$07-180-a l$
File Copy
MOD. \# PN2Y89MX042
REPLACEMENT OF UPS 2VBB-UPS 1 C AND ID
UPS LOAD SHEDDING STUDY

7×1.3
MOD. \# PN2Y89MX042
REPLACEMENT OF UPS 2VBB-UPS1C AND 1D
UPS LOAD SHEDDING STUDY
TABLE OF CONTENTS
1.0 OBJECTIVE
2.0 REFERENCES
3.0 BACKGROUND
4.0 DISCUSSION
5.0 STUDY APPROACH
6.0 RECOMMENDATIONS
7.0 CONCLUSIONS
8.0 ATTACHMENTS

$$
r^{\prime \prime}
$$

visur:

1.0 OBJECTIVE: Modification PN2Y89MX042 replaces existing UPS 2VBB-UPSIC and ID with new UPS's of the same capacity. Conceptual Engineering for the subject modification recommended that a load study be performed to determine the loads that can be shed from these UPS in order to avoid future overloads on these units. This study is performed to determine the possible existing loads that can be shed from the UPS 2VBB-UPSIC and 1D.

$$
f
$$

$$
{ }_{\star}^{*}
$$

- a ${ }^{3}$
2.0 REFERENCES: Engineering reviewed the following design documents as part of the study. In addition affected UPS loads have been walked down to determine the feasibility of transferring these loads to normal power supply.
1.0 USAR Sections 8 and 9.
2.0 Lighting plan drawings and associated change notices: a. EE-65 series, EE-66 series, EE-67 series, EE-68 series, EE-69 series, EE-72 series, EE-74 series, EE78 series, EE-79 series,
3.0 Communication system drawings:
a. EE-80 series
4.0 Electrical calculatins:
a. EC-123
5.0 Existing lighting panel directories (uncontrolled)
6.0 Modification PN2Y87MX038
7.0 Modification PN2Y88MX036
8.0 Modification PN2Y89MX043
9.0 Modification PN2Y90MX019
10.0 Modification Issue Numbers I20429, I20687 and I20756
11.0 IOM from J.Sullivan to M.J.McCormick dated May 6, 1991 (File Code SM2-M091-0294)
3.0 BACKGROUND: UPS 2VBB-UPSIC and iD feed the plant essential lighting, egress-lighting and communication system loads.

Essential lighting provides partial illumination for certain critical areas of the plant such as control room, relay and computer room, standby diesel generator rooms, emergency switchgear rooms, service water pump room, and for passageways to and from areas where safety related equipment is located. The essential lighting system fixtures are constantly energized and will be available for atleast 90 minutes on loss of normal power.

The egress lighting system provides adequate lighting for all egress signs inside the plant, exit doors, hallways, corridors, passageways, stairways and other areas leading to the outside building exits. The egress lighting system is designed to meet the OSHA requirements for building egress during emergency conditions and is required for atleast 90 minutes on loss of normal power supply.

The communication system equipment is required to be powered from UPS in order to provide emergency alarms and evacuation signals.

In addition to essential lighting and egress lighting, the, plant is provided with Normal lighting, Emergency lighting and 8-hour Battery Pack Lighting - 8 -hour battery pack lighting is provided in all areas of the plant required for operation of any safe shutdown equipment, and in access and egress routes thereto, to meet the requirements of $10 C F R 50$, Appendix R. These battery pack lighting will be energized on loss of Normal power supply. The Emergency lighting provides lighting for operating the safety related equipment during emergency conditions in the Control room, Diesel generator rooms, Emergency switchgear areas, Remote shutdown room and Relay room. The emergency lighting is class 15 and energized all the time. During the loss of offsite power, it receives Emegency diesel generator power. The Normal lighting is provided in all areas of the plant under normal operating conditions and will be de-energized during the loss of onsite and offsite normal power.

$$
i
$$

4.0 DISCUSSION: The following criteria have been used in determining the loads for possible load shed from UPS units under consideration.

1. Availability of both essential and 8-hour battery pack lighting in the same location:

The essential lighting system was designed to meet the lighting system requirements prior to the issue and implementation of 10CFR50, Appendix R in November, 1980. Because 10CFR50, Appendix R required 8-hour Battery Pack lighting, all safe shutdown areas of the plant that were provided with Essential Lighting were also provided with 8hour Battery Pack Lighting. Engineering has determined by review of lighting plan drawings and walkdown of these two lighting systems (Essential and 8-hour battery pack) that wherever both the essential lighting and 8-hour battery pack lighting are provided or duplicated, the essential lighting can be converted to normal lighting without affecting any NRC requirements. Because of the availability of normal power under normal plant operating conditions, adequate illumination will still be provided in these areas. The design of 8 -hour battery pack lighting ensures that adequate illumination will be available in these areas during emergency conditions. Therefore Engineering has included essential lighting loads that are duplicated with the 8-hour battery pack lighting as loads that will be shed from UPS 2VBB=UPS1c and 1D:
2. Availability of Emergency lighting:

Engineering evaluation also indicated that in areas such as Control room, EDG rooms, emergency switchgear rooms, and relay room where emergency lighting is provided, the change of some essential lighting fixtures to normal power supply will not adversely affect the availability of adequate illumination during normal and emergency operating conditions of the plant.
3. Eliminate the receptacles powered from UPS unless justified:

Engineering review of the lighting drawings and the walkdown performed by Engineering and system engineering on November 13, 1991 also indicated that some of the receptacles located in the following areas are provided with UPS power from subject UPS's units.

1. Chemistry Lab.
2. Radiation Protection Office
3. Telephone Room (EL 277, Control Bldg.)
4. Control Room

The power to the receptacles from UPS will be deleted wherever possible and changed back to normal power as part of this modification.
4. Replace high wattage fixtures with low wattage fixtures for Egress lighting or change high wattage egress lighting to normal lighting and add low wattage fixtures for egress lighting:

Engineering review of the lighting plan drawings also indicated that some of the dome lights installed in Turbine building El 306 and Screenwell building are powered from UPS because these lights have been designated for egress lighting in these areas. Lighting fixtures (Types CF, CG, and CH) for these dome lights are rated for more than 250 Watts. Because egress lighting is required for the passageways in these areas, new flourescent fixture essential lighting will be designed and the dome essential lighting fixtures will be converted back to be powered from normal power as part of this modification. The change over of dome lighting to normal power will prevent over loading on UPS units. When this criterion is applied for load shedding, engineering will ensure that OSHA requirements are not violated in the design process.
5. Impact of future modifications on UPS loading:

1. Modification PN2Y88MX036 requires to provide UPS power for Oscillograph 2SPI-OSCOO1 to resolve the concern raised by Problem Report PR07279. A temporary modification has been initiated (Temp. Mod. 2256) and Oscillograph 2SPI-OSCOO1 is provided with UPS power from UPS Panel 2VBB-PNLB111, Breaker 20. Because UPS Panel 2VBB-PNLB111 is not fed from UPS 2VBB-UPS1C or 1D, adding this load to 2VBB-PNLB111 will not impact this load shedding study. However as instructed by Reference 11, Modification PN2Y88MX036 will be cancelled and its scope will be included in Modifcation PN2Y89MX042.
2. 解Odifation PN2Y89MX043 requires the power-for the essential lighting in the stairwells referenced in Problem Report PR08220 be-changed from-UPS to Normal power that feeds the 8 -hour battery pack lingting (3 Appendix R) in those stairwells so that in the event of loss of power to the lighting in that area, 8-hour battery pack will be energized to provide continuous illumination. The recommendations of this load shedding study will actually resolve the problem reported in PR 08220 and therefore Mod. No. 89-043 will be cancelled and itsescope willybe included in Mod. No.89-042 as recomendedn Referencéniontron

3. Modification PN2Y87MX038 requires UPS power for some of the Communication system equipment being added. As part of this modification 15 strobe lights rated 60 Watt each are added and consume 900 Watts from UPS 2VBB-UPS1D. Engineering suggests that if feasible reduce the rating of strobe lights to 30 watts each so that the loading on the UPS can be reduced. However it should be noted that these strobe lights are not continuously loaded to UPS.
4. Engineering also discussed the future UPS power requirements for modification issues listed in reference 10.0 with system engineering and has determined that these additiins will not adversely affect the future loadings on these UPS.
5.0 STUDY APPROACH: Engineering performed a review of the following as part of the load shedding study:

1. Non-safety UPS sizing calc. EC-123 SH. $27 \& 28$ (Attachment 1)

2. Essential lighting panel directories provided by System engineering (Attachment 2) for each panel fed from UPS 2VBB-UPS1C and 1D (except Panels 2LAR-PNLU04 and 2LAXPNLUO1 which are located inside containment).
3. Lighting plan drawings in conjuction with the the lighting panel directories.

Based on the above review engineering prepared lighting panel schedules for each essential lighting panel fed from UPS 2VBBUPSIC and 1D. Attachment 3 provides the as built condition of the lighting panel schedules, which is being finalized for issue as required by the conceptual engineering of this modification. These lighting panel schedules also indicate the actual loads in watts that are connected to each breaker circuit and the total KW load fed from each panel.

Engineering applied the criterion outlined in section 4.0 for load shedding and markedup the loads that can be shed from each essential lighting panel on plant lighting drawings. These markedup drawings are available with electrical design. Based on the markedup lighting drawings, essential lighting panel schedules that will reflect the loads connected to them after the proposed load shed was prepared as shown in Attachment 4. Attachment 5 compares the loadings on each essential lighting panels and UPS units prior to and after the load shedding study.

$$
\stackrel{x}{4}
$$

*)
*
6.0 RECOMMENDATIONS: The following essential lighting loads are recommended to be shed from UPS units 2VBB-UPSIC and 1D: Panel No. Bkr. No. No. of Fix. Ltg. Dwg.No.

UPS1D

2LAC-PNLU01	NONE	NONE	N/A
2LAT-PNLU03	2\&4	2	EE-66B
	5\&7	2	EE-79B
	10\&12	1	EE-66B
2LAC-PNLU03	1	2	EE-65D
	2	2	EE-65D
	3	7 (F) \& 1 (R)	EE-65D, E
	5	4	EE-65D
	6	6	EE-65D
	7	3	EE-65D
	8	1	EE-65D
	9	4	EE-65E
	30	1 (R)	CR
	32	1 (R)	CR
	38	2 (R)	CR
	39	2 (R)	COUN. RM
	40	1 (R)	CR
	41	2 (R)	TEL. RM
	42	1 (R)	CR
2LAT-PNLUO1	183	2 (DL)	EE-66E
	2\&4	3 (DL)	EE-66E
	5\&7	1 (DL)	EE-66F
	9\&11	2 (DL)	EE-66F
	10\&12	2 (DL)	EE-66F
	13\&15	3 (DL)	EE-66G
	17\&19	3 (DL)	EE-66G
	21\&23	2 (DL)	EE-66G
	28\&30	5 (DL)	EE-79E
	31\&33	4 (DL)	EE-79E
	39	1(?)	EE-66B

Panel No. Bkx. No. No. of Fix. \quad Ltg. Dwg.

UPS1D

Pnl.No.	Bkr.No.	No. of Fix.	Ltg. Dwg.
UPS1C			
2LAR-PNLU02	3	1	EE-67E
	4	1	EE-67F
	5	3	EE-67E, F
	6	4	EE-67F
	10	9	EE-67F
	, 14,15,16	Pri. Cntmt. (2KW)	Norm. De-energ.
2LAT-PNLU02	N/A	NONE	N/A
2LAX-PNLU01	1	3 (DL)	EE-68B
	2	3 (DL)	EE-68B
2LAT-PNLU04	7	4	EE-78B, F
	9	4	EE-66H
	11	4	EE-66H
	13	5	EE-66H
	19	4	EE-67P
2LAT-PNLU05	N/A	NONE	N/A
2LAN-PNLUO1	34	A/C Load to	2RMS-CAB170
	39	2 (R)	EE-48N
2LAW-PNLUO1	1\&3	3 (DL)	EE-72A, B, C
	2\&4	3 (DL)	EE-72A, B, C
	5\&7	5 (DL)	EE-72A, B, C
	6\&8	3 (DL)	EE-72A, B, C
	13\&15	3 (DL)	EE-72A,B,C
2LAR-PNLU05	3	6	EE-67K
	5	4	EE-67K
	11	1	EE-67K, L
	12\&14	2	EE-67K,
2LAR-PNLU01	5	1	EE-67C
	19821	3	EE-67D
	23\&25	1	EE-67A
	32\&34	1	EE-67C
	36838	1	EE-67C

$$
*
$$

7.0 CONCLUSIONS: As required by the conceptual engineering for Mod. 89-042, engineering performed the above load shedding evaluation. This evaluation indicates (Attachment 5) that approximately 30% of the UPS loads that are connected to UPS 2VBB-UPSIC and 1D can be shed. Therefore engineering concludes that Mod. No. 89-042 should be limited to the replacement of existing $75 \mathrm{KVA} / 60 \mathrm{KW}$ UPS units and implementing the recommendations of this load shedding study.

8.0 ATTACHMENTS:

1. Non-safety UPS sizing Calc. Sheets. for UPS 1C and 1D
2. Essential Lighting panel directories (uncontrolled)
3. Essential lighting panel schedules (preliminery- as built)
4. Essential lighting panel schedules (after load shed)
5. UPS loading comparision table (loads prior to and after load shed)
\because

$\stackrel{?}{6}$
\cdot
.i.. .
\div

$$
*
$$

$$
\because \pi
$$

LIGHTING PANEL DIRECTORY
$\begin{array}{ll}1 & 3 \\ 1 & 2\end{array}$

$$
4
$$

"

-
'‘

\therefore :
"

PANEL MARK NO. 2LAC-PNLUO3
DRAWINGS EE-55D,65E, 65F,56H
Ex9. WO.
C:RCUI: IESCRIPTiEN

01	
迆	i LITHTLMG - :MSIRLNENT RCOM E1 298'
13	1 :!GHTING - 7E1AY ROOM 日 2981
04	1 EXIT LIGHTS - El 2881
25	1 LIGHTING - CORRIDORS-HEST EL 2881
86	1 LIENTING - CARLE CHPSE E $288{ }^{\prime}$
187	1 LIEATING - CORRIDORS-LEST E 386^{\prime}
88	LIENTING - SHIFT SUPV, OFFICE EL 306'
09	LIEHTING - CORRIDORS-SOUTH EL 306'

18	1	EXIT SIENS - El 3061
111	1	LIEHTING - HNAC AND INST. ROONS EI 306).
1 12	1	SPARE
1	1	SPAPE
114		SPARE
15	1	SPARE
116		SPAPE
17	1	SPARP
118		SPAPE
119	1	TMMNICATICNS EQUIPMET
188		LiEHTING - HHAC ROOM EL 2881
1.21		SPARE

-"mse .
\because
-

$$
a+
$$

- Mes. .

$$
\mathbf{a}^{\prime}
$$

:

$$
i
$$

PANEL MARK NO. 2LAT-PNLUO1
DRAWINGS EE-66E,66F,66G,79E,66D,66B KR. MD CIRCUIT DESCRIPTION

$$
:
$$

:
.…

LIGHTING PANEL DIRECTORY

$$
i
$$

$$
;
$$

3

$$
*
$$

LIGHTING PANEL DIRECTORY

PANEL MARK NO. 2LAT-PNLUO3
DRAWINGS EE-66A,66B,79B,79D,78E,78 BKR. O_{0} CIROUIT DESCRIPTION
181 L LIERTINGTVRS, QDO, END, FL. EL. ट5
1821 LIEATING-TURB, BLDG, EN, FL. 日. 2589

183 LIEHIINGTURB, QLDG, END. FL. E. 258^{8}
14 I LIENTIMGTURB, QUD6, END, F, E, 258

$10 \quad 1$ SPAPE.
1991 SPAPE

111 SPRRE

13 13 spare

ATTACHMENTIL
PSGET OF J\&

[^0]$$
:^{\prime \prime}
$$
.

4

$$
\because \quad,
$$

LIGHTING PANEL DIRECTORY

PANEL MARK NO. 2LAT-PNLUO4
DRAWINGS EE-66H,78B,78E,78F,67P BKR. NO CIRCUIT DESCRIPTICN

$186 \quad 1$ LIEATMC-PIPE TNAR (EE78B)
184 I EXIT SIEXS-PIPE THNZ (EF788, 78F)
$185 \quad 1$ SPARE
186 LIEATING-PIPE NREI, (EITEF)

87	1	

1881 LIEATIMG-PIPE TRNEI (ED78F)

111 - LIEATIMG-QEM ACOESS PRES E. 2881
1121 LIENTIMG-PIPE TWNA (ETBAF)

1141 EXIT LIGTSS-PIPE TRNE (EE78F)

151 EXIT LIEATS-CIEOW ACCESS RREA
116 SPARE
1171 LIETTIMG-ANX. SERILE RNG, SOMTH E.OW1!
18 1 Spher;
191 LIGNTIMO-AUX, SERNICE B86, SOTH 日, 261^{\prime}
1281 COMNICATION ERIIPRENT
$\dot{x}-\therefore-121 \quad 1$ LIEATING-AUX, SERUIC RIK, SNTH E. 2619

171 Sphrs

18913

PGGE 9. OFIJ 42 1 Spane
:

$$
\begin{aligned}
& \text { ATTPCHMENT } \quad 2 \\
& \text { PPGE } 1 \text { O OF i.t }
\end{aligned}
$$

LIGHTING PANEL DIRECTORY

PANEL MARK NO. 2LAT-PNLUOS DRAWIMGS EE-66C,66A, 66E, 79A, 79C EXR No CIRCUIT DEECRIPTION

12	1 SPAPE
23	1 SPARE
34	1 LIEETING, FOMM ROMM
12	1 Spate
18	1 LIETIIG-EERUICE QDG, CORRIDCR
127	1 Spare
12	1 LIATING-SENICE EXPG, /TRXX AISE
129	1 SPARE
13	1 SPARE
131	1 SPARE
138	1 EXIT LIGFTS-OFFERS/DENIM, /HTR EAY
133	1 LIFMIMG-DEIM REEA 可, ट5\%
34	1 LIATIMG-DENIM APEA ER. SEN
135	
136	1 LIEATMO-TRMCX AISE (EEGGA)
137	
138	1 LIEHTMG-TRMCX AISE (EEFA ${ }^{\text {a }}$
139	1 Spare
40	1 SPARE
14	1 SPAPE
42	1 SPAPE

2.i..
\because

-

LIEHTING PANEL DIRECTORY

PANEL KARK NO．2LAR－PNLUOI DRAWINGS EE－67A，67B，67C，67D EXR．NO．

CIROUIT DESCRIPTION

81	1 LEET1NG－RX．BLD6．EI 215＇ERST
182	1 LIEATING－RX，8．86，日 175＇N．E．
83	
84	
18	
186	
187	
188	
189	1 TRPAE
18	1 SxTM 1906
111	
112	
143	1 SPARE
1［年	1 SPAPE
1近	1 COMNICATIOS
1 15	1 SPARE
117	1 SPARPE
118	1 SRPat
19	1 LTEAITNG－RX．日LD6，理 249°
188	1 LIENITM－RX，8LD6，且 175
121	LIEHITNG－R2，BLDG，E］2k8

DRAWINES EE－67A；67B；${ }^{\circ}$ TC，67D
EKR．NO．CIRCOIT BESCRIPTION

*

PANEL MARK NO．2LAR－PNLUO2
DRAWINGS EE－67D，67E，67F
ORR．NO．
CIRCUIT DESCRIPTION
181 LIGTHIN－RX．\＆D6．日 $261^{\prime} \mathrm{S}$
1821 LIGTHING－RX．SD6．El 26I＇S．

1831 LIGTHIN－RX．8DD6．EI 261＇S．
184 LIGTHING－RX．8LD6．日 $261^{\prime} \mathrm{S}$ ．

1 ES 1 LIGMING－TRACK BAY \＆RX．BLD6，El 261＇， 289
$186 \quad 1$ LIGHTIMG－TRACX BAY \＆RX．BLD6．日 2691
1971 comenications
1881 LIEHING－AX．RLD6．日 289
$189 \quad 1$ comenications

$111 \quad 1$ seavity Lighing－OUTSIDE
112 LIEATIS CONTACTOR－PRI．CONT．
131 SEDRITY LIGHING－OUSIDE
114 1 LeATLIW－PRI．COMT．日 249．，2481
$115-1$ LIGATIM－P9I．CONT，Q $2891,385{ }^{1}, 2611$

$117-1$ SPARE
181 SPARC
19 SPARE
$29 \quad 1$ SPRPE
时相

12	1 SPARE	
123	1 LIEHITM6－8X．8LD6．EI 261	
124	1 SPARE	
125	1 LIEAITM－RX．8LDG．日旦 261^{1}	
126	SPARE	
127		
128	1 Spare	
129	1 LIEHTIM－RX．8006．日l 261^{\prime}	
130	1 Spafe	
1．31	1 SPAPE	
132	SPAPE	
133	1 Spaif	
134	1 SPARE	
135	1 Spatie	
136	1 SPARE	
137	1 SPAPE	
138	1 SPARE	
139	1 SPARE	
148	1 SPPAE	
41	1 SpROE	
1.42	1 SPAPE	

LIGHTING PANEL DIRECTORY

PANEL MARK NO．2LAR－PNLUO3
DRAWINGS EE－67E，67F，67G，67H，67J
BKR．NO．CIRCUIT DESCRIPTION

181	1．LIGTING－RX，\＆D6．El 386
182	1 LIETING－RX，\＆LD6， 306＇
23	1 LIGTIM6－8X，8LD6．El 386）
184	1 LIETTING－Rx．8LO6．E 306＇
185	1 SPAPE
86	1 LIEHTING－RX．8LDG，E 3289
87	1 LIENTING－RX．RLDG，日l 328°
188	1 LIERTING－RX．\＆LDG，Ei 328
89	1 LIGTING－RX，8LD6，目 328^{\prime}
118	1 LIEATIN6－8x．8LD6，E 328＇
111	1 LIEHTING－RX，BLDG．EI 3281
112	1 COMANICATIONS
113	1 SPAPE
114	1 LIEATING－RX．BLD6．STAIRS EL 261^{\prime} S．
1.15	1 LIGTTING－RX，BLDG，STAIRS El $289{ }^{\prime}$ ， 3061
116	1 LIEHTING－RX，BLD6．STAIRS EL 261＇， 2899^{\prime} ，386＇
117	1 LIGATIN6－RX．BLD6．STAIRS E 328＇S．
118	1 LIEATIMG－RX，RLDG．STAIAS EL $328^{\circ} \mathrm{S}$
119	1 SPARE
120	1 LIEHTIM6－8X，QLDG．STAIRS El $353{ }^{\prime} \mathrm{S}$ ．
121	1 SPAPE

上，$\frac{1}{21} \frac{1}{1}$ SPARE

$$
i
$$

!

LIGHTING PANEL DIRECTORY

PANEL MARK NO．2LAR－PNLUOS
DRAWINGS EE－67K，67L
EXR．NO．CIRCUIT DESCRIPTION

DRAWINGO－EE－57K－67L
OR．NO．CIRCUIT DESCRIPTION

(.e...n*

LIGHTING PANEL DIRECTORY

PANEL MARK NO. 2LAR-PNLUOG
DRAWINGS EE-67K, 67L
QRR. NO. CIRCUIT DESCRIPTION

81	1	EXIT LIEATS - SOUTH QUX. BAY EL 175	
82	1	LIEHTING - 500UTH AUX. BAY El 175'	
183	1	LIEXTING - SOUTH AUX. BAY STAIRAELI	
184	I	LIEHTING - SOUTH RUX, BAY E1 175'	
85		LIGTIING - SOUTH AUX. BAY STAIPMEII	

1861 EXIT LIEHTS - SOUTH QUX. BAY E 198'

187 LIEATING - SOUTH RUX. BAY EL 190°
188 EXIT LIEHTS - SOUTH AUX. BAY El 2151, 2481
189 I LIGTING - SOUTH RUX. BAY EL 198'
110 I LIGHTING - SOUTH RUX. BAY E 215'
1111 LIGHTING - 500 TH R9UX. BAY 日 249°
112 LIGATING - 500 TH SUX. BAY E. 215^{\prime}
113 LIEATING - S00TH AUX. BAY El 248'
1141 LIEHTING - SOUTH AUX. BAY E C50'
115 1 SPARE
$116 \quad 1$ SPARE
1718 SPARE
$118 \quad 1$ SpARE
1191 SPARE
$129 \quad 1$ SpARE
21 I COMNICATIONS

LIGHTING PANEL DIRECTORY

PanEl mark no. 2Lan-PNLUOI

DRAWINGS
EE-69A, 69B, 69C, 69E, 80AJ EKR. NO. CIRCUIT DESCRIPTION
1811 LIEHING-RADUGSTE QLDG, 1.2481
$182 \quad 1$ LIEATING-RADNASTE QD6, E. 261^{\prime}
$183 \quad 1$ LISHIING-RADWASTE QLD6. 1.2481
184 LIEATING-RADUPSTE QD6, E1. 2611,279
1851 LIGHTING-RODHPSTE RLDG, E. 261^{\prime}
1861 LIEHTIMG-RADUASTE 806. E. 261^{\prime}
187 I LIGHTING-PADWASTE RLDG. EL. 2489^{\prime}
$188 \quad 1$ LIEHTMG-88DUASTE BLD6. E1. 261^{\prime}
1091 LIEFTIIG-RADUASTE QLDG. E. 249^{\prime}
18 I SPARE
111 LIEHTMG-PADUASTE QRD. E1.261'

$114 \quad 1$ SPAR

151 LIETIIGGADNASTE RLDG. E. $279^{\prime}, 287^{\prime}$
161 comanicatiog emuliment
117 LIGTIMG-RODNESTE RLDG. EL. CT9'
1 18 1 COMNICAIIONS EDUIPAIT
19 I LIEHTIMG-PADUSSTE STAIRS E253', 269, 279, 295,381 '
1281 LIEHITMG-RAOURSTE BLDG, EL. 291^{\prime}
121 LIGTIIMG-PADUASTE STAIRS 日1. $2537,269,279,295,381^{\prime}$

;
(1)
*
-
*

LIGHTING PANEL DIRECTORY

PANEL MARK NO. 2LAW-PNLUO1
DRAWINGS EE-72A,72B,72C
BKR. NO.
CIDCUIT DESCRITITON
$181 \quad 1$ LIEKTING - SCREEAE1 8 188 (EE-72B)
1821 LIENTIN - SCPEPELI 8L06, (Ex-728)
183 1 LEATIMG - SCREEMELI BLDG, (EE-72B)

186 L LIGNTING - SCREPMELI BLDG. (EE-729, 72B)
107 1 LIEHTING - SCREEMEL \&LDG. (EE-72A, 72B)
188 I LIEATING - SCREEMELL BLDG. (EE-72A, 72B)
189 LIEATIMG - SCREENELL QLD6. (EE-7CC)
1181 LIGATING - SCREEMEI BLDG. (EE-72C)
1111 LIGTING - SCREEMEII QD6. (EE-TCC)
1121 LIEATING - SCREEMELI QLD. (EE-TCC)
1131 LIGHTING - SCREEMEI BLDG. (EE-72A)

161 SPARE

17	1	SPARE
18	1	SPAPRE
1	18	1
19	1	SPAPRE

136	1

137 SPARE
138 SPARE

139 SPARE
148 SPARE

1 11 1 SPARE
421 SPARE-
ATT. 2
PAGL゙ノ
$0 \sqrt{1:}$

$$
:
$$

;

$$
\vartheta
$$

\# ?

$$
\because *
$$

ATTACHMENT 3

$$
\begin{aligned}
& \text { ATTACIMENT S } \\
& \text { SAGEV 2. UK }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ATTACHME゙NT - } \\
& \text { PAGE゙ } 3 \text {, F }
\end{aligned}
$$

PNL NO \qquad SVCE $120 / 208 \mathrm{~V}$ EQPT NO: 2 CAC-PNL $: 3$ PH_3 W 4 LOC, $\underset{\sim}{C O N T B L B C O L}$ \qquad elev BR CKTS \qquad CKT BRKR, COSEM MTG: EE, SURF -NEMA TYPE \qquad FDR SIZE CONN: rop
\qquad fir
XFMR MK NO
 ADO ${ }^{\circ}$ FEATURES \qquad

\qquad TOTAL LOAO 20.26 KW

$$
\begin{aligned}
& \text { ATTACHMENT } \\
& \text { SAGE } \\
& \text { SAN }
\end{aligned}
$$

\qquad
SUCE EQPT NOLAT－PNL \qquad LOC $_{1}$ \qquad coLTB ELEV－ob OR CKTS \qquad
 CKT BRKR，eorevent MTG：EL，SURF－NEMA TYPE \qquad FDR SIZE ORCKTS \qquad 2LAS－PNLGIf

XFMR MK NO． \qquad EOPT NO＿M KVN ADD ${ }^{\circ}$ L FEATURES \qquad | NO SERVICE | LOAD | | A_{M} |
| :--- | :--- | :--- | :--- |
| | CONN | ULT | SN | 37 1050 $1 \frac{T B 306 \text {（wn）}}{\frac{1}{4}}$ $400=18$

$$
\operatorname{CPARE}
$$

$$
\operatorname{SPARE}
$$

SPARE

4 TB32b－ma＇RHTR 320
 CONN LOAD \qquad ult load \qquad $11: 7 \mathrm{kw}$

$$
\begin{aligned}
& \text { ATTACHがにだ } \\
& \text { フ日らに か ッド } 9
\end{aligned}
$$

$$
:
$$

3:

$$
\begin{aligned}
& \text { ATTACHMENT : } \\
& \text { SAGE゙ } \%, 10
\end{aligned}
$$

$$
x_{1}+s_{i}
$$

*
-

PNL NO \qquad EQPT NOLAR－PNC 39 SUCE \qquad Loc $1-K x \cdot 13 \angle D G \mathrm{coL}$ \qquad ELEV＝，$-10^{\prime \prime}$ BR CKTS \qquad
 \qquad FDR SIZE \qquad rop 2 LASP PNLDI6 \qquad 5
XFMR MK NO \qquad EOPT NO KVA ADOL FEATURES \qquad

CONN LOAD \qquad
ULT LOAD \qquad
TOTAL LOAD 3－6 3 KW ．

$$
\begin{aligned}
& \text { AフTACHmだnT } \because \\
& \text { かのば } 7 \text { - ぐ } 19
\end{aligned}
$$

an

\cdot
' ${ }^{\prime}$:
\therefore :

！\because
－

\because

ジ

$$
\begin{aligned}
& \text { ATTACHME: }=: \\
& \text { DAGE } 9: S
\end{aligned}
$$

an

はTTACHmE゙ル

$$
0
$$

＊．动－

$$
\begin{aligned}
& \text { ATGACHSOEN: } \\
& \text { PAGE } \quad \text { ! }
\end{aligned}
$$

$$
\text { , }{ }^{\prime+, n^{\prime}}
$$

$$
y \cdot r
$$

**

$$
\begin{aligned}
& \text { คテティC4のビゥT? }
\end{aligned}
$$

\because

$$
x
$$

is
-

Nex.:

$$
\begin{aligned}
& \text { タフT』CHがっだッい } \\
& \text { FタGE 14:! 1 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ATGCHMEST }{ }^{3} \\
& \text { 'A AE IS M, }^{\prime}
\end{aligned}
$$

CONN LOAD \qquad
ULT LOAD \qquad

ATTACitmくinT

$$
A_{i}<G E \quad \text {, } 6,1!
$$

CONN LOAD \qquad
ULT LOAD' \qquad

$$
\begin{aligned}
& \text { ATTACHes } \quad i \\
& \text { PAGE } \quad \rightarrow \quad r \quad 9
\end{aligned}
$$

n i

\qquad ZCAR-PNL
PNL NO EQPT NO: MK SVCE 12
BRCKTS CKT BRKR, EUEUESI - MTG: EL, SURF -NEMA TYPE \qquad FDR SIZE \qquad 2 (AT-PNLO)?
XFMR MK NO \qquad EOPT NO_MJ-PNKUO)

ADOL FEATURES \qquad

ULT LOAD \qquad TOTAL LOAO_ 5:39 K'

$$
\begin{aligned}
& \text { ATTACHOMN: } \\
& \text { PAGE JFWF }
\end{aligned}
$$

$$
=x
$$

i
,
-

明

CONN LOAD \qquad
ULT LOAD. \qquad

$$
\begin{aligned}
& \text { ATTACHRCAT S }
\end{aligned}
$$

'.

？
：
，
．＇
-

n
$\nLeftarrow *$

$$
\${ }_{i}^{A}
$$

$$
\begin{aligned}
& \text { ATTACHmENT i } \\
& \text { NPGE } 4: 1 \text { M }
\end{aligned}
$$

$"$

1**
i
\square

$$
\begin{aligned}
& \text { ATTACHENETM } 4 \\
& \text { ABGE J: } \because 9
\end{aligned}
$$

PAL NO \qquad EAST $\mathrm{L}^{2} \subset A R-A N L$ \qquad LOC1-Ra B. sUE $120 / 208 \mathrm{~V}$ COL \qquad elev \qquad BR CRTS \qquad CK BRR, SEES MTG: EZ, SURF -NEMA TYPE \qquad FDR SIZE \qquad Top BRCKTS \qquad SB XFMR MK NO_ \qquad OPT NO _K_ KOA ADD L FEATURES \qquad

6 RX SOUTH STARS $480 \quad 1 \quad 1$
SPARE
SPARE
SPARE
SPARE
SPARE
SPARE
STARE
SPARE
SPARE
SPARE
SPARE
SCARE

CONN LOAD \qquad
ULT LOAD. \qquad TOTAL LOAD: $3.67 \mathrm{KW}, \bar{j}$

$$
\begin{aligned}
& \text { ATTACHMENT A } \\
& \text { PAGE GMF10 }
\end{aligned}
$$

$$
\because
$$

$$
\begin{aligned}
& \text { ATTA CVHMEVTY } 4 \\
& \text { AAGE } 7 \text { US. }
\end{aligned}
$$

$$
1
$$

:
$\stackrel{1}{2}$
;

－

3
据:

$$
\bullet
$$

$$
3
$$

!
:

${ }^{*}, n=A^{*}$ s

CONN LOAD
ULT LOAD

$$
6.965
$$

AEENE゙RGIZED JWRIOAS NORMAL OFE゙RATION. (3 kW)

$$
\begin{aligned}
& \text { ATTACHMCNT } 4
\end{aligned}
$$

-
-
-"

PNL NO \qquad EOPT NO sUCE \qquad \longrightarrow Mb. 2 $\mathrm{PH} 3 \mathrm{H}_{4} 4$ $\operatorname{LoC}_{1} \ldots T B$ \qquad BR CKIS \qquad CKT BRKR, MTE: EE, SURF -NEMA TYPE \qquad FDR SIZE
\square CONN:

XFMR MK NO \qquad EQPT NO. \qquad akva \qquad ADD'L FEATURES \qquad
 SN ${ }^{A_{P}}$ -

CONN LOAO \qquad
ULT LOAD. \qquad TOTAL LOAD 5.45 K W

$$
\begin{aligned}
& \text { ATTA (UnLNT } 1 \\
& \text { PAGK ie }
\end{aligned}
$$

$$
4
$$

"ancer..

4s
n
n

$$
A^{A}
$$

4in 3:

$$
\begin{aligned}
& \text { ATTACHENT " } \\
& \text { FAGEK I4 U } 19
\end{aligned}
$$

$$
\cdots n
$$

\&

$$
14
$$

PNL NO \qquad EQPT NO

2CAT-PN 105° SVCE 120/208V PH_3 W 4 M. JO_ LOC 1 _ TB
\qquad BR CKTS \qquad CKT BRKR, EOEOES - MTG: EE, SURF - NEMA TYPE \qquad FDR SIZE

CONN: TOP BRCKTS \qquad $5 \cdot 8$ XFMR MK NO \qquad EOPT NO.AT-PNC OJ). ADO L FEATURES \qquad

- SN ADDL FEATUAES

9 GGEDERNIN. AREA
$-720-1$

720	CPARE	
	$0 G 2 G L A R A L R O A X$	9
500	$H T R ~ B A Y ~ A$	5

	SPARE		
S'PARE			

C'CARE			
$C P A R E$			

DEMIN. AREA? \qquad

ult load \qquad
Total LOAD 6:0 9 K w

$$
6: 09 \mathrm{kw}
$$

$$
\begin{aligned}
& \text { ATTA CHME゙ST } \\
& \text { MGGE } 1.5 \% 10
\end{aligned}
$$

 CONN LOAD
ULT LOAD
TOTAL LOAD $\left.\frac{12-2,2}{(12-2} \mathrm{KW}\right)$

$$
\begin{aligned}
& \text { ATTACHment } \\
& \text { PAGE M, }
\end{aligned}
$$

$\because x^{2}$
\%

4isuch,

\qquad EQPT NO ${ }^{2}$ \qquad $\operatorname{Loc}, \frac{R x . A U X . B A Y}{N O R T H} C O L$ \qquad elev \qquad PH_3 w_ 4 NEUTSOLIR MNS: LUGS ONLY, NSRIR
\qquad FDR SIZE CONN: CKT BRKR, CHEBEI - MIG: E, SURF -NEMA TYPE \qquad rop BR CKTS \qquad CKT BR, 2 T-P OUTO SURF -NEMA TYPE \qquad ADD ${ }^{\circ}$ L FEATURES \qquad
XFMR MK NO \qquad EQPT NO_M -P.NKO

$\vec{p}_{A_{p}}$

LOAD	
CONN	ULT

$$
\begin{array}{cc}
\text { GTTACiAmENT } 4 \\
\text { SAGE ir. } & 0
\end{array}
$$

$x+x^{4}$
".
ner

PNL NO \qquad EQPT NOLAR-PNL 1 \qquad LOC 1 _RB PH_3 W 4 SVCE $120 / 208 \mathrm{~V}$ ERCKTS \qquad CKT BRKR, OUEEN MTG: EE, SURF - NEMA TYPE \qquad FDR SIZE

CONN: TOP AR CKTS \qquad
XFMR MK NO \qquad EOPT NOLAT-PNLOH7 ADO ${ }^{\circ}$ L FEATURES \qquad

- \quad LOAD SN

CONN LOAD \qquad
ULT LOAD \qquad
TOTAL LOAD 6.53

$$
\begin{aligned}
& \text { ATTA CH NEN: 4 } \\
& \text { PAGE } 19 \text { JG } 92
\end{aligned}
$$

*

ATTACIIN 2T .5.

2VBB-UPSIC/2LAT-PNLCI7

.

MSD \# 29-GAZ - LOAE VHED ©TVDY
attach, mir si PAGC゙ $2: \sigma と$,

$$
2 V B B-U P S I D / 2 \angle A S-P N L O H
$$

$$
\because^{*}
$$

NUCLEAR DESIGN-ELECTRICAL CONCEPTUAL DESIGN INPUT MOD. PN2Y89MXO42
/NCORPORATE
PROJECT TITLE: Replace 2VBB-UPSIC and 2VBB-UPSID

REVISION/DATE:

PREPARED BY/DATE:

REVIEWED BY/DATE:

OBJECTIVE: The plant normal Uninterruptible Power Supply System (UPS) 2VBB-UPSIC and 1D are currently loaded to their full capacity of $75 \mathrm{KVA} / 60 \mathrm{KW}$ and have been subjected to overloaded condition in the past. Because these UPS's have extern and require replacement. This modification will:
1.0 Replace the subject $75 \mathrm{KVA} / 60 \mathrm{KW}$ UPS's with new state of the art UPS's of the same size
2.0 Perform a load study of the existing loads on these two UPS's and determine the loads (that do not require UPS power) for possible load shedding.
$3 / 12 / 91 / 12$
3.0 If the load shedding evaluation concludes that greater than $\left.{ }^{R}{ }^{2}\right)^{2}$ the loads can be shed, then item 1.0 above will only be implemented by procuring and installing two new state of the art $75 \mathrm{KVA} / 60 \mathrm{KW}$ UPS units to replace the existing units. In addition design changes are required to transfer the sheddable loads to Normal power.
4.0 If the load shedding evaluation concludes that less than 30t of the loads can be shed, action will betaken to procure and install additional UPS units (s). In addition design changes are required to transfer the sheddable loads to Normal power.

DESIGN CRITERIA ELECTRICAL:

1.0 Design Criterion: System and Scope of change
1.1 Input: Change affects system "VBB" and the scope of change involves the following:
a) Replacing 2VBB-UPSIC and ID with new units of the same size.
b) Recalculating the loading on batteries 2BYS-BATIA and $1 B$ and battery chargers 2BYS-CHGR1A1 and 1B1.
c) Verification of 125 V DC feeder cabling for ampacity, short circuit and voltage drops based on the manufacturer's data for the new UPS units.
d) Verification of 600 V AC and $208 / 120 \mathrm{~V}$ AC feeder cabling for ampacity, short circuit and voltage drops based on new vendor information.
e) Verification of ratings of protective devices associated with UPS 2VBB-UPSIC and 1D.
f) Verification of ratings of all electrical equipment associated with UPS 2VBB-UPSIC and 1D.
g) Evaluate by walkdown the feasibility of installing the new UPS units in Normal Switchgear room Elevation $23^{\prime \prime}-0^{\prime \prime}$.
h) Evaluate the adequacy of HVAC system to remou* the heat release by new UPS units.
i) Evaluate the structural impact due to the weight of new UPS units.
j) Walkdown and determine the actual loads on UPS 2VBB-UPSIC and 1D, prepare panel schedule for each panel fed from these UPS's and issue the panel schedules.
k) Evaluate if the loads fed from these UPS's are da really required to be powered by UPS and if not list the loads for possible load shedding.

1) If the estimated load shedding loads is is less than 30\% of the anticipated total UPS loads, procure and install additional e^{-} UPS unit(s).
m) Evaluate normal power availability and transfer sheddable UPS loads to normal power supply.
1.2 Basis: Modification PN2Y89MX042

$$
24 \min _{t}^{4}
$$

c) Cable - Verify the adequacy of existing cables by revising and or evaluating the impact of on the following NMP2 electrical calculations.

1. EC-049
2. EC-100
3. EC-111
4. EC-130
5. EC-131
6. EC-143

If the modification requires addition of new cables, its adequacy with respect to ampacity, short circuit and voltage drops should be established. Determinating the existing cables from the existing UPS and terminating cables on new UPS should be performed in accordance with the requirements of spec. E061A.
d) Motors- Not applicable.
e) Termination - Same as 7.1.c above.
f) Protective Devices (Relays, Fuses, and Breakers) - Verify the adequacy of existing protective devices.
g) Electrical Penetrations - Not applicable.
h) Grounding - Verify the adequacy of existing grounding cables for the equipment grounding of new UPS units. Determinate the equipment grounding cables from the existing equipment and terminate on new equipment in accordance with the requirements of NMP2 Spec. E061A.
i) Others (General)- New, ups units and should be located as for as possible near the location of existing equipment so that minimum amount of design changes result. A field walkdown should be performed prior to the issue of change documents to ensure the installation of new units can proceed with minimum disturbance to the equipment located inside Normal Switchgear Room. Removal of existing equipment and installation of new equipment should beperformed in accordance with the requirements of NMP2 Spec. E061A.
7.2 Basis: FSAR Sections 8.1 thru 8.3.

8.0 Design Criterion: Other Discipline Requirements
8.1 Input:
a) Mechanical - Required.
b) Structural - Required.
8.2 Basis: In accordance with Procedure NEL-400
9.0 Design Criterion: Instrumentation and Control Requirements

9.1	Input: a) b) c)	Instruments - Not required Controls - Ensure the changes meets the requirements of the modification request. Alarms - Ensure that existing alarms on UPS 2VBB-UPSIC and 1D are reconnected back on to the replacement UPS units. addition if new UPS unit(s) added, alarms to annunciate UPS trouble and UPS on DC power need to be included as part of this modification.

d) Set Point Data Sheets - Not required.
9.2 Basis: NMP2 Spec. E-147
10.0 Design Criterion: Redundancy, Diversity, and Separation Requirements
10.0 Input: Ensure during the design process that there are no electrical interconnection between 2NJS-US5 and US6.
10.2 Basis: FSAR Sections 1.8, 8.1, 8.2, 8.3, Regulatory Guides 1.6 and 1.75, IEEE Standard 383-1974.
11.0 Design Criterion: Failure Effects Requirements
11.1 Input: None required.
11.2 Basis: FSAR Sections 1.8, 15.0, and FMEA Volumes, Regulatory Guide 1.53.

16.0 Design Criterion: Maintenance Requirements

16.1 Input: The following maintenance procedures should be revised or new procedures developed to include the maintenance requirements specified for the new and or replacement UPS units.
a) N2-EMP-GEN-624
b) N2-EMP-VBA-623
c) N2-IMP-UPS-8001
d) $\mathrm{N} 2-E S P-B Y S-W 001$
16.2 Basis: NMP2 Spec.E-147 and Vendor maintenance manual.
17.0 Design Criterion: Other Requirements
17.1 Input: Installation of new UPS and/or replacement of the existing UPS will improve the reliability and maintainability of the subject UPS power supplies.
17.2 Basis: This modification
18.0 Design Criterion: Appendix R requirements
18.1 Input: Not applicable
18.2 Basis: Safe shutdown equipmeint list in Appendix 9B of USAR.
b) Lighting system - UPS 1C and 1D feed essential and egress lighting systems. USAR section 9.5.3.2 states that:

1. The essential lighting system provides partial lighting for certain critical areas of the station requiring continuous lighting such as control room, relay and computer room, standby diesel generator rooms, emergency switchgear rooms, service water pump room, and for passageways to and from areas where safety-related equipment is located.
2. The egress lighting system provides adequate lighting for all egress signs inside the plant, exit doors, hallways, corridors, passageways, stairways, and other areas leading to the outside building exits. The system is designed specifically for inside building egress emergency conditions in accordance with related standards, codes, and OSHA requirements. Internally illuminated exit signs are located.... and walkways. All exit facilities are provided with adequate illumination, both vertical and horizontal. Minimum intensity of illumination, measured at the floor level, for all exit paths is maintained at 0.5 footcandle.

In addition to the essential and egress lighting systems described above, $8-h r$ battery pack lighting is also provided in all areas of the plant required for operation of any safe shutdown equipment, and in access and egress routes thereto, to meet the requirements of 10CFR50, Appendix R.

The following will be considered during the load shedding study:
a) Essential lighting system for NMP2 has been designed prior to the implementation of 10CFR50, Appendix R. Therefore possibilities exist where both essential lighting and 8-hr battery pack lighting are provided in an area such as stairways and access and egress routes to safe shutdown equipment. If the evaluation indicates that $8-\mathrm{hr}$ battery pack lighting is adequate in that area then consideration should be given to load shed the essential lighting from UPS power.
b) USAR Table 9.5-1 indicates that 100% of the lighting in areas such as Turbine Building, Reactor Building, Auxiliary Bays, Auxiliary Services Building South, Screenwell Building, Water Treating Area, Heater Bay, OffGas Building, Radwaste Building except Control room, Auxiliary Boiler Building, Electrical Tunnels and Piping Tunnels will be provided from the normal power source. In addition to normal lighting, these areas will be provided with egress lighting as required from UPS fed egress lighting. Minimum illumination leveqes for egress lighting is 0.5 footcandle. Egress lighting in the above areas will be evaluated as part of the load shedding study and extra lighting if any in these areas will be considered for shedding.
C) Miscellaneous Loads - Any miscelaneous loads such as receptacles located inside main and Radwaste control rooms connected to the essential lighting panels will be evaluated and considered for possible load shedding.
6.0 Complete the load shedding study and list the loads that can be shed from UPS power source and determine if the sheddable loads are greater than orequal to or less than 30% of UPS rating of $75 \mathrm{KVA} / 60 \mathrm{KW}$.
7.0 Evaluate the availability of spare capacity in normal lighting distribution panels and transfer the sheddable loads from UPS supplied essential lighting system panels to the normal lighting system panels.

OPTION NO. 1 - PROCURE AND REPLACE EXISTING $75 \mathrm{KVA} / 60 \mathrm{KW}$ UPS $2 \mathrm{VBB}-$ UPSIC AND ID

SCOPE: A single line representation of the power supplies involved with 2VBB-UPSIC and 1D is provided in attachment 1
of this package. The scope of this option includes the following:
1.0 Perform a load shedding study as outlined in load shedding study of this package and ensure greater than or equal to 30\% of the existing UPS loads from 2VBB-UPSIC and 1D can be shed.
2.0 Issue design changes to transfer the sheddable loads to lighting distribution panels fed from the plant normal power source.
3.0 Procure new 75KVA/60 KW UPS units.
4.0 Issue design changes to replace the existing $75 \mathrm{KVA} / 60 \mathrm{KW}$ UPS units.

Attachment 4 of this package provides the list of documents affected if this option is implemented.

DISCUSSION: This option reduces the loadings on UPS 2VBB-UPS1C and
1D and therfore the reliability, operability and the maintenability of these units are enhanced. In addition, its impact as outlined below on the existing associated equipment will be minimum:
1.0 Power Supplies - No changes is required except to revise the calculations listed in affected document list in attachment 1.
2.0 Raceway - None required. However the conduits that are connected to the existing UPS units will be determinated and reterminated to the new UPS units. Because the size of the new units is unknown, some modifications to the conduits may be necessary.
3.0 Cables - Because of the reduced loadings, the existing cables are adequate. However when these cables are reterminated to the new UPS units, they may not reach the destinations within the units. Existing cables may have to be spliced with adequately sized pigtails and then reterminated to the destinations inside the new UPS units. However certain calculations listed in the affected document list, attachment 4 may have to be revised.
4.0 Grounding - Existing grounding cables require to be determinated from the old units and reterminated to the new units.
5.0 Other Equipment and Components - Because of the reduced loadings, other components such as breakers and batteries are considered adequate.
6.0 Alarms - Existing alarms and annunciator windows are adequate.

OPTION NO. 2 - PROCURE AND REPLACE EXISTNG 75KVA/60 KW UPS 2VBBUPSIC AND ID. IN ADDITION PROCURE AND INSTALL TWO NEW UPS RATED FOR $25 \mathrm{KVA} / 20 \mathrm{KW}$

SCOPE: A single line representation of the power supplies involved with 2VBB-UPSIC and 1D and with the proposed two new UPS units rated for $25 \mathrm{KVA} / 20 \mathrm{KW}$ is provided in attachment 2 of this package. The scope of this option includes the following:
1.0 Perform a load shedding study as outlined previously in the load shedding portion of this package and ensure only less than 30% of the existing UPS loads have been qualified for load shedding.
2.0 Issue design changes to transfer the sheddable loads to lighting distribution panels fed from normal power source.
3.0 Procure two $75 \mathrm{KVA} / 60 \mathrm{KW}$ UPS units to replace $2 \mathrm{VBB}-\mathrm{UPS} 1 \mathrm{C}$ and 1 D .
4.0 Procure two $25 \mathrm{KVA} / 20 \mathrm{KW}$ UPS units and associated equipment as indicated in attachment 2.
5.0 Issue design changes to replace the existing $75 \mathrm{KVA} / 60 \mathrm{KW}$ UPS units. Ensure that the new $75 \mathrm{KVA} / 60 \mathrm{KW}$ UPS units are loaded only to 80\% of their rated capacity.
6.0 Issue design changes to install new 25KVA/20 KW UPS units and their associated equipment and components.
7.0 Issue design changes to transfer UPS loads that can not be accomodated in 2VBB-UPSIC and 1D to the new UPS units.

Attachment 4 also provides the list of affected design documents if this option is implemented.

DISCUSSION: This option also reduces the loadings on 2VBB-UPSIC and 1D to 80% of their capacity and therfore the reliability, operability and the maitainability of the units are enhanced. However it involves the addition of new units with their associated equipment and components. The impact of this option on the plant electrical distribution system is evaluated as indicated below:
1.0 Replacing existing 75KVA/60 KW UPS units 2VBB-UPSIC and 1D with new units of the same rating impacts minimally and has already been discussed in option $\# 1$ above.

$$
\frac{\text { Mup CE }}{1020691} S_{8 .}
$$

ES
A. RAju

$$
428-7401
$$

App.R

[^0]: : : "

