
*SEE instructions on mbytisisjini 161954 Later Rev 2

$$
\therefore
$$

TABLE OF CONTENTS

SUBJECT
2 GALGULATION Title pace
2. table of contents
3. CALCULATION SUMMARY
4. LOAD DEVELOPMENT
S. WORK SHEET

G WORK SHEET
7. battery charger calculation

8 PANEL SCHIDULI (2vs.3 -PNL Clio C 101)
Q i.O.c., G.FLIGG TO J.KNUD SEN, 2/26/81
10. GOULD EATTERY DATA

$$
\text { 11... ATTACHMENT -'A' (IOM DATED MAY 10,82) } 13 \text { TO } 18
$$

2
3
4
5
6
7
8. $\& 9$.

10
$11 \xi 12$

FOTLEM.
To calculate the Ampere-Hour capacity of Battery 2 BY5-BATIC ($111,1<2,1 C 3,1<4$) in order to determine the ag'rquacy of'the Bofteries already furchicased and to check the adeguocy of the purchosed Battery Charger, 2 ers-char Cl CHECXENS REMARXS:

2) Notactors for ingectracicsond prouthare usid.
3) Kathery is sized to cupport the UPs for an ovaderly shutdown following! remarks L
4) the loss of effsitr fower-and lacal
4) Bottay is sized for t wo hour support firme.
5) The owegt expeete electrolytefemperot ure is the lguest Room

Trmporature in which the BaHEry will beinstalkd.
6) The m athod employed is the sizinc procedureactlined in IEEE-185-1978 BECKER'S REMARKs. गTh OURS Inverter 13 mot a Chargerlood.

EDUKEES-DATMEOUATOKS:

1) Parchase specification NHP2-E0334, Addendum2 dated NOV. 8,1982 :
2) Technicol Data by SEllor,Gaed Inc, da'fad Wrich 131977 (Eerisad 5/27/83):
3) I EEE Recoswn ended Roretise For sig ing Larysheod Storage Be theries :
for Gemenating Stations and Substotions. IEEE 185-1978.

4) 50 E

EXECXERE CEMAKKX: \qquad

The battery size, (2)60-35 plate cells, asrecommended: byGould, Enc., in proposal "Techical Dato By Seller"; Section 3 of NMP2-EO33A, Addendum 1, datod
:..: March 2,1978, is occeptable.

- A 500 Ampi Battery Changer as supplied by ParelonversionRedocts is a ceepta 6 le. CHECKERE HEMAKKS:

:

$$
4
$$

cal'culation sheet

12177 EC. 46

ImoEPEMORMT 日EVIEEER/BATE
pritangh/mate

 \qquad Equars \qquad

 the noxt lariger coll is required.

Roquired coll 8ise: (a) 16 Positive Phates
33. 7otal

3
plates/cell or
(1) 2400 Mpere Yours.

NCX 2400 .
therofore celli.NCX-2550* 10
FOR HALF THE CAPACITY
-2-NCX -2550 are purchased and are at NMPZ SITE)
… SINCE A- 2250 A-H BATTERV WILL HANDLE $i / 2$ NMP-2.CAPACITY, $\frac{2550}{2400} 1.06$ AND THE NCX-2550 -.. .- TNCLUEES: $.60 .3 \%$ EXCESS CAPACITY. \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad ...---.
*

3

INTEROFFICE CORRESPONDENCE

UUNECT / REFEREMCE / LO. MO
Blasing of Dettery Crangur
 bettery shayare. she rechare tim to be uned is 24 bours for the In in otation and

 the alse of the tattion and the length of the of the duts crole. Yor ecmple,
 Whah has a two bowr disobange ourruat ratho of 510 amperes. In this ance jor
 the bettricy chaxcer co that bacts.

Tobrong 26, ignt
DATE

nEMY:

Aments

CAPACITIES－600 A．H．TO 2550 A．H． （2） 8 HOUR RATE TO 1.75 V．P．C．AVERAGE

[^0]Q 09296486

$$
\because
$$

$:$

stone a wester enginetring corporation. cherry hill operations center page is of

INTEROFFICE MEMORANDUM
-
SUBJECT

TOPICAL INFORMATION REPORT FOR
TRANSFORMER AND BUS LOADING AND ASSIGnMENTS

All Electrical Engineers and
Squad Leaders

12177-EC-32-4
DATE May 10. 1982
FROM TLOtt:JR
CC

- JcGabricl Enthanna DFSabatini

The attached information will be issued as Topical Information
Report by our Boston office before long.
In the meantime; I am sending this to you for your information.
This document will be used as a guide and not as a rigid standard.

Attachment

$$
9 ?
$$

This design criteria is presented as a guide for both allowable bus loadings and assignments of loads to various plant loads. This criteria is meant as a guide to engineers for a standard Stone \& Webster design. Finalization of this criteria is depeadent on several factors. Amons these are: cilent preferences and approval, economic studies and the complement of equipment to be powered. Whether at a later date assignment or loading criteria should be altered depend on such things as how far the plant design is coupleted, poseible additional loads in the future, costs of adding new equipment, redesign of sills, tray systems, duct lines, and status of purchase orders and equipment production. However, the guidelines set forth in the following design criteria are useful tool in designing an adequate and flexible distribution system.

Spare and future positions should be provided on all buses if possible. The number of each should be worked out with the client at an carly stage. Floor sills should be extended to allow additionel equipment to be added if necessary.

For most power plant work, the voliage of the medium voltage and low voltage buges is established early in the design of the plant. The number of medium voltage buses is dependent on several variables including requirements of the large mechanical systems, cilent preference, philosophy of plant operation and equipment economics, and in the case of nuclear plants - regulatory requirements.

The initial step is to ascertain what the electrical loads are and their power requirements. Then the maximum simultaneously runing loads must be calculated for each bus and eransformer contemplated. The engineer should use the motor and electric load list as well as logic descriptions, system descriptions, and consultation with the lead power engineer during this stage of design to ascertain the maximum coincident loading of each bus.

TRANSFORMERS

Power transformers should be conservatively sized to allow for future load growth. Station cervice transformers will generally be about 10 percent of total generator output for nuclear plants.

For fossil plants approximately 7 percent of generator output is used for station service. If a scrubber is required, another 3 percent will be used to power the scrubber auxiliaries.

As loads are defincd further, the transformers sizes can be finalized allowing for worst case loading and providing at least 15 percent angin for future growth.

Fot criteria on sizing smaller transformers, see the information in low voltage load aseignments below.

MEDIUM VOLTAGE BUSES

Generally in plants where both 15 kV class and 5 kV class buses are selected， motors above 2500 \＃P are assigned to the 15 kV class buses．Motors above 250 HP ，up to 2500 HP ，are assigned to the 5 kV class buses．

In plants where 7.5 kD class buses are utilized as the highest distribution voltage，motors above 4000 日P would be assigned this bus with motors 250 RP to 4000 价 being assigned to the 5 kV class buses．

These BP break points are only guidelines and economic studies should continue to be done for loads which are in question．

METAL CLAD SWITCHGEAR

Metal clad switchgear should not have a coincident loading above 60 to 70 percent of the main bus rating during the carly stages of the project to allow for further load growth as the project progresses．If during the latter stage of the project the loads grow，it is best to keep the maximum switchgear bus loading to about 90 percent of the full load rating of the main breaker and bus under the worst operating condition．

To determine maximum running loads on metal clad switchgear early in the project，the electrical engineer should consult with the lead power engineer to determine maximum coincident loading on each bus．Be sure to consider－ pumps out for maintenance，transformer failures and bus failures and the subsequent effect on the remaining buses in the analysis．

In the early stages nameplate horsepower should be used for the large motors． This builds in a little extra conservatism for possible increases in brake horsepower（BIP）requirements later．In the latter stages of the project， known BHP at runout conditions should be used．

LOW VOLTAGE BUSES

On low voltage distribution systems，several types of equipment are utilized to feed motor and other type loads．Load center secondary unit substations are used to feed loads directly，as well as providing a power source to MCC＇s and panelboards（if a separate panelboard system is used）．Loads from 60 to 250 EP or 60－250 KVA are generally fed directly from a load center power circuit breaker．If loads in this size range require frequent starting and stopping， reversing control，or two speed control，consider the use of locally mounted starters equipped with nonautomatic breakers．

Loads from 1 IP to 50 IIP or 1 to 50 KVA can be assigned to MCC＇s（some projects have elected to use separate 600 ．volt class panelboards in lieu of MCC feeder circuit breakers for non－motor loads．Sow＇s standard design，however，calls for these breakers to be mounted on the MCC）．Motor operated valves of any size should be assigned to an HCC．When assigning low voltage loads，care should be taken to assure that auxiliaries to large motors（1．e．．lube oil pups）are on HCC＇s fed by the same power train as the pump motor itself．

Small loads less than 1 HP or 1 KVA should be assigned to 120 volt panelboards． （If automatic control is required，local starters or contactor should be utilized）．

LOAD CENTERS

Since the low voltage loads change dramatically during the life of the project, it is good to have ample capacity in the load centers (LC's) early in the project's life. In the carly stage of a project, it is usually a good practice to add connacted, continuousiy rumning loads and multiplying by 80 for diversity and .90 for utilization (brake BP va, nameplate BP) to arrive at an estimated load for directly connected loads; for MCC load estimates see the paragraph belou. At later stages of the project, maximum runaing loads should not be greater than 80 percent of the self cooled transformer rating. Also, note that on double ended load centers, the total coincident IC load should not be greater than the highest rating of a single transformer so that one transformer can be out-ofservice without forcing load shedding to occur. Transformers are usually not larger than 1000 KVA with a standard 5.75 percent impedance, because above this size ther the ayailable short circuit current can become too high for the $L C$ -feeder breakers ord KCC's unless a bigher impedance transformer is purchased. This inturn can cause voltage profile problems.

Motor control centers are placed for convenience in an area close to motor loads. This keeps cable distances short for voltage considerations and usually means that the cotal load on a given MCC, can be kept fairly well below the standard 600 amp bus. In the early stages of a project, the loads should be held to about. 300 amps maximum ($400-500$ amps on industrial projects). Whenever possible, loads of a common system should be grouped on the same MCC to try to assure system power continuity. Spares and spaces should be grouped to allow for future starters of varying sizes and types. The decision as to whether to allow loads on a MCC above the 300 amp target, of create another MCC, is a matter of judgement and should be discussed with the Lead Electrical Engineer. The standard Sak design calls for panelboards to be fed from the local MCC. Since these loads must also be added to the MCC load, some guidelines are listed below for panel loads.

The following is a list of typical assumptions for bus loading on MCC's, panelboards, and load centers.

1. Motor operated valves (MOV's) and motor operated doors can be ignored when reflecting YCC loads to the load center. For a particular MCC loading, use 20 percent of the total horsepover per MCC that are MOV's or doors.
2. Intermittent loads such as cranes, small compressors, sump pums, elevators, motor space beatars, suitchgear space heaters, etc., can be ignored when reflected to. the load center unless the load is on for longer than one hour at a time. (Some judgement is required here and the Lead Electrical Engineer shall provide guidance for each application. On YCC's. add 20 percent of the total of these to the MCC load).
3. Lighting loads should be added on a watts per square foot basis initislly until actual loads are knowna. The lighting specialist can provide estimates based on the cype of lighting selected. Add one half anp per duplex receptacle.
\bullet
4. Since other panelboard loads are unknown until much later, add the distribution transformer KVA until loads are better defined. Reep the muber of these transformers reasonable. Consult the equipnent specialist for past experience in this area.

先
，
5. Work with the building service engineers for an estimate of diversity for various areas of the plant if electric unit heaters are used as well as air conditioning.
6. Ignore welding and vacuum cleaner receptacles.
7. Add continuous loads on the MCC bus and multiply by . 80 for diversity. and .90 for utilization in the early stages. Later as the motor and load list information is complete, use all of the continuous coincident loads . and multiply by .90 for utilization.

These guidelines should be discussed in detail with the Lead Electrical Engineer, and where appropriate, with the client to ensure project agreement before the equipment is purchased if possible.

LOADS CONNECTABLE TO DIESEL GENERATORS
Diesel generators are often used as ewergency power sources. In nuclear plants they usually aupply the 4160 volt standby buses. In fossil plants, they may feed either 4160 volt or 10 w voltage buses. In nuclear plants, loads other than Class IE safety related loads are often cither fed from Class IE buses with an automatic LOCA trip or are assigned to buses which are manually connectable to the diesel bus.

In fossil plants, loads that are important to an orderly shutdown or personnel safety are assigned to buses which can be fed by a diesel generator.

In general, the list below suggests possible candidates for assignment to buses which can be fed from a diesel generator.

1. Emergency 1ighting
2. Security eystems
3. UPS systems/instrumentation buses
4. Battery chargers
5. Instrument air compressors
6. Fire protection systens
7. Scrubber agitators
8. Turning gears
9. Boller controls
10. Loads which allow for orderly shutdown of the plant or prevent subsequent damage.

$$
\mathfrak{x}
$$

Many factors are involved in assignments of loads to UPS buses vie. standard instrument and control buses. The assignment of many of the loads to UPS buses should be done in conjunction with the Controls engineers. Items ouch as the acceptability of power interruption, voltage variations, etc., make joint effort here very important.

The above load assignment guidelines are good starting point. When followed, they have been found to usually offer an economical and effective design. However, many factors can influence and change these general rules, such as client preference, or late changes in horsepower which would have changed the type equipment feeding the load, but due to transformer size limitations, etc., an exception may have to be made and the load remain on the existing bus. Also, discretion needs to be used with certain type loads, ie., it might be preferrable to have a 2 KW motor space heater rated at 120 volts and fed from a panelboard if 480 volt heaters are not available as standard.
\square

[^0]:

