

Exemption Request for Restoring **Dry Shielded Canister** (DSC) 11 - 15 Compliance to 10 CFR Part 72

Pre-Submittal Meeting

Monticello Nuclear Generating Plant Independent Spent Fuel Storage Installation (ISFSI)

Xcel Energy

March 2, 2017

Introduction

Xcel Energy

- ◆ Pat Burke Vice President Engineering and Technical Services
- Kent Scott Director Site Operations, MNGP
- Mike Baumann Director, Nuclear Fuels
- Marty Murphy Director, Nuclear Licensing, Regulatory Affairs
- Scott Marty Director, Dry Fuel Storage
- Mark McKeown Manager, Spent Nuclear Fuel
- Glenn Adams Project Licensing
- Jay Silberg Pillsbury Law

TN Americas, LLC

Raheel Haroon – Engineering Manager

Introduction

Meeting Purpose

- Pre-Application presentation and feedback
- Review Basis for Proposed Exemption Request
 - Safety assured through design, material quality, welding and examination processes
 - Processes confirmed through inspection of DSC-16
 - Requested exemption balances consequences and risks
 - DSC 11 15 are in storage; transfer risks are eliminated
 - Additional examination would increase risk w/o significant increase in confidence
- Review Schedule

Background

Timeline

10/2013	Discovered PT examinations were non-compliant
7/2014	Submitted Exemption Request (ER) for DSC 11 - 16
12/2014	Withdrew ER for DSC 11 - 16
2/2015	Performed Phased Array Ultrasonic Exam (PAUT) DSC 16
9/2015	Submitted ER for DSC 16 (based on PAUT)
12/2015	Confirmatory Order to restore compliance within 5 years
6/2016	Exemption granted for DSC 16
10/2016	DSC 16 placed in Horizontal Storage Module (HSM)
12/2016	Submitted Project Plan

Background

- CoC 1004 Dye Penetrant Exam (PT)
 - PT in accordance with TS 1.2.5
 - Based on ISG-4 Rev. 1 and ISG-15
 - **◆ TS 1.1.12.4**, Alternatives to Codes and Standards
 - PT at each layer is alternative to volumetric examination

Principles

- **■** Balance Risks
 - Nuclear Safety
 - Industrial Safety
 - Radiological safety
- Timely restoration to compliance
- Optimize NMSS staff review effort
 - Leverage previously docketed information

Normal TS Compliance ITCP

Safety Basis

Determination of Safety

- Design
- Material Quality
- Weld Process
- Examination

Normal 13 compliance from						
	He Leak Testing TS 1.2.4a					
xamination	QC PT					
EX	QC VT					
	Welder Inspect					
8	AWS Weld Experience - OE					
Veld Process	Welder Qualification					
W	Weld Process Qualification					
	Weld Filler Quality					
Quality	Shell Fabrication Quality					
	Lid Fabrication Quality					
	Nominal material strength					
esign	Weld layer < Critical Flaw					
De	Multiple-Layer Weld					
	No NDT for Austenitic SS					

Safety Basis - Design

Design

- Critical weld flaws are considered in the design
- Stress reduction factors are imposed to account for imperfections or flaws
- Creep is not plausible
- Cyclic loading has been considered and is below the threshold of ASME Code

Safety Basis - Design

Design

- Multiple layer welds effectively eliminate pinhole leaks
- Flaws in austenitic stainless steels are not expected to exceed one weld bead
- Austenitic stainless steels are ductile and can withstand large flaws
- Use of nominal material strength in design (<actual)</p>

Safety Basis - Material QA

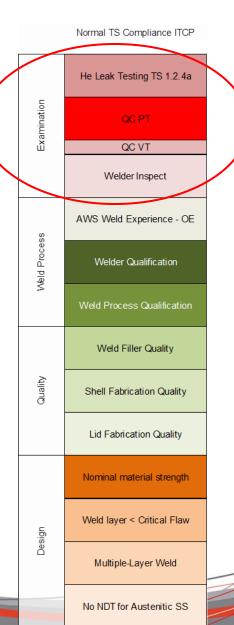
Material Quality

- Lid fabrication quality
- Shell fabrication quality
- Weld filler quality
- Quality validated by Nuclear Oversight

Safety Basis – Weld Process

Welding Process

- **■** Welding program elements met requirements
- Experienced and qualified welders employed
- OEM Automated Welding System utilized
- Welding demonstrations performed
- Flat welding orientation is forgiving
- Ductile and easily weld-able base materials
- Evidence of good welding practices
- Process provided excellent results in 2008



Safety Basis – Examinations

Examinations

- Welders performed visual inspection
- QC performed VT NDE
- Regarding the non-compliant PT exams:
 - Progressive PT exam does not preclude flaws

Safety Basis – Examinations

Examinations

- ITCP, siphon port and vent port passed the helium leak test; this demonstrates the confinement function
- ITCP passed the vacuum test and pressure test, which support a determination of structural integrity
- OTCP root pass served as the barrier to inleakage during the ITCP helium test and therefore provides some measure OTCP weld integrity

DSC 16 Exemption

Safety Basis - Confirmation

Processes Confirmed Through PAUT

- PAUT examination and analysis of DSC-16 confirmed processes produce acceptable welds
 - Conservative flaw sets and application of design loads create margin to safety
- DSC 16 representative of the campaign

10 CFR 72.7

- 1. Authorized by law
- 2. Not endanger life, property or the common defense and security
- 3. Otherwise in the public interest

Proposed Exemption DSC 11 - 15 Storage Only

Exemption Request

10 CFR 72.7 – Not endanger life or property

- Assurance of weld integrity as previously discussed
 - Design, material quality, weld process, exams
 - Confirmed by PAUT and analysis of DSC-16
- Recognize DSCs 11 15 in Storage Mode at MNGP
 - Site specific load cases allow additional margin
- Even in the case of loss of confinement, consequences are minimal

Conclusion: Therefore the selected approach, to not do any more examinations, does not endanger life or property

	MNGP Margin Available for Site-Specific Conditions					
	in Storage					
	AWS Weld Confidence - PAUT					
	Pressure Testing 1.2.3a					
_	Vacuum Testing TS 1.2.2					
examination	He Leak Testing TS 1.2.4a					
Ш	QC VT					
	Welder Inspect					
SS	AWS Weld Experience - OE					
Veld Process	Welder Qualification					
×	Weld Process Qualification					
	Weld Filler Quality					
Quality	Shell Fabrication Quality					
	Lid Fabrication Quality					
	Nominal material strength					
esign	Weld layer < Critical Flaw					
Des	Multiple-Layer Weld					
	No NDT for Austenitic SS					

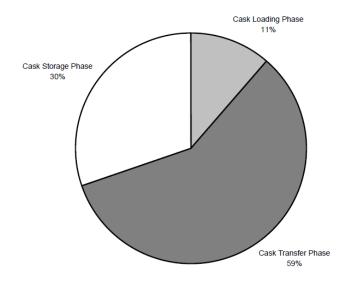
10 CFR 72.7 - Otherwise in the public interest

Alternatives offer higher dose, greater risk, little increase in confidence

	Incremental Change Compared to Proposed Exemption Request					
		Safety	Safety	Licensing	Technological	
Alternative ▼	Dose / DSC	Risk	Confidence	Challenges	Challenges	
Proposed ER	Null	Null	Null	Null	Null	
Unload - Reload	1.5 R	High	Nominal Increase	Zero	Zero	
Repair ITCP Weld	1.4 R	High	Nominal Increase	Med	High	
Lid Augmentation	1 R	Med	Nominal Increase	High	High	
PAUT DSC 11 in Rx Bldg	1 R	Med	Nominal Increase	Med	Zero	
PAUT DSC 11 - 16 in Rx Bldg	1R	High	Nominal Increase	Null	Zero	
In Situ PAUT - HSM	Med	Low	Nominal Increase	Null	High	
In Situ PAUT - Drill HSM	Low	Med	Nominal Increase	Med	High	
In Situ PAUT - TC	Med	Med	Nominal Increase	Med	High	

10 CFR 72.7 - Otherwise in the public interest

- Significant Effort for transfer
 - Obtain transfer cask, equipment and crew
 - Mobilize, train and qualify crews
 - Execute work


Risks of Canister Transfer from HSM

- Stress of extraction (bottom welds)
- Risk of binding and gouging during extraction
- Exposure of TC/DSC to more significant external events
- Risk of TC drop from Transfer Trailer (TT)
- Risk of cask handling accident with Reactor Building Crane
- Radiological dose to workers

10 CFR 72.7 - Otherwise in the public interest

- NUREG 1864 and EPRI 1009691 provide risk insights for dry fuel storage
 - The transfer phase carries the highest risk
- Transfer also increases industrial risk

EPRI 1009691 Figure 3-1, Summary of Total Cask Lifecycle Risk by Phase

10 CFR 72.7 - Otherwise in the public interest

- Certain radiological dose with any of the alternative
 - Radiological risk of handling >> Radiological risk in Storage
- Theoretical risk in Storage described in UFSAR 8.2.8.3
 - No mechanism for such a release

<u>Conclusion</u>: Therefore the selected approach, to not do any more examinations, is the least dose and least risk alternative, and therefore in the public interest

Examples

Examples

- <u>VSC-24 Confirmatory Action Letter (ca 1997)</u>: Inner shield (confinement) welds, subject to known cracking, were not subject to additional examination
- HI-STORM Enforcement Discretion (ca 2009): Canisters were loaded without fabrication welds being adequately leak tested
- Oconee DSC Exemption (ca 2014): Canisters were loaded without field welds being subject to a compliant helium leak test
- ANO HI-STORM Exemption (ca 2014): Applied safety risk of a retrieval operation to accept a canister loaded with a failed fission product barrier

Exemption Request – DSCs 11 - 15

Tentative Schedule

June 2017 Xcel Energy Submit ER

June 2018 NRC approve exemption

July 2018 Xcel Energy report Order satisfied

Proposed plan meets deadline 3 years early

June 2021 Confirmatory Order deadline

Questions