67.191-91 NINE MILE POINT NUCLEAR \S MASTER CONTROL **OPERATIONS** 02-leq-001-245-2-02-04 LESSON PLAN MAIN GENERATOR & EXCITER Prepared By: Unit #2 Training Department DATE AND INITIALS SIGNATURES APPROVALS **REVISION 4** Training Supervisor Nuclear - Unit #2 G. L. Weimer Assistant Training Superintendent -Nuclear R. T. Seifried Superintendent of Operations - Unit #2 R. G. Smith Summary of Pages 20/20 Revision ____ (Effective.Date: 12 4-Number of Pages: Date Date. December 1988 NIAGARA MOHAWK POWER CORPORATION 9305040395 PDR ADDCK S 9305040395 911031 0500<u>041</u>0 PDR

Ř D त्र संतित राज्य द्वार्थ्य स्वयंत्र प्राप्त द्वार संतर्भ राज्य राज्य राज्य स्वयंत्र "A" ineast.", JAVORAGA TAVITOBLAC " 290 IE- ANY 1974 doine and ANA JOTABUTA MINI igiti : - " 1: 11= -01. 34 (n 🗋 :...ynlite. gni: 1000000 . 21 tusen - In reactor shall present a paget in hit it ale 10000 2 Just mounter Say 1 612 9 : " it's it's withor's fameloning in forence ion we Will be the state of the senter of the senter of the senter WELTER'S SWINDO. Stonature · Supervisor ŝ, 102 274 144 1 48 t ing enviyer. Jupervisor 23-2--And the master attach big form to the master lesson plan. · Margare p. 4 1-11

Attachment "A" OBJECTIVE APPROVAL Author: UNITH OP'S TRAINING Unit I ops. Training Dept: LESSON TITLE: MAIN GENERATOR AND EXCITER Lesson Plan #: NZ -OLP-46 Training Setting(s): Cluss form Purpose: INSTRUCTOR Shall present information for the student to meet each Student Learning Objective, he shall provide sufficient explanation to the student's understanding of the information presen Trainee Job Title: <u>Lieused Operator</u> CANDIDATE NON-LICOUSED OPERATOR TRAWING LICENSED OPERATOR REDUKLIFICATION Approvals/Review Sionatures Date Training Supervisor Plant Supervisor Training Analysts Supervisor &

Hhen complete, attach this form to the master lesson plan.

1 14 18 DEBG D'-IN - 51 Nº-LIR-46, Main Generator au :) [] [] **.** A . . . rrator shall present Augosa: 6 lecture presentation. frequestion for the student . Path Student Learning Bjestive. Kaditionally, N. -611 provide sufficient volaration to facilitate or certic uncerstanding of the information presented. Est mabled Juration: 2 5 hours "raining methodan - Sestan the Student Learning O.je tives as reside problems with the students obtaining answers from the text, writing them devn are handing them in For grading. : <u>2671616.9</u>, 3 "ed inteal specification - Nons seanneadere , **.** . 1 A A

<u>` 1</u>

t

क्राइन २ मलन

z. - Vei. 23 Chap. 16, pg. 10.2.1

<u>854019374048549675300151755</u>

venus venents for Class:

1. AP-9. Nev. 2. "Administration of Training"

ATP-10, EM. 65 "Training of Coursed Operator Condidates"

 NTP-11, Row, S, 'Licensed Operator Letra Ming and Continuing Training:

4. NTP-12, Rev. 3, 'Bulicensed Operator Trajiing'

333.eqC 🕔

Ĺ

I. TRAINING DESCRIPTION

Ŀ

- A. <u>Title:</u> N2-OLP-46, Main Generator and Exciter
- B. <u>Purpose</u>: In a lecture presentation, the instructor shall present information for the student to meet each Student Learning Objective. Additionally, he shall provide sufficient explanation to facilitate the student's understanding of the information presented.
- C. <u>Estimated Duration</u>: 2.5 hours
- D. <u>Training Methods</u>:
 - Classroom Lecture
 - Assign the Student Learning Objectives as review problems with the students obtaining answers from the text, writing them down and handing them in for grading.
- E. <u>References</u>:
 - 1. Technical Specification None
 - 2. Procedures
 - a. N2-OP-24, Generator Isolated Phase Bus Duct Cooling
 - b. N2-OP-68, Main Generator, Exciter, Main Transformer,
 325KV Yard, and Generator/Unit Protection
 - 3. NMP-2 FSAR
 - a. Vol. 23 Chap. 10, pg. 10.2.1

II. <u>REQUIREMENTS/PREREQUISITES</u>

- A. <u>Requirements for Class</u>:
 - 1. AP-9, Rev. 2, "Administration of Training"
 - 2. NTP-10, Rev. 4, "Training of Licensed Operator Candidates"
 - 3. NTP-11, Rev. 5, "Licensed Operator Retraining and Continuing Training"
 - 4. NTP-12, Rev. 3, "Unlicensed Operator Training"

N2-OLP-46 -1 December 1988

Unit 2 Ops/552

	2 . States - 104397.
	י גערעניין אין אין אין אין אין אין אין אין אין
ng ta (trajúvat an	ege stored knowledge and
÷រ _ស ៏ដេះកees, «Հ	spov the jewel to be writ
states on the solution of the	evider cod by previous training .
to it at states a	1. SRE Dense for Wine Mile
so the training including	plant, or successful compluint -
" + level for Mine Mile	is adfiself(tree add) are
	Solut Unit II, and
sup so polyitan is s	Que chies in instructional suc
τα τ ^{. 10}	The formation of the subgroups of the
· · · · · · · · · · · · · · · · · · ·	streture .
TO	and the entry of the second remains and
atoing by Oocraticos	and the recommended for this t
ja olog Superintendeni	Crowrintendent/ his designee, or T
	· · · · · ·
τι το αγγατικό το αγγατικό Τα τραγματικό το αγγατικό τ	AINING MATERINS S
j j j j j j j j j j j j j j j j j j j	
	 ττα φατυλιάχει Ρασκαφεί το το
	notoejans isa nevra is
	 ar separes and Feit Tip Markers 1
	9: 9:0:21
、	53-105; E
	1. See Selitor I.E.
	1. She Shation 1 E.2 👘 👘
	student flaterizing
2. 15 - ST	. N2 -OL -46
	2. Section 1.1

- MIZZES, JEST, EXAME AND ENEMER KEYS

Wish as generated and comfinitered as necessary. They will be on permanant file of the Records Room.

J

.

.

NL-10--46, -2 Jec. at ...

1.200

Ď

B. Prerequisites:

C:

- 1. Instructor
 - a. Demonstrated knowledge and skills in the subject, at or above the level to be achieved by the trainees, as evidenced by previous training or education, or

4

- b. SRO license for Nine Mile Point Unit II, or a similar plant, or successful completion of SRO training including simulator certification at the SRO level for Nine Mile Point Unit II, and
- c. Qualified in instructional skills as certified by the Training Analyst Supervisor.
- 2. Students
 - a. Meet eligibility requirements per 10CFR55, or
 - b. Be recommended for this training by Operations Superintendent, his designee, or Training Superintendent.

III. TRAINING MATERIALS

- A. Instructor Materials
 - 1. Transparency Package
 - 2. Overhead Projector
 - 3. Whiteboard and Felt Tip Markers
 - 4. N2-OLP-46
 - 5. N2-OLT-46
 - 6. See Section I.E.1
 - 7. See Section I.E.2
- B. Student Materials
 - 1. N2-OLT-46
 - 2. Section I.E.1
 - 3. Section I.E.2

IV. QUIZZES, TEST, EXAMS AND ANSWER KEYS

A. Will be generated and administered as necessary. They will be on permanent file in the Records Room.

N2-OLP-46 -2 December 1988

Unit 2 Ops/552

S CHA BOLLY - SO ALAN I - LEU EA PARA

2

and the set of the sector of the set of a 0000 N 38 8.000 0 t dwaf eat primotred of curric tee state .volet isted between . ` Lev Control (1) the following get and the 11190 975 7 1 Frater bers and Huble come it aribal t 222 1070 e contesto -logs to the all of mousherse until worker much a e tale in the full owing alree-totol emperature 1.C⁴.c.1 apt: 15 01-12 12 11 7 CV 1 1 1354 8 C'3 2870 107 10 100 101 14J × •

entypen daine automotik

The tree is a system crute must be an operation to approve a tree of the matrix centerator.

before end stoub sub sid becaive and will deal

A construction of the AC and BC voitage valuation. Instate must be available to the control switch defore an arren being available of the group

Report 6 - A feartify and uppropriate automatical transport of the Affert at the Affert at the Affert at the Affert Affert

....

(* ... م بد ا م .

, ***

and the factor of the second second

<40100 a

envir s prisverros a visita v

V. LEARNING OBJECTIVES FOR MAIN GENERATOR AND EXCITER

Upon completion of this chapter, mastery of the required system knowledge will be demonstrated by performing the Enabling Objectives listed below.

46-1 State the purpose of the Main Generator and Exciter.

46-2 State the function of the following generator components

- Stator frame a.
- Stator bars and liquid connections b.
- Field winding c.
- d. Rotor fans
- Collector rings e.

46-3 Describe how the generator field is cooled.

46-4 State the function of the following alternator components:

- a. Stator
- b. Stator winding
- Alternator armature bus bars с.
- d. Rotor
- Alternator collector e.
- f. Alternator brush rigging
- g. Air coolers
- 46-5 State the six (6) systems that must be in operation to support operation of the main generator.

46-6 Describe how the isolated phase bus ducts are cooled.

- 46-7 Describe the operation of the AC and DC voltage regulator. Include the parameter varied by the control switch before and after being paralleled to the grid.
- 4 46-8 Given N2-OP-24, 68, Identify the appropriate actions and/or locate information related to:
 - a. Startup
 - Normal operations b.
 - Shutdown c.
 - d. Off Normal operations
 - Procedures for correcting alarm conditions e.

December 1988 N2-OLP-46 -3

Unit 2 Ops/552

st provide the く くいい きおけん うう = _ ___ **↓** • • • • • n be state in ten - b to the units of property of and a final provide a second . · · · · · bar, 1 , 1 , 1 , 1 CO STRUME T Y

ut gtβuwu ti γ in

۰ • •

. 14 **a**

5 ¥

•

Text	Text
Ref.	Ref.
Page	Fig.

Tovt

i

<u>SL0</u>

1

VI. LESSON CONTENT

I. INTRODUCTION

Student Learning Objectives

- Α. Purpose
 - 1. Main Generator converts the rotational mechanical energy of the Main Turbine into 25kv, 3 phase, 60Hz electrical energy.
 - Excitation System provides and 2. controls DC excitation current to the rotor field windings of the Main Generator to regulate Main Generator output voltage.
 - 3. Isolated Phase Bus Duct Cooling System provides cool forced air flow to both the indoor and outdoor sections of the isolated phase bus duct so that the bus can carry full generator load without exceeding allowable bus temperature limits.

System Overview/General Description Β.

1. • Main Generator and Exciter System consists of the major electrical equipment and interconnections associated with Generation and Transmission of Electrical Energy to the 345kv system and to the Normal Station Service Transformer.

Unit 2 Ops/552

5

THE BEST OF STATES OF STATES

ter the applications

، به در این ا

Contraction of the

y *

150 P 11 1 1 1 • • •

5 **1** 1 1. At 5 1 14 1 14

21 g

e i k

8-3 (ESS UV) (1) (1)

et a ref 2004 20 1

ر چند ر مد ام ا

,

· , .

VI. LESSON CONTENT

II. DETAILED DESCRIPTION

- A. <u>Main Generator</u>
 - Located in turbine building at 306 ft. elevation.
 - Hydrogen cooled, synchronous, direct driven from 14-stage tandem compounded steam turbine. Generator supplies 3 phase power at the following rating:

Rated KVA	1,348,400kva
Rated Voltage	25 kv
Pf	0.90 lagging
Speed	1,800 RPM
Max H ₂ Pressure	75 psig
Frequency	60 Hz

- B. Generator Construction
 - 1. Stator Frame
 - Welded gas tight generator casing and end shield. Supports and encloses stator winding and core.
 - b. Cooled principally by hydrogen gas circulated by fans. Deionized water cools stator windings.
- 2. Stator Core
 - Built of thousands of segmental, oriented-grain silicon steel punchings.
 - b. Punchings are annealed and insulated with varnish.
 - c. The punchings are assembled in an interleaved manner on keys machined on key bars to form a cylindricalshaped core for the stator winding.

N2-OLP-46 -5 December 1988

Unit 2 Ops/552

2a

SLO

Text

Ref.

Fig.

Text

Ref.

Page

2

ų

• * •

2

e. .

. U - 2¹ - 4

. . 1' B

. *

				-		н. Т		
				• 17517		Text Ref.	Text Ref. Fig	SLO
•	VI.	<u>LF220</u>		<u>VIENI</u>		Paye	riy.	<u>, 500</u>
•		3.	Stato a. b.	or Ban Arma inser core to fo by r Each coppo spira load due Each	rs ture Winding formed by rting insulated bars into slots. Ends are joined orm coils which are connected ings. bar is composed of hollow er conductors. Strands are al or transposed to share current and minimize losses to flux distribution. strand is insulated with low	3	1	2b
			d.	volta Stra deio	age insulation. nds are hollow to carry nized water for cooling.			
		4.	Stato	or Lio a.	quid Connections Stator Bar Strands are manifolded at each end by a clip assembly. Clip assembly has one tube connection.		·	
				b.	Flexible heavy wall teflon hoses connect tube fittings to annular manifold (header). Inlet header is at one end and outlet header is at opposite end.			
,			5.	State a.	or End Winding Support Stator bar ends are rigidly supported to avoid vibrations.	3		2b
				b.	System of anchoring called Tetra- Loc due to the four-way support provided.			
				c.	Resin impregnated glass roving used to hold bars and groups of bars. Allows flexibility and custom fit.			
	Unit	t 2 0	ps/55	2	N2-OLP-46 -6 December 198	38	,	

.

*

•

. ' 1 1 1

· · · · ۰. *

*

VI. <u>LESSON CO</u>	DNTENT	. Text Ref. <u>Page</u>	Text Ref. Fig.	<u>SLO</u>
6.	Rotor (Field) Winding			2c
	a. A multi-coil, single circuit	t		
	winding produces the magnet	ic		
	field in the rotor.			
	b. The exciter feeds DC voltage	e on to		
-	the rotor winding via colled	ctor		
	rings and carbon brushes.			
	c. The field winding consists of	of		
	four poles 90° apart. The			,
	conductor is rectangular in			
	cross-section with holes for	r		
	hydrogen circulation and is			
	insulated from other conduct	tors.		
	d. All turns are connected in s	series		1
	to form a one-circuit windir	ng.		
7.	Rotor Cooling	4	2	3
	a. Cooled by hydrogen gas flow	in		
	direct contact with the copp	per		
	windings.			
	b. Gas is forced into rotor sub	bslots		2d
	then flows outward through t	the		
	winding by fans on each end.	•		
	c. Hydrogen cooled in heat exch	hangers		
	mounted on top of generator.			_
8.	Collector and Collector Connection	ons		2e
	a. Collector rings shrunk on er	nd of		
	rotor shaft, provide contact	t		
	surface for brushes.			
	b. The collector rings are con	nected		
	to connection bars in the bo	ore		
	hole in the center of the			
	rotor shart.	t -		
	c. The connection bars connect	to		
	rotor windings via terminal	stuos.		
	N2-OLP-46 -7 Decem	ber 1988		
Unit 2 Ops/5	52			

¥

٦

•

4 . • • . , 4 r

•h

•

VI. LESSON CONTENT

- 9. Couplings
 - Coupling faces are bolted together with enough friction between the coupling faces to transmit the normal shaft torgue.
 - b. Coupling bolts also absorb the torsional stresses at the coupling and are tightly fitted so that the shear forces are absorbed uniformly in the bolts.
- 10. Shaft voltages
 - a. Voltages may be induced in generator rotor due to stray magnetic flux.
 - b. Normally 5-10 volts RMS AC, peaks may be 150 volts peak-to-peak.
 - Arcing across the oil film could cause pitting of bearing and shaft.
 - d. The rotor is grounded to the casing through the use of grounding brushes. Electrical insulation is also used to minimize the conduction of the voltage which will generate shaft currents.

11. End Shields and Bearings

- a. End Shields are reinforced fabrications designed to support the weight of the rotor and contain hydrogen within the generator.
- b. Rotor bearing, hydrogen shaft seals, and seal oil passages are contained and supported by end shields

N2-OLP-46 -8 December 1988

Unit 2 Ops/552

SLO

Text

Ref.

Page

5

Text

Ref.

Fig.

8 ***** .

. د د · . -• • , •

. • 1

. . . •

.

٠

•

-.

a

Text	Text
Ref.	Ref.
Page	Fig.

VI. LESSON CONTENT

- c. Outer end shield can be removed for bearing inspection without loss of hydrogen.
- Shields are split on horizontal centerline to facilitate removal.
- e. The inner end shields help separate 5 the hydrogen fans' suction from the discharge to improve the flow through the generator.
- 12. Lower Frame Extension and High Voltage Bushing
 - a. Provides passage of the main power leads (from the armature windings).
 via porcelain insulated high-voltage bushings'
 - b. The armature windings terminate at 6 bushings on the lower frame extension at the collector end of the generator.
 - c. 18 current transformers are fed by the high voltage bushings15 for relaying, 3 for metering.

C. ALTERNATOR CONSTRUCTION

- 1. Generator Exciter
 - a. "Alterrex" excitation system manufactured by General Electric
 - b. Consists of Alternator, Static
 Voltage Regulator and Power
 Rectifier Assembly.
 - c. 4 pole AC synchronous generator driven from main generator shaft. Air cooled with air-to-water heat exchanger. Cooling water provided by TBCLCW.
 - d. 3-phase power at the following ratings:

6

Unit 2 Ops/552

<u>SL0</u>

4 • •

VI. LESSON

.

٤

Text	Text
Ref.	Ref.
<u>Page</u>	Fig.

<u>slo</u>

4a

4b

4c

SON	CONTENT			<u>Page</u>	Fi
		Rated kva	3595 kva		
	-	Rated voltage	436 vac		
		PF	0.95 Lagging		
		Speed	1800 RPM		
		Frequency	60 Hz		
	e.	Alternator out	out is controlled		
,		by static volta	age regulator		
		which controls	the alternator		
		field current.			
	f.	Alternator Exc	iter output is		
		rectified by Ma	ain Generator		
		field rectifier	r assembly		
		then fed to Ma	in Generator		
		field through	the field breaker		
		and collector a	assembly.		
· 2.	. Alte	rnator Stator	1	7	
	a.	Stator consists	s of 3 main elements:		
		Fabricated Stee	el Frame, Laminated		
		Core, and Arma	ture Winding.		
	b.	Stator frame is	s designed to support	:	
		the stator pun	chings (laminations)		
	с.	Laminations are	e thin, high-grade,		
		non-aging low-	loss silicone sheet		
		steel. A coati	ng of insulating		
		enamel helps m	inimize core eddy	1	
		currents.			
3	. Alte	rnator Armature	Bus Bars	7	
	a.	Purpose: carry	the alternator-	ι	
	ń.	exciter output	to the power		
		rectifier asser	nbly.		
	b.	Power rectifien	r consists of five		
		three-phase fu	ll wave rectifiers,		
		mounted on alte	ernator-exciter		
		housing. N2-OLP-46	-10 December 198	8	

Unit 2 Ops/552

. • , • 1 . .

VI. <u>LESSON CC</u>	NTENT	Text Ref. <u>Page</u>	Text Ref. Fig.	<u>SI</u>
4.	Alternator Rotor			
	a. The rotor consists of a shaft,			
	laminated spider, field poles,			
	and field coils.			
	b. The spider consists of a stack	of		
	thin laminations riveted togeth	ner.		
	It has dovetail slots in which	the		
	field poles are keyed			
	c. Field poles consist of thin lam	nin-		
	` ations riveted together, keyed			
	into spider.			
	d. Field coils are copper strip			
	insulated by asbestos and			
	moisture-resistant binder.			
	Coils are series-connected			
	around the rotor	t		
	e. Air circulation fans are mounte	d		
	on rotor ends.			
5.	Alternator Collector and Collector	8		
	Connections			
	a. Collector rings carry current t	0		
•	the field windings			
	b. The collector is opposite the			
	coupling end.	i		
	c. The alternator brush rigging			
	consists of 8 spring-loaded bru	sh		
	holders clamped on to an insula	ted		
	steel stud; they transmit the			
	excitation voltage onto the rot	or.		
	d. Alternator bearings are forced-			
	oil lubricated from the main			
,	turbine lube oil system; they			
	provide radial support for the	1		
	alternator shaft.			

•

٠

,

6

• •

. , . ,

,

¢

VI. <u>LES</u>	SON CO	ONTENT		Text Ref. <u>Page</u>	Text Ref. Fig.	<u>SL0</u>
	6	Air	Coolers			4a
	0.	[*] а.	Horizontally mounted above			19
		~••	alternator			
		h	The Cooler is a single mass			
		0.	heat exchanger Cooler removes			
			heat from alternator closed air			
			circulation cooling system			
			Cooled by TRCLCW system.			
,			coored by rocech system.			
D.	GENE	ERATOR	ISOLATED PHASE BUS DUCT COOLING	9	6	6
	<u>SYS</u>	TEM				
	1.	Isol	ated Phase Bus Duct Cooling System			
ι.		a.	Each phase from generator to			
			transformer is enclosed in two			
			separate ducts referred to as			
			the isolated phase bus duct.			
		b.	Two 100% capacity, forced draft,			
			cooling units, cooling water			
			supplied from TBCLCW system.			
	2.	Cool	ing Units	м		
		a.	Cooling unit consists of fan,			
			cooling coil section, motor-			
			operated inlet damper and a			
			back draft discharge damper.			
		b.	Normally, one unit fan is running;			
			other in standby. Air cooled by			
		·	TBCLCW.			
	3.	Flow	Path			
		a.	Air flows from cooling unit to			
1			center phase of bus duct. Air			
			travels in both directions along			
			center phase. Splits and flows			
			through crossover ducts to			
			other two bus ducts. Air returns		k	
			toward cooling unit through other			
		ł	two ducts.			
	0 /	· •	N2-OLP-46 -12 December 198	8		
	ops/55	02				

I

· · ·

• •

¢.

VI. <u>LES</u>	<u>SON C</u>	<u>ONTENT</u>	Text Ref. <u>Page</u>	Text Ref. Fig.	<u>SL0</u>
		b. Return air ducts tap off the oute	r		
		two bus ducts above the cooling			
		unit and connect to the commom			
•		return air plenum.			
III. <u>INS</u>	TRUME	NTATION, CONTROLS AND INTERLOCKS	9		
Α.	The	following <u>instrumentation</u> is located			
	in	the control room on panel 2CEC-PNL852:			
	1.	Main Generator Field Current, dc			
•	•	ammeter, scale 08,000 dc amps,			
		indicates Main Generator field			
		current.			
	2.	Main Generator Field Volts, dc			
		voltmeter, scale 0-600 dc volts,		ų	
,		indicates Main Generator field	1		
		voltage.			
	3.	Voltage Regulator Amplidyne Meter	10		
		(Boost-Buck), dc voltmeter, scale			
		-10/0/+10 dc volts, indicates		11	
		differential voltage between the			
		auto and manual voltage regulators.			
	4.	Main Generator Current Ph. 1-3 ac			
		ammeter, scale 0-45 ac kiloamperes,		1	
		indicates Main Generator phase			
		current (one meter per phase).			
	5.	Main Generator Megavars, varmeter,			
		scale 1500-0-1500 ac megavars			
		marked to GEN on left and TO BUS			
		on right, indicates Main Generator			
-		reactive power.			

 Main Generator Megawatts, wattmeter, scale 0-1,500 ac megawatts indicates Main Generator output power.

N2-OLP-46 -13 December 1988

.

10

Unit 2 Ops/552

. . --> >

.

•	Text	Tex
	Ref.	Ref
	<u>Page</u>	Fig

t

SLO

VI. LESSON CONTENT

- Main Generator Frequency, frequency meter, scale 55-65 Hz, indicates main generator line frequency.
- Main Generator Frequency Chart Recorder, scale 55-65 Hz, Esterline-Angus recording frequency meter, single channel for Main Generator frequency.
- Main Generator Kilovolts, ac voltmeter, scale 20-30-kV, indicates Main Generator phase-to-phase voltage.
- 345kV line Main Generator Volts, Esterline-Angus recording voltmeter. Channel 1 records 345-kV line voltage (0-875kV) and Channel 2 records Main Generator phase-to-phase voltage (0-30kV).
- B. The following <u>control switches and posi-</u> <u>tion indicators</u> are located in the control room on Panel 2CEC-PNL852:
 - 41ECS-2EXCX03, control switch for 2GMS-G1 exciter field breaker (41E).
 - 41MCS-2EXSX03, control switch for 2GMS-G1 field breaker (41M).
 - 43CS--2EXSX03, control switch for selecting manual or automatic generator voltage regulation.
 - 70CS-2EXSX03, control switch for adjusting the exciter DC voltage regulator.
 - 90CS-2EXSX03, control switch for adjusting the exciter AC voltage regulator.

N2-OLP-46 -14 December 1988

Unit 2 Ops/552

· · ·

.

.

. .

.

~

VI. <u>LES</u>	SON C	ONTENT	Text Ref. <u>Page</u>	Text Ref. Fig.	<u>SLO</u>
с.	<u>Sta</u>	tor Ground Fault	11		
	1.	Stator neutral is normally close to ground potential through a high impedance grounding transformer.			
	2.	Single fault may not cause immediate damage but stator has tough, high voltage insulation so a ground fault may be indicative of a larger, more serious problem. Second fault could cause serious damage.		,	
	3.	Stator ground fault relay will trip unit (simultaneous trip) if single fault occurs.	11		
D.	Sta	tor Phase-to-Phase Fault			
4	1.	This is an electrical fault between			•
		any two phases of Armature.			
	2.	It is very serious due to the potential for very large current flow			
	3.	Protected by the generator differential protective relay, will trip generator			
ε.	<u>Ove</u>	rvoltage			
	1.	Permissible voltage limits are listed in the Generator Instruction Book. Also found in Generator Operating Procedure.			
·	2.	Extended operation at overvoltage condition leads to excessive heating in stator caused by I ² R losses. May damage insulation.			
	3.	If voltage regulator fails, overvoltage relay will protect the generator and exciter			

N2-OLP-46 -15 December 1988

ł

• ,

ŧ

•

,

. .

VI.	LESS	ON CO	NTENT	Text Ref. <u>Page</u>	Text Ref. Fig.	<u>SL0</u>
	F.	<u>Over</u>	<u>-volts per Hertz</u>	11		
		1.	Volts per hertz means percent voltage			
			divided by percent frequency			
		2.	Proportional to flux in the generator			
			and step up transformer cores.			
			Excessive flux may cause overheating.			
		3.	May be caused by regulator failure,			
			load rejection, or manual regulator			
			operation with a turbine trip.			
		4.	Dual level protection (on or off line)			
			trips within 2 seconds at 118% or 30	1		
			seconds at 110% to 118%.			
		5.	Will trip immediately on load reject .			
			at 110% if regulator in manual			
	G	Fiel	, d. Ground			
	ч.	1	Field is isolated from ground so			
		••	single ground fault will not usually			
		2.	Presence of the first ground makes the			
		2.	second fault difficult to detect. The			
			second ground may cause extensive damage	· _		
		3.	Field Ground Protective Relay will trip	•		
			generator on single field ground fault.			
	н	1055	of Excitation and Loss of Sunchronism	12		
		1	Results in operation of generator	12		
		••	as an induction motor		ł,	
	I.	2.	May cause severe overbeating and			
			pulsating rotor torque leading to			
			electrical and/or mechanical damage			
		3.	Protected by loss of excitation relays		i.	
			and Out-of-Step Relays which trip			
			generator.			
			N2-OLP-46 -16 December 1988	8		
Uni	t 2 Oi	ps/552	2			

n × • -

Text	Text
Ref.	Ref.
<u>Page</u>	Fig.

I. <u>Gen</u>erator Motoring

VI. LESSON CONTENT

- Occurs when steam flow to the turbine is lost with generator on line.
- Generator operates as a sychronous motor driving the turbine (with Excitation)
- If generator motoring occurs as a result of a failure to complete a sequential (generator and turbine) trip, protection from the fault is lost.
- If excitation is also lost, generator acts as induction motor and may be damaged by high slip-frequency currents.
- Protected by antimotoring relay and directional power relay. A 30 second T.D. prevents false trips.

J. <u>Unbalanced Armature Currents</u>

- 1. Caused by an unbalanced load such as an open in a single phase.
- 2. Results in excessive heating due to negative sequence current.
- Protected by Reverse Phase relay which trips generator on unbalanced armature current or negative phase sequence.

N2-OLP-46 -17 December 1988

Unit 2 Ops/552

.

. . .

,

.

•

.

.

I. <u>LES</u>	SON C	ONTENT	Text Ref. <u>Page</u>	Ref. Fig.	<u>SL(</u>
к.	Acc	idental Energization			
	1.	If generator is energized at standstill			
		or reduced speed, it will behave and			
		accelerate as an induction motor.			
	2.	This may result in high currents and rapid damage.	12		
	3.	Protected by phase instantaneous over-			
		current relay and unit online relay.			
	4.	If overcurrent conditions occurs with			
		online relay denergized, an instan-			
		taneous trip of generation lockout			
		relays will occur.			
v.' <u>śys</u>	TEM O	PERATION			
Α.	<u>Sta</u>	rtup Operation		'n	5
	1.	H ₂ system maintains 75 psig H ₂			
		in generator with Seal Oil System			
		in operation.		•	
	2.	TBCLCW is supplied to H ₂ coolers.			
	3.	Stator Cooling Water System is in			
		operation.			
	4.	All electrical lockout relays	13		,
		reset.	v		
Β.	Norr	nal Operation			
	1.	With generator at rated speed and			
		field flashed, either regulator will			
		vary generated voltage if it is			
		selected (AC should be used).	1		
	2.	Once loaded, use AC regulator to			
		vary VARS as requested by load			

Unit 2 Ops/552

Ŧ

÷

•* • . . . , . • . 3 P • • ۴ 1 9

•

.

/I. <u>LESSON C</u>	ONTENT	Ref. <u>Page</u>	Ref. Fig.	<u>SL</u>
3.	 Generator capabilities curve a. Curve AB limited by field heating due to large field current. Since field is H₂ cooled, limit varies with H₂ press. b. Curve BC limited by armature heating. Although bars are water cooled, stator punchings are H₂ cooled. Limit varies with H₂ press. c. Curve CD limited by stator end 	13	· · · · · · ·	
4.	 heating grid stability limits may be reached first. The AC regulator is operated with the feedback signal controlling the regulator. This enables the regulator to respond to system transients. The 	14		7
5.	limiting signals are set for a generator with a full complement of hydrogen and stator coolers in service. Paralleling prerequisites a. Voltages match b. incoming frequency slightly higher			a
6.	c. proper phase relationship Following synchronization, the operator varies real load with the turbine load set control and reactive load with the voltage control			
7.	Load set varies steam flow to turbine. When generator load equals steam flow available, the bypass valves will be shut. Load is then limited by the reactor's ability to supply steam.	14		

 \boldsymbol{v}_{i}

, · · **·** · . . . X ì

,

· • ,

-

٩

. •

VI. <u>LESSON CC</u>	<u>NTENT</u>	Ref. Page	Ref. Fig.	<u>SL0</u>
8.	The unit can be tripped from any load but in all cases it is preferred to reduce load gradually and trip the circuit breaker a few seconds after the turbine is tripped.			
 C. <u>Volt</u> 1. 2. 3. 4. 5. 	 age Variations Rated KVA at 95% and 105% voltage If lagging power factor reduce KVA proportionally with volt. (i.e. 90% KVA at 90% volt) If leading power factor, reduce KVA by square of percent voltage (i.e. 81% KVA at 90% volt) This limit prevents generator instability. Operation above 105% rated voltage is avoided because: 1. Stator punching insulation may break down 2. Insulation gaps may not be sufficient 3. Higher field current may cause rotor overheating. 	15		
D. <u>Freq</u> 1. 2.	Jency Variations Turbine is limiting factor Hi/Lo frequency may cause blade damage.			
linit 2 Ons/552	N2-OLP-46 -20 December 198	8		

ŧ

, , r • • • . . , •

.

VI.	LESSON_CONTENT	Page	Ref. Fig.	<u>SLO</u>
۷.	SYSTEM INTERRELATIONS	16		5
	A. <u>Generator Stator Cooling</u>			

- 1. The Stator Winding Cooling system supplies cool deionized water to cool the generator stator and static field rectifier. Reduction in the cooling capability of this system limits the amount of power the Main Generator can safely generate.
- 2. Total loss of stator cooling results in a runback of the Main Turbine and generator to the no flow limit (7006 amps).
- Β. Hydrogen Cooling and CO₂ Purge System The Generator is cooled by H₂ gas circulated around the stator punchings and rotor windings. The H₂ is circulated by shaft driven fans and cooled by Turbine Building Closed Loop Cooling Water. Because of the explosive nature of H₂ in air, a CO₂ purge system is used to displace the H₂ in the generate when maintenance needs to be done on the system.

Hydrogen is supplied through the H₂ supply system from banks of H₂ bottles. CO₂ is supplied from the Cardox unit of the fire protection system.

Reduction in H₂ pressure in the generator reduces the heat removal capability of this system and thus limits the allowable generator load. Loss of one H_2 cooler reduces load carrying capability to 80%. The generator should be taken off line if H₂ pressure falls below 30 psig.

> N2-OLP-46 -21 December 1988

Unit 2 Ops/552

, °

. . .

• •

,, e

VI	. <u>LES</u>	SON CONTENT	Text Ref. <u>Page</u>	Text Ref. Fig.	<u>slo</u>
	C.	<u>Hydrogen Seal Oil System</u> The Hydrogen Seal Oil system supplies sealing oil to the generator "end shields" at a pressure sufficient to oppose the H ₂ pressure in the gener- ator and prevent it from escaping. Loss of seal oil pressure will allow H ₂ pressure to decrease due to leakage from the generator	16	•	5
	D.	<u>Turbine EHC System</u> The Generator Electrical System is connected to the EHC System through the generator lockout relays which produces a cross trip to the turbine.			
	E.	<u>Main Turbine Lube Oil System</u> The main turbine lube oil system provides the oil supply for the generator and alternator bearings.			
	F.	<u>Turbine Building Closed Loop Cooling</u> <u>Water System</u> The TBCLCW System provides cooling water for the generator hydrogen coolers, alternator air coolers, and isolated phase bus duct coolers.	,		
VI.	<u>DETA</u> Revi docu A. <u>T</u> N	ILED SYSTEM REFERENCE REVIEW ew each of the following referenced ments with the class. <u>echnical Specifications</u> one	17		

N2-OLP-46 -22 December 1988

Unit 2 Ops/552

1

ፋ

٠

.

• ۶.

ç

,

· · · à x . .

r . •

• • • • · · · на стана На стана с На стана с

1

.

VI.	<u>LESS</u>	LESSON CONTENT				Ref. Fig.	<u>SLO</u>	
	Β.	Proc	<u>edures</u>				., 8	
		1.	N2-OP-24	Generator Isolated Phase				
				Bus Duct Cooling				
		2.	N2-OP-68	Main Generator, Exciter,				
•				Main Transformer, 345				
				KV yard, and Generator/Unit				
				Protection.		ł		

4

VII.RELATED PLANT EVENTS

A. Refer to Addendum "A" and review related events with class (if applicable)

VIII.SYSTEM HISTORY

A. Refer to Addendum "B" and review related modifications with class (if applicable)

IX. WRAP-UP

A. Review the Student Learning Objectives

N2-OLP-46 -23 December 1988

Unit 2 Ops/552

N

. . ,

۰ ۰ ۸

· · ·

CURVE AB LIMITED BY FIELD HEATING CURVE BC LIMITED BY ARMATURE HEATING CURVE CD LIMITED BY ARMATURE CORE END HEATING

.

MAIN GENERATOR AND EXCITER

n '

3 ۰**:**

-

r

4

4 , , ,

.

* •