(4 (1) 67-189-91 MASTER CONTROLLED THE NINE MILE POINTING R STATION II OPERATIONS LESSON PLAN 02-leg-001-201-2-01-4 CONTROL ROD DRIVE HYDRAULICS Prepared By: Unit #2 Training Department DATE AND INITIALS **APPROVALS** SIGNATURES REVISION 4 Training Supervisor Unit #2 G. L. Weimer Asst. Superintendent Training-Nuclear R. T. Seifried Superintendent of **Operations Unit #2** R. G. Smith Summary of Pages 188 Revision: _____ (Effective Date: _____ Number of Pages: <u>19</u> Date Pages May 1988 1 - 19NINE MILE POINT NUCLEAR STATION 2 1.1 911031 5040020 930 PDR 05000410 ADOCK PDR

.

· · · ·

.

Attachment "A"

OBJECTIVE APPROVAL

Author: UNITI OPS TRAINING Training Dept: Unit I Ops. Lesson Title: CONTROL ROD DRIVE HYDRAULICS Lesson Plan #: NZ-OLP-7 Training Setting(s): Classhoom Purpose: INSTRUCTOR Shall present information for the student to meet each Student Learning Objective, Additionally he shall provide sufficient explanation to facilitate the student's understanding of the information presented. Trainee Job Title: <u>LRENSED OPERATOR (ANDIDATE</u>

<u>Approvals/Review</u> Training Supervisor Plant Supervisor Training Analysts Supervisor

adatures

When complete, attach this form to the master lesson plan.

х I .

.

•

I. TRAINING DESCRIPTION

×1

- A. <u>TITLE</u>: Control Rod Drive Hydraulics
- B. <u>PURPOSE</u>: In a lecture presentation, the instructor shall present information for the student to meet each Student Learning Objective. Additionally, he shall provide sufficient explanation to facilitate the student's understanding of the information presented.
- C. TOTAL TIME:

4.0 hours

- D. TEACHING METHODS:
 - Classroom Lecture
 - Assign the Student Learning Objectives as review problems with the students obtaining answers from the text, writing them down and handing them in for grading.

E. **REFERENCES**:

١.	lechnical Specifications					
	a.	3/4.1.3.1; Control Rod Operability				
	b.	3/4.1.3.2; Control Rod Maximum Scram Insertion Times	Í			
	с.	3/4.1.3.3; Control Rod Average Scram Insertion Times	1			
	d.	3/4.1.3.4; Four Rod Group Scram Insertion Times	Ī			
	e.	3/4.1.3.5; Control Rod Scram Accumulators	Ì			
2.	Proc	cedures				
	a.	N2-OP-30, CRD System, Rev. 2	Ì			
3.	NMP-2 FSAR					
	a.	Design Basis Vol 12, Chapter 4, Pg. 4.6-1	i			

N2-OLP-7 -1 May 1988

Unit 2 Ops/429

4

t.

•

.

۰ س -

.

•

.

II. <u>REQUIREMENTS AND PREREQUISITES</u>

- A. <u>REQUIREMENTS FOR CLASS</u>:
 - 1. AP-9, Rev. 2, Administration of Training
 - 2. NTP-10, Rev. 3, Training of Licensed Operator Candidates
 - 3. NTP-11, Rev. 4, Licensed Operator Retraining and Continuing Training

4

4

- 4. NTP-12, REv. 2, Unlicensed OperatorTraining
- B. <u>PREREQUISITES</u>
 - 1. Instructor
 - a. Demonstrated knowledge and skills in the subject, at or above the level to be achieved by the trainees as evidenced by previous training or education <u>or</u>
 - b. SRO license for Nine Mile Point Unit Two or a similar plant, or successful completion of SRO training including simulator certification at the SRO level for Nine Mile Point Unit Two.
 - c. Qualified in instructional skills as certified by the Training Analyst Supervisor.
 - 2. Students
 - a. Meet eligibility requirements per 10CFR55 or
 - Be recommended for this training by the Operations Superintendent or his designee or the Training Superintendent.

III. TRAINING MATERIALS

- A. <u>TEACHING MATERIALS</u>:
 - 1. Transparency Package
 - 2: Overhead Projector
 - 3. Whiteboard and Felt Tip Markers
 - 4. N2-OLP-7
 - 5. N2-OLT-7
 - 6. See Section I.E.1
 - 7. See Section I.E.2
- B. <u>STUDENT MATERIALS</u>:
 - 1. N2-OLT-7
 - 2. See Section I.E.1
 - 3. See Section I.E.2

N2-OLP-7 -2 May 1988

Unit 2 Ops/429

. , •

4

,

•

Will be generated and administered as necessary. They will be on permanent file in the Records Room.

N2-OLP-7 -3 May 1988

Unit 2 Ops/429

.

'n ۲.

· ·

V. LEARNING OBJECTIVES FOR THE CONTROL ROD DRIVE HYDRAULICS (CRDH) SYSTEM

Upon completion of this chapter, mastery of the required system knowledge will be demonstrated by performing the Enabling Objectives listed below.

- 7-1 State the purpose of the CRDH system.
- 7-2 On an HCU piping diagram, identify all components.
- 7-3 State the purpose and principle of operation of the following major system components:
 - a. Suction and discharge filters
 - b. CRDH pumps
 - c. Flow Control Station
 - d. Pressure Control Station
 - e. Charging, Drive, Cooling, and Exhaust Water headers
 - f. Stabilizing valves
 - g. Pressure Equalizing valves
 - h. Scram Discharge Volume
 - i. HCU's
- 7-4 Identify the seven risers on an HCU.
- 7-5 Describe the flow paths and sequence for an HCU performing: a) Insert,
 b) Withdraw, and c) Scram, include in your discussion any system automatic functions (ie. trips, bypasses, valve movements) to return system to normal operational status.
- 7-6 List the available Control Room indications and system controls along with normal values.
- 7-7 Given N2-OP-30, Control Rod Drive Hydraulics use the procedure to [4 identify the appropriate actions and/or locate information related to:]
 - a. · Startup
 - b. Normal Operations
 - c. Shutdown
 - d. Off-Normal Operations
 - e. Procedures for Correcting Alarm Conditions
- 7-8 <u>SRO Only</u> Given Technical Specifications, identify the appropriate actions and/or locate information relating to limiting conditions for operation, bases, and surveillance requirements for the Control Rod Drive Hydraulic System.
- 7-9 State the power supplies to the CRDH pumps.

N2-OLP-7 -4 May 1988

Unit 2 Ops/429

4

· · · · • • •

• • •

				Text	Text		
				Ref.	Ref.		
VI.	LESS	SON CO	DNTENT	<u>Page</u>	<u>Fig.</u>	<u>S.L.O.</u>	
	<u>Acti</u>	<u>ivity</u>	-				
	INTE	RODUCT	ION				4
	<u>Stuc</u>	<u>lent L</u>	<u>earning Objectives</u>	i			
	Α.	<u>Purp</u>	ose	1		1	
		The	Control Rod Drive Hydraulic System				
		prov	ides Reactor Grade water at				
		diff	erent DP's (compared to Rx press.)				
		for	driving, scram, and cooling functions				
		rela	ted to the operation of the control				
		rod	drives. The system also provides				
		purg	ing water for the reactor recirc				
		pump	seals.				
	Β.	<u>Gene</u>	ral Description	1,2	1,2,3	2,3	
		1.	Project the diagrams with which the				
			student should be familiar.				
		2.	Major components are 2 100% pumps,			-	
			185 HCU's, and assoc. valves,				
			filters, and piping.				
		3.	Point out inlets, outlets,				
			interconnections and instrumentation				
		4.	Describe basic flowpaths			5	
•							
II.	<u>DETA</u>	ILED	DESCRIPTION				
	Α.	<u>CRDM</u>	Pump Suction Filters	2	1	3	
		1.	The CRDH pumps have two suction filters				
			to protect the pump from foreign materia	1.			
		2.	One filter is in service, one				
۲			valved out.				
		3.	The filters are disposable elements.				
		4.	A Y-strainer is located upstream of each				
			filter.				

N2-OLP-7 -5 May 1988

.

Unit 2 Ops/429

٠

. ۲. ۲ .

, ,

.

			Text Ref.	Text Ref. Fig	510	
Act	ivitv	•	rage	<u>. 19.</u>	<u>J.L.U.</u>	
	5.	A micron Y-strainer is located	2	1	3	
		in the filter bypass line.	-		-	
В.	Cont	trol Rod Drive Hýdraulic Pumps				
	1.	The CRDH provides the driving force		*		
		for normal control rod movement,				
		control rod cooling, and charging				
		the scram accumulators.				
	2.	The two 100% capacity pumps are				
-		10 stage, centifugal, motor driven pur	nps.			
	3.	One pump normally is operating with	•			
		the other in Standby.			د	
	4.	Each pump has an oil cooler to			1	
		maintain pump temperature.				
	5.	Minimum flow bypass line has a	3			
		restricting orifice to provide a				
		continuous flow to the condensate				
		storage tank from the running pump				
		to prevent immediate pump overheating				
		if the discharge path is blocked.				
	6.	The power supplies to the pumps are:	2		9	4
		a. P1A 2NNS-SWG014				
		b. P1B 2NNS-SWG015				1
2.	CRDH	Pump Discharge Filter	3	1	3	
	1.	Two redundant full flow pump				
		discharge filters.			e	
	2.	One filter normally in service and				
		the other is valved out of service.				
D.	<u>Reac</u>	tor Recirculation Pump Seal Purge				
	1.	CRDH system supplies a continuous			5	
		flow to each RR pump seal. Minimizing				
		crud buildup; keeping the seal clean				
		by supplying clean filtered water				
-		continuously to the RR pump seals.				
1.	Reac	tor Sample Station				
	1.	A continuous sample flow is taken				
		TFOM THE CKD SYSTEM AND CONTINUOUSLY				
		MZ - ULV - I - D MAV I 988				

Unit 2 Ops/429

.

.

• ¢ • , ۲ ¥

+

. . , ,

, 1

		· · ·	Text Ref. <u>Page</u>	Text Ref. <u>Fig.</u>	<u>s.l.o.</u>
<u>Acti</u>	vity				
F.	<u>Cha</u>	rging Water Header	3	1	3
	1.	CRDH pump discharge header supplies			
		water to the charging water header			
		for charging the water			
		side of the scram accumulators.			
	2.	The 185 scram accumulators "float" at			
4		the CRDH pump discharge header pressur	e,		
·	£	this pressure is independent of reacto	or		
		pressure.			
	3.	During a scram, the scram accumulators	4		5
		discharge to the CRDMs. This results	I		
		in a pressure decrease in the charging	ſ		
		water header allowing the CRDH pumps			
		to "run out", increasing flow into the	I		
		charging water header.			
	4.	Restricting orifices prevent excessive			
		pump flow during reactor scrams.			
	5.	The flow sensing system upstream of			3
		the charging water header senses the			1
		high flow in the system and closes			
		the flow control valve, further			
		increasing the flow into the charging			
		water header.			
	6.	The charging water header connects			ŧ
		downstream of the flow element, so			
		flow in the charging water header			
		creates a high flow signal causing			
		the FV to shut, diverting most of			
		the flow to the charging water header.			
			I		

|4

N2-OLP-7 -7 May 1988

۳

*

Unit 2 Ops/429

. '

,

. • •

• . •

.

•

		-		Text Ref. <u>Page</u>	Text Ref. <u>Fig.</u>	<u>S.L.O.</u>
	<u>Acti</u>	vity				
		-	The FCV has a mechanical stop	4	1	3
			preventing the valve from shutting			(
			completely thus maintaining a small			5
			flow to the reactor via the			
			Cooling Water Header.			
	G.	Flow	Control Station			3
		1.	The flow control station automatically			
			controls system flow during all modes			
			of operation using one of the two flow			
			control valves (FV).			
		2.	Normally a constant flow of 63 gpm is			6
			maintained by the flow control valve.			
		3.	The drive and cooling water pressure			
			control valve is adjusted for the			
			required differential pressure. Flow			
			is automatically maintained constant			
		Ę	if reactor pressure changes. Drive			
			and cooling water differential pressure	es		1
			and flows are also maintained constant.	•		
		4.	The FV remains closed when the			
			accumulators are recharged.			
,	H.	Driv	e Water/Cooling Water Pressure			
		<u>Cont</u>	rol Station	5	I	3
	р	1.	The pressure control station is			
			located just downstream of the drive			
			water header connecting the flow			
۱.			control station to the two cooling			
			water headers.			
		2.	The pressure control station consists o	of:		
			a. A constant position motor operated	l valve		
			b. Two sets of stabilizing valves			
			c. Manual bypass válve			
			d. Inlet and outlet isolation valves			
			N2-OLP-7 -8 May 1988			

4

Unit 2 Ops/429

.

· r. ,

• •

· .

	Text Ref. <u>Page</u>
Activity	
3.	Drive water header pressure is main- 5
,	tained 260 psid above reactor pressure;
	cooling water header pressure is
	maintained so psid above reactor
	flow through the process control
	valva (PV101)
Λ	During control rod movement the
4.	stabilizing valves maintain the
	constant drive water header pressure
5	Drive water header pressure is important
5.	since the speed of CRDM movement is
	dependent on drive water pressure.
7.	a. Both solenoid valves in the
	on-line assembly are open
	(energized) when control rods
	are not being moved, bypassing
	water to the cooling water header.
	b. During control rod movement, the
	stabilizing valve compensates for
	the water being diverted to the
	drive header. The stabilizing
	valves are adjusted to provide the
	flow required for CRDM insertion or
	withdrawal. Insertion flow 4 gpm;
	Withdrawal flow 2 gpm.
	c. By compensating for intermittent
	drive header flows the stabilizing
	valves maintain constant drive water
	pressure and system flow.
	• •
	N2-OLP-7 -9 May 1988

Unit 2 Ops/429

.

, **.**

3,6

<u>S.L.O.</u>

Text

Ref. <u>Fig.</u>

Text Text Ref. Ref. Page Fig. S.L.O. <u>Activity</u> Ι. Exhaust Water Header and Pressure 6 1 3 Equalizing Valves 1. The interconnecting two exhaust water headers provide a buffer for CRDM return water. The headers receive water discharged from a moving CRDM and directs the water into the latched CRDM's through their hydraulic control unit (HCU) where 8 psid lifts the SOV121 valve disc. The small amount of water which enters each stationary (latched) CRDM leaks past the graphitar seals and into the reactor vessel. 2. The cooling water headers are 3 connected to the exhaust water headers by two pressure equalizing valves. The two pressure equalizing valves serve to: Repressurize the exhaust water a. header following a scram, and thus b. Prevent excessively high differential pressure across the operating CRDMs, following a scram. Equalizing valves open at с. approximately 80 psid. N2-OLP-7 -10 May 1988

Unit 2 Ops/429

Unit 2 Ups/

` , .

٠

ŗ

				Text	Text	
		t,		Ref.	Ref.	
				<u>Page</u>	<u>Fig.</u>	<u>s.</u>
<u>Acti</u>	vity	t				
J.	<u>Hydr</u>	aulic Control L	<u>lnits</u>	7	2,3	
	1.	The 185 HCUs a	re divided into			
		Banks A, B, C,	and D. Each HCU			
		includes all t	he equipment and			
		controls to ac	tuate one CRDM duri	ng		
		normal and scr	am operations.			
	2.	The HCUs perfo	orm three functions:			
		a. The HCUs	store energy and co	ntrol		
		valving n	ecessary to scram w	ithin		
		time limi	ts.			
		b. The HCUs	have the valving ne	cessary		
		to insert	or withdraw a CRDM	in		
		either co	ntinuous or discrete	e steps.		
		c. The HCUs	supply cooling water	r		
		to its as	sociated CRDM.			
	3.	a. The HCUs	have four solenoid-c	operated		
		valves th	at control normal di	irectional		
		movement	of the CRDMs respond	ding to		
		timed sig	nals from the RXMC.			
		b. The scram	accumulator and sci	ram valves		
		interconn	ect with the RPS sys	stem to cause		
		a reactor	scram.	·		
	4.	Each HCU has s	even hydraulic riser	rs .	3	2
		a. Insert				
		b. Cooling w	ater			
		c. Charging	water		•	
		d. Exhaust w	ater			
		e. Scram dis	charge			
		f. Drive wat	er			
		g. Withdraw				

N2-OLP-7 -11 May 1988

Unit 2 Ops/429

.ì

、

1	Activity		Text Ref. <u>Page</u>	Text Ref. <u>Fig.</u>	<u>S.L.O.</u>
	<u>6.</u>	The inlet and outlet scram valves control the water flow during scram insertion. The valve bodies serve as junction points between the manifold and the risers. Four normally deenergized DCVs are mounted on the manifold to direct drive and exhaust water to and from the CRDM for normal insertion and withdrawal.	7	3	3,4
	7.	The scram valves are spring to open, air to close. They are held shut by instrument air supplied through the scram pilot air valve. The pilot valve supplies air to both the inlet and outlet scram valves. The spring preload in the outlet scram valve is greater than that of the inlet valve to allow the outlet valve to open first, preventing the pressure from the scram accumulators from creating a back pressure. The outlet scram valve connects the withdrawal riser to the scram discharge riser.	8	2	
		Water from above the drive piston is discharged into the SDV. The inlet valve opens the insert riser to the charging water header and the scram accumulator, applying pressure to the CRDM.		1,2	5

N2-OLP-7 -12 May 1988

Unit 2 Ops/429

4

|4

, ,

.

Text Text Ref. Ref. Fig. Page S.L.O. Activity 8. The scram pilot valve is a solenoid 8 2 3.5 valve with two solenoids normally energized from separate channels of RPS. Air is normally supplied to the scram valves, keeping them shut. When both solenoids are de-energized,

9. The scram accumulator is a piston type water accumulator, pressurized by a cylinder of N₂ gas. The piston separates the gas from the water and is sealed by O-rings. The accumulator provides the energy to scram the reactor if the reactor pressure is low. When the accumulator is fully charged the piston is in the full down position with the piston side full of water and the gas side pressurized. There is adequate water capacity in the scram accumulator to fully scram the reactor at low pressure conditions. If reactor pressure should exceed the accumulator or charging pressure a ball check valve in the inlet port shifts, allowing reactor vessel pressure to complete the scram stroke.

air is vented from the scram valve actuators and the scram valves open.

- K. <u>Scram Discharge Volume</u>
 - The SDV receives and contains the water exhausted from all CRDMs during a scram, thereby limiting the loss of water from the reactor vessel prior to RPS reset.

N2-OLP-7 -13 May 1988

Unit 2 Ops/429

. . n , ' *g* . . t

.

1

.

μ

Ţ

		Text Ref. <u>Page</u>	Text Ref. <u>Fig.</u>
<u>Activit</u>	۲.		
2.	The SDV piping connects to each HCU and drains to an Instrument	8	1,2
	contain all the water discharged		
	from the CDDMs during the scram		
	independent of the instrument		
	volume During the scram the		
	backpressure does not exceed 65		
	nsia.		
3.	After the scram is completed.		
01	water leaking past the CRDM seals		
	flows until SDV pressure is		
	equalized with reactor pressure.		
4.	The SDV vent and drain valves are	9	
	normally open maintaining the SDV		
	empty. The vent and drain valves		
	are air-operated, spring to close		
	globe valves held open by		
	normally energized dual solenoid		
	Instrument Air valves.		
5.	When a scram is initiated, the SDV		×
	instrument air valves are de-energized	,	
	bleeding the air off the operators to		
	the SDV vent and drain valves causing		
	them to shut, thus preventing excessiv	e	
	loss of reactor coolant.		
6.	Two backup scram valves, normally		
	de-energized solenoid valves actuated		
	from RPS system, provide a redundant	*	
	means of venting air from the 185 scra	m	
	pilot valves and the SDV vent and drai	n	
	valves. Both RPS channels must trip to	0	
	energize either valve. Either valve		
	will vent air off all 185 scram valves		
	and the SUV vent and drain Valves.		
Unit 2 One/120	112-0LP-7 -14 May 1988		
0111 2 0p3/423	,		

.

|4

5

<u>S.L.O.</u>

·· · · ۲. ۲ . , , . ``···· e e • . . • •

.

Activity		Text Ref. <u>Page</u>	Text Ref. <u>Fig.</u>
<u>7.</u>	Two Redundant Reactivity Control	9	2
	System Alternate Rod Insertion valves provide this same function as the backup scram valves except they are energized from the RRCS-ARI system.	-	_
8.	energized from the RRCS-ARI system. Level switches activate when water in the scram discharge volume (SDV) excee 3 gallons to provide an alarm, switche also activate if level exceeds 16.5 in to provide a rod withdrawal block. Of level switches activate when water in SDV exceeds 43.4 inches by level trans of 48.5 inches by float switch to caus scram trip in the RPS. Four SDV High Level Trip Bypass switches are located panel 603. The mode switch must be in	eds iches cher the mitter se a Water Water I on the	
	SHUTDOWN or REFUEL position to allow m bypass of this trip. This bypass allo the operator to reset the RPS scram re	anual ws lays	
	so that the SDV may be drained.		

<u>S.L.O.</u>

3

6

4

III. INSTRUMENTATION, CONTROLS AND INTERLOCKS

- A. <u>Control Room Indicators (Panel 603)</u>
 - 1. Pump Amps
 - 2. Changing water pressure
 - 3. Drive and Cooling water Diff. Press.
 - Drive water cooling water, and system flow
 - 5. CRDH filter discharge conductivity
- B. <u>Control Room Controls (on P603)</u>
 - The CRD flow control permits remote control of the flow control valve. The controller is a direct reading inst with an adjustable setpoint.
 - Both CRD pump switches are four position spring return to normal-start, stop and pull to lock.

N2-OLP-7 -15 May 1988

Unit 2 Ops/429

ş

. . . 2

ч

	<u>Acti</u> C.	<u>vity</u> <u>Syst</u> 1.	<u>em Interlocks</u> CRDH Pumps a. Trip on low suction pressure 25" HG ABS	Text Ref. <u>Page</u> 10	Text Ref. <u>Fig.</u>	<u>S.L.O.</u> 5
IV.	SYST	EM OP	ERATION			
	A.	Norm	al Operation			7
		1.	During normal operation the CRDH			
			system requires no operator action.			
			Monitor the following parameters for			
			proper operation.	,		
			a. Drive water header differential			
			pressure			
			b. Drive water header flow			
			c. Charging water header pressure			
			d. Cooling water header			
	1	ı	differential pressure			
			e. Cooling water header flow			
		2.	Rod Insertion			
			a. When a CRDM is selected for		1,2	5
			insertion, the reactor manual			
			rod control system sends signals			
			to the appropriate HCU. In receip	t -		
	•		of an insert signal HCU directiona	1		
			control valve (DCV) SOV 123 and			
			SOV 121 Open. Simultaneously, the	1		
			stabilizing valves close to mainta	10		
			,			

4 I

N2-OLP-7 -16 May 1988

Unit 2 Ops/429

,

۰ ۰ ۰

7

, , ,

	Text	Text	
	, Ref.	Ref.	
	Page	<u>Fig.</u>	<u>S.L.O.</u>
<u>Acti</u>	vity		
	b. If the operator has not selected 10		5,6
	the continuous insertion mode of		
	operation, after the CRDM has		
	moved slightly more than one		
	notch DCV's SOV123 and SOV121 shut	1,2	
	and DCV SOV120 opens for the settle 11		
	function and the CRDM collet fingers		
	engage a notch on the index tube		
	locking the CRDM in position. When		
	using the continuous insertion mode	-	
	the CRDM is driven until the mode		
	is discontinued. Then the settle		
	function causes the rod to latch at		
	the next notch position.		
3.	Rod withdrawal - in receipt of a		
	rod withdrawal signal, the insert		
	DCV's SOV123 and 121 open for a short		
	time to take the weight of the CRDM		
	off the collet fingers. The insert		¢
	DCV's SOV123 and SOV121 shut and		
	immediately the withdraw DCV's SOV122		
	and SOV120 open simultaneously. The		
	stabilizing valve shuts, after the insert 11		
	DCV's shut and the withdraw DCV's open,		
	the stabilizing valve shuts to com-	, 	•
	pensate for 2 gpm of drive flow. The		
	settle function occurs automatically.		
4.	Scram Function		7
	The scram signal results in de-energizing		-
	the scram pilot valves solenoids and energizing		
	the backup scram valves. This causes the air		
	pressure on the scram valves to bleed off,		
	opening the scram valves. This vents the water		
	above the CRDM drive piston into the SDV and		
	applies water at high pressure (1400 psia) from		
	the scram accumulator and the charging header		
	to the underside of the CRDM drive piston.		

|4 |

|4

|4 |

N2-OLP-7 -17 May 1988

Unit 2 Ops/429

•

> . .

• · · · ·

		, * , ·	Text Ref. Page	Text Ref. Fig.	S.L.O.	
	Act	ivitv	<u></u>	بتياهينين	<u></u>	
		This force provides a high initial acceler-	12	1.2	5.6	i.
		ation and provides a large margin of force	•-	•,=	0,0	
	·	to overcome friction. Following the scram.				
		the system flow will be diverted to the				
		accumulators to recharge them. Pump flow				
		is limited to 200 gpm by restricting orific	<u>م</u>			
۷.	SYSTEM INTERRELATIONS					
	<u>8.</u>	Condensate-System - Provides preferred				
		source of high quality water				
		Backup = CST's				
	B.	RRCS - Controls 8 ARI valves in the	13			
		scram air header				
	C.	IAS - Provides are for component				
	0.	operations				
	D.	RPS - Provides signal to hold scram				
	21	valves shut		1		
	Ε.	RXMC - Provide signal for CRD controls				
	F.	RBCLCW - Provide cooling for CRD pump				
		bearing and seal coolers				14
() / T	DCT					
V1.	DETA	AILED SYSTEM REFERENCE REVIEW				
	Review each of the following referenced					I
		Technical Creations	14	ur	•	
	А.	<u>lechnical Specifications</u>	14		8	
		1. 374.1.3.1; Control Rod Operability			,	
		2. 374.1.3.2; Control Rod Maximum				
		Scram Insertion Times				
		Server Incontion Times				
		A 2/4 1 2 4: Four Bod Crown Seram				
		4. 574.1.5.4, Four Rou Group Scham				
		5 3/4 1 3 5: Control Rod Scram				
	в	Procedures			7	١٨
		1. N2-OP-30: CRD System Rev. 2			,	דין

N2-OLP-7 -18 May 1988

à

4 11 ۰. ۰. ۰. • · · · ·

Text	Text	4
Ref.	Ref.	
<u>Page</u>	<u>Fig.</u>	<u>S.L.O.</u>

4

Activity VII. <u>RELATED PLANT EVENTS</u>

ě

A. Refer to Addendum "A" and review related events with class (if applicable).

VIII. SYSTEM HISTORY

A. Refer to Addendum "B" and review related modifications with class (if applicable).

IX. <u>WRAP-UP</u>

A. Review the system learning objectives.

N2-OLP-7 -19 May 1988

Unit 2 Ops/429

٠, • • •

: