多-91 07-Ē

DOCNO: HFM, Rev. 3

HUMAN FACTORS MANUAL FOR FUTURE DESIGN CHANGE REVISION 3 NIAGARA MOHAWK POWER CORPORATION NMP - UNIT #2

A. G. VIERLING APPROVED BY:

190

9304290012 911031 PDR ADDCK 05000410 PDR PDR

n L

1

.

٦,

k

•

.

•

۰.

4 6

TABLE OF CONTENTS

ŗ

<u>SECT</u>	ION	PAGE
1.0	INTR	ODUCTION
	1.1	Purpose
	1.2	Use of This Manual
	1.3	Design Modifications
	1.4	Modification Requests
	1.5	Checklists 1-2
	1.6	Responsibility
2.0	CONT	ROL ROOM LAYOUT AND ORGANIZATION
	2.1	Panels and Benchboards
	2.2	Groupings
	2.3	Spacing
	2.4	Storage
3.0	WORK	STATION DESIGN
	3.1	Anthropometrics
	3.2	Stand-up Operation of Controls
	3.3	Display Positioning - Stand-Up
	3.4	Sit Down Consoles
	3.5	Dimensions for Seated Operator
	3.6	Other Factors to Consider
4.0	LABE	LING
	4.1	General Characteristics
	4.2	Label Hierarchy
	43	Component Labels
	4.4	Label Specifications
	4.5	Label Placement
	4.6	Manufacturers' Names
5.0	CODE	S AND CONVENTIONS
	5.1	Consistency of Use
	5.2	Color Coding
	5.3	Color Selection
	5.4	SPDS Color Conventions

•

.

.

5

. Č

*

,

· · ·

•

TABLE OF CONTENTS (continued)

SECT	ION	-				PAGE
6.0	MIMICS AND PANEL DEMARCATION	•••	•	•••	•	. 6-1
	 6.1 Mimics 6.2 Demarcation Lines 6.3 Background Shading 	• • • •	• •	•••		. 6-1 . 6-5 . 6-5
7.0	ANNUNCIATORS	•••	•		•	. 7-1
	7.1 Annunciator Warning Systems 7.2 Legend Tile Displays	•••	•	•••	•	. 7-1 . 7-1
8.0	SWITCHES AND PUSHBUTTONS		•	•••	•	. 8-1
	 8.1 Escutcheon Format	• • • • • •		• • • • • •	• • • •	. 8-1 . 8-2 . 8-4 . 8-4 . 8-4
9.0	METER SCALES AND LEGENDS	••	•		•	. 9-1
	 9.1 Display Characteristics	 	• • •	• • • • • •	• • •	. 9-1 . 9-1 . 9-1 . 9-3
10.0	PROCEDURES		•		•	.10-1
	10.1 General Characteristics	 	•, • •	· · · · · ·	• • •	.10-1 .10-1 .10-3 .10-4 .10-5
11.0	REFERENCES		•		•	.11-1

1. r

1 .

. .

TABLE OF CONTENTS (continued)

•

.

٩

SECTION	<u>PAC</u>	<u> 3e</u>
APPENDIX A	HUMAN FACTORS CHECKLIST	-1
APPENDIX B	ENGRAVING SPECIFICATIONS	-1
APPENDIX C	STANDARD ABBREVIATIONS - SORTED BY ABBREVIATION . C.	-1
APPENDIX D	STANDARD ABBREVIATIONS - SORTED BY DEFINITION D	-1
APPENDIX E	SYSTEM NAME, CODE, AND NUMBER - SORTED BY NUMBER E.	-1
APPENDIX F	SYSTEM NAME, CODE, AND NUMBER - SORTED BY CODE . F.	-1

.

•

7 .

, . tagi

*

,

LIST OF FIGURES

٠

×

FIGURE

<u>PAGE</u>

2-1	Layout of NMP-2 Control Room	2-3			
2-2	Spacing of Equipment to Accommodate Seated Operators	2-4			
2-3	Equipment-to-Equipment Distances	2-4			
3-1	Control Location Specifications	3-3			
3-2	Display Height and Orientation Relative to Standing				
	Operator Line-of-Sight	3-5			
3-3	Limit on Horizontal Displacement of Displays from				
	Straight-Ahead Line-of-Sight at Required Reading				
	Position	3-6			
3-4	Leg and Foot Room Dimensions	3-8			
4-1	Hierarchical Coding Scheme Example	4-4			
4-2	Placement of Labels	4-6			
6-1	Mimic Dimensions for Cross-Overs	6-4			
8-1	Rotary Switch Position Orientation	8-3			
8-2	Rotary Switch Position Orientation	8-3			
8-3	Pushbutton/Legend Indicator Light Discrimination				
	Convention	8-6			
9-1	Examples of Appropriate Meter Scales	9-2			
9-2	Examples of Meter Zone Banding	9-4			

. ÷ et. 1

LIST OF TABLES

PAGE

TABLE		

3-1 Anthropometric Data for Equipment Dimensions . . '. . . 3-2 4-2 Recommended Colors for Control Room Use 5-1 5-3 5-2 Indicator Lamp Colors and Meaning 5-4 5-3 Relative Legibility of Color Combinations 5-6 5-4 General Characteristics of Colors Used in CRT Displays 5-7 6-2 6-2 Mimic Color Code 6-3 7-1 Annunciator Tile Wording Hierarchy 7-2 8-2 8-2 8-5 9-1 9-5

* • • . . • .

1.0 INTRODUCTION

1.1 Purpose

In the design of nuclear power plant control rooms, it is now widely recognized that attention must be given to the operator's requirements in the design of workspace layout, labeling, conventions, annunciators, visual displays, and controls to support efficient, reliable and safe operations. Similarly, when engineering changes are proposed for an operating control room, it is important that human factors principles and guidelines be included in the new designs to ensure an efficient interface. The primary purpose of this manual is to present human factors guidelines for use when modifications are made to Niagara Mohawk Power Corporation's (NMPC) NMP-2 nuclear power plant control room control panels, simulator panels, or remote shutdown panel. The manual is intended to:

- Establish NMP-2 design conventions and practices
- Support the implementation of design enhancements resulting from the Human Factors Detailed Control Room Design Review
- Provide a human factors guideline to maintain the consistency of the NMP-2 control room design throughout future modifications
- Provide a human factors checklist to be completed when changes are made to the control room equipment or operating procedures. This will ensure that plant conventions and human factors principles are being technically and administratively recognized in the modification process.

* • ý. ¥ ۲, \tilde{s}_{c}

•

4 i. -

•

ż

· . .

1.2 Use of This Manual

This manual has been written for use by the NMPC Engineering Department or their designee. It is an engineering tool to be used during the human factors review of all current and future control room modifications or additions.

1.3 Design Modifications

There are a number of reasons for undertaking the modification of the control room. As a result of the NRC-required review of control rooms, it is often necessary to modify components or labels on a panel or change panel demarcations. Other modifications may occur when new panels are installed, a process is modified, or failed components must be replaced. In the latter instance, it may be impossible to find an identical or similar replacement component and it is necessary to determine how the characteristics of the new component may affect operator performance.

1.4 Modification Requests

All control room panel modifications, including labeling, will be accomplished in accordance with the principles of this human factors manual. This will ensure that changes are reviewed from an integrated systems viewpoint and that human factors principles are adhered to in any design change made to the control panels.

1.5 <u>Checklists</u>

To help design engineers use this manual, checklists have been prepared to include items from each section of the manual. The checklists assist designers in identifying appropriate human engineering principles to be considered. A checklist is provided in Section 10; it is to be completed and approved for any changes to control room procedures. A summary checklist to be completed and approved for any equipment modification is provided in Appendix A. Only personnel qualified to evaluate design changes from a human factors engineering standpoint should complete these checklists.

, . • T •

ĥ

1.6 <u>Responsibility</u>

The update of this human factors design manual is the responsibility of the NMPC Engineering Department which will provide updated information to the document control office for ultimate distribution to all manual recipients.

, . n

2.0 CONTROL ROOM LAYOUT AND ORGANIZATION

2.1 Panels and Benchboards

The layout of the control room is shown in Figure 2-1. The center desk is positioned so that the operator sitting at the center desk has a clear and unobstructed view of all benchboards and vertical panels in front and to the right and left. Displays and controls crucial to the operation of the power plant are located on the benchboards and on the front of the associated vertical panels. Other supporting displays and controls are located on backpanels.

2.2 Groupings

On the front control panels, most controls are located on the benchboards while visual displays are located on the attached vertical panels. The design engineers have attempted to locate specific systems and their subsystems on the same benchboards and vertical panels, particularly those containing controls and displays critical to operating the plant. Instruments controlling or measuring similar processes should be grouped together. The primary principle to be followed is that the control room panels should be laid out so that the operator will not have to leave the primary operating area to attend to control room instrumentation on the back of panels during periods when monitoring or timing of control actions may be critical. Desks and consoles should be placed to give the operator a full view of all critical control and display panels and annunciators.

Critical operations include all emergency operating conditions, most abnormal operations, and normal operations which are time critical or which could result in significant equipment damage or injury to personnel.

* а 131

¢

۹. •

•

· .

The current system and subsystem grouping, as shown on Figure 2-1, is the primary design convention and is to be strictly maintained in all panel modifications.

2.3 Spacing

Recommended spacing of equipment to accommodate seated operators is shown in Figure 2-2; recommended equipment-to-equipment distances are illustrated in Figure 2-3. These guidelines should be adhered to if new panels or consoles are added or moved.

2.4 Storage

Other needs for the control room include convenient, easily accessible document organization and storage, spare parts, operating expendables, and tools. Whenever the control room layout is altered, these needs should continue to be met without interfering with operator performance of tasks.

-

Figure 2-1. Layout of NMP-2 Control Room

1

. . .

.

,

Figure 2-2. Spacing of Equipment to Accommodate Seated Operators (from NUREG-0700)

Figure 2-3. Panel-to-Panel Distances (from NUREG-0700)

, \$ 1 • **x**

3.0 WORK STATION DESIGN

3.1 Anthropometrics

Equipment should be designed to meet the requirements of the 5th to 95th percentile of the population; this will accommodate practically all users. In designing new panels or work stations, the measurements given in Table 3-1 may be useful. These encompass most of the useful dimensions of the 5th percentile woman and 95th percentile man.

3.2 <u>Stand-Up Operation of Controls</u>

NMP-2 control panels are designed for stand-up operation. In positioning controls for stand-up operation, the range of suitable control height is within the reach radius (functional reach) of the 5th and 95th percentile user. The controls on a benchboard should be set back a minimum of 3 inches from the front of the benchboard to avoid inadvertent actuation and the maximum distance of controls should be no more than 25 inches, if possible, from the front edge of the benchboard as shown in Figure 3-1. The highest and lowest control on vertical panels should be within the reach of the 5th percentile female without stretching and the 95th percentile male without bending or stooping. For the main panels of the NMP-2 control room, this results in a maximum recommended control height of 70 inches for vertical panels and a recommended minimum of 34 inches control height for vertical panels.

· · · · 11 .

۰۰ • • • • . . .

4 4 1 1 1

•

· · · · · ·

х х	BOUNDING MEASU	<u>REMENTS (inches)</u>
STANDING	5th Percentile	95th Percentile
<u>(without_shoes)</u>	<u>Adult Female</u>	<u>Adult_Male</u>
Scacure	60.0	73.5
Eye height from floor	55.5	68.6
Shoulder height	48.4	60.8
Elbow height	37.4	46.8
Fingertip height	24.2	28.8
Functional reach	25.2	35.0
Extended functional reach	28.9	39.0
Distance from central axis of body to leading edge of console	5.0	5.3
Eye distance forward of central axis of b	ody 3.0	3.4
SEATED		
Popliteal height (bend at back of knee)	15.0	19.2
Sitting height above seat surface erect	31.1	38.5
relaxed	30.5	37.6
Eye height above seat, sitting erect	26.6	33.6
Shoulder height above seat surface	19.6	25.8
Elbow height above seat surface	6.4	11.3
Function reach	25.2	35.0
Extended functional reach	28.9	39.0
Thigh clearance height	4.1	7.4
Buttock-popliteal length	17.1	21.5
Knee height	18.5	23.6
Distance from central axis of body to leading edge of console	5.0	5.3
Eye distance forward of central axis of be	ody 3.0	3.4
Source: MIL-STD-1472B, Section 5.6, Decer	nber 1974, as upd	ated May 1978.

Table 3-1. Anthopometric Data for Equipment Dimensions

.

٤

R'

.

•

***;**

#1.

,

.

Figure 3-1. Control Location Specifications

ĸ A

> 21 ¥.

¢

"ŧ,

,

• .

. .

y

. .

3.3 <u>Display Positioning - Stand Up</u>

Some of the factors that affect readability of displays and annunciators are shown in Figure 3-2. These factors include:

- Display height from the operator's Line-of-Sight (LOS) should be considered. All displays, including annunciator tiles, should be mounted so that they are within the upper limit of the visual field defined to be 75° above the horizontal LOS of the 5th percentile female (56.5 inches), as shown in Figure 3-2.
- All displays and annunciators should be mounted so that the angle between the operator LOS and the faceplate is 45° or greater, as shown in Figure 3-2. The 5th percentile female determines the upper limit. The 95th percentile male determines the lower limit.
- The horizontal displacement from the LOS to a display to either side of the working position should subtend an angle between 45° and 90° as shown in Figure 3-3.

3.4 Sit-Down Consoles

NMP-2 control room computer operations are performed at sit-down consoles. For sit-down consoles, the keyboard and any controls should be within a reach radius of 25 inches. These measurements assume a seated shoulder height of 35 inches, with the shoulder in line with the leading edge of the table. Display positioning follows the same guidelines as those for the standing operator, except that they are now measured from the seated position.

• 1 ,

Figure 3-2: Display Height and Orientation Relative to Standing Operator Line of Sight (LOS)

/

v ¥:

.

۲.

۵۰ ۲. و

,

Figure 3-3. Limit on Horizontal Displacement of Displays from Straight-Ahead Line of Sight (LOS) at the Required Reading Position . ₩ *

.

.

3.5 <u>Dimensions for Seated Operator</u>

Leg and foot room dimensions and other recommended design measurements for the seated operator are presented in Figure 3-4.

3.6 Other Factors to Consider

Other important considerations for workspace include temperature, humidity, ventilation, air velocity, illumination, glare, reflectance, background noise, reverberation and sound absorption. NMP-2 has undergone a control room review to ensure that the various factors fall within acceptable limits. If, during a control room modification, any of these factors are likely to be affected, NUREG-0700 should be checked to find the acceptable tolerance limits.

、 · . . .

.

. ·

Figure 3-4. Leg and Foot Room Dimensions

t . , . •

4.0 LABELING

4.1 General Characteristics

Proper labeling is essential for equipment identification. Because there are so many controls and displays in the control room, the operators depend on labels for positive identification of components. The character size and style and the materials used to make the labels all affect readability. The labels used in the NMP-2 control room are white lamacoid engraved with black lettering. This presents optimum contrast and the characters are visible when the label is dirty. Any changes to control room labeling should remain consistent with what is presently in the control room. Appendix B lists label size specifications.

The following labeling recommendations should be considered:

- 1) Labels should describe component function.
- 2) Multi-pen recorder labels should describe the parameters of each . pen.
- 3) Words should be used which have a commonly accepted meaning for all intended users; unusual terms should be avoided. Words on labels should be concise, yet convey the intended meaning.

4-1

* 81 71

1 - p •

-

4) NMP-2 standard abbreviations and acronyms are provided in Appendices C, D, E, and F. Appendix C is sorted by abbreviation, Appendix D is sorted by definition. Appendices E and F are lists of system numbers and codes. These abbreviations should be used on any labeling, annunciator engraving, computer displays, alarm printers, etc., that are used in the control room. Full spelling is preferred except for those abbreviations listed in Table 4-1, they should be used instead of the full spelling of the word. If it is necessary to abbreviate a term and a choice of abbreviations exists, an abbreviation which is consistent with those currently in place in the associated area, system, or application should be chosen.

Abbreviation	Meaning
BLDG	Building
DIFF	Differential
DISCH	Discharge
HI	High
ISOL	Isolation
LO	· Low
PMP	Pump
PRESS	Pressure
STM	Steam
SUCT	Suction
TEMP	Temperature
TK	Tank
VLV	Valve
WTR	Water
XFMR	Transformer

Table 4-1. Words That Should Be Abbreviated

.

• ••

₽

۰. ۲.

ίς.

5

τ

×

4.2 <u>Label Hierarchy</u>

A hierarchical or system labeling scheme is used at NMP-2 to define systems and discrete panel elements. Each level of system labeling should describe the function of the system or component being labeled. Information presented on system labels may be repeated on component labels if it is essential to component identification and does not clutter the component label. Figure 4-1 illustrates the proper placement of each level of system labeling.

4.3 <u>Component Labels</u>

The information necessary for positive identification of a component should be shown on component labels. NMP-2 has established labeling conventions that should be followed whenever labels are added or modified.

4.3.1 Display Labels

Ensure that the system with which the display is associated is identified either on the component label or with a nearby system label. The component label should specify the parameter being measured (e.g., current, flow, pressure). The units of measurement (e.g., amps, GPM, PSI) should be shown on the display. Ensure that labels for indicator lights are near enough for positive identification. If two sets of indicator lights are associated with a given control, each set of lights should be labeled.

4.3.2 Controls

Ensure that the system with which the control is associated is identified either on the component label or with a nearby system label.

4-3

A 11

.

: •

2

•

1

.

Figure 4-1. Hierarchical Coding Scheme Example.

и 1

Ta

å

•

1.2

* **a**

Çi -

۲

.

· · ·

The NMP-2 convention for valve identification is as follows:

- 1. Three-letter Stone and Webster system identification code
- 2. An asterisk to identify safety related components or a hyphen if not safety related
- 3. An abbreviation to identify the type of valve
- 4. A valve identification number

An example of proper NMP-2 valve identification is shown in Figure 4-1. Valves with a throttleable capability should be labeled THROTTLE on the last line of the component label.

4.4 Label Specifications

Detailed specifications for the fabrication of system labels, component labels, annunciator tiles, and legend lights/pushbuttons are presented in Appendix B. The appropriate guideline should be used whenever new labels are made.

4.5 Label Placement

System labels should be placed above, and centered over the group of components that they describe. Component labels are to be placed above the component described, with placement and proximity to controls determined by the optimum visibility as shown in Figure 4-2. Placement should also provide sufficient space to allow adequate discrimination from adjacent controls and minimum interference with visibility during adjustment or manipulation of controls. Labels should be placed so that they do not obscure or detract from other information sources.

The following recommendations should be considered:

1) Labels should not appear on the control itself. During adjustment or manipulation, the operator's hand may obscure the label.

4-5

۰. ۲

* * *

·· · ·

ι.

. н Н

/

•

F ery. ż, ۰

)

. .

1

3 2 2. 4 **7**9

**

,

1

N Contraction of the second second

d"

*

4

•

- 2) Adjacent labels should be separated by sufficient space so that they are not read as one continuous label.
- 3) Labels should be placed below indicators. This convention should be followed except in cases where there are space constraints. Where the indicator or recorder protrudes from the panel and blocks the label during normal operation, the label should be extended out to be flush with the indicator. Consistency within a component area should be maintained, unless not possible.
- 4) Labels should be placed above controls. This convention should be followed except in cases where there are space constraints or where confusion may occur. Consistency within a component area should be maintained, unless not possible.
- 5) Labels should be placed so that it is absolutely clear which component they describe.
- 6) Use horizontally oriented labels.
- 7) Curved patterns on labels should be avoided.
- Labels should be mounted to minimize the possibility of accidental detachment.
- 9) Selected devices and components have an additional label indicating the equipment piece number. This label is used by Instrument and Control personnel or as an additional reference for operators. Placement and legibility of these labels are not critical to immediate operator action. When a device or component has both a GE and a SWEC equipment piece number, use of the GE number is preferred.

, . . a . ,

4.6 <u>Manufacturers' Names</u>

The names and logos of equipment manufacturers are not recommended to be on the boards but they need not be removed or covered unless they are close to other labels or indicators and may cause distraction when the operator is trying to locate or read instruments.

. . • a de la constante de ø .

5.0 CODES AND CONVENTIONS

5.1 Consistency of Use

The effective establishment of a system of codes and conventions depends on consistency of use. This consistency must be maintained when using component and system names on labels, annunciators, procedures, etc. Lists of standard abbreviations are provided in Appendices C, D, E, and F. Color codes should be followed consistently throughout control room design to ensure that the meaning of the codes is understood.

5.2 <u>Color Coding</u>

Color codes are established to provide a consistent use of the colors most. suited for a particular application. Color coding of functional relationships can be used to present qualitative information accurately and quickly without requiring the operator to cognitively interpret or relate such information to component or system functions. Color codes can be used to particular advantage in circumstances which require search and location of information. The use of color in the control room may include:

- Locating documents
- Annunciator prioritization
- Relating controls with corresponding displays
- Enhancing layout of multiple controls in a single display
- Indicator zone markings on meters and gauges
- Mimics
- Selected ink colors for pen recorders
- CRT displays

b

·

e^x τ.

• ;

 \hat{a}_i

5.

1.4 -_

х

• •

. •

•

5.3 Color Selection

The following rules should be considered in the selection and use of color and color codes in the control room:

- The number of colors employed should be kept to a minimum necessary to provide adequate information. Guidelines (NUREG-0700) recommend the use of no more than 11 colors for purposes of coding information. These colors should be selected from those listed in Table 5-1.
- Consistent use of color should be maintained for indicator lights. Table 5-2 lists the lamp color codes established for NMP-2.
- 3) Colors should be recognizable in various lighting conditions..
- To maximize legibility, the color coding should contrast well with the. background (Table 5-3).
- 5) The use of color coding on CRTs provides a higher rate of information processing if done correctly. Selected guides for color coding are given in Table 5-4.
- 6) Surface color should be visible and recognizable under a variety of normal and emergency conditions.
- 7) For optimal effectiveness, color codes should represent redundant information. Color should provide a perceptual alerting which meaningfully represents information available in some other form, such as location, orientation, or scale marking.
- 8) The response benefit inherent in color-coding information depends on the ready discriminability of such codes and the ease with which they can be learned.

5-2

• • •

.

× , ۲. ۲. ۳.

•****K**

Color Selection Number	Name	ISCC-NBS Centroid Number	USCC-NBS Name (Abbreviation)	Munsell Renotation ISCC-NBS Centroid Color
1	white	263	white	2.5PB 9.5/0.2
2	black	267	black	N 0.8/
3	vellow	82	v.Y	3.3Y 8.0/14.3
4	purple	· 218	s.P	6.5P 4.3/9.2
5	orange	48	v.0	4.1YR 6.5/15.0
6	light blue	180	v.1. B	2.7PB 7.9/6.0
7	red	11	v.R	5.OR 3.9/15.4
8	buff	90	gy.Y	4.4Y 7.2/3.8
9	gray	265	med. Gy	3.3GY 5.4/0.1
10	green	139	v.G	3.2G 4.9/11.1
11	purplish pink	247	s.pPk	5.6RP 6.8/9.0
12	blue	178	s.B	2.9PB 4.1/10.4
13	yellowish pink	26	s.yPk	8.4R 7.0/9.5
14	violet	207	s.V	0.2P 3.7/10.1
15	orange yellow	66	v.OY	8.6YR 7.3/15.2
16	purplish red	255	s.pR	7.3RP 4.4/11.4
17	greenish yellow	97	v.gY	9.1Y 8.2/12.0
18	reddish brown	40	s.rBr	0.3YR 3.1/9.9
19	yellow green	115	v.YG	5.4GY 6.8/11.2
20	yellowish brown	75	deep yBr	8.8YR 3.1/5.0
21	reddish orange	34	v.r0	9.8R 5.4/14.5
22	olive green	126	d.01G	8.0GY 2.2/3.6

Table 5-1. Recommended Colors for Control Room Use (from NUREG-0700)

Listed are 22 colors of maximum contrast. Each successive color has been selected so that it will contrast maximally with the color just preceding it and satisfactorily with earlier colors in the list. The first 9 colors have been selected to yield satisfactory contrast for red-green-deficient as well as color-normal observers. The remaining 13 colors are useful only for color-normal observers.

· · · · · · a \$ • . ۰ ۰

۸

Table 5-2. Indicator Lamp Colors and Meaning

-----COLOR--------FUNCTION---_ _ _ _ -----Blue Green <u>Red</u> PGCC Controlled Off Tap On Tap Load Tap Changers Pump Off PGCC Controlled Pump Running Turb Gen Lift Pumps Amber <u>Green</u> <u>Red</u> Closed Ckt Seal-In LPSI Inject MOVs Open HPCS Suct MOVs Closed Man Override Open Stop Trip/Reset Running Standby Liquid Pumps

THREE LIGHT CONFIGURATION

TWO LIGHT CONFIGRUATION

COLOR		FUNCTION
<u>Green</u>	Red	•
Closed	Open	Various Valves
Closed	Modulate	Various Valves
Closed	Override	Various Valves
Jog Closed	Jog Open	Various Valves
Off	On	Pumps/Motors
Off	Operate	Pumps/Motors
Off	Override	Pumps/Motors
Off	Fan	Pumps/Motors
Stop	Start	Pumps/Motors
Stop	Auto	Pumps/Motors
Stop	Open	Pumps/Motors
Run	Maintain	Pumps/Motors
Manual	Auto	Pumps/Motors
Slow	Fast	Pumps/Motors
Normal	Smoke Rmvl	Pumps/Motors
Trip	Closed	Breakers/Controls
Isolate	Reset	Breakers/Controls
Open	Closed	Breakers/Controls
Reset	Override	Breakers/Controls

. . e

Table 5-2. Indicator Lamp Colors and Meanings (cont't)

ONE LIGHT CONFIGURATION

-COLOR/MEANING-

--COMPONENT--

<u>Blue</u>

Ckt Seal-In H₂ Press Alert Total Flow

Turb Turning Gear H_2 Analyzer Svce Wtr Hdr Flow

<u>White</u>

Seal-In/Reset Seal-In/Reset Seal-In/Reset Seal-In/Reset Reset Bypass Failure Needs Maint Ready Start-Up Operate Ready Init/Disable Energized Off-Normal

HPCS Man Init High Wtr Lvl RCIC Isol Div 1 RCIC Isol Div 2 LPCI-A/LPCS Flux Estimator Flux Estimator H₂ Recombiner H₂ Recombiner H₂ Recombiner H₂ Recombiner Squib Valve ADS Auto Mode Scram Vlv Solenoid Contmt Isol Status

<u>Amber</u>

Ckt Monitor Position Ind Man Override Trip/Reset Inoperability

Station Battery Auto/Man Volt Adjust RED Rx Cont Sys Feedwtr/Rx Lvl Various Equip

٩.,

, , _ · •

Table 5-3. Relative Legibility of Color Combinations (from NUREG-0700).

Legibility Rating	Color Combination
Very Good	Black letters on white background
Good	Black on yellow Dark blue on white Grass green on white
Fair	Red on white Red on yellow White on black
Poor	Green on red Red on green Orange on black Orange on white

۴ 2 ₩¹

• 8

۰ ۰

.

•

?

Table 5-4.	General Characteristics of Colors Used in CRT Displays (from NUREG-0700)
COLOR	APPLICATION
Red	Good attention-getting color, associated with danger
Yellow (amber)	Good attention-getting color, associated with caution
Green	Non-attention getting color, easy on the eyes; associated with satisfactory conditions
Black	Normally used as the background color; i.e., the color of blank character spaces. Also used as the action character when reverse field coding is employed
White	Non-attention getting color, It should be used for standard alphanumeric text or tables where the information is contained in the characters and not the color. Might also be used for labels, coordinate axes, dividing lines, demarcation brackets, etc.
Cyan (light blue)	(Same as white) Might be used in conjunction with white to provide some amount of noncritical discrimination (e.g., use cyan for tabular column headings and demarcation lines; use white for alphanumeric text)
Blue (dark)	Poor contrast with dark background, not recommended for attention-getting purposes or for information-bearing data. Use for labels and other advisory type messages
Magenta	A harsh color to the eye, should be used sparingly and for attention-getting purposes
Orange	Good attention-getting color, care must be taken that hue is selected to be readily differentiable from red, yellow, and white

5-7

. .

a-

e

L Fa ۲

- ۶., 9,9
- .

 - *.* Ă

2

*

- **`**2` А.

- .
5.4 SPDS Color Conventions

Color coding is used consistently throughout the SPDS displays to indicate parameter status. The SPDS color coding is consistent with color coding used throughout the control room. The color coding conventions used are in accordance with the guidelines in NUREG-0700, Sections 6.5.1.6 and 6.7.2.7. The following describes how each of the SPDS colors are used:

- <u>Cyan</u> is used for display titles, the outline of the plant mimic, plant mimic labels, borders for Safety Function Status Indicators, borders for trend graphs, and borders of boxes containing parameter status information that is not associated with setpoint information. Cyan is a neutral color, it has no coding significance.
- 2) <u>White</u> has the following applications:
 - Date and time
 - Labels for those parameters that are not associated with Safety Function Status Indicators
 - Trend graph horizontal axis time values, vertical axis parameter values, and shading for the entire area below the trend line
 - To indicate that parameter values and status indications are valid
 - Parameter labels displayed in inverse-video white with black letters indicate that the parameter input has failed. The word FAIL appears in white below these labels.
- 3) <u>Green</u> indicates a normal condition, that is, the computed value does not exceed any specified high or low limit setpoint. Green is used in the following applications:
 - Parameter labels displayed in inverse-video green with black letters indicate that the parameter is in a normal condition.
 - Safety Function Status Indicators on the bottom of the screen are green when all parameters associated with that display are in a normal condition.

1

12 •4 •

'_

•

°., **

х.

6

•

A.) 4 ,

1

- 4) <u>Yellow</u> indicates an abnormal condition, that is, the computed value exceeds a specified high or low limit setpoint but does not exceed a specified high-high or low-low limit setpoint. Yellow is used in the following applications:
 - Parameter labels displayed in inverse-video yellow with black letters indicate that the parameter is in an abnormal condition.
 - Safety Function Status Indicators on the bottom of the screen are yellow when at least one parameter associated with that display are in an abnormal condition.
 - High or low limit setpoint value on vertical axis of trend graph
- 5) <u>Red</u> indicates an alert or alarm condition, that is, the computed value exceeds a specified high-high or low-low limit setpoint. Red is used . in the following applications:
 - Parameter labels displayed in inverse-video red with black letters indicate that the parameter is in an alert or alarm condition.
 - Safety Function Status Indicators on the bottom of the screen are red when at least one parameter associated with that display is in an alert or alarm condition.
 - High-high or low-low limit setpoint value on vertical axis of trend graph
- 6) <u>Magenta</u> indicates a questionable parameter value, it does not meet specified validation criteria. If a value is magenta the parameter label is still green, yellow, or red to indicate that the questionable value is within the normal, abnormal, or alarm range. The selected mode of operation indication is magenta when various related parameters are not within specified ranges for the selected mode.

, ٠. ·

,

I

6.0 MIMICS AND PANEL DEMARCATION

6.1 Mimics

Mimics are graphic representations of a system or process. These serve to aid the operator in understanding system flow path and valve status. Specifications for mimic design are listed in Table 6-1. Color codes used on the NMP-2 mimics are shown in Table 6-2.

6.1.1 RHR and HPCS Mimics

On these mimics, color is used to show flow path as a function of operational mode. For a particular mode of operation, a particular color shows the flow path for that mode. Two different colors may be used to denote the same 'material flow.

6.1.2 SLC, Main Steam, and Nuclear Water Cleanup Mimics

Each color in these mimics is used to show the flow of a particular material through the system.

6.1.3 Primary Containment Mimic

The primary containment mimic shows the flow paths and valve designations to and from primary containment. Color is used to show system flow. The legend indicator lights illuminate to indicate off-normal status.

.

- . 3. ۴٩ •

- · · ·
- .

Table 6-1. Mimic Specifications

Line width 1/4"

Color Follow color codes (Table 6-2) for specific systems.

Arrows Should be engraved and filled with white plastic. The engraving is for permanence of the markings and the filling keeps the engraving from being obscured by dirt. Arrows showing direction of flow should be spaced every 5 inches and within 2 inches of junctions and terminations.

- Cross-overs Where mimic lines cross, but the pipes or wires represented do not have a junction; spacing between the continuous line and the discontinuous line should be between 50% and 80% of the width of the mimic line (Figure 6-1).
- Symbols Symbols used in mimics should duplicate P&ID symbols as closely as possible.
- Termination All terminations should be labeled, whether representing the beginning or end of a flow path. The termination can be labeled with an engraved symbol such as a tank, pump, or generator symbol. If the mimic terminates at a control or display, the component label should describe the flow termination or a separate label or symbol should be provided for this purpose.

٤.

2 . 7 . 1 . S

~"I *a X,

1

ć

.

,

na ≖ 5

, · · · · · ·

. anaganant s ∈

		601			602		824 852		852	8		87	73		875		75			
Table 6-2. Mimic Color Code	RHRALPCS	RCIC	HPCS	SLC		OFF NORM	RCS	RWCU		DRAINS		ELEC SYS		DW DRAINS	DW CLG	CMS	HCS		CMS	HCS
SPECTRUM RED - 845																				
SCARLET (1)																				
SPECTRUM VIOLET - 896																				
BITTERSWEET (2)																				
MONET LAVENDER - 863																				
PERSIMMON (3)													÷							
FIESTA BISQUE - 857																				
TAHITI ORANGE (4)										ļ										
SPECTRUM ORANGE - 889																				
BRICK ORANGE - 841																				
SPECTRUM YELLOW - 940																				
LEMON TWIST (5)																				
APPLE JACK - 944																				
SLICED AVACADO (6)																Ì				
ISLE GREEN - 883																				
GAELIC GREEN (7)																				
LICHEN - 870																				
SPECTRUM GREEN - 897																				
FRENCH BLUE (8)												¥								
SPECTRUM BLUE - 851																				
CAMELOT BLUE (9)														-						
CHINA BLUE - 884																ļ				
BANNER BLUE (10)																		_		
BUTTERSCOTCH (11)																				
GINGER BROWN - 906																				
TERRA COTTA - 903																				
COFFEE BEAN - 959					i															
ADOBE GOLD (12)																				
JUBILEE - 892																				
CREAM (13)																				
WHITE - 949																				ļ
BLACK - 909																				_
CORAL - 442	<u> </u>															_				
DUSTY JADE - 879	<u> </u>															L				
PARAKEET - 873	<u> </u>	<u> </u>										L				<u> </u>				
WHEAT - 891																				

FOOTNOTES: REFLECTS MANUFACTURER'S DISCONTINUED MATERIAL TO BE REPLACED WITH THE FOLLOWING ENGINEERING APPROVED EQUIVALENTS FOR NEW APPLICATIONS:

(1) SPECTRUM RED - 845 (2) BRICK ORANGE - 841 (3) CORAL - 442 (4) SPECTRUM ORANGE - 889 (5) SPECTRUM YELLOW - 940 (6) DUSTY JADE - 879 (7) ISLE GREEN - 883 (8) CHINA BLUE - 884 (9) PARAKEET - 873 (10) SPECTRUM BLUE - 851 (11) SAND - 900 (12) APPLE JACK - 994 (13) WHEAT - 891

~ 'n -• •

Figure 6-1. Mimic Dimensions for Cross-Overs

۲ . .

• •

τα. Αδρ. •

•

6.1.4 Electrical Mimic

The electrical mimic shows the distribution of various station voltages. Each station voltage is designated by a different color.

6.2 <u>Demarcation Lines</u>

Demarcation lines are placed on the control panels to distinguish separate operational systems and subsystems. Demarcation lines facilitate the location of components because they break large control panels into smaller groups of functionally related components. They should be used to separate systems, subsystems, and component groupings where physical space or panel edges do not already visually set apart the related components. Demarcation lines should be black. The width of demarcation lines should be as follows:

6.3 Background Shading

Background shading is a form of demarcation that is used to highlight selected instruments or controls. Trim plates are used in the NMP-2 control room to draw attention to certain components such as the annunciator controls and post accident monitors. Small trim plates are placed behind the component labels (such as ADS Safety/Relief Valves) to highlight certain components in a group of similar components. The color convention for background shading is as follows:

- Red Critical controls; post accident monitors
- Blue Highlight components not part of a particular system (such as annunciator controls)
- Black Selector switches; CMS sample path

• . • . .

7.0 ANNUNCIATORS

7.1 <u>Annunciator Warning Systems</u>

Annunciator warning systems consist of an audible alarm and a lighted legend tile display. Whenever changes are made to an annunciator, the human factors concerns for the legend tile message, location and engraving should be examined.

7.2 <u>Legend Tile Displays</u>

The legend tile displays inform the operator of a specific event that has occurred, or that a critical setpoint has been exceeded. The design of legend messages should facilitate rapid and accurate interpretation of the alarm condition by the operators. Common inadequacies of annunciator tile legend displays that tend to degrade the presentation of information to operators include:

- Inaccurate content
- Inconsistent legend formats, abbreviations and nomenclature
- Inadequate quality of lettering
- Inconsistent coding schemes
- Disagreement between indicated and actual setpoint
- Inadequate functional grouping of tiles

-2 • • •

• 2 7 *

: **1**87 27

. .

•

4

7.2.1 Legend Content

Annunciator tiles 'should provide a short concise message, using consistent format, abbreviations and nomenclature. The tile legend messages are designed hierarchically as shown in Table 7-1.

υ	Table 7-1. Annunciator Til	e Wording Hierarchy
<u>Line</u>	<u>Message</u>	Examples
1	System or division affected	RCIC, LOAD CENTER, DIVISION II
2/3	Specifics about equipment and/or conditions	PUMP 1, ISOL VALVE, DIFF TEMP
3/4 (last)	Alarm cause or fault	HIGH, HI-HI, TRIP

7.2.2 Multiple Input Tiles

Where tile legends indicate more than one condition (e.g., A or B, HIGH or LOW), the tile wording should clearly indicate to the operators that multiple inputs exist for the alarm. The NMP-2 convention is to place slash marks (/) between the multiple input items (e.g., A/B, HIGH/LOW). In addition, the computer inputs for these alarms are designed so that when a multiple alarm is annunciated, only the input causing the alarm will be highlighted on the computer alarm feedback.

- **.**#
 - -1 ₩ 4_3
- ų ¢ ų
 - . •• •
- ai

 - \$
- η
 - 4
- .

7.2.3 Annunciator Tile Groupings

Human factors concerns regarding the placement of annunciator tiles should be examined whenever annunciator tiles are added or moved. This entails a review of both the location of the tile by box, and the location of the tile within each box. The basis for location of each tile is dependent on the system/equipment cited and the severity (nature) of the alarm.

Whenever possible, tiles are grouped on annunciator boxes according to the systems represented by the controls and displays grouped on the panel beneath each box. Tiles within each box are grouped by system and/or equipment (e.g., all generator emergency oil seal alarms in one area on the box, all turbine lift pump alarms in another area). The most serious alarms are placed at the top of the box, or the top of the appropriate system alarm set. The resulting pattern proceeds vertically from the least serious alarms at the bottom of the. panel to the most serious alarms at the top of the panel.

7.2.4 Numbering Scheme

Each annunciator tile has an identification number permanently engraved in the lower left corner. This number corresponds with the identification numbers located on plant documentation (drawings, procedures, etc.).

The numbering system used gives each annunciator box on each panel a 100 series number. For example, panel 603 has four annunciator boxes; therefore, there will be a 100 Box, 200 Box, 300 Box and 400 Box.

Each tile within each box is given a sequential number starting with the hundred series number plus one (e.g., 101, 201, 301). This number is referenced, along with the panel number, in the NMP-2 procedures.

۶.

ĩ

52

45 ×

•

,

.

7.2.5 Letter Style and Size

Annunciator tile specifications are shown in Appendix B. The annunciator tiles are 2.8125" wide. The tile height is 2.625". A maximum of 13 characters per line is allowed. The engraving font is to be Condensed Standard (also known as Condensed Gothic). The character height is 0.25" with a maximum width of 0.25". The distance between letters is 0.036", or one stroke width. The distance between legend words is one letter width. The distance between legend lines is 0.125".

The type style is simple and consistent, using only uppercase letters. The legends are engraved with black lettering on a white background. The background material has a dull white finish to minimize glare effects.

Four legend lines are permitted on an individual tile. Two-line legends are engraved on the second and third lines of the tile. Three-line legends are engraved on the first, second and third lines.

7.2.6 Color Coding

Color coding is used to distinguish annunciator tiles. Red and amber annunciator tiles have a red or amber border around the legend and are backlit the appropriate color. The following color codes are used to identify annunciator tiles:

RED Annunciator tiles which provide Engineered Safeguard Feature/reactor protection signal information in the event of a scram

AMBER Annunciator tiles which indicate an inoperable condition

WHITE Annunciator tiles which indicate an off-normal condition

•

8.0 SWITCHES AND PUSHBUTTONS

8.1 Escutcheon Format

Rotary switches should have escutcheons (switch position labels) with white letters on a black background. To minimize operator error, control movements should conform to the population stereotypes listed in Table 8-1. Some rules for the rotational order of switch positions are as follows:

1) Proceed left-to-right from lowest state to highest state.

Example: OFF LOW HIGH

2) Avoid passing through conflicting states to go from one state to another.

Examples: CLOSE OPEN TEST FAN 1A OFF FAN 1B

- 3) To designate values, "CLOSE" will be to the left and "OPEN" to the right. To designate breakers, "TRIP" is to the left and "CLOSE" is to the right. To designate motor operated disconnect switches, "OPEN" is to the left and "CLOSE" is to the right.
- 4) Proceed left-to-right from lowest number to highest, or alphabetically.

Examples:	CH.1	CH.2	CH.3
	1A ·	1B	1C
	LOOP A	LOOP B	

,

.

.

,

•

.

.

. . . .

Table 8-1. Direction of Switch Movement

In general, to minimize operator error, control movements should conform to the following population stereotypes (for U.S. population only):

Function	Possible Control Actions
On, Start, Run, Open	Up, right, forward, clockwise, pull
Off, Stop, Close	Down, left, backward, counterclockwise, push
Right	Clockwise, right
Left	Counterclockwise, left
Raise	Up
Lower	Down
Increase	Forward, up, right, clockwise
Decrease	Backward, down, left, counterclockwise

5) For seldom used combinations, try to apply these rules along with consideration of what would be logical for operation and meet safety constraints (both for equipment and tech specs).

8.2 Moving Pointer, Fixed-Scale Switches

1) When space around the switch permits, words or numerals should be placed horizontally around the switch as shown in Figure 8-1.

r . . 3

5**7** á.

* .

, **.** .

n. S

.

· •

, ,

e

• •

Figure 8-1. Rotary Switch Position Orientation.

Figure 8-2. Rotary Switch Position Orientation.

a 1.1-4 ų,

۴

,

a:

<u>ال</u> ****** •

. *

1

•

,

2) For molded plastic switches where the switch position designations are an integral part of the switch, designations should be placed so that the tops of the letters and/or numbers face outward from the 9 o'clock position around to the 3 o'clock position and the bottoms of letters facing outward from the 4 o'clock to 8 o'clock position as shown in Figure 8-2.

8.3 <u>Control Handle Type</u>

ſ

The conventions for the type of control switch to be used for a certain function are listed in Table 8-2. Consistency of control switch type within groups should be maintained to establish plant standardization. Controls that perform similar functions by similar control actions should have the same control switch type. Controls that are different from others near it, either in function or switch action should have a distinguishing control switch type.

8.4 <u>Pushbutton Switches</u>

Pushbutton switches should follow conventions for color code and switch position identification. Specifications for engraving pushbutton legend/lights are presented in Appendix B. Pushbutton legend lights are discriminated from indicator lights (with only a push-to-test function) by placing a black dot in the upper right corner of the pushbutton as shown in Figure 8-3.

8.5 <u>Key Operated Switches</u>

When installing a key operated switch, the switch is to be oriented such that the key will be inserted into the lock with the teeth pointing up or forward. When installing a switch operated by a key with teeth on both edges, the key should fit the lock with either row of teeth pointing up or forward.

** * 3

٠

្តរដ្ឋ 1

. <u>В</u>

.

.

•

١

. . .

Table 8-2. Control Switch Type.

٠

.

.

• ۰ ۲

1

SEE APPENDIX B FOR ENGRAVING SPECIFICATIONS

Figure 8-3. Pushbutton/Legend Indicator Light Discriminiation Convention

• · .

,

9.0 METER SCALES AND LEGENDS

9.1 Display Characteristics

Whenever a meter or recorder is changed, the human factors considerations of the new or changed instrument should be examined. The location of the instrument, the appropriateness of the scale, and the legend on the display should be reviewed to ensure that the instrument serves all operational needs.

9.2 <u>Meter and Recorder Legends</u>

Legends identifying meters and recorders should display units of measurement information and scale multiplier, if applicable.

9.3 Meter and Recorder Scales

Consistent meter scales aid in obtaining quick, accurate value readings. Figure 9-1 shows examples of some acceptable meter and recorder scales. The following should be considered in the design of meter and recorder scales:

- 1) Range of scale is adequate for its use under all operational conditions
- 2) Scale divisions provide an appropriate level of accuracy
- 3) Numerical progressions are by 1, 2, or 5, or some multiple of 10 of these numbers
- Unit graduations are appropriate for numerical progression and scale divisions.

Figure 9-1. Examples of Appropriate Meter Scales

•

•

۲,

.. ň,

÷

.

3 **•**

۰. , • 4 227

ş.

w ,

41 **ž:** -

÷.

*

•

.

4

Ϊ,

- 5) No more than nine graduation marks should be used between two numbered marks.
- 6) Minimum separation between graduation marks should be .05 inch.
- Letter and number character height should be at least 0.104 inches, with 0.15 inches preferred.
- 8) Certain control room meters have corresponding meters on the Remote Shutdown Panel. Whenever possible, scales on the Remote Shutdown Panel should be identical to the corresponding scale in the control room.

9.4 <u>Indicator Zone Banding</u>

Indicator zone banding is the marking of a meter with a color zone to show the operational status of various values. Zone banding of meters can enhance operator performance in the monitoring of trends, direction and rates of Zone banding should not interfere with visibility of the display change. pointer, graduations, or numerals. Figure 9-2 shows examples of zone banding. Table 9-1 lists the materials and colors used for zone banding. Zone banding should be applied to the meter surface and not the glass or plastic casing. A black and white cross-hatch zone band may also used in the NMP-2 control room. The black and white cross-hatched zone(s) of the scale signifies that the indicator cannot provide an accurate reading at that range of values. This is sometimes used at the top or bottom of scales to show the maximum range but also indicate that the scale does not measure accurately at the extreme end. This may be the case when a 0-100 foot scale is used to represent the level of a 96 foot tank. The area above 96 feet is meaningless and thus cross-hatched. Due to instrument tap constraints, the lowest useable level may be 8 feet; the scale below 8 feet is cross-hatched also.

₩ • 3 •••••

#1 a .

• , й у -1 Б. Б. Б. 1972 1) ۴

s A

۲. ۲. ۱۹۹۰ ۲. ۲. ۱۹۹۰ ۲. ۲. ۲.

-

, 4

.

Figure 9-2. Examples of Meter Zone Banding

9-4

i

•* 7* j

.

1

F

Table 9-1. Zone Banding Color Guidelines

COLOR

MEANING

Yellow Painted or Formaline^R gloss model 2574C^{*}

Red Painted or Formaline^R gloss model 2514C^{*}

Red and White Cross-hatch

matte model 4414E*

Painted or Formaline^R

Alarm setpoint or tech spec operational limit has been exceeded.

Trip or actuation point has been exceeded.

Design limit has been exceeded.

Black and White Cross-hatch Painted or Formaline^R matte model 3404E^{*} Indicator cannot provide an accurate reading at that range of values.

*Or engineering equivalent

• • , . • -

10.0 PROCEDURES

10.1 <u>General Characteristics</u>

Any addition or modification to control room procedures affects how the operators interact with the control room. The capability of the operator to efficiently perform the procedure must be considered when any procedure change is proposed. If the new or modified procedure will be performed using existing control room equipment, this section of the Human Factors Design Manual will provide guidance in the preparation of the procedure. A checklist is provided in Section 10.5 that should be completed to technically and administratively ensure that all human factors concerns have been satisfied. If the change to the procedure includes the addition of new control room equipment, human factors considerations should be applied to the design of the new equipment.

10.2 <u>Displays</u>

Whenever the procedure addition or change requires the operator to monitor any display or annunciator, the human factors considerations of that display should be examined.

10.2.1 Display Location

Ensure that the location of the affected display is appropriate to its use in the procedure. If a display or annunciator must be monitored in conjunction with a control or another display, it should be located close enough to view the display without difficulty.

* · · * *

х Н.А

• **Č**

. -16

٠. -

10.2.2 Meters and Recorders

The characteristics of the affected display instrument should be examined to ensure that it can provide the required information. The following parameters should be examined:

- Type of Display The display specified in the procedure should provide the appropriate type of information. For example, if trend information is required, the specified instrument should be a recorder.
- Units The instrument specified in the procedures should measure the parameter in the same units as those specified in the procedure.
- Range The range of the specified instrument should be adequate to meet the operational requirements of the procedures.
- Divisions The instrument specified in the procedure should measure the required parameter in divisions appropriate to this task.

10.2.3 Indicator Lights

When the procedure addition or change refers to an indicator light, the characteristics of that light should be examined. The following parameters should be considered:

- Legend Lights The procedure should use the same nomenclature as that used on the legend light.
- Color Conventions The color indication described in the procedure should be consistent with the plant color conventions established in this manual.

· · · · · ·

*

- *,* 12 ٠
- - $\boldsymbol{\Sigma}^{\prime}$ ***
- •

- ÷
- - - 15
 - Π

- - *1*2

- A

- 7

- .
- **1**

10.3 Controls

Whenever the procedure change or addition requires the operator to operate a control, the human factors considerations of that control should be examined.

10.3.1 Control Location

Ensure that the location of the affected control is appropriate to its use in the procedure. If a control must be operated in conjunction with another control or a display, the control should be close enough to the associated control(s) or display(s) without causing operational difficulty.

10.3.2 Switch Action

The switch action of the control must be appropriate for the affected procedure step. Some switch-action factors that should be considered when adding or modifying procedures include:

- Throttle/Seal-in Ensure that the control specified in the procedure step has the proper throttle or seal-in function for the task.
- Auto Function If the procedure step calls for a control with an automatic function, ensure that the specified control has the appropriate functions.
- Control Position Indication Ensure that the specified control has all of the control positions specified in the procedure. If the procedure requires that the operator verify a control position target, ensure that the control has the appropriate target.

, å f*,

:

٠ •

`.

.

.

i -

*

1 e# *

* -

10.4 Procedure Nomenclature

Nomenclature used when writing procedures should be identical to that used on the control panels. The following human factors concerns with nomenclature should be considered when procedures are added or modified:

- Label Nomenclature Use the same nomenclature in procedures that is used on component labels.
- Switch Position Nomenclature Ensure that the switch movement instructions are consistent with escutcheon plate nomenclature of the control.
- Action Description Procedures should describe control operations in a manner consistent with the nomenclature. For example, if the switch positions on a pump are START and STOP, the procedure referring to that pump should not state "Turn on the pump." The procedure should state "Start the pump."

. 1 v 3 2

.

3 e ٩

ن بر

• ' 43) 23

1

.

18 ĸ

`

~

10.5 Procedure Modification Checklist

Complete the following or similar checklist whenever an addition or modification to NMP-2 procedures is being made. Section B of this checklist is to be completed whenever human factors guidelines and conventions within this section have not been complied with.

SECTION A

No

- 1. The procedure steps, added or modified, specify the use of equipment not currently available in the control room?
 - No Yes -> Human factors considerations for equipment design should be consulted for the selection and placement of the new equipment. Ensure that the new equipment meets the remainder of the checklist requirements.
- 2. The procedure, added or modified, requires the operator to refer to a display?

Yes -> Human factors considerations in Section 10.2 of this manual regarding display location and characteristics have been examined and are adequate for this procedure.

Yes No -> Complete Section B of this checklist.

3. The procedure, added or modified, requires the operator to use a control?

No Yes -> Human factors considerations in Section 10.3 of this manual regarding location and characteristics of controls have been examined and are adequate for this procedure.

Yes No -> Complete Section B of this checklist.

4. The nomenclature used in the added or modified procedure conforms to the guidelines stated in Section 10.4 of this manual.

Yes No -> Complete Section B of this checklist.

4**9** U

•

, .

, , •

Procedure Modification Checklist (Continued)

SECTION B

Describe the deviation from the guideline set forth in this section of the Human Factors Manual.

Explain why the procedure modification is suited to NMP-2 needs. Describe alternatives that will be used to take care of the human engineering concern involved.

ii . . ` . *

1

11.0 REFERENCES

Chapanis, A., & Kinkade, R.G. Design of Controls. In H.P. Van Cott & R.G. Kinkade (Eds.), <u>Human engineering guide to equipment design</u> (Rev. ed.). Washington, D.C.: U.S. Government Printing Office, 1972.

Grether, W.G., & Baker, C.A. Visual presentation of information. In H.P. Van Cott & R.G. Kinkade (Eds.), <u>Human engineering guide to equipment design</u> (Rev. ed.). Washington, D.C.: U.S. Government Printing Office, 1972.

McCormick, E.J. <u>Human factors in engineering and design</u> (4th ed.). New York: McGraw-Hill, Inc. 1976.

Nuclear Regulatory Commission. <u>Guidelines for control room design reviews</u> (NUREG-0700). Washington, D.C.: U.S. Government Printing Office, September 1981.

Parris, H.L., & McConville, J.T. <u>Anthropometric data base for power plant</u> <u>design</u> (NP-1918-SR). Palo Alto, CA: Electric Power Research Institute, July 1981.

Seminara, J.L., Eckert, S.K., Seidenstein, S., Gonzalez, W.R., Stempton, R.L., & Parsons, S.O. <u>Human factors methods for nuclear control room design</u> (Summary report, NP-1118-SY, Research Project 501-3). Palo Alto, CA: Electric Power Research Institute, June 1979.

U.S. Department of Defense. <u>Military Standard-Human Engineering Design</u> <u>Criteria For Military Systems</u>, <u>Equipment and Facilities</u>. (MIL-STD-1472C) Washington, D.C.: 1981.

U.S. Department of Defense. <u>Military Handbook-Human Factors Engineering Design</u> <u>for Army Material (Metric)</u>. (MIL-HDBK-759A). Washington, D.C.: 1981.

۰ ۰ • •

,

,

APPENDIX A

HUMAN FACTORS CHECKLIST

Complete the following checklist whenever a modification to the NMP-2 control room, Remote Shutdown Panel, R.G. 1.97 instrumentation, or computer generated displays is being planned. Complete page A-5 of this checklist whenever the Human Factors (HF) guidelines and conventions within this Human Factors Manual have not been complied with. Completion of this checklist should be in accordance with the latest revision of the NMP-2 Human Factors Review Program (NEL 810).

Note: Completion of any part of this checklist is not required for modifications outside the above scope.

I 1

· · ·

γ 4. ;

HUMAN FACTORS CHECKLIST

Modification Number:	
Project Name:	
Panel Item Number:	
Completed by:	
Reviewed by:	· · · · · · · · · · · · · · · · · · ·
Approved by:	
HED Number:	

- 1. Will the layout of the control panels (control room or remote shutdown) be modified to some degree, such as a control or display to be added, removed, or modified?

YES--> HF considerations in SECTION 2 of the Human Factors Manual regarding layout of panels and benchboards, grouping and spacing of components and storage have been examined and are adequate in regard to this design modification.

YES NO \rightarrow Complete Page A-5.

- 2. Will the physical layout of the control room or remote shutdown room, such as furniture, control panels or an annunciator box be added, removed or modified?
 - NO YES-> HF considerations in SECTION 3 of the Human Factors Manual regarding anthropometrics (Table 3-1), line-of-sight, and operator comfort have been examined and are adequate in regard to this design modification.

YES NO \rightarrow Complete page A-5.

•

i

₽ ₽

·

A

•

ŕ

9 .* .

Tar Tar

2

,

. .

► p.15 Cin 4

· · ·

X

•

1

• •• .

- 3. Will labeling within the control room or remote shutdown room be modified, or a component modified to require a labeling change?
 - NO YES--> HF considerations in SECTION 4 of the Human Factors Manual regarding size, placement, abbreviations (Appendix B), and general characteristics of labels have been examined and are adequate in regard to this design modification.

YES NO --> Complete page A-5.

- 4. Will some form of control room or remote shutdown panel convention or color code be added or modified?
 - NO YES-> HF considerations in SECTION 5 of the Human Factors Manual regarding consistency of use and proper application of color and color codes has been examined and are adequate in regard to this design modification.

YES NO \longrightarrow Complete page A-5.

- 5. Will control panel demarcation lines or mimics or mimic components be added, removed or modified?
 - NO YES-> HF considerations in SECTION 6 of the Human Factors Manual regarding demarcation lines and mimic characteristics have been examined and are adequate in regard to this design modification.

YES NO \rightarrow Complete page A-5.

6. Will control room annunciators be added, removed, or modified?

NO YES-> HF considerations in SECTION 7 of the Human Factors Manual regarding placement, abbreviations, and color coding have been examined and are adequate in regard to this modification.

YES NO \longrightarrow Complete page A-5.

1 1 , :

ł

9.6 1

x

- 7. Will control room or remote shutdown panel switches, switch position labels, pushbuttons, or control handles be modified?
 - NO YES--> HF considerations in SECTION 8 of the Human Factors Manual regarding escutcheon format, direction of switch movement, switch position, control handle type, and pushbuttons have been examined and are adequate in regard to this modification.

YES NO---> Complete page A-5.

- 8. Will control room or remote shutdown panel meter scales or legends be modified?
 - NO YES -> HF considerations in SECTION 9 of the Human Factors Manual regarding meter scales, units, divisions, numerical progression, orientation, and zone banding have been examined and are adequate in regard to this modification.

YES NO \longrightarrow Complete page A-5.

- 9. Will the control room or remote shutdown room labels/displays/controls being changed have a corresponding label/display/control in the remote shutdown room (or control room)?
 - NO YES --> Ensure that the corresponding devices are consistant between the control room and remote shutdown room.
- 10. Will the control room change have a corresponding piece of equipment in the simulator?

NO YES \rightarrow Order equipment for the simulator.

Modification is in compliance with our human factors commitment.

• . , . •

DISCUSSION OF PROPOSED CHANGES

Describe deviation from guidelines set forth in the Human Factors Manual.

Explain why the modification is more suited to NMP-2 needs. Describe alternatives that will be used to take care of the HF concern involved.

•

• • • •

:

Complete and submit a NMP-2 Human Factors Request to the Human Factors Engineer.

A-5

4 . , , J •

APPENDIX B ENGRAVING SPECIFICATIONS

* · میں چ

۰ ۲

+4°. ₹

**;

·

•

•

1. System Label

2. System Sub-Function Label

Engraving: 1 line of .22" high characters. Characters: .03" stroke width, 9 characters (max) per inch. Type font: condensed helvetica.

Figure B-1. Label Design Specifications

44.

₩; ¶:

· ·

, -

.

* 254
3. Switch, Circular Meter, Controller (Standard) Label

4. Throttle and Gang Control Switch Label

Figure B-1. Label Design Specifications (Cont.)

..

.

. **4** . • •

.

5. Kaman Controller Label (for identiying units of measure)

Material: Lamicoid, white with black core (.06 thk). Engraving: 1, 2 or 3 lines of .156" high. Characters: .02" stroke width, 28 characters (max) per line. Type font: condensed helvetica.

6. Kaman Controller Label

...

.

Material: Lamicoid, white with black core (.06 thk). Engraving: 1or 2 lines of .156" high. Characters: .02" stroke width, 16 characters (max) per line. Type font: condensed helvetica.

Figure B-1. Label Design Specifications (Cont.)

•*****

•

• • •

7. Vertical Meter Label (Parameter)

8. Vertical Meter, Recorder Label (Equipment Piece Number)

Material: Lamicoid, white with black core (.06 thk). Engraving: 1 line of .156" high characters. Characters: .02" stroke width, 12 characters (max) per line. Type font: condensed helvetica.

Figure B-1. Label Design Specifications (Cont.)

.

- **x** ? #
 - ₹e>

- ×

x

- ی ج ا

9. Multipen Recorders

10. Multipen Recorders (same as above except as noted)

For two pen recorder, begin Parameter B engraving at centerline of nameplate.

Figure B-1. Label Design Specifications (Cont.)

⊋ _____

لته

•

Character height:	0.250"	(1/4)
Character width-max:	0.250"	(1/4)
Stroke width:	0.036"	(1/30)
Space between characters:	0.036"	(1/30)
Space between words:	0.250"	(1/4)
Space between lines:	0.125"	(1/8)
Tile Identification Numeral Height:	0.1875"	(3/16)
Lines max:	4	
Characters / line max:	13	
Tile:	2.8125" X 2.625"	
Font:	Condensed Goth Condensed Stan	ic / dard

-

Figure B-2. Annunciator Tile Specifications

λ.

۴

spîn.

....

-

. .

× *******

.

, α(3₄₁)∦. ' .

		SWITCH MANUFACTURER						
	JA	YEL	MSC SE	RIES 12	MSC SE	RIES 800	MSC SE	RIES 10
CHARACTER HEIGHT	.12	.12	.12	.10	.12	.12	.12	.12
CHARACTER WIDTH (MAX)	.074	.074	.074	.074	.074	.074	.074	.074
SPACE BETWEEN WORDS	.074	.074	.074	.074	.074	.074	.074	.074
SPACE BETWEEN LINES	.062	.050	.066	.038	.077	.038	.089	.047
STROKE WIDTH	[.] .020	.020	.020	.020	.020	.020	.020	.020
* LINES MAX	3 ·	4	3	- 4	3	4	3	4
CHARACTERS / LINE (MAX)	9	9	10	10	8	8	12	12
CHARACTER FONT			CO	NDENSED	HELVET	ICA	······	

* INDICATORS / PUSHBUTTONS MAY HAVE FOUR LINES OF TEXT ONLY WHEN THE WINDOW IS HORIZONTALLY SPLIT - 2 LINES OF TEXT ABOVE THE LINE AND 2 LINES OF TEXT BELOW THE LINE.

Figure B-3. Legend Light/Pushbutton Specifications

. .

APPENDIX C

STANDARD ABBREVIATIONS Rev 3 8/90

Sorted by Abbreviation

Appendix C is the NMP-2 Standard Abbreviations List. The list is arranged by alphabetical order of the abbreviations (Appendix D is arranged by alphabetical order of the definition).

If multiple abbreviations are given, the first abbreviation listed is preferred. Abbreviations with FSAR in parenthesis beside the definition originate from the Final Safety Analysis Report and are not necessarily for use in the control room. **4** 7

. ۰.

. •

•

≪4 ∉

. .

. ł

.

,

<u>Abbreviation</u>	Definition
	Α
ABM	AUXILIARY BOILER - STEAM
ABN ABNORM	ABNORMAL
ABS	AUXILIARY BOILER SYSTEM
ABSOL	ABSOLUTE
ABV	ABOVE
A/C	AIR CONDITIONER
AC	ALTERNATING CURRENT
ACB	AUTOMATIC CIRCUIT BREAKER
ACC	ACCUMULATOR
ACCDNT	ACCIDENT
ACCL	ACCELERATION
ACK	ACKNOWLEDGE
ACT	ACTIVATED
ACTU	ACTUATED
ACU	AIR CONDITIONING UNIT
ACTY	ACTIVITY
ADD	ADDITION ADDITIVE
ADS	AUTOMATIC DEPRESSURIZATION SYSTEM
ADSRB	ADSORBTION
ADSV	AUTOMATIC DEPRESSURIZATION SYSTEM VALVE
AFTERCLR AFTCLR	AFTERCOOLER

. .

٠ £ 4 <u>.</u>

5

· · ·

.

Abbreviation	Definition
AIT	ANALYZER INDICATING TRANSMITTER
ALARA ·	AS LOW AS REASONABLY ACHIEVABLE
ALM	ALARM
ALMCLR	ALARM CLEAR
ALT	ALTERNATOR
ALTN	ALTERNATE
ALTNTR	ALTERNATOR
AMB	AMBIENT
AMP	AMPERE
ANAL ANL	ANALYZER
ANN	ANNUNCIATOR
ĂOD	AIR OPERATED DAMPER
AOV	AIR OPERATED VALVE
AP	ADMINISTRATIVE PROCEDURE ANNULUS PRESSURIZATION (FSAR)
APRM	AVERAGE POWER RANGE MONITOR
ARC	AIR REMOVAL SYSTEM
ARI	ALTERNATE ROD INSERTION
ARM	AREA RADIATION MONITOR
ARMS	AREA RADIATION MONITORING SYSTEM
ASSOC ASC	ASSOCIATED
ASSY	ASSEMBLY
A/START	AUTO START

-معر .

<u>Abbreviation</u>	Definition
AT	AUTO TRIP
ATMOS ATM	ATMOSPHERE
ATWS	ANTICIPATED TRANSIENT WITHOUT SCRAM
AUX	AUXILIARY
AVAIL	AVAILABLE
AVG	AVERAGE
AZ	AZIMUTH

.,

ş

.

.

æ ' , 1 • · · . . .

,

<u>Abbreviation</u>	Definition
	B
BA	BREATHING AIR
BATT BAT	BATTERY
BCD	BINARY CODED DECIMAL
BCP	BOTTOM CENTER PRESSURE (FSAR)
BEL	BELOW
BHTG	BUILDING HEATING
BKWSH BW	BACKWASH
BLDG BLD	BUILDING
BLK	BLOCK
BLOCK	BLOCKING
BLR	BOILER
BLWDN	BLOWDOWN
BLWR	BLOWER
BOC	BEGINNING OF CYCLE
BOP	BALANCE OF PLANT
BOT	BOTTOM
BRG	BEARING
BRKR BKR	BREAKER
BRTHNG	BREATHING
BSMT	BASEMENT

C-5

... **6**...

.

4 ct ct b

*

.

۰.

ł

۰.

,

<u>Abbreviation</u>	<u>Definition</u>
BSNG	BUSHING
BSTR BST	BOOSTER
BSW	BIOLOGICAL SHIELD WALL
BTP	BRANCH TECHNICAL POSITION
BU	BACKUP
BV	BYPASS VALVE
BWR	BOILING WATER REACTOR
BWS	+/- 24 DC DISTRIBUTION
ВҮР	BYPASS
BYS	125 VOLTS DC DISTRIBUTION

C-6

,

.

٠. 14

•

.

. ,

Abbreviation <u>Definition</u>	
	С
CAB	CABINET
CAD	CONTAINMENT ATMOSPHERE DILUTION (DEVICE)
CALIB CAL	CALIBRATION
CAM	CONTINUOUS AIR MONITOR
CANCL	CANCEL
CAV	CAVITY
CB	CONTROL BUILDING
CCP	CLOSED LOOP COOLING-WATER-PRIMARY
CCS	CLOSED LOOP COOLING-WATER-SECONDARY
CCW	CLOSED COOLING WATER
CD	CARD
CDR	COOL DOWN RATE
CEC	CONTROL ROOM EQUIPMENT CABINETS
CGCS	COMBUSTIBLE GAS CONTROL SYSTEM
CHAN CH	CHANNEL
CHAR	CHARCOAL
CHEM	CHEMICAL
CHF	CRITICAL HEAT FLUX
CHGR	CHARGER
CHILL CHIL	CHILLED
СНК	CHECK
e .	- C-7

4

4

.

C-7

,

- **6 a** -

.

9

۹ . . . v

<u>Abbreviation</u>	Definition
CHL	CHILLER
CHMBR CHAM CHM	CHAMBER
CI	CURIE
CIRC	CIRCULATING/CIRCULATION
CIV	COMBINED INTERMEDIATE VALVE
CIVM	COLLISION-IMPORTED-VELOCITY METHOD (FSAR)
СКТ	CIRCUIT
CLCW	CLOSED LOOP COOLING WATER
CLG	COOLING
CLN	CLEAN
CLN-UP CU	CLEANUP .
CLPR	CALIPER
CLR	COOLER
CLRS	COOLERS
CLS	CLOSE
CLSD CL	CLOSED
CLSR	CLOSURE
CMFA	COMMON MODE FAILURE ANALYSIS
CMS	CONTAINMENT MONITORING SYSTEM
CNDS	CONDENSATE STORAGE
CNM	MAIN CONDENSATE SYSTEM
CNSR	CONDENSER

.

C-8

#

.

* **>** V

٤

b., **98**

i i

.

ŕ

<u>Abbreviation</u>	<u>Definition</u>
CNST CND	CONDENSATE
со	CONDENSATION OSCILLATION
COEFF	COEFFICIENT
COLL	COLLECTOR/COLLECTION
COM	COMMON
COMM	COMMUNICATION
COMP CMPTR	COMPUTER
COMPL	COMPLETE
CONC	CONCENTRATION/CONCENTRATE
COND CNDCTY	CONDUCTIVITY
CONDITION	CONDITIONING CONDITIONER
CONN	CONNECT
CONT	CONTROL/CONTROLLER
CONT RM CR CONTRM	CONTROL ROOM
CONTMT CONMT CNMT	CONTAINMENT
CONST CONS	CONSTANT
CONV	CONVERSION
CPLG	COUPLING
CPR	CRITICAL POWER RATIO

ъ

12

•

•

J

.

·

<u>Abbreviation</u>	Definition
CPRSR CPSR C	COMPRESSOR
CPS	CONTAINMENT PURGE SYSTEM COUNTS PER SECOND
CRD	CONTROL ROD DRIVE (RDS)
CRDA	CONTROL ROD DROP ACCIDENT
CRDM	CONTROL ROD DRIVE MECHANISM
CRPI	CONTROL ROD POSITION INDICATION (FSAR) (Use RPIS - Rod Position Information System)
CRS	COLD REHEAT STEAM
CRVICS	CONTAINMENT AND REACTOR VESSEL ISOLATION CONTROL SYSTEM
CS	CONTROL SWITCH
CSR	CLEAN STEAM REBOILER
CST	CONDENSATE STORAGE TANK
CTR	CENTER
CUF	CUMULATIVE USAGE FACTOR .
CUR	CURRENT
CV	CONTROL VALVE
CWS	CIRCULATING WATER SYSTEM
CW	CIRCULATING WATER
СХС	CYCLE

š

.

r I I

s S

• ~

1

<u>Abbreviation</u>	Definition	
	D	
DAMPR DMPR	DAMPER	
DAR	DESIGN ASSESSMENT REPORT FOR HYDRODYNAMIC LOADS	
DB	DESIGN BASIS	
DBA	DESIGN BASIS ACCIDENT	
DBE	DESIGN BASIS EARTHQUAKE	
DBFL	DESIGN BASIS FLOOD LEVEL	
DC	DIRECT CURRENT	
DCDT	DIRECT CURRENT DIFFERENTIAL TRANSDUCER	
DCL	DRAIN COOLER LINE	
DCNT	DECANT	
DEAR	DEAERATOR	
DECON	DECONTAMINATION .	
DEG	DEGREE	
DEGF	DEGREES FAHRENHEIT	
DEM	DEMAND	
DEMIN DMN /	DEMINERALIZER/DEMINERALIZED	
DEPRESS	DEPRESSURIZE	
DER	DRYWELL/REACTOR BUILDING EQUIPMENT DRAINS	
DETECT DET	DETECTION/DETECTOR/DETECTED	
DEV	DEVIATION	
DFR	DRYWELL/REACTOR BUILDING FLOOR DRAIN SYSTEM	
DG	DIESEL GENERATOR C-11	

. .

• • •

.

.

۱ .

.

Abbreviation	Definition
DGB	DIESEL GENERATOR BUILDING
DIAPH	DIAPHRAGM
DICT '	DICTIONARY
DIFF	DIFFERENTIAL
DIG	DIGIT
DIR	DIRECTIONAL
DISAB DSABL	DISABLED
DISCH DIS	DISCHARGE
DISCON	DISCONNECT
DISPL	DISPLAY
DISTR DSTR	DISTRIBUTION
DIV D	DIVISION
DIVERT	DIVERTER
D∕P ∆P	DIFFERENTIAL PRESSURE
DN	DOWN
DNSCALE DNSCL DNSC	DOWNSCALE
DOM	, DOME
DRMS	DIGITAL RADIATION MONTORING SYSTEM
DRN DR	DRAIN

.

• , . * . *
Abbreviation	Definition
DRNS DRS	DRAINS
DRV	DRIVE
DW DRWL	DRYWELL
DSL	DIESEL
DSTLT DST	DISTILATE
DT	DRAIN TANK
VU	DRAIN VALVE
DWSIPL	DRYWELL SPRAY INITIATION PRESSURE LIMIT
DWT	DRYWELL TEMPERATURE CONTROL

,*

*

ζ. Υ

•

<u>.</u>

·

. . . .

, ,

Υ

<u>Abbreviation</u>	Definition
	E
E	HEAT EXCHANGER/COOLER
EAB	EXCLUSION AREA BOUNDARY
ЕВОР	EMERGENCY BEARING OIL PUMP
ECA	ENGINEERING CHANGE AUTHORIZATION
ECCS	EMERGENCY CORE COOLING SYSTEM
ECN	ENGINEERING CHANGE NOTICE
EDG	EMERGENCY DIESEL GENERATOR
EFF	EFFICIENCY
EFFL	EFFLUENT
EFV EFCV	EXCESS FLOW CHECK VALVE
EGS	EMERGENCY DIESEL GENERATOR SYSTEM
EH	EXTREME HIGH
EHC	ELECTRO HYDRAULIC CONTROL
EIC	ENERGY INFORMATION CENTER
EJCTR EJCT	EJECTOR
EJS	STANDBY SERVICE SUBSTATION
ELEC ELC	ELECTRIC
ELEV EL	ELEVATION
emer Em	EMERGENCY
ENCL ENC	ENCLOSURE

v

C-14

, **F** -0

.

Ň

.

•

•

<u>Abbreviation</u>	Definition
ENG	ENGINE
ENS	EMERGENCY AC DISTRIBUTION 4160 V
ENTH	ENTHALPY
EOC	END OF CYCLE
EOF	EMERGENCY OPERATIONS FACILITY EQUIVALENT OCCURRENCE FACTOR (FSAR)
EP	EQUIPMENT PIECE
EPA	ELECTRIC PROTECTIVE ASSEMBLY
EPZ	EMERGENCY PLANNING ZONE
EQD	ENVIRONMENTAL QUALIFICATION DOCUMENT
EQL	EQUALIZING
EQUIP EQPT EQ	EQUIPMENT
EQ	ENVIRONMENTAL QUALIFICATION
ERF	EMERGENCY RESPONSE FACILITY
ESF	ENGINEERED SAFETY FEATURE
ESK	ELECTRICAL DRAWING NUMBER
ETS	EMERGENCY TRIP SYSTEM
EVAC	EVACUATION .
EVAP EV	EVAPORATOR
EXC	EXCITOR
EX/EV	EXTRUDER/EVAPORATOR
EXCH	EXCHANGER
EXEC	EXECUTE

:

ŗ 21

Š

Abbreviation	Definition
EXH	EXHAUST
EXP	EXPANSION
EXPTD	EXPECTED
EXTRCTN EXTR	EXTRACTION/EXTRACTOR
EXTRNL	EXTERNAL

.

.

•

ø

·,

<u>414</u> ž

. : . .

*

Abbreviation	Definition
	F
° _F	DEGREES FARENHEIT
F ·	FUEL
F/D	FILTER DEMINERALIZER
FA	FULL ARC (MODE OF TCV OPERATION) (FSAR)
FACTR	FACTOR
FAIL	FAILURE/FAILED
FAS	FLUID ACTUATOR SYSTEM
FATT	FRACTURE APPEARANCE TRANSITION TEMPERATURE
FCD	FUNCTIONAL CONTROL DIAGRAM
FCV	FLOW CONTROL VALVE
FD	FEED
FDC	FEED COLLECTOR
FD WTR FW FDW	FEEDWATER
FDDR	FIELD DEVIATION DISPOSITION REQUEST
FDR	FEEDER
FDW	FEEDWATER SYSTEM
FL CL	FULL CLOSE
FLD	FIELD
FLDR	FLOOR DRAIN
FLECHT	FULL-LENGTH EMERGENCY COOLING HEAT TRANSFER
FLG	FLANGE
FL IN	FULL IN C-17

.

... ς.

** L

•

<u>Abbreviation</u>	Definition
FLO	FLOW
FLR	FLOOR
FLTR FLT	FILTER
FLTN	FILTRATION
FLU	FLUID
FLX	FLUX
FMEA -	FAILURE MODES AND EFFECTS ANALYSIS
FMH	FIXTURE MOUNTING HEIGHT
FN	FAN
FO	(GE VALVE DESIGNATION NUMBER)
FPCC	FUEL POOL COOLING AND CLEANUP
.FPS	FIRE PROTECTION SYSTEM
FPW	FIRE PROTECTION WATER
FR	FROM
FREQ	FREQUENCY
FSAR	FINAL SAFETY ANALYSIS REPORT
FSH	FRESH
FT	FEET, FOOT
FTC	FAIL TO CLOSE
FTS .	FAIL TO START
FV	FLOW VALVE
FWD	FORWARD
FWS	FEEDWATER SYSTEM
FZ	FUEL ZONE

,,

C-18

σf

• . L. •

H.

<u>Abbreviation</u>	Definition
	· G ·
GAS	GASEOUS
GDC	GENERAL DESIGN CRITERION
GDE	GUIDE
GE	GENERAL ELECTRIC COMPANY
GEN GN	GENERATOR
GEN-L	GENERATOR LEADS
GENL	GENERAL
GETAB	GE THERMAL ANALYSIS BASIS
GLD	GLAND
GOV	GOVERNOR
GPM	GALLONS PER MINUTE
GR	GROSS
GRD	GROUND
GRP GP	GROUP
GTS	GAS TREATMENT SYSTEM

p

7

.

м Ъ

a

-

.

.

<u>Abbreviation</u>	Definition
	Н
H ₂	HYDROGEN
HAT	HATCH
HAZ	HEAT AFFECTED ZONE
HCLL	HEAT CAPACITY LEVEL LIMIT
HCS	HYDROGEN RECOMBINER SYSTEM
HCTL	HEAT CAPACITY TEMPERATURE LIMIT
НСИ	HYDRAULIC CONTROL UNIT
HCV	HAND CONTROLLED VALVE
HDFM	HEAVY DENSITY FILL MATERIAL (FSAR)
HDR	HEADER.
HELB	HIGH ENERGY LINE BREAK (FSAR)
HEM .	HOMOGENEOUS EQUILIBRIUM MODEL (FSAR)
HEPA	HIGH-EFFICIENCY PARTICULATE AIR/ABSOLUTE (FILTER)
HEPCO	HYDRO-ELECTRIC POWER COMMISSION OF ONTARIO
HG	MERCURY
HI H	HIGH
HI-HI H-H HI/HI H/H	HIGH-HIGH
HI-LO H-L HI/LO H/L	HIGH-LOW
HIST	HISTORICAL

C-20

r, 1 tyr.

t -đ

. .

, ,

1

.

,

*8*5

Abbreviation	Definition
ні т	HIGH TEMPERATURE
HLDG	HOLDING
HMDT	HUMIDITY
HP	HIGH PRESSURE HORSEPOWER
HPCS	HIGH PRESSURE CORE SPRAY
HPPR	HOPPER .
HPU	HYDRAULIC POWER UNIT
HR	HOUR
HRS	HOT REHEAT STEAM
HT '	HEAT
HTG	HEATING
HTR	HEATER
HTRS	HEATERS
HV	HIGH VOLTAGE
HVAC	HEATING, VENTILATING, AND AIR CONDITIONING
HVC	HEATING AND VENTILATION CONTROL BUILDING
HVR	HEATING AND VENTILATION-REACTOR BUILDING
HVRS	REACTOR BUILDING VENTILATION SYSTEM
HVY	SCREENWELL AND FIRE SYSTEM
HWL	HOTWELL
нх	HEAT EXCHANGER
HYDR	HYDRAULIC
HYDR FL	HYDRAULIC FLUID
HYV ,	HYDRAULICALLY CONTROLLED VALVE C-21

-. *

٩,

<u>Abbreviation</u>	Definition
	I
I/0	INPUT/OUTPUT
IAC	INTERIM ACCEPTANCE CRITERIA (NRC)
IAS	INSTRUMENT AIR SYSTEM
IAW	IN ACCORDANCE WITH
IBA	INTERMEDIATE BREAK ACCIDENT
ICC	INADEQUATE CORE COOLING
ICS	ISOLATION COOLING SYSTEM
IDC	INCIDENT DETECTION CIRCUITRY (FSAR)
IDS	INSTRUMENT DATA SHEET
IED	INSTRUMENT AND ELECTRICAL DRAWING
IGSCC	INTERGRANULAR STRESS CORROSION CRACKING
ILRT	INTEGRATED LEAKAGE RATE TEST
IMBAL	IMBALANCE
IN	INCH, INCHES
INACTV	INACTIVE
IN/OUT	INLET/OUTLET
INBD IB	INBOARD
INCMPL	INCOMPLETE
INCNSR	INTERCONDENSER
IND	INDICATOR
INFL	INFLUENT
INHIB	INHIBIT

÷

C-22

. н Н • . ۹. . .

i

.

•

Abbreviation	Definition
INIT	INITIATE/INITIATION/INITIATED
INJ INJCTN	INJECT/INJECTION
INL IN	INLET
INLKGE	INLEAKAGE
INNR	INNER
INOP	INOPERABLE
INP	INPUT
INSTR INST	INSTRUMENT
INT	INTAKE
INTLK INLK	INTERLOCK
INTERM INTMD INTD	INTERMEDIATE
INV CIV	INTERCEPT VALVE
IPCEA	INSULATED POWER CABLES ENGINEERS ASSOCIATION (FSAR)
IRM	INTERMEDIATE RANGE MONITOR
ISOL ISO	ISOLATION
ISV	INTERCEPT STOP VALVE (CIV)
IV	ISOLATION VALVE

` • ۲ .

Definition
J
J.A. FITZPATRICK STATION
JACKET

K

KV KILOVOLT

.

*

р

•

<u>Abbreviation</u>	Definition
	L
LB	POUNDS
LBM	POUND MASS
LCO	LIMITING CONDITION OF OPERATION
LCS	LEAKAGE CONTROL SYSTEM
LCV .	LEVEL CONTROL VALVE
LD	LOAD
LDS	LEAK-DETECTION SYSTEM
lfmg	LOW FREQUENCY MOTOR GENERATOR
LGC	LOGIC
LHGR	LINEAR HEAT GENERATION RATE
LIM	LIMIT
LIQ	LIQUID
rk .	LEAK/LEAKAGE/LEAKING
LKE	LAKE
LKGE	LEAKAGE
LKO L.O. LKOUT	LOCKOUT .
LMS	LEAKAGE MONITORING SYSTEM
LN	LINE
LO L	LOW
LO-LO L-L LO/LO L/L	LOW-LOW .

4.1. I

~

• •

-

•

.

\$

<

1

Abbreviation	Definition
LOCA	LOSS OF COOLANT ACCIDENT
Lofw	LOSS OF FEEDWATER
LOOP LOP	LOSS OF OFFSITE POWER
LOR	LOWER
LP	LOW PRESSURE
LPAP	LOW POWER ALARM POINT
LPCI	LOW PRESSURE COOLANT INJECTION
LPCS	LOW PRESSURE CORE SPRAY
LPDS	LOOSE PARTS DETECTION SYSTEM
lprm	LOCAL POWER RANGE MONITOR
LPSP	LOW POWER SET POINT
LPZ	LOW POPULATION ZONE
LSA	LOW SPECIFIC ACTIVITY (BOXES)
LSD	LAKE SURVEY DATUM (OF 1935)
LSSS	LIMITING SAFETY SYSTEM SETTING
LTC	LOAD TAP CHANGING
LUBE	LUBRICATING .
LUBO	LUBE OIL
LV	LEVEL VALVE (LCV)
LVL	LEVEL
LVX	LEVEL VALVE X
LWS	LIQUID RADWASTE SYSTEM

*

-,

۰. ۲

۲. ۲

.

<u>Abbreviation</u>	Definition
	Μ
M/A	MANUAL/AUTO
MACH	MACHINE
MAINT	MAINTENANCE
MAN	MANUAL/MANUALLY
MAPLHGR	MAXIMUM AVERAGE PLANAR LINEAR HEAT GENERATION RATE
MAST	MASTER
MAT	MATERIAL
MAX	MAXIMUM
MBA	MISPLACED BUNDLE ACCIDENT (FSAR)
MCC	MOTOR CONTROL CENTER
м/сс	MAINTENANCE AND CALIBRATION COMMUNICATION (SYSTEM) (FSAR)
MCPR	MINIMUM CRITICAL POWER RATIO
MDS	MOTOR DISCONNECT SWITCH
месн	MECHANICAL
METR MG	METER MOTOR GENERATOR
MID -	MIDDLE
MIN	MINIMUM MINUTE
MLD	MEAN LOW WATER DATUM
MLHGR	MAXIMUM LINEAR HEAT GENERATION RATE
MN	MAIN
MN SFT	MAIN SHAFT

ĩ

J

5 d 4

•

`

420

<u>Abbreviation</u>	Definition
MODS	MOTOR OPERATED DISCONNECT
MODMPR MOD	MOTOR OPERATED DAMPER
MOG	MOTOR OPERATED GATE
MOI	METHOD OF IMAGES (FSAR)
MON	MONITOR
MOT	MOTOR
MOV	MOTOR OPERATED VALVE
MPC	MAXIMUM PERMISSIBLE CONCENTRATION
mr	MILLIREM
MR/HR	MILLIREM PER HOUR
MS	MAIN STEAM
MSI	MAIN STEAM ISOLATION
MSIV	MAIN STEAM ISOLATION VALVE
MSIV-LCS	MAIN STEAM ISOLATION VALVE LEAKAGE CONTROL SYSTEM
MSL	MAIN STEAM LINE
MSLB	MAIN STEAM LINE BREAK
MSR	MOISTURE SEPARATOR REHEATER
MSS	MAIN STEAM SYSTEM
MSTR	MOISTURE
MSV	MAIN STOP VALVE
MTN	MOTION
MTV	MECHANICAL TRIP VALVE
MU MKUP	MAKEUP

z

.

C-28

. • .

.

·

. x

Abbreviation	Definition
MWE	MEGAWATT ELECTRIC
MWS	MAKEUP WATER STORAGE AND TRANSFER
MWTH	MEGAWATT THERMAL

4

ø

· - / . • . .

•

_

Abbreviation	Definition
	Ν
N ₂	NITROGEN
N/A	NOT APPLICABLE
NB	NUCLEAR BOILER
NBR	NUCLEAR BOILER RATED (THERMAL POWER)
NBS	NATIONAL BUREAU OF STANDARDS
NDL	NUCLEAR DATA LINK
NDT	NIL DUCTILITY TRANSITION
NDTT	NIL DUCTILITY TRANSITION TEMPERATURE
NED	NUCLEAR ENERGY DIVISION (GE)
NEG	NEGATIVE ,
NEUT	NEUTRAL
NFL	NO FLOW
N-FILL .	NOT FILLED
NIOSH	NATIONAL INSTITUTE FOR OCCUPATIONAL SAFETY AND HEALTH
NMS	NEUTRON MONITORING SYSTEM
NNS	NORMAL AC DISTRIBUTION 4160 V
NO	NUMBER
NOAVLB	NOT AVAILABLE
NOFLCL	NOT FULL CLOSE
NOFLOP	NOT FULL OPEN
NORM NOR	NORMAL
NPRDS	NUCLEAR PLANT RELIABILITY DATA SYSTEM
NPS .	NORMAL AC DISTRIBUTION 13.8 KV C-30

· • • ? -

.
<u>Abbreviation</u>	Definition
NPSH	NET POSITIVE SUCTION HEAD
NR	NARROW RANGE
NRHX	NON-REGENERATIVE HEAT EXCHANGER
NRV	NONRETURN VALVE
NSOA	NUCLEAR SAFETY OPERATIONAL ANALYSIS
NSR	NON-SAFETY RELATED
NSS	NORMAL STATION SERVICE
NSSS	NUCLEAR STEAM SUPPLY SYSTEM
NTRN	NEUTRON

at at * F

, .

· .

Abbreviation	Definition
	0
0 ₂	OXYGEN
OBE	OPERATING BASIS EARTHQUAKE
OFS	ORIFICED FUEL SUPPORT
005	OUT OF SERVICE
OOF	OUT OF FILE
OPER	OPERABLE/OPERATOR
ORE	OCCUPATIONAL RADIATION EXPOSURES
OT	OPERATIONAL TRANSIENT
OUTBD OB	OUTBOARD
OUTL OUT	OUTLET
OUTR	OUTER
OV OVRVLT	OVERVOLTAGE
OVALL	OVERALL
OVCRNT OC	OVERCURRENT
OVLD OL	OVERLOAD
OVRD OR	OVERRIDE

.

.

- - , •
- - ¥

- يتد

Abbreviation	Definition
	Р
P&ID	PIPING AND INSTRUMENTATION DIAGRAM
PA	PUBLIC ADDRESS (SYSTEM)
PAM	POST-ACCIDENT MONITORING
PART	PARTIAL
PARTIC	PARTICULATE
PASNY	NEW YORK POWER AUTHORITY
PC	PRIMARY CONTAINMENT
PCI	PELLET-CLADDING INTERACTION
PCIS PCRVICS	PRIMARY CONTAINMENT AND REACTOR VESSEL ISOL CONTROL SYSTEM (FSAR)
PCP	PRIMARY CONTAINMENT PRESSURE CONTROL
PCPL	PRIMARY CONTAINMENT PRESSURE LIMIT
PCRAT	PEAK POWER/PRECONDITIONED POWER CORE MARGIN
PCS	PROCESS COMPUTER SYSTEM
PCT	PEAK CLADDING TEMPERATURE PERCENT
PCV ,	PRESSURE CONTROL VALVE
PERM	PERMANENT
PERMIS	PERMISSIVE
PF	POWER FACTOR
PGCC	POWER GENERATING CONTROL CENTER
PGM	PROGRAM
РН	PHASE
рH	рН

.

. . .

÷

ę

•

-

×

- *****

.

·

at

a.

Abbreviation	Definition
PIN	PINION
PLC	PROGRAMMABLE LOGIC CONTROLLER
PLU	POWER LOAD UNBALANCE
PMF	PROBABLE MAXIMUM FLOOD
PMP PP P	PUMP
PMPS	PUMPS
PMS	PROBABLE MAXIMUM SURGE (FSAR)
PMWS	PROBABLE MAXIMUM WINDSTORM
PNTRN	PENETRATION
POLISH	POLISHER/POLISHING
POSN POS	POSITION
POT	POTENTIAL
POT XFMER	POTENTIAL TRANSFORMER
PP/PA	PAGE PARTY/PUBLIC ADDRESS SYSTEM (FSAR)
PQL	PRODUCT QUALITY CHECKLIST
PRE-CLR	PRECOOLER
PRE-TRTMT	PRE-TREATMENT
PREHTR	PREHEATER
PRESS PRES PR	PRESSURE
PRG	PROGRESS
PRGE	PURGE

•

•

₩+

, .

÷

: •

<u>Abbreviation</u>	Definition
PRIM PRI	PRIMARY
PRM	POWER RANGE MONITOR
PROT PRT	PROTECTION
PS	POWER SUPPLY
PSAR	PRELIMINARY SAFETY ANALYSIS REPORT
PSD	POWER SPECTRUM DENSITY
PSI	POUNDS PER SQUARE INCH
PSID	POUNDS PER SQUARE INCH DIFFERENTIAL
PSIG	POUNDS PER SQUARE INCH GAGE
PSP .	PRESSURE SUPPRESSION PRESSURE
PSV	PRESSURE SAFETY VALVE
PT	POINT PRESSURE TRANSMITTER
PTL	PULL-TO-LOCK
PTPD	PROJECT TEST PROGRAM OBJECTIVES
PV	PRESSURE VALVE
PVS	PLANT VENT STACK
PWR	POWER

1

X

.

ne. Jas

8 I

• .

<u>Abbreviation</u>	Definition
	Q
QA	QUALITY ASSURANCE
QC	QUALITY CONTROL
	R
R	RADS
R/HR	REM PER HOUR
RAB	RESTRICTED AREA BOUNDARY
RADN	RADIATION
RADW RW	RADWASTE
RB	REACTOR BUILDING
RBCLC	REACTOR BUILDING CLOSED LOOP COOLING (CCP)
RBCLCW	REACTOR BUILDING CLOSED LOOP COOLING WATER
RBLRS	REBOILERS
RBM	ROD BLOCK MONITOR
RBPC	REACTOR BUILDING POLAR CRANE
RCDR REC	RECORDER
RCIC	REACTOR CORE ISOLATION COOLING
RCPB	REACTOR COOLANT PRESSURE BOUNDARY
RCS	REACTOR COOLANT SYSTEM
RCSCM	RHR CONTAINMENT SPRAY COOLING MODE (FSAR)
RCVG	RECEIVING
RCVR	RECEIVER

.

C-36

. •

» • ۲ ,

• • • .

,

<u>Abbreviation</u>	Definition
RCVY RCVRY	RECOVERY
RDCS	CONTROL ROD DRIVE SYSTEM
RDL RADL	RADIAL
REAC	REACTION
REBLR RBLR	REBOILER
RECIRC RECIR	RECIRCULATING/RECIRCULATION
RECOMB RBNR	RECOMBINER .
RECT	RECTIFIER
RECYC	RECYCLE
RED	REDUCER
REFR REF	REFERENCE
REG	REGULATOR
REGEN RGEN	REGENERATIVE
REGLTD RGLTD	REGULATED
REHT	REHEAT
REHTG	REHEATING
REHTR RHTR	REHEATER
REM	REMOTE
REQ'D	REQUIRED

÷

. .. 4

`` .

,

--

.

2

<u>Abbreviation</u>	Definition
RES	RESERVE
RESID	RESIDUAL
RESTR	RESTORE
RETR	RETRANSMIT
RETRCT	RETRACT
RFP	REACTOR FEED PUMP
RFUL	REFUEL
RH	RELATIVE HUMIDITY
R/HR	REM PER HOUR
RHR ·	RESIDUAL HEAT REMOVAL SYSTEM
RHRB	RHR LOOP B
RHX	REGENERATIVE HEAT EXCHANGER
RL	RPV WATER LEVEL CONTROL
RLF	RELIEF
RLY	RELAY
RM	ROOM
RMCS	REACTOR MANUAL CONTROL SYSTEM
RMS	ROOT MEAN SQUARE
RMVL REM	REMOVAL
RNG	RANGE
RO	RESTRICTING ORIFICE
RP	RPV PRESSURE CONTROL
RPC	ROD PATTERN CONTROLLER

C-38

,

1 1

· · ·

.

. .

<u>Abbreviation</u>	Definition
RPIS	ROD POSITION INFORMATION SYSTEM
RPM	REVOLUTIONS PER MINUTE
RPS	REACTOR PROTECTION SYSTEM
RPT	RECIRC PUMP TRIP
RPV	REACTOR PRESSURE VESSEL
RQ	RPV REACTIVITY CONTROL
RR	RADIOACTIVITY RELEASE CONTROL
RRCS	REDUNDANT REACTIVITY CONTROL SYSTEM
RRP	REACTOR RECIRC PUMP
RRS	REACTOR RECIRCULATION SYSTEM
RSCM	RHR REACTOR SHUTDOWN COOLING MODE (FSAR)
RSCS	ROD SEQUENCE CONTROL SYSTEM
RSD	REMOTE SHUTDOWN
RSN	RESIN
RSO	REACTOR SYSTEM OUTLINE (FSAR)
RSPCM	RHR SUPPRESSION POOL COOLING MODE (FSAR)
RSS	REMOTE SHUTDOWN SYSTEM
RSVR RSV	RESERVOIR
RT	RATE
RTN RET	RETURN
RTRV	RETRIEVAL
RUN	RUNNING

C-39

2.

• •

.

,

Abbreviation	Definition
RUNBK RUNB	RUNBACK
RWCU WCS	REACTOR WATER CLEANUP SYSTEM
RWB	RADWASTE BUILDING
RWM	ROD WORTH MINIMIZER
RWP	RADIATION WORK PERMIT
RX	REACTOR

* • • * г ф . ,

•

.

ų

<u>Abbreviation</u>	Definition
	S
SACF	SINGLE ACTIVE COMPONENT FAILURE
SAF	SAFE/SAFETY
SAR	SAFETY ANALYSIS REPORT
SAS	SERVICE AIR SYSTEM
SAT	SATURATION
SBA	SMALL BREAK ACCIDENT
SBGTS SBGT GTS	STANDBY GAS TREATMENT SYSTEM
SC	SUPPRESSION CHAMBER
SCA	SINGLE-CHANNEL ANALYZER
SCAV	SCAVENGING
SCBA	SELF-CONTAINED BREATHING APPARATUS
SCDRY	SECONDARY
SCL	REACTOR BUILDING LEVEL CONTROL
SCM	STATION CONTROL 120 V PANEL
SCR	REACTOR BUILDING RADIATION CONTROL
SCRN	SCREEN
SCRNWELL	SCREENWELL
SCT	REACTOR BUILDING TEMPERATURE CONTROL
SDC	SHUTDOWN COOLING
SDIV	SCRAM DISCHARGE INSTRUMENT VOLUME
SDV	SCRAM DISCHARGE VOLUME
SEC	SECOND, SECONDS C-41

•

•

-4

- ۳.

- - .
- -•
- .

,

- 1

- ۰.

Abbreviation	Definition
SEC REL MAT	SECURITY RELATED MATERIAL
SEF	SINGLE EQUIPMENT FAILURE
SEP	SEPARATOR
SEQ	SEQUENCE
SFC	SPENT FUEL POOL COOLING AND CLEANUP SYSTEM
SFP	SPENT FUEL POOL
SFPHX	SPENT FUEL POOL HEAT EXCHANGER
SGNLS SIG	SIGNALS
SHFT SFT	SHAFT .
SHL	SHELL
SHR	SHEAR
SHT	SHUT
SHTDN SDN	SHUTDOWN
SIL	SILENCER
SJAE	STEAM JET AIR EJECTOR
SL	SEAL
SLC SBLC	STANDBY LIQUID CONTROL
SLCS	STANDBY LIQUID CONTROL SYSTEM
SLDG	SLUDGE
SMK	SMOKE
SMP	SUMP

.

ŝ,

d

s ••

*

\$* е 127 ₽ al 4

.

x

.

, ` .

<u>Abbreviation</u>	Definition
SMPL SM	SAMPLE
SMPLG	SAMPLING
SMRY	SUMMARY
SMSA	STANDARD METROPOLITAN STATISTICAL AREA
SMT	SAMPLE TANK
SOE	SINGLE OPERATOR ERROR
SOF	SINGLE OPERATOR FAILURE
SOL	SOLID
SORC .	SITE OPERATIONS REVIEW COMMITTEE
SORV	STUCK OPEN RELIEF VALVE
SOV	SOLENOID OPERATED VALVE
sovx	SOV X
SP	SUPPRESSION POOL
SPC	SUPPRESSION POOL COOLING SOUND-POWERED COMMUNICATION (SYSTEM) (FSAR)
SPCL	SPECIAL
SPDS	SAFETY PARAMETER DISPLAY SYSTEM
SPDES	STATE POLLUTANT DISCHARGE ELIMINATION SYSTEM
SPG	SUBSTITUTE POSITION GENERATOR
SPGE	SPARGE
SPL	SUPPRESSION POOL LEVEL CONTROL
SPLL	SUPPRESSION POOL LOAD LIMIT
SPREAD SPRDR	SPREADER

C-43

• ŧ ų.

.

<u>Abbreviation</u>	Definition
SPT	SUPPRESSION POOL TEMPERATURE CONTROL
SPT RSN	SPENT RESIN
SRAB	SAFETY REVIEW AND AUDIT BOARD
SRDI	SAFETY-RELATED DISPLAY INSTRUMENTATION
SRGE SG SRG	SURGE
SRM	SOURCE RANGE MONITOR
SRP	STANDARD REVIEW PLAN
SRSS	SQUARE ROOT OF THE SUM OF THE SQUARES
SRV	SAFETY RELIEF VALVE
SRVDL	SAFETY RELIEF VALVE DISCHARGE LINE
SRVTPLL	SAFETY RELIEF VALVE TAIL PIPE LEVEL LIMIT
SS	SAFE SHUTDOWN
SSE	SAFE SHUTDOWN EARTHQUAKE
STA	STATION
STAT	STATUS
STBY SBY	STANDBY
STK	STACK
STM ST	STEAM
STMLINE	STEAMLINE
STOR STG	STORAGE
STR	STARTER

r!

C-44

1 Na ī 4 n. + J B. V

\$

.

. **.** , ,

Abbreviation	Definition
STRN	STRAINER
STTR	STATOR
SU	STARTUP
SUBSTA	SUBSTATION
SUCT SUC	SUCTION
SUDD	SUDDEN
SUG	STEP UP GEAR
SUPLY SPLY SUP	SUPPLY
SUPPR SUPP SPPR	SUPPRESSION
SUPV	SUPERVISORY
SV	STOP VALVE
SVCE ' SER	SERVICE
SW	SERVICE WATER Switch
SWGR SWG	SWITCHGEAR
SWLP	SCREENWELL BUILDING
SWP	SERVICE WATER SYSTEM
SWT	TRAVELING WATER SCREENS AND WASH SYSTEM
SWYD	SWITCHYARD
SYNC	SYNCHROSCOPE
SYS	SYSTEM

ł

1

C-45

~ . 16 x

.

.

.

• ; ,

<u>Abbreviation</u>	Definition
	Т
ТВ	TURBINE BUILDING
TBCLC CCS	TURBINE BUILDING CLOSED LOOP COOLING
TBCLCW	TURBINE BUILDING CLOSED LOOP COOLING WATER
TCV TV	TEMPERATURE CONTROL VALVE
TEMP TMP	TEMPERATURE
TG	TURBINE GENERATOR
THERM THRM	THERMAL
THROT THR	THROTTLE ,
THRST	THRUST
TI	TEMPERATURE INDICATOR
TIP	TRAVERSING INCORE PROBE
тк	TANK
TLD	THERMOLUMINESCENT DOSIMETER
TMR	TIMER
TNL	TUNNEL
TR	TRIP .
TRAV	TRAVELING
TRBL	TROUBLE
TRN	TRAIN
TRNGR TG	TURNING GEAR

+

. . . *

<u>Abbreviation</u>	Definition
TRTMT	TREATMENT
TRTRY	TERTIARY
TSI	TURBINE SUPERVISORY INSTRUMENTATION
TSS	TEMPERATURE SENSOR/SWITCH
TSV	TURBINE STOP VALVE
TSVC	TURBINE STOP VALVE CLOSURE
T-U	TRIP UNIT
TURB	TURBINE
TURBID	TURBIDITY
TWR	TOWER
TX	TEMPERATURE SAMPLING POINT TRANSMITTER

...

.

.

vr. V

<u>Abbreviation</u>	Definition
	U
UC	UNIT COOLER
UF	UNDER FREQUENCY
UHS	ULTIMATE HEAT SINK
UNBAL	UNBALANCE
UNK	UNKNOWN
UNT	UNIT
UPR	UPPER
UPS	UNINTERRUPTED POWER SERVICE
UPSC UPSCL	UPSCALE
UPSTR	UPSTREAM
US	UNIT SUBSTATION
UV UNVOLT	UNDER VOLTAGE

:

,

****** · · ·

. , ,

,
NMP-2 Abbreviations & Acronyms Sorted by Abbreviation

Abbreviation	Definition
	V
v	VOLTS
V/R VR	VOLTAGE REGULATOR
VAC	VACUUM
VAP VPR	VAPOR
VBS	STATION VITAL BUS (125 VDC)
VDC	VOLTS DC
VENT	VENTILATION
VERIF	VERIFY VERIFICATION
VES	VESSEL
VEX	VALVE-EXPLOSIVE
VIB	VIBRATION
VLV V	VALVE
VLVS	VALVES
VOL	VOLUME
VOLT	VOLTAGE

.

\$

• • . . 18 •

NMP-2 Abbreviations & Acronyms Sorted by Abbreviation

.

<u>Abbreviation</u>	Definition
	W
WC	WASTE COLLECTOR
WCT	WASTE COLLECTOR TANK
WDG	WINDING
WDT	WASTE DISCHARGE TANK
WG	WATER GUAGE
WR	WIDE RANGE
WST W	WASTE
WTH	WATER TREATMENT HYPOCHLORITES
WTR	WATER

٩

. .

. ,

1

NMP-2 Abbreviations & Acronyms Sorted by Abbreviation

<u>Abbreviation</u>	Definition
	X
X CONN XC	CROSSCONNECT
X OVER	CROSSOVER
XFER XFR	TRANSFER
XFMR XFMER X	TRANSFORMER
XSR	TRANFORMER STATION RESERVE
X-TIE	CROSSTIE
	· Z
ZPA	ZERO PERIOD ASYMPTOTE
uCI/CC	MICROCURIES PER CUBIC CENTIMETER
uCI/S	MICROCURIES PER SECOND
<	LESS THAN
>	GREATER THAN
ક	PERCENT
+	AND .
3D	3D MONICORE SYSTEM

• • .

APPENDIX D

STANDARD ABBREVIATIONS REV 3 8/90

Sorted by Definition

Appendix D is the NMP-2 Standard Abbreviations List. The list is arranged by alphabetical order of the definitions (Appendix C is arranged by alphabetical order of the abbreviations).

If multiple abbreviations are given, the first abbreviation listed is preferred. Abbreviations with FSAR in parenthesis beside the definition originate from the Final Safety Analysis Report and are not necessarily for use in the control room.

, , , r. , I .

p.

-

Definition		Abbreviation
4	A	
ABNORMAL		ABN, ABNORM
ABOVE		ABV
ABSOLUTE		ABSOL
ACCELERATION		ACCL
ACCIDENT		ACCDNT
ACCUMULATOR		ACC
ACKNOWLEDGE		ACK
ACTIVATED		ACT
ACTUATED		ACTU
ADMINISTRATIVE PROCEDURE ANNULUS PRESSURIZATION (FSAR)		AP
ADSORBTION		ADSRB
AFTERCOOLER		AFTERCLR AFTCLR
AIR CONDITIONER		A/C
AIR CONDITIONING UNIT		ACU
AIR OPERATED DAMPER		AOD
AIR OPERATED VALVE		AOV
AIR REMOVAL SYSTEM		ARC
ALARM		ALM
ALARM CLEAR		ALMCLR
ALTERNATE		ALTN
ALTERNATOR		ALTNTR
ALTERNATE ROD INSERTION	D-2	ARI

•

i.

*

١, د ډ • ·

.

-

.

.

•

<u>Definition</u>	<u>Abbreviation</u>
ALTERNATING CURRENT	AC
ALTERNATOR	ALT
AMBIENT .	AMB
AMPERE	AMP
ANALYZER	ANAL, ANL
ANALYZER INDICATING TRANSMITTER	AIT
AND	+
ANNUNCIATOR	ANN
ANTICIPATED TRANSIENT WITHOUT SCRAM	ATWS
AREA RADIATION MONITOR	ARM
AREA RADIATION MONITORING SYSTEM	ARMS
AS LOW AS REASONABLY ACHIEVABLE .	ALARA
ASSEMBLY	ASSY
ASSOCIATED	ASSOC, ASC
ATMOSPHERE	ATMOS, ATM
AUTO START	A/START
AUTO TRIP	AT
AUTOMATIC CIRCUIT BREAKER	ACB
AUTOMATIC DEPRESSURIZATION SYSTEM	ADS
AUTOMATIC DEPRESSURIZATION SYSTEM VALVE	ADSV
AUXILIARY	AUX
AUXILIARY BOILER - STEAM	ABM
AUXILIARY BOILER SYSTEM	ABS

1

1 . , *

Definition	<u>Abbreviation</u>
AVAILABLE	AVAIL
AVERAGE	AVG
AVERAGE POWER RANGE MONITOR	APRM
AZIMUTH	AZ

1

. ້າ . •

-

,

Definition			Abbreviation
		B	
BACKUP			BU
BACKWASH			BKWSH, BW
BALANCE OF PLANT			BOP
BASEMENT			BSMT
BATTERY			BATT, BAT
BEARING			BRG
BEGINNING OF CYCLE			BOC
BELOW			BEL
BINARY CODED DECIMAL			BCD
BIOLOGICAL SHIELD WALL		•	BSW
BLOCK		,	BLK
BLOCKING			BLOCK
BLOWDOWN			BLWDN
BLOWER			BLWR
BOILER			BLR
BOILING WATER REACTOR			BWR
BOOSTER			BSTR, BST
BOTTOM .			BOT
BOTTOM CENTER PRESSURE	(FSAR)		BCP
BRANCH TECHNICAL POSIT	ION		BTP
BREAKER			BRKR, BKR
BREATHING			BRTHNG
BREATHING AIR		D-5	BA

, v . • • ۰ ،

Definition	Abbreviation
BUILDING	BLDG, BLD
BUILDING HEATING	BHTG
BUSHING	BSNG
BYPASS	BYP
BYPASS VALVE	BV

٩

-

*

÷

Definition		Abbreviation
	С	
CABINET		CAB
CALIBRATION		CALIB, CAL
CALIPER		CLPR
CANCEL		CANCL
CARD		CD
CAVITY		CAV
CENTER		CTR
CHAMBER		CHMBR, CHAM, CHM
CHANNEL		CHAN, CH
CHARCOAL		CHAR
CHARGER		CHGR
CHECK		СНК
CHEMICAL	1	CHEM
CHILLED		CHILL, CHIL
CHILLER		CHL
CIRCUIT		CKT
CIRCULATING/CIRCULATION		CIRC
CIRCULATING WATER		CW
CIRCULATING WATER SYSTEM		CWS
CLEAN		CLN
CLEAN STEAM REBOILER		CSR
CLEANUP		CLN-UP, CU
CLOSE	D-7	CLS

f^r

, . ·. ·

Definition	Abbreviation
CLOSED	CLSD, CL
CLOSED COOLING WATER	CCW
CLOSED LOOP COOLING WATER	CLCW
CLOSED LOOP COOLING WATER-PRIMARY	CCP
CLOSED LOOP COOLING WATER-SECONDARY	CCS
CLOSURE	CLSR
COEFFICIENT	COEFF
COLD REHEAT SYSTEM	CRS
COLLECTOR/COLLECTION	COLL
COLLISION-IMPORTED-VELOCITY METHOD (FS.	AR) CIVM
COMBINED INTERMEDIATE VALVE	CIV
COMBUSTIBLE GAS CONTROL SYSTEM	CGCS
COMMON	COM
COMMON MODE FAILURE ANALYSIS	CMFA
COMMUNICATION	COMM
COMPLETE	COMPL
COMPRESSOR	CPRSR, CPSR,
COMPUTER	COMP, CMPTR
CONCENTRATE	CONC
CONCENTRATION	CONC
CONDENSATE	CNST, CND
CONDENSATE STORAGE	CNDS
CONDENSATE STORAGE TANK	CST
CONDENSATION OSCILLATION	CO D-8

.

C

· .

•

.

、 -

-**x** •

H

2

. -

¥

Definition		Abbreviation
CONDENSER		CNSR
CONDITIONING		CONDITION
CONDUCTIVITY		COND, CNDCTY
CONNECT		CONN
CONSTANT		CONST, CONS
CONTAINMENT		CONTMT, CONMT, CNMT
CONTAINMENT AND REACTOR VESSEL ISOLATION CONTROL SYSTEM		CRVICS
CONTAINMENT ATMOSPHERE DILUTION (DEVICE)		CAD
CONTAINMENT MONITORING SYSTEM		CMS
CONTAINMENT PURGE SYSTEM		CPS
CONTINUOUS AIR MONITOR		CAM
CONTROL/CONTROLLER		CONT
CONTROL BUILDING		CB
CONTROL ROD DRIVE MECHANISM		CRDM
CONTROL ROD DRIVE		CRD, RDS
CONTROL ROD DRIVE SYSTEM		RDCS
CONTROL ROD DROP ACCIDENT		CRDA
CONTROL ROD POSITION INDICATION (FSAR) (Use Rod Position Information System	- RPIS)	CRPI
CONTROL ROOM		CONT RM, CR, CONTRM
CONTROL ROOM EQUIPMENT CABINETS		CEC
CONTROL SWITCH		CS
CONTROL VALVE	D-9	CV .

* • -• ς.

Definition	Abbreviation
CONVERSION	CONV
COOL DOWN RATE	CDR
COOLER	CLR
COOLERS	CLRS
COOLING	CLG
COUNTS PER SECOND	CPS
COUPLING	CPLG
CRITICAL HEAT FLUX	CHF
CRITICAL POWER RATIO	CPR
CROSSCONNECT	X CONN, XC
CROSSOVER	X OVER
CROSSTIE	X TIE
CUMULATIVE USAGE FACTOR	CUF
CURIE	CI
CURRENT	CUR
CYCLE	CYC

Þ

×

¥+

. • . 4 , a . **5***7

Definition		<u>Abbreviation</u>
	D	
DAMPER		DAMPR, DMPR
DEAERATOR		DEAR
DECANT		DCNT
DECONTAMINATION		DECON
DEGRADED		DEGRD
DEGREE		DEG
DEGREES FARENHEIT		° _F DEGF
DEMAND		DEM
DEMINERALIZER/DEMINERALIZED		DEMIN, DMN
DEPRESSURIZE		DEPRESS
DESIGN ASSESSMENT REPORT FOR HYDRODYNAMIC LOADS		DAR
DESIGN BASIS		DB
DESIGN BASIS ACCIDENT		DBA
DESIGN BASIS EARTHQUAKE		DBE
DESIGN BASIS FLOOD LEVEL		DBFL
DETECTION DETECTOR DETECTED		DETECT, DET
DEVIATION		DEV
DIAPHRAGM		DIAPH
DICTIONARY		DICT
DIESEL		DSL
DIESEL GENERATOR	د	DG

2

ŝ

₹ रू ।

1

. .

.

• • ·

.

.

Definition		Abbreviation	
DIESEL GENERATOR BUILDING		DGB	
DIFFERENTIAL		DIFF	
DIFFERENTIAL PRESSURE		DP, P	
DIGIT		DIG	
DIGITAL RADIATION MONITORING SYSTEM		DRMS	
DIRECT CURRENT		DC	
DIRECT CURRENT DIFFERENTIAL TRANSDUCER	L	DCDT	
DIRECTIONAL		DIR	
DISABLED		DISAB, DSABL	
DISCHARGE		DISCH, DIS	
DISCONNECT		DISCON	
DISPLAY		DISPL	
DISTILATE		DSTLT, DST	
DISTRIBUTION		DISTR, DSTR	
DIVERTER		DIVERT	
DIVISION		DIV, D	
DOME		DOM	
DOWN		DN	
DOWNSCALE		DNSCALE, DNSCL, DNSC	
DRAIN		DRN, DR	
DRAINS		DRNS, DRS	
DRAIN TANK		DT	
DRAIN VALVE		DV	
DRIVE		DRV	
	D-12		

4 * * ۰. بعد

.

• .

. د .

Definition	Abbreviation
DRYWELL	DW, DRWL
DRYWELL/REACTOR BUILDING EQUIPMENT DRAINS	DER
DRYWELL/REACTOR BUILDING FLOOR DRAIN SYSTEM	DFR
DRYWELL SPRAY INITIATION PRESSURE LIMIT	DWSIPL
DRYWELL TEMPERATURE CONTROL	DWT

. κ. ***●** t y ber *

. .

x . . ĸ

.

•

Definition		<u>Abbreviation</u>
	E	
EFFICIENCY		EFF
EFFLUENT		EFFL
EJECTOR		EJCTR, EJCT
ELECTRIC		ELEC, ELC
ELECTRICAL DRAWING NUMBER	*	ESK
ELECTRIC PROTECTIVE ASSEMBLY		EPA
ELECTRO HYDRAULIC CONTROL		EHC
ELEVATION		ELEV, EL
EMERGENCY		EMER, EM
EMERGENCY AC DISTRIBUTION 4160 V		ENS
EMERGENCY BEARING OIL PUMP		EBOP
EMERGENCY CORE COOLING SYSTEM		ECCS
EMERGENCY DIESEL GENERATOR		EDG
EMERGENCY DIESEL GENERATOR SYSTEM		EGS
EMERGENCY OPERATIONS FACILITY EQUIVALENT OCCURENCE FACTOR (FSAR)		EOF
EMERGENCY PLANNING ZONE		EPZ
EMERGENCY RESPONSE FACILITY		ERF
EMERGENCY TRIP SYSTEM		ETS
ENCLOSURE		ENCL, ENC
END OF CYCLE		EOC
ENERGY INFORMATION CENTER		EIC

.

,,

فلو **、** * * *

7

.

1

a,

4

.

.

Definition	Abbreviation
ENGINE	ENG
ENGINEERED SAFETY FEATURE	ESF
ENGINEERING CHANGE AUTHORIZATION	ECA
ENGINEERING CHANGE NOTICE	ECN
ENTHALPY	ENTH
ENVIRONMENTAL QUALIFICATION DOCUMENT	EQD
EQUALIZING	EQL
EQUIPMENT	EQUIP, EQPT, EQ
EQUIPMENT PIECE	EP
ENVIRONMENTAL QUALIFICATION	EQ
EVACUATION	EVAC
EVAPORATOR	EVAP, EV
EXCESS FLOW CHECK VALVE	EFV, EFCV
EXCHANGER	EXCH
EXCITOR	EXC
EXCLUSION AREA BOUNDARY	EAB
EXECUTE	EXEC
EXHAUST	EXH
EXPANSION	EXP
EXPECTED	EXPTD
EXTERNAL	EXTRNL
EXTRACTION, EXTRACTOR	EXTRCTN, EXTR
EXTREME HIGH	ЕН
EXTRUDER/EVAPORATOR	EX/EV

D-15

•

•..

, , ,

--

۰ ۰ ۰
e

Definition		<u>Abbreviation</u>
	F	
FACTOR		FACTR
FAIL TO CLOSE		FTC
FAIL TO START		FTS
FAILURE/FAILED		FAIL
FAILURE MODES AND EFFECTS ANALYSIS		FMEA
FAN		FN
FEED	•	FD
FEED COLLECTOR		FDC
FEEDER		FDR
FEEDWATER		FD WTR, FW, FDW
FEEDWATER SYSTEM		FWS
FEET, FOOT		FT
FIELD		FLD
FIELD DEVIATION DISPOSITION		FDDR
FILTER		FLTR, FLT
FILTER DEMINERALIZER		F/D
FILTRATION		FLTN
FINAL SAFETY ANALYSIS REPORT		FSAR
FIRE PROTECTION SYSTEM	¢	FPS
FIRE PROTECTION WATER		FPW
FIXTURE MOUNTING HEIGHT		FMH
FLANGE .		FLG
FLOOR		FLR

~

,

1 .

5 e K

、 · ·

.

4

."

Definition	<u>Abbreviation</u>
FLOOR DRAIN	FLDR
FLOW	FLO
FLOW CONTROL VALVE	FCV
FLOW IN	FL IN
FLOW VALVE	FV
FLUID	FLU
FLUID ACTUATOR SYSTEM	FAS
FLUX	FLX
FORWARD	FWD
FRACTURE APPEARANCE TRANSITION TEMPERATURE	FATT
FREQUENCY	FREQ
FRESH	FSH
FROM	FR
FUEL	F
FUEL POOL COOLING AND CLEANUP	FPCC
FUEL ZONE	FZ
FULL ARC (MODE OF TCV OPERATION) (FSAR)	FA
FULL CLOSE	FL CL
FULL-LENGTH EMERGENCY COOLING HEAT TRANSFER	FLECHT
FUNCTIONAL CONTROL DIAGRAM	FCD

.

2

- · · • , .

,

Definition		<u>Abbreviation</u>
	G	
GALLONS PER MINUTE	,	GPM
GAS TREATMENT SYSTEM		GTS
GASEOUS		GAS
GENERAL.		GENL
GENERAL DESIGN CRITERION		GDC
GENERAL ELECTRIC COMPANY		GE
GENERATOR		GEN, GN
GENERATOR LEADS		GEN-L
GE THERMAL ANALYSIS BASIS		GETAB
GE VALVE DESIGNATION NUMBER		FO
GLAND		GLD
GREATER THAN		>
GOVERNOR		GOV
GROSS		G

D-18

٤

• ¥

а. Ж.

Definition	Abbreviation
H	ſ
HAND CONTROLLED VALVE	HCV
HATCH	HAT
HEADER	HDR
HEAT	HT
HEAT AFFECTED ZONE	HAZ
HEAT CAPACITY LEVEL LIMIT	HCLL
HEAT CAPACITY TEMPERATURE LIMIT	HCTL
HEATER	HTR
HEATERS	HTRS
HEAT EXCHANGER	НХ
HEAT EXCHANGER/COOLER	E
HEATING	HTG
HEATING AND VENTILATION CONTROL BUILDING	HVC
HEATING AND VENTILATION-REACTOR BUILDING	HVR
HEATING, VENTILATING, AND AIR CONDITIONING	G HVAC
HEAVY DENSITY FILL MATERIAL (FSAR)	HDFM
HIGH	HI, H
HIGH-EFFICIENCY PARTICULATE AIR/ Absolute (Filter)	НЕРА
HIGH ENERGY LINE BREAK (FSAR)	HELB
HIGH-HIGH	н г-нг, н-н, нг/нг, н/н
HIGH-LOW	HI-LO, H-L, HI/LO, H/L
HIGH PRESSURE HORSEPOWER	HP

D-19

,

۲

н , *

• 4 14

Definition	<u>Abbreviation</u>
HIGH PRESSURE CORE SPRAY	HPCS
HIGH TEMPERATURE	HI T
HIGH VOLTAGE	HV
HISTORICAL	HIST
HOLDING	HLDG
HOMOGENEOUS EQUILIBRIUM MODEL (FSAR)	HEM
HOPPER -	HPPR
HOT REHEAT STEAM	HRS
HOTWELL	HWL.
HOUR	HR
HUMIDITY .	HMDT
HYDRAULIC	HYDR
HYDRAULIC CONTROL UNIT	HCU
HYDRAULIC FLUID	HYDR FL
HYDRAULIC POWER UNIT	HPU
HYDRAULICALLY CONTROLLED VALVE	нүү
HYDRO-ELECTRIC POWER COMMISSION OF ONTARIO	НЕРСО
HYDROGEN	H ₂
HYDROGEN RECOMBINER SYSTEM	HCS

.

. . * .

. 6 i . , • ,

•

Definition		<u>Abbreviation</u>
	I	
INACTIVE		INACTV
IMBALANCE		IMBAL
INADEQUATE CORE COOLING		ICC
IN ACCORDANCE WITH		IAW
INBOARD		INBD, IB
INCH, INCHES		IN
INCIDENT DETECTION CIRCUITRY (FSAR)		IDC
INCOMPLETE		INCMPL
INDICATOR		IND
INFLUENT		INFL
INHIBIT		INHIB
INITIATE/INITIATION/INITIATED		INIT
INJECT/INJECTION		INJ INJCTN
INLEAKAGE		INLKGE
INLET		INL, IN
INLET/OUTLET		IN/OUT
INNER		INNR
INOPERABLE		INOP
INPUT		INP
INPUT/OUTPUT		I/O
INSTRUMENT		INSTR, INST
INSTRUMENT AND ELECTRICAL DRAWING		IED
INSTRUMENT AIR SYSTEM	D-21	IAS

÷

.

.

-

/ т. Т N

4

.

Definition	<u>Abbreviation</u>
INSTRUMENT DATA SHEET	IDS
INSULATED POWER CABLES ENGINEERS ASSOCIATION (FSAR)	IPCEA
INTAKE	INT
INTERCEPT STOP VALVE	ISV, CIV
INTERCEPT VALVE	INV, CIV
INTERCONDENSER	INCNSR
INTERGRANULAR STRESS CORROSION CRACKING	IGSCC
INTEGRATED LEAKAGE RATE TEST	ILRT
INTERIM ACCEPTANCE CRITERIA (NRC)	IAC
INTERLOCK	INTLK, INLK
INTERMEDIATE	INTERM, INTMD, INTD
INTERMEDIATE BREAK ACCIDENT	IBA
INTERMEDIATE RANGE MONITOR	IRM
ISOLATION	ISOL, ISO
ISOLATION COOLING SYSTEM	ICS
ISOLATION VALVE	IV

.

* .

v

ς.

Definition		Abbreviation
	J	
J.A. FITZPATRICK STATION	٠	JAF
JACKET		JKT

Κ

KILOVOLT

кv

٨

·

ж А.-

•

.

.

·

.

4

<u>Definition</u>		<u>Abbreviation</u>
	L	
LAKE		LKE
LAKE SURVEY DATUM (OF 1935)		LSD
LEAK LEAKING		LK
LEAKAGE		LKGE, LK
LEAKAGE CONTROL SYSTEM		LCS
LEAKAGE MONITORING SYSTEM		lms
LEAK-DETECTION SYSTEM		LDS
LESS THAN		<
LEVEL		LVL
LEVEL CONTROL VALVE		LCV
LEVEL VALVE (LCV)		LV
LEVEL VALVE X		LVX
LIMIT		LIM
LIMITING CONDITION OF OPERATION		LCO
LIMITING SAFETY SYSTEM SETTING		LSSS
LINE		LN
LINEAR HEAT GENERATION RATE		LHGR
LIQUID		LIQ
LIQUID RADWASTE SYSTÈM	、 •	LWS
LOAD		LD
LOAD TAP CHANGING		LTC
LOCAL POWER RANGE MONITOR		LPRM
LOCKOUT)-24	LKO, L.O., LKOUT

• • r '**.** le l .

1

<u>Definition</u>	Abbreviation
LOGIC	LGC
LOOSE PARTS DETECTION SYSTEM	LPDS
LOSS OF COOLANT ACCIDENT	LOCA
LOSS OF FEEDWATER	LOFW
LOSS OF OFFSITE POWER	LOOP, LOP
LOW	LO, L
LOW FREQUENCY MOTOR GENERATOR	LFMG
LOW-LOW	10-10, L-L, 10/10, L/I
LOW POPULATION ZONE	LPZ
LOW POWER ALARM POINT	LPAP
LOW POWER SET POINT	LPSP
LOW PRESSURE	LP
LOW PRESSURE COOLANT INJECTION	LPCI
LOW PRESSURE CORE SPRAY	LPCS, CSL
LOW SPECIFIC ACTIVITY (BOXES)	LSA
LOWER	LOR
LUBE OIL	LUBO
LUBRICATING	LUBE

.. . -• •

K N

٠

Definition	<u>Abbreviati</u>	on
	Μ	
MACHINE	MACH	
MAIN	MN	
MAIN CONDENSATE SYSTEM	CNM	
MAIN SHAFT	MN SFT	
MAIN STEAM	MS	-
MAIN STEAM ISOLATION	MSI	
MAIN STEAM ISOLATION VALVE	MSIV	
MAIN STEAM ISOLATION VALVE LEAKAGE CONTROL SYSTEM	MSIV-LCS	
MAIN STEAM LINE	MSL	
MAIN STEAM LINE BREAK	MSLB	
MAIN STEAM SYSTEM	MSS	
MAIN STOP VALVE	MSV	
MAINTENANCE	MAINT	
MAINTENANCE AND CALIBRATION COMMUNICATIO SYSTEM (FSAR)	DN M/CC	
MAKEUP	MU, MKUP	
MAKEUP WATER STORAGE AND TRANSFER	MWS	
MANUAL/AUTO	M/A	
MANUAL/MANUALLY	MAN	
MASTER	MAST	
MATERIAL .	MAT	
MAXIMUM	MAX	
MAXIMUM AVERAGE PLANAR LINEAR HEAT GENERATION RATE	MAPLHGR	

D-26

۴. Ł

.

٠

• ,

٩. .

e

Definition	<u>Abbreviation</u>
MAXIMUM LINEAR HEAT GENERATION RATE	MLHGR
MAXIMUM PERMISSIBLE CONCENTRATION	MPC
MEAN LOW WATER DATUM	MLD
MECHANICAL	MECH
MECHANICAL TRIP VALVE	MTV
MEGAWATT ELECTRIC	MWE
MEGAWATT THERMAL	MWTH
MERCURY	HG
METER	METR
METHOD OF IMAGES (FSAR)	MOI
MICROCURIES PER CUBIC CENTIMETER	uCI/CC
MICROCURIES PER SECOND	uCI/S
MIDDLE	MID
MILLIREM	mr
MILLIREM PER HOUR	MR/HR
MINIMUM	MIN
MINIMUM CRITICAL POWER RATIO	MCPR
MINUTE	MIN
MISPLACED BUNDLE ACCIDENT (FSAR)	MBA
MOISTURE	MSTR
MOISTURE SEPARATOR REHEATER	MSR
MONITOR	MON
MOTION	MTN
MOTOR	MOT

.

ŧ

*

• . *'

<u>Definition</u>	Abbreviation
MOTOR CONTROL CENTER	MCC
MOTOR DISCONNECT SWITCH	MDS
MOTOR GENERATOR	MG
MOTOR OPERATED DAMPER	MODMPR, MOD
MOTOR OPERATED DISCONNECT	MODS
MOTOR OPERATED GATE	MOG
MOTOR OPERATED VALVE	MOV

۰.

1

•

N

•

ē **a**ti

• <u>C</u> . 1 1648

· · ·

• • •

۲

•

Definition		<u>Abbreviation</u>
	N	
NARROW RANGE		NR
NATIONAL BUREAU OF STANDARDS		NBS
NATIONAL INSTITUTE FOR OCCUPATIONAL SAFETY AND HEALTH		NIOSH
NEGATIVE		NEG
NET POSITIVE SUCTION HEAD		NPSH
NEUTRAL		NEUT
NEUTRON		NTRN
NEUTRON MONITORING SYSTEM		NMS
NEW YORK POWER AUTHORITY		PASNY
NIL DUCTILITY TRANSITION		NDT
NIL DUCTILITY TRANSITION TEMPERATURE		NDTT
NITROGEN		N ₂
NO FLOW		NFL
NON-REGENERATIVE HEAT EXCHANGER		NRHX
NON RETURN VALVE		NRV
NON SAFETY RELATED		NSR
NORMAL		NORM, NOR
NORMAL AC DISTRIBUTION 13.8 KV		NPS
NORMAL AC DISTRIBUTION 4160 V		NNS
NORMAL STATION SERVICE		NSS
NOT APPLICABLE		N/A
NOT AVAILABLE		NOAVLB, N-AVAI
NOT CLOSE	D-29	NOT CL

. -*C* **2** • .

,

.

•

•

.

, . •

i.

Definition	<u>Abbreviation</u>
NOT FILLED	N-FILL
NOT FULL CLOSE	NOFLCL
NOT FULL OPEN	NOFLOP
NUCLEAR BOILER	NB
NUCLEAR BOILER RATED (THERMAL POWER)	NBR
NUCLEAR DATA LINK	NDL
NUCLEAR ENERGY DIVISION (GE)	NED
NUCLEAR PLANT RELIABILITY DATA SYSTEM	NPRDS
NUCLEAR SAFETY OPERATIONAL ANALYSIS	NSOA
NUCLEAR STEAM SUPPLY SYSTEM	NSSS
NUMBER	NO

• . ۵ ۲ ŕ

.

. .

Definition		<u>Abbreviation</u>
	0	
OCCUPATIONAL RADIATION EXPOSURES		ORE
OPERABLE OPERATOR		OPER
OPERATING BASIS EARTHQUAKE		OBE
OPERATIONAL TRANSIENT		OT
ORIFICED FUEL SUPPORT		OFS
OUTER		OUTR
OUT OF FILE		OOF
OUT OF SERVICE		00S
OUTBOARD		OUTBD, OB
OUTLET		OUTL, OUT
OVERALL		OVALL
OVERCURRENT		OVCRNT, OC
OVERLOAD		OVLD, OL
OVERRIDE		OVRD, OR
OVERVOLTAGE		OV, OVRVLT
OXYGEN		0 ₂

×

.

e

*

<u>Definition</u>	Abbreviation
· P	
PAGE PARTY/PUBLIC ADDRESS SYSTEM (FSAR)	PP/PA
PARTIAL	PART
PARTICULATE	PARTIC
PEAK CLADDING TEMPERATURE	PCT
PEAK POWER/PRECONDITIONED POWER CORE MARGIN	PCRAT
PELLET-CLADDING INTERACTION	PCI
PENETRATION	PNTRN
PERCENT	۶, PCT
PERMANENT	PERM
PERMISSIVE	PERMIS
рН	pH
PHASE	рн
PINION	PIN
PIPING AND INSTRUMENTATION DIAGRAM	P&ID
PLANT VENT STACK	PVS
POINT PRESS TRANSMITTER	PT
POLISHER POLISHING	POLISH
POSITION	POSN, POS
POST-ACCIDENT MONITORING	PAM
POTENTIAL	POT
POTENTIAL TRANSFORMER	POT XFMER
POUND MASS	LBM

*

,

.

D-32

•

κ.

κ Δ.

u,

<u>ت</u>

Å

<u>Definition</u>		Abbreviation
POUNDS		LB
POUNDS PER SQUARE INCH		PSI
POUNDS PER SQUARE INCH DIFFERENTIAL		PSID
POUNDS PER SQUARE INCH GAGE		PSIG
POWER		PWR
POWER FACTOR		PF
POWER GENERATING CONTROL CENTER		PGCC
POWER LOAD UNBALANCE		PLU
POWER RANGE MONITOR		PRM
POWER SPECTRUM DENSITY		PSD
POWER SUPPLY		PS
PRECOOLER		PRE-CLR
PREHEATER		PREHTR
PRELIMINARY SAFETY ANALYSIS REPORT		PSAR
PRESSURE		PRESS, PRES, PR
PRESSURE CONTROL VALVE		PCV
PRESSURE SAFETY VALVE		PSV
PRESSURE SUPPRESSION PRESSURE		PSP
PRESSURE VALVE		PV
PRE-TREATMENT		PRE-TRTMT
PRIMARY		PRIM, PRI
PRIMARY CONTAINMENT		PC -
PRIMARY CONTAINMENT AND REACTOR VESSEL ISOL CONTROL SYSTEM (FSAR)		PCIS, PCRVICS
PRIMARY CONTAINMENT PRESSURE CONTROL	D-33	PCP

2**19** 103

-

•

. . · .
•

Definition		<u>Abbreviation</u>
PRIMARY CONTAINMENT PRESSURE LIMIT		PCPL
PROBABLE MAXIMUM FLOOD		PMF
PROBABLE MAXIMUM SURGE (FSAR)		PMS
PROBABLE MAXIMUM WINDSTORM		PMWS
PROCESS COMPUTER SYSTEM		PCS
PRODUCT QUALITY CHECKLIST		PQL
PROGRAM		PGM
PROGRAMMABLE LOGIC CONTROLLER		PLC
PROGRESS		PRG
PROJECT TEST PROGRAM OBJECTIVES		PTPD
PROTECTION		PROT, PRT
PUBLIC ADDRESS SYSTEM	T	PA
PULL-TO-LOCK		PTL `
PUMP		PMP, PP,P
PUMPS		PMPS
PURGE		PRGE
	Q	
QUALITY ASSURANCE		QA
QUALITY CONTROL		QC .

;

t'a

•

.

. .

5 g **5**

• ,

*

<u>Definition</u>	<u>Abbreviation</u>
R	
RADIAL	RDL, RADL
RADIATION	RADN
RADIATION WORK PERMIT	RWP
RADIOACTIVITY RELEASE CONTROL	RR
RADS .	R
RADWASTE .	RADW, RW
RADWASTE BUILDING	RWB
RANGE	RNG
RATE	RT
REACTION	REAC
REACTOR .	RX
REACTOR BUILDING	RB
REACTOR BUILDING CLOSED LOOP COOLING (CCP)	RBCLC
REACTOR BUILDING CLOSED LOOP COOLING WATER	RBCLCW
REACTOR BUILDING LEVEL CONTROL	SCL
REACTOR BUILDING POLAR CRANE	RBPC
REACTOR BUILDING RADIATION CONTROL	SCR
REACTOR BUILDING TEMPERATURE CONTROL	SCT
REACTOR BUILDING VENTILATION SYSTEM	HVRS
REACTOR COOLANT PRESSURE BOUNDARY	RCPB
REACTOR COOLANT SYSTEM	RCS
REACTOR CORE ISOLATION COOLING	RCIC
REACTOR FEED PUMP	RFP

.

D-35

• n. V

194 1

1

. .

.

•

Definition	<u>Abbreviation</u>
REACTOR MANUAL CONTROL SYSTEM	RMCS
REACTOR PRESSURE VESSEL	RPV
REACTOR PROTECTION SYSTEM	RPS
REACTOR RECIRCULATION PUMP	RRP
REACTOR RECIRCULATION SYSTEM ,	RRSM
REACTOR SYSTEM OUTLINE	RSO
REACTOR WATER CLEANUP SYSTEM	RWCU, WCS
REBOILER	REBLR, RBLR
REBOILERS	RBLRS
RECEIVING	RCVG
RECEIVER	RCVR
RECIRCULATING/RECIRCULATION	RECIRC, RECIR
RECIRCULATION PUMP TRIP	RPP
RECOMBINER	RECOMB, RBNR
RECORDER	RCDR, REC
RECOVERY	RCVY, RCVRY
RECTIFIER	RECT
RECYCLE	RECYC
REDUCER	RED
REDUNDANT REACTIVITY CONTROL SYSTEM	RRCS
REFERENCE	REFR, REF
REFUEL	RFUL
REGENERATIVE	REGEN, RGEN
REGENERATIVE HEAT EXCHANGER	RHX

.

.

• *w*

...

D-36

1907 1917

*

•

Definition	<u>Abbreviation</u>
REGULATED	REGLTD, RGLTD
REGULATOR	REG
REHEAT	REHT
REHEATER	REHTR, RHTR
REHEATING	REHTG
RELATIVE HUMIDITY	RH
RELAY	RLY
RELIEF	RLF
REMOTE	REM
REM PER HOUR	R/HR
REMOTE SHUTDOWN	RSD .
REMOTE SHUTDOWN SYSTEM	RSS
REMOVAL	RMVL, REM
REQUIRED	REQ'D
RESERVE	RES
RESERVOIR	RSVR, RSV
RESIDUAL	RESID
RESIDUAL HEAT REMOVAL SYSTEM	RHR
RESIN	RSN
RESTORE	RESTR
RESTRICTED AREA BOUNDARY	RAB
RESTRICTING ORIFICE	RO
RETRACT	RETRCT
RETRANSMIT	RETR

.

D-37

Dida **y**-

· ·

¥ .4 **9** 19 -. .

~

.

.

۲

Definition	<u>Abbreviation</u>
RETRIEVAL	RTRV
RETURN	RTN, RET
REVOLUTIONS PER MINUTE	RPM
RHR CONTAINMENT SPRAY COOLING MODE (FSAR)	RCSCM
RHR LOOP B	RHRB
RHR REACTOR SHUTDOWN COOLING MODE (FSAR)	RSCM
RHR SUPPRESSION POOL COOLING MODE (FSAR)	RSPCM
ROD BLOCK MONITOR	RBM
ROD PATTERN CONTROLLER	RPC
ROD POSITION INFORMATION SYSTEM	RPIS
ROD SEQUENCE CONTROL SYSTEM	RSCS
ROD WORTH MINIMIZER	RWM
ROOM	RM
ROOT MEAN SQUARE	RMS
RPV PRESSURE CONTROL	RP
RPV REACTIVITY CONTROL	RQ
RPV WATER LEVEL CONTROL	RL
RUNBACK	RUNBK, RUNB
RUNNING	RUN

.

٠

Ð.

.

*

•

* -

• • •

•

,

.

Definition	<u>Abbreviation</u>
	S ,
SAFE/SAFETY	SAF
SAFE SHUTDOWN	SS
SAFE SHUTDOWN EARTHQUAKE	SSE
SAFETY ANALYSIS REPORT	SAR
SAFETY PARAMETER DISPLAY SYSTEM	SPDS
SAFETY-RELATED DISPLAY INSTRUMENTATION	SRDI
SAFETY RELIEF VALVE	SRV
SAFETY RELIEF VALVE DISCHARGE LINE	SRVDL
SAFETY RELIEF VALVE TAIL PIPE LEVEL LIMIT	r srvtpll
SAFETY REVIEW AND AUDIT BOARD	SRAB
SAMPLE	SMPL, SM
SAMPLE TANK	SMT
SAMPLING	SMPLG
SATURATION	SAT
SECONDARY	SCDRY
SCAVENGING	SCAV
SCRAM DISCHARGE INSTRUMENT VOLUME	SDIV
SCRAM DISCHARGE VOLUME	SDV
SCREEN	SCRN
SCREENWELL	SCRNWELL
SCREENWELL AND FIRE SYSTEM	HVY
SCREENWELL BUILDING	SWLB
SEAL	SL

4

•

** 3 3

1997 1 .

Definition		<u>Abbreviation</u>
SECOND, SECONDS		SEC
SECURITY RELATED MATERIAL		SEC REL MAT
SELF-CONTAINED BREATHING APPARATUS		SCBA
SEPARATOR		SEP
SEQUENCE		SEQ
SERVICE		SVCE, SER
SERVICE AIR SYSTEM		SAS
SERVICE WATER Switch		SW
SERVICE WATER SYSTEM		SWP
SHAFT		SHFT, SFT
SHEAR		SHR
SHELL		SHL
SHUT		SHT
SHUTDOWN		SHTDN, SDN
SHUTDOWN COOLING		SDC
SIGNALS		SGNLS, SIG
SILENCER		SIL
SINGLE ACTIVE COMPONENT FAILURE		SACF
SINGLE-CHANNEL ANALYZER		SCA
SINGLE EQUIPMENT FAILURE		SEF
SINGLE OPERATOR ERROR		SOE
SINGLE OPERATOR FAILURE		SOF
SITE OPERATIONS REVIEW COMMITTEE		SORC
SLUDGE	D-40	SLDG

4

.

*

1 1 • ~ .

<u>1</u>

•

×

,

Definition		<u>Abbreviation</u>
SMALL BREAK ACCIDENT		SBA
SMOKE		SMK
SOLENOID OPERATED VALVE		SOV
SOLID		SOL
SOURCE RANGE MONITOR		SRM
SOV X		SOVX
SPARGE		SPGE
SPECIAL		SPCL
SPENT FUEL POOL		SFP
SPENT FUEL POOL COOLING AND CLEANUP SYSTEM	×	SFC
SPENT FUEL POOL HEAT EXCHANGER		SFPHX
SPENT RESIN		SPT RSN
SPREADER		SPREAD, SPRDR
SQUARE ROOT OF THE SUM OF THE SQUARES		SRSS
STACK		STK
STANDARD METROPOLITAN STATISTICAL ARE	A	SMSA
STANDARD REVIEW PLAN		SRP
STANDBY -		STBY, SBY
STANDBY GAS TREATMENT SYSTEM		SBGTS, SBGT, GTS
STANDBY LIQUID CONTROL		SLC, SBLC
STANDBY LIQUID CONTROL SYSTEM		SLCS
STANDBY SERVICE SUBSTATION		EJS
STARTER		STR
STARTUP	D-41	SU

.

.

я .

2

,

.

Definition	Abbreviation
STATE POLLUTANT DISCHARGE ELIMINATION SYSTEM	SPDES
STATION	STA
STATION CONTROL 120 V PANEL	SCM
STATION VITAL BUS (125 VDC)	VBS
STATOR	STTR
STATUS	STAT
STEAM	STM, ST
STEAM JET AIR EJECTOR	SJAE
STEAMLINE	STMLINE
STEP UP GEAR	SUG
STOP VALVE	sv
STRAINER	STRN
STORAGE	STOR, STG
STUCK OPEN RELIEF VALVE	SORV
SUBSTATION	SUBSTA
SUBSTITUTE POSITION GENERATOR	SPG
SUCTION	SUCT, SUC
SUDDEN	SUDD
SUMMARY	SMRY
SUMP	SMP
SUPERVISORY	SUPV
SUPPLY	SUPLY, SPLY, SUP
SUPPRESSION	SUPPR, SUPP, SPPR
SUPPRESSION CHAMBER	SC

D-42

a

٠

λ**τ** *, .

.

•

<u>Definition</u>	<u>Abbreviation</u>
SUPPRESSION POOL	SP
SUPPRESSION POOL COOLING SOUND-POWERED COMMUNICATION SYSTEM (FSAR)	SPC
SUPPRESSION POOL LEVEL CONTROL	SPLC
SUPPRESSION POOL LOAD LIMIT	SPLL
SUPPRESSION POOL TEMPERATURE CONTROL	SPT
SURGE	SRGE, SG, SRG
SWITCHGEAR	SWGR, SWG
SWITCHYARD	SWYD
SYNCHROSCOPE	SYNC
SYSTEM	SYS

. 40 121 .

`

-

.

e

×

Definition	Abbreviation
Т	
TANK	тк
TEMPERATURE	TEMP, TMP
TEMPERATURE CONTROL VALVE	TCV, TV
TEMPERATURE INDICATOR	TI
TEMPERATURE SAMPLING POINT TRANSMITTER	TX
TEMPERATURE SENSOR/SWITCH	TSS
TERTIARY	TRTRY
THERMAL	THERM, THRM
THERMOLUMINESCENT DOSIMETER	TLD
THROTTLE	THROT, THR
THRUST	THRST
TIMER	TMR
TOWER	TWR
TRAIN	TRN
TRANSFER	XFER, XFR
TRANSFORMER	XFMR, XFMER, X
TRANSFORMER STATION RESERVE	XSR
TRAVELING	TRAV
TRAVELING WATER SCREENS AND WASH SYSTEM	SWT
TRAVERSING INCORE PROBE	TIP
TREATMENT	TRTMT
TRIP	TR

• . , ` ۲. • • • `

Definition	Abbreviation
TRIP UNIT	T-U
TROUBLE	TRBL
TUNNEL	TNL
TURBIDITY	TURBID
TURBINE	TURB
TURBINE BUILDING	тв
TURBINE BUILDING CLOSED LOOP COOLING	TBCLC, CCS
TURBINE BUILDING CLOSED LOOP COOLING WATER	TBCLCW
TURBINE GENERATOR	TG
TURBINE STOP VALVE	TSV
TURBINE STOP VALVE CLOSURE	TSVC
TURBINE SUPERVISORY INSTRUMENTATION	TSI
TURNING GEAR	TRNGR, TG

4

,

.

.

• . z . · · ·

•

. -

Definition		<u>Abbreviation</u>	
	U		
ULTIMATE HEAT SINK		UHS	
UNBALANCE		UNBAL	
UNDER FREQUENCY	-	UF	
UNDER VOLTAGE		UV, UNVOLT	
UNINTERRUPTED POWER SERVICE		UPS	
UNIT		UNT	
UNIT COOLER	•	UC	
UNIT SUBSTATION		US	
UNKNOWN		UNK	
UPPER		UPR	
UPSCALE		UPSC, UPSCL	
UPSTREAM		UPSTR	

. . •• ' . . •

Definition		<u>Abbreviation</u>
	v	
VACUUM		VAC
VALVE		VLV, V
VALVE-EXPLOSIVE		VEX
VALVES		VLVS
VAPOR		VAP, VPR
VENTILATION		VENT
VERIFY		VERIF
VERIFICATION		VERIF
VESSEL		VES
VIBRATION		VIB
VOLTAGE		VOLT
VOLTAGE REGULATOR		V/R, VR
VOLTS		v
VOLTS DC		VDC
VOLUME		VOL

.

ŧ.

•

٠

٩

••

2 - -at

,

, ,

۲

Definition		<u>Abbreviation</u>
	W	
WASTE ·		WST, W
WASTE COLLECTOR		WC
WASTE COLLECTOR TANK		WCT
WASTE DISCHARGE TANK		WDT
WATER		WTR
WATER GUAGE \sim		WG
WATER TREATMENT HYPOCHLORITES		WTH
WIDE RANGE		WR
WINDING		WDG

.

-

ی

4 11

Definition		Abbreviation
,	Z	
ZERO PERIOD ASYMPTOTE		ZPA
+/- 24 VOLTS DC DISTRIBUTION	•	BWS
125 VOLTS DC DISTRIBUTION		BYS
3D MONICORE SYSTEM		3D

Ľ • ۰ ۲

.

*

APPENDIX E Rev 3 8/90

SYSTEM NAME, CODE, AND NUMBER - SORTED BY NUMBER

. . • , . . . , .

NMP-2 SYSTEM CODES - SORTED BY NUMBER

4

i

System <u>Number</u>	, <u>System Name</u>	System <u>Code</u>
01	MAIN & AUXILIARY STEAM	ASS
02	MOISTURE SEPARATOR REHTR VENT & DRAINS	DSR
03	CONDENSATE SYSTEM	CNM
04	CONDENSATE STORAGE & TRANSFER	CNS
05	CONDENSATE DEMIN	CND
06	FEEDWATER SYSTEM	FWS
07	FEEDWATER CONTROL	FWC
08	FEEDWATER HTRS & EXTRACTION STEAM	HDH
09	CONSENSATE AIR REMOVAL	ARC
10A	CIRCULATING WATER .	CWS
10B	ACID TREAT SYSTEM	WTA
.10C	WATER TREAT HYPOCHLORITES	WTH
11	SERVICE WATER	SWP
12	TRAVELING WATER SCREENS & WASH	SWT
13	RB CLOSED LOOP COOLING WATER	. CCP
14	TB CLOSED LOOP COOLING WATER	CCS
15	MAKEUP WATER	WTS
16	MAKEUP WATER STORAGE & TRANSFER	MWS
17	PLANT SAMPLE	SSP
18	ROOF DRAINS & STORM WATER	SRR
19	INSTRUMENT & SERVICE AIR	IAS
20	BREATHING AIR	AAS
21	MAIN TURBINE	MSS
22A	TURB GEN LUBE OIL, TURN GEAR & SEAL E-2	TMG

• • . x R х. r ~ •
l

т 1

1

System <u>Number</u>	<u>System Name</u>	System <u>Code</u>
22B	TURB OIL COND & STOR	LOS
22C	WASTE OIL	WOS
23	TURB EHC SYSTEM	TMB
24	GEN ISO PHASE BUS DUCT COOLING	GML
25	CLEAN STEAM REBOIL & AUX CONDENSATE	CNA
26	TURB GEN STATOR COOLING	GMC
27	GEN HYDROGEN & CO ₂ GAS	GMH
28	NUCLEAR BOILER INSTRUMENTATION	ISC
29	REACTOR RECIRCULATION	RCS
30	CONTROL ROD DRIVE HYDRAULICS	RDS
31	RESIDUAL HEAT REMOVAL	RHS
32	LOW PRESSURE CORE SPRAY	CSL
33	HIGH PRESSURE CORE SPRAY	CSH
34	AUTOMATIC DEPRESSURIZATION	ADS
35	RX CORE ISOLATION COOLING	ICS
36	STANDBY LIQUID CONTROL	SLS
37	RX WATER CLEAN	WCS
38	SPENT FUEL POOL COOLING AND CLEANUP	SFC
39	FUEL HANDLING & RX SERVICING EQUIP	FHS
40	LIQUID RADWASTE	LWS
41	SOLID RADWASTE	WSS
42	OFF GAS	OFG
43	FIRE PROTECTION WATER	FPW
44	FIRE PROTECTION FOAM	FPF

E-3

·

, ,

.

.

System <u>Number</u>	System_Name	System <u>Code</u>
45	FIRE PROTECTION LOW PRESSURE CO2	FPL.
46	FIRE PROTECTION HALON	FPG
47	SMOKE FLAME & TEMP DETECTION	FPM
48	AUXILIARY BOILER	ABM
49	HOT WATER & GLYCOL HEATING	HVG
50	DOMESTIC WATER	. DWS
51	SANITARY PLUMBING	PBS
52	RX BLDG VENTILATION	HVR
53	CONTROL BLDG HVAC	HVC
54	NORMAL SWGR BLDG VENT	HVN
55	TURBINE BLDG VENT	HVT
56	RADWASTE BLDG VENT	HVW
57	DIESEL GEN BLDG VENT	HVP
58	SCREENWELL & FIRE H&V	HVY
59A	CB/RB ELECT TUNNELS VENT	HVN
59B	AUX SERVICE BLDG HVAC	HVL
59C	MISC VENT SYSTEM	HVI
60	DRYWELL COOLING	DRS
61	CONTAINMENT PURGE & STANDBY GAS	CPS
62	DBA RECOMBINER	HCS
63	REACTOR BLDG DRAINS	DFR
64	TURBINE BLDG DRAINS	DET
65	RADWASTE BLDG DRAINS	DFW
66	MISC DRAINS E-4	DFM
	— ·	

'n.

1

÷

. • • . • . . • • ,

.

4

11

;

System <u>Number</u>	System_Name	System <u>Code</u>
67	DRYWELL DRAINS	DER
68	MAIN GEN. AND EXCIT.	GMS
69	345 KV TRANSFORMER	SMP
70	STA ELECT FD & 115 KV SWYD	SPF
71	NORMAL AC HIGH VOLT DIST	NHS
72	STANDBY & EMERGENCY AC DIST	SYD
73	NORMAL DC DIST	BYS
74	EMERGENCY DC DIST	DMS
75	STATION LIGHTING	LAS
76	PLANT COMMUNICATION	ISG, PCS
77	GROUNDING & CATH PROTECTION	COS, COJ
78	REMOTE SHUTDOWN	RSS
79	AREA RAD MONITORING	RMS
80	PROCESS & AIRBORNE RAD MONITORING	RMS
81	CONTAINMENT LEAKAGE MONITORING	LMS
82	CONTAINMENT ATMOSPHERE MONITORING	CMS
83	PRIMARY CONTAINMENT ISOLATION	ISC
84	REACTOR BLDG CRANES & ELEVATORS	MHR
85	RX COOLANT & ECCS LEAK DETECTION	RSS
86	LOOSE PARTS MONITORING	lpm
87	STANDBY & EMERGENCY AC DIST	SCM
88	NITROGEN SYS/CONTAINMENT INERTING	CSN
90	SIESMIC MONITOR	ERS
91	PROCESS COMPUTER E-5	IHC

.

.

•

"

ν.

•

.

÷

System <u>Number</u>	System Name	System <u>Code</u>
92	NEUTRON MONITOR	NMS
93	ROD BLOCK MONITOR	RBM
94	TRAVERSE INCORE PROBE .	TIP
96	RX MANUAL CONTROL & ROD POSITION INDICATION	RMC
97	REACTOR PROTECTION	RPS
100A	STANDBY DIESEL GENERATOR	EGF
100B	HPCS DIESEL GENERATOR	EGA
101	MISC. CRANES, ELEV & DOORS	'nнw
102	DECON SYSTEM	DCS
103	PGCC	CEC
104	SECURITY SYSTEM	
105	TRANSIENT ANALYSIS RECORDER SYSTEM	SXS
106	REDUNDANT REACTIVITY CONTROL	RRS
107	VIBRATION MONITORING	LPM

- 11

, 1

ľ

E-6

. . . • ۴ 1 . --.