcgl<sub>w:</dcgl<sub></dcgl<sub>	Pass Pass	
Sufficient samples collected: Maximum value <dcgl<sub>w: Median value <dcgl<sub>w: Mean value <dcgl<sub>w:</dcgl<sub></dcgl<sub></dcgl<sub>	Pass Pass Pass	
Sufficient samples collected: Maximum value <dcgl<sub>w: Median value <dcgl<sub>w: Mean value <dcgl<sub>w: Maximum value <dcgl<sub>emc:</dcgl<sub></dcgl<sub></dcgl<sub></dcgl<sub>	Pass Pass Pass N/A	Comments

Table 4, Data Assessment Results

Survey Unit Investigations and Results:

No investigations were required for either direct or scan measurements and no investigation results are reported.

ALARA Statement:

The residual activity within the survey unit is less than the DCGL and meets the ALARA criterion as determined in Chapter 4 of the LTP.

Changes in Initial Survey Unit Assumptions:

The survey unit was designed as a Class 3 survey and the sample results are consistent with that classification. The variability of the survey results was greater than the characterization data used for survey design. However, none of the survey results exceeded 10% of the DCGL. No potential areas of elevated activity were detected.

Survey Unit Data Assessment:

The survey design required 14 static measurements for the Sign Test. A total of 15 static measurements were collected. The critical value and the results of the Sign Test are presented in **Table 4**. The sample mean and median values were less than the DCGL.

Static Data Values		Comments
Number of Samples:	15	
Median:	1,938	
Mean:	1,901	
Static Data Standard Deviation:	170	
Maximum:	2,154	
Sign Test Results		Comments
Adjusted N Value:	14	
S+ Value:	15	
Critical Value:	10	
		4
Criteria Satisfaction		Comments
Criteria Satisfaction Sufficient samples collected:	Pass	Comments
	Pass Pass	Comments
Sufficient samples collected:	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	Comments
Sufficient samples collected: Maximum value <dcgl<sub>w:</dcgl<sub>	Pass	Comments
Sufficient samples collected: Maximum value <dcgl<sub>w: Median value <dcgl<sub>w:</dcgl<sub></dcgl<sub>	Pass Pass	Comments
Sufficient samples collected: Maximum value <dcglw: Median value <dcglw: Mean value <dcglw:< td=""><td>Pass Pass Pass</td><td>Comments</td></dcglw:<></dcglw: </dcglw: 	Pass Pass Pass	Comments
Sufficient samples collected: Maximum value <dcglw: Median value <dcglw: Mean value <dcglw: Maximum value <dcglemc:< td=""><td>Pass Pass Pass N/A</td><td>Comments</td></dcglemc:<></dcglw: </dcglw: </dcglw: 	Pass Pass Pass N/A	Comments

Table 4, Data Assessment Results

Survey Unit Investigations and Results:

No investigations were required for either direct or scan measurements and no investigation results are reported.

ALARA Statement:

The residual activity within the survey unit is less than the DCGL and meets the ALARA criterion as determined in Chapter 4 of the LTP.

Changes in Initial Survey Unit Assumptions:

Survey Unit Data Assessment:

The survey design required 14 static measurements for the Sign Test. A total of 15 static measurements were collected. The critical value and the results of the Sign Test are presented in **Table 4**. The sample mean and median values were less than the DCGL.

Static Data Values		Comments
Number of Samples:	15	
Median:	2,083	
Mean:	2,035	
Static Data Standard Deviation:	180	
Maximum:	2,326	
Sign Test Results		Comments
Adjusted N Value:	14	
S+ Value:	15	
Critical Value:	10	
Criteria Satisfaction		Comments
Sufficient samples collected:	Pass	
Maximum value <dcgl<sub>w:</dcgl<sub>	Pass	
Median value <dcgl<sub>w:</dcgl<sub>	Pass	
Mean value <dcgl<sub>w:</dcgl<sub>	Pass	
Maximum value <dcglemc:< td=""><td>N/A</td><td></td></dcglemc:<>	N/A	
Sign test results:	Pass	
Final Status		Comments
The survey unit passes all conditions:	Pass	

Table 4, Data Assessment Results

Survey Unit Investigations and Results:

No investigations were required for either direct or scan measurements and no investigation results are reported.

ALARA Statement:

The residual activity within the survey unit is less than the DCGL and meets the ALARA criterion as determined in Chapter 4 of the LTP.

Changes in Initial Survey Unit Assumptions:

Survey Unit Data Assessment:

The survey design required 14 static measurements for the Sign Test. A total of 15 static measurements were collected. The critical value and the results of the Sign Test are presented in **Table 4**. The sample mean and median values were less than the DCGL.

Static Data Values		Comments
Number of Samples:	15	
Median:	2,091	
Mean:	2,088	
Static Data Standard Deviation:	118	
Maximum:	2,409	
Sign Test Results		Comments
Adjusted N Value:	14	
S+ Value:	15	
Critical Value:	10	
Criteria Satisfaction		Comments
Sufficient samples collected:	Pass	
Maximum value <dcgl<sub>w:</dcgl<sub>	Pass	
Median value <dcgl<sub>w:</dcgl<sub>	Pass	
Mean value <dcgl<sub>w:</dcgl<sub>	Pass	
Maximum value <dcglemc:< td=""><td>N/A</td><td></td></dcglemc:<>	N/A	
Sign test results:	Pass	
Final Status		Comments
The survey unit passes all conditions:	Pass	

Table 4, Data Assessment Results

Survey Unit Investigations and Results:

No investigations were required for either direct or scan measurements and no investigation results are reported.

ALARA Statement:

The residual activity within the survey unit is less than the DCGL and meets the ALARA criterion as determined in Chapter 4 of the LTP.

Changes in Initial Survey Unit Assumptions:

Survey Unit Data Assessment:

The survey design required 14 static measurements for the Sign Test. A total of 15 static measurements were collected. The critical value and the results of the Sign Test are presented in **Table 4**. The sample mean and median values were less than the DCGL.

Static Data Values		Comments
Number of Samples:	15	
Median:	2,078	
Mean:	2,104	
Static Data Standard Deviation:	175	
Maximum:	2,380	
Sign Test Results		Comments
Adjusted N Value:	14	
S+ Value:	15	
Critical Value:	10	
Criteria Satisfaction		Comments
Sufficient samples collected:	Pass	
Maximum value <dcgl<sub>w:</dcgl<sub>	Pass	
Median value <dcgl<sub>w:</dcgl<sub>	Pass	
Mean value <dcgl<sub>w:</dcgl<sub>	Pass	
Maximum value <dcgl<sub>emc:</dcgl<sub>	N/A	
Sign test results:	Pass	
Final Status		Comments
The survey unit passes all conditions:	Pass	

Table 4, Data Assessment Results

Survey Unit Investigations and Results:

No investigations were required for either direct or scan measurements and no investigation results are reported.

ALARA Statement:

The residual activity within the survey unit is less than the DCGL and meets the ALARA criterion as determined in Chapter 4 of the LTP.

Changes in Initial Survey Unit Assumptions:

The survey unit was designed as a Class 3 survey and the sample results are consistent with that classification. No potential areas of elevated activity were detected.

Conclusion:

The FSS of this survey unit was properly designed as a Class 3 survey based on the scoping evaluation. The required number of direct measurements was made and the scan

Survey Unit Data Assessment:

The survey design required 14 static measurements for the Sign Test. A total of 15 static measurements were collected. The critical value and the results of the Sign Test are presented in **Table 4**. The sample mean and median values were less than the DCGL.

Static Data Values		Comments
Number of Samples:	15	
Median:	2,174	
Mean:	2,197	
Static Data Standard Deviation:	237	
Maximum:	2,644	
Sign Test Results		Comments
Adjusted N Value:	14	
S+ Value:	15	
Critical Value:	10	
Criteria Satisfaction		Comments
Sufficient samples collected:	Pass	
Maximum value <dcgl<sub>w:</dcgl<sub>	Pass	
Median value <dcgl<sub>w:</dcgl<sub>	Pass	
Mean value <dcgl<sub>w:</dcgl<sub>	Pass	
Maximum value <dcgl<sub>emc:</dcgl<sub>	NA	
Sign test results:	Pass	
	Station 184 287	0
Final Status		Comments

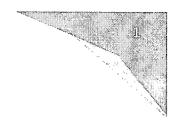
Table 4, Data Assessment Results

Survey Unit Investigations and Results:

No investigations were required for either direct or scan measurements and no investigation results are reported.

ALARA Statement:

The residual activity within the survey unit is less than the DCGL and meets the ALARA criterion as determined in Chapter 4 of the LTP.


Changes in Initial Survey Unit Assumptions:

The survey unit was designed as a Class 3 survey and the sample results are consistent with that classification. The variability of the survey results was less than the characterization data used for survey design. No potential areas of elevated activity were detected.

Conclusion:

The FSS of this survey unit was properly designed as a Class 3 survey based on the results of the scoping survey. The required number of direct measurements was made and

A revision was made to each of the following Final Status Survey Reports (FSSR) in the ALARA Statement section. Please replace original **page 5** of the FSSR with the rev1 of **page 5** provided for the following FSSR:

• F8300133

C.

ALARA Statement:

The residual activity within the survey unit is less than the DCGL and meets the ALARA criterion as determined in Chapter 4 of the LTP.

Changes in Initial Survey Unit Assumptions:

The survey unit was designed as a Class 3 survey and the sample results are consistent with that classification. No individual measurement exceeded the DCGL. No potential areas of elevated activity were detected.

Conclusion:

The FSS of this survey unit was properly designed as a Class 3 survey based on the results of the investigation survey. The required number of direct measurements was made and the scan coverage met the requirement of Table 5-6 of the LTP. All of the static measurements were less than the DCGL. No investigations were required.

The static measurement data support rejection of the null hypothesis, providing high confidence that the survey unit satisfied the release criteria and that the data quality objectives were met.

It is concluded that survey unit F8300133 meets the release criteria of 10CFR20.1402.

ATTACHMENT 3

.

A revision was made to each of the following Final Status Survey Reports (FSSR) in the Survey Unit Description, Site Characterization section and ALARA Statement. Please replace the original FSSRs listed below with the rev 1 FSSR provided in its entirety for the following FSSRs:

- F8300023
- F8300031
- F8300042
- F8300053
- F8300061
- F8300062
- F8300071
- F8300082
- F8300103*
- F8300111
- F8300123
- F8300141
- F8300142
- F8300143

*Minor editorial, non-technical corrections to survey unit name/identification on cover page and/or multiple pages of header and/or footer were made. Please replace the original FSSR in its entirety with the rev1 FSSR.

Rancho Seco Final Status Survey Summary Report December 28, 2016 IOSB DAW Staging Bay rev1 Survey Unit F8300023

4-13-2017 Prepared By: Date: V **FSS Engineer** Date: 4-13-2017 **Reviewed By** Lead FSS Engineer Date: 4/18/17 Approved By: ales.

Manager, Rancho Seco Assets

Survey Unit:

F8300023, Interim Onsite Storage Building (IOSB) DAW Staging Bay

Survey Unit Description:

Operating History: Designed primarily to store packaged radioactive waste containers safely, protected from the elements, and maintain radiological dose as low as reasonably achievable (ALARA), the IOSB contained and possibly stored media of many types, including filters, resins, contaminated chemicals, DAW, activated reactor components, contaminated plant components and other contaminated items.

Site Characterization: Static measurements were made of the interior surfaces of the DAW Staging Bay to confirm the absence or presence of plant-derived radionuclides. Static measurements showed a mean gross beta activity level of 2,637 dpm/100 cm² and a maximum value of 4,505 dpm/100 cm². The statistics of the DAW Staging bay results combines all lower walls, upper walls, floor, and ceiling data. Based upon the scanning results two elevated areas were identified on the floor.

One of the areas exceeded the $DCGL_w$ but not the $DCGL_{EMC}$. This elevated measurement was acquired at a location on the staging bay floor adjacent to an expansion joint in the concrete. Investigatory measurements across the expansion joint revealed activity in excess of the $DCGL_w$. It was apparent that contamination had penetrated the the joint and an accurate measurement could not be made due to surface geometry considerations. Remediation was required for this area and it was classified as IOSB Staging Bay Class 1 (F8300031). The maximum static measurement documented for this expansion joint is 17,946 dpm/100 cm². The Staging Bay Class 1 (F8300031) Survey Unit is the subject of a separate report.

The other elevated area of the staging bay did not exceed the DCGL_w. In this area, only a fraction of the DCGL_w was observed and therefore no remediation was required and it became a part of the IOSB Staging Bay Class 3 (F8300023) and is the subject of this report.

The IOSB Staging Bay Class 2 (F8300042) buffer was created around the Class 1 and is the subject of a separate report.

Survey Unit Design Information:

The Survey Unit Design Parameters are presented in **Table 1** below. The survey unit and measurement locations are depicted on the maps in **Attachment 1**. Static measurement locations were randomly determined and approximately 3% of the area scanned. The instrumentation used for the survey along with the MDC values are listed in **Table 2-1 Attachment 2**.

Evaluation Input Values		Comments
Survey Package:	F830	DAW Staging Bay
Survey Unit:	002	
Class	3	
SU Area (m ²)	248	
Evaluator:	JR	
DCGL _w :	43,000	Gross Activity DCGL
Area Factor	N/A	Class 3
Design DCGLemc (dpm/100cm ²):	N/A	Class 3
DCGL _{emc} :	N/A	Class 3
LBGR:	21,500	Default = 50% DCGL
Sigma:	598	Scoping Survey Data
Type I error:	0.05	
Type II error:	0.05	
Predominant Nuclide	Cs-137	
Sample Area (m ²)	N/A	
Total Instrument Efficiency:	0.132	From 10/26/16 Survey
Total Area Scanned (m ²):	5.55	
Scan Coverage (%)	3%	Class 3
Material Type:	N/A	Choosing 'N/A' sets material background to "0"
Calculated Values		Comments
Ζ1-α:	1.645	
Z1-в:	1.645	
Sign p:	0.99865	
Calculated Relative Shift:	35.9	
Relative Shift Used:	3.0	Uses 3.0 if Relative Shift >3
N-Value:	11	
N-Value+20%:	14	

Table 1, Survey Unit Design Parameters

Survey Results:

A total of 15 direct measurements were made in F8300023. The results of the static measurements are shown in **Table 2**. All of the static measurements were less than the DCGL. None of the scan measurements indicated areas of elevated activity. Swipe data did not indicate elevated activity levels above the MDA.

Number	Sample #	Beta (cpm)	Beta (dpm)
1	F8300023C00001	215	1,629
2	F8300023C00002	274	2,076
3	F8300023C00003	263	1,992
4	F8300023C00004	229	1,735
5	F8300023C00005	294	2,279
6	F8300023C00006	261	1,977
7	F8300023C00007	264	2,000
8	F8300023C00008	234	1,773
9	F8300023C00009	382	2,961
10	F8300023C00010	243	1,884
11	F8300023C00011	276	2,091
12	F8300023C00012	310	2,348
13	F8300023C00013	275	2,083
14	F8300023C00014	284	2,152
15	F8300023C00015	233	1,765

Table 2, Static Measurement Results

Table 3 contains the statistical summary of the static measurement data for the DAW Staging Bay.

Table 3, Beta Summary Statistics

Beta Static DAW Stag	ging Bay
Mean	2,050
Median	2,000
Standard Deviation	323
Minimum	1,629
Maximum	2,961
Count	15

Survey Unit Data Assessment:

The survey design required 14 static measurements for the Sign Test. A total of 15 static measurements were collected. The critical value and the results of the Sign Test are presented in **Table 4**. The sample mean and median values were less than the DCGL.

Static Data Values		Comments
Number of Samples:	15	
Median:	2,000	
Mean:	2,050	
Static Data Standard Deviation:	323	
Maximum:	2,961	
Sign Test Results		Comments
Adjusted N Value:	14	
S+ Value:	15	
Critical Value:	10	
Criteria Satisfaction		Comments
Criteria Satisfaction Sufficient samples collected:	Pass	Comments
	Pass Pass	Comments
Sufficient samples collected:	and the second	Comments
Sufficient samples collected: Maximum value <dcgl<sub>w:</dcgl<sub>	Pass	Comments
Sufficient samples collected: Maximum value <dcgl<sub>w: Median value <dcgl<sub>w:</dcgl<sub></dcgl<sub>	Pass Pass	Comments
Sufficient samples collected: Maximum value <dcgl<sub>w: Median value <dcgl<sub>w: Mean value <dcgl<sub>w:</dcgl<sub></dcgl<sub></dcgl<sub>	Pass Pass Pass	Comments
Sufficient samples collected: Maximum value <dcglw: Median value <dcglw: Mean value <dcglw: Maximum value <dcgl<sub>emc:</dcgl<sub></dcglw: </dcglw: </dcglw: 	Pass Pass Pass N/A	Comments

Table 4, Data Assessment Results

Survey Unit Investigations and Results:

No investigations were required for either direct or scan measurements and no investigation results are reported.

ALARA Statement:

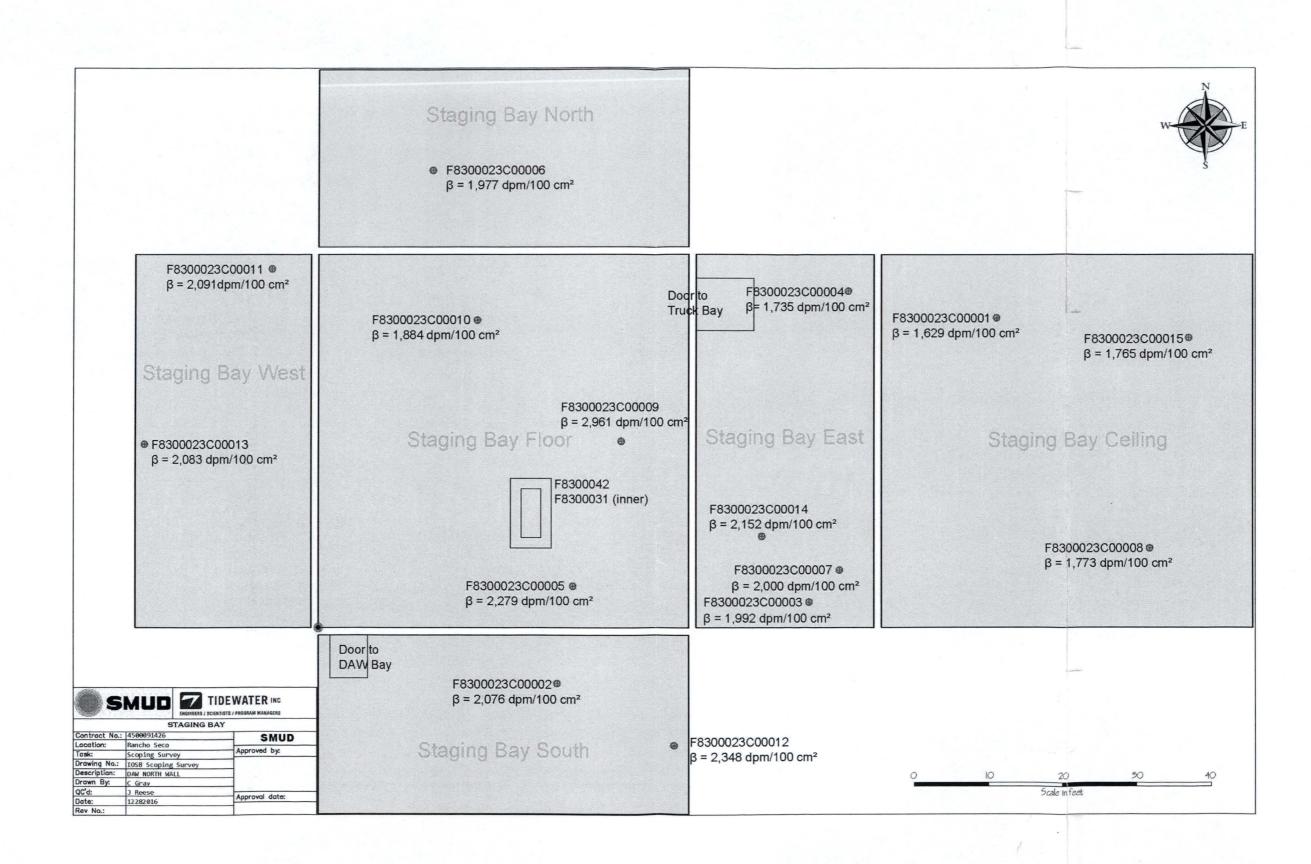
The residual activity within the survey unit is less than the DCGL and meets the ALARA criterion as determined in Chapter 4 of the LTP.

Changes in Initial Survey Unit Assumptions:

The survey unit was designed as a Class 3 survey and the sample results are consistent with that classification. The variability of the survey results was less than the characterization data used for survey design. No potential areas of elevated activity were detected.

Conclusion:

The FSS of this survey unit was properly designed as a Class 3 survey based on the results of the scoping survey. The required number of direct measurements was made and the scan coverage met the requirement of Table 5-6 of the LTP. All of the static measurements were less than the DCGL. No investigations were required.


The static measurement data support rejection of the null hypothesis, providing high confidence that the survey unit satisfied the release criteria and that the data quality objectives were met.

It is concluded that survey unit F8300023 meets the release criteria of 10CFR20.1402.

Maps

December 28, 2016

Survey Unit F8300023

F8300023

Instrumentation

December 28, 2016

Survey Unit F8300023

·--, -

Investigation

December 28, 2016

Survey Unit F8300023

(none required)

Measurement Type	Instrument Type	Minimum Detectable Activity ^a	Detector Efficiencies	Calibration Due Date ^b
Beta Static Measurement	Ludlum Model 2350-1 Ludlum Model 44-116 B Detector	Beta $-$ 492 dpm/100 cm ²	12.9%	317899/331973 2/10/17
Beta Static Measurement	Ludlum Model 2350-1 Ludlum Model 44-116 B Detector	Beta $-$ 559 dpm/100 cm ²	13.2%	317897/331972 2/10/17
Swipe Measurements	Ludlum Model 2929 Ludlum Model 44- 10-1	$\begin{array}{l} Beta - 73 \ dpm/100 \ cm^2 \\ Beta - 75 \ dpm/100 \ cm^2 \end{array}$	43.4%	182597/188736 5/13/17

Table 2-1. Survey Unit Instrumentation

^b Detectors are required to be calibrated once every 12 months. Calibration due date indicates the date by which the detector

must be calibrated again.

 $cm^2 = square centimeters$

cpm = counts per minute

dpm = disintegrations per minute

Static Measurement MDA

Variables

Beta	Survey Type
PR331973	Detector Number
169	Background count rate (cpm)
1	Count Time (min)
0.129	Efficiency
100	Area of Detector (cm ²)

Constants

60 sec/min

2.54 cm/in

Assumptions

Background count time and sample count time are equivalent

Calculate Static MDA

Static MDA =3 + 4.65(Br * t)^{0.5}/t * E * ^A/₁₀₀ (NUREG 1507)

Where:	Br	Background Countrate
	t	Count Time (min)
	Е	Efficiency
	А	Area of detector (cm ²)
Static ME)A	492 dpm/100 cm ²

Static Measurement MDA

Variables

Beta	Survey Type
PR331972	Detector Number
232	Background count rate (cpm)
1	Count Time (min)
0.132	Efficiency
100	Area of Detector (cm ²)

Constants

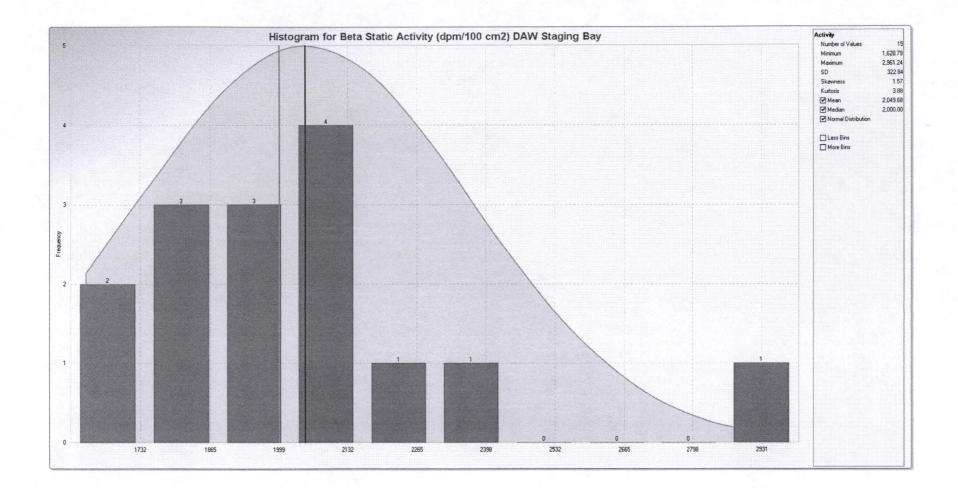
60 sec/min

2.54 cm/in

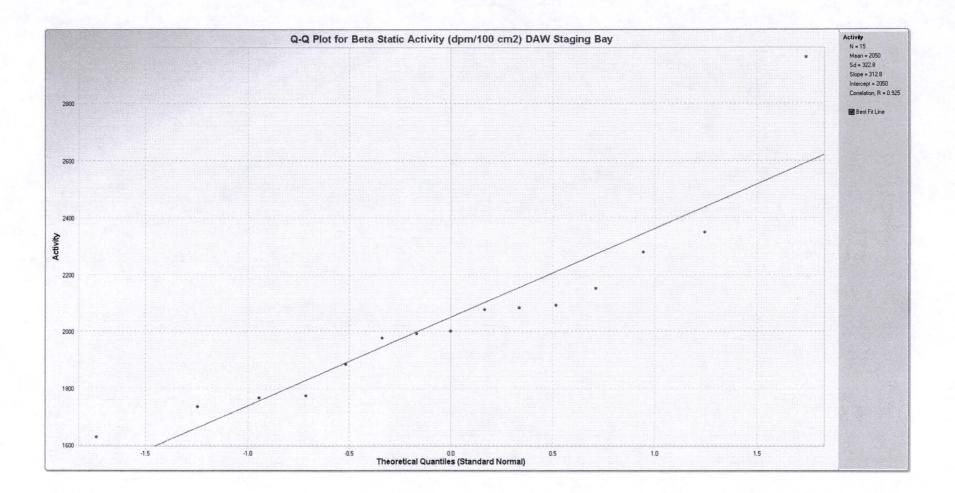
Assumptions

Background count time and sample count time are equivalent

Calculate Static MDA


Static MDA =3 + 4.65(Br * t)^{0.5}/t * E * ^A/₁₀₀ (NUREG 1507)

Where:	Br	Background Countrate
	t	Count Time (min)
	Е	Efficiency
	А	Area of detector (cm ²)
Static MD)A	559 dpm/100 cm ²


Data Assessment

December 28, 2016

Survey Unit F8300023

Att. 4 Data Assessment rev1

β 0.434 44.5 1 74.		LC1	ICS.	1.C3	LC4	LC6	LCS		β СР.М. [−]	βdpm	Date/Time	of Count		Sample	e Com	ments
3 F830 602 3 C 00003 SM Stage Bay 38. -11 10/26/16 1302 4 F830 002 3 C 00004 SM Stage Bay 34 -20 12/12/16 0947 5 F830 002 3 C 00005 SM Stage Bay 45 5 10/26/16 1304 6 F830 002 3 C 00005 SM Stage Bay 45 5 10/26/16 1305 7 F830 002 3 C 00007 SM Stage Bay 53 24 10/26/16 1306 306 307 9 F830 002 3 C 00009 SM Stage Bay 46 8 12/12/16 0948 307 309 309 3002 3 C 00012 SM Stage Bay 37 -13 10/26/16 1309 309 309 309 309 300 300 300 300 300 300 300 300	ľ	F830	002	3	C.	00001	SM	Stage Bay		17	10/26/16	1300				
4 F830 002 3 C 0000d SM Stage Bay 51 19 10/26/16 1304 5 F830 002 3 C 00005 SM Stage Bay 34 -20 12/12/16 0947 6 F830 002 3 C 00006 SM Stage Bay 45 5 10/26/16 1305 7 F830 002 3 C 00007 SM Stage Bay 52 21 10/26/16 1306 7 F830 002 3 C 00009 SM Stage Bay 53 24 10/26/16 1307 9 F830 002 3 C 00009 SM Stage Bay 46 8 12/12/16 0943 10 F830 002 3 C 00001 SM Stage Bay 50 17 10/26/16 1310 11 F830 002 3 C 00013 SM Stage Bay 54 26 10/26/16 1311	2	F830	002	3	Ć	00002	SM	Stage Bay	44	3	10/26/16	1301				
5 F830 002 3 C 00005 SM Stage Bay 34 -20 12/12/16 0947 6 F830 002 3 C 00006 SM Stage Bay 45 5 10/26/16 1305 7 F830 002 3 C 00007 SM Stage Bay 45 5 10/26/16 1305 7 F830 002 3 C 00007 SM Stage Bay 45 5 10/26/16 1305 9 F830 002 3 C 00008 SM Stage Bay 46 8 12/12/16 0943 10 F830 002 3 C 00009 SM Stage Bay 40 -6 12/12/16 0943 11 F830 002 3 C 00013 SM Stage Bay 37 -13 10/26/16 1310 12 F830 002 3 C 00013 SM Stage Bay 54 26 10/26/16 1314	3	F830	002	3	Ċ	00003	\$M	Stage Bay	38	-11	10/26/16	1302				
6 F830 002 3 C 00006 SM Stage Bay 45 5 10/26/16 1305 7 F830 002 3 C 00007 SM Stage Bay 52 21 10/26/16 1306 8 F830 002 3 C 00008 SM Stage Bay 53 24 10/26/16 1307 9 F830 002 3 C 00009 SM Stage Bay 46 8 12/12/16 0943 10 F830 002 3 C 00010 SM Stage Bay 40 -6 12/12/16 0943 11 F830 002 3 C 00011 SM Stage Bay 50 17 10/26/16 1310 - 12 F830 002 3 C 00013 SM Stage Bay 54 26 10/26/16 1311 - - 14 F830 002 3 C 00015 SM Stage Bay 40 -6	4	F830	002	3	C	00004	SM	Stage Bay	51	19	10/26/16	1304				
7 F830 002 3 C 00007 SM Stage Bay 52 21 10/26/16 1306 8 F830 002 3 C 00008 SM Stage Bay 53 24 10/26/16 1307 9 F830 002 3 C 00009 SM Stage Bay 46 8 12/12/16 0948 10 F830 002 3 C 00007 SM Stage Bay 40 -6 12/12/16 0948 11 F830 002 3 C 00012 SM Stage Bay 50 17 10/26/16 1310 12 F830 002 3 C 00013 SM Stage Bay 37 -13 10/26/16 1311 -1 13 F830 002 3 C 00013 SM Stage Bay 41 4 10/26/16 1312 -1 -1 14 F830 002 3 C 00013 SM Stage Bay 40 -6	5	F830	002	3	C	00005	SM	Stage Day 🖄	34	-20	12/12/16	0947				
8 F830 002 3 C 00008 SM Stage Bay 53 24 10/26/16 1307 9 F830 002 3 C 00009 SM Stage Bay 46 8 12/12/16 0948 10 F830 002 3 C 00010 SM Stage Bay 40 -6 12/12/16 0950	6	F830	002	3	¢	00006	SM	Stage Bay	45	5	10/26/16	1305				
9 F830 .002 3 C 00009 SM Stage Bay 46 8 12/12/16 0948 10 F830 002 3 C 00010 SM Stage Bay 40 -6 12/12/16 0950 11 F830 002 3 C 00011 SM Stage Bay 50 17 10/26/16 1309 12 F830 002 3 C 00012 SM Stage Bay 37 -13 10/26/16 1310	7	F830	002	3	C	00007	\$M	Stage Bay	52	21	10/26/16	1306				
10 F830 002 3 C 00010 SM Stage Bay 40 -6 12/12/16 0950 11 F830 002 3 C 00011 SM Stage Bay 50 17 10/26/16 1309 12 F830 002 3 C 00012 SM Stage Bay 37 -13 10/26/16 1310 - 13 F830 002 3 C 00013 SM Stage Bay 41 -4 10/26/16 1310 -	8	F830	002	3	С	00008	SM	Stage Bay	53	24	10/26/16	1307				
11 F830 002 3 C 00011 SM Stage Bay 50 17 10/26/16 1309 12 F830 002 3 C 00012 SM Stage Bay 37 -13 10/26/16 1310 13 F830 002 3 C 00013 SM Stage Bay 37 -13 10/26/16 1310	9	F830	002	્ર	C	00009	SM	Stage Bay		8	12/12/16	0948				
12 F830 002 3 C 00012 SM Stage Bay 37 -13 10/26/16 1310 13 F830 002 3 C 00013 SM Stage Bay 41 -4 30/26/16 1311 14 F830 002 3 C 00013 SM Stage Bay 54 26 10/26/16 1312 15 F830 002 3 C 00015 SM Stage Bay 54 26 10/26/16 1312 15 F830 002 3 C 00015 SM Stage Bay 40 -6 10/26/16 1314 Comments By signature below, the required source check and background checks were satisfactorily performed prior to use of the instrument identified below. Comments By signature below, the required source check and background checks were satisfactorily performed prior to use of the instrument 2929 5/N: 182597 elfietency bkg count MD/ B 0.434 44.5 4 74.5	10	F830	002	3	C.	00010	SM	Stage Bay	40	-6	12/12/16	0950				
13 F830 002 3 C 00013 SM Stage Bay 41 -4 30/26/16 1311 14 F830 002 3 C 00014 SM Stage Bay 54 26 10/26/16 1312 15 F830 002 3 C 00015 SM Stage Bay 40 -6 10/26/16 1312 15 F830 002 3 C 00015 SM Stage Bay 40 -6 10/26/16 1314 Comments By signature below, the required source check and background effects were satisfactor/by performed prior to use of the instrument identified below. Comments By signature below, the required source check and background effects were satisfactor/by performed prior to use of the instrument identified below. 2929 5/N: 182597 eificitarcy bkg count min MD/ 10 20 5/N: 182597 β 0.434 44.5 4 74.3	ĽL:	F830	002	3	C	00011	SM.	Stage Bay	50	17	10/26/16	1309				
14 F830 002 3 C 00014 SM Stage Bay 54 26 10/26/16 1312 15 F830 002 3 C 00015 SM Stage Bay 40 -6 10/26/16 1312 Comments By signature below, the required source check and background checks were satisfactorily performed prior to use of the instrument identified below. Lucium 2929. Benchtop Instrument sificiency bkg count 10/26/16 1314 0.434 44.5 4 74.1	12	F830	002	3	C	00012	SM	Stage Bay	37	-13	10/26/16	1310				
L5 F830 002 3 C 00015 SM Stage Bay 40 -6 10/26/16 1314 Comments By signature below, the required source check and background checks were satisfactorily performed prior to use of the instrument identified below. Image: Straige Bay A0 -6 10/26/16 1314 Comments By signature below, the required source check and background checks were satisfactorily performed prior to use of the instrument identified below. Image: Straige Bay Image: Straige Bay A0 -6 10/26/16 1314 Image: Straige Bay Image: Straige Bay A0 -6 10/26/16 1314 Image: Straige Bay Image: Straige Bay A0 -6 10/26/16 1314 Image: Straige Bay Image: Straige Bay Image: Straige Bay Image: Straige Bay Image: Straige Bay Image: Straige Bay Image: Straige Bay Image: Straige Bay Image: Straige Bay Image: Straige Bay Image: Straige Bay Image: Straige Bay Image: Straige Bay Image: Straige Bay Image: Straige Bay Image: Straig	13	F830	002	3	C	00013	SM	Stage Bay	41	4 .	10/26/16	1311				
Ludium 2929. Benchtop Instrument 2929 5/N: 182597 β 0.434 44.5 4 74.1	14	F830	002	3	C	00014	\$M	Stage Bay	54	26	10/26/16	1312				
Ludium 2929 Benchtop Instrument 2929 5/Ν: 182597 elfietency bkg rote bkg count MD/ β 0.434 44.5 4 74.5	15	F830	002	3	С	00015	ŠM	Stage Bay.	10	-6	10/26/16	1314				
2929 5/N: 182597 efficiency bkg rote count line MD/ β 0.434 44.5 4 74.1														ument		
										2929.5/N: 18	12597		elliciency		count	. MDA
										43-10-1 S/N:	188736		0.434	CON Charles	er an	74.5 dom per

Smear_Data_Calculation_Sheet_101316

-

Page 1 of 1

-

ja 1

.

.

Rancho Seco **Final Status Survey Summary Report** January 5, 2017 **IOSB DAW Staging Bay Class 1 rev1** Survey Unit F8300031

4-13-2017 **Prepared By:** Date: FSS Engineer Date:_4-13-2017 **Reviewed By:** Lead FSS Engineer Date: 4/19/17

Manager, Rancho Seco Assets

alec

Approved By:

Survey Unit:

F8300031, Interim Onsite Storage Building (IOSB) DAW Staging Bay Class 1

Survey Unit Description:

Operating History: Designed primarily to store packaged radioactive waste containers safely, protected from the elements, and maintain radiological dose as low as reasonably achievable (ALARA), the IOSB contained and possibly stored media of many types, including filters, resins, contaminated chemicals, DAW, activated reactor components, contaminated plant components and other contaminated items.

Site Characterization: Static measurements were made of the interior surfaces of the DAW Staging Bay to confirm the absence or presence of plant-derived radionuclides. Static measurements showed a mean gross beta activity level of 2,637 dpm/100 cm² and a maximum value of 4,505 dpm/100 cm². The statistics of the DAW Staging bay results combines all lower walls, upper walls, floor, and ceiling data. Based upon the scanning results two elevated areas were identified on the floor.

One of the areas exceeded the $DCGL_w$ but not the $DCGL_{EMC}$. This elevated measurement was acquired at a location on the staging bay floor adjacent to an expansion joint in the concrete. Investigatory measurements across the expansion joint revealed activity in excess of the $DCGL_w$. It was apparent that contamination had penetrated the the joint and an accurate measurement could not be made due to surface geometry considerations. Remediation was required for this area and it was classified as IOSB Staging Bay Class 1 (F8300031). The maximum static measurement documented for this expansion joint is 17,946 dpm/100 cm². IOSB Staging Bay Class 1 (F8300031) is the subject of this report.

The other elevated area did not exceed the $DCGL_w$. In this area, only a fraction of the $DCGL_w$ was observed and therefore no remediation was required and it was incorporated into the IOSB Staging Bay Class 3 (F8300023) and is the subject of a separate report.

The IOSB Staging Bay Class 2 (F8300042) was created to buffer the IOSB Staging Bay Class 3 (F8300023) area and each is the subject of a separate report.

Survey Unit Design Information:

In accordance with MARSSIM Section 4.6, special considerations may be necessary for survey units with structure surface areas less than 10 m^2 or land areas less than 100 m^2 . In this case, the number of data points obtained from the statistical tests is unnecessarily large and not appropriate for smaller survey unit areas. The data generated from these smaller survey units should be obtained based on judgment, rather than on systematic or random design, and compared individually to the DCGLs. This survey unit meets this criterion as the size is less than one square meter (0.74 m²).

The Survey Unit Design Parameters are presented in **Table 1** below. The survey unit and measurement locations are depicted on the maps in **Attachment 1**. Static measurement locations were based on professional judgement in accordance with the LTP and approximately 100% of the area scanned. The instrumentation used for the survey along with the MDC values are listed in **Table 2-1 Attachment 2**.

FSS DAW Staging Class 1 rev1

Evaluation Input Values		Comments
Survey Package:	F830	DAW Staging Bay Class 1
Survey Unit:	03	
Class	01	
SU Area (m²)	01	
Evaluator:	JR	
DCGL _w :	43,000	Gross Activity DCGL
Area Factor	15	DTBD-05-003
Design DCGLemc (dpm/100cm ²):	640,700	
DCGLemc:	640,700	
LBGR:	21,500	Default = 50% DCGL
Sigma:	598	Scoping Survey Data
Type I error:	0.05	
Type II error:	0.05	
Predominant Nuclide	Cs-137	
Sample Area (m ²)	N/A	
Total Instrument Efficiency:	0.132	From 10/26/16 Survey
Total Area Scanned (m ²):	0.74	
Scan Coverage (%)	100%	Class 1
Material Type:	N/A	Choosing 'N/A' sets material background to "0"
Calculated Values		Comments
Ζ _{1-α} :	1.645	
Z _{1-B} :	1.645	
Sign p:	0.99865	
Calculated Relative Shift:	35.9	
Relative Shift Used:	3.0	Uses 3.0 if Relative Shift >3
N-Value:	5	Values selected based upon Judgement
N-Value+20%:	5	Values selected based upon Judgement

Table 1, Survey Unit Design Parameters

Survey Results:

A total of 5 direct measurements were made in F8300031. The results of the static measurements are shown in **Table 2**. All of the static measurements were less than the DCGL. None of the scan measurements indicated areas of elevated activity. Swipe data did not indicate elevated activity levels above the MDA.

Number	Sample #	Beta (cpm)	Beta (dpm)
1	F8300031C00001	288	2,233
2	F8300031C00002	304	2,357
3	F8300031C00003	305	2,364
4	F8300031C00004	282	2,186
5	F8300031C00005	509	3,946

Table 2, Static Measurement Results

Table 3 contains the statistical summary of the static measurement data for the DAWStaging Bay Class 1.

Beta Static DAW Staging Bay Class 1				
Mean	2,617			
Median	2,357			
Standard Deviation	747			
Minimum	2,186			
Maximum	3,946			
Count	5			

Table 3, Beta Summary Statistics

Survey Unit Data Assessment:

The survey design required 5 static measurements based upon the size of the survey unit (0.74 m^2) . Following the guidance in MARSSIM Section 4.6, these values are compared directly to the DCGL_w. The data collected from location F8300031C00005 while less than 10% of the DCGL_w was collected over a crevice. In order to evaluate the effect of the crevice on the resulting data, the guidance contained in Section 6.2 of DTBD 06-006 was followed and a follow up evaluation was performed using a gamma sensitive sodium iodide detector (Ludlum model 44-10). The results of the investigation confirmed no levels of residual radioactivity in excess of the DCGL. Attachment 3 contains the results of the investigation.

The comparison and the results are presented in **Table 4**. The sample mean and median values were less than the DCGL.

Static Data Values		Comments
Number of Samples:	5	
Median:	2,357	
Mean:	2,617	
Static Data Standard Deviation:	747	
Maximum:	3,946	
Criteria Satisfaction		Comments
Sufficient samples collected:	Pass	
Maximum value <dcgl<sub>w:</dcgl<sub>	Pass	
Median value <dcgl<sub>w:</dcgl<sub>	Pass	
Mean value <dcgl<sub>w:</dcgl<sub>	Pass	
Maximum value <dcgl<sub>emc:</dcgl<sub>	Pass	
Sign test results:	N/A	
Final Status		Comments
The survey unit passes all conditions:	Pass	

Table 4, Data Assessment Results

Survey Unit Investigations and Results:

An investigation was required for follow up to direct beta measurement F8300031C00005 to evaluate response in relation to a crevice. The results are contained in Attachment 3.

ALARA Statement:

Residual radioactivity following remediation is less than the DCGL and meets the ALARA criterion as determined in Chapter 4 of the LTP.

Changes in Initial Survey Unit Assumptions:

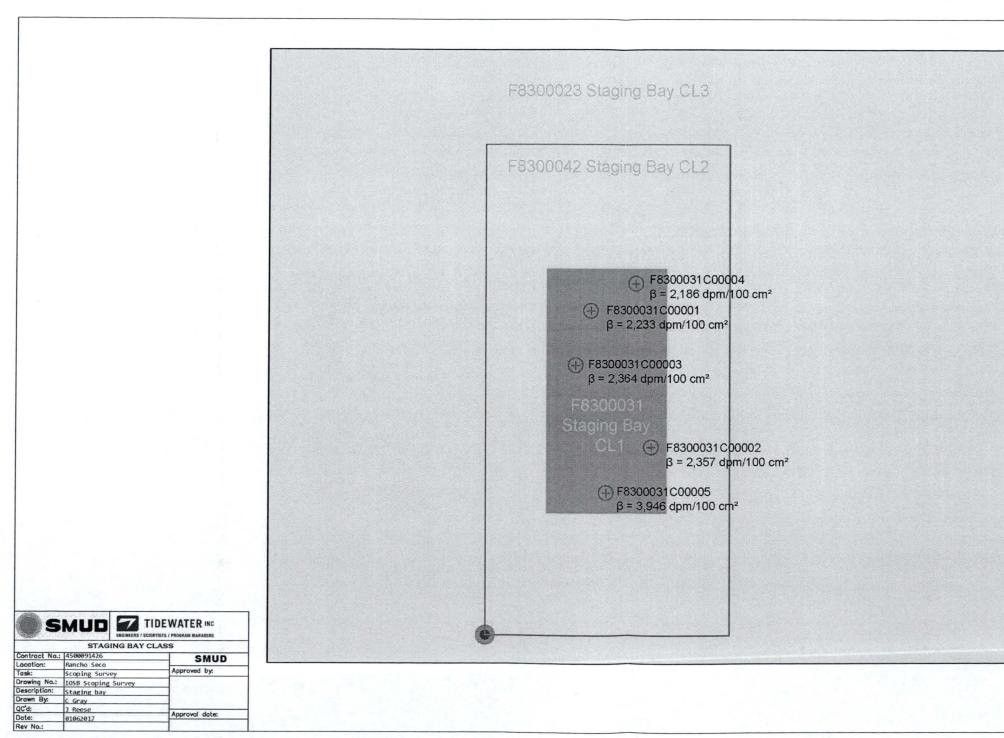
The survey unit was designed as a Class 1 survey and the sample results are consistent with that classification. The variability of the survey results was greater than the characterization data used for survey design. However, no individual measurement exceeded the DCGL. No potential areas of elevated activity were detected.

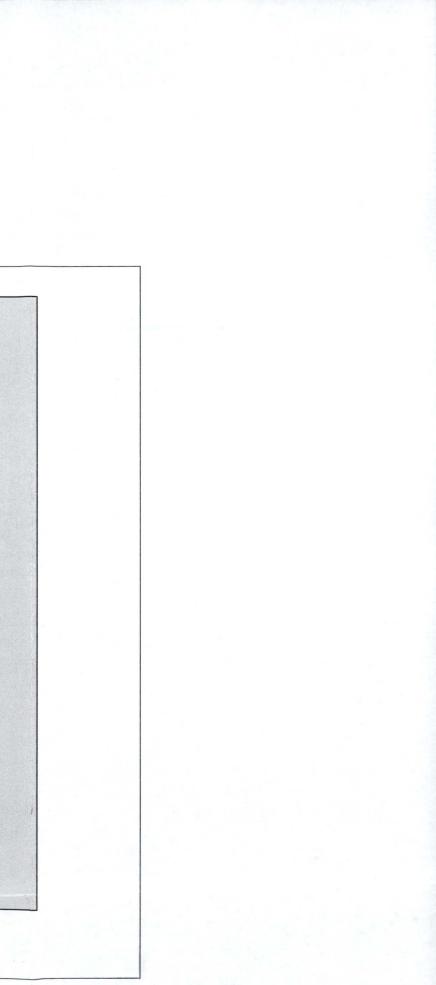
Conclusion:

4

The FSS of this survey unit was properly designed as a Class 1 survey based on the results of the scoping survey. The required number of direct measurements was made and the scan coverage met the requirement of Table 5-6 of the LTP. All of the static measurements were less than the DCGL. Investigation, performed per Attachment 3 results were less than the DCGL.

The static measurement data support rejection of the null hypothesis, providing high confidence that the survey unit satisfied the release criteria and that the data quality objectives were met.


It is concluded that survey unit F8300031 meets the release criteria of 10CFR20.1402.


FSS DAW Staging Bay Class 1 rev1 F8300031

Maps

January 6, 2017

Survey Unit F8300031

Instrumentation

January 5, 2017

Survey Unit F8300031

Measurement Type	Instrument Type	Minimum Detectable Activity ^a	Detector Efficiencies	Calibration Due Date ^b
Beta Static Measurement	Ludlum Model 2350-1 Ludlum Model 44-116 B Detector	Beta - 454 dpm/100 cm ²	12.9%	317899/331973 2/10/17
Swipe Measurements	Ludlum Model 2929 Ludlum Model 44- 10-1	Beta – 78 dpm/100 cm ²	43.4%	182597/188736 5/13/17

Table 2-1. Survey Unit Instrumentation

^a Minimum detectable activities for the count rate instrumentation were calculated in accordance with NUREG-1507,
 "Minimum Detectable Concentrations with Typical Radiation Survey Instruments for Various Contaminants and Field Conditions" (U.S. NRC, 1997).

^b Detectors are required to be calibrated once every 12 months. Calibration due date indicates the date by which the detector must be calibrated again.

 $cm^2 = square centimeters$

cpm = counts per minute

dpm = disintegrations per minute

Static Measurement MDA

Beta	Survey Type		
PR331973	Detector Number		
143	Background count rate (cpm)		
1	Count Time (min)		
0.129	Efficiency		
100	Area of Detector (cm ²)		

Constants

60 sec/min 2.54 cm/in

Assumptions

Background count time and sample count time are equivalent

Calculate Static MDA

Static MDA = $3 + 4.65(B_r * t)^{0.5/t} * E * A/_{100}$ (NUREG 1507)

Where:

- Br Background Countratet Count Time (min)
- E Efficiency
- A Area of detector (cm²)

Static MDA

454 dpm/100 cm²

Page 2

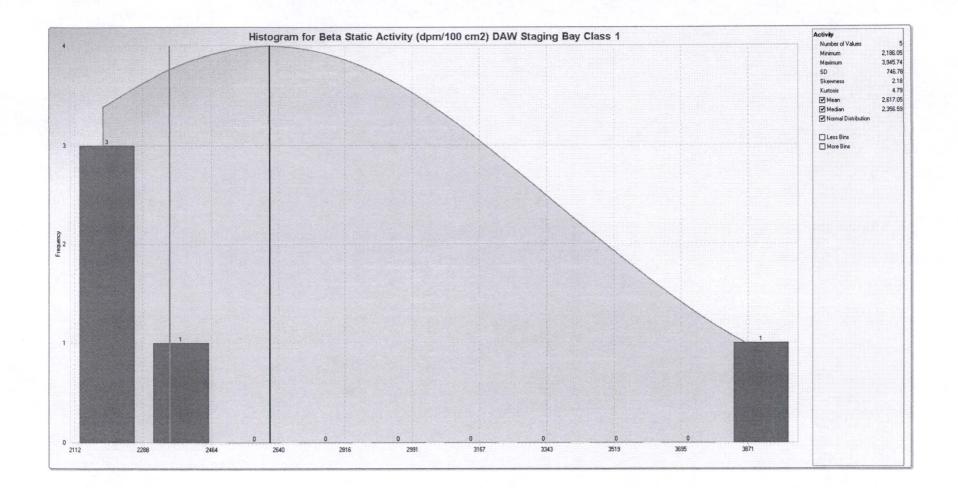
Investigation

January 5, 2017

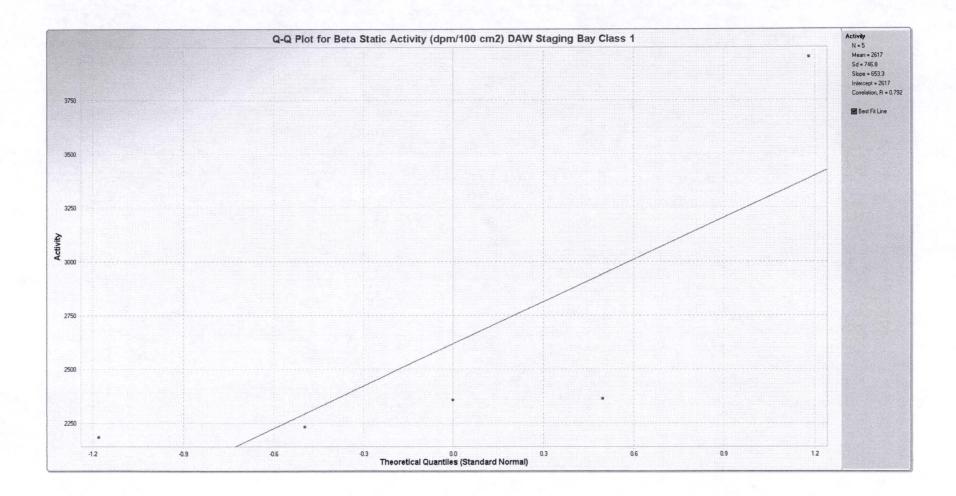
Survey Unit F8300031

FSS Package No.	X8300031		Date:	11-29-2016	
Location/Description:	F8300031 IOSB S	tage Bay CLA	SS 1 post ren	nediation	
Instrumentation Involved: (include serial numbers) N/A					
Data Investigation: REASON:	anna gun ta cana tana an an ta dhut ta ang an anna an an anna d				
During execution of F8300031, Staging Bay CLASS 1 resulted	an elevated static (BD- at location F8300031C0	beta direct) meas 00005.	surement above	a floor crevice in the IOSB	
These instructions will provide	the data necessary to pro-	operly evaluate th	nis elevated me	asurement location.	
SURVEY INSTRUCTIONS:				ξ ^α	
Using a calibrated 2350-1 and a measurement in the same locat execution of package F830003	Using a calibrated 2350-1 and 44-10 (2"x2" sodium iodide) detector, obtain a one minute gamma direct (GD) measurement in the same location (F8300031C00005) as the elevated beta direct measurement obtained in the execution of package F8300031.				
Data Evaluation and Investigation Resolution: 1. Log the results of the GD measurement below along with instrument and detector serial number, calibration due date and the 2350-1 download file name. 2. Sign and date performance of the survey. REFERENCE: Per section 6.2 of DTBD-06-006 elevated measurements will be investigated with 44-10 detector, collimated to a 20,000 cpm criterion.					
IN	VESTIGATION LO	CATION ID F	830003C000	05	
RESULTS: <u>9640</u> gross counts. <u>9120</u> bkg counts. 2 <u>0161129_133100</u> download file name 12/29/16 2350-1 S/N <u>317892</u> Detector S/N <u>208816</u> Cal due date <u>-2/10/17-1411/29</u> /16					
PERFORMED BY:					
Technician A	/ <u>11/29/11</u> Date	<u></u>	N/A hnician B	N/A Date	
Based on the above resolution, the survey data is determined to be:					
Prepared by:	4	FSSE Date	11-29-201	5	
Reviewed by:	WIT	LFSSRE Date			
U		and the second			

Final Status Survey Data Investigation/Evaluation


DEC-045, Rev. 0

Page 1 of 1


Data Assessment

January 5, 2017

Survey Unit F8300031

Att. 4 Data Assessment rev1

Smear_Data_Calculation_Sheet_101316

							10:	SB Final St	atus Surve	ey					
	LC1	LC2	TC3	LC4	LC6	LC5		β СРМ	βdpm	Date/Time	of Count		Sample	e Com	ments
1	F830	003	1	С	00001	ŚM	Stage Bay Floor	48	-1	11/29/16	1109				
2	F830	003	4	C	000óz	SM	Stage Bay Floor	48	-1	11/29/16	1111				
3	F830	003	1	C	00003	SM	Stage Bay Floor	51	6	11/29/16	1112				
4	F830	003	1	C	00004	SM	Stage Bay Floor	38	-24	11/29/16	1113				
5	F830	003	1.	C	00005	SM	Stage Bay Floor	45	-8	11/29/16	1115	1			
6	F830	003	1	C	00006	SM	Stage Bay Floor	> <	\sim	$\gg <$	> <				
7	F830	003	1	c	00007	SM	Stage Bay Floor	> <	>	\sim	\sim	1			
8	F830	003	1	c	00008	SM	Stage Bay Floor	>	\sim		\sim				
9	F830	003	1	S.	00009	SM	Stage Bay Floor	\geq	\sim	\sim	\sim				
10	F830	003	1	C	00010	SM.	Stage Bay Floor	>	\sim		\sim				
11	F830	003	1	Ţ.	00011	ŚM	Stage Bay Floor	>	\sim			1			
12	F830	003	1	C	00012	SM	Stage Bay Floor	>	\sim		\sim				
13	F830	003	1	Ċ	00013	SM	Stage Bay Floor	\sim	\sim	\sim	\sim	1			
14	F830	003	1	C	00014	SM	Stage Bay Floor	\sim	\sim		\sim	1		******	
15	F830	003	1	c	00015	SM	Stage Bay Floor	\gg	\sim	\sim	\sim				
Com	ments	By signal	ure beic	w, the	required s	ourcé chi	ck and background chec	ks were satisfacto	ňly performéd při	or to use of the institut	nent Identified	bełow.			-
										Ludlum 2	929 Bencht	op Instru	iment		
				·····			*****		2929 S/N: 18	2597		efficiency	bkg rate	bkg count time	MDA
					,				43-10-1 S/N:	188736	α	0.364	cpm	min	#DIV/0
	A Sign/ [B Sign/ [be Ne	cinių N		16			Cal Due Date	: 5/13/2017	β	0.434	48.5 cpm	1 min	77.6 dom per an

Rancho Seco Final Status Survey Summary Report January 6, 2017 IOSB DAW Staging Bay Class 2 rev1 Survey Unit F8300042

4-13-2017 **Prepared By:** Date: **FSS Engineer** Date:_4-13-2017 **Reviewed By:** Lead FSS Engineer Date: 4/19/17 Approved By:

Manager, Rancho Seco Assets

Survey Unit:

F8300042, Interim Onsite Storage Building (IOSB) DAW Staging Bay Class 2

Survey Unit Description:

Operating History: Designed primarily to store packaged radioactive waste containers safely, protected from the elements, and maintain radiological dose as low as reasonably achievable (ALARA), the IOSB contained and possibly stored media of many types, including filters, resins, contaminated chemicals, DAW, activated reactor components, contaminated plant components and other contaminated items.

Site Characterization: Static measurements were made of the interior surfaces of the DAW Staging Bay to confirm the absence or presence of plant-derived radionuclides. Static measurements showed a mean gross beta activity level of 2,637 dpm/100 cm² and a maximum value of 4,505 dpm/100 cm². The statistics of the DAW Staging bay results combines all lower walls, upper walls, floor, and ceiling data. Based upon the scanning results two elevated areas were identified on the floor.

One of the areas exceeded the DCGL_w but not the DCGL_{EMC}. This elevated measurement was acquired at a location on the staging bay floor adjacent to an expansion joint in the concrete. Investigatory measurements across the expansion joint revealed activity in excess of the DCGL_w. It was apparent that contamination had penetrated the the joint and an accurate measurement could not be made due to surface geometry considerations. Remediation was required for this area and it was classified as IOSB Staging Bay Class 1 (F8300031). The maximum static measurement documented for this expansion joint is 17,946 dpm/100cm². Staging Bay Class 1 (F8300031) is the subject of a separate report.

The other elevated area did not exceed the $DCGL_w$. In this area, only a fraction of the $DCGL_w$ was observed and therefore no remediation was required and it became a part of the IOSB Staging Bay Class 3 (F8300023) and is also the subject of a separate report.

The IOSB Staging Bay Class 2 (F8300042) buffer was created between the Class 1 and Class 3 areas and is the subject of this report.

Survey Unit Design Information:

1

In accordance with MARSSIM Section 4.6, special considerations may be necessary for survey units with structure surface areas less than 10 m^2 or land areas less than 100 m^2 . In this case, the number of data points obtained from the statistical tests is unnecessarily large and not appropriate for smaller survey unit areas. The data generated from these smaller survey units should be obtained based on judgment, rather than on systematic or random design, and compared individually to the DCGLs. This survey unit meets this criterion as the size is less than ten square meters (2.22 m²).

The Survey Unit Design Parameters are presented in **Table 1** below. The survey unit and measurement locations are depicted on the maps in **Attachment 1**. Static measurement locations were based on professional judgement in accordance with the LTP and approximately 100% of the area scanned. The instrumentation used for the survey along with the MDC values are listed in **Table 2-1 Attachment 2**.

FSS DAW Staging Bay Class 2 rev1 F8300042

Evaluation Input Values		Comments
Survey Package:	F830	DAW Staging Bay Class 2
Survey Unit:	004	
Class	2	
SU Area (m ²)	2	
Evaluator:	JR	
DCGL _w :	43,000	Gross Activity DCGL
Area Factor	N/A	
Design DCGLemc (dpm/100cm ²):	N/A	
DCGL _{emc} :	N/A	
LBGR:	21,500	Default = 50% DCGL
Sigma:	598	Scoping Survey Data
Type I error:	0.05	
Type II error:	0.05	
Predominant Nuclide	Cs-137	
Sample Area (m ²)	N/A	
Total Instrument Efficiency:	0.132	From 10/26/16 Survey
Total Area Scanned (m ²):	2.22	
Scan Coverage (%)	100%	Class 2
Material Type:	N/A	Choosing 'N/A' sets material background to "0"
Calculated Values		Comments
Ζ _{1-α} :	1.645	
Ζ _{1-β} :	1.645	
Sign p:	0.99865	
Calculated Relative Shift:	35.9	
Relative Shift Used:	3.0	Uses 3.0 if Relative Shift >3
N-Value:	10	Values selected based upon Judgement
N-Value+20%:	10	Values selected based upon Judgement

Table 1, Survey Unit Design Parameters

Survey Results:

A total of 10 direct measurements were made in F8300042. The results of the static measurements are shown in **Table 2**. All of the static measurements were less than the DCGL. None of the scan measurements indicated areas of elevated activity. Swipe data did not indicate elevated activity levels above the MDA.

Number	Sample #	Beta (cpm)	Beta (dpm)
1	F8300042C00001	300	2,326
2	F8300042C00002	300	2,326
3	F8300042C00003	280	2,171
4	F8300042C00004	304	2,357
5	F8300042C00005	269	2,085
6	F8300042C00006	281	2,178
7	F8300042C00007	261	2,023
8	F8300042C00008	296	2,295
9	F8300042C00009	287	2,225
10	F8300042C00010	294	2,279

Table 2, Static Measurement Results

Table 3 contains the statistical summary of the static measurement data for the DAW Staging Bay Class 2.

Tabl	e 3,	Beta	Summary	Statistics
------	------	------	---------	------------

Beta Static DAW Staging Bay Class 2					
Mean	2 226				
Median	2,226 2,252				
Standard Deviation	2,202				
Minimum	2,023				
Maximum	2,357				
Count	10				

Survey Unit Data Assessment:

The survey design required 10 static measurements based upon the size of the survey unit (2.22 m^2) . Following the guidance in MARSSIM Section 4.6, these values are compared directly to the DCGL_w. The comparison and the results are presented in **Table 4**. The sample mean and median values were less than the DCGL.

Static Data Values	Comments	
Number of Samples:	10	
Median:	2,252	
Mean:	2,226	
, Static Data Standard Deviation:	111	
Maximum:	2,357	
Criteria Satisfaction		Comments
Sufficient samples collected:	Pass	
Maximum value <dcgl<sub>w:</dcgl<sub>	Pass	
Median value <dcgl<sub>w:</dcgl<sub>	Pass	
Mean value <dcgl<sub>w:</dcgl<sub>	Pass	
Maximum value <dcgl<sub>emc:</dcgl<sub>	Pass	
Sign test results:	N/A	
Final Status		Comments
The survey unit passes all conditions:	Pass	

Table 4, Data Assessment Results

Survey Unit Investigations and Results:

No investigations were required for either direct or scan measurements and no investigation results are reported.

ALARA Statement:

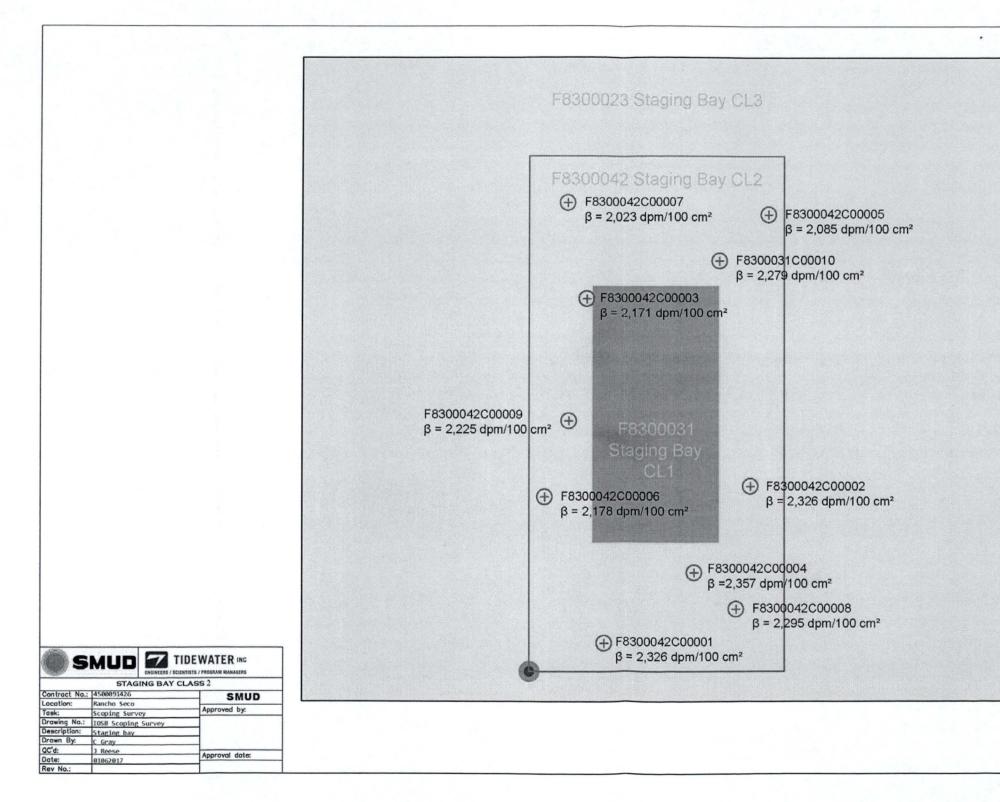
The residual activity within the survey unit is less than the DCGL and meets the ALARA criterion as determined in Chapter 4 of the LTP.

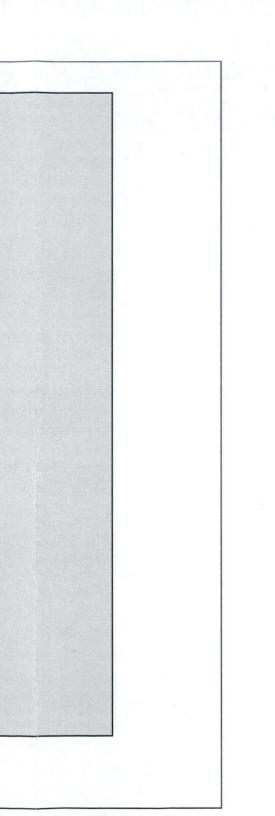
Changes in Initial Survey Unit Assumptions:

The survey unit was designed as a Class 2 survey and the sample results are consistent with that classification. The variability of the survey results was greater than the characterization data used for survey design. However, no individual measurement exceeded the DCGL. No potential areas of elevated activity were detected.

Conclusion:

The FSS of this survey unit was properly designed as a Class 2 survey based on the results of the scoping survey. The required number of direct measurements was made and the scan coverage met the requirement of Table 5-6 of the LTP. All of the static measurements were less than the DCGL. No investigations were required.


The static measurement data support rejection of the null hypothesis, providing high confidence that the survey unit satisfied the release criteria and that the data quality objectives were met.


It is concluded that survey unit F8300042 meets the release criteria of 10CFR20.1402.

Maps

January 6, 2017

Survey Unit F8300042

Instrumentation

January 6, 2017

Survey Unit F8300042

Measurement Type	Instrument Type	Minimum Detectable Activity ^a .	Detector Efficiencies	Calibration Due Date ^b
Beta Static Measurement	Ludlum Model 2350-1 Ludlum Model 44-116 B Detector	Beta - 424 dpm/100 cm ²	12.9%	317899/331973 2/10/17
Swipe Measurements	Ludlum Model 2929 Ludlum Model 44- 10-1	Beta – 78 dpm/100 cm ²	43.4%	182597/188736 5/13/17

Table 2-1. Survey Unit Instrumentation

^a Minimum detectable activities for the count rate instrumentation were calculated in accordance with NUREG-1507, "Minimum Detectable Concentrations with Typical Radiation Survey Instruments for Various Contaminants and Field Conditions" (U.S. NRC, 1997).

^b Detectors are required to be calibrated once every 12 months. Calibration due date indicates the date by which the detector must be calibrated again.

 $cm^2 = square centimeters$

cpm = counts per minute

dpm = disintegrations per minute

Static Measurement MDA

Beta	Survey Type
PR331973	Detector Number
. 143	Background count rate (cpm)
	Count Time (min)
0.129	Efficiency
100	Area of Detector (cm ²)

Constants

60 sec/min 2.54 cm/in

Assumptions

Background count time and sample count time are equivalent

Calculate Static MDA

Static MDA = $3 + 4.65(B_r * t)^{0.5/t} * E * A/_{100}$ (NUREG 1507)

Where:

Br Background Countrate
t Count Time (min)
E Efficiency
A Area of detector (cm²)

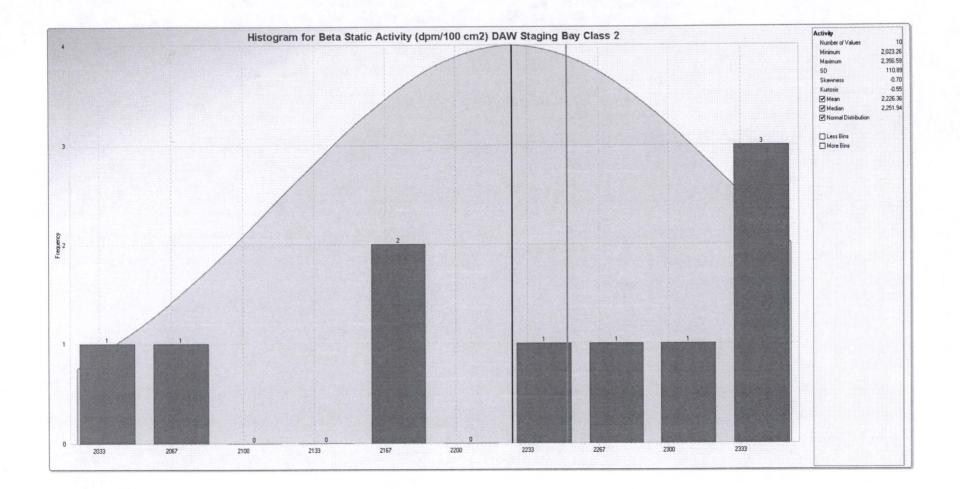
Static MDA

454 dpm/100 cm²

Investigation

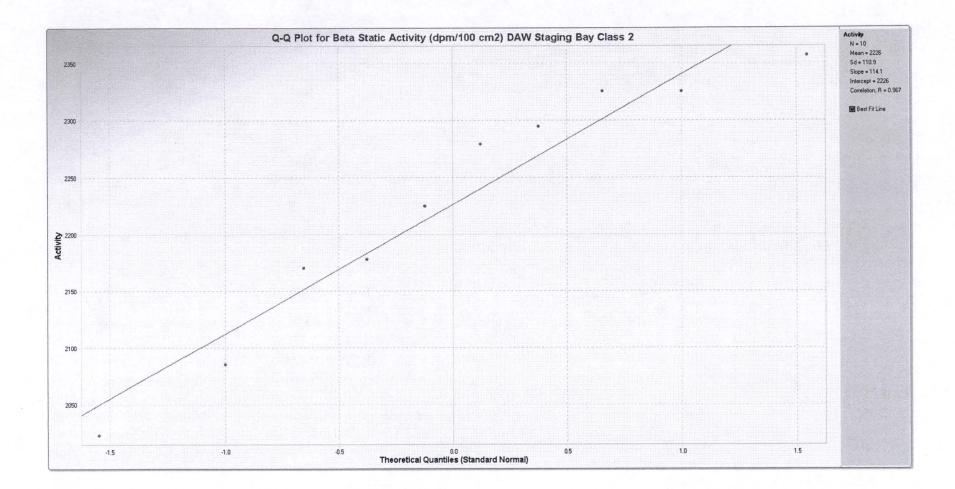
January 6, 2017

Survey Unit F8300042


(none required)

.

Data Assessment


January 6, 2017

Survey Unit F8300042

Att. 4 Data Assessment rev1

F8300042

Smear_Data_Calculation_Sheet_101316

	LC1	LC2	LC3	LC4	LC6	LC5		β CPM	β dpm	Date/Time o	of Count		Sample	e Comi	ments
1	F830	004	2	C	00001	SМ	Stage Bay Fir Buffr	49	1	11/29/16	1056	1			
2	F830	004	2	C	0000Z	SM	Stage Bay Flr Buffr	40	-20	11/29/16	1057				
3	F830.	004	2	¢	00003	-SM	Stage Bay Fir Bulfr.	45	-8	11/29/16	1058				
4	F830	004	2	C '	00004	SM	Stage Bay Fir Buffr	45	-8	11/29/16	1100				
5	F830	004	2	С	00005	SM	Stage Bay Fir Buffr	42	-15	11/29/16	1101				
6	F830	004	2	C	00006	SM	Stage Bay Fir Buffr	43	-13	11/29/16	1102				
7	F830	004	2	C	00007	SM	Stage Bay Fir Buffr.	45	-8	11/29/16		1			
8	F830	-004	2	¢	00008	5M	Stage Bay Fir Buffr	<u>}</u> 43	-13	11/29/16	1105				
9	F830	004	.2	С	00009	ŠM	Stage Bay Fir Buffr	51	6	11/29/16	1106	1			
10	F830	004	22	С	00010	SM	Stage Bay Fir Buffr	34	-33	11/29/16	1108				
11	F830	004	2	C	00011	SM	Stage Bay Fir Buffr	$>\!$	$>\!$	> <	$>\!$				
12	F830	004	2	C	00012	SM	Stage Bay Fir Buffr	$>\!$	$>\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	\searrow	$>\!$				
13	F830	004	2	ç	00013	SM	Stage Bay Fir Buffr	> <	> <	> <	$>\!$				
14	F830	004	2.	Ç	00014	SM	Stage Bay Fir Buffr	$>\!\!\!>$	\sim	\geq	> <	1			
15	F830	004	2	C	00015	SM	Stage Bay Fir Buffr	> <	\sim	\sim	$>\!$	1			
Com	ments	By signal	urë bek	w, the	required s	ource ch	eck and backgiound check	s were satisfacti	orily performed pr		hent identified 129 Bencht		ument		
							· · ·	-				efficiency	bkg	bkg count	
									2929 S/N: 18	32597		47475 IN 18 18 18 18 18 18 18 18 18 18 18 18 18	rate	time	MDA
									43-10-1 S/N:	188736	. α.	0:364	cpm	min	#DIV/
ech A Sign/ Date Je Minis/12-2-16 ech B Sign/ Date N/A						Cal Due Date	s 5/13/2017	β	0.434	48.5	J.,	77.6			

,

Rancho Seco Final Status Survey Summary Report February 2, 2017 IOSB Truck Bay rev1 Survey Unit F8300053

	$C \cap $	
Prepared By:	CLAR	_ Date:
	∬	
Reviewed By:	Adim of	Date: 4-13-2017
	Lead FSS Engineer	

Date: 1/18/17 Vå Approved By: hacer

Manager, Ráncho Seco Assets

Survey Unit:

F8300053, Interim Onsite Storage Building (IOSB) Truck Bay

Survey Unit Description:

Operating History: The Truck Bay was designed as a location for loading and unloading of transport vehicles. There was a known area of contamination near the loading dock. This area was fully characterized during the scoping surveys.

Site Characterization: Static measurements were made on the floor, walls, and ceiling, to confirm the absence or presence of plant-derived radionuclides. Static measurements showed a mean gross beta activity level of 2,374 dpm/100 cm² and a maximum value of $3,517 \text{ dpm}/100 \text{ cm}^2$.

Based upon the scanning results of the Truck Bay, an elevated area was identified on the floor around and including the loading dock. Certain spots in the area exceeded the DCGL_w but not the DCGL_{EMC}. An area of known contamination was identified at the loading dock area. This area was characterized to determine the extent and highest activity. The area of elevated activity was approximately 7.5 m² around the loading dock. A smaller area (less than 1.0 m²) exceeded the DCGL_w with activity detected as high as 249,491 dpm/100 cm². The smaller elevated area was designated as Loading Dock Class 1 (F8300071), requiring remediation and was buffered from the Truck Bay Class 3 (F8300053) with the Loading Dock Class 2 (F8300082) Survey Unit. The Loading Dock Class 1 and Class 2 Survey Units are each the subject of separate reports.

The remainder of the truck bay is a Class 3 and identified as IOSB Truck Bay (F8300053) Survey Unit and is the subject of this report.

Survey Unit Design Information:

The Survey Unit Design Parameters are presented in **Table 1**. The survey unit and measurement locations are depicted on the maps in **Attachment 1**. Static measurement locations were randomly determined and approximately 11% of the area scanned. The instrumentation used for the survey along with the MDC values are listed in **Table 2-1 Attachment 2**.

Evaluation Input Values		Comments
Survey Package:	F830	IOSB Truck Bay
Survey Unit:	005	
Class	3	
SU Area (m²)	379	
Evaluator:	JR	
DCGL _w :	43,000	Gross Activity DCGL
Area Factor	N/A	Class 3
Design DCGLemc (dpm/100cm ²):	N/A	Class 3
DCGLemc:	N/A	Class 3
LBGR:	21,500	Default = 50% DCGL
Sigma:	466	Scoping Survey Data
Type I error:	0.05	
Type II error:	0.05	
Predominant Nuclide	Cs-137	
Sample Area (m ²)	N/A	
Total Instrument Efficiency:	0.132	
Total Area Scanned (m ²):	45.5	
Scan Coverage (%)	· 11%	Class 3
Material Type:	N/A	Choosing 'N/A' sets material background to "0"
Calculated Values	•	Comments
Ζ1-α:	1.645	
Z _{1-p} :	1.645	
Sign p:	0.99865	
Calculated Relative Shift:	46.1	
Relative Shift Used:	3.0	Uses 3.0 if Relative Shift >3
N-Value:	11	
N-Value+20%:	14	<u> </u>

Table 1, Survey Unit Design Parameters

15

Survey Results:

A total of 15 direct measurements were made in F8300053. The results of the static measurements are shown in **Table 2**. All of the static measurements were less than the DCGL. None of the scan measurements indicated areas of elevated activity. Swipe data did not indicate elevated activity levels above the MDA.

Number	Sample #	Beta (cpm)	Beta (dpm/100 cm²)
1	F8300053C00001	222	1,721
2	F8300053C00002	225	1,744
3	F8300053C00003	238	1,845
4	F8300053C00004	279	2,163
5	F8300053C00005	268	2,078
6	F8300053C00006	221	1,713
7	F8300053C00007	238	1,845
8	F8300053C00008	256	1,984
9	F8300053C00009	264	2,047
10	F8300053C00010	219	1,698
11	F8300053C00011	332	2,515
12	F8300053C00012	361	2,735
13	F8300053C00013	446	3,379
14	F8300053C00014	449	3,402
15	F8300053C00015	360	2,727

Table 2, Static Measurement Results

Table 3 contains the statistical summary of the static measurement data for the TruckBay.

Table 3, Beta Summary Statistics

Beta Static Truck	Bay
Mean	2,240
Median	2,047
Standard Deviation	582
Minimum	1,698
Maximum	3,402
Count	15

Survey Unit Data Assessment:

The survey design required 14 static measurements for the Sign Test. A total of 15 static measurements were collected. The critical value and the results of the Sign Test are presented in **Table 4**. The sample mean and median values were less than the DCGL. The sample standard deviation was greater than the design standard deviation but both values of sigma resulted in a relative shift greater than three (3), no additional samples were required.

Static Data Values	Comments	
Number of Samples:	15	
Median:	2,047	
Mean:	2,240	
Static Data Standard Deviation:	582	
Maximum:	3,402	
Sign Test Results		Comments
Adjusted N Value:	14	
S+ Value:	15	
Critical Value:	10	
Criteria Satisfaction		Comments
Sufficient samples collected:	Pass	
Maximum value <dcgl<sub>w:</dcgl<sub>	Pass	
Median value <dcgl<sub>w:</dcgl<sub>	Pass	
Mean value <dcgl<sub>w:</dcgl<sub>	Pass	
Maximum value <dcgl<sub>emc:</dcgl<sub>	N/A	
Sign test results:	Pass	
Final Status		Comments
The survey unit passes all conditions:	Pass	

Table 4, Data Assessment Results

Survey Unit Investigations and Results:

No investigations were required for either direct or scan measurements and no investigation results are reported.

ALARA Statement:

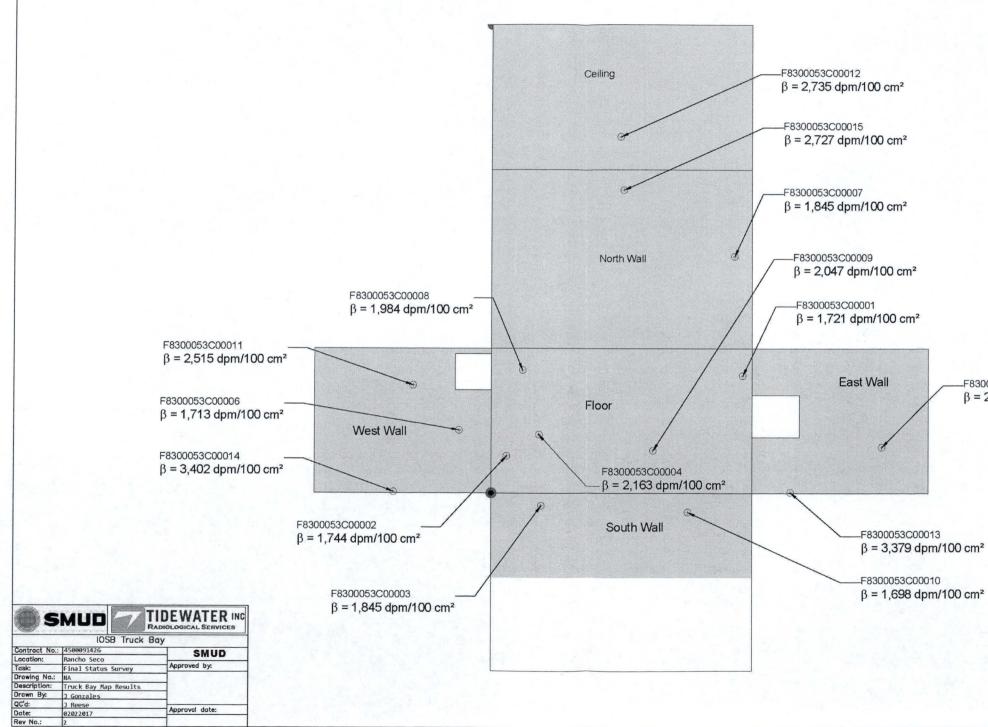
The residual activity within the survey unit is less than the DCGL and meets the ALARA criterion as determined in Chapter 4 of the LTP.

Changes in Initial Survey Unit Assumptions:

The survey unit was designed as a Class 3 survey and the sample results are consistent with that classification. The variability of the survey results was greater than the characterization data used for survey design. However, this did not affect the relative shift as both were in excess of maximum amount and required adjustment to 3.0 No potential areas of elevated activity were detected.

Conclusion:

The FSS of this survey unit was properly designed as a Class 3 survey based on the results of the scoping survey. The required number of direct measurements was made and the scan coverage met the requirement of Table 5-6 of the LTP. All of the static measurements were less than the DCGL. No investigations were required.


The static measurement data support rejection of the null hypothesis, providing high confidence that the survey unit satisfied the release criteria and that the data quality objectives were met.

It is concluded that survey unit F8300053 meets the release criteria of 10CFR20.1402.

Maps


February 2, 2017

Survey Unit F8300053

F8300053

_F8300053C00005 $\beta = 2,078 \text{ dpm}/100 \text{ cm}^2$

Instrumentation

February 3, 2017

Survey Unit F8300053

Measurement Type	Instrument Type	Minimum Detectable Activity ^a	Detector Efficiencies	Calibration Due Date ^b
Beta Static Measurement	Ludlum Model 2350-1 Ludlum Model 44-116 B Detector	Beta $- 510 \text{ dpm}/100 \text{ cm}^2$	12.9%	317899/331973 2/10/17
Beta Static Measurement	Ludlum Model 2350-1 Ludlum Model 44-116 B Detector	Beta - 556 dpm/100 cm ²	13.2%	317897/331972 2/10/17
Swipe Measurements	Ludlum Model 2929 Ludlum Model 44- 10-1	Beta – 74 dpm/100 cm ²	43.4%	182597/188736 5/13/17
Swipe Measurements	Ludlum Model 2929 Ludlum Model 44- 10-1	Beta – 77 dpm/100 cm ²	43.4%	182597/188736 5/13/17

Table 2-1. Survey Unit Instrumentation

^a Minimum detectable activities for the count rate instrumentation were calculated in accordance with NUREG-1507,
 "Minimum Detectable Concentrations with Typical Radiation Survey Instruments for Various Contaminants and Field Conditions" (U.S. NRC, 1997).

^b Detectors are required to be calibrated once every 12 months. Calibration due date indicates the date by which the detector must be calibrated again.

 $cm^2 = square centimeters$

cpm = counts per minute

dpm = disintegrations per minute

Static Measurement MDA

Beta	Survey Type			
PR331973	Detector Number			
182	Background count rate (cpm)			
1	Count Time (min)			
0.129	Efficiency			
100	Area of Detector (cm ²)			

Constants

60 sec/min 2.54 cm/in

Assumptions

Background count time and sample count time are equivalent

Calculate Static MDA

Static MDA = $3 + 4.65(B_r * t)^{0.5/t} * E * ^{A/_{100}}$ (NUREG 1507)

Where:

- BrBackground CountratetCount Time (min)
- E Efficiency
- A Area of detector (cm²)

Static MDA

510 dpm/100 cm²

Beta
PR331972
229
1
0.132
100

Survey Type Detector Number Background count rate (cpm) Count Time (min) Efficiency Area of Detector (cm²)

Constants

60 sec/min

2.54 cm/in

Assumptions

Background count time and sample count time are equivalent

Calculate Static MDA

Static MDA = $3 + 4.65(B_r * t)^{0.5/t} * E * ^{A/_{100}}$ (NUREG 1507)

Where:

Br Background Countrate

- t Count Time (min)
- E Efficiency
- A Area of detector (cm²)

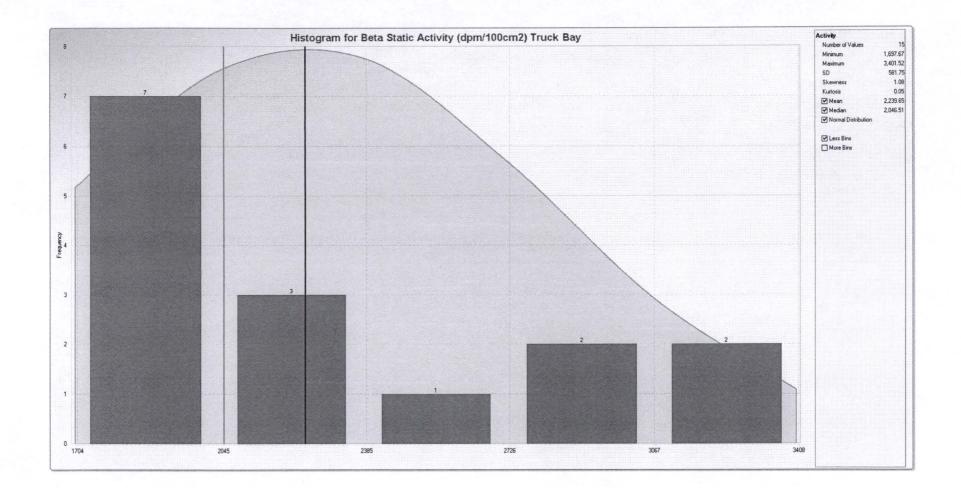
Static MDA

556 dpm/100 cm²

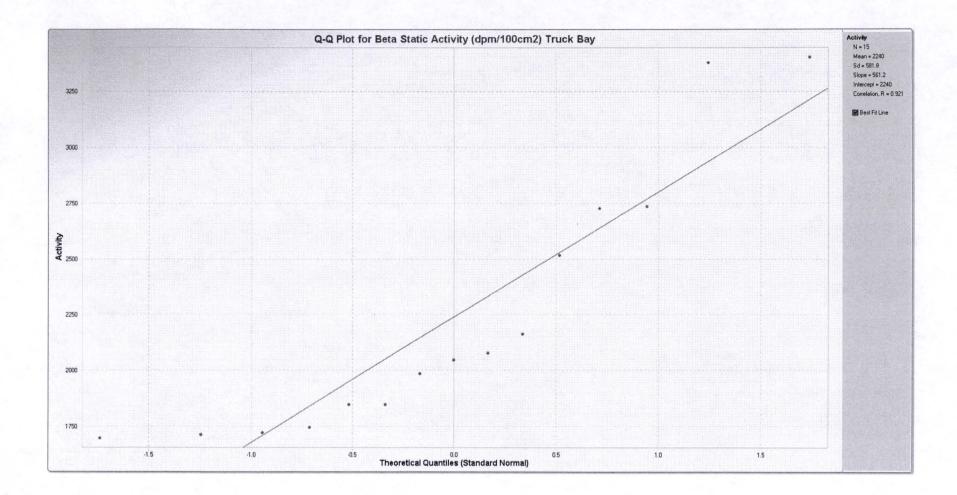
Page 3

Investigation

February 2, 2017


Survey Unit F8300053

(none required)


Data Assessment

February 3, 2017

Survey Unit F8300053

Att. 4 Data Assessment rev1

:	LC1	LC2	rc3	LC4	LC6	LCS		β CPM	β dpm	y Date/Time c			Sample Com	
1	F830	005	3	C	00001	SM	Truck Bay	63	35	01/04/17	1419			
2	F830	005	3	C	00002	SM	Truck Bay	51	8	01/04/17	1416			
3	F830	005	3	¢	00003	SM	Truck Bay	63	35	09/21/16	0846			
٩·	F830	Q05	3	Ċ.	00004	\$M	Truck Bay	47	-2	01/04/17	1418			
5	F830	005	З	Ç	00005	SM	Truck Bay	43	-11	09/21/16	0847			
6	F830	005	ÿ	C	00006	SM	Truck Bay	42	-13	09/21/16	0848			
7	F830	005	3	C	00007	SM	Truck Bay	39	×20	09/21/16	0849	1		
8	F830	005	3	Ç	00003	\$M	Truck Bay	49	3	01/04/17	1421			
9	F830	005	â	Ĉ	00009	SM	Truck Bay	41	~15	01/04/17	1422			
10	F830	005	3	C	00010	5M	Truck Bay	50	5	09/21/16	0850	ŀ		
11	F830	005	3	C.	00011	\$M	Truck Bay	45	-6	09/21/16	0852	ŀ		
12	F830	005	3	C	00012	SM	Truck Bay	41	-15	09/21/16	0853			
13	F830	005	3	C	00013	SM	Truck Bay	52	10	09/21/16	0855			
14	F830	005	3	Ċ.	00014	SM	Truck Bay	46	×4	09/21/16	0857			
15	F830	005	3	C	00015	\$M	Truck Bay	. 52	10	09/21/16	0858			
	K						ource check and b background = 9/		cks were satisfa	ctorily performed	priar to use	of the In	istrument iden	tifio
									Ludium 2929 Benchtop Instrument					
									2929'S/N: 18:	2597		efficiency	bkg count rate time	
			وسور			<i>л</i> .			43-10-1 5/N:	188736	β	0.434	44.8 1 .cpm .min	dg
Tech A Sign/ Date 47.7 1. Tech B Sign/ Date 0.434 47.7 1. Tech B Sign/ Date 0.434 47.7 1.				dpr										

Swipe Sheet truck bay

a mean and an and a second the transmission of the test of the second second second second second second second

Page 1 of 1

-- -- -- --

Rancho Seco Final Status Survey Summary Report January 30, 2017 IOSB Hot Cell rev1 Survey Unit F8300061

Prepared By:	E G G G G G G G G G G G G G G G G G G G	_Date:
Reviewed By:	Lead FSS Engineer	_ Date:
Approved By:	Manager, Rancho Seco Ass	_Date: <u>4/i9/i7</u> sets

Survey Unit:

F8300061, Interim Onsite Storage Building (IOSB) Hot Cell

Survey Unit Description:

Operating History: Designed primarily to store packaged radioactive waste containers safely, protected from the elements, and maintain radiological dose as low as reasonably achievable (ALARA), each storage cell possibly stored media of many types, including filters, resins, contaminated chemicals, DAW, activated reactor components, contaminated plant components and other contaminated items.

Site Characterization: Static measurements were made on the floor and wall surfaces, to confirm the absence or presence of plant-derived radionuclides. Static measurements showed a mean gross beta activity level of 2,880 dpm/100 cm² and a maximum value of 5,112 dpm/100 cm². Previous surveys and floor scanning indicated significant contamination in excess of the DCGL_w. This Hot Cell area was identified and characterized separately as a hot spot. The average static measurement in this hot spot was 390,104 dpm/100 cm² and a maximum value of 2,285,418 dpm/100 cm². The hot spot was remediated prior to performance of the FSS. Based upon the hot spot, the Hot Cell was classified as a MARSSIM Class 1 survey unit.

An adjacent Survey Unit, Hot Cell Buffer Class 2 (F8300062) was created as the buffer between the Hot Cell Class 1 (F8300061) and the remainder of the IOSB Truck Bay Class 1 (F8300053). The Hot Cell Buffer Class 2 (F8300062) Survey Unit is identified as the horizontal and vertical surfaces at the top of each of the four walls at the Hot Cell cover seating surface. The Hot Cell Buffer Class 2 (F8300062) and IOSB Truck Bay Class 3 (F8300053) Survey units each are the subject of separate reports.

Survey Unit Design Information:

In accordance with MARSSIM Section 4.6, special considerations may be necessary for survey units with structure surface areas less than 10 m^2 or land areas less than 100 m^2 . In this case, the number of data points obtained from the statistical tests is unnecessarily large and not appropriate for smaller survey unit areas. The data generated from these smaller survey units should be obtained based on judgment, rather than on systematic or random design, and compared individually to the DCGLs. This survey unit meets this criterion as the size is less than ten square meter (8 m²).

The Survey Unit Design Parameters are presented in **Table 1** below. The survey unit and measurement locations are depicted on the maps in **Attachment 1**. Static measurement locations were based upon professional judgment in accordance with MARSSIM guidance and approximately 100% of the area scanned. The instrumentation used for the survey along with the MDC values are listed in **Table 2-1 Attachment 2**.

Evaluation Input Values		Comments
Survey Package:	F830	Hot Cell
Survey Unit:	006	
Class	1	
SU Area (m²)	8	
Evaluator:	JR	
DCGL _w :	43,000	Gross Activity DCGL
Area Factor	3.3	Class 1
Design DCGLemc (dpm/100cm ²):	141,900	Class 1
LBGR:	21,500	Default = 50% DCGL
Sigma:	740	Scoping Survey Data
Type I error:	0.05	
Type II error:	0.05	
Predominant Nuclide	Cs-137	
Sample Area (m²)	N/A	
Total Instrument Efficiency:	0.129	
Total Area Scanned (m ²):	8	
Scan Coverage (%)	100%	Class 1
Material Type:	N/A	Choosing 'N/A' sets material background to "0"
Calculated Values		Comments
Z _{1-α} :	1.645	
Z _{1-β} :	1.645	
Sign p:	0.99865	
Calculated Relative Shift:	29.0	
Relative Shift Used:	3.0	Uses 3.0 if Relative Shift >3
N-Value:	11	
N-Value+20%:	14	

Table 1, Survey Unit Design Parameters

Survey Results:

A total of 15 direct measurements were made in F8300061. The results of the static measurements are shown in **Table 2**. All of the static measurements were less than the DCGL. None of the scan measurements indicated areas of elevated activity. Swipe data did not indicate elevated activity levels above the MDA.

~

1

Number	Sample #	Beta (cpm)	Beta (dpm)
1	F8300061X00001	364	2,758
2	F8300061X00002	396	3,000
3	F8300061X00003	425	3,220
4	F8300061X00004	362	2,742
5	F8300061X00005	350	2,652
6	F8300061X00006	435	3,295
7	F8300061X00007	605	4,583
8	F8300061X00008	397	3,008
9	F8300061X00009	414	3,136
10	F8300061X00010	314	2,379
11	F8300061X00011	362	2,742
12	F8300061X00012	282	2,136
13	F8300061X00013	357	2,705
14	F8300061X00014	423	3,205
15	F8300061X00015	407	3,083

Table 2, Static Measurement Results

Table 3 contains the statistical summary of the static measurement data for the Hot Cell.

Table 3, Beta Summary Statistics

Beta Static Hot (Cell
Mean	2,976
Median	3,000
Standard Deviation	550
Minimum	2,136
Maximum	4,583
Count	15

Survey Unit Data Assessment:

The survey design required 15 static measurements located based upon professional judgment. Following the guidance in MARSSIM Section 4.6, these values are compared directly to the $DCGL_w$.

The comparison and the results are presented in **Table 4**. The sample mean and median values were less than the DCGL.

Static Data Values	-	Comments
Number of Samples:	15	
Median:	3,000	
Mean:	2,976	
Static Data Standard Deviation:	550	
Maximum:	4,583	
Sign Test Results		Comments
Adjusted N Value:	14	
S+ Value:	15	
Critical Value:	10	
Criteria Satisfaction		Comments
Sufficient samples collected:	Pass	
Maximum value <dcgl<sub>w:</dcgl<sub>	Pass	
Median value <dcgl<sub>w:</dcgl<sub>	Pass	
Mean value <dcgl<sub>w:</dcgl<sub>	Pass	
Maximum value <dcglemc:< td=""><td>N/A</td><td></td></dcglemc:<>	N/A	
Sign test results:	N/A	
Final Status		Comments
The survey unit passes all conditions:	Pass	

Table 4, Data Assessment Results

Survey Unit Investigations and Results:

No investigations were required for either direct or scan measurements and no investigation results are reported.

ALARA Statement:

Residual radioactivity following remediation is less than the DCGL and meets the ALARA criterion as determined in Chapter 4 of the LTP.

Changes in Initial Survey Unit Assumptions:

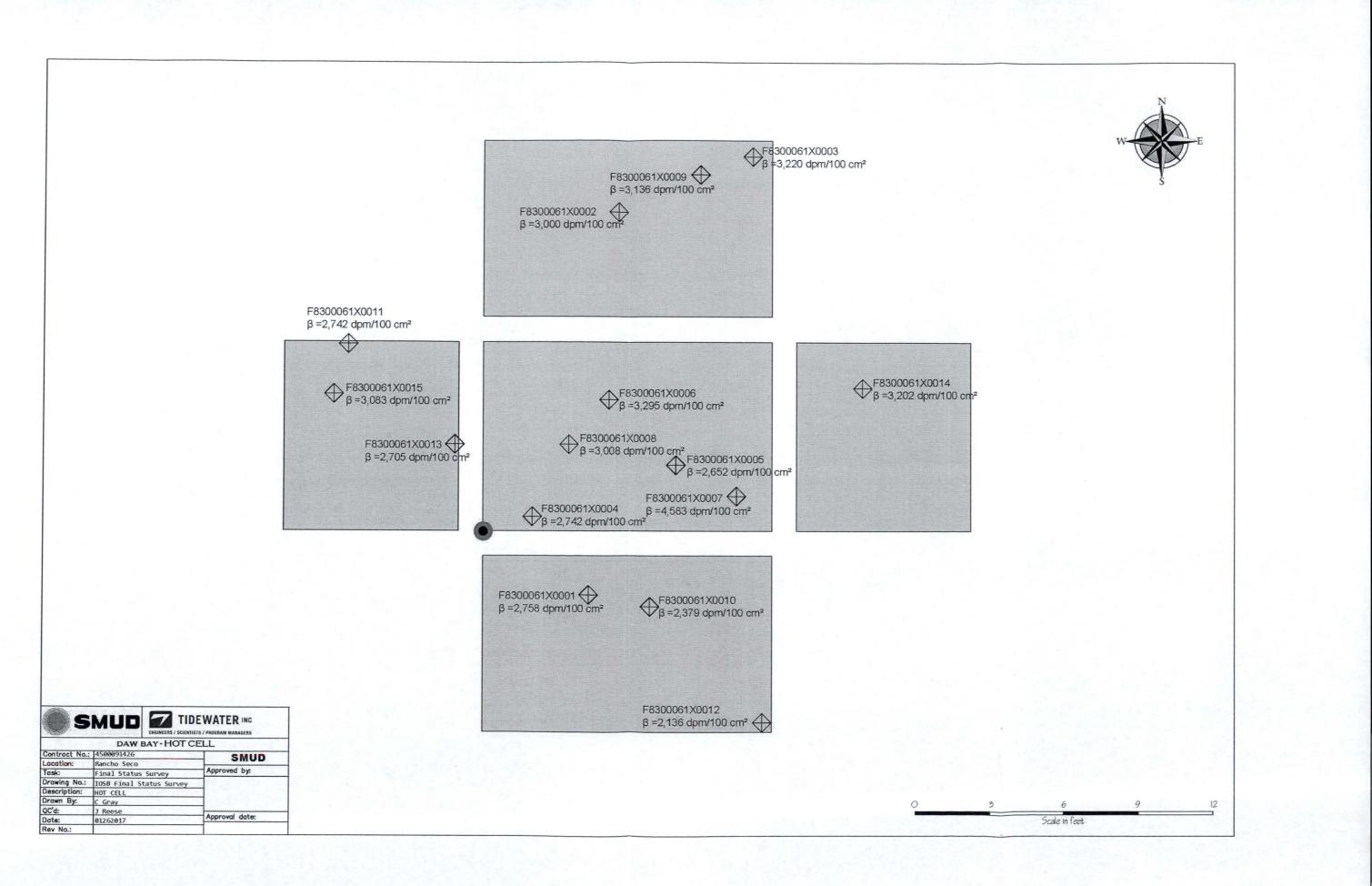
The survey unit was designed as a Class 1 survey and the sample results are consistent with that classification. The variability of the survey results was less than the characterization data used for survey design. No individual measurement exceeded the DCGL. No potential areas of elevated activity were detected.

Conclusion:

The FSS of this survey unit was properly designed as a Class 1 survey based on the results of the scoping survey. The required number of direct measurements was made and the scan coverage met the requirement of Table 5-6 of the LTP. All of the static measurements were less than the DCGL. No investigations were required.

The static measurement data support rejection of the null hypothesis, providing high confidence that the survey unit satisfied the release criteria and that the data quality objectives were met.

It is concluded that survey unit F8300061 meets the release criteria of 10CFR20.1402.


,

Maps

January 30, 2017

Survey Unit F8300061

.

F8300061

Instrumentation

January 25, 2017

Survey Unit F83000061

Measurement Type	Instrument Type	Minimum Detectable Activity ^a	Detector Efficiencies	Calibration Due Date ^b
Beta Static Measurement	Ludlum Model 2350-1 Ludlum Model 44-116 B Detector	Beta – 466 dpm/100 cm ²	13.2%	317897/331972 2/10/17
Swipe Measurements	Ludlum Model 2929 Ludlum Model 44- 10-1	Beta - 74.5 dpm/100 cm ²	43.4%	182597/188736 5/13/17

Table 2-1. Survey Unit Instrumentation

^a Minimum detectable activities for the count rate instrumentation were calculated in accordance with NUREG-1507, "Minimum Detectable Concentrations with Typical Radiation Survey Instruments for Various Contaminants and Field Conditions" (U.S. NRC, 1997).

Conditions" (U.S. NRC, 1997).
^b Detectors are required to be calibrated once every 12 months. Calibration due date indicates the date by which the detector must be calibrated again.

 $cm^2 = square centimeters$

cpm = counts per minute

dpm = disintegrations per minute

Static Measurement MDA

Beta	Survey Type
PR331972	Detector Number
158	Background count rate (cpm)
1	Count Time (min)
0.132	Efficiency
100	Area of Detector (cm ²)

Constants

60 sec/min

2.54 cm/in

Assumptions

Background count time and sample count time are equivalent

Calculate Static MDA

Static MDA = $3 + 4.65(B_r * t)^{0.5}/t * E * A/_{100}$ (NUREG 1507)

Where:

- Br Background Countrate t Count Time (min)
- E Efficiency
- A Area of detector (cm²)

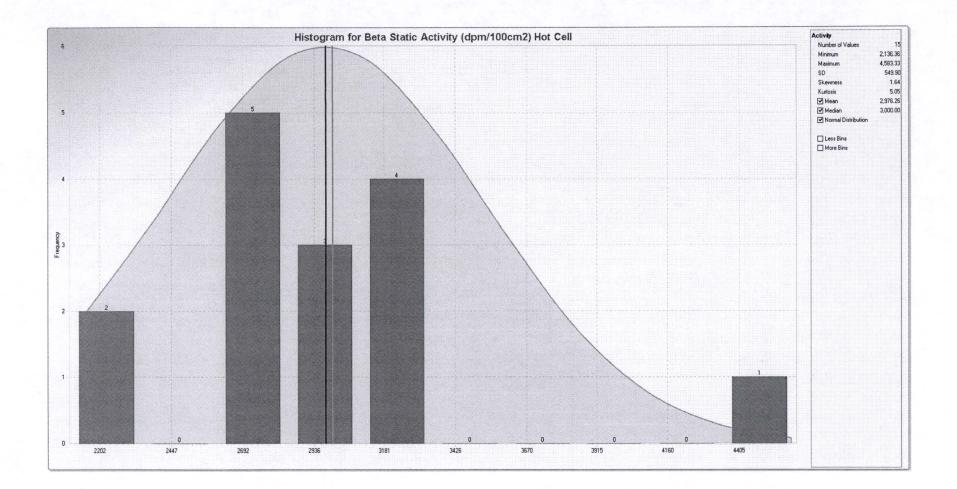
Static MDA

466 dpm/100 cm²

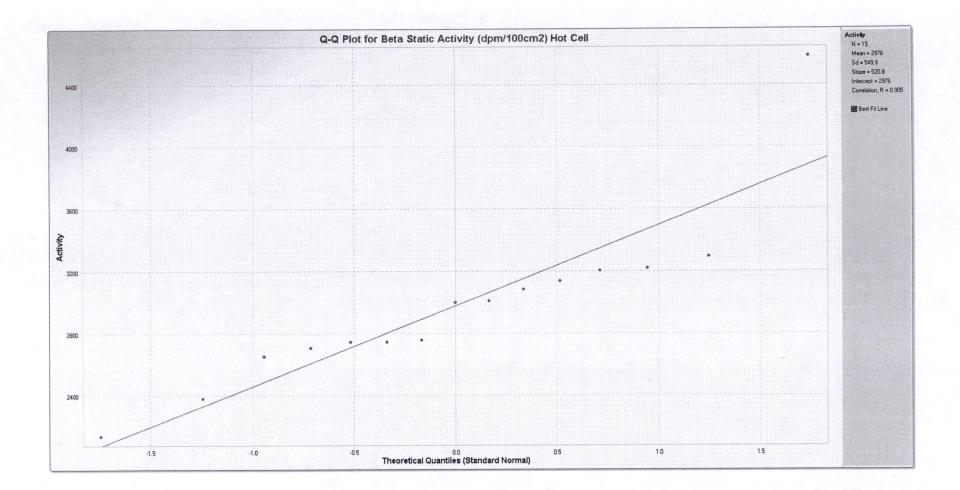
Investigation

January 30, 2017

Survey Unit F8300061


(none required)

`


Data Assessment

January 25, 2017

Survey Unit F8300061

Att. 4 Data Assessment rev1

Att. 4 Data Assessment rev1

Smear_Data	Calculation	_Sheet_1	01316
------------	-------------	----------	-------

	LC1	LC2	LC3	1.04	1C6	LC5		β-CPM	β_dpm	Date/Time	of Count		Sample	e Com	ments
1	F830	006	1	C	00001	SM	Hot Cell	49	10	11/01/16	1210				
2	F830	006	1	C	00002	SM-	Hot Cell	53	20	11/01/16	1211			······	
3	F830	006	1	C	00003	SM	Hot Cell	50	13	11/01/16	1212	ŀ			
4	F830	006	1	Ċ	00004	SM.	Hot Cell	58	31	11/01/16	1214				
5	F830	006	1	c	00005	SM	Hot Cell	44	-1	11/01/16	1215	1		A	
6	F830	006	1	C	00006	SM	Höt Cell	47	6	11/01/16	1216				
7	F830	006	1.	C.	00007	SM	Hot Cell	53	20	11/01/16	1217				
8	F830	006	1	С	00008	SM	Hot Cell	53.	20	11/01/16	1219	1			
9	F830	006	1	C	00009	SM	Hot Cell	52.**	17	11/01/16	1220	ľ			
10	F830	006	1	C	00010	SM	Hot Cell	59	33	11/01/16	1221				
11	F830	006	1	ĉ	00011	SM	Hot Cell	47	6	11/01/16	1222	1			
12	F830	006	1	Ċ	00012	SM	Họt Cell	49	10	11/01/16	1224				
13	F830	006	1	c	00013	SM	Hot Cell	51	15	11/01/16	1225				
14	F830	006	1	c	00014	SM .	Hot Cell	62	40	11/01/16	1226			***************************************	
15	F830	006	1	C	00015	SM	Hot Cell	42	-6	11/01/16	1227	1			
Com	ments	By signal	ure belo	w, the	required s	ource cho	eck and background ch	ecks were satisfact	orly performed pric	or to use of the instruc	nent identified	below.			
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,									Ludlum 2	929 Benchl	op Instru	Iment		
									2929 S/N: 18	2597		efliciency	bkg rate	bkg count time	MDA
	-								43-10-1 S/N:	188736	α	0.364	cpm	min	#DIV/0 dpm per av
		Date	1 1	3	\$ /12						1	1	44.5	1	74.5

Rancho Seco Final Status Survey Summary Report January 30, 2017 IOSB Hot Cell Class 2 rev1 Survey Unit F8300062

Date:_4-13-2017 Prepared By: **FSS Engineer** Date: 4-13-2017 Alen **Reviewed By:** Lead FSS Engineer Date: 4/18/17 Approved By: ance

Manager, Rancho Seco Assets

Survey Unit:

F8300062, Interim Onsite Storage Building (IOSB) Hot Cell Class 2

Survey Unit Description:

Operating History: Designed primarily to store packaged radioactive waste containers safely, protected from the elements, and maintain radiological dose as low as reasonably achievable (ALARA), the hot cell possibly stored media of many types, including filters, resins, contaminated chemicals, DAW, activated reactor components, contaminated plant components and other contaminated items. The Class 2 survey area encompasses the the walls above six feet up to and including the ledge where the lid rests.

Site Characterization: Static measurements were made on the floor and wall surfaces, to confirm the absence or presence of plant-derived radionuclides. Static measurements within the hot cell showed a mean gross beta activity level of 2,880 dpm/100 cm² and a maximum value of 5,112 dpm/100 cm². Previous surveys and floor scanning indicated significant contamination in excess of the DCGLw. This Hot Cell Class 1 (F8300061) area was identified and characterized separately as a hot spot. The average static measurement in this hot spot was 390,104 dpm/100 cm² and a maximum value of 2,285,418 dpm/100 cm². The hot spot was remediated prior to performance of the FSS. Based upon the hot spot, the Hot Cell was classified as a MARSSIM Class 1 survey unit.

An adjacent Survey Unit, Hot Cell Buffer Class 2 (F8300062), the subject of this report, was created as the buffer between the Hot Cell Class 1 (F8300061) and the remainder of the IOSB Truck Bay Class 3 (F8300053). This Hot Cell Buffer Survey Unit (F8300062) is identified as the horizonal and vertical surfaces (above seven feet) at the top of each of the four walls of the hot cell cover seating surface.

The Hot Cell Class 1 (F8300061) and IOSB Truck Bay Class 3 (F8300053) Survey units each are the subject of separate FSS reports.

Survey Unit Design Information:

In accordance with MARSSIM Section 4.6, special considerations may be necessary for survey units with structure surface areas less than 10 m² or land areas less than 100 m². In this case, the number of data points obtained from the statistical tests is unnecessarily large and not appropriate for smaller survey unit areas. The data generated from these smaller survey units should be obtained based on judgment, rather than on systematic or random design, and compared individually to the DCGLs. This survey unit meets this criterion as the size is less than ten square meter (7.6 m²).

The Survey Unit Design Parameters are presented in **Table 1** below. The survey unit and measurement locations are depicted on the maps in **Attachment 1**. Static measurement locations were determined by professional judgment in accordance with MARSSIM guidance and approximately 100% of the area scanned. The instrumentation used for the survey along with the MDC values are listed in **Table 2-1 Attachment 2**.

1

Free Look and Look Address	×	0
Evaluation Input Values	5000	Comments
Survey Package:	F830	Hot Cell Class 2
Survey Unit:	006	
Class	2	
SU Area (m²)	8	
Evaluator:	JR	
DCGL _w :	43,000	Gross Activity DCGL
Area Factor	NA	Class 2
Design DCGLemc (dpm/100cm ²):	NA	Class 2
LBGR:	21,500	Default = 50% DCGL
Sigma:	740	Scoping Survey Data
Type I error:	0.05	
Type II error:	0.05	
Predominant Nuclide	Cs-137	
Sample Area (m ²)	N/A	
Total Instrument Efficiency:	0.129	
Total Area Scanned (m ²):	7.6	
Scan Coverage (%)	100%	Class 2
Material Type:	N/A	Choosing 'N/A' sets material background to "0"
Calculated Values		Comments
Ζ1-α:	1.645	
Ζ _{1-β} :	1.645	
Sign p:	0.99865	
Calculated Relative Shift:	29.0	
Relative Shift Used:	3.0	Uses 3.0 if Relative Shift >3
N-Value:	15	Values selected based upon Judgement
N-Value+20%:	15	Values selected based upon Judgement

Table 1, Survey Unit Design Parameters

Survey Results:

A total of 15 direct measurements were made in F8300062 following the guidance from MARSSIM section 4.6. The results of the static measurements are shown in **Table 2**. All of the static measurements were less than the DCGL. None of the scan measurements indicated areas of elevated activity. Swipe data did not indicate elevated activity levels above the MDA.

Number	Sample #	Beta (cpm)	Beta (dpm)	
1	F8300062X00001	314	2,379	
2	F8300062X00002	299	2,265	
3	F8300062X00003	392	2,970	
4	F8300062X00004	272	2,061	
5	F8300062X00005	378	2,864	
6	F8300062X00006	303	2,295	
7	F8300062X00007	324	2,455	
8	F8300062X00008	311	2,356	
9	F8300062X00009	313	2,371	
10	F8300062X00010	310	2,348	
11	F8300062X00011	245	1,856	
12	F8300062X00012	255	1,932	
13	F8300062X00013	279	2,114	
14	F8300062X00014	306	2,318	
15	F8300062X00015	300	2,273	

Table 2, Static Measurement Results

Table 3 contains the statistical summary of the static measurement data for the Hot Cell Class 2.

Beta Static Hot Cell C	lass z
Mean	2,324
Median	2,318
Standard Deviation	296
Minimum	1,856
Maximum	2,970
Count	15

Survey Unit Data Assessment:

The survey design was based upon professional judgement and resulted in 15 static measurements. Following the guidance in MARSSIM Section 4.6, these values are compared directly to the DCGLw.

The comparison and the results are presented in **Table 4**. The sample mean and median values were less than the DCGL.

Static Data Values		Comments
Number of Samples:	15	
Median:	2,318	
Mean:	2,324	
Static Data Standard Deviation:	296	
Maximum:	2,970	
Sign Test Results		Comments
Adjusted N Value:	14	
S+ Value:	15	
Critical Value:	10	
Criteria Satisfaction		Comments
Sufficient samples collected:	Pass	
Maximum value <dcgl<sub>w:</dcgl<sub>	Pass	
Median value <dcgl<sub>w:</dcgl<sub>	Pass	
Mean value <dcgl<sub>w:</dcgl<sub>	Pass	
Maximum value <dcgl<sub>emc:</dcgl<sub>	N/A	
Sign test results:	N/A	
Final Status	•	Comments
The survey unit passes all conditions:	Pass	

Table 4, Data Assessment Results

Survey Unit Investigations and Results:

No investigations were required for either direct or scan measurements and no investigation results are reported.

ALARA Statement:

The residual activity within the survey unit is less than the DCGL and meets the ALARA criterion as determined in Chapter 4 of the LTP.

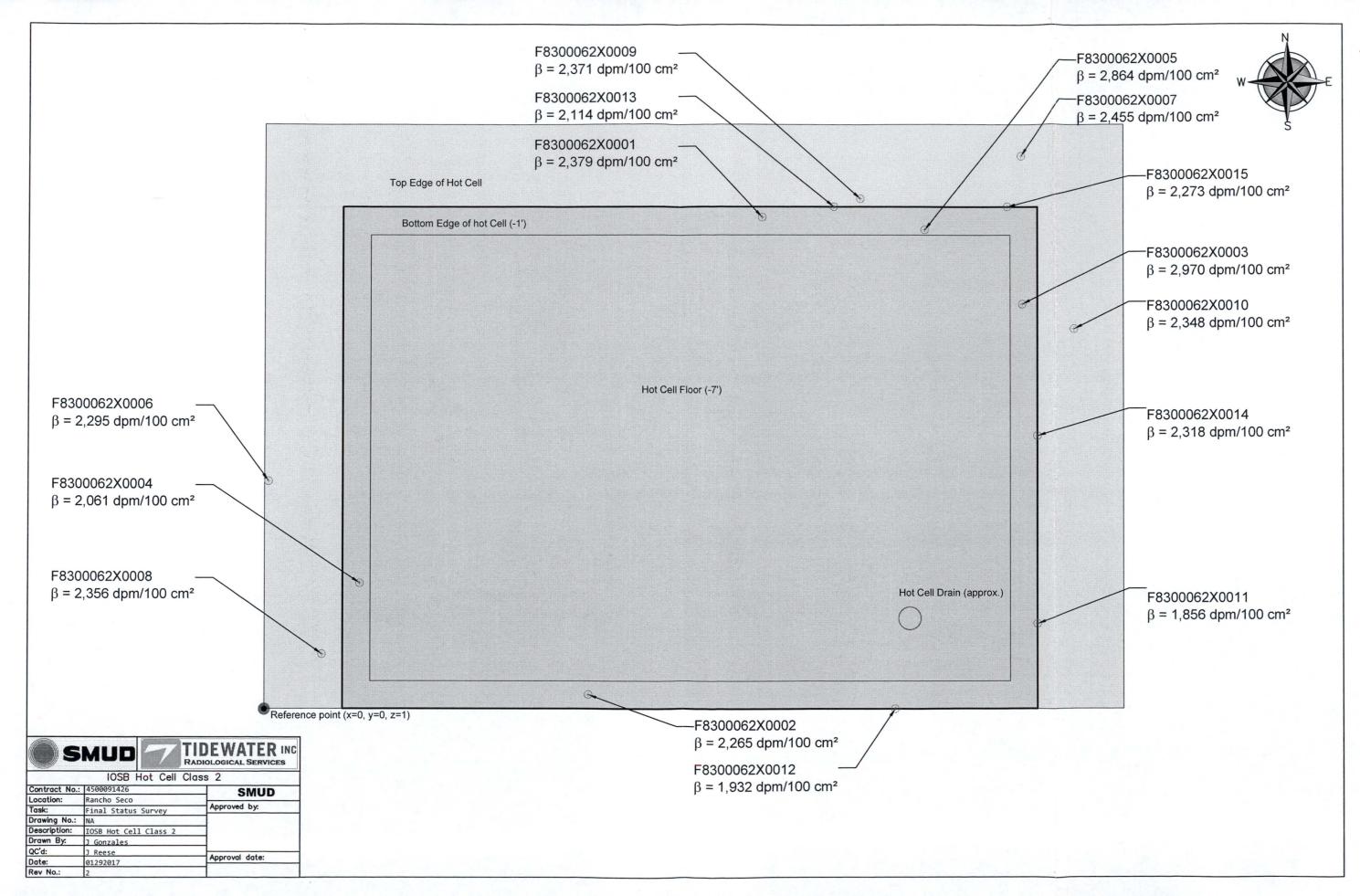
Changes in Initial Survey Unit Assumptions:

The survey unit was designed as a Class 2 survey and the sample results are consistent with that classification. The variability of the survey results was less than the characterization data used for survey design. No individual measurement exceeded the DCGL. No potential areas of elevated activity were detected.

Conclusion:

The FSS of this survey unit was properly designed as a Class 2 survey based on the results of the scoping survey. The required number of direct measurements was made and the scan coverage met the requirement of Table 5-6 of the LTP. All of the static measurements were less than the DCGL. No investigations were required.

The static measurement data support rejection of the null hypothesis, providing high confidence that the survey unit satisfied the release criteria and that the data quality objectives were met.


It is concluded that survey unit F8300062 meets the release criteria of 10CFR20.1402.

1

Maps

January 30, 2017

Survey Unit F8300062

Instrumentation

January 30, 2017

Survey Unit F83000062

1

Measurement Type	Instrument Type	Minimum Detectable Activity ^a	Detector Efficiencies	Calibration Due Date ^b
Beta Static Measurement	Ludlum Model 2350-1 Ludlum Model 44-116 B Detector	Beta – 499 dpm/100 cm ²	13.2%	317897/331972 2/10/17
Swipe Measurements	Ludlum Model 2929 Ludlum Model 44- 10-1	$Beta-77 \text{ dpm}/100 \text{ cm}^2$	43.4%	182597/188736 5/13/17

Table 2-1. Survey Unit Instrumentation

Conditions" (U.S. NRC, 1997).
^b Detectors are required to be calibrated once every 12 months. Calibration due date indicates the date by which the detector

must be calibrated again. $cm^2 =$ square centimeters cpm = counts per minute dpm = disintegrations per minute

Static Measurement MDA

Beta	Survey Type
PR331972	Detector Number
183	Background count rate (cpm)
1	Count Time (min)
0.132	Efficiency
100	Area of Detector (cm ²)

Constants

60 sec/min 2.54 cm/in

Assumptions

Background count time and sample count time are equivalent

Calculate Static MDA

Static MDA =3 + 4.65(Br * t)^{0.5}/t * E * ^A/₁₀₀ (NUREG 1507)

Where:

- Br Background Countratet Count Time (min)
- E Efficiency
- A Area of detector (cm²)

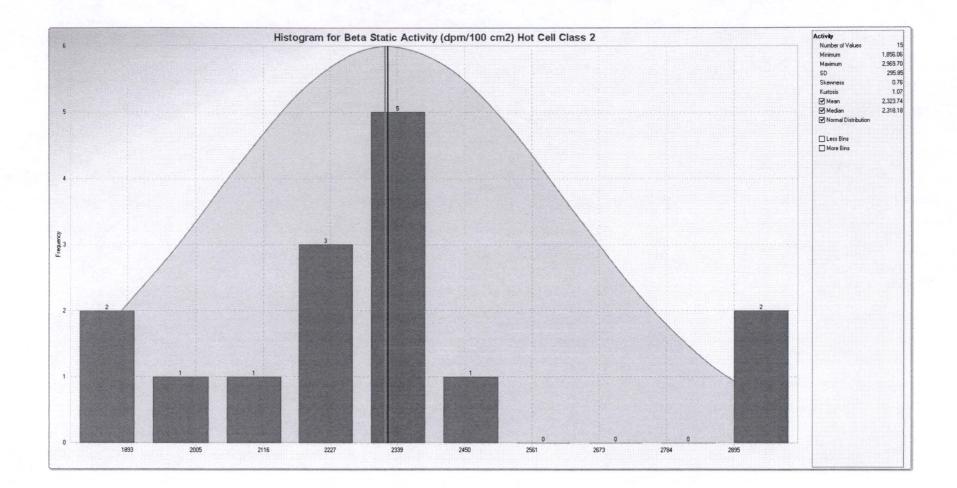
Static MDA

499 dpm/100 cm²

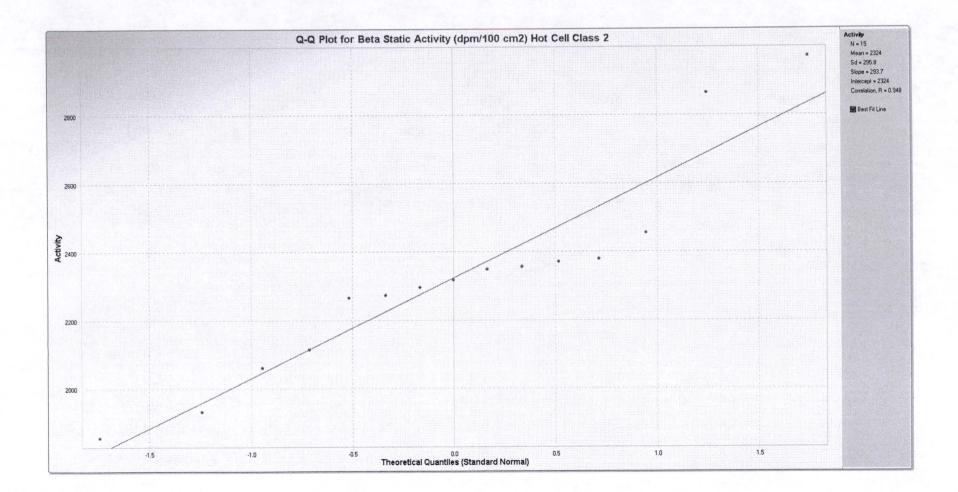
.

Investigation

January 30, 2017


Survey Unit F8300062

(none required)


Data Assessment

January 30, 2017

Survey Unit F8300062

Att. 4 Data Assessment rev1

	: ;			•••			10	SB Final S	tätus Surve	Y					
	LC1	LC2	LCЗ	1.C4	l.C6	LC5		β CPM	βdpm	Date/Time	of Count		Sampl	e Com	ments
1	F830	006	2	С	00001	SM	Hot Cell Buffer		-14	11/04/16	1323	Ť.			and an
2	F830	006	2	C	00002	SM	Hot Cell Buffer	50	5	11/04/16	1324				
.3	F830	006	. 2 .	C	00003	SM	Hot Cell Buffer	58	23	11/04/16	1325				
4	-F830	006	2	C.	00004	SM	Hot Cell Buffer	50	5	11/04/16	1326				
5	F830	006	- 2	Č	00005	ŚM	Hot Cell Buffer	41	-16	11/04/16	1328				
6	F830	006	2	۲Ċ.	00005	SM	Hot Cell Buffer	57	21	11/04/16	1329				
7	F830	006	2	¢	00007	SM	Hot Cell Buffer	45	-7	11/04/16	1330				
8	F830	006	· 2:-*	C.	00008	SM	Hot Cell Buffer	49	2	11/04/16	1331				
9	F830	006	2	C	00009	SM	Hot Cell Buffer	46	-5	11/04/16	1333				
10	F830	006	2	C,	00010	SM	Hot Cell Buffer	49	2	11/04/16	1334	1			
11	F830	006	2	Ċ.	00011	SM	Hot Cell Buffer	37	-25	11/04/16	1335	1			
12	F830	006	2	C	00012	SM	Hot Cell Buffer	45	-7	11/04/16	1336				
13	F830	006	2	C	00013	SM	Hot Cell Buffer	\$4	14	11/04/16	1337				
14	F830	006	2	C	00014	SM	Hot Cell Buffer	52	9	11/04/16	1339		*****	************	
15	F830	006	2.	C	00015	SM	Hot Cell Buffer	45	-7	11/04/16	1340				
Com	ments	6y signal	ure belo	w, the	required s	ource ch	eck and background chee	sks were satisfact	orily performed price	or to use of the instru	ment identified	below.			
										Ludlum 2	929 Bencht	op Instr	ument		
									2929 S/N: 18	2597		efficiency	bkg rate	bkg count time	MDA
				A-	IN	2			43-10-1 5/N:	188736	α	0.364	cpm	min	#DIV/01 dpm per area
	A Sign/ I 3 Sign/ I		C	h N/f		<u>la</u>	- 12.2.16		Cal Due Date	; 5/13/2017	β	0.434	48 cpm	1 min	77.2 dpm por area

Smear_Data_Calculation_Sheet_101316

Rancho Seco Final Status Survey Summary Report January 25, 2017 IOSB Loading Dock rev1 Survey Unit F8300071

Date: 4-13-2017 Prepared By: **FSS Engineer** Date: 4-13-2017 **Reviewed By:** Lead FSS Engineer Date:_4/19/17 Approved By:

Manager, Rancho Seco Assets

Survey Unit:

F8300071, Interim Onsite Storage Building (IOSB) Loading Dock Class 1

Survey Unit Description:

Operating History: Designed primarily to store packaged radioactive waste containers safely, protected from the elements, and maintain radiological dose as low as reasonably achievable (ALARA), each storage cell possibly stored media of many types, including filters, resins, contaminated chemicals, DAW, activated reactor components, contaminated plant components and other contaminated items.

Site Characterization: Based upon the scanning results of the Truck Bay, an elevated area was identified on the floor around and including the loading dock. Certain spots in the area exceeded the DCGL_w but not the DCGL_{EMC}. An area of known contamination was identified at the loading dock area. This area was characterized to determine the extent and highest activity. The area of elevated activity was approximately 7.5 m² around the loading dock. A smaller area (less than 1.0 m²) exceeded the DCGL_w with activity detected as high as 249,491 dpm/100cm². The elevated area was designated as a Loading Dock Class 1 (F8300071), requiring remediation and is the subject of this report.

The Loading Dock Class 2 (F8300082) area buffers the elevated area from the remainder of the IOSB Truck Bay Class 3 (F8300053) and each is the subject of a separate report.

Survey Unit Design Information:

In accordance with MARSSIM Section 4.6, special considerations may be necessary for survey units with structure surface areas less than 10 m^2 or land areas less than 100 m^2 . In this case, the number of data points obtained from the statistical tests is unnecessarily large and not appropriate for smaller survey unit areas. The data generated from these smaller survey units should be obtained based on judgment, rather than on systematic or random design, and compared individually to the DCGLs. This survey unit meets this criterion as the size is less than ten square meters (7.5 m²).

The Survey Unit Design Parameters are presented in **Table 1** below. The survey unit and measurement locations are depicted on the maps in **Attachment 1**. Static measurement locations were based on professional judgement in accordance with the LTP and approximately 100% of the area scanned. The instrumentation used for the survey along with the MDC values are listed in **Table 2-1 Attachment 2**.

Evaluation Input Values		Comments
Survey Package:	F830	Loading Dock Class 1
Survey Unit:	007	
Class	1	
SU Area (m²)	7.5	
Evaluator:	JR	
DCGLw:	43,000	Gross Activity DCGL
Area Factor	3.4	DTBD-05-003
Design DCGLemc (dpm/100cm ²):	146,200	
DCGL _{emc} :	146,200	
LBGR:	21,500	Default = 50% DCGL
Sigma:	466	Truck Bay Scoping
Type I error:	0.05	
Type II error:	0.05	
Predominant Nuclide	Cs-137	
Sample Area (m ²)	N/A	
Total Instrument Efficiency:	0.130	
Total Area Scanned (m ²):	7.5	
Scan Coverage (%)	100%	Class 1
Material Type:	N/A	Choosing 'N/A' sets material background to "0"
Calculated Values		Comments
Ζ1-α:	1.645	
Z _{1-β} :	1.645	
Sign p:	0.99865	
Calculated Relative Shift:	46.1	
Relative Shift Used:	3.0	Uses 3.0 if Relative Shift >3
N-Value:	15	Values selected based upon Judgement
N-Value+20%:	15	Values selected based upon Judgement

Table 1, Survey Unit Design Parameters

Survey Results:

A total of 15 direct measurements were made in F8300071. The results of the static measurements are shown in **Table 2**. All of the static measurements were less than the DCGL. None of the scan measurements indicated areas of elevated activity. Swipe data did not indicate elevated activity levels above the MDA.

Number	Sample #	Beta (cpm)	Beta (dpm)
1	F8300071C00001	959	7,265
2	F8300071C00002	360	2,727
3	F8300071C00003	377	2,856
4	F8300071C00004	407	3,083
5	F8300071C00005	533	4,038
6	F8300071C00006	477	3,614
7	F8300071C00007	390	2,955
8	F8300071C00008	331	2,508
9	F8300071C00009	254	1,924
10	F8300071C00010	321	2,432
11	F8300071M00011	280	2,121
12	F8300071M00012	634	4,803
13	F8300071M00013	425	3,220
14	F8300071M00014	532	4,030
15	F8300071M00015	249	1,886

Table 2, Static Measurement Results

Table 3 contains the statistical summary of the static measurement data for the Loading Dock Class 1.

Table 3, Beta Summary Statisti	cs	
--------------------------------	----	--

Beta Static Loading Do	ock Class 1
Mean	3,297
Median	2,955
Standard Deviation	1,376
Minimum	1,886
Maximum	7,265
Count	15

Survey Unit Data Assessment:

The survey design was based upon professional judgement and resulted in 15 static measurements. Following the guidance in MARSSIM Section 4.6, these values are compared directly to the DCGL_w.

The comparison and the results are presented in **Table 4**. The sample mean and median values were less than the DCGL.

	ila Assi	essment Results
Static Data Values		Comments
Number of Samples:	15	
Median:	2,955	
Mean:	3,297	
Static Data Standard Deviation:	1,376	
Maximum:	7,265	
Criteria Satisfaction		Comments
Sufficient samples collected:	Pass	
Maximum value <dcgl<sub>w:</dcgl<sub>	Pass	
Median value <dcgl<sub>w:</dcgl<sub>	Pass	
Mean value <dcgl<sub>w:</dcgl<sub>	Pass	
Maximum value <dcglemc:< td=""><td>N/A</td><td></td></dcglemc:<>	N/A	
Sign test results:	N/A	
Final Status		Comments
The survey unit passes all conditions:	Pass	

Table 4, Data Assessment Results

Survey Unit Investigations and Results:

No investigations were required for either direct or scan measurements and no investigation results are reported.

ALARA Statement:

Residual radioactivity following remediation is less than the DCGL and meets the ALARA criterion as determined in Chapter 4 of the LTP.

Changes in Initial Survey Unit Assumptions:

The survey unit was designed as a Class 1 survey and the sample results are consistent with that classification. The variability of the survey results was greater than the characterization data used for survey design. However, no individual measurement exceeded the DCGL. No potential areas of elevated activity were detected.

Conclusion:

The FSS of this survey unit was properly designed as a Class 1 survey based on the results of the scoping survey. The required number of direct measurements was made and the scan coverage met the requirement of Table 5-6 of the LTP. All of the static measurements were less than the DCGL. No investigations were required.


The static measurement data support rejection of the null hypothesis, providing high confidence that the survey unit satisfied the release criteria and that the data quality objectives were met.

It is concluded that survey unit F8300071 meets the release criteria of 10CFR20.1402.

Maps

January 30, 2017

Survey Unit F8300071

F8300071M00006 $\beta = 3,614 \text{ dpm}/100 \text{ cm}^2$ F8300071M00012 $\beta = 4,803 \text{ dpm}/100 \text{ cm}^2$ F8300071M00014 $\beta = 4,030 \text{ dpm}/100 \text{ cm}^2$ -F8300071C00008 $\beta = 2,508 \text{ dpm}/100 \text{ cm}^2$ F8300071C00003 β = 2,856 dpm/100 cm²

F8300071

Instrumentation

January 30, 2017

Survey Unit F8300071

.

Measurement Type	Instrument Type	Minimum Detectable Activity ^a	Detector Efficiencies	Calibration Due Date ^b
Beta Static Measurement	Ludlum Model 2350-1 Ludlum Model 44-116 B Detector	Beta $- 556 \text{ dpm}/100 \text{ cm}^2$	13.2%	317897/331972 2/10/17
Swipe Measurements	Ludlum Model 2929 Ludlum Model 44- 10-1	Beta - 76 dpm/100 cm ²	43.4%	182597/188736 5/13/17
"Minimum Det Conditions" (U	ectable Concentrations with .S. NRC, 1997). equired to be calibrated onc ted again. meters minute	nt rate instrumentation were calculated in n Typical Radiation Survey Instruments for e every 12 months. Calibration due date is	or Various Contam	inants and Field

Table 2-1. Survey Unit Instrumentation

Page 1

Static Measurement MDA

Beta	Survey Type
PR331972	Detector Number
238	Background count rate (cpm)
1	Count Time (min)
0.132	Efficiency
100	Area of Detector (cm ²)

Constants

60 sec/min

2.54 cm/in

Assumptions

Background count time and sample count time are equivalent

Calculate Static MDA

Static MDA = $3 + 4.65(B_r * t)^{0.5/t} * E * A/_{100}$ (NUREG 1507)

Where:

- Br Background Countratet Count Time (min)
- E Efficiency
- A Area of detector (cm²)

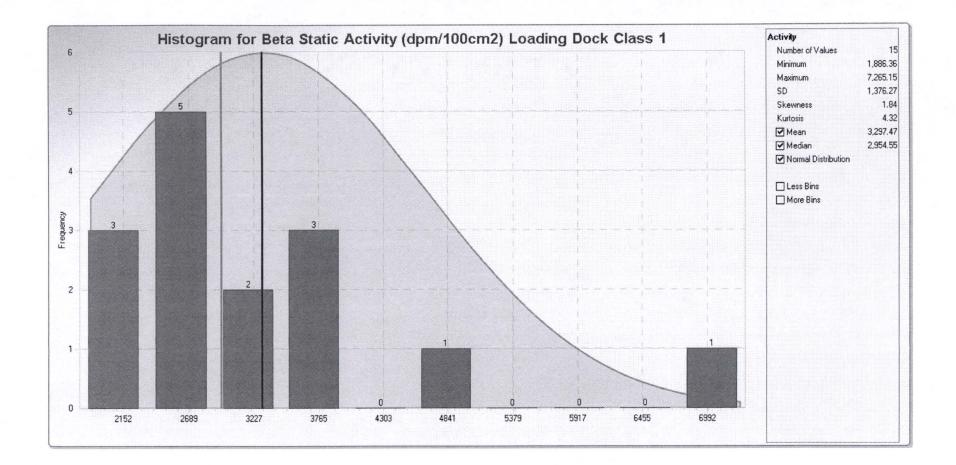
Static MDA

566 dpm/100 cm²

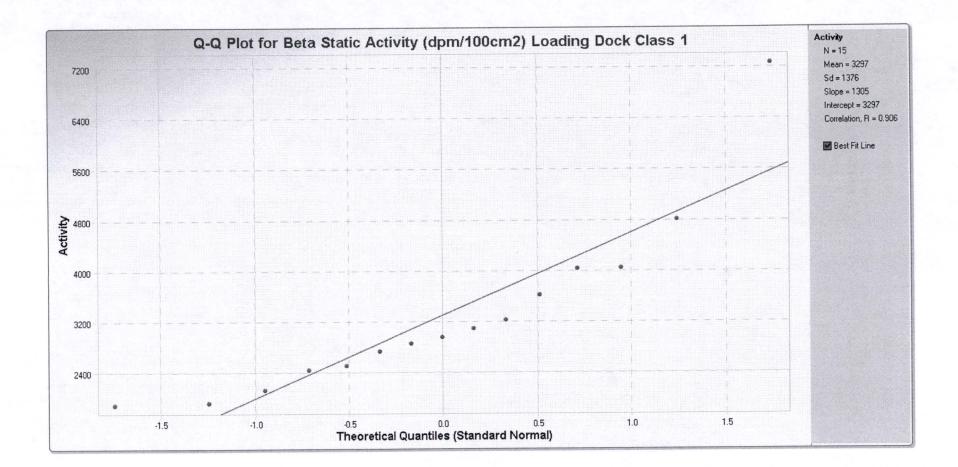
Investigation

January 30, 2017

Survey Unit F8300071


(none required)

Data Assessment


January 30, 2017

Survey Unit F8300071

.

Att. 4 Data Assessment rev1

		6 	ç.				lO:	SB Final St	atus Surve	γ	- 197 28 1/5 2			
	LC1	LC2	LC3	LC4	LC6	LC5		β CPM	βdpm	Date/Time	of Count		Sample Com	ments
1	F830	007	1	c	00001	SM	Load Dock	39	-18	12/29/16	1303	1		
2	F830	007	1	C	00002	SM	Load Dock	44	-6	12/29/16	1304	1		
3	F830	007	1	C	00003	SM	Load Dock	42	-11	12/29/16	1305			
4	F830	007	1	С	00004	SM	Load Dock	-36	-25	12/29/16	1306	1		
5	F830	007	1	С	00005	SM	Load Dock	45	-4	12/29/16	1307			
6	F830	007	1	c	00006	SM	Load Dock	46	-2	12/29/16	1308			
7	F830	007	1	C	00007	SM	Load Dock	57	24	12/29/16	1311			
8	F830	007	1	C	00008	SM	Load Dock	60	31	12/29/16	1312			
9	F830	007	1	C	00009	SM	Load Dock	36	-25	12/29/16	1313			
10	F830	007	1	C	00010	SM	Load Dock	43	-9	12/29/16	1314			
11	F830	007	1	c	00011	SM	Load Dock	53	15	12/29/16	1315			
12	F830	007	1	C	00012	SM	Load Dock	40	-15	12/29/16	1316			
13	F830	007	1	C	00013	SM	Load Dock	42	-11	12/29/16	1317			
14	F830	007	1	C	00014	SM	Load Dock	45	-4	12/29/16	1319			
15	F830	007	1	C	00015	SM	Load Dock	41	-13	12/29/16	1320			
Com	ments	By sig	nature	belo	w, the re	quired :	source check and ba	ackground che	cks ware satisf	actorily performe	d prior to us	e of the ir	nstrument ide	ntified below
			····-							Ludium 2	929 Bencht	op Instr		
									2929 S/N: 18	2597		efficiency	bkg count rate time	MDA
· · · · ·									43-10-1 S/N:	188736	α	0.364	0.1 1 cpm min	7.0 dpm per area
	A Sign/ [B Sign/ [<u></u>	23	Sector and		12/29/2016		Cal Due Date	: 5/13/2017	β	0.434	46.7 1 cpm min	76.2 dom per area

F8300071 Smear _calc

Rancho Seco Final Status Survey Summary Report January 25, 2017 IOSB Loading Dock Class 2 rev1 Survey Unit F8300082

Date:__4-13-2017 **Prepared By: FSS Engineer** 4-13-2017 **Reviewed By:** Date: Lead FSS Engineer

Date: 4/19/17 Approved By:

Manager, Rancho Seco Assets

Survey Unit:

F8300082, Interim Onsite Storage Building (IOSB) Loading Dock Class 2

Survey Unit Description:

Operating History: Designed primarily to store packaged radioactive waste containers safely, protected from the elements, and maintain radiological dose as low as reasonably achievable (ALARA), each storage cell possibly stored media of many types, including filters, resins, contaminated chemicals, DAW, activated reactor components, contaminated plant components and other contaminated items.

Site Characterization: Based upon the scanning results of the Truck Bay, an elevated area was identified on the floor around and including the loading dock. Certain spots in the area exceeded the $DCGL_w$ but not the $DCGL_{EMC}$. An area of known contamination was identified at the loading dock area. This area was characterized to determine the extent and highest activity.

The elevated activity area around the loading dock was approximately 7.5 m² and was designated as the Loading Dock Class 1 (F8300071). Within this elevated activity area, a portion (less than 1.0 m²) exceeded the DCGL_w, with activity detected as high as 249,491 dpm/100 cm². This smaller elevated activity area within the Class 1 (F8300071), required remediation. The Loading Dock Class 1 (F8300071) was buffered from the Truck Bay Class 3 (F8300053) with the Loading Dock Class 2 (F8300082) Survey Unit which was approximately 19.9 m² total. The Loading Dock Class 1 and Truck Bay Class 3 Survey Units are each the subject of separate reports.

The Loading Dock Class 2 (F8300082) is the subject of this report.

Survey Unit Design Information:

The Survey Unit Design Parameters are presented in **Table 1** below. The survey unit and measurement locations are depicted on the maps in **Attachment 1**. Static measurement locations were randomly determined in accordance with MARSSIM guidance and approximately 100% of the area scanned. The instrumentation used for the survey along with the MDC values are listed in **Table 2-1 Attachment 2**.

Diveloption Image VI-1		0
Evaluation Input Values	5000	Comments
Survey Package:	F830	Loading Dock Class 2
Survey Unit:	008	
Class	2	
SU Area (m ²)	19.9	l
Evaluator:	JR	
DCGLw:	43,000	Gross Activity DCGL
Area Factor	NA	Class 2
Design DCGLemc (dpm/100cm ²):	NA	Class 2
DCGLemc:	NA	Class 2
LBGR:	21,500	Default = 50% DCGL
Sigma:	466	Truck Bay Scoping
Type I error:	0.05	
Type II error:	0.05	
Predominant Nuclide	Cs-137	
Sample Area (m ²)	N/A	
Total Instrument Efficiency:	0.132	
Total Area Scanned (m ²):	15.2	
Scan Coverage (%)	76%	Class 2
Material Type:	N/A	Choosing 'N/A' sets material background to "0"
Calculated Values		Comments ***
Ζ1-α:	1.645	
Z _{1-B} :	1.645	
Sign p:	0.99865	
Calculated Relative Shift:	46.1	
Relative Shift Used:	3.0	Uses 3.0 if Relative Shift >3
N-Value:	11	
N-Value+20%:	14	

Table 1, Survey Unit Design Parameters

Survey Results:

A total of 15 direct measurements were made in F8300082. The results of the static measurements are shown in **Table 2**. All of the static measurements were less than the DCGL. None of the scan measurements indicated areas of elevated activity. Swipe data did not indicate elevated activity levels above the MDA.

Number	Sample #	Sample # Beta (cpm)			
1	F8300082C00001	379	2,871		
2	F8300082C00002	383	2,902		
3	F8300082C00003	373	2,826		
4	F8300082C00004	380	2,879		
5	F8300082C00005	389	2,947		
6	F8300082C00006	349	2,644		
7	F8300082C00007	405	3,068		
8	F8300082C00008	410	3,106		
9	F8300082C00009	366	2,773		
10	F8300082C00010	390	2,955		
11	F8300082C00011	376	2,848		
12	F8300082C00012	337	2,553		
13	F8300082C00013	327	2,477		
14	F8300082C00014	299	2,265		
15	F8300082C00015	394	2,985		

Table 2, Static Measurement Results

Table 3 contains the statistical summary of the static measurement data for the Loading Dock Class 2.

Table 3, Beta Summary Statistics

Beta Static Loading Dock Class 2				
Mean	2,807			
Median	2,871			
Standard Deviation	231			
Minimum	2,265			
Maximum	3,106			
Count	15			

Survey Unit Data Assessment:

The survey design was based upon randomly selected locations and resulted in 15 static measurements. Following the guidance in MARSSIM Section 4.6, these values are compared directly to the DCGL_w.

The comparison and the results are presented in **Table 4**. The sample mean and median values were less than the DCGL.

I able 4, Da	ita Asse	essment Results
Static Data Values		Comments
Number of Samples:	15	
Median:	2,871	
Mean:	2,807	
Static Data Standard Deviation:	231	
Maximum:	3,106	
Sign Test Results		Comments
Adjusted N Value:	14	
S+ Value:	15	
Critical Value:	11	
Criteria Satisfaction		Comments
Sufficient samples collected:	Pass	
Maximum value <dcgl<sub>w:</dcgl<sub>	Pass	
Median value <dcgl<sub>w:</dcgl<sub>	Pass	
Mean value <dcgl<sub>w:</dcgl<sub>	Pass	
Maximum value <dcglemc:< td=""><td>NA</td><td></td></dcglemc:<>	NA	
Sign test results:	Pass	
Final Status	Sand Sandar	Comments
The survey unit passes all conditions:	Pass	

Table 4, Data Assessment Results

Survey Unit Investigations and Results:

No investigations were required for either direct or scan measurements and no investigation results are reported.

ALARA Statement:

The residual activity within the survey unit is less than the DCGL and meets the ALARA criterion as determined in Chapter 4 of the LTP.

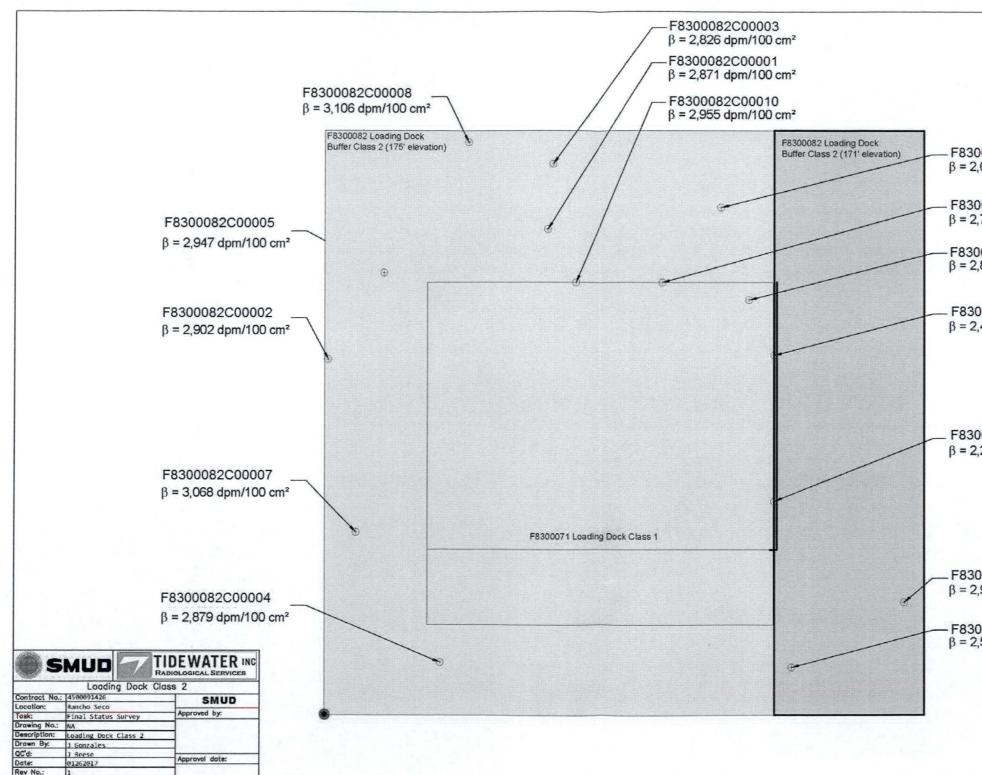
Changes in Initial Survey Unit Assumptions:

The survey unit was designed as a Class 2 survey and the sample results are consistent with that classification. The variability of the survey results was greater than the characterization data used for survey design. However, no individual measurement exceeded the DCGL. No potential areas of elevated activity were detected.

Conclusion:

The FSS of this survey unit was properly designed as a Class 2 survey based on the results of the scoping survey. The required number of direct measurements was made and the scan coverage met the requirement of Table 5-6 of the LTP. All of the static measurements were less than the DCGL. No investigations were required.

The static measurement data support rejection of the null hypothesis, providing high confidence that the survey unit satisfied the release criteria and that the data quality objectives were met.


It is concluded that survey unit F8300082 meets the release criteria of 10CFR20.1402.

FSS Loading Dock Class 2 rev1 F8300082

Maps

January 30, 2017

Survey Unit F8300082

- F8300082C00006 β = 2,644 dpm/100 cm²

-F8300082C00009 $\beta = 2,773 \text{ dpm}/100 \text{ cm}^2$

-F8300082C00011 $\beta = 2,848 \text{ dpm}/100 \text{ cm}^2$

- F8300082C00013 β = 2,477 dpm/100 cm²

- F8300082C00014 β = 2,265 dpm/100 cm²

-F8300082C00015 $\beta = 2,985 \text{ dpm}/100 \text{ cm}^2$

-F8300082C00012 $\beta = 2,553 \text{ dpm}/100 \text{ cm}^2$

F8300082

Instrumentation

January 30, 2017

Survey Unit F8300082

Measurement Type	Instrument Type	Minimum Detectable Activity ^a	Detector Efficiencies	Calibration Due Date ^b
Beta Static Measurement	Ludlum Model 2350-1 Ludlum Model 44-116 B Detector	Beta $-$ 520 dpm/100 cm ²	13.2%	317897/331972 2/10/17
Swipe Measurements	Ludlum Model 2929 Ludlum Model 44- 10-1	$Beta - 75 \text{ dpm}/100 \text{ cm}^2$	42.8%	166716/170380 11/3/16

Table 2-1. Survey Unit Instrumentation

^a Minimum detectable activities for the count rate instrumentation were calculated in accordance with NUREG-1507, "Minimum Detectable Concentrations with Typical Radiation Survey Instruments for Various Contaminants and Field Conditions" (U.S. NRC, 1997).

^b Detectors are required to be calibrated once every 12 months. Calibration due date indicates the date by which the detector must be calibrated again.

 $cm^2 = square centimeters$

cpm = counts per minute

dpm = disintegrations per minute

Static Measurement MDA

Beta	Survey Type
PR331972	Detector Number
199	Background count rate (cpm)
1	Count Time (min)
0.132	Efficiency
100	Area of Detector (cm ²)

Constants

60 sec/min

2.54 cm/in

Assumptions

Background count time and sample count time are equivalent

Calculate Static MDA

Static MDA = $3 + 4.65(B_r * t)^{0.5/t} * E * ^{A/100}$ (NUREG 1507)

Where:

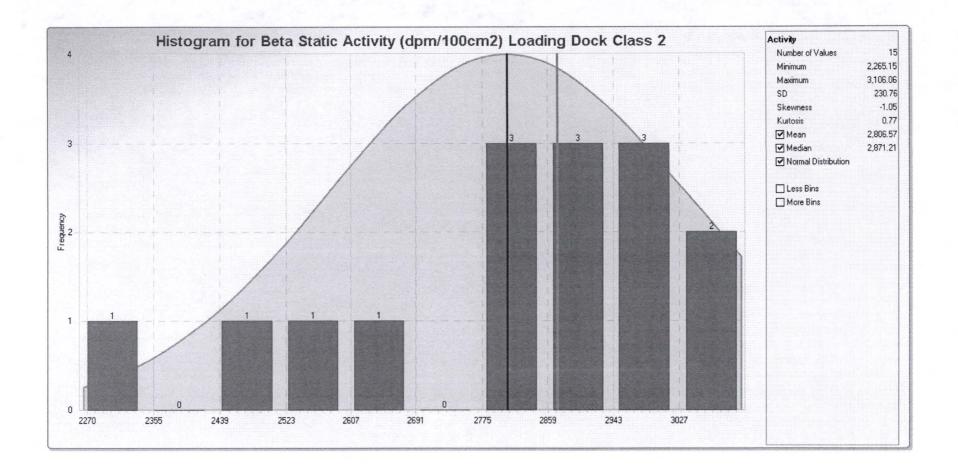
- BrBackground CountratetCount Time (min)
- E Efficiency
- A Area of detector (cm²)

Static MDA

520 dpm/100 cm²

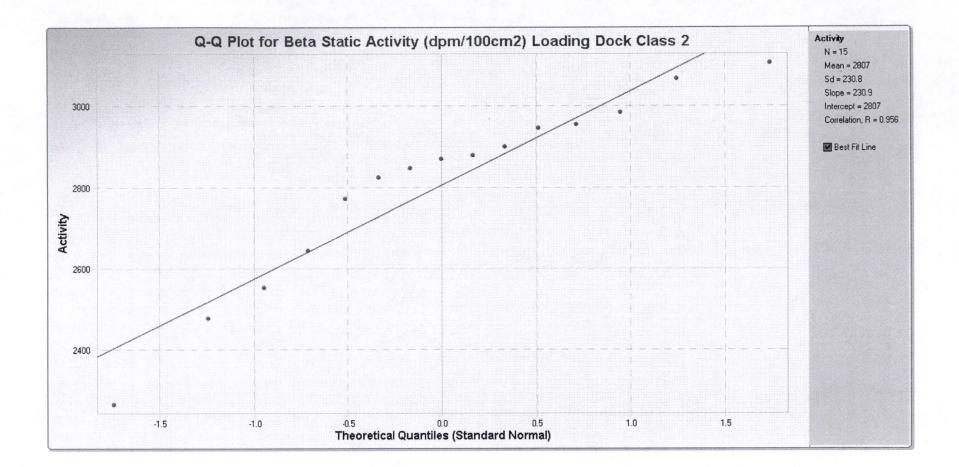
Investigation

January 25, 2017


Survey Unit F8300082

(none required)

Data Assessment


January 30, 2017

Survey Unit F8300082

Att. 4 Data Assessment rev1

F8300082

•	LCI	LC2	LC3	LC4	LCG	1.05	, 	В СРМ	βdpm	Date/Time	of Count		Sampl	e Comi	ments
1	F830	008	2	C	00001	SM	Load Dock Bulfer	57	28	01/04/17	1140				
Ż	F830	008	2	<u>с</u>	00002	SM	Load Dock Buffer	50	12	01/04/17	1142				
3	F830	008	2	្ល	00003	SM	Load Dock Buffer	60	35	01/04/17	1143				
4	F830	008	2	Ç	00004	SM .	Load Dock Buller,	54	21	01/04/17	1145				
5	F830	008	2	C	00005	SM	Load Dock Buller	45	0	01/04/17	1146	:			
б	F830	008	2	Ċ.	00006	SM	Load Dock Buller		21	01/04/17	4148				
7	F830	800	2	Ċ	00007	SM	Load Dock Buffer	47	5	01/04/17	1150	:			
8	F830 :	008	2	Č	00008	SM	Load Dock Buller	46	3	01/04/17	1151	1:			
9	F830	. 008.	2.2	2	00009	ŚM	Load Dock Buffer	44	-2	01/04/17	1153	-]:			
lØ .	F830	008	2	Ċ	00010	SM	Load Dock Bulfer	48	7	01/04/17	1155				
11	F830	800	2	Č	00011	SM	Load Dock Buller,	48	7	01/04/17	1157				
12	F830	008	2	≣C	00012	SM	Load Dock Buller	45	0	01/04/17	1159				
13	F830	-008	2	Ç,	00013	SM	Load Dock Buffer.	49	10	01/04/17	1200				
14	F830	008	2	C	00014	SM	Load Dock Buffer	42	-6	01/04/17	1202				
15	F830	008	2	≥ . C. (00015	SM	Load Dock Buffer	45	0	01/04/17	1204				
-0111	ments	by sig	natore	Delò	w, mgae	quirea	source check and ba	ιτκβιουπά της			929 Bencht				
									2929 S/N: 18:	2597		elliciency	bkg rate	bkg count timo	MDA
,		<u></u>		<u></u>					43-10-1 5/N:	188736	α	0.364	cpm	ngin (3.0 dominenta
	A Sign/ (B Sign/ (ke N	nú.	/1-4-7	017			Cal Due Date:	5/13/2017	β	0,434	44.8 cpm	. La fi	74.7 dpm por a

Smear_Data_Calculation_Sheet_101316

Page 3

Rancho Seco Final Status Survey Summary Report January 30, 2017 IOSB Main Sump rev1 Survey Unit F8300103

	S.G.D.	4 40 0047
Prepared By:		_ Date:
	FSS Engineer	
Reviewed By:	Adam -	Date: 4-13-2017
	Lead FSS Engineer	
	<i>î</i>	

~

Date: 4/18/17 Laefma-DA C Approved By:

Manager, Rancho Seco Assets

Survey Unit:

F8300103, Interim Onsite Storage Building (IOSB) Main Sump

Survey Unit Description:

Operating History: Designed primarily to store packaged radioactive waste containers safely, protected from the elements, and maintain radiological dose as low as reasonably achievable (ALARA), each storage cell possibly stored media of many types, including filters, resins, contaminated chemicals, DAW, activated reactor components, contaminated plant components and other contaminated items.

Site Characterization: Static measurements were made of the interior surfaces of the sump, to confirm the absence or presence of plant-derived radionuclides. Static measurements showed a mean gross activity level of 2,401 dpm/100 cm² and a maximum value of 3,056 dpm/100 cm². The statistics of the sump results combines walls, floor, and ceiling data. Based on the levels of gross activity reported, the area was determined to be a Class 3 area.

Survey Unit Design Information:

The Survey Unit Design Parameters are presented in **Table 1** below. The survey unit and measurement locations are depicted on the maps in **Attachment 1**. Static measurement locations were randomly determined and approximately 14% of the area scanned by beta scanning. The instrumentation used for the survey along with the MDC values are listed in **Table 2-1 Attachment 2**.

Evaluation Input Values		Comments
Survey Package:	F830	Main Sump
Survey Unit:	010	
Class	3	
SU Area (m ²)	80	
Evaluator:	JR	
DCGLw:	43,000	Gross Activity DCGL
Area Factor	NA	Class 3
Design DCGLemc (dpm/100cm ²):	NA	Class 3
DCGLemc:	NA	Class 3
LBGR:	21,500	Default = 50% DCGL
Sigma:	466	Scoping Survey Data for Truck Bay
Type I error:	0.05	
Type II error:	0.05	
Predominant Nuclide	Cs-137	
Sample Area (m ²)	N/A	
Total Instrument Efficiency:	0.132	
Total Area Scanned (m ²):	11.1	
Scan Coverage (%)	14%	Class 3
Material Type:	N/A	Choosing 'N/A' sets material background to "0"
Calculated Values		Comments
Ζ1-α.	1.645	
Ζ _{1-β} :	1.645	
Sign p:	0.99865	
Calculated Relative Shift:	46.1	
Relative Shift Used:	3.0	Uses 3.0 if Relative Shift >3
N-Value:	ាំ1	
N-Value+20%:	14	

Table 1, Survey Unit Design Parameters

Survey Results:

A total of 30 direct measurements were made in F8300103 with 15 each being collected in the upper and lower sumps. The results of the static measurements are shown in **Table 2**. All of the static measurements were less than the DCGL. None of the scan measurements indicated areas of elevated activity. Swipe data did not indicate elevated activity levels above the MDA.

Number	Sample #	Beta (cpm)	Beta (dpm)	
1	F8300103X00001	307	2,326	
2	F8300103X00002	302	2,288	
3	F8300103X00003	312	2,364	
4	F8300103X00004	206	1,561	
5	F8300103X00005	234	1,773	
6	F8300103X00006	244	1,848	
7	F8300103X00007	260	1,970	
8	F8300103X00008	215	1,629	
9	F8300103X00009	243	1,841	
10	F8300103X00010	209	1,583	
11	F8300103X00011	248	1,879	
12	F8300103X00012	220	1,667	
13	F8300103X00013	288	2,182	
14	F8300103X00014	294	2,227	
15	F8300103X00015	234	1,773	
16	F8300103X00016	249	1,886	
17	F8300103X00017	258	1,955	
18	F8300103X00018	255	1,932	
19	F8300103X00019	296	2,242	
20	F8300103X00020	208	1,576	
21	F8300103X00021	229	1,735	
22	F8300103X00022	215	1,629	
23	F8300103X00023	242	1,833	
24	F8300103X00024	208	1,576	
25	F8300103X00025	247	1,871	
26	F8300103X00026	258	1,955	
27	F8300103X00027	228	1,727	
28	F8300103X00028	223	1,689	
29	F8300103X00029	252	1,909	
30	F8300103X00030	305	2,311	

Table 2, Static Measurement Results

Table 3 contains the statistical summary of the static measurement data for the IOSBMain Sump.

Beta Static Sump)S
Mean	1,891
Median	1,860
Standard Deviation	249
Minimum	1,561
Maximum	2,364
Count	30

Table 3, Beta Summary Statistics

Survey Unit Data Assessment:

The survey design required 14 static measurements for the Sign Test. A total of 30 static measurements were collected. The critical value and the results of the Sign Test are presented in **Table 4**. The sample mean and median values were less than the DCGL. The sample standard deviation was greater than the design standard deviation but both values of sigma resulted in a relative shift greater than three (3), no additional samples were required.

Static Data Values	÷	Comments
Number of Samples:	30	
Median:	1,860	
Mean:	1,891	
Static Data Standard Deviation:	249	
Maximum:	2,364	
Sign Test Results		Comments
Adjusted N Value:	14	
S+ Value:	30	
Critical Value:	10	
Criteria Satisfaction		Comments
Sufficient samples collected:	Pass	
Maximum value <dcgl<sub>w:</dcgl<sub>	Pass	
Median value <dcgl<sub>w:</dcgl<sub>	Pass	
Mean value <dcgl<sub>w:</dcgl<sub>	Pass	
Maximum value < DCGLemc:	NA	
Sign test results:	Pass	
Final Status		Comments
The survey unit passes all conditions:	Pass	

 Table 4, Data Assessment Results

Survey Unit Investigations and Results:

No investigations were required for either direct or scan measurements and no investigation results are reported.

ALARA Statement:

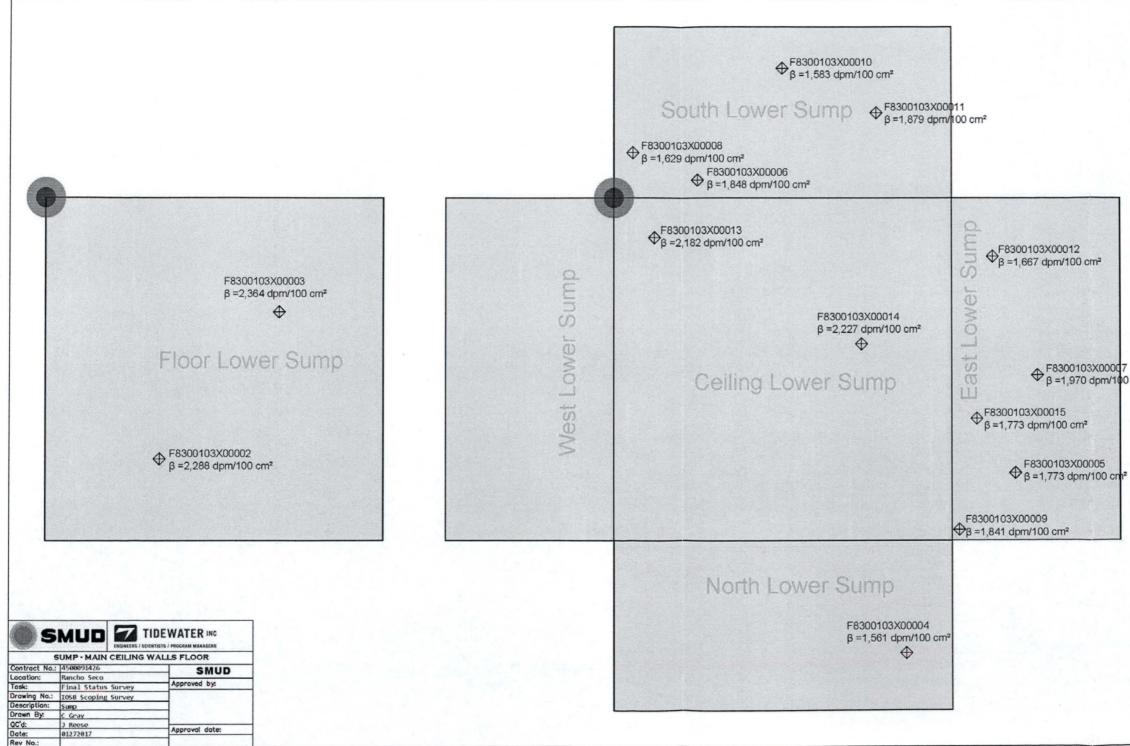
The residual activity within the survey unit is less than the DCGL and meets the ALARA criterion as determined in Chapter 4 of the LTP.

Changes in Initial Survey Unit Assumptions:

The survey unit was designed as a Class 3 survey and the sample results are consistent with that classification. No individual measurement exceeded the DCGL. No potential areas of elevated activity were detected.

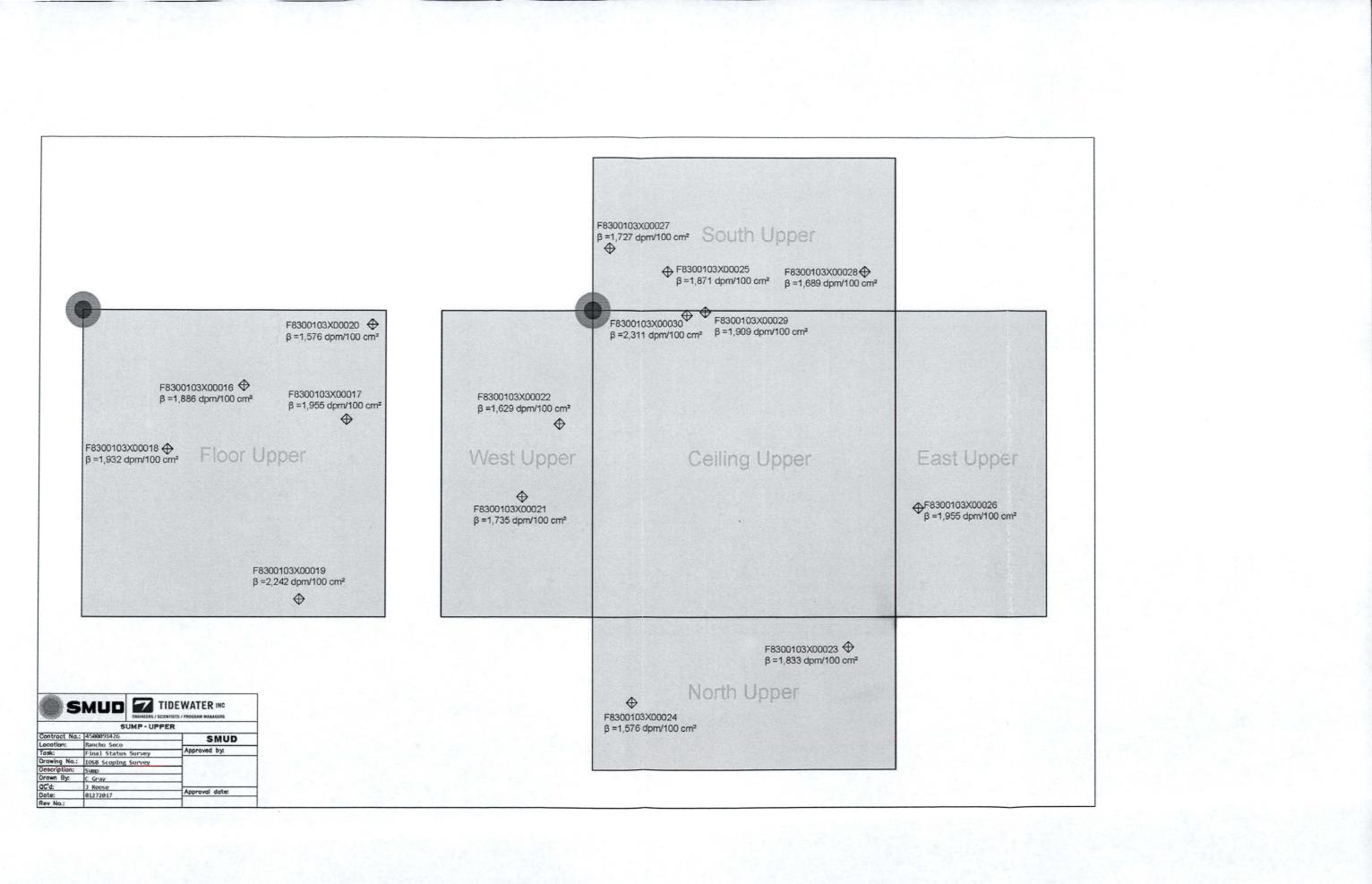
Conclusion:

The FSS of this survey unit was properly designed as a Class 3 survey based on the results of the investigation survey. The required number of direct measurements was made and the scan coverage met the requirement of Table 5-6 of the LTP. All of the static measurements were less than the DCGL. No investigations were required.

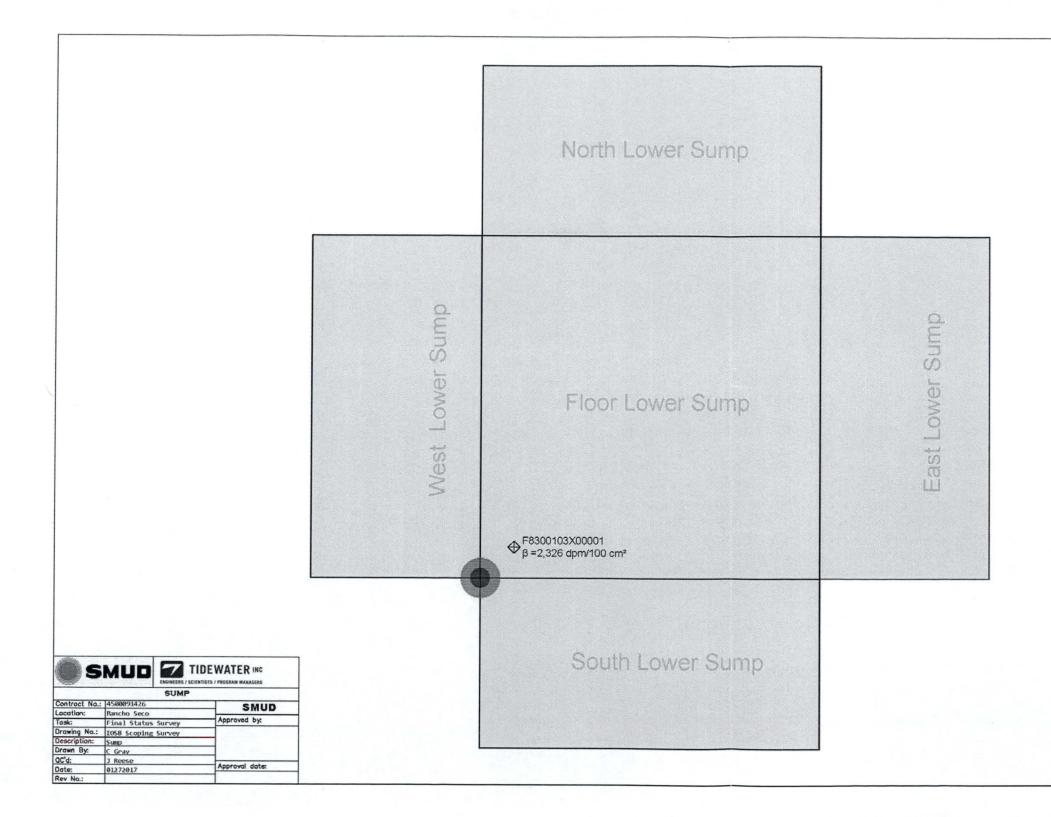

The static measurement data support rejection of the null hypothesis, providing high confidence that the survey unit satisfied the release criteria and that the data quality objectives were met.

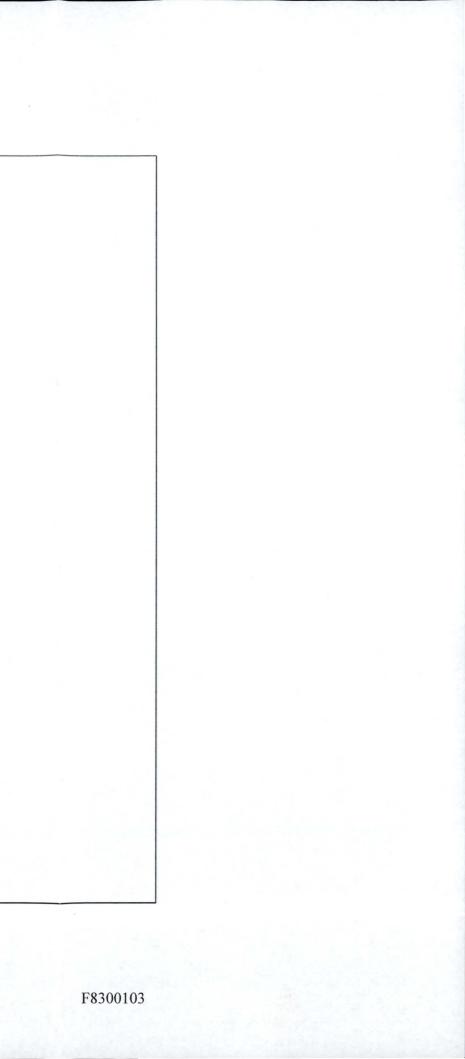
It is concluded that survey unit F83001043 meets the release criteria of 10CFR20.1402.

Maps


January 30, 2017

Survey Unit F8300103




F8300103

↔ F8300103X00007 β =1,970 dpm/100 cm²

F8300103

Instrumentation

December 12, 2016

Survey Unit F8300103

Measurement Type	Instrument Type	Minimum Detectable Activity ^a	Detector Efficiencies	Calibration Due Date ^b
Beta Static Measurement	Ludlum Model 2350-1 Ludlum Model 44-116 B Detector	Beta - 447 dpm/100 cm ²	13.2%	<u>317897/331972</u> 2/10/17
Beta Static Measurement	Ludlum Model 2350-1 Ludlum Model 44-116 B Detector	Beta $-$ 504 dpm/100 cm ²	13.2%	<u>317897/331972</u> 2/10/17
Swipe Measurements	Ludlum Model 2929 Ludlum Model 44- 10-1	Beta – 74 dpm/100 cm ²	42.8%	<u>166716/170380</u> 11/3/16
Swipe Measurements	Ludlum Model 2929 Ludlum Model 44- 10-1	Beta – 79 dpm/100 cm ²	42.8%	<u>166716/170380</u> 11/3/16

Table 2-1. Survey Unit Instrumentation

^b Detectors are required to be calibrated once every 12 months. Calibration due date indicates the date by which the detector must be calibrated again.

 $cm^2 = square centimeters$

cpm = counts per minute

dpm = disintegrations per minute

Static Measurement MDA

Beta	Survey Type
PR331972	Detector Number
187	Background count rate (cpm)
1	Count Time (min)
0.132	Efficiency
100	Area of Detector (cm ²)

Constants

60 sec/min

2.54 cm/in

Assumptions

Background count time and sample count time are equivalent

Calculate Static MDA

Static MDA = $3 + 4.65(B_r * t)^{0.5}/t * E * A_{100}$ (NUREG 1507)

Where:

- BrBackground CountratetCount Time (min)
- E Efficiency
- A Area of detector (cm²)

Static MDA

504 dpm/100 cm²

Standard and a standard an	Survey Type Detector Number
22,732-300-30-30-30-30-30-30-30-30-30-30-30-30	Background count rate (cpm)
1. S. Marian (1997) - 300 - 300 - 300 - 30	Count Time (min)
0.132	Efficiency
100	Area of Detector (cm ²)

Constants

2.54 cm/in

Assumptions

Background count time and sample count time are equivalent

Calculate Static MDA

Static MDA = $3 + 4.65(B_r * t)^{0.5/t} * E * ^{A/_{100}}$ (NUREG 1507)

Where:

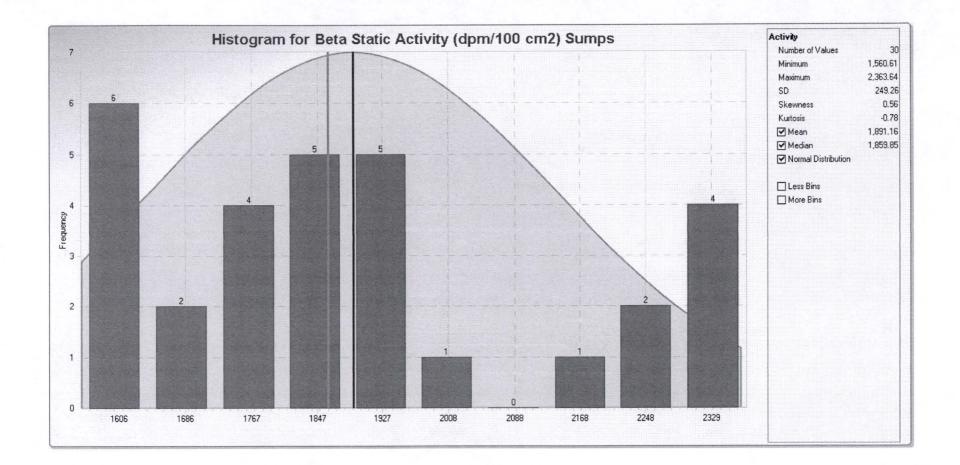
- Br Background Countrate t Count Time (min)
- E Efficiency
- A Area of detector (cm²)

Static MDA

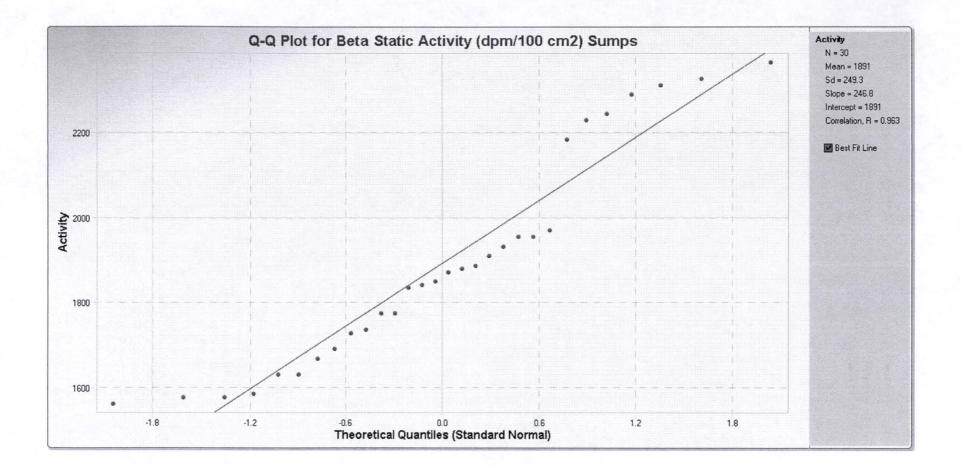
447 dpm/100 cm²

Investigation

January 30, 2017


Survey Unit F8300103

(none required)


Data Assessment

February 2, 2017

Survey Unit F8300103

Att. 4 Data Assessment rev1

2 F 3 F 4 F 5 F 6 F 7 F 8 F 9 F 10 F 11 F 12 F 13 F	F830 F830	010 010 010 010 010 010 010 010 010	3 3 3 3 3 3 3 3 3 3 3 3	ပြပ်ပြပ်ပြစ် ပြ	00001 00002 00003 00004 00005 00005 00006	SM SM SM SM SM SM	Lower Sump Lower Sump Lower Sump Lower Sump Lower Sump Lower Sump	47 41 44 42 56	-7 -21 -14 -18 14	10/21/16 10/21/16 10/21/16 10/21/16	0930 0932 0935 0937				
3 F 4 F 5 F 6 F 7 6 8 F 9 F 10 F 11 F 12 F 13 F	F830 F830 F830 F830 F830 F830 F830 F830	010 010 010 010 010 010 010	3 3 3 3 3 3 3 3	ပ်ပြပ်ပြစ်	00003 00004 00005 00006 00007	SM SM SM SM	Lower Sump Lower Sump Lower Sump	44 42	-14 -18	10/21/16 10/21/16	0935		······································		
4 F 5 F 6 F 7 F 8 F 9 F 10 F 11 F 12 F 13 F	F830 F830 F830 F830 F830 F830 F830	010 010 010 010 010 010 010	3 3 3 3 3 3 3 3	ပံုပံုစံ	00004 00005 00006 00007	SM. SM SM	Lower Sump	42	-18	10/21/16	1.				
5 F 6 F 7 F 8 F 9 F 10 F 11 F 12 F 13 F	F830 F830 F830 F830 F830 F830	010 010 010 010 010 010	3 3 3	ပ်ပို့စ	00005 00006 00007	SM SM	Lower Sump				0937				
6 F 7 6 8 F 9 F 10 F 11 F 12 F 13 F	F830 F830 F830 F830 F830	010 010 010 010 010	3 3 3 3	C C	00006 00007	SM		56	14	to an it is a last					
7 F 8 F 9 F 10 F 11 F 12 F 13 F	F830 F830 F830 F830	010 010 010	3 3 3	Ċ	00007	M. Markey	Lower Sump			10/21/16	0938	°			
8 F 9 F 10 F 11 F 12 F 13 F	F830 F830 F830	010 010	3		· ·····	SM		58 🚿	19	10/21/16	0940	1			
9 F 10 F 11 F 12 F 13 F	F830 F830	010	3	C	0000		🗇 Lówer Sump	48	-4	10/21/16	0941				
10 F 11 F 12 F 13 F	F830	. C. 1904 (C. 1999)	A		00008	SM	Lower Sump	38	-27	10/21/16	0943				
11 F 12 F 13 F		010		C	00009	SM	👳 Lower Sump	40	-23	10/21/16	0945	g:			*****
12 F 13 F	F830		્રસ્ટુ	C ,	00010	SM	LowerSump	46	-9	10/21/16	0947	i.			
13 F		010	30	¢	00011	SM	Lower Sump	50	0	10/21/16	0948	l.			
	F830	010	*3	Ċ	00012	SM	Lower Sump	56	14	10/21/16	0950	:			
14 F	F830	010	3	C.	00013	SM	Lower Sump	48	-4	10/21/16	0951	1			
- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	F830	010	3	i⊂	00014	SM	Lower Sump	53	7	10/21/16	0953	ŀ			, .
15 6	F830	010	3	<u>, с</u>	00015	SM	Lower Sump	53	7	10/21/16	0944	. >			
Comme	ients (ay signat	ure belo	w, the	required s	ouice ch	eck and background chec	ks were satîsfact	ority performed pric	· · · · · · · · · · · · · · · · · · ·	vent Identified 929 Benchi		ument		
			····				·····					efficiency		bkg count	
								;	2929 S/N: 18	2597			rate	Ume	MDA
	. ,								43-10-1.S/N:	188736	a.	0.364	cpm	T mìn	25.1 1.2.2.11 dom per an
ech A S ech B S			1 en		NIA NIA	12-2-	(þ.		Cal Due Date:	5/13/2017	β	0.434	49.9	<u>a</u> 1	78,7

Smear_Data_Calculation_Sheet_101316

		· .					K	DSB Final S	tatus Surve	y		1			
	LCÍ	LCZ	I.C3	LC4	LC6	LCS		β СРМ	βdpm	Date/Time o	of Count		Sample	e Comi	nents
16	F830	010	3	C	00016	SM	Sumps	43	-1	12/05/16	1045	1		. <u></u> .	
17	F830	010	3	C	00017	SM'	Sumps	41	-6	12/05/16	1046				
18	F830	010	3	C	00018	SM	Sumps	45	4	12/05/16	1047	1			
19	F830	010	3	C	00019	SM	Sumps	. 31	-29	12/05/16	1049	1			
20	F830	010	3	C	00020	SM	Sumps	37	-15	12/05/16	1050	1			
21	F830	010	з	¢	00021	SM	Sumps	46	6	12/05/16	1051				
22	F830	010	3	C	00022	SM.	Sumps	44	1	12/05/16	1053	1			
23	F830	010	3	C	00023	SM	Sumps	50	15	12/05/16	1054	1			
24	F830 [°]	.010	3	C	00024	SM	Sumps	- 42 ×	-3	12/05/16	1055	1			
25	F830	010	3	C	00025	SM	Sumpş	41	-6	12/05/16	1057				
26	F830	010	3	С	00026	SM	Sumps	40	-8	12/05/16	1058	1			
27	F830	010	3	C .	00027	SM	Sumps	39	-10	12/05/16	1059				
28	F830	010	3	С	00028	SM	Sumps	35	-19	12/05/16	1100				
29	F830	010	3	C	00029	SM	Sumps	48	11	12/05/16	1102	1.			
30	F830	010	3	C	00030	SM	Sumps	-44	1	12/05/16	1103	1	_		
Com	ments	By sig	nature	belo	w, the re	quired s	ource check and i	background che	cks were satisfa	actorily performed	l prior to us	e of the ir	istrume	ntidei	tified below
									[Ludium 2	29 Bencht	op Instru	ument		
								······································	2929 S/N: 18		·	efficiency	bkg rate	bkg count time	MĎĂ
					,				43-10-1 S/N:	188736	α	0.364	3 cpm	1 min	25.1 dpm per area
	A Sign/ (3 Sign/ (Joe		nis/	12-5-	16		Cal Due Date:	: 5/13/2017	β	0.434	43.4 cpm	i) min	.73.6 dpm per area

Copy of Smear_Data_Calculation_Sheet12517jr.xlsx

Page 1 of 1

FINAL STATUS SURVEY F8300111

Rancho Seco Final Status Survey Summary Report February 3, 2017 IOSB Hot Cell Pipe rev1 Survey Unit F8300111

Date: 4-13-2017 **Prepared By: FSS Engineer** 4-13-2017 Date: **Reviewed By:** Lead FSS Engineer

Date: 4/14/17 Approved By:

Manager, Rancho Seco Assets

Survey Unit:

F8300111, Interim Onsite Storage Building (IOSB) Hot Cell Drain Pipe

Survey Unit Description:

Operating History: Designed primarily to store packaged radioactive waste containers safely, protected from the elements, and maintain radiological dose as low as reasonably achievable (ALARA), the hot cell possibly stored media of many types, including filters, resins, contaminated chemicals, DAW, activated reactor components, contaminated plant components and other contaminated items. Indications of a spill near the hot cell drain were found during the scoping surveys.

Site Characterization: Gamma static measurements were collected approximately every six inches through the various runs of embedded piping (EP) using a pipe detector. Beta static measurements were also collected in the drain trenches in each storage cell, the Truck Bay, and in the DAW Bay. The highest measurement obtained in the EP was collected near the middle of the vertical hot cell drain line at 26,766 dpm. Static measurements in the Hot Cell drain exceeded the grouting action level of 21,000 dpm but did not exceed the DCGL of 100,000 dpm in the vertical run of EP from the hot cell floor to the 90° connection elbow leading to the sump. The drain piping in the Hot Cell was designated as a Class 1 survey unit to distinguish this section of pipe from the remainder of the embedded piping.

Remediation in the form of mechanical decontamination reduced the level of residual contamination below the grouting limit for the vertical run of EP in the Hot Cell Drain (F8300111) and is the subject of this report.

The remainder of the EP was designated as IOSB Embedded Piping Class 3 (F8300123) and is the subject of a separate report.

Survey Unit Design Information:

Static measurement locations were collected approximately every six inches of accessible piping as specified in the License Termination Plan. Scanning of the length of piping was not conducted due to the number of static measurements collected. Following the scoping survey, decontamination was performed in the vertical section of pipe leading from the hot cell to the 90^{0} elbow, a distance of approximately four feet.

A total of 10 static measurements were collected in a total of 5.5 linear feet of the hot cell vertical section of embedded piping. Data collected was compared directly to the DCGL for embedded piping of 100,000 dpm/100 cm². The instrumentation used for the survey along with the MDC values are listed in **Table 2-1 Attachment 2**.

FINAL STATUS SURVEY F8300111

Survey Results:

A total of 10 direct measurements were made in F8300111 for the final status survey. **Table** 1 provides a listing of the direct measurement results. A statistical summary of the results of the static measurements are summarized in **Table 2**. All of the static measurements were less than the DCGL of 100,000 dpm/100 cm². None of the scan measurements indicated areas of elevated activity or required grouting of the piping (>21,000 dpm/100 cm²).

Table 1, Gamma Statte Measurements								
Number	Sample #	Beta (cpm)	Beta (dpm)					
1	F8300011M00001	10,897	13,776					
2	F8300011M00002	12,497	15,798					
3	F8300011M00003	12,524	15,833					
4	F8300011M00004	12,790	16,169					
5	F8300011M00005	12,414	15,694					
6	F8300011M00006	12,497	15,798					
_7	F8300011M00007	12,875	16,276					
8	F8300011M00008	12,378	15,648					
9	F8300011M00009	13,224	16,718					
10	F8300011M00010	11,844	14,973					

Table 1, Gamma Static Measurements

Table 2, Static Measurement Results

Gamma Static Hot Cell Drain Pipe						
Mean	15,669					
Median	15,799					
Standard Deviation	806					
Minimum	13,776					
Maximum	16,718					
Count	10					

Survey Unit Data Assessment:

The survey design was based upon guidance in the RSLTP and resulted in 10 static measurements. Following the guidance in the RSLTP, these values are compared directly to the DCGL of 100,000 dpm/100 cm².

Survey Unit Investigations and Results:

No investigations were required for either direct or scan measurements and no investigation results are reported.

FSS Hot Cell Drain Pipe rev1

3

FINAL STATUS SURVEY F8300111

ALARA Statement:

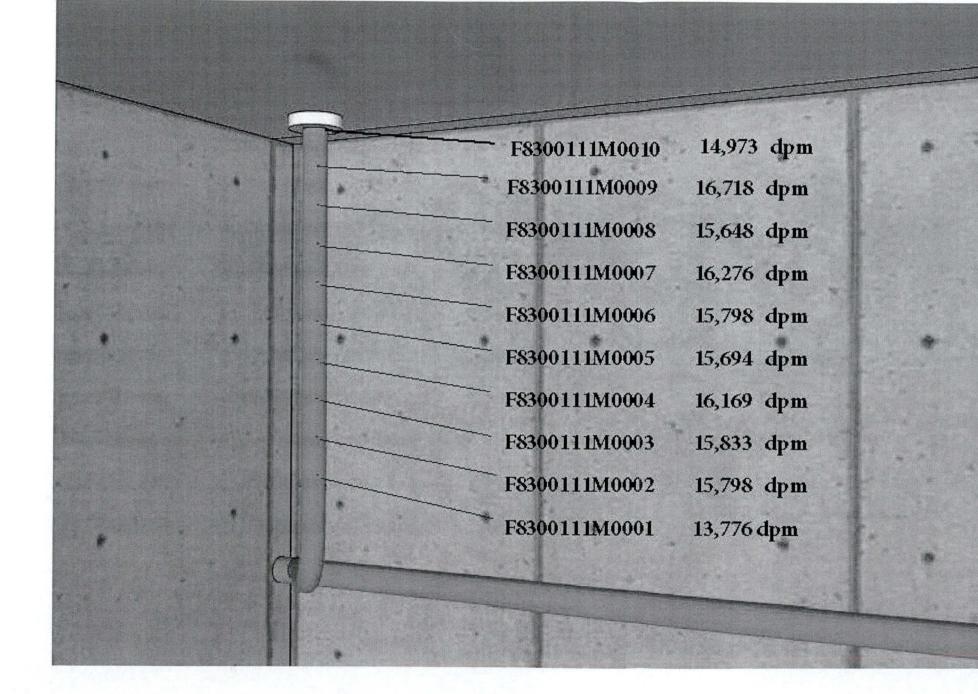
Residual radioactivity following remediation is less than the DCGL and meets the ALARA criterion as determined in Chapter 4 of the LTP.

Changes in Initial Survey Unit Assumptions:

The survey unit was designed in accordance with the RSLTP. The section of pipe was designated as a Class 1 survey area to distinguish it from the other embedded pipe as scoping measurements exceed the grout action level of $21,000 \text{ dpm}/100 \text{ cm}^2$. No individual measurement exceeded the DCGL. No potential areas of elevated activity were detected.

Conclusion:

The FSS of this survey unit was properly designed as a Class 1 survey based on the results of the scoping survey and the need to perform remediation. The sample density as specified in the RSLTP for embedded piping was met. All of the static measurements were less than the DCGL. No investigations were required.


The static measurement data support rejection of the null hypothesis, providing high confidence that the survey unit satisfied the release criteria and that the data quality objectives were met.

It is concluded that survey unit F8300111meets the release criteria of 10CFR20.1402.

Maps

February 9, 2017

Survey Unit F8300111

Instrumentation

February 6, 2017

Survey Unit F8300111

.

Measurement Type	Instrument Type	Minimum Detectable Activity ^a	Detector Efficiencies	Calibration Due Date ^b
Gamma Static Measurement	Ludlum Model 2350-1 Ludlum Model 44-157 Detector	398 dpm/100 cm ²	0.791%	203481/201151 4/15/17
		nt rate instrumentation were calculated in a		,
	ctable Concentrations with	nt rate instrumentation were calculated in a h Typical Radiation Survey Instruments fo		,
"Minimum Dete Conditions" (U. Detectors are rec must be calibrate	ctable Concentrations wit S. NRC, 1997). Juired to be calibrated onc ed again.		or Various Contam	inants and Field
"Minimum Dete Conditions" (U.S Detectors are rec	ctable Concentrations wit S. NRC, 1997). quired to be calibrated onc ed again. neters	h Typical Radiation Survey Instruments fo	or Various Contam	inants and Field

Table 2-1. Survey Unit Instrumentation

-

Static Measurement MDA

Gamma	Survey Type
201151	Detector Number
4500	Background count rate (cpm)
1	Count Time (min)
0.791	Efficiency
100	Area of Detector (cm ²)

Constants

60 sec/min

2.54 cm/in

Assumptions

Background count time and sample count time are equivalent

Calculate Static MDA

Static MDA =3 + 4.65(Br * t)^{0.5}/t * E * ^A/₁₀₀

(NUREG 1507)

Where:

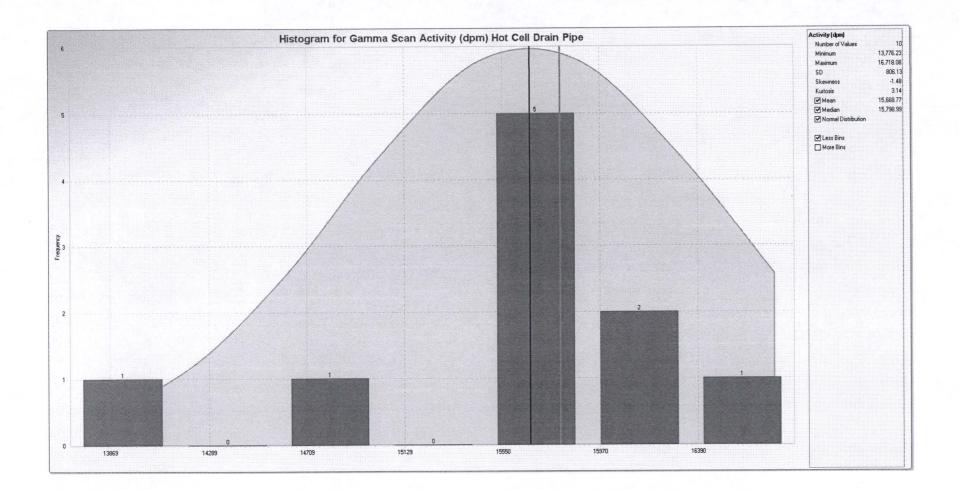
- BrBackground CountratetCount Time (min)
- E Efficiency
- A Area of detector (cm²)

Static MDA

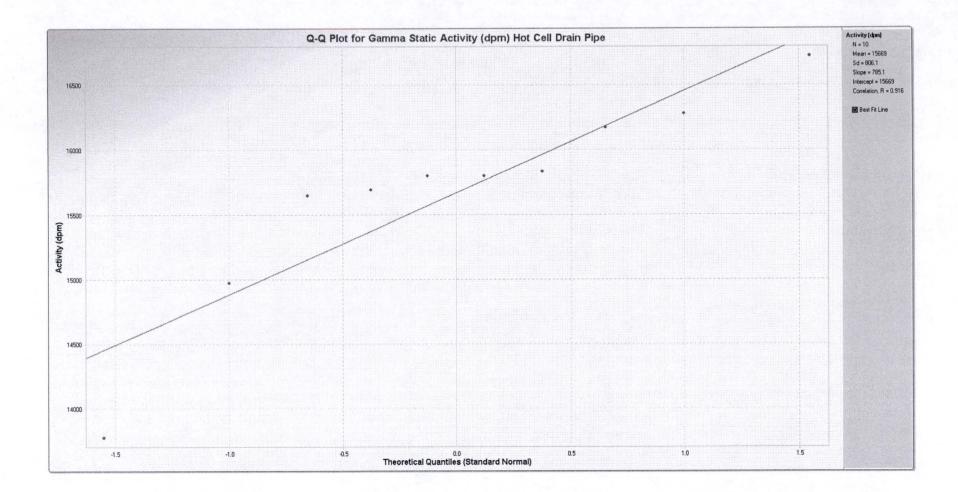
398 dpm/100 cm²

Investigation

February 6, 2017


Survey Unit F8300111

(none required)


Data Assessment

February 9, 2017

Survey Unit F8300111

Att. 4 Data Assessment rev1

Rancho Seco Final Status Survey Summary Report January 25, 2017 IOSB Embedded Pipe rev1 Survey Unit F8300123

Date:_4-13-2017 **Prepared By: FSS Engineer** Date:___ **Reviewed By:** Lead FSS Engineer Date:__4/18/17 Approved By:

Manager, Rancho Seco Assets

á

Survey Unit:

F8300123, Interim Onsite Storage Building (IOSB) Embedded Piping

Survey Unit Description:

Operating History: The drain and piping system in the IOSB collected liquids from the building either via trench drains (storage cells, DAW Bay, and Truck Bay), or via floor drains. Areas of elevated residual radioactivity were identified in close proximity to the trench drains or floor drains indicating the potential for a spill of radioactive liquid to have traversed down the embedded piping to the sump.

Site Characterization: Gamma static measurements were collected approximately every six inches through the various runs of embedded piping using a pipe detector. Beta static measurements were also collected in the drain trenches in each storage cell, the Truck Bay, and in the DAW Bay.

Measurements indicated residual radioactivity in the embedded piping (EP) of the hot cell drain. The highest measurement obtained in the embedded piping was collected in the hot cell drain line at 26,766 dpm. This value exceeds the level for grouting of piping listed in the RSLTP. Based upon this level, the Hot Cell Drain Pipe (F8300111) was designated as a Class 1 Survey Unit to allow it to be handled separately from the remaining EP. The purpose of designating this section of pipe as a Class 1 was because of the residual activity and the need to perform remediation. A Class 2 buffer survey area was not designated because the density of survey points for EP is independent of classification and is dictated by the RSLTP. Based on the levels of gross activity reported, the remaining EP was determined to be a Class 3 (F8300123) area as residual radioactivity was not detected during scoping surveys.

The IOSB Embedded Pipe (F8300123) is the Class 3 EP and is the subject of this report and the Hot Cell Embedded Pipe (F8300111) is the Class 1 EP associated with the hot cell drain and is the subject of a separate report.

Survey Unit Design Information:

Static measurement locations were collected every six inches of accessible piping as specified in the License Termination Plan. Scanning of the length of piping was not conducted due to the number of static measurements collected. Piping was surveyed in defined segments as shown in **Table 1**.

A total of 504 static measurements were collected in a total of 255 linear feet of embedded piping. This corresponds to a measurement collected on average every 6.07 inches of piping and is consistent with the guidance from the RSLTP for embedded piping. Data collected was compared directly to the DCGL for embedded piping of 100,000 dpm. The instrumentation used for the survey along with the MDC values are listed in **Table 2-1 Attachment 2**.

FSS Embedded Piping rev1

FINAL STATUS SURVEY F8300123

Survey Results:

A total of 504 direct measurements were made in F8300123. The results of the static measurements are summarized in **Table 1**. All of the static measurements were less than the DCGL of 100,000 dpm. None of the measurements indicated areas of elevated activity or required grouting of the piping (>21,000 dpm).

Section of Embedded Piping	Length of Pipe Run (feet)	Number of Measurements	Range of Measurements (dpm)
DAW Bay to Sump	86	154	4,090 - 7,168
DAW Staging Bay to DAW line	40	87	3,819 – 12,437
Cell C-1 to Sump	6	11	6,195 - 6,915
Truck Bay Trench to Truck Bay Sump	28	61	5,764 - 6,657
Truck Bay Sump to Sump 4 inch	16	34	1,100 - 1,659
Truck Bay Sump to Sump 6 inch	23	47	5,935 – 9,376
Cask Wash Down to Sump	20	40	3,620 - 5,518
Expansion line from Sump	36	70	4,880 - 6,700

Table 1	, Static	Measurement Results	

Table 2 contains the statistical summary of the static measurement data for the Embedded Piping.

Table 2,	Gamma	Summary	Statistics
----------	-------	---------	------------

Embedded Pipin	ig
Mean	5 <i>,</i> 038
Median	5 <i>,</i> 097
Standard Deviation	1,355
Minimum	1,100
Maximum	12,437
Count	504

Survey Unit Data Assessment:

The survey design required a static measurement every six inches of accessible piping. Based upon the estimated length of piping and the number of measurements collected, the FSS resulted in a measurement roughly every 6.07 inches. All measurements were less than the DCGL.

Survey Unit Investigations and Results:

No investigations were required for the direct measurements and no investigation results are reported.

ALARA Statement:

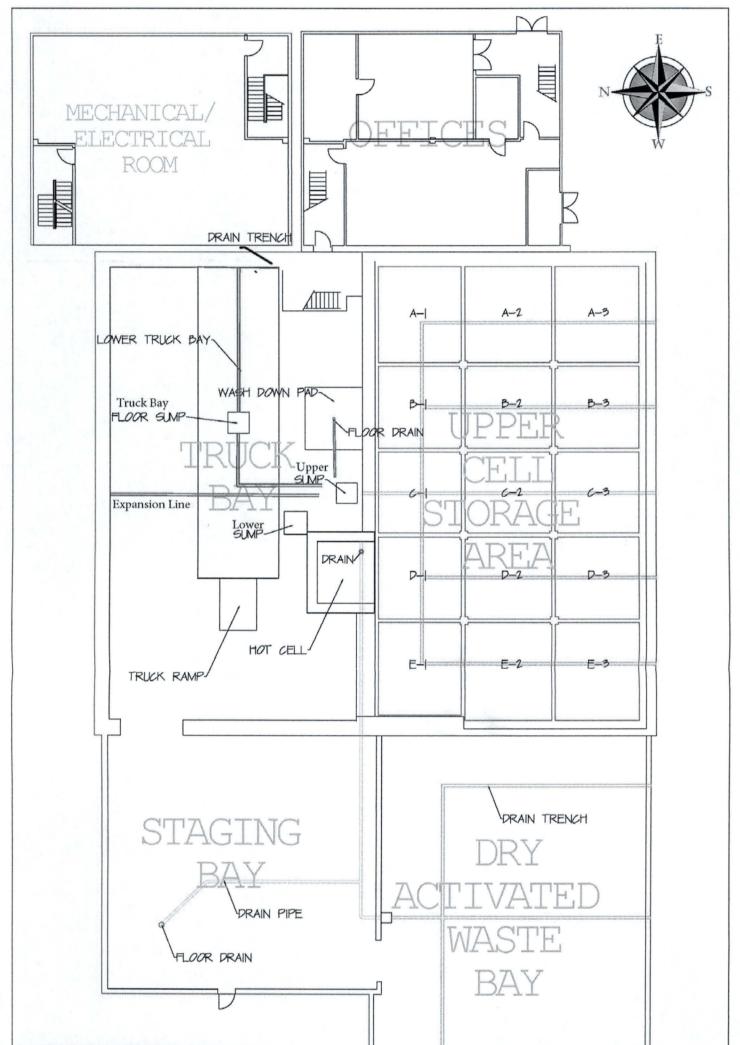
The residual activity within the survey unit is less than the DCGL and meets the ALARA criterion as determined in Chapter 4 of the LTP.

Changes in Initial Survey Unit Assumptions:

The survey unit was designated as a Class 3 survey area and surveyed in accordance with the RSLTP for embedded pipe. Measurements were collected every 6.07 inches on average per the RSLTP. However this did not affect the survey effectiveness as no potential areas of elevated activity were detected.

Conclusion:

The FSS of this survey unit was properly designed as a Class 3 survey based on the results of the scoping survey. The required number of direct measurements made met the requirement of Table 5-6 of the LTP. All of the static measurements were less than the DCGL. No investigations were required.


The static measurement data support rejection of the null hypothesis, providing high confidence that the survey unit satisfied the release criteria and that the data quality objectives were met.

It is concluded that survey unit F8300123 meets the release criteria of 10CFR20.1402.

Maps

February 9, 2017

Survey Unit F8300123

) SI		DEWATER INC		Lucian				
INTERI	M ONSITE STORAGE BI	UILDING (IOSB)					D	
Contract No.:	4500091426	SMUD					П	
Location:	Rancho Seco							
Task:	Scoping Survey	Approved by:					11	
Drawing No.:	IOSB003.dwg	1						
Description:	IOSB Interior Features	1		and and a second second	taria.			
Drawn By:	C Gray	1	0	IO	20	30	40	50
QC'd:						6		
Date:	06182015	Approval date:				in feet		
Rev No.:	0				% inch	- 10 A		

Att. 1 Maps rev1

8300123

Instrumentation

January 25, 2017

Survey Unit F8300123

Measurement Type	Instrument Type	Minimum Detectable Activity ^a	Detector Efficiencies	Calibration Due Date ^b
Gamma Static Measurement 4 inch pipe	Ludlum Model 2350-1 Ludlum Model 44-157 Detector	398 dpm/100 cm ²	0.791%	203481/201151 4/15/17
Gamma Static Measurement 6 inch pipe	Ludlum Model 2350-1 Ludlum Model 44-159 Detector	247 dpm/100 cm ²	0.511%	203482/010057 6/30/17

Table 2-1. Survey Unit Instrumentation

^a Minimum detectable activities for the count rate instrumentation were calculated in accordance with NUREG-1507, "Minimum Detectable Concentrations with Typical Radiation Survey Instruments for Various Contaminants and Field Conditions" (U.S. NRC, 1997).

^b Detectors are required to be calibrated once every 12 months. Calibration due date indicates the date by which the detector must be calibrated again.

 $cm^2 = square centimeters$

cpm = counts per minute

dpm = disintegrations per minute

Static Measurement MDA

Gamma	Survey Type
201151	Detector Number
4500	Background count rate (cpm)
1	Count Time (min)
0.791	Efficiency
100	Area of Detector (cm ²)

Constants

60 sec/min

2.54 cm/in

Assumptions

Background count time and sample count time are equivalent

Calculate Static MDA

Static MDA =3 + 4.65(Br * t)^{0.5}/t * E * ^A/₁₀₀

(NUREG 1507)

Where:

- BrBackground CountratetCount Time (min)
- E Efficiency
- A Area of detector (cm²)

Static MDA

398 dpm/100 cm²

Gamma	Survey Type
10057	Detector Number
700	Background count rate (cpm)
1	Count Time (min)
0.511	Efficiency
100	Area of Detector (cm ²)

Constants

Section 2

60 sec/min

2.54 cm/in

Assumptions

Background count time and sample count time are equivalent

Calculate Static MDA

Static MDA =3 + 4.65(Br * t)^{0.5}/t * E * ^A/₁₀₀

(NUREG 1507)

Where:

- BrBackground CountratetCount Time (min)
- E Efficiency
- A Area of detector (cm²)

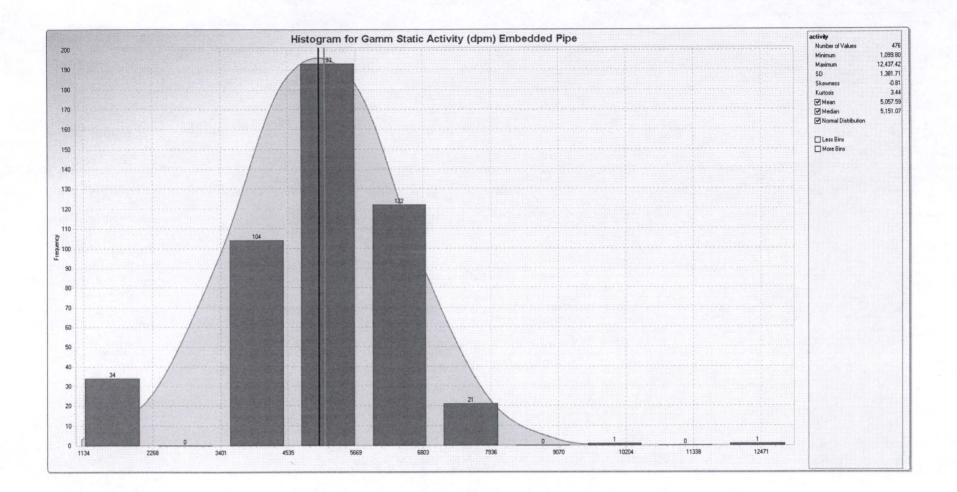
Static MDA

247 dpm/100 cm²

Investigation

January 25, 2017

Survey Unit F8300123


(none required)

ī.

Data Assessment

January 25, 2017

Survey Unit F8300123

Att. 4 Data Assessment rev1

Rancho Seco

Final Status Survey Summary Report

January 30, 2017

IOSB Outside Area Class 1 rev1

Date:_4-13-2017 Prepared By: **FSS Engineer** Date: 4-13-2017 **Reviewed By:** Lead FSS Engineer

Date: 4/18/17 Approved By:

Manager, Ráncho Seco Assets

Survey Unit:

F8300141, Interim Onsite Storage Building (IOSB) Outside Area Class 1

Survey Unit Description:

Operating History: Designed primarily to store packaged radioactive waste containers safely, protected from the elements, and maintain radiological dose as low as reasonably achievable (ALARA), the IOSB possibly stored media of many types, including filters, resins, contaminated chemicals, DAW, activated reactor components, contaminated plant components and other contaminated items. The outside asphalt area at times held waste ready to ship in storage containers and a respiratory cleaning facility.

Site Characterization: Scanning of the outside asphalt area identified an elevated area requiring remediation adjacent to the IOSB. Certain spots in the area exceeded the DCGL_w but not the DCGL_{EMC}. The Outside area was divided into a small Class 1 Survey Unit, buffered by a Class 2 Survey Unit. The remaining environmental areas, Outside Area Class 3 (F8300143) Survey Unit is the subject of a separate report. The Outside Area Class 1 (F8300141) requiring remediation had a maximum static value of approximately 242,497 dpm/100 cm². The Outside Area Class 1 (F8300141) is the subject of this report.

The Outside Area Class 2 (F8300142) and Class 3 (F8300143) are the subject of separate reports.

Survey Unit Design Information:

In accordance with MARSSIM Section 4.6, special considerations may be necessary for survey units with structure surface areas less than 10 m² or land areas less than 100 m². In this case, the number of data points obtained from the statistical tests is unnecessarily large and not appropriate for smaller survey unit areas. The data generated from these smaller survey units should be obtained based on judgment, rather than on systematic or random design, and compared individually to the DCGLs. This survey unit meets this criterion as the size is less than one square meter (0.37 m²).

The Survey Unit Design Parameters are presented in **Table 1** below. The survey unit and measurement locations are depicted on the maps in **Attachment 1**. Static measurement locations were based upon professional judgment in accordance with MARSSIM guidance and approximately 100% of the area scanned. The instrumentation used for the survey along with the MDC values are listed in **Table 2-1 Attachment 2**.

Evaluation Input Values		Comments
Survey Package:	F830	Outside Asphalt Class 1
Survey Unit:	014	
Class	1	
SU Area (m ²)	0.37	0.37 m ²
Evaluator:	JR	
DCGL _w :	43,000	Gross Activity DCGL
Area Factor	22.1	DTBD-05-003
Design DCGLemc (dpm/100cm ²):	950,300	
DCGLemc:	950,300	
LBGR:	21,500	Default = 50% DCGL
Sigma:	513	Generic Sigma
Type I error:	0.05	
Type II error:	0.05	
Predominant Nuclide	Cs-137	
Sample Area (m ²)	N/A	
Total Instrument Efficiency:	0.130	
Total Area Scanned (m ²):	0.37	
Scan Coverage (%)	100%	Class 1
Material Type:	N/A	Choosing 'N/A' sets material background to "0"
Calculated Values		Comments
Ζ1-α:	1.645	
Z _{1-β} :	1.645	
Sign p:	0.99865	
Calculated Relative Shift:	41.9	
Relative Shift Used:	3.0	Uses 3.0 if Relative Shift >3
N-Value:	5	Values selected based upon Judgement
N-Value+20%:	Ň/A	

Table 1, Survey Unit Design Parameters

Survey Results:

A total of 5 direct measurements were made in F8300141. The results of the static measurements are shown in **Table 2**. All of the static measurements were less than the DCGL. None of the scan measurements indicated areas of elevated activity.

١

Number	Sample #	Beta (cpm)	Beta (dpm)
1	F8300141A00001	370	2,803
2	F8300141A00002	353	2,674
3	F8300141A00003	313	2,371
4	F8300141A00004	347	2,629
5	F8300141A00005	350	2,652

Table 2, Static Measurement Results

Table 3 contains the statistical summary of the static measurement data for the Outside Area Class 1.

Beta Static Outside Asphalt Class 1		
····		
Mean	2,626	
Median	2,652	
Standard Deviation	158	
Minimum	2,371	
Maximum	2,803	
Count	5	

Table 3, Beta Summary Statistics

Survey Unit Data Assessment:

The survey design was based upon professional judgement and resulted in 5 static measurements. Following the guidance in MARSSIM Section 4.6, these values are compared directly to the DCGL_w.

The comparison and the results are presented in **Table 4**. The sample mean and median values were less than the DCGL.

,

Table 4, Data Assessment Results				
Static Data Values		Comments		
Number of Samples:	5			
Median:	2,652			
Mean:	2,626			
Static Data Standard Deviation:	158			
Maximum:	2,803			
Criteria Satisfaction		Comments		
Sufficient samples collected:	Pass			
Maximum value <dcgl<sub>w:</dcgl<sub>	Pass			
Median value <dcgl<sub>w:</dcgl<sub>	Pass			
Mean value <dcgl<sub>w:</dcgl<sub>	Pass			
Maximum value < DCGLemc:	N/A			
Sign test results:	N/A			
Final Status		Comments		
The survey unit passes all conditions:	Pass			

Table 4, Data Assessment Results

Survey Unit Investigations and Results:

No investigations were required for either direct or scan measurements collected for the FSS and no investigation results are reported.

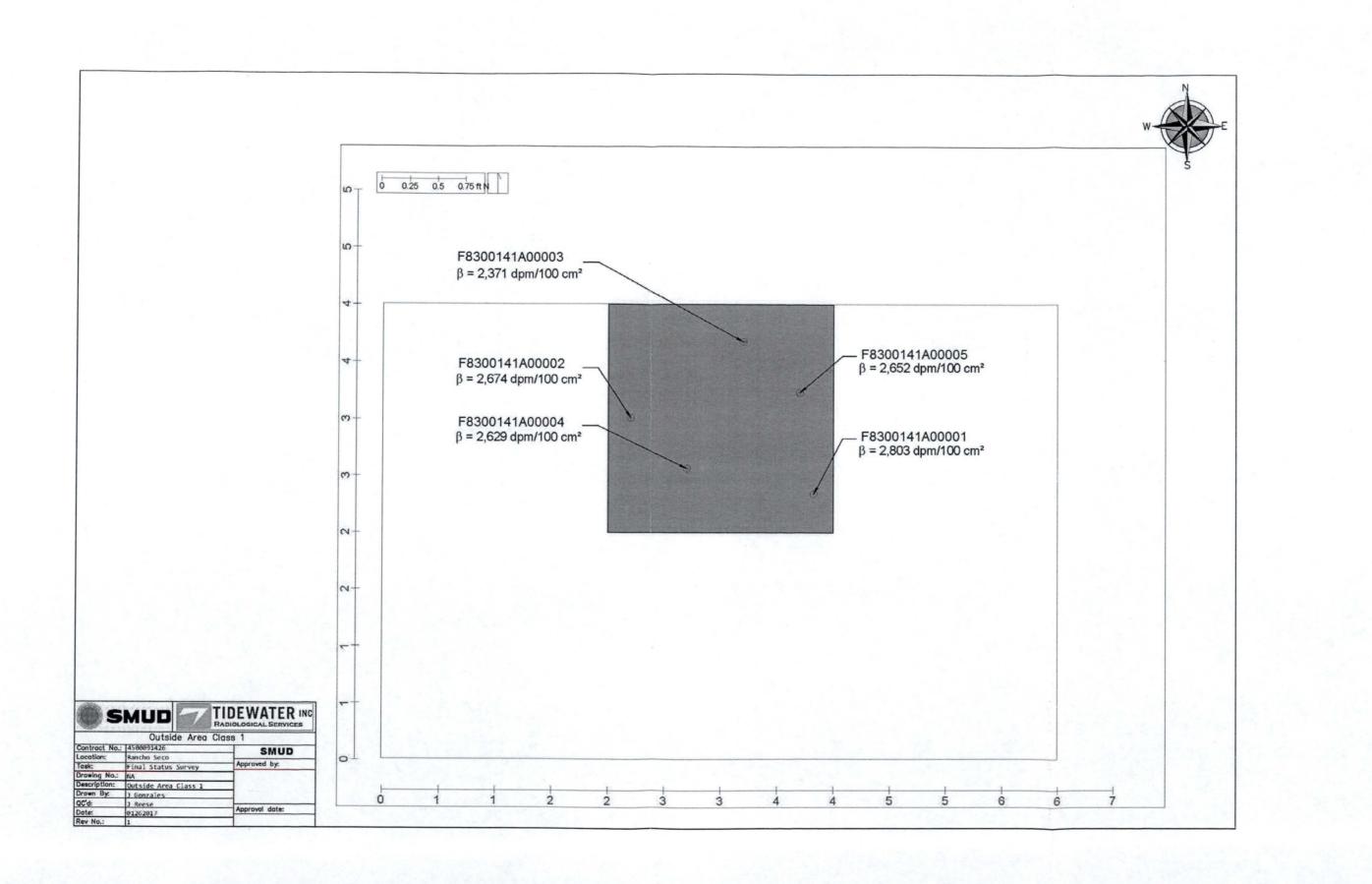
ALARA Statement:

Residual radioactivity following remediation is less than the DCGL and meets the ALARA criterion as determined in Chapter 4 of the LTP.

Changes in Initial Survey Unit Assumptions:

The survey unit was designed as a Class 1 survey and the sample results are consistent with that classification. No individual measurement exceeded the DCGL. No potential areas of elevated activity were detected.

Conclusion:


The FSS of this survey unit was properly designed as a Class 1 survey based on the results of the investigation survey. The required number of direct measurements was made and the scan coverage met the requirement of Table 5-6 of the LTP. All of the static measurements were less than the DCGL. No investigations were required.

The static measurement data support rejection of the null hypothesis, providing high confidence that the survey unit satisfied the release criteria and that the data quality objectives were met.

It is concluded that survey unit F8300141 meets the release criteria of 10CFR20.1402.

Maps

January 30, 2017

Instrumentation

January 30, 2017

Measurement Type	Instrument Type	Minimum Detectable Activity ^a	Detector Efficiencies	Calibration Due Date ^b	
Beta Static Measurement	Ludlum Model 2350-1 Ludlum Model 44-116 B Detector	Beta $- 515 \text{ dpm}/100 \text{ cm}^2$	13.2%	<u>317897/331972</u> 2/10/17	
 ^a Minimum detectable activities for the count rate instrumentation were calculated in accordance with NUREG-1507, "Minimum Detectable Concentrations with Typical Radiation Survey Instruments for Various Contaminants and Field Conditions" (U.S. NRC, 1997). 					
 ^b Detectors are re must be calibrat cm² = square centin cpm = counts per r 	quired to be calibrated onc ed again. meters	e every 12 months. Calibration due date in	dicates the date b	y which the detector	

Table 2-1. Survey Unit Instrumentation

dpm = disintegrations per minute

Static Measurement MDA

Beta	Survey Type
PR331972	Detector Number
195	Background count rate (cpm)
1	Count Time (min)
0.132	Efficiency
100	Area of Detector (cm ²)

Constants

60 sec/min

2.54 cm/in

Assumptions

Background count time and sample count time are equivalent

Calculate Static MDA

Static MDA =3 + 4.65(Br * t)^{0.5}/t * E * ^A/₁₀₀

(NUREG 1507)

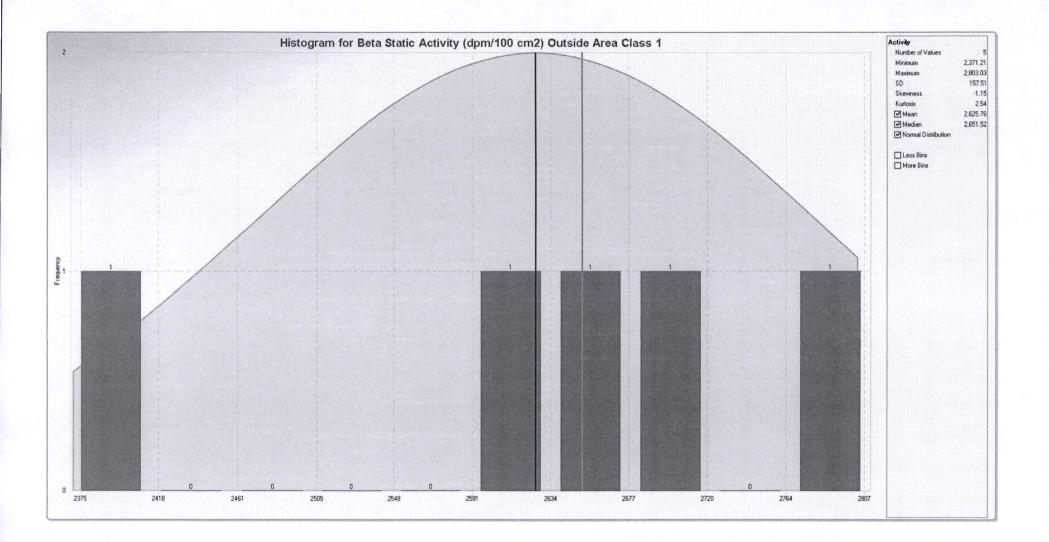
Where:

- Br Background Countrate
 - t Count Time (min)
 - E Efficiency
 - A Area of detector (cm²)

Static MDA

515 dpm/100 cm²

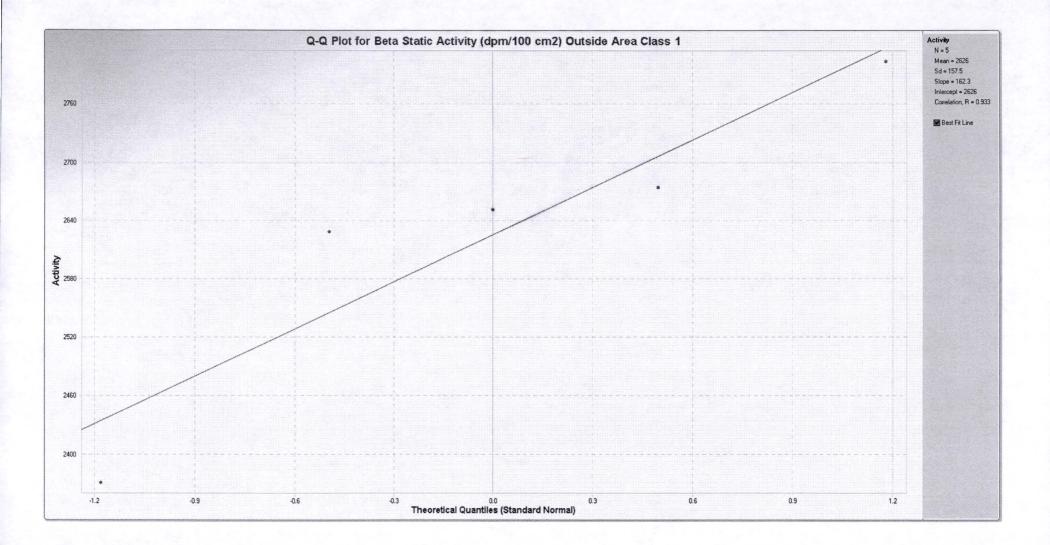
Investigation


January 30, 2017

Survey Unit F8300141

(none)

Data Assessment


January 25, 2017

Page 1

Att. 4 Data Assessment rev1

F8300141

Att. 4 Data Assessment rev1

F8300141

Rancho Seco Final Status Survey Summary Report January 30, 2017 **IOSB Outside Area Class 2 rev1** Survey Unit F8300142

4-13-2017 Date: Prepared By: **FSS Engineer** 4-13-2017 Date: **Reviewed By:** Lead FSS Engineer Date: 4/18/17

Manager, Rancho Seco Assets

Approved By:

Survey Unit:

F8300142, Interim Onsite Storage Building (IOSB) Outside Area Class 2

Survey Unit Description:

Operating History: Designed primarily to store packaged radioactive waste containers safely, protected from the elements, and maintain radiological dose as low as reasonably achievable (ALARA), the IOSB possibly stored media of many types, including filters, resins, contaminated chemicals, DAW, activated reactor components, contaminated plant components and other contaminated items. The outside asphalt area at times held waste ready to ship in storage containers and a respiratory cleaning facility.

Site Characterization: Scanning of the outside asphalt area identified an elevated area requiring remediation adjacent to the IOSB. Certain spots in the area exceeded the DCGL_w but not the DCGL_{EMC}. The outside area was divided into a small Outside Area Class 1 (F8300141) Survey Unit, buffered by a Class 2 (F8300142) Survey Unit. The remainder of the outside area was designated as Outside Area Class 3 (F8300143) Survey Unit. The Class 1 (F8300141) area requiring remediation had a maximum static value of approximately 242,497 dpm/100 cm².

The Outside area Class 2 (F8300142) is the subject of this report and the Outside Area Class 1 (F8300141) and Class 3 (F8300143) are separate reports.

Survey Unit Design Information:

In accordance with MARSSIM Section 4.6, special considerations may be necessary for survey units with structure surface areas less than 10 m² or land areas less than 100 m². In this case, the number of data points obtained from the statistical tests is unnecessarily large and not appropriate for smaller survey unit areas. The data generated from these smaller survey units should be obtained based on judgment, rather than on systematic or random design, and compared individually to the DCGLs. This survey unit meets this criterion as the size is less than ten square meters (1.85 m²).

The Survey Unit Design Parameters are presented in **Table 1** below. The survey unit and measurement locations are depicted on the maps in **Attachment 1**. Static measurement locations were determined by professional judgment in accordance with MARSSIM guidance and approximately 100% of the area scanned. The instrumentation used for the survey along with the MDC values are listed in **Table 2-1** Attachment 2.

Evaluation Input Values		Comments
Survey Package:	F830	Outside Asphalt Class 2
Survey Unit:	014	1
Class	2	
SU Area (m²)	1.85	
Evaluator:	JR	
DCGL _w :	43,000	Gross Activity DCGL
Area Factor	NA	Class 2
Design DCGLemc (dpm/100cm ²):	NA	Class 2
DCGLemc:	NA	Class 2
LBGR:	21,500	Default = 50% DCGL
Sigma:	513	·
Type I error:	0.05	
Type II error:	0.05_	
Predominant Nuclide	Cs-137	
Sample Area (m ²)	N/A	
Total Instrument Efficiency:	0.132	
Total Area Scanned (m ²):	1.85	
Scan Coverage (%)	100%	Class 2
Material Type:	N/A	Choosing 'N/A' sets material background to "0"
Calculated Values		Comments
Ζ1-α:	1.645	
Z _{1-β} :	1.645	
Sign p:	0.99865	
Calculated Relative Shift:	41.9	
Relative Shift Used:	3.0	Uses 3.0 if Relative Shift >3
N-Value:	10	Values selected based upon Judgement
N-Value+20%:	NA	Values selected based upon Judgement

Table 1, Survey Unit Design Parameters

Survey Results:

A total of 10 direct measurements were made in F8300142. The results of the static measurements are shown in **Table 2**. All of the static measurements were less than the DCGL. None of the scan measurements indicated areas of elevated activity.

Number	Sample #	Beta (cpm)	Beta (dpm)
1	F8300142A00001	266	2,015
2	F8300142A00002	316	2,394
3	F8300142A00003	345	2,614
4	F8300142A00004	340	2,576
5	F8300142A00005	320	2,424
6	F8300142A00006	373	2,826
7	F8300142A00007	350	2,652
8	F8300142A00008	369	2,795
9	F8300142A00009	373	2,826
10	F8300142A00010	343	2,598

Table 2, Static Measurement Results

Table 3 contains the statistical summary of the static measurement data for the Outside Area Class 2.

Table 3, Beta Summary Statistics

Beta Static Outside Asphalt Class 2		
Mean	2,572	
Median	2,606	
Standard Deviation	247	
Minimum	2,015	
Maximum	2,826	
Count	10	

Survey Unit Data Assessment:

The survey design was based upon professional judgement and resulted in 10 static measurements. Following the guidance in MARSSIM Section 4.6, these values are compared directly to the DCGLw.

The comparison and the results are presented in **Table 4**. The sample mean and median values were less than the DCGL.

I able 4, Data Assessment Results				
Static Data Values	÷.,	Comments		
Number of Samples:	10			
Median:	2,606			
Mean:	2,572			
Static Data Standard Deviation:	247			
Maximum:	2,826			
Sign Test Results		Comments		
Adjusted N Value:	10			
S+ Value:	10			
Critical Value:	NA			
Criteria Satisfaction		Comments		
Sufficient samples collected:	Pass			
Maximum value <dcglw:< td=""><td>Pass</td><td></td></dcglw:<>	Pass			
Median value <dcgl<sub>w:</dcgl<sub>	Pass			
Mean value <dcgl<sub>w:</dcgl<sub>	Pass			
Maximum value <dcglemc:< td=""><td>NA</td><td></td></dcglemc:<>	NA			
Sign test results:	NA			
Final Status		Comments		
The survey unit passes all conditions:	Pass			

Table 4, Data Assessment Results

Survey Unit Investigations and Results:

No investigations were required for either direct or scan measurements and no investigation results are reported.

ALARA Statement:

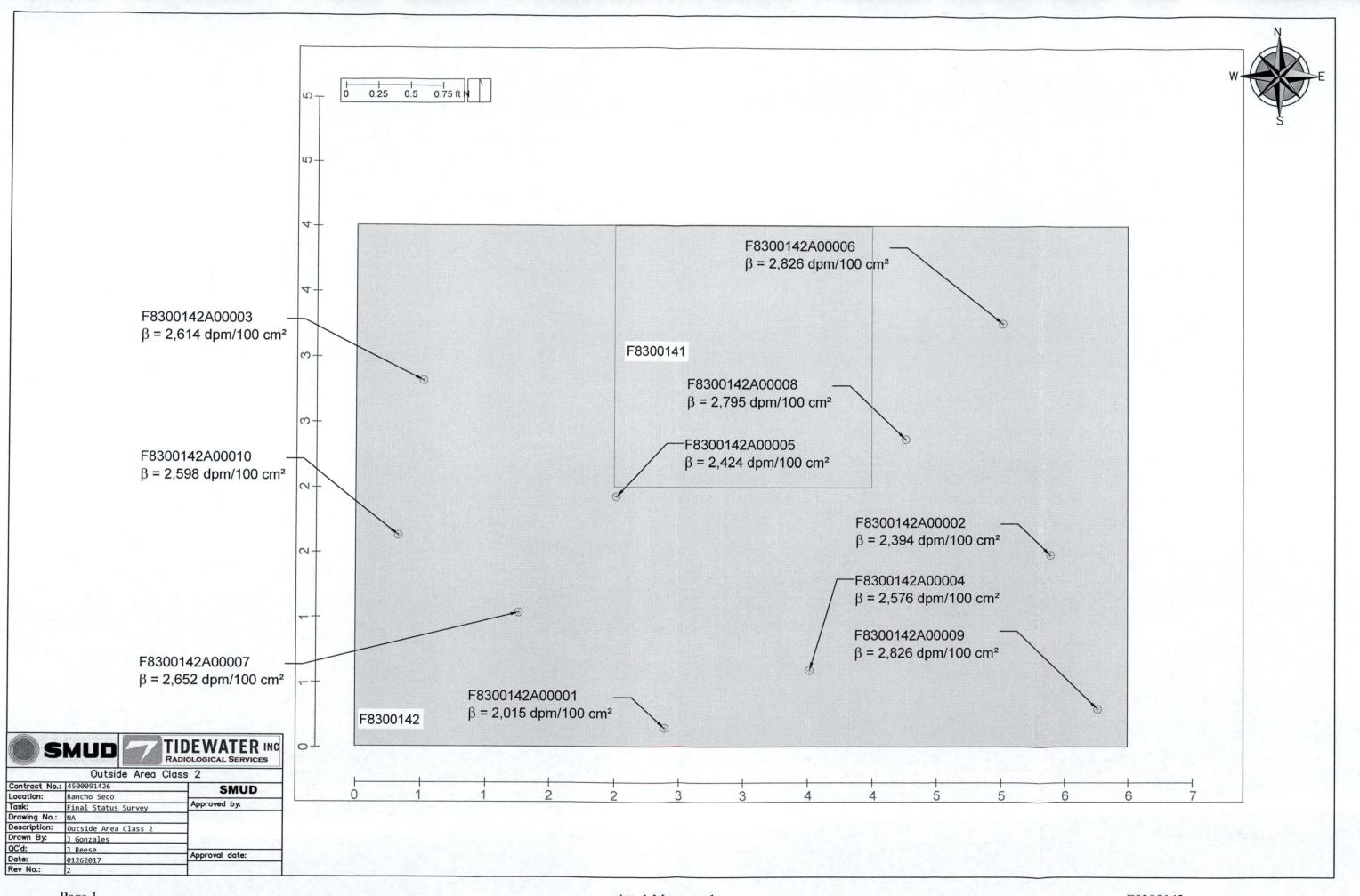
The residual activity within the survey unit is less than the DCGL and meets the ALARA criterion as determined in Chapter 4 of the LTP.

Changes in Initial Survey Unit Assumptions:

The survey unit was designed as a Class 2 survey and the sample results are consistent with that classification. No individual measurement exceeded the DCGL. No potential areas of elevated activity were detected.

Conclusion:

The FSS of this survey unit was properly designed as a Class 2 survey based on the results of the scoping survey. The required number of direct measurements was made and the scan coverage met the requirement of Table 5-6 of the LTP. All of the static measurements were less than the DCGL. No investigations were required.


The static measurement data support rejection of the null hypothesis, providing high confidence that the survey unit satisfied the release criteria and that the data quality objectives were met.

It is concluded that survey unit F8300142 meets the release criteria of 10CFR20.1402.

Í

Maps

January 30, 2017

F8300142

Instrumentation

January 30, 2017

Measurement Type	Instrument Type	Minimum Detectable Activity ^a	Detector Efficiencies	Calibration Due Date ^b
Beta Static Measurement	Ludlum Model 2350-1 Ludlum Model 44-116 B Detector	Beta - 522 dpm/100 cm ²	13.2%	<u>317897/331972</u> 2/10/17
	ectable Concentrations wit	nt rate instrumentation were calculated in a h Typical Radiation Survey Instruments fo		
 ^b Detectors are re must be calibrat cm² = square centin cpm = counts per r 	ed again. neters	ce every 12 months. Calibration due date in	dicates the date by	y which the detector

Table 2-1. Survey Unit Instrumentation

cpm = counts per minute dpm = disintegrations per minute

Static Measurement MDA

m)
-

Constants

60 sec/min

2.54 cm/in

Assumptions

Background count time and sample count time are equivalent

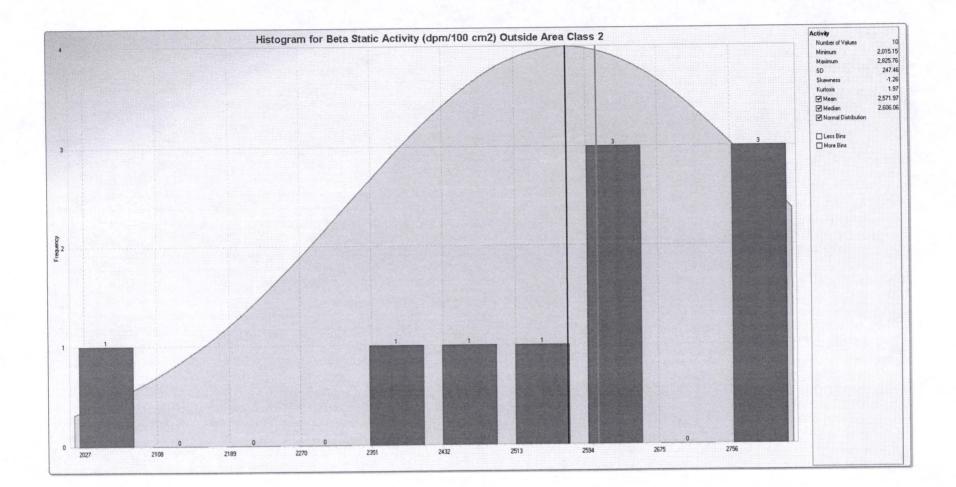
Calculate Static MDA

Static MDA = $3 + 4.65(B_r * t)^{0.5/t} * E * ^{A/_{100}}$ (NUREG 1507)

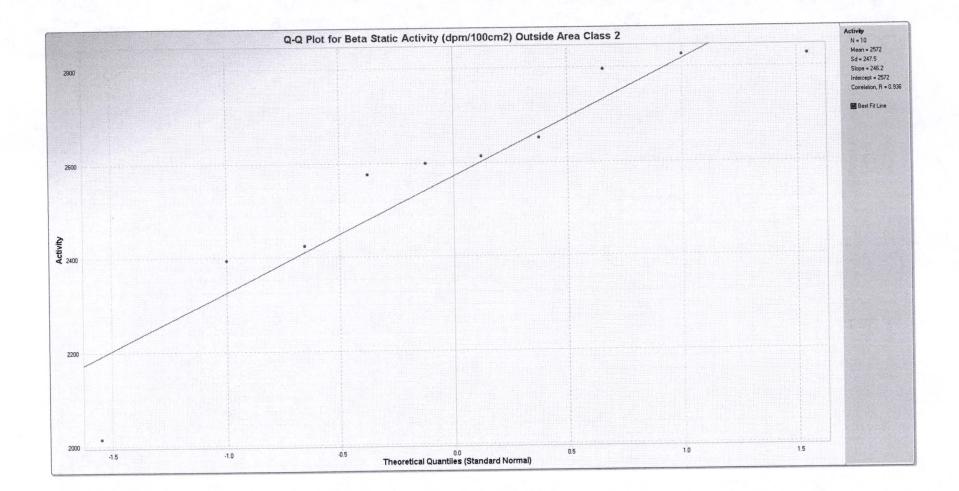
Where:

- Br Background Countrate t Count Time (min)
- E Efficiency
- A Area of detector (cm²)

Static MDA


522 dpm/100 cm²

Attachment 3 Investigation January 30, 2017 Survey Unit F8300142 (none)


.

Data Assessment

January 30, 2017

Att. 4 Data Assessment rev1

Rancho Seco

Final Status Survey Summary Report

January 30, 2017

IOSB Outside Area Class 3 rev1

Survey Unit F8300143

4-13-2017 **Prepared By:** Date: **FSS Engineer** 4-13-2017 An Date: **Reviewed By:** Lead FSS Engineer Date: <u>4/19/17</u>

Manager, Rancho Seco Assets

Approved By:

Survey Unit:

F8300143, Interim Onsite Storage Building (IOSB) Outside Area Class 3

Survey Unit Description:

Operating History: Designed primarily to store packaged radioactive waste containers safely, protected from the elements, and maintain radiological dose as low as reasonably achievable (ALARA), each storage cell possibly stored media of many types, including filters, resins, contaminated chemicals, DAW, activated reactor components, contaminated plant components and other contaminated items.

Site Characterization: Scanning of the outside asphalt area identified an elevated area requiring remediation adjacent to the IOSB. Certain spots in the area exceeded the DCGL_w but not the DCGL_{EMC}. The Outside area was divided into a small Class 1, Outside Area Class 1 (F8300141) Survey Unit, buffered by a Class 2 (F8300142). The Class 1 (F8300141) area requiring remediation had a maximum static value of approximately 242,497 dpm/100 cm². The remaining, Outside Area (F8300143) was designated as a Class 3 Survey Unit and is the subject of this report.

The Outside Area Class 1 (F8300141) and Class 2 (F8300142) are separate reports.

Survey Unit Design Information:

The Survey Unit Design Parameters are presented in **Table 1** below. The survey unit and measurement locations are depicted on the maps in **Attachment 1**. Static measurement locations were randomly determined and approximately 100% of the area scanned by gamma scanning. A total of 7 soil samples were collected from the berm area and analyzed by gamma spectroscopy at an offsite laboratory. The instrumentation used for the survey along with the MDC values are listed in **Table 2-1 Attachment 2**.

Evaluation Input Values		Comments	
Survey Package:	F830	Outside	
Survey Unit:	014		
Class	3		
SU Area (m ²)	5853		
Evaluator:	JR		
DCGLw:	43,000	Gross Activity DCGL	
Area Factor	NA	Class 3	
Design DCGLemc (dpm/100cm ²):	NA	Class 3	
LBGR:	21,500	Default = 50% DCGL	
Sigma:	513	Scoping Survey Data	
Type I error:	0.05		
Type II error:	0.05		
Predominant Nuclide	Cs-137		
Sample Area (m ²)	N/A		
Total Instrument Efficiency:	0.129		
Total Area Scanned (m ²):	2643		
Scan Coverage (%)	45%	Includes gamma scan of soil and asphalt	
Material Type:	N/A	Choosing 'N/A' sets material background to "0"	
Calculated Values		Comments	
Ζ1-α:	1.645		
Z _{1-β} :	1.645		
Sign p:	0.99865		
Calculated Relative Shift:	41.9		
Relative Shift Used:	3.0	Uses 3.0 if Relative Shift >3	
N-Value:	11		
N-Value+20%:	14		

Table 1, Survey Unit Design Parameters

Survey Results:

A total of 15 direct measurements were made in F8300143 on the asphalt surface. The results of the static measurements are shown in **Table 2**. All of the static measurements were less than the DCGL. Gamma scanning results identified an area of elevated activity. The DCGL was exceeded and was separated as a Class 1 survey area. All soil sample results did not have detectable activity. The results of the soil samples are contained in **Attachment 5 (Laboratory Analysis- Gamma Spectrometry)** of this report.

Jumber Sample #		Beta (cpm)	Beta (dpm)	
1	F8300143A00015	324	2,455	
2	F8300143A00006	340	2,576	
3	F8300143A00011	399	3,023	
4	F8300143A00013	352	2,667	
5	F8300143A00002	393	2,977	
6	F8300143A00012	366	2,773	
7	F8300143A00004	331	2,508	
8	F8300143A00007	356	2,697	
9	F8300143A00016	328	2,485	
10	F8300143A00017	339	2,568	
11	F8300143K00018	341	2,583	
12	F8300143A00019	407	3,083	
13	F8300143A00020	362	2,742	
14	F8300143A00021	301	2,280	
15	F8300143A00022	360	2,727	

Table 2, Static Measurement Results

Table 3 contains the statistical summary of the static measurement data for the Outside Area Class 3.

Table 3, Beta Summary Statistics

Beta Static Outs	ide
Mean	2,676
Median	2,667
Standard Deviation	223
Minimum	2,280
Maximum	3,083
Count	15

Survey Unit Data Assessment:

The survey design required 14 static measurements for the Sign Test. A total of 15 static measurements were collected. The critical value and the results of the Sign Test are presented in **Table 4**. The sample mean and median values were less than the DCGL. The sample standard deviation was greater than the design standard deviation but both values of sigma resulted in a relative shift greater than three (3), no additional samples were required.

Static Data Values		Comments
Number of Samples:	15	
Median:	2,667	
Mean:	2,676	
Static Data Standard Deviation:	223	
Maximum:	3,083	
Sign Test Results		Comments
Adjusted N Value:	14	
S+ Value:	15	
Critical Value:	10	
Criteria Satisfaction		Comments
Sufficient samples collected:	Pass	
Maximum value <dcglw:< td=""><td>Pass</td><td></td></dcglw:<>	Pass	
Median value <dcgl<sub>w:</dcgl<sub>	Pass	
Mean value <dcgl<sub>w:</dcgl<sub>	Pass	
Maximum value < DCGLemc:	N/A	
Sign test results:	Pass	
Final Status		Comments
The survey unit passes all conditions:	Pass	

Table 4, Data Assessment Results

Survey Unit Investigations and Results:

No investigations were required for either direct or scan measurements and no investigation results are reported.

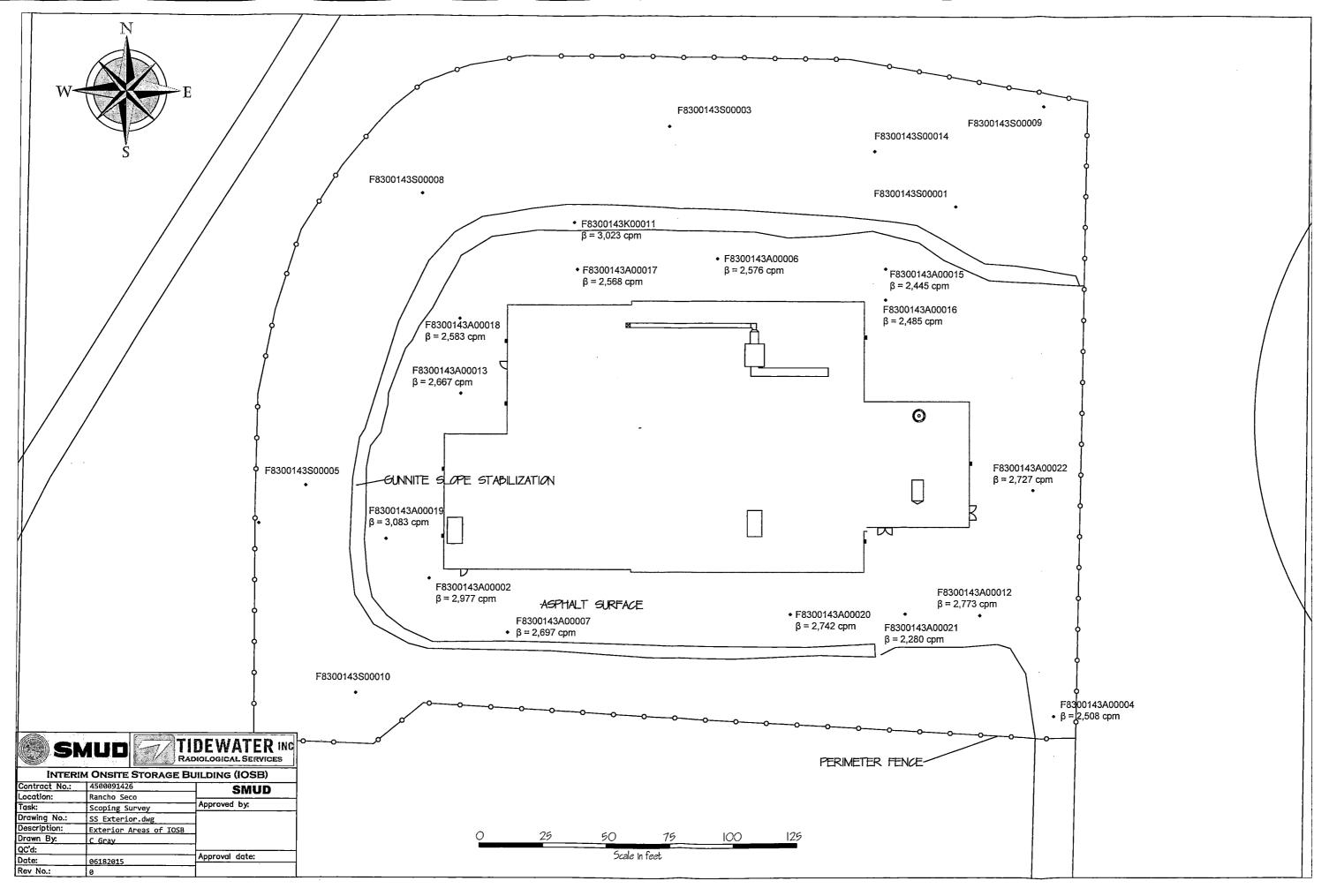
ALARA Statement:

The residual activity within the survey unit is less than the DCGL and meets the ALARA criterion as determined in Chapter 4 of the LTP.

Changes in Initial Survey Unit Assumptions:

The survey unit was designed as a Class 3 survey and the sample results are consistent with that classification. No individual measurement exceeded the DCGL. No potential areas of elevated activity were detected.

Conclusion:


The FSS of this survey unit was properly designed as a Class 3 survey based on the results of the investigation survey. The required number of direct measurements was made and the scan coverage met the requirement of Table 5-6 of the LTP. All of the static measurements were less than the DCGL. No investigations were required.

The static measurement data support rejection of the null hypothesis, providing high confidence that the survey unit satisfied the release criteria and that the data quality objectives were met.

It is concluded that survey unit F8300143 meets the release criteria of 10CFR20.1402.

Maps

January 30, 2017

F8300143

Instrumentation

January 30, 2017

Measurement Type	Instrument Type	Minimum Detectable Activity ^a	Detector Efficiencies	Calibration Due Date ^b
Beta Static Measurement	Ludlum Model 2350-1 Ludlum Model 44-116 B Detector	Beta – 477 dpm/100 cm ²	13.2%	<u>317897/331972</u> 2/10/17
Gamma Scan	Ludlum Model 2350 Ludlum Model 44- 10	927 cpm	NA	<u>317892/208816</u> 12/29/16
Gamma Scan	Ludlum Model 2350 Ludlum Model 44- 10	945 cpm	NA	<u>317894/300786</u> 12/29/16

Table 2-1. Survey Unit Instrumentation

"Minimum Detectable Concentrations with Typical Radiation Survey Instruments for Various Contaminants and Field Conditions" (U.S. NRC, 1997). ^b Detectors are required to be calibrated once every 12 months. Calibration due date indicates the date by which the detector

must be calibrated again.

 $cm^2 = square centimeters$

cpm = counts per minute

dpm = disintegrations per minute

Static Measurement MDA

Beta	Survey Type
PR331972	Detector Number
166	Background count rate (cpm)
1	Count Time (min)
0.132	Efficiency
100	Area of Detector (cm ²)

Constants

60 sec/min

2.54 cm/in

Assumptions

Background count time and sample count time are equivalent

Calculate Static MDA

Static MDA =3 + 4.65(Br * t)^{0.5}/t * E * ^A/₁₀₀ (NUREG 1507)

Where:

- Br Background Countrate t Count Time (min)
- E Efficiency
- A Area of detector (cm²)

Static MDA

477 dpm/100 cm²

Minimum Detectable Count Rate for Outside Scanning

Variables 7610 Background count rate (cpm) 0.5 Surveyor Efficiency (p) 1.38 Dectability performance (d), based upon acceptable true and false positives (MARRSIM Tble 8-5) 0.027 Detector Efficiency

Constants

60 sec/min 2.54 cm/in 100 cm/m

10.16 cm

Size of Detector in direction of scan

Average Scan Speed for	Survey Unit
5.08 cm/sec	Average Scan Speed for Survey Unit

Determine Observation Interval for Scan Speed (I)
2.00 sec Observation Interval for scan speed of 5.08

Calculate Net Source Counts in Observation Interval (I) S_j = d * (b)^{0.5} Equation 6-8 from MARSSIM Where: S₁ Minimum detectable number of net source counts in the observation interval d detectability performance based on acceptable rate of true and false positives b₁ Background counts in interval, 1 22] cpm = S₁ Calculate the MDCR

MDCR = $S_1 \times (60^{11})/p^{6.5}$ Equation 6-9 from MARSSIM

 Where:
 MDCR
 Minimum Detectable Count Rate (cpm)

 I
 Observation Interval
 2.00 sec

945 cpm (MDCR) 8,628 dpm

1

Minimum Detectable Count Rate for Outside Scanning

0.0 1.30	Background co Surveyor Efficie	ency (p) ormance (d)	n) , based upon acceptable true and false positives (MARRSIM Thie 6-5)
2.54	5) seoimin 4 cm/in 1 cm/in		
10,10) on	Size of De	sector in direction of scan
	Scan Speed for 3		
5.00	i cm/sec	Average S	can Speed for Survey Unit
Determin 2.0	e Observation Ir I sec		ican Speed (I) In Interval for scan speed of 5.08
Calculate S _l = d * (b			ervation Interval (I) i-8 from MARSSIM
	Where:	Sj d bj	Minimum detectable number of net source counts in the observation interval detectability performance based on acceptable rate of true and false positives Background counts in interval, J
Calculate	24 the MDCR	cpm = S _i	
	S, x (60/1)/p ^{6.5}	Equation (+9 from MARSSIM
	Where:	MDCR 1	Minimum Detectable Count Rate (com) Observation Interval 2.00 sec
	92) 8,463	icpm (MDC dpm	R)

1

L

Attachment 3

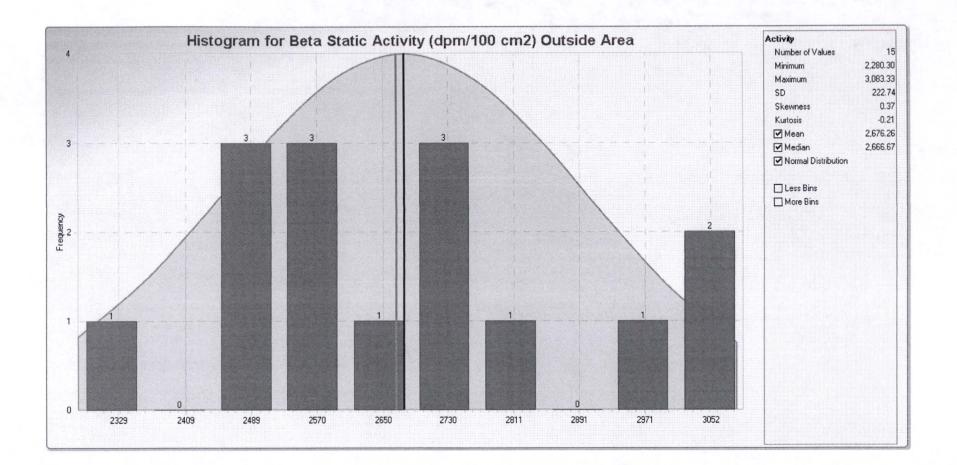
~

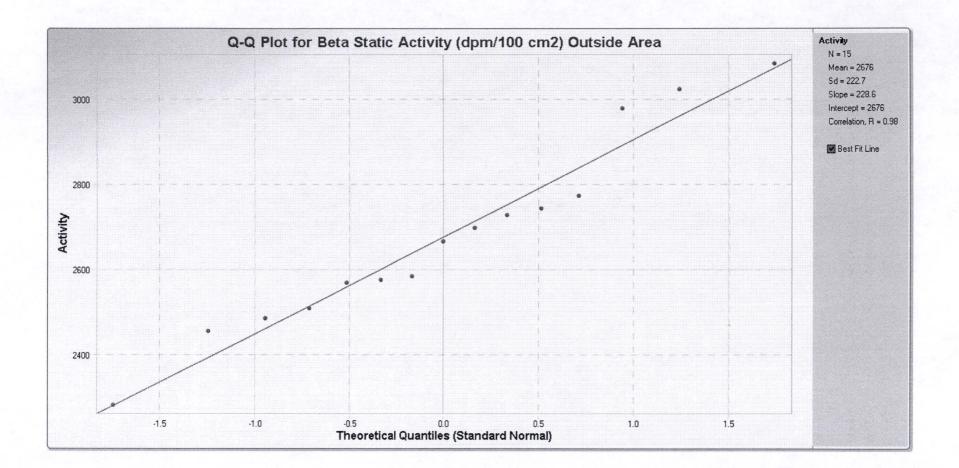
Investigation

January 30, 2017

.

Survey Unit F8300143


(none)


Attachment 4

Data Assessment

January 30, 2017

Survey Unit F8300143

Attachment 5

Laboratory Analysis

Gamma Spectrometry Report (14 pgs)

January 30, 2017

Survey Unit F8300143

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: October 27, 2016

											oponedu		27, 2010
	Company :			Municipal Util	ity District								
	Address :	14	440 Twin (Cites Road									
		He	rald. Calif	ornia 95638									
	Contact:		. Dave Ko										
	Project:			IOSB Soil an	d Water An	alvsis							
	··	_				ury 515		• •		0.01	200201		
	Client Sample ID:			78300143-1)				oject:			000201		
	Sample ID:	40′	7403001				Cl	ient ID	:	SMUI	0002		
	Matrix:	So	il										
	Collect Date:	22.	-SEP-16 12	3:50									
	Receive Date:	04	-OCT-16										
	Collector:		ient										
	Conector.	Ch	CIII										
	··				·· <u>·</u> ·····								
Parameter	Quali	fier	Result	Uncertainty	MDC	RL	Units	PF	DF	Analy	st Date	Time Batch	Method
	a Spec Analysis				. 10								
-	c, Gamma, Solid (St	anda	,										
Actinium-228			7.10E-07	+/-2.87E-07	2.34E-07		uCi/g			MXR1	10/21/16	1428 1604416	5 1
Americium-24		U	1.92E-08	+/-1.44E-07	2.61E-07		uCi/g						
Antimony-124		U	-6.20E-08	+/-7.66E-08	1.07E-07		uCi/g						
Antimony-125		υ	-2.97E-08	+/-7.58E-08	1.40E-07		uCi/g						
3arium-133		U	-3.85E-09	+/-3.53E-08	6.11E-08		uCi/g						
3arium-140		U	1.41E-07	+/-5.30E-07	1.05E-06		uCi/g						
Beryllium-7		U	1.86E-07	+/-3.78E-07	7.64E-07		uCi/g						
3ismuth-212			9.35E-07	+/-7.38E-07	8.90E-07		uCi/g						
Sismuth-214		* *	6.43E-07	+/-1.98E-07	1.27E-07		uCi/g						
Cerium-139		U	3.45E-09	+/-2.67E-08	4.89E-08		uCi/g						
Cerium-141 Cerium-144		บ บ	-4.19E-08 -2.44E-08	+/-8.07E-08 +/-1.77E-07	1.40E-07 3.20E-07		uCi/g uCi/g						
Cesium-134		U U	-2.44E-08 -4.22E-09	+/-4.52E-08	3.20E-07 8.21E-08		uCi/g uCi/g				,		
Jesium-134 Jesium-136		U	-4.22E-09	+/-2.05E-07	3.80E-07		uCi/g uCi/g				,		
Cesium-130		U	9.37E-09	+/-3.81E-08	7.56E-08	1.00E-07	uCi/g uCi/g						
Chromium-51		Ŭ	-2.32E-07	+/-4.45E-07	8.18E-07	1.001-07	uCi/g						
Cobalt-56		Ŭ	6.78E-09	+/-3.99E-08	8.25E-08		uCi/g						
Cobalt-57		Ŭ	-2.22E-08	+/-2.30E-08	3.83E-08		uCi/g						
Cobalt-58		Ŭ	-1.69E-08	+/-3.43E-08	6.48E-08		uCi/g						
Cobalt-60		Ŭ	9.67E-09	+/-2.89E-08	6.54E-08	1.00E-07	uCi/g						
Suropium-152		Ū	-1.59E-08	+/-9.48E-08	1.77E-07		uCi/g						
Suropium-154		U	2.22E-08	+/-9.82E-08	2.07E-07		uCi/g						
Suropium-155		U	4.09E-08	+/-9.26E-08	1.78E-07		uCi/g						
ridium-192		U	-9.77E-09	+/-3.30E-08	6.23E-08		uCi/g						
ron-59		U	-1.13E-07	+/-8.81E-08	1.30E-07		uCi/g						
.ead-210		U	1.76E-06	+/-3.85E-06	7.74E-06		uCi/g						
.ead-212			8.25E-07	+/-1.17E-07	9.62E-08		uCi/g						
.ead-214			8.47E-07	+/-1.71E-07	3.05E-07		uCi/g						
Aanganese-54		U	4.48E-09	+/-3.10E-08	6.44E-08		uCi/g						
Aercury-203		U	1.71E-09	+/-3.91E-08	7.65E-08		uCi/g						
Jeodymium-14		U	2.12E-07	+/-1.20E-06	2.38E-06		uCi/g						
Jeptunium-23	9	U	2.53E-07	+/-3.54E-07	3.88E-07		uCi/g						
√iobium-94		U	1.98E-09	+/-4.10E-08	7.55E-08		uCi/g						
Jiobium-95		U	-2.03E-08	+/-5.02E-08	7.55E-08		uCi/g						
'otassium-40			9.76E-06	+/-1.35E-06	6.15E-07		uCi/g						
'romethium-14	14	U	-1.90E-08	+/-3.65E-08	6.26E-08		uCi/g						

-- ----

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: October 27, 2016

Sacramento Municipal Utility District 14440 Twin Cites Road		
Herald, California 95638		
Mr. Dave Koontz		
Rancho Seco IOSB Soil and Water Analysis		
2016-0030 (F8300143-1)	Project:	SMUD00201
407403001	Client ID:	SMUD002
	14440 Twin Cites Road Herald, California 95638 Mr. Dave Koontz Rancho Seco IOSB Soil and Water Analysis 2016-0030 (F8300143-1)	14440 Twin Cites RoadHerald, California 95638Mr. Dave KoontzRancho Seco IOSB Soil and Water Analysis2016-0030 (F8300143-1)Project:

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF	Analyst Date	Time Batch	Method
tad Gamma Spec Ana	lysis										
Jammaspec, Gamma,	Solid (Standa	rd List) "Ľ	ory Weight Co	prrected"							
'romethium-146	ັ ບ	1.72E-08	+/-3.79E-08	7.72E-08		uCi/g					
tadium-223	U	-4.08E-07	+/-5.93E-07	1.07E-06		uCi/g					
tadium-224	UI	0.00	+/-1.07E-06	1.03E-06		uCi/g					
tadium-228		7.10E-07	+/ - 2.87E-07	2.34E-07		uCi/g					
tuthenium-106	U	1.41E-07	+/-3.37E-07	6.69E-07		uCi/g					
lilver-110m	U	1.01E-08	+/-3.96E-08	8.53E-08		uCi/g					
Jodium-22	U	8.78E-09	+/-3.51E-08	7.44E-08		uCi/g					
hallium-208		3.20E-07	+/-8.54E-08	5.53E-08		uCi/g					
Thorium-234	UI	0.00	+/-2.69E-06	1.97E-06		uCi/g					
7in-113	U	3.91E-09	+/-3.99E-08	7.86E-08		uCi/g					
Jranium-235	U	-5.14E-08	+/-1.82E-07	3.23E-07		uCi/g					
Jranium-238	UI	0.00	+/ - 2.69E-06	1.97E-06		uCi/g					
7ttrium-88	U	-1.30E-08	+/-2.71E-08	5.38E-08		uCi/g					
Linc-65	U	6.77E-08	+/-7.32E-08	1.62E-07		uCi/g					
Circonium-95	U	1.30E-08	+/-8.49E-08	1.63E-07		uCi/g					
The following Prep Me	ethods were p	erformed:						_			
viethod	Descriptio	n			Analyst	Date		Time	Prep Batch		
Dry Soil Prep	Dry Soil Pre	p GL-RAD-A	-021		LYT1	10/05/16		0854	1604293		
The following Analyti	ical Methods	were perfo	rmed:								
Method	Description	n				A	Analys	t Con	nments		
· · · · · · · · · · · · · · · · · · ·	DOE HASL		3a-01-R								
Notes: Counting Uncertainty :			confidence le	vel (1.96-s	igma).						

Column headers are defined as follows:DF: Dilution FactorLc/LC: Critical LevelDL: Detection LimitPF: Prep FactorMDA: Minimum Detectable ActivityRL: Reporting LimitMDC: Minimum Detectable ConcentrationSQL: Sample Quantitation Limit

-- ---

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: October 27, 2016

Company : Address :	Sacramento Municipal Utility District 14440 Twin Cites Road		
Contact:	Herald, California 95638 Mr. Dave Koontz		
Project:	Rancho Seco IOSB Soil and Water Analysis		
Client Sample ID:	2016-0031 (F8300143-3)	Project:	SMUD00201
Sample ID:	407403002	Client ID:	SMUD002
Matrix:	Soil		
Collect Date:	22-SEP-16 13:39		
Receive Date:	04-OCT-16		
Collector:	Client		

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analyst Date Time Batch Method
tad Gamma Spec Analy	ysis							
Jammaspec, Gamma, S	Solid (Standa	ard List) "I	Dry Weight Co	orrected"				
Actinium-228		7.29E-07	+/-2.84E-07	2.29E-07		uCi/g		MXR1 10/21/16 1429 1604416 1
Americium-241	U	-5.33E-08	+/-2.05E-07	3.65E-07		uCi/g		
Antimony-124	U	4.80E-08	+/-9.29E-08	2.32E-07		uCi/g		
Antimony-125	U	2.14E-08	+/-8.30E-08	1.66E-07		uCi/g		
3arium-133	U	-7.09E-09	+/-5.82E-08	7.66E-08		uCi/g		
Barium-140	U	-1.67E-07	+/-4.71E-07	8.64E-07		uCi/g		
Beryllium-7	U	3.79E-07	+/-4.00E-07	8.54E-07		uCi/g		
3ismuth-212	UI	0.00	+/-6.72E-07	1.41E-06		uCi/g		
3ismuth-214		5.59E-07	+/-1.64E-07	1.43E-07		uCi/g		
Cerium-139	U	3.15E-09	+/-2.99E-08	5.81E-08		uCi/g		
Cerium-141	U	1.08E-08	+/-7.57E-08	1.49E-07		uCi/g		
Cerium-144	U	5.07E-08	+/-1.95E-07	3.55E-07		uCi/g		
Cesium-134	U	3.53E-08	+/-3.80E-08	8.53E-08		uCi/g		
Cesium-136	U	-1.33E-07	+/-1.93E-07	3.45E-07		uCi/g		
Cesium-137	U	-3.07E-08	+/-3.91E-08	6.56E-08	1.00E-07	uCi/g		
Chromium-51	U	-2.63E-07	+/-4.93E-07	8.87E-07		uCi/g		
Cobalt-56	U	-1.44E-08	+/-4.81E-08	8.57E-08		uCi/g		
Cobalt-57	U	2.14E-08	+/-2.63E-08	5.04E-08		uCi/g		
Cobalt-58	U	-3.74E-09	+/-4.08E-08	7.75E-08		uCi/g		
Cobalt-60	U	6.49E-09	+/-3.27E-08	7.22E-08	1.00E-07	uCi/g		
Europium-152	U	5.92E-08	+/-8.56E-08	1.74E-07		uCi/g		
Europium-154	U	-1.05E-08	+/-7.99E-08	1.68E-07		uCi/g		
Europium-155	U	1.61E-08	+/-1.12E-07	2.02E-07		uCi/g		
ridium-192	U	6.61E-09	+/-3.50E-08	6.92E-08		uCi/g		
ron-59	U	-5.10E-08	+/-7.99E-08	1.44E-07		uCi/g		
.ead-210	U	-1.43E-06	+/-8.81E-06	1.59E-05		uCi/g		
.ead-212		7.66E-07	+/-1.15E-07	8.72E-08		uCi/g		
.ead-214		6.17E-07	+/-1.60E-07	1.37E-07		uCi/g		
Aanganese-54	U	2.03E-08	+/-3.82E-08	7.90E-08		uCi/g		
Aercury-203	U	-1.32E-08	+/-4.02E-08	7.49E-08		uCi/g		
Jeodymium-147	U	1.25E-07	+/-1.35E-06	2.62E-06		uCi/g		
Jeptunium-239	U	-1.94E-07	+/-2.87E-07	4.71E-07		uCi/g		
Jiobium-94	U	1.64E-08	+/-3.55E-08	7.16E-08		uCi/g		
Jiobium-95	U	5.27E-08	+/-6.28E-08	6.64E-08		uCi/g		
'otassium-40		8.67E-06	+/-1.33E-06	6.09E-07		uCi/g		
'romethium-144	U	2.25E-08	+/-3.85E-08	7.63E-08		uCi/g		
						0		

- --

~~- /

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: October 27, 2016

4

Sacramento Municipal Utility District 14440 Twin Cites Road		
Herald, California 95638 Mr. Dave Koontz		
Rancho Seco IOSB Soil and Water Analysis		
2016-0031 (F8300143-3)	Project:	SMUD00201
407403002	Client ID:	SMUD002
	14440 Twin Cites Road Herald, California 95638 Mr. Dave Koontz Rancho Seco IOSB Soil and Water Analysis 2016-0031 (F8300143-3)	14440 Twin Cites RoadHerald, California 95638Mr. Dave KoontzRancho Seco IOSB Soil and Water Analysis2016-0031 (F8300143-3)Project:

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF	Analyst Date	Time Batch	Method
tad Gamma Spec Analy	ysis										
Jammaspec, Gamma, S	olid (Standa	rd List) "I	Ory Weight Co	orrected"							
'romethium-146	υ	4.82E-10	+/-3.71E-08	7.23E-08		uCi/g					
tadium-223	U	3.33E-07	+/-5.65E-07	1.16E-06		uCi/g					
tadium-224	U	3.89E-07	+/-1.05E-06	9.34E-07		uCi/g					
tadium-228		7.29E-07	+/-2.84E-07	2.29E-07		uCi/g					
Luthenium-106	U	1.02E-07	+/-3.04E-07	6.19E-07		uCi/g					
lilver-110m	U	8.67E-10	+/-3.79E-08	7.66E-08		uCi/g					
lodium-22	U	-4.04E-09	+/-2.83E-08	5.93E-08		uCi/g					
Thallium-208		2.57E-07	+/-8.27E - 08	7.34E-08		uCi/g					
'horium-234	U	2.53E-08	+/-1.89E-06	3.43E-06		uCi/g					
in-113	U	-2.99E-08	+/-4.05E-08	7.03E-08		uCi/g					
Jranium-235	U	-6.98E-08	+/-1.90E-07	3.57E-07		uCi/g					
Jranium-238	U	2.53E-08	+/-1.89E-06	3.43E-06		uCi/g					
/ttrium-88	U	2.51E-08	+/-3.65E-08	9.85E-08		uCi/g					
Cinc-65	U	-6.75E-08	+/-9.73E-08	1.71E-07		uCi/g					
Circonium-95	U	7.31E-09	+/-7.09E-08	1.41E-07		uCi/g					
The following Prep Met	hods were p	erformed:									
víethod	Descriptio	n			Analyst	Date		Time	Prep Batch		
Dry Soil Prep	Dry Soil Pre	p GL-RAD-A	A-021		LYTI	10/05/16		0854	1604293		
The following Analytic	al Methods	were perfo	rmed:								
Method	Description	n				A	nalys	t Con	nments		
	DOE HASL	300, 4.5.2.3/0	Ga-01-R								
Notes: Counting Uncertainty is	calculated a	at the 95%	confidence le	vel (1.96-s	igma).						
Column headers are def	fined as follo	ows:									

Column headers are defined as follows:DF: Dilution FactorLc/LC: Critical LevelDL: Detection LimitPF: Prep FactorMDA: Minimum Detectable ActivityRL: Reporting LimitMDC: Minimum Detectable ConcentrationSQL: Sample Quantitation Limit

-- ---

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: October 27, 2016

									~	opon Du		.,
	Company : Address :		ramento M 40 Twin C	Iunicipal Utili Lites Road	ity District							
				ornia 95638								
	Contact:		. Dave Koo		1 337 / 4	1						
	Project:			IOSB Soil and	d Water Ana	alysis						
	Client Sample ID:	201	.6-0032 (F	8300143-5)			-	ject:		D00201		
	Sample ID:	407	403003				Clie	ent ID:	SMU	D002		
	Matrix:	Soi	1									
	Collect Date:	22-	SEP-16 14	:17								
	Receive Date:		OCT-16									
	Collector:	Cli										
	Concetor.	Ch	CIII									
Parameter	Quali	fier	Result	Uncertainty	MDC	RL	Units	PF I	DF Anal	yst Date	Time Batch	Method
lad Gamma	a Spec Analysis											
	c, Gamma, Solid (St	anda	rd Liet) "T)ry Weight Co	vrrected"							
Actinium-228	, Gainnia, Sond (St	lanua	7.73E-07	+/-2.89E-07	2.18E-07		uCi/g		MXR	10/21/16	1429 1604416	5 1
Americium-228	1	U	-3.93E-08	+/-1.46E-07	2.63E-07		uCi/g					
Antimony-124		Ŭ	-3.12E-08	+/-7.58E-08	1.52E-07		uCi/g					
Antimony-125		Ū	8.03E-09	+/-7.90E-08	1.58E-07		uCi/g					
3arium-133		U	2.86E-08	+/-5.01E-08	6.39E-08		uCi/g					
3arium-140		U	-1.36E-07	+/-4.15E-07	7.93E-07		uCi/g					
Beryllium-7		U	-7.31E-08	+/-3.06E-07	5.92E-07		uCi/g					
3ismuth-212		UI	0.00	+/-8.15E-07	1.09E-06		uCi/g					
3ismuth-214			9.35E-07	+/-1.70E-07	1.11E-07		uCi/g					
Cerium-139		U	-8.56E-09	+/-2.58E-08	4.68E-08		uCi/g					
Cerium-141		U	1.07E-07	+/-1.73E-07	1.17E-07		uCi/g					
Cerium-144		U U	-2.83E-08 4.79E-08	+/-1.48E-07 +/-4.29E-08	2.78E-07 6.99E-08		uCi/g uCi/g					
Cesium-134 Cesium-136		U	-1.52E-07	+/-1.32E-07	0.99E-08 2.08E-07		uCi/g					
Jesium-130 Jesium-137		U	4.29E-08	+/-4.43E-08	5.75E-08	1.00E-07	uCi/g					
Chromium-51		Ŭ	-1.99E-08	+/-3.60E-07	7.29E-07		uCi/g					
Cobalt-56		Ū	-1.79E-08	+/-3.30E-08	5.80E-08		uCi/g					
Cobalt-57		U	1.68E-09	+/-1.97E-08	3.81E-08		uCi/g					
Cobalt-58		U	-7.88E-09	+/-3.29E-08	6.22E-08		uCi/g					
Cobalt-60		U	-1.02E-09	+/-2.30E-08	4.99E-08	1.00E-07	uCi/g					
Europium-152		U	-9.10E-08	+/-6.93E-08	1.18E-07		uCi/g					
Suropium-154		U	4.91E-08	+/-8.75E-08	1.99E-07		uCi/g					
Suropium-155	i i i i i i i i i i i i i i i i i i i	U	7.63E-08	+/-9.08E-08	1.86E-07		uCi/g uCi/g					
ridium-192		U U	-1.60E-08 -3.40E-08	+/-3.02E-08 +/-7.39E-08	5.77E-08 1.42E-07		uCi/g					
ron-59 .ead-210		U	1.36E-06	+/-4.78E-06	9.94E-06		uCi/g					
.ead-210		0	8.66E-07	+/-1.22E-07	8.03E-08		uCi/g					
.ead-212			8.21E-07	+/-1.69E-07	1.14E-07		uCi/g					
Aanganese-54	ļ	U	7.13E-09	+/-2.84E-08	5.83E-08		uCi/g					
Aercury-203		Ŭ	3.00E-08	+/-5.48E-08	6.46E-08		uCi/g					
Jeodymium-1	47	U	-7.91E-07	+/-9.64E-07	1.68E-06		uCi/g					
Jeptunium-23		U	3.91E-08	+/-2.06E-07	4.03E-07		uCi/g					
		U	-1.24E-08	+/-2.59E-08	4.68E-08		uCi/g					
√iobium-94		0										
Viobium-95		U	7.23E-09	+/-4.49E-08	8.01E-08		uCi/g					

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: October 27, 2016

Company : Address :	Sacramento Municipal Utility District 14440 Twin Cites Road			
	Herald, California 95638			
Contact:	Mr. Dave Koontz			
Project:	Rancho Seco IOSB Soil and Water Analysis			
Client Sample ID:	2016-0032 (F8300143-5)	Project:	SMUD00201	
Sample ID:	407403003	Client ID:	SMUD002	

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF A	nalyst Date	Time Batch	Method
Rad Gamma Spec	Analysis										
Gammaspec, Gamr	na, Solid (Standa	rd List) "I	Dry Weight Co	orrected"							
romethium-146	U	-3.47E-08	+/-3.46E-08	6.00E-08		uCi/g					
tadium-223	U	-1.23E-08	+/-4.80E-07	9.65E-07		uCi/g					
Cadium-224	UI	0.00	+/-9.76E-07	1.29E-06		uCi/g					
tadium-228		7.73E-07	+/-2.89E-07	2.18E-07		uCi/g					
Ruthenium-106	U	-5.45E-08	+/-2.54E-07	4.87E-07		uCi/g					
lilver-110m	U	-3.39E-09	+/-3.50E-08	6.86E-08		uCi/g					
lodium-22	U	1.51E-08	+/-3.06E-08	6.90E-08		uCi/g					
Thallium-208		2.77E-07	+/-8.18E-08	6.21E-08		uCi/g					
Thorium-234	U	9.02E-07	+/ - 3.14E-06	2.16E-06		uCi/g					
'in-113	U	-9.06E-11	+/-3.82E-08	7.66E-08		uCi/g					
Jranium-235	U	3.40E-07	+/-4.03E-07	3.56E-07		uCi/g					
Jranium-238	U	9.02E-07	+/-3.14E-06	2.16E-06		uCi/g					
(ttrium-88	U	-1.93E-08	+/-3.39E-08	5.98E-08		uCi/g					
Cinc-65	U	-1.11E-08	+/-7.40E-08	1.37E-07		uCi/g					
Lirconium-95	U	2.43E-08	+/-4.76E-08	1.09E-07		uCi/g					
The following Prep	Methods were p	erformed:									
Method	Descriptio	n			Analyst	Date		Time	Prep Batch	L	
Dry Soil Prep	Dry Soil Pre	p GL-RAD-A	A-021		LYT1	10/05/16		0854	1604293		
The following Ana	alytical Methods	were perfo	rmed:								
Method	Description	n	· · · · · · · · · · · · · · · · · · ·			A	Analys	st Com	nents		
	DOE HASL :	300, 4.5.2.3/0	Ga-01-R				-				
Notes:											
Counting Uncertain	nty is calculated a	at the 95%	confidence le	vel (1.96-s	igma).						
-	-			-							

Column headers are defined as follows:DF: Dilution FactorLc/LC: Critical LevelDL: Detection LimitPF: Prep FactorMDA: Minimum Detectable ActivityRL: Reporting LimitMDC: Minimum Detectable ConcentrationSQL: Sample Quantitation Limit

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: October 27, 2016 Sacramento Municipal Utility District Company : 14440 Twin Cites Road Address : Herald, California 95638 Contact: Mr. Dave Koontz Rancho Seco IOSB Soil and Water Analysis Project: 2016-0033 (F8300143-8) Project: SMUD00201 Client Sample ID: Client ID: SMUD002 Sample ID: 407403004 Matrix: Soil 22-SEP-16 14:10 Collect Date: Receive Date: 04-OCT-16 Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF	Analyst Date	Tiı	ne Batch	Method
Rad Gamma Spec Ana	alysis											
Jammaspec, Gamma,	, Solid (Standa	ard List) "I	Dry Weight Co	prrected"								
Actinium-228		4.46E-07	+/-3.91E-07	3.90E-07		uCi/g			MXR1 10/21/1	6 142	29 1604416	5 1
Americium-241	U	-1.14E-08	+/-5.74E-08	9.13E-08		uCi/g						
Antimony-124	U	6.05E-08	+/-9.59E-08	2.68E-07		uCi/g						
Antimony-125	U	-1.40E-08	+/-1.00E-07	1.85E-07		uCi/g						
3arium-133	U	1.59E-08	+/-4.26E-08	8.45E-08		uCi/g						
3arium-140	U	-2.24E-08	+/-7.14E-07	1.19E-06		uCi/g						
Beryllium-7	U	-1.52E-07	+/-3.91E-07	6.94E-07		uCi/g						
Bismuth-212	U	3.19E-07	+/-9.22E-07	1.39E-06		uCi/g						
3ismuth-214		5.62E-07	+/-1.70E-07	1.53E-07		uCi/g						
Cerium-139	U	1.01E-08	+/-2.73E-08	5.42E-08		uCi/g						
Cerium-141	U	7.40E-08	+/-7.55E-08	1.56E-07		uCi/g						
Cerium-144	U	-7.66E-08	+/-1.96E-07	3.23E-07		uCi/g						
Cesium-134	U	5.69E-08	+/-5.10E-08	1.17E-07		uCi/g						
Cesium-136	U	9.08E-08	+/-1.98E-07	4.58E-07		uCi/g						
Cesium-137	U	-3.75E-09	+/-4.08E-08	8.10E-08	1.00E-07	uCi/g						
Chromium-51	U	-2.44E-07	+/-4.39E-07	7.75E-07		uCi/g						
Cobalt-56	U	-3.21E-08	+/-4.48E-08	7.81E-08		uCi/g						
Cobalt-57	U	-4.65E-10	+/-2.07E-08	4.01E-08		uCi/g						
Cobalt-58	U	5.48E-08	+/-4.15E-08	9.09E-08		uCi/g						
Cobalt-60	U	-2.92E-08	+/-4.28E-08	7.14E-08	1.00E-07	uCi/g						
Europium-152	U	-1.62E-08	+/ - 9.28E-08	1.72E-07		uCi/g						
Europium-154	U	-7.26E-08	+/-1.39E-07	2.45E-07		uCi/g						
Europium-155	U	1.42E-07	+/-1.60E-07	1.58E-07		uCi/g						
ridium-192	U	1.41E-08	+/-3.73E-08	7.45E-08		uCi/g						
ron-59	U	1.51E-08	+/-1.00E-07	2.18E-07		uCi/g						
.ead-210	U	3.40E-07	+/-8.17E-07	7.95E-07		uCi/g						
.ead-212		7.29E-07	+/ -1 .22E-07	1.02E-07		uCi/g						
.ead-214		6.68E-07	+/-1.62E-07	3.18E-07		uCi/g						
√anganese-54	U	5.88E-09	+/-4.49E-08	9.12E-08		uCi/g						
Aercury-203	U	3.08E-08	+/-4.66E-08	9.45E-08		uCi/g						
Jeodymium-147	U	2.91E-07	+/-1.53E-06	2.98E-06		uCi/g						
Jeptunium-239	U	-3.29E-08	+/-2.08E-07	3.97E-07		uCi/g						
Jiobium-94	U	-1.52E-08	+/-3.60E-08	6.76E-08		uCi/g						
Jiobium-95	U	-1.05E-08	+/-5.66E-08	1.09E-07		uCi/g						
'otassium-40		8.54E-06	+/-1.46E-06	6.36E-07		uCi/g						
'romethium-144	U	5.00E-09	+/-4.40E-08	8.81E-08		uCi/g						

~ -

.....

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: October 27, 2016

Company : Address :	Sacramento Municipal Utility District 14440 Twin Cites Road		
Contact: Project:	Herald, California 95638 Mr. Dave Koontz Rancho Seco IOSB Soil and Water Analysis		
Client Sample ID: Sample ID:	2016-0033 (F8300143-8) 407403004	Project: Client ID:	SMUD00201 SMUD002

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF	Analyst Date	Time Batch	Method
{ad Gamma Spec A	Analysis										
Jammaspec, Gamm	na, Solid (Standa	rd List) "I	Dry Weight Co	orrected"							
romethium-146	υ	-2.19E-08	+/-5.13E-08	8.97E-08		uCi/g					
tadium-223	U	8.64E-07	+/-5.82E-07	1.32E-06		uCi/g					
tadium-224	U	5.19E-07	+/-1.06E-06	1.09E-06		uCi/g					
tadium-228		4.46E-07	+/-3.91E-07	3.90E-07		uCi/g					
Luthenium-106	U	3.29E-07	+/-4.03E-07	8.46E-07		uCi/g					
lilver-110m	U	-7.24E-09	+/-5.55E-08	1.10E-07		uCi/g					
lodium-22	U	-2.16E-08	+/-4.69E-08	8.46E-08		uCi/g					
Thallium-208		2.44E-07	+/-6.61E-08	7.06E-08		uCi/g					
Thorium-234	U	8.68E-07	+/-1.07E-06	9.99E-07		uCi/g					
in-113	U	-8.49E-09	+/-4.45E-08	8.28E-08		uCi/g					
Jranium-235	U	1.10E-07	+/-2.03E-07	4.04E-07		uCi/g					
Jranium-238	U	8.68E-07	+/-1.07E-06	9.99E-07		uCi/g					
(ttrium-88	U	-1.80E-08	+/-3.92E-08	7.83E-08		uCi/g					
Cinc-65	U	9.66E-08	+/-1.07E-07	2.34E-07		uCi/g					
Circonium-95	U	1.70E-09	+/-8.17E-08	1.68E-07		uCi/g					
The following Prep	Methods were p	erformed:									
vlethod	Descriptio	on			Analyst	Date		Time	Prep Batch	1	
Dry Soil Prep	Dry Soil Pre	p GL-RAD-	A-021		LYT1	10/05/16		0854	1604293		
The following Ana	lytical Methods	were perfe	ormed:								
Method	Description	n					Analy	st Con	nments		
<u></u>	DOE HASL		Ga-01-R								
Notes: Counting Uncertain	nty is calculated a	at the 95%	confidence le	evel (1.96-s	igma).						
Column beaders ar	e defined as foll	0.0.0.									

Column headers are defined as follows:DF: Dilution FactorLc/LC: Critical LevelDL: Detection LimitPF: Prep FactorMDA: Minimum Detectable ActivityRL: Reporting LimitMDC: Minimum Detectable ConcentrationSQL: Sample Quantitation Limit

~~~ ·

~ ~

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

# **Certificate of Analysis**

Report Date: October 27, 2016

|                             |                        |        |                       |                               |                      |          |                |         |    | K       | pon Da   | .e. Ociobi | 121     | , 2010 |
|-----------------------------|------------------------|--------|-----------------------|-------------------------------|----------------------|----------|----------------|---------|----|---------|----------|------------|---------|--------|
|                             | Company :<br>Address : |        |                       | Aunicipal Utili<br>Cites Road | ity District         |          |                |         |    |         |          |            |         |        |
|                             |                        | Her    | ald Calif             | ornia 95638                   |                      |          |                |         |    |         |          |            |         |        |
|                             | Contact:               |        | Dave Ko               |                               |                      |          |                |         |    |         |          |            |         |        |
|                             | Project:               |        |                       | IOSB Soil and                 | d Water Ana          | alysis   |                |         |    |         |          |            |         |        |
|                             | Client Sample ID:      |        |                       | 8300143-9)                    |                      |          | Pro            | oject:  |    | SMUE    | 000201   |            |         |        |
|                             | Sample ID:             |        | 403005                | 00001.03)                     |                      |          |                | ient ID | ): | SMUE    |          |            |         |        |
|                             | Matrix:                | Soi    |                       |                               |                      |          | •              |         | •  |         |          |            |         |        |
|                             |                        |        |                       | 0.50                          |                      |          |                |         |    |         |          |            |         |        |
|                             | Collect Date:          |        | SEP-16 13             | 5.55                          |                      |          |                |         |    |         |          |            |         |        |
|                             | Receive Date:          |        | OCT-16                |                               |                      |          |                |         |    |         |          |            |         |        |
|                             | Collector:             | Clie   | ent                   |                               |                      |          |                |         |    |         |          |            |         |        |
|                             |                        |        | Decult                | Tincontointy                  | MDC                  | RL       | Units          | PF      | DF | Analy   | st Date  | Time Bat   |         | Method |
| Parameter                   | Quali                  | ner    | Result                | Uncertainty                   |                      |          |                |         | DI | Analy   | St Dute  |            | <u></u> | mounou |
|                             | a Spec Analysis        |        |                       |                               |                      |          |                |         |    |         |          |            |         |        |
| Jammaspe                    | c, Gamma, Solid (S     | tanda  |                       | Dry Weight Co                 | orrected"            |          | <u></u>        |         |    | 1 GUD 1 | 10/01/16 | 1400 1604  | 410     | ,      |
| Actinium-228                |                        |        | 7.32E-07              | +/-3.45E-07                   | 2.78E-07             |          | uCi/g          |         |    | MXRI    | 10/21/16 | 1429 1604  | 410     | 1      |
| Americium-24                |                        | U      | 2.28E-07              | +/-3.85E-07                   | 3.96E-07             |          | uCi/g          |         |    |         |          |            |         |        |
| Antimony-124                |                        | U      | -1.05E-07             | +/-1.13E-07<br>+/-7.31E-08    | 1.81E-07<br>1.27E-07 |          | uCi/g<br>uCi/g |         |    |         |          |            |         |        |
| Antimony-12:                | 5                      | U<br>U | -3.98E-08<br>5.12E-08 | +/-5.42E-08                   | 7.28E-08             |          | uCi/g          |         |    |         |          |            |         |        |
| Barium-133                  |                        | U      | -2.48E-07             | +/-4.96E-07                   | 9.29E-07             |          | uCi/g          |         |    |         |          |            |         |        |
| 3arium-140<br>3eryllium-7   |                        | U      | 4.04E-07              | +/-4.18E-07                   | 8.77E-07             |          | uCi/g          |         |    |         |          |            |         |        |
| Bismuth-212                 |                        | Ŭ      | 5.33E-07              | +/-6.05E-07                   | 1.29E-06             |          | uCi/g          |         |    |         |          |            |         |        |
| 3ismuth-214                 |                        | -      | 6.38E-07              | +/-1.46E-07                   | 1.22E-07             |          | uCi/g          |         |    |         |          |            |         |        |
| Cerium-139                  |                        | U      | 3.21E-08              | +/-2.70E-08                   | 5.41E-08             |          | uCi/g          |         |    |         |          |            |         |        |
| Cerium-141                  |                        | U      | 1.88E-11              | +/-7.12E-08                   | 1.39E-07             |          | uCi/g          |         |    |         |          |            |         |        |
| Cerium-144                  |                        | U      | -8.07E-08             | +/-1.72E-07                   | 3.25E-07             |          | uCi/g          |         |    |         |          |            |         |        |
| Cesium-134                  |                        | U      | 3.85E-08              | +/-5.13E-08                   | 8.36E-08             |          | uCi/g          |         |    |         |          |            |         |        |
| Cesium-136                  |                        | U      | 3.60E-08              | +/-2.30E-07                   | 4.61E-07<br>9.03E-08 | 1.00E-07 | uCi/g<br>uCi/g |         |    |         |          |            |         |        |
| Cesium-137                  |                        | U<br>U | 2.27E-08<br>-2.23E-07 | +/-4.37E-08<br>+/-5.00E-07    | 9.03E-08<br>8.96E-07 | 1.001-07 | uCi/g          |         |    |         |          |            |         |        |
| Chromium-51<br>Cobalt-56    | L                      | U      | -7.14E-09             | +/-4.44E-08                   | 8.51E-08             |          | uCi/g          |         |    |         |          |            |         |        |
| Cobalt-57                   |                        | Ŭ      | -9.55E-09             | +/-2.42E-08                   | 4.15E-08             |          | uCi/g          |         |    |         |          |            |         |        |
| Cobalt-58                   |                        | Ū      | 2.48E-08              | +/-4.23E-08                   | 9.28E-08             |          | uCi/g          |         |    |         |          |            |         |        |
| Cobalt-60                   |                        | U      | 6.05E-09              | +/-4.90E-08                   | 9.01E-08             | 1.00E-07 | uCi/g          |         |    |         |          |            |         |        |
| Europium-152                | 2                      | U      | -3.89E-08             | +/-1.13E-07                   | 1.61E-07             |          | uCi/g          |         |    |         |          |            |         |        |
| Europium-15                 |                        | U      | 3.64E-08              |                               | 2.46E-07             |          | uCi/g          |         |    |         |          |            |         |        |
| Europium-15:                | 5                      | U      | -1.02E-08             | +/-9.84E-08                   | 1.77E-07             |          | uCi/g<br>uCi/g |         |    |         |          |            |         |        |
| ridium-192                  |                        | U      | 2.53E-08              |                               | 7.58E-08<br>2.02E-07 |          | uCi/g<br>uCi/g |         |    |         |          |            |         |        |
| ron-59                      |                        | U<br>U | 4.64E-09<br>6.65E-06  |                               | 2.02E-07<br>1.94E-05 |          | uCi/g          |         |    |         |          |            |         |        |
| .ead-210<br>.ead-212        |                        | U      | 7.03E-00              |                               | 8.66E-08             |          | uCi/g          |         |    |         |          |            |         |        |
| .ead-212                    |                        |        | 7.00E-07              |                               | 2.84E-07             |          | uCi/g          |         |    |         |          |            |         |        |
| Aanganese-54                | 4                      | U      | 1.13E-08              |                               | 7.78E-08             |          | uCi/g          |         |    |         |          |            |         |        |
| Aercury-203                 |                        | Ŭ      | -2.14E-11             | +/-4.26E-08                   | 8.10E-08             |          | uCi/g          |         |    |         |          |            |         |        |
| Jeodymium-                  | 147                    | U      | -1.45E-07             | +/-1.32E-06                   | 2.61E-06             |          | uCi/g          |         |    |         |          |            |         |        |
| Jeptunium-23                | 39                     | U      | <b>-</b> 1.74E-09     | +/-2.37E-07                   | 4.29E-07             |          | uCi/g          |         |    |         |          |            |         |        |
| Jiobium-94                  |                        | U      | 2.55E-08              |                               | 7.34E-08             |          | uCi/g          |         |    |         |          |            |         |        |
| Viobium-95                  |                        | U      | 2.71E-08              |                               | 9.24E-08             |          | uCi/g          |         |    |         |          |            |         |        |
| 'otassium-40<br>'romethium- |                        | U      | 8.18E-06<br>3.60E-08  |                               | 7.07E-07<br>7.19E-08 |          | uCi/g<br>uCi/g |         |    |         |          |            |         |        |
|                             |                        |        |                       |                               |                      |          |                |         |    |         |          |            |         |        |

-- ----

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

## **Certificate of Analysis**

Report Date: October 27, 2016

| Company :<br>Address :          | Sacramento Municipal Utility District<br>14440 Twin Cites Road                          |                        |                      |
|---------------------------------|-----------------------------------------------------------------------------------------|------------------------|----------------------|
| Contact:<br>Project:            | Herald, California 95638<br>Mr. Dave Koontz<br>Rancho Seco IOSB Soil and Water Analysis |                        |                      |
| Client Sample ID:<br>Sample ID: | 2016-0034 (F8300143-9)<br>407403005                                                     | Project:<br>Client ID: | SMUD00201<br>SMUD002 |

| Parameter                    | Qualifier           | Result         | Uncertainty   | MDC          | RL      | Units    | PF     | DF     | Analyst Date | Time Batch | Method |
|------------------------------|---------------------|----------------|---------------|--------------|---------|----------|--------|--------|--------------|------------|--------|
| Rad Gamma Spec A             | Analysis            |                |               |              |         |          |        |        |              |            |        |
| Jammaspec, Gamn              | na, Solid (Standa   | rd List) "I    | Dry Weight Co | orrected"    |         |          |        |        |              |            |        |
| 'romethium-146               | U                   | 8.39E-09       | +/-3.75E-08   | 7.39E-08     |         | uCi/g    |        |        |              |            |        |
| tadium-223                   | U                   | 7.04E-08       | +/-6.30E-07   | 1.20E-06     |         | uCi/g    |        |        |              |            |        |
| tadium-224                   | UI                  | 0.00           | +/-1.30E-06   | 9.28E-07     |         | uCi/g    |        |        |              |            |        |
| tadium-228                   |                     | 7.32E-07       | +/-3.45E-07   | 2.78E-07     |         | uCi/g    |        |        |              |            |        |
| Luthenium-106                | U                   | -4.00E-08      | +/-3.66E-07   | 7.07E-07     |         | uCi/g    |        |        |              |            |        |
| Silver-110m                  | U                   | -1.27E-08      | +/-4.19E-08   | 7.97E-08     |         | uCi/g    |        |        |              |            |        |
| odium-22                     | U                   | 1.22E-08       | +/-3.97E-08   | 8.70E-08     |         | uCi/g    |        |        | ,            |            |        |
| hallium-208                  |                     | 2.35E-07       | +/-7.98E-08   | 7.56E-08     |         | uCi/g    |        |        |              |            |        |
| Thorium-234                  | U                   | 9.13E-07       | +/-2.07E-06   | 3.17E-06     |         | uCi/g    |        |        |              |            |        |
| Cin-113                      | U                   | -1.60E-08      | +/-4.01E-08   | 7.18E-08     |         | uCi/g    |        |        |              |            |        |
| Jranium-235                  | U                   | 2.37E-08       | +/-1.76E-07   | 3.46E-07     |         | uCi/g    |        |        |              |            |        |
| Jranium-238                  | U                   | 9.13E-07       | +/-2.07E-06   | 3.17E-06     |         | uCi/g    |        |        |              |            |        |
| /ttrium-88                   | U                   | -5.45E-10      | +/-2.52E-08   | 6.46E-08     |         | uCi/g    |        |        |              |            |        |
| Cinc-65                      | U                   | 6.93E-09       | +/-8.72E-08   | 1.55E-07     |         | uCi/g    |        |        |              |            |        |
| Circonium-95                 | U                   | 1.39E-08       | +/-5.95E-08   | 1.30E-07     |         | uCi/g    |        |        |              |            |        |
| The following Prep           | Methods were p      | erformed:      |               |              |         |          |        |        |              |            |        |
| Viethod                      | Descriptio          | n              |               |              | Analyst | Date     |        | Time   | Prep Batch   | l          |        |
| Dry Soil Prep                | Dry Soil Pre        | p GL-RAD-A     | A-021         |              | LYT1    | 10/05/16 |        | 0854   | 1604293      |            |        |
| The following Ana            | lytical Methods     | were perfo     | rmed:         |              |         |          |        |        |              |            |        |
| Method                       | Description         | n              |               |              |         | I        | Analys | st Con | nments       |            |        |
|                              | DOE HASL            | 300, 4.5.2.3/0 | Ga-01-R       |              |         |          |        |        |              |            |        |
| Notes:<br>Counting Uncertain | ity is calculated a | at the 95%     | confidence le | evel (1.96-s | igma).  |          |        |        |              |            |        |
| Column headers an            | e defined as follo  | ws.            |               |              |         |          |        |        |              |            |        |

Column headers are defined as follows: DF: Dilution Factor Lc/LC: Critical Level PF: Prep Factor RL: Reporting Limit DL: Detection Limit MDA: Minimum Detectable Activity

MDC: Minimum Detectable Concentration

-- ---

SQL: Sample Quantitation Limit

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

#### **Certificate of Analysis**

Report Date: October 27, 2016 Company : Sacramento Municipal Utility District 14440 Twin Cites Road Address : Herald, California 95638 Mr. Dave Koontz Contact: Project: Rancho Seco IOSB Soil and Water Analysis 2016-0035 (F8300143-10) Client Sample ID: Project: SMUD00201 407403006 Client ID: Sample ID: SMUD002 Matrix: Soil 22-SEP-16 14:23 Collect Date: Receive Date: 04-OCT-16 Collector: Client Qualifier Result Uncertainty MDC RL Units PF DF Analyst Date Time Batch Method **tad Gamma Spec Analysis** 

Parameter

~ -

~~- •

| (ad Gamma Spec Analysis     |      |              |                      |           |          |       |      |          |      |         |   |
|-----------------------------|------|--------------|----------------------|-----------|----------|-------|------|----------|------|---------|---|
| Jammaspec, Gamma, Solid (St | anda | ard List) "D | ry Weight Co         | orrected" |          |       |      |          |      |         |   |
| Actinium-228                |      | 9.63E-07     | +/-2.39E-07          | 1.71E-07  |          | uCi/g | MXR1 | 10/21/16 | 1431 | 1604416 | 1 |
| Americium-241               | UI   | 0.00         | +/-1.34E-07          | 1.23E-07  |          | uCi/g |      |          |      |         |   |
| Antimony-124                | U    | 2.25E-08     | +/-7.94E-08          | 1.74E-07  |          | uCi/g |      |          |      |         |   |
| Antimony-125                | U    | -5.45E-09    | +/-6.52E-08          | 1.28E-07  |          | uCi/g |      |          |      |         |   |
| Barium-133                  | U    | -1.60E-08    | +/-2.73E-08          | 4.48E-08  |          | uCi/g |      |          |      |         |   |
| 3arium-140                  | U    | 1.23E-07     | +/-3.83E-07          | 7.88E-07  |          | uCi/g |      |          |      |         |   |
| Beryllium-7                 | U    | -5.84E-08    | +/-2.60E-07          | 5.01E-07  |          | uCi/g |      |          |      |         |   |
| 3ismuth-212                 | U    | 7.89E-07     | +/-6.93E-07          | 1.01E-06  |          | uCi/g |      |          |      |         |   |
| 3ismuth-214                 |      | 5.66E-07     | +/-1.53E-07          | 1.05E-07  |          | uCi/g |      |          |      |         |   |
| Cerium-139                  | U    | 3.81E-09     | +/-2.10E-08          | 3.98E-08  |          | uCi/g |      |          |      |         |   |
| Cerium-141                  | U    | -2,52E-08    | +/-6.17E-08          | 1.11E-07  |          | uCi/g |      |          |      |         |   |
| Cerium-144                  | U    | 4.70E-08     | +/-1.50E-07          | 2.68E-07  |          | uCi/g |      |          |      |         |   |
| Cesium-134                  | U    | 5.86E-08     | +/-5.02E-08          | 7.68E-08  |          | uCi/g |      |          |      |         |   |
| Cesium-136                  | U    | 1.37E-07     | +/-1.50E-07          | 3.44E-07  |          | uCi/g |      |          |      |         |   |
| Cesium-137                  | UI   | 0.00         | +/-3.52E-08          | 3.20E-08  | 1.00E-07 | uCi/g |      |          |      |         |   |
| Chromium-51                 | U    | 2.49E-08     | +/-3.56E-07          | 7.17E-07  |          | uCi/g |      |          |      |         |   |
| Cobalt-56                   | U    | 2.70E-08     | +/-3.35E-08          | 7.17E-08  |          | uCi/g |      |          |      |         |   |
| Cobalt-57                   | U    | 2.13E-09     | +/-1.76E-08          | 3.37E-08  |          | uCi/g |      |          |      |         |   |
| Cobalt-58                   | U    | 1.05E-08     | +/-3.15E-08          | 6.41E-08  |          | uCi/g |      |          |      |         |   |
| Cobalt-60                   | U    | -8.45E-09    | +/ <b>-</b> 2.88E-08 | 5.61E-08  | 1.00E-07 | uCi/g |      |          |      |         |   |
| Suropium-152                | U    | -4.87E-08    | +/-6.70E-08          | 1.24E-07  |          | uCi/g |      |          |      |         |   |
| Europium-154                | U    | 2.31E-08     | +/-7.16E-08          | 1.56E-07  |          | uCi/g |      |          |      |         |   |
| Europium-155                | U    | 7.20E-08     | +/-6.65E-08          | 1.38E-07  |          | uCi/g |      |          |      |         |   |
| ridium-192                  | U    | -1.59E-08    | +/-2.60E-08          | 4.90E-08  |          | uCi/g |      |          |      |         |   |
| ron-59                      | U    | -8.18E-10    | +/-5.10E-08          | 1.10E-07  |          | uCi/g |      |          |      |         |   |
| .ead-210                    | U    | 1.82E-07     | +/-1.04E-06          | 2.16E-06  |          | uCi/g |      |          |      |         |   |
| .ead-212                    |      | 1.04E-06     | +/-1.12E-07          | 7.03E-08  |          | uCi/g |      |          |      |         |   |
| .ead-214                    |      | 9.36E-07     | +/-1.45E-07          | 9.13E-08  |          | uCi/g |      |          |      |         |   |
| Aanganese-54                | U    | 5.41E-08     | +/-3.80E-08          | 5.84E-08  |          | uCi/g |      |          |      |         |   |
| Aercury-203                 | U    | -1.41E-08    | +/-3.24E-08          | 6.25E-08  |          | uCi/g |      |          |      |         |   |
| Jeodymium-147               | U    | 4.29E-07     | +/-8.84E-07          | 1.87E-06  |          | uCi/g |      |          |      |         |   |
| Jeptunium-239               | U    | -4.17E-08    | +/-1.70E-07          | 3.16E-07  |          | uCi/g |      |          |      |         |   |
| Jiobium-94                  | U    | 5.63E-09     | +/-2.04E-08          | 4.19E-08  |          | uCi/g |      |          |      |         |   |
| Jiobium-95                  | U    | -2.48E-08    | +/-3.95E-08          | 5.82E-08  |          | uCi/g |      |          |      |         |   |
| otassium-40                 |      | 7.79E-06     | +/-9.78E-07          | 4.83E-07  |          | uCi/g |      |          |      |         |   |
| romethium-144               | U    | 5.45E-09     | +/-2.83E-08          | 5.52E-08  |          | uCi/g |      |          |      |         |   |
|                             |      |              |                      |           |          | -     |      |          |      |         |   |
|                             |      |              |                      |           |          |       |      |          |      |         |   |

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

## **Certificate of Analysis**

Report Date: October 27, 2016

|   | Company :<br>Address :          | Sacramento Municipal Utility District<br>14440 Twin Cites Road                          |                        |                      |
|---|---------------------------------|-----------------------------------------------------------------------------------------|------------------------|----------------------|
|   | Contact:<br>Project:            | Herald, California 95638<br>Mr. Dave Koontz<br>Rancho Seco IOSB Soil and Water Analysis |                        |                      |
| _ | Client Sample ID:<br>Sample ID: | 2016-0035 (F8300143-10)<br>407403006                                                    | Project:<br>Client ID: | SMUD00201<br>SMUD002 |

| Parameter            | Qualifier       | Result         | Uncertainty   | MDC       | RL      | Units    | PF     | DF     | Analyst Date | Time Batch | Method |
|----------------------|-----------------|----------------|---------------|-----------|---------|----------|--------|--------|--------------|------------|--------|
| Rad Gamma Spec Ana   | alysis          |                |               |           |         |          |        |        |              |            |        |
| Jammaspec, Gamma,    | , Solid (Standa | rd List) "E    | Dry Weight Co | orrected" |         |          |        |        |              |            |        |
| 'romethium-146       | U               | 3.16E-08       | +/-3.11E-08   | 6.78E-08  |         | uCi/g    |        |        |              |            |        |
| Radium-223           | U               | -3.25E-07      | +/-4.32E-07   | 8.00E-07  |         | uCi/g    |        |        |              |            |        |
| ladium-224           | U               | 7.30E-07       | +/-1.33E-06   | 7.53E-07  |         | uCi/g    |        |        |              |            |        |
| tadium-228           |                 | 9.63E-07       | +/-2.39E-07   | 1.71E-07  |         | uCi/g    |        |        |              |            |        |
| Luthenium-106        | U               | -6.75E-08      | +/-2.19E-07   | 4.09E-07  |         | uCi/g    |        |        |              |            |        |
| silver-110m          | U               | 1.15E-08       | +/-4.20E-08   | 8.27E-08  |         | uCi/g    |        |        |              |            |        |
| lodium-22            | U               | 1.01E-08       | +/-2.59E-08   | 5.68E-08  |         | uCi/g    |        |        |              |            |        |
| Thallium-208         |                 | 2.35E-07       | +/-6.12E-08   | 5.01E-08  |         | uCi/g    |        |        |              |            |        |
| 'horium-234          | UI              | 0.00           | +/-1.36E-06   | 1.21E-06  |         | uCi/g    |        |        |              |            |        |
| in-113               | U               | 1.87E-08       | +/-3.06E-08   | 6.55E-08  |         | uCi/g    |        |        |              |            |        |
| Jranium-235          | U               | -1.40E-08      | +/-1.42E-07   | 2.63E-07  |         | uCi/g    |        |        |              |            |        |
| Jranium-238          | UI              | 0.00           | +/-1.36E-06   | 1.21E-06  |         | uCi/g    |        |        |              |            |        |
| (ttrium-88           | U               | -6.88E-09      | +/-3.13E-08   | 6.17E-08  |         | uCi/g    |        |        |              |            |        |
| Line-65              | U               | -1.86E-08      | +/-5.38E-08   | 8.98E-08  |         | uCi/g    |        |        |              |            |        |
| Circonium-95         | U               | 5.28E-08       | +/-6.13E-08   | 1.32E-07  |         | uCi/g    |        |        |              |            |        |
| The following Prep M | lethods were p  | erformed:      |               |           |         |          |        |        |              |            |        |
| vlethod              | Descriptio      | n              |               |           | Analyst | Date     |        | Time   | Prep Batch   | · · · · ·  |        |
| Dry Soil Prep        | Dry Soil Pre    | p GL-RAD-A     | -021          |           | LYT1    | 10/05/16 |        | 0854   | 1604293      |            |        |
| The following Analyt | tical Methods   | were perfo     | rmed:         |           |         |          |        |        |              |            |        |
| Method               | Description     | 1              |               |           |         | A        | Analys | st Cor | nments       |            |        |
|                      | DOE HASL 2      | 300, 4.5.2.3/0 | Ga-01-R       |           |         |          |        |        |              |            |        |
| Notes:               |                 |                |               |           |         |          |        |        |              |            |        |

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

~ ~

~~~~

Column headers are defined as follows:DF: Dilution FactorLc/LC: Critical LevelDL: Detection LimitPF: Prep FactorMDA: Minimum Detectable ActivityRL: Reporting LimitMDC: Minimum Detectable ConcentrationSQL: Sample Quantitation Limit

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: October 27, 2016

Company : Address :	Sacramento Municipal Utility District 14440 Twin Cites Road		
	Herald, California 95638		
Contact:	Mr. Dave Koontz		
Project:	Rancho Seco IOSB Soil and Water Analysis		
Client Sample ID:	2016-0036 (F8300143-14)	Project:	SMUD00201
Sample ID:	407403007	Client ID:	SMUD002
Matrix:	Soil		
Collect Date:	22-SEP-16 14:00		
Receive Date:	04-OCT-16		
Collector:	Client		

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF	Analyst Date	Time Batch	Method
Rad Gamma Spec Ar	nalysis										
Jammaspec, Gamma	a, Solid (Standa	ard List) "I	Dry Weight Co	prrected"							
Actinium-228		8.18E-07	+/-2.25E-07	1.96E-07		uCi/g			MXR1 10/21/16	1432 1604416	1
Americium-241	U	4.48E-08	+/-7.44E-08	1.41E-07		uCi/g					
\ntimony-124	U	-1.27E-08	+/-4.18E-08	8.96E-08		uCi/g					
Antimony-125	U	-1.51E-08	+/-6.89E-08	1.31E-07		uCi/g					
3arium-133	U	4.48E-10	+/-3.37E-08	5.99E-08		uCi/g					
3arium-140	U	-4.40E-08	+/-4.04E-07	7.79E-07		uCi/g					
3eryllium-7	U	-1.44E-07	+/-2.55E-07	4.63E-07		uCi/g					
Bismuth-212	UI	0.00	+/-6.07E-07	9.63E-07		uCi/g					
3ismuth-214		7.22E-07	+/-1.69E-07	1.09E-07		uCi/g					
Cerium-139	U	-2.00E-09	+/-2.46E-08	3.59E-08		uCi/g					
Cerium-141	U	3.07E-08	+/-5.64E-08	1.09E-07		uCi/g					
Cerium-144	U	2.93E-10	+/-1.43E-07	2.63E-07		uCi/g					
Cesium-134	U	1.35E-08	+/-3.14E-08	6.39E-08		uCi/g					
Jesium-136	U	6.84E-08	+/-1.44E-07	3.19E-07		uCi/g					
Cesium-137	UI	0.00	+/-5.20E-08	4.86E-08	1.00E-07	uCi/g					
Chromium-51	U	8.29E-09	+/-3.72E-07	7.37E-07		uCi/g					
Cobalt-56	U	1.79E-08	+/-2.84E-08	6.22E-08		uCi/g					
Cobalt-57	U	9.60E-09	+/-1.86E-08	3.63E-08		uCi/g					
Cobalt-58	U	1.40E-08	+/-3.29E-08	6.77E-08		uCi/g					
Cobalt-60	U	2.30E-08	+/-2.34E-08	5.88E-08	1.00E-07	uCi/g					
Europium-152	U	-8.91E-09	+/-6.82E-08	1.33E-07		uCi/g					
Europium-154	U	-8.95E-09	+/-6.75E-08	1.38E-07		uCi/g					
Europium-155	U	2.72E-08	+/-7.35E-08	1.42E-07		uCi/g					
ridium-192	U	-5.72E-09	+/-2.87E-08	5.55E-08		uCi/g					
ron-59	U	3.46E-08	+/-7.93E-08	1.58E-07		uCi/g					
.ead-210	U	1.15E-06	+/-2.85E-06	2.61E-06		uCi/g					
.ead-212		8.48E-07	+/-1.22E-07	9.59E-08		uCi/g					
.ead-214		7.64E-07	+/-1.79E-07	1.10E-07		uCi/g					
Aanganese-54	U	1.46E-08	+/-3.04E-08	6.17E-08		uCi/g					
Aercury-203	U	4.66E-10	+/-3.11E-08	6.18E-08		uCi/g					
Jeodymium-147	U	5.11E-07	+/-1.05E-06	2.16E-06		uCi/g					
Jeptunium-239	U	1.19E-07	+/-1.81E-07	3.57E-07		uCi/g					
Jiobium-94	U	5.13E-08	+/-3.22E-08	5.68E-08		uCi/g					
Jiobium-95	U	1.17E-09	+/-4.07E-08	6.95E-08		uCi/g					
'otassium-40		8.45E-06	+/-1.23E-06	4.46E-07		uCi/g					
romethium-144	U	-6.94E-09	+/-2.70E-08	4.72E-08		uCi/g					

-- ----

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: October 27, 2016

Herald, California 95638 Contact: Mr. Dave Koontz Project: Rancho Seco IOSB Soil and Water Analysis Client Sample ID: 2016-0036 (F8300143-14) Project: SMUD00201	Company : Address :
Project: Rancho Seco IOSB Soil and Water Analysis	
	Contact:
Client Sample ID: 2016-0036 (F8300143-14) Project: SMUD00201	Project:
	Client Sample ID:
Sample ID:407403007Client ID:SMUD002	Sample ID:

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF	Analyst Date	Time Batch	Method
Rad Gamma Spec A	Analysis										
Jammaspec, Gamm	na, Solid (Standa	ard List) "D	Dry Weight Co	orrected"							
romethium-146	Ŭ	1.89E-09	+/-2.48E-08	5.03E-08		uCi/g					
tadium-223	U	2.20E-07	+/-4.29E-07	8.29E-07		uCi/g					
tadium-224	UI	0.00	+/-8.18E-07	1.21E-06		uCi/g					
tadium-228		8.18E-07	+/-2.25E-07	1.96E-07		uCi/g					
Ruthenium-106	U	-1.59E-07	+/-2.41E-07	4.20E-07		uCi/g					
lilver-110m	U	6.29E-08	+/-6.81E-08	7.87E-08		uCi/g					
odium-22	U	-6.42E-09	+/-2.47E-08	4.89E-08		uCi/g					
hallium-208		2.64E-07	+/-5.86E-08	3.61E-08		uCi/g					
'horium-234	U	1.21E-06	+/-2.21E-06	1.38E-06		uCi/g					
`in-113	U	-2.17E-10	+/-3.19E-08	6.32E-08		uCi/g					
Jranium-235	U	8.83E-08	+/-1.36E-07	2.66E-07		uCi/g					
Jranium-238	U	1.21E-06	+/-2.21E-06	1.38E-06		uCi/g					
/ttrium-88	U	4.14E-09	+/-2.40E-08	5.76E-08		uCi/g					
Linc-65	U	-4.50E-08	+/-5.17E-08	6.80E-08		uCi/g					
Circonium-95	U	1.05E-07	+/-1.39E-07	1.31E-07		uCi/g					
The following Prep	Methods were p	erformed:									
vethod	Descriptio	n	Analyst	Date		Time	Prep Batch				
Dry Soil Prep	Dry Soil Pre	p GL-RAD-A	LYT1	10/05/16		0854	1604293				
The following Ana	lytical Methods	were perfo	rmed:								
Method	Description	Analyst Comments									
	DOE HASL :	DOE HASL 300, 4.5.2.3/Ga-01-R									
Notes: Counting Uncertain	ty is calculated a	at the 95%	confidence le	vel (1.96-s	igma).						
Column headers are	-										
DD D'I			T # 0 0 '								

DF: Dilution FactorLc/LC: Critical LevelDL: Detection LimitPF: Prep FactorMDA: Minimum Detectable ActivityRL: Reporting LimitMDC: Minimum Detectable ConcentrationSQL: Sample Quantitation Limit

~ ~

~~~ ·

14