

APPENDIX B1.2 GEOTECHNICAL TEST RESULTS ADVANCED TERRA TESTING

IMPOUNDMENT GEOTECHNICAL TEST RESULTS

CLIENT:	MWH		JOB NO.	2512-77
PROJECT	Church Rock			
PROJECT NO.	-			
BORING NO.	CS-5	CS-6	CS-7	CS-8
DEPTH	9-24"	7-24"	0-20"	8-28"
SAMPLE NO.	TI-CS05-04A(9-24")	TI-CS06-04A(7-24")	TI-CS07-02A(0-20")	TI-CS08-04A(8-28")
DATE SAMPLED	11/12/13 MWH	11/13/13 MWH	11/13/13 MWH	11/13/13 MWH
DATE TESTED	11/22/13 CAL	11/22/13 CAL	11/22/13 CAL	11/22/13 CAL
LOCATION	Tailings Impoundment	Tailings Impoundment	Tailings Impoundment	Tailings Impoundment
MOISTURE DETERMINATIONS				
Wt. of Wet Soil & Dish (gms)	414.50	391.13	532.93	528.02
Wt. of Dry Soil & Dish (gms)	378.91	352.93	494.69	489.34
Net Loss of Moisture (gms)	35.59	38.20	38.24	38.68
Wt. of Dish (gms)	6.62	6.56	6.55	9.27
Wt. of Dry Soil (gms)	372.29	346.37	488.14	480.07
Moisture Content (%)	9.6	11.0	7.8	8.1

BORING NO.	CS-9
DEPTH	9-26"
SAMPLE NO.	TI-CS09-04A(9-26")
DATE SAMPLED	11/13/13 MWH
DATE TESTED	11/22/13 CAL
LOCATION	Tailings Impoundment

	MOIST	JRE DE	TERMINAT	IONS
--	-------	--------	----------	------

Wt. of Wet Soil & Dish (gms)	461.42
Wt. of Dry Soil & Dish (gms)	428.77
Net Loss of Moisture (gms)	32.65
Wt. of Dish (gms)	6.57
Wt. of Dry Soil (gms)	422.20
Moisture Content (%)	7.7

Data entry by: Checked by: File name:

CAL

Date: 12/3/2013 Date: 12/5/13

2512-77-M&D-ASTMD-2216-2937-R0-AS3-P1.xls

CLIENT: PROJECT PROJECT NO.	MWH Church Rock		JOB NO.
PROJECT NO.			
BORING NO.	CS-11	CS-1	CS-4
DEPTH	9-24"	11-24"	10-24"
SAMPLE NO.	TI-CS11-04A(9-24")	TI-CS01-04A(11-24")	TI-CS04-04A(10-24")
DATE SAMPLED	11/13/13 MWH	11/12/13 MWH	11/12/13 MWH
DATE TESTED	12/3/13 CAL	12/4/13 KMR	12/4/13 KMR
LOCATION	Tailings Impoundment	Tailings Impoundment	Tailings Impoundment
MOISTURE DETERMINATIONS			
Wt. of Wet Soil & Dish (gms)	241.48	312.07	402.15
Wt. of Dry Soil & Dish (gms)	222.88	286.52	350.83
Net Loss of Moisture (gms)	18.60	25.55	51.32
Wt. of Dish (gms)	6.72	9.23	9.26
Wt. of Dry Soil (gms)	216.16	277.29	341.57
Moisture Content (%)	8,6	9.2	15.0

Data entry by: Checked by: File name:

CAL

Date:

12/5/2013

Date:

2512-77-M&D-ASTMD-2216-2937-R0-7.xls

CLIENT: PROJECT PROJECT NO.	MWH Church Rock 		JOB NO. LOCATION	2512-77 Tailings Impoundment
BORING NO.	CS-12	CS-2	CS-10	
DEPTH	0-14"	10-24"	7-25"	
SAMPLE NO.	TI-CS12-02A(0-14")	TI-CS2-04A(10-24")	TI-CS10-04A(7-25")	
DATE SAMPLED	11/13/2013	11/12/2013	11/13/2013	
DATE TESTED	12/6/2013 KMR	12/10/2013 DPM	12/10/2013 DPM	
SOIL DESCRIPTION				
MOISTURE DETERMINATIONS				
Wt. of Wet Soil & Dish (gms)	244.75	495.60	597.59	
Wt. of Dry Soil & Dish (gms)	225.12	445.63	555.15	
Net Loss of Moisture (gms)	19.63	49.97	42.44	
Wt. of Dish (gms)	9.24	6.58	6.66	
Wt. of Dry Soil (gms)	215.88	439.05	548.49	
Moisture Content (%)	9.1	11.4	7.7	

Data entry by: Checked by: File name:

KMR Date: 1: Date: 1: 2/10/2512-77-M&D-ASTMD-2216-2937-R0-8.xls

CLIENT: **MWH** JOB NO. 2512-77 **PROJECT** Church Rock LOCATION **Tailings** PROJECT NO. Impoundment BORING NO. CS-3 DEPTH 6-24" TI-CS03-04A(6-24") SAMPLE NO. DATE SAMPLED 11/12/13 MWH DATE TESTED 12/19/13 DPM SOIL DESCRIPTION

MOISTURE DETERMINATIONS

 Wt. of Wet Soil & Dish (gms)
 1331.96

 Wt. of Dry Soil & Dish (gms)
 1257.37

 Net Loss of Moisture (gms)
 74.59

 Wt. of Dish (gms)
 15.79

 Wt. of Dry Soil (gms)
 1241.58

 Moisture Content (%)
 6.0

Data entry by: Checked by: File name: DPM

Date: 12/20/2013 Date: 12/20/13

2512-77- M&D-ASTMD-2216-2937-R0-10.xls

Client: MWH Job Number: 2512-77

Project: Church Rock

Location: Tailings Impoundment

Project Number: -

Test Configuration

Liquid Limits Device: 0860 Material Size of Fines: -#40 Boring Number: CS-1 Depth: 11-24"

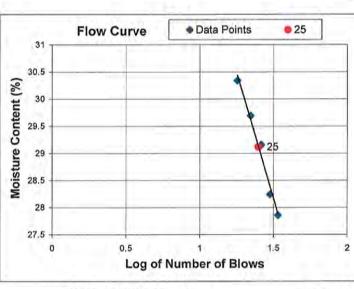
Sample Number: TI-CS01-04A(11-24")

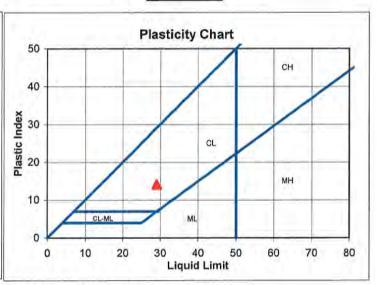
Test Date: 12/20/2013
Technician: MLM
Sampled Date: 11/12/2013
Sampled By: MWH
Method: Method A

Plastic Limits

	Sample 1	Sample 2	Sample 3
Weight of Wet Soil & Pan (g):	9.611	9.535	10.520
Weight of Dry Soil & Pan (g):	8.503	8.431	9.319
Weight of Water (g):	1.108	1.104	1.201
Weight of Pan (g):	1.135	1.117	1.133
Moisture Content (%):	15.0	15.1	14.7

Average: 14.9%


Standard Deviation: 0.2%


Liquid Limits

	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5
Number of Blows:	34	30	26	22	18
Weight of Wet Soil & Pan (g):	16.758	16.257	17.649	17.054	16.046
Weight of Dry Soil & Pan (g):	13.357	12.928	13.924	13.416	12.580
Weight of Water (g):	3.401	3.329	3.725	3.638	3.466
Weight of Pan (g):	1.148	1.140	1.147	1.162	1.155
Moisture Content (%):	27.9	28.2	29.2	29.7	30.3

Plastic Limit: 15 Liquid Limit: 29 Plastic Index: 14

Atterberg Classification (

Data Entered By: SKL

Date: 12/27/2013

File Name: atterberg-ASTM_4318-R6_1.xls

Data Checked By: mlm

Date: 12/30/13

Client: MWH Job Number: 2512-77

Project: Church Rock

Location: Tailings Impoundment

Project Number: -

Test Configuration

Liquid Limits Device: 0860 Material Size of Fines: -#40

Boring Number: CS-4

Depth: 10-24"

Sample Number: TI-CS04-04A(10-24")

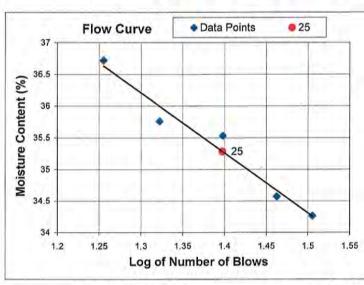
Test Date: 12/20/2013 Technician: MLM Sampled Date: 11/12/2013 Sampled By: MWH Method: Method A

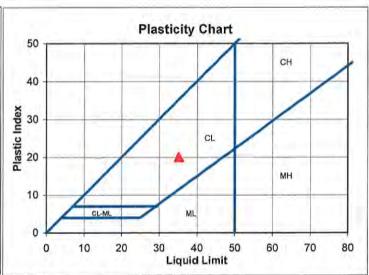
Plastic Limits

	Sample 1	Sample 2	Sample 3
Weight of Wet Soil & Pan (g):	9.185	9.680	9.404
Weight of Dry Soil & Pan (g):	8.121	8.543	8.311
Weight of Water (g):	1.064	1.137	1.093
Weight of Pan (g):	1.108	1.136	1.133
Moisture Content (%):	15.2	15.4	15.2

Average: 15.2%

Standard Deviation: 0.1%


Liquid Limits


10,19,44,67,11,11,11	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5
Number of Blows:	32	29	25	21	18
Weight of Wet Soil & Pan (g):	15.825	16.545	14.944	16.252	14.906
Weight of Dry Soil & Pan (g):	12.081	12.589	11.303	12.263	11.201
Weight of Water (g):	3.744	3.956	3.641	3.989	3.705
Weight of Pan (g):	1.153	1.145	1.054	1.107	1.111
Moisture Content (%):	34.3	34.6	35.5	35.8	36.7

Plastic Limit: 15 Liquid Limit: 35 Plastic Index: 20

Atterberg Classification

CL

Data Entered By: SKL

Date: 12/27/2013

File Name: atterberg-ASTM_4318-R6_0.xls

Data Checked By: m/m

Date: 12/30/13

Client: MWH
Job Number: 2512-77
Project: Church Rock

Location: Tailings Impoundment

Project Number:

Test Configuration

Liquid Limits Device: 1080 Material Size of Fines: -#40

Boring Number: CS-5

Depth: 9-24"

Sample Number: TI-CS05-04A(9-24")

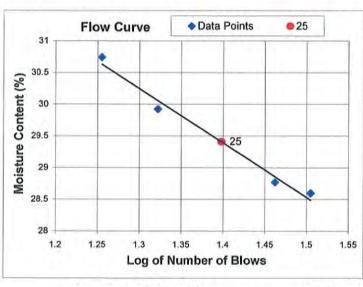
Test Date: 12/3/2013 Technician: CAL Sampled Date: 11/12/2013 Sampled By: MWH Method: Method A

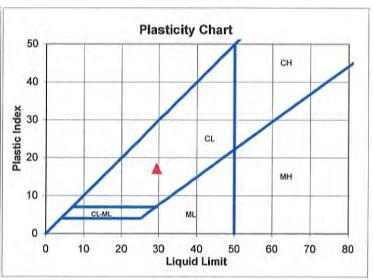
Plastic Limits

	Sample 1	Sample 2	Sample 3
Weight of Wet Soil & Pan (g):	8.110	8.158	7.578
Weight of Dry Soil & Pan (g):	7.299	7.357	6.825
Weight of Water (g):	0.811	0.801	0.753
Weight of Pan (g):	0.738	0.763	0.743
Moisture Content (%):	12.4	12.1	12.4

Average: 12.3%

Standard Deviation: 0.1%


Liquid Limits


	Sample 1	Sample 2	Sample 3	Sample 4
Number of Blows:	32	29	21	18
Weight of Wet Soil & Pan (g):	11.769	11.305	11.298	9.415
Weight of Dry Soil & Pan (g):	9.315	8.948	8.871	7.382
Weight of Water (g):	2.454	2.357	2.427	2.033
Weight of Pan (g):	0.733	0.755	0.760	0.769
Moisture Content (%):	28.6	28.8	29.9	30.7

Plastic Limit: 12 Liquid Limit: 29

Plastic Index: 17

Atterberg Classification

CL

Data Entered By: CAL

Date: 12/4/2013

File Name: atterberg-ASTM_4318-R6_4.xls

Data Checked By:

Date: 12/5/13

Client: MWH Job Number: 2512-77

Project: Church Rock

Location: Tailings Impoundment

Project Number:

Test Configuration

Liquid Limits Device: 1080 Material Size of Fines: -#40

Boring Number: CS-6

Depth: 7-24"

Sample Number: TI-CS06-04A(7-24")

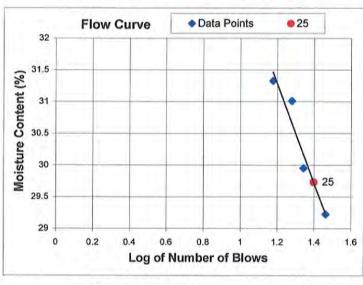
Test Date: 12/3/2013 Technician: CAL Sampled Date: 11/13/2013 Sampled By: MWH Method: Method A

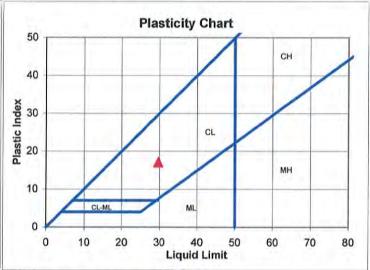
Plastic Limits

	Sample 1	Sample 2	Sample 3
Weight of Wet Soil & Pan (g):	8.088	7.135	7.931
Weight of Dry Soil & Pan (g):	7.293	6.417	7.099
Weight of Water (g):	0.795	0.718	0.832
Weight of Pan (g):	0.766	0.746	0.734
Moisture Content (%):	12.2	12.7	13.1

Average: 12.6%

Standard Deviation: 0.4%


Liquid Limits


	Sample 1	Sample 2	Sample 3	Sample 4
Number of Blows:	29	22	19	15
Weight of Wet Soil & Pan (g):	11.472	12.036	11.694	10.611
Weight of Dry Soil & Pan (g):	9.043	9.438	9.108	8.261
Weight of Water (g):	2.429	2.598	2.586	2.350
Weight of Pan (g):	0.731	0.764	0.769	0.760
Moisture Content (%):	29.2	30.0	31.0	31.3

Plastic Limit: 13 Liquid Limit: 30 Plastic Index: 17

Atterberg Classification

CL

Data Entered By: CAL

Date: 12/4/2013

File Name: atterberg-ASTM_4318-R6_5.xls

Data Checked By: 42

Date: 12/6/13

Boring Number: CS-7

Technician: CAL Sampled Date: 11/13/2013

Sampled By: MWH

Depth: 0-20"

Sample Number: TI-CS07-02A(0-20") Test Date: 12/2/2013

Method: Method A

Client: MWH
Job Number: 2512-77
Project: Church Rock

Location: Tailings Impoundment

Project Number:

Test Configuration

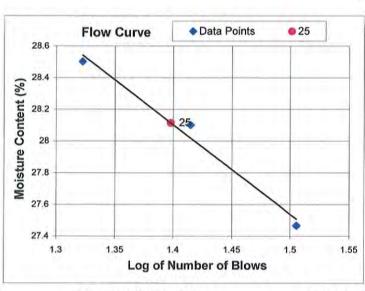
Liquid Limits Device: 1080 Material Size of Fines: -#40

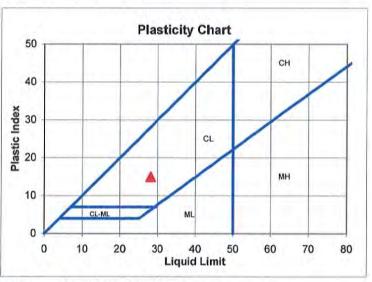
Plastic Limits

Sample 1	Sample 2
6.558	7.430
5.888	6.648
0.670	0.782
0.747	0.738
13.0	13.2
	6.558 5.888 0.670 0.747

Average: 13.1%

Standard Deviation: 0.1%


Liquid Limits


	Sample 1	Sample 2	Sample 3
Number of Blows:	32	21	26
Weight of Wet Soil & Pan (g):	11.095	10.501	13.216
Weight of Dry Soil & Pan (g):	8.870	8.342	10.484
Weight of Water (g):	2.225	2.159	2.732
Weight of Pan (g):	0.769	0.767	0.762
Moisture Content (%):	27.5	28.5	28.1

Plastic Limit: 13 Liquid Limit: 28

Plastic Index: 15

Atterberg Classification (

Data Entered By: KR

Date: 12/3/2013

File Name: atterberg-ASTM_4318-R6_0.xls

Data Checked By: ex-

Date: 1=/3/13

Client: MWH Job Number: 2512-77

Project: Church Rock Location: Tailings Impoundment

Project Number:

Test Configuration

Liquid Limits Device: 1080 Material Size of Fines: -#40 Boring Number: CS-8 Depth: 8-28"

Sample Number: TI-CS08-04A(8-28")

Test Date: 12/2/2013 Technician: CAL

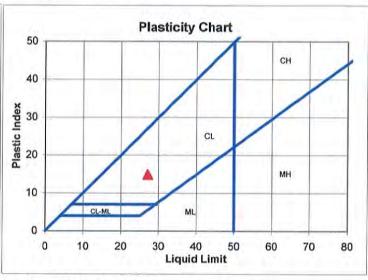
Sampled Date: 11/13/2013 Sampled By: MWH Method: Method A

Plastic Limits

	Sample 1	Sample 2	Sample 3
Weight of Wet Soil & Pan (g):	7.783	6.527	5.558
Weight of Dry Soil & Pan (g):	7.010	5.904	5.035
Weight of Water (g):	0.773	0.623	0.523
Weight of Pan (g):	0.770	0.763	0.732
Moisture Content (%):	12.4	12.1	12.2

Average: 12.2%

Standard Deviation: 0.1%


Liquid Limits

	Sample 1	Sample 2	Sample 3
Number of Blows:	16	18	27
Weight of Wet Soil & Pan (g):	11.528	9.880	9.560
Weight of Dry Soil & Pan (g):	9.147	7.883	7.691
Weight of Water (g):	2.381	1.997	1.869
Weight of Pan (g):	0.754	0.755	0.735
Moisture Content (%):	28.4	28.0	26.9

Plastic Limit: 12 Liquid Limit: 27 Plastic Index: 15

Atterberg Classification (

Flow Curve Data Points **25** 28.6 28.4 28.2 Moisture Content (%) 28 27.8 27.6 27.4 27.2 27 26.8 1.15 1.2 1.3 1.35 1.4 1.45 Log of Number of Blows

Data Entered By: KR

Date: 12/3/2013

File Name: atterberg-ASTM_4318-R6_1.xls

Data Checked By: CHL

Date: 12/4/13

Client: MWH
Job Number: 2512-77
Project: Church Rock

Location: Tailings Impoundment

Project Number:

Test Configuration

Liquid Limits Device: 1080 Material Size of Fines: -#40 Boring Number: CS-9 Depth: 9-26"

Sample Number: TI-CS09-04A(9-26")

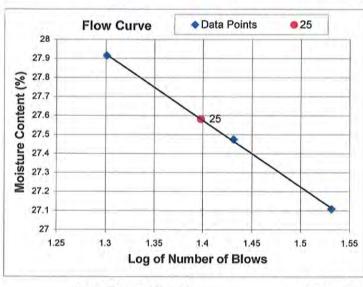
Test Date: 12/3/2013 Technician: CAL Sampled Date: 11/13/2013 Sampled By: MWH Method: Method A

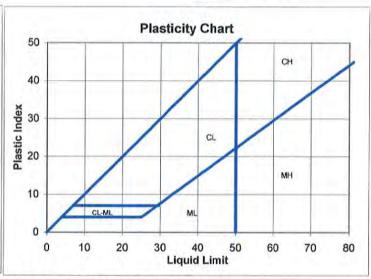
Plastic Limits

	Sample 1	Sample 2	Sample 3
Weight of Wet Soil & Pan (g):	6.448	6.674	6.508
Weight of Dry Soil & Pan (g):	5.800	5.999	5.866
Weight of Water (g):	0.648	0.675	0.642
Weight of Pan (g):	0.744	0.732	0.755
Moisture Content (%):	12.8	12.8	12.6

Average: -880.1%

Standard Deviation: 27.5%


Liquid Limits


	Sample 1	Sample 2	Sample 3
Number of Blows:	20	27	34
Weight of Wet Soil & Pan (g):	9.990	9.271	11.723
Weight of Dry Soil & Pan (g):	7.974	7.436	9.386
Weight of Water (g):	2.016	1.835	2.337
Weight of Pan (g):	0.752	0.757	0.765
Moisture Content (%):	27.9	27.5	27.1

Plastic Limit: -880 Liquid Limit: 28 Plastic Index: 908

Atterberg Classification

CL

Data Entered By: KR

Date: 12/4/2013

File Name: atterberg-ASTM_4318-R6_3.xls

Data Checked By: CAL

Date: 12/4/13

Client: MVVH Job Number: 2512-77 Project: Church Rock

Location: Tailings Impoundment

Project Number:

Test Configuration

Liquid Limits Device: 1080 Material Size of Fines: #40

Boring Number: CS-3 Depth: 6-24"

Sample Number: TI-CS03-04A(6-24")

Test Date: 12/11/2013 Technician: KMR Sampled Date: 11/12/2013 Sampled By: MWH Method: Method A

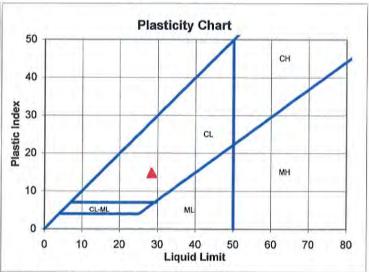
Plastic Limits

	Sample 1	Sample 2	Sample 3
Weight of Wet Soil & Pan (g):	6.623	6.911	6.271
Weight of Dry Soil & Pan (g):	5.911	6.168	5.617
Weight of Water (g):	0.712	0.743	0.654
Weight of Pan (g):	0.735	0.736	0.759
Moisture Content (%):	13.8	13.7	13.5

Average: 13.6%

Standard Deviation: 0.2%


Liquid Limits


	Sample 1	Sample 2	Sample 3	Sample 4
Number of Blows:	28	26	19	15
Weight of Wet Soil & Pan (g):	11.741	12.307	14.543	12.590
Weight of Dry Soil & Pan (g):	9.334	9.756	11.432	9.870
Weight of Water (g):	2.407	2.551	3.111	2.720
Weight of Pan (g):	0.765	0.746	0.770	0.779
Moisture Content (%):	28.1	28.3	29.2	29.9

Plastic Limit: 14 Liquid Limit: 28 Plastic Index: 15

Atterberg Classification

CL

Data Entered By: KMR

Date: 12/12/2013

File Name: atterberg-ASTM_4318-R6_7.xls

Data Checked By: Down
Date: 12/13/13

Client: MWH
Job Number: 2512-77

Project: Church Rock

Location: Tailings Impoundment

Project Number:

Test Configuration

Liquid Limits Device: 1080 Material Size of Fines: -#40

Boring Number: CS-10

Depth: 7-25"

Sample Number: TI-CS10-04A(7-25")

Method: Method A

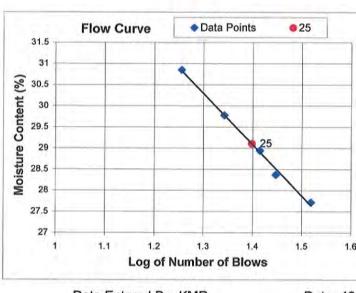
Test Date: 12/12/2013 Technician: KMR Sampled Date: 11/13/2013 Sampled By: MWH

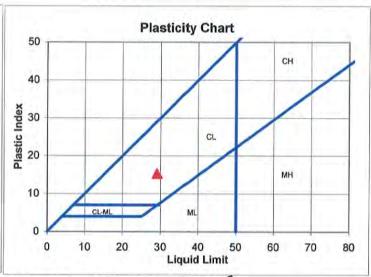
Plastic Limits

	Sample 1	Sample 2	Sample 3
Weight of Wet Soil & Pan (g):	5.870	6.032	6.324
Weight of Dry Soil & Pan (g):	5.244	5.397	5.652
Weight of Water (g):	0.626	0.635	0.672
Weight of Pan (g):	0.759	0.771	0.731
Moisture Content (%):	14.0	13.7	13.7

Average: 13.8%

Standard Deviation: 0.2%


Liquid Limits


	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5
Number of Blows:	33	28	26	22	18
Weight of Wet Soil & Pan (g):	14.400	15.122	13.908	18.819	15.267
Weight of Dry Soil & Pan (g):	11.441	11,951	10.958	14.677	11.845
Weight of Water (g):	2.959	3.171	2.950	4.142	3.422
Weight of Pan (g):	0.765	0.773	0.764	0.766	0.752
Moisture Content (%):	27.7	28.4	28.9	29.8	30.8

Plastic Limit: 14 Liquid Limit: 29

Plastic Index: 15

Atterberg Classification CL

Data Entered By: KMR

Date: 12/13/2013

File Name: atterberg-ASTM_4318-R6_9.xls

Data Checked By: DPM Date: 12(13(C)

Client: MWH Job Number: 2512-77 Project: Church Rock

Location: Tailings Impoundment

Project Number:

Test Configuration

Liquid Limits Device: 1080 Material Size of Fines: -#40

Boring Number: CS-11

Depth: 9-24"

Sample Number: TI-CS11-04A(9-24")

Test Date: 12/5/2013

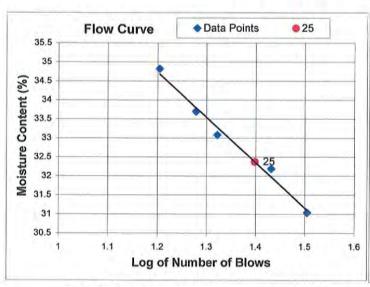
Technician: CAL Sampled Date: 11/13/2013 Sampled By: MWH

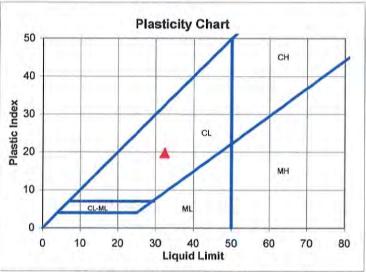
Method: Method A

Plastic Limits

	Sample 1	Sample 2	Sample 3
Weight of Wet Soil & Pan (g):	6.818	7.132	7.445
Weight of Dry Soil & Pan (g):	6.139	6.413	6.699
Weight of Water (g):	0.679	0.719	0.746
Weight of Pan (g):	0.735	0.746	0.768
Moisture Content (%):	12.6	12.7	12.6

Average: 12.6%


Standard Deviation: 0.1%


Liquid Limits

30.00 Sept. 10.00	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5
Number of Blows:	32	27	21	19	16
Weight of Wet Soil & Pan (g):	10.899	10.245	9.851	10.238	8.958
Weight of Dry Soil & Pan (g):	8.501	7.936	7.590	7.843	6.844
Weight of Water (g):	2.398	2.309	2.261	2.395	2.114
Weight of Pan (g):	0.775	0.763	0.755	0.735	0.773
Moisture Content (%):	31.0	32.2	33.1	33.7	34.8

Plastic Limit: 13 Liquid Limit: 32 Plastic Index: 20

Atterberg Classification

Data Entered By: KMR

Date: 12/9/2013

File Name: atterberg-ASTM_4318-R6_6.xls

Data Checked By: Dom

Date: 12/09/13

Client: MWH
Job Number: 2512-77
Project: Church Rock

Location: Tailings Impoundment

Project Number:

Test Configuration

Liquid Limits Device: 1080 Material Size of Fines: -#40 Boring Number: CS-12 Depth: 0-14"

Sample Number: TI-CS12-02A(0-14")

Test Date: 12/11/2013 Technician: KMR

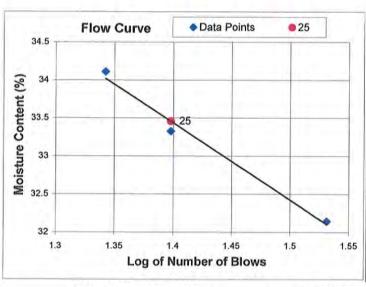
Sampled Date: 11/13/2013 Sampled By: MVVH Method: Method A

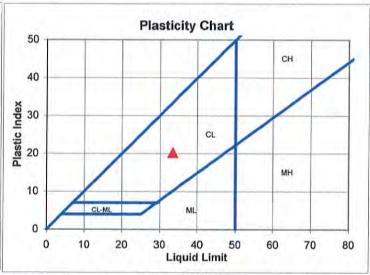
Plastic Limits

	Sample 1	Sample 2	Sample 3
Weight of Wet Soil & Pan (g):	5.056	5.335	5.968
Weight of Dry Soil & Pan (g):	4.558	4.790	5.354
Weight of Water (g):	0.498	0.545	0.614
Weight of Pan (g):	0.744	0.724	0.733
Moisture Content (%):	13.1	13.4	13.3

Average: 13.2%

Standard Deviation: 0.2%


Liquid Limits


	Sample 1	Sample 2	Sample 3
Number of Blows:	34	25	22
Weight of Wet Soil & Pan (g):	14.697	12.843	15.671
Weight of Dry Soil & Pan (g):	11.301	9.819	11.877
Weight of Water (g):	3.396	3.024	3.794
Weight of Pan (g):	0.736	0.745	0.754
Moisture Content (%):	32.1	33.3	34.1

Plastic Limit: 13 Liquid Limit: 33 Plastic Index: 20

Atterberg Classification

CL

Data Entered By: KMR

Date: 12/12/2013

File Name: atterberg-ASTM_4318-R6_8.xls

Data Checked By: DPM
Date: (2/13/13

Client: MWH Job Number: 2512-77 Project: Church Rock

Location: Tailings Impoundment

Project Number: -

Test Configuration

Liquid Limits Device: 1080 Material Size of Fines: -#40

Boring Number: CS-2 Depth: 10-24"

Sample Number: TI-CS02-04A(10-24")

Test Date: 12/16/2013 Technician: DPM Sampled Date: 11/12/2013 Sampled By: MWH Method: Method A

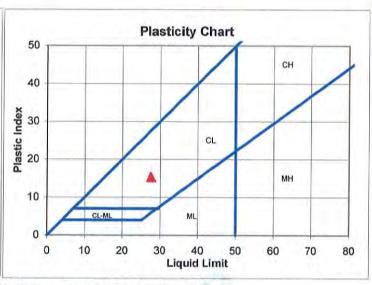
Plastic Limits

	Sample 1	Sample 2	Sample 3
Weight of Wet Soil & Pan (g):	6.531	6.973	6.868
Weight of Dry Soil & Pan (g):	5.892	6.284	6.220
Weight of Water (g):	0.639	0.689	0.648
Weight of Pan (g):	0.766	0.768	0.774
Moisture Content (%):	12.5	12.5	11.9

Average: 12.3%

Standard Deviation: 0.3%

Liquid Limits


Sample 1	Sample 2	Sample 3
28	18	21
14.596	14.925	14.115
11.625	11.772	11.180
2.971	3.153	2.935
0.744	0.735	0.740
27.3	28.6	28.1
	28 14.596 11.625 2.971 0.744	28 18 14.596 14.925 11.625 11.772 2.971 3.153 0.744 0.735

Plastic Limit: 12 Liquid Limit: 28 Plastic Index: 15

Atterberg Classification

CL

Data Entered By: DPM

Date: 12/17/2013

Data Checked By:

File Name: atterberg-ASTM_4318-R6_10.xls

Date: 12/17/2013

Client: MWH Job Number: 2512-77

Project: Church Rock

Location: Tailings Impoundment

Project Number: -

Boring Number: CS-1

Depth: 11-24" Sample Number: TI-CS01-04A(11-24")

Sampled Date: 11/12/2013

Test Date: 12/20/2013

Sampled By: MWH Technician: DAW

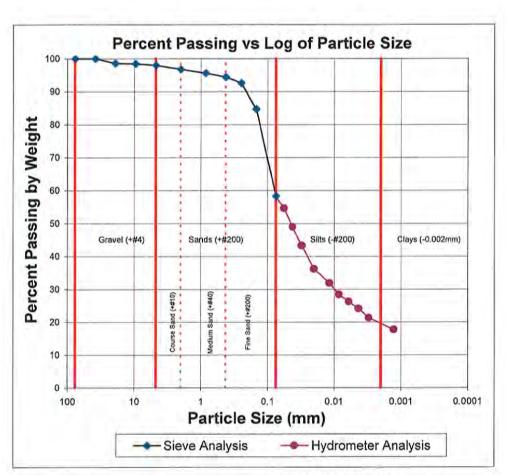
Grain Size Data

Hygroscopic Moisture of Fines

Weight of Wet Soil & Pan (g): 75.37
Weight of Dry Soil & Pan (g): 73.80
Weight of Water (g): 1.57
Weight of Pan (g): 3.20
Weight of Dry Soil (g): 70.60
Moisture (%): 2.2

General Sample Data

Total Wet Weight of Sample (g): 2,163.10
Total Dry Weight of Sample (g): 2,117.52
Calculated Weight Plus #200 (g): 884.35
Moisture of Total Sample (%): 2.2
Percent Retained #200 Sieve (%): 41.8

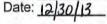

Plus Split Data

Original Weight of +#10 (g): 83.30 Calculated Weight of +#10 (g): 68.05

Minus Split Data

Original Weight of -#10 (g): 2,079.80 Calculated Dry Weight of -#10 (g): 2,049.47

Sieve Number	Sieve Size (mm)	Weight of Retained Soil & Pan (g)	Weight of Pan (g)	Weight of Retained Soil (g)	Calculated Weight of Retained Soil (g)	Percent Passing by Weight (%)
3"	76.2	0.00	0.00	0.00	0.00	100.0
1.5"	38.10	0.00	0.00	0.00	0.00	100.0
3/4"	19.05	30.00	0.00	30.00	30.00	98.6
3/8"	9.525	3.47	0.00	3.47	3.47	98.4
#4	4.750	8.44	0.00	8.44	8.44	98.0
#10	2.000	26.14	0.00	26.14	26.14	96.8
9.406g spl	it out of #10	material.				
#20	0.850	4.01	3.19	0.82	24.84	95.6
#40	0.425	3.87	3.03	0.84	25.30	94.4
#60	0.250	4.38	3.09	1.29	38.88	92.6
#100	0.150	8.64	3.09	5.55	167.47	84.7
#200	0.075	21.52	2.97	18.55	559.82	58.2



Data Entered By: SKL

Date: 12/27/2013

File Name: 2512_77_hydrometer-ASTM-D422-R0_0.xls

Checked By: MLM

Client: MWH Job Number: 2512-77

Project: Church Rock

Location: Tailings Impoundment

Project Number: -

Boring Number: CS-1

Depth: 11-24"

Sample Number: TI-CS01-04A(11-24")

Sampled Date: 11/12/2013 Test Date: 12/19/2013

Sampled By: MWH Technician: MLM

Hydrometer Data

Test Configuration

Hydrometer Type: 152H Specific Gravity: 2.68

Deflocculant: Sodium Hexametaphosphate

Deflocculant Correction: 5.5

Specific Gravity Correction Factor - α: 1.00

Dry Weight of Sub-Sample (g): 67.896 Corrected Dry Weight of Sub-Sample - W(g): 70.141

Total Wet Weight of Sample (g): 2,163.10

Total Dry Weight of Sample (g): 2,117.52 Wet Weight of Sub-Sample (g): 69.406

Calculated _

Elapsed Time (min)	Hydrometer Reading	Corrected Hydrometer Reading	Temperature (°C)	Temperature Coefficient (K)	Effective Depth (L)	Grain Diameter (mm)	Percent in Suspension (%)	Weight of Retained Soil (g)	Percent Passing by Weight (%)
0	9-	-	-	F	. 8.	5.540.20	14,511,8,110	Willer	1911
0.5	44.0	38.5	22.1	0.0133	9.08	0.0568	54.6	1156.60	54.6
1	40.0	34.5	22.1	0.0133	9.73	0.0416	48.9	1036.43	48.9
2	36.0	30.5	22.1	0.0133	10.39	0.0304	43.3	916.27	43.3
5	31.0	25.5	22.1	0.0133	11.21	0.0199	36.2	766.06	36.2
15	28.0	22.5	22.2	0.0133	11.70	0.0118	31.9	675.93	31.9
30	25.5	20.0	22.2	0.0133	12.11	0.0085	28.4	600.83	28.4
60	24.0	18.5	22.3	0.0133	12.36	0.0060	26.2	555.77	26.2
120	22.5	17.0	22.4	0.0133	12.60	0.0043	24.1	510.71	24.1
250	20.5	15.0	22.7	0.0133	12.93	0.0030	21.3	450.62	21.3
1440	18.0	12.5	22.6	0.0133	13.34	0.0013	17.7	375.52	17.7
						A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			

Data Entered By: SKL

Date: 12/27/2013

File Name: 2512_77_hydrometer-ASTM-D422-R0_0.xls

Checked By: 20

Client: MWH Job Number: 2512-77

Project: Church Rock

Location: Tailings Impoundment

Project Number: -

Boring Number: CS-4 Depth: 10-24"

Sample Number: TI-CS04-04A(10-24")

Sampled Date: 11/12/2013 Sampled By: MWH
Test Date: 12/20/2013 Technician: DAW

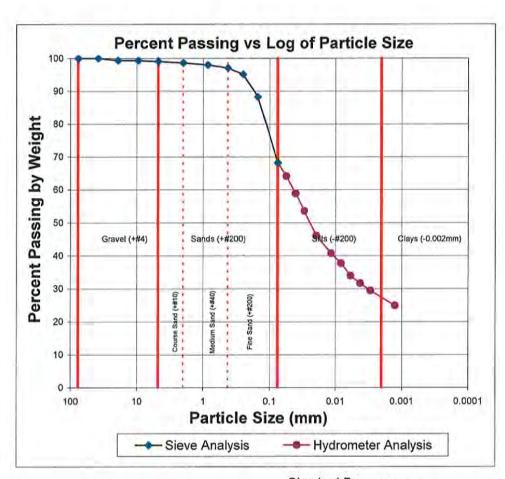
Grain Size Data

Hygroscopic Moisture of Fines

Weight of Wet Soil & Pan (g): 55.14
Weight of Dry Soil & Pan (g): 54.07
Weight of Water (g): 1.07
Weight of Pan (g): 3.13
Weight of Dry Soil (g): 50.94
Moisture (%): 2.1

General Sample Data

Total Wet Weight of Sample (g): 1,557.65
Total Dry Weight of Sample (g): 1,526.04
Calculated Weight Plus #200 (g): 485.81
Moisture of Total Sample (%): 2.1
Percent Retained #200 Sieve (%): 31.8


Plus Split Data

Original Weight of +#10 (g): 38.49 Calculated Weight of +#10 (g): 21.12

Minus Split Data

Original Weight of -#10 (g): 1,519.16 Calculated Dry Weight of -#10 (g): 1,504.92

Sieve Number	Sieve Size (mm)	Weight of Retained Soil & Pan (g)	Weight of Pan (g)	Weight of Retained Soil (g)	Calculated Weight of Retained Soil (g)	Percent Passing by Weight (%)
3"	76.2	0.00	0.00	0.00	0.00	100.0
1.5"	38.10	0.00	0.00	0.00	0.00	100.0
3/4"	19.05	9.95	0.00	9.95	9.95	99.3
3/8"	9.525	0.00	0.00	0.00	0.00	99.3
#4	4.750	3.94	0.00	3.94	3.94	99.1
#10	2.000	7.23	0.00	7.23	7.23	98.6
66.413g spl	it out of #10	material.				
#20	0.850	3.42	3.03	0.40	9.16	98.0
#40	0.425	3.64	3.03	0.60	13.97	97.1
#60	0.250	4.28	2.99	1.29	29.89	95.1
#100	0.150	7.58	3.03	4.56	105.41	88.2
#200	0.075	16.48	3.24	13.24	306.25	68.2

Data Entered By: SKL

Date: 12/27/2013

File Name: 2512_77_hydrometer-ASTM-D422-R0_1.xls

Checked By: cre Date: /2/27/13

Client: MWH
Job Number: 2512-77
Project: Church Rock

Location: Tailings Impoundment

Project Number: -

Boring Number: CS-4

Depth: 10-24"

Sample Number: TI-CS04-04A(10-24")

Sampled Date: 11/12/2013 Test Date: 12/19/2013 Sampled By: MWH
Technician: MLM

Hydrometer Data

Test Configuration

Hydrometer Type: 152H Specific Gravity: 2.68

Deflocculant: Sodium Hexametaphosphate

Deflocculant Correction: 5.5

Specific Gravity Correction Factor - a: 1,00

Total Wet Weight of Sample (g): 1,557.65

Total Dry Weight of Sample (g): 1,526.04 Wet Weight of Sub-Sample (g): 66.413 Dry Weight of Sub-Sample (g): 65.047

Corrected Dry Weight of Sub-Sample - W(g): 65.970

Elapsed Time (min)	Hydrometer Reading	Corrected Hydrometer Reading	Temperature (°C)	Temperature Coefficient (K)	Effective Depth (L)	Grain Diameter (mm)	Percent in Suspensio n (%)	Calculated Weight of Retained Soil (g)	Percent Passing by Weight (%)
0	131	0 0.85	- :R:-	· Id filebourn	18.7	#¢ ë€.do.		- 11.5.TA	
0.5	48.0	42.5	21.9	0.0135	8.42	0.0553	64.1	978.29	64.1
1	44.5	39.0	21.9	0.0135	9.00	0.0404	58.8	897.73	58.8
2	41.0	35.5	21.9	0.0135	9.57	0.0295	53.5	817.16	53.5
5	36.0	30.5	21.9	0.0135	10.39	0.0194	46.0	702.07	46.0
15	32.5	27.0	21.9	0.0135	10.96	0.0115	40.7	621.50	40.7
30	30.5	25.0	22.0	0.0133	11.29	0.0082	37.7	575.47	37.7
60	28.0	22.5	22.1	0.0133	11.70	0.0059	33.9	517.92	33.9
120	26.5	21.0	22.2	0.0133	11.95	0.0042	31.7	483.39	31.7
250	25.0	19.5	22.4	0.0133	12.19	0.0029	29.4	448.86	29.4
1440	22.0	16.5	22.3	0.0133	12.69	0.0013	24.9	379.81	24.9

Data Entered By: SKL

Date: 12/27/2013

File Name: 2512_77_hydrometer-ASTM-D422-R0_1.xls

Checked By: _____ Date:

Client: MWH Job Number: 2512-77

Project: Church Rock

Location: Tailings Impoundment

Project Number:

Boring Number: CS-5 Depth: 9-24"

Sample Number: TI-CS05-04A(9-24")

Sampled Date: 11/12/2013 Sampled By: MWH
Test Date: 12/3/2013 Technician: CAL

Grain Size Data

Hygroscopic Moisture of Fines

Weight of Wet Soil & Pan (g): 108.63 Weight of Dry Soil & Pan (g): 105.86

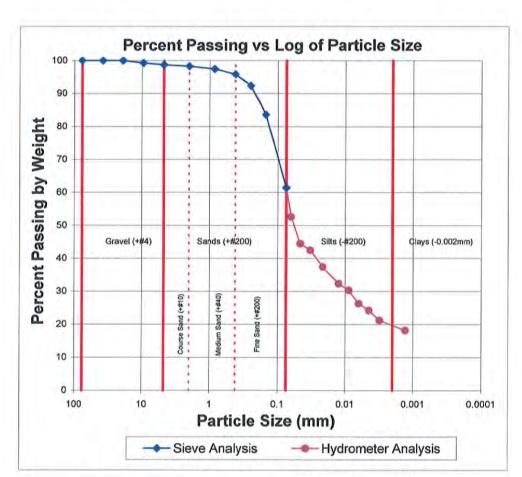
Weight of Water (g): 2.77 Weight of Pan (g): 3.60

Weight of Dry Soil (g): 102.26

Moisture (%): 2.7

General Sample Data

Total Wet Weight of Sample (g): 1,644.61
Total Dry Weight of Sample (g): 1,601.96
Calculated Weight Plus #200 (g): 617.80
Moisture of Total Sample (%): 2.7
Percent Retained #200 Sieve (%): 38.6


Plus Split Data

Original Weight of +#10 (g): 32.87 Calculated Weight of +#10 (g): 27.24

Minus Split Data

Original Weight of -#10 (g): 1,611.74 Calculated Dry Weight of -#10 (g): 1,574.72

Sieve Number	Sieve Size (mm)	Weight of Retained Soil & Pan (g)	Weight of Pan (g)	Weight of Retained Soil (g)	Calculated Weight of Retained Soil (g)	Percent Passing by Weight (%)
3"	76.2	0.00	0.00	0.00	0.00	100.0
1.5"	38.10	0.00	0.00	0.00	0.00	100.0
3/4"	19.05	0.00	0.00	0.00	0.00	100.0
3/8"	9.525	11.73	0.00	11.73	11.73	99.3
#4	4.750	8.37	0.00	8.37	8.37	98.7
#10	2.000	7.14	0.00	7.14	7.14	98.3
49.99g split	out of -#10 n	naterial.				
#20	0.850	4.27	3.84	0.42	13.69	97.4
#40	0.425	4.55	3.76	0.79	25.62	95.8
#60	0.250	5.41	3.69	1.72	55.58	92.4
#100	0.150	8.01	3.66	4.35	140.67	83.6
#200	0.075	14.51	3.53	10.97	354.99	61.4

Data Entered By: CAL

Date: 12/5/2013

File Name: 2512_77_hydrometer-ASTM-D422-R1_2.xls

Checked By: MAC Date: 12/5/13

ADVANCED TERRA TESTING

Client: MWH Job Number: 2512-77

Project: Church Rock

Location: Tailings Impoundment

Project Number:

Boring Number: CS-5

Depth: 9-24"

Sample Number: TI-CS05-04A(9-24")

Sampled Date: 11/12/2013 Test Date: 12/3/2013 Sampled By: MWH Technician: CAL

Hydrometer Data

Test Configuration

Hydrometer Type: 152H Specific Gravity: 2.65

Deflocculant: Sodium Hexametaphosphate

Deflocculant Correction: 8.0

Specific Gravity Correction Factor - a: 1.00

Total Wet Weight of Sample (g): 1,644.61 Total Dry Weight of Sample (g): 1,601.96 Wet Weight of Sub-Sample (g): 49.990

Dry Weight of Sub-Sample (g): 48.672

Corrected Dry Weight of Sub-Sample - W(g): 49.513

Elapsed Time (min)	Hydrometer Reading	Corrected Hydrometer Reading	Temperature (°C)	Temperature Coefficient (K)	Effective Depth (L)	Grain Diameter (mm)	Percent in Suspension (%)	Calculated Weight of Retained Soil (g)	Percent Passing by Weight (%
0	1000	83-	- F. F	00.00	- 3	WCV281.5			4 4 2 9 5 9
0.5	34.0	26.0	19.8	0.0138	10.72	0.0640	52.6	842.35	52.6
1	30.0	22.0	19.8	0.0138	11.37	0.0466	44.5	712.76	44.5
2	29.0	21.0	19.8	0,0138	11.54	0.0332	42.5	680.36	42.5
5	26.5	18.5	19.8	0.0138	11.95	0.0214	37.4	599.37	37.4
15	24.0	16.0	19.8	0.0138	12.36	0.0125	32.4	518.37	32.4
30	23.0	15.0	19.9	0.0138	12.52	0.0089	30.3	485.97	30.3
60	21.0	13.0	20.1	0.0137	12.85	0.0063	26.3	421.18	26.3
120	20.0	12.0	20.5	0.0137	13.01	0.0045	24.3	388.78	24.3
250	18.5	10.5	21.4	0.0135	13.26	0.0031	21.2	340.18	21.2
1440	17.0	9.0	21.2	0.0135	13.51	0.0013	18.2	291.58	18.2

Data Entered By: CAL

Date: 12/5/2013

File Name: 2512_77_hydrometer-ASTM-D422-R1_2.xls

Checked By: 42-Date: 12/5/13

Client: MWH Job Number: 2512-77

Project: Church Rock

Location: Tailings Impoundment

Project Number:

Boring Number: CS-7

Depth: 0-20"

Sample Number: TI-CS07-02A(0-20")

Sampled Date: 11/13/2013 Test Date: 12/2/2013 Sampled By: MWH Technician: CAL

Grain Size Data

Hygroscopic Moisture of Fines

Weight of Wet Soil & Pan (g): 109.74 Weight of Dry Soil & Pan (g): 107.07 Weight of Water (g): 2.66

Weight of Pan (g): 3.56

Weight of Dry Soil (g): 103.52

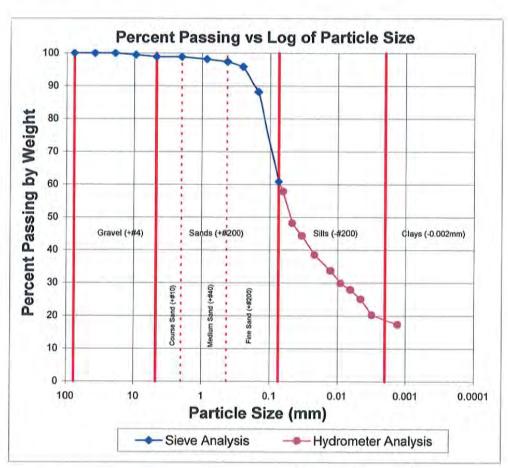
Moisture (%): 2.6

General Sample Data

Total Wet Weight of Sample (g): 1,976.72 Total Dry Weight of Sample (g): 1,927.70 Calculated Weight Plus #200 (g): 754.57

Moisture of Total Sample (%): 2.5

Percent Retained #200 Sieve (%): 39.1


Plus Split Data

Original Weight of +#10 (g): 25.71 Calculated Weight of +#10 (g): 22.06

Minus Split Data

Original Weight of -#10 (g): 1,951.01 Calculated Dry Weight of -#10 (g): 1,905.64

Sieve Number	Sieve Size (mm)	Weight of Retained Soil & Pan (g)	Weight of Pan (g)	Weight of Retained Soil (g)	Calculated Weight of Retained Soil (g)	Percent Passing by Weight (%)
3"	76.2	0.00	0.00	0.00	0.00	100.0
1.5"	38.10	0.00	0.00	0.00	0.00	100.0
3/4"	19.05	0.00	0.00	0.00	0.00	100.0
3/8"	9.525	9.33	0.00	9.33	9.33	99.5
#4	4.750	11.27	0.00	11.27	11.27	98.9
#10	2.000	1.46	0.00	1.46	1.46	98.9
52.654g spl	it out of -#10	material.				
#20	0.850	4.05	3.71	0.34	12.58	98.2
#40	0.425	4.11	3.70	0.42	15.55	97.4
#60	0.250	4.63	3.84	0.79	29.29	95.9
#100	0.150	7.83	3.84	3.99	147.97	88.2
#200	0.075	17.98	3.78	14.20	527.11	60.9

Data Entered By: CAL

Date: 12/5/2013

File Name: 2512_77_hydrometer-ASTM-D422-R1_1.xls

Checked By: UA Date: 12/5/13

Client: MWH Job Number: 2512-77

Project: Church Rock

Location: Tailings Impoundment

Project Number:

Boring Number: CS-7

Depth: 0-20"

Sample Number: TI-CS07-02A(0-20")

Sampled Date: 11/13/2013 Test Date: 12/2/2013 Sampled By: MWH Technician: CAL

Hydrometer Data

Test Configuration

Hydrometer Type: 152H Specific Gravity: 2.65

Deflocculant: Sodium Hexametaphosphate

Deflocculant Correction: 8.0

Specific Gravity Correction Factor - a: 1.00

Total Wet Weight of Sample (g): 1,976.72 Total Dry Weight of Sample (g): 1,927.70

Wet Weight of Sub-Sample (g): 52.654

Dry Weight of Sub-Sample (g): 51.333

Corrected Dry Weight of Sub-Sample - W(g): 51,904

Elapsed Time (min)	Hydrometer Reading	Corrected Hydrometer Reading	Temperature (°C)	Temperature Coefficient (K)	Effective Depth (L)	Grain Diameter (mm)	Percent in Suspension (%)	Calculated Weight of Retained Soll (g)	Percent Passing by Weight (%)
0			-	- 100 A B & A - 100		- K	457.0	* A 1 - 1	- 465-
0.5	38.0	30.0	16.9	0.0144	10.06	0.0644	57.9	1115.70	57.9
1	33.0	25.0	16.9	0.0144	10.88	0.0473	48.2	929.75	48.2
2	31.0	23.0	16.9	0.0144	11.21	0.0340	44.4	855.37	44.4
5	28.0	20.0	16.8	0.0144	11.70	0.0220	38.6	743.80	38.6
15	25.5	17.5	17.1	0.0142	12.11	0.0127	33.8	650.83	33.8
30	23.5	15.5	17.4	0.0142	12.44	0.0091	29.9	576.45	29.9
60	22.5	14.5	17.7	0.0142	12.60	0.0065	28.0	539.26	28.0
120	21.0	13.0	18.3	0.0140	12.85	0.0046	25.1	483.47	25.1
250	18.5	10.5	20.1	0.0137	13.26	0.0031	20.3	390.50	20.3
1440	17.0	9.0	20.2	0.0137	13.51	0.0013	17.4	334.71	17.4

Data Entered By: CAL

Date: 12/5/2013

File Name: 2512_77_hydrometer-ASTM-D422-R1_1.xls

Checked By: A Date: 2/5/13

Client: MWH Job Number: 2512-77

Project: Church Rock

Location: Tailings Impoundment

Project Number:

Boring Number: CS-9

Depth: 9-26"

Sample Number: TI-CS09-04A(9-26")

Sampled Date: 11/13/2013 Sampled By: MWH
Test Date: 12/2/2013 Technician: CAL

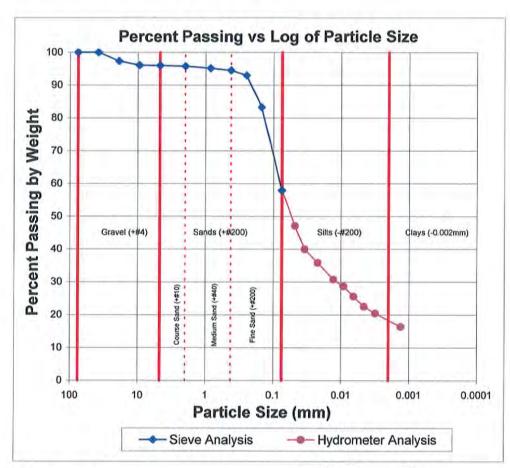
Grain Size Data

Hygroscopic Moisture of Fines

Weight of Wet Soil & Pan (g): 101.03 Weight of Dry Soil & Pan (g): 98.89 Weight of Water (g): 2.14 Weight of Pan (g): 3.77 Weight of Dry Soil (g): 95.12 Moisture (%): 2.3

General Sample Data

Total Wet Weight of Sample (g): 1,718.28
Total Dry Weight of Sample (g): 1,681.98
Calculated Weight Plus #200 (g): 707.36
Moisture of Total Sample (%): 2.2
Percent Retained #200 Sieve (%): 42.1


Plus Split Data

Original Weight of +#10 (g): 86.45 Calculated Weight of +#10 (g): 70.98

Minus Split Data

Original Weight of -#10 (g): 1,631.83 Calculated Dry Weight of -#10 (g): 1,611.00

Sieve Number	Sieve Size (mm)	Weight of Retained Soil & Pan (g)	Weight of Pan (g)	Weight of Retained Soil (g)	Calculated Weight of Retained Soil (g)	Percent Passing by Weight (%)
3"	76.2	0.00	0.00	0.00	0.00	100.0
1.5"	38.10	0.00	0.00	0.00	0.00	100.0
3/4"	19.05	44.53	0.00	44.53	44.53	97.4
3/8"	9.525	21.02	0.00	21.02	21.02	96.1
#4	4.750	1.85	0.00	1.85	1.85	96.0
#10	2.000	3.58	0.00	3.58	3.58	95.8
47.875g spl	it out of -#10	material.				
#20	0.850	4.13	3.83	0.30	10.22	95.2
#40	0.425	4.28	3.96	0.32	10.94	94.5
#60	0.250	4.58	3.80	0.77	26.67	92.9
#100	0.150	8.56	3.82	4.74	162.92	83.3
#200	0.075	15.92	3.55	12.37	425.63	57.9

Data Entered By: CAL

Date: 12/5/2013

File Name: 2512_77_hydrometer-ASTM-D422-R1_0.xls

Checked By: Participation Date: 12/5/13

ADVANCED TERRA TESTING

Client: MWH Job Number: 2512-77

Project: Church Rock

Location: Tailings Impoundment

Project Number:

Boring Number: CS-9

Depth: 9-26"

Sample Number: TI-CS09-04A(9-26")

Sampled Date: 11/13/2013 Test Date: 12/2/2013 Sampled By: MWH Technician: CAL

Hydrometer Data

Test Configuration

Hydrometer Type: 152H Specific Gravity: 2.65

Deflocculant: Sodium Hexametaphosphate

Deflocculant Correction: 8.0

Specific Gravity Correction Factor - a: 1.00

Total Wet Weight of Sample (g): 1,718.28
Total Dry Weight of Sample (g): 1,681.98

Wet Weight of Sub-Sample (g): 47.875 Dry Weight of Sub-Sample (g): 46.820

Corrected Dry Weight of Sub-Sample - W(g): 48.873

Elapsed Time (min)	Hydrometer Reading	Corrected Hydrometer Reading	Temperature (°C)	Temperature Coefficient (K)	Effective Depth (L)	Grain Diameter (mm)	Percent in Suspension (%)	Calculated Weight of Retained Soil (g)	Percent Passing by Weight (%)
0		4	49			- 6	1 7 1	. 11g / 1	
1	31.0	23.0	16.7	0.0144	11.21	0.0480	47.1	792.64	47.1
2	27.5	19.5	16.7	0.0144	11.78	0.0348	40.0	672.02	40.0
5	25.5	17.5	16.7	0.0144	12.11	0.0223	35.9	603.09	35.9
15	23.0	15.0	17.0	0.0142	12.52	0.0129	30.7	516.94	30.7
30	22.0	14.0	17.2	0.0142	12.69	0.0092	28.7	482.47	28.7
60	20.5	12.5	17.7	0.0142	12.93	0.0066	25.6	430.78	25.6
120	19.0	11.0	18.1	0.0140	13.18	0.0046	22.5	379.09	22.5
250	18.0	10.0	20.1	0.0137	13.34	0.0032	20.5	344.62	20.5
1440	16.0	8.0	20.1	0.0137	13.67	0.0013	16.4	275.70	16.4

Data Entered By: CAL

Date: 12/5/2013

File Name: 2512_77_hydrometer-ASTM-D422-R1_0.xls

Checked By: 12/5/3

Client: MWH Job Number: 2512-77

Project: Church Rock

Location: Tailings Impoundment

Project Number:

Boring Number: CS-2

Depth: 0-10"

Sample Number: TI-CS02-02A(0-10")

Sampled Date: 11/12/2013 Sampled By: MWH Test Date: 12/11/2013 Technician: DPM

Grain Size Data

Hygroscopic Moisture of Fines

Weight of Wet Soil & Pan (g): 117.84 Weight of Dry Soil & Pan (g): 112.26

Weight of Water (g): 5.58 Weight of Pan (g): 3.60

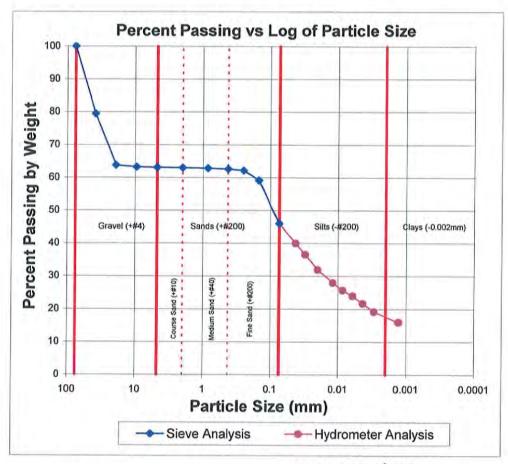
Weight of Dry Soil (g): 108.66

Moisture (%): 5.1

General Sample Data

Total Wet Weight of Sample (g): 10,935.00 Total Dry Weight of Sample (g): 10,592.42 Calculated Weight Plus #200 (g): 5,714.14 Moisture of Total Sample (%): 3.2

Percent Retained #200 Sieve (%): 53.9


Plus Split Data

Original Weight of +#10 (g): 3,980.00 Calculated Weight of +#10 (g): 3,921.13

Minus Split Data

Original Weight of -#10 (g): 6,955.00 Calculated Dry Weight of -#10 (g): 6,671.29

Sieve Number	Sieve Size (mm)	Weight of Retained Soil & Pan (g)	Weight of Pan (g)	Weight of Retained Soil (g)	Calculated Weight of Retained Soil (g)	Percent Passing by Weight (%)
3"	76.2	0.00	0.00	0.00	0.00	100.0
1.5"	38.10	2180.00	0.00	2180.00	2180.00	79.4
3/4"	19.05	1660.45	0.00	1660.45	1660.45	63.7
3/8"	9.525	54.02	0.00	54.02	54.02	63.2
#4	4.750	16.04	0.00	16.04	16.04	63.1
#10	2.000	10.62	0.00	10.62	10.62	63.0
58.043g spl	it out of -#10	material.				
#20	0.850	3.95	3.80	0.15	18.01	62.8
#40	0.425	3.94	3.74	0.20	24.41	62.6
#60	0.250	4.15	3.77	0.38	46.16	62.1
#100	0.150	6.16	3.56	2.60	314.06	59.2
#200	0.075	14.57	3.07	11.51	1390.38	46.1

Data Entered By: KMR

Date: 12/13/2013

File Name: 2512_77_hydrometer-ASTM-D422-R0.xls 8.xls

Checked By: / Date: /2

ADVANCED TERRA TESTING

Client: MWH Job Number: 2512-77

Project: Church Rock

Location: Tailings Impoundment

Project Number:

Boring Number: CS-2

Depth: 0-10"

Sample Number: TI-CS02-02A(0-10")

Sampled Date: 11/12/2013 Test Date: 12/11/2013 Sampled By: MWH Technician: DPM

Hydrometer Data

Test Configuration

Hydrometer Type: 152H Specific Gravity: 2.65

Deflocculant: Sodium Hexametaphosphate

Deflocculant Correction: 6.0

Specific Gravity Correction Factor - a: 1.00

Total Wet Weight of Sample (g): 10,935.00

Total Dry Weight of Sample (g): 10,592.42 Wet Weight of Sub-Sample (g): 58.043

Dry Weight of Sub-Sample (g): 55.208

Corrected Dry Weight of Sub-Sample - W(g): 87.632

Elapsed Time (min)	Hydrometer Reading	Corrected Hydrometer Reading	Temperature (°C)	Temperature Coefficient (K)	Effective Depth (L)	Grain Diameter (mm)	Percent in Suspension (%)	Calculated Weight of Retained Soil (g)	Percent Passing by Weight (%)
0	(2	1.6	9.40		7			195 2	. Lawrence
1	41.0	35.0	19.3	0.0138	9.57	0.0428	40.0	4236.37	40.0
2	38.0	32.0	19.3	0.0138	10.06	0.0310	36.6	3873.25	36.6
5	34.0	28.0	19.3	0.0138	10.72	0.0202	32.0	3389.09	32.0
15	30.5	24.5	19.4	0.0138	11.29	0.0120	28.0	2965.46	28.0
30	28.5	22.5	19.6	0.0138	11.62	0.0086	25.7	2723.38	25.7
60	27.0	21.0	19.9	0.0138	11.87	0.0061	24.0	2541.82	24.0
120	25.0	19.0	20.4	0.0137	12.19	0.0044	21.7	2299.74	21.7
250	22.8	16.8	22.0	0.0133	12.56	0.0030	19.2	2033.46	19.2
1440	20.0	14.0	20.1	0.0137	13.01	0.0013	16.0	1694.55	16.0

Data Entered By: KMR

Date: 12/13/2013

File Name: 2512_77_hydrometer-ASTM-D422-R0.xls_8.xls

Checked By: *Opan*Date: 12/13/17

Client: MWH Job Number: 2512-77

Project: Church Rock

Location: Tailings Impoundment

Project Number:

Boring Number: CS-3

Depth: 0-6"

Sample Number: TI-CS03-02A(0-6")

Sampled Date: 11/12/2013 Test Date: 12/11/2013 Sampled By: MWH Technician: DPM

Grain Size Data

Hygroscopic Moisture of Fines

Weight of Wet Soil & Pan (g): 114.81 Weight of Dry Soil & Pan (g): 107.72

> Weight of Water (g): 7.10 Weight of Pan (g): 3.67

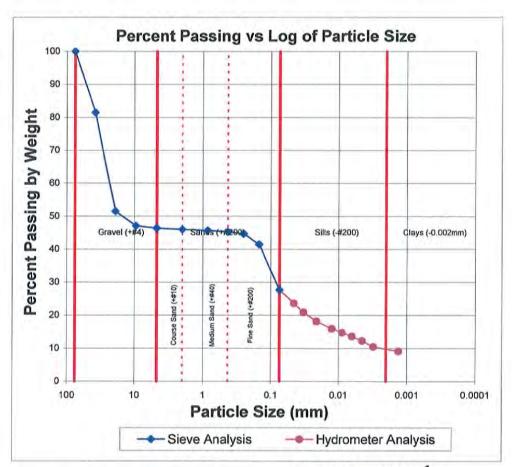
Weight of Dry Soil (g): 104.05 Moisture (%): 6.8

General Sample Data

Total Wet Weight of Sample (g): 12,025.00 Total Dry Weight of Sample (g): 11,659.26

Calculated Weight Plus #200 (g): 8,432.80 Moisture of Total Sample (%): 3.1

Percent Retained #200 Sieve (%): 72.3


Plus Split Data

Original Weight of +#10 (g): 6,450.00 Calculated Weight of +#10 (g): 6,296.34

Minus Split Data

Original Weight of -#10 (g): 5,575.00 Calculated Dry Weight of -#10 (g): 5,362.92

Sieve Number	Sieve Size (mm)	Weight of Retained Soil & Pan (g)	Weight of Pan (g)	Weight of Retained Soil (g)	Calculated Weight of Retained Soil (g)	Percent Passing by Weight (%)
3"	76.2	0.00	0.00	0.00	0.00	100.0
1.5"	38.10	2165.00	0.00	2165.00	2165.00	81.4
3/4"	19.05	3490.00	0.00	3490.00	3490.00	51.5
3/8"	9.525	516.72	0.00	516.72	516.72	47.1
#4	4.750	79.91	0.00	79.91	79.91	46.4
#10	2.000	44.71	0.00	44.71	44.71	46.0
54.113g spl	it out of -#10	material.				
#20	0.850	4.25	3.89	0.36	38.43	45.7
#40	0.425	4.18	3.73	0.45	47.75	45.3
#60	0.250	4.22	3.55	0.67	71.25	44.6
#100	0.150	7.24	3.72	3.52	372.43	41.5
#200	0.075	18.73	3.56	15.18	1606.60	27.7
100 D.C.	100000	3-000	24-24	0.70 5.57	8 7 7 7 7 7 7	0.000

Data Entered By: KMR

Date: 12/13/2013

File Name: 2512_77_hydrometer-ASTM-D422-R0.xls_10.xls

Checked By: DPM
Date: 12/13/13

Client: MWH Job Number: 2512-77

Project: Church Rock

Location: Tailings Impoundment

Project Number:

Boring Number: CS-3

Depth: 0-6"

Sample Number: TI-CS03-02A(0-6")

Sampled Date: 11/12/2013 Test Date: 12/11/2013 Sampled By: MWH Technician: DPM

Hydrometer Data

Test Configuration

Hydrometer Type: 152H Specific Gravity: 2.65

Deflocculant: Sodium Hexametaphosphate

Deflocculant Correction: 6.0

Specific Gravity Correction Factor - a: 1.00

Total Wet Weight of Sample (g): 12,025.00 Total Dry Weight of Sample (g): 11,659.26 Wet Weight of Sub-Sample (g): 54.113

Dry Weight of Sub-Sample (g): 50.658
Corrected Dry Weight of Sub-Sample - W(g): 110.127

Collected by Weight of Sub-Sample - W(g). 110.127

Elapsed Time (min)	Hydrometer Reading	Corrected Hydrometer Reading	Temperature (°C)	Temperature Coefficient (K)	Effective Depth (L)	Grain Diameter (mm)	Percent in Suspension (%)	Calculated Weight of Retained Soil (g)	Percent Passing by Weight (%
0					7.8751			2.3.5	
1	32.0	26.0	19.7	0.0138	11.05	0.0459	23.6	2756.41	23.6
2	29.0	23.0	19.7	0.0138	11.54	0.0332	20.9	2438.36	20.9
5	26.0	20.0	19.7	0.0138	12.03	0.0214	18.2	2120.32	18.2
15	23.5	17.5	19.8	0.0138	12.44	0.0126	15.9	1855.28	15.9
30	22.3	16.3	20.0	0.0137	12.65	0.0089	14.8	1722.76	14.8
60	21.0	15.0	20.4	0.0137	12.85	0.0063	13.6	1590.24	13.6
120	19.5	13.5	20.9	0.0137	13.10	0.0045	12.3	1431.21	12.3
250	17.5	11.5	22.4	0.0133	13.42	0.0031	10.5	1219.18	10.5
1440	16.0	10.0	20.4	0.0137	13.67	0.0013	9.1	1060.16	9.1

Data Entered By: KMR

Date: 12/13/2013

File Name: 2512_77_hydrometer-ASTM-D422-R0.xls_10.xls

Checked By: ppm
Date: 12/13/1

Boring Number: CS-6 Depth: 0-7"

Sample Number: TI-CS06-02A(0-7")

Sampled Date: 11/13/2013 Test Date: 12/5/2013 Sampled By: MWH Technician: CAL

Location: Tailings Impoundment Project Number:

Grain Size Data

Hygroscopic Moisture of Fines

Client: MWH

Project: Church Rock

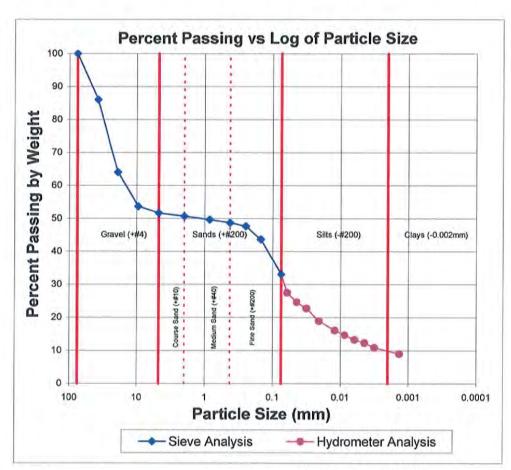
Job Number: 2512-77

Weight of Wet Soil & Pan (g): 118.66 Weight of Dry Soil & Pan (g): 112.58 Weight of Water (g): 6.08 Weight of Pan (g): 3.69 Weight of Dry Soil (g): 108.89

Moisture (%): 5.6

General Sample Data

Total Wet Weight of Sample (g): 8,880.00 Total Dry Weight of Sample (g): 8,635.72 Calculated Weight Plus #200 (g): 5,779.94 Moisture of Total Sample (%): 2.8 Percent Retained #200 Sieve (%): 66.9


Plus Split Data

Original Weight of +#10 (g): 4,420.00 Calculated Weight of +#10 (g): 4,260.84

Minus Split Data

Original Weight of -#10 (g): 4,460.00 Calculated Dry Weight of -#10 (g): 4,374.88

Sieve Number	Sieve Size (mm)	Weight of Retained Soil & Pan (g)	Weight of Pan (g)	Weight of Retained Soil (g)	Calculated Weight of Retained Soil (g)	Percent Passing by Weight (%)
3"	76.2	0.00	0.00	0.00	0.00	100.0
1.5"	38.10	1206.82	0.00	1206.82	1206.82	86.0
3/4"	19.05	1901.60	0.00	1901.60	1901.60	64.0
3/8"	9.525	896.62	0.00	896.62	896.62	53.6
#4	4.750	172.60	0.00	172.60	172.60	51.6
#10	2.000	83.20	0.00	83.20	83.20	50.7
56.524g spl	it out of #10	material.				
#20	0.850	4.77	3.70	1.07	87.60	49.6
#40	0.425	4.97	3.90	1.07	87.03	48.6
#60	0.250	4.82	3.77	1.05	86.05	47.6
#100	0.150	7.90	3.69	4.21	343.80	43.7
#200	0.075	14.82	3.63	11.19	914.61	33.1

Data Entered By: KMR

Date: 12/11/2013

File Name: 2512_77_hydrometer-ASTM-D422-R0.xls_6.xls

Checked By: Dom Date: 12/11/13

Client: MWH Job Number: 2512-77

Project: Church Rock

Location: Tailings Impoundment

Project Number:

Boring Number: CS-6

Depth: 0-7"

Sample Number: TI-CS06-02A(0-7")

Sampled Date: 11/13/2013 Test Date: 12/5/2013 Sampled By: MWH Technician: CAL

Hydrometer Data

Test Configuration

Hydrometer Type: 152H Specific Gravity: 2.65

Deflocculant: Sodium Hexametaphosphate

Deflocculant Correction: 7.0

Specific Gravity Correction Factor - a: 1.00

Total Wet Weight of Sample (g): 8,880.00 Total Dry Weight of Sample (g): 8,635.72 Wet Weight of Sub-Sample (g): 56.524 Dry Weight of Sub-Sample (g): 53.535

Corrected Dry Weight of Sub-Sample - W(g): 105.591

Elapsed Time (min)	Hydrometer Reading	Corrected Hydrometer Reading	Temperature (°C)	Temperature Coefficient (K)	Effective Depth (L)	Grain Diameter (mm)	Percent in Suspension (%)	Calculated Weight of Retained Soil (g)	Percent Passing by Weight (%)
0								-8-	-
0.5	36.0	29.0	21.3	0.0135	10.39	0.0615	27.5	2374.98	27.5
1	33.0	26.0	21.3	0.0135	10.88	0.0445	24.7	2129.29	24.7
2	31.0	24.0	21.3	0.0135	11.21	0.0319	22.8	1965.50	22.8
5	27.0	20.0	21.6	0.0135	11.87	0.0208	19.0	1637.92	19.0
15	24.0	17.0	21.7	0.0135	12.36	0.0122	16.1	1392.23	16.1
30	22.5	15.5	22.2	0.0133	12.60	0.0086	14.7	1269.39	14.7
60	21.0	14.0	22.0	0.0133	12.85	0.0062	13.3	1146.54	13.3
120	20.0	13.0	21.8	0.0135	13.01	0.0044	12.3	1064.65	12.3
250	18.5	11.5	20.2	0.0137	13.26	0.0031	10.9	941.80	10.9
1440	16.5	9.5	18.7	0.0140	13.59	0.0014	9.0	778.01	9.0

Data Entered By: KMR

Date: 12/11/2013

File Name: 2512_77_hydrometer-ASTM-D422-R0.xls_6.xls

Checked By: 0100

Date: 11/1/13

Client: MWH
Job Number: 2512-77
Project: Church P

Project: Church Rock

Location: Tailings Impoundment

Project Number:

Boring Number: CS-6 Depth: 7-24"

Sample Number: TI-CS06-04A(7-24")

Sampled Date: 11/13/2013 Test Date: 12/2/2013 Sampled By: MWH Technician: CAL

Grain Size Data

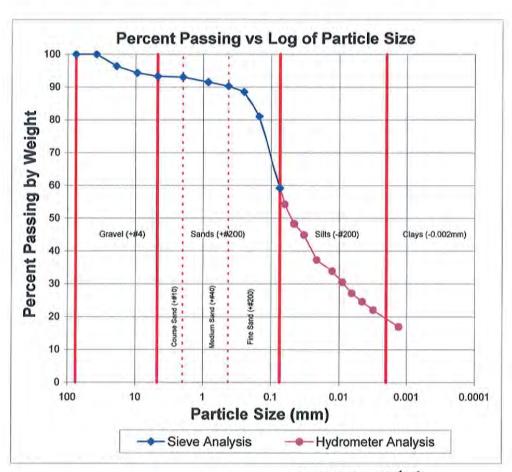
Hygroscopic Moisture of Fines

Weight of Wet Soil & Pan (g): 125.91 Weight of Dry Soil & Pan (g): 120.93 Weight of Water (g): 4.98 Weight of Pan (g): 3.70 Weight of Dry Soil (g): 117.23

Moisture (%): 4.2

General Sample Data

Total Wet Weight of Sample (g): 4,129.13
Total Dry Weight of Sample (g): 3,972.23
Calculated Weight Plus #200 (g): 1,622.70
Moisture of Total Sample (%): 3.9
Percent Retained #200 Sieve (%): 40.9


Plus Split Data

Original Weight of +#10 (g): 297.31 Calculated Weight of +#10 (g): 276.49

Minus Split Data

Original Weight of -#10 (g): 3,831.82 Calculated Dry Weight of -#10 (g): 3,695.74

Sieve Number	Sieve Size (mm)	Weight of Retained Soil & Pan (g)	Weight of Pan (g)	Weight of Retained Soil (g)	Calculated Weight of Retained Soil (g)	Percent Passing by Weight (%)
3"	76.2	0.00	0.00	0.00	0.00	100.0
1.5"	38.10	0.00	0.00	0.00	0.00	100.0
3/4"	19.05	144.72	0.00	144.72	144.72	96.4
3/8"	9.525	80.77	0.00	80.77	80.77	94.3
#4	4.750	40.75	0.00	40.75	40.75	93.3
#10	2.000	10.25	0.00	10.25	10.25	93.0
57.274g spl	it out of -#10	material.				
#20	0.850	4.50	3.62	0.89	59.53	91.5
#40	0.425	4.45	3.68	0.76	51.39	90.2
#60	0.250	4.58	3.56	1.02	68.48	88.5
#100	0.150	8.04	3.62	4.42	297.25	81.0
#200	0.075	16.69	3.76	12.93	869.56	59.1

Data Entered By: KMR

Date: 12/6/2013

File Name: 2512_77_hydrometer-ASTM-D422-R0.xls_0.xls

Checked By: DIM Date: u/orl/3

Client: MWH Job Number: 2512-77

Project: Church Rock

Location: Tailings Impoundment

Project Number:

Boring Number: CS-6

Depth: 7-24"

Sample Number: TI-CS06-04A(7-24")

Sampled Date: 11/13/2013 Test Date: 12/2/2013 Sampled By: MWH Technician: CAL

Hydrometer Data

Test Configuration

Hydrometer Type: 152H Specific Gravity: 2.65

Deflocculant: Sodium Hexametaphosphate

Deflocculant Correction: 8.0

Specific Gravity Correction Factor - a: 1.00

Total Wet Weight of Sample (g): 4,129.13

Total Dry Weight of Sample (g): 3,972.23 Wet Weight of Sub-Sample (g): 57.274

Dry Weight of Sub-Sample (g): 54.941

Corrected Dry Weight of Sub-Sample - W(g): 59.077

Elapsed Time (min)	Hydrometer Reading	Corrected Hydrometer Reading	Temperature (°C)	Temperature Coefficient (K)	Effective Depth (L)	Grain Diameter (mm)	Percent in Suspension (%)	Calculated Weight of Retained Soil (g)	Percent Passing by Weight (%
0	-					- n n n n n n n			- 48-
0.5	40.0	32.0	16.1	0.0144	9.73	0.0633	54.2	2154.56	54.2
1	36.5	28.5	16.1	0.0144	10.31	0.0461	48.3	1918.91	48.3
2	34.5	26.5	16.1	0.0144	10.64	0.0331	44.9	1784.25	44.9
5	30.0	22,0	16.2	0.0144	11.37	0.0216	37.3	1481.26	37.3
15	28.0	20.0	16.3	0.0144	11.70	0.0127	33.9	1346.60	33.9
30	26.0	18.0	16.7	0.0144	12.03	0.0091	30.5	1211.94	30.5
60	24.0	16.0	17.4	0.0142	12.36	0.0064	27.1	1077.28	27.1
120	22.5	14.5	18.1	0.0140	12.60	0.0045	24.6	976.29	24.6
250	21.0	13.0	19.8	0.0138	12.85	0.0031	22.0	875.29	22.0
1440	18.0	10.0	20.1	0.0137	13.34	0.0013	17.0	673.30	17.0

Data Entered By: KMR

Date: 12/6/2013

File Name: 2512_77_hydrometer-ASTM-D422-R0.xls_0.xls

Checked By: DPM
Date: (2/09/13

Client: MWH Job Number: 2512-77

Project: Church Rock

Location: Tailings Impoundment

Project Number:

Boring Number: CS-8

Depth: 0-8"

Sample Number: TI-CS08-02A(0-8")

Sampled Date: 11/13/2013 Test Date: 12/5/2013 Sampled By: MWH Technician: CAL

Grain Size Data

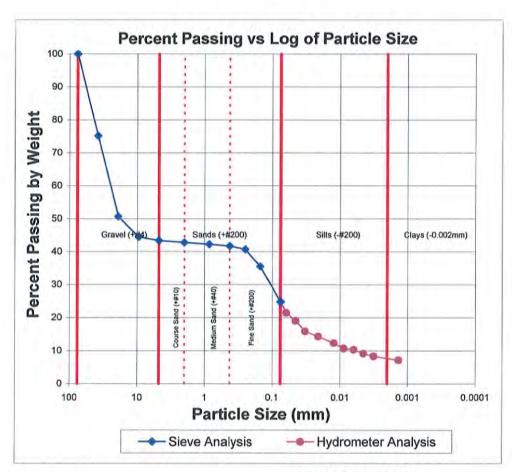
Hygroscopic Moisture of Fines

Weight of Wet Soil & Pan (g): 118.63 Weight of Dry Soil & Pan (g): 115.18 Weight of Water (g): 3.45 Weight of Pan (g): 3.56 Weight of Dry Soil (g): 111.62

Moisture (%): 3.1

General Sample Data

Total Wet Weight of Sample (g): 10,675.00
Total Dry Weight of Sample (g): 10,535.75
Calculated Weight Plus #200 (g): 7,923.68
Moisture of Total Sample (%): 1.3
Percent Retained #200 Sieve (%): 75.2


Plus Split Data

Original Weight of +#10 (g): 6,190.00 Calculated Weight of +#10 (g): 6,030.65

Minus Split Data

Original Weight of -#10 (g): 4,485.00 Calculated Dry Weight of -#10 (g): 4,505.10

Sieve Number	Sieve Size (mm)	Weight of Retained Soil & Pan (g)	Weight of Pan (g)	Weight of Retained Soil (g)	Calculated Weight of Retained Soil (g)	Percent Passing by Weight (%)
3"	76.2	0.00	0.00	0.00	0.00	100.0
1.5"	38.10	2615.00	0.00	2615.00	2615.00	75.2
3/4"	19.05	2585.00	0.00	2585.00	2585.00	50.6
3/8"	9.525	650.00	0.00	650.00	650.00	44.5
#4	4.750	120.00	0.00	120.00	120.00	43.3
#10	2.000	60.65	0.00	60.65	60.65	42.8
55.584g spl	it out of -#10	material.				
#20	0.850	4.50	3.82	0.68	57.07	42.2
#40	0.425	4.39	3.74	0.65	54.48	41.7
#60	0.250	4.85	3.57	1.29	107.54	40.7
#100	0.150	10.17	3.63	6.54	546.29	35.5
#200	0.075	17.15	3.65	13.50	1127.67	24.8

Data Entered By: KMR

Date: 12/11/2013

File Name: 2512_77_hydrometer-ASTM-D422-R0.xls_5.xls

Checked By: Dawn
Date: 12/11/19

Client: MWH Job Number: 2512-77

Project: Church Rock

Location: Tailings Impoundment

Project Number:

Boring Number: CS-8

Depth: 0-8"

Sample Number: TI-CS08-02A(0-8")

Sampled Date: 11/13/2013 Test Date: 12/5/2013 Sampled By: MWH
Technician: CAL

Hydrometer Data

Test Configuration

Hydrometer Type: 152H Specific Gravity: 2.65

Deflocculant: Sodium Hexametaphosphate

Deflocculant Correction: 7.0

Specific Gravity Correction Factor - a: 1.00

Total Wet Weight of Sample (g): 10,675.00 Total Dry Weight of Sample (g): 10,535.75 Wet Weight of Sub-Sample (g): 55.584

Dry Weight of Sub-Sample (g): 53.917

Corrected Dry Weight of Sub-Sample - W(g): 125.975

Elapsed Time (min)	Hydrometer Reading	Corrected Hydrometer Reading	Temperature (°C)	Temperature Coefficient (K)	Effective Depth (L)	Grain Diameter (mm)	Percent in Suspension (%)	Calculated Weight of Retained Soil (g)	Percent Passing by Weight (%
0	- 16					n		- 4 4 8,	d a + N-
0.5	34.0	27.0	21.5	0.0135	10.72	0.0624	21.5	2261.18	21.5
1	31.0	24,0	21.5	0.0135	11.21	0.0451	19.1	2009.94	19.1
2	27.0	20.0	21.5	0.0135	11.87	0.0328	15.9	1674.95	15.9
5	25.0	18.0	21.6	0.0135	12.19	0.0211	14.3	1507.45	14.3
15	22.5	15.5	21.7	0.0135	12.60	0.0124	12.3	1298.09	12.3
30	20.5	13.5	21.9	0.0135	12.93	0.0089	10.7	1130.59	10.7
60	20.0	13.0	21.9	0.0135	13.01	0.0063	10.3	1088.72	10.3
120	18.5	11.5	21.1	0.0135	13.26	0.0045	9.1	963.10	9.1
250	17.5	10.5	20.5	0.0137	13.42	0.0032	8.3	879,35	8.3
1440	16.0	9.0	18.9	0.0140	13.67	0.0014	7.2	753.73	7.2

Data Entered By: KMR

Date: 12/11/2013

File Name: 2512_77_hydrometer-ASTM-D422-R0.xls_5.xls

Checked By: Open
Date: 12/11 /13

Client: MWH
Job Number: 2512-77

Project: Church Rock

Location: Tailings Impoundment

Project Number:

Boring Number: CS-8 Depth: 8-28"

Sample Number: TI-CS08-04A(8-28")

Sampled Date: 11/13/2013 Test Date: 12/2/2013 Sampled By: MWH Technician: CAL

Grain Size Data

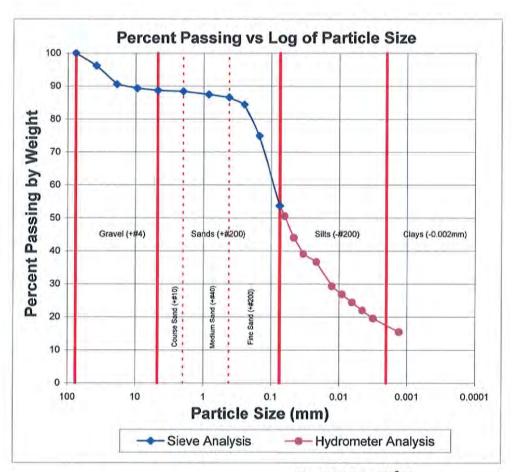
Hygroscopic Moisture of Fines

Weight of Wet Soil & Pan (g): 128.22 Weight of Dry Soil & Pan (g): 125.73 Weight of Water (g): 2.49 Weight of Pan (g): 3.72 Weight of Dry Soil (g): 122.01

Moisture (%): 2.0

General Sample Data

Total Wet Weight of Sample (g): 4,694.51
Total Dry Weight of Sample (g): 4,611.22
Calculated Weight Plus #200 (g): 2,135.59
Moisture of Total Sample (%): 1.8
Percent Retained #200 Sieve (%): 46.3


Plus Split Data

Original Weight of +#10 (g): 551.32 Calculated Weight of +#10 (g): 535.20

Minus Split Data

Original Weight of #10 (g): 4,143.19 Calculated Dry Weight of #10 (g): 4,076.02

Sieve Number	Sieve Size (mm)	Weight of Retained Soil & Pan (g)	Weight of Pan (g)	Weight of Retained Soil (g)	Calculated Weight of Retained Soil (g)	Percent Passing by Weight (%)
3"	76.2	0.00	0.00	0.00	0.00	100.0
1.5"	38.10	175.09	0.00	175.09	175.09	96.2
3/4"	19.05	261.02	0.00	261.02	261.02	90.5
3/8"	9.525	54.75	0.00	54.75	54.75	89.4
#4	4.750	31.10	0.00	31.10	31.10	88.7
#10	2.000	13.24	0.00	13.24	13.24	88.4
55.178g spl	it out of #10	material.				
#20	0.850	4.34	3.77	0.57	42.67	87.5
#40	0.425	4.22	3.67	0.56	41.99	86.6
#60	0.250	5.06	3.75	1.31	98.82	84.4
#100	0.150	9.65	3.82	5.82	439.01	74.9
#200	0.075	16.77	3.80	12.97	977.90	53.7

Data Entered By: KMR

Date: 12/9/2013

File Name: 2512 77 hydrometer-ASTM-D422-R0.xls 1.xls

Checked By: DPm
Date: 12/09/13

Client: MWH Job Number: 2512-77

Project: Church Rock

Location: Tailings Impoundment

Project Number:

Boring Number: CS-8

Depth: 8-28"

Sample Number: TI-CS08-04A(8-28")

Sampled Date: 11/13/2013 Test Date: 12/2/2013 Sampled By: MWH Technician: CAL

Hydrometer Data

Test Configuration

Hydrometer Type: 152H Specific Gravity: 2.67

Deflocculant: Sodium Hexametaphosphate

Deflocculant Correction: 8.0

Specific Gravity Correction Factor - a: 1.00

Total Wet Weight of Sample (g): 4,694.51

Total Dry Weight of Sample (g): 4,611.22 Wet Weight of Sub-Sample (g): 55.178

Dry Weight of Sub-Sample (g): 54.073

Corrected Dry Weight of Sub-Sample - W(g): 61.169

Elapsed Time (min)	Hydrometer Reading	Corrected Hydrometer Reading	Temperature (°C)	Temperature Coefficient (K)	Effective Depth (L)	Grain Diameter (mm)	Percent in Suspension (%)	Calculated Weight of Retained Soil (g)	Percent Passing by Weight (%)
0		-	-			1000			
0.5	39.0	31.0	16.3	0.0144	9.90	0.0639	50.5	2330.36	50.5
1	35.0	27.0	16.3	0.0144	10.55	0.0466	44.0	2029.67	44.0
2	32.0	24.0	16.3	0.0144	11.05	0.0337	39.1	1804.15	39.1
5	30.5	22.5	16.4	0.0144	11.29	0.0216	36.7	1691.39	36.7
15	26.0	18.0	16.5	0.0144	12.03	0.0129	29.3	1353.11	29.3
30	24.5	16.5	16.9	0.0144	12.28	0.0092	26.9	1240.35	26.9
60	23.0	15.0	17.6	0.0142	12.52	0.0065	24.5	1127.59	24.5
120	21.5	13.5	18.1	0.0140	12.77	0.0046	22.0	1014.83	22.0
250	20.0	12.0	19.9	0.0138	13.01	0.0032	19.6	902.08	19.6
1440	17.5	9.5	20.1	0.0137	13.42	0.0013	15.5	714.14	15.5

Data Entered By: KMR

Date: 12/9/2013

File Name: 2512_77_hydrometer-ASTM-D422-R0.xls_1.xls

Checked By: 0 8 m Date: 12/09/13

Client: MWH
Job Number: 2512-77
Project: Church Rock

Location: Tailings Impoundment

Project Number:

Boring Number: CS-9 Depth: 0-9"

Sample Number: TI-CS09-02A(0-9")

Sampled Date: 11/13/2013 Test Date: 12/5/2013 Sampled By: MWH Technician: CAL

Grain Size Data

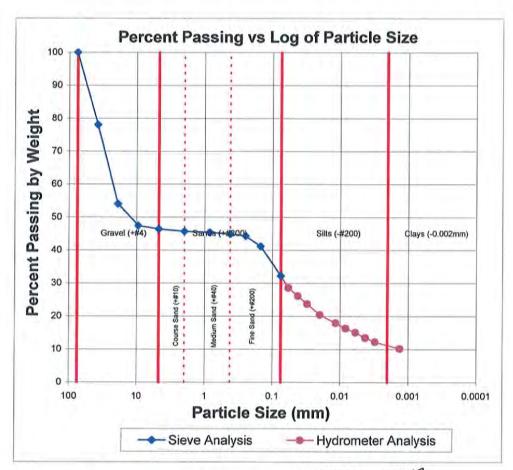
Hygroscopic Moisture of Fines

Weight of Wet Soil & Pan (g): 119.55 Weight of Dry Soil & Pan (g): 115.83 Weight of Water (g): 3.72 Weight of Pan (g): 3.58 Weight of Dry Soil (g): 112.25

Moisture (%): 3.3

General Sample Data

Total Wet Weight of Sample (g): 9,180.00
Total Dry Weight of Sample (g): 9,043.04
Calculated Weight Plus #200 (g): 6,131.44
Moisture of Total Sample (%): 1.5
Percent Retained #200 Sieve (%): 67.8


Plus Split Data

Original Weight of +#10 (g): 4,980.00 Calculated Weight of +#10 (g): 4,910.20

Minus Split Data

Original Weight of -#10 (g): 4,200.00 Calculated Dry Weight of -#10 (g): 4,132.84

Sieve Number	Sieve Size (mm)	Weight of Retained Soil & Pan (g)	Weight of Pan (g)	Weight of Retained Soil (g)	Calculated Weight of Retained Soil (g)	Percent Passing by Weight (%
3"	76.2	0.00	0.00	0.00	0.00	100.0
1.5"	38.10	1985.00	0.00	1985.00	1985.00	78.0
3/4"	19.05	2175.00	0.00	2175.00	2175.00	54.0
3/8"	9.525	595.00	0.00	595.00	595.00	47.4
#4	4.750	94.53	0.00	94.53	94.53	46.4
#10	2.000	60.67	0.00	60.67	60.67	45.7
57.839g spl	it out of -#10	material.				
#20	0.850	4.27	3.84	0.43	31.52	45.4
#40	0.425	4.39	3.84	0.55	40.82	44.9
#60	0.250	4.50	3.75	0.75	55.15	44.3
#100	0.150	7.54	3.71	3.83	282.81	41.2
#200	0.075	14.68	3.70	10.99	810.94	32.2

Data Entered By: KMR

Date: 12/11/2013

File Name: 2512_77_hydrometer-ASTM-D422-R0.xls 4.xls

Checked By: 0/1/1/13

Client: MWH Job Number: 2512-77

Project: Church Rock

Location: Tailings Impoundment

Project Number:

Boring Number: CS-9

Depth: 0-9"

Sample Number: TI-CS09-02A(0-9")

Sampled Date: 11/13/2013 Test Date: 12/5/2013 Sampled By: MWH Technician: CAL

Hydrometer Data

Test Configuration

Hydrometer Type: 152H Specific Gravity: 2.65

Deflocculant: Sodium Hexametaphosphate

Deflocculant Correction: 7.0

Specific Gravity Correction Factor - a: 1.00

Total Wet Weight of Sample (g): 9,180.00 Total Dry Weight of Sample (g): 9,043.04 Wet Weight of Sub-Sample (g): 57.839 Dry Weight of Sub-Sample (g): 55.984

Corrected Dry Weight of Sub-Sample - W(g): 122.503

Elapsed Time (min)	Hydrometer Reading	Corrected Hydrometer Reading	Temperature (°C)	Temperature Coefficient (K)	Effective Depth (L)	Grain Diameter (mm)	Percent in Suspension (%)	Calculated Weight of Retained Soil (g)	Percent Passing by Weight (%
0	4	4				4		or when the public	
0.5	42.0	35.0	21.5	0.0135	9.41	0.0585	28.6	2587.19	28.6
1	39.0	32.0	21.5	0.0135	9.90	0.0424	26.2	2365.43	26.2
2	36.0	29.0	21.5	0.0135	10.39	0.0307	23.7	2143.67	23.7
5	32.0	25.0	21.5	0.0135	11.05	0.0200	20.4	1848.00	20.4
15	29.0	22.0	22.0	0.0133	11.54	0.0117	18.0	1626.24	18.0
30	27.0	20.0	22.2	0.0133	11.87	0.0084	16.3	1478.40	16.3
60	25.5	18.5	22.1	0.0133	12.11	0.0060	15.1	1367.52	15.1
120	23.5	16.5	22.0	0.0133	12.44	0.0043	13.5	1219.68	13.5
250	22.0	15.0	20.3	0.0137	12.69	0.0031	12.3	1108.80	12.3
1440	19.5	12.5	18.9	0.0140	13.10	0.0013	10.2	924.00	10.2

Data Entered By: KMR

Date: 12/11/2013

File Name: 2512_77_hydrometer-ASTM-D422-R0.xls_4.xls

Checked By: 12/11/13

Client: MWH
Job Number: 2512-77
Project: Church Rock

Location: Tailings Impoundment

Project Number:

Boring Number: CS-10

Depth: 0-7"

Sample Number: TI-CS10-02A(0-7")

Sampled Date: 11/13/2013 Test Date: 12/5/2013 Sampled By: MWH Technician; CAL

Grain Size Data

Hygroscopic Moisture of Fines

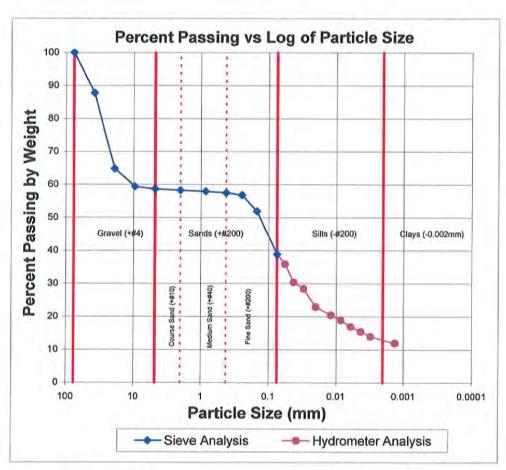
Weight of Wet Soil & Pan (g): 124.45 Weight of Dry Soil & Pan (g): 120.39 Weight of Water (g): 4.06 Weight of Pan (g): 3.74

Weight of Dry Soil (g): 116.65

Moisture (%): 3.5

General Sample Data

Total Wet Weight of Sample (g): 10,845.00
Total Dry Weight of Sample (g): 10,629.43
Calculated Weight Plus #200 (g): 6,495.99
Moisture of Total Sample (%): 2.0
Percent Retained #200 Sieve (%): 61.1


Plus Split Data

Original Weight of +#10 (g): 4,570.00 Calculated Weight of +#10 (g): 4,435.80

Minus Split Data

Original Weight of -#10 (g): 6,275.00 Calculated Dry Weight of -#10 (g): 6,193.63

Sieve Number	Sieve Size (mm)	Weight of Retained Soil & Pan (g)	Weight of Pan (g)	Weight of Retained Soil (g)	Calculated Weight of Retained Soil (g)	Percent Passing by Weight (%)
3"	76.2	0.00	0.00	0.00	0.00	100.0
1.5"	38.10	1300.11	0.00	1300.11	1300.11	87.8
3/4"	19.05	2445.00	0.00	2445.00	2445.00	64.8
3/8"	9.525	570.45	0.00	570.45	570.45	59.4
#4	4.750	82.08	0.00	82.08	82.08	58.6
#10	2.000	38.16	0.00	38.16	38.16	58.3
60.577g spl	it out of #10	material.				
#20	0.850	4.21	3.84	0.37	39.04	57.9
#40	0.425	4.13	3.72	0.41	43.80	57.5
#60	0.250	4.26	3.54	0.72	76.18	56.8
#100	0.150	8.56	3.66	4.90	518.54	51.9
#200	0.075	16.76	3.69	13.07	1382.63	38.9

Data Entered By: KMR

Date: 12/11/2013

File Name: 2512_77_hydrometer-ASTM-D422-R0.xls 2.xls

Checked By: Date: 12/11/3

Client: MWH Job Number: 2512-77

Project: Church Rock

Location: Tailings Impoundment

Project Number:

Boring Number: CS-10

Depth: 0-7"

Sample Number: TI-CS10-02A(0-7")

Sampled Date: 11/13/2013 Test Date: 12/5/2013 Sampled By: MWH Technician: CAL

Hydrometer Data

Test Configuration

Hydrometer Type: 152H Specific Gravity: 2.65

Deflocculant: Sodium Hexametaphosphate

Deflocculant Correction: 7.0

Specific Gravity Correction Factor - α: 1.00

Total Wet Weight of Sample (g): 10,845.00 Total Dry Weight of Sample (g): 10,629.43 Wet Weight of Sub-Sample (g): 60.577

Dry Weight of Sub-Sample (g): 58.540 Corrected Dry Weight of Sub-Sample - W(g): 100.411

Calculated Corrected Grain Percent in Percent Hydrometer Effective Temperature Temperature Weight of Elapsed Time (min) Hydrometer Diameter Suspension Passing by Reading (°C) Coefficient (K) Depth (L) Retained Reading (mm) (%) Weight (%) Soil (g) 0 0.5 43.0 36.0 22.4 0.0133 9.24 0.0573 35.9 3816.13 35.9 1 37.5 30.5 22.4 0.0133 10.14 0.0424 30.4 3233.11 30.4 2 35.5 28.5 22.4 0.0133 10.47 0.0305 28.4 3021.11 28.4 5 30.0 23.0 22.2 0.0133 11.37 0.0201 22.9 22.9 2438.09 15 27.5 20.5 21.5 0.0135 11.78 0.0119 20.4 2173.08 20.4 30 26.0 19.0 21.7 0.0135 12.03 0.0085 18.9 2014.07 18.9 60 24.0 17.0 22.0 0.0133 12.36 0.0060 17.0 1802.06 17.0 120 22.5 15.5 22.3 0.0133 12.60 0.0043 15.5 1643.06 15.5 250 21.0 20.4 14.0 0.0137 12.85 0.0031 14.0 1484.05 14.0 1440 19.0 12.0 18.8 0.0140 13.18 0.0013 12.0 1272.04 12.0

Data Entered By: KMR

Date: 12/11/2013

File Name: 2512_77_hydrometer-ASTM-D422-R0.xls 2.xls

Checked By: PM Date: 12/11/13

Client: MWH
Job Number: 2512-77
Project: Church Rock

Location: Tailings Impoundment

Project Number:

Boring Number: CS-11

Depth: 0-9"

Sample Number: TI-CS11-02A(0-9")

Sampled Date: 11/13/2013 Test Date: 12/11/2013 Sampled By: MWH Technician: DPM

Grain Size Data

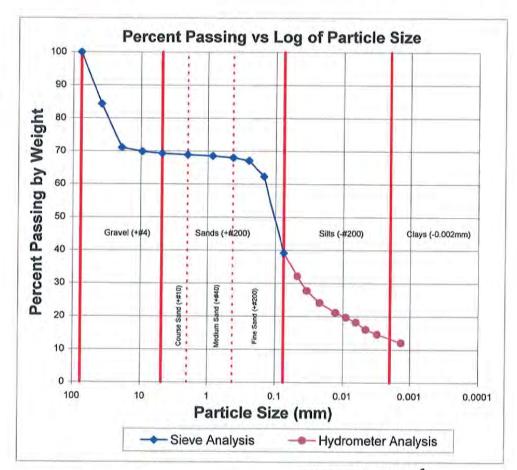
Hygroscopic Moisture of Fines

Weight of Wet Soil & Pan (g): 138.61
Weight of Dry Soil & Pan (g): 131.50
Weight of Water (g): 7.11
Weight of Pan (g): 3.79
Weight of Dry Soil (g): 127.71

Moisture (%): 5.6

General Sample Data

Total Wet Weight of Sample (g): 21,550.00
Total Dry Weight of Sample (g): 20,754.50
Calculated Weight Plus #200 (g): 12,625.34
Moisture of Total Sample (%): 3.8
Percent Retained #200 Sieve (%): 60.8


Plus Split Data

Original Weight of +#10 (g): 6,635.00 Calculated Weight of +#10 (g): 6,461.64

Minus Split Data

Original Weight of #10 (g): 14,915.00 Calculated Dry Weight of #10 (g): 14,292.86

Sieve Number	Sieve Size (mm)	Weight of Retained Soil & Pan (g)	Weight of Pan (g)	Weight of Retained Soil (g)	Calculated Weight of Retained Soil (g)	Percent Passing by Weight (%)
3"	76.2	0.00	0.00	0.00	0.00	100.0
1.5"	38.10	3265.00	0.00	3265.00	3265.00	84.3
3/4"	19.05	2755.00	0.00	2755.00	2755.00	71.0
3/8"	9.525	236.70	0.00	236.70	236.70	69.9
#4	4.750	121.51	0.00	121.51	121.51	69.3
#10	2.000	83.43	0.00	83.43	83.43	68.9
49.818g spl	it out of -#10	material.				
#20	0.850	4.04	3.82	0.22	66.03	68.5
#40	0.425	4.11	3.74	0.37	112.97	68.0
#60	0.250	4.21	3.62	0.59	178.39	67.1
#100	0.150	6.94	3.64	3.31	1000.98	62.3
#200	0.075	19.52	3.66	15.87	4805.33	39.2

Data Entered By: KMR

Date: 12/13/2013

File Name: 2512_77_hydrometer-ASTM-D422-R0.xls_9.xls

Checked By: Down
Date: 12/13/1

Client: MWH Job Number: 2512-77

Project: Church Rock

Location: Tailings Impoundment

Project Number:

Boring Number: CS-11

Depth: 0-9"

Sample Number: TI-CS11-02A(0-9")

Sampled Date: 11/13/2013 Test Date: 12/11/2013 Sampled By: MWH

Technician: DPM

Hydrometer Data

Test Configuration

Hydrometer Type: 152H Specific Gravity: 2.65

Deflocculant: Sodium Hexametaphosphate

Deflocculant Correction: 6.0

Specific Gravity Correction Factor - a: 1.00

Total Wet Weight of Sample (g): 21,550.00

Total Dry Weight of Sample (g): 20,754.50 Wet Weight of Sub-Sample (g): 49.818

Dry Weight of Sub-Sample (g): 47.191

Corrected Dry Weight of Sub-Sample - W(g): 68.493

Elapsed Time (min)	Hydrometer Reading	Corrected Hydrometer Reading	Temperature (°C)	Temperature Coefficient (K)	Effective Depth (L)	Grain Diameter (mm)	Percent in Suspension (%)	Calculated Weight of Retained Soil (g)	Percent Passing by Weight (%)
0		4		13,	- 61				2
1	28.0	22.0	19.7	0.0138	11.70	0.0473	32.2	6675.48	32.2
2	25.0	19.0	19.7	0.0138	12.19	0.0341	27.8	5765.19	27.8
5	22.5	16.5	19.7	0.0138	12.60	0.0219	24.1	5006.61	24.1
15	20.5	14.5	19.9	0.0138	12.93	0.0128	21.2	4399.75	21.2
30	19.5	13.5	20.0	0.0137	13.10	0.0090	19.7	4096.32	19.7
60	18.5	12.5	20.3	0.0137	13.26	0.0064	18.3	3792.89	18.3
120	17.0	11.0	20.8	0.0137	13.51	0.0046	16.1	3337.74	16.1
250	16.0	10.0	22.2	0.0133	13.67	0.0031	14.6	3034.31	14.6
1440	14.3	8.3	20.3	0.0137	13.96	0.0013	12.1	2503.31	12.1

Data Entered By: KMR

Date: 12/13/2013

File Name: 2512_77_hydrometer-ASTM-D422-R0.xls_9.xls

Checked By: DP M Date: 12/13/13

Boring Number: CS-11 Depth: 9-24"

Sample Number: TI-CS11-04A(9-24')

Sampled Date: 11/13/2013 Test Date: 12/5/2013 Sampled By: MWH Technician: CAL

Project Number:

Grain Size Data

Hygroscopic Moisture of Fines

Client: MWH Job Number: 2512-77

Project: Church Rock

Location: Tailings Impoundment

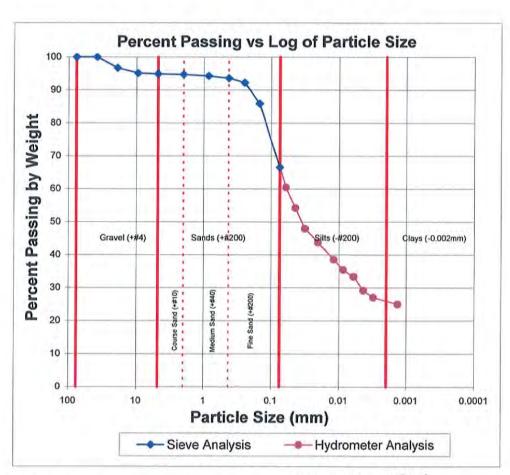
Weight of Wet Soil & Pan (g): 130.26 Weight of Dry Soil & Pan (g): 126.16 Weight of Water (g): 4.10 Weight of Pan (g): 3.70

Weight of Dry Soil (g): 122.46

Moisture (%): 3.4

General Sample Data

Total Wet Weight of Sample (g): 4,640.86
Total Dry Weight of Sample (g): 4,498.12
Calculated Weight Plus #200 (g): 1,505.61
Moisture of Total Sample (%): 3.2
Percent Retained #200 Sieve (%): 33.5


Plus Split Data

Original Weight of +#10 (g): 250.86 Calculated Weight of +#10 (g): 238.09

Minus Split Data

Original Weight of -#10 (g): 4,390.00 Calculated Dry Weight of -#10 (g): 4,260.03

Sieve Number	Sieve Size (mm)	Weight of Retained Soil & Pan (g)	Weight of Pan (g)	Weight of Retained Soil (g)	Calculated Weight of Retained Soil (g)	Percent Passing by Weight (%)
3"	76.2	0.00	0.00	0.00	0.00	100.0
1.5"	38.10	0.00	0.00	0.00	0.00	100.0
3/4"	19.05	148.98	0.00	148.98	148.98	96.7
3/8"	9.525	69.50	0.00	69.50	69.50	95.1
#4	4.750	10.77	0.00	10.77	10.77	94.9
#10	2.000	8.84	0.00	8.84	8.84	94.7
46.719g spl	it out of #10	material.				
#20	0.850	4.17	3.96	0.22	20.54	94.3
#40	0.425	4.16	3.83	0.33	31.10	93.6
#60	0.250	4.45	3.80	0.66	61.82	92.2
#100	0.150	6.74	3.73	3.01	283.85	85.9
#200	0.075	12.79	3.56	9.23	870.21	66.5

Data Entered By: KMR

Date: 12/11/2013

File Name: 2512_77_hydrometer-ASTM-D422-R0.xls_3.xls

Checked By: DPM
Date: 12/11/13

Client: MWH Job Number: 2512-77

Project: Church Rock

Location: Tailings Impoundment

Project Number:

Boring Number: CS-11

Depth: 9-24"

Sample Number: TI-CS11-04A(9-24')

Sampled Date: 11/13/2013 Test Date: 12/5/2013 Sampled By: MWH Technician: CAL

Hydrometer Data

Test Configuration

Hydrometer Type: 152H Specific Gravity: 2.68

Deflocculant: Sodium Hexametaphosphate

Deflocculant Correction: 7.0

Specific Gravity Correction Factor - a: 1.00

Total Wet Weight of Sample (g): 4,640.86
Total Dry Weight of Sample (g): 4,498.12
Wet Weight of Sub-Sample (g): 46.719
Dry Weight of Sub-Sample (g): 45.204

Corrected Dry Weight of Sub-Sample - W(g): 47.734

Elapsed Time (min)	Hydrometer Reading	Corrected Hydrometer Reading	Temperature (°C)	Temperature Coefficient (K)	Effective Depth (L)	Grain Diameter (mm)	Percent in Suspension (%)	Calculated Weight of Retained Soil (g)	Percent Passing by Weight (%
0						7-1-7-1		4-9-	1 - 2 h.l.
0.5	36.0	29.0	22.0	0.0133	10.39	0.0607	60.5	2719.33	60.5
1	33.0	26.0	22.0	0.0133	10.88	0.0439	54.2	2438.02	54.2
2	30.0	23.0	22.0	0.0133	11.37	0.0318	47.9	2156.71	47.9
5	28.0	21.0	22.3	0.0133	11.70	0.0204	43.8	1969.17	43.8
15	25.5	18.5	22.3	0.0133	12.11	0.0120	38.6	1734.74	38.6
30	24.0	17.0	21.7	0.0135	12.36	0.0087	35.4	1594.09	35.4
60	23.0	16.0	22.0	0.0133	12.52	0.0061	33.4	1500.32	33.4
120	21.0	14.0	22.2	0.0133	12.85	0.0044	29.2	1312.78	29.2
250	20.0	13.0	20.3	0.0137	13.01	0.0031	27.1	1219.01	27.1
1440	19.0	12.0	18.8	0.0140	13.18	0.0013	25.0	1125.24	25.0

Data Entered By: KMR

Date: 12/11/2013

File Name: 2512_77_hydrometer-ASTM-D422-R0.xls_3.xls

Checked By: DIM
Date: 12/4/17

Client: MWH
Job Number: 2512-77

Project: Church Rock

Location: Tailings Impoundment

Project Number:

Boring Number: CS-12

Depth: 0-14"

Sample Number: TI-CS12-02A(0-14")

Sampled Date: 11/13/2013 Sampled By: MWH
Test Date: 12/11/2013 Technician: DPM

Grain Size Data

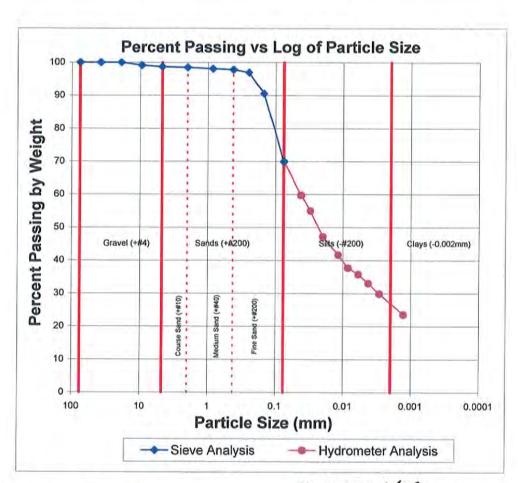
Hygroscopic Moisture of Fines

Weight of Wet Soil & Pan (g): 87.03 Weight of Dry Soil & Pan (g): 86.61 Weight of Water (g): 0.42 Weight of Pan (g): 3.57 Weight of Dry Soil (g): 83.04

Moisture (%): 0.5

General Sample Data

Total Wet Weight of Sample (g): 1,604.40
Total Dry Weight of Sample (g): 1,596.35
Calculated Weight Plus #200 (g): 479.94
Moisture of Total Sample (%): 0.5
Percent Retained #200 Sieve (%): 30.1


Plus Split Data

Original Weight of +#10 (g): 27.75 Calculated Weight of +#10 (g): 24.31

Minus Split Data

Original Weight of -#10 (g): 1,576.65 Calculated Dry Weight of -#10 (g): 1,572.05

Sieve Number	Sieve Size (mm)	Weight of Retained Soil & Pan (g)	Weight of Pan (g)	Weight of Retained Soil (g)	Calculated Weight of Retained Soil (g)	Percent Passing by Weight (%)
3"	76.2	0.00	0.00	0.00	0.00	100.0
1.5"	38.10	0.00	0.00	0.00	0.00	100.0
3/4"	19.05	0.00	0.00	0.00	0.00	100.0
3/8"	9.525	13.72	0.00	13.72	13.72	99.1
#4	4.750	7.58	0.00	7.58	7.58	98.7
#10	2.000	3.01	0.00	3.01	3.01	98.5
63.085g spl	it out of -#10	material.				
#20	0.850	4.04	3.80	0.24	5.91	98.1
#40	0.425	4.16	3.97	0.18	4.53	97.8
#60	0.250	4.40	3.82	0.58	14.58	96.9
#100	0.150	7.62	3.56	4.06	101.72	90.5
#200	0.075	16.75	3.62	13.13	328.89	69.9

Data Entered By: KMR

Date: 12/13/2013

File Name: 2512_77_hydrometer-ASTM-D422-R0.xls_7.xls

Checked By: 0/M
Date: 12/13 (13)

Client: MWH Job Number: 2512-77

Project: Church Rock

Location: Tailings Impoundment

Project Number:

Boring Number: CS-12

Depth: 0-14"

Sample Number: TI-CS12-02A(0-14")

Sampled Date: 11/13/2013 Test Date: 12/11/2013 Sampled By: MWH Technician: DPM

Hydrometer Data

Test Configuration

Hydrometer Type: 152H Specific Gravity: 2.65

Deflocculant: Sodium Hexametaphosphate

Deflocculant Correction: 6.0

Specific Gravity Correction Factor - a: 1.00

Total Wet Weight of Sample (g): 1,604.40

Total Dry Weight of Sample (g): 1,596.35 Wet Weight of Sub-Sample (g): 63.085

Dry Weight of Sub-Sample (g): 62.764

Corrected Dry Weight of Sub-Sample - W(g): 63.720

Elapsed Time (min)	Hydrometer Reading	Corrected Hydrometer Reading	Temperature (°C)	Temperature Coefficient (K)	Effective Depth (L)	Grain Diameter (mm)	Percent in Suspension (%)	Calculated Weight of Retained Soil (g)	Percent Passing by Weight (%)
0	48	-	- 4			- 7	1 4	-	
1	44.0	38.0	19.5	0.0138	9.08	0.0416	59.7	953.30	59.7
2	41.0	35.0	19.5	0.0138	9.57	0.0302	55.0	878.04	55.0
5	36.0	30.0	19.5	0.0138	10.39	0.0199	47.1	752.61	47.1
15	32.5	26.5	19.6	0.0138	10.96	0.0118	41.6	664.80	41.6
30	30.0	24.0	19.8	0.0138	11.37	0.0085	37.7	602.09	37.7
60	28.8	22.8	20.1	0.0137	11.58	0.0060	35.8	570.73	35.8
120	27.0	21.0	20.7	0.0137	11.87	0.0043	33.0	526.83	33.0
250	25.0	19.0	22.1	0.0133	12.19	0.0029	29.9	476.65	29.9
1440	21.0	15.0	20.3	0.0137	12.85	0.0013	23.6	376.30	23.6

Note: Removed one +3/4" rock out of the total sample weight of 6,280.0 grams.

Data Entered By: KMR

Date: 12/13/2013

File Name: 2512_77_hydrometer-ASTM-D422-R0.xls_7.xls

Checked By: Plm Date: 12/(3/(3

Client: MWH Job Number: 2512-77

Project: Church Rock

Location: Tailings Impoundment

Project Number: -

Boring Number: CS-2 Depth: 10-24"

Sample Number: TI-CS02-04A(10-24")

Sampled Date: 11/12/2013 Sampled By: MWH
Test Date: 12/16/2013 Technician: DPM

Grain Size Data

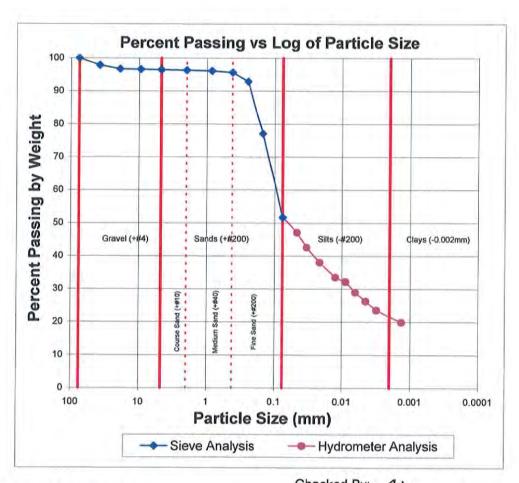
Hygroscopic Moisture of Fines

Weight of Wet Soil & Pan (g): 82.68 Weight of Dry Soil & Pan (g): 80.93 Weight of Water (g): 1.75 Weight of Pan (g): 3.72 Weight of Dry Soil (g): 77.21

Moisture (%): 2.3

General Sample Data

Total Wet Weight of Sample (g): 6,233.81 Total Dry Weight of Sample (g): 6,100.35 Calculated Weight Plus #200 (g): 2,948.76 Moisture of Total Sample (%): 2.2 Percent Retained #200 Sieve (%): 48.3


Plus Split Data

Original Weight of +#10 (g): 238.81 Calculated Weight of +#10 (g): 225.84

Minus Split Data

Original Weight of -#10 (g): 5,995.00 Calculated Dry Weight of -#10 (g): 5,874.51

Sieve Number	Sieve Size (mm)	Weight of Retained Soil & Pan (g)	Weight of Pan (g)	Weight of Retained Soil (g)	Calculated Weight of Retained Soil (g)	Percent Passing by Weight (%)
3"	76.2	0.00	0.00	0.00	0.00	100.0
1.5"	38.10	129.85	0.00	129.85	129.85	97.9
3/4"	19.05	71.91	0.00	71.91	71.91	96.7
3/8"	9.525	7.27	0.00	7.27	7.27	96.6
#4	4.750	8.47	0.00	8.47	8.47	96.4
#10	2.000	8.34	0.00	8.34	8.34	96.3
54.411g spl	it out of #10	material.				
#20	0.850	3.90	3.78	0.12	13.25	96.1
#40	0.425	4.02	3.77	0.25	27.60	95.6
#60	0.250	5.28	3.74	1.54	170.04	92.8
#100	0.150	12.50	3.77	8.73	963.95	77.0
#200	0.075	17.62	3.60	14.02	1548.06	51.7

Data Entered By: DPM

Date: 12/18/2013

File Name: 2512_77_hydrometer-ASTM-D422-R0.xls_18.xls

Checked By: (2)
Date: 12/18/2013

Client: MWH

Job Number: 2512-77

Project: Church Rock

Location: Tailings Impoundment

Project Number: -

Boring Number: CS-2

Depth: 10-24"

Sample Number: TI-CS02-04A(10-24")

Sampled Date: 11/12/2013 Test Date: 12/16/2013 Sampled By: MWH

Technician: DPM

Hydrometer Data

Test Configuration

Hydrometer Type: 152H Specific Gravity: 2.65

Deflocculant: Sodium Hexametaphosphate

Deflocculant Correction: 5.0

Specific Gravity Correction Factor - a: 1.00

Total Wet Weight of Sample (g): 6,233.81

Total Dry Weight of Sample (g): 6,100.35 Wet Weight of Sub-Sample (g): 54.411

Dry Weight of Sub-Sample (g): 53.202

Corrected Dry Weight of Sub-Sample - W(g): 55.246

Elapsed Time (min)	Hydrometer Reading	Corrected Hydrometer Reading	Temperature (°C)	Temperature Coefficient (K)	Effective Depth (L)	Grain Diameter (mm)	Percent in Suspension (%)	Calculated Weight of Retained Soil (g)	Percent Passing by Weight (%
0				- 10 m		art Verse		and the state of	
1	31.0	26.0	19.2	0.0138	11.21	0.0463	47.1	2874.85	47.1
2	28.5	23.5	19.2	0.0138	11.62	0.0333	42.6	2598.42	42.6
5	26.0	21.0	19.2	0.0138	12.03	0.0214	38.1	2322.00	38.1
15	23.5	18.5	19.2	0.0138	12.44	0.0126	33.5	2045.57	33.5
30	22.8	17.8	19.4	0.0138	12.56	0.0089	32.2	1962.64	32.2
60	21.0	16.0	19.8	0.0138	12.85	0.0064	29.0	1769.14	29.0
120	19.5	14.5	20.2	0.0137	13.10	0.0045	26.3	1603.28	26.3
250	18.0	13.0	20.8	0.0137	13.34	0.0032	23.6	1437.43	23.6
1440	16.0	11.0	19.8	0.0138	13.67	0.0013	19.9	1216.28	19.9

Data Entered By: DPM

Date: 12/18/2013

File Name: 2512_77_hydrometer-ASTM-D422-R0.xls_18.xls

Checked By: (2)

Client: MWH Job Number: 2512-77

Project: Church Rock

Location: Tailings Impoundment

Project Number: -

Boring Number: CS-10

Depth: 7-25"

Sample Number: TI-CS10-04A(7-25")

Sampled Date: 11/13/2013 Test Date: 12/16/2013 Sampled By: MWH Technician: DPM

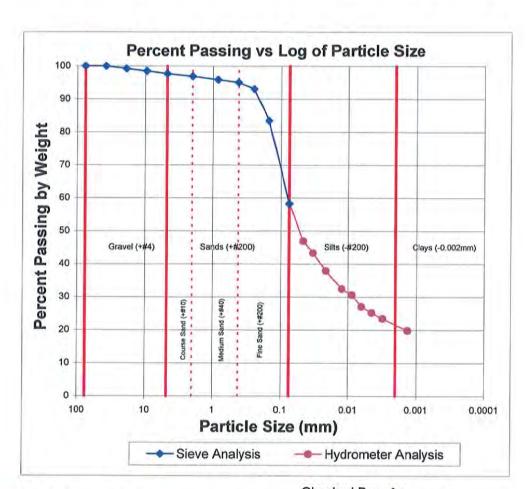
Grain Size Data

Hygroscopic Moisture of Fines

Weight of Wet Soil & Pan (g): 47.42
Weight of Dry Soil & Pan (g): 46.12
Weight of Water (g): 1.30
Weight of Pan (g): 3.69
Weight of Dry Soil (g): 42.44
Moisture (%): 3.1

General Sample Data

Total Wet Weight of Sample (g): 7,040.25 Total Dry Weight of Sample (g): 6,837.34 Calculated Weight Plus #200 (g): 2,855.58 Moisture of Total Sample (%): 3.0 Percent Retained #200 Sieve (%): 41.8


Plus Split Data

Original Weight of +#10 (g): 260.25 Calculated Weight of +#10 (g): 213.97

Minus Split Data

Original Weight of -#10 (g): 6,780.00 Calculated Dry Weight of -#10 (g): 6,623.37

Sieve Number	Sieve Size (mm)	Weight of Retained Soil & Pan (g)	Weight of Pan (g)	Weight of Retained Soil (g)	Calculated Weight of Retained Soil (g)	Percent Passing by Weight (%)
3"	76.2	0.00	0.00	0.00	0.00	100.0
1.5"	38.10	0.00	0.00	0.00	0.00	100.0
3/4"	19.05	53.49	0.00	53.49	53.49	99.2
3/8"	9.525	48.97	0.00	48.97	48.97	98.5
#4	4.750	56.68	0.00	56.68	56.68	97.7
#10	2.000	54.82	0.00	54.82	54.82	96.9
55.378g spl	it out of #10	material.				
#20	0.850	3.63	3.08	0.55	67.80	95.9
#40	0.425	4.28	3.81	0.47	57.94	95.0
#60	0.250	4.85	3.73	1.12	138.06	93.0
#100	0.150	9.08	3.78	5.30	653.31	83.5
#200	0.075	17.56	3.57	13.99	1724.50	58.2

Data Entered By: DPM

Date: 12/18/2013

File Name: 2512_77_hydrometer-ASTM-D422-R0.xls 14.xls

Client: MWH Job Number: 2512-77

Project: Church Rock

Location: Tailings Impoundment

Project Number: -

Boring Number: CS-10

Depth: 7-25"

Sample Number: TI-CS10-04A(7-25")

Sampled Date: 11/13/2013 Sampled By: MWH Test Date: 12/16/2013 Technician: DPM

Hydrometer Data

Test Configuration

Hydrometer Type: 152H Specific Gravity: 2.65

Deflocculant: Sodium Hexametaphosphate

Deflocculant Correction: 5.0

Specific Gravity Correction Factor - a: 1.00

Total Wet Weight of Sample (g): 7,040.25

Total Dry Weight of Sample (g): 6,837.34

Wet Weight of Sub-Sample (g): 55.378 Dry Weight of Sub-Sample (g): 53.732

Corrected Dry Weight of Sub-Sample - W(g): 55.451

Elapsed Time (min)	Hydrometer Reading	Corrected Hydrometer Reading	Temperature (°C)	Temperature Coefficient (K)	Effective Depth (L)	Grain Diameter (mm)	Percent in Suspension (%)	Calculated Weight of Retained Soil (g)	Percent Passing by Weight (%
0	8			UN 9 117 II			1.97		T. 3.1
1	31.0	26.0	19.8	0.0138	11.21	0.0463	47.0	3210.29	47.0
2	29.0	24.0	19.8	0.0138	11.54	0.0332	43.3	2963.34	43.3
5	26.0	21.0	19.8	0.0138	12.03	0.0214	37.9	2592.92	37.9
15	23.0	18.0	20.0	0.0137	12.52	0.0125	32.5	2222.51	32.5
30	22.0	17.0	20.1	0.0137	12.69	0.0089	30.7	2099.03	30.7
60	20.0	15.0	20.4	0.0137	13.01	0.0064	27.1	1852.09	27.1
120	19.0	14.0	20.5	0.0137	13.18	0.0045	25.3	1728.62	25.3
250	18.0	13.0	21.1	0.0135	13.34	0.0031	23.5	1605.14	23.5
1440	16.0	11.0	19.8	0.0138	13.67	0.0013	19.9	1358.20	19.9

Data Entered By: DPM

Date: 12/18/2013

File Name: 2512_77_hydrometer-ASTM-D422-R0.xls_14.xls

Checked By:

Client: MWH
Job Number: 2512-77

Project: Church Rock

Location: Tailings Impoundment

Project Number: -

Boring Number: CS-5 Depth: 0-9"

- Number: TI COS 004/0

Sample Number: TI-CS05-02A(0-9")

Sampled Date: -Test Date: 12/16/2013 Sampled By: -Technician: DPM

Grain Size Data

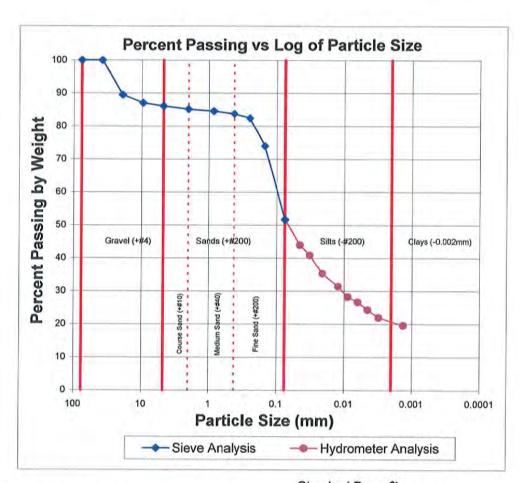
Hygroscopic Moisture of Fines

Weight of Wet Soil & Pan (g): 60.73 Weight of Dry Soil & Pan (g): 57.81 Weight of Water (g): 2.92 Weight of Pan (g): 3.71 Weight of Dry Soil (g): 54.11

General Sample Data

Total Wet Weight of Sample (g): 9,638.02 Total Dry Weight of Sample (g): 9,215.19 Calculated Weight Plus #200 (g): 4,451.48 Moisture of Total Sample (%): 4.6 Percent Retained #200 Sieve (%): 48.3

Plus Split Data


Moisture (%): 5.4

Original Weight of +#10 (g): 1,468.02 Calculated Weight of +#10 (g): 1,366.82

Minus Split Data

Original Weight of -#10 (g): 8,170.00 Calculated Dry Weight of -#10 (g): 7,848.37

Sieve Number	Sieve Size (mm)	Weight of Retained Soil & Pan (g)	Weight of Pan (g)	Weight of Retained Soil (g)	Calculated Weight of Retained Soil (g)	Percent Passing by Weight (%)
3"	76.2	0.00	0.00	0.00	0.00	100.0
1.5"	38.10	0.00	0.00	0.00	0.00	100.0
3/4"	19.05	967.87	0.00	967.87	967.87	89.5
3/8"	9.525	225.54	0.00	225.54	225.54	87.0
#4	4.750	90.53	0.00	90.53	90.53	86.1
#10	2.000	82.88	0.00	82.88	82.88	85.2
57.221g spl	it out of #10	material.				
#20	0.850	4.26	3.88	0.38	54.93	84.6
#40	0.425	4.24	3.70	0.54	78.06	83.7
#60	0.250	4.47	3.63	0.84	121.42	82.4
#100	0.150	9.12	3.76	5.36	774.78	74.0
#200	0.075	17.93	3.71	14.22	2055.48	51.7

Data Entered By: DPM

Date: 12/18/2013

File Name: 2512_77_hydrometer-ASTM-D422-R0.xls 17.xls

Checked By: (2)

Client: MWH Job Number: 2512-77

Project: Church Rock

Location: Tailings Impoundment Project Number: -

Boring Number: CS-5 Depth: 0-9"

Sample Number: TI-CS05-02A(0-9")

Sampled Date: -Test Date: 12/16/2013 Sampled By: -Technician: DPM

Hydrometer Data

Test Configuration

Hydrometer Type: 152H Specific Gravity: 2.65

Deflocculant: Sodium Hexametaphosphate

Deflocculant Correction: 5.0 Specific Gravity Correction Factor - α: 1.00 Total Wet Weight of Sample (g): 9,638.02

Total Dry Weight of Sample (g): 9,215.19 Wet Weight of Sub-Sample (g): 57.221

Dry Weight of Sub-Sample (g): 54.296 Corrected Dry Weight of Sub-Sample - W(g): 63.727

Elapsed Time (min)	Hydrometer Reading	Corrected Hydrometer Reading	Temperature (°C)	Temperature Coefficient (K)	Effective Depth (L)	Grain Diameter (mm)	Percent in Suspension (%)	Calculated Weight of Retained Soil (g)	Percent Passing by Weight (%)
0	. 8.1				4	9			-
1	33.0	28.0	20.5	0.0137	10.88	0.0450	44.0	4054.41	44.0
2	31.0	26.0	20.5	0.0137	11.21	0.0323	40.9	3764.81	40.9
5	27.5	22.5	20.5	0.0137	11.78	0.0210	35.4	3258.01	35.4
15	25.0	20.0	20.5	0.0137	12.19	0.0123	31.4	2896.01	31.4
30	23.0	18.0	20.6	0.0137	12.52	0.0088	28.3	2606.40	28.3
60	22.0	17.0	20.9	0.0137	12.69	0.0063	26.7	2461.60	26.7
120	20.5	15.5	20.7	0.0137	12.93	0.0045	24.4	2244.40	24.4
250	19.0	14.0	21.2	0.0135	13.18	0.0031	22.0	2027.20	22.0
1440	17.5	12.5	19.9	0.0138	13.42	0.0013	19.6	1810.00	19.6

Data Entered By: DPM

Date: 12/18/2013

File Name: 2512_77_hydrometer-ASTM-D422-R0.xls_17.xls

Checked By: W

Client: MWH Job Number: 2512-77

Project: Church Rock

Location: Tailings Impoundment

Project Number:

Boring Number: CS-3

Depth: 6-24"

Sample Number: TI-CS03-04A(6-24")

Sampled Date: 11/12/2013 Test Date: 12/11/2013 Sampled By: MWH Technician: DPM

Grain Size Data

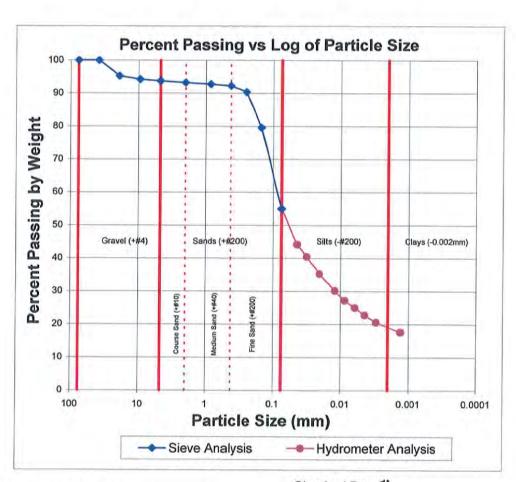
Hygroscopic Moisture of Fines

Weight of Wet Soil & Pan (g): 160.12 Weight of Dry Soil & Pan (g): 155.95 Weight of Water (g): 4.17 Weight of Pan (g): 3.68

> Weight of Dry Soil (g): 152.28 Moisture (%): 2.7

General Sample Data

Total Wet Weight of Sample (g): 9,980.00
Total Dry Weight of Sample (g): 9,731.58
Calculated Weight Plus #200 (g): 4,378.08
Moisture of Total Sample (%): 2.6
Percent Retained #200 Sieve (%): 45.0


Plus Split Data

Original Weight of +#10 (g): 715.00 Calculated Weight of +#10 (g): 659.87

Minus Split Data

Original Weight of -#10 (g): 9,265.00 Calculated Dry Weight of -#10 (g): 9,071.71

Sieve Number	Sieve Size (mm)	Weight of Retained Soil & Pan (g)	Weight of Pan (g)	Weight of Retained Soil (g)	Calculated Weight of Retained Soil (g)	Percent Passing by Weight (%)
3"	76.2	0.00	0.00	0.00	0.00	100.0
1.5"	38.10	0.00	0.00	0.00	0.00	100.0
3/4"	19.05	465.17	0.00	465.17	465.17	95.2
3/8"	9.525	100.35	0.00	100.35	100.35	94.2
#4	4.750	48.26	0.00	48.26	48.26	93.7
#10	2.000	46.09	0.00	46.09	46.09	93.2
65.132g spl	it out of -#10	material.				
#20	0.850	4.18	3.86	0.32	45.22	92.8
#40	0.425	4.05	3.70	0.35	50.51	92.2
#60	0.250	4.89	3.60	1.29	184.45	90.3
#100	0.150	11.01	3.69	7.32	1046.89	79.6
#200	0.075	20.27	3.56	16.71	2391.13	55.0

Data Entered By: DPM

Date: 12/16/2013

File Name: 2512_77_hydrometer-ASTM-D422-R0.xls 11.xls

Checked By: (2)
Date: 12/16/2013

Client: MWH Job Number: 2512-77

Project: Church Rock

Location: Tailings Impoundment

Project Number:

Boring Number: CS-3

Depth: 6-24"

Sample Number: TI-CS03-04A(6-24")

Sampled Date: 11/12/2013 Test Date: 12/11/2013 Sampled By: MWH Technician: DPM

Hydrometer Data

Test Configuration

Hydrometer Type: 152H Specific Gravity: 2.65

Deflocculant: Sodium Hexametaphosphate

Deflocculant Correction: 6.0

Specific Gravity Correction Factor - a: 1.00

Total Wet Weight of Sample (g): 9,980.00

Total Dry Weight of Sample (g): 9,731.58 Wet Weight of Sub-Sample (g): 65.132

Dry Weight of Sub-Sample (g): 63.396

Corrected Dry Weight of Sub-Sample - W(g): 68.021

Elapsed Time (min)	Hydrometer Reading	Corrected Hydrometer Reading	Temperature (°C)	Temperature Coefficient (K)	Effective Depth (L)	Grain Diameter (mm)	Percent in Suspension (%)	Calculated Weight of Retained Soil (g)	Percent Passing by Weight (%
0			4 -					7-67	on policy
1	36.0	30.0	20.6	0.0137	10.39	0.0440	44.2	4297.84	44.2
2	33.5	27.5	20.6	0.0137	10.80	0.0317	40.5	3939.69	40.5
5	30.0	24.0	20.6	0.0137	11.37	0.0206	35.3	3438.28	35.3
15	26.5	20.5	20.7	0.0137	11.95	0.0122	30.2	2936.86	30.2
30	24.5	18.5	20.9	0.0137	12.28	0.0087	27.2	2650.34	27.2
60	23.0	17.0	21.2	0.0135	12.52	0.0062	25.0	2435.45	25.0
120	21.5	15.5	21.9	0.0135	12.77	0.0044	22.8	2220.55	22.8
250	20.0	14.0	23.2	0.0132	13.01	0.0030	20.6	2005.66	20.6
1440	18.0	12.0	20.1	0.0137	13.34	0.0013	17.7	1719.14	17.7

Data Entered By: DPM

Date: 12/16/2013

File Name: 2512_77_hydrometer-ASTM-D422-R0.xls_11.xls

Checked By:

Client: MWH Job Number: 2512-77

Project: Church Rock

Location: Tailings Impoundment

Project Number:

Boring Number: CS-4

Depth: 0-10"

Sample Number: TI-CS04-02A(0-10")

Sampled Date: 11/12/2013 Sampled By: MWH
Test Date: 12/11/2013 Technician: DPM

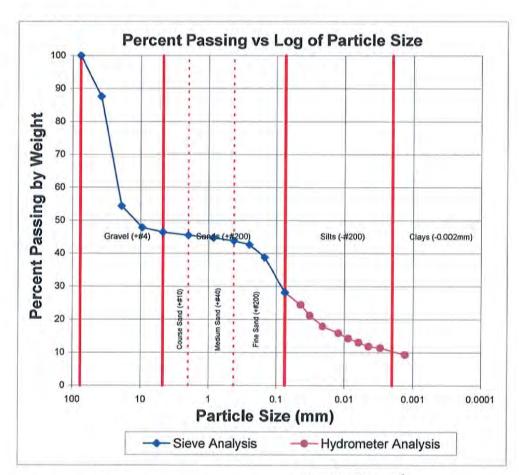
Grain Size Data

Hygroscopic Moisture of Fines

Weight of Wet Soil & Pan (g): 128.86 Weight of Dry Soil & Pan (g): 123.46 Weight of Water (g): 5.40 Weight of Pan (g): 3.77 Weight of Dry Soil (g): 119.70 Moisture (%): 4.5

General Sample Data

Total Wet Weight of Sample (g): 10,960.00
Total Dry Weight of Sample (g): 10,739.81
Calculated Weight Plus #200 (g): 7,713.64
Moisture of Total Sample (%): 2.1
Percent Retained #200 Sieve (%): 71.8


Plus Split Data

Original Weight of +#10 (g): 6,020.00 Calculated Weight of +#10 (g): 5,855.33

Minus Split Data

Original Weight of -#10 (g): 4,940.00 Calculated Dry Weight of -#10 (g): 4,884.48

Sieve Number	Sieve Size (mm)	Weight of Retained Soil & Pan (g)	Weight of Pan (g)	Weight of Retained Soil (g)	Calculated Weight of Retained Soil (g)	Percent Passing by Weight (%)
3"	76.2	0.00	0.00	0.00	0.00	100.0
1.5"	38.10	1335.00	0.00	1335.00	1335.00	87.6
3/4"	19.05	3565.00	0.00	3565.00	3565.00	54.4
3/8"	9.525	701.85	0.00	701.85	701.85	47.8
#4	4.750	153.07	0.00	153.07	153.07	46.4
#10	2.000	100.41	0.00	100.41	100.41	45.5
58.444g spl	it out of -#10	material.				
#20	0.850	4.74	3.78	0.97	84.29	44.7
#40	0.425	4.89	3.77	1.12	98.09	43.8
#60	0.250	5.13	3.72	1.41	122.89	42.6
#100	0.150	8.52	3.77	4.75	414.44	38.8
#200	0.075	16.73	3.69	13.04	1138.60	28.2

Data Entered By: DPM

Date: 12/16/2013

File Name: 2512_77_hydrometer-ASTM-D422-R0.xls_13.xls

Checked By: (2)

Client: MWH Job Number: 2512-77

Project: Church Rock

Location: Tailings Impoundment

Project Number:

Boring Number: CS-4

Depth: 0-10"

Sample Number: TI-CS04-02A(0-10")

Sampled Date: 11/12/2013 Test Date: 12/11/2013 Sampled By: MWH Technician: DPM

Hydrometer Data

Test Configuration

Hydrometer Type: 152H Specific Gravity: 2.65

Deflocculant: Sodium Hexametaphosphate

Deflocculant Correction: 6.0

Specific Gravity Correction Factor - a: 1.00

Total Wet Weight of Sample (g): 10,960.00 Total Dry Weight of Sample (g): 10,739.81 Wet Weight of Sub-Sample (g): 58.444

Dry Weight of Sub-Sample (g): 55.923

Corrected Dry Weight of Sub-Sample - W(g): 122.908

Elapsed Time (min)	Hydrometer Reading	Corrected Hydrometer Reading	Temperature (°C)	Temperature Coefficient (K)	Effective Depth (L)	Grain Diameter (mm)	Percent in Suspension (%)	Calculated Weight of Retained Soil (g)	Percent Passing by Weight (%)
0			112	18484-7		- F	Fall	40-20-00	
1	36.0	30.0	20.4	0.0137	10.39	0.0440	24.4	2625.01	24.4
2	32.0	26.0	20.4	0.0137	11.05	0.0321	21.2	2275.01	21.2
5	28.0	22.0	20.4	0.0137	11.70	0.0209	17.9	1925.01	17.9
15	25.5	19.5	20.5	0.0137	12.11	0.0123	15.9	1706.25	15.9
30	23.5	17.5	20.7	0.0137	12.44	0.0088	14.3	1531.25	14.3
60	22.0	16.0	21.0	0.0135	12.69	0.0062	13.0	1400.00	13.0
120	20.5	14.5	21.7	0.0135	12.93	0.0044	11.8	1268.75	11.8
250	20.0	14.0	23.0	0.0132	13.01	0.0030	11.4	1225.00	11.4
1440	17.5	11.5	20.1	0.0137	13.42	0.0013	9.4	1006,25	9.4

Data Entered By: DPM

Date: 12/16/2013

File Name: 2512_77_hydrometer-ASTM-D422-R0.xls_13.xls

Checked By: (2)

Client: MWH Job Number: 2512-77

Project: Church Rock

Location: Tailings Impoundment

Project Number:

Boring Number: CS-1

Depth: 0-11"

Sample Number: TI-CS01-02A(0-11")

Sampled Date: 11/12/2013 Sampled By: MWH
Test Date: 12/11/2013 Technician: DPM

Grain Size Data

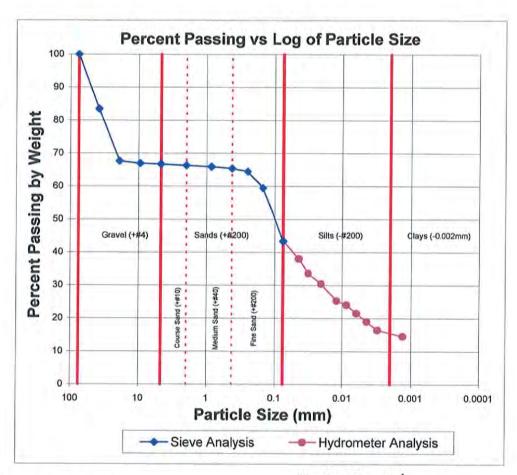
Hygroscopic Moisture of Fines

Weight of Wet Soil & Pan (g): 102.21 Weight of Dry Soil & Pan (g): 95.38 Weight of Water (g): 6.83 Weight of Pan (g): 3.71 Weight of Dry Soil (g): 91.68

Moisture (%): 7.5

General Sample Data

Total Wet Weight of Sample (g): 10,625.00
Total Dry Weight of Sample (g): 10,124.70
Calculated Weight Plus #200 (g): 5,737.76
Moisture of Total Sample (%): 4.9
Percent Retained #200 Sieve (%): 56.7


Plus Split Data

Original Weight of +#10 (g): 3,485.00 Calculated Weight of +#10 (g): 3,410.42

Minus Split Data

Original Weight of -#10 (g): 7,140.00 Calculated Dry Weight of -#10 (g): 6,714.28

Sieve Number	Sieve Size (mm)	Weight of Retained Soil & Pan (g)	Weight of Pan (g)	Weight of Retained Soil (g)	Calculated Weight of Retained Soil (g)	Percent Passing by Weight (%)
3"	76.2	0.00	0.00	0.00	0.00	100.0
1.5"	38.10	1675.00	0.00	1675.00	1675.00	83.5
3/4"	19.05	1605.00	0.00	1605.00	1605.00	67.6
3/8"	9.525	69.87	0.00	69.87	69.87	66.9
#4	4.750	22.03	0.00	22.03	22.03	66.7
#10	2.000	38.52	0.00	38.52	38.52	66.3
56.276g spl	it out of #10	material.				
#20	0.850	4.16	3.83	0.32	41.41	65.9
#40	0.425	4.26	3.84	0.42	53.72	65.4
#60	0.250	4.48	3.74	0.74	95.00	64.4
#100	0.150	7.59	3.68	3.91	501.77	59.5
#200	0.075	16.29	3.54	12.76	1635.45	43.3

Data Entered By: DPM

Date: 12/16/2013

File Name: 2512_77_hydrometer-ASTM-D422-R0.xls_12.xls

Checked By: W

Client: MWH

Job Number: 2512-77

Project: Church Rock

Location: Tailings Impoundment

Project Number:

Boring Number: CS-1

Depth: 0-11"

Sample Number: TI-CS01-02A(0-11")

Sampled Date: 11/12/2013 Test Date: 12/11/2013 Sampled By: MWH Technician: DPM

Hydrometer Data

Test Configuration

Hydrometer Type: 152H

Specific Gravity: 2,65

Deflocculant: Sodium Hexametaphosphate

Deflocculant Correction: 6.0

Specific Gravity Correction Factor - a: 1.00

Total Wet Weight of Sample (g): 10,625.00

Total Dry Weight of Sample (g): 10,124.70 Wet Weight of Sub-Sample (g): 56.276

Dry Weight of Sub-Sample (g): 52.374

Corrected Dry Weight of Sub-Sample - W(g): 78.995

Elapsed Time (min)	Hydrometer Reading	Corrected Hydrometer Reading	Temperature (°C)	Temperature Coefficient (K)	Effective Depth (L)	Grain Diameter (mm)	Percent in Suspension (%)	Calculated Weight of Retained Soil (g)	Percent Passing by Weight (%
0	9		-						
1	36.0	30.0	20.1	0.0137	10.39	0.0440	38.0	3850.32	38.0
2	32.5	26.5	20.1	0.0137	10.96	0.0320	33.6	3401.12	33.6
5	30.0	24.0	20.1	0.0137	11.37	0.0206	30.4	3080.26	30.4
15	26.0	20.0	20.2	0.0137	12.03	0.0122	25.4	2566.88	25.4
30	25.0	19.0	20.3	0.0137	12.19	0.0087	24.1	2438.54	24.1
60	23.0	17.0	20.5	0.0137	12.52	0.0062	21.5	2181.85	21.5
120	21.0	15.0	21.3	0.0135	12.85	0.0044	19.0	1925.16	19.0
250	19.0	13.0	22.8	0.0133	13.18	0.0031	16.5	1668.47	16.5
1440	17.5	11.5	20.4	0.0137	13.42	0.0013	14.6	1475.96	14.6

Data Entered By: DPM

Date: 12/16/2013

File Name: 2512_77_hydrometer-ASTM-D422-R0.xls_12.xls

Checked By: W

Specific Gravity ASTM D 854 - Method B

CLIENT: MWH JOB NO. 2512-77

PROJECT Church Rock LOCATION Tailings Impoundment

PROJECT NO. -

 BORING NO.
 CS-1
 CS-4

 DEPTH
 11-24"
 10-24"

 SAMPLE NO.
 TI-CS01-04A (11-24")
 TI-CS04-041 (10-24")

 DATE SAMPLED
 11/12/13 MWH
 11/12/13 MWH

 DATE TESTED
 12/20/13 MLM
 12/20/13 MLM

Pycnometer# Big 10 Big 12 70.52 50.89 Weight of oven dry soil (g) (Wo) Weight of flask, soil, 716.14 704.46 and water. (g) (Wb) Temperature (deg. C) (Tx) 24.3 24.2 Weight of water & flask 671.95 672.56 at Tx (from cal. curve)(Wa) 2.68 2.68 Specific Gravity*

Data entry by: DAW Date: 12/27/2013

File name: 2512_77_SpecificGravity-ASTM-854-R1_0.xls

^{*}Specific Gravity = Wo/[Wo+(Wa-Wb)]

SPECIFIC GRAVITY	TESTS	ASTM D 854		
CLIENT:	MWH		JOB NO.	2512-77
PROJECT:	Church Ro	ock		
BORING NO.		CS-8	CS-11	
DEPTH		8-28"	9-24"	
SAMPLE NO.		TI-CS08-04A(8-28")	TI-CS11-04A(9-24")	
DATE SAMPLED		11/13/13 MWH	11/13/13 MWH	
DATE TESTED		12/03/13 CAL	12/6/13 KMR	
LOCATION		Tailings Impoundment	Tailings Impoundment	
Pycnometer#				
Agrana Stran		FF	AA	
Weight of oven dry so	il	30.797	30.853	
Weight of flask, soil, and water. (g) (Wb)		184.109	184.409	
Temperature (deg. C) (Tx)		20.8	19.0	
Weight of water & flas at Tx (from cal. curve)		164.828	165.088	
Specific Gravity*	1027	2.67	2.68	

Data entry by: CA Data checked by: <u>DVM</u> FileName: MWSGAS31

Date: 12/10/13

12/09/2013

^{*}Specific Gravity = Wo/[Wo+(Wa-Wb)]

CLIENT:

MWH

JOB NO. 2512-77

BORING NO. DEPTH

CS-11 9-24"

DATE SAMPLED DATE TESTED

11/13/13 12/5/13

SAMPLE NO.

TI-CS11-04A(9-24")

LOCATION

Tailings Impoundment

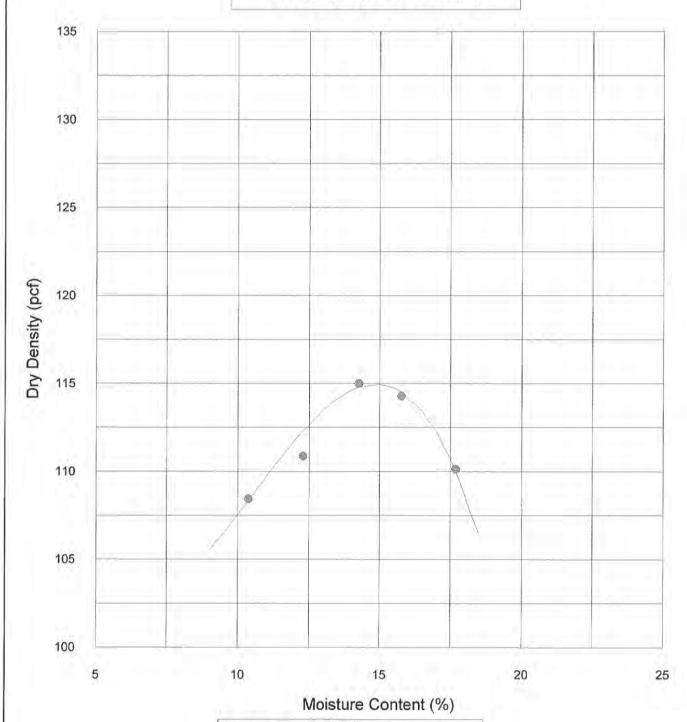
SOIL DESCR. Church Rock

Moisture Determination					
	1	2	3	4	5
Wt of Moisture added (ml)	240.00	200.00	160.00	120.00	80.00
Wt. of soil & dish (g)	536,48	509.58	585.73	577.59	616.55
Dry wt. soil & dish (g)	456.88	441.11	513.44	515.08	559.20
Net loss of moisture (g)	79.60	68.47	72.29	62.51	57.35
Wt. of dish (g)	6.63	6.57	6.51	6.51	6.56
Net wt. of dry soil (g)	450.25	434.54	506.93	508.57	552.64
Moisture Content (%)	17.68	15.76	14.26	12.29	10.38
Corrected Moisture Content					
Density determination					
Wt of soil & mold (lb)	9.68	9.77	9.74	9.51	9.35
Wt. of mold (lb)	5.36	5.36	5.36	5.36	5.36
Net wt. of wet soil (lb)	4.32	4.41	4.38	4.15	3.99
Net wt of dry soil (lb)	3.67	3.81	3.83	3,70	3.61
Dry Density, (pcf)	110.13	114.29	115.00	110.87	108.45
Corrected Dry Density (pcf)					
Volume Factor	30	30	30	30	30

Data entered by: KMR Data checked by:

FileName:

MW68913


Date:

12/09/2013

Date: 12/09/13

- Best Fit Curve ▲ Zero Air VoidsCurve
- Actual Data
- @ SG = 2.65

OPTIMUM MOISTURE CONTENT = 14.9 MAXIMUM DRY DENSITY = 115.0 ASTM D 698 A, Rock correction applied? N

CLIENT: MWH JOB NO. 2512-77

 BORING NO.
 CS-8
 DATE SAMPLED
 11/13/13 MWH

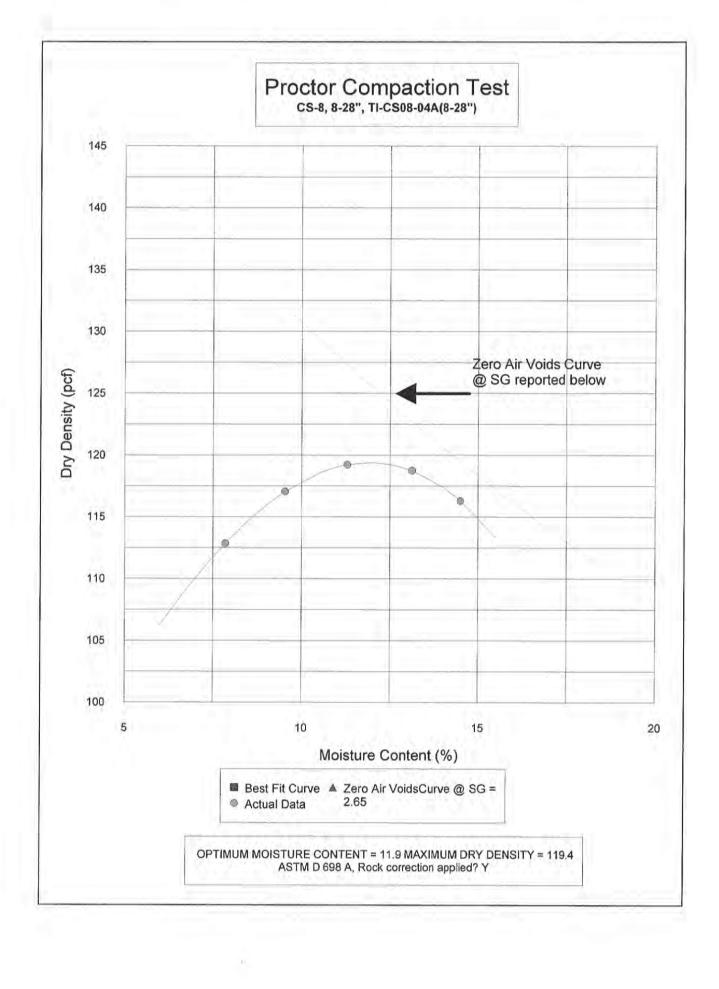
 DEPTH
 8-28"
 DATE TESTED
 11/26/13 CAL

SAMPLE NO. TI-CS08-04A(8-28") LOCATION Tailings Impoundment

PROJECT Church Rock

Moisture Determination					
	1	2	3	4	5
Wt of Moisture added (ml)	200.00	160.00	120.00	80.00	40.00
Wt. of soil & dish (g)	529.30	542.40	549.41	351.60	529.41
Dry wt. soil & dish (g)	456.21	474.04	488.43	318.31	487.18
Net loss of moisture (g)	73.09	68.36	60.98	33.29	42.23
Wt. of dish (g)	6.55	9.25	6.56	6.56	6.62
Net wt. of dry soil (g)	449.66	464.79	481.87	311.75	480.56
Moisture Content (%)	16.25	14.71	12.65	10.68	8.79
Corrected Moisture Content	14.50	13.12	11.29	9.53	7.85
Density determination					
Wt of soil & mold (lb)	9.72	9.76	9.70	9.54	9.31
Wt. of mold (lb)	5.37	5.37	5.37	5.37	5.37
Net wt. of wet soil (lb)	4.35	4.39	4.33	4.17	3.94
Net wt of dry soil (lb)	3.74	3.83	3.84	3.77	3.62
Dry Density, (pcf)	112.25	114.81	115.31	113.03	108.65
Corrected Dry Density (pcf)	116.31	118.75	119.22	117.05	112.85
Volume Factor	30	30	30	30	30

Data entered by: Data checked by:__


FileName:

CAL <u>F2</u> MWD69812

Date: 12 3 15

12/02/2013

CLIENT:

MWH

JOB NO. 2512-77

BORING NO.

CS-1

DATE SAMPLED

11/12/2013 MWH

DEPTH SAMPLE NO.

11-24" TI-CS01-04A(11-24")

DATE TESTED LOCATION

12/18/2013 TMR

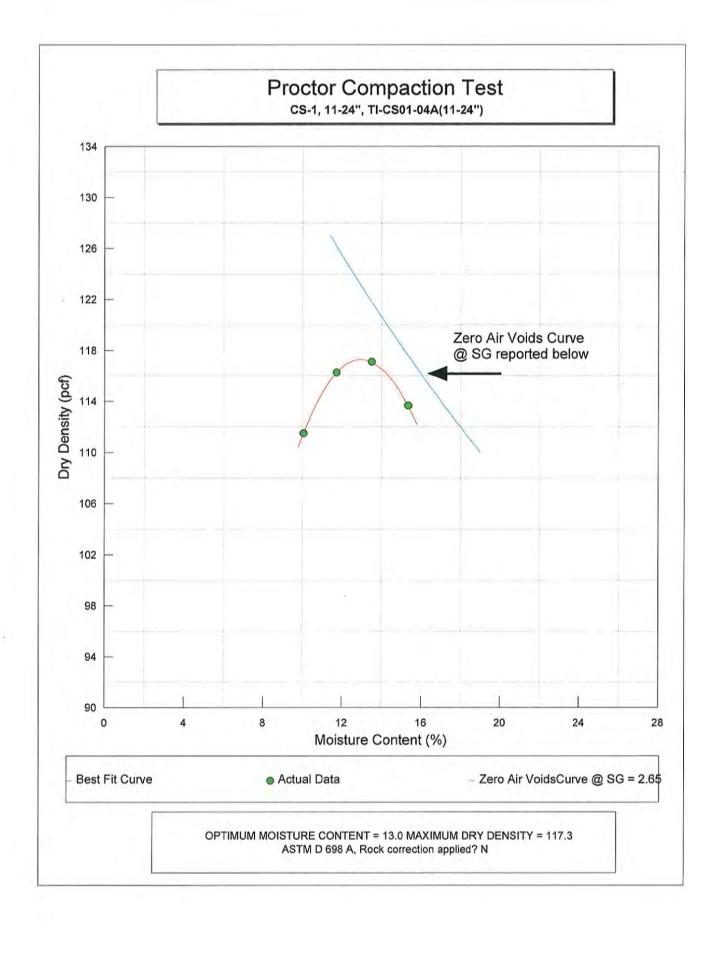
PROJECT

Church Rock

Tailings Impoundment

Moisture Determination				
	1	2	3	4
Wt of Moisture added (ml)	280.00	240.00	200.00	160.00
Wt. of soil & dish (g)	559.52	662.30	586.92	539.94
Dry wt. soil & dish (g)	485.98	584.29	526.00	491.20
Net loss of moisture (g)	73.54	78.01	60.92	48.74
Wt. of dish (g)	6.66	6.57	6.75	6.50
Net wt. of dry soil (g)	479.32	577.72	519.25	484.70
Moisture Content (%)	15.34	13.50	11.73	10.06
Corrected Moisture Content				
Density determination				
Wt of soil & mold (lb)	14.16	14.22	14.12	13.88
Wt. of mold (lb)	9.79	9.79	9.79	9.79
Net wt. of wet soil (lb)	4.37	4.43	4.33	4.09
Net wt of dry soil (lb)	3.79	3.90	3.88	3.72
Dry Density, (pcf)	113.66	117.09	116.26	111.49
Corrected Dry Density (pcf)				
Volume Factor	30	30	30	30

Data entered by: Data checked by:


Date: Date: 12/29/13

12/27/2013

FileName:

PRCS0102

CLIENT: MWH JOB NO. 2512-77

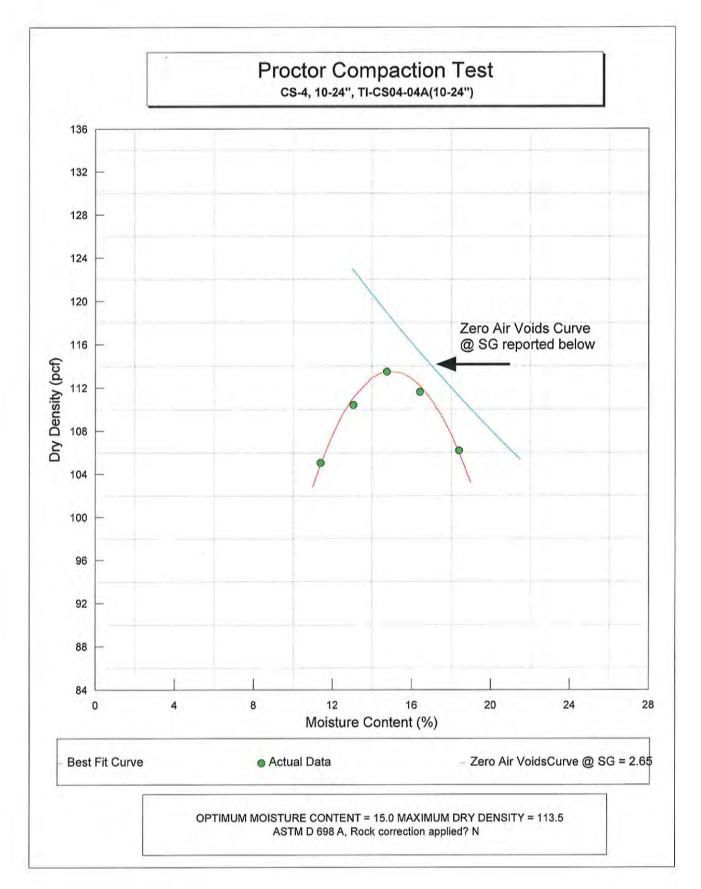
 BORING NO.
 CS-4
 DATE SAMPLED
 11/12/2013 MWH

 DEPTH
 10-24"
 DATE TESTED
 12/18/2013 TMR

 SAMPLE NO.
 TI-CS04-04A(10-24")
 LOCATION
 Tailings Impoundment

PROJECT Church Rock

Moisture Determination					
	1	2	3	4	5
Wt of Moisture added (ml)	320.00	280.00	360.00	240.00	200.00
Wt. of soil & dish (g)	566.98	562.35	626.62	585.89	562.19
Dry wt. soil & dish (g)	487.95	491.15	530.55	518.98	505.52
Net loss of moisture (g)	79.03	71.20	96.07	66.91	56.67
Wt. of dish (g)	6.58	8.20	8.38	6.58	8.22
Net wt. of dry soil (g)	481.37	482.95	522.17	512.40	497.30
Moisture Content (%)	16.42	14.74	18.40	13.06	11.40
Corrected Moisture Content				Person	
Density determination					
Wt of soil & mold (lb)	14.12	14.13	13.98	13.95	13.69
Wt. of mold (lb)	9.79	9.79	9.79	9.79	9.79
Net wt. of wet soil (lb)	4.33	4.34	4.19	4.16	3.90
Net wt of dry soil (lb)	3.72	3.78	3.54	3.68	3.50
Dry Density, (pcf)	111.58	113.47	106.17	110.39	105.03
Corrected Dry Density (pcf)					
Volume Factor	30	30	30	30	30


Data entered by: TMR Data checked by:

FileName: PRCS401

Date: , 12/27/2013

Date: 12/29/13

CLIENT MWH

JOB NO. 2512-77

BORING NO. DEPTH SAMPLE NO. Tailings Impoundment 10-24"

TI-CS04-04A (10-24") Church Rock

LOCATION PROJECT NO.

SOIL DESCR.

Remolded -#4 @ 90%

SAMPLED TEST STARTED TEST FINISHED CELL NUMBER

SATURATED TEST TEST TYPE

CONF. PRES. PSF

01/29/14 CAL 02/13/14 CAL

16S Yes

TX/Pbp/Tap Water

1152

MOISTURE/DENSITY	BEFORE	AFTER	
DATA	TEST	TEST	
Wt. Soil + Moisture (g)	420.7	445.7	
Wt. Wet Soil & Pan (g)	427.3	452.3	
Wt. Dry Soil & Pan (g)	373.9	373.9	
Wt. Lost Moisture (g)	53.4	78.4	
Wt. of Pan Only (g)	6.7	6.7	
Wt. of Dry Soil (g)	367.3	367.3	
Moisture Content %	14.5	21.3	
Wet Density PCF	117.8	133.6	
Dry Density PCF	102.8	110.1	
Init. Diameter (in)	2.404	(cm)	6.106
Init. Area (sq in)	4.539	(sq cm)	29.286
Init. Height (in)	2.998	(cm)	7.615
Vol. Bef. Consol. (cu ft)	0.00787	,,,,,,,	
Vol. After Consol. (cu ft)	0.00735		
Porosity %	37.66		

FLOW PUMP CALCULATIONS

Pump Setting (gear number)	8
Percentage of Pump setting	100
Q (cc/s)	5.70E-04
Height	2.963
Diameter	2.336
Pressure (psi)	0.480
Area after consol. (cm*cm)	27.661
Gradient	4.484
Permeability k (cm/s)	4.6E-06
Permeability k (m/s)	4.6E-08
Back Pressure (psi)	88.0
Cell Pressure (psi)	96.0
Ave. Effective Stress (psi)	7.760

Data entry by:

DAW

Date:

02/18/2014

22.1

Average temperature degree C:

Checked by: Date: 2/18/14
FileName: 2512_77_HarvardFlowPump-Perm-ASTMD-5084-R1_6.xls

CLIENT MWH		JOB NO. 2512-77	
BORING NO.	Tailings Impoundment	SAMPLED	-
DEPTH	10-24"	TEST STARTED	01/29/14 CAL
SAMPLE NO.	TI-CS04-04A (10-24")	TEST FINISHED	02/13/14 CAL
LOCATION	Church Rock	SETUP NO.	16S

TX/Pbp/Tap Water TEST TYPE Remolded -#4 @ 90% SOIL DESCR. CONF. PRES. PSF 1152

SATURATION DATA

SATURATED TEST

Yes

Cell Pres. (PSI)	Back Pres. (PSI)	Burette Reading (CC)		Pore Pressure (PSI)		Change	В
		Close	Open	Close	Open		
40.0	38.0	3.9	17.6				
50.0	48.0	17.8	19.6	38.3	46.6	8.3	0.83
60.0	58.0	19.6	20.7	48.4	57.0	8.6	0.86
70.0	68.0	21.2	22.1	58.5	67.5	9.0	0.90
80.0	78.0	22.2	22.8	68.3	77.7	9.4	0.94
90.0	88.0	23.0	23.7	78.4	87.7	9.3	0.93
100.0		23.7	23.8	88.5	98.1	9.6	0.96

CONSOLIDATION DATA

	Elapsed	SQRT	Burette	Volume		
	Time	Time	Reading	Defl.		
	(Min)	(Min)	(CC)	(cc)		
	0.00	0.00	0.00	0.00		
	0.25	0.50	2.50	-2.50		
	0.5	0.71	3.20	-3.20		
	1	1.00	3.80	-3.80		
	2	1.41	4.40	-4.40		
	4	2.00	5.00	-5.00		
	9	3.00	5.60	-5.60		
	16	4.00	5.90	-5.90		
	30	5.48	6.30	-6.30		
	60	7.75	6.70	-6.70		
	120	10.95	6.80	-6.80		
	240	15.49	7.00	-7.00		
	360	18.97	7.20	-7.20		
Value of the					000 000	
Initial Height (in)		2.998	Init. Vol. (C		223.033	
Height Change (in)		0.035	Vol. Chang	the state of the s	28.400	
Ht. After Cons. (in)		2.963	Cell Exp.	Contract of the Contract of th	13.585	
Initial Area (sq in)		4.539	Net Change	THE RESERVE AND THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAM	14.815	
Area After Cons. (sq in)		4.288	Cons. Vol.	(CC)	208.218	

PROJECT NO.

Data entry by: DAW Date: 02/18/2014
Checked by: 42 Date: 2/18/14
FileName: 2512_77_HarvardFlowPump-Perm-ASTMD-5084-R1_6.xls

Client:

MWH

Job Number:

2512-77

Project:

Location:

Church Rock

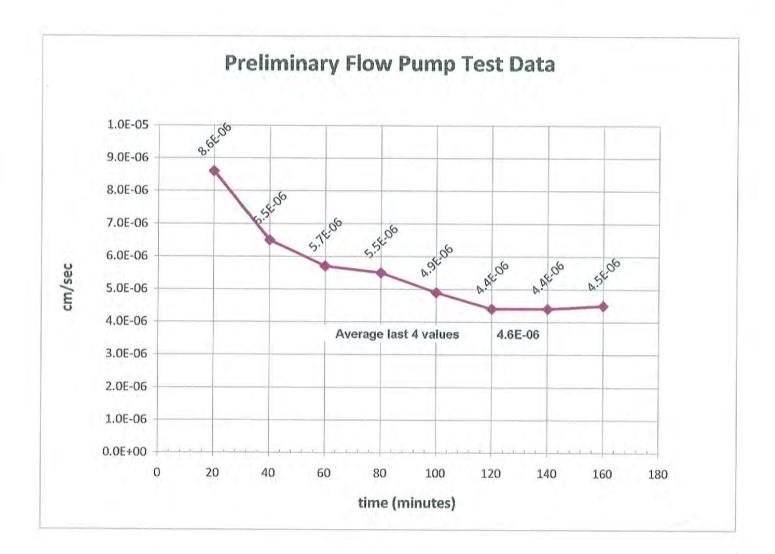
Project Number:

Boring Number: Tailings Impoundment

Depth: 10-24"

Sample Number: TI-CS04-04A @ 90% D698

Sampled Date:


Test Date:

-

Sampled By: MWH

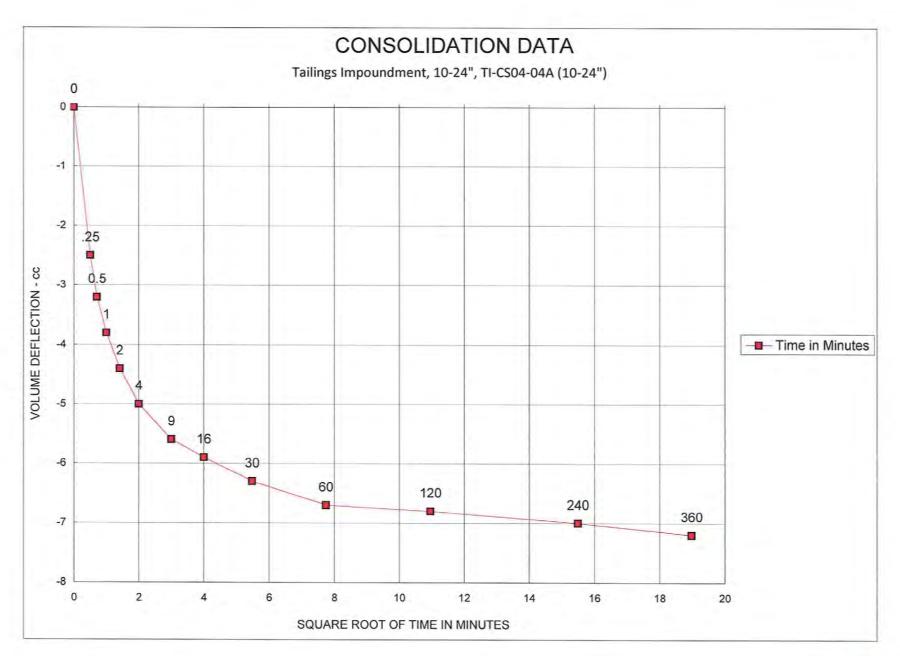
CAL

2/13/2014 Technician:

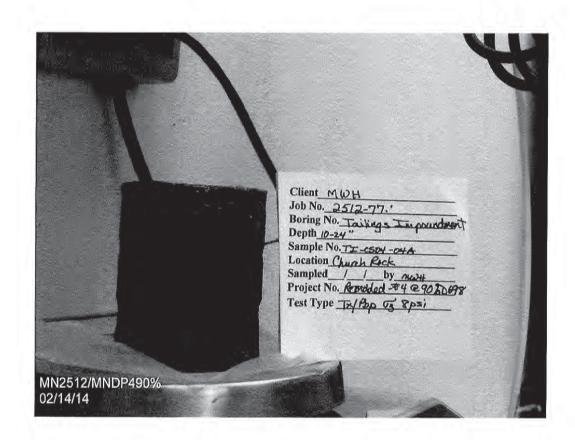
Data Entered By: CAL Date: 2/13/

File Messes

2/13/2014


File Name: 2512_77_Prel

2512_77_PrelimPerm_ASTMD-5084-methodD_8.xls


Checked By:

Date:

02/14/14

CLIENT	MWH	IOR NO	2512-77
CLIENT	IVIVVII	JOB NO.	2012-11

BORING NO.	Tailings Impoundment	SAMPLED	2000
DEPTH	10-24"	TEST STARTED	01/29/14 CAL
SAMPLE NO.	TI-CS04-04A (10-24")	TEST FINISHED	02/11/14 CAL
LOCATION	Church Rock	CELL NUMBER	7S
PROJECT NO.		SATURATED TEST	Yes
SOIL DESCR.	Remolded -#4 @ 95%	TEST TYPE CONF. PRES. PSF	TX/Pbp/Tap Water 1152

MOISTURE/DENSITY	BEFORE	AFTER	
DATA	TEST	TEST	
Wt. Soil + Moisture (g)	444.0	466.5	
Wt. Wet Soil & Pan (g)	450.5	473.0	
Wt. Dry Soil & Pan (g)	393.0	393.0	
Wt. Lost Moisture (g)	57.6	80.0	
Wt. of Pan Only (g)	6.5	6.5	
Wt. of Dry Soil (g)	386.5	386.5	
Moisture Content %	14.9	20.7	
Wet Density PCF	124.2	133.7	
Dry Density PCF	108.1	110.8	
Init. Diameter (in)	2.404	(cm)	6.106
Init. Area (sq in)	4.539	(sq cm)	29.286
Init. Height (in)	3.000	(cm)	7.620
Vol. Bef. Consol. (cu ft)	0.00788	4,000	11,1007
Vol. After Consol. (cu ft)	0.00769		
Porosity %	36.72		

FLOW PUMP CALCULATIONS

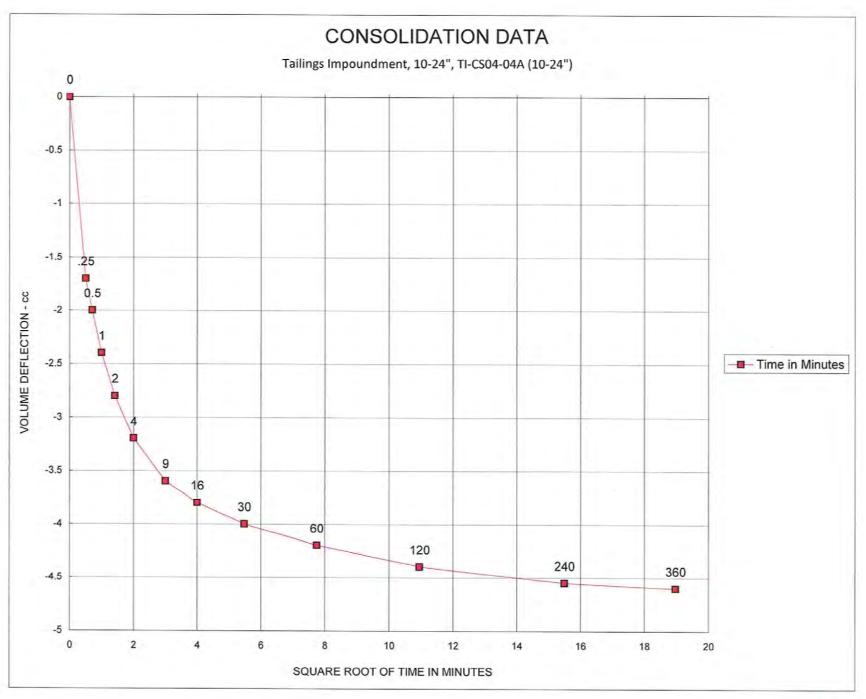
Pump Setting (gear number)	8
Percentage of Pump setting	100
Q (cc/s)	5.70E-04
Height	2.987
Diameter	2.380
Pressure (psi)	0.345
Area after consol. (cm*cm)	28.711
Gradient	3.197
Permeability k (cm/s)	6.2E-06
Permeability k (m/s)	6.2E-08
Back Pressure (psi)	78.0
Cell Pressure (psi)	86.0
Ave. Effective Stress (psi)	7.828
Average temperature degree C:	23.3

Data entry by: SKL 02/12/2014

Data entry by: SKL Date: 02/12/2014
Checked by: Oak Date: 213 H
FileName: 2512_77_HarvardFlowPump-Perm-ASTMD-5084-R1_3.xls

CLIENT MWH		JOB NO. 2512-77	
BORING NO.	Tailings Impoundment	SAMPLED	Andre Va
DEPTH	10-24"	TEST STARTED	01/29/14 CAL
SAMPLE NO.	TI-CS04-04A (10-24")	TEST FINISHED	02/11/14 CAL
LOCATION	Church Rock	SETUP NO.	7S
PROJECT NO.	30,777, 30,777	SATURATED TEST	Yes
SOIL DESCR.	Remolded -#4 @ 95%	TEST TYPE	TX/Pbp/Tap Water
		CONF. PRES. PSF	1152

SATURATION DATA


Cell Pres. (PSI)	Back Pres. (PSI)	Burette Reading (CC)		Pore Pressure (PSI)		Change	В
		Close	Open	Close	Open		
40.0	38.0	2.9	12.9		12.35		
50.0	48.0	11.6	13.2	38.0	46.3	8.3	0.83
60.0	58.0	12.9	14.0	48.1	56.9	8.8	0.88
70.0	68.0	14.3	15.2	58.5	67.7	9.2	0.92
80.0	78.0	15.3	16.1	68.4	77.8	9.4	0.94
90.0		16.4	16.5	78.3	87.9	9.6	0.96
					F 1 1 1 2 2 2 2		

CONSOLIDATION DATA

	Elapsed	SQRT	Burette	Volume	
	Time	Time	Reading	Defl.	
	(Min)	(Min)	(CC)	(cc)	
	0.00	0.00	0.10	0.00	
	0.25	0.50	1.80	-1.70	
	0.5	0.71	2.10	-2.00	
	1	1.00	2.50	-2.40	
	2	1.41	2.90	-2.80	
	4	2.00	3.30	-3.20	
	9	3.00	3.70	-3.60	
	16	4.00	3.90	-3.80	
	30	5.48	4.10	-4.00	
	60	7.75	4.30	-4.20	
	120	10.95	4.50	-4.40	
	240	15.49	4.65	-4.55	
	360	18.97	4.70	-4,60	
Initial Height (in)		3.000	Init. Vol. (C	C)	223.182
Height Change (in)		0.013	Vol. Change	(CC)	19.100
Ht. After Cons. (in)		2.987	Cell Exp. (CC)	13.786
Initial Area (sq in)		4.539	Net Change	(CC)	5.314
Area After Cons. (sq in)		4.450	Cons. Vol.		217.868

Data entry by: SKL Date: 02/12/2014
Checked by: Date: 110 14
FileName: 2512_77_HarvardFlowPump-Perm-ASTMD-5084-R1_3.xls

Client:

MWH

Job Number:

2512_77

Project:

Location:

Church Rock

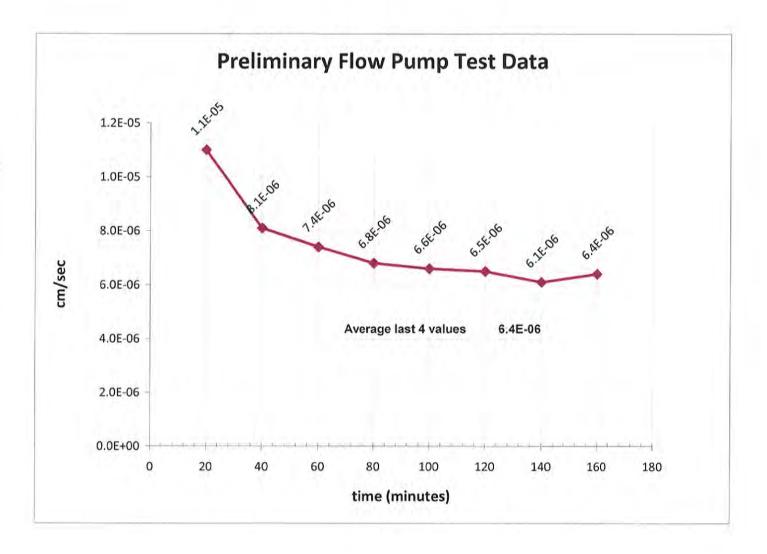
Project Number: --

Boring Number: Tailings Impoundment

Depth:

Test Date:

10-24"


Sample Number: TI-CS04-04A @ 95% D698

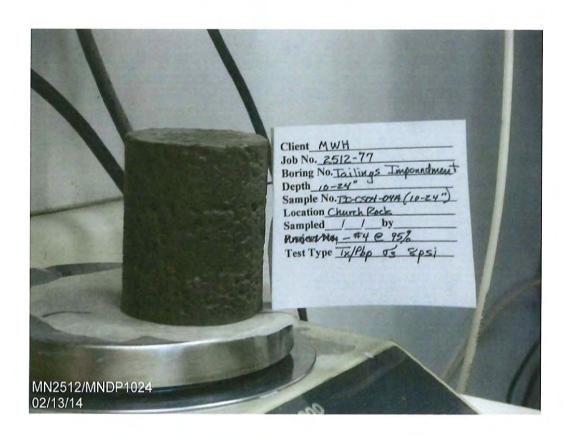
Sampled Date:

Sampled By: MWH CAL

Technician:

2/11/2014

Data Entered By: CAL


Date:

2/12/2014

File Name:

2512_77_PrelimPerm_ASTMD-5084-methodD_7.xls

Checked By:

CLIENT	MWH	JOB NO.	2512-77
--------	-----	---------	---------

BORING NO.	Tailings Impoundment	SAMPLED	4-
DEPTH	10-24"	TEST STARTED	01/29/14 CAL
SAMPLE NO.	TI-CS04-04A (10-24")	TEST FINISHED	02/12/14 CAL
LOCATION	Church Rock	CELL NUMBER	21S
PROJECT NO	Thursday Addison	SATURATED TEST	Yes

TX/Pbp/Tap Water Remolded -#4 @ 100% SOIL DESCR. TEST TYPE

CONF. PRES. PSF 1152

MOISTURE/DENSITY	BEFORE	AFTER	
DATA	TEST	TEST	
Wt. Soil + Moisture (g)	467.1	482.6	
Wt. Wet Soil & Pan (g)	473.6	489.2	
Wt. Dry Soil & Pan (g)	411.6	411.6	
Wt. Lost Moisture (g)	62.0	77.6	
Wt. of Pan Only (g)	6.5	6.5	
Wt. of Dry Soil (g)	405.0	405.0	
Moisture Content %	15,3	19.2	
Wet Density PCF	130.2	134.7	
Dry Density PCF	112.9	113.1	
Init Diameter (in)	2 406	(cm)	6.111
The state of the s		The second second	29.334
	3.006	15 7 May 15 C. C. C. C. C. C.	7.635
	0.00791	0.5774	1,233
	0.00790		
	34.69		
	DATA Wt. Soil + Moisture (g) Wt. Wet Soil & Pan (g) Wt. Dry Soil & Pan (g) Wt. Lost Moisture (g) Wt. of Pan Only (g) Wt. of Dry Soil (g) Moisture Content % Wet Density PCF	DATA TEST Wt. Soil + Moisture (g) 467.1 Wt. Wet Soil & Pan (g) 473.6 Wt. Dry Soil & Pan (g) 411.6 Wt. Lost Moisture (g) 62.0 Wt. of Pan Only (g) 6.5 Wt. of Dry Soil (g) 405.0 Moisture Content % 15.3 Wet Density PCF 130.2 Dry Density PCF 112.9 Init. Diameter (in) 2.406 Init. Area (sq in) 4.547 Init. Height (in) 3.006 Vol. Bef. Consol. (cu ft) 0.00791 Vol. After Consol. (cu ft) 0.00790	DATA TEST TEST Wt. Soil + Moisture (g) 467.1 482.6 Wt. Wet Soil & Pan (g) 473.6 489.2 Wt. Dry Soil & Pan (g) 411.6 411.6 Wt. Lost Moisture (g) 62.0 77.6 Wt. of Pan Only (g) 6.5 6.5 Wt. of Dry Soil (g) 405.0 405.0 Moisture Content % 15.3 19.2 Wet Density PCF 130.2 134.7 Dry Density PCF 112.9 113.1 Init. Diameter (in) 2.406 (cm) Init. Area (sq in) 4.547 (sq cm) Init. Height (in) 3.006 (cm) Vol. Bef. Consol. (cu ft) 0.00791 Vol. After Consol. (cu ft) 0.00790

FLOW PUMP CALCULATIONS

2 . v. 2 . v	7.4
Pump Setting (gear number)	11
Percentage of Pump setting	100
Q (cc/s)	5.71E-05
Height	3.007
Diameter	2.404
Pressure (psi)	0.910
Area after consol. (cm*cm)	29.275
Gradient	8.377
Permeability k (cm/s)	2.3E-07
Permeability k (m/s)	2.3E-09
Back Pressure (psi)	68.0
Cell Pressure (psi)	76.0
Ave. Effective Stress (psi)	7.545
Average temperature degree C:	22.6

DAW Data entry by: Date: 02/14/2014

Checked by: Date: 2/18/14

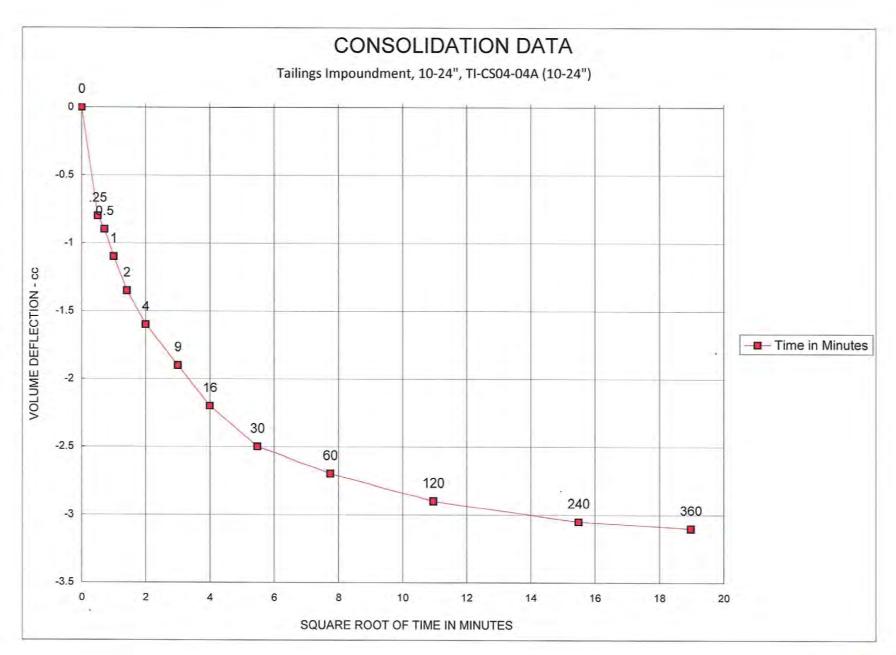
FileName: 2512_77_HarvardFlowPump-Perm-ASTMD-5084-R1_7.xls

Checked by:

CLIENT MWH		JOB NO. 2512-77	
BORING NO.	Tailings Impoundment	SAMPLED	*
DEPTH	10-24"	TEST STARTED	01/29/14 CAL
SAMPLE NO.	TI-CS04-04A (10-24")	TEST FINISHED	02/12/14 CAL
LOCATION	Church Rock	SETUP NO.	21S
PROJECT NO.		SATURATED TEST	Yes
SOIL DESCR.	Remolded -#4 @ 100%	TEST TYPE CONF. PRES. PSF	TX/Pbp/Tap Water 1152

SATURATION DATA

Cell Pres. (PSI)	Back Pres. (PSI)	Burette Reading (CC)		Pore Pressure (PSI)		Change	В
		Close	Open	Close	Open		
40.0	38.0	2.1	14.4				
50.0	48.0	11.1	12.3	37.5	45.9	8.4	0.84
60.0	58.0	12.1	13.0	47.5	56.3	8.8	0.88
70.0	68.0	12.9	13.7	57.3	66.7	9.4	0.94
80.0		13.8	13.8	67.4	76.9	9.5	0.95
80.0		13.8	13.8	67.4	76.9	9.5	0.95


CONSOLIDATION DATA

Elapsed	SQRT	Burette	Volume
Time	Time	Reading	Defl.
(Min)	(Min)	(CC)	(cc)
0.00	0.00	0,10	0.00
0.25	0.50	0.90	-0.80
0.5	0.71	1.00	-0.90
1	1.00	1.20	-1.10
2	1.41	1.45	-1.35
4	2.00	1.70	-1.60
9	3.00	2.00	-1.90
16	4.00	2.30	-2.20
30	5.48	2.60	-2.50
60	7.75	2.80	-2.70
120	10.95	3.00	-2.90
240	15.49	3.15	-3.05
360	18.97	3.20	-3.10

Initial Height (in)	3.006	Init. Vol. (CC)	224.001
Height Change (in)	-0.001	Vol. Change (CC)	15.400
Ht. After Cons. (in)	3.007	Cell Exp. (CC)	15.037
Initial Area (sq in)	4.547	Net Change (CC)	0.363
Area After Cons. (sq in)	4.538	Cons. Vol. (CC)	223.637

Data entry by: DAW Date: 02/14/2014
Checked by: Other Date: 2/18/19
FileName: 2512_77_HarvardFlowPump-Perm-ASTMD-5084-R1_7.xls

Client: N

MWH

Job Number: 2512_77

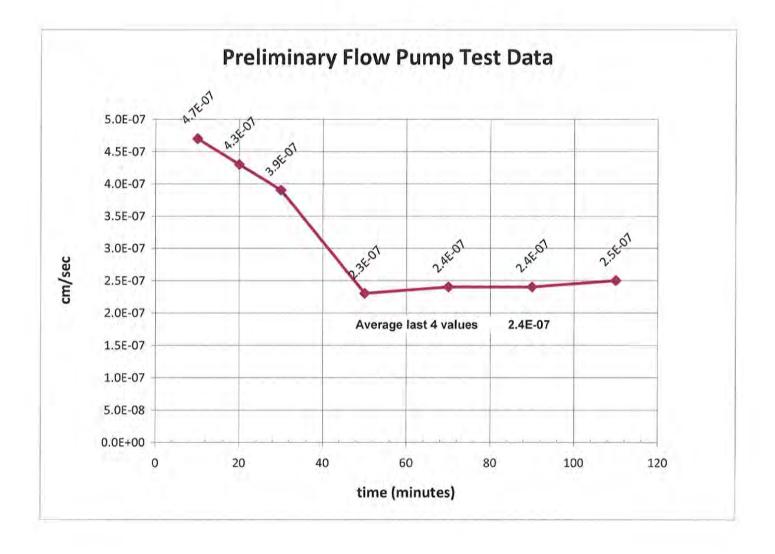
Project: -Location: 0

Church Rock

Project Number: --

Boring Number: Tailings Impoundment

epth: 10-24"


Sample Number: TI-CS04-04A

Sampled Date: -

Test Date: 2/12/2014

Sampled By: MWH

Technician: CAL

Data Entered By: CAL

Date: 2/12/2014

File Name: 2512_77_PrelimPerm_ASTMD-5084-methodD_0.xls

Checked By:

Date:

DX1474

CLIENT	MWH	JOB NO.	2512-77

Tailings Impoundment BORING NO. SAMPLED

11-24" 1/28/14 CAL DEPTH TEST STARTED TI-CS01-04A 2/14/14 CAL SAMPLE NO. TEST FINISHED

LOCATION Church Rock CELL NUMBER 4P PROJECT NO. SATURATED TEST Yes

Remolded -#4 @90% TX/Pbp/Tap Water SOIL DESCR. TEST TYPE

CONF. PRES. PSF 1152

MOISTURE/DENSITY	BEFORE	AFTER	
DATA	TEST	TEST	
Wt. Soil + Moisture (g)	427.0	457.9	
Wt. Wet Soil & Pan (g)	433.6	464.5	
Wt. Dry Soil & Pan (g)	385.1	385.1	
Wt. Lost Moisture (g)	48.5	79.4	
Wt. of Pan Only (g)	6.6	6.6	
Wt. of Dry Soil (g)	378.5	378.5	
Moisture Content %	12.8	21.0	
Wet Density PCF	119.5	131.3	
Dry Density PCF	106.0	108.6	
Init, Diameter (in)	2.406	(cm)	6.111
Init. Area (sq in)	4.547	(sq cm)	29.334
Init. Height (in)	2.993	(cm)	7.602
Vol. Bef. Consol. (cu ft)	0.00787	Sec. Sel.	
Vol. After Consol. (cu ft)	0.00769		
Porosity %	36.47		

FLOW PUMP CALCULATIONS

22.0

David Balling (automatical	
Pump Setting (gear number)	4
Percentage of Pump setting	100
Q (cc/s)	1.16E-02
Height	2.977
Diameter	2.383
Pressure (psi)	0.143
Area after consol. (cm*cm)	28.785
Gradient	1.330
Permeability k (cm/s)	3.0E-04
Permeability k (m/s)	3.0E-06
Back Pressure (psi)	68.0
Cell Pressure (psi)	76.0
Ave. Effective Stress (psi)	7.929

Data entry by: SKL Date: 02/17/2014

Average temperature degree C:

Checked by: Date: 2/18/14

FileName: 2512_77_HarvardFlowPump-Perm-ASTMD-5084-R1_8.xls

CLIENT MWH		JOB NO. 2512-77	
BORING NO.	Tailings Impoundment	SAMPLED	8
DEPTH	11-24"	TEST STARTED	1/28/14 CAL
SAMPLE NO.	TI-CS01-04A	TEST FINISHED	2/14/14 CAL
LOCATION	Church Rock	SETUP NO.	4P
PROJECT NO.	Canada and a series and a	SATURATED TEST	Yes
SOIL DESCR.	Remolded -#4 @90%	TEST TYPE CONF. PRES. PSF	TX/Pbp/Tap Water 1152

SATURATION DATA

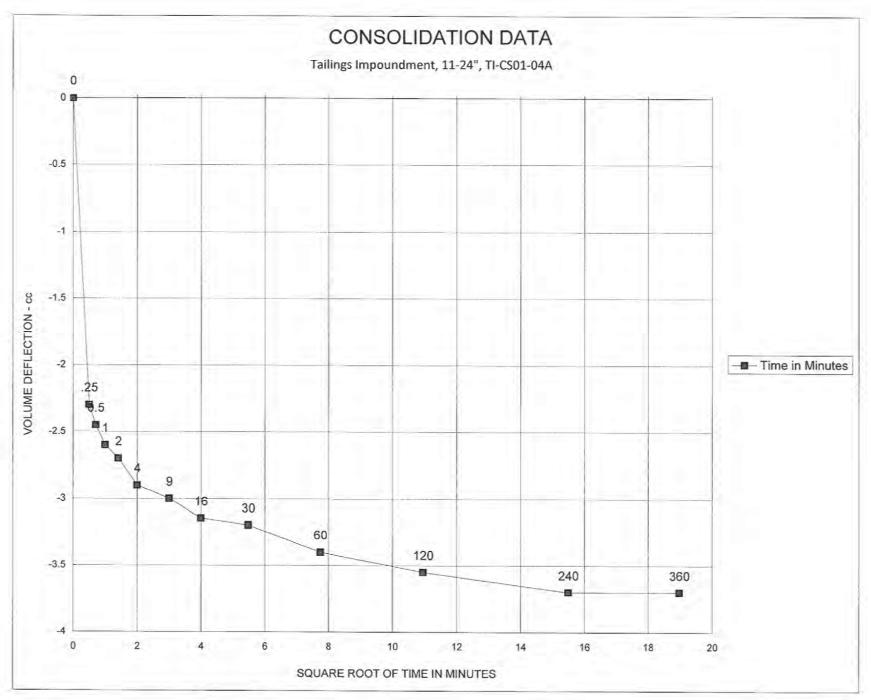
Cell Pres. (PSI)	Back Pres. (PSI)	Burette Reading (CC)		Pore Pressure (PSI)		Change	В
		Close	Open	Close	Open		
40.0	38.0	1.9	13.5				
50.0	48.0	13.5	14.7	37.3	45.4	8.1	0.81
60.0	58.0	15.0	15.9	47.4	56.0	8.6	0.86
70.0	68.0	15.8	16.6	57.3	66.4	9.1	0.91
80.0		16.7	17.0	67,0	76.6	9.6	0.96

CONSOLIDATION DATA

	Elapsed Time	SQRT Time	Burette	Volume Defl.		
	(Min)	(Min)	Reading (CC)	(cc)		
	0.00	0.00	0.20	0.00		
	0.25	0.50	2,50	-2.30		
	0.5	0.71	2,65	-2.45		
	1	1.00	2.80	-2.60		
	2	1.41	2.90	-2.70		
	2	2.00	3.10	-2.90		
	9	3.00	3.20	-3.00		
	16	4.00	3.35	-3.15		
	30	5.48	3.40	-3.20		
	60	7.75	3.60	-3.40		
	120	10.95	3.75	-3.55		
	240	15.49	3.90	-3.70		
	360	18.97	3.90	-3.70		
Initial Height (in)		2.993	Init, Vol. (C	C)	223.032	
Height Change (in)		0.016	Vol. Change		20.300	
Ht. After Cons. (in)		2.977	Cell Exp. (14.968	
Initial Area (sq in)		4.547	Net Change		5.332	
Area After Cons. (sq in)		4.462	Cons. Vol.		217.700	

Data entry by:

SKL


Date:

02/17/2014

Checked by: Date: 02/17/2014

FileName: 2512_77_HarvardFlowPump-Perm-ASTMD-5084-R1_8.xis

Client:

MWH

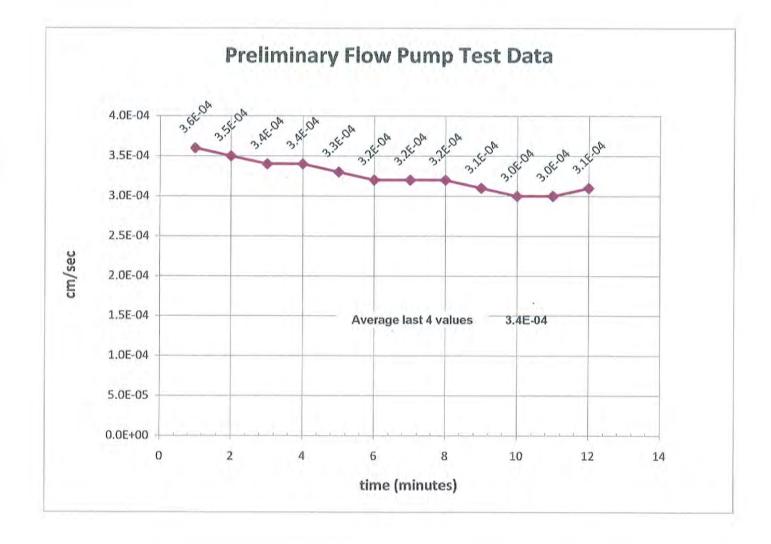
Job Number:

2512-77

Project:

Location: Church Rock

Project Number:


Boring Number: Tailings Impoundment

Depth: 11-24"

Sample Number: TI-CS01-04A (11-24)

Sampled Date:

Test Date: 2/14/2014 Sampled By: MWH Technician: CAL

Data Entered By: CAL


Date:

2/14/2014

File Name:

2512_77_PrelimPerm_ASTMD-5084-methodD_9.xls

Checked By:

CLIENT MWH JOB NO. 2512-77

BORING NO. Tailings Impoundment SAMPLED -

 DEPTH
 11-24"
 TEST STARTED
 1/28/14 CAL

 SAMPLE NO.
 TI-CS01-04A(11-24")
 TEST FINISHED
 2/14/14 CAL

 LOCATION
 Church Rock
 CELL NUMBER
 2P

 PROJECT NO.
 SATURATED TEST
 Yes

SOIL DESCR. Remolded -#4 @95% TEST TYPE TX/Pbp/Tap Water

CONF. PRES. PSF 1152

BEFORE	AFTER	
TEST	TEST	
450.8	476.3	
457.4	482.8	
405.7	405.7	
51.7	77.1	
6.5	6.5	
399.2	399.2	
12.9	19.3	
125.6	138.2	
111.2	115.8	
2.406	(cm)	6.111
0.00		29.334
3.008	The state of the s	7.640
0.00791	1,1-1,1	
0.00760		
	TEST 450.8 457.4 405.7 51.7 6.5 399.2 12.9 125.6 111.2 2.406 4.547 3.008 0.00791	TEST TEST 450.8 476.3 457.4 482.8 405.7 405.7 51.7 77.1 6.5 6.5 399.2 399.2 12.9 19.3 125.6 138.2 111.2 115.8 2.406 (cm) 4.547 (sq cm) 3.008 (cm) 0.00791

FLOW PUMP CALCULATIONS

35.82

Pump Setting (gear number)	6
Percentage of Pump setting	100
Q (cc/s)	2.31E-03
Height	2.993
Diameter	2.363
Pressure (psi)	0.191
Area after consol. (cm*cm)	28.304
Gradient	1.766
Permeability k (cm/s)	4.6E-05
Permeability k (m/s)	4.6E-07
Back Pressure (psi)	88.0
Cell Pressure (psi)	96.0
Ave. Effective Stress (psi)	7.905

Average temperature degree C: 22.9

Data entry by: SKL Date: 02/17/2014

Checked by: One Date: 2/18/14

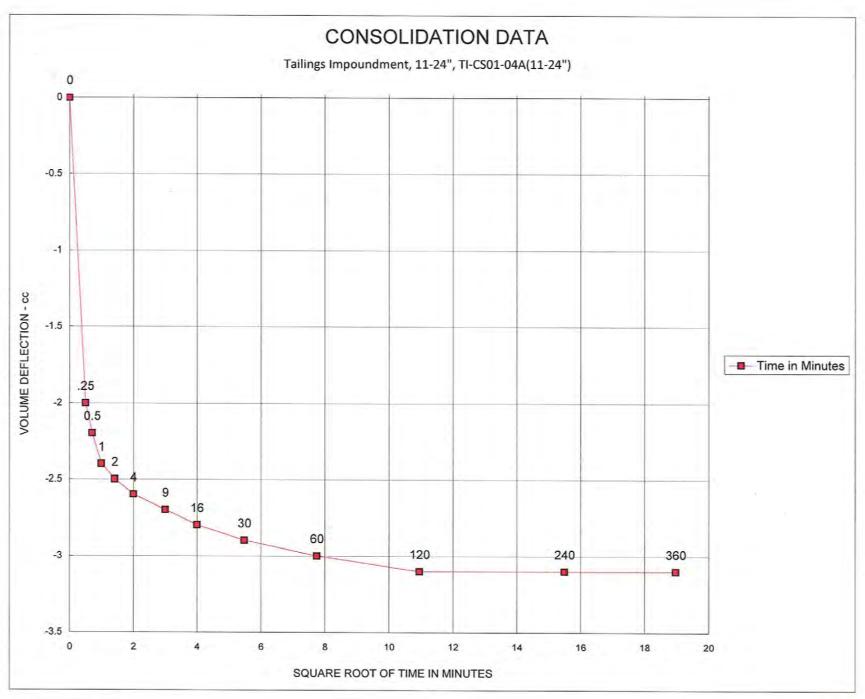
Porosity %

FileName: 2512_77_HarvardFlowPump-Perm-ASTMD-5084-R1_9.xls

CLIENT MWH		JOB NO. 2512-77	
BORING NO.	Tailings Impoundment	SAMPLED	F
DEPTH	11-24"	TEST STARTED	1/28/14 CAL
SAMPLE NO.	TJ-CS01-04A(11-24")	TEST FINISHED	2/14/14 CAL
LOCATION	Church Rock	SETUP NO.	2P
PROJECT NO.	2	SATURATED TEST	Yes
SOIL DESCR.	Remolded -#4 @95%	TEST TYPE	TX/Pbp/Tap Water
		CONF. PRES. PSF	1152

SATURATION DATA

Cell Pres. (PSI)	Back Pres. (PSI)	Burette Reading (CC)		Pore Pressure (PSI)		Change	В
		Close	Open	Close	Open		
40.0	38.0	3.2	12.4		100		
50.0	48.0	13.6	15.2	37.4	45.3	7.9	0.79
60.0	58.0	15.7	17.0	47.5	55.9	8.4	0.84
70.0	68.0	17.3	18.6	57.4	66.3	8.9	0.89
80.0	78.0	19.5	20.6	67.1	76.4	9.3	0.93
90.0	88.0	21.0	22.1	77.3	86.7	9.4	0.94
100.0		22.4	22.7	87.3	96.8	9.5	0.95


CONSOLIDATION DATA

Elapsed	SQRT	Burette	Volume
Time	Time	Reading	Defl.
(Min)	(Min)	(CC)	(cc)
0.00	0.00	0.00	0.00
0.25	0.50	2.00	-2.00
0.5	0.71	2.20	-2.20
1	1.00	2.40	-2.40
2	1.41	2.50	-2.50
4	2.00	2.60	-2.60
9	3.00	2.70	-2.70
16	4.00	2.80	-2.80
30	5.48	2.90	-2.90
60	7.75	3.00	-3.00
120	10.95	3.10	-3.10
240	15.49	3.10	-3.10
360	18.97	3.10	-3.10

Initial Height (in)	3.008	Init. Vol. (CC)	224.150
Height Change (in)	0.015	Vol. Change (CC)	25,150
Ht. After Cons. (in)	2.993	Cell Exp. (CC)	16.216
Initial Area (sq in)	4.547	Net Change (CC)	8.934
Area After Cons. (sq in)	4.387	Cons. Vol. (CC)	215.216

Data entry by: SKL Date: 02/17/2014
Checked by: Date: 2/19/19
FileName: 2512_77_HarvardFlowPump-Perm-ASTMD-5084-R1_9.xls

Client:

MWH

Job Number:

2512-77

Project:

Location:

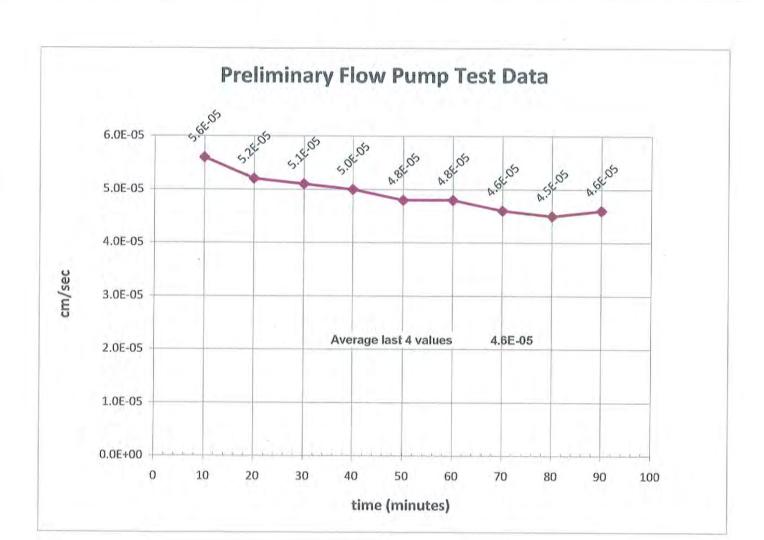
Church Rock

Project Number: --

Boring Number: Tailings Impoundment

11-24"

2/14/2014


Sample Number: TI-CS01-04A (11-24)

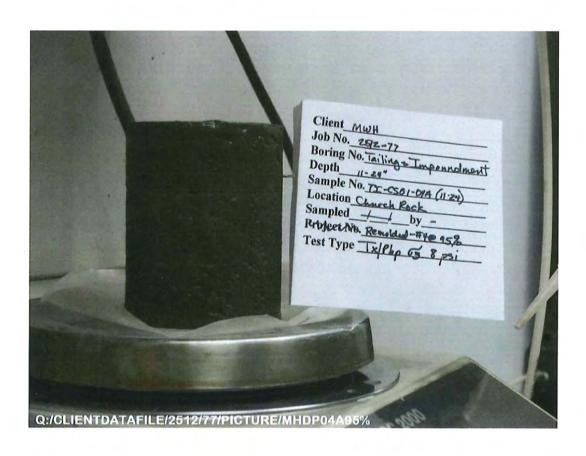
Sampled Date: Test Date:

Sampled By:

Technician:

MWH CAL

Data Entered By: CAL


Date:

2/14/2014

File Name:

PrelimPerm_ASTMD-5084-methodD.XLS

Checked By:

	and the second second		
CLIENT	NAIN/LI	IOP NO	2542 77
CLIENT	MWH	JUB NO.	2512-77

BORING NO.	Tailings Impoundment	SAMPLED	2 CY 5 CY 6
DEPTH	11-24"	TEST STARTED	01/28/14 CAL
SAMPLE NO.	TI-CS01-04 (11-24")	TEST FINISHED	02/17/14 CAL
LOCATION	Church Rock	CELL NUMBER	1P
DDO IFOT NO		CATUDATED TECT	W

PROJECT NO. SATURATED TEST SOIL DESCR. Remolded -#4 @ 100% TEST TYPE TX/Pbp/Tap Water

CONF. PRES. PSF 1152

MOISTURE/DENSITY	BEFORE	AFTER	
DATA	TEST	TEST	
Wt. Soil + Moisture (g)	474,5	490.9	
Wt. Wet Soil & Pan (g)	488.3	504.7	
Wt. Dry Soil & Pan (g)	433.5	433.5	
Wt. Lost Moisture (g)	54.8	71.2	
Wt. of Pan Only (g)	13.8	13.8	
Wt. of Dry Soil (g)	419.7	419.7	
Moisture Content %	13.1	17.0	
Wet Density PCF	132.0	142.9	
Dry Density PCF	116.7	122.1	
Init. Diameter (in)	2.406	(cm)	
		(cm)	
Init. Area (sq in)	4.547	(sq cm)	
Init. Height (in)	3.013	(cm)	
Vol. Bef. Consol. (cu ft)	0.00793		

FLOW PUMP CALCULATIONS

0.00758

33.18

6.111 29.334 7.653

Pump Setting (gear number)	9
Percentage of Pump setting	100
Q (cc/s)	2.28E-04
Height	2.995
Diameter	2.359
Pressure (psi)	1.120
Area after consol. (cm*cm)	28.199
Gradient	10.351
Permeability k (cm/s)	7.8E-07
Permeability k (m/s)	7.8E-09
Back Pressure (psi)	68.0
Cell Pressure (psi)	76.0
Ave. Effective Stress (psi)	7.440
Average temperature degree C:	22.4

Vol. After Consol. (cu ft)

Porosity %

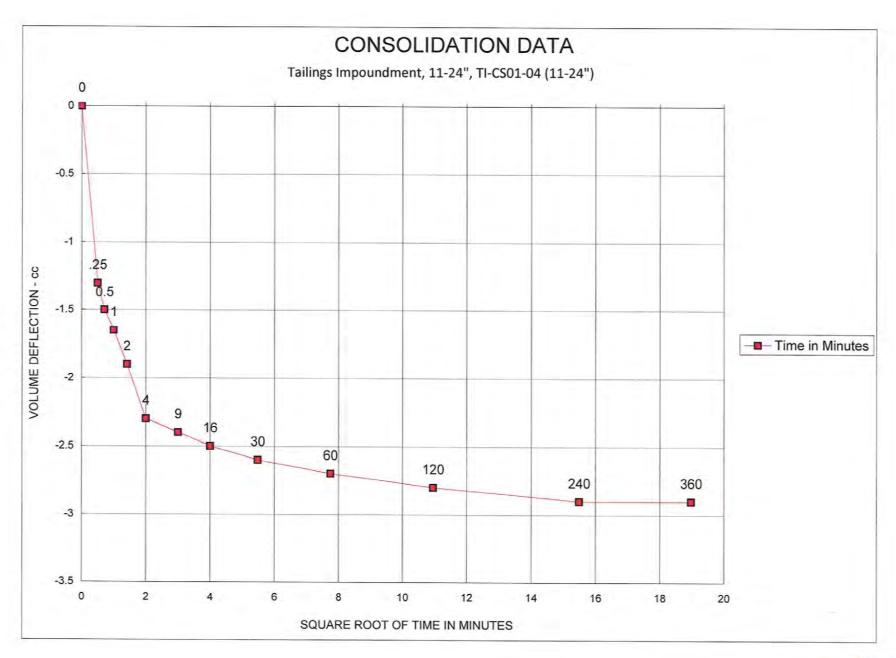
Data entry by: DAW Date: 02/18/2014 Checked by: Date: 2/18/14

FileName: 2512_77_HarvardFlowPump-Perm-ASTMD-5084-R1_10.xls

CLIENT MWH		JOB NO. 2512-77	
BORING NO.	Tailings Impoundment	SAMPLED	Samue
DEPTH	11-24"	TEST STARTED	01/28/14 CAL
SAMPLE NO.	TI-CS01-04 (11-24")	TEST FINISHED	02/17/14 CAL
LOCATION	Church Rock	SETUP NO.	1P
PROJECT NO.		SATURATED TEST	Yes
SOIL DESCR.	Remolded -#4 @ 100%	TEST TYPE	TX/Pbp/Tap Water
	AND	CONF PRES PSE	1152

SATURATION DATA

Cell Pres. (PSI)	Back Pres. (PSI)	Burette Reading (CC)		Pore Pressure (PSI)		Change	В	
		Close	Open	Close	Open			
40.0	38.0	1.8	12.6					
50.0	48.0	11.6	13.1	37.5	45.7	8.2	0.82	
60.0	58.0	13.6	15.0	47.4	56.1	8.7	0.87	
70.0	68.0	15.4	16.7	57.6	66.7	9.1	0.91	
80.0		17.6	17.8	67.2	76.7	9.5	0.95	


CONSOLIDATION DATA

Elapsed	SQRT	Burette	Volume
Time	Time	Reading	Defl.
(Min)	(Min)	(CC)	(cc)
0.00	0.00	0.30	0.00
0.25	0.50	1.60	-1.30
0.5	0.71	1.80	-1.50
1	1.00	1.95	-1.65
2	1.41	2.20	-1.90
4	2.00	2.60	-2.30
9	3.00	2.70	-2.40
16	4.00	2.80	-2.50
30	5.48	2.90	-2.60
60	7.75	3.00	-2.70
120	10.95	3.10	-2.80
240	15.49	3.20	-2.90
360	18.97	3.20	-2.90

Initial Height (in)	3.013	Init. Vol. (CC)	224.522
Height Change (in)	0.018	Vol. Change (CC)	22.300
Ht. After Cons. (in)	2.995	Cell Exp. (CC)	12.338
Initial Area (sq in)	4.547	Net Change (CC)	9.962
Area After Cons. (sq in)	4.371	Cons. Vol. (CC)	214.560

Data entry by: DAW Date: 02/18/2014
Checked by: Date: 2/18/14
FileName: 2512_77_HarvardFlowPump-Perm-ASTMD-5084-R1_10.xls

Client:

MWH

Job Number: 2512-77

Project:

Location:

Church Rock

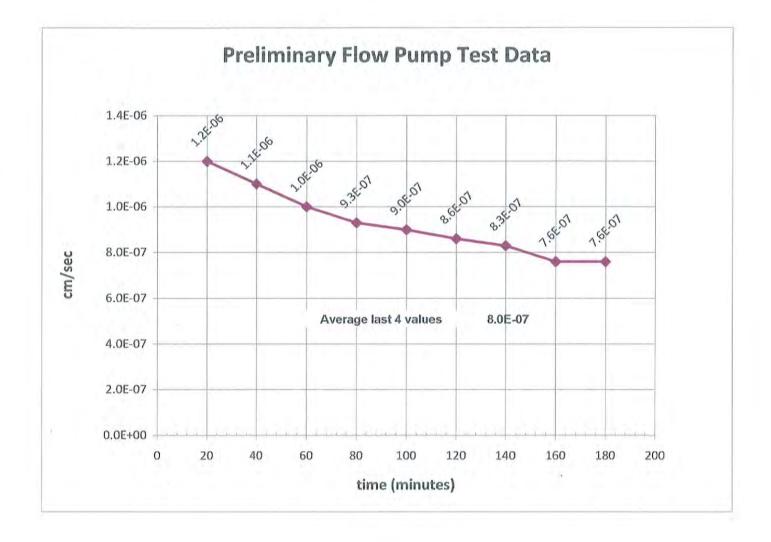
Project Number: --

Boring Number: Tailings Impoundment

Depth:

Test Date:

11-24"


Sample Number: TI-CS01-04A

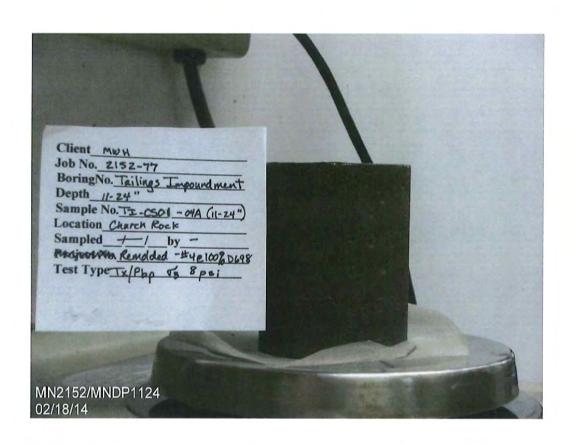
Sampled Date:

2/17/2014

Sampled By: MWH

Technician: CAL

Data Entered By: CAL


Date:

2/17/2014

File Name:

2512_77_PrelimPerm_ASTMD-5084-methodD_11.xls

Checked By:

CLIENT	MWH	JOB NO.	2512-77

BORING NO.	Tailings Impoundment	SAMPLED	94
DEPTH	9-24"	TEST STARTED	01/29/14 CAL
SAMPLE NO.	TI-CS11-04A (9-24")	TEST FINISHED	02/10/14 CAL

Church Rock CELL NUMBER 9P LOCATION PROJECT NO. SATURATED TEST Yes

SOIL DESCR. Remolded -#4 @ 90% TEST TYPE TX/Pbp/Tap Water

CONF. PRES. PSF 3456

			22000
MOISTURE/DENSITY	BEFORE	AFTER	
DATA	TEST	TEST	
Wt. Soil + Moisture (g)	425.8	440.7	
Wt. Wet Soil & Pan (g)	432.3	447.2	
Wt. Dry Soil & Pan (g)	378.2	378.2	
Wt. Lost Moisture (g)	54.1	69.0	
Wt. of Pan Only (g)	6.5	6.5	
Wt. of Dry Soil (g)	371.7	371.7	
Moisture Content %	14.6	18.6	
Wet Density PCF	119.2	140.6	
Dry Density PCF	104.1	118.6	
Init, Diameter (in)	2.402	(cm)	6.101
Init. Area (sq in)	4.531	(sq cm)	29.237
Init. Height (in)	3.002	(cm)	7.625
Vol. Bef. Consol. (cu ft)	0.00787	1-11	Aging.
Vol. After Consol. (cu ft)	0.00691		
Porosity %	35.28		
TO MITTING	1 7 7 7 7 7		

FLOW PUMP CALCULATIONS

22.2

Pump Setting (gear number)	11
Percentage of Pump setting	100
Q (cc/s)	5.71E-05
Height	2.917
Diameter	2.283
Pressure (psi)	3.010
Area after consol. (cm*cm)	26,408
Gradient	28,563
Permeability k (cm/s)	7.6E-08
Permeability k (m/s)	7.6E-10
Back Pressure (psi)	68.0
Cell Pressure (psi)	92.0
Ave. Effective Stress (psi)	22.495

02/11/2014 Data entry by: DAW Date:

Average temperature degree C;

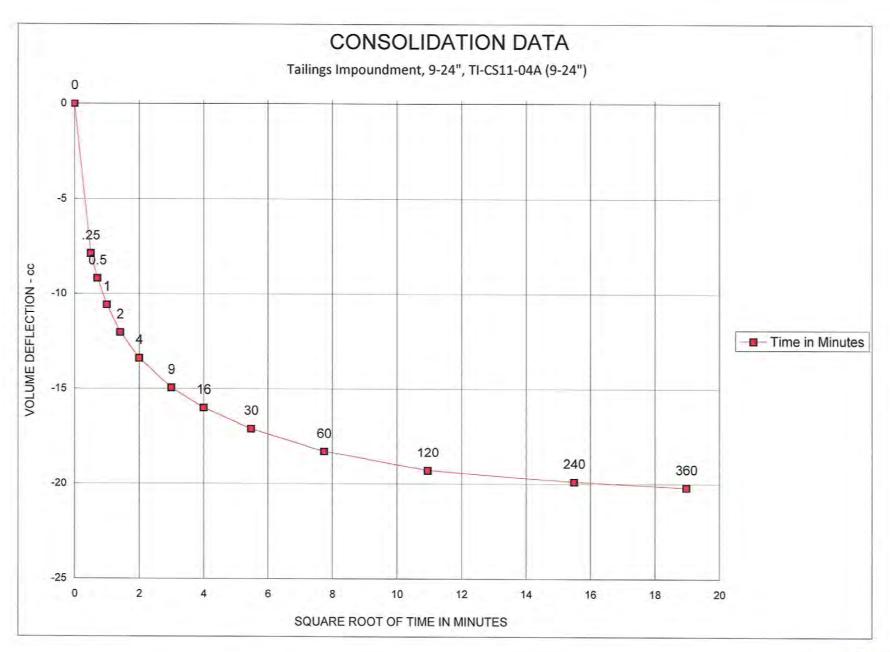
Checked by: Date: 2/12/14

FileName: 2512_77_HarvardFlowPump-Perm-ASTMD-5084-R1_2.xls

CLIENT MWH		JOB NO. 2512-77	
BORING NO.	Tailings Impoundment	SAMPLED	G-C
DEPTH	9-24"	TEST STARTED	01/29/14 CAL
SAMPLE NO.	TI-CS11-04A (9-24")	TEST FINISHED	02/10/14 CAL
LOCATION	Church Rock	SETUP NO.	9P
PROJECT NO.		SATURATED TEST	Yes
SOIL DESCR.	Remolded -#4 @ 90%	TEST TYPE CONF. PRES. PSF	TX/Pbp/Tap Water 3456

SATURATION DATA

Cell Pres. (PSI)	Back Pres. (PSI)	Burette Reading (CC)		Pore Pressure (PSI)		Change	В
		Close	Open	Close	Open		
40.0	38.0	3.4	17.1				
50.0	48.0	16.9	18.4	38.2	46.7	8.5	0.85
60.0	58.0	19.7	20.8	48.3	57.2	8.9	0.89
70.0	68.0	22.3	23.2	58.5	67.9	9.4	0.94
0.08		23.5	23.6	68.6	78.2	9.6	0.96


CONSOLIDATION DATA

Elapsed	SQRT	Burette	Volume
Time	Time	Reading	Defl.
(Min)	(Min)	(CC)	(cc)
0.00	0.00	0.50	0.00
0.25	0.50	8.40	-7.90
0.5	0.71	9.70	-9,20
1	1.00	11.10	-10.60
2	1.41	12.55	-12.05
4	2.00	13.90	-13.40
9	3.00	15.45	-14.95
16	4.00	16,50	-16.00
30	5.48	17.60	-17.10
60	7.75	18.80	-18.30
120	10.95	19.80	-19.30
240	15.49	20.40	-19.90
360	18.97	20.70	-20.20

Initial Height (in)	3.002	Init. Vol. (CC)	222.959
Height Change (in)	0.085	Vol. Change (CC)	42.000
Ht. After Cons. (in)	2.917	Cell Exp. (CC)	14.735
Initial Area (sq in)	4.531	Net Change (CC)	27.265
Area After Cons. (sq in)	4.093	Cons. Vol. (CC)	195.694

Data entry by: DAW Date: 02/11/2014
Checked by: Date: Z/12/14
FileName: 2512_77_HarvardFlowPump-Perm-ASTMD-5084-R1_2.xls

Client:

MWH

Job Number:

2512-77

Project:

Location: Church Rock

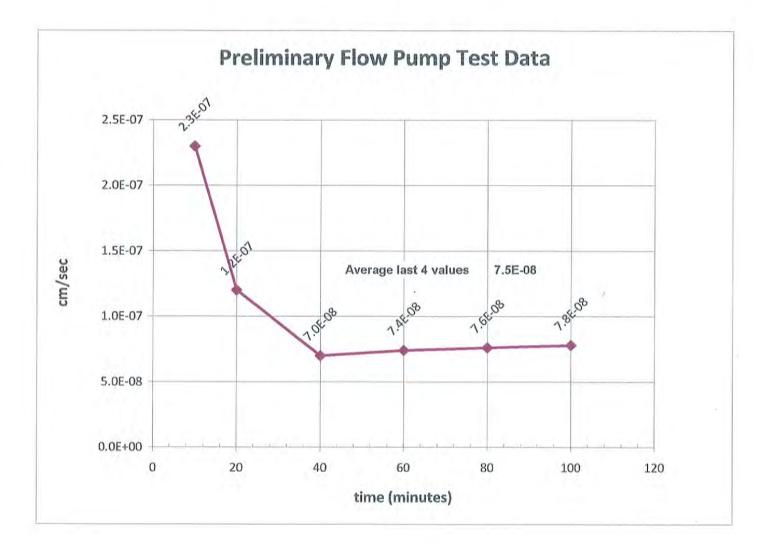
Project Number: --

Boring Number: Tailings Impoundment

Depth:

9-24"

Sample Number: TI-CS11-04A @90%D698


Sampled Date:

Sampled By: MWH CAL

Technician:

Test Date:

2/10/2014

Data Entered By: CAL

Date:

2/13/2014

File Name:

2512_77_PrelimPerm_ASTMD-5084-methodD_1.xls

Checked By:

CLIENT MWH		JOB NO. 2512-77	
BORING NO.	Tailings Impoundment	SAMPLED	E
DEPTH	9-24"	TEST STARTED	01/29/14 CAL
SAMPLE NO.	TI-CS11-04A (9-24")	TEST FINISHED	02/11/14 CAL

SAMPLE NO. TI-CS11-04A (9-24") TEST FINISHED 02/11/14 CAL LOCATION Church Rock CELL NUMBER 8P PROJECT NO. - SATURATED TEST Yes

SOIL DESCR. Remolded -#4 @ 95% TEST TYPE TX/Pbp/Tap Water

CONF. PRES. PSF 3456

MOISTURE/DENSITY	BEFORE	AFTER	
DATA	TEST	TEST	
Wt. Soil + Moisture (g)	449.5	463.8	
Wt. Wet Soil & Pan (g)	456.3	470.5	
Wt. Dry Soil & Pan (g)	398.7	398.7	
Wt. Lost Moisture (g)	57.6	71.8	
Wt. of Pan Only (g)	6.7	6.7	
Wt. of Dry Soil (g)	392.0	392.0	
Moisture Content %	14.7	18.3	
Wet Density PCF	125.7	137.8	
Dry Density PCF	109.6	116.5	
Init. Diameter (in)	2.402	(cm)	6.101
Init. Area (sq in)	4.531	(sq cm)	29.237
Init. Height (in)	3.007	(cm)	7.638
Vol. Bef. Consol. (cu ft)	0.00789	1, 44	
Vol. After Consol. (cu ft)	0.00742		
Porosity %	34.18		
The state of the s			

FLOW PUMP CALCULATIONS

Dump Catting (ager number)	10
Pump Setting (gear number)	12
Percentage of Pump setting	100
Q (cc/s)	2.30E-05
Height	2.947
Diameter	2.353
Pressure (psi)	0.643
Area after consol. (cm*cm)	28.066
Gradient	6.040
Permeability k (cm/s)	1.4E-07
Permeability k (m/s)	1.4E-09
Back Pressure (psi)	58.0
Cell Pressure (psi)	82.0
Ave. Effective Stress (psi)	23,679

Average temperature degree C: 22.4

Data entry by: SKL Date: 02/12/2014
Checked by: Date: 2/13/14

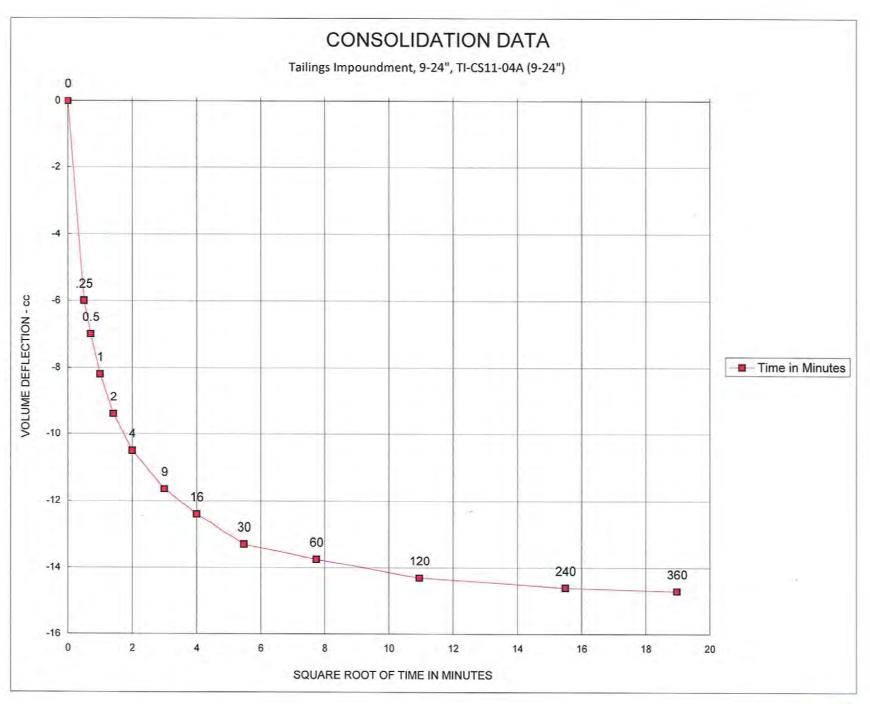
FileName: 2512_77_HarvardFlowPump-Perm-ASTMD-5084-R1_5.xls

TRIAXAL TEST DATA ASTM D 5084

CLIENT MWH		JOB NO. 2512-77	
BORING NO.	Tailings Impoundment	SAMPLED	8.500.00
DEPTH	9-24"	TEST STARTED	01/29/14 CAL
SAMPLE NO.	TI-CS11-04A (9-24")	TEST FINISHED	02/11/14 CAL
LOCATION	Church Rock	SETUP NO.	8P
PROJECT NO.		SATURATED TEST	Yes
SOIL DESCR.	Remolded -#4 @ 95%	TEST TYPE	TX/Pbp/Tap Water
		CONF. PRES. PSF	3456

SATURATION DATA

Cell Pres. (PSI)	Back Pres. (PSI)	Burette Reading (CC)		Pore Pressure (PSI)		Change	В
40.0	38.0	Close 3.0	Open 14.1	Close	Open		
50.0	48.0	13.1	14.4	38.7	47.3	8.6	0.86
60.0	58.0	14.7	15.5	48.1	57.2	9.1	0.91
70.0		15.8	16.1	58.9	68.4	9.5	0.95


CONSOLIDATION DATA

Elapsed	SQRT	Burette	Volume
Time	Time	Reading	Defl.
(Min)	(Min)	(CC)	(cc)
0.00	0.00	0.50	0.00
0.25	0.50	6.50	-6.00
0.5	0.71	7.50	-7.00
1	1.00	8.70	-8.20
2	1.41	9.90	-9.40
4	2.00	11.00	-10.50
9	3.00	12.15	-11.65
16	4.00	12.90	-12.40
30	5.48	13.80	-13.30
60	7.75	14.25	-13.75
120	10.95	14.80	-14.30
240	15.49	15.10	-14.60
360	18.97	15.20	-14.70

Initial Height (in)	3.007	Init. Vol. (CC)	223,331
Height Change (in)	0.060	Vol. Change (CC)	28,900
Ht. After Cons. (in)	2.947	Cell Exp. (CC)	15.693
Initial Area (sq in)	4.531	Net Change (CC)	13.207
Area After Cons. (sq in)	4.350	Cons. Vol. (CC)	210.123

Data entry by: SKL Date: 02/12/2014
Checked by: Date: Date:

Preliminary Flow Pump Test Data ASTM D5084

Client:

MWH

Job Number:

2512_77

Project:

-

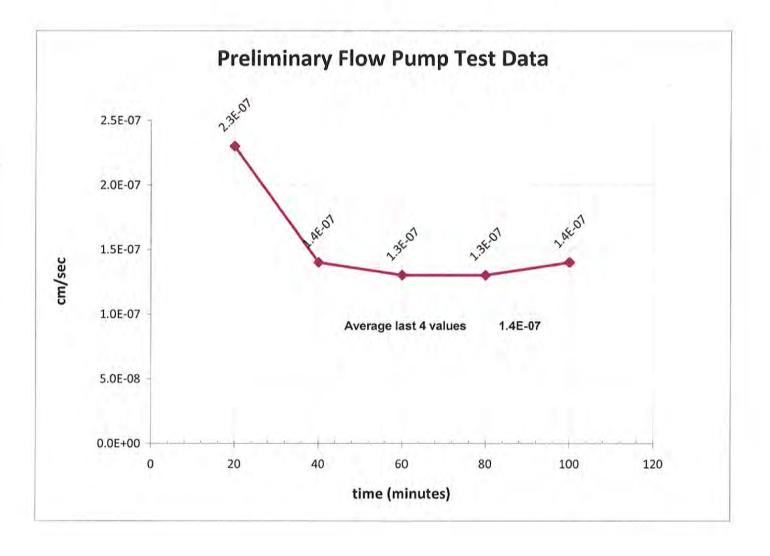
Location:

Church Rock

Project Number: --

Boring Number: Tailings Impoundment

Depth: 9-24"


Sample Number: TI-CS11-04A @ 95% D698

Sampled Date:

Sampled By: MWH

Test Date: 2/11/2014

Technician: CAL

Data Entered By: CAL

Date:

2/12/2014

File Name:

2512_77_PrelimPerm_ASTMD-5084-methodD_5.xls

Checked By:

Date:

2/13/14

PERMEABILITY TEST - BACK PRESSURE SATURATED - FLOW PUMP METHOD ASTM D 5084

CLIENT MWH			JOB NO. 2512-77	
BORING NO. DEPTH SAMPLE NO. LOCATION PROJECT NO. SOIL DESCR.	Tailings Impoundment 9-24" TI-CS11-04A (9-24") Church Rock - Remolded -#4 @ 100%		SAMPLED TEST STARTED TEST FINISHED CELL NUMBER SATURATED TEST TEST TYPE CONF. PRES. PSF	- 01/29/14 CAL 02/10/14 CAL 7P Yes TX/Pbp/Tap Water 3456
MOISTURE/DENSITY DATA	BEFORE TEST	AFTER TEST		
Wt. Soil + Moisture (g) Wt. Wet Soil & Pan (g) Wt. Dry Soil & Pan (g) Wt. Lost Moisture (g) Wt. of Pan Only (g) Wt. of Dry Soil (g) Moisture Content % Wet Density PCF Dry Density PCF	472.9 479.5 419.7 59.8 6.5 413.1 14.5 131.9	485.0 491.6 419.7 71.9 6.5 413.1 17.4 136.5 116.2		
Init. Diameter (in) Init. Area (sq in) Init. Height (in) Vol. Bef. Consol. (cu ft) Vol. After Consol. (cu ft)	2.405 4.543 3.006 0.00790	(cm) (sq cm) (cm)	29.310	

FLOW PUMP CALCULATIONS

32.39

Pump Setting (gear number)	12
Percentage of Pump setting	100
Q (cc/s)	2.30E-05
Height	2.970
Diameter	2.409
Pressure (psi)	0.839
Area after consol. (cm*cm)	29.414
Gradient	7.819
Permeability k (cm/s)	1.0E-07
Permeability k (m/s)	1,0E-09
Back Pressure (psi)	68.0
Cell Pressure (psi)	92.0
Ave. Effective Stress (psi)	23.581
Average temperature degree C:	22.0

Porosity %

Data entry by: SKL Date: 02/12/2014
Checked by: Date: 13 | 4 | Date: 13 | 4 | Date: 14 | Date: 14 | Date: 15 | Date: 16 | Date: 17 | Date: 18 |

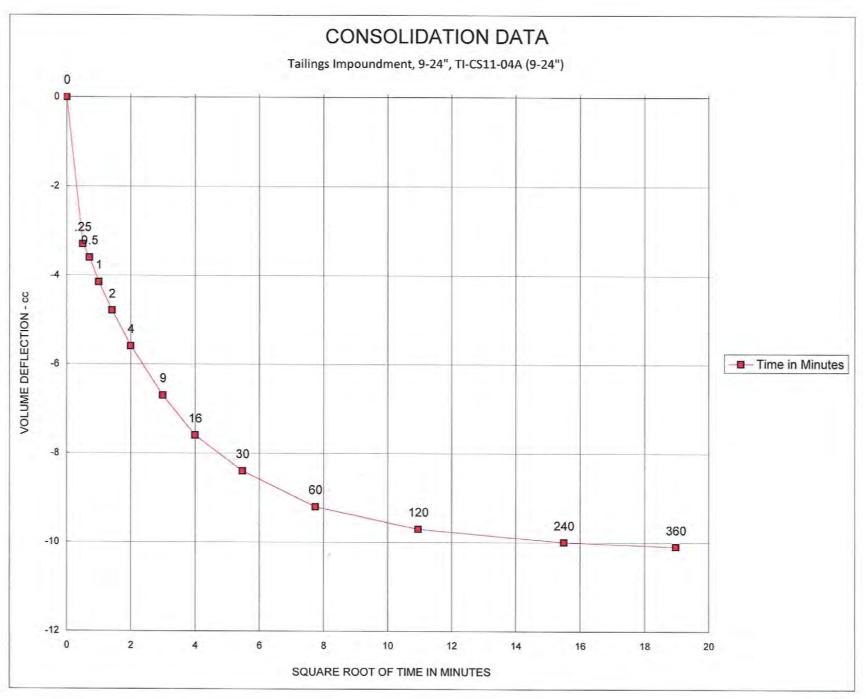
TRIAXAL TEST DATA ASTM D 5084

CLIENT MWH		JOB NO. 2512-77	
BORING NO.	Tailings Impoundment	SAMPLED	4.5
DEPTH	9-24"	TEST STARTED	01/29/14 CAL
SAMPLE NO.	TI-CS11-04A (9-24")	TEST FINISHED	02/10/14 CAL
LOCATION	Church Rock	SETUP NO.	7P
PROJECT NO.		SATURATED TEST	Yes
SOIL DESCR.	Remolded -#4 @ 100%	TEST TYPE	TX/Pbp/Tap Water
	Conference of the Confe	CONF. PRES. PSF	3456

SATURATION DATA

Cell Pres. (PSI)	Back Pres. (PSI)	Burette Reading (CC)		Pore Pressure (PSI)		Change	В
		Close	Open	Close	Open		
40.0	38.0	3.3	16.3				
50.0	48.0	12.3	13.6	38.8	47.2	8.4	0.84
60.0	58.0	13.7	14.7	48.7	57.6	8.9	0.89
70.0	68.0	14.8	15.6	59.2	68.4	9.2	0.92
80.0		15.7	15.8	69.1	78.6	9.5	0.95

CONSOLIDATION DATA


Elapsed	SQRT	Burette	Volume	
Time	Time	Reading	Defl.	
(Min)	(Min)	(CC)	(cc)	
0.00	0.00	0.30	0.00	
0.25	0.50	3.60	-3.30	
0.5	0.71	3.90	-3.60	
1	1.00	4.45	-4.15	
2	1.41	5.10	-4.80	
4	2.00	5.90	-5.60	
9	3.00	7.00	-6.70	
16	4.00	7.90	-7.60	
30	5.48	8.70	-8.40	
60	7.75	9.50	-9.20	
120	10.95	10.00	-9.70	
240	15.49	10.30	-10.00	
360	18.97	10.40	-10.10	

Initial Height (in)	3.006	Init. Vol. (CC)	223.814
Height Change (in)	0.036	Vol. Change (CC)	23.300
Ht. After Cons. (in)	2.970	Cell Exp. (CC)	21.415
Initial Area (sq in)	4.543	Net Change (CC)	1.885
Area After Cons. (sq in)	4.559	Cons. Vol. (CC)	221.930

Data entry by: SKL Date: Date: 1314 02/12/2014 Date:

FileName: 2512_77_HarvardFlowPump-Perm-ASTMD-5084-R1_4.xls

Preliminary Flow Pump Test Data ASTM D5084

Client:

MWH

Job Number: Project:

2512_77

Location:

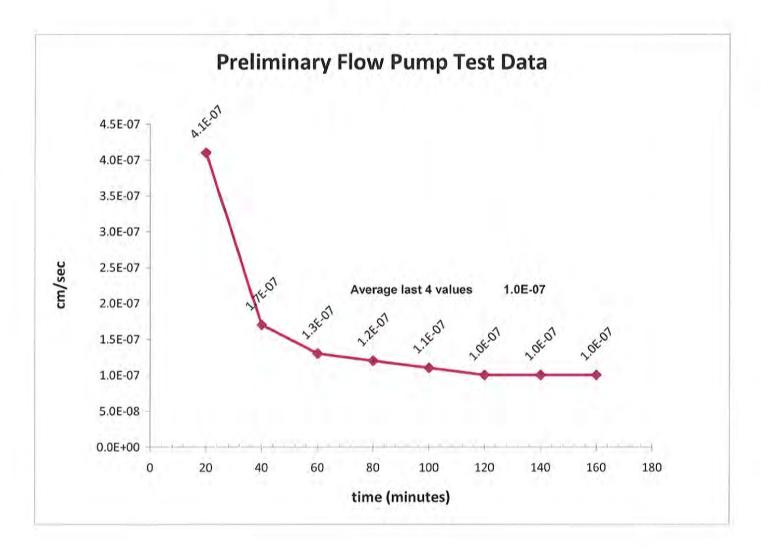
Church Rock

Project Number: --

Boring Number: Tailings Impoundment

9-24" Depth:

Sample Number: TI-CS11-04A @ 100%


Sampled Date:

Test Date:

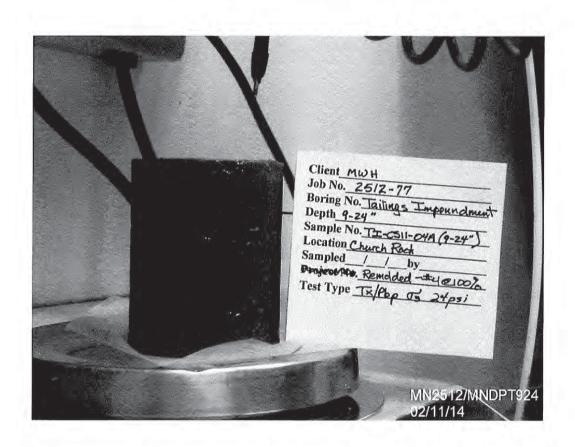
2/10/2014

Sampled By: **MWH**

Technician: CAL

Data Entered By: CAL

Date:


2/13/2014

File Name:

2512_77_PrelimPerm_ASTMD-5084-methodD_7.xls

Checked By:

Date:

PERMEABILITY TEST - BACK PRESSURE SATURATED - FLOW PUMP METHOD ASTM D 5084

CLIENT	MWH	JOB NO.	2512-77

BORING NO.	Tailings Impoundment	SAMPLED	22
DEPTH	8-28"	TEST STARTED	01/27/14 CAL
SAMPLE NO.	TI-CS08-04A (8-28)	TEST FINISHED	02/05/14 CAL
LOCATION	Church Rock	CELL NUMBER	6P
PROJECT NO.	-	SATURATED TEST	Yes
	Land that the state of		

TEST TYPE TX/Pbp/Tap Water SOIL DESCR. -#4 @ 90%

CONF. PRES. PSF 3456

MOISTURE/DENSITY	BEFORE	AFTER		
DATA	TEST	TEST		
Wt. Soil + Moisture (g)	430.7	457.7		
Wt. Wet Soil & Pan (g)	437.3	464.3		
Wt. Dry Soil & Pan (g)	392.3	392.3		
Wt. Lost Moisture (g)	45.0	72.0		
Wt. of Pan Only (g)	6.7	6.7		
Wt. of Dry Soil (g)	385.7	385.7		
Moisture Content %	11.7	18.7		
Wet Density PCF	120.6	138.2		
Dry Density PCF	108.0	116.5		
Init. Diameter (in)	2.406	(cm)	6.111	
Init. Area (sq in)	4.547	(sq cm)	29.334	
Init. Height (in)	2.991	(cm)	7.597	
Vol. Bef. Consol. (cu ft)	0.00787	6-214	117.40	
Vol. After Consol. (cu ft)	0.00730			
Porosity %	34.81			

FLOW PUMP CALCULATIONS

Pump Setting (gear number)	8
Percentage of Pump setting	100
Q (cc/s)	5.70E-04
Height	2.967
Diameter	2.327
Pressure (psi)	0.244
Area after consol. (cm*cm)	27.432
Gradient	2.276
Permeability k (cm/s)	9.1E-06
Permeability k (m/s)	9.1E-08
Back Pressure (psi)	88.0
Cell Pressure (psi)	112.0
Ave. Effective Stress (psi)	23.878
Average temperature degree C:	21.0

Data entry by: DAW Date: 02/06/2014
Checked by: Ou Date: 2/06/14
FileName: 2512_77_HarvardFlowPump-Perm-ASTMD-5084-R1_0.xls

TRIAXAL TEST DATA ASTM D 5084

CLIENT MWH		JOB NO. 2512-77	
BORING NO.	Tailings Impoundment	SAMPLED	-
DEPTH	8-28"	TEST STARTED	01/27/14 CAL
SAMPLE NO.	TI-CS08-04A (8-28)	TEST FINISHED	02/05/14 CAL
LOCATION	Church Rock	SETUP NO.	6P
PROJECT NO.	1	SATURATED TEST	Yes
SOIL DESCR.	-#4 @ 90%	TEST TYPE CONF. PRES. PSF	TX/Pbp/Tap Water 3456

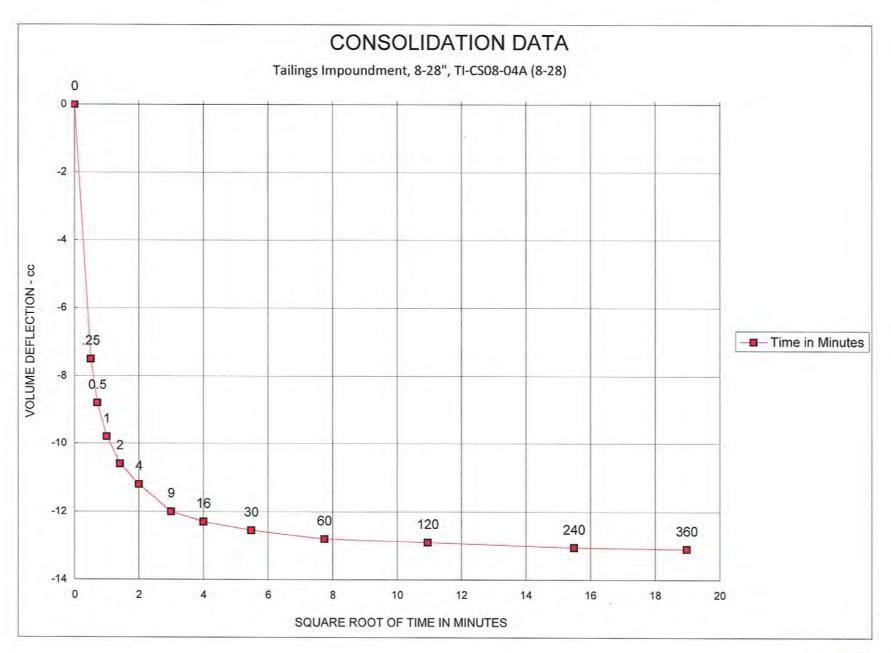
SATURATION DATA

Cell Pres. (PSI)	Back Pres. (PSI)	Burette Reading (CC)		Pore Pressure (PSI)		Change	В
		Close	Open	Close	Open		
40.0	38.0	2.0	13.0				
50.0	48.0	13.7	15.3	37.4	44.9	7.5	0.75
60.0	58.0	15.3	16.3	47.4	55.4	8.0	0.80
70.0	68.0	16.7	17.6	57.5	66.0	8.5	0.85
80.0	78.0	17.7	18.5	67.4	76.4	9.0	0.90
90.0	88.0	19.0	19.9	77.2	86.6	9.4	0.94
100.0	0.00	20.0	20,1	87.1	96.7	9.6	0.96

CONSOLIDATION DATA

Elapsed	SQRT	Burette	Volume
Time	Time	Reading	Defl.
(Min)	(Min)	(CC)	(cc)
0.00	0.00	0.20	0.00
0.25	0.50	7.70	-7.50
0.5	0.71	9.00	-8.80
1	1.00	10.00	-9.80
2	1.41	10.80	-10.60
2 4	2.00	11.40	-11.20
9	3.00	12.20	-12.00
16	4.00	12.50	-12.30
30	5.48	12.75	-12.55
60	7.75	13.00	-12.80
120	10.95	13.10	-12.90
240	15.49	13.25	-13.05
360	18.97	13.30	-13.10

Initial Height (in)	2.991	Init. Vol. (CC)	222.883
Height Change (in)	0.024	Vol. Change (CC)	31.900
Ht. After Cons. (in)	2.967	Cell Exp. (CC)	15.784
Initial Area (sq in)	4.547	Net Change (CC)	16.116
Area After Cons. (sq in)	4.252	Cons. Vol. (CC)	206.767


Data entry by:

DAW Date:

02/06/2014

Checked by: Date: 2/6//4
FileName: 2512_77_HarvardFlowPump-Perm-ASTMD-5084-R1_0.xls

Preliminary Flow Pump Test Data ASTM D5084

Client:

MWH

Job Number:

2512_77

Project:

144

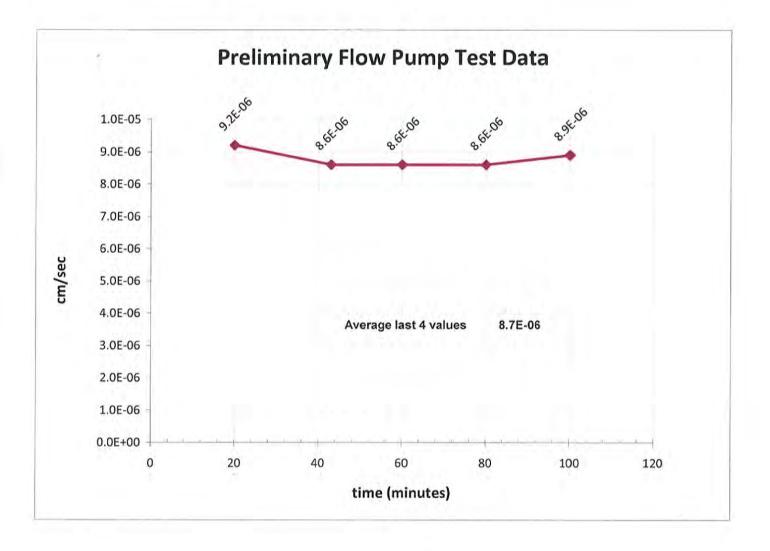
Location:

Church Rock

Project Number: --

Boring Number: Tailings Impoundment

Depth: 8-28"


Sample Number: TI-CS08-04A @90% D698

Sampled Date:

Test Date:

-2/5/2014 Sampled By: MWH

Technician: CAL

Data Entered By: CAL

Date:

2/12/2014

File Name:

2512_77_PrelimPerm_ASTMD-5084-methodD_2.xls

Checked By:

Date:

2/13/14

PERMEABILITY TEST - BACK PRESSURE SATURATED - FLOW PUMP METHOD **ASTM D 5084**

CLIENT	MWH	JOB NO.	2512-77

BORING NO.	Tailings Impoundment	SAMPLED	22
DEPTH	8-28"	TEST STARTED	01/27/14 CAL
SAMPLE NO.	TI-CS08-04A (8-28)	TEST FINISHED	02/06/14 CAL
LOCATION	Church Dook	CELL NUMBER	ED

LOCATION CELL NUMBER Yes PROJECT NO. SATURATED TEST

TX/Pbp/Tap Water SOIL DESCR. -#4 @ 95% TEST TYPE

CONF. PRES. PSF 3456

MOISTURE/DENSITY	BEFORE	AFTER	
DATA	TEST	TEST	
Wt. Soil + Moisture (g)	454.4	478.6	
Wt. Wet Soil & Pan (g)	461.4	485.6	
Wt. Dry Soil & Pan (g)	413.4	413.4	
Wt. Lost Moisture (g)	48.0	72.2	
Wt. of Pan Only (g)	7.0	7.0	
Wt. of Dry Soil (g)	406.4	406.4	
Moisture Content %	11.8	17.8	
Wet Density PCF	127.1	140.5	
Dry Density PCF	113,7	119.3	
Init. Diameter (in)	2.407	(cm)	6.114
Init. Area (sq in)	4.550	(sq cm)	29.359
Init. Height (in)	2.993	(cm)	7.602
Vol. Bef. Consol. (cu ft)	0.00788	127.14	
Vol. After Consol. (cu ft)	0.00751		
Porosity %	33.95		

FLOW PUMP CALCULATIONS

Pump Setting (gear number)	8
Percentage of Pump setting	100
Q (cc/s)	5.70E-04
Height	2.932
Diameter	2.374
Pressure (psi)	0.197
Area after consol. (cm*cm)	28.554
Gradient	1.860
Permeability k (cm/s)	1.1E-05
Permeability k (m/s)	1.1E-07
Back Pressure (psi)	78.0
Cell Pressure (psi)	102.0
Ave. Effective Stress (psi)	23,902

Average temperature degree C: 21.6

Data entry by: Checked by: DAW Date: 02/07/2014

Checked by: Date: 2/10/14

FileName: 2512_77_HarvardFlowPump-Perm-ASTMD-5084-R1_0.xls

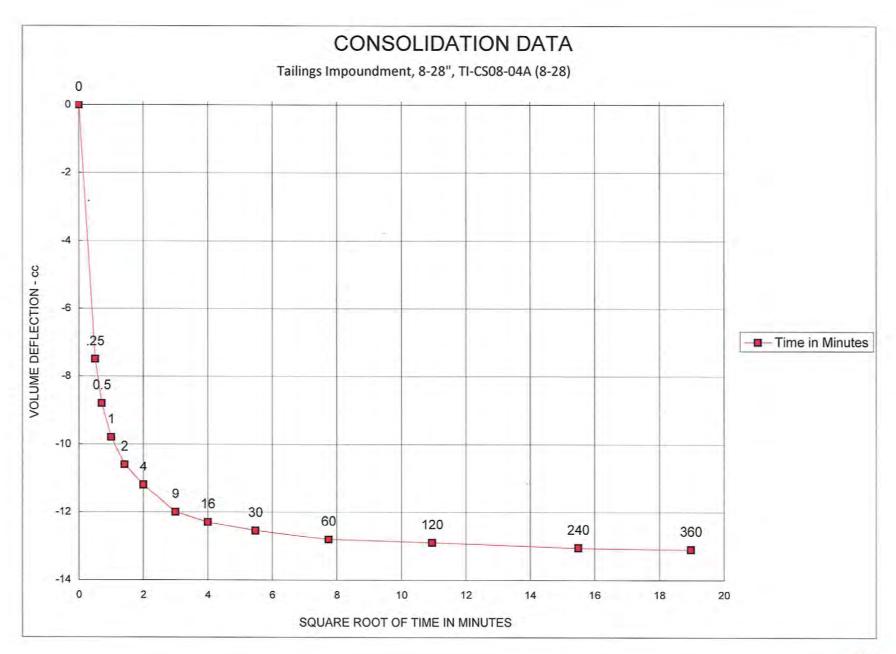
TRIAXAL TEST DATA ASTM D 5084

CLIENT	MWH	JOB NO.	2512-77

BORING NO.	Tailings Impoundment	SAMPLED	.92
DEPTH	8-28"	TEST STARTED	01/27/14 CAL
SAMPLE NO.	TI-CS08-04A (8-28)	TEST FINISHED	02/06/14 CAL
LOCATION	Church Rock	SETUP NO.	5P
PROJECT NO.	- <u> </u>	SATURATED TEST	Yes
SOIL DESCR.	-#4 @ 95%	TEST TYPE	TX/Pbp/Tap Water
14.37342424.0VV		CONF. PRES. PSF	3456

SATURATION DATA

Cell Pres. (PSI)	Back Pres. (PSI)	Burette Reading (CC)		Pore Pressure (PSI)		Change	В
		Close	Open	Close	Open		
40.0	38.0	2.1	13.1				
50.0	48.0	13.6	15.1	37.3	45.4	8.1	0.81
60.0	58.0	15.2	16.2	47.4	55.9	8.5	0.85
70.0	68.0	16.2	17.1	57.3	66.3	9.0	0.90
80.0	78.0	17.6	18.4	67.1	76.5	9.4	0.94
90.0		18.4	18.6	77.2	86.9	9.7	0.97


CONSOLIDATION DATA

Elapsed	SQRT	Burette	Volume
Time	Time	Reading	Defl.
(Min)	(Min)	(CC)	(cc)
0.00	0.00	0.30	0.00
0.25	0.50	6.20	-5.90
0.5	0.71	7.50	-7.20
1	1.00	8.25	-7.95
2	1.41	8.70	-8.40
2	2.00	8.90	-8.60
9	3.00	9.10	-8.80
16	4.00	9.20	-8.90
30	5.48	9.35	-9.05
60	7.75	9.50	-9.20
120	10.95	9.60	-9.30
240	15,49	9.70	-9.40
360	18.97	9.70	-9.40
	0.000	1=3t V=1 VC	01

Initial Height (in)	2.993	Init. Vol. (CC)	223.217
Height Change (in)	0.061	Vol. Change (CC)	26.500
Ht. After Cons. (in)	2.932	Cell Exp. (CC)	15.972
Initial Area (sq in)	4.550	Net Change (CC)	10.528
Area After Cons. (sq in)	4.426	Cons. Vol. (CC)	212.689

Data entry by: DAW Date: 02/07/2014
Checked by: Date: 2/10/14
FileName: 2512_77_HarvardFlowPump-Perm-ASTMD-5084-R1_0.xls

Preliminary Flow Pump Test Data ASTM D5084

Client:

MWH

Job Number:

2512_77

Project:

-

Location:

Church Rock

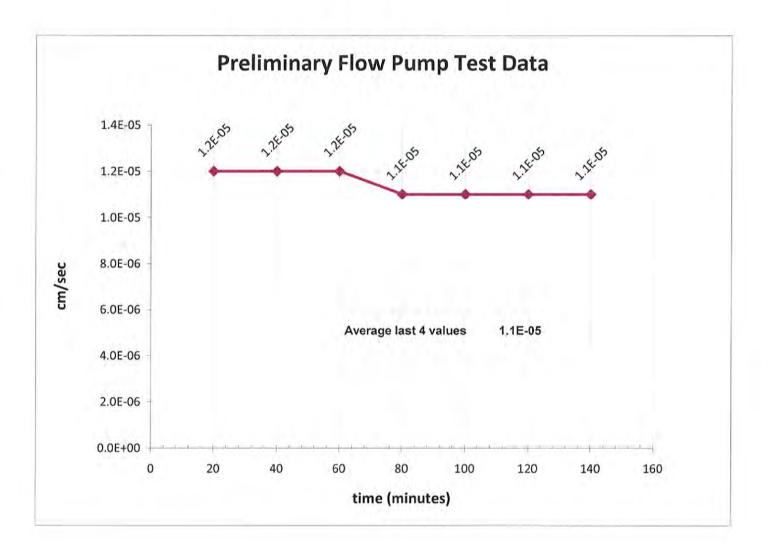
Project Number: --

Boring Number: Tailings Impoundment

Depth: 8-28"

Sample Number: TI-CS08-04A @ 95% D698

2/6/2014


Sampled Date:

Test Date:

Sampled By: MWH

Technician: CAL

Data Entered By: CAL

Date:

2/12/2014

File Name:

2512_77_PrelimPerm_ASTMD-5084-methodD_3.xls

Checked By:

Date:

2/13/14

PERMEABILITY TEST - BACK PRESSURE SATURATED - FLOW PUMP METHOD ASTM D 5084

CLIENT	MWH	JOB NO.	2512-77

BORING NO.	Tailings Impoundment	SAMPLED	-4
and the section of the section of		have provided their fact from a first being also been	

 DEPTH
 8-28"
 TEST STARTED
 01/27/14 CAL

 SAMPLE NO.
 TI-CS08-04A (8-28)
 TEST FINISHED
 02/05/14 CAL

 LOCATION
 Church Book
 CELL NUMBER
 108

LOCATION Church Rock CELL NUMBER 19S PROJECT NO. - SATURATED TEST Yes

SOIL DESCR. -#4 @ 100% TEST TYPE TX/Pbp/Tap Water

CONF. PRES. PSF 3456

MOISTURE/DENSITY	BEFORE	AFTER	
DATA	TEST	TEST	
Wt. Soil + Moisture (g)	478.2	495.7	
Wt. Wet Soil & Pan (g)	484.8	502.4	
Wt. Dry Soil & Pan (g)	434.9	434.9	
Wt. Lost Moisture (g)	49.9	67.5	
Wt. of Pan Only (g)	6.7	6.7	
Wt. of Dry Soil (g)	428.2	428.2	
Moisture Content %	11.7	15.8	
Wet Density PCF	133.3	141.1	
Dry Density PCF	119.4	121.9	
Init. Diameter (in)	2.408	(cm)	6.116
Init. Area (sq in)	4.554	(sq cm)	29.383
Init. Height (in)	3.000	(cm)	7.620
Vol. Bef. Consol. (cu ft)	0.00791	7.558	
Vol. After Consol. (cu ft)	0.00775		

FLOW PUMP CALCULATIONS

21.5

30.76

Pump Setting (gear number)	10
Percentage of Pump setting	100
Q (cc/s)	1.15E-04
Height	2.982
Diameter	2.391
Pressure (psi)	0.293
Area after consol. (cm*cm)	28.957
Gradient	2.720
Permeability k (cm/s)	1.5E-06
Permeability k (m/s)	1.5E-08
Back Pressure (psi)	78.0
Cell Pressure (psi)	102.0
Ave. Effective Stress (psi)	23.854

Porosity %

Average temperature degree C:

Data entry by: DAW Date: 02/06/2014

Checked by: Okc Date: 3/06/14
FileName: 2512_77_HarvardFlowPump-Perm-ASTMD-5084-R1_1.xls

ADVANCED TEHRATESTING

TRIAXAL TEST DATA ASTM D 5084

CLIENT MWH		JOB NO. 2512-77	
BORING NO.	Tailings Impoundment	SAMPLED	A
DEPTH	8-28"	TEST STARTED	01/27/14 CAL
SAMPLE NO.	TI-CS08-04A (8-28)	TEST FINISHED	02/05/14 CAL
LOCATION	Church Rock	SETUP NO.	19S
PROJECT NO.		SATURATED TEST	Yes
SOIL DESCR.	-#4 @ 100%	TEST TYPE	TX/Pbp/Tap Water
		CONF. PRES. PSF	3456

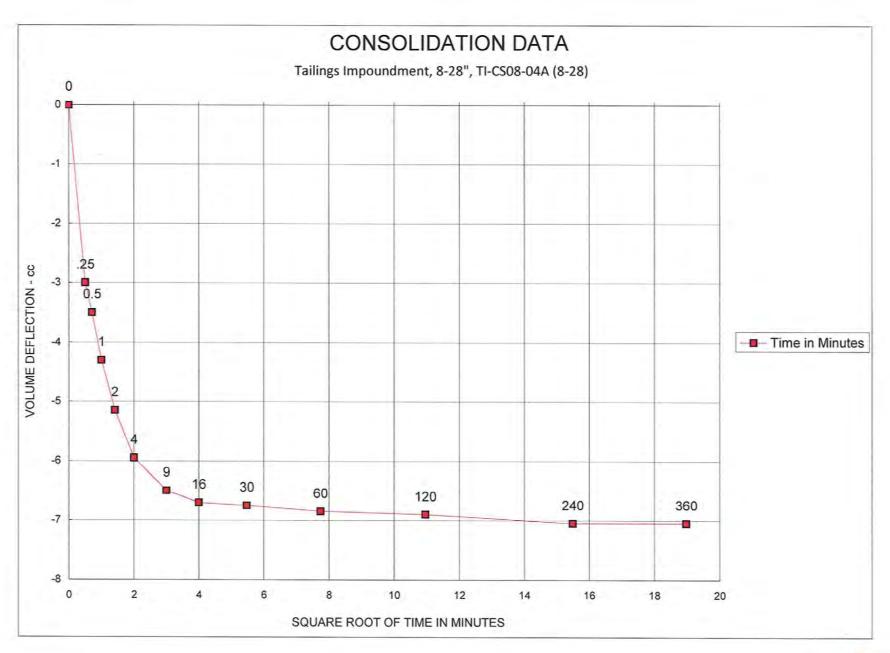
SATURATION DATA

Cell Pres. (PSI)	Back Pres. (PSI)	Burette Reading (CC)		Pore Pressure (PSI)		Change	В
		Close	Open	Close	Open	1	
40.0	38.0	2.7	12.1		1,74		
50.0	48.0	8.7	9.9	37.3	44.8	7.5	0.75
60.0	58.0	9.7	10.7	47.2	55.4	8.2	0.82
70.0	68.0	10.7	11.7	57.4	66.2	8.8	0.88
80.0	78.0	11.7	12.4	67.4	76.4	9.0	0.90
90.0		12.8	12.8	77.2	86.7	9.5	0.95

CONSOLIDATION DATA

Elapsed	SQRT	Burette	Volume	
Time	Time	Reading	Defl.	
(Min)	(Min)	(CC)	(cc)	
0.00	0.00	0.30	0.00	
0.25	0.50	3.30	-3.00	
0.5	0.71	3.80	-3.50	
1	1.00	4.60	-4.30	
2	1.41	5.45	-5.15	
2	2.00	6.25	-5.95	
9	3.00	6.80	-6.50	
16	4.00	7.00	-6.70	
30	5.48	7.05	-6.75	
60	7.75	7.15	-6.85	
120	10.95	7.20	-6.90	
240	15.49	7.35	-7.05	
360	18.97	7.35	-7.05	

Initial Height (in)	3.000	Init, Vol. (CC)	223,925
Height Change (in)	0.018	Vol. Change (CC)	17.700
Ht. After Cons. (in)	2.982	Cell Exp. (CC)	13.146
Initial Area (sq in)	4.554	Net Change (CC)	4.554
Area After Cons. (sq in)	4.488	Cons. Vol. (CC)	219.371


Data entry by: DAW Date: 02/06/2014
Checked by: The Date: Told of Date: 02/06/2014

Checked by: The DAW Date: 02/06/2014

Checked by: The Date: 02/06/2014

Checked by: Th

Preliminary Flow Pump Test Data ASTM D5084

Client:

MWH

Job Number:

2512_77

Project:

Location:

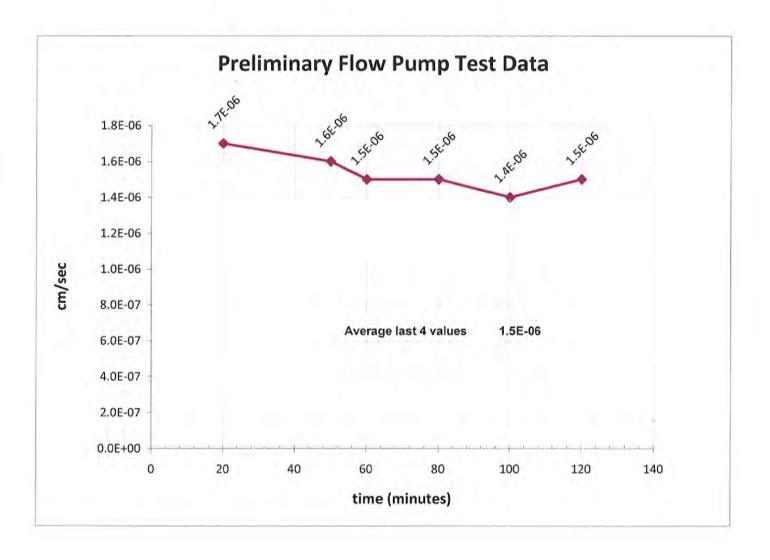
Church Rock

Project Number: --

Boring Number: Tailings Impoundment

8-28" Depth:

Sample Number: TI-CS08-04A @ 100% D698


Sampled Date:

Test Date:

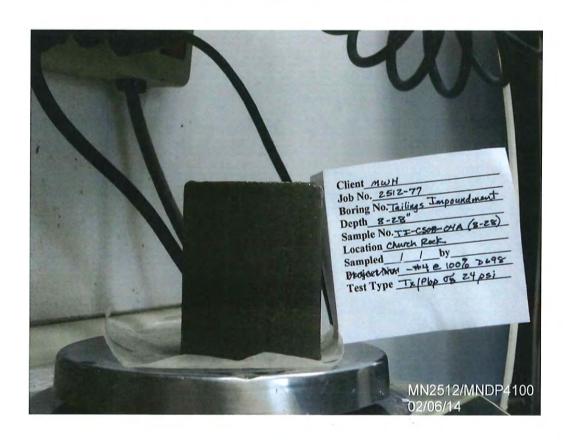
2/5/2014

Sampled By: CAL

Technician: CAL

Data Entered By: CAL

Date:


2/12/2014

File Name:

2512_77_PrelimPerm_ASTMD-5084-methodD_4.xls

Checked By:

Date:

ENGINEERING

INSPECTION

Project Name: Church Rock (ATT Job No. 2512-77)

Quarry Source: Church Rock Project Number: 143002

Specific Gravity of Coarse Aggregate (ASTM C-127)

Samn	e. T	I-CS02-02A
Samo	C. I	1-030Z-0ZA

				Average
Trial Number	1	2	3	106 CA 24
SSD Aggregate Weight	1399.2	1397.4	1405.9	
Immersed Agg. Weight	742.1	897.5	910.3	
Tare No.	R-16	R-19	R-24	
Dry Agg. & Tare Weight	1512.9	1494.8	1520.4	
Tare Weight	130.2	115.2	124.4	
Dry Aggregate Weight	1382.7	1379.6	1396.0	
Apparent Specific Gravity	2.873	2.862	2.874	2.870
Bulk(SSD) Specific Gravity	2.811	2.795	2.837	2.814
Bulk(Oven Dry) Spec. Gravity	2.778	2.760	2.817	2.785
Percent Absorption	1.193	1.290	0.709	1.064

Specific Gravity of Coarse Aggregate (ASTM C-127)

Sample: TI-CS06-02A

			Average
1	2	3	
1407.2	1406.1	1402.6	
898.7	898.5	896.2	
R-17	R-20	R-21	
1498.6	1500.4	1503.2	
117.4	120.6	127.1	
1381.2	1379.8	1376.1	
2.863	2.867	2.867	2.866
2.767	2.770	2.770	2.769
2.716	2.718	2.717	2.717
1.882	1.906	1.926	1.905
	898.7 R-17 1498.6 117.4 1381.2 2.863 2.767 2.716	1407.2 1406.1 898.7 898.5 R-17 R-20 1498.6 1500.4 117.4 120.6 1381.2 1379.8 2.863 2.867 2.767 2.770 2.716 2.718	1407.2 1406.1 1402.6 898.7 898.5 896.2 R-17 R-20 R-21 1498.6 1500.4 1503.2 117.4 120.6 127.1 1381.2 1379.8 1376.1 2.863 2.867 2.867 2.767 2.770 2.770 2.716 2.718 2.717

ENGINEERING

TESTING

INSPECTION

Specific Gravity of Coarse Aggregate (ASTM C-127)

Sam	nle:	TI.	CSC	10_	024
Jani	DIE.	11.	-000	J 37 =	UZM

				Average
Trial Number	1	2	3	A. A. CA. W.
SSD Aggregate Weight	1413.5	1414.9	1415.4	
Immersed Agg. Weight	908.2	903.8	903.3	
Tare No.	R-15	R-18	R-23	
Dry Agg. & Tare Weight	1529.5	1527.4	1515.7	
Tare Weight	133.4	132.8	127.2	
Dry Aggregate Weight	1396.1	1394.6	1388.5	
Apparent Specific Gravity	2.861	2.841	2.862	2.855
Bulk(SSD) Specific Gravity	2.797	2.768	2.764	2.776
Bulk(Oven Dry) Spec. Gravity	2.763	2.729	2.711	2.734
Percent Absorption	1.246	1.456	1.937	1.546

CTC-GEOTEK, INC.

155 South Navajo Street Denver, Colorado 80223

Date:

6-20-2014

Project Name:

Church Rock (ATT Job No. 2512 - 77)

Technician:

Quarry Source:

Church Rock

ASTM C 88-93, "Standard Test Method for Soundness of Aggregates by Use of Sodium Sulfate or

Magnesium Sulfate"

Project Number:

143002

Chemical Used:

Sodium Sulfate (Na₂SO₂)

Sample Identification:

TI - CS02 - 02A

QUANTITATIVE EXAMINATION

		INITIAL FINAL INDEPENDENT GRADING COMBINED FRACTION GRADING					
	Required Amount (gm)	Actual Amount (gm)	Grading of Original Sample (%)	Weight of Test Fractions Before Test (gm)	Weight of Test Fractions After Test (gm)	Percent Passing Designated Selve After Test	Welghted Percentage Loss
2 1/2" (63.0 mm) to 1 1/2" (37.5 mm)	5000 ± 300	0.0			(3-7		2033
2 1/2" (63.0 mm) to 2.0" (50.0 mm)	3000 ± 300				- C-0		1
2.0° (50.0 mm) to 1 1/2° (37.5 mm)	2000 ± 200						
1 1/2" (37.5 mm) to 3/4" (19.0 mm)	1500 ± 50	1503.1		7 7 7 7 7			
1 1/2" (37.5 mm) to 1.0" (25.0 mm)	1000 ± 50	1000.8	100.0	1503.1	1498.1	0.3	0.33
1.0 (25.0 mm) to 3/4" (19.0 mm)	500 ± 30	502.3					0.00
3/4" (19.0 mm) to 3/8" (9.5 mm)	1000 ± 10	1005.3					
3/4" (19.0 mm) to 1/2" (12.5 mm)	670 ± 10	673.4	100.0	1005.3	1001.6	0.4	0.37
1/2" (12.5 mm) to 3/8" (9.5 mm)	330 ± 10	331.9					0.37
3/8" (9.5 mm) to No. 4 (4.75 mm)	300 ± 5	302.1	200	V			
3/8" (9.5 mm) to No. 4 (4.75 mm)	300 ± 5	302.1	100.0	302.1	298.4	1.2	1.22

^{* &}quot;Grading of Original Sample" is compared to the average grading of No. 467 (Coarse Aggregate) of ASTM C 33-93.

QUALITATIVE EXAMINATION

			Parti	icles Exhibi	ting Distres	s			Total N	lumber	
	Spli	tting	Crum	bling	Crac	king	Fla	Flaking		of Test Particles	
	No.	%	No.	%	No.	%	No.	%	Initial	Final	
2 1/2" (63.0 mm) to 1 1/2" (37.5 mm)	7==		-	tradi	J. T.		10-5	1027		-	
1 1/2" (37.5 mm) to 3/4" 19.0 mm)	0	0.0	0	0.0	0	0.0	0	0.0	41	44	

CTC-GEDTEK, INC.

155 South Navajo Street Denver, Colorado 80223

Project Name:

Church Rock (ATT Job No. 2512 - 77)

Quarry Source:

Church Rock

Project Number:

143002

Technician:

ASTM C 88-93, "Standard Test Method for Soundness of Aggregates by Use of Sodium Sulfate or

Magnesium Sulfate"

Sample Identification:

TI - CS06 - 02A

Chemical Used:

Sodium Sulfate (Na₂SO₂)

QUANTITATIVE EXAMINATION

	INDEPENDEN		FINAL COMBINED FRACTION GRADING						
4 6 1	Required Amount (gm)	Actual Amount (gm)	Grading of Original Sample (%)	Weight of Test Fractions Before Test (gm)	Weight of Test Fractions After Test (gm)	Percent Passing Designated Seive After Test	Weighted Percentage Loss		
2 1/2" (63.0 mm) to 1 1/2" (37.5 mm)	5000 ± 300	0.0							
2 1/2" (63.0 mm) to 2.0" (50.0 mm)	3000 ± 300	3-1-1	-			-	-		
2.0" (50.0 mm) to 1 1/2" (37.5 mm)	2000 ± 200	-3-1							
1 1/2" (37.5 mm) to 3/4" (19.0 mm)	1500 ± 50	1513.2							
1 1/2" (37.5 mm) to 1.0" (25.0 mm)	1000 ± 50	1012.3	100.0	1513.2	1487.8	1.7	1.68		
1.0 (25.0 mm) to 3/4" (19.0 mm)	500 ± 30	500.9		4 5 6 6			1.00		
3/4" (19.0 mm) to 3/8" (9.5 mm)	1000 ± 10	1004.3							
3/4" (19.0 mm) to 1/2" (12.5 mm)	670 ± 10	670.2	100.0	1004.3	1002.9	0.1	0.14		
1/2" (12.5 mm) to 3/8" (9.5 mm)	330 ± 10	334.1							
3/8" (9.5 mm) to No. 4 (4.75 mm)	300±5	301.7	400.0	004.7					
3/8" (9.5 mm) to No. 4 (4.75 mm)	300 ± 5	301.7	100.0	301.7	298.7	1.0	0.99		

^{* &}quot;Grading of Original Sample" is compared to the average grading of No. 467 (Coarse Aggregate) of ASTM C 33-93.

QUALITATIVE EXAMINATION

		Total Number								
	Splitting		Crumbling Crack		cking Fla		ting of Tes		Particles	
	No.	%	No.	%	No.	%	No.	%	Initial	Final
2 1/2" (63.0 mm) to 1 1/2" (37.5 mm)	- 	-	-3		5-0		1 4-0	-	7-1	1 =
1 1/2" (37.5 mm) to 3/4" 19.0 mm)	1	1.9	1	1.9	5	9.3	0	0.0	54	54

CTC-GEDTEK, INC.

155 South Navajo Street Denver, Colorado 80223

em (2000

Project Name:

Church Rock (ATT Job No. 2512 - 77)

Quarry Source: Project Number:

Church Rock

143002

Technician:

ASTM C 88-93, "Standard Test Method for Soundness of Aggregates by Use of Sodium Sulfate or

Magnesium Sulfate"

Sample Identification:

TI - CS09 - 02A

Chemical Used:

Sodium Sulfate

(Na,SO,)

QUANTITATIVE EXAMINATION

	INDEPENDEN			FINAL COMBINED FRACTION GRADING						
	Required Amount (gm)	Actual Amount (gm)	Grading of Original Sample (%)	Weight of Test Fractions Before Test (gm)	Weight of Test Fractions After Test (gm)	Percent Passing Designated Seive After Test	Weighted Percentage Loss			
2 1/2" (63.0 mm) to 1 1/2" (37.5 mm)	5000 ± 300	0.0		L. Comp	, and (9m)	Delve Alter Test	LOSS			
2 1/2" (63.0 mm) to 2.0" (50.0 mm)	3000 ± 300				-					
2.0° (50.0 mm) to 1 1/2" (37.5 mm)	2000 ± 200	B-7				A . A .				
1 1/2" (37.5 mm) to 3/4" (19.0 mm)	1500 ± 50	1507.1								
1 1/2" (37.5 mm) to 1.0" (25.0 mm)	1000 ± 50	1001.1	100.0	1507.1	1488.0	1.3	1.07			
1.0 (25.0 mm) to 3/4" (19.0 mm)	500 ± 30	506.0				1.0	1.27			
3/4" (19.0 mm) to 3/8" (9.5 mm)	1000 ± 10	1001.4								
3/4" (19.0 mm) to 1/2" (12.5 mm)	670 ± 10	669.3	100.0	1001.4	989.7	1.2	1 17			
1/2" (12.5 mm) to 3/8" (9.5 mm)	330 ± 10	332.1		- 33357		1.2	1.17			
3/8" (9.5 mm) to No. 4 (4.75 mm)	300 ± 5	301.6	17.2 A 1 1111							
3/8" (9.5 mm) to No. 4 (4.75 mm)	300 ± 5	301.6	100.0	301.6	295.1	2.2	2.16			

^{* &}quot;Grading of Original Sample" is compared to the average grading of No. 467 (Coarse Aggregate) of ASTM C 33-93.

QUALITATIVE EXAMINATION

			Parti	icles Exhibi	iting Distres	S			Total N	lumber
	Splitting		Splitting Crumbling Cracking		Flaking		of Test Particles			
	No.	%	No.	%	No.	%	No.	%	Initial	Final
2 1/2" (63.0 mm) to 1 1/2" (37.5 mm)		L -			-	1 - 3 -	1,271	100	- Hilloui	1 1110
1 1/2" (37.5 mm) to 3/4" 19.0 mm)	0	0.0	- 1	2.2	1	2.2	0	0.0	46	46

CTC-GEDTEK, INC.

155 South Navajo Street Denver, Colorado 80223

Date: Technician: 6-20-2014 JW

Project Name:

Church Rock (ATT Job No. 2512 -77)

Quarry Source: Project Number:

Church Rock 143002 ASTM C 131, "Standard Test Method for Resistance to Degradation of Small-Size Coarse Aggregate by Abrasion and Impact in the

Los Angeles Machine"

Grading Used: Grading "A"

Sieve	Size	Required		Actual Grad	ling Weights	
Passing	Retained	Grading (gm)	TI - CS02 - 02A	TI -CS06 -02A	TI - CS09 - 02A	
1 1/2 in. (37.5 mm)	1.0 in. (25.0 mm)	1250 ± 25	1252.8	1252 5		
1.0 in. (25.0 mm)	3/4 in. (19.0 mm)	1250 ± 25		1252.5	1250.7	
3/4 in. (19.0 mm)	1/2 in. (12.5 mm)		1255.2	1253.8	1249.6	
		1250 ± 10	1253.5	1252.9	1253.9	
1/2 in. (12.5 mm)	3/8 in. (9.5 mm)	1250 ± 10	1248.4	1250.0		
Total Aggregate	Accumulated	5000 ± 10	F000 5		1250.8	
00 0		3000 ± 10	5009.9	5009.2	5005.0	

Initial Weight (gm)	5009.9	5000.0		
Unwashed Weight at 100 Rev. (gm)		5009.2	5005.0	
	4820.0	4724.9	4750.1	
Washed Weight at 500 Rev. (gm)	4157.6	2025 5		
10.11	1101.0	3835.5	3860.2	

Percent Loss at 100 Revolutions	3.8	5.7	EA	
Percent Loss at 500 Revolutions	17.0	23.4	9.1	
Uniform Hardness Ratio	0.223		22.9	
	0.223	0.242	0.223	

*No. 12 (1.70 mm) Sieve was used to determine *Percent Loss*

MWH CLIENT: JOB NO. 2512-77 **PROJECT** Church Rock LOCATION Tailings Impounds PROJECT NO. BORING NO. TI-B10-03 DEPTH 12.5-14 SAMPLE NO. DATE SAMPLED 11/26/13 MWH DATE TESTED 12/18/13 DPM SOIL DESCRIPTION MOISTURE DETERMINATIONS Wt. of Wet Soil & Dish (gms) 228.27 Wt. of Dry Soil & Dish (gms) 208.77 Net Loss of Moisture (gms) 19.50 Wt. of Dish (gms) 15.90 Wt. of Dry Soil (gms) 192.87

10.1

Data entry by: Checked by: File name:

Moisture Content (%)

DPM

Date: 12/18/2013 Date: 12/19/2013

2512_77_M&D-ASTM-D2216-D2937-R0_0.xls

NINANGEO TENRA TESTING

Moisture & Density Determinations ASTM D 2216 & D 2937

	ASTM D 2216 8	D 2937	
CLIENT:	MWH	JOB NO.	2512-77
PROJECT	Church Rock	LOCATION	Tailings Impound
PROJECT NO.	<u></u>		3
BORING NO.	TI-B10-02		
DEPTH	10-12.5'		
SAMPLE NO.			
DATE SAMPLED	11/26/13 MWH		
DATE TESTED	12/17/13 DPM		
SOIL DESCRIPTION	September 2 Contract		
DENSITY DETERMINATIONS	3		
Sample Height (IN)	0.914		
Sample Diameter (IN)	2.875		
Wt of Wet Soil (GMs)	143.65		
Sample Volume (CU Ft)	0.00343		
WET DENSITY (PCF)	92.2		
DRY DENSITY (PCF)	85.8		
MOISTURE DETERMINATIO	NS		
Wt. of Wet Soil & Dish (gms)	150.26		
Wt. of Dry Soil & Dish (gms)	140.31		
Net Loss of Moisture (gms)	9.95		
Wt. of Dish (gms)	6.61		
Wt. of Dry Soil (gms)	133.70		
Moisture Content (%)	7.4		
	2.54		

Data entry by: Checked by: File name:

DPM

Date: 12/18/2013 Date: _12/18/2013 2512_77_M&D-ASTM-D2216-D2937-R0_0.xls

CLIENT: PROJECT PROJECT NO.	MWH Church Rock		JOB NO. LOCATION Tailings Impor	2512-77 undment
PODING NO	THE R. P. LEW.	mi man lan		
BORING NO.	TI-B15-04	TI-B15-10		
DEPTH	13.5-14.0	28.5-29.5		
SAMPLE NO.				
DATE SAMPLED	12/05/13 MWH	12/05/13 MWH		
DATE TESTED	03/20/14 DPM	03/20/14 DPM		
SOIL DESCRIPTION	Clayey Sand	Clayey fine		
	Tailings	Sand Tails		
MOISTURE DETERMINATIONS				
Wt. of Wet Soil & Dish (gms)	208.565	926.32		
Wt. of Dry Soil & Dish (gms)	181.732	778.78		
Net Loss of Moisture (gms)	26.833	147.54		
Wt. of Dish (gms)	6.520	15.84		
Wt, of Dry Soil (gms)	175.212	762.94		
Moisture Content (%)	15.3	19.3		

Data entry by: Checked by: File name: DPM

Date: 3/21/2014 Date: 03/24/14

CLIENT: PROJECT	MWH Church Rock		JOB NO. LOCATION	2512-77
PROJECT NO.	Chulch Rock		Tailings Impor	undment
BORING NO.	TI-B2-07	TI-B1-12		
DEPTH	13.5-14.5	32-33		
SAMPLE NO.	10.0-14.0	02-00		
DATE SAMPLED	11/20/13 MWH	11/21/13 MWH		
DATE TESTED	01/27/14 DPM	03/01/14 DPM		
SOIL DESCRIPTION	Sand Tailings	Sand Tailings		
MOISTURE DETERMINATION	ONS			
Wt. of Wet Soil & Dish (gms)		278.84		
Wt. of Dry Soil & Dish (gms)	356.31	217.22		
Net Loss of Moisture (gms)	142.13	61.62		
Wt. of Dish (gms)	15.82	6.56		
Wt. of Dry Soil (gms)	340,49	210.66		
Moisture Content (%)	41.7	29,3		

Data entry by: Checked by: File name:

DPM

Date: Date: 3/14/14

3/13/2014

M&D-ASTMD-2216-2937-R0-14.xls

CLIENT: PROJECT	MWH Church Rock		JOB NO. LOCATION	2512-77
PROJECT NO.	- Tallings Impoundment			
BORING NO.	TI-B1-07B	TI-B1-07B	TI-B1-11C	TI-B1-11C
DEPTH	20.5-21.0	20.5-21.0	30.0-30.5	30.0-30.5
SAMPLE NO.	60c MC	110c MC	60c MC	110c MC
DATE SAMPLED	11/21/13 MWH	11/21/13 MWH		11/21/13 MWH
DATE TESTED	04/19/14 DPM	04/21/14 DPM		04/21/14 DPM
SOIL DESCRIPTION	Sand Tailings	Sand Tailings		Sand Tailings
	Cano raimigo	Carlo Tallinga	(V. Fine)	(V. Fine)
MOISTURE DETERMINATIONS			(111100)	(****
Wt. of Wet Soll & Dish (gms)	543.38	543.38	486.55	486.55
Wt. of Dry Soil & Dish (gms)	514.71	512.95	430.63	429.19
Net Loss of Moisture (gms)	28.67	30.43	55.92	57.36
Wt. of Dish (gms)	15.85	15.85	15.72	15.72
Wt. of Dry Soil (gms)	498.86	497.10	414.91	413.47
Moisture Content (%)	5.7	6.1	13.5	13.9
christen samplinging	811		10.0	10.0
BORING NO.	TI-B10-08B	TI-B10-08B	TI-B10-12B	TI-B10-12B
DEPTH	25.75-26.0	25.75-26.0	35.5-36	35.5-36'
SAMPLE NO.	60c MC	110c MC	60c MC	110c MC
DATE SAMPLED	11/28/13 MWH	11/26/13 MWH	11/26/13 MWH	11/26/13 MWH
DATE TESTED	04/19/14 DPM	04/21/14 DPM	04/19/14 DPM	04/21/14 DPM
SOIL DESCRIPTION	Clayey Silt	Clayey Silt	Clayey Silt	Clayey Silt
	Tailings	Tallings	Tailings	Tailings
MOISTURE DETERMINATIONS				7 200
Wt. of Wet Soil & Dish (gms)	272.86	272.86	497.85	497.85
Wt. of Dry Soll & Dish (gms)	198.08	194.68	334.16	328.44
Net Loss of Moisture (gms)	74.78	78.18	163.69	169.41
Wt. of Dish (gms)	15.81	15.81	15.79	15.79
Wt. of Dry Soll (gms)	182.27	178.87	318.37	312.65
Moisture Content (%)	41.0	43.7	51.4	54.2
BORING NO.	TI-B11-07B	TI-B11-07B	TI-B8-04	Ti-B8-04
DEPTH	45.5-46.0'	45.5-46.0	31.0-31.5	31.0-31.5
SAMPLE NO.	60c MC	110c MC	60c MC	110c MC
DATE SAMPLED	12/02/13 MWH	12/02/13 MWH	12/03/13 MWH	12/03/13 MWH
DATE TESTED	04/19/14 DPM	04/21/14 DPM	04/19/14 DPM	04/21/14 DPM
SOIL DESCRIPTION	Clayey Silt	Clayey Silt	Clayey	Clayey
	Tailings	Tailings	Silt/Sand	Silt/Sand
MOISTURE DETERMINATIONS	, annings	rumingo	Ollodario	Gild Gaild
Wt. of Wet Soil & Dish (gms)	432.66	432.66	1281.90	1281.90
Wt. of Dry Soil & Dish (gms)	236.70	207.70	970.10	954.78
Net Loss of Moisture (gms)	195.96	224.96	311.80	327.12
Wt. of Dish (gms)	15.82	15.82	216.52	216.52
Wt. of Dry Soil (gms)	220.88	191.88	763.58	738.26
Moisture Content (%)	88.7	117.2	41.4	44.3
Data entry by:	DPM	Date:	4/23/2014	America
Checked by:	47		4/23/14	ALL
File name:	M&D-ASTMD-2216			ADVANCED TEATIA TESTING
S and Calcium.	DAME OF THE PROPERTY	CAST TAS ILINO		

Moisture Content Determinations - 60c M.C. to 110c M.C. ASTM D 2216

CLIENT: PROJECT PROJECT NO.	MWH Church Rock		JOB NO. LOCATION Tailings Impoundm	2512-77 ent
BORING NO.	TI-B1-17	TI-B1-17	TI-B1-17	TI-B1-17
DEPTH	45-46'	45-46'	45-46'	45-46'
SAMPLE NO.	Before Test 60c	After Test 60c	Before Test 110c	After Test 110c
DATE SAMPLED	11/21/13 MWH	11/21/13 MWH	11/21/13 MWH	11/21/13 MWH
DATE TESTED	04/23/14 DPM	04/23/14 DPM	05/01/14 DPM	05/01/14 DPM
SOIL DESCRIPTION	Clayey Sand	Clayey Sand	Clayey Sand	Clayey Sand
MOISTURE DETERMINATIONS				
Wt. of Wet Soil & Dish (gms)	803.37	792.43	803.37	792.43
Wt. of Dry Soil & Dish (gms)	665.72	665.72	661.53	661.53
Net Loss of Moisture (gms)	137.65	126.71	141.84	130.90
Wt. of Dish (gms)	15.76	15.76	15.76	15.76
Wt. of Dry Soil (gms)	649.96	649.96	645.77	645.77
Moisture Content (%)	21.2	19.5	22.0	20.3
BORING NO.	TI-B3-03	TI-B3-03	TI-B3-03	TI-B3-03
DEPTH	21-22'	21-22'	21-22	21-22'
SAMPLE NO.	Before Test 60c	After Test 60c	Before Test 110c	After Test 110c
DATE SAMPLED	11/19/13 MWH	11/19/13 MWH	11/19/13 MWH	11/19/13 MWH
DATE TESTED	04/23/14 DPM	04/23/14 DPM	05/01/14 DPM	05/01/14 DPM
SOIL DESCRIPTION	Silty Clay	Silty Clay	Silty Clay	Silty Clay
MOISTURE DETERMINATIONS				water out
Wt. of Wet Soil & Dish (gms)	786.84	823.83	786.84	823.83
Wt. of Dry Soil & Dish (gms)	698.27	698.27	694.35	694.35
Net Loss of Moisture (gms)	88.57	125.56	92.49	129.48
Wt. of Dish (gms)	15.79	15.79	15.79	15.79
Wt. of Dry Soil (gms)	682.48	682.48	678.56	678.56
Moisture Content (%)	13.0	18.4	13.6	19.1
BORING NO.	TI-B3-10	TI-B3-10	TI-B3-10	TI-B3-10
DEPTH	56-57'	56-57'	56-57'	56-57'
SAMPLE NO.	Before Test 60c	After Test 60c	Before Test 110c	After Test 110c
DATE SAMPLED	11/19/13 MWH	11/19/13 MWH	11/19/13 MWH	11/19/13 MWH
DATE TESTED	04/22/14 DPM	04/22/14 DPM	05/01/14 DPM	05/01/14 DPM
SOIL DESCRIPTION	Silty Clay	Silty Clay	Silty Clay	Silty Clay
MOISTURE DETERMINATIONS	300 003	010 211	100.101	100 211
Wt. of Wet Soil & Dish (gms)	159.884	158.614	159.884	158,614
Wt. of Dry Soil & Dish (gms)	135.805	135.805	134.591	134,591
Net Loss of Moisture (gms)	24.079	22.809	25.293	24.023
Wt. of Dish (gms)	3.846	3.846	3.846	3.846
Wt. of Dry Soil (gms)	131.959	131.959	130.745	130.745
Moisture Content (%)	18.2	17.3	19.3	18.4
Data entry by:	QPM ,	Date:	5/23/2014	ATT
Checked by:	DAM 3346		05/23/14	ADVANCED TERRA TESTINA
File name:	File name: M&D-ASTMD-2216-2937-R0-20.xls			

CLIENT		.10 0 0 2307	IOP NO	2542.77
CLIENT:	MWH		JOB NO.	2512-77
PROJECT	Church Rock		LOCATION	Tailings Impound
PROJECT NO.	•			
BORING NO.	TI-B8-02A	TI-B8-02B	TI-B8-08	
DEPTH	26-26.5	25.5-26'	40-42.5	
SAMPLE NO.				
DATE SAMPLED	12/03/13 MWH	12/03/13 MWH	12/04/13 MWH	
DATE TESTED	12/18/13 DPM	12/18/13 DPM	12/18/13 DPM	
SOIL DESCRIPTION	1	-		
DENSITY DETERMINATIONS				
Sample Height (IN)	5.617	5.617	1.411	
Sample Diameter (IN)	1.938	1.938	2.876	
Wt of Wet Soil (GMs)	465.56	460.21	262.92	
Sample Volume (CU Ft)	0.00959	0.00959	0.00530	
WET DENSITY (PCF)	107.0	105.8	109.3	
DRY DENSITY (PCF)	91.7	99.6	75.4	
MOISTURE DETERMINATION	S			
Wt. of Wet Soil & Dish (gms)	40.68	82.88	278.72	
Wt. of Dry Soil & Dish (gms)	35.79	78.55	197.18	
Net Loss of Moisture (gms)	4.89	4.33	81.54	
Wt. of Dish (gms)	6.63	9.25	15.82	
Wt. of Dry Soil (gms)	29.16	69.30	181.36	
Moisture Content (%)	16.8	6.2	45.0	

Data entry by: Checked by: File name:

DPM

12/18/2013 Date: Date: 12/18/2013 2512-77-M&D-ASTMD-2216-2937-R0-9.xls

Moisture Content Determinations ASTM D 2216

MWH	JOB NO.	2512-77
Church Rock	LOCATION	Tailings Impounds
TI-B8-09		
43.5-44.5'		
12/04/13 MWH		
12/18/13 DPM		
200 150 150 1 7		
e andre		
286.95		
208.54		
78.41		
15.78		
192.76		
40.7		
	TI-B8-09 43.5-44.5' 12/04/13 MWH 12/18/13 DPM 286.95 208.54 78.41 15.78 192.76	TI-B8-09 43.5-44.5' 12/04/13 MWH 12/18/13 DPM 286.95 208.54 78.41 15.78 192.76

Data entry by: Checked by: File name:

DPM

12/18/2013 Date: Date: <u>12/18/2013</u> 2512-77-M&D-ASTMD-2216-2937-R0-9.xls

OLICHT.	A #1 A #1	10 0 0 2001	192.2 (127)	72.10.22
CLIENT:	MWH		JOB NO.	2512-77
PROJECT	Church Rock		LOCATION	
PROJECT NO.	+		Tailings Impou	indment
BORING NO.	TI-B23-03	TI-B23-03		
DEPTH	17.25-17.5	15.5-15.75		
SAMPLE NO.	Bottom of Tube	Top of Tube		
DATE SAMPLED	12/06/13 MWH	12/06/13 MWH		
DATE TESTED	03/27/14 DPM	04/11/14 DPM		
SOIL DESCRIPTION	Silty Clay	Sand Tallings		
	Only Olay	Cana ramingo		
DENSITY DETERMINATIONS				
Sample Height (IN)	2.119	2.901		
Sample Diameter (IN)	2,868	2.878		
Wt of Wet Soll (GMs)	448.73	524.20		
Sample Volume (CU Ft)	0.00792	0.01092		
WET DENSITY (PCF)	124.9	105.8		
DRY DENSITY (PCF)	101.9	87.7		
	101.5	91.1		
MOISTURE DETERMINATIONS				
Wt. of Wet Soil & Dish (gms)	129.48	140.34		
Wt. of Dry Soil & Dish (gms)	107.22	117.42		
Net Loss of Moisture (gms)	22.26	22.92		
Wt. of Dish (gms)	8.44	6.65		
Wt. of Dry Soil (gms)	98.78	110.77		
Moisture Content (%)	22.5	20.7		
maisians Contone (70)	22.0	20.7		

Data entry by: Checked by: File name:

DPM

Date: 4/20/2014 Date: 4/23 M&D-ASTMD-2216-2937-R0-16.xls

ADVANCIOS FINRA TESTINO

CLIENT: MWH Church Rock		ASTM D 2	216 & D 2937		
PROJECT	CLIENT:	MWH		JOB NO.	2512-77
BORING NO.	PROJECT	Church Rock			27 (27 //)
BORING NO. TI-BB-10A TI-BB-12A TI-B1-01A TI-B1-04A DEPTH 46.0-46.5' 56.0-56.5' 6.0-5.5' 21.0-21.5' SAMPLE NO. DATE SAMPLED 12/04/13 MWH 03/18/14 DPM 03/20/14 DPM 03/20/14 DPM Sand DENSITY DETERMINATIONS Sample Height (IN) 1.926 1.931 1.889 1.876 Molecular (IN) 1.926 1.931 1.889 1.876 Molecular (IN) 0.00956 0.00958 0.00919 0.00835 Molecular (IV) 0.00956 0.00958 0.00919 0.00835 0.00919 0.00835 Molecular (IV) 0.00956 0.00958 0.00919 0.00835 0.00919 0.00935	PROJECT NO.	200000000000000000000000000000000000000			ment
DEPTH	Appartud Nami				
DATE SAMPLE NO. DATE SAMPLE DO 12/04/13 MWH 12/04/13 MWH O3/18/14 DPM			TI-B8-12A	TI-B11-01A	TI-B11-04A
DATE SAMPLED DATE TESTED DATE TESTED SOIL DESCRIPTION SITY DETERMINATIONS Sample Height (IN) Sample Height (IN) Sample Holght (IN) Sample Volume (CU F) Sample Volume (CU F) Sample Volume (The Holght (IN) Sample Holght (IN) Sample Demeter (IN) Sample Volume (CU F) Sample Soil & Dish (gms) Sample Soils (In) Sample Volume (CU F) Sample Soils Soils (In) Sample Volume (CU F) Sample Vo		46.0-46.5	56.0-56.5	6.0-6.5	21.0-21.5
DATE TESTED SOIL DESCRIPTION Silty Clayey Sand Sand DENSITY DETERMINATIONS Sample Height (IN) Sample Height					
DATE TESTED SOIL DESCRIPTION SILY Clayey Sand DENSITY DETERMINATIONS Sample Height (IN) Sample Diameter (IN) Sample Poly Clayes Sample Model (IN) Sample Poly Clayes Sample Model (IN) Sample Diameter (IN) Sample Poly Clayes Sample Model (IN) Sample Diameter (IN) Sample Sample Salie (In) Sample Salie (In) Sample	DATE SAMPLED	12/04/13 MWH	12/04/13 MWH	12/02/13 MWH	12/02/13 MWH
SOIL DESCRIPTION Silty Clayey Sand Sand Sand Sand Sand Sand Sand DENSITY DETERMINATIONS Sample Height (I/N) 5.672 3.442 5.668 5.219 Sample Diameter (IN) 1.926 1.931 1.889 1.876 Sample Volume (CU Ft) 0.00956 0.00583 0.00919 0.00836 Ver Toensitry (PCF) 118.0 109.8 101.6 120.8 DRY DENSITY (PCF) 95.2 97.6 93.5 107.6 Ver Toensitry (PCF) 95.0 6.566 195.348 170.829 Ver Toensitry (PCF) 95.00 6.5566 195.348 170.829 Ver Toensitry (PCF) 95.00 6.550 6.520 6.567 Ver Toensitry (PCF) 95.00 50.016 186.828 164.262 Ver Toensitry (PCF) 95.00 100.00876 Ver Toensitry (PCF) 95.4 96.0 100.00877 Ver Toensitry (PCF) 95.4 96.2 107.6 Ver Toensitry (PCF) 95.4 6.519 6.374 Ver Toensitry (PCF) 110.6 109.9 119.4 Ver Toensitry (PCF) 95.4 6.519 6.519 6.519 6.519 6.519 6.519 6.519 6.519 6.519 6.519 6.519 6.519 6.519 6.519 6.519 6.519 6.519	DATE TESTED	03/18/14 DPM	03/18/14 DPM	03/20/14 DPM	The state of the s
Sand Sand Sand Sand Sand Sand Sample Description Sample Height (IN) 5.672 3.442 5.668 5.219 Sample Diameter (IN) 1.926 1.931 1.889 1.876 Will of Wet Soil (GMs) 503.15 290.63 423.67 457.57 Sample Volume (CU Ft) 0.00956 0.00583 0.00919 0.00835 WET DENSITY (PCF) 116.0 109.8 101.6 120.8 DRY DENSITY (PCF) 95.2 97.5 93.5 107.6 DRY DENSITY (PCF) 95.2 97.6 93.5 107.6 DRY DENSITY (PCF) 95.2 0.6566 195.348 170.829 DRY DENSITY (PCF) 95.4 95.6 0.656.6 195.348 170.829 DRY DENSITY (PCF) 95.4 95.234 5.303 DRY DENSITY (PCF) 95.4 95.234 5.303 DRY DENSITY (PCF) 95.4 95.2 107.6 DRY DENSITY (PCF) 95.4 96.2 107.6 DRY D	SOIL DESCRIPTION	Silty Clayey	Silty Clayey		
DENSITY DETERMINATIONS Sample Height (IN)		Sand			2012 202
Sample Diameter (IN)	DENSITY DETERMINATIONS			025.62	
Sample Diameter (IN)		5.672	3.442	5,668	5.219
Wt of Wet Soil (GMs) 503.16 290.63 423.67 457.57 Sample Volume (CU Ft) 0.00956 0.00583 0.00919 0.00836 WET DENSITY (PCF) 118.0 109.8 101.6 120.8 DRY DENSITY (PCF) 95.2 97.6 93.5 107.6 MOISTURE DETERMINATIONS Wt. of Wet Soil & Dish (gms) 115.109 72.977 211.667 191.081 Wt. of Dry Soil & Dish (gms) 95.602 65.666 195.348 170.829 Net Loss of Moisture (gms) 19.507 7.411 16.319 20.252 Wt. of Dish (gms) 89.600 59.016 188.628 164.262 Moisture Content (%) 21.9 12.6 8.6 12.3 Moisture Content (%) 21.9 12.6 8.6 12.3 Moisture Content (%) 21.9 12.6 8.6 12.3 Moisture Content (%) 21.9 12.0013 MWH DATE TESTED 03/20/14 DPM 03/2	Sample Diameter (IN)	1.926	1.931		
Sample Volume (CU Ft)	Wt of Wet Soil (GMs)	503.15			
WET DENSITY (PCF)	Sample Volume (CU Ft)	0.00956			
DRY DENSITY (PCF) 95.2 97.6 93.5 107.6	WET DENSITY (PCF)	116.0			
MOISTURE DETERMINATIONS Wt. of Wet Soil & Dish (gms) Wt. of Wet Soil & Dish (gms) Wt. of Dry Soil & Dish (gms) Wt. of Dry Soil & Dish (gms) Net Loss of Moisture (gms) Net Loss of Mois	DRY DENSITY (PCF)				1200
Wt. of Wet Soil & Dish (gms) Wt. of Dry Soil & Dish (gms) Wt. of Dry Soil & Dish (gms) Net Loss of Molsture (gms) Net Soil (gms) Net Loss of Moisture (gms) Net Color (gms	Parameter and a live of the	L.		0.07	0.00
WI. of Dry Soil & Dish (gms) Net Loss of Moisture (gms) Net Loss of Moistur					
Net Loss of Molsture (gms) Wt. of Dish (gms) 6.542 6.550 6.520 6.567 Wt. of Dish (gms) 89.060 59.016 188.628 164.262 Moisture Content (%) 21.9 12.6 BORING NO. TI-B11-12A TI-B11-13A TI-B11-17A DEPTH 61.0-61.5' 66.0-66.5' 81.0-81.5' SAMPLE NO. DATE SAMPLED 12/02/13 MWH DATE TESTED 03/20/14 DPM SOIL DESCRIPTION Clayey Sand Silty Sand DENSITY DETERMINATIONS Sample Height (IN) Sample Diameter (IN) 1.913 Sample Volume (CU Ft) 0.00931 ORS 0.00887 WET DENSITY (PCF) 110.6 MOISTURE DETERMINATIONS Wt. of Wet Soil & Dish (gms) Net Loss of Moisture (gms) 15.984 12.252 19.267 19.273 187.577 121.771 Wt. of Dry Soil & Dish (gms) 100.205 158.405 102.166 Moisture Content (%) DATE 19.507 19.508 102.265 10.560 102.166 Moisture Content (%) DATE 19.508 10.509 10.205 158.405 102.166 Moisture Content (%) DATE 19.507 19.508 10.2014 10.500 10.205 158.405 102.166 Moisture Content (%) DATE 19.507 19.508 10.2014 10.5016 10.2016 10.	Wt. of Wet Soil & Dish (gms)			211.667	191.081
Wt. of Dish (gms)	Wt. of Dry Soil & Dish (gms)		65,566	195.348	170.829
Wt. of Dry Soil (gms) 89.060 59.016 188.628 164.262 Moisture Content (%) 21.9 12.6 8.6 12.3 BORING NO. TI-B11-12A TI-B11-13A TI-B11-17A DEPTH 61.0-61.5' 66.0-66.5' 81.0-81.5' SAMPLE NO. DATE SAMPLED 12/02/13 MWH 12/02/13 MWH 03/20/14 DPM 03/20/14 DPM <t< td=""><td>Net Loss of Moisture (gms)</td><td>19.507</td><td>7.411</td><td>16.319</td><td>20.252</td></t<>	Net Loss of Moisture (gms)	19.507	7.411	16.319	20.252
Wt. of Dry Soil (gms) 89,060 59,016 188.628 164.262 Moisture Content (%) 21.9 12.6 8.5 12.3 BORING NO. TI-B11-12A TI-B11-13A TI-B11-17A DEPTH 61.0-61.5' 66.0-66.5' 81.0-81.5' SAMPLE NO. 12/02/13 MWH 12/02/13 MWH 12/02/13 MWH DATE SAMPLED 12/02/13 MWH 12/02/13 MWH 03/20/14 DPM 03/20/14 DPM SOIL DESCRIPTION Clayey Sand Silty Sand Gravely Sand DENSITY DETERMINATIONS Sample Height (IN) 5.598 5.234 5.303 Sample Diameter (IN) 1.913 1.919 1.918 Wt of Wet Soil (GMs) 467.05 436.67 480.31 Sample Volume (CU Ft) 0.00931 0.00876 0.00887 WET DENSITY (PCF) 110.6 109.9 119.4 DRY DENSITY (PCF) 95.4 96.2 107.6 MOISTURE DETERMINATIONS 122.783 187.577 121.771 Wt. of Dry Soil & Dish (gms) 108.799 165.024	Wt. of Dish (gms)	6.542	6.550	6.520	6.567
Moisture Content (%) 21.9 12.6 8.5 12.3	Wt. of Dry Soil (gms)	89,060	59.016	188.828	
DEPTH 61.0-61.5' 66.0-66.5' 81.0-81.5' SAMPLE NO. DATE SAMPLED 12/02/13 MWH 03/20/14 DPM 03/20/14 DPM 03/20/14 DPM 03/20/14 DPM 03/20/14 DPM 03/20/14 DPM O3/20/14 DPM O3/20/	Moisture Content (%)	21.9	12.6	8.6	12.3
DEPTH 61.0-61.5' 66.0-66.5' 81.0-81.5' SAMPLE NO. DATE SAMPLED 12/02/13 MWH 03/20/14 DPM 03/20/14 DPM 03/20/14 DPM 03/20/14 DPM 03/20/14 DPM 03/20/14 DPM O3/20/14 DPM O3/20/	BORING NO	TI D44 424	TI D44 404	71 744 474	
SAMPLE NO. DATE SAMPLED DATE SAMPLED DATE TESTED SOIL DESCRIPTION DENSITY DETERMINATIONS Sample Height (IN) Sample Diameter (IN) Vo of Wet Soil (GMs) DENSITY (PCF) DENSITY (PCF) DENSITY (PCF) DENSITY (PCF) MOISTURE DETERMINATIONS Wt. of Wet Soil & Dish (gms) Wt. of Dry Soil & Dish (gms) Wt. of Dish (gms) Wt. of Dish (gms) Wt. of Dish (gms) DENSITY (PCF) DENSITY					
DATE SAMPLED DATE TESTED O3/20/14 DPM O3/20/		61.0-61.6	66.0-66.5	81.0-81.5	
DATE TESTED 03/20/14 DPM 03/20/14 DPM O3/20/14 DPM SOIL DESCRIPTION Clayey Sand Silty Sand Gravely Sand DENSITY DETERMINATIONS Sample Height (IN) 5.598 5.234 5.303 Sample Diameter (IN) 1.913 1.919 1.918 Wt of Wet Soil (GMs) 467.05 436.67 480.31 Sample Volume (CU Ft) 0.00931 0.00876 0.00887 WET DENSITY (PCF) 110.6 109.9 119.4 DRY DENSITY (PCF) 95.4 96.2 107.6 MOISTURE DETERMINATIONS Wt. of Wet Soil & Dish (gms) 122.783 187.577 121.771 Wt. of Dry Soil & Dish (gms) 106.799 165.024 110.540 Net Loss of Moisture (gms) 15.984 22.553 11.231 Wt. of Dish (gms) 6.594 6.619 8.374 Wt. of Dry Soil (gms) 100.205 158.405 102.166 Moisture Content (%) 16.0 14.2 11.0 Data entry by: DPM Date: 4/11/14		40/00/40 48481	40/00/45 \$4444	Total Mark	
DENSITY DETERMINATIONS Sample Height (IN) 5.598 5.234 5.303 Sample Diameter (IN) 1.913 1.919 1.918 Wt of Wet Soil (GMs) 467.05 436.67 480.31 Sample Volume (CU Ft) 0.00931 0.00876 0.00887 WET DENSITY (PCF) 110.6 109.9 119.4 DRY DENSITY (PCF) 95.4 96.2 107.6 MOISTURE DETERMINATIONS Wt. of Wet Soil & Dish (gms) 122.783 187.577 121.771 Wt. of Dry Soil & Dish (gms) 106.799 165.024 110.540 Net Loss of Moisture (gms) 15.984 22.553 11.231 Wt. of Dry Soil (gms) 100.205 158.405 102.166 Moisture Content (%) 16.0 14.2 11.0 Date: 4/10/2014 Checked by: DPM Date: 4/10/2014 Checked by: Date: 4/10/2014 Che					
DENSITY DETERMINATIONS Sample Height (IN) 5.598 5.234 5.303 Sample Diameter (IN) 1.913 1.919 1.918 Wt of Wet Soil (GMs) 467.05 436.67 480.31 Sample Volume (CU Ft) 0.00931 0.00876 0.00887 WET DENSITY (PCF) 110.6 109.9 119.4 DRY DENSITY (PCF) 95.4 98.2 107.6 MOISTURE DETERMINATIONS Wt. of Wet Soil & Dish (gms) 122.783 187.577 121.771 Wt. of Dry Soil & Dish (gms) 106.799 165.024 110.540 Net Loss of Moisture (gms) 15.984 22.553 11.231 Wt. of Dish (gms) 6.594 6.619 8.374 Wt. of Dry Soil (gms) 100.205 158.405 102.166 Moisture Content (%) 16.0 14.2 11.0 Data entry by: DPM Checked by: Date: 4/10/2014 Checked by: Date: 4/10/2014					
Sample Height (IN) 5.598 5.234 5.303 Sample Diameter (IN) 1.913 1.919 1.918 Wt of Wet Soil (GMs) 467.05 436.67 480.31 Sample Volume (CU Ft) 0.00931 0.00876 0.00887 WET DENSITY (PCF) 110.6 109.9 119.4 DRY DENSITY (PCF) 95.4 96.2 107.6 MOISTURE DETERMINATIONS Wt. of Wet Soil & Dish (gms) 122.783 187.577 121.771 Wt. of Dry Soil & Dish (gms) 106.799 165.024 110.540 Net Loss of Moisture (gms) 15.984 22.553 11.231 Wt. of Dish (gms) 6.594 6.619 8.374 Wt. of Dry Soil (gms) 100.205 158.405 102.166 Moisture Content (%) 16.0 14.2 11.0 Date: 4/10/2014 Checked by: Date: 4/10/2014	SOIL DESCRIPTION	Clayey Sand	Silty Sand	Gravely Sand	
Sample Height (IN) 5.598 5.234 5.303 Sample Diameter (IN) 1.913 1.919 1.918 Wt of Wet Soil (GMs) 467.05 436.67 480.31 Sample Volume (CU Ft) 0.00931 0.00876 0.00887 WET DENSITY (PCF) 110.6 109.9 119.4 DRY DENSITY (PCF) 95.4 96.2 107.6 MOISTURE DETERMINATIONS Wt. of Wet Soil & Dish (gms) 122.783 187.577 121.771 Wt. of Dry Soil & Dish (gms) 106.799 165.024 110.540 Net Loss of Moisture (gms) 15.984 22.553 11.231 Wt. of Dish (gms) 6.594 6.619 8.374 Wt. of Dry Soil (gms) 100.205 158.405 102.166 Moisture Content (%) 16.0 14.2 11.0 Date: 4/10/2014 Checked by: Date: 4/10/2014	DENSITY DETERMINATIONS				
Sample Diameter (IN) 1.913 1.919 1.918 Wt of Wet Soil (GMs) 467.05 436.67 480.31 Sample Volume (CU Ft) 0.00931 0.00876 0.00887 WET DENSITY (PCF) 110.6 109.9 119.4 DRY DENSITY (PCF) 95.4 96.2 107.6 MOISTURE DETERMINATIONS Wt. of Wet Soil & Dish (gms) 122.783 187.577 121.771 Wt. of Dry Soil & Dish (gms) 106.799 165.024 110.540 Net Loss of Moisture (gms) 15.984 22.553 11.231 Wt. of Dish (gms) 6.594 6.619 8.374 Wt. of Dry Soil (gms) 100.205 158.405 102.166 Moisture Content (%) 16.0 14.2 11.0 Data entry by: DPM Checked by: Date: 4/10/2014 Checked by: Date: 4/10/2014		5.598	5 234	5 303	
Wt of Wet Soil (GMs) 467.05 436.67 480.31 Sample Volume (CU Ft) 0.00931 0.00876 0.00887 WET DENSITY (PCF) 110.6 109.9 119.4 DRY DENSITY (PCF) 95.4 96.2 107.6 MOISTURE DETERMINATIONS Wt. of Wet Soil & Dish (gms) 122.783 187.577 121.771 Wt. of Dry Soil & Dish (gms) 108.799 165.024 110.540 Net Loss of Moisture (gms) 15.984 22.553 11.231 Wt. of Dish (gms) 6.594 6.619 8.374 Wt. of Dry Soil (gms) 100.205 158.405 102.166 Moisture Content (%) 16.0 14.2 11.0 Date: 4/10/2014 ATT Checked by: DPM Date: 4/10/2014 ATT					
Sample Volume (CU Ft) 0.00931 0.00876 0.00887 WET DENSITY (PCF) 110.6 109.9 119.4 DRY DENSITY (PCF) 95.4 96.2 107.6 MOISTURE DETERMINATIONS Wt. of Wet Soil & Dish (gms) 122.783 187.577 121.771 Wt. of Dry Soil & Dish (gms) 106.799 165.024 110.540 Net Loss of Moisture (gms) 15.984 22.553 11.231 Wt. of Dish (gms) 6.594 6.619 8.374 Wt. of Dry Soil (gms) 100.205 158,405 102.166 Moisture Content (%) 16.0 14.2 11.0 Data entry by: DPM Checked by: Date: 4/10/2014 Checked by: Date: 4/10/2014					
WET DENSITY (PCF) 110.6 109.9 119.4 DRY DENSITY (PCF) 95.4 96.2 107.6 MOISTURE DETERMINATIONS Wt. of Wet Soil & Dish (gms) 122.783 187.577 121.771 Wt. of Dry Soil & Dish (gms) 106.799 165.024 110.540 Net Loss of Moisture (gms) 15.984 22.553 11.231 Wt. of Dish (gms) 6.594 6.619 8.374 Wt. of Dry Soil (gms) 100.205 158.405 102.166 Moisture Content (%) 16.0 14.2 11.0 Date entry by: DPM Date: 4/10/2014 4/10/2014 Checked by: Date: 4/10/2014 ATT					
DRY DENSITY (PCF) 95.4 96.2 107.6 MOISTURE DETERMINATIONS Wt. of Wet Soil & Dish (gms) 122.783 187.577 121.771 Wt. of Dry Soil & Dish (gms) 108.799 165.024 110.540 Net Loss of Moisture (gms) 15.984 22.553 11.231 Wt. of Dish (gms) 6.594 6.619 8.374 Wt. of Dry Soil (gms) 100.205 158,405 102.166 Moisture Content (%) 16.0 14.2 11.0 Data entry by: DPM Date: 4/10/2014 Checked by: Date: 4/10/2014					
MOISTURE DETERMINATIONS Wt. of Wet Soil & Dish (gms) 122.783 187.577 121.771 Wt. of Dry Soil & Dish (gms) 106.799 165.024 110.540 Net Loss of Moisture (gms) 15.984 22.553 11.231 Wt. of Dish (gms) 6.594 6.619 8.374 Wt. of Dry Soil (gms) 100.205 158.405 102.166 Moisture Content (%) 16.0 14.2 11.0 Data entry by: DPM Date: 4/10/2014 Checked by: Date: 4/10/2014					
Wt. of Wet Soil & Dish (gms) 122.783 187.577 121.771 Wt. of Dry Soil & Dish (gms) 106.799 165.024 110.540 Net Loss of Moisture (gms) 15.984 22.553 11.231 Wt. of Dish (gms) 6.594 6.619 8.374 Wt. of Dry Soil (gms) 100.205 158.405 102.166 Moisture Content (%) 16.0 14.2 11.0 Date entry by: DPM Date: 4/10/2014 4/10/2014 Checked by: Date: 4/10/2014 ATT		(ave et a	4777	444	
Wt. of Dry Soil & Dish (gms) 106.799 165.024 110.540 Net Loss of Moisture (gms) 15.984 22.553 11.231 Wt. of Dish (gms) 6.594 6.619 8.374 Wt. of Dry Soil (gms) 100.205 158.405 102.166 Moisture Content (%) 16.0 14.2 11.0 Data entry by: DPM Date: 4/10/2014 4/10/2014 Checked by: Date: 4/11/14 ATT		Martin Card			
Wt. of Dry Soil & Dish (gms) 108.799 165.024 110.540 Net Loss of Moisture (gms) 15.984 22.553 11.231 Wt. of Dish (gms) 6.594 6.619 8.374 Wt. of Dry Soil (gms) 100.205 158,405 102.166 Moisture Content (%) 16.0 14.2 11.0 Data entry by: DPM Date: 4/10/2014 4/10/2014 Checked by: Date: 4/11/14 ATT		122.783	187.577	121,771	
Net Loss of Moisture (gms) 15.984 22.553 11.231 Wt. of Dish (gms) 6.594 6.619 8.374 Wt. of Dry Soil (gms) 100.205 158,405 102.166 Moisture Content (%) 16.0 14.2 11.0 Data entry by: DPM Date: 4/10/2014 4/10/2014 Checked by: Date: 4/11/14 ATT		106.799	165.024	110.540	
Wt. of Dry Soll (gms) 100.205 158,405 102.166 Moisture Content (%) 16.0 14.2 11.0 Data entry by: DPM Date: 4/10/2014 4/10/2014 Checked by: Date: 4/11/14 Date: 4/11/14		15.984	22.553		
Wt. of Dry Soil (gms) 100.205 158.405 102.166 Moisture Content (%) 16.0 14.2 11.0 Data entry by: DPM Checked by: Date: 4/10/2014 ATT		6.594	6,619	8.374	
Moisture Content (%) Data entry by: Checked by: DPM Date: 4/10/2014 ATT		100.205	158,405		
Checked by: Date: 4/11/14 ATT	Moisture Content (%)	16.0			
Checked by: Date: 4/11/14 ATT	Data onto him	DDM	2711	WINESELY A	
					ATT
M&U-ASTMU-2216-2937-R0-15.x/s				9/11/14	
	i no flame.	WIGU-AS I MD-2216	-2937-R0-15.xls		ADMUNDS TERMATESTANC

ASTM D 22	16 & D 2937		
MWH		JOB NO.	251
Church Rock		LOCATION	
		Tailings Impound	lmen
4/21/11	-12.2.21		
04/26/14 DPM	04/26/14 DPM	04/26/14 DPM	
Clayey Sand	Silty Clay	Clayey Sand	ı
5 612	5.950	5 612	
	1.000.000.000.000.000		
		1 - 2 - COL-17 - C	
88.1	105.3	101.5	
S			
160.33	541.08	282.13	
146.16	490.49	253.00	(
14.17	50.59	29.13	
10.1	10.5	11.8	
TI D45 444	TI D45 17A	TI D15 100	
Clayey Sand	Silty Clay	Clayey Sand	
S			
160.33	541.08	282.13	
144.61	485.26	251.13	
15.72	55.82	31.00	
V-0.01		6.63	
138.02	478.76	244.50	
	710.10		
11.4	11.7	12.7	
11.4			
	11.7 Date: Date:	5/23/2014 05/23/17	
	MVVH Church Rock TI-B15-14A 41.0-41.5' 60c MC 12/05/13 MVVH 04/26/14 DPM Clayey Sand 5.612 1.938 421.89 0.00958 97.1 88.1 S 160.33 146.16 14.17 6.59 139.57 10.1 TI-B15-14A 41.0-41.5' 110c MC 12/05/13 MVVH 04/26/14 DPM Clayey Sand	TI-B15-14A	MWH Church Rock - TI-B15-14A A1.0-41.5' 60c MC 60c MC 60c MC 12/05/13 MWH 04/26/14 DPM Clayey Sand 5.612 5.950 5.612 1.938 421.89 535.67 0.00958 0.01016 0.00958 97.1 116.3 113.5 88.1 105.3 146.16 490.49 253.00 14.17 50.59 6.59 6.59 6.50 6.63 139.57 483.99 10.1 11.8 TI-B15-14A A1.0-41.5' 56.0-56.5' 110c MC 12/05/13 MWH 04/26/14 DPM Clayey Sand TI-B15-14A A1.0-41.5' 10.1 10.5 TI-B15-14A A1.0-41.5' 10.5 TI-B15-14A A1.0-41.5' 10.6 TI-B15-17A A

	AS IN D ZZ	16 & D 2937		
CLIENT:	MWH		JOB NO.	2512-77
PROJECT	Church Rock		LOCATION	
PROJECT NO.	H1000 110 11000		Tailings Impounds	ment
BORING NO.	TI-B15-01A	TI-B15-03A	TI-B15-07A	TI-B15-11A
DEPTH	6.0-6.5	11.0-11.5	21.0-21.5	31.0-31.5
SAMPLE NO.				
DATE SAMPLED	12/05/13 MWH	12/05/13 MWH	12/05/13 MWH	12/05/13 MWH
DATE TESTED	04/16/14 DPM	04/16/14 DPM	03/27/14 DPM	04/16/14 DPM
SOIL DESCRIPTION	Sand Tailings	Sand Tailings	The second of th	Silty Clay
the property of the second	CANDON SENSON	andro version	Tailings	EW.07.0
DENSITY DETERMINATIONS				
Sample Height (IN)	5.613	5.613	5.603	5.602
Sample Diameter (IN)	1.938	1.938		1.926
Wt of Wet Soil (GMs)	463.13	435.38		510.64
Sample Volume (CU Ft)	0.00958	0.00958		0.00944
WET DENSITY (PCF)	106.6	100.2		119.2
DRY DENSITY (PCF)	101.1	93.8		101.8
BILL BEHOLL (LOL)	101.1	00,0	00.0	10110
MOISTURE DETERMINATION	S			
Wt. of Wet Soil & Dish (gms)	235.60	146.64	105.19	89.10
Wt. of Dry Soil & Dish (gms)	223.97	137.67		77.07
Net Loss of Moisture (gms)	11.64	8.97	11.10	12.02
Wt. of Dish (gms)	6.64	6.65	6.66	6.64
Wt. of Dry Soil (gms)	217.33	131.02		70.43
Moisture Content (%)	5.4	6.8		17.1
moletare coment (70)	277	15.55	1/25	31.00
BORING NO.	TI-B15-15A			
DEPTH	46.0-46.5			
SAMPLE NO.				
DATE SAMPLED	12/05/13 MWH			
DATE TESTED	04/20/14 DPM			
SOIL DESCRIPTION	Clayey Sand			
	2003.24. 2000			
DENSITY DETERMINATIONS				
Sample Height (IN)	5.613			
Sample Diameter (IN)	1.935			
Wt of Wet Soil (GMs)	505.04			
Sample Volume (CU Ft)	0.00955			
WET DENSITY (PCF)	116.6			
DRY DENSITY (PCF)	99.3			
MOISTURE DETERMINATION	S			
Wt. of Wet Soil & Dish (gms)	65.05			
Wt. of Dry Soil & Dish (gms)	56.40			
Net Loss of Moisture (gms)	8.65			
Wt. of Dish (gms)	6.52			
Wt. of Dry Soil (gms)	49.88			
Moisture Content (%)	17.3			
The second secon				
Data entry by:	DPM	Date:	5/23/2014	

Data entry by: Checked by: File name: DPM

Date:

5/23/2014

Date: <u>5/23/19</u> M&D-ASTMD-2216-2937-R0-18.xls

	ASTM D 2	216 & D 2937		
GLIENT:	MWH		JOB NO.	2512-77
PROJECT	Church Rock		LOCATION	
PROJECT NO.	Grand distance		Tailings Impounds	ment
A SERVICE OF THE PROPERTY OF T			raimigo impoundi	
BORING NO.	TI-B3-01A	TI-B3-05A	TI-B3-07A	TI-B3-08A
DEPTH	11.0-11.5	31.0-31.5	41.0-41.5	
SAMPLE NO.	11.0-11.0	31.0-31.3	41.0-41.5	46.0-46.5
	444040 1011	444040 18411		Taring Control
DATE SAMPLED	11/19/13 MWH	11/19/13 MWH	11/19/13 MWH	11/19/13 MWH
DATE TESTED	01/23/14 DPM	01/23/14 DPM	01/23/14 DPM	01/23/14 DPM
SOIL DESCRIPTION	Sand	Silty Clay	Silty Clay	Silty Clay
DENSITY DETERMINATIONS				
DENSITY DETERMINATIONS	2 101	2,421	4 422	W 10.234
Sample Height (IN)	5.358	4,454	5.979	5.460
Sample Diameter (IN)	1.938	1.892	1.935	1.895
Wt of Wet Soil (GMs)	473.05	413.46	508.06	499.82
Sample Volume (CU Ft)	0.00915	0.00725	0.01018	0.00891
WET DENSITY (PCF)	114.0	125.8	110.1	123.6
DRY DENSITY (PCF)	108.4	108.4	90.6	104.8
WANTED				1,00,00
MOISTURE DETERMINATION	S			
Wt. of Wet Soil & Dish (gms)	148.94	421.87	196.17	199.16
Wt. of Dry Soll & Dish (gms)	142.07	364.61	162.63	169.76
Net Loss of Moisture (gms)	6.87	57.27	33.54	29.41
Wt. of Dish (gms)	8.37	8.41	6.61	6.56
Wt. of Dry Soil (gms)	133.70	356.19	156.02	
Moisture Content (%)				163.20
Moisture Content (%)	5.1	16.1	21.5	18.0
BORING NO.	TI-B3-11A	TI-B3-04A		
DEPTH	61.0-61.5	26.0-26.5		
SAMPLE NO.	01.0-01.0	20.0-20.0		
DATE SAMPLED	11/19/13 MWH	44140145 10001		
		11/19/13 MWH		
DATE TESTED	01/23/14 DPM	01/23/14 DPM		
SOIL DESCRIPTION	Silty Sand	Silty Clay		
DENSITY DETERMINATIONS				
Sample Height (IN)	5.610	5.866		
Sample Diameter (IN)	1.929	1.900		
Wt of Wet Soil (GMs)	536.02	522.33		
Sample Volume (CU Ft)	0.00949	0.00962		
WET DENSITY (PCF)	124.5	119.7		
DRY DENSITY (PCF)	99.0	106.8		
MOISTURE DETERMINATION				
		22222		
Wt. of Wet Soil & Dish (gms)	256.64	226.83		
Wt. of Dry Soil & Dish (gms)	205.38	203.20		
Net Loss of Moisture (gms)	51.26	23.62		
Wt. of Dish (gms)	6.58	6.46		
Wt. of Dry Soll (gms)	198.80	196.74		
Moisture Content (%)	25.8	12.0		
	20.4			
Data entry by:	DPM	Date:	2/5/2014	ATT
Checked by:	77	Date: _	02/06/14	

2512-77-M&D-ASTMD-2216-2937-R0-11.xls

ADVANCED TERRA TESTING

File name:

	ASTM D 22	216 & D 2937		
CLIENT:	MWH		JOB NO.	2512-77
PROJECT	Church Rock		LOCATION	37.55
PROJECT NO.			Tailings Impound	ment
	241.102.001			
BORING NO.	TI-B2-02A	TI-B2-05A	() () () () () () () () () ()	TI-B2-8C
DEPTH	6.0-6.5	11.0-11.5'	21.0-21.5	15.0-15.5
SAMPLE NO.			- 1. J.	
DATE SAMPLED	11/20/13 MWH	11/20/13 MWH	11/20/13 MWH	11/20/13 MWH
DATE TESTED	01/27/14 DPM	02/05/14 DPM	02/05/14 DPM	02/05/14 DPM
SOIL DESCRIPTION	Silty Sand	Clayey Sand	Silly Sand	Slity Sand
	with Gravel	The state of the s		
DENSITY DETERMINATIONS				
Sample Height (IN)	4.570	5.415	5.680	5.925
Sample Diameter (IN)	1.938	1.938	1,938	1.938
Wt of Wet Soil (GMs)	382.63	396.51	430.30	443.40
Sample Volume (CU Ft)	0.00780	0.00924	0.00970	0.01011
WET DENSITY (PCF)	108.1	94.6	97.8	96.6
DRY DENSITY (PCF)	100.4	76.9	91.4	90.4
	1000	1,515	2.07	2.74
MOISTURE DETERMINATION	S			
Wt. of Wet Soil & Dish (gms)	435.86	102,26	147.33	449.49
Wt. of Dry Soil & Dish (gms)	405.77	83.39	138.10	420.93
Net Loss of Moisture (gms)	30.09	18.87	9.24	28.56
Wt. of Dish (gms)	15.85	6.45	6.48	6.48
Wt. of Dry Soll (gms)	389.92	76.93	131.62	414.45
Moisture Content (%)	7.7	24.5	7.0	6.9
	3-9-07	21.0		0,0
BORING NO.	TI-B2-14A			
DEPTH	26.0-26.5			
SAMPLE NO.	200 miles			
DATE SAMPLED	11/20/13 MWH			
DATE TESTED	02/05/14 DPM			
SOIL DESCRIPTION	Silty Clay			
	410,4			
DENSITY DETERMINATIONS				
Sample Height (IN)	5.392			
Sample Diameter (IN)	1.932			
Wt of Wet Soil (GMs)	477.52			
Sample Volume (CU Ft)	0.00915			
WET DENSITY (PCF)	115.1			
DRY DENSITY (PCF)	93.2			
AND KARA WARE WATER AND STREET				
MOISTURE DETERMINATIONS	3			
Wt. of Wet Soil & Dish (gms)	90,46			
Wt. of Dry Soil & Dish (gms)	74.46			
Net Loss of Moisture (gms)	16.00			
Wt. of Dish (gms)	6.48			
Wt. of Dry Soil (gms)	67.98			
Moisture Content (%)	23.5			
Data entry by:	DPM	Date	2/8/2014	1 5 3 SEC.

 Data entry by:
 DPM
 Date:
 2/6/2014

 Checked by:
 5
 Date:
 02/06/14

 File name:
 2512_77_M&D-ASTMD-2216-2937-R0-12.xls

File name:	M&D-ASTMD-2216	5-2937-R0-13.xls	Bedra b Table	ADMARKED TEARA (ESTRIG
Checked by:	4		3/14/14	AI
Data entry by:	DPM	Date:	3/13/2014	ATT
Moisture Content (%)	33.9	9.9	13.8	18.1
Wt. of Dry Soil (gms)	45.61	91.95	91.68	166.02
Wt. of Dish (gms)	6.52	6.59	6.50	15.84
Net Loss of Moisture (gms)	15.48	9.14	12.67	29.98
Wt. of Dry Soil & Dish (gms)	52.13	98.54	98.18	181.86
Wt. of Wet Soil & Dish (gms)	67.61	107.69	110.84	211.84
MOISTURE DETERMINATIONS	S			
		94.4	04.0	100.0
DRY DENSITY (PCF)	86.7	95.4	94.5	100.8
WET DENSITY (PCF)	116.2	104.9	107.6	119.0
Sample Volume (CU Ft)	0.00846	0.00855	0.01008	0.00979
Wt of Wet Soil (GMs)	446.13	406.60	491.75	528.40
Sample Diameter (IN)	1.927	1.938	1.938	1.919
Sample Height (IN)	5.016	5.006	5.902	5.849
DENSITY DETERMINATIONS				
SOIL DESCRIPTION	Clayey Silt Tallings	Silty Sand	Silty Sand	Silty Sand w/Clay
DATE TESTED	02/06/14 DPM	02/13/14 DPM	02/13/14 DPM	02/13/14 DPM
DATE SAMPLED	11/26/13 MWH	11/26/13 MWH	11/26/13 MWH	11/26/13 MWH
SAMPLE NO.		40.040.0	00.0-00.5	71.0-71.0
DEPTH .	36.0-36.5	46.0-46.5	66.0-66.5	71.0-71,5'
BORING NO.	TI-B10-12A	TI-B10-16A	TI-B10-20A	TI-810-21A
Moisture Content (%)	9.3	6.5	60.4	50.2
Wt. of Dry Soil (gms)	426.99	58,81	32.69	54.58
Wt. of Dish (gms)	15.77	6.49	6.49	15.88
Net Loss of Moisture (gms)	39.81	3.85	19.73	27.40
Wt. of Dry Soil & Dish (gms)	442.76	65.30	39.18	70.46
Wt. of Wet Soil & Dish (gms)	482.57	69.14	58.91	97.86
MOISTURE DETERMINATION	s			
DRY DENSITY (PCF)	103.0	100.0	63.1	71.3
WET DENSITY (PCF)	112.6	106.6	101.2	107.1
Sample Volume (CU Ft)	0.00914	0.00982	0.00953	0.00988
Wt of Wet Soil (GMs)	466.97	474.57	437.41	479.99
Sample Diameter (IN)	1.938	1.938	1.920	1.928
DENSITY DETERMINATIONS Sample Height (IN)	5.356	5.752	5.685	5.848
SOIL DESCRIP (ION	Sand Tailings	Sand Tailings	Clayey Silt Tailings	Clayey Silt Tallings
DATE TESTED SOIL DESCRIPTION	02/06/14 DPM	02/06/14 DPM	02/06/14 DPM	02/06/14 DPM
DATE SAMPLED	11/26/13 MWH	11/26/13 MWH	11/26/13 MWH	11/26/13 MWH
SAMPLE NO.			A ALCO TYPE CORRECT	
DEPTH	15.0-15.5'	16.0-16.5	26.0-26.5	35.0-35.5'
BORING NO.	TI-B10-04C	TI-B10-04A	TI-B10-08A	TI-B10-12C
PROJECT NO.			Tailings Impound	ment
PROJECT	Curch Rock		LOCATION	
CLIENT:	MWH		JOB NO.	2512-77
		216 & D 2937		

	ASTM D 22	16 & D 2937		
CLIENT:	MWH	The Property of	JOB NO.	2512-77
PROJECT	Church Rock		LOCATION	20,211
PROJECT NO.	\$112.00 to 20	1	Tailings Impound	ment
BORING NO.	TI-B1-05A	TI-B10-25A	TI-B10-10	TI-B10-10
DEPTH	16.0-16.5	91.0-91.5	32.0-32.5	30.3-30.7
SAMPLE NO.			Bottom of Tube	Top of Tube
DATE SAMPLED	11/21/13 MWH	11/26/13 MWH	11/26/13 MWH	11/26/13 MWH
DATE TESTED	02/05/14 DPM	02/13/14 DPM	03/03/14 DPM	03/03/14 DPM
SOIL DESCRIPTION	Sifty Clay w/ Sand	Clayey Sand	Coarse	Fine
DENSITY DETERMINATIONS				
Sample Height (IN)	5.687	5.002	4.049	0.620
Sample Diameter (IN)	1.938	1.932	2.876	2.632
Wt of Wet Soil (GMs)	535.63	482.32		2.878
Sample Volume (CU Ft)	0.00971	and the second s	797.23	479.45
WET DENSITY (PCF)		0.00849	0.01522	0.00991
	121.6	125.3	115.5	106.7
DRY DENSITY (PCF)	104.7	105.6	100,1	72.2
MOISTURE DETERMINATION	4S			
Wt. of Wet Soil & Dish (gms)	76.56	146.63	255.47	86.16
Wt. of Dry Soll & Dish (gms)	66.81	124.69	222.23	60.47
Net Loss of Molsture (gms)	9.74	21.94	33.24	25.69
Wt. of Dish (gms)	6.52	6.86	6,47	6.56
Wt. of Dry Soll (gms)	60.29	117.83	215.76	53.91
Moisture Content (%)	16.2	18.6	15.4	47.7
BORING NO.	TI-B2-16			
DEPTH	38.4-38.7			
SAMPLE NO.	00,4-00,7			
DATE SAMPLED	11/20/13 MWH			
DATE TESTED	03/03/14 DPM			
SOIL DESCRIPTION	Weathered Sandstone			
DENSITY DETERMINATIONS				
Sample Height (IN)				
Sample Diameter (IN)	Density			
	Not			
Wt of Wet Soil (GMs)	Possible			
Sample Volume (CU Ft)				
WET DENSITY (PCF) DRY DENSITY (PCF)				
MOISTURE DETERMINATION	S			
Wt. of Wet Soil & Dish (gms)	478.55			
Wt. of Dry Soil & Dish (gms)	423.68			
Net Loss of Moisture (gms)	54.87			
Wt. of Dish (gms)	15.81			
Wt. of Dry Soil (gms)	407,87			
Moisture Content (%)	13.5			
hai cala		12.5	and the second of	
Data entry by:	DPM	Date	3/13/2014	and the second s

Data entry by: Checked by: File name:

DPM

Date: 3/13/2014 Date: 3/14/14

M&D-ASTMD-2216-2937-R0-14.xls

Boring Number: TI-B8-12A

Technician: DPM Sampled Date: 12/4/2013

Sampled By: MWH

Depth: 56.0-56.5'

Sample Number: Silty/Clayey Sand

Test Date: 3/29/2014

Method: Method A

Client: MWH
Job Number: 2512-77
Project: Church Rock

Location: Tailings Impoundment

Project Number:

Test Configuration

Liquid Limits Device: 1080 Material Size of Fines: -#40

Plastic Limits

Non-Plastic

Liquid Limits

Non-Plastic

Atterberg Classification

MD

Data Entered By: DPM

Date: 4/10/2014

File Name: atterberg-ASTM_4318-R6_28.xls

Data Checked By: by
Date: 4/11/14

Boring Number: TI-B15-11A

Test Date: 5/5/2014

Method: Method A

Sample Number: Silty Clay

Technician: DPM Sampled Date: 12/5/2013

Sampled By: MWH

Depth: 31.0-31.5'

Client: MWH Job Number: 2512-77 Project: Church Rock

Location: Tailings Impoundment

Project Number:

Test Configuration

Liquid Limits Device: 1080 Material Size of Fines: -#40

Plastic Limits

Non-Plastic

Liquid Limits

Non-Plastic

Atterberg Classification

Data Entered By: DPM

Date: 5/6/2014 File Name: atterberg-ASTM_4318-R6_43.xls

Data Checked By: BPF

Date: 5/7/14

Boring Number: TI-B15-04

Technician: DPM Sampled Date: 12/5/2013

Sampled By: MWH

Depth: 13.5-14.0' (11.5-14')

Sample Number: Clayey Sand Tailings

Test Date: 4/29/2014

Method: Method A

Client: MWH Job Number: 2512-77 Project: Church Rock

Location: Tailings Impoundment

Project Number:

Test Configuration

Liquid Limits Device: 1080 Material Size of Fines: -#40

Plastic Limits

Non-Plastic

Liquid Limits

Non-Plastic

Atterberg Classification

NP

Data Entered By: DPM

Date: 5/2/2014 File Name: atterberg-ASTM_4318-R6_38.xls

Data Checked By:

Date: 5/7/14

Client: MWH
Job Number: 2512-77
Project: Church Rock

Location: Tallings Impoundment

Project Number:

Test Configuration

Liquid Limits Device: 1080 Material Size of Fines: -#40 Boring Number: TI-B11-08

Depth: 51.5-52.5' (50-52.5')

Sample Number: Fine Tailings Test Date: 4/30/2014 Technician: DPM

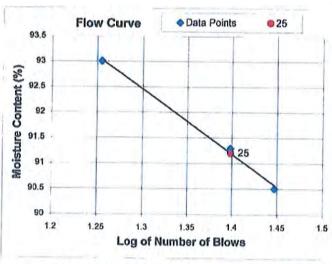
Sampled Date: 12/2/2013 Sampled By: MWH Method: Method A

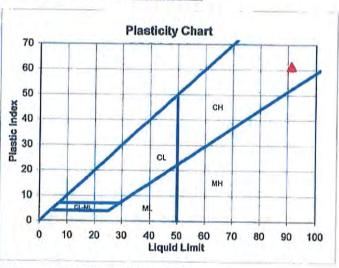
Plastic Limits

	Sample 1	Sample 2
Weight of Wet Soil & Pan (g):	5.964	5.997
Weight of Dry Soil & Pan (g):	4.847	4.890
Weight of Water (g):	1.117	1.107
Weight of Pan (g):	1.138	1.137
Moisture Content (%):	30.1	29.5

Average: 29.8%

Standard Deviation: 0.4%


Liquid Limits


	Sample 1	Sample 2	Sample 3
Number of Blows:	25	28	18
Weight of Wet Soil & Pan (g):	12.330	12.685	12.216
Weight of Dry Soil & Pan (g):	7.003	7.204	6,884
Weight of Water (g):	5.327	5.481	5.332
Weight of Pan (g):	1.168	1.148	1.151
Moisture Content (%):	91.3	90.5	93.0

Plastic Limit: 30 Liquid Limit: 91

Plastic Index: 61

Atterberg Classification CH

Data Entered By: DPM

File Name: atterberg-ASTM_4318-R6_40.xls

Date: 5/4/2014 Dat

Data Checked By: BDF Date: 5/7/14

Boring Number: TI-B15-15A

Test Date: 5/5/2014

Method: Method A

Technician: DPM Sampled Date: 12/5/2013

Sampled By: MWH

Depth: 46.0-46.5' Sample Number: Clayey Sand

Client: MWH
Job Number: 2512-77
Project: Church Rock

Location: Tailings Impoundment

Project Number:

Test Configuration

Liquid Limits Device: 1080 Material Size of Fines: -#40

Plastic Limits

Non-Plastic

Liquid Limits

Non-Plastic

Atterberg Classification

NID

Data Entered By: DPM

Date: 5/6/2014

File Name: atterberg-ASTM_4318-R6_42.xls

Data Checked By: BDF Date: 5/7/14

Client: MWH Job Number: 2512-77

Project: Church Rock

Location: Tailings Impoundment

Project Number:

Test Configuration

Liquid Limits Device: 1080 Material Size of Fines: -#40

Boring Number: TI-B8-08

Depth: 41-42' (40-42.5')

Sample Number: Clayey Silt Test Date: 3/6/2014

Technician: DPM Sampled Date: 12/4/2013

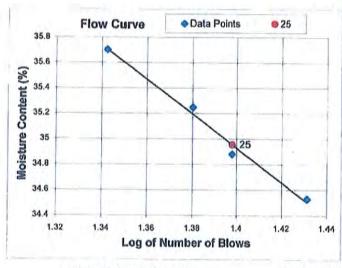
Sampled By: MWH Method: Method A

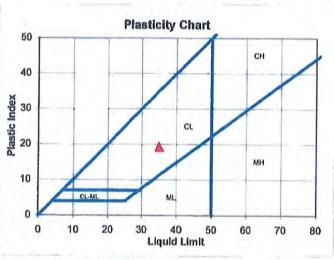
Plastic Limits

	Sample 1	Sample 2	Sample 3
Weight of Wet Soil & Pan (g):	6.571	6.348	6.358
Weight of Dry Soil & Pan (g):	5.787	5.580	5.610
Weight of Water (g):	0.784	0.768	0.748
Weight of Pan (g):	0.758	0.766	0.757
Moisture Content (%):	15.6	16.0	15.4

Average: 15.7%

Standard Deviation: 0.3%


Liquid Limits


20 C VIII VIII VIII VIII VIII VIII VIII V	Sample 1	Sample 2	Sample 3	Sample 4
Number of Blows:	24	25	27	22
Weight of Wet Soil & Pan (g):		11.436	10.790	11.968
Weight of Dry Soil & Pan (g):	8.841	8.670	8.210	9.013
Weight of Water (g):	2.854	2.766	2.580	2.955
Weight of Pan (g):	0.744	0.740	0.738	0.736
Moisture Content (%):	35.2	34.9	34.5	35.7

Plastic Limit: 16

Liquid Limit: 35 Plastic Index: 19

Atterberg Classification

Data Entered By: DPM

Date: 3/13/2014

File Name: atterberg-ASTM_4318-R6_19.xls

Data Checked By: 5 Date: 3/14/14

Boring Number: TI-B11-10

Sample Number: Silty Sand

Technician: DPM Sampled Date: 12/2/2013

Sampled By: MWH

Test Date: 2/28/2014

Method: Method A

Depth: 56-57' (55-57')

Client: MWH Job Number: 2512-77 Project: Church Rock

Location: Tailings Impoundment

Project Number:

Test Configuration

Liquid Limits Device: 1080 Material Size of Fines: #40

Plastic Limits

Non-Plastic

Liquid Limits

Non-Plastic

Atterberg Classification

Data Entered By: DPM

Date: 3/4/2014

File Name: atterberg-ASTM_4318-R6_18.xls

Data Checked By: 🖎 Date: 03/06/2014

Boring Number: TI-B8-02A

Sample Number: Clayey Silt

Technician: DPM Sampled Date: 12/3/2013

Sampled By: MWH

Depth: 26.0-26.5'

Test Date: 2/28/2014

Method: Method A

Client: MWH Job Number: 2512-77 Project: Church Rock

Location: Tailings Impoundment

Project Number:

Test Configuration

Liquid Limits Device: 1080 Material Size of Fines: -#40

Plastic Limits

Non-Plastic

Liquid Limits

Non-Plastic

Atterberg Classification

NP

Data Entered By: DPM

Date: 3/4/2014

Data Checked By: 12

File Name: 2512_77_atterberg-ASTM_4318-R6_16.x Date: 03/06/2014

Client: MWH

Job Number: 2512-77

Project: Church Rock Location: Tailings Impoundment

Project Number:

Test Configuration

Liquid Limits Device: 1080 Material Size of Fines: -#40 Boring Number: TI-B11-06

Depth: 30.5-31.5' (30.0-31.7')

Sample Number: Sandy Clay Test Date: 4/30/2014

Technician: DPM
Sampled Date: 12/2/2013
Sampled By: MWH

Method: Method A

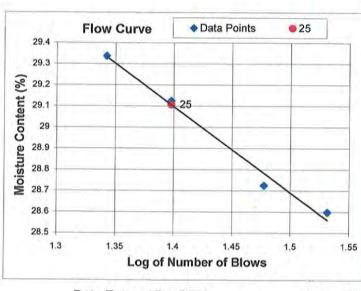
Plastic Limits Note: The sample was dried at 60c.

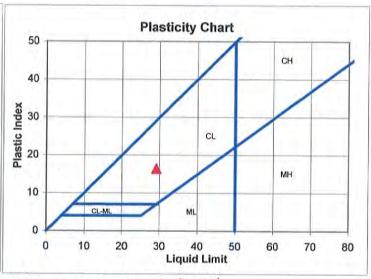
	Sample 1	Sample 2	Sample 3
Weight of Wet Soil & Pan (g):	7.476	7.494	7.450
Weight of Dry Soil & Pan (g):	6.752	6.788	6.742
Weight of Water (g):	0.724	0.706	0.708
Weight of Pan (g):	1.144	1.146	1.134
Moisture Content (%):	12.9	12.5	12.6

Average: 12.7%

Standard Deviation: 0.2%

Liquid Limits


	Sample 1	Sample 2	Sample 3	Sample 4
Number of Blows:	34	25	22	30
Weight of Wet Soil & Pan (g):	17.434	14.027	14.368	14.923
Weight of Dry Soil & Pan (g):	13.812	11.121	11.378	11.846
Weight of Water (g):	3.622	2.906	2.990	3.077
Weight of Pan (g):	1.147	1.143	1.186	1.134
Moisture Content (%):	28.6	29.1	29.3	28.7


Plastic Limit: 13 Liquid Limit: 29

Plastic Index: 16

Atterberg Classification

CL

Data Entered By: DPM

Date: 5/9/2014

File Name: atterberg-ASTM_4318-R6_37-60c.xls

Data Checked By: DAV
Date: 05/22/14

Client: MWH Job Number: 2512-77

Project: Church Rock

Location: Tailings Impoundment

Project Number:

Test Configuration

Liquid Limits Device: 1080 Material Size of Fines: -#40

Boring Number: TI-B11-06

Depth: 30.5-31.5' (30.0-31.7')

Sample Number: Sandy Clay

Test Date: 4/30/2014 Technician: DPM Sampled Date: 12/2/2013 Sampled By: MWH

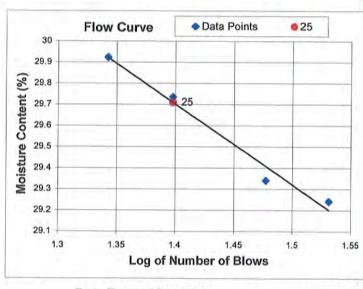
Method: Method A

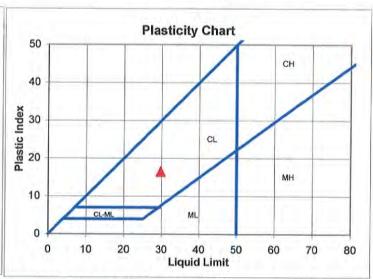
Plastic Limits Note: The sample was dried at 110c.

	Sample 1	Sample 2	Sample 3
Weight of Wet Soil & Pan (g):	7.476	7.494	7.450
Weight of Dry Soil & Pan (g):	6.726	6.765	6.715
Weight of Water (g):	0.750	0.729	0.735
Weight of Pan (g):	1.144	1.146	1.134
Moisture Content (%):	13.4	13.0	13.2

Average: 13.2%

Standard Deviation: 0.2%


Liquid Limits


	Sample 1	Sample 2	Sample 3	Sample 4
Number of Blows:	34	25	22	30
Weight of Wet Soil & Pan (g):	17.434	14.027	14.368	14.923
Weight of Dry Soil & Pan (g):	13.749	11.074	11.332	11.795
Weight of Water (g):	3.685	2.953	3.036	3.128
Weight of Pan (g):	1.147	1.143	1.186	1.134
Moisture Content (%):	29.2	29.7	29.9	29.3

Plastic Limit: 13 Liquid Limit: 30 Plastic Index: 17

Atterberg Classification

CL

Data Entered By: DPM

Date: 5/9/2014

Data Checked By: DAW

File Name: atterberg-ASTM_4318-R6_37-110c.xls

Date: 05/22/14

Client: MWH Job Number: 2512-77

Project: Church Rock

Location: Tailings Impoundment

Project Number:

Test Configuration

Liquid Limits Device: 1080 Material Size of Fines: -#40

Boring Number: TI-B8-04

Depth: 30.0-31.0' (30-32') Sample Number: Clayey Silt/Sand

Test Date: 5/3/2014 Technician: DPM Sampled Date: 12/3/2013 Sampled By: MWH

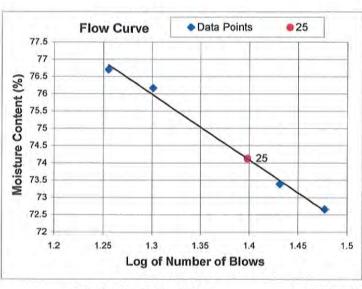
Method: Method A

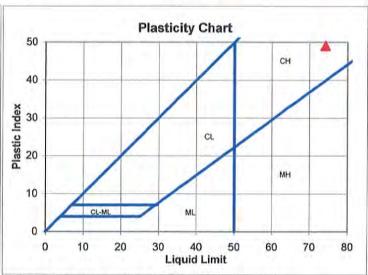
Plastic Limits Note: The sample was dried at 60c.

	Sample 1	Sample 2	Sample 3
Weight of Wet Soil & Pan (g):	6.384	6.499	6.420
Weight of Dry Soil & Pan (g):	5.325	5.431	5.370
Weight of Water (g):	1.059	1.068	1.050
Weight of Pan (g):	1.174	1.137	1.140
Moisture Content (%):	25.5	24.9	24.8

Average: 25.1%

Standard Deviation: 0.4%


Liquid Limits


	Sample 1	Sample 2	Sample 3	Sample 4
Number of Blows:	30	27	20	18
Weight of Wet Soil & Pan (g):	11.360	14.173	12.090	12.695
Weight of Dry Soil & Pan (g):	7.055	8.649	7.357	7.685
Weight of Water (g):	4.305	5.524	4.733	5.010
Weight of Pan (g):	1.130	1.122	1.143	1.153
Moisture Content (%):	72.7	73.4	76.2	76.7

Plastic Limit: 25 Liquid Limit: 74

Plastic Index: 49

Atterberg Classification CH

Data Entered By: DPM

Date: 5/8/2014

File Name: atterberg-ASTM_4318-R6_39-60c.xls

Data Checked By:

Date: 05/23/14

Client: MWH Job Number: 2512-77

Project: Church Rock

Location: Tailings Impoundment

Project Number:

Test Configuration

Liquid Limits Device: 1080 Material Size of Fines: -#40

Boring Number: TI-B8-04

Depth: 30.0-31.0' (30-32')

Sample Number: Clayey Silt/Sand

Test Date: 5/3/2014 Technician: DPM Sampled Date: 12/3/2013 Sampled By: MWH

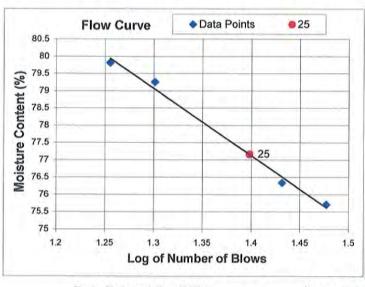
Method: Method A

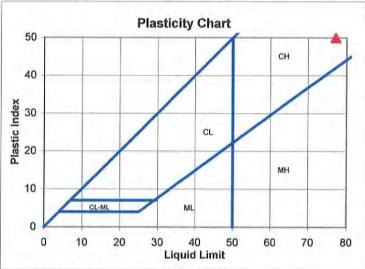
Plastic Limits Note: The sample was dried at 110c.

	Sample 1	Sample 2	Sample 3
Weight of Wet Soil & Pan (g):	6.384	6.499	6.420
Weight of Dry Soil & Pan (g):	5.257	5.362	5.300
Weight of Water (g):	1.127	1.137	1.120
Weight of Pan (g):	1.174	1.137	1.140
Moisture Content (%):	27.6	26.9	26.9

Average: 27.1%

Standard Deviation: 0.4%


Liquid Limits


	Sample 1	Sample 2	Sample 3	Sample 4
Number of Blows:	30	27	20	18
Weight of Wet Soil & Pan (g):	11.360	14.173	12.090	12.695
Weight of Dry Soil & Pan (g):	6.952	8.523	7.250	7.572
Weight of Water (g):	4.408	5.650	4.840	5.123
Weight of Pan (g):	1.130	1.122	1.143	1.153
Moisture Content (%):	75.7	76.3	79.3	79.8

Plastic Limit: 27 Liquid Limit: 77

Plastic Index: 50

Atterberg Classification CH

Data Entered By: DPM

Date: 5/8/2014

Data Checked By: 14

File Name: atterberg-ASTM_4318-R6_39-110c.xls

Date: 5/25

Client: MWH Job Number: 2512-77

Project: Church Rock Location: Tailings Impoundment

Project Number:

Test Configuration

Liquid Limits Device: 1080 Material Size of Fines: -#40 Boring Number: TI-B8-10A

Depth: 46.0-46.5'

Sample Number: Silty/Clayey Sand

Test Date: 4/29/2014 Technician: DPM Sampled Date: 12/4/2013 Sampled By: MWH

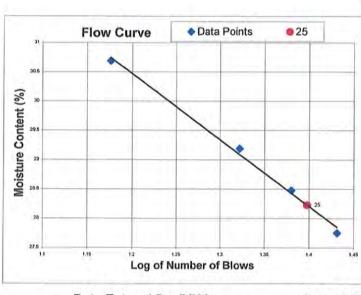
Method: Method A

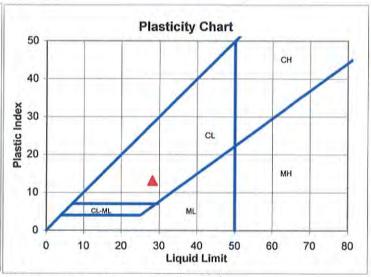
Plastic Limits Note: The sample was dried at 60c.

	Sample 1	Sample 2
Weight of Wet Soil & Pan (g):	6.348	6.498
Weight of Dry Soil & Pan (g):	5.602	5.752
Weight of Water (g):	0.746	0.746
Weight of Pan (g):	0.743	0.739
Moisture Content (%):	15.4	14.9

Average: 15.1%

Standard Deviation: 0.3%


Liquid Limits


10.111.00111.014	Sample 1	Sample 2	Sample 3	Sample 4
Number of Blows:	27	24	21	15
Weight of Wet Soil & Pan (g):	14.758	14.824	17.478	14.979
Weight of Dry Soil & Pan (g):	11.718	11.704	13.700	11.641
Weight of Water (g):	3.040	3.120	3.778	3.338
Weight of Pan (g):	0.763	0.741	0.756	0.764
Moisture Content (%):	27.7	28.5	29.2	30.7

Plastic Limit: 15 Liquid Limit: 28

Plastic Index: 13

Atterberg Classification CL

Data Entered By: DPM

Date: 5/9/2014

File Name: atterberg-ASTM_4318-R6_36-60c.xls

Data Checked By: DAW

Date: 5/22/14

Client: MWH Job Number: 2512-77

Project: Church Rock

Location: Tailings Impoundment

Project Number:

Test Configuration

Liquid Limits Device: 1080 Material Size of Fines: -#40 Boring Number: TI-B8-10A

Depth: 46.0-46.5'

Sample Number: Silty/Clayey Sand

Test Date: 4/29/2014 Technician: DPM Sampled Date: 12/4/2013 Sampled By: MWH

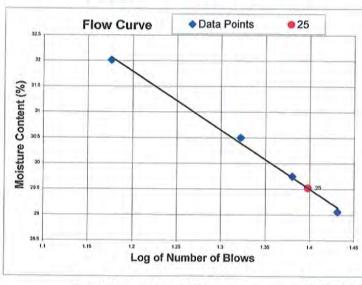
Method: Method A

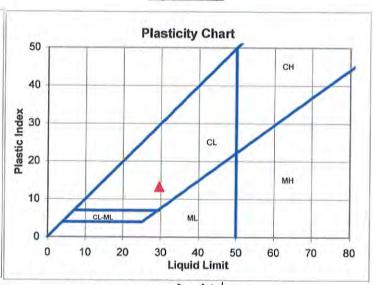
Plastic Limits Note: The sample was dried at 110c.

	Sample 1	Sample 2
Weight of Wet Soil & Pan (g):	6.348	6.498
Weight of Dry Soil & Pan (g):	5.555	5.704
Weight of Water (g):	0.793	0.794
Weight of Pan (g):	0.743	0.739
Moisture Content (%):	16.5	16.0

Average: 16.2%

Standard Deviation: 0.3%


Liquid Limits


	Sample 1	Sample 2	Sample 3	Sample 4
Number of Blows:	27	24	21	15
Weight of Wet Soil & Pan (g):	14.758	14.824	17.478	14.979
Weight of Dry Soil & Pan (g):	11.607	11.595	13.570	11.532
Weight of Water (g):	3.151	3.229	3.908	3.447
Weight of Pan (g):	0.763	0.741	0.756	0.764
Moisture Content (%):	29.1	29.7	30.5	32.0

Plastic Limit: 16 Liquid Limit: 30 Plastic Index: 13

Atterberg Classification

CL

Data Entered By: DPM

Date: 5/9/2014

4

Data Checked By: DAW

File Name: atterberg-ASTM_4318-R6_36-110c.xls

Date: 05/12/14

Client: MWH
Job Number: 2512-77

Project: Church Rock Location: Tailings Impoundment

Project Number:

Test Configuration

Liquid Limits Device: 1080 Material Size of Fines: #40 Boring Number: TI-B23-06

Depth: 26-27' (25-27.5')

Sample Number: Silty Clay

Test Date: 4/22/2014
Technician: DPM
Sampled Date: 12/6/2013
Sampled By: MWH

Method: Method A

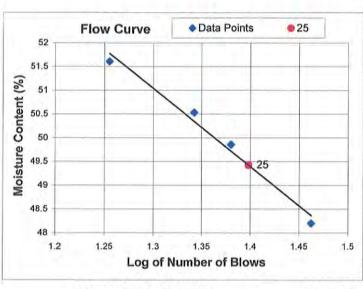
Plastic Limits

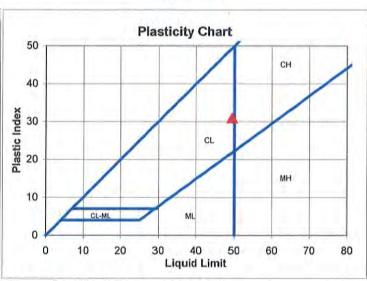
	Sample 1	Sample 2	Sample 3
Weight of Wet Soil & Pan (g):	6.535	6.193	6.199
Weight of Dry Soil & Pan (g):	5.623	5.369	5.345
Weight of Water (g):	0.912	0.824	0.854
Weight of Pan (g):	0.772	0.770	0.774
Moisture Content (%):	18.8	17.9	18.7

Average: 18.5%

Standard Deviation: 0.5%

Liquid Limits


a demanda de la composición dela composición de la composición de la composición de la composición dela composición dela composición dela composición de la composición dela composición de la composición dela composición dela composición dela composición dela composición dela composición dela composi	Sample 1	Sample 2	Sample 3	Sample 4
Number of Blows:	29	24	22	18
Weight of Wet Soil & Pan (g):	16.288	16.376	13.533	15.741
Weight of Dry Soil & Pan (g):	11.240	11.187	9.248	10.639
Weight of Water (g):	5.048	5.189	4.285	5.102
Weight of Pan (g):	0.767	0.779	0.768	0.753
Moisture Content (%):	48.2	49.9	50.5	51.6


Plastic Limit: 18 Liquid Limit: 49

Plastic Index: 31

Atterberg Classification

CL

Data Entered By: DPM

Date: 5/1/2014

Data Checked By:

File Name: 2512_77_atterberg-ASTM_4318-R6_32.x Date: 05/23/14

Boring Number: TI-B15-10

Technician: DPM Sampled Date: 12/5/2013

Sampled By: MWH

Depth: 28.5-29.5' (27-29.5')

Sample Number: Clayey Fine Sand Tails

Test Date: 4/22/2014

Method: Method A

Client: MWH Job Number: 2512-77 Project: Church Rock

Location: Tailings Impoundment

Project Number:

Test Configuration

Liquid Limits Device: 1080 Material Size of Fines: -#40

Plastic Limits

Non-Plastic

Liquid Limits

Non-Plastic

Atterberg Classification

NP

Data Entered By: DPM

File Name: atterberg-ASTM_4318-R6_35.xls

Data Checked By:

Date: 4/29/14

Date: 4/24/2014

Boring Number: TI-B15-07A

Depth: 21.0-21.5'

Sample Number: Fine Sand Tailings

Test Date: 4/23/2014

Method: Method A

Technician: DPM Sampled Date: 11/27/2013

Sampled By: MWH

Client: MWH Job Number: 2512-77 Project: Church Rock

Location: Tailings Impoundment

Project Number:

Test Configuration

Liquid Limits Device: 1080 Material Size of Fines: -#40

Plastic Limits

Non-Plastic

Liquid Limits

Non-Plastic

Atterberg Classification

NP

Data Entered By: DPM

File Name: atterberg-ASTM_4318-R6_33.xls

Date: 4/24/2014

Date: 4/29/1

Boring Number: TI-B15-05

Technician: DPM Sampled Date: 12/5/2013

Sampled By: MWH

Sample Number: Sand Tailings

Test Date: 4/23/2014

Method: Method A

Depth: 15.5-16.0' (15-17.5')

Client: MWH Job Number: 2512-77 Project: Church Rock

Location: Tailings Impoundment

Project Number:

Test Configuration

Liquid Limits Device: 1080 Material Size of Fines: -#40

Plastic Limits

Non-Plastic

Liquid Limits

Non-Plastic

Atterberg Classification

NP

Data Entered By: DPM

File Name: atterberg-ASTM_4318-R6_34.xls

Date: 4/24/2014

Date: 4/29/14

Boring Number: TI-B10-04A

Sample Number: Sand Tailings

Technician: DPM Sampled Date: 11/26/2013

Sampled By: MWH

Test Date: 2/28/2014

Method: Method A

Depth: 16.0-16.5'

Client: MWH
Job Number: 2512-77
Project: Church Rock

Location: Tallings Impoundment

Project Number:

Test Configuration

Liquid Limits Device: 1080 Material Size of Fines: -#40

Plastic Limits

Non-Plastic

Liquid Limits

Non-Plastic

Atterberg Classification

NP

Data Entered By: DPM

PM Date: 3/4/2014

File Name: atterberg-ASTM_4318-R6_17.xls

Data Checked By: 55 Date: 03/06/1014

Client: MWH
Job Number: 2512-77
Project: Church Rock

Location: Tailings Impoundment

Project Number:

Test Configuration

Liquid Limits Device: 1080 Material Size of Fines: -#40 Boring Number: TI-B1-05A

Depth: 16.0-16.5'

Sample Number: Silty Clay w/ Sand

Test Date: 3/12/2014
Technician: DPM
Sampled Date: 11/21/2013
Sampled By: MWH
Method: Method A

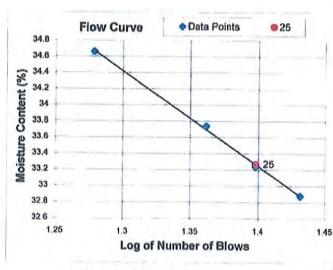
Plastic Limits

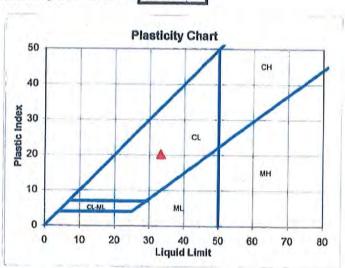
	Sample 1	Sample 2	Sample 3
Weight of Wet Soil & Pan (g):	6.756	6.485	6.429
Weight of Dry Soil & Pan (g):	6.059	5.821	5.784
Weight of Water (g):	0.697	0.664	0.645
Weight of Pan (g):	0.764	0.749	0.759
Moisture Content (%):	13.2	13.1	12.8

Average: 13.0%

Standard Deviation: 0.2%

Liquid Limits


Sample 1	Sample 2	Sample 3	Sample 4
25	27	23	19
13.892	15.609	14.942	16,233
10.615	11.931	11.362	12.246
3.277	3.678	3.580	3.987
0.756	0.744	0.750	0.743
33.2	32.9	33.7	34.7
	25 13.892 10.615 3.277 0.756	25 27 13.892 15.609 10.615 11.931 3.277 3.678 0.756 0.744	25 27 23 13.892 15.609 14.942 10.615 11.931 11.362 3.277 3.678 3.580 0.756 0.744 0.750


Plastic Limit: 13 Liquid Limit: 33

Plastic Index: 20

Atterberg Classification

CL

Data Entered By: DPM

Date: 3/13/2014

File Name: atterberg-ASTM_4318-R6_21.xls

Data Checked By: \\
Date: \(\frac{3}{4} \) | 4 \(\frac{14}{4} \)

Client: MWH
Job Number: 2512-77
Project: Church Rock

Location: Tailings Impoundment

Project Number:

Test Configuration

Liquid Limits Device: 1080 Material Size of Fines: -#40 Boring Number: TI-B10-12A Depth: 36.0-36.5'

Sample Number: Clayey Silt Tailings

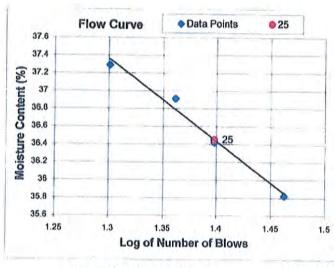
Test Date: 3/7/2014
Technician: DPM
Sampled Date: 11/26/2013
Sampled By: MWH
Method: Method A

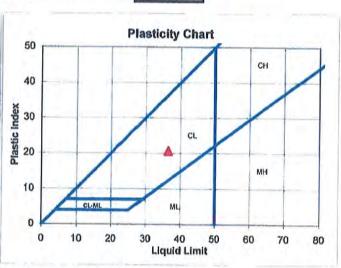
Plastic Limits

	Sample 1	Sample 2	Sample 3
Weight of Wet Soil & Pan (g):		6.088	6.209
Weight of Dry Soil & Pan (g):	5.238	5.367	5.473
Weight of Water (g):	0.712	0.721	0.736
Weight of Pan (g):	0.761	0.729	0.769
Moisture Content (%):	15.9	15.5	15.6

Average: 15.7%

Standard Deviation: 0.2%


Liquid Limits


	Sample 1	Sample 2	Sample 3	Sample 4
Number of Blows:	29	23	25	20
Weight of Wet Soil & Pan (g):	13.507	13.608	12.995	12,497
Weight of Dry Soil & Pan (g):	10.147	10.146	9.731	9.311
Weight of Water (g):	3.360	3.462	3.264	3.186
Weight of Pan (g):		0.767	0.769	0.767
Moisture Content (%):	35.8	36.9	36.4	37.3

Plastic Limit: 16 Liquid Limit: 36

Plastic Index: 21

Atterberg Classification CL

Data Entered By: DPM

Date: 3/13/2014

File Name: atterberg-ASTM_4318-R6_20.xls

Data Checked By: by
Date: 3/14/14

Boring Number: TI-B1-09

Technician: DPM Sampled Date: 11/21/2013

Sampled By: MWH

Sample Number: Sand Tailings

Test Date: 3/29/2014

Method: Method A

Depth: 27.0-27.5' (25-27.5')

Client: MWH Job Number: 2512-77 Project: Church Rock

Location: Tailings Impoundment

Project Number:

Test Configuration

Liquid Limits Device: 1080 Material Size of Fines: -#40

Plastic Limits

Non-Plastic

Liquid Limits

Non-Plastic

Atterberg Classification

NP

Data Entered By: DPM

Date: 4/10/2014

File Name: atterberg-ASTM_4318-R6_27.xls

Data Checked By: 5

Client: MWH Job Number: 2512-77

Project: Church Rock

Location: Tailings Impoundment

Project Number:

Test Configuration

Liquid Limits Device: 1080 Material Size of Fines: -#40 Boring Number: TI-B2-14A

Depth: 26.0-26.5' Sample Number: Silty Clay

Test Date: 3/14/2014 Technician: DPM

Sampled Date: 11/20/2013

Sampled By: MWH
Method: Method A

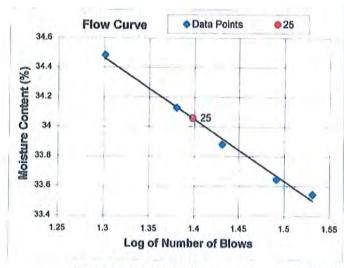
Plastic Limits

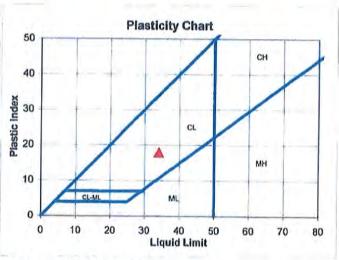
	Sample 1	Sample 2	Sample 3
Weight of Wet Soil & Pan (g):	6.828	6.399	6.297
Weight of Dry Soil & Pan (g):	6.038	5.610	5.513
Weight of Water (g):	0.790	0.789	0.784
Weight of Pan (g):	1.024	0.751	0.744
Moisture Content (%):	15.8	16.2	16.4

Average: 16.1%

Standard Deviation: 0.4%

Liquid Limits


	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5
Number of Blows:	20	24	27	31	34
Weight of Wet Soil & Pan (g):	14.208	16.872	14.876	15.734	16.537
Weight of Dry Soil & Pan (g):	10.760	12.772	11.306	11.967	12.574
Weight of Water (g):	3.448	4.100	3.570	3.767	3.963
Weight of Pan (g):	0.761	0.758	0.769	0.771	0.760
Moisture Content (%):	34.5	34.1	33.9	33.6	33.5


Plastic Limit: 16

Liquid Limit: 34

Plastic Index: 18

Atterberg Classification CL

Data Entered By: DPM

Date: 3/17/2014

File Name: atterberg-ASTM_4318-R6_22.xls

Data Checked By: S

Client: MWH Job Number: 2512-77

Project: Church Rock

Location: Tailings Impounment

Project Number:

Test Configuration

Liquid Limits Device: 1080 Material Size of Fines: -#40

Boring Number: TI-B10-14

Depth: 40.0-41.0' (40-42.5') Sample Number: Clayey Silt Tailings

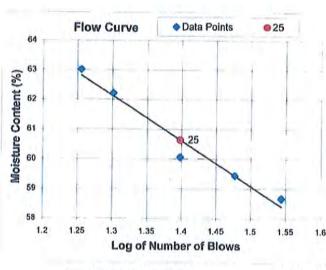
Test Date: 3/29/2014 Technician: DPM Sampled Date: 11/26/2013 Sampled By: MWH

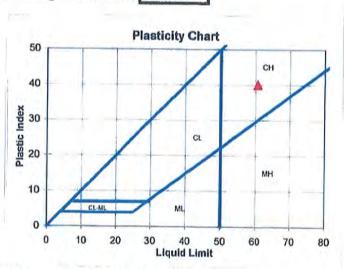
Method: Method A

Plastic Limits

	Sample 1	Sample 2	Sample 3
Weight of Wet Soil & Pan (g):	6.020	6.032	5.837
Weight of Dry Soil & Pan (g):	5.155	5.182	5.016
Weight of Water (g):	0.865	0.850	0.821
Weight of Pan (g):	1.012	1.004	1.008
Moisture Content (%):	20.9	20.3	20.5

Average: 20.6%


Standard Deviation: 0.3%


Liquid Limits

	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5
Number of Blows:	35	30	25	20	18
Weight of Wet Soil & Pan (g):	15.070	12.400	13.564	11.815	14,478
Weight of Dry Soil & Pan (g):	9.874	8.152	8.849	7.681	9.274
Weight of Water (g):	5.196	4.248	4.715	4.134	5.204
Weight of Pan (g):	1.018	1.006	0.999	1.036	1.016
Moisture Content (%):	58.7	59.4	60.1	62.2	63.0

Plastic Limit: 21 Liquid Limit: 61 Plastic Index: 40

Atterberg Classification CH

Data Entered By: DPM

File Name: atterberg-ASTM_4318-R6_29.xls

Date: 4/10/2014

Data Checked By: 5 Date: 4/11/14

Client: MWH Job Number: 2512-77 Project: Church Rock

Location: Tailings Impoundment

Project Number:

Test Configuration

Liquid Limits Device: 1080 Material Size of Fines: -#40 Boring Number: TI-B10-08A Depth: 26.0-26.5'

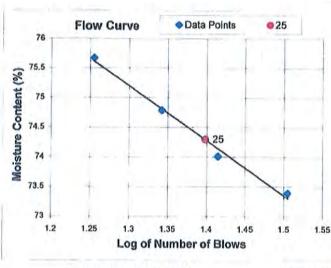
Sample Number: Clayey Silt Tailings

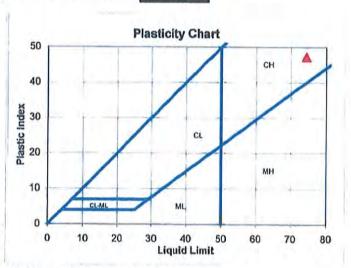
Test Date: 3/14/2014 Technician: DPM Sampled Date: 11/26/2013 Sampled By: MWH Method: Method A

Plastic Limits

	Sample 1	Sample 2	Sample 3
Weight of Wet Soil & Pan (g):	6.081	6.082	5.875
Weight of Dry Soil & Pan (g):	5.003	4.993	4.850
Weight of Water (g):	1.078	1.089	1.025
Weight of Pan (g):	0.997	1.009	1.025
Moisture Content (%):	26.9	27.3	26.8

Average: 27.0%


Standard Deviation: 0.3%


Liquid Limits

Sample 1	Sample 2	Sample 3	Sample 4	Sample 5
32	26	25	18	22
14.462	14.569	14.101	13.907	16,284
8.785	8.803	8.524	8.355	9.750
5.677	5.766	5.577	5.552	6.534
1.050	1.012	1.018	1.018	1.013
73.4	74.0	74.3	75.7	74.8
	32 14.462 8.785 5.677 1.050	32 26 14.462 14.569 8.785 8.803 5.677 5.766 1.050 1.012	32 26 25 14.462 14.569 14.101 8.785 8.803 8.524 5.677 5.766 5.577 1.050 1.012 1.018	32 26 25 18 14.462 14.569 14.101 13.907 8.785 8.803 8.524 8.355 5.677 5.766 5.577 5.552 1.050 1.012 1.018 1.018

Plastic Limit: 27 Liquid Limit: 74 Plastic Index: 47

Atterberg Classification CH

Data Entered By: DPM

Date: 3/17/2014

File Name: atterberg-ASTM_4318-R6_23.xls

Data Checked By: bi
Date: 4/11/14

Boring Number: TI-B10-10

Technician: DPM Sampled Date: 11/26/2013

Sampled By: MWH

Sample Number: Bottom of the tube

Method: Method A

Test Date: 3/21/2014

Depth: 32-32.5' (30.0-32.5')

Client: MWH
Job Number: 2512-77
Project: Church Rock

Location: Tailings Impoundment

Project Number:

Test Configuration

Liquid Limits Device: 1080 Material Size of Fines: -#40

Plastic Limits

Non-Plastic

Liquid Limits

Non-Plastic

Atterberg Classification

ND

Data Entered By: DPM

Date: 4/10/2014

File Name: atterberg-ASTM_4318-R6_26.xls

Data Checked By:_____
Date:__A/n/14___

Client: MWH Job Number: 2512-77 Project: Church Rock

Location: Tailings Impoundment

Project Number:

Test Configuration

Liquid Limits Device: 1080 Material Size of Fines: -#40 Boring Number: TI-B1-15A

Depth: 41.1-41.5'

Sample Number: Sandy Clay Test Date: 3/29/2014

Technician: DPM Sampled Date: 11/21/2013 Sampled By: MWH

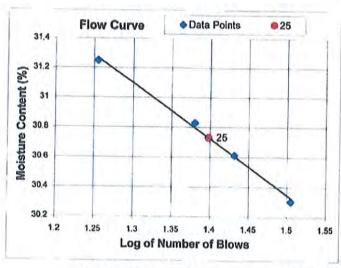
Method: Method A

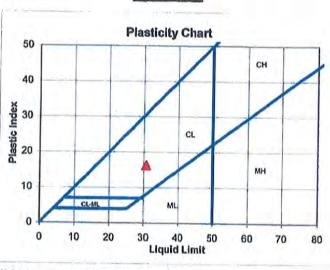
Plastic Limits

	Sample 1	Sample 2	Sample 3
Weight of Wet Soil & Pan (g):		6.830	6.911
Weight of Dry Soil & Pan (g):	6.051	6.093	6.164
Weight of Water (g):	0.739	0.737	0.747
Weight of Pan (g):		0.981	0.967
Moisture Content (%):	14.6	14.4	14.4

Average: 14.5%

Standard Deviation: 0.1%


Liquid Limits


A STATE OF THE STA	Sample 1	Sample 2	Sample 3	Sample 4
Number of Blows:	Control of the Contro	24	27	32
Weight of Wet Soil & Pan (g):		15.144	14.679	14.080
Weight of Dry Soil & Pan (g):		11.808	11.477	11.048
Weight of Water (g):	3.478	3.336	3.202	3.032
Weight of Pan (g):		0.987	1.017	1.043
Moisture Content (%):	31.2	30.8	30.6	30.3

Plastic Limit: 14 Liquid Limit: 31 Plastic Index: 16

Atterberg Classification

CL

Data Entered By: DPM

Date: 4/14/2014

File Name: atterberg-ASTM_4318-R6_24.xls

Data Checked By: by
Date: 4/18/14

Client: MWH Job Number: 2512-77

Project: Church Rock

Location: Tailings Impoundment

Project Number:

Test Configuration

Liquid Limits Device: 1080 Material Size of Fines: -#40 Boring Number: TI-B1-12

Depth: 32-33' (32-34.5')

Sample Number: Sand Tailings (V. fine, Clayey)

Test Date: 4/15/2014 Technician: DPM Sampled Date: 11/21/2013 Sampled By: MWH

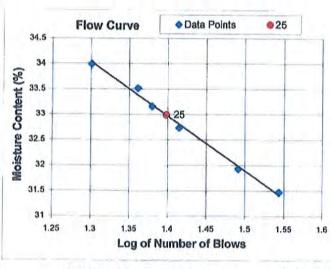
Method: Method A

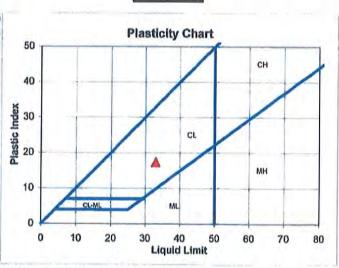
Plastic Limits

	Sample 1	Sample 2	Sample 3
Weight of Wet Soll & Pan (g):	6.599	6.284	6.556
Weight of Dry Soil & Pan (g):	5.795	5.523	5.794
Weight of Water (g):	0.804	0.761	0.762
Weight of Pan (g):	0.742	0.729	0.760
Moisture Content (%):	15.9	15.9	15.1

Average: 15.6%

Standard Deviation: 0.4%


Liquid Limits


	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5	Sample 6
Number of Blows:	20	23	24	26	31	35
Weight of Wet Soil & Pan (g):	12.709	13.846	13.569	12.908	13.336	13.679
Weight of Dry Soil & Pan (g):	9.679	10.563	10.382	9.909	10.290	10.583
Weight of Water (g):	3.030	3.283	3.187	2.999	3.046	3.096
Weight of Pan (g):	0.765	0.767	0.769	0.747	0.750	0.744
Moisture Content (%):	34.0	33.5	33.2	32.7	31.9	31.5

Plastic Limit: 16 Liquid Limit: 33

Plastic Index: 17

Atterberg Classification CL

Data Entered By: DPM

Date: 4/16/2014

File Name: atterberg-ASTM_4318-R6_30.xls

Data Checked By: 5

Date: 4/18/14

Client: MWH
Job Number: 2512-77
Project: Church Rock

Location: Tailings Impoundment

Project Number:

Test Configuration

Liquid Limits Device: 1080 Material Size of Fines: -#40 Boring Number: TI-B10-10

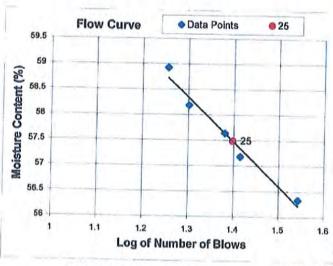
Depth: 30.3-30.7' (30-32.5') Sample Number: Top of Tube - Fine

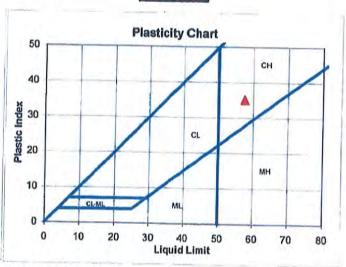
Test Date: 4/16/2014
Technician: DPM
Sampled Date: 11/26/2013
Sampled By: MWH
Method: Method A

Plastic Limits

	Sample 1	Sample 2	Sample 3
Weight of Wet Soil & Pan (g):		6.004	6.050
Weight of Dry Soil & Pan (g):		5.044	5.081
Weight of Water (g):	0.969	0.960	0.969
Weight of Pan (g):		0.735	0.756
Moisture Content (%):	22.6	22.3	22.4

Average: 22.4%


Standard Deviation: 0.1%


Liquid Limits

	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5
Number of Blows:		26	24	20	18
Weight of Wet Soil & Pan (g):	12.559	12.938	15.069	12,788	14.269
Weight of Dry Soil & Pan (g):		8.507	9.837	8.359	9.261
Weight of Water (g):		4.431	6.232	4.429	5.008
Weight of Pan (g):		0.758	0.760	0.747	0.762
Moisture Content (%):	56.3	57.2	57.6	58.2	58.9

Plastic Limit: 22 Liquid Limit: 57 Plastic Index: 35

Atterberg Classification CH

Data Entered By: DPM

Date: 4/17/2014

File Name: atterberg-ASTM_4318-R6_31.xls

Data Checked By: 5

Client: MWH

Job Number: 2512-77 Project: Church Rock

Location: Tailings Impoundment

Project Number: -

Test Configuration

Liquid Limits Device: 1080 Material Size of Fines: -#40

Boring Number: TI-B3-08A

Depth: 46.0-46.5'

Sample Number: Silty Clay

Test Date: 2/10/2014 Technician: DPM

Sampled Date: 11/19/2013 Sampled By: MWH

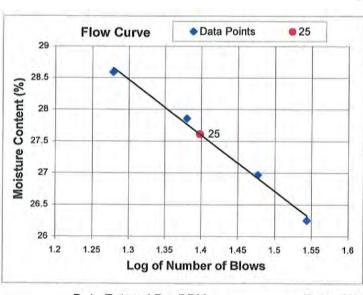
Method: Method A

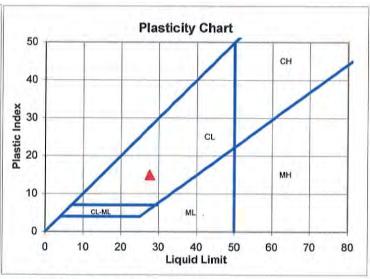
Plastic Limits

	Sample 1	Sample 2	Sample 3
Weight of Wet Soil & Pan (g):	6.938	6.725	6.502
Weight of Dry Soil & Pan (g):	6.241	6.035	5.872
Weight of Water (g):	0.697	0.690	0.630
Weight of Pan (g):	0.757	0.766	0.748
Moisture Content (%):	12.7	13.1	12.3

Average: 12.7%

Standard Deviation: 0.4%


Liquid Limits


	Sample 1	Sample 2	Sample 3	Sample 4
Number of Blows:	35	30	24	19
Weight of Wet Soil & Pan (g):	16.804	14.996	15.489	11.259
Weight of Dry Soil & Pan (g):	13.465	11.971	12.276	8.925
Weight of Water (g):	3.339	3.025	3.213	2.334
Weight of Pan (g):	0.746	0.753	0.742	0.761
Moisture Content (%):	26.3	27.0	27.9	28.6

Plastic Limit: 13 Liquid Limit: 28

Plastic Index: 15

Atterberg Classification CL

Data Entered By: DPM

Date: 2/11/2014

File Name: atterberg-ASTM_4318-R6_14.xls

Data Checked By: 55
Date: 2/14/14

Client: MWH
Job Number: 2512-77
Project: Church Rock

Location: Tailings Impoundment

Project Number: -

Test Configuration

Liquid Limits Device: 1080 Material Size of Fines: -#40

Boring Number: TI-B3-04A

Depth: 26.0-26.5' Sample Number: Silty Clay

Test Date: 2/10/2014 Technician: DPM Sampled Date: 11/19/2013

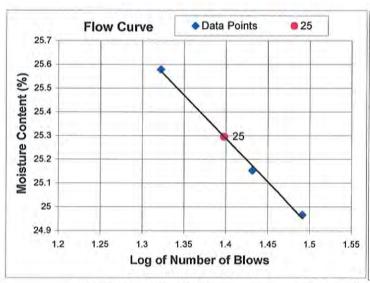
Sampled By: MWH
Method: Method A

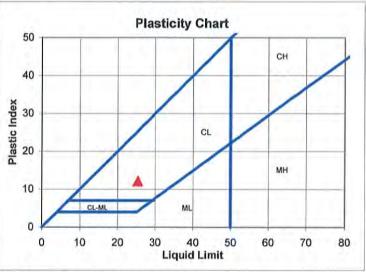
Plastic Limits

	Sample 1	Sample 2	Sample 3
Weight of Wet Soil & Pan (g):	6.682	6.361	6.429
Weight of Dry Soil & Pan (g):	5.977	5.701	5.794
Weight of Water (g):	0.705	0.660	0.635
Weight of Pan (g):	0.730	0.773	0.777
Moisture Content (%):	13.4	13.4	12.7

Average: 13.2%

Standard Deviation: 0.4%


Liquid Limits


a maning control of	Sample 1	Sample 2	Sample 3
Number of Blows:	21	27	31
Weight of Wet Soil & Pan (g):	15.310	16.899	15.564
Weight of Dry Soil & Pan (g):	12.348	13.655	12.608
Weight of Water (g):	2.962	3.244	2.956
Weight of Pan (g):	0.768	0.758	0.768
Moisture Content (%):	25.6	25.2	25.0

Plastic Limit: 13 Liquid Limit: 25 Plastic Index: 12

Atterberg Classification

CL

Data Entered By: DPM

Date: 2/11/2014

File Name: atterberg-ASTM_4318-R6_13.xls

Data Checked By: by
Date: 2/14/14

Boring Number: TI-B10-20A Depth: 66.0-66.5'

Test Date: 3/17/2014

Method: Method A

Sample Number: Silty Sand

Technician: DPM Sampled Date: 11/26/2013

Sampled By: MWH

Client: MWH Job Number: 2512-77 Project: Church Rock

Location: Tailings Impoundment

Project Number:

Test Configuration

Liquid Limits Device: 1080 Material Size of Fines: -#40

Plastic Limits

Non-Plastic

Liquid Limits

Non-Plastic

Atterberg Classification

NP

Data Entered By: DPM

File Name: atterberg-ASTM_4318-R6_25.xls

Data Checked By: _______

Date: 03/24/14

Date: 3/21/2014

Client: MWH Job Number: 2512-77

Project: Church Rock

Location: Tailings Impoundment

Project Number:

Test Configuration

Liquid Limits Device: 1080 Material Size of Fines: -#40 Boring Number: TI-B1-11A

Depth: 31.0-31.5'

Sample Number: Sand Tailings (V. Fine Clayey)

Test Date: 5/7/2014
Technician: DPM
Sampled Date: 11/21/2013
Sampled By: MWH
Method: Method A

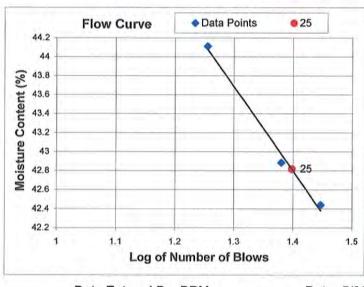
Plastic Limits Note: The sample was dried at 60c.

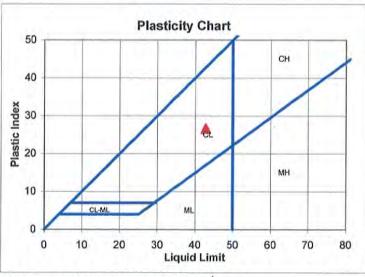
	Sample 1	Sample 2	Sample 3
Weight of Wet Soil & Pan (g):	6.846	6.782	6.784
Weight of Dry Soil & Pan (g):	6.030	6.003	6.010
Weight of Water (g):	0.816	0.779	0.774
Weight of Pan (g):	1.149	1.121	1.136
Moisture Content (%):	16.7	16.0	15.9

Average: 16.2%

Standard Deviation: 0.5%

Liquid Limits


• • • • • • • • • • • • • • • • • • • •	Sample 1	Sample 2	Sample 3
Number of Blows:	2.37.7.4.1.1.1.0.	24	18
Weight of Wet Soil & Pan (g):	14.338	12.470	13.759
Weight of Dry Soil & Pan (g):	10.417	9.065	9.891
Weight of Water (g):	3.921	3,405	3.868
Weight of Pan (g):	1.178	1.125	1.122
Moisture Content (%):	42.4	42.9	44.1


Plastic Limit: 16 Liquid Limit: 43

Plastic Index: 27

Atterberg Classification

CL

Data Entered By: DPM

Date: 5/9/2014

Data Checked By: DAW

File Name: atterberg-ASTM_4318-R6_44-60c.xls

Client: MWH Job Number: 2512-77

Project: Church Rock Location: Tailings Impoundment

Project Number:

Test Configuration

Liquid Limits Device: 1080 Material Size of Fines: -#40

Boring Number: TI-B1-11A

Depth: 31.0-31.5'

Sample Number: Sand Tailings (V. Fine Clayey)

Test Date: 5/7/2014 Technician: DPM Sampled Date: 11/21/2013 Sampled By: MWH Method: Method A

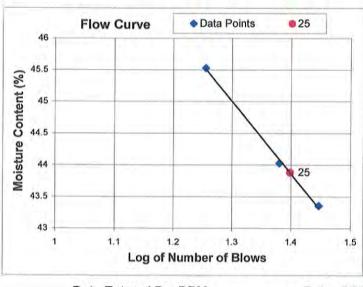
Plastic Limits Note: The sample was dried at 110c.

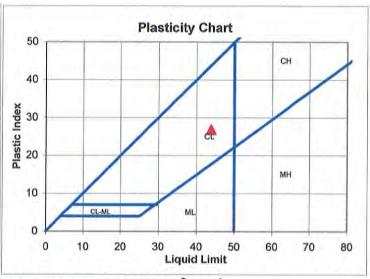
	Sample 1	Sample 2	Sample 3
Weight of Wet Soil & Pan (g)	6.846	6.782	6.784
Weight of Dry Soil & Pan (g)	5.994	5.969	5.973
Weight of Water (g)	0.852	0.813	0.811
Weight of Pan (g)	1.149	1.121	1.136
Moisture Content (%)	: 17.6	16.8	16.8

Average: 17.0%

Standard Deviation: 0.5%

Liquid Limits


	Sample 1	Sample 2	Sample 3
Number of Blows:	28	24	18
Weight of Wet Soil & Pan (g):	14.338	12.470	13.860
Weight of Dry Soil & Pan (g):	10.358	9.002	9.878
Weight of Water (g):	3.980	3.468	3.982
Weight of Pan (g):	1.178	1.125	1.132
Moisture Content (%):	43.4	44.0	45.5


Plastic Limit: 17 Liquid Limit: 44

Plastic Index: 27

Atterberg Classification

CL

Data Entered By: DPM

Date: 5/9/2014

Data Checked By:

Date: 05/23/14

File Name: atterberg-ASTM_4318-R6_44-110c.xls

Client: MWH Job Number: 2512-77

Project: Church Rock Location: Tailings Impoundment

Project Number:

Test Configuration

Liquid Limits Device: 1080 Material Size of Fines: -#40 Boring Number: TI-B3-10

Depth: 56-57' (55-57')

Sample Number: Silty Clay

Test Date: 5/7/2014 Technician: DPM Sampled Date: 11/19/2013

Sampled By: MWH

Method: Method A

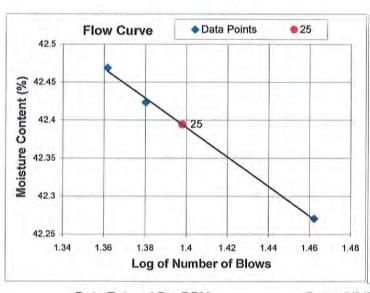
Plastic Limits Note: The sample was dried at 60c.

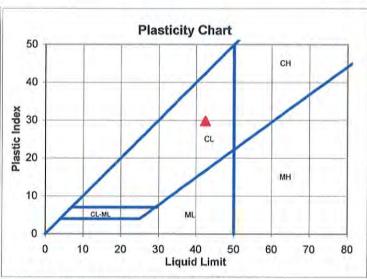
	Sample 1	Sample 2	Sample 3
Weight of Wet Soil & Pan (g):	6.685	6.577	6.669
Weight of Dry Soil & Pan (g):	6.068	5.967	6.055
Weight of Water (g):	0.617	0.610	0.614
Weight of Pan (g):	1.141	1.145	1.147
Moisture Content (%):	12.5	12.7	12.5

Average: 12.6%

Standard Deviation: 0.1%

Liquid Limits


	Sample 1	Sample 2	Sample 3
Number of Blows:	23	24	29
Weight of Wet Soil & Pan (g):	12.698	15.305	13.182
Weight of Dry Soil & Pan (g):	9.247	11.086	9.600
Weight of Water (g):	3.451	4.219	3.582
Weight of Pan (g):	1.121	1.141	1.126
Moisture Content (%):	42.5	42.4	42.3


Plastic Limit: 13 Liquid Limit: 42

Plastic Index: 30

Atterberg Classification

CL

Data Entered By: DPM

Date: 5/9/2014

File Name: atterberg-ASTM_4318-R6_49.xls

Data Checked By: Date: 05/23/14

Client: MWH Job Number: 2512-77

Project: Church Rock Location: Tailings Impoundment

Project Number:

Test Configuration

Liquid Limits Device: 1080 Material Size of Fines: -#40

Boring Number: TI-B3-10

Depth: 56-57' (55-57')

Sample Number: Silty Clay

Test Date: 5/7/2014 Technician: DPM

Sampled Date: 11/19/2013 Sampled By: MWH

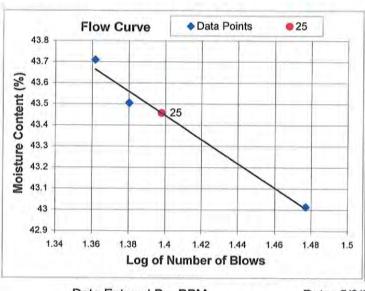
Method: Method A

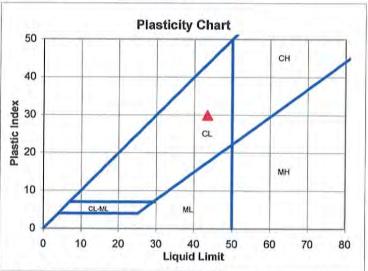
Plastic Limits Note: The sample was dried at 110c.

	Sample 1	Sample 2	Sample 3
Weight of Wet Soil & Pan (g):	6.685	6.577	6.669
Weight of Dry Soil & Pan (g):	6.024	5.925	6.014
Weight of Water (g):	0.661	0.652	0.655
Weight of Pan (g):	1.141	1.145	1.147
Moisture Content (%):	13.5	13.6	13.5

Average: 13.5%

Standard Deviation: 0.1%


Liquid Limits


	Sample 1	Sample 2	Sample 3
Number of Blows:	24	30	23
Weight of Wet Soil & Pan (g):	15.305	14.857	14.719
Weight of Dry Soil & Pan (g):	11.011	10.732	10.595
Weight of Water (g):	4.294	4.125	4.124
Weight of Pan (g):	1.141	1.142	1.160
Moisture Content (%):	43.5	43.0	43.7

Plastic Limit: 14 Liquid Limit: 43

Plastic Index: 30

Atterberg Classification CL

Data Entered By: DPM

Date: 5/9/2014

Data Checked By:_

File Name: atterberg-ASTM_4318-R6_49-110c.xls

Client: MWH

Job Number: 2512-77

Project: Church Rock

Location: Tailings Impoundment

Project Number:

Test Configuration

Liquid Limits Device: 1080 Material Size of Fines: -#40

Boring Number: TI-B3-03

Depth: 21.0-22.0' (20-22.4')

Sample Number: Silty Clay

Test Date: 5/5/2014 Technician: DPM Sampled Date: 11/19/2013

Sampled By: MWH

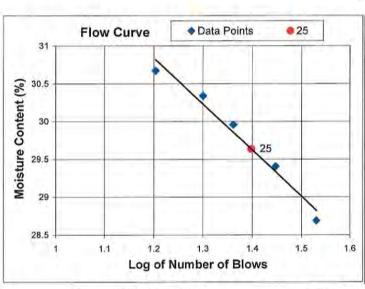
Method: Method A

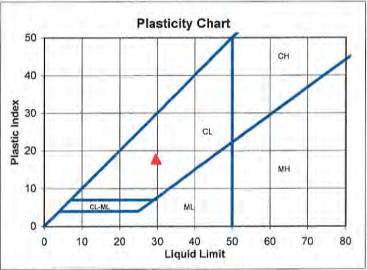
Note: The sample was dried at 60c. **Plastic Limits**

	Sample 1	Sample 2	Sample 3
Weight of Wet Soil & Pan (g):	6.241	6.394	6.368
Weight of Dry Soil & Pan (g):	5.659	5.815	5.757
Weight of Water (g):	0.582	0.579	0.611
Weight of Pan (g):	0.773	0.746	0.763
Moisture Content (%):	11.9	11.4	12.2

Average: 11.9%

Standard Deviation: 0.4%


Liquid Limits


	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5
Number of Blows:	16	20	23	28	34
Weight of Wet Soil & Pan (g):	14.153	15.194	12.727	17.673	14.217
Weight of Dry Soil & Pan (g):	11.009	11.935	10.060	13.917	11.300
Weight of Water (g):	3.144	3.259	2.667	3.756	2.917
Weight of Pan (g):	0.758	1.192	1.157	1.143	1.132
Moisture Content (%):	30.7	30.3	30.0	29.4	28.7

Plastic Limit: 12

Liquid Limit: 30 Plastic Index: 18

Atterberg Classification

Data Entered By: DPM

Date: 5/23/2014

Data Checked By: JAW

File Name: atterberg-ASTM_4318-R6_41-60c.xls

Client: MWH

Job Number: 2512-77

Project: Church Rock

Location: Tailings Impoundment

Project Number:

Test Configuration

Liquid Limits Device: 1080 Material Size of Fines: #40

Boring Number: TI-B3-03

Depth: 21.0-22.0' (20-22.4')

Sample Number: Silty Clay

Test Date: 5/5/2014 Technician: DPM

Sampled Date: 11/19/2013 Sampled By: MWH

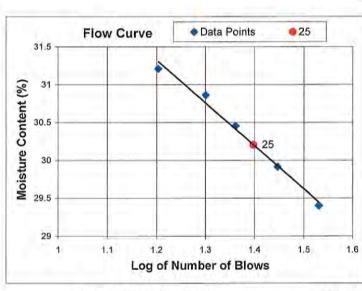
Method: Method A

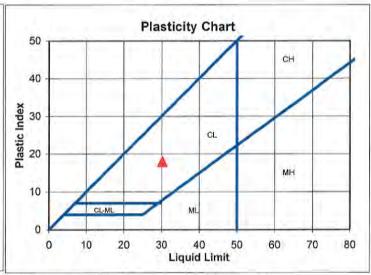
Plastic Limits Note: The sample was dried at 110c.

	Sample 1	Sample 2	Sample 3
Weight of Wet Soil & Pan (g):	6.241	6.394	6.368
Weight of Dry Soil & Pan (g):	5.644	5.798	5.740
Weight of Water (g):	0.597	0.596	0.628
Weight of Pan (g):	0.773	0.746	0.763
Moisture Content (%):	12.3	11.8	12.6

Average: 12.2%

Standard Deviation: 0.4%


Liquid Limits


1-14-115 (2004)	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5
Number of Blows:	16	20	23	28	34
Weight of Wet Soil & Pan (g):	14.153	15.194	12.727	17.673	14.217
Weight of Dry Soil & Pan (g):	10.967	11.892	10.026	13.867	11.244
Weight of Water (g):	3.186	3.302	2.701	3.806	2.973
Weight of Pan (g):	0.758	1.192	1.157	1.143	1.132
Moisture Content (%):	31.2	30.9	30.5	29.9	29.4

Plastic Limit: 12 Liquid Limit: 30

Plastic Index: 18

Atterberg Classification CL

Data Entered By: DPM

Date: 5/23/2014

Data Checked By:

File Name: atterberg-ASTM_4318-R6_41-110c.xls

Client: MWH Job Number: 2512-77

Project: Church Rock

Location: Tailings Impoundment

Project Number:

Test Configuration

Liquid Limits Device: 1080 Material Size of Fines: -#40

Boring Number: TI-B3-06

Depth: 35-36' (35-37.3')

Sample Number: Silty Clay

Test Date: 5/7/2014 Technician: DPM

Sampled Date: 11/19/2013 Sampled By: MWH

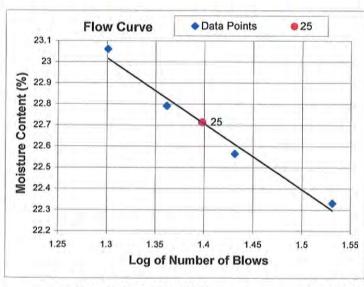
Method: Method A

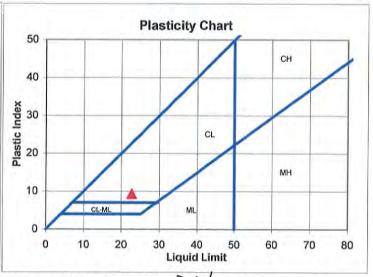
Plastic Limits Note: The sample was dried at 60c.

	Sample 1	Sample 2
Weight of Wet Soil & Pan (g):	7.147	7.001
Weight of Dry Soil & Pan (g):	6.420	6.329
Weight of Water (g):	0.727	0.672
Weight of Pan (g):	1.144	1.143
Moisture Content (%):	13.8	13.0

Average: 13.4%

Standard Deviation: 0.6%


Liquid Limits


	Sample 1	Sample 2	Sample 3	Sample 4
Number of Blows:	20	23	27	34
Weight of Wet Soil & Pan (g):	16.589	13.566	14.396	13.991
Weight of Dry Soil & Pan (g):	13.691	11.257	11.962	11.644
Weight of Water (g):	2.898	2.309	2.434	2.347
Weight of Pan (g):	1.124	1.126	1.175	1.134
Moisture Content (%):	23.1	22.8	22.6	22.3

Plastic Limit: 13 Liquid Limit: 23

Plastic Index: 9

Atterberg Classification CL

Data Entered By: DPM

Date: 5/9/2014

File Name: atterberg-ASTM_4318-R6_51-60c.xls

Data Checked By: DAW

Client: MWH Job Number: 2512-77

> Project: Church Rock Location: Tailings Impoundment

Project Number:

Test Configuration

Liquid Limits Device: 1080 Material Size of Fines: -#40

Boring Number: TI-B3-06

Depth: 35-36' (35-37.3')

Sample Number: Silty Clay

Test Date: 5/7/2014 Technician: DPM

Sampled Date: 11/19/2013 Sampled By: MWH

Method: Method A

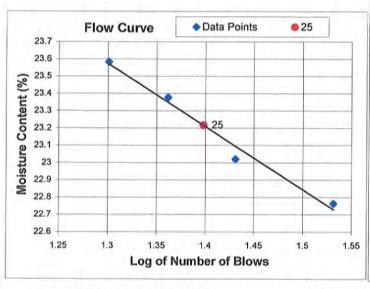
Plastic Limits Note: The sample was dried at 110c.

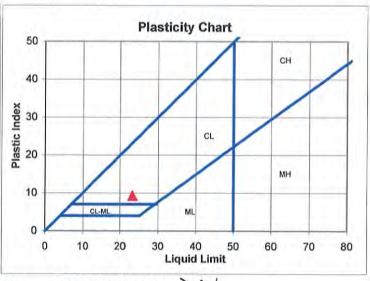
Sample 1 Sample 2 Weight of Wet Soil & Pan (g): 7.147 7.001 Weight of Dry Soil & Pan (g): 6.396 6.301 Weight of Water (g): 0.700 0.751 Weight of Pan (g): 1.144 1.143 Moisture Content (%): 14.3 13.6

Average: 13.9%

Standard Deviation: 0.5%

Liquid Limits


	Sample 1	Sample 2	Sample 3	Sample 4
Number of Blows:	20	23	27	34
Weight of Wet Soil & Pan (g):	16.589	13.566	14.396	13.991
Weight of Dry Soil & Pan (g):	13.638	11.209	11.922	11.607
Weight of Water (g):	2.951	2.357	2.474	2.384
Weight of Pan (g):	1.124	1.126	1.175	1.134
Moisture Content (%):	23.6	23.4	23.0	22.8


Plastic Limit: 14 Liquid Limit: 23

Plastic Index: 9

Atterberg Classification

CL

Data Entered By: DPM

Date: 5/9/2014

Data Checked By: _______ AW

File Name: atterberg-ASTM_4318-R6_51-110c.xls

Client: MWH Job Number: 2512-77

Project: Church Rock

Location: Tailings Impoundment

Project Number: -

Test Configuration

Liquid Limits Device: 1080 Material Size of Fines: -#40

Boring Number: TI-B10-06

Depth: 21.5-22.5' (20.0-22.5')

Sample Number: Clayey Silt Tailings

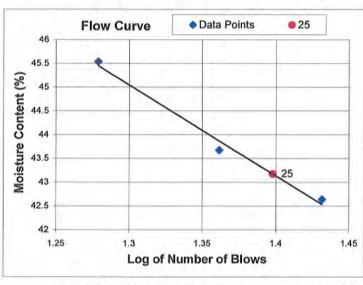
Test Date: 2/11/2014 Technician: DPM Sampled Date: 11/26/2013

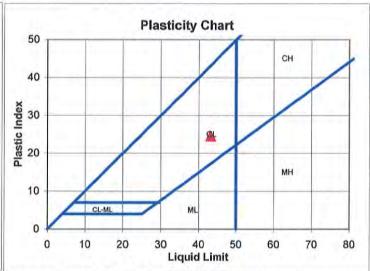
Sampled By: MWH Method: Method A

Plastic Limits

	Sample 1	Sample 2	Sample 3
Weight of Wet Soil & Pan (g):	6.443	6.361	6.268
Weight of Dry Soil & Pan (g):	5.547	5.473	5.415
Weight of Water (g):	0.896	0.888	0.853
Weight of Pan (g):	0.764	0.761	0.760
Moisture Content (%):	18.7	18.8	18.3

Average: 18.6%


Standard Deviation: 0.3%


Liquid Limits

	Sample 1	Sample 2	Sample 3
Number of Blows:	19	23	27
Weight of Wet Soil & Pan (g):	14.949	13.477	15.777
Weight of Dry Soil & Pan (g):	10.506	9.608	11.285
Weight of Water (g):	4.443	3.869	4.492
Weight of Pan (g):	0.749	0.749	0.750
Moisture Content (%):	45.5	43.7	42.6

Plastic Limit: 19 Liquid Limit: 43 Plastic Index: 25

Atterberg Classification CL

Data Entered By: DPM

Date: 2/12/2014

Data Checked By: by

File Name: atterberg-ASTM_4318-R6_15.xls

SPECIFIC GRAVITY TESTS CLIENT: MWI SOIL DESCR. Chui	ASTM D 854 H rch Rock	JOB NO. LOCATION	2512-77 Tailings Impoundme	ent
BORING NO. DEPTH SAMPLE NO.	TI-B8-06 35-36'			TI-B11-08 51.5-52.5'
DATE SAMPLED DATE TESTED	01/30/14 DPM	12/02/13 MWH 01/31/14 DPM		12/02/13 MWH 03/19/14 DPM
Pycnometer #				
	AA	EE	EE	SS
Weight of oven dry soil (g) (Wo)	26.669	26.156	27.411	26.199
Weight of flask, soil, and water. (g) (Wb)	181.824	179.781	180.640	185.088
Temperature (deg. C) (Tx)	20.7	20.0	21.1	19.9
Weight of water & flask at Tx (from cal. curve)(Wa)	165.052	163.519	163.498	168.405
Specific Gravity*	2.69	2.64	2.67	2.75
BORING NO. DEPTH	TI-B8-10A 46.0-46.5'	TI-B8-12A 56.0-56.5'	TI-B15-04 13.5-14.0'	TI-B15-10 28.5-29.5'
SAMPLE NO.				
DATE SAMPLED DATE TESTED	12/04/13 MWH 03/21/14 DPM	12/04/13 MWH 03/21/14 DPM	12/05/13 MWH 3/28/14 DPM	12/05/13 MWH 3/28/14 DPM
Pycnometer#				
	1,	AA	AA	1
Weight of oven dry soil (g) (Wo)	25.506	25.839	25.036	26.340
Weight of flask, soil, and water. (g) (Wb)	178.040	181.273	180.751	178.401
Temperature (deg. C) (Tx)	22.3	22.5	20.6	20.9
Weight of water & flask at Tx (from cal. curve)(Wa)	161.904	165.011	165.054	161.949
Specific Gravity*	2.72	2.70	2.68	2.66

Data entry by: Data checked by: \(\s\cdot\)
FileName: MWSGAS51

DPM

Date: 4/11/14

04/10/2014

^{*}Specific Gravity = Wo/[Wo+(Wa-Wb)]

SPECIFIC GRAVITY TE CLIENT: PROJECT:	ESTS A MWH Church Rock	STM D 854	JOB NO. LOCATION:	2512-77 Tailings Impoundme	nt
BORING NO. DEPTH SAMPLE NO.		TI-B23-06 26-27'			TI-B15-05 15,5-16.0'
DATE SAMPLED DATE TESTED Soil Description		12/06/13 MWH 03/28/14 DPM Silty Clay	03/28/14 DPM	12/06/13 MWH 04/14/14 DPM	12/05/13 MWH 04/17/14 DPM Sand Tailings
Pycnometer #		EE	SS	FF	1
Weight of oven dry soil		25.397		25.984	28.463
(g) (Wo) Weight of flask, soil, and water. (g) (Wb)		179.582	185.514	181.274	179.643
Temperature (deg. C) (Tx)		20.9	20.9	21.3	22.5
Weight of water & flask at Tx (from cal. curve)(\)	(Va)	163.502	168.356	164.816	161.897
Specific Gravity*	134.	2.73	2.76	2.73	2.66
BORING NO. DEPTH		TI-B23-03 15.5-15.75	21.0-21.5		TI-B15-11A 31.0-31.5
SAMPLE NO. DATE SAMPLED DATE TESTED Soil Description		Top of Tube 12/06/13 MWH 04/17/14 DPM Sand Tailings	12/05/13 MWH 04/17/14 DPM	04/25/14 DPM Clayey Sand	12/05/13 MWH 04/25/14 DPM Silty Clay
Pycnometer #		ss		SS	FF
Weight of oven dry soil		25.469	26.544	26.578	25.240
(g) (Wo) Weight of flask, soil, and water. (g) (Wb)		184.548	181.429	185.372	180.692
Temperature (deg. C) (Tx)		22.4	22.7	23.1	23.0
Weight of water & flask at Tx (from cal. curve)(V	(Va)	168.280	164.779	168.245	164.771
Specific Gravity*	VEJ	2.77	2.68	2.81	2.71

Data entry by: DPM
Data checked by: AW
FileName: MWSGAS81

Date: 05/23/14

05/23/2014

^{*}Specific Gravity = Wo/[Wo+(Wa-Wb)]

SPECIFIC GRAVITY TESTS CLIENT: MWH	ASTM D 854	JOB NO. LOCATION	2512-77 Church Rock	
BORING NO. DEPTH	TI-B10-03 12.5-14.0'			TI-B8-09 44.5-44.6'
SAMPLE NO. DATE SAMPLED	11/26/13 MWH	11/26/13 MWH	12/04/13 MWH	-
DATE TESTED SOIL DESCR.	Sand Tailings	Sand Tailings	Clayey Silt	Clayey Silt
Pycnometer #	AA	1	EE	FF
Weight of oven dry soil (g) (Wo)	30.870	32.918	30.086	33.013
Weight of flask, soil, and water. (g) (Wb)	184.055	182.218	181.999	184.935
Temperature (deg. C) (Tx)	27.7	27.7	27.7	27.7
Weight of water & flask at Tx (from cal. curve)(Wa)	164.882	161.712	163.335	164.630
Specific Gravity*	2.64	2.65	2.63	2.60

BORING NO. DEPTH	TI-B8-02C 25.0-25.5'	TI-B10-14 40.0-41.0'		
SAMPLE NO. DATE SAMPLED	12/03/13 MWH	11/26/13 MWH	12/04/13 MWH	
DATE TESTED SOIL DESCR.	Sand Tailings	Clayey Silt Tailings	Clayey Silt/Sand	
Pycnometer #	ss	DD	нн	
Weight of oven dry soil	31.870	30.990	31.575	
(g) (Wo) Weight of flask, soil,	188.147	182.100	184.303	
and water. (g) (Wb) Temperature (deg. C) (Tx)	27.7	27.7	27.7	
Weight of water & flask at Tx (from cal. curve)(Wa)	168.005	163.229	164.563	
Specific Gravity*	2.72	2.56	2.67	

NOTE: Sample dried at 60 degrees Celsius.

*Specific Gravity = Wo/[Wo+(Wa-Wb)]

Data entry by: DAW
Data checked by: FileName: MNSA1214.WK4 DAW

Date:

06/04/2014

SPECIFIC GRAVITY TESTS CLIENT: MWH	ASTM D 854	JOB NO. LOCATION	2512-77 Church Rock	
BORING NO. DEPTH	TI-B10-03 12.5-14.0'			TI-B8-09 44.5-44.6
SAMPLE NO. DATE SAMPLED	11/26/13 MVVH	11/26/13 MWH	12/04/13 MWH	-
DATE TESTED SOIL DESCR.	Sand Tailings	Sand Tailings	Clayey Silt	Clayey Silt
Pycnometer #	AA	1	EE	FF
Weight of oven dry soil (g) (Wo)	30.568	32.646	29.695	32.856
Weight of flask, soil, and water. (g) (Wb)	184.055	182.218	181.999	184.935
Temperature (deg. C) (Tx)	27.7	27.7	27.7	27.7
Weight of water & flask at Tx (from cal. curve)(Wa)	164.882	161.712	163.335	164.630
Specific Gravity*	2.68	2.69	2.69	2.62
BORING NO. DEPTH	TI-B8-02C 25.0-25.5'			
SAMPLE NO. DATE SAMPLED	12/03/13 MVVH	11/26/13 MWH	12/04/13 MWH	
DATE TESTED SOIL DESCR.	Sand Tailings	Clayey Silt Tailings	Clayey Silt/Sand	
Pycnometer #	ss	DD	нн	
Weight of oven dry soil	31.856	30.787	31.533	
(g) (Wo) Weight of flask, soil, and water. (g) (Wb)	188.147	182.100	184.303	
Temperature (deg. C) (Tx)	27.7	27.7	27.7	
Weight of water & flask at Tx (from cal. curve)(Wa)	168.005	163.229	164.563	
Specific Crouity*	2.72	2.50	2.67	

2.72

NOTE: Sample dried at 110 degrees Celsius.

*Specific Gravity = Wo/[Wo+(Wa-Wb)]

Data entry by:
Data checked by: DAW FileName: MNSA1011.WK4

Specific Gravity*

Date:

06/04/2014

2.58

2.67

SPECIFIC GRAVITY TESTS CLIENT: MWH	ASTM D 854	JOB NO. LOCATION	2512-77 Church Rock	
BORING NO. DEPTH	TI-B10-03 12.5-14.0			TI-B8-09 44.5-44.6'
SAMPLE NO. DATE SAMPLED	11/26/13 MWH	11/26/13 MWH	12/04/13 MWH	
DATE TESTED SOIL DESCR.	Sand Tailings	Sand Tailings	Clayey Silt	Clayey Silt
Pycnometer #	AA	1	EE	FF
Weight of oven dry soil	30.568	32.646	29.695	32.856
(g) (Wo) Weight of flask, soil,	183.753	181.946	181.608	184.778
and water. (g) (Wb) Temperature (deg. C)	27.7	27.7	27.7	27.7
(Tx) Weight of water & flask at Tx (from cal. curve)(Wa)	164.882	161.712	163.335	164.630
Specific Gravity*	2.61	2.63	2.60	2.59
		(4444-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-		
BORING NO. DEPTH	TI-B8-02C 25.0-25.5			
SAMPLE NO. DATE SAMPLED	 12/03/13 MWH	 11/26/13 MWH	12/04/13 MWH	
DATE TESTED SOIL DESCR.	 Sand Tailings	 Clayey Silt Tailings	 Clayey Silt/Sand	
Pycnometer #	SS	DD	нн	
Weight of oven dry soil	31.856	30.787	31.533	
(g) (Wo) Weight of flask, soil,	188.133	181.897	184.261	
and water. (g) (Wb) Temperature (deg. C)	27.7	27.7	27.7	
(Tx) Weight of water & flask	168.005	163,229	164.563	
at Tx (from cal. curve)(Wa)	2.72	2.54	2.66	

NOTE: Sample dried at 110 degrees Celsius.

*Specific Gravity = Wo/[Wo+(Wa-Wb)]

Data entry by: DAW Data checked by: DAW FileName: MNSA101B.WK4 DAW

Specific Gravity*

Date:

Date: 06/06/2014

2.72

06/06/2014

2.54

2.66

SPECIFIC GRAVITY TE	STS A	STM D 854			
CLIENT:	MWH		JOB NO.	2512-77	
PROJECT:	Church Rock		LOCATION	Tailings Impoundme	ent
BORING NO. DEPTH		TI-B10-25A 91.0-91.5			TI-B3-06 35-36'
SAMPLE NO. DATE SAMPLED DATE TESTED SOIL DESCRIPTION		Rerun 11/26/13 MWH 04/14/14 DPM Clayey Sand		04/25/14 DPM	11/19/13 MWH 04/25/14 DPM Silty Clay
Pycnometer #		EE	AA	EE	AA
Weight of oven dry soil (g) (Wo)		25.471	26.410	25.476	26.113
Weight of flask, soil, and water. (g) (Wb)		179.408	181.567	179.556	181.327
Temperature (deg. C) (Tx)		21.2	21.2	23.1	23.1
Weight of water & flask at Tx (from cal. curve)(V	Va)	163,496	165.040	163.456	164.997
Specific Gravity*	177	2.66	2.67	2.72	2.67

BORING NO.	TI-BI-11A
DEPTH	31.0-31.5
SAMPLE NO.	
DATE SAMPLED	11/21/12 MMA/H

DATE SAMPLED DATE TESTED 11/21/13 MWH 05/08/14 DPM SOIL DESCRIPTION Sand Tailings

Pycnometer#	
1 4 July 10 July 2	EE
Weight of oven dry soil (g) (Wo)	25.772
Weight of flask, soil, and water. (g) (Wb)	179.603
Temperature (deg. C) (Tx)	23,4
Weight of water & flask at Tx (from cal. curve)(Wa)	163.449
Specific Gravity*	2.68

Data entry by: DPM Data checked by: <u>BKL</u>
FileName: MWGAS91.WK4 DPM/DAW Date:

Date: 5/21/14

05/19/2014

^{*}Specific Gravity = Wo/[Wo+(Wa-Wb)]

SPECIFIC GRAVITY TE	STS A	ASTM D 854	JOB NO.	2512-77	
SOIL DESCR.	Church Rock		LOCATION	Tailings Impoundme	ent
BORING NO.		TI-B3-01A		TI-B2-8C	TI-B10-04A
DEPTH		11.0-11.5	6.0-6.5	15.0-15.5	16.0-16.5
SAMPLE NO. DATE SAMPLED DATE TESTED		11/19/13 MWH 01/30/14 DPM	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		11/26/13 MWH 02/10/14 DPM
Pycnometer#					
**************************************		1	SS	FF	EE
Weight of oven dry soil (g) (Wo)		27.046	25.518	26.806	25.364
Weight of flask, soil, and water. (g) (Wb)		178.748	184.414	181.607	179.304
Temperature (deg. C) (Tx)		20.9	19.8	21.1	21.1
Weight of water & flask at Tx (from cal. curve)(W	(a)	161.949	168.410	164.821	163.498
Specific Gravity*		2.64	2.68	2.68	2.65
	~~~~		*******		
BORING NO. DEPTH		TI-B10-12A 36.0-36.5	TI-B10-08A 26.0-26.5'	TI-B2-11A 21.0-21.5	TI-B2-05A 11.0-11.5
SAMPLE NO.				1 A 2 A 3 A 3 A 3 A 3 A 3 A 3 A 3 A 3 A 3	
DATE SAMPLED DATE TESTED		11/26/13 MWH 02/10/14 DPM	11/26/13 MWH 02/10/14 DPM	11/20/13 MWH 02/12/14 DPM	11/20/13 MWH 02/13/14 DPM
Pycnometer #			3.9		
		1	AA	SS	FF
Weight of oven dry soil (g) (Wo)		25.046	25.502	25.035	28.858
Weight of flask, soil, and water. (g) (Wb)		177.623	181.150	184.279	183.096
Temperature (deg. C) (Tx)		21.4	21.1	20.6	22.2
Weight of water & flask at Tx (from cal. curve)(Wa	a)	161.933	165.043	168,371	164.792
Specific Gravity*	70	2.68	2.71	2.74	2.73

Data entry by:
Data checked by: \( \frac{\( \) \}{\( \) \}

FileName: MWSGAS61

DPM

Date: 3/1/14

02/25/2014



^{*}Specific Gravity = Wo/[Wo+(Wa-Wb)]

SPECIFIC GRAVITY TE CLIENT:	STS A	STM D 854	JOB NO.	2512-77	
PROJECT:	Church Rock		LOCATION:	Tailings Impoundme	ent
BORING NO.		TI-B10-16A		TI-B1-13A	TI-B10-10
DEPTH SAMPLE NO.		46.0-46.5	91.0-91.5	36.0-36.5	32.0-32.5' Bottom of Tube
DATE SAMPLED		11/26/13 MWH	11/26/13 MWH	71,000 17 / 20 4117 11 1	11/26/13 MWH
DATE TESTED Soil Description		02/20/14 DPM Silty Sand	02/20/14 DPM Clayey Sand	02/27/14 DPM Clayey Sand	03/07/14 DPM Coarse
Pycnometer #					
		SS	FF	EE	1
Weight of oven dry soil (g) (Wo)		27.998	25.777	25.041	25.622
Weight of flask, soil, and water. (g) (Wb)		186.128	183.244	179.367	177.973
Temperature (deg. C) (Tx)		21.4	21.5	21.0	21.2
Weight of water & flask at Tx (from cal. curve)(W	/a)	168.331	164.811	163.500	161.940
Specific Gravity*	<i>p.</i> 51	2.74	3.51	2.73	2.67

BORING NO.	TI-B10-10
DEPTH	30.3-30.7
SAMPLE NO.	Top of Tube
DATE SAMPLED	11/26/13 MWH
DATE TESTED	03/07/14 DPM
Soil Description	Fine
Pycnometer#	
A SOURCE OF THE PROPERTY OF TH	AA
Weight of oven dry soil	24.980
(g) (Wo)	
Weight of flask, soil, and water. (g) (Wb)	180.813
Temperature (deg. C)	21.4
(Tx)	National Control of the Control of t
Weight of water & flask at Tx (from cal. curve)(Wa)	165.036
Specific Gravity*	2.71

03/13/2014

Data entry by:

Data checked by: by

FileName: MWSGAS71

Date: 3/14/14



^{*}Specific Gravity = Wo/[Wo+(Wa-Wb)]

Client: MWH Job Number: 2512-77

Project: Church Rock Location: Tailings Impoundment

Project Number:

Boring Number: TI-B15-15A

Depth: 46.0-46.5' Sample Number: Clayey Sand

Sampled Date: 12/5/2013 Sampled By: MWH
Test Date: 4/25/2014 Technician: DPM

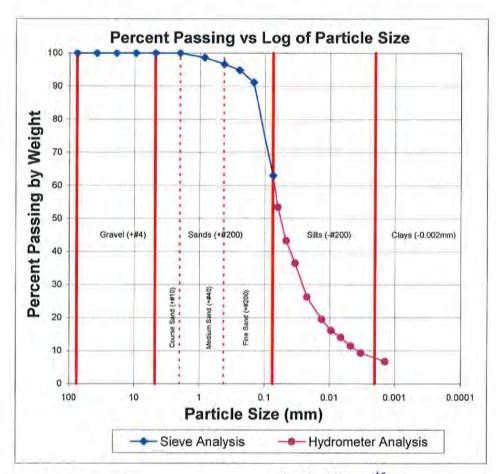
#### **Grain Size Data**

## **Hygroscopic Moisture of Fines**

Weight of Wet Soil & Pan (g): 41.27 Weight of Dry Soil & Pan (g): 39.83 Weight of Water (g): 1.45 Weight of Pan (g): 3.58 Weight of Dry Soil (g): 36.25 Moisture (%): 4.0

# General Sample Data

Total Wet Weight of Sample (g): 60.71
Total Dry Weight of Sample (g): 58.38
Calculated Weight Plus #200 (g): 21.59
Moisture of Total Sample (%): 4.0
Percent Retained #200 Sieve (%): 37.0


## Plus Split Data

Original Weight of +#10 (g): 0.00 Calculated Weight of +#10 (g): 0.00

## Minus Split Data

Original Weight of -#10 (g): 60.71 Calculated Dry Weight of -#10 (g): 58.38

Sieve Number	Number (mm)		Weight of Pan (g)	Weight of Retained Soil (g)	Calculated Weight of Retained Soil (g)	Percent Passing by Weight (%)	
3"	76.2	0.00	0.00	0.00	0.00	100.0	
1.5"	38.10	0.00	0.00	0.00	0.00	100.0	
3/4"	19.05	0.00	0.00	0.00	0.00	100.0	
3/8"	9.525	0.00	0.00	0.00	0.00	100.0	
#4	4.750	0.00	0.00	0.00	0.00	100.0	
#10	2.000	0.00	0.00	0.00	0.00	100.0	
60.705g s	plit out of -#1	10 material.					
#20	0.850	4.51	3.72	0.79	0.79	98.6	
#40	0.425	4.24	3.08	1.16	1.16	96.6	
#60	0.250	4.13	3.06	1.07	1.07	94.8	
#100	0.150	5.24	3.09	2.15	2.15	91.1	
#200	0.075	19.50	3.07	16.42	16.42	63.0	



Data Entered By: DPM

Date: 6/18/2014

File Name: 2512_77_hydrometer-ASTM-D422-R0_69.xls

Date: 4/8/14

ADVANCED TERRA TESTING

Client: MWH Job Number: 2512-77

Project: Church Rock

Location: Tailings Impoundment

Project Number:

Boring Number: TI-B15-15A

Depth: 46.0-46.5'

Sample Number: Clayey Sand

Sampled Date: 12/5/2013 Test Date: 4/25/2014 Sampled By: MWH Technician: DPM

# **Hydrometer Data**

**Test Configuration** 

Hydrometer Type: 152H Specific Gravity: 2.70

Deflocculant: Sodium Hexametaphosphate

Deflocculant Correction: 5.5

Dellocculant: Sodium Hexametaphosphal

Specific Gravity Correction Factor - a: 0.99

Total Wet Weight of Sample (g): 60.71

Total Dry Weight of Sample (g): 58.38

Wet Weight of Sub-Sample (g): 60.705

Dry Weight of Sub-Sample (g): 58.376

Corrected Dry Weight of Sub-Sample - W(g): 58.376

Elapsed Time (min)	Hydrometer Reading	Corrected Hydrometer Reading	Temperatu re (°C)	Temperature Coefficient (K)	Effective Depth (L)	Grain Diameter (mm)	Percent in Suspension (%)	Calculated Weight of Retained Soil (g)	Percent Passing by Weight (%
0	A 100 B	÷	44	40.621	4	8	4 -9 (1.0)	- 208/0-	THE STATE
0.5	37.0	31.5	17.6	0.0140	10.23	0.0631	53.5	31.21	53.5
1	31.0	25.5	17.6	0.0140	11.21	0.0467	43.3	25.27	43.3
2	27.0	21.5	17.6	0.0140	11.87	0.0340	36.5	21.30	36.5
5	21.0	15.5	17.6	0.0140	12.85	0.0224	26.3	15.36	26.3
15	17.0	11.5	17.7	0.0140	13.51	0.0132	19.5	11.40	19.5
30	15.0	9.5	17.7	0.0140	13.83	0.0095	16.1	9.41	16.1
60	13.8	8.3	17.8	0.0140	14.04	0.0068	14.0	8.18	14.0
120	12.3	6.8	18.0	0.0138	14.29	0.0048	11.5	6.69	11.5
250	11.0	5.5	18.9	0.0138	14.49	0.0033	9.3	5.45	9.3
1440	9.5	4.0	18.4	0.0138	14.74	0.0014	6.8	3.96	6.8

Data Entered By: DPM

Date: 6/18/2014

File Name: 2512_77_hydrometer-ASTM-D422-R0_69.xls

Checked By:

Date: 6/18/14



Client: MWH
Job Number: 2512-77
Project: Church Rock

Location: Tailings Impoundment

Project Number:

Boring Number: TI-B15-01A

Depth: 6.0-6.5' Sample Number: Sand Tailings

Sampled Date: 12/5/2013 Test Date: 4/20/2014

Sampled By: MWH Technician: DPM

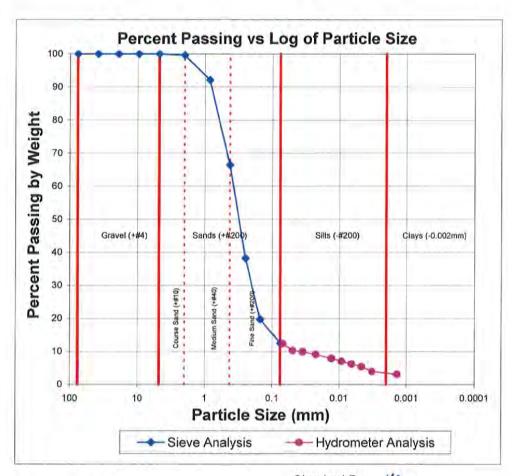
#### **Grain Size Data**

## **Hygroscopic Moisture of Fines**

Weight of Wet Soil & Pan (g): 35.25 Weight of Dry Soil & Pan (g): 35.13 Weight of Water (g): 0.12 Weight of Pan (g): 3.08 Weight of Dry Soil (g): 32.05 Moisture (%): 0.4

#### **General Sample Data**

Total Wet Weight of Sample (g): 244.64
Total Dry Weight of Sample (g): 243.74
Calculated Weight Plus #200 (g): 213.32
Moisture of Total Sample (%): 0.4
Percent Retained #200 Sieve (%): 87.5


#### Plus Split Data

Original Weight of +#10 (g): 1.46 Calculated Weight of +#10 (g): 1.01

#### **Minus Split Data**

Original Weight of -#10 (g): 243.18 Calculated Dry Weight of -#10 (g): 242.73

Sieve Number	Sieve Size (mm)	Weight of Retained Soil & Pan (g)	Weight of Pan (g)	Weight of Retained Soil (g)	Calculated Weight of Retained Soil (g)	Percent Passing by Weight (%)
3"	76.2	0.00	0.00	0.00	0.00	100.0
1.5"	38.10	0.00	0.00	0.00	0.00	100.0
3/4"	19.05	0.00	0.00	0.00	0.00	100.0
3/8"	9.525	0.00	0.00	0.00	0.00	100.0
#4	4.750	0.00	0.00	0.00	0.00	100.0
#10	2.000	1.01	0.00	1.01	1.01	99.6
120.244g sp	olit out of #10	0 material.				
#20	0.850	12.10	3.10	9.00	18.23	92.1
#40	0.425	33.97	3.12	30.85	62.51	66.5
#60	0.250	37.08	3.07	34.01	68.91	38.2
#100	0.150	25.38	3.08	22.29	45.17	19.7
#200	0.075	11.76	3.12	8.64	17.50	12.5



Data Entered By: DPM

Date: 6/18/2014

File Name: 2512_77_hydrometer-ASTM-D422-R0_66.xls

Checked By: 4

ADVANCED TERRA TESTING

Client: MWH

Job Number: 2512-77
Project: Church Ro

Project: Church Rock

Location: Tailings Impoundment

Project Number:

Boring Number: TI-B15-01A

Depth: 6.0-6.5'

Sample Number: Sand Tailings

Sampled Date: 12/5/2013

Test Date: 4/20/2014

Sampled By: MWH

Technician: DPM

# **Hydrometer Data**

**Test Configuration** 

Hydrometer Type: 152H

Specific Gravity: 2.70

Deflocculant: Sodium Hexametaphosphate

Deflocculant Correction: 5.5

Specific Gravity Correction Factor - a: 0.99

Total Wet Weight of Sample (g): 244.64

Total Dry Weight of Sample (g): 243.74

Wet Weight of Sub-Sample (g): 120.244

Dry Weight of Sub-Sample (g): 119.799 Corrected Dry Weight of Sub-Sample - W(g): 120.280

Elapsed Time (min)	Hydrometer Reading	Corrected Hydrometer Reading	Temperature (°C)	Temperature Coefficient (K)	Effective Depth (L)	Grain Diameter (mm)	Percent in Suspension (%)	Calculated Weight of Retained Soil (g)	Percent Passing by Weight (%
0	7.5	-			4/ m 1	4-1	A.	W 12 C.	-
0.5	20.5	15.0	20.2	0.0134	12.93	0.0684	12.4	30.12	12.4
1	18.0	12.5	20.2	0.0134	13.34	0.0491	10.3	25.10	10.3
2	17.5	12.0	20.2	0.0134	13.42	0.0348	9.9	24.10	9.9
5	16.5	11.0	20.2	0.0134	13.59	0.0222	9.1	22.09	9.1
15	15.0	9.5	20.3	0.0134	13.83	0.0129	7.8	19.08	7.8
30	14.0	8.5	20.4	0.0134	14.00	0.0092	7.0	17.07	7.0
60	13.0	7.5	20.4	0.0134	14.16	0.0065	6.2	15.06	6.2
120	12.0	6.5	20.8	0.0134	14.33	0.0046	5.4	13.05	5.4
250	10.3	4.8	21.2	0.0133	14.61	0.0032	3.9	9.54	3.9
1440	9.3	3.8	20.9	0.0134	14.78	0.0014	3.1	7.53	3.1

Data Entered By: DPM

Date: 6/18/2014

File Name: 2512_77_hydrometer-ASTM-D422-R0_66.xls

Checked By:

Date: 6/18/14



Client: MWH Boring Number: TI-B15-05

Job Number: 2512-77 Depth: 15.5-16.0' (15-17.5')

Project: Church Rock Sample Number: Sand Tailings

Location: Tailings Impoundment

Sampled Date: 12/5/2013

Sampled By: MWH
Project Number:

Test Date: 4/15/2014

Technician: DPM

# Grain Size Data

# **Hygroscopic Moisture of Fines**

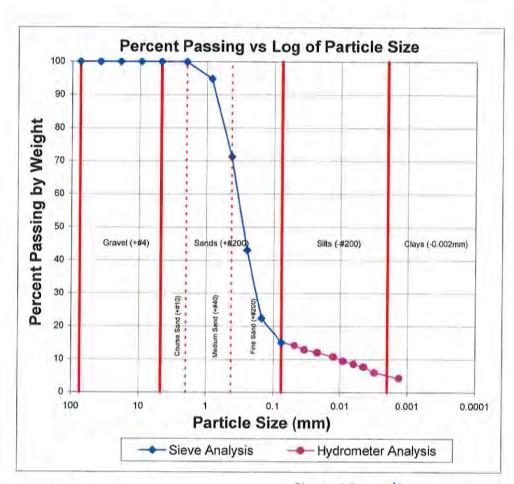
Weight of Wet Soil & Pan (g): 118.52 Weight of Dry Soil & Pan (g): 118.17 Weight of Water (g): 0.35 Weight of Pan (g): 3.57

Weight of Dry Soil (g): 114.61

Moisture (%): 0.3

#### General Sample Data

Total Wet Weight of Sample (g): 916.56
Total Dry Weight of Sample (g): 913.76
Calculated Weight Plus #200 (g): 776.14
Moisture of Total Sample (%): 0.3
Percent Retained #200 Sieve (%): 84.9


## Plus Split Data

Original Weight of +#10 (g): 0.32 Calculated Weight of +#10 (g): 0.25

#### Minus Split Data

Original Weight of -#10 (g): 916.24 Calculated Dry Weight of -#10 (g): 913.50

Sieve Number	Sieve Size (mm)	Weight of Retained Soil & Pan (g)	Weight of Pan (g)	Weight of Retained Soil (g)	Calculated Weight of Retained Soil (g)	Percent Passing by Weight (%)
3"	76.2	0.00	0.00	0.00	0.00	100.0
1.5"	38.10	0.00	0.00	0.00	0.00	100.0
3/4"	19.05	0.00	0.00	0.00	0.00	100.0
3/8"	9.525	0.00	0.00	0.00	0.00	100.0
#4	4.750	0.00	0.00	0.00	0.00	100.0
#10	2.000	0.25	0.00	0.25	0.25	100.0
115.146g sp	olit out of -#10	material.				
#20	0.850	9.68	3.77	5.91	47.01	94.8
#40	0.425	30.79	3.71	27.08	215.51	71.2
#60	0.250	36.11	3.71	32.40	257.83	43.0
#100	0.150	26.83	3.09	23.74	188.92	22.4
#200	0.075	11.45	3.08	8.37	66.61	15.1



Data Entered By: DPM

Date: 6/18/2014

File Name: 2512_77_hydrometer-ASTM-D422-R0_63.xls

Checked By: Date:

ATT

ADVANCED TERRA TESTING

Client: MWH

Job Number: 2512-77

Project: Church Rock

Location: Tailings Impoundment

Project Number:

Boring Number: TI-B15-05

Depth: 15.5-16.0' (15-17.5')

Sample Number: Sand Tailings

Sampled Date: 12/5/2013

Test Date: 4/15/2014

Sampled By: MWH

Technician: DPM

# **Hydrometer Data**

**Test Configuration** 

Hydrometer Type: 152H Specific Gravity: 2.70

Deflocculant: Sodium Hexametaphosphate

Deflocculant Correction: 5.0

Specific Gravity Correction Factor - α: 0.99

Total Wet Weight of Sample (g): 916.56

Total Dry Weight of Sample (g): 913.76 Wet Weight of Sub-Sample (g): 115.146

Dry Weight of Sub-Sample (g): 115.146
Dry Weight of Sub-Sample (g): 114.793

Corrected Dry Weight of Sub-Sample - W(g): 114.793

Elapsed Time (min)	Hydrometer Reading	Corrected Hydrometer Reading	Temperature (°C)	Temperature Coefficient (K)	Effective Depth (L)	Grain Diameter (mm)	Percent in Suspension (%)	Calculated Weight of Retained Soil (g)	Percent Passing by Weight (%
0	F ( 5)	- 156 -	1 169 0	1 JAN 19	7. Aug = 1	0 ft A75	- v80	rco&/Li	1-58:-
1	21.5	16.5	20.5	0.0134	12.77	0.0480	14.2	130.15	14.2
2	20.0	15.0	20.5	0.0134	13.01	0.0343	12.9	118.31	12.9
5	19.0	14.0	20.5	0.0134	13.18	0.0218	12.1	110.43	12.1
15	17.5	12.5	20.7	0.0134	13.42	0.0127	10.8	98.60	10.8
30	16.0	11.0	20.6	0.0134	13.67	0.0091	9.5	86.76	9.5
60	15.0	10.0	21.1	0.0133	13.83	0.0064	8.6	78.88	8.6
120	14.0	9.0	21.6	0.0133	14.00	0.0045	7.8	70.99	7.8
250	12.0	7.0	22.5	0.0131	14.33	0.0031	6.0	55.21	6.0
1440	10.0	5.0	20.7	0.0134	14.65	0.0014	4.3	39.44	4.3

Data Entered By: DPM

Date: 6/18/2014

File Name: 2512_77_hydrometer-ASTM-D422-R0_63.xls

Checked By:

Date: 6/18/14



Client: MWH Job Number: 2512-77

Project: Church Rock

Location: Tailings Impoundment

Project Number:

Boring Number: TI-B23-03

Depth: 15.5-15.75' (15-17.5')

Sample Number: Top of Tube - Sand Tailings

Sampled Date: 12/6/2013 Test Date: 4/15/2014 Sampled By: MWH Technician: DPM

#### **Grain Size Data**

## **Hygroscopic Moisture of Fines**

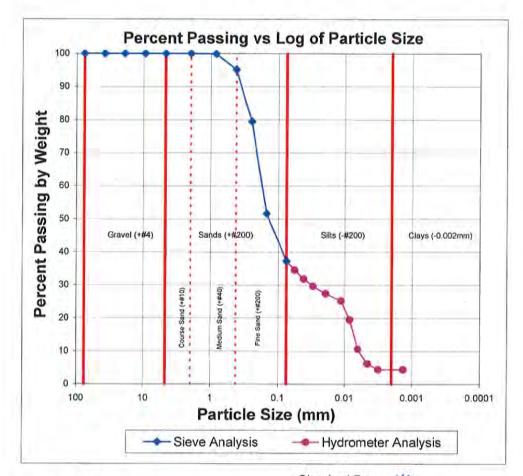
Weight of Wet Soil & Pan (g): 60.35
Weight of Dry Soil & Pan (g): 59.73
Weight of Water (g): 0.63
Weight of Pan (g): 3.78
Weight of Dry Soil (g): 55.95
Moisture (%): 1.1

# **General Sample Data**

Total Wet Weight of Sample (g): 113.21 Total Dry Weight of Sample (g): 111.96 Calculated Weight Plus #200 (g): 70.30 Moisture of Total Sample (%): 1.1 Percent Retained #200 Sieve (%): 62.8

## **Plus Split Data**

Original Weight of +#10 (g): 0.00 Calculated Weight of +#10 (g): 0.00


#### Minus Split Data

Original Weight of -#10 (g): 113.21 Calculated Dry Weight of -#10 (g): 111.96

Note: The sample started showing signs of flocculation at the 60 minute reading.

At the 24 hour reading the supernate was barely cloudy.

Sieve Number	Sieve Size (mm)	Weight of Retained Soil & Pan (g)	Weight of Pan (g)	Weight of Retained Soil (g)	Calculated Weight of Retained Soil (g)	Percent Passing by Weight (%)
3"	76.2	0.00	0.00	0.00	0.00	100.0
1.5"	38.10	0.00	0.00	0.00	0.00	100.0
3/4"	19.05	0.00	0.00	0.00	0.00	100.0
3/8"	9.525	0.00	0.00	0.00	0.00	100.0
#4	4.750	0.00	0.00	0.00	0.00	100.0
#10	2.000	0.00	0.00	0.00	0.00	100.0
113.21g spl	it out of -#10	material.				
#20	0.850	3.82	3.70	0.12	0.12	99.9
#40	0.425	9.13	3.83	5.31	5.31	95.2
#60	0.250	21.31	3.70	17.60	17.60	79.4
#100	0.150	34.27	3.11	31.16	31.16	51.6
#200	0.075	19.18	3.07	16.11	16.11	37.2



Data Entered By: DPM

Date: 6/18/2014

File Name: 2512_77_hydrometer-ASTM-D422-R0_64.xls

Checked By: Date:



Client: MWH

Job Number: 2512-77

Project: Church Rock

Location: Tailings Impoundment

Project Number:

Boring Number: TI-B23-03

Depth: 15.5-15.75' (15-17.5')

Sample Number: Top of Tube - Sand Tailings

Sampled Date: 12/6/2013 Test Date: 4/15/2014 Sampled By: MWH

Technician: DPM

# **Hydrometer Data**

**Test Configuration** 

Hydrometer Type: 152H Specific Gravity: 2,70

Deflocculant: Sodium Hexametaphosphate

Deflocculant Correction: 5.0

Specific Gravity Correction Factor - q: 0.99

Total Wet Weight of Sample (g): 113.21

Total Dry Weight of Sample (g): 111.96 Wet Weight of Sub-Sample (g): 113.210

Dry Weight of Sub-Sample (g): 113.270

Corrected Dry Weight of Sub-Sample - W(g): 111.955

Elapsed Time (min)	Hydrometer Reading	Corrected Hydrometer Reading	Temperature (°C)	Temperature Coefficient (K)	Effective Depth (L)	Grain Diameter (mm)	Percent in Suspension (%)	Calculated Weight of Retained Soil (g)	Percent Passing by Weight (%)
0						1-1-1-1	16	1141-1-1	
0.5	44.0	39.0	20.6	0.0134	9.08	0.0573	34.5	38.65	34.5
1	41.0	36.0	20.6	0.0134	9.57	0.0416	31.9	35.67	31.9
2	38.5	33.5	20.6	0.0134	9.98	0.0300	29.7	33.20	29.7
5	36.0	31.0	20.6	0.0134	10.39	0.0194	27.4	30.72	27.4
15	33.5	28.5	20.7	0.0134	10.80	0.0114	25.2	28.24	25.2
30	27.0	22.0	20.8	0.0134	11.87	0.0085	19.5	21.80	19.5
60	17.0	12.0	20.9	0.0134	13.51	0.0064	10.6	11.89	10.6
120	12.0	7.0	21.3	0.0133	14.33	0.0046	6.2	6.94	6.2
250	10.0	5.0	22.2	0.0131	14.65	0.0032	4.4	4.95	4.4
1440	10.0	5.0	20.4	0.0134	14.65	0.0014	4.4	4.95	4.4

Data Entered By: DPM

Date: 6/18/2014

File Name: 2512_77_hydrometer-ASTM-D422-R0 64.xls

Checked By:

Date: 6/18/14



Client: MWH
Job Number: 2512-77
Project: Church Rock

Location: Tailings Impoundment

Project Number:

Boring Number: TI-B15-11A

Depth: 31.0-31.5'

Sample Number: Silty Clay Sampled Date: 12/5/2013

pled Date: 12/5/2013 Sampled By: MWH
Test Date: 4/20/2014 Technician: DPM

#### **Grain Size Data**

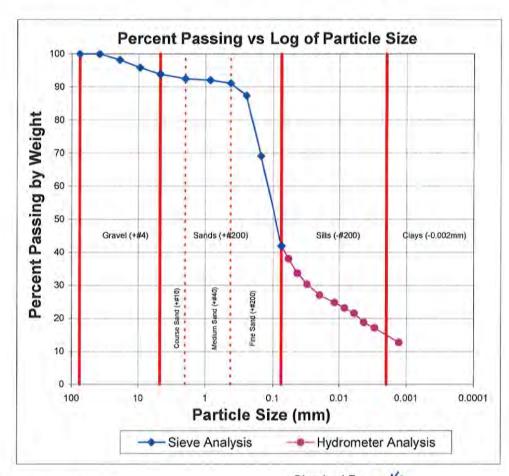
#### **Hygroscopic Moisture of Fines**

Weight of Wet Soil & Pan (g): 28.58
Weight of Dry Soil & Pan (g): 28.27
Weight of Water (g): 0.31
Weight of Pan (g): 3.08
Weight of Dry Soil (g): 25.20
Moisture (%): 1.2

Victoria William Co.

#### **General Sample Data**

Total Wet Weight of Sample (g): 449.52
Total Dry Weight of Sample (g): 444.48
Calculated Weight Plus #200 (g): 258.34
Moisture of Total Sample (%): 1.1
Percent Retained #200 Sieve (%): 58.1


#### **Plus Split Data**

Original Weight of +#10 (g): 37.36 Calculated Weight of +#10 (g): 33.31

## Minus Split Data

Original Weight of -#10 (g): 412.16 Calculated Dry Weight of -#10 (g): 411.17

Sieve Number	Sieve Size (mm)	Weight of Retained Soil & Pan (g)	Weight of Pan (g)	Weight of Retained Soil (g)	Calculated Weight of Retained Soil (g)	Percent Passing by Weight (%)
3"	76.2	0.00	0.00	0.00	0.00	100.0
1.5"	38.10	0.00	0.00	0.00	0.00	100.0
3/4"	19.05	8.00	0.00	8.00	8.00	98.2
3/8"	9.525	10.38	0.00	10.38	10.38	95.9
#4	4.750	8.97	0.00	8.97	8.97	93.8
#10	2.000	5.96	0.00	5.96	5.96	92.5
84.13g split	out of -#10 n	naterial.				
#20	0.850	2.71	2.30	0.42	2.06	92.0
#40	0.425	3.18	2.36	0.81	4.03	91.1
#60	0.250	7.01	3.65	3.36	16.64	87.4
#100	0.150	20.19	3.76	16.43	81.28	69.1
#200	0.075	28.15	3.69	24.46	121.02	41.9



Data Entered By: DPM

Date: 6/18/2014

File Name: 2512_77_hydrometer-ASTM-D422-R0_62.xls

ADVANCED TERRA TESTING

Client: MWH

Job Number: 2512-77

Project: Church Rock

Location: Tailings Impoundment

Project Number:

Boring Number: TI-B15-11A

Depth: 31.0-31.5'

Sample Number: Silty Clay

Sampled Date: 12/5/2013

Test Date: 4/20/2014

Sampled By: MWH

Technician: DPM

# **Hydrometer Data**

**Test Configuration** 

Hydrometer Type: 152H Specific Gravity: 2.70

Deflocculant: Sodium Hexametaphosphate

Specific Gravity Correction Factor - a: 0.99

Deflocculant Correction: 5.5

Total Wet Weight of Sample (g): 449.52

Total Dry Weight of Sample (g): 444.48

Wet Weight of Sub-Sample (g): 84.130

Dry Weight of Sub-Sample (g): 83.111

Corrected Dry Weight of Sub-Sample - W(g): 89.849

Elapsed Time (min)	Hydrometer Reading	Corrected Hydrometer Reading	Temperature (°C)	Temperature Coefficient (K)	Effective Depth (L)	Grain Diameter (mm)	Percent in Suspension (%)	Calculated Weight of Retained Soil (g)	Percent Passing by Weight (%)
0	10-5				104		-		6.
0.5	40.0	34.5	20.6	0.0134	9.73	0.0593	38.0	169.12	38.0
1	36.0	30.5	20.6	0.0134	10.39	0.0433	33.6	149.51	33.6
2	33.0	27.5	20.6	0.0134	10.88	0.0314	30.3	134.80	30.3
5	30.0	24.5	20.6	0.0134	11.37	0.0203	27.0	120.10	27.0
15	28.0	22.5	20.4	0.0134	11.70	0.0119	24.8	110.29	24.8
30	26.5	21.0	20.4	0.0134	11.95	0.0085	23.2	102.94	23.2
60	25.0	19.5	20.5	0.0134	12.19	0.0061	21.5	95.59	21.5
120	22.5	17.0	20.7	0.0134	12.60	0.0044	18.7	83.33	18.7
250	21.0	15.5	21.2	0.0133	12.85	0.0030	17.1	75.98	17.1
1440	17.0	11.5	20.5	0.0134	13.51	0.0013	12.7	56.37	12.7

Data Entered By: DPM

Date: 6/18/2014

File Name: 2512 77 hydrometer-ASTM-D422-R0 62.xls

Checked By:



Client: MWH
Job Number: 2512-77
Project: Church Rock

Location: Tailings Impoundment

Project Number:

Boring Number: TI-B15-07A

Depth: 21.0-21.5'

Sample Number: Fine Sand Tailings

Sampled Date: 12/5/2013 Test Date: 4/15/2014 Sampled By: MWH Technician: DPM

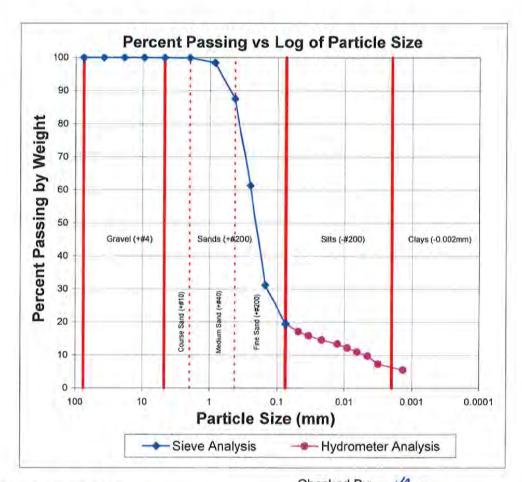
#### **Grain Size Data**

#### **Hygroscopic Moisture of Fines**

Weight of Wet Soil & Pan (g): 58.80 Weight of Dry Soil & Pan (g): 58.55 Weight of Water (g): 0.25 Weight of Pan (g): 3.73 Weight of Dry Soil (g): 54.82 Moisture (%): 0.5

#### **General Sample Data**

Total Wet Weight of Sample (g): 363.15
Total Dry Weight of Sample (g): 361.52
Calculated Weight Plus #200 (g): 291.38
Moisture of Total Sample (%): 0.5
Percent Retained #200 Sieve (%): 80.6


## **Plus Split Data**

Original Weight of +#10 (g): 0.31 Calculated Weight of +#10 (g): 0.28

## Minus Split Data

Original Weight of -#10 (g): 362.84 Calculated Dry Weight of -#10 (g): 361.24

Sieve Number	Sieve Size (mm)	Weight of Retained Soil & Pan (g)	Weight of Pan (g)	Weight of Retained Soil (g)	Calculated Weight of Retained Soil (g)	Percent Passing by Weight (%)	
3"	76.2	0.00	0.00	0.00	0.00	100.0	
1.5"	38.10	0.00	0.00	0.00	0.00	100.0	
3/4"	19.05	0.00	0.00	0.00	0.00	100.0	
3/8"	9.525	0.00	0.00	0.00	0.00	100.0	
#4	4.750	0.13	0.00	0.13	0.13	100.0	
#10	2.000	0.15	0.00	0.15	0.15	99.9	
81.531g spl	it out of -#10	material.					
#20	0.850	3.50	2.29	1.20	5.35	98.4	
#40	0.425	11.18	2.32	8.87	39.47	87.5	
#60	0.250	25.06	3.72	21.34	94.98	61.3	
#100	0.150	27.51	3.07	24.43	108.74	31.2	
#200	0.075	12.63	3.07	9.56	42.56	19.4	



Data Entered By: DPM

Date: 6/18/2014

File Name: 2512_77_hydrometer-ASTM-D422-R0_61.xls

Checked By: Date:



Client: MWH
Job Number: 2512-77

Project: Church Rock

Location: Tailings Impoundment

Project Number:

Boring Number: TI-B15-07A

Depth: 21.0-21.5'

Sample Number: Fine Sand Tailings

Sampled Date: 12/5/2013 Test Date: 4/15/2014 Sampled By: MWH Technician: DPM

## **Hydrometer Data**

**Test Configuration** 

Hydrometer Type: 152H Specific Gravity: 2.70

Deflocculant: Sodium Hexametaphosphate

Deflocculant Correction: 5.0

Specific Gravity Correction Factor - a: 0.99

Total Wet Weight of Sample (g): 363.15

Total Dry Weight of Sample (g): 361.52 Wet Weight of Sub-Sample (g): 81.531

Dry Weight of Sub-Sample (g): 81.165

Corrected Dry Weight of Sub-Sample - W(g): 81.247

Elapsed Time (min)	Hydrometer Reading	Corrected Hydrometer Reading	Temperature (°C)	Temperature Coefficient (K)	Effective Depth (L)	Grain Diameter (mm)	Percent in Suspension (%)	Calculated Weight of Retained Soil (g)	Percent Passing by Weight (%)
0	118111	4.97	- 350-	1 1 340 to 1	36.5	1-1-4-1-4	4.	1.870	Control
1	19.0	14.0	20.4	0.0134	13.18	0.0488	17.1	61.73	17.1
2	18.0	13.0	20.4	0.0134	13.34	0.0347	15.9	57.32	15.9
5	17.0	12.0	20.4	0.0134	13.51	0.0221	14.6	52.91	14.6
15	16.0	11.0	20.5	0.0134	13.67	0.0128	13.4	48.50	13.4
30	15.0	10.0	20.7	0.0134	13.83	0.0091	12.2	44.09	12.2
60	14.0	9.0	20.9	0.0134	14.00	0.0065	11.0	39.68	11.0
120	13.0	8.0	21.5	0.0133	14.16	0.0046	9.8	35.27	9.8
250	11.0	6.0	22.3	0.0131	14.49	0.0032	7.3	26.46	7.3
1440	9.5	4.5	20.4	0.0134	14.74	0.0014	5.5	19.84	5.5

Data Entered By: DPM

Date: 6/18/2014

File Name: 2512_77_hydrometer-ASTM-D422-R0_61.xls

Checked By:

Date: 6/18/



Boring Number: TI-B23-03

Depth: 17.25-17.5' (15-17.5')

Sample Number: Bottom of Tube -Silty Clay

Sampled Date: 12/6/2013 Sampled By: MWH
Test Date: 4/11/2014 Technician: DPM

# Client: MWH Job Number: 2512-77 Project: Church Rock

Location: Tailings Impoundment

Project Number:

#### **Grain Size Data**

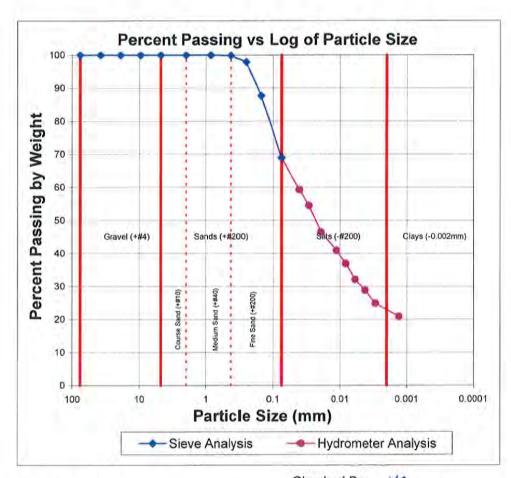
#### Hygroscopic Moisture of Fines

Weight of Wet Soil & Pan (g): 46.22 Weight of Dry Soil & Pan (g): 45.39 Weight of Water (g): 0.82 Weight of Pan (g): 3.56 Weight of Dry Soil (g): 41.84

Moisture (%): 2.0

#### **General Sample Data**

Total Wet Weight of Sample (g): 63.05
Total Dry Weight of Sample (g): 61.84
Calculated Weight Plus #200 (g): 19.21
Moisture of Total Sample (%): 2.0
Percent Retained #200 Sieve (%): 31.1


#### Plus Split Data

Original Weight of +#10 (g): 0.00 Calculated Weight of +#10 (g): 0.00

## **Minus Split Data**

Original Weight of -#10 (g): 63.05 Calculated Dry Weight of -#10 (g): 61.84

Sieve Number	Sieve Size (mm)	Weight of Retained Soil & Pan (g)	Weight of Pan (g)	Weight of Retained Soil (g)	Calculated Weight of Retained Soil (g)	Percent Passing by Weight (%)	
3"	76.2	0.00	0.00	0.00	0.00	100.0	
1.5"	38.10	0.00	0.00	0.00	0.00	100.0	
3/4"	19.05	0.00	0.00	0.00	0.00	100.0	
3/8"	9.525	0.00	0.00	0.00	0.00	100.0	
#4	4.750	0.00	0.00	0.00	0.00	100.0	
#10	2.000	0.00	0.00	0.00	0.00	100.0	
63.053g spl	it out of -#10	material.					
#20	0.850	2.37	2.37	0.00	0.00	100.0	
#40	0.425	2.35	2.28	0.08	0.08	99.9	
#60	0.250	4.85	3.62	1.23	1.23	97.9	
#100	0.150	9.37	3.08	6.29	6.29	87.7	
#200	0.075	14.70	3.08	11.62	11.62	68.9	



Data Entered By: DPM

Date: 6/18/2014

File Name: 2512_77_hydrometer-ASTM-D422-R0_60.xls

Checked By: PR Date: 6/18/14

Client: MWH

Job Number: 2512-77

Project: Church Rock

Location: Tailings Impoundment

Project Number:

Boring Number: TI-B23-03

Depth: 17.25-17.5' (15-17.5')

Sample Number: Bottom of Tube -Silty Clay

Sampled Date: 12/6/2013 Test Date: 4/11/2014 Sampled By: MWH

Technician: DPM

## **Hydrometer Data**

**Test Configuration** 

Hydrometer Type: 152H Specific Gravity: 2.70

Deflocculant: Sodium Hexametaphosphate

Deflocculant Correction: 5.0

Specific Gravity Correction Factor - a: 0.99

Total Wet Weight of Sample (g): 63.05

Total Dry Weight of Sample (g): 61.84 Wet Weight of Sub-Sample (g): 63.053

Dry Weight of Sub-Sample (g): 61.840

Corrected Dry Weight of Sub-Sample - W(g): 61.840

Elapsed Time (min)	Hydrometer Reading	Corrected Hydrometer Reading	Temperature (°C)	Temperature Coefficient (K)	Effective Depth (L)	Grain Diameter (mm)	Percent in Suspension (%)	Calculated Weight of Retained Soil (g)	Percent Passing by Weight (%
0	7.67	7/4	0.87	The design of	1000	14 L CAL	9.	JURIL	
1	42.0	37.0	21.1	0.0133	9.41	0.0407	59.3	36.66	59.3
2	39.0	34.0	21.1	0.0133	9.90	0.0295	54.5	33.69	54.5
5	34.0	29.0	21.1	0.0133	10.72	0.0194	46.5	28.74	46.5
15	30.5	25.5	21.2	0.0133	11.29	0.0115	40.9	25.27	40.9
30	28.0	23.0	21.4	0.0133	11.70	0.0083	36.9	22.79	36.9
60	25.0	20.0	21.7	0.0133	12.19	0.0060	32.0	19.82	32.0
120	23.0	18.0	22.4	0.0131	12.52	0.0042	28.8	17.84	28.8
250	20.5	15.5	23.4	0.0130	12.93	0.0029	24.8	15.36	24.8
1440	18.0	13.0	19.6	0.0136	13.34	0.0013	20.8	12.88	20.8

Data Entered By: DPM

Date: 6/18/2014

File Name: 2512_77_hydrometer-ASTM-D422-R0_60.xls

Checked By:

ate: 6



Boring Number: TI-B15-10

Depth: 28.5-29.5' (27-29.5')

Sample Number: Clayey Fine Sand Tails

Sampled Date: 12/5/2013 Sampled By: MWH Test Date: 3/25/2014 Technician: DPM

Client: MWH Job Number: 2512-77 Project: Church Rock

Location: Tailings Impoundment

Project Number:

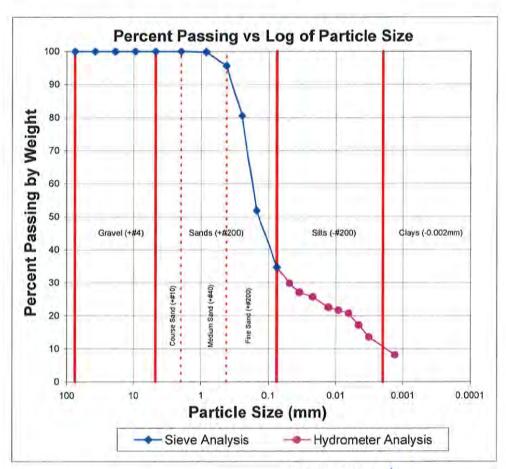
#### **Grain Size Data**

### Hygroscopic Moisture of Fines

Weight of Wet Soil & Pan (g): 58.56 Weight of Dry Soil & Pan (g): 58.28 Weight of Water (g): 0.28 Weight of Pan (g): 3.84 Weight of Dry Soil (g): 54.44 Moisture (%): 0.5

#### General Sample Data

Total Wet Weight of Sample (g): 55.18 Total Dry Weight of Sample (g): 54.89 Calculated Weight Plus #200 (g): 35.88 Moisture of Total Sample (%): 0.5 Percent Retained #200 Sieve (%): 65.4


#### **Plus Split Data**

Original Weight of +#10 (g): 0.00 Calculated Weight of +#10 (g): 0.00

### Minus Split Data

Original Weight of -#10 (g): 55.18 Calculated Dry Weight of -#10 (g): 54.89

Sieve Number	Sieve Size (mm)	Weight of Retained Soil & Pan (g)	Weight of Pan (g)	Weight of Retained Soil (g)	Calculated Weight of Retained Soil (g)	Percent Passing by Weight (%)
3"	76.2	0.00	0.00	0.00	0.00	100.0
1.5"	38.10	0.00	0.00	0.00	0.00	100.0
3/4"	19.05	0.00	0.00	0.00	0.00	100.0
3/8"	9.525	0.00	0.00	0.00	0.00	100.0
#4	4.750	0.00	0.00	0.00	0.00	100.0
#10	2.000	0.00	0.00	0.00	0.00	100.0
5.175g spl	it out of -#10	material.				
#20	0.850	2.47	2.36	0.11	0.11	99.8
#40	0.425	4.57	2.29	2.29	2.29	95.6
#60	0.250	12.00	3.70	8.30	8.30	80.5
#100	0.150	19.54	3.79	15.75	15.75	51.8
#200	0.075	12.49	3.06	9.43	9.43	34.6



Data Entered By: DPM

Date: 6/18/2014

File Name: 2512_77_hydrometer-ASTM-D422-R0_58.xls

Checked By: Date:

Client; MWH

Job Number: 2512-77

Project: Church Rock

Location: Tailings Impoundment

Project Number:

Boring Number: TI-B15-10

Depth: 28.5-29.5' (27-29.5')

Sample Number: Clayey Fine Sand Tails

Sampled Date: 12/5/2013

Sampled By: MWH

Test Date: 3/25/2014

Technician: DPM

# **Hydrometer Data**

**Test Configuration** 

Hydrometer Type: 152H Specific Gravity: 2.70

Deflocculant: Sodium Hexametaphosphate

Deflocculant Correction: 5.5

Specific Gravity Correction Factor - α: 0.99

Total Wet Weight of Sample (g): 55.18

Total Dry Weight of Sample (g): 54.89

Wet Weight of Sub-Sample (g): 55.175

Dry Weight of Sub-Sample (g): 54.892

Corrected Dry Weight of Sub-Sample - W(g): 54.892

Elapsed Time (min)	Hydrometer Reading	Corrected Hydrometer Reading	Temperature (°C)	Temperature Coefficient (K)	Effective Depth (L)	Grain Diameter (mm)	Percent in Suspension (%)	Calculated Weight of Retained Soil (g)	Percent Passing by Weight (%
0	(14)	A - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 1		1 (3 <del>†</del> 7)	1.80 T	W 1 40 7	- 8		
1	22.0	16.5	18.3	0.0138	12.69	0.0491	29.8	16.35	29.8
2	20.5	15.0	18.3	0.0138	12.93	0.0350	27.1	14.86	27.1
5	19.8	14.3	18.3	0.0138	13.06	0.0223	25.7	14.12	25.7
15	18.0	12.5	18.2	0.0138	13.34	0.0130	22.6	12.39	22.6
30	17.5	12.0	18.3	0.0138	13.42	0.0092	21.7	11.89	21.7
60	17.0	11.5	18.5	0.0138	13.51	0.0065	20.8	11.40	20.8
120	15.0	9.5	19.1	0.0136	13.83	0.0046	17.1	9.41	17.1
250	13.0	7.5	20.0	0.0134	14.16	0.0032	13.5	7.43	13,5
1440	10.0	4.5	22.0	0.0131	14.65	0.0013	8.1	4.46	8.1

Data Entered By: DPM

Date: 6/18/2014

File Name: 2512_77_hydrometer-ASTM-D422-R0_58.xls

Checked By:



Boring Number: TI-B15-04

Depth: 13.5-14.0' (11.5-14.0') Sample Number: Clayey Sand Tailings

Sampled Date: 12/5/2013 Sampled By: MWH Test Date: 3/25/2014 Technician: DPM

Client: MWH Job Number: 2512-77 Project: Church Rock

Location: Tailings Impoundment

Project Number:

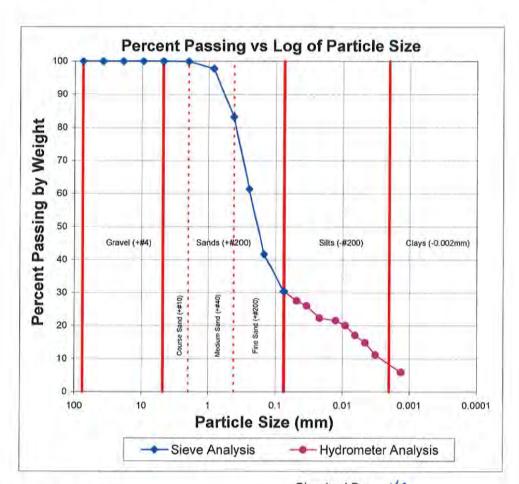
### **Grain Size Data**

### **Hygroscopic Moisture of Fines**

Weight of Wet Soil & Pan (g): 34.62 Weight of Dry Soil & Pan (g): 34.20 Weight of Water (g): 0.41 Weight of Pan (g): 3.70 Weight of Dry Soil (g): 30.50 Moisture (%): 1.4

### **General Sample Data**

Total Wet Weight of Sample (g): 746.42 Total Dry Weight of Sample (g): 736.45 Calculated Weight Plus #200 (g): 512.84 Moisture of Total Sample (%): 1.4 Percent Retained #200 Sieve (%): 69.6


#### Plus Split Data

Original Weight of +#10 (g): 0.37 Calculated Weight of +#10 (g): 0.30

#### Minus Split Data

Original Weight of -#10 (g): 746.05 Calculated Dry Weight of -#10 (g): 736.15

Sieve Number	Sieve Size (mm)	Weight of Retained Soil & Pan (g)	Weight of Pan (g)	Weight of Retained Soil (g)	Calculated Weight of Retained Soil (g)	Percent Passing by Weight (%)
3"	76.2	0.00	0.00	0.00	0.00	100.0
1.5"	38.10	0.00	0.00	0.00	0.00	100.0
3/4"	19.05	0.00	0.00	0.00	0.00	100.0
3/8"	9.525	0.00	0.00	0.00	0.00	100.0
#4	4.750	0.15	0.00	0.15	0.15	100.0
#10	2.000	0.15	0.00	0.15	0.15	100.0
67.509g spl	it out of -#10	material.				
#20	0.850	3.83	2.37	1.46	16.15	97.8
#40	0.425	12.06	2.32	9.74	107.65	83.1
#60	0.250	18.25	3.72	14.53	160.60	61.3
#100	0.150	16.22	3.07	13.16	145.41	41.6
#200	0.075	10.59	3.11	7.49	82.74	30.4



Data Entered By: DPM

Date: 6/18/2014

File Name: 2512_77_hydrometer-ASTM-D422-R0_57.xls

Checked By: Date:

Client: MWH

Job Number: 2512-77

Project: Church Rock

Location: Tailings Impoundment

Project Number:

Boring Number: TI-B15-04

Depth: 13.5-14.0' (11.5-14.0')

Sample Number: Clayey Sand Tailings

Sampled Date: 12/5/2013

Test Date: 3/25/2014

Sampled By: MWH

Technician: DPM

# **Hydrometer Data**

**Test Configuration** 

Hydrometer Type: 152H Specific Gravity: 2.70

Deflocculant: Sodium Hexametaphosphate

Deflocculant Correction: 5.5

Specific Gravity Correction Factor - a: 0.99

Total Wet Weight of Sample (g): 746.42

Total Dry Weight of Sample (g): 736.45

Wet Weight of Sub-Sample (g): 67,509

Dry Weight of Sub-Sample (g): 66.607

Corrected Dry Weight of Sub-Sample - W(g): 66.607

Elapsed Time (min)	Hydrometer Reading	Corrected Hydrometer Reading	Temperature (°C)	Temperature Coefficient (K)	Effective Depth (L)	Grain Diameter (mm)	Percent in Suspension (%)	Calculated Weight of Retained Soil (g)	Percent Passing by Weight (%
0		97		e le le la la	- 7 (* J.	11190	m (2)	10.00	- 4
1	24.0	18.5	18.1	0.0138	12.36	0.0484	27.5	202.69	27.5
2	23.0	17.5	18.1	0.0138	12.52	0.0345	26.0	191.73	26.0
5	20.5	15.0	18.1	0.0138	12.93	0.0222	22.3	164.34	22.3
15	20.0	14.5	18.1	0.0138	13.01	0.0128	21.6	158.86	21.6
30	19.0	13.5	18.3	0.0138	13.18	0.0091	20.1	147.91	20.1
60	17.0	11.5	18.5	0.0138	13.51	0.0065	17.1	126.00	17.1
120	15.5	10.0	19.1	0.0136	13.75	0.0046	14.9	109.56	14.9
250	13.0	7.5	19.9	0.0136	14.16	0.0032	11.2	82.17	11.2
1440	9.5	4.0	22.0	0.0131	14.74	0.0013	6.0	43.82	6.0

Data Entered By: DPM

Date: 6/18/2014

File Name: 2512_77_hydrometer-ASTM-D422-R0_57.xls

Checked By



Client: MWH Job Number: 2512-77

Project: Church Rock

Location: Tailings Impoundment

Project Number:

Boring Number: TI-B8-10A

Depth: 46.0-46.5'

Sample Number: Silty/Clayey Sand

Sampled Date: 12/4/2013 Test Date: 3/20/2014 Sampled By: MWH Technician: DPM

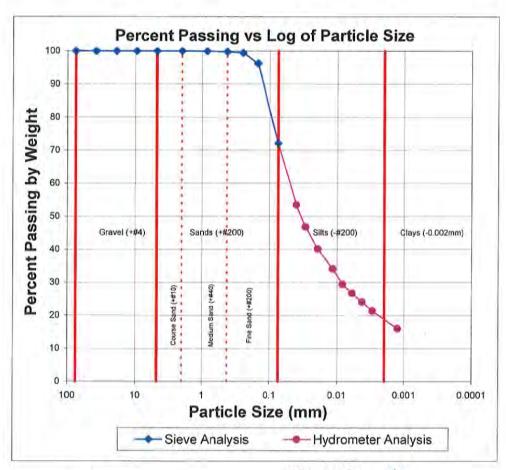
#### **Grain Size Data**

### **Hygroscopic Moisture of Fines**

Weight of Wet Soil & Pan (g): 34.09 Weight of Dry Soil & Pan (g): 32.63 Weight of Water (g): 1.45 Weight of Pan (g): 3.85 Weight of Dry Soil (g): 28.78 Moisture (%): 5.1

### **General Sample Data**

Total Wet Weight of Sample (g): 77.84
Total Dry Weight of Sample (g): 74.09
Calculated Weight Plus #200 (g): 20.68
Moisture of Total Sample (%): 5.1
Percent Retained #200 Sieve (%): 27.9


#### **Plus Split Data**

Original Weight of +#10 (g): 0.00 Calculated Weight of +#10 (g): 0.00

#### Minus Split Data

Original Weight of -#10 (g): 77.84 Calculated Dry Weight of -#10 (g): 74.09

Sieve Number	Sieve Size (mm)	Weight of Retained Soil & Pan (g)	Weight of Pan (g)	Weight of Retained Soil (g)	Calculated Weight of Retained Soil (g)	Percent Passing by Weight (%)
3"	76.2	0.00	0.00	0.00	0.00	100.0
1.5"	38.10	0.00	0.00	0.00	0.00	100.0
3/4"	19.05	0.00	0.00	0.00	0.00	100.0
3/8"	9.525	0.00	0.00	0.00	0.00	100.0
#4	4.750	0.00	0.00	0.00	0.00	100.0
#10	2.000	0.00	0.00	0.00	0.00	100.0
77.838g spl	it out of -#10	material.				
#20	0.850	2.32	2.28	0.04	0.04	99.9
#40	0.425	2.48	2.37	0.11	0.11	99.8
#60	0.250	2.59	2.35	0.24	0.24	99.5
#100	0.150	6.22	3.85	2.38	2.38	96.3
#200	0.075	20.98	3.07	17.91	17.91	72.1



Data Entered By: DPM

Date: 6/18/2014

File Name: 2512_77_hydrometer-ASTM-D422-R0_56.xls

Checked By: M. Date: 6/18/14

Client: MWH Job Number: 2512-77

Project: Church Rock

Location: Tailings Impoundment

Project Number:

Boring Number: TI-B8-10A

Depth: 46.0-46.5

Sample Number: Silty/Clayey Sand

Sampled Date: 12/4/2013

Test Date: 3/20/2014

Sampled By: MWH

Technician: DPM

## **Hydrometer Data**

**Test Configuration** 

Hydrometer Type: 152H Specific Gravity: 2.70

Deflocculant: Sodium Hexametaphosphate

Deflocculant Correction: 5.0

Specific Gravity Correction Factor - a: 0.99

Total Wet Weight of Sample (g): 77.84

Total Dry Weight of Sample (g): 74.09 Wet Weight of Sub-Sample (g): 77.838

Dry Weight of Sub-Sample (g): 74.095

Corrected Dry Weight of Sub-Sample - W(g): 74.095

Elapsed Time (min)	Hydrometer Reading	Corrected Hydrometer Reading	Temperature (°C)	Temperature Coefficient (K)	Effective Depth (L)	Grain Diameter (mm)	Percent in Suspension (%)	Calculated Weight of Retained Soil (g)	Percent Passing by Weight (%)
0	(Y)	-4	4,5		4			-	1
1	45.0	40.0	20.9	0.0134	8.91	0.0401	53.5	39.64	53.5
2	40.0	35.0	20.9	0.0134	9.73	0.0297	46.8	34.68	46.8
5	35.0	30.0	20.9	0.0134	10.55	0.0195	40.1	29.73	40.1
15	30.5	25.5	20.9	0.0134	11.29	0.0117	34.1	25.27	34.1
30	27.0	22.0	20.9	0.0134	11.87	0.0085	29.4	21.80	29.4
60	25.0	20.0	20.9	0.0134	12.19	0.0061	26.7	19.82	26.7
120	23.0	18.0	21.1	0.0133	12.52	0.0043	24.1	17.84	24.1
250	21.0	16.0	21.8	0.0133	12.85	0.0030	21.4	15.85	21.4
1440	17.0	12.0	22.1	0.0131	13,51	0.0013	16.0	11.89	16.0

Data Entered By: DPM

Date: 6/18/2014

File Name: 2512_77_hydrometer-ASTM-D422-R0_56.xls

Checked By:



Client: MWH Job Number: 2512-77

Project: Church Rock Location: Tailings Impoundment

Project Number:

Boring Number: TI-B8-12A

Depth: 56.0-56.5'

Sample Number: Silty/Clayey Sand

Sampled Date: 12/4/2013 Sampled By: MWH
Test Date: 3/20/2014 Technician: DPM

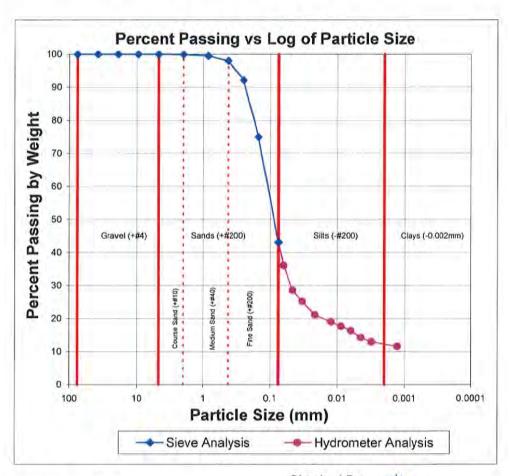
#### **Grain Size Data**

### Hygroscopic Moisture of Fines

Weight of Wet Soil & Pan (g): 30.23 Weight of Dry Soil & Pan (g): 29.94 Weight of Water (g): 0.30 Weight of Pan (g): 3.78 Weight of Dry Soil (g): 26.16 Moisture (%): 1.1

#### **General Sample Data**

Total Wet Weight of Sample (g): 379.47
Total Dry Weight of Sample (g): 375.24
Calculated Weight Plus #200 (g): 213.74
Moisture of Total Sample (%): 1.1
Percent Retained #200 Sieve (%): 57.0


#### Plus Split Data

Original Weight of +#10 (g): 0.22 Calculated Weight of +#10 (g): 0.19

### **Minus Split Data**

Original Weight of -#10 (g): 379.25 Calculated Dry Weight of -#10 (g): 375.05

Sieve Number	Sieve Size (mm)	Weight of Retained Soil & Pan (g)	Weight of Pan (g)	Weight of Retained Soil (g)	Calculated Weight of Retained Soil (g)	Percent Passing by Weight (%)
3"	76.2	0.00	0.00	0.00	0.00	100.0
1.5"	38.10	0.00	0.00	0.00	0.00	100.0
3/4"	19.05	0.00	0.00	0.00	0.00	100.0
3/8"	9.525	0.00	0.00	0.00	0.00	100.0
#4	4.750	0.00	0.00	0.00	0.00	100.0
#10	2.000	0.19	0.00	0.19	0.19	99.9
3.529g spli	t out of #10	material.				
#20	0.850	2.68	2.35	0.33	1.71	99.5
#40	0.425	3.47	2.38	1.10	5.66	98.0
#60	0.250	6.64	2.38	4.27	22.01	92.1
#100	0.150	16.25	3.77	12.47	64.34	75.0
#200	0.075	26.30	3.07	23.23	119.83	43.0



Data Entered By: DPM

Date: 6/18/2014

File Name: 2512_77_hydrometer-ASTM-D422-R0_55.xls

Checked By: Date:



Client: MWH

Job Number: 2512-77

Project: Church Rock

Location: Tailings Impoundment

Project Number:

Boring Number: TI-B8-12A

Depth: 56.0-56.5'

Sample Number: Silty/Clayey Sand

Sampled Date: 12/4/2013

Test Date: 3/20/2014

Sampled By: MWH

Technician: DPM

# **Hydrometer Data**

**Test Configuration** 

Hydrometer Type: 152H Specific Gravity: 2.70

Deflocculant: Sodium Hexametaphosphate

Deflocculant Correction: 5.0

Specific Gravity Correction Factor - a: 0.99

Total Wet Weight of Sample (g): 379.47

Total Dry Weight of Sample (g): 375.24

Wet Weight of Sub-Sample (g): 73.529 Dry Weight of Sub-Sample (g): 72.709

Corrected Dry Weight of Sub-Sample - W(g): 72.782

Elapsed Time (min)	Hydrometer Reading	Corrected Hydrometer Reading	Temperature (°C)	Temperature Coefficient (K)	Effective Depth (L)	Grain Diameter (mm)	Percent in Suspension (%)	Calculated Weight of Retained Soil (g)	Percent Passing by Weight (%)
0		- CAPT	179,000				200		10
0.5	31.5	26.5	21.1	0.0133	11.13	0.0627	36.1	135.38	36.1
1	26.0	21.0	21.1	0.0133	12.03	0.0461	28.6	107.29	28.6
2	23.5	18.5	21.1	0.0133	12.44	0.0331	25.2	94.51	25.2
5	20.5	15.5	21.1	0.0133	12.93	0.0214	21.1	79.19	21.1
15	19.0	14.0	21.1	0.0133	13.18	0.0124	19.1	71.52	19.1
30	18.0	13.0	21.1	0.0133	13.34	0.0089	17.7	66.41	17.7
60	17.0	12.0	21.1	0.0133	13.51	0.0063	16.3	61.31	16.3
120	15.5	10.5	21.1	0.0133	13.75	0.0045	14.3	53.64	14.3
250	14.5	9.5	21.7	0.0133	13.92	0.0031	12.9	48.53	12.9
1440	13.5	8.5	22.2	0.0131	14.08	0.0013	11.6	43.43	11.6

Data Entered By: DPM

Date: 6/18/2014

File Name: 2512_77_hydrometer-ASTM-D422-R0_55.xls

Checked By:



Client: MWH
Job Number: 2512-77

Project: Church Rock

Location: Tailings Impoundment

Project Number:

Boring Number: TI-B11-12A

Depth: 61.0-61.5'

Sample Number: Clayey Sand

Sampled Date: 12/2/2013 Test Date: 3/21/2014

Sampled By: MWH Technician: DPM

#### Grain Size Data

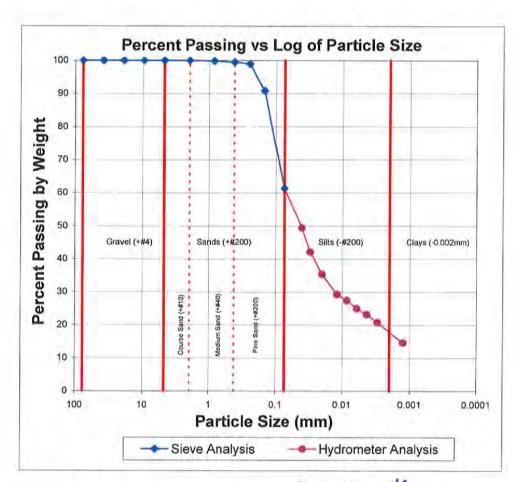
### **Hygroscopic Moisture of Fines**

Weight of Wet Soil & Pan (g): 84.76
Weight of Dry Soil & Pan (g): 83.75
Weight of Water (g): 1.02
Weight of Pan (g): 3.80
Weight of Dry Soil (g): 79.94

Moisture (%): 1.3

### **General Sample Data**

Total Wet Weight of Sample (g): 82.28
Total Dry Weight of Sample (g): 81.25
Calculated Weight Plus #200 (g): 31.41
Moisture of Total Sample (%): 1.3
Percent Retained #200 Sieve (%): 38.7


#### **Plus Split Data**

Original Weight of +#10 (g): 0.00 Calculated Weight of +#10 (g): 0.00

#### Minus Split Data

Original Weight of -#10 (g): 82.28 Calculated Dry Weight of -#10 (g): 81.25

Sieve Number	Sieve Size (mm)	Weight of Retained Soil & Pan (g)	Weight of Pan (g)	Weight of Retained Soil (g)	Calculated Weight of Retained Soil (g)	Percent Passing by Weight (%)
3"	76.2	0.00	0.00	0.00	0.00	100.0
1.5"	38.10	0.00	0.00	0.00	0.00	100.0
3/4"	19.05	0.00	0.00	0.00	0.00	100.0
3/8"	9.525	0.00	0.00	0.00	0.00	100.0
#4	4.750	0.00	0.00	0.00	0.00	100.0
#10	2.000	0.00	0.00	0.00	0.00	100.0
82.284g spl	it out of -#10	material.				
#20	0.850	2.50	2.39	0.11	0.11	99.9
#40	0.425	3.36	3.07	0.29	0.29	99.5
#60	0.250	3.51	3.08	0.43	0.43	99.0
#100	0.150	9.68	3.07	6.61	6.61	90.8
#200	0.075	27.08	3.11	23.97	23.97	61.3



Data Entered By: DPM

Date: 6/18/2014

File Name: 2512_77_hydrometer-ASTM-D422-R0_54.xls

Checked By: Date:

ATT

Client: MWH Job Number: 2512-77

Project: Church Rock

Location: Tailings Impoundment

Project Number:

Boring Number: TI-B11-12A

Depth: 61.0-61.5'

Sample Number: Clayey Sand

Sampled Date: 12/2/2013

Test Date: 3/21/2014

Sampled By: MWH

Technician: DPM

# **Hydrometer Data**

### **Test Configuration**

Hydrometer Type: 152H Specific Gravity: 2.70

Deflocculant: Sodium Hexametaphosphate

Deflocculant Correction: 5.5

Specific Gravity Correction Factor - a: 0.99

Total Dry Weight of Sample (g): 81.25 Wet Weight of Sub-Sample (g): 82.284

Dry Weight of Sub-Sample (g): 81.249

Total Wet Weight of Sample (g): 82.28

Corrected Dry Weight of Sub-Sample - W(g): 81.249

Elapsed Time (min)	Hydrometer Reading	Corrected Hydrometer Reading	Temperature (°C)	Temperature Coefficient (K)	Effective Depth (L)	Grain Diameter (mm)	Percent in Suspension (%)	Calculated Weight of Retained Soil (g)	Percent Passing by Weight (%
0		1.67	980	1.0807	-1080 =	Ar above	174 1	140°°	46
1	46.0	40.5	18.3	0.0138	8.75	0.0408	49.4	40.13	49.4
2	40.0	34.5	18.3	0.0138	9.73	0.0304	42.1	34.19	42.1
5	34.5	29.0	18.3	0.0138	10.64	0.0201	35.4	28.74	35.4
15	29.5	24.0	18.5	0.0138	11.46	0.0120	29.3	23.78	29.3
30	28.0	22.5	18.6	0.0138	11.70	0.0086	27.4	22.30	27.4
60	26.0	20.5	18.9	0.0138	12.03	0.0062	25.0	20.31	25.0
120	24.5	19.0	19.4	0.0136	12.28	0.0044	23.2	18.83	23.2
250	22.5	17.0	20.2	0.0134	12.60	0.0030	20.7	16.85	20.7
1440	17.5	12.0	22.0	0.0131	13.42	0.0013	14.6	11.89	14.6

Data Entered By: DPM

Date: 6/18/2014

File Name: 2512_77_hydrometer-ASTM-D422-R0_54.xls

Checked By:



Client: MWH Job Number: 2512-77

Project: Church Rock

Location: Tailings Impoundment

Project Number:

Boring Number: TI-B23-06

Depth: 26-27' (25-27.5')

Sample Number: Silty Clay

Sampled Date: 12/6/2013 Test Date: 3/25/2014 Sampled By: MWH Technician: DPM

#### **Grain Size Data**

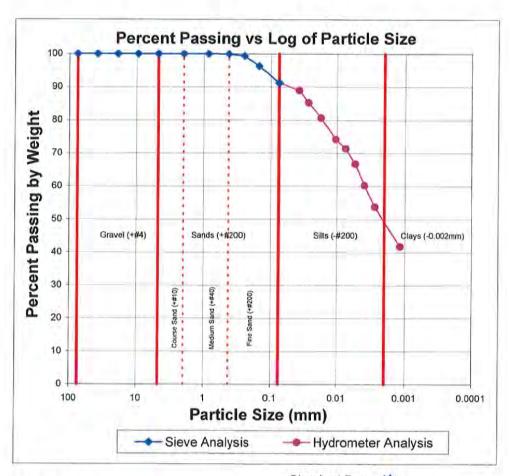
### **Hygroscopic Moisture of Fines**

Weight of Wet Soil & Pan (g): 45.76 Weight of Dry Soil & Pan (g): 44.98 Weight of Water (g): 0.78 Weight of Pan (g): 3.82 Weight of Dry Soil (g): 41.16

Moisture (%): 1.9

### **General Sample Data**

Total Wet Weight of Sample (g): 54.45
Total Dry Weight of Sample (g): 53.43
Calculated Weight Plus #200 (g): 4.69
Moisture of Total Sample (%): 1.9
Percent Retained #200 Sieve (%): 8.8


#### **Plus Split Data**

Original Weight of +#10 (g): 0.00 Calculated Weight of +#10 (g): 0.00

#### **Minus Split Data**

Original Weight of -#10 (g): 54.45 Calculated Dry Weight of -#10 (g): 53.43

Sieve Number	Sieve Size (mm)	Weight of Retained Soil & Pan (g)	Weight of Pan (g)	Weight of Retained Soil (g)	Calculated Weight of Retained Soil (g)	Percent Passing by Weight (%)
3"	76.2	0.00	0.00	0.00	0.00	100.0
1.5"	38.10	0.00	0.00	0.00	0.00	100.0
3/4"	19.05	0.00	0.00	0.00	0.00	100.0
3/8"	9.525	0.00	0.00	0.00	0.00	100.0
#4	4.750	0.00	0.00	0.00	0.00	100.0
#10	2.000	0.00	0.00	0.00	0.00	100.0
54.448g spl	it out of -#10	material.				
#20	0.850	2.38	2.37	0.01	0.01	100.0
#40	0.425	3.73	3.70	0.02	0.02	99.9
#60	0.250	3.40	3.09	0.32	0.32	99.3
#100	0.150	4.73	3.09	1.64	1.64	96.3
#200	0.075	5.78	3.08	2.70	2.70	91.2



Data Entered By: DPM

Date: 6/18/2014

File Name: 2512_77_hydrometer-ASTM-D422-R0_53.xls

Checked By:

Date:

ATT ADVANCED TERHA TESTING

Client: MWH

Job Number: 2512-77

Project: Church Rock

Location: Tailings Impoundment

Project Number:

Boring Number: TI-B23-06

Depth: 26-27' (25-27.5')

Sample Number: Silty Clay

Sampled Date: 12/6/2013

Test Date: 3/25/2014

Sampled By: MWH

Technician: DPM

# **Hydrometer Data**

### **Test Configuration**

Hydrometer Type: 152H Specific Gravity: 2.70

Deflocculant: Sodium Hexametaphosphate

Deflocculant Correction: 5.5

Specific Gravity Correction Factor - a: 0.99

Total Wet Weight of Sample (g): 54.45

Total Dry Weight of Sample (g): 53.43 Wet Weight of Sub-Sample (g): 54.448

Dry Weight of Sub-Sample (g): 53.433

Corrected Dry Weight of Sub-Sample - W(g): 53.433

Elapsed Time (min)	Hydrometer Reading	Corrected Hydrometer Reading	Temperature (°C)	Temperature Coefficient (K)	Effective Depth (L)	Grain Diameter (mm)	Percent in Suspension (%)	Calculated Weight of Retained Soil (g)	Percent Passing by Weight (%
0				7.0	4,1	100	-	100	
1	53.5	48.0	18.2	0.0138	7.52	0.0378	89.0	47.56	89.0
2	51.5	46.0	18.2	0.0138	7.85	0.0273	85.3	45.58	85.3
5	49.0	43.5	18.2	0.0138	8.26	0.0177	80.7	43.10	80.7
15	45.5	40.0	18.3	0.0138	8.83	0.0106	74.2	39.64	74.2
30	44.0	38.5	18.4	0.0138	9.08	0.0076	71.4	38.15	71.4
60	41.5	36.0	18.8	0.0138	9.49	0.0055	66.8	35.67	66.8
120	38.0	32.5	19.2	0.0136	10.06	0.0039	60.3	32.20	60.3
250	34.5	29.0	20.0	0.0134	10.64	0.0028	53.8	28.74	53.8
1440	28.0	22.5	22.1	0.0131	11.70	0.0012	41.7	22.30	41.7

Data Entered By: DPM

Date: 6/18/2014

File Name: 2512_77_hydrometer-ASTM-D422-R0_53.xls

Checked By



Client: MWH
Job Number: 2512-77
Project: Church Rock

Location: Tailings Impoundment

Project Number:

Boring Number: TI-B11-17

Depth: 81.0-81.5' Sample Number: Gravely Sand

Sampled Date: 12/2/2013 Test Date: 3/27/2014

Sampled By: MWH Technician: DPM

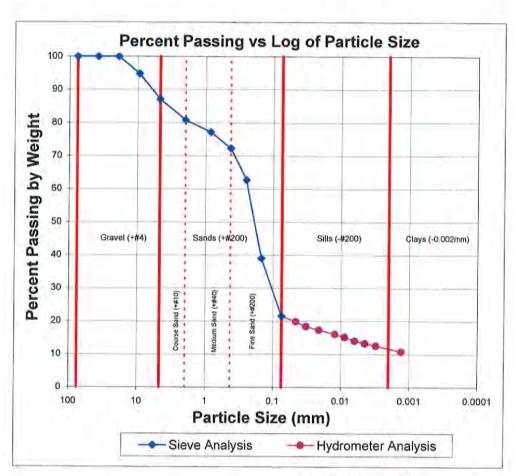
### **Grain Size Data**

### **Hygroscopic Moisture of Fines**

Weight of Wet Soil & Pan (g): 37.77 Weight of Dry Soil & Pan (g): 37.55 Weight of Water (g): 0.22 Weight of Pan (g): 3.67 Weight of Dry Soil (g): 33.88 Moisture (%): 0.6

## **General Sample Data**

Total Wet Weight of Sample (g): 369.35 Total Dry Weight of Sample (g): 367.44 Calculated Weight Plus #200 (g): 288.39 Moisture of Total Sample (%): 0.5 Percent Retained #200 Sieve (%): 78.5


### **Plus Split Data**

Original Weight of +#10 (g): 79.60 Calculated Weight of +#10 (g): 70.51

#### **Minus Split Data**

Original Weight of -#10 (g): 289.75 Calculated Dry Weight of -#10 (g): 296.93

Sieve Number	Sieve Size (mm)	Weight of Retained Soil & Pan (g)	Weight of Pan (g)	Weight of Retained Soil (g)	Calculated Weight of Retained Soil (g)	Percent Passing by Weight (%)
3"	76.2	0.00	0.00	0.00	0.00	100.0
1.5"	38.10	0.00	0.00	0.00	0.00	100.0
3/4"	19.05	0.00	0.00	0.00	0.00	100.0
3/8"	9.525	19.14	0.00	19.14	19.14	94.8
#4	4.750	28.35	0.00	28.35	28.35	87.1
#10	2.000	23.02	0.00	23.02	23.02	80.8
110.396g sp	olit out of -#10	material.				
#20	0.850	8.05	3.09	4.96	13.44	77.2
#40	0.425	9.69	3.10	6.60	17.86	72.3
#60	0.250	16.10	3.09	13.01	35.22	62.7
#100	0.150	38.68	6.50	32.18	87.10	39.0
#200	0.075	26.81	3.07	23.74	64.27	21.5



Data Entered By: DPM

Date: 6/18/2014

File Name: 2512_77_hydrometer-ASTM-D422-R0_52.xls

Checked By:

Date: 

ADVANCED TERRIA TESTING

ADVANCED TERRIA TESTING

Client: MWH Job Number: 2512-77

Project: Church Rock

Location: Tailings Impoundment

Project Number:

Boring Number: TI-B11-17

Depth: 81.0-81.5'

Sample Number: Gravely Sand

Sampled Date: 12/2/2013

Test Date: 3/27/2014

Sampled By: MWH Technician: DPM

# **Hydrometer Data**

**Test Configuration** 

Hydrometer Type: 152H Specific Gravity: 2.70

Deflocculant: Sodium Hexametaphosphate

Deflocculant Correction: 2.8

Specific Gravity Correction Factor - a: 0.99

Total Wet Weight of Sample (g): 369.35

Total Dry Weight of Sample (g): 367.44 Wet Weight of Sub-Sample (g): 110.396

Dry Weight of Sub-Sample (g): 109.690

Corrected Dry Weight of Sub-Sample - W(g): 135.755

Elapsed Time (min)	Hydrometer Reading	Corrected Hydrometer Reading	Temperature (°C)	Temperature Coefficient (K)	Effective Depth (L)	Grain Diameter (mm)	Percent in Suspension (%)	Calculated Weight of Retained Soil (g)	Percent Passing by Weight (%)
0	1.80		-	70.000	1.8				,
1	30.0	27.2	19.3	0.0136	11.37	0.0459	19.9	73.06	19.9
2	28.0	25.2	19.3	0.0136	11.70	0.0329	18.4	67.69	18.4
5	26.5	23.7	19.3	0.0136	11.95	0.0210	17.3	63.67	17.3
15	24.8	22.0	19.4	0.0136	12.24	0.0123	16.1	58.98	16.1
30	23.5	20.7	19.4	0.0136	12.44	0.0088	15.1	55.63	15.1
60	22.0	19.2	19.5	0.0136	12.69	0.0063	14.0	51.60	14.0
120	21.0	18.2	19.8	0.0136	12.85	0.0045	13.3	48.92	13.3
250	20.0	17.2	20.4	0.0134	13.01	0.0031	12.6	46.24	12.6
1456	17.5	14.7	19.3	0.0136	13.42	0.0013	10.8	39.53	10.8

Data Entered By: DPM

Date: 6/18/2014

File Name: 2512_77_hydrometer-ASTM-D422-R0_52.xls

Checked By:



Client: MWH Job Number: 2512-77

Project: Church Rock

Location: Tailings Impoundment

Project Number:

Boring Number: TI-B11-06

Depth: 30.5-31.5' (30.0-31.5')

Sample Number: Sandy Clay

Sampled Date: 12/2/2013 Sampled By: MWH
Test Date: 3/27/2014 Technician: DPM

#### Grain Size Data

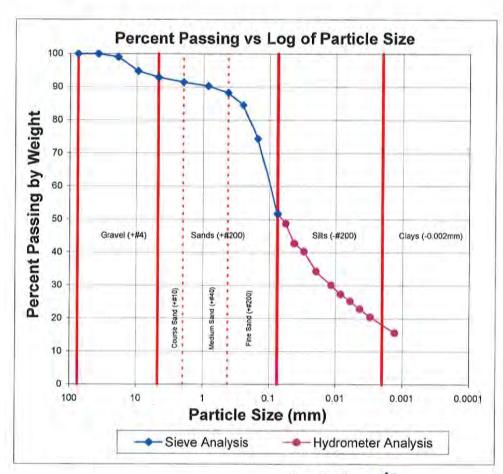
### **Hygroscopic Moisture of Fines**

Weight of Wet Soil & Pan (g): 30.25 Weight of Dry Soil & Pan (g): 29.86 Weight of Water (g): 0.40 Weight of Pan (g): 3.07 Weight of Dry Soil (g): 26.79

Moisture (%): 1.5

### **General Sample Data**

Total Wet Weight of Sample (g): 1,593.60
Total Dry Weight of Sample (g): 1,572.35
Calculated Weight Plus #200 (g): 760.87
Moisture of Total Sample (%): 1.4
Percent Retained #200 Sieve (%): 48.4


### Plus Split Data

Original Weight of +#10 (g): 176.19 Calculated Weight of +#10 (g): 134.79

### **Minus Split Data**

Original Weight of -#10 (g): 1,417.41 Calculated Dry Weight of -#10 (g): 1,437.56

Sieve Number	Sieve Size (mm)	Weight of Retained Soil & Pan (g)	Weight of Pan (g)	Weight of Retained Soil (g)	Calculated Weight of Retained Soil (g)	Percent Passing by Weight (%)
3"	76.2	0.00	0.00	0.00	0.00	100.0
1.5"	38.10	0.00	0.00	0.00	0.00	100.0
3/4"	19.05	15.70	0.00	15.70	15.70	99.0
3/8"	9.525	66.17	0.00	66.17	66.17	94.8
#4	4.750	29.88	0.00	29.88	29.88	92.9
#10	2.000	23.05	0.00	23.05	23.05	91.4
76.482g spl	it out of -#10	material.				
#20	0.850	4.64	3.68	0.96	18.27	90.3
#40	0.425	5.44	3.76	1.68	32.03	88.2
#60	0.250	6.62	3.56	3.07	58.46	84.5
#100	0.150	12.02	3.62	8.39	160.11	74.3
#200	0.075	22.39	3.66	18.73	357.22	51.6



Data Entered By: DPM

Date: 6/18/2014

File Name: 2512_77_hydrometer-ASTM-D422-R0_51.xls

Checked By: PR Date: GIBIU

Client: MWH

Job Number: 2512-77

Project: Church Rock

Location: Tailings Impoundment

Project Number:

Boring Number: TI-B11-06

Depth: 30.5-31.5' (30.0-31.5')

Sample Number: Sandy Clay

Sampled Date: 12/2/2013

Test Date: 3/27/2014

Sampled By: MWH Technician: DPM

**Hydrometer Data** 

**Test Configuration** 

Hydrometer Type: 152H Specific Gravity: 2.70

Deflocculant: Sodium Hexametaphosphate

Deflocculant Correction: 5.5

Specific Gravity Correction Factor - a: 0.99

Total Wet Weight of Sample (g): 1,593.60

Total Dry Weight of Sample (g): 1,572.35 Wet Weight of Sub-Sample (g): 76.482

Dry Weight of Sub-Sample (g): 75.368

Corrected Dry Weight of Sub-Sample - W(g): 82.459

Elapsed Time (min)	Hydrometer Reading	Corrected Hydrometer Reading	Temperature (°C)	Temperature Coefficient (K)	Effective Depth (L)	Grain Diameter (mm)	Percent in Suspension (%)	Calculated Weight of Retained Soil (g)	Percent Passing by Weight (%
0		30	45	50407	- 15				4-1-
0.5	46.0	40.5	19.3	0.0136	8.75	0.0569	48.7	765.24	48.7
1	41.0	35.5	19.3	0.0136	9.57	0.0421	42.7	670.77	42.7
2	39.0	33.5	19.3	0.0136	9.90	0.0303	40.3	632.98	40.3
5	34.0	28.5	19.3	0.0136	10.72	0.0199	34.2	538.50	34.2
15	30.5	25.0	19.3	0.0136	11.29	0.0118	30.0	472.37	30.0
30	28.3	22.8	19.4	0.0136	11.66	0.0085	27.3	429.86	27.3
60	26.5	21.0	19.5	0.0136	11.95	0.0061	25.2	396.79	25.2
120	24.5	19.0	19.9	0.0136	12.28	0.0044	22.8	359.00	22.8
250	22.5	17.0	20.6	0.0134	12.60	0.0030	20.4	321.21	20.4
1451	18.5	13.0	19.1	0.0136	13.26	0.0013	15.6	245.63	15.6

Data Entered By: DPM

Date: 6/18/2014

File Name: 2512_77_hydrometer-ASTM-D422-R0_51.xls

Checked By:



Client: MWH Job Number: 2512-77

Project: Church Rock

Location: Tailings Impoundment

Project Number:

Boring Number: TI-B11-03

Depth: 15-16'

Sample Number: Sand

Sampled Date: 12/2/2013 Test Date: 3/13/2014 Sampled By: MWH Technician: DPM

#### **Grain Size Data**

### **Hygroscopic Moisture of Fines**

Weight of Wet Soil & Pan (g): 117.71 Weight of Dry Soil & Pan (g): 116.58 Weight of Water (g): 1.13

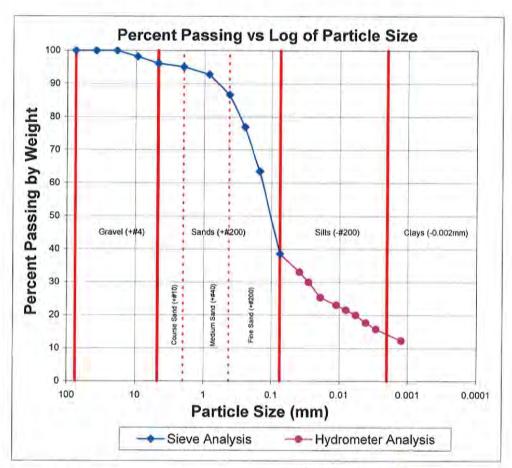
Weight of Pan (g): 3.77

Weight of Dry Soil (g): 112.81

Moisture (%): 1.0

### General Sample Data

Total Wet Weight of Sample (g): 524.04
Total Dry Weight of Sample (g): 519.10
Calculated Weight Plus #200 (g): 319.02
Moisture of Total Sample (%): 1.0
Percent Retained #200 Sieve (%): 61.5


### **Plus Split Data**

Original Weight of +#10 (g): 50.06 Calculated Weight of +#10 (g): 25.62

#### Minus Split Data

Original Weight of -#10 (g): 473.98 Calculated Dry Weight of -#10 (g): 493.48

Sieve Number	Sieve Size (mm)	Weight of Retained Soil & Pan (g)	Weight of Pan (g)	Weight of Retained Soil (g)	Calculated Weight of Retained Soil (g)	Percent Passing by Weight (%)
3"	76.2	0.00	0.00	0.00	0.00	100.0
1.5"	38.10	0.00	0.00	0.00	0.00	100.0
3/4"	19.05	0.00	0.00	0.00	0.00	100.0
3/8"	9.525	9.47	0.00	9.47	9.47	98.2
#4	4.750	10.53	0.00	10.53	10.53	96.1
#10	2.000	5.63	0.00	5.63	5.63	95.1
123.923g sp	olit out of -#10	0 material.				
#20	0.850	5.24	2.30	2.94	11.82	92.8
#40	0.425	10.23	2.30	7.93	31.89	86.6
#60	0.250	15.65	3.10	12,55	50.47	76.9
#100	0.150	20.38	3.06	17.33	69.69	63.5
#200	0.075	35.27	3.07	32.21	129.54	38.5



Data Entered By: DPM

Date: 6/18/2014

File Name: 2512_77_hydrometer-ASTM-D422-R0_50.xls

Checked By:
Date:

ATT

Client: MWH Job Number: 2512-77

Project: Church Rock

Location: Tailings Impoundment

Project Number:

Boring Number: TI-B11-03

Depth: 15-16'

Sample Number: Sand

Sampled Date: 12/2/2013

Test Date: 3/13/2014

Sampled By: MWH

Technician: DPM

## **Hydrometer Data**

**Test Configuration** 

Hydrometer Type: 152H Specific Gravity: 2.70

Deflocculant: Sodium Hexametaphosphate

Deflocculant Correction: 5.0

Specific Gravity Correction Factor - a: 0.99

Total Wet Weight of Sample (g): 524.04

Total Dry Weight of Sample (g): 519.10 Wet Weight of Sub-Sample (g): 123.923

Dry Weight of Sub-Sample (g): 122.693

Corrected Dry Weight of Sub-Sample - W(g): 129.015

Elapsed Time (min)	Hydrometer Reading	Corrected Hydrometer Reading	Temperature (°C)	Temperature Coefficient (K)	Effective Depth (L)	Grain Diameter (mm)	Percent in Suspension (%)	Calculated Weight of Retained Soil (g)	Percent Passing by Weight (%)
0	The said	-	***	e a Vella	Y	611	34.5		- 6
1	48.0	43.0	21.4	0.0133	8.42	0.0385	33.0	171.44	33.0
2	44.0	39.0	21.4	0.0133	9.08	0.0283	30.0	155.49	30.0
5	38.0	33.0	21.4	0.0133	10.06	0.0188	25.3	131.57	25.3
15	35.0	30.0	21.5	0.0133	10.55	0.0111	23.0	119.61	23.0
30	33.0	28.0	21.6	0.0133	10.88	0.0080	21.5	111.64	21.5
60	31.0	26.0	21.8	0.0133	11.21	0.0057	20.0	103.66	20.0
120	28.0	23.0	22.1	0.0131	11.70	0.0041	17.7	91.70	17.7
250	25.5	20.5	22.5	0.0131	12.11	0.0029	15.7	81.73	15.7
1440	21.0	16.0	21.1	0.0133	12.85	0.0013	12.3	63.79	12.3

Data Entered By: DPM

Date: 6/18/2014

File Name: 2512_77_hydrometer-ASTM-D422-R0_50.xls

Checked By:



Client: MWH Job Number: 2512-77

Project: Church Rock

Location: Tailings Impoundment

Project Number:

Boring Number: TI-B11-08

Depth: 51.5-52.5' (50-52.5')

Sample Number: Finer Tailings

Sampled Date: 12/2/2013 Test Date: 3/17/2014 Sampled By: MWH Technician: DPM

#### **Grain Size Data**

## **Hygroscopic Moisture of Fines**

Weight of Wet Soil & Pan (g): 44.00 Weight of Dry Soil & Pan (g): 42.74 Weight of Water (g): 1.26 Weight of Pan (g): 3.72 Weight of Dry Soil (g): 39.02 Moisture (%): 3.2

#### **General Sample Data**

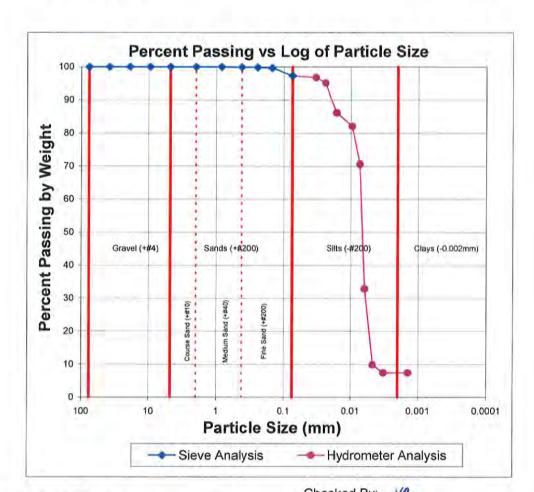
Total Wet Weight of Sample (g): 62.35
Total Dry Weight of Sample (g): 60.41
Calculated Weight Plus #200 (g): 1.62
Moisture of Total Sample (%): 3.2
Percent Retained #200 Sieve (%): 2.7

#### **Plus Split Data**

Original Weight of +#10 (g): 0.00 Calculated Weight of +#10 (g): 0.00

### Minus Split Data

Original Weight of -#10 (g): 62.35 Calculated Dry Weight of -#10 (g): 60.41


#### Notes:

was clear

The sample started showing signs of flocculation at the one minute reading. At the four hour reading the suppurate was barely cloudy.

At the 24 hour reading the suppurate

Sieve Number	Sieve Size (mm)	Weight of Retained Soil & Pan (g)	Weight of Pan (g)	Weight of Retained Soil (g)	Calculated Weight of Retained Soil (g)	Percent Passing by Weight (%)
3"	76.2	0.00	0.00	0.00	0.00	100.0
1.5"	38.10	0.00	0.00	0.00	0.00	100.0
3/4"	19.05	0.00	0.00	0.00	0.00	100.0
3/8"	9.525	0.00	0.00	0.00	0.00	100.0
#4	4.750	0.00	0.00	0.00	0.00	100.0
#10	2.000	0.00	0.00	0.00	0.00	100.0
62.352g spl	it out of -#10	material.				
#20	0.850	2.32	2.31	0.01	0.01	100.0
#40	0.425	2.40	2.36	0.04	0.04	99.9
#60	0.250	2.33	2.30	0.03	0.03	99.9
#100	0.150	3.24	3.12	0.12	0.12	99.7
#200	0.075	5.00	3.58	1.42	1.42	97.3



Data Entered By: DPM

Date: 6/18/2014

File Name: 2512_77_hydrometer-ASTM-D422-R0_49.xls

Date: Olympia

Client: MWH

Job Number: 2512-77

Project: Church Rock

Location: Tailings Impoundment

Project Number:

Boring Number: TI-B11-08

Depth: 51.5-52.5' (50-52.5')

Sample Number: Finer Tailings

Sampled Date: 12/2/2013 Test Date: 3/17/2014 Sampled By: MWH

Technician: DPM

# **Hydrometer Data**

**Test Configuration** 

Hydrometer Type: 152H Specific Gravity: 2.70

Secilic Gravity, 2.70

Deflocculant: Sodium Hexametaphosphate

Deflocculant Correction: 5.0

Specific Gravity Correction Factor - a: 0.99

Total Wet Weight of Sample (g): 62.35 Total Dry Weight of Sample (g): 60.41

Wet Weight of Sub-Sample (g): 62.352

Dry Weight of Sub-Sample (g): 60.406

Corrected Dry Weight of Sub-Sample - W(g): 60.406

Elapsed Time (min)	Hydrometer Reading	Corrected Hydrometer Reading	Temperature (°C)	Temperature Coefficient (K)	Effective Depth (L)	Grain Diameter (mm)	Percent in Suspension (%)	Calculated Weight of Retained Soil (g)	Percent Passing by Weight (%
0	Tarlière.		361	Unit State	-8	0.39.7	0.5		
1	64.0	59.0	17.8	0.0140	5.80	0.0336	96.8	58.46	96.8
2	63.0	58.0	17.8	0.0140	5.96	0.0241	95.1	57.47	95.1
5	57.5	52.5	17.8	0.0140	6.86	0.0164	86.1	52.02	86.1
15	55.0	50.0	18.0	0.0138	7.27	0.0096	82.0	49.55	82.0
30	48.0	43.0	18.2	0.0138	8.42	0.0073	70.5	42.61	70.5
60	25.0	20.0	18.6	0.0138	12.19	0.0062	32.8	19.82	32.8
120	11.0	6.0	19.2	0.0136	14.49	0.0047	9.8	5.95	9.8
250	9.5	4.5	20.1	0.0134	14.74	0.0033	7.4	4.46	7.4
1440	9.5	4.5	18.6	0.0138	14.74	0.0014	7.4	4.46	7.4

Data Entered By: DPM

Date: 6/18/2014

File Name: 2512_77_hydrometer-ASTM-D422-R0_49.xls

Checked By:



Boring Number: TI-B8-04

Depth: 30.0-31.0' (30-32') Sample Number: Clayey Silt / Sand

Sampled Date: 12/3/2013 Test Date: 3/17/2014

Sampled By: MWH Technician: DPM

Client: MWH
Job Number: 2512-77
Project: Church Rock

Location: Tailings Impoundment

Project Number:

### **Grain Size Data**

### Hygroscopic Moisture of Fines

Weight of Wet Soil & Pan (g): 29.33 Weight of Dry Soil & Pan (g): 28.31 Weight of Water (g): 1.01 Weight of Pan (g): 3.70 Weight of Dry Soil (g): 24.62 Moisture (%): 4.1

#### **General Sample Data**

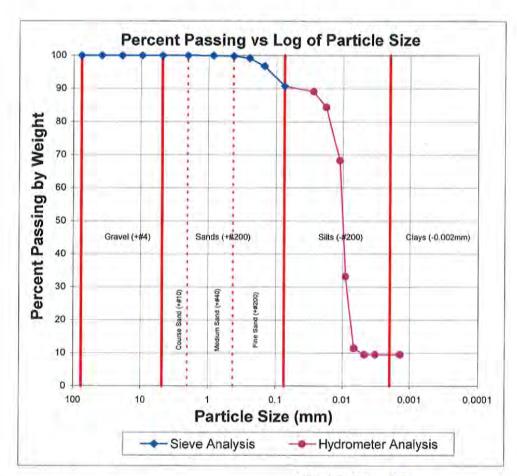
Total Wet Weight of Sample (g): 54.42
Total Dry Weight of Sample (g): 52.27
Calculated Weight Plus #200 (g): 4.83
Moisture of Total Sample (%): 4.1
Percent Retained #200 Sieve (%): 9.2

#### **Plus Split Data**

Original Weight of +#10 (g): 0.00 Calculated Weight of +#10 (g): 0.00

#### Minus Split Data

Original Weight of -#10 (g): 54.42 Calculated Dry Weight of -#10 (g): 52.27


#### Notes:

The sample started showing signs of flocculation within 30 seconds of starting the test.

At the two hour reading the suppurate was barely cloudy.

At the 24 hour reading the suppurate was completely clear.

Sieve Number	Sieve Size (mm)	Weight of Retained Soil & Pan (g)	Weight of Pan (g)	Weight of Retained Soil (g)	Calculated Weight of Retained Soil (g)	Percent Passing by Weight (%)
3"	76.2	0.00	0.00	0.00	0.00	100.0
1.5"	38.10	0.00	0.00	0.00	0.00	100.0
3/4"	19.05	0.00	0.00	0.00	0.00	100.0
3/8"	9.525	0.00	0.00	0.00	0.00	100.0
#4	4.750	0.00	0.00	0.00	0.00	100.0
#10	2.000	0.00	0.00	0.00	0.00	100.0
54.417g spl	it out of -#10	material.				
#20	0.850	2.34	2.32	0.02	0.02	100.0
#40	0.425	2.43	2.35	0.08	0.08	99.8
#60	0.250	2.64	2.29	0.35	0.35	99.2
#100	0.150	4.35	3.11	1.24	1.24	96.8
#200	0.075	6.27	3.12	3.15	3.15	90.8



Data Entered By: DPM

Date: 6/18/2014

File Name: 2512_77_hydrometer-ASTM-D422-R0_48.xls

Checked By: Date:



Client: MWH

Job Number: 2512-77

Project: Church Rock

Location: Tailings Impoundment

Project Number:

Boring Number: TI-B8-04

Depth: 30.0-31.0' (30-32')

Sample Number: Clayey Silt / Sand

Sampled Date: 12/3/2013 Test Date: 3/17/2014

Sampled By: MWH Technician: DPM

# **Hydrometer Data**

**Test Configuration** 

Hydrometer Type: 152H

Specific Gravity: 2.70

Deflocculant: Sodium Hexametaphosphate

Deflocculant Correction: 5.0

Specific Gravity Correction Factor - a: 0.99

Total Wet Weight of Sample (g): 54.42

Total Dry Weight of Sample (g): 52.27

Wet Weight of Sub-Sample (g): 54.417 Dry Weight of Sub-Sample (g): 52.266

Corrected Dry Weight of Sub-Sample - W(g): 52.266

Elapsed Time (min)	Hydrometer Reading	Corrected Hydrometer Reading	Temperature (°C)	Temperature Coefficient (K)	Effective Depth (L)	Grain Diameter (mm)	Percent in Suspension (%)	Calculated Weight of Retained Soil (g)	Percent Passing by Weight (%)
0		97	486.3		- 4	/ A.			40.1
2	52.0	47.0	17.5	0.0140	7.77	0.0275	89.1	46.57	89.1
5	49.5	44.5	17.5	0.0140	8.18	0.0179	84.4	44.10	84.4
15	41.0	36.0	17.8	0.0140	9.57	0.0112	68.3	35.67	68.3
30	22.5	17.5	17.9	0.0140	12.60	0.0090	33.2	17.34	33.2
60	11.0	6.0	18.3	0.0138	14.49	0.0068	11.4	5.95	11.4
120	10.0	5.0	19.0	0.0136	14.65	0.0048	9.5	4.95	9.5
250	10.0	5.0	20.1	0.0134	14.65	0.0033	9.5	4.95	9.5
1440	10.0	5.0	18.5	0.0138	14.65	0.0014	9.5	4.95	9.5

Data Entered By: DPM

Date: 6/18/2014

File Name: 2512_77_hydrometer-ASTM-D422-R0_48.xls

Checked By:



Client: MWH Job Number: 2512-77

Project: Church Rock

Location: Tailings Impoundment

Project Number:

Boring Number: TI-B8-02A

Depth: 26.0-26.5'

Sample Number: Clayey Silt Sampled Date: 12/3/2013

pled Date: 12/3/2013 Sampled By: MWH
Test Date: 1/27/2014 Technician: DPM

### **Grain Size Data**

### **Hygroscopic Moisture of Fines**

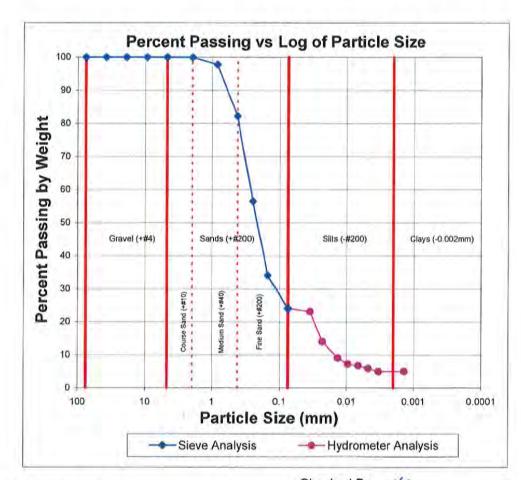
Weight of Wet Soil & Pan (g): 26.90 Weight of Dry Soil & Pan (g): 26.48 Weight of Water (g): 0.42 Weight of Pan (g): 3.73 Weight of Dry Soil (g): 22.75 Moisture (%): 1.8

#### **General Sample Data**

Total Wet Weight of Sample (g): 381.08
Total Dry Weight of Sample (g): 374.17
Calculated Weight Plus #200 (g): 284.49
Moisture of Total Sample (%): 1.8
Percent Retained #200 Sieve (%): 76.0

#### **Plus Split Data**

Original Weight of +#10 (g): 0.22 Calculated Weight of +#10 (g): 0.21


### **Minus Split Data**

Original Weight of -#10 (g): 380.86 Calculated Dry Weight of -#10 (g): 373.97

#### Notes:

- 1. At the 5min. reading the sample started showing signs of flocculation.
- 2. At the 24 hour reading the suspension is almost completely clear. Any reading above zero is due to dissolved solids.

Sieve Number	Sieve Size (mm)	Weight of Retained Soil & Pan (g)	Weight of Pan (g)	Weight of Retained Soil (g)	Calculated Weight of Retained Soil (g)	Percent Passing by Weight (%)
3"	76.2	0.00	0.00	0.00	0.00	100.0
1.5"	38.10	0.00	0.00	0.00	0.00	100.0
3/4"	19.05	0.00	0.00	0.00	0.00	100.0
3/8"	9.525	0.00	0.00	0.00	0.00	100.0
#4	4.750	0.00	0.00	0.00	0.00	100.0
#10	2.000	0.21	0.00	0.21	0.21	99.9
55.699g spl	it out of -#10	material.				
#20	0.850	5.06	3.87	1.19	8.16	97.8
#40	0.425	12.25	3.73	8.53	58.32	82.2
#60	0.250	17.16	3.07	14.08	96.29	56.4
#100	0.150	15.84	3.56	12.28	83.96	34.0
#200	0.075	9.28	3.79	5.49	37.55	24.0



Data Entered By: DPM

Date: 6/18/2014

File Name: 2512_77_hydrometer-ASTM-D422-R0_30.xls

Checked By:

