

NRC-011

United States Nuclear Regulatory Commission Protecting People and the Environment

Combined License Application Review North Anna 3 (NA3)

Safety Panel March 23, 2017

Panelists

- James Shea Senior Project Manager
- Vladimir Graizer PhD Geophysicist
- Manas Chakravorty Senior Structural Engineer
- Matt Thomas Reactor Systems
 Engineer

Safety Panel Topics

- Mineral, Virginia Earthquake
- Certified Seismic Design Response Spectra (CSDRS) exceedances effect on Structure, Systems, and Components (SSCs) including reactor fuel

NA3 Seismic Closure Plan 2014

- March 11, 2011, Fukushima event
- August 23, 2011, Mineral, Virginia earthquake
- Central Eastern United States-Seismic Source Characterization Model (CEUS-SSC) (2012)
- The EPRI Ground Motion Model (GMM) updated (2013)

Seismic Parameters

Safety Panel Topic 1

Mineral Virginia Earthquake
ESBWR CSDRS Exceedance

Vladimir Graizer – PhD Geophysicist Office of New Reactors

Mineral, Virginia Earthquake August 23, 2011

- M5.8 11 miles from NA3 Site
- Central Virginia Seismic Zone
- Exceeded Design Basis Earthquake for NA1&2
- Staff requested reassessment of the NA3 Probabilistic Seismic Hazard Analysis (PSHA)

North Anna Site and Mineral, Virginia Earthquake

From NA3 FSAR Figure 2.5.2-228

Mechanism of the earthquake was blind reverse fault with hypocenter located at the depth of 5 miles.

Variance from ESP

Variance NA3 (2013) ESP VAR 2.0-4: The applicant took a variance from values in the ESP because of:

- Different building elevations than assumed in ESP
- New CEUS-SSC model (NUREG-2115 2012) and new Ground Motion Model (EPRI, 2013)
- Mineral, Virginia earthquake

Vibratory Ground Motion

- Staff performed independent
 PSHA based on updated models
- Staff confirmed that the sitespecific COLA ground motion response spectra (GMRS) envelope the North Anna 3 site variations (FSER Chapter 2 Section 2.5.2)

NA3 GMRS and ESBWR CSDRS

Mineral Earthquake Compared to ESBWR CSDRS

Conclusion

• The site-specific GMRS adequately represents the seismic hazard at the NA3 site and meets the relevant regulatory requirements provided in 10 CFR Part 52 and 10 CFR Part 100

Safety Panel Topic 2

CSDRS exceedances and its effect on NA3 site specific SSCs

Manas Chakravorty – Senior Structural Engineer Office of New Reactors

CSDRS exceedances affect NA3 site specific SSCs

- Staff evaluation of the NA3 site specific SSCs analysis evaluated in FSER Chapter 3 Section 3.7 and Section 3.8
- NA3 Departure 3.7-1
- NA3 Exemption 3

NA3 Site Foundation Input Response Spectra (FIRS)

Site-Specific Analyses

Because of this exceedance, the applicant performed:

- Site-specific analysis to establish seismic demand using FIRS
- Site-specific evaluations of Category 1 structures, systems, and components

- Soil-structure interaction (SSI) analysis was performed to establish the site-specific seismic demand
- Site-specific seismic demand including the In-Structure Response Spectra (ISRS) exceed DCD seismic demand

- Staff reviewed the standard design using the site specific seismic and standard design nonseismic loads which identified some site-specific design changes
- Site-specific required changes include arrangement of rebar, the size of shear ties, welds, anchor bolts and a steel girder

- Staff verified by audit and confirmatory analysis that sitespecific seismic demands using the standard methodology required some minor changes to the standard ESBWR
- With these structural design changes, the design met ESBWR acceptance limits

- Site-specific ISRS that exceed standard design ISRS are used for qualification of equipment and components
- ITAAC ensure that the Seismic Category I SSCs are qualified to the seismic design basis loads

Conclusion

- Staff confirmed that site-specific seismic loads and non-seismic standard loads with the identified design changes do not exceed structural acceptance limit of the ESBWR standard design
- Therefore, with the identified changes, the ESBWR design is acceptable at the NA3 site

Safety Panel Topic 3

Fuel Assembly and Control Rod Structural Response

Matt Thomas – Reactor Systems Engineer Office of New Reactors

Increased Seismic Loads

- NA3 site-specific seismic exceedances (NA3 DEP 3.7-1) cause increased accelerations at the fuel assembly and control rods
- Staff requested the applicant to perform an analysis to demonstrate that fuel assembly and control rod capacity limits are not exceeded under site-specific conditions

Fuel and Control Rod Review

- The staff reviewed the applicant's site-specific analysis of the fuel assembly and control rod structural response using SRP 4.2 Appendix A
- The staff conducted an audit of the site-specific calculations to confirm that the applicant followed the DCD methodology

Conclusion

• The staff found that the increase in the combined loading of the fuel assembly and control rod remains bounded by the approved capacity limits; therefore, the fuel assemblies and control rods meet GDC-2

- CB Control Building
- CEUS-SSC Central and Eastern U.S. Seismic Source Characterization
- COL Combined Operating License
- COLA Combined Operating License Application
- CSDRS Certified Seismic Design Response Spectra

- DCD Design Control Document
- DEP Departure from Standard Design
- EPRI Electric Power Research Institute
- EPRI-SOG Electric Power Research Institute – Seismic Owners Group
- ESBWR Economic Simplified Boiling Water Reactor

- ESP Early Site Permit
- FIRS Foundation Input Response Spectra
- GDC General Design Criteria
- GDC-2 Appendix A to 10 CFR Part 50 - Criterion 2—Design bases for protection against natural phenomena
- GMRS Ground Motion Response Spectra

- ISRS In-Structure Response
 Spectra
- ITAAC Inspections, Tests,
 Analyses, and Acceptance Criteria
- NA3 North Anna 3
- NA1&2 North Anna Units 1&2
 PSHA Probabilistic Seismic
 Hazard Analysis
- SRP Standard Review Plan

- SSCs Structures, Systems, and Components
- SSE Safe Shutdown Earthquake
- SSI Soil-structure interaction
- UHRS Uniform Hazard Response Spectra
- VAR Variance to NA3 ESP