REPLACEMENT OF UNINTERRUPTIBLE POWER SUPPLY (UPS) 2VBB-UPS1C AND 2VBB-UPS 1D

Prepared By:
 $\frac{-3-13-71}{\text { Date }}$

Approved By:
 $\frac{3 / 13 / 91}{\text { Date }}$

General Supervisor NMP2 Design

$$
\begin{aligned}
& \frac{\text { APPID 3/2.51al }}{\text { REFEGR TO LETFER. }} \\
& \text { 4/5/91, TEC ITREVIFCN } \\
& \text { COMMITTEE MEETING } \\
& \text { MiNVTGS of } 3 / 25 / 9 \text {, }
\end{aligned}
$$

000287XX

TABLB OF CONTRNTS

1.0 Objective and Description of Modification.2.0 Conceptual Engineering Document Index
1.1 Uninterruptible Power Supply (UPS) components 2VBB-UPS 1C (Bus 1C) and 2VBB-UPS 1D (Bus 1D) are each rated at 75 KVA and each power portions of both the Essential Lighting System and the Plant Communication System (Gaitronics, strobe lights, dial telephone system and page party/public address system).
1.2 Both Buses have run, for extended periods of time, in excess of their full load rating of 60 KW . There have been multiple trips, in each, due to internal heat caused by overloading. It is felt that each of the units have undergone some degree of heat degradation that compromises their 40 year life.
1.3 Additionally, these components are a hybrid design. As a resultant:
a) There are no maintenance manuals for the units. Accordingly, maintenance and/or troubleshooting is difficult.
b) Spare parts are not readily available and, in turn, this causes extended downtime.
1.4 Both buses have an impact on personnel safety for the following reasons:
a) Plant emergếncy alarms and evacuation signals (as well as follow-up instructions on the Public Address System) are powered by the UPS.
b) The Dial Telephone System for communications between selected office areas and selected locations inside and outside the station (local fire department, local law enforcement authority) is powered by the UPS.
c) Communications between the Control Room and other plant areas as well as accountability of on site personnel are dependent on UPS.
1.5 The objective of this Conceptual Engineering Package (CEP) is to provide the corrective actions and/or alternatives that will improve plant operability, system reliability and improve personnel safety. Additionally, there will be reserve capacity to accommodate future load requirements.

The proposed design offers two corrective actions and, if required, two additional options:
a) Due to the unreliability of Bus 1C and 1D (as well as there not being a maintenance manual, delays in obtaining spare parts, accelerated aging, etc.), they will be changed out with new, state-of-the-are 75KVA UPSs (since the new UPSs will be standard, there will be available spare parts, maintenance manual, etc.).
b) A load shed evaluation will be performed which will evaluate existing loads and all working and potential loads to be powered by UPS 1C and 1D. The objective of this activity is to both eliminate any potential for future overloading as well as provide the capability of accommodating any future loads requiring UPS.
c) If the evaluation shows that loads (existing and potential) can be reduced $>30 \%$, than the mod will be limited to the changeout of the 75KVA UPSs (Item 1.5.a).
d) If the evaluation shows that loads can be reduced <30\%, than the design will be supplemented with one of the following two options:

Option 1

The addition of 1 - 50 KVA UPS whose output would be split to both the Bus 1C and 1D distribution panels.

Option 2

The addition of 2 - 25 KVA UPSs (1 each dedicated to Bus 1 C and 1D).

CONCBPTUAL ENGINBERING DOCURENT INDBX

MOD. TITLE: RBPLACB 2VBB-UPS 1C \& 2VBB-UPS 1D
MOD. CONTROL NO.: N2-89-042
** DOCUMRNTS ATTACHBD **
ITEH NO.DOCUMBNT TITLB
REVISION

1. ELECTRICAL CONCEPTUAL DESIGN INPUT 00
2. MECHANICAL CONCEPTUAL DESIGN INPUT 0
3. STRUCTURAL CONCEPTUAL DESIGN INPUT 0
4. ALARA BENEFIT AND IMPACT REPORT 1
5. DESIGN INPUT MOD N2-89-042 (FIRE PROTECTION) 0
6. QA CONCEPTUAL DESIGN INPUT 0
7. ENVIRONMENTAL QUALIFICATION CEECKLIST 0
8. CONCEPTUAL LICENSING INPUT 0
9. MATERIAL AND EQUIPMENT LIST 0 (MAJOR COMPONENT/LONG LEAD ITEMS)
10. IMPACTED DOCUMENT LIST 0
11. ENGINEERING OVERVIEWS \& SKETCBES 0
12. PROJECT COST ESTIMATES (3) 0
13. MASTER SCHEDULE 0
14. hODIFICATION TEAM ASSIGNMENTS 0
\square

PROJECT TITLE: Replace 2VBB-UPS1C and 2VBB-UPSID

REVISION/DATE:

PREPARED BY/DATE:

03/11/91
Date
$\frac{3-i 1-91}{\text { Date }}$
3-11-71
Date

OBJECTIVE: The plant normal Uninterruptible Power Supply System (UPS) 2VBB-UPSIC and 1D are currently loaded to their full capacity of $75 \mathrm{KVA} / 60 \mathrm{KW}$ and have been subjected to overloaded condition in the past. Because these UPS's have extented maintenance outages, they are not reliable and require replacement. This modification will:
1.0 Replace the subject 75KVA/60 KW UPS's with new state of the art UPS's of the same size
2.0 Perform a load study of the existing loads on these two UPS's and determine the loads (that do not require UPS power) for possible load shedding.
$3 / 219112$
3.0 If the load shedding evaluation concludes that greater than item 1.0 above will only be implemented by procuring and installing two new state of the art $75 \mathrm{KVA} / 60 \mathrm{KW}$ UPS units to replace the existing units. In addition design changes are required to transfer the sheddable loads to Normal power.
4.0 If the load shedding evaluation concludes that less than 30% of the loads can be shed, action will be taken to procure and install additional UPS units (s). In addition design changes are required to transfer the sheddable loads to Normal power.

NEL-400-1
page 1
; :

DESIGN CRITERIA ELECTRICAL:

1.0 Design Criterion: System and Scope of change
1.1 Input: Change affects system "VBB" and the scope of
change involves the following:
a) Replacing 2VBB-UPS1C and 1D with new units of the same size.
b) Recalculating the loading on batteries 2BYS-BAT1A and 1B and battery chargers 2BYS-CHGRIA1 and 1B1.
c) Verification of 125 V DC feeder cabling for ampacity, short circuit and voltage drops based on the manufacturer's data for the new UPS units.
d) Verification of 600V AC and 208/120V AC feeder cabling for ampacity, short circuit and voltage drops based on new vendor information.
e) Verification of ratings of protective devices associated with UPS 2VBB-UPSIC and 1D.
f) Verification of ratings of all electrical equipment associated with UPS 2VBB-UPSIC and 1D.
g) Evaluate by walkdown the feasibility of installing the new UPS units in Normal Switchgear room Elevation 237'-0".
h) Evaluate the adequacy of HVAC system to the heat release by new UPS units.
i) Evaluate the structural impact due to the weight of new UPS units.
j) Walkdown and determine the actual loads on UPS 2VBB-UPSIC and 1D, prepare panel schedule for each panel fed from these UPS's and issue the panel schedules.
k) Evaluate if the loads fed from these UPS's do really required to be powered by UPS and if not list the loads for possible load shedding.

1) If the estimated load shedding loads is is less than 30% of the anticipated total UPS loads, procure and install additional UPS unit(s).
m) Evaluate normal power availability and transfer sheddable UPS loads to normal power supply.

1.2 Basis: Modification PN2Y89MXO42

2.0 Design Criterion: Functional Requirements
2.1 Input: The UPS is normally fed from its normal AC source. In case of loss of normal AC source, the UPS is automatically fed from the backup DC source. In case of any fault in the inverter, the UPS loads are fed from the maintenance bypass AC source. The UPS output voltage is maintained within +-2 percent of $120 / 208 \mathrm{~V}$, and the output frequency is maintained within +-0.3 Hz of 60 Hz . The output voltage harmonic content will not exceed 5 percent of the fundamental. The transfer of load from normal AC to maintenance bypass AC in case of inverter trouble is automatic and is accomplished by a make-before-break static transfer switch so that no interruption of supply to UPS loads occurs due to such transfers. Each UPS system has a maintenance bypass circuit that enables servicing of either the static transfer switch or the rectifier inverter without affecting the UPS output. Ensure that the new UPS units are adequately loaded to prevent future trips of these units due to overloading.
2.2 Basis: FSAR Section 8.3.1.1.2 and NMP2 Spec.E-147.
3.0 Design Criterion: Safety Classification
3.1 Input: The-UPS 2VBB-UPSIC and 1D are non-safety related and are-not required for safe operation or safe shutdown of the plant.
2.2 Basis: FSAR Sections 8.3.1.1.2, 8.3.2.1.3, 9.5.2.4 and 9.5.3.3.
4.0 Design Criterion: Quality Assurance Requirements
4.1 Input: None required.
4.2 Basis: FSAR Table 3.2-1
5.0 Design Criterion: Environmental Qualification Requirements
5.1 Input: None required.
5.2 Basis: Refer to design criterion 3.0 above.
6.0 Design Criterion: Seismic Qualification Requirements
6.1 Input: None required.
6.2 Basis: Refer to design criterion 3.0 above.
7.0 Design Criterion: Electrical Requirements
7.1 Input: a) Power Supply - UPS 2VBB-UPS1C and 1D 1. are normally fed from 600V panel 2LATPNL300 and 600V MCC 2NHS-MCC006 respectively.
2. receives Maintenance bypass power from 2NJS-US5 and 6 respectively through their respective $600-208 / 120 \mathrm{~V}$ low voltage and regulating transformers.
3. receives backup power from 2BYS-SWG001A and 1B respectively.

Verify the adequacy of existing electrical equipment associated with UPS 2VBB-UPSIC and 1D by revising or evaluating the impact of this modification on the following electrical calculations.
a) EC-032
b) EC-044
c) EC-045
d) EC-111
e) EC-114
f) EC-118
g) EC-123
h) EC-046 if required
b) Raceway - Any new cables required for this modification should be run through existing cable trays, existing conduit or new conduit. Cable tray loading criteria provided in Table 8.3-7 of USAR should be followed. For conduit fill, fill criteria provided in National Electrical Code should be followed.

Determinating existing raceways from existing UPS and terminating the raceways on the new Ups should be performed in accordance with the requirements of spec. E061A.

;

$$
* \quad ; i
$$

\cdot
c) Cable - Verify the adequacy of existing cables by revising and or evaluating the impact of on the following NMP2 electrical calculations.

1. EC-049
2. EC-100
3. EC-111
4. EC-130
5. EC-131
6. EC-143

If the modification requires addition of new cables, its adequacy with respect to ampacity, short circuit and voltage drops should be established. Determinating the existing cables from the existing UPS and terminating cables on new UPS should be performed in accordance with the requirements of spec. E061A.
d) Motors- Not applicable.
e) Termination - Same as 7.1.c above.
f) Protective Devices (Relays, Fuses, and Breakers) - Verify the adequacy of existing protective devices.
g) Electrical Penetrations - Not applicable.
h) Grounding - Verify the adequacy of existing grounding cables for the equipment grounding of new UPS units. Determinate the equipment grounding cables from the existing equipment and terminate on new equipment in accordance with the requirements of NMP2 Spec. E061A.
i) Others (General)- New UPS units and should be located as for as possible near the location of existing equipment so that minimum amount of design changes result. A field walkdown should be performed prior to the issue of change documents to ensure the installation of new units can proceed with minimum disturbance to the equipment located inside Normal Switchgear Room. Removal of existing equipment and installation of new equipment should be performed in acccordance with the requirements of NMP2 Spec. E061A.
7.2 Basis: FSAR Sections 8.1 thru 8.3.
8.0 Design Criterion: Other Discipline Requirements
8.1 Input: a) Mechanical - Required. b) Structural - Required.
8.2 Basis: In accordance with Procedure NEL-400
9.0 Design Criterion: Instrumentation and Control Requirements
9.1 Input: a) Instruments - Not requiredb) Controls - Ensure the changes meets therequirements of themodification request.
c) Alarms - Ensure that existing alarms onUPS 2VBB-UPSIC and 1D arereconnected back on to thereplacement UPS units. Inaddition if new UPS unit(s)added, alarms to annunciate UPStrouble and UPS on DC power needto be included as part of thismodification.
d) Set Point Data Sheets - Not required.
9.2 Basis: NMP2 Spec. E-147
10.0 Design Criterion: Redundancy, Diversity, and Separation Requirements
10.0 Input: Ensure during the design process that there are no electrical interconnection between 2NJS-US5 and US6.
10.2 Basis: FSAR Sections 1.8, 8.1, 8.2, 8.3, Regulatory Guides 1.6 and 1.75, IEEE Standard 383-1974.
11.0 Design Criterion: Failure Effects Requirements
11.1 Input: None required.
11.2 Basis: FSAR Sections 1.8, 15.0, and FMEA Volumes, Regulatory Guide 1.53.

12.0 Design Criterion: Testing Requirements

\(\left.$$
\begin{array}{rl}12.1 \text { Input: a) Pre-operational - } & \begin{array}{rl}\text { Perform all pre- } \\
& \text { operational testing to } \\
& \text { ensure the system }\end{array}
$$

operates as designed.\end{array}\right\}\)	(b) Periodic -Develope testing procedures to periodically test the non- safety related UPS units.
c) In Service Inspection - N/A	

12.2 Basis: NMP2 Spec.E-147
13.0 Design Criterion: Human Factors
13.1 Input: Replacing existing $75 \mathrm{KVA} / 60 \mathrm{KW}$ UPS with UPS of the same size will not impact control room panels. However if after load shedding evaluation, additional UPS unit(s) is added, alarms to annunciate the UPS trouble and UPS on DC power will be added to control room annunciator panels.
13.2 Basis: Changes to control room panels will be in accordance with the guidelines and conventions of Human Factors Manual.
14.0 Design Criterion: Fire protection Requirements
14.1 Input: Existing UPS units are replaced with the same capacity units and new UPS and cables may be added. Evaluate the need to revise combustible loading in Normal Switchgear Room.
14.2 Basis: FSAR Sections 9.5.1, and Appendices 9A and 9B.
15.0 Design Criterion: Installation Requirements
15.1 Input: All work to be performed in accordance with the requirements of NMP2 Spec. E061A.
15.2 Basis: Engineering requirement.

16.1 Input: The following maintenance procedures should be revised or new procedures developed to include the maintenance requirements specified for the new and or replacement UPS units.
a) N2-EMP-GEN-624
b) N2-EMP-VBA-623
c) N2-IMP-UPS-0001
d) N2-ESP-BYS-W001
16.2 Basis: NMP2 Spec.E-147 and Vendor maintenance manual.

17.0 Design Criterion: Other Requirements

17.1 Input: Installation of new UPS and/or replacement of the existing UPS will improve the reliability and maintainability of the subject UPS power supplies.
17.2 Basis: This modification
18.0 Design Criterion: Appendix R requirements
18.1 Input: Not applicable
18.2 Basis: Safe shutdown equipmeint list in Appendix 9B of USAR.

Nuclear Design - Mechanical

 Conceptual Design Input
Modification Number: PN2Y89MX042

Modification Title: Replace 2VBB-UPS1C and 2VBB-UPS1D
Revision: \qquad Date: \qquad
Prepared By:

\qquad Date

Revieved By:

Objective:

Replace UPS units 2VBB-UPS1C and 1D with more efficient and reliable units. Reduce overloading of $2 \mathrm{VBB}-U P S 1 C$ and $1 D$ by removing loads that do not require UPS power.

Design Criteria:

1.0 Design Criterion: Mechanical - General

1.1 Input:

The Normal Switchgear HVAC System shall be evaluated to be able to accommodate any revised heat loads generated by the new UPS equipment such that room temperature does not exceed $104^{\circ} \mathrm{F}$.
1.2 Basis:

USAR Table 9.4-1.

000433MM
:•

i

NUCLEAR DESIGN

DESIGN CHANGE TITLE:

DESIGN CEANGE NO.:

REVISION/DATE:

PREPARED BY/DATE:

REVIEWED BY/DATE:

OBJECTIVE:

Replace 2VBB-UPS1C \& 2VBB-2UPS 1D

PN2Y89MX042

$3 / 1 / 4 / 4$

$\frac{3 / 1 / 5 /}{\text { Date }}$ Structural Designer/Engineer

Structural Design - Unit 2

This modification will add state of the art UPS's that will have spare capacity for transient loads and loads growth. The new units will improve maintainability and operability.

The specification and codes considerations are the following:

The AISC Code 8th Edition shall be used for all structural steel design.

The AWS Code AWS D1. 11977 shall be used for all welding.

The ACI 301 Code latest edition shall be used for all concrete.

Painting shall be in accordance with Specification S207M.

All new and existing penetrations to be sealed per Specification P306C.

Equipment support consideration are the following:

:

New or existing penetrations will be utilized to accommodate the additional 4-6 cables per 25 KVA units. New conduit supports will be required for additional conduit runs per new 25 KVA units.

The new UPS's weight and center of gravity will be determined as part of its design calculation.
Based on the structural attachments and the configuration of the new UPS's units, any new embedments, structural supports and bolted connections will be designed accordingly.

General Issues
Codes and Standard - AISC, AWS, ACI
All interdiscipline drawings and vendor drawings (including structural supports/lifting attachments) shall be subject to the approval of Supervisor, Structural Design - Unit 2.

The USAR figure 1.2-32 addresses the general arrangement of the Normal Switchgear Building. Input to the safety evaluation (SER).

Constructability
Route to bring the new UPS's into the areas shall be considered during design.

The new UPS's assemblies will be sized to enter the Normal Switchgear Bldg. and lifted by crane from elev 261'-0" through the hoist space.

Impacted Document List - Structural

Description

Foundation plan EL 237'-0", 249'-0", EC-58CA 250'-0" Normal Switchgear Building

Sections and Details EC-58CD
Normal Switchgear Building
Arrangement. - All details EE-38P
Normal Switchgear Building
EL 237'-0"
Penetration location drawings \quad EE-037 Series (approximately 5)

Meeting the above listed design input will ensure that previous plant commitments are met.

000366 EE

000646LL
Project Title: N2-89-042 Replace 2VBB-UPS 1C \& 2VBB-2UPS 1D Rev. 1
A. PROJECT DESCRIPTION

An ALARA Benefit and Impact (ABI) review of the above referenced design change has been completed. The purpose was to review the expected impact upon worker and public exposures, examine the benefit relative to exposure impact, and identify ALARA issues that may be encountered during the design phase. Project information was obtained from the project file and discussion with Marty Ritzner, Project Engineer assigned to the design change.

On April 13, 1989, NMP2 experienced a plant scram due to a turbine trip, the root cause for this event was determined to be loose wire connections in the main generator P.T. Cubicle in circuit 2SPG203. During this event 2VBB-UPS 1D tripped and was described in LER 89-014 as follows: "Uninterruptible power supply 1D (UPS-1D) tripped due to an overload condition. This resulted in a loss of approximately one half of the gaitronics system in the plant, a total loss of the gaitronics in the Control Room (affecting communication with the plant operators outside the Control Room) and a partial loss of emergency lighting".

Subsequent to the above, Mod. 87-038 added numerous communication equipment which required powering from both UPS 2VBB-UPS 1C (BUS 1C) and 2VBB-UPS1D. It was during the development of Mod. 87-038 that it became evident that BUS 1C is overloaded also. Temp. Mod. 90-057 unloaded some of BUS 1D to accommodate part of Mod. 87-038. However, BUS 1C could not be unloaded.

Therefore, those items of Mod. 87-038 requiring power from BUS 1 C cannot be completed until Mod. 89-042 is Ops accepted.

This modification will install state of the art UPS's that will have adequate spare capacity for transient loads and load growth.

B. \quad YORKER-EXPOSURR

All work will be performed outside of the radiologically restricted area.

Unnecessary collective dose exposure of workers to sources of radiation will not occur as a result of the design change as it is currently reviewed. Neither installation nor consequent actions of the design change will result in unnecessary worker exposures as identified in NRC Reg. Guide 8.8-Section B.
C. RADIOACTIVE EFFLUENTS

Effective design of facilities and selection of equipment for systems that contain, collect, store, process, or transport radioactive material in any form will contribute to the effort to maintain radiation doses to station personnel ALARA.

The proposed design change will not result in a significant increase of previously identified station radiological effluents or affect effluent isotopic characteristics.

An increase in radioactive effluents as defined in NRC Reg. Guide 8.8 Section C will not result from the implementation of this design change.
D. CONTAMINATION LEVELS

Exposure of station personnel can be reduced by minimizing the unnecessary formation of deposits of radioactive material and by designing or modifying equipment to minimize locations where radioactive contamination can deposit and accumulate.

An increase in contamination levels as defined in NRC Reg. Guide 8.8 Section C will not occur as a result of the implementation of this design change.
E. PLANT OPERATIONS AND SAFETY

Implementation will meet a commitment on LER 89-014 as well as enable Mod N2-87-038 to be completed and operable. The new units will improve personnel safety, maintainability and operability.

F. DESIGN ALTERNATIVES

The project description and design change have been reviewed.
No additional design alternatives are required to be implemented for ALARA. This review is consistent with the position identified in NRC Reg. Guide 8.8-Section D and 10 CFR Part 20 paragraph 20.1(c).
G. COST/BENEFIT ANALYSES

In order to facilitate monetary comparisons with other projects, an ALARA exposure reduction value has been approved as $\$ 8,000$ per Man-Rem saved. This value appears in NDMP-10 and has been approved by NMPC Nuclear Division senior management.

No additional design change is required for ALARA. The costeffectiveness principle of maintaining occupational exposures As Low As Reasonably Achievable (ALARA) is not applicable to this design change consistent with NRC Reg. Guide 8.8-Section D and 10 CFR 20 paragraph 20.1(c).
H. POST-ACCIDENT SOURCES

This design change will not produce post-accident radiation fields which would unduly limit personnel access to areas necessary for mitigation or recovery from an accident.
:

$$
;
$$

I. ALARA REVIEH EXEMPTIONS

Exempt from further ALARA design review given the current design. If during the design process the project team or engineer determines that the design or work scope has changed, the Corporate Health Physicist will be notified by the Project Engineer in compliance with NT-100.A ALARA/Radiation Safety Design Guide per section 6.1.2.

R. J. Cazzolli (Lead - Corporate Health Physics) Preston Swafford (Radiation Protection Mgr. - NMP) W. R. Aiken (ALARA Supervisor NMP-2)
-
4.
:
*
\because
-

FROMR. C. Beller
M. A. Ritzner

DISTRICTNuclear Division
date February 26, 1991 file CODE SM-CS91-0526
SUBJECT Design Input MOD $n 2-89-042$.
Replace 2VBB-UPS $1 \mathrm{C} \&$
2VBB-UPS 1D

As long as all work associated with this modification is being performed in the Normal Switchgear Building, 237 General floor Area - East, Fire Area 52 (Fire Zone 602XL), there is no fire protection input for this mod.

This is based on the following fire protection features and the apparent extent of the proposed modification:

- The area has total flooding $C O 2$ protection;
- The area is bounded by three hour rated walls and floors which contain no unrated/deviated features;
- The new UPS units are not significantly (more than 100\% larger) than the units they are replacing; and
- The total amount of new cabling will not exceed approximately 1000 pounds.

If any of these items appears to be in error, please let me know immediately.

Adding (or in this case replacing) equipment to an area with automatic fire suppression coverage generally causes no fire protection impact, unless the new equipment causes a new exposure which must be evaluated, or the new fire load exceeds the capaabilities of the fire barriers involved. Since, this modification involves the replacement of existing UPS units with new, larger units, there is no new exposure to be evaluated. If the new equipment and cabling do not exceed the limits assumed above, the total fire loading for the area will remain less than two hours, and the three hour barriers provided remain more than adequate to contain the effects of a fire in the area.
:
,

Page 2

Please note that fire protection must be provided with the size of the new units as well as the amount (weight) of new cabling being added to the room as part of the modification in order to update the fire loading tables (3A) in the Fire Hazards Analysis (USAR Appendix 9A).

Vbbutc. Teller
R. C. Belle

Fire Protection Program Manager
RCB: nee
000538 ZZ
xt: A. Andersen
J. Piontkowski
D. Pringle

NMP-2 PE
Records Management

$$
:
$$

$$
\because
$$

4

OA CONCERTUAL DESIGN INPUT

Project Title: Replacement of Uninteruptible Power Supplies 2VBB-UPSIC AND 2VBB-UPSID.

Modification Number: PN2Y89MXO42

INPUT

This Modification will replace the existing power supplies with larger state of the art UPS's that will have adequate spare capacity for transient loads and load growth.

Work associated with this modification is clássified as Non Safety Related.

Therefore, specific requirements of 10CFR50 Appendix B are not applicable.

BASIS

ESK 10ANN608
ESK 10IHA518
Master Equipment List (MEL)

$$
!
$$

$$
:
$$

"

```
    REVIEWER CHECXLIST TO DETERMINE EFFEET DF OESiGN GHANCES :y
E!EETRICAL ANO MECHANICAL EQUIPMENT REQUIRING ENVIRONMENTAL IUAL:=::A-::Y Page 1 of 3
```

GHANGE DOCUMENT Modification N2-89-042 MOO. Yo. N2-8i.u.:

SPE::F!CATION/DRAWING NO.
SECTION : - GATEGORY OF CHANGES: If the SUDject(s) of all cnanges in the change document are cotally restricted to one or more of the following categories oelow, circle the appropriate category number(s). cneck inis block \square - and proceed to Section III of thls form. If the olock is not checked, proceed to Section Il of this form.

1. Raceway Installation
2. Cable termination, wiring changes exclusive of methods/materials of termination: cable pull
3. Replacement with identical equioment/component at the same location and installed to the original requirements
4. Documentation not related to equipment qualification
5. Restoration of equipment to its original condition/configuration/identical equipment
6. Revision/rerouting/addition/deletion of pipe/tubing/cable/conduit/duct which.does not include QA Category I equlpment in-line or at the terminations
7. Revisions/additions/deletions/reconfiguration of supports which are only supporting pipe/tube/duct/conduit and not supporting equipment requiring qualification
8. Replacement of damaged equipment nameplates or revisions/replacement of Internal wiring identification markings
9.) OA Category II equipmat not requiring quallification (Mote: Reg. Gulde 1.97 Category If equipment requires qualification)

SECTION II: Evaluate any changes not covered by section I by use of the questions below:

1. Does this change affect the location of equipment requiring qualification?
2. Does this change add or delete QA Category I \square yes or \square no equipment. or add or delete equipment requiring qualification?

$$
:
$$

$$
;
$$

3. Does thls enange revise/charge/reolace. in to:al or part. equipment requiring aua;ificatien"
4. Joes this change affect the method/materlal of plestrical termindtion?
5. Joes thls change specify a new or revised cable route?
6. Does this change affect electrical device moisture intrusion seals, e.g., Conax, Rosemont. C. 8isco, etc.. of equipment requiring quallfication?
7. Does this change affect the mounting configuration of equipment requiring qualification.
8. Does this change revise/affect specified design parameters related to equipment qualification (e.g. Environmental, Fluld, Seismic/Hydrodynamic Lodds)?
9. Will this change increase ambient temperature for the general area in which it will be located?
10. Will this change add structural components/barriers that could affect the thermal conditions in the area?
11. Will this change add moisture sources by way of routed plpe, added tank(s), te.?
12. Will this change add radiation sources. increase radiation levels, or change radation shlelding?

\square yes or \square no

SECTION III

1. EO Mot Applicable: If the block in Section I is checked or if all questions in Section II are answered "Mo," an Equipment Qualification is not applicable.
a. Sign off the change document and check the "Mo" block for Selsmic and Environmental qualification.
b. Slgin and date (Section IV) and secure this checklist to the subject change document or to the specification reviev form for specification revision/addendum, (as applicable) and provide to the EQ Reviewer for concurrence signature.
2. Evaluation of Impact: If any one of the questions in section Il is ari:vered "Yes," the EQ Reviewer shall evaluate the change document for s? 1mp: t .
a. Mo Impact: The EQ reviewer will provide a fustification statement with his signature (see section (V), and proceed with section lll
:
;

0 . Impact: If the $E Q$ reviewer concludes that the change document impacts the qualification of equioment, :he EQ reviewer snail sneck Ene "Yes" block for Seismic andor Environmental Qualification and sign/Initial the change document, Initiate an Equioment Jualifica:izn Action Item (EQAI) form, record the EQAI form number on this attachment, and complete Section IV of this attachment. Consecutively number. the EQAI form and forward with a coo y of the change document to the EQ Program Manager.

SECTION IV - SIGNATURES

- projectioesign engineer rory Return Date: 2/15/9.

- NO IMPACT: for use when Section Il has a "Yes" but evaluation by EQ ard Seismic Reviewer determines no impact.

EQ/Seismic \qquad 1 \qquad Date: \qquad 1

Justification for no impact:

IMPACT: for change documents which impact equipment qualification. EQ/Selsmic \qquad 1

Date: \qquad 1 \qquad
EQAI Number/Date

secure this document to the subject change document or specification review form and proceed with signoff

MOTE: a) The Project/Design Engineer shall complete Sections I. II and III.I and shall sign and date Section IV.
b). The EQ and seismic reviewer shall evaluate the change and provide their conclusions/justifications and/or concurrence as appropriate.

$$
\because
$$

;

PLANT Nine Mile Point Unit 2
 DESIGN CHANGE TITLE Replace 2VBB-UPS1C \& 2VBB-UPS1D
 MAJOR ORDER Mod. No. PN2Y89MX042

CONCEPTUAL LICENSING INPUT NO. CLI-088

This report constitutes the mechanism for providing initial Licensing design input. The following is a brief description of the modification:

Due to added loads under Modification 87-038, Uninterruptible Power Supply (UPS) 2VBB-UPS1C (Bus 1C) and 2VBB-UPS1D (Bus 1D) are now overloaded. Modification No. 89-042 will:

1. Replace the subject 75KVA USs with new state-of-the-art 75KVA UPS.
2. A load shed evaluation will be performed to determine which users don't require UPS powering.
A. If the load shed $\overline{>} 30 \%$, only Item 1 will be implemented.
B. If the load shed $<30 \%$, supplementary UPS will be provided.

This report is preliminary in nature and does not necessarily constitute Licensing's final position.

Prepared by:

Approved by:

:

The following items have been addressed for their applicability to this design change:

1. NRC Rules, Regulations, and Orders:

10 CFR 50.63, 10 CFR 50 Appendix A General Design Criteria 17, 18.
2. NMP License \& Technical Specifications (Determine if a change in the Technical Specifications is required and initiate change in accordance with NEL-511).

This change does not impact the NMP2 Technical Specifications.
3. FSAR

Sections 1.2.8 and 8.3.
4. NRC Correspondence:

There is no known NRC correspondence that affects this modification.
5. NRC Guidance; Reg. Guides, SRP, STS, NUREGs, (IENs, IEBs): IEN 88-57, IEN 89-64, RG 1.93, RG 1.155, RG 1.32*, RG 1.75*.
6. Industry Reports (INPO, EPRI, etc.): GE SIL 418^{*} (Rev. 0 \& Rev. 1), IEEE 446, IEEE 493, IEEE 944, IEEE 308*.
7. Safety Classification (including power sources):

This change is not safety-related.

- For information; applies to safety-related components only.

$$
:
$$

$$
\because
$$

8. Heavy Loads: NUREG 0612 considerations should be included in the design: YES . NO

This change does not include heavy loads.
9. Transients, Safe Shutdown, Radiological Releases, FSAR Accidents: None would be affected by this change.
:

MATERIAL AND EQUIPMENT LIST

```
        2 - 75 KVA UNINTERRUPTIBLE POWER SUPPLIES (UPS)
* 1 - 50 KVA UPS
* 1 - VOLTAGE REGULATING TRANSFORMER
* 1 - 35 KVA STEPDOWN TRANSFORMER
* 800 FEET OF 4C/#4 POWER CABLE
* 500 feET OF 9C/#12 INSTRUMENT CABLE
** 2 - 25 KVA UPSs
** 2 - VOLTAGE REGULATING TRANSFORMERS
** 2 - 35 KVA STEPDOWN TRANSFORMERS
** 1600 FEET OF 4C/#4 POWER CABLE
** 1000 FEET OF 9C/#12 INSTRUMENT CABLE
```

$$
\begin{aligned}
* & =\text { OPTION } 1 \\
* * & =\text { OPTION } 2
\end{aligned}
$$

	Impacted Document List	
Discipline	Document Title	Document No.
Structural	Foundation Plan EL 237'-0", 249'-0", 250'-0" Normal Switchgear Building	EC-58CA
	Sections and Details Normal Switchgear Building	EC-58CD
	Arrangement - All Details Normal Switchgear Building EL 237'-0"	EE-38P
	Penetration Location Drawings (approximately 5)	$\begin{aligned} & \text { EE-O } 37 \\ & \text { Series } \end{aligned}$
ELECTRICAL	Listing of all Electrical Impacted Documents are included with Item 11, Engineering Overviews \& Sketches.	

$$
!
$$

'

MOD. \# PN2Y89MX042

CONCEPTUAL ENGINEERING PACKAGE
FOR
REPLACEMENT OF UPS 2VBB-UPSIC AND ID

$$
:
$$

$$
\because
$$

PURPOSE: The plant normal UPS 2VBB-UPSIC and 1D are currently loaded to their full capacity of $75 \mathrm{KVA} / 60 \mathrm{KW}$ and were subjected to overloaded condition in the past. Because these two UPS's have extented maintenance outages, they are not reliable and require replacement. Modification PN2Y89MX042 recommends the following:
1.0 Perform a load study of the existing loads on these two UPS's and determine the loads that do not require UPS power for possible load shedding.
2.0 Procure and install two new $75 \mathrm{KVA} / 60 \mathrm{KW}$ UPS units in place of UPS 2VBB-UPSIC and 1D because these units are unreliable, difficult to maintain and have gone through accelerated aging. In addition if the load shedding study concludes that greater than or equal to 30% of the the existing UPS loads can be shed, transfer the sheddable loads to distribution panels fed from the normal power source. The new $75 \mathrm{KVA} / 60 \mathrm{KW}$ UPS units will be loaded only to 80% of their rated capacities.
3.0 If the load shedding study concludes that only less than 30% of the existing loads can be shed, then the following will be performed:
a) Procure and install two new $75 \mathrm{KVA} / 60 \mathrm{KW}$ UPS units to replace the existing UPs units. The new UPS units will be loaded only to 80% of their capacity.
b) Procure and install either two new UPS units of $25 \mathrm{KVA} / 20 \mathrm{KW}$ capacity or one new UPS unit of $50 \mathrm{KVA} / 40 \mathrm{KW}$ capacity and transfer those loads that require UPS power and can not be fed from the new $75 \mathrm{KVA} / 60 \mathrm{KW}$ UPS units.
c) Transfer those sheddable loads from UPS power to distribution panels fed from normal power source.

BACKGROUND: UPS 2VBB-UPSIC and 1D essentially feeds the plant essential lighting and communication systems loads and these loads are normally energized at all times. In the past, it has been reported that these UPS were overloaded and the degree of degradation to the UPS equipment due to overloading is unknown. In addition, any future loads requiring UPS can not be added to these UPS, unless these UPS are replaced with higher capacity units. It has also been reported that the existing $75 \mathrm{KVA} / 60 \mathrm{KW}$ UPS units are not reliable any more and were recommended to be replaced because of operability and maitainability concerns.

In order to resolve the above concerns, design engineering evaluated the recommended options of this modification as part of this conceptual design engineering package.

DISCUSSION:

UPS 2VBB-UPSIC and 1D are rated for $75 \mathrm{KVA} / 60 \mathrm{KW}$ and receive their DC backup power source from normal station batteries 2BYS-BAT1A and 1B respectively. In accordance with non-safety UPS sizing calc. EC123, Rev. 3 UPS 2VBB-UPSIC and 1D are loaded to 70 KVA and 70.1 KVA respectively. Battery sizing calculations (for normal batteries 2BYS-BAT1A and 1B) EC-44 and 45 estimated that input KW required by UPS 2VBB-UPSIC and 1D are 67.5 KW and 67.6 KW respectively. The battery sizing calculations assumed the load power factor to be equal to 0.9, efficiency of UPS unit to be equal to 84% and the utilization factor to be equal to be 0.9. Because these two UPS units mostly feed continuously energized essential lighting and communication systems, the actual loadings exceeded the estimated loadings and the rated capacities.

LOAD SHEDDING STUDY:

In order to avoid future overloads on UPS, it has been determined that the loading on UPS would be limited to 80% of its rated capacity. It means that the new replacement UPS units for UPS 2VBBUPSIC and 1D will be rated $75 \mathrm{KVA} / 60 \mathrm{KW}$ and will be loaded only to 48 KW . To achieve the reduced loadings on these two new UPS units, a load study will be performed to determine the loads that do not require UPS power and possibly can be shed from these UPS units.

UPS 2VBB-UPSIC feeds the following essential lighting panels through UPS distribution panel 2LAT-PNLO17:

- 2LAR-PNLU02
- 2LAT-PNLU02
- 2LAX-PNLUOI
- 2LAT-PNLU02
- 2LAT-PNLU05
- 2LAN-PNLUOI
- 2LAW-PNLUOI
- 2LAR-PNLU05
- 2LAR-PNLU01

UPS 2VBB-UPSID feeds the following essential lighting panels through UPS distribution panel 2LAS-PNLO16:

- 2LAC-PNLU01
- 2LAT-PNLU03
- 2LAC-PNLU03
- 2LAT-PNLUOI
- 2LAR-PNLU03
- 2LAR-PNLUO4
- 2LAC-PNLU02
- 2LAR-PNLU06

The load shedding study on UPS 2VBB-UPSIC and 1D involves the following:
1.0 Walkdown all the essential lighting panels listed above and prepare a lighting panel schedule for each panel. The panel schedule will indicate the type of loads fed from each breaker located in that panel along with the total connected load.
2.0 Compare the lighting panel schedules prepared in item 1.0 above against the plant lighting drawings and ensure as built configuration is reflected on the drawings.
3.0 Resolve any discrepancies between the panel schedules and the lighting plan drawings and issue the panel schedules for field use.
4.0 Revise the following calculations and ensure the UPS equipment, batteries and battery chargers are adequately sized to handle the connected loads:
a) EC-123 Non-safety UPS sizing
b) ECi-44 Normal station battery 2BYS-BAT1A and charger 2BYSCHGRIA1 sizing
C) EC-45 Normal station battery 2BYS-BAT1B and charger 2BYSCHGRIB1 sizing
5.0 Evaluate all the loads indicated on the panel schedules on a breaker by breaker basis and determine if the loads do really need to be powered from UPS power source. If the load does not require UPS power, then it will be included in the list for load shedding and action will be taken to power these loads from plant normal power source. The load shedding study will consider the following commitments in the USAR:
a) Communication system equipment - USAR section 9.5.2 states that the following systems require UPS power: 1. Dial Telephone system
2. Radio Communication system
3. Page Party/Public Address system

If any other communication system load is fed from UPS 1C and 1D, then it will be considered for load shedding.
:
...x. $\%$...
*

8
3
3
b) Lighting system - UPS 1C and 1D feed essential and egress lighting systems. USAR section 9.5.3.2 states that:

1. The essential lighting system provides partial lighting for certain critical areas of the station requiring continuous lighting such as control room, relay and computer room, standby diesel generator rooms, emergency switchgear rooms, service water pump room, and for passageways to and from areas where safety-related equipment is located.
2. The egress lighting system provides adequate lighting for all egress signs inside the plant, exit doors, hallways, corridors, passageways, stairways, and other areas leading to the outside building exits. The system is designed specifically for inside building egress emergency conditions in accordance with related standards, codes, and OSHA requirements. Internally illuminated exit signs are located.... and walkways. All exit facilities are provided with adequate illumination, both vertical and horizontal. Minimum intensity of illumination, measured at the floor level, for all exit paths is maintained at 0.5 footcandle.

In addition to the essential and egress lighting systems described above, $8-\mathrm{hr}$ battery pack lighting is also provided in all areas of the plant required for operation of any safe shutdown equipment, and in access and egress routes thereto, to meet the requirements of $10 C F R 50$, Appendix R.

The following will be considered during the load shedding study:
a) Essential lighting system for NMP2 has been designed prior to the implementation of 10CFR50, Appendix R. Therefore possibilities exist where both essential lighting and $8-\mathrm{hr}$ battery pack lighting are provided in an area such as stairways and access and egress routes to safe shutdown equipment. If the evaluation indicates that $8-\mathrm{hr}$ battery pack lighting is adequate in that area then consideration should be given to load shed the essential lighting from UPS power.
b) USAR Table 9.5-1 indicates that 100\% of the lighting in areas such as Turbine Building, Reactor Building, Auxiliary Bays, Auxiliary Services Building South, Screenwell Building, Water Treating Area, Heater Bay, OffGas Building, Radwaste Building except Control room, Auxiliary Boiler Building, Electrical Tunnels and Piping Tunnels will be provided from the normal power source. In addition to normal lighting, these areas will be provided with egress lighting as required from UPS fed egress lighting. Minimum illumination leveles for egress lighting is 0.5 footcandle. Egress lighting in the above areas will be evaluated as part of the load shedding study and extra lighting if any in these areas will be considered for shedding.

$$
1 \text {, 5s: }
$$

c) Miscellaneous Loads - Any miscellaneous loads such as receptacles located inside main and Radwaste control rooms connected to the essential lighting panels will be evaluated and considered for possible load shedding.
6.0 Complete the load shedding study and list the loads that can be shed from UPS power source and determine if the sheddable loads are greater than orequal to or less than 30% of UPS rating of $75 \mathrm{KVA} / 60 \mathrm{KW}$.
7.0 Evaluate the availability of spare capacity in normal lighting distribution panels and transfer the sheddable loads from UPS supplied essential lighting system panels to the normal lighting system panels.

OPTION NO. 1 - PROCURE AND REPLACE EXISTING $75 \mathrm{KVA} / 60 \mathrm{KW}$ UPS 2VBBUPS IC AND ID

SCOPE: A single line representation of the power supplies involved with 2VBB-UPSIC and 1D is provided in attachment 1
of this package. The scope of this option includes the following:
1.0 Perform a load shedding study as outlined in load shedding study of this package and ensure greater than or equal to 30\% of the existing UPS loads from 2VBB-UPSIC and 1D can be shed.
2.0 Issue design changes to transfer the sheddable loads to lighting distribution panels fed from the plant normal power source.
3.0 Procure new $75 \mathrm{KVA} / 60 \mathrm{KW}$ UPS units.
4.0 Issue design changes to replace the existing $75 \mathrm{KVA} / 60 \mathrm{KW}$ UPS units.

Attachment 4 of this package provides the list of documents affected if this option is implemented.

DISCUSSION: This option reduces the loadings on UPS 2VBB-UPSIC and 1D and therfore the reliability, operability and the maintenability of these units are enhanced. In addition, its impact as outlined below on the existing associated equipment will be minimum:
1.0 Power Supplies - No changes is required except to revise the calculations listed in affected document list in attachment 1.
2.0 Raceway - None required. However the conduits that are connected to the existing UPS units will be determinated and reterminated to the new UPS units. Because the size of the new units is unknown, some modifications to the conduits may be necessary.
3.0 Cables - Because of the reduced loadings, the existing cables are adequate. However when these cables are reterminated to the new UPS units, they may not reach the destinations within the units. Existing cables may have to be spliced with adequately sized pigtails and then reterminated to the destinations inside the new UPS units. However certain calculations listed in the affected document list, attachment 4 may have to be revised.

4.0 Grounding - Existing grounding cables require to be determinate from the old units and reterminated to the new units.
5.0 Other Equipment and Components - Because of the reduced loadings, other components such as breakers and batteries are considered adequate.
6.0 Alarms - Existing alarms and annunciator windows are adequate.

OPTION NO. 2 - PROCURE AND REPLACE EXISTNG 75KVA/60 KW UPS 2VBBUPSIC AND ID. IN ADDITION PROCURE AND INSTALL TWO NEW UPS RATED FOR 25KVA/20 KW

SCOPE: A single line representation of the power supplies involved with 2VBB-UPS1C and 1D and with the proposed two new UPS units rated for $25 \mathrm{KVA} / 20 \mathrm{KW}$ is provided in attachment 2 of this package. The scope of this option includes the following:
1.0 Perform a load shedding study as outlined previously in the load shedding portion of this package and ensure only less than 30% of the existing UPS loads have been qualified for load shedding.
2.0 Issue design changes to transfer the sheddable loads to lighting distribution panels fed from normal power source.
3.0 Procure two 75KVA/60 KW UPS units to replace 2VBB-UPS1C and 1D.
4.0 Procure two $25 \mathrm{KVA} / 20 \mathrm{KW}$ UPS units and associated equipment as indicated in attachment 2.
5.0 Issue design changes to replace the existing $75 \mathrm{KVA} / 60 \mathrm{KW}$ UPS units. Ensure that the new $75 \mathrm{KVA} / 60 \mathrm{KW}$ UPS units are loaded only to 80% of their rated capacity.
6.0 Issue design changes to install new $25 \mathrm{KVA} / 20 \mathrm{KW}$ UPS units and their associated equipment and components.
7.0 Issue design changes to transfer UPS loads that can not be accomodated in 2VBB-UPSIC and 1D to the new UPS units.

Attachment 4 also provides the list of affected design documents if this option is implemented.

DISCUSSION: This option also reduces the loadings on 2VBB-UPSIC and 1D to 80% of their capacity and therfore the reliability, operability and the maitainability of the units are enhanced. However it involves the addition of new units with their associated equipment and components. The impact of this option on the plant electrical distribution system is evaluated as indicated below:
1.0 Replacing existing 75KVA/60 KW UPS units 2VBB-UPSIC and 1D with new units of the same rating impacts minimally and has already been discussed in option \#1 above.
:
'
2.0 Impact due to addition of two new $25 \mathrm{KVA} / 20 \mathrm{KW}$ units:
a) Equipment : $2-25 \mathrm{KVA} / 20 \mathrm{KW}$ UPS units

2 - 25 KVA Voltage Regulators, 208Y-120V/208Y-120V, 3PH., 4Wire
2-45KVA Dry type stepdown transformers, 600V/208Y-120V, 3PH.,
1 - 600V Molded case circuit breaker in 2 LATPNL300
1 - 600V Molded case circuit breaker in 2NHSMCC008
1 - 600V Molded case circuit breaker in 2NHSMCC006
1 - 600V Molded case circuit breaker in 2NHSMCCOO9
1 - 125V DC power circuit breaker in 2BYSSWG001A
1 - 125V DC power circuit breaker in 2BYSSWG001B
4 - Annunciator windows in 2CEC*PNL852
2 - Lighting distribution panels
NOTE: Recommended new equipment locations are shown in attacment 2.
b) Power supplies :
1.0 2LAT-PNL300 - This panel is normal 600 V distribution panel and is rated for 600Amps. and is currently loaded to 215 Amps . (CALC. EC-118 REV.2). Addition of another 25Amps. load will not affect the ratings of this panel.
2.0 2NHS-MCCOO8 - This MCC is rated for 800Amps. and is currently loaded to 206Amps. (CALC.EC-118). Addition of another 45Amps. will not affect the ratings of this panel. However this MCC can be connected to EDG through stub bus 2NNS-SWG014 in the absence of a LOCA condition. Impact on EDG loading will be evaluated and is expected to be minimal.
3.0 2BYS-SWG001A - This switchgear is rated for 2000 Amps. and is currently loaded to a continuous load of 1345Amps. (CALC.EC44, Rev .10). Addition of another 250Amps. load will not affect the rating of this switchgear.
4.0 2BYS-BAT1A - This battery system consists of 2 batteries of 2550 Ampere -Hour (AH) capacity connected in parallel. Cal. EC44, Rev. 10 indicates that 41.66% of the battery capacity is available as spare. However due to an arithmedic mistake it has been found that only 13% of the battery capacity is available as spare. A review of the calculation has determined that when this new loading of UPS ($25 \mathrm{KVA} / 20 \mathrm{KW}$) is added to the batteries, the subject battery will be fully loaded to its capacity. this is based on an assumption that UPS 2VBB-UPSIC will not be loaded to more than 55 kW .
5.0 2NHS-MCCOO6 - This MCC is rated for 800Amps, and is currently loaded to 298Amps. (Talc. EC-118,Rev.2). Addition of another 25Amp. will not affect the capability of this MCC to carry

\square
the additional loads.
6.0 2NHS-MCCOO9 - This MAc is rated for 800Amps. and is currently loaded to 143Amps. (Talc: EC-118, Rev.2). Addition of another 45 Amps. will not affect the capability of the MCC. However this MCC may be connected to EDG through stub bus 2NNS-SWG015. Impact of this added loading on EDG will be evaluated and is expected to be minimal.
7.0 2BYS-SWG001B -This switchgear is rated for 2000Amps, and is currently loaded to a continuous load of 920Amps. (Talc. EC-45, Rev.6). An additional load of approximately 250Amps. will not affect the capability of this switchgear.
8.0 2BYS-BATIB - This battery system.consists of 2 batteries of 2550 Ampere-Hour (AH) capacity connected in parallel. Call. EC-45, Rev. 2 indicates that 41.7% of this battery capacity is available as spare. Calculation EC-45 review has determined that addition of another $25 \mathrm{KVA} / 20 \mathrm{KW}$ UPS uses up approximately 50% of the excess capacity that was available. Therefore addition of this option will not overload the battery capacity.
9.0 2CEC*PNL852 - Spare windows will be used for annunciation.
c) Cables - Refer to attachment 2 Cable Block Diagram
d) Raceways - Cables will be pulled through trays as for as possible. For cables routed within the room may be pulled through conduits.
e) Grounding - Existing grounding cables from adjacent equipment or from an existing ground pad will be extented.

OPTION NO. 3 - PROCURE AND REPLACE EXISTING $75 \mathrm{KVA} / 60 \mathrm{KW}$ UPS VBUPSIC AND ID. IN ADDITION PROCURE AND INSTALL ONE NEW UPS RATED FOR 50KVA/40 KW

SCOPE: A single line representation of the power supplies involved with 2VBB-UPS1C and 1D and the proposed one new UPS unit rated for $50 \mathrm{KVA} / 40 \mathrm{KW}$ is provided in attachment 3 of this package. The scope of this option includes the following:
1.0 Perform a load shedding study as outlined previously in the load shedding study portion of this package and ensure only less than 30% of the existing UPS loads have been qualified for load shedding.
2.0 Issue design changes to transfer the sheddable loads to lighting distribution panels fed from normal power source.
3.0 Procure two $75 \mathrm{KVA} / 60 \mathrm{KW}$ UPS units to replace 2VBB-UPS1C and 1D. 4.0 Procure one 50KVA/40 KW UPS unit and associated equipment as indicated in attachment 3.
5.0 Issue design changes to replace existing UPS 2VBB-UPSIC and 1D. Ensure that these two UPS units are loaded only to 80% of their capacity.
6.0 Issue design changes to install the new $50 \mathrm{KVA} / 40 \mathrm{KW}$ UPS unit and its associated equipment and components.

:
7.0 Issue design changes to transfer UPS loads that can not be accomodated in $2 V B B-U P S I C$ and $1 D$ to the new UPS unit.

Attachment 4 also provides a list of affected design documents if this option is implemented.

DISCUSSION: This option also reduces the loadings on 2VBB-UPS1C and $1 D$ to 80% of their capacity and therefore the reliability, operability and the maitainability of the units are enhanced.
However it requres the addition of one new UPS unit and their associated equipment as shown in attachment 3. The impact of this option on the plant electrical distribution systems is evaluated as follows:
1.0 Replacing existing 75KVA/60KW UPS units 2VBB-UPSIC and 1D with new units of the same rating impacts minimally and has already been discussed in option \#1 above.
2.0 Impact due to the addition of new 50KVA/40 KW unit:
a) Equipment : 1 - 50KVA/40 KW UPS unit

1-50KVA Voltage Regulator, 208-120/208120V, 3PH., 4Wire
1-75KVA Dry type stepdown transformer, 600/208-120V, 3PH.,
1 - 600 V Molded case circuit breaker in 2NHS-MCCOO6
1 - 600V Molded case circuit breaker in 2NHS-MCCOO9
1 - 125V DC power circuit breaker in 2BYS-SWĢ001B
1 - Annunciator windows in 2CEC*PNL852
1 - Lighting distribution panel
NOTE: Recommented new equipment locations are shown in attachment 3.
b) Power supplies :
1.0 2NHS-MCCOO6 - This MCC is rated for 800Amps. and is currently loaded to 298Amps. (Calc.EC-118,Rev.2). An addition of another 50 Amps. load will not affect its ratings.
2.0 2NHS-MCCOO9 - This MCC is rated for 800Amps. and is currently loaded to 143Amps. (Calc.EC-118,Rev.2). Addition of another 75Amps. will not affect the rating if this MCC. However this MCC is supplied from stub bus 2 NNS-SWG015 which may be loaded to EDG when LOCA is not present. Therefore impact on EDG loading should be evaluated also which will be minimal.
3.0 2BYS-SWG001B - This switchgear is rated for 2000Amps. and is currently loaded to a continuous load of 920 Amps . Addition of approximately 475Amps. will not adversely affect the rating of this switchgear.

$$
\therefore \ldots
$$

49:

- 5:
4.0 2BYS-BAT1B - This battery system consists of 2 batteries of 2550 Ampere-Hour capacity connected in parallel. Calc.EC-45, Rev. 2 indicates that 41.7% of the battery capacity is available as spare. A review of this call. EC-45 has determined that addition of $50 \mathrm{KVA} / 40 \mathrm{KW}$ UPS unit will use all the spare capacity that is available on these batteries and can accomodate this additional loads without overloading it. However it should be noted that no future loads should be added to this batteries.
5.0 2CEC*PNL852 - Spare windows that are available will be utilized for this addition.
c) Cables - Refer to attachment 3 for the cables required.
d) Raceways - Cables will be pulled through cable trays as for as possible. Cables routed within the same room may be pulled through conduits.
e) Grounding - Existing gronding cables from adjacent equipment or from an existing grounding pad will be extented.

CONCLUSION : Design Engineering, Electrical reviewed all three options listed above for this modification and recommends option 3, because it will resolve all the problems encountered by existing UPS units and will still provide additional UPS power when needed. In addition it involves lesser number of equipment and components and will be cost effective during all phases of this modification such as design, procurement and installation.

ATTACHMENTS

 $:$1.0 Supporting documents for option\# 1. 2.0 Supporting documents for option\# 2. 3.0 Supporting documents for option\# 3. 4.0 List of affected design documents
;
"

GPTION \# 1 • ATTA $1 / 13$

!

$$
!
$$

11－1
$\therefore \quad$ ：
OPTION F 2 ATTACHMENT 2，PRGE こ

RE゙アCACE゙ WITH NE゙N 75 KVA／GUCW1 UCIT \＆ADS 1 25KRA／Z，KNI UNITI I

NOTES: 1. ITEMS ENCLUSED IN DASHED LIVES ARE゙ TO BE PRUUCURED AND INSTALLED.
2. NEW ANNUNCIATGR WINDOW IN PML 3JZ Fon ACARMS
3. LOAXS WILL BE TOAN FFEJZRES FRUM ZLAT-TNLJ:7

$$
:
$$

1. ITEMS ENCLUJED IN DASHED LINES FRE TO BE PRJU Ard IVGATACLED.
2. NEN ATNUNCIATOR MNDON
3. LUASS WILC BE TRANJFERRED FROON ZLASI PNL.JIE

$$
:
$$

"

;

NOTES: 1. ITEMS ENCLUSE゙D IJ DANHED LIVES ARE TO BE PRUCURED AND IMSTALLED.
2. NEW ANNUNCIATGR WINDOW IN PML 3JZ FOR PC ARMS
3. LOAXR NKL BE TRAN \&FEDRES FRUM ZLAT-TNLJIT

$$
:
$$

$:$

NOTES 1. LTEMS ENCLUJES IN DASHED LITES $\overline{A R E}$ TJ BE PRJCLi: AND IrrATACLED.
2. NEN ANNUNCIATOR MNDON
3. LOASS WILC BE TRANJFERJED FROM LLAFP PNLIIG

ATTACIMENT 3 PPGE 2
OPTIUNH3

:

$$
:
$$

:

$$
\cdots
$$

-

$$
\because
$$

.
$A+1$

List of documents affected:

USER IMPACT:
1.0 Section 8.3.1.1.2
2.0 Table 8.3-1
3.0 Table 8.3-11
4.0 Table 8.3-12
5.0 Figure 8.3-3 Sh. 1 and 2
6.0 Section 9.5.2.4
7.0 Section 9.5.3.3
8.0 Prepare LDCN
9.0 Assist PE to prepare SER

CALCULATION IMPACT:
1.0 EC-032 EDG Loading Talc.
2.0 EC-035 Heat Release in Normal Switchgear Bldg.
3.0 EC-044 Normal Station Battery Sizing (Bat. IA)
4.0 EC =045 Normal Station Battery Sizing (Bat. 1B)
5.0 EC-049 DC short circuit call.
6.0 EC-100 DC cable sizing
7.0 EC-111 600 V Normal panel Bd. SC voltage drop
8.0 EC-114 75KVA UPS loads cable sizing
9.0 EC-118 Load study for Noma load centers
10.0 EC-123 Non-safety UPS sizing
11.0 EC-130 Cable verification for L cables
12.0 EC-131 Cable verification for K level cables
13.0 EC-143 Short circuit study (UPS 1C)
14.0 AE-003 Molded case circuit breaker trip setting

PROCUREMENT ACTIVITY:
1.0 Revise Spec.E-147 to include various sizes of UPS units
2.0 Prepare requisition and PREF
3.0 Issue requisition for quote
4.0 Obtain Quote
5.0 Evaluate quote and determine vendor
6.0 Issue Purchase Order
7.0 Receive vendor drawings, manuals
8.0 Interface vendor info. With other affected disciplines
9.0 Resolve comments with the vendor
10.0 Obtain final drawings and issue for construction
11.0 Procurement of cables and circuit breakers if required

\because
*
\because

$$
\because
$$

1.0	EE-27AA Arrangement Normal swgr.bldg. EL-2371
2.0	EE-33J Grounding system normal swgr. bldg.
3.0	EE-34G Cable tray arrangement Normal swgr. bldg.
4.0	EE-34HR, HS, and HT Cable tray Ident.
5.0	EE-37AP and AQ Arrangement Elec. Sleeves.
6.0	EE-42R Conduit Plan Normal swgr. bldg.
7.0	EE-1BB One-line diagram 2LAT-PNL300
. 0	EE-1X One-line diagram 2NJS-US5
9.0	EE-1BR One- line diagram 125V DC
10.0	EE-1BX One-line diagram Low voltage pwr. distn.
11.0	EE-1AH One-line diagram 2NHS-MCC006
12	EE-1Y One-line diagram 2NJS-US6
13.0	EE-1BA One-line diagram Normal bus pwr. distn.
14.0	EE-MO1C Plant master one-line
15.0	EE-MO1D Plant master one-line
16.0	EE-MO1G Plant master one-line
17.0	EE-11AA Extenal Connection diagram UPS 1A thru 1D
18.0	EE-11DB External connection diagram UPS
19.0	EE-10IHA518 Annunciator system
20.0	EE-10ANN608 Window arrgt.
21.0	INST. MANUAL 101.710.343.77223
22.0	Vendor dwgs. 110.071.306
23.0	Cable and raceway systems (CRS)
24.0	Various lighting plan drawings
25.0	Essential lighting panel schedules

Long Lead Time Material to be procured:
OPTION\# 1 :
$1.02-75 \mathrm{KVA} / 60 \mathrm{KW}$ UPS units
OPTION\# 2 :
$1.02-75 K V A / 60 K W$ UPS units
2.02 - 25KVA/20KW UPS units
3.04 - 600V rated Molded case circuit breakers
4.02 - 125 V DC power circuit breakers
5.02 - Lighting distribution panels if required
6.0 Power cables of various sizes

OPTION\# 3:
$1.02-75 \mathrm{KVA} / 60 \mathrm{KW}$ UPS units
2.0 1 - 50KVA/40KW UPS unit
3.02 - 600V rated Molded case circuit breakers
4.01 - 125V DC power circuit breaker
5.01 - Lighting distribution panel if required
6.0 Power cables of various sizes
-

ESTIMAIE SUMRARY

Est No: 89042A REPL 75KVA 2VBB UPS IC \& 1D
Bid Due: 02/25/91
Client Conpany: NINE MILE POINT - UNIT 2 Client Name: MarTY RITZHER Job Location: SwIICGGEAR BLDG Client Phone: (315)428-7032 Estinate By: JRH Checked By: RKB

PHASE \rightarrow Froa: 89 Thru: 92

Div	Description	$\begin{gathered} \text { Kat'l } \\ \text { (\$) } \end{gathered}$	く---- (Hr)	(\$)	$\begin{aligned} & S / C \\ & (\$) \end{aligned}$	Equip (S)	$\stackrel{-\cdots-0 \mid}{(\mathrm{Br})}$	$\begin{aligned} & \text { r-----> } \\ & (S) \end{aligned}$	TOTAL (s)
12	210 ENGR LAB RUC-MAPC	0	2154	53643	0	0	0	0	53643
B-	200 OTEER LABOR ROC-HTPC	0	340	7176	0	0	0	0	7176
Cl	ENG COHSULIING SERVICES:	0	0	0	71154	0	0	0	71154
D1	COHTRACTOR SERVICES	0	0	0	161902	0	0	0	161902
El	PORCHASED MATERIAL:	185350	0	0	0	0	0	0	185350
P1	EIPLOYEE EXPEMSES:	0	0	0	0	0	80	2000	2000
Gl	REFTAL EXPEASES:	0	0	0	0	0	0	5000	5000
H4	STOCK MATERINLS:	49000	0	0	0	0	0	0	49000
20	COFTINGEHCY	0	0	0	0	0	0	153275	153275
	ESTIMATE TOTAL.	234350	2494	60819	233056	0	80	160275	688500

COMMENTS:

1. Design by NMPC/Consultant.
2. Installation by CBI.
3. Overhead charges for CBI are not included in funds listed under division D1 CONTRACTOR SERVICES.
4. Items marked with "*H indicates funds expended prior to this estimate.

HIAGARA HOEAGK POWER CORPORATION

03/11/91 CPR/EST
 Page 1

ESTIKATE SGHURY

Est No: 39042 A REPL 75 KVA 2VBB UPS 1C \& 1 D
Bid Due: 02/25/91
Client Conpany: wine hile point - CNIT 2 Client Mare: harty ritener Job Location: SwITCGGEAR BLDG Client Phone: (315)428-7032 Estinate By: JRK Checked By: RNB

PRASE --> 91

Div	Description	Kat'l (\$)	(Hr) (\$)		$\begin{aligned} & s / C \\ & (\$) \end{aligned}$	Equip (\$)	$\begin{aligned} & \langle-\cdots-0\| \\ & (\mathrm{Hr}) \end{aligned}$	(s)	TOTAL (S)
12	210 EXGR LAB MUC-MIPC	0	1740	43210	0	0	0	0	43210
B-	200 OTEER LABOR MUC-MTPC	0	172	3544	0	0	0	0	3544
D1	COMTRACTOR SERVICES	0	0	0	130	0	0	0	130
F1	EMPLOYEE EXPENSES:	0	0	0	0	0	40	1000	1000
日 4	STOCX Materinls:	2000	0	0	0	0	0	0	2000
30	COMTIMGEACY	0	0	0	0	0	0	14965	14965
	ESTIMATE TOTAL.	2000	1912	46754	130	0	40	15965	64849

$$
1
$$

-

MIAGARA HOEAWX POUER CORPORATION
ESTIMTE SUHARY

Est No: 89042 R REPL 75 KV 2VBB UPS 1C \& 1 D Bid Due: 02/25/91 Client Conpany: NINE KILE POINT - OWIT 2 Client Nane: MARTY RITENER Job Location: SwiIchgear bldg Client Phone: (315)428-7032 Estinate By: JRK Checked By: RYB

03/11/91 CPR/EST
 Page 1

$$
i
$$

'

03／11／91 CPR／EST
Page 1

> ESTIMATE DETAIL - TABLE FORN

Est No 39042A	REPL 75KVA 2VBB	PS IC \＆ 1 D	Bid Due 02：25／91
Client Conpany	NIHE KILE POINT	－Vrir 2 Client Name	HARTY RITEHER
Job Location	SWIICEGEAR BLDG	Client Phone	（315）428－7032
Estinate By	JRK	Checked By	RNB

PHASE－－）Fron： 89 Thru： 92

cost			＜－－－－－Mat＇1－－－－－－＞	－－－Labor	＜－－－－－－S／C－－－－－－－＞	Equip	Other	Total
Code	Description	Quantity Un Pbs	Unit \＄Tot \＄	Unit \＄Tot \＄	Unit \＄Tot \＄	（S）	（s）	（S）

＊＊＊Division 12										
A20000 2210 ETGR LAB NTC－HMPC	38.35 LOT 89	0.00	0	23.00	882	0.00	0	0	0	882
A23015 IS－CONST H2	20.00 KIRR 91	0.00	0	24.00	480	0.00	0	0	0	480
123051 ＊WE－COST \＆SCHED	1.64 VIPR 89	0.00	0	25.00	41	0.00	0	0	0	41
123051． NE －COST \＆SCHED	100.00 KIR 91	0.00	0	27.00	2700	0.00	0	0	0	2700
A23051 HE－COST \＆SCBED	20.00 Y ITR 92	0.00	0	28.00	560	0.00	0	0	0	560
123091 HE－PROS XGMT H2	400.00 NIER 91	0.00	0	27.00	10800	0.00	0	0	0	10800
123091 HR－PRRS MGTT H2	200.00 VIR 92	0.00	0	27.00	5400	0.00	0	0	0	5400
123092 HE－MECH DSG H2	50.00 Kigr 91	0.00	0	24.00	1200	0.00	0	0	0	1200
123093 HE－ELECT DSG H_{2}	80.00 Kigr 91	0.00	0	24.00	1920	0.00	0	0	0	1920
123093 NE－ELECT DSG 22	80.00 IITR 92	0.00	0	24.00	1920	0.00	0	0	0	1920
N23093 LOAD STUDY－ELCCT DSG M2	500.00 Kir 91	0.00	0	24.00	12000	0.00	0	0	0	12000
19n993 LOAD STODY REWORK DSGH E	500.00 YIRR 91	0.00	0	24.00	12000	0.00	0	0	0	12000
$14 \mathrm{NE}-\mathrm{C} / \mathrm{S} \mathrm{H} 2$	50.00 YGR 91	0.00	0	23.00	1150	0.00	0	0	0	1150
A＜J094 NE－C／S N2	50.00 ITRR 92	0.00	0	23.00	1150	0.00	0	0	0	1150
123096 NE－SITE EXGR M2	40.00 YHR 91	0.00	0	24.00	960	0.00	0	0	0	960
A28027 RECORDS MGNT（SITE）	24.00 YHR 92	0.00	0	20.00	480	0.00	0	0	0	480
Subtotal Divison 12 ．．．．．．		0		53643			0	0	0	53643
＊＊＊Division B －										
B－0600 QA OPER M1 460600	40.00 M IRP 91	0.00	0	22.00	880	0.00	0	0	0	880
B－1255 FIRE PROT ${ }^{\text {N2 }}$	16.00 K⿴囗十 91	0.00	0	15.00	240	0.00	0	0	0	240
B－1257 ELECT MAIMT M2	20.00 Y HP 91	0.00	0	20.00	400	0.00	0	0	0	400
B－1257 ELECT MAINT H2	80.00 Y／PR 92	0.00	0	21.00	1680	0.00	0	0	0	1680
B－1258 I \＆C H2	40.00 IHR 91	0.00	0	21.00	840	0.00	0	0	0	840
B－1258 I \＆C \＄2	80.00 MHR 92	0.00	0	22.00	1760	0.00	0	0	0	1760
B－1264 TECH SUPT N2	40.00 IfR 91	0.00	0	20.00	800	0.00	0	0	0	800
B－1387 ADKIK SUCS／GEN BDGTS	16.00 Y 18 R 91	0.00	0	24.00	384	0.00	0	0	0	384
B－1387 ADHTH SVCS／GEI BDCTS	8.00 IHR 92	0.00	0	24.00 ．	192	0.00	0	0	0	192
Subtotal Divison B－．．．．．．		0		7176		0		0	0	7176
＊＊＊Division Cl										
C14400＊EMG COHSOLTIMG SERVICES	35.42 Y 4 R 89	0.00	0	0.00	0	65.00	2302	0	0	2302
C14401 ${ }^{\text {SPEERCOHSOLTAMT }}$	5.89 M⿴囗十介R 90	0.00	0	0.00	0	45.00	265	0	0	265
Cl4409 tTRAMSPORTATIOH	44.00 M PR 90	0.00	0	0.00	0	45.00	1980	0	0	1980
C1410＊SHEC	228.57 M 1 R 89	0.00	0	0.00	0	63.00	14400	0	0	14400
0 ＊SWEC	29.15 Y 18 R 90	0.00	0	0.00	0	65.00	1895	0	0	1895

Continued next page．．

ESTIMATE DETAIL - TABLE FORH

Cost Code	Description	Quantity Un Phs	$\begin{gathered} <----K a t \prime l \\ \text { Unit } \$ \end{gathered}$	Tot \$	<----Labor Unit \$	Tot $\$$	$\begin{gathered} <-\cdots--s / C-- \\ \text { Unit } \$ \end{gathered}$	Tot $\$$	Equip (\$)	Other (S)	Totai (S)
Cl4410	Sintc (ELECT)	662.00 HHR 92	0.00	0	0.00	0	76.00	50312	0	0	50312
	Subtotal Divis	son Cl		0		0		71154	0	0	71154
*** Division D1											
017001	*SWEC-CORSTR:SP.SERVICE	24.34 KIRR 90	0.00	0	0.00	0	67.00	1631	0	0	1631
D17003	*SPEERCONSU	21.80 KHR 90	0.00	0	0.00	0	45.00	981	0	0	981
D17012	CBI LOAD STUDY REWORK	1800.00 KIRR 92	0.00	0	0.00	0	71.00	127800	0	0	127800
D17014	CARP-EQ P ${ }^{\text {C }}$ D	20.00 KHRR 92	0.00	0	0.00	0	60.00	1200	0	0	1200
D17014	CARP-SCAFFOLDING	20.00 KIIR 92	0.00	0	0.00	0	60.00	1200	0	0	1200
D17015	LABRRS-PAD IHSTALLATIOH	40.00 YHR 92	0.00	0	0.00	0	60.00	2400	0	0	2400
D17020	CPS ELEC:IHSTLH	40.00 YIRR 92	0.00	0	0.00	0	60.00	2400	0	0	2400
D17020	CPS ELEC:UPS REHOVAL	120.00 VHR 92	0.00	0	0.00	0	60.00	7200	0	0	7200
D17020	CPS ELEC:EQ IMSTL	80.00 KHR 92	0.00	0	0.00	0	60.00	4800	0	0	4800
D17020	CPS ELEC: TERHINATIONS C	100.00 KHR 92	0.00	0	0.00	0	60.00	6000	0	0	6000
D17303	*SPEERCONSD	1.78 KHR 90	0.00	0	0.00	0	45.00	80	0	0	80
D17303	*SPEERCOHSU	2.71 Y $\operatorname{HR} 91$	0.00	0	0.00	0	48.00	130	0	0	130
D17313	SWEC - STROC	40.00 YRR 92	0.00	0	0.00	0	76.00	3040	0	0	3040
017314	SNEC - INSTR	40.00 NIRR 92	0.00	0	0.00	0	76.00	3040	0	0	3040
Subtotal Divison D1			*	0		0		161902	0	0	161902

*** Division El

E17500 75KVA UPS:
EL7500 LOAD STUDY REWORK MATERI

Subtotal Divison El
*** Division P1
F18000 EIPLOYER EXPENSES: F18000 EMPLOYEE EXPENSES:

Subtotal Divison P1
*** Division G1
G19000 REMTAL CHERRY PICKBR $\quad 1.00$ EA
SUbtotal Divison $61 \ldots .$.
kk Division H4
E40000 STOCK MATERIALS E41000 STORES EAMDLING:

40.00 BA	91
40.00 EA	92

85000.00	170000
15350.00	15350
	$-\quad 185350$

0.00	0
0.00	0
	0

0.00	0	0	0	170000
0.00	0	0	0	15350
	0	0	0	185350

0.00	0	0	1000	1000
0.00	0	0	1000	1000
	0	0	2000	2000

Subtotal Divison E 4

1.00 LOT 91	2000.00	2000	0.00	0
1.00 LOT 92	47000.00	47000	0.00	0
		-200		0

0.00	0	0	0	2000
0.00	0	0	0	47000
	0	0	0	49000

*** Division 20 ... UOO CONTINGENCY

$$
30.00: 91
$$

$$
\begin{array}{lll}
0.00 & 0 & 0.00
\end{array}
$$

$$
0.00
$$

$$
\begin{array}{lll}
0 & 0 & 14965
\end{array}
$$

14965

Continued next page..

NIAGARA HOBA解 POHER CORPORATION
ESTIMATE DETAIL - TABLE EORK

.............

BENEEIT-COST SUKMARY

PROJECT IITLE: REPLACE 75KVA 2VBB UPS 1C \& 10 0

		B/C Rev ; :	0
Systea/Bldg:	Sinitchgear bldg	KOD	89-042 2
Prepared By:	J.R. MATEEUS	Unit 1	2
Project Eng:	M. RITEMER	Hajor Order 4	3458
Prep. Date:	February 26, 1991	Budget :	5392
Actual ISD:	1992	Type :	CAPITAL

CAPITAL COST OF PROJECT

S9) TOTAL CAPITAL INVESTHENT 1992 Doilars-------- $\$ 1,181,273$

TOTAL AMBUAL LEVELI2ED CAPITAL COSTS ------------ $\$ 353,797$

EXPENSES 1992 Dollars
TOTAL DIRECT AND INDIRECT EXPEHSE COSTS $-\cdots \cdots \cdots-\cdots$

!

ESTIMATE SCHMARY
tst No: 89042B REPL 75KMA CPS !DD 2-25KVA UPS
Bid Due: 02/25/91
Client Conpany: nime hile point - unir 2 Client Nave: Marty ritener
Job Location: SEIICGGEAR BLDG Client Phone: (315)428-7032
Estinate By: JRK Checked By: RHB
PBASE --) Frou: 89 Thru: 92

Div Description	$\begin{gathered} \text { Kat'l } \\ (\$) \end{gathered}$	く----La 	$r-\cdots$	S/C (\$)	Equip (\$)	$\begin{aligned} & \langle---o t t \\ & (\mathrm{Hr}) \end{aligned}$	$\begin{gathered} r----> \\ (s) \end{gathered}$	TORAL (s)
12210 EMGR LAB NOC-MIPC	0	3344	82283	0	0	0	0	82283
B- 200 OTEER LABOR MOC-MTPC	0	1136	23856	0	0	0	0	23856
Cl ENG CONSULTING SERUICES:	0	0	0	121466	0	0	0	121466
D1 CONTRACTOR SERVICES	0	0	0	295262	0	0	0	295262
El PURCEASED MATERIAL:	294350	0	0	0	0	0	0	294350
P1 . EIPLOYEE EXPEMSES:	0	0	0	0	0	80	2000	2000
G1 RERTXL EXPENSES:	0	0	0	0	0	0	5000	5000
日4 STOCK MATERIALS:	78000	0	0	0	0	0	0	78000
20 COHTIHGENCY	0	0	0	0	0	0	263283	263283
estimate total. .	372350	4480	106139	416728	0	80	270283	1165500

COMMENTS:

1. Design by NMPC/Consultant.
2. Installation by CBI.
3. Overhead charges for CBI are not included in funds listed under division D1 CONTRACTOR SERVICES.
4. Items marked with "*" indicates funds expended prior to this estimate.

NIAGARA MOHATMR POCFER CORPORATIOH
ESTIKATE SUMNARY

Est No: 89042 B REPL 75 KVA UPS ADD 2-25KVA UPS
Bid Due: 02/25/91
Client Conpany: NINE MILE POINT - ONIT 2 Client Have: HARTY RITZNER Job Location: SNITCBGEAR BLDG Client Phone: (315)428-7032 Estimate By: JRH

Checked By: RHB

03/11/91 CPR/EST
Page 1
Estiate By: JN.
PHASE --> 92

Div	Description	Kat'l(\$)	<---Labor----->		S/C	Equip	<----other----->		TOTAL
			(Er)	(\$)	(\$)	(\$)	(Br)	(\$)	

HIAGARA HOHAWK POMER CORPORATION

ESTLHATE SUNGLRY

Est No: 890428 REPL 35 KMA UPS ADD 2-25KVA UPS
Bid Due: 02/25/91
Client Conpany: wine mile point - Unit 2 Client Made: hariy ritzier Job Location: SficicgGear bldg Client Phone: (315)428-7032 Estinate By: JRK Checked By: RTB

PRASE --> 91

Div	Description	Mat'l (\$)	$\begin{aligned} & \langle--- \text { La } \\ & (\mathrm{Hr}) \end{aligned}$	\cdots	S/C (\$)	Equip (\$)	$\begin{gathered} <-\cdots-0 \\ (\mathrm{Br}) \end{gathered}$	$\left[\begin{array}{c} (\$) \\ (\$) \end{array}\right.$	TOTAL (S)
12	210 EVGR LAB NOC-MIPC	0	2360	58240	0	0	0	0	58240
B-	200 OTEER LABOR NUC-NHPC	0	488	9904	0	0	0	0	. 9904
D1	COMTRACTOR SERVICES	0	0	0	130	0	0	0	130
F1	EMPLOYEE EXPENSES:	0	0	0	0	0	40	1000	1000
20	COMTIHGENCY	0	0	0	0	0	0	20782	20782
	ESTIMATE TOTAL.	0	2848	68144	130	0	40	21782	90056

$$
\because
$$

$$
:
$$

$$
1
$$

PHASE－－＞
Fron： 89 Thru： 92

Cost			＜－－－－Kat＇l－－－－－－＞	＜－－－－Labor	－s／C－－．．．－－＞	Equip	Other	Total
code	Description	Quantity On Phs	Unit \＄Tot \＄	Unit \＄Tot \＄	Onit \＄Tot \＄	（ 5 ）	（s）	（s）

＊＊＊Division 12

120000＊210 EMGR LAB NUC－MRPC	38.35 LOT 89	0.00	0	23.00	882	0.00	0	0	0	882
123015 IS－CONST ${ }^{\text {2 }}$	80.00 YHR 91	0.00	0	24.00	1920	0.00	0	0	0	1920
A23051＊NE－COST \＆SCBED	1.64 Y⿴囗十 89	0.00	0	25.00	41	0.00	0	0	0	41
123051 NE －COST \＆SCAED	200.00 KHR 91	0.00	0	27.00	5400	0.00	0	0	0	5400
A23051 HE －COST \＆SCHED	40.00 \％ 1 HR 92	0.00	0	28.00	1120	0.00	0	0	0	1120
A23091 NE－PROS MGAT N 2	400.00 K⿴囗十 91	0.00	0	27.00	10800	0.00	0	0	0	10800
A23091 KR－PROS KGNT ${ }^{\text {H2 }}$	200.00 VRR 92	0.00	0	27.00	5400	0.00	0	0	0	5400
123092 HE－MECH DSG N2	80.00 KIRR 91	0.00	0	24.00	1920	0.00	0	0	0	1920
123093 NE－ELECT DSG 12	320.00 VHR 91	0.00	0	24.00	7680	0.00		0	0	7680
123093 HE－ELECT DSG ${ }^{\text {H2 }}$	480.00 VIRR 92	0.00	0	24.00	11520	0.00	0	0	0	11520
A23093 LOAD STUDY－ELECT DSG M2	500.00 VIRR 91	0.00	0	24.00	12000	0.00	0	0	0	12000
－${ }^{\text {ng }}$ LOAD STUDY REWORK DSGH E	500.00 VIER 91	0.00	0	24.00	12000	0.00	0	0	0	12000
$34 \mathrm{HE}-\mathrm{C} / \mathrm{S}$ N2	200.00 Y／PRR 91	0.00	0	23.00	4600	0.00	0	0	0	1600
A＜3094 HE－C／S H2	200.00 KIRR 92	0.00	0	23.00	4600	0.00	0	0	0	4600
A23096 KE－SITE ETGR N2	80.00 YITR 91	0.00	0	24.00	1920	0.00	0	0	0	1920
128027 RECORDS MGIT（SITE）	24.00 KHR 92	0.00	0	20.00	480	0.00	0	0	0	480
Subtotal Divis	n 12 ．．．．．．		0		82283		0	0	0	82283

＊＊＊Division B－										
B－0600 QA OPER N1 460600	$40.00 \mathrm{~K} \mathbf{H R} 91$	0.00	0	22.00	880	0.00	0	0	0	880
B－1255 FIRE PROT H2	32.00 NHR 91	0.00	0	15.00	480	0.00	0	0	0	480
B－1257 ELECT MAINT M2	80.00 Y HR 91	0.00	0	20.00	1600	0.00	0	0	0	1600
B－1257 ELECT MAIMT ${ }^{\text {H2}}$	320.00 KIPR 92	0.00	0	21.00	6720	0.00	0	0	0	6720
B－1258 I \＆C N2	160.00 VIRP 91	0.00	0	21.00	3360	0.00	0	0	0	3360
B－1258 I \＆C $\mathrm{N}^{\text {2 }}$	320.00 ¢⿴囗十⺀⿺𠃊 92	0.00	0	22.00	7040	0.00	0	0	0	7040
B－1264 TECH SUPT N 2	160.00 KIR 91	0.00	0	20.00	3200	0.00	0	0	0	3200
B－1387 ADHI SVCS／GET BDCTS	16.00 VIRR 91	0.00	0	24.00	384	0.00	0	0	0	384
B－1387 ADHCK SVCS／GEY BDCIS	8.00 YHR 92	0.00	0	24.00 －	192	0.00	0	0	0	192
Subtotal Divison B－．．．．．．			0	23856			0	0	0	23856
＊＊＊Division Cl										
C14400＊EMG COHSOLTIMG SERVICES	35.42 ITRR 89	0.00	0	0.00	0	65.00	2302	0	0	2302
C14401 $\operatorname{SPPERCOHSOLTANT~}$	5.89 KIRR 90	0.00	0	0.00	0	45.00	265	0	0	265
C14409＊TRANSPORTATIOH	44.00 Y PR 90	0.00	0	0.00	0	45.00	1980	0	0	1980
$\cdots 1410$ SWFEC	228.57 MGR 89	0.00	0	0.00	0	63.00	14400	0	0	14400
10 ＊STEC	29.15 YRPR 90	0.00	0	0.00	0	65.00	1895	0	0	1895

Continued next page．．

\square

HIAGARA HOEAWK POFER CORPORATIOH

03/11/91 CPR/EST

Page 2
ESTIMATE DETAIL - TABLE FORK
 Code Description Quantity Un Phs Onit \$ Tot $\$$ Unit $\$$ Tot $\$$ Unit $\$$ Tot $\$$ ($\$$) ($\$$) ($\$$)

*** Division El										
E17500 75KVA UPS:	2.00 区 492	85000.00	170000	0.00	0	0.00	0	0	0	170000
E17500 LOXD STUDY REWORK MATERI	1.00 L0T 92	15350.00	15350	0.00	0	0.00	0	0	0	15350
E17500 25KVA UPS	2.00 区 492	30000.00	60000	0.00	0	0.00	0	0	0	60000
E17500 ELECT DIST EQOIP	1.00 LOT 92	49000.00	49000	0.00	0	0.00	0	0	0	49000
Subtotal Divison	E1		294350		0		0	0	0	294350
*** Division P1										
F18000 EIPLOYEE EXPEMSES:	40.00 EA 91	0.00	0	0.00 .	0	0.00	0	0	1000	1000
F18000 EIPLOYEE EXPEASES:	40.00 EA 92	0.00	0	0.00	0	0.00	0	0	1000	1000
Subtotal Divison	F1		0		0		0	0	2000	2000
*** Division Cl										
G19000 RENTAL CHRRRY PICKER	$1.00 \mathbb{M} 92$	0.00	0	0.00	0	0.00	0	0	5000	5000
Subtotal Divison G1			0		0		0	0	5000	5000
*** Division H_{4}										
E40000 STOCX MATERIALS:	1.00 LOT 92	4000.00	4000	0.00	0	0.00	0	0	0	4000

Continued next page..

HIAGARA MOHAMK POWER CORPORATIOH
ESTIMATE DETAIL - TABLE FORK

$$
;
$$

:

$$
-
$$

$$
\therefore
$$

BENEPIT-COST SUKKARY

PROJECT IITLE: REPLACE 75KVA UPS 1 DD 2-25KVA UPS 0

		B/C Rev ; :	0
SjisteniBldg:	SNITCBGEAR BLDG	KOD	89-0428
Prepared By:	J.R. MATHEMS	Unit	2
Project Eng:	K. RIT3MER	Major Order \%	3458
Prep. Date:	February 26, 1991	Budget	5392
Actual ISD:	1992	Type :	CAPITAL
Project Life:	37 Years		

CAPITAL COST OF PROJECT

S6) INDIRECT COSTS (C6)------------------------------ $\$ 655,817$

S9) TOTAL CAPITAL INVESTKENT 1992 Dollars------- $\$ 1,995,301$ =: $=$ =:
ANOUAL LEVELI2ED REVERUE TAXES-------------------- $\$ 6,979$
TOTAL ANTOLL LEVELIZED CAPITAL COSTS …-----...-- $\$ 597,603$

EXPEMSES 1992 Dollars
TOTAL DIRECT AHD INDIRECT EXPEMSE COSTS $\cdots \cdots \cdots \cdots \cdots$

Subtotal Expenses $\$ 0$
ANROAL LEVELIZED REVEMOE TAXES ------------------ \$0

S13) TOTAL ANROAL COSTS PLOS ANOULL EXPENSES (C22) $-\cdots \quad \$ 597,603$

Estimate sunuary

Est No: 89042C REPL 75KNA OPS ADD 1-50KVA UPS
Bid Due: 02/25/91
Client Conpany: NIKE hILE poikt - Owit 2 Client Mane: Marty ritzer Job Location: SwiITCGGERR BLDG Client Phone: (315)428-7032
Estinate By: JRM
Checked By: RKB
PRASE --> Fron: 89 Thru: 92

Div	Description	Hat'l (\$)	$\begin{aligned} & \text { <----Labor-----> } \\ & \text { (\#r) } \end{aligned}$		$\begin{aligned} & s / C \\ & (\$) \end{aligned}$	Equip (\$)	$\begin{aligned} & \langle---\theta\| \\ & (\mathrm{Hr}) \end{aligned}$	$\begin{gathered} r-\cdots) \\ (s) \end{gathered}$	TOMA (S)
12	210 ENGR LAB HUC-MTPC	0	2684	66643	0	0	0	0	66643
B-	200 OTEER LIBOR HOC-MIPC	0	608	12776	0	0	0	0	12776
Cl	ENG COhSULTING SERVICES:	0	0	0	54859	0	0	0	54859
D1	COHTR1CTOR SERVICES	0	0	0	216702	0	0	0	216702
E1	PURCBASED MATERIAL:	274850	0	0	0	0	0	0	274850
F1	ETPLOYEE EXPENSES:	0	0	0	0	0	80	2000	2000
Gl	RENTAL EXPENSES:	0	0	0	0	0	0	5000	5000
	STCCX Raterinls:	72000	0	0	0	0	0	0	72000
20	COMTIMGEKCY	0	0	0	0	0	0	136970	136970
	ESTIMATE TOTAL.	346850	3292	79419	271561	0	80	143970	841800

COMMENTS:

1. Design by NMPC/Consultant.
2. Installation by CBI.
3. Overhead charges for CBI are not included in funds listed under division D1 CONTRACTOR SERVICES.
4. Items marked with "*" indicates funds expended prior to this estimate.

MIAGARA HOEAWR POKRR CORPORATION

03/11/91 CPR/EST
 Page 1

ESTIMATE SGHCRRY

Est No: 89042 C REPL 75KVA UPS ADD 1-50KVA UPS
Bid Due: 02/25/91
Client Conpany: NINE hILE POINT - OMIT 2 Client Mave: MarTY RITzNER Job Location: SwiITCGGERR BLDG Client Phone: (315)428-7032
Estimate By: JRK Checked By: RHB

PHASE --> 92									
Div	Description	Mat'l (\$)	<---- (Br)	$\underset{(\$)}{\underline{-\cdots})}$	s/C (S)	Equip (\$)	$\begin{aligned} & \langle---o t \\ & (\mathrm{Br}) \end{aligned}$	---.--> ($\$$	TOTAL (s)
12	210 EVGR LAB NOC-MRPC	0	604	15060	0	0	0	0	15060
B-	200 OTEER LABOR SUC-MITPC	0	328	7072	0	0	0	0	7072
Cl	Eig Cohsolithg services:	0	0	0	50312	0	0	0	50312
D1	COHTRACTOR SERVICES	0	0	0	213880	0	0	0	213880
E1	PURCHASED MATERIAL:	274850	0	0	0	0	0	0	274850
51	EKPLOYEE EXPEMSES:	0	0	0	0	0	40	1000	1000
61	RENTAL EXPENSES:	0	0	0	0	0	0	5000	5000
H4	STOCX MITERIALS:	70000	0	0	0	0	0	0	70000
20	COMTIMGERCY	0	0	0	0	0	0	119122	119122
	ESTIMATE TOTAL.	344850	932	22132	264192	0	40	125122	756296

$$
;
$$

-
-

03/11/91 CPR/EST page 1

ESTIMATE SGMLARY

Est NO: 89042C REPL 75KVA OPS ADD 1-50KVA UPS
Bid Due: 02/25/91
Client Company: KINE MILE POINT - ONIT 2 Client Nave: KARTY RITZNER

Job Location: SNITCHGEAR BLDG	Client Phone: (315)428-7032
Estimate By: JRM	Checked By: RNB

PBASE --> 91

Div	Description	Kat'1 (\$)	$\begin{aligned} & \langle=-- \text { Labor-----> } \\ & \text { (Hr) } \end{aligned}$		S/C (\$)	Equip (\$)	$\begin{gathered} \langle--- \text {-other-----> } \\ (\mathrm{Br}) \end{gathered}$		TOTSL (\$)
A2	210 ERGR LAB NOC-MRPC	0	2040	50660	0	0	0	0	50660
B-	200 OTEER LABOR KUC-HMPC	0	280	5704	0	0	0	0	5704
D1	COFTRACTOR SERVICES	0	0	0	130	0	0	0	130
F1	EIPLOYEE EXPENSES:	0	0	0	0	0	40	1000	1000
H4	STOCK MATERIALS:	2000	0	0	0	0	0	0	2000
20	COKTIMGENCY	0	0	0	0	0	0	17848	17848
	ESTIHATE TOTAL.	2000	2320	56364	130	0	40	18848	77342

~
$5 \operatorname{sen} \%$

HIAGARA MOBATK POKER CORPORATIOH
ESTIMATE SGOKARY

PHASE --) 90

HIAGARA HOHAGK POKER CORPORATIOH

estimate sthuary

03/11/91 CPR/EST

Page 1

Client Conpany: wine mile point - owir 2 Client Mare: harty ritzer Job Location: SWITCGGEAR BLDG Client Phone: (315)428-7032 Estinate By: $\mathbb{R} K \quad$ Checked By: RNB

*** Division 12										
A20000 *210 ENGR LAB NOC-MPPC	38.35 LOT 89	0.00	0	23.00	882	0.00	0	0	0	882
A23015 IS - CONST N 2	80.00 KiR 91	0.00	0	24.00	1920	0.00	0	0	0	1920
A23051 $\times \mathrm{KR}$ - COST \& SCRED	1.64 KIGR 89	0.00	0	25.00	41	0.00	0	0	0	41
A23051 NE - COST \& SCHED	200.00 MRR 91	0.00	0	27.00	5400	0.00	0	0	0	5400
A23051 HE - COST \& SCHED	$40.00 \mathrm{~K} \mathbf{R} \mathrm{R} 92$	0.00	0	28.00	1120	0.00	0	0	0	1120
A23091 HE - PROS MGTT H2	400.00 VIRR 91	0.00	0	27.00	10800	0.00	0	0	0	10800
123091 NE - PROU MGTT ${ }^{\text {H2 }}$	200.00 KHR 92	0.00	0	27.00	5400	0.00	0	0	0	5400
A23092 HE - MECH DSG ${ }^{\text {N2 }}$	40.00 YIRR 91	0.00	0	24.00	960	0.00	0	0	0	960
123093 NE - ELECT DSG ${ }^{\text {2 }} 2$	160.00 YRRR 91	0.00	0	24.00	3840	0.00	0	0	0	3840
123093 NE - ELECT DSG H^{2}	240.00 V 18 R 92	0.00	0	24.00	5760	0.00	0	0	0	5760
A23093 LOAD STODY-ELECT DSG H2	500.00 VITR 91	0.00	0	24.00	12000	0.00	0	0	0	12000
`93 LOAD STCDY RENORK DSGY E	500.00 VIRR 91	0.00	0	24.00	12000	0.00	0	0	0	12000
$34 \mathrm{NR}-\mathrm{C} / \mathrm{S}$ N2	100.00 V还 91	0.00	0	23.00	2300	0.00	0	0	0	2300
R23094 NE - C/S N^{2}	100.00 VIRR 92	0.00	0	23.00	2300	0.00	0	0	0	2300
. 123096 NR - SITE ENGR H 2	60.00 Y 1 R 91	0.00	0	24.00	1440	0.00	0	0	0	1440
128027 RECORDS MGMT (SITE)	24.00 KIRR 92	0.00	0	20.00	480	0.00	0	0	0	480
Subtotal Divis	A2		0		66643		0	0	0	66643
*** Division B-										
B-0600 QA OPER H1 460600	40.00 KHR 91	0.00	0	22.00	880	0.00	0	0	0	880
B-1255 FIRE PROT 12	24.00 M HR 91	0.00	0	15.00	360	0.00	0	0	0	360
B-1257 ELECT MaIm M2	40.00 HiR 91	0.00	0	20.00	800	0.00	0	0	-	800
B-1257 RLECT MAINT M2	160.00 VIPR 92	0.00	0	21.00	3360	0.00	0	0	0	3360
B-1258 I \& C $\mathrm{N}^{\text {2 }}$	80.00 M HP 91	0.00	0	21.00	1680	0.00	0	0	0	1680
B-1258 I \& C $\mathrm{N}^{\text {2 }}$	160.00 YHP 92	0.00	0	22.00	3520	0.00	0	0	0	3520
B-1264 TECA SUPT ${ }^{1} 2$	80.00 M Pl 91	0.00	0	20.00	1600	0.00	0	0	0	1600
B-1387 ADMIM SUCS/GEN BDGTS		0.00	0	24.00	384	0.00	0	0	0	384
B-1387 ADMIM SVCS/GEI BDGIS	8.00 IRPR 92	0.00	0	24.00 .	192	0.00	0	0	0	192
Subtotal Divis	B-		0		12776		0	0	0	12776
*** Division Cl										
CI4400 EEHG COHSULTILG SERVICRS	35.42 KHP 89	0.00	0	0.00	0	65.00	2302	0	0	2302
C14401 *SPEERCOHSOLTAMT	5.89 YHR 90	0.00	0	0.00	0	45.00	265	0	0	265
C14409 ITRA $^{\text {SPORTATIOH }}$	44.00 YHR 90	0.00	0	$\cdot 0.00$	0	45.00	1980	0	0	1980
\cdots - 10 SNEC (ELECT)	662.00 YHR 92	0.00	0	0.00	0	76.00	50312	0	0	50312
Subtotal Divis	Cl		0		0		51859	0	0	54859
*** Division D1 D17001 *STEC-COHSTR:SP. SRRVICR	24.34 M HPR 90	0.00	0	0.00	0	67.00	1631	0	0	1631

"

HILGRR FOBAW POWER CORPORTTIOH

03/11/91 CPR/EST
Page 2
esthate detall - trbereforh

Cost			---Mat'1---	Labor-	<------S/C------>	Equip	Other	Tota!
code	Description	Quantity On Phs	Unit \$ Tot \$	Unit \$ Tot \$	Onit \$ Tot \$	(\$)	(s)	(s)

D17003 *SPEERCOHSO	21.80 Y 18 BR 90	0.00	0	0.00	0	45.00	981	0	0	981
D17012 CBI LOAD SIUDY REWORK	1800.00 NGR 92	0.00	0	0.00	0	71.00	127800	0	0	127800
D17014 CARP-EQ PAD	40.00 YIRR 92	0.00	0	0.00	0	60.00	2400	0	0	2400
D17014 CARP-SCAFFOLDING	40.00 KRR 92	0.00	0	0.00	0	60.00	2400	0	0	2400.
D17015 LABRRS-PAD IMSTALLATIOH	160.00 HidR 92	0.00	0	0.00	0	60.00	9600	0	0	9600
D17020 CPS ELEC:INSTLH	80.00 THR 92	0.00	0	0.00	0	60.00	4800	0	0	4800
D17020 CPS ELEC:UPS REHOVAL	120.00 VHR 92	0.00	0	0.00	0	60.00	7200	0	0	7200
D17020 CPS ELEC: EQ IMSTLN	128.00 YHR 92	0.00	0	0.00	0	60.00	7680	0	0	7680
D17020 CPS ELEC: XFTR IRSTLH	48.00 YRR 92	0.00	0	0.00	0	60.00	2880	0	0	2880
D17020 CPS ELEC:HIRE/CABLE POLL	300.00 VHR 92	0.00	0	0.00	0	60.00	18000	0	0	18000
D17020 CPS ELEC: TERHIHATIOHS C	100.00 YHR 92	0.00	0	0.00	0	60.00	6000	0	0	6000
D17020 CPS ELEC: CONDOIT INSTLA	200.00 KHR 92	0.00	0	0.00	0	60.00	12000	0	0	12000
D17020 CPS ELEC: TRAHSPORTATIOH	40.00 YRRR 92	0.00	0	0.00	0	60.00	2400	0	0	2400
D17032 ICIS:PEHETR STOPS/SEALS	80.00 YHR 92	0.00	0	0.00	0	60.00	4800	0	0	4800
D17303 *SPEERCOHSO	1.78 KHR 90	0.00	0	0.00	0	45.00	80	0	0	80
D17303 *SPEERCOMSU	2.71 KHR 91	0.00	0	0.00	0	48.00	130	0	0	130
D17313 SWEC - STRUC	40.00 KIRR 92	0.00	0	0.00	0	76.00	3040	0	0	3040
D17314 SWEC - IMSTR	40.00 YHR 92	0.00	0	0.00	0	72.00	2880	0	0	2880
Subtotal Divis	n D1		0		0		216702	0	0	216702

*** Division El											
E17500 75KVA UPS:	2.00 EA	92	85000.00	170000	0.00	0	0.00	0	0	0	170000
EL7500 LOAD SIUDY REEORK MATERI	1.00 LOT		15350.00	15350	0.00	0	0.00	0	0	0	15350
E17500 ELECT MATERIAL:	1.00 LOR		24500.00	24500	0.00	0	0.00	0	0	0	24500
E17500 50 KVA UPS	1.00 EA	92	65000.00	65000	0.00	0	0.00	0	0	0	65000
Subtotal Divison	E1.....			274850		0		0	0	0	274850
*** Division P1											
P18000 EIPLOYEE EXPEMSES:	40.00 EA	91	0.00	0	0.00	0	0.00	0	0	1000	1000
P18000 EXPLOYEE EXPENSES:	40.00 Bd	92	0.00	0	0.00	0	0.00	0	0	1000	1000
Subtotal Divison	P1			0		0		0	0	2000	2000
*** Division Gl											
G19000 RENTAL CHERRY PICXBR	1.00 BA	92	0.00	0	0.00 *	0	0.00	0	0	5000	5000
Subtotal Divison	G1			0		0		0	0	5000	5000
*** Division H 4											
B40000 STOCK MATERIALS:	1.00 LOR		2000.00	2000	0.00	0	0.00	0	0	0	2000
H41000 STORES EANDLING:	1.00 LOT		70000.00	70000	0.00	0	0.00	0	0	0	70000
Subtotal Divison	[4.			72000		0		0	0	0	72000
*** Division 20 200000 COHIMGEAKC	30,00	91	-0.00	0	0.00	0	0.00	0	0	17848	17848

continued next page..

$$
\because
$$

BEAEPIT-COST SOMMARY

PROJECT TIILE: REPLACE 75KVA OPS ADD 1-5OKVA UPS

-		B/C Rev : :	0
Syster/Bldg:	Switchgear bldg	HOD t	89-042C
Prepared By:	J.R. MATEETS	Unit 1	2
Project Eng:	M. RIT2NER	Hajor Order \ddagger	3458
Prep. Date:	February 26, 1991	Budget	5392
Actual ISD:	1992	Type :	CIPITAL

CAPITAL COST OF PROJECT
S5) DIRECT COSTS (C4) --------------------------------> $\$ 879,080$
S6) INDIRECT COSTS (C6) ------------------------------- \$475,319
57) APDC (C6) --------------------------------------- $\$ 86,519$

S9) TOTAL CAPITAL INVESTKENT 1992 DOllars-------- $\$ 1,440,917$

total ammal levelized capital cosis ----------- \$431,562

EXPDISES 1992 Dollars
TOTAL DIRECT AND INDIRECT EXPEMSE COSTS $\cdots-\cdots-\cdots$--- \$0

FUTURE RETIRRIRTT COSTS-------------------------- \$0
Subtotal Expenses $\$ 0$
AMROAL LEVELIZED REVENOE TAXES …-................. , $\$ 0$

S13) TOTAL AMTOLL COSTS PLOS.ARTOAL EXPEASES (C22)---- \$431,562

BEITEPITS		

S10)		\$0
S11)	TOTAL ARSOAL LEVELI2ED AVOIDED COSTS (B19)---..--	\$8,347
S12)	TOTAL AmOAL LEVELIEDD BEIEPITS (B20)-----------	\$8,347

..........

$$
:
$$

$$
\stackrel{\square}{\infty}
$$

MOOIFICATION TEAM ASSIGNHENTS

SITE COHTACTS

The Site Team Members are as follows: (N/A if not req'd.)

Construction Services H. Mastin
Site Contact B. Crandall
Operations J. Poindexter
Electrical Installations. Doty
I8C Installation J. Kinsley
Mechanical Installation
Site Alara Cord bill Aiken
Test Engincer
Pre-op Writer N/A
ISI
QA (Site)
Training (SIm. Impact)
Other 0 . Stevenson
I \& I ${ }^{\text {a }}$, Robert Callahan
By Site Contact: Robert J. Crandall

$\begin{aligned} & \text { Ext. } 7448 \\ & \text { Ext. } 4640 \end{aligned}$
Ext. 4594
Ext. 7502
Ext.
Ext. 7800
Ext. 7011
Oate 4470
2-20

DISTRIBUTIOM

```
Project file (original)
Engineering Planning
Modification Team
```

-n

3

Design Verification Decision Form

PART 1 - DESIGN VERIFICATION DECISION CHECKLIST

 PROJECT ENGINEER: M RITZNER OATE: 2-19. Mil
project description:
SEE: Attached Project Summary

1. Is this design, or part of the design safety-related?
__ YES X NO
2. Is the design important to plant, public, or personnel safety? i.e. Is it highly likely that failure of this design to perform its function would result in a catastrophic accident or costly damage to the plant, or an uncontrolled release of radiation to the environment, or injury to personnel?

$$
\underline{X}^{X} \text { YES __ NO }
$$

3. Has this type of design been previously verified?
X YES _NO
UPS EXISTS BUT IS BEING UPGRADED. SySTEM IS If yes, state previous Project Title: SEET $8,3 . Y$. $1.2 A R$
4. Is this design (answer YES or NO):
Yes State of the Art?
YES Standard Design?
NO Multi-01sciplined?
NO Complex?
5. Is design verification required?
\bar{X} YES Describe reason: NEL-027, 2.1.3, "S, SNELLE DISCIPLINC
Design VEmifiestion <compat>....... Not Civerreo by Tats Procedure:
 Approved: Cadger of Dosign-EngineertagmR 2-19-7, Lir 2 DESiGN

$$
i_{0}
$$

MOD. TITLE: Replace 2VBB-UPS 1C \& 2VBB-2UPS 1D

SUMMARY:

On April 13, 1989, NMP2 experienced a plant scram due to a turbine trip, the root cause for this event was determined to be loose wire connections in the main generator P.T. Cubicle in circuit 2SPG203. During this event 2VBB-UPS 1D tripped and was described in LER 89-014 as follows: "Uninterruptible power supply 1D (UPS-1D) tripped due to an overload condition. This resulted in a loss of approximately one half of the gaintronics system in the plant, a total loss of the gaitronics in the Control Room (affecting communication with the plant operators outside the Control Room) and a partial loss of emergency lighting".

Subsequent to the above, Mod. 87-038 added numerous communication equipment which required powering from both UPS 2VBB-UPS 1C (BUS 1C) and 2VBB-UPS1D. It was during the development of Mod. 87038 that it became evident that BUS 1C is overloaded also. Temp. Mod. 90-057 unloaded some of BUS 1D to accommodate part of Mod. 87-038. However, BUS 1C could not be unloaded. Therefore, Mod 87-038 cannot be completed until Mod 89-042 is OPS Accepted. Also UPS-1C \& 1D are not reliable. They have history of extended maintenance outages.

This mod will:

1. Replace the subject 75 KVA UPSs with new state-of-the-art 75 KVA UPSS.
2. A load shed evaluation will be performed to determine which users don't require UPS powering
A. if the load shed $>30 \%$, only Item 1 will be implemented B. if the load shed < 30\%, supplementary UPSs will be provided

JUSTIEICATION:

This mod's implementation will:

1. Meet a commitment on LER 89-014
2. Enable Mod 87-038 to be completed and operable
3. Closeout Temp Mod 90-057
4. The new units will improve personnel safety, maintainability \& operability

MR - 2/27/91, Rev. 3
000342 FF

