́. - Г						CAI REL PAG		31	EHC
	Client: _ Title: _	NMPC Block Wall Screening Sp	readsheet		Calcul	ation No.	95C2873	-C001	
	Project:	NMP1 IPEEE				· · · · · · · · · · · · · · · · · · ·	•	•	•
	Method:	Elastic Analysis and L	imiting I	brift Analy	sis				
-	Acceptan	ce Criteria: EPRI NP-6	6041						
-	Remarks:				<u></u>				
					······			• • • • • • • • • • • • • • • • • • • •	
L				REVISI	ONS		·		- T
-	No. 0	Description Initial Issue		By TMT	Date 7/26/95	Chk. MSLi	Date 8/23/95	App.	9 <u> </u> 5
	S			CALCUL COV SHE FIGUR	ATION ER ET E 1.3		CON	NTRACT N 95C2783	0.
9806 PDR	ADUCI	980518 05000220 PDR)	1-:	20	I			

-		R	
-	S&A	JOB NO. 95C2873-C001 SUBJECT NMP1 IPEEE	SHEET # 2 OF 9
İ	STEVENSON & ASSOCIATES a structural-mechanical consulting engineering firm	Block Wall Screening Spreadsheet	Revision By TMT 7/26/95 Chk. MSL 8/23/95

Background

This calculation documents the seismic screening spreadsheet for the block walls in the Nine Mile Point 1 stationas part of the IPEEE evaluation. Page 1 of the spreadsheet provides the basis for preliminary screening. If the block walls do not pass the preliminary screening, page 2 can be used which allows the wall to drift during an earthquake.

The block walls in NMP1 are typically made of 8" and 12" hollow blocks reinforced by #4 bars @32" [4]. The reinforced cell is filled with concrete. Wall bottom is reinforced with existing dowels @ 16" spacing. The walls are reinforced horizontally by Dur-O-Wall, or 3/16" deformed side rods at 16" spacing [4]. The sides of the walls are tied in to precast concrete with two 1/4" threaded rods into inserts.

The walls are considered well anchored at the ends. In the pre-screening, only the out-of-plane bending moment at the center of the wall is checked. The in-plane loading is neglected. The slight beneficial effect due to the gravity is also ignored.

Solution Methodology

The solution is mainly based on EPRI NP-6041 [1] Appendix R without taking advantage of the permissible drift. In addition to the methodology of [1], two-way plate action is considered in both the frequency estimation and the maximum moment estimation.

Elastic Frequency

Instead using the formula in [1], the two-way rectangular plate frequency formular from [3], p. 258 will be used. The wall is assumed to be simply-supported on all four sides,

$$f = \frac{\lambda^2}{2\pi W^2} \sqrt{\frac{E_m I_e g}{q(1-v^2)}}$$

where

$$\lambda^2 = \pi^2 \left[1 + \left(\frac{W}{H} \right)^2 \right]$$

W = Width of the wall H = Height of the wall

q = Weight per unit wall area

v = Poisson's ratio

 E_m = elastic modulus of masonry $\approx 750 f_m^{(1)}$ (psi)

 $I_e =$ Effective moment of inertia

$$= I_{T} + \left(\frac{M_{CR}}{M_{CDFM}}\right)^{3} \left(I_{g} - I_{T}\right) \leq I_{g}$$

 I_g = Gross moment of inertia I_T = Cracked section transformed moment of inertia

.

.

•

•		REVISION 23 PAGE NO 22	3
· ·	S&A	JOB NO. 95C2873-C001 SUBJECT NMP1 IPEEE	SHEET #3 OF 9
	STEVENSON & ASSOCIATES a structural-mechanical consulting engineering firm	Block Wall Screening Spreadsheet	Revision By TMT 7/26/95 Chk. MSL 8/23/95

 $M_{CR} = Cracking moment = f_T S_g$

 $f_T = \text{Cracking tension in flexure} \approx 2.5 \sqrt{f_{\pi}} \text{ (psi)}^{'}$

 $S_g = \text{Gross section modulus} = 2I_g / D$

Since the walls are hollow, it is grouted only at the reinforcement, the moment of inertia will calculated using the concrete block cover only.

$$I_{g} = bt(D-t)^{2}/2^{t}$$

where b = unt width of the wall, and t = thickness of cover. For the cracked section, the location of the neutral axis from the compression face can be estimated by solving

$$x\left(\frac{x}{2}\right) - nA_s(d-x) = 0$$

where

$$n = \frac{E_s}{E_m}$$

 E_s = elastic modulus for rebars

assuming x does not exceed t, the cracked section moment of inertia

$$I_T = \frac{bx^3}{3} + nA_s(d-x)^2$$

Vertical Moment Capacity

$$M_{\nu} = 0.9 M_{\upsilon} = 0.9 A_s f_{\gamma} \left[d - \frac{a}{2} \right]$$

where .

 A_s = steel area per unit width f_y = yield strength of rebar d = depth from the compressive face to the center of steel = D/2 D = Depth of wall A f

$$a = \frac{A_s J_y}{0.85 f_m}$$

 $f_{\rm m}$ = specified compressive strength of masonry (psi)

. · . . ·

.

~		REVISION	4
* • : *	S&A	JOB NO. 95C2873-C001 SUBJECT NMP1 IPEEE	SHEET #4 OF 9
	STEVENSON & ASSOCIATES a structural-mechanical consulting engineering firm	Block Wall Screening Spreadsheet	Revision By TMT 7/26/95 Chk. MSL 8/23/95

The vertical moment capacity is defined as the larger of the M_V or the cracking moment M_{CR} defined in the previous section.

Horizontal Moment Capacity

Since the Dur-O-Wall horizontal reinforcement has only 0.028 in² every 16", in addition the splice is only 6", which will not be able to sustain the yield strength of the bars, the bending in the horizontal direction will be governed by the cracking moment of the blocks.

According to [7], Table 6.3.1.1, the allowable flexural tension parallel to bed joint is at least 133% of the tensile strength when stressed normal to bed joints.

$$M_H = 1.33 M_{CR}$$

Maximum Moment

The maximum moment in the wall will be determined by the close form solutions presented in [2], Section 30, pp. 113-119 assuming all edges of the wall are simply-supported. The maximum moment occurs at the center of the wall

$$(M_{x})_{y=0} = \frac{qx(W-x)}{2} - qW^{2}\pi^{2} \sum_{m=1,3,5,..}^{\infty} m^{2} [2vB_{m} - (1-v)A_{m}] \sin \frac{m\pi x}{W}$$

$$(M_{y})_{y=0} = v \frac{qx(W-x)}{2} - qW^{2}\pi^{2} \sum_{m=1,3,5,..}^{\infty} m^{2} [2B_{m} + (1-v)A_{m}] \sin \frac{m\pi x}{W}$$

$$(M_{x})_{max} = (M_{x})_{y=0,x=W/2} = \frac{qW^{2}}{8} - qW^{2}\pi^{2} \sum_{m=1,3,5,..}^{\infty} m^{2} [2vB_{m} - (1-v)A_{m}] \sin \frac{m\pi}{2}$$

$$= \left(\frac{1}{8} - \pi^{2} \sum_{m=1,3,5,..}^{\infty} m^{2} [2vB_{m} - (1-v)A_{m}] \sin \frac{m\pi}{2}\right) qW^{2}$$

$$= \beta qW^{2}$$

$$\begin{pmatrix} M_{y} \end{pmatrix}_{max} = \begin{pmatrix} M_{y} \end{pmatrix}_{y=0,x=W/2} = v \frac{qW^{2}}{8} - qW^{2}\pi^{2} \sum_{m=1,3,5,...}^{\infty} m^{2} [2B_{m} + (1-v)A_{m}] \sin \frac{m\pi}{2}$$
$$= \begin{pmatrix} \frac{v}{8} - \pi^{2} \sum_{m=1,3,5,...}^{\infty} m^{2} [2B_{m} + (1-v)A_{m}] \sin \frac{m\pi}{2} \end{pmatrix} qW^{2}$$
$$= \beta_{1} qW^{2}$$

where

. , , , , 4

.

4		REVISION PAGE NO	20 25
÷ •	A A	JOB NO. 95C2873-C001	SHEET #5
-	S&A	SUBJECT NMP1 IPEEE	OF 9
	STEVENSON & ASSOCIATES a structural-mechanical consulting engineering firm	Block Wall Screening Spreadsheet	Revision By TMT 7/26/95 Chk. MSL 8/23/95

$$A_{m} = -\frac{2(\alpha_{m} \tanh \alpha_{m} + 2)}{\pi^{5} m^{5} \cosh \alpha_{m}}$$

$$B_m = \frac{2}{\pi^5 m^5 \cosh \alpha_m}$$

Spectral Acceleration

The spectral acceleration will be extracted from the corresponding Floor Response Spectrum at the bottom and the top of the block wall. The average of the top and bottom acceleration will be used in the spreadsheet.

<u>HCLPF</u>

The HCLPF will be estimated by the minimum of

$$HCLPF_{V} = \frac{\left(M_{v}\right)_{max}}{M_{v}} (PGA)$$

and

$$HCLPF_{H} = \frac{\left(M_{x}\right)_{max}}{M_{H}} (PGA)$$

Pre-Screening Implementation

The above procedure is implemented in an Excel spreadsheet, BWSCREEN.XLS, sheet BLOCK.

Block Wall Compression Strength f'_{-}

$$f_{m}^{*} = 2,920 - 2.3 * 400 = 2,000 \text{ psi}$$

<u>Weight</u>

Lacking detailed information, the following weight may be used [8] for hollow walls

Wall thickness	Unit Weight
6"	43 lb/ft^2
8 " [`]	· 55
12"	80

P

.

• • -

N.

æ 1		REVISION PAGE NO A	SU. OTPELERCLAFOI
۰ . ج	S&A	JOB NO. 95C2873-C001 SUBJECT NMP1 IPEEE	SHEET # 6 OF 9
	STEVENSON & ASSOCIATES a structural-mechanical consulting engineering firm	Block Wall Screening Spreadsheet	Revision By TMT 7/26/95 Chk. MSL 8/23/95

Any attached weight on the wall, including electrical boxes, conduits, etc. should be added to the total weight.

Response Spectra Damping

When retrieving spectral values, 7% damping similar to reinforced concrete structures may be used for the preliminary screening.

HCLPF Based on NP-6041, Appendix R

Alternative to the above elastic solution, the following calculation allowing the block wall to drift based on Appendix R of [1] is presented in a spreadsheet.

Based on the above parameters, the CDFM permissible drift limit is determined by

$$\left(\frac{\Delta_u}{H}\right)_{CDFM} = \frac{0.005}{c/d} F_c \le 0.04$$

where

.

$$F_c = \frac{H/d}{30} \le 1.0$$

Seismic Capacity

Based on Ref. [1], for a simply supported uniformly loaded non-load bearing masonry wall, the seismic spectral acceleration capacity is

$$\frac{S_{A_c}}{g} = \left\{ \frac{8M_{CDFM}}{qH^2} - 4\left(\frac{\Delta_s}{H}\right) \right\} .$$

Secant Frequency

In determining the seismic demand using the equivalent linear elastic procedure, an effective frequency is required. According to Ref. [1], the secant frequency corresponding to an ultimate nonlinear displacement Δ_{μ} is

$$f_s = \frac{1}{2\pi} \sqrt{\frac{1.5S_{A_c}}{\Delta_u}}$$

The effective nonlinear seismic demand can be approximated by treating the walls as pseudo-elastic with an effective frequency equals f_f and effective damping β_c at about 6% [1]. Therefore

$$S_{A_{D}} = S_{A}(f_{s}, 6\%)$$

`*		CALL NO REVISION	<u>SSEEFICLPFOI</u>
2 . - - -	S&A	JOB NO. 95C2873-C001 SUBJECT NMP1 IPEEE	SHEET #7 OF 9
	STEVENSON & ASSOCIATES a structural-mechanical consulting engineering firm	Block Wall Screening Spreadsheet	Revision By TMT 7/26/95 Chk. MSL 8/23/95

The scale factor to be applied to a reference input spectrum is

 $F_{S_I} = \frac{S_{A_C}}{S_{A_{DR}}}$

The HCLPF can then be obtained by

 $\text{HCLPF} = F_{S_{I}}(\text{PGA})$

The computation has been implemented in the spreadsheet file BWSCREEN.XLS, sheet DRIFT.

Note that the elastic frequency is lower than that of the pre-screening spreadsheet, because Appendix R of NP-6041 assumes the wall to span one way vertically while in the pre-screening, two-way action is used. The final HCLPF is the maximum within the drift limits in the sheet. In some cases with large drift, the seismic capacity may turn negative. These limiting cases should be ignored.

References

- 1. EPRI NP-6041, "A Methodology for Assessment of Nuclear Power Plant Seismic Margin," Revision 1, Final Report, August 1991.
- 2. Tomoshenko and Woinowsky-Krieger, "Theory of Plate and Shells," 2nd Edition, McGraw-Hill, 1959.
- 3. Blevins, "Formulas for Natural Frequency and Mode Shape," Van Nostrand Reinhold, 1979.
- 4. NMP1 Drawing C-18801-C, Rev. 6, Turbine Building Battery Board Room at El. 261'-1", Plane Sections and Details.
- 5. NMP1 Calculation S6-IE8011-MWR1, Masonry Wall Ref. 1. 1987.
- 6. NMP1 Calculation S6-IE8011-MW, Masonry Walls, 1987.
- 7. ACI 530-92/ASCE 5-92/TMS 402-92, Building Code Requirements for Masonry Structures, 1992.
- 8. AISC, Steel Construction Manual, 8th Edition.

. .

•

-**-**-.

REVISION 00 PAGE NO 38

\sim		
	~	
	P ₇	
	CL.	

a structural-mechanical consulting engineering firm

STEVENSON Block Wall Screening Spreadsheet & ASSOCIATES

JOB NO. 95C2873-C001

SUBJECT NMP1 IPEEE

SHEET #8 OF 9 Revision By TMT 7/26/95 -Chk. MSL 8/23/95

Block Wall Preliminar	y Screnning Ba	sed on S8	A Calculation 95C2873-C001:
Wall Name:	Diesel Gener	ator Area	Block Wall #29 (Example)
Üser Input:			Remark
Height (H)	36.8	ft	Total unsupported height of block wall
Span (W)	40	ft	Unsupported horizontal span
Weight (q)	79	lb/ft^2	Weight per unit area
Nominal Depth	12	in	
Sa Top	0.41	g	Top spectral acceleration
Sa Bottom	0.36	9	Bottom spectral acceleration
Sa	0.385	9	Average spectral acceleration (7% damping)
Constant Fields:			
Cover Thickness	1.25	in	
Poisson's Ratio	0.15		
fm	2000	psi	Mortar compressive strength
fy	40000	psi	Steel yield strength
Steel Area (As)	0.00625	in^2/in	#4 bar @ 32"
PGA	0.13	9	Peak Ground Accleration for FRS
Em	1500000	psi	750 ° fm
Es	2900000	psi	
n	19.33		
	ik .		
Calculated Fields:			
Actual Depth (D)	11.625	in	3/8" less than nominal
d	5.8125	in	
lg	67.28	in^4/in	Section moment of inertia
Sg	11.57	in^3/in	Section modulus
ព	111.80	psi	Flexural strength
Mcr	1.29	k-in/in	Cracking coment -
x	1.07	in	
lt	3.13	in^4/in	•
le	67.28	in^4/in	
Frequency (f)	4.01	Hz	Fundamental frequency
а	0.147	in	
Μv	1.29	k-in/in	
Mh	1.72	k-in/in	٠
Beta1	. 0.0416		Moment coefficient
My	2.02	k-in/in	Maximum horizontal moment
Beta	0.0361		Moment coefficient
Mx	1.76	k-in/in	Maximum vertical moment
HCLPF	0.083 .	g	

:

ĩ

-• · · · · · · · · • .

* * * *

~			REVISION	
-	S&A	JOB NO. 95C2873-C001 SUBJECT NMP1 IPEEE		SHEET #9 OF 9
	STEVENSON & ASSOCIATES a structural-mechanical consulting engineering firm	Block Wall Screening Spreadsheet		Revision By TMT 7/26/95 Chk. MSL 8/23/95

,

Drift Calculation Base	ed on EPRIN	IP-6041, Apr	endix R			
Cotinuation on Wall:	Diesel Gene	rator Area B	lock Wall #29 (Example			
As	0.00625	in^2 *				
d	5.81	in				
ρ	0.00108					
8	0.147	in				
C	0.173	in				
c/d	0.030					
L	441.6	in				
Fc	1		NP-6041 Eq. R-14			
Δu/L	0.040		NP-6041 Eq. R-15			
Δυ	17.66	in	CDFM Permissible Dri	ft Limit	•	
W	0.549	Ib/in^2				
ΜρΔ	2.14	k-in/in				
MCDFM	1.29	k-in/in				
R						
Drift Ratio	Drift	Frequency	Reference Demand	Capacity	Scale Factor	HCPLF
Δu/L	Δu (in)	f (Hz)	SADR (g)	SAC.(g)	· Fsi	g
Elastic	0.00	2.158	0.281	0.097	0.34	0.045
0.005	2.21	0.713	0.092	0.077	0.84	0.109
0.01	4.42	0.434	0.057	0.057	0.99	0.129
0.02	8.83	0.166	0.025	0.017	0.68	0.088
0.03	13.25	#NUMI		-0.023	#DIV/0!	
0.04	17.66	#NUM!		-0.063	#DIV/01	
HCLPF	0.129	g				

• •

.

.

8 •

•

ţ

	*		CALC NO REVISION PAGE NO	<u>50.01</u> 00 <u>0</u> 1	<u>ееен</u> сьрр	20/20/3-0 91	-004
Clime Niggara Mohawk	Power Corpo	ration	Calcula	ation No	. C-004		
Title: Fragility Analysis	of Selected B	lock Walls	in Nine M	ile Poin	t Unit I		•
	•						
· · · · · · · · · · · · · · · · · · ·						•	y
Project: Nine Mile Poir	t I IPEEE						
Method:	<u> </u>						
				<u> </u>			
	<u>.</u>		·				
					`		
Acceptance Criteria: _EPF	RI NP-6041, A	opendix R	<u></u>				
	<u></u>	<u></u>	2 		•		
Remarks:			<u></u>		•		
• •		<u> </u>	<u> </u>				
	<u></u>	<u> </u>				1	
	······································				<u></u>		
	<u></u>	REVISI	ONS		•		
No. Descrit	ntion	By	Date	Chk	Date	App.	Date
0 Original Issue	•	MSLi	8/25/95	TMT	- 8/25/95	WD	10/17/
<u> </u>						q	
	e						
							<u> </u>
	1						
		CALCIT	ATION		CON	TRACT N	0.
		COV	ÆR			500070	·
d		SHE	EI		5	1002013	291
Stavancan & Accordiated	tx .	FIGUE	E 1.3				

.

•• •

6

.

. ب х х • " .

۰ ۰ ۰

	REVISION PAGE NO	<u> </u>	
Sca	PROJECT NO. 95C2873 CAL. NO. C-004 SUBJECT: NMPI IPEEE	SHEET #1 of 1617 Revision 0 ²	A
Stevenson & Associates a structural-mechanical consulting engineering firm	Fragility Analysis of Selected Block Walls in Nine Mile Point Unit I	By MSL 8/25/95 Chk. TMT 8/25/95	,

This calculation documents the HCLPF evaluation for selected block walls in Nine Mile Point Unit I (NMPÍ). The list is based the walls that are not screened in NMPC's report, "Nine Mile Point 1 - IPEEE, Seismic Analysis - Masonry Wall Screening & Evaluation," Rev. 0, August 1995, spreadsheet on page 3, except for walls 32, 33, 35, and 104, which were screened on page 8 of the NMPC report, and wall 48 which has a HCLPF value greater than 0.3g in the preliminary screening.

The calculation is based on the following material properties used,

f_m = 2,000 psi f_y = 40,000 psi

Some of the earlier NMPI block wall calculations use $f_m = 700$ psi but most recent calculations use higher f_m value than the value used in this calculation.

Wall #	Location	Thick	Reinforcement	Size	HCLPF	Comments
22	RX261	16" Solid	#4 bar @ 16* EF	18.5' H x 20' W	0.53 g	Two-way slab
34	SH256	12" Hollow	unreinforced	16' H x 33' W	0.31 g	Two-way slab
2 3-1	ТВ261	8" Hollow	#4 bar @ 16"	14"Hx20"W	>0.3 g	See Wall #24 and need to verify the reinforcement
23-2	TB261	12" Hollow	#4 bar @ 15*	14"H x 20"W	>0.3g	See Wall #24 and need to verify the reinforcement
24	TB261	8" Hollow	#4 bar @ 48*	14' H x 20' W	0.39 g	Two-way slab
27	TB261	12" Hollow	#4 bar @ 32*	13.5' H x 60' W	0.41 g	One-way slab with drift
29	TB261	12 Hollow	#4 ber@32	36.8°H x40°W	0.13g	One-way slab with drift
53	TB277	12" Hollow	,#4 bar @ 32*	20' H x 49.5' W	0.39 g	One-way slab with drift
47-1	TB277	8" Hollow	#4 bar @ 32"	12' H x 40' W	0.47 g	One-way slab with drift
47-2	TB277	12" Hollow	#4 bar @ 32"	21.4' H x 30' W	0.34 g	One-way slab with drift
49	TB277	8" Hollow	#5 bar @ 24*	21' H x 25' W	0.33 g	Two-way slab
52	TB277	12" Hollow	#4 bar @ 32*	20.25' H x 40' W	0.37 g	One-way slab with drift

, × •

a A TA A A A

. • مەت ب

. .

NMP1 IPEEE Project 95C2873 Calc. No. C-004

ATTACHMENT <u>C</u> CALC NO <u>SO OFFEEERCUPFO</u> Sheet #<u>5</u> of <u>45</u> /7 REVISION <u>SO</u> PAGE NO <u>C6</u> By: MSLi 8/25/95 Chk.: TMT 8/25/95

Block Wall Prelimin	ary Screnning	Based o	n S&A Calculation 95C2873-C001:		
Wall Name:	Stairwell Enc	losure Ar	ea Block Wall #24 with horizontal span of 20'		
· · · · · · · · · · · · · · · · · · ·					
User Input:			Remark		
Height (H)	14	ft	NMPI Calc. No. S6-TB261-MW24, Rev. 0, page 4		
Span (W)	20	ft	NMPI Calc. No. S6-TB261-MW24, Rev. 1, page 9		
Weight (q)	55	lb/ft^2	NMPI Calc. No. S6-TB261-MW24, Rev. 0, page 4		
Nominal Depth	8	in	NMPI Calc. No. S6-TB261-MW24, Rev. 0, page 4		
Sa Top	0.385	g	verage of 0.4g (5%) and 0.37g (7%) at TB 277' BD11 NS		
Sa Bottom	0.245	g	Average of 0.25g (5%) and 0.24g (7%) at TB 261' BE10 NS		
Sa	0.315	g	Average spectral acceleration (6% damping)		
Constant Fields:					
Cover Thickness	1.25	in			
Poisson's Ratio	0.15				
fm	2000	psi	Mortar compressive strength		
fv	40000	psi	Steel yield strength		
Steel Area (As)	0.0042	in^2/in	#4 bar @ 48" (NPMI Drwg. #F-45030-C)		
PGA	0.13	g	Peak Ground Accleration for FRS		
Em	1500000	psi	750 * fm		
Es	29000000	psi			
n	19.33				
	<u> </u>				
Calculated Fields:					
Actual Depth (D)	7.625	in	3/8" less than nominal		
d	3.8125	in	· · · · · · · · · · · · · · · · · · ·		
lg	25.40	in^4/in	Section moment of inertia		
Sg	6.66	in^3/in	Section modulus		
ក	111.80	psi	Flexural strength		
Mcr	0.74	k-in/in	Cracking coment		
×	0.71	in			
lt	0.89	in^4/in			
le	- 25.40	in^4/in			
Frequency (f)	16.46	Hz	Fundamental frequency		
а	0.098	in ·			
Mv	0.56	k-in/in	·		
Mh	0.99	k-in/in			
Beta1	0.0357		Moment coefficient		
My	0.25	k-in/in	Maximum horizontal moment		
Beta	0.0195		Moment coefficient		
Mx	0.14	k-in/in	Maximum vertical moment		
HCLPF	.0.392	g			

ŝ

Ś

1 **19**9 -

.

· .

,

.

, 200 PS

NMP1 IPEEE Project 95C2873 Calc. No. C-004

<u>So. OI PEEE</u> HCLPFoI 7 <u>So</u> Sheet # 6 of <u>16</u> / 7 By: MSLi 8/25/95 Chk.: TMT 8/25/95 CALC NO REVISION PAGE NO

Block Wall Prelimin	ary Screnning E	Based on S	S&A Calculation 95C2873-C001:
Wall Name:	Auxiliary Contr	ol Room B	lock Wall #27 with horizontal span of 60
Block Wall along Co	olumn Line BB o	or A is che	cked
since the spectra a	cceleration is al	ways high	er in the North/South direction.
User Input			Remark
Height (H)	13.5	ft	NMPI Calc. No. S6-TB261-MVV27, Rev. 0, page 8
Span (W)	60	ft	NMPI Calc. No. S6-TB261-MVV27, Rev. 0, page 4
Weight (q)	101.3	lb/ft^2	NMPI Calc. No. S6-TB261-MVV27, Rev. 0, page 5
Nominal Depth	12	in	NMPI Calc. No. S6-TB261-MW27, Rev. 0, page 4
Sa Top	0.5	g	Average of 0.536 (5%) and 0.463g (7%) at TB 277 BD11 NS
Sa Bottom	0.302	g	Average of 0.316g (5%) and 0.288g (7%) at TB 261 BE10 NS
Sa	0.401	g	Average spectral acceleration (6% damping)
Constant Fields:			
Cover Thickness	1.25	in	
Poisson's Ratio	0.15		
fm	2000	psi	Mortar compressive strength
fy	40000	psi	Steel yield strength
			#4 bar @ 32" (NMPI DWG #F-45030-C & Cak. No. S6-TB261-
Steel Area (As)	0.00625	in^2/in	MW27, Rev. 0, page 4)
PGA	0.13	g	Peak Ground Accleration for FRS
Em	1500000	psi	750 * fm
Es	29000000	psi	
n	19.33		
Calculated Fields:			• •
Actual Depth (D)	11.625	in	3/8" less than nominal
d	5.8125	in	
lg	67.28	in^4/in	Section moment of inertia
Sg	11.57	in^3/in	Section modulus
<u>π</u>	111.80	psi	Flexural strength
Mcr	1.29	k-in/in	Cracking coment
×	1.07	in	
lt	.3.13	in^4/in	
le	67.28	in^4/in	к
Frequency (f)	14.97	Hz	Fundamental frequency
8	0.147	in	
Mv	1.29	k-in/in	A.
Mh	1.72	k-in/in	
Beta1	0.0063		Moment coefficient
My	0.92	k-in/in	Maximum horizontal moment
Beta	0.0010		Moment coefficient
Mx	. 0.14	k-in/in	Maximum vertical moment
HCLPF	0.183	g	•

#

:

۲۰ م

•

• 1

. . • . 3 x • · · · · •

-.

NMP1 IPEEE Project 95C2873 Calc. No. C-004, Rev. 1

Block Wall Prelimina	ary Screnning Ba	ased on S	&A Calculation 95C2873-C001:
Mall Name:	Diesel Gene	l rator Aroa	 Block Mall #53 with horizontal enabled of 49 5'
VVali Marie.	Dieser Gene		Block Wait #55 with Holizonial span of 49.5
User Input:			Remark
Height (H)	20	ft	NMPI Calc. No. S6-TB277-MW53, Rev. 0, page 5
Span (W)	49.5	ft	NMPI Calc. No. S6-TB277-MW53, Rev. 0, page 5
Weight (g)	66	lb/ft^2	NMPI Calc. No. S6-TB277-MW53, Rev. 0, page 5
Nominal Depth	12	in	NMPI Calc. No. S6-TB277-MW53, Rev. 0, page 4
······································			
Sa Top	0.864	g	Average of 0.950g (5%) and 0.778g (7%) at TB 300' BC10A EW
Sa Bottom	0.5085	g	Average of 0.553g (5%) and 0.464g (7%) at TB 277' BD11 EW
Sa	0.68625	g	Average spectral acceleration (6% damping)
Constant Fields:			
Cover Thickness	1.25	in	
Poisson's Ratio	0.15		
fm	2000	• psi	Mortar compressive strength
fy	40000	psi	Steel yield strength
Steel Area (As)	0.00625	in^2/in	#4 bar @ 32" (NMPI DWG #F-45030-C)
PGA	0.13	g	Peak Ground Accleration for FRS
Em	1500000	psi	750 * fm
Es	29000000	psi	
n	19.33		
Calculated Fields:			
Actual Depth (D)	11.625	in	3/8" less than nominal
d	5.8125	in	×
lg	67.28	in^4/in	Section moment of inertia
Sg	11.57	in^3/in	Section modulus
fT	111.80	psi	Flexural strength
Mcr	1.29	k-in/in	Cracking coment
X	1.07	in	
lt	3.13	in^4/in	
le	67.28	in^4/in	
Frequency (f)	9.35	Hz	Fundamental frequency
a	0.147	in	
Mv	1.29	k-in/in	
Mh	1.72	k-in/in	
Beta1	0.0181		Moment coefficient
My	2.01	k-in/in	Maximum horizontal moment
Beta	0.0044		Moment coefficient
MX	0.48	k-in/in	Maximum vertical moment
			· · ·
nolph	J U.084	g	

6

۰

•

y

Drift Calculati	ion Based on	EPRI NP-60	41, Appendix	R						
Wall Name:	Diesel Gene	rator Area Bl	ock Wall #53 y	with horizonta	span of 49 5'					
			Remark							
As	0.00625	in^2								
d	5.81	in								
ρ	0.00108									
а	0.147	in								
C	0.173	in								
c/d	0.030						•			
L	240.0	in	7.							
Fc	1		NP-6041 Eq.	R-14						
∆u/L	0.040	1	NP-6041 Eq.	R-15		,	,			
Δu	9.60	in	CDFM Permis	ssible Drift Lin	nit					
W	0.458	lb/in^2					·			
Μρδ	0.53	k-in/in								
MCDFM	1.29	k-in/in								
					Å					
Drift Ratio	Drift	Frequency	SaBot (5%)	SaBot (7%)	SaTop (5%)	SaTop (7%)	Reference Demand	Capacity	Scale Factor	HCPLF
∆u/L	∆u (i∩)	f (Hz)	g	g	g	g	SADR (g)	SAC (g)	Fsi	g
Elastic	0.00	7.993	0.506	0.439	0.752	0.620	0.579	0.391	0.68	0.09
0.005	1.20 -	2.131	0.280	0.255	0.285	0.255	0.269	0.371	1.38	0.18
0.01	2.40	1.466	0.190	0.160	0.200	0.160	0.178	0.351	1.98	0.26
0.02	4.80	0.976	0.130	0.115	0.135	0.115	0.124	0.311	2.52	0.33
0.03	7.20	0.744	0.097	0.084	0.097	0.085	0.091	0.271	2.99	0.39
0.04	9.60	0.595	0.083	0.073	0.083	0.073	0.078	0.231	2.97	0.39
Drift HCLPF	0.39	g								

.

.

•

,

.

•

. .

•

TABLE 1

.

.

ł

v

1

, ,

• , ,

t.

. .

.

,

- - - -

.

Ŧ

, **e** 1

Χ.

·1 1

e

TABLE 1

	-		Table -1 - Status of NMP1 IPEEE Improvement Initiatives		
Action ID	IPEEE Section	Improvement	Benefit	Significance	Status
1	Seismic	Control room panels F through N require top cross- ties	Control room panels have weak lateral support and could twist and separate in an earthquake. This would render a significant portion of the control room inoperable and would likely force evacuation and thereby significantly affect success path capabilities.	High, control room response following an earthquake is critical and should be reliable.	DER 1-95-3212 complete
2	Seismic	Power boards 16A/B and 17A/B require base plug welding	These power boards are weakly anchored and could topple in an earthquake. This would fail a significant amount of equipment, combined with the likely coincident LOSP, would fail the success path.	High, failure of these power boards, combined with LOSP, would fail the success path.	DER 1-95-3140 in process, due RFO15 per A-46 program action plan
3	Seismic	Power boards 102/103 require rear base plug welding	These power boards are weakly anchored and could topple in an earthquake. This would fail a significant amount of equipment, combined with the likely coincident LOSP, would fail the success path.	High, failure of these power boards, combined with LOSP, would fail the success path.	DER 1-95-3090, 3091 in process, due RFO15 per A-46 program action plan
4	Seismic	Aux Control room cabinets 1S34, 35, 36, 51, 52, 53, 54, 55, 56, 57, 59, 60, 62, 63, 64, 65, 69, 70, 73, 74, 75 require base fillet weld	1S34 through 36 have little impact, but could topple over on other critical cabinets with success path components. Cabinets 59, 60, 63, 64, 73 and 74 are also important based on containing success path components. The remaining cabinets are not important except to the extent they can impact other important cabinets.	High, failure of these cabinets can fail most if not all of the success path.	DER 1-95-3147, 3148, 3149, 3151, 3152, complete
5	Seismic	Aux Control room cabinets 1S37 through 39 require positive anchorage	These cabinets can topple on cabinets 1S80, 82, 84, 85, 86, 87, 88 failing all emergency AC power, Panels 1S37 and 1S38 dominate risk considerations.	High, failure of emergency AC, combined with LOSP, would fail the success path.	DER 1-95-3147, 3148, 3149, 3151, 3152, complete
6	Seismic	Aux Feed breakers require additional anchorage	Should these circuit breakers fail to transfer on demand they could align the EDGs to offsite power and effectively fail the EDGs.	High, failure of these circuit breakers, combined with LOSP, would fail the success path.	DER 1-95-3141 complete
8	Seismic •	Cable tray in turbine building E1261 requires rod replacement	Failure of these cable trays could cause station blackout.	High, station blackout would fail the success path.	DER 1-95-2518 complete

. .

					. '
		•	Fable -1 - Status of NMP1 IPEEE Improvement Initiatives		
Action ID	IPEEE Section	Improvement	Benefit	Significance	Status
9	Fire, Others	Enhance operator training on procedure N1-SOP-14 to include station blackout (SBO) mitigation without DC power	Long term unrecoverable SBO was a somewhat minor contributor in the IPE. However, IPEEE scenarios where AC power cannot be recovered are more prevalent. Fire and high winds can lead to SBO scenarios where recovery is not likely for much longer than the 8 hours currently considered for SBO mitigation. It is proposed to have operator training review the procedure N1-SOP- 14 "Alternate Instrumentation" in the context of a SBO with DC power unavailable. This would better enable NMP1 to cope with a long term SBO and would give NMP1 a capability unique within the nuclear industry.	High, this action item is considered to be significant such that IPEEE results will be adversely affected should it not be implemented	Training Review Request (TRR) written and approved for Training Advisory Committee review.
10	Fire	Storage of combustibles in fire area T3B should be curtailed or more tightly controlled	Cables associated with both divisions of emergency AC, DC, and various front-line systems (i.e., feedwater) are located in the south-east corner of the turbine building (cl 261') near the old personnel access point. During recent IPEEE team walkdowns, a number of combustibles were noted in this immediate vicinity. These combustibles included: five drums filled with oily rags, paint cans, bags of trash, electronic equipment, and aerosol spray cans. All of these sources lead to a relatively high transient fire event probability in this area. Curtailing storage would reduce a significant fire related safety issue.	High, a relatively minor fire could result in severe plant impacts	DER 1-96-1737 complete
11	Seismic	Cast iron inserts require tightness check and possible replacement	Cast iron inserts are used widely to attach cable trays to ceilings. Failure could result in widespread cable tray failure and failure of associated cables and equipment. Reliability of these components is crucial to maintaining the capability of the success path.	High, widespread failure of these anchors could fail the success path.	The limited analytical review (LAR) performed within A-46 evaluated cable trays with cast iron inserts. The LAR determined the actual load is less than the insert allowable. Item closed.
12	Seismic	Lead cinch anchors require tightness check and possible replacement	Lead cinch anchors are used for anchorage of various success path components. Their reliability is important to earthquake mitigation.	High, widespread failure of these anchors could fail the success path.	Complete

.

•

• •

a.

,

---1

, · · · ·

•

.

•

¥

	_	· · · · · · · · · · · · · · · · · · ·	Table -1 - Status of NMP1 IPEEE Improvement Initiatives		
Action ID	IPEEE Section	Improvement	Benefit	Significance	Status
15c	Seismic	Relay 51G requires testing, replacement, or procedure change	This relay can energize a trip of offsite power and prevent EDG breaker closure until relay is reset.	Moderate, results in EDG breaker trip but failure is recoverable; EDG will restart on undervoltage after seismic motion subsides and breaker recloses automatically.	Temporary procedure in place, due RFO15 per A-46 program action item
15d	Seismic	Relay 50/51 requires testing, replacement, or procedure change	This relay can energize a trip of offsite power and prevent EDG breaker closure until relay is reset.	Moderate, results in EDG breaker trip but failure is recoverable; EDG will restart on undervoltage after seismic motion subsides and breaker recloses automatically.	Temporary procedure in place, due RFO15 per A-46 program action item
15c	Seismic	Relay 1H-9 requires replacement or procedure change	This relay in the fire actuation system could actuate in a relatively minor seismic event. This would cause isolation of the EDG room HVAC system and actuation of Cardox fire suppression in several areas. Improvement of these relays would enhance the probability that important equipment is available to mitigate the impact of earthquakes.	Moderate, these relays could trip EDG ventilation which could only affect the EDG after some duration judged to be at least 30 minutes. Cardox initiation could affect operator actions outside the control room but this is not expected to be significant, actions can still be accomplished.	DER 1-95-2987 due RFO15
15f	Seismic	Relay 1H-10 requires replacement or procedure change	This relay in the fire actuation system could actuate in a relatively minor seismic event. This would cause isolation of the EDG room HVAC system and actuation of Cardox fire suppression in several areas. Improvement of these relays would enhance the probability that important equipment is available to mitigate the impact of earthquakes.	Moderate, these relays could trip EDG ventilation which could only affect the EDG after some duration judged to be at least 30 minutes. Cardox initiation could affect operator actions outside the control room but this is not expected to be significant, actions can still be accomplished.	DER 1-95-2987 due RFO15

¢ ų

1 а. . , • - · · ·

.

n

.

Contration of the second

-

		······································	Table -1 - Status of NMP1 IPEEE Improvement Initiatives		
Action ID	IPEEE Section	Improvement	Benefit	Significance	Status
15g	Seismic	Relay 74A-9 requires replacement or procedure change	This relay in the fire actuation system could actuate in a relatively minor seismic event. This would cause isolation of the EDG room HVAC system and actuation of Cardox fire suppression in several areas. Improvement of these relays would enhance the probability that important equipment is available to mitigate the impact of earthquakes.	Moderate, these relays could trip EDG ventilation which could only affect the EDG after some duration judged to be at least 30 minutes. Cardox initiation could affect operator actions outside the control room but this is not expected to be significant, actions can still be accomplished.	DER 1-95-2987 due RFO15
15h	Seismic	Relay 74A-10 requires replacement or procedure change	This relay in the fire actuation system could actuate in a relatively minor seismic event. This would cause isolation of the EDG room HVAC system and actuation of Cardox fire suppression in several areas. Improvement of these relays would enhance the probability that important equipment is available to mitigate the impact of earthquakes.	Moderate, these relays could trip EDG ventilation which could only affect the EDG after some duration judged to be at least 30 minutes. Cardox initiation could affect operator actions outside of the control room but this is not expected to be significant, actions can still be accomplished.	DER 1-95-2987 due RFO15
15i	Seismic	Relay 45X-9 requires test, replacement, or procedure change	This relay in the fire detection circuitry could cause actuation of the 1H-9 relay with impact discussed above.	Moderate, see 1H-9	DER 1-96-1678 combined with DER 1-95-2987 due RFO15
15j	Seismic	Relay 45X-10 requires test, replacement, or procedure change	This relay in the fire detection circuitry could cause actuation of the 1H-10 relay with impact discussed above.	Moderate, see 1H-10	DER 1-96-1678 combined with DER 1-95-2987 due RFO15

· · · × × × , ,

. • •

4

- -----

ł ,

k . . *,*

,

•

n N

-

9

					- 0.					
Table -1 - Status of NMP1 IPEEE Improvement Initiatives										
Action ID	IPEEE Section	Improvement	Benefit	Significance	Status					
18	Seismic	Lube oil reservoir sight glasses of pumps should be checked periodically	Several lube oil reservoir sight glasses were found loose on a random sample basis during the walkdowns. In a seismic event they could leak and lead to seizing the pump. This preventative maintenance activity would help to ensure operability of safety related equipment.	Low, considered an enhancement to current preventative maintenance. Based on additional walkdown, only pumps on success path with these type of reservoirs are core spray topping pumps (They were confirmed loose). With seismic/SLOCA scenario, pumps are of minimal importance since core spray pumps provide adequate flow.	SQUG experience database reports no failures of this type. Based on seismic capacity engineering judgment and relatively low importance, action item closed, no additional action.					
19	Fire, Seismic	Remove containment vent and torus cooling dependency on instrument air	Currently instrument air is required to align containment vent and containment spray in the torus cooling mode. Containment vent valves could be opened with handwheels. Containment spray valves 80-15, 16, 35, 36 currently fail as is (open) on loss of instrument air and have no handwheels for manual operation. It is proposed to have manual handwheels added to these valves so that operators could align torus cooling without instrument air. This would increase the reliability of torus cooling.	Low, this action item is considered to be a benefit but IPEEE results would not be adversely affected without implementation.	This action is considered cost- beneficial only if implemented along with other work that may arise in the future (i.e., perform this mod if valves are modified for any other reason). On hold for future consideration.					

۲. ۲.

1

.

" "

,