
C.D.I. Report fto. 79-1

FSTF SHELL CONDENSATION

OSC ILLATION LOADING CORRECTION

FACTORS — Uf'PCORRELATED VENTS

Revision 2

D, B, Bliss and I'1, E, Teske

Continuum Dynamics, Inc.
32 Nassau Street

P.O. Box 3073
Princeton, f/ew Jersey 08540

for

Nuclear Energy Division
General Electric Company

175 Curtner Avenue
San Jose, California 95125

under

Purchase Order 205-XC911

Approved

9110070196
P
PDR ADOCK

910927
05000220

PDR

Alan J, Bi lanin
President

AUGUST 1980



7 p

0



TABLE OF CONTENTS

SECTION TITLE PAGE

II,

III
'V.

Nomenclature

Executive Summary

Introduction
Examination of the Random Nature of FSTF

Shell Loading

Analysis of the Effects of Vent Correlation
on Pressure Loads in FSTF

Calculation of the PSD Load Reduction Factors
in FSTF

Effect of Partial Correlation Between Vents

iii

25

29



p
~



I

4 NOMENCLATURE

cn

(er, eg, ez)

J n

mJ
n

n
S

n

p,P

RF

radius of cylindrical 'torus

acoustic speed

series parameter defined in Equation 10

section length along a torus

half-length of a cylinder

unit vectors in (r, 8, z) directions

frequency in Hz

transfer function

frequency response function

Bessel function

segment length

distance between segment stations
.torus half-circumference length

j th stationary, value of J , defined in Equation 5

n'umbero f segment circumferential stations
number of vents at each segment station
number of linear segments in a torus

pressure

normalized source strength, defined in Equation 35

total velocity vector

volume flow rate
. radius

cylindrical polar coordinates measured from a vent source

cross-correlation function

load reduction factor

power spectral density
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(u,v,w)

P P ~ ~

time

velocity components in (r,6,z) directions

distance along torus

wave solution parameter, defined in Eq'uation 4

Dirac delta function

angle

coordinate transformation variable

density

correlation coefficient

frequency in radians/sec

SUPERSCRIPTS

time average

FSTF conf iguration
mod ified time average
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EXECUTXVE SUMMARY

An analysis of measured downcomer pressure data in FSTF

Run M8 was undertaken in the 0 — 50 Hz frequency range during
condensation oscillation to assess the degree of randomness
inherent in the vent dynamics. Correlation coefficients generated
for these data indicate that the sources at the exits of the
vents in the 0 - 50 Hz frequency range are random and uncorre-

J

lated except at 5 Hz and the 8 — 10 Hz frequency range, where
the signals are strongly correlated. Condensation oscillation
load reduction factors are developed which may be used to
adjust FSTF PSD's of average shell pressure data to take credit
for source randomization between vents and bays. Xt is shown
that the PSD's of measured average bottom pressure data are
conservative by nearly a factor of two (except at 5 Hz and the
8 - 10 Hz frequency range), without taking credit for reduced
sound speed in water. The data is even more conservative for
lower acoustic speeds in water. Correlation of the vent sources
is shown to partially negate the PSD reduction factors. The
PSD reduction factors which form the major result of this study
are summarized in Figures 9 and 10.
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I. INTRODUCTION

Examination of the correlation coefficients of FSTF

downcomer pressure histories in the 0 - 50 frequency range
during condensation oscillation indicates a lack of coherence

among the condensation processes at the vent exits for most of
this frequency range. Therefore, as a consequence of the
"rigid" end caps installed in FSTF to end the bay, shell
loadings measured in FSTF will be higher than loadings
measured in a protypical plant. This is because, in FSTF,

loads are measured as if all other bays are exactly in phase

or are coherent with the bay modeled by FSTF. By demonstrating
that in a given frequency range vents and hence bays are
necessarily uncorrelated, load reduction factors may be developed
to take credit for lack of coherence between bays. In this
report an analysis of 15 seconds of FSTF Run M8, in the time
interval 20 — 35 seconds of condensation oscillation data
involving pressure transducers P5323, P5443, P5523, P5643, P5723

and P5843 on downcomers 3 through 8, is undertaken. Correlation
~ coefficients are generated as a function of frequency for each

unique pair of pressure signals. An analysis is then undertaken
to develop load reduction factors which may be applied to the
PSD's of the shell pressure field over the signal frequency
range . Finally, the effect of correlation on the resultant
PSD reduction .factors is discussed.
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XX. EXAMINATION OF THE RANDOM NATU'F FSTF SHELL LOADING

The mean square pressure signal at a containment wall from
two vents with pxessures P.(t) and 9.(t) is given by

3

(P. + P.) = P~ + 2P.P. + P~i j i i j j

where the overbar denotes a time average. If P. and P. arei 3
random and incoherent, then ~P.. =. 0, (i 9 j), and the corre-
lation coefficient between the two ~ents is defined to be

Thus the correlation ~ indicates the amount of correlation
3- 3in the signals from the two vents.

For the time period 20 — 35 seconds for FSTF xun NU, the as=a

from transducers on downcomers 3 through 8 near their exits was

Fourier decomposed and then used to construct the mean square
pressure signal components P. + P. , F. + F. and P.P. for

J i J i j
each of the 15 unique downcomer paix combinations, These mean

square quantities are calculated as a function band width with
the band always starting at zero frequency (DC), As the higher
frequency cont;ributions are added to the signals, the amount of
downcomer correlation is estimated by large rates of change wit';-.

'frequency of the P.P. signals A representative result is
3. j

shown in Figure 1 for the 0 - 50 Hz fxequency range. Here the
rapid rate of'hange in P5P6 near 5 Hz, and a smaller change
between 8 and 10 Hz, with perhaps a slight change at 17 Hz,
indicate that these frequency regions are where the downcomer
pressure signals during condensation oscillation are correlated.
Figure 1 indicates that apart from these particular regions,
and certainly for frequencies above 20 Hz, the correlation
coefficient is well approximated by zero.
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P +P6
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Frequency, Hz.

Figure l: Mean Square pressure signals between downcomers 5 and 6, FSTF Run M8, 20 — 35 seconds,
during condensation oscillation as a function of frequency bandwidth (measured from
envn Pvnrs ~ in~ewrb
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Thus, since the conden'sation process at each vent is random

and uncorrelated, the shell loading in a torus will be other
than what is measured in FSTF because of the perfect reflection
effect of the rigid wall end caps installed in the FSTF. A

methodology is developed below to quantify the amount of
conservatism which exists in the Mark I Condensation Oscillation
loads as a consequence of the end cap effect.

One can speculate as to the origin of this random signal.
Condensation oscillation is described as the highly periodic
growth and collapse of a steam bubble at the exit of the vent.
While the growth process has been observed to be closely in-phase
among all vents, the collapse process (in particular, the final
stages of collapse) is not. Apparently, local pool turbulence,
steam water interface instabilities and buoyancy all contribute
to the detailed collapse at the vent exit ~ It would not be

surprising to find that the final stages of collapse are random

and that the distribution of sizes of steam/air bubbles left
in the pool are also random. An estimation of the bubble sizes
required to produce a signal in the 20-50 Hz frequency range is.
consistent with what might be expected to occur at the vent exit.
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III. ANALYSIS OF THE EFFECTS OF VENT CORRELATION ON PRESSURE

LOADS IN FSTF

CONFIGURATION AND ASSUMPTIONS

Pressure pulsations occur as steam vents discharge beneath the
water surface in a large half-filled toroidal vessel. The "torus"
is of circular cxoss-section, with radius "a ", and is constructed
of "N" linear segments each having a centerline length "R". The

half-circumference is defined as L = >NR . In each segment, there
are "n " circumferential stations, each separated by a distance

s V
with "n " vents located at each station. The pressure pulsationsv
produce net vertical unsteady forces on the torus. The magnitude
of these forces depends on the degree to which the pulsations from
the various vent sources are correlated or uncoxrelated. Unsteady
loads were measured in a full scale test facility (FSTF) which
resembles a portion of the torus enclosed'by rigid end walls. It
is desired to be able to transfer these test results to a full torus
configuration, taking into account the different boundary conditions
and the possible effects of source correlation.

In the analysis that follows, the pressure disturbances in the
liquid are assumed to be governed by the simple wave equation.. The

walls of the vessel are assumed to be rigid and the water surface
is modeled as .a simple constant pressure boundary condition (there-
fore, gravitational waves are excluded) . The torus is unwrapped
and analyzed as a simple cylindrical geometry, so that the effects
of curvature around the toroidal circumference are neglected. The

fact that the torus closes on itself is taken into account through
use of the proper boundary condition. The vents are modeled as

simple point sources (delta functions) so that the local flow struc-
tuxe around the vent is ignored and only the net effect of mass

addition and removal is considexed. These assumptions lead to con-

sidexable simplifications in the analysis while still retaining the

basic physics of interest and assuring a reasonable degree of com-

putational accuracy'.
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FORMULATlON FOR THE PRESSURE

The basis for the analysis is the solution of the wave equation
in the half-filled cylinder of half-length "D" and radius "a", with
cylindrical polar coordinates located as shown in Figure 2. A single
vent source is located at the coordinates (r ,6 ,z=,0). The distancev) vl

"d" is a section length used to compute a net vertical force due to
the unsteady pressure. The governing equation for the pressure is

8 + 1 ~8 + 1 3 + 3 1 8 0~ar + r ar +r~ ~a8 ~az ~c ~at

The associated boundary conditions for the geometry of Figure 2 are:

p(r,0,z,t) = p(r,m,z,t) = 0 0<r<a 0 < z < D (free surface)

p(a,8,z, t) = 0
a

0 < 6 < m, 0 < z < D (hardwall)

a, p(r,8,D,t) — 0a
0 < r < a, 0 < 6 < m (hard wall)

(2)
Using the method of separation of variables, the following general
solution for harmonic time dependence is obtained:

00 CX) cosh [an. (D-z) ]
p(r,6,z, t) = e $ ) cn.J (mJ —)sin n6

n= j= j n n a cos a„. D
3

(3)

where

o = — (m) - (—)
1 j 2 (da 2

nj a n c (4)

The quantity mJ is defined to be the j th stationary value of the
n

Bessel function J, namelyn

—J (mJ) = 0
d
dr n n (5)

1= 2 =
0

where, for instance, ml = 1.84118 , ml = 5.33144 , etc.

The form of the pressure as expressed by Eqs. (3) and (4) assumes





0

source location

Figure 2.'asic Geometry for Calculating the Pressure.
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an is real, namely (—) < m . The solution is thus restrictedua j
j c n

to sufficiently low frequency that axial propagation of pressure
disturbances does not occur. This is the case of physical interest,
since if a = 14 ft and c = 2500 ft/sec the solution form is valid
until a frequency f = 52.33 Hz. The solution above this frequency
value has the property that pressure disturbances decay, essentially
exponentially, away from the vent and are everywhere in phase.

The general solution will be specialized to the case of a single
vent located at (r ,6 ,0) . The velocity field q = ue + ve< + wev v' 9 z
can be calculated from the linearized momentum equation. For har-
monic time dependence the z-component of velocity is

w= —'u
Bz (6)

Substituting the general solution gives

ie 3. (i)t j r sinh[en. (D-z) ]s(r, s,z, t) = —) ) cn.an.J (m -) sin ns
ptd l . l j j n n an= cos ()(n. D

(7)
Now let the net volume flow rate from a vent be Qe . Since this3.Mt

quantity must equal the net volume flow thxough a cross-sectional
plane located at z = 0+ , the z-component of velocity due to the
vent must be

w(r e O+ t) 2r a ~ a a)6(0 v)er xv i(i)t
v

(8)

The factor of two in the denominator is necessary because only half
the volume flow goes in the positive z-direction. Equating Eqs.
(7) and (8) and using the orthogonality properties of both trigono-
metric and Bessel functions permits. the determination of the coeffi-
cients of the sexies in the genexal solution for pressure, Eq. (3).
After a lengthy calculation, the result is:

j r
p(r,8,z, t) = ie ) ) 8n.. sin ns cosh[an. (D-z) ]

i~t 2p~o n( n

n=l j=l J J (mJ)n n
j '(9)
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" where

sin n6 v
nj an sinh on D

3 j Z„(m~) (m~) - nn
(10)

The root mean square (rms) pressure can be obtained directly from
the above expression. The result is equivalent to replacing the
pressure and volume flow with their rms values, p and Q respec-
tively, and omitting the factor ie , which is of unit magnitude,1[0t

in Eq. (9). Specifically, the rms wall pressure is given by

P(a,s,z) = ~ ) t Dn. sin na cosh[on. (D-z) ]
n=l j=l "3

To compare with the experimental data, it is necessary to'ex-
press the result as an area-averaged vertical component of the rms

pressure, defined as follows
z+d/2 m

p~ -. ~ p sin 6 ad6dz
z-d/2 0

d d
z < D

2 2
(12)

The area "2ad" is the horizontal planform area of the shaded surface
in Figure 2. The inequality condition is necessary to stay within
the region of validity of the hyperbolic functions in the integrand.
Substituting Eq. (11) into Eq. (12) gives the important result

pa~(z) = ~< ) K.cosh[el. (D-z) ] ~' z < Dj (13)

where

sin Bv sinh(+1'
1 ml a'j ~sinhcl D J(j)alj j 1 ml

(ml)j 2

(ml) - 1
(14)

and, 'from Eq. (4),

()[1. = — (m ) - (—)
1 j 2 [))a 2

j a 1 c (1S)

An interesting feature of the averaging process is that only the
lowest circumferential harmonic (n 1) makes a net contribution to
pav
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In parts of the analysis that follow,. it is necessary to cal-
culate the pressure contribution of a single source in the torus.
Unfortunately, the inequality restriction on the argument "z" in
Eq. (13) is very inconvenient in this case, since it prohibits cer-
tain relative locations of the source and the averaging area. It
is therefore necessary to develop a more general expression without
this restriction. Because the torus closes on itself, the pres-
sure must be symmetric about both the source location and the reflec-
tion point half-way around the circumference. Setting D = L
the half-circumference, the definition of the pressure as given in
Eq, (ll) is extended as follows:

p(a,8,z) = p(a,8,-z)

p(a,8,L-<) = p(z,8,L+g)
(16)

where ( = z-L is a coordinate with its origin at the reflection
point. The averaging operation of Eq. (12) could be used now to
obtain a vertical component of the rms pressure, pav , due to a

single source averaged over a length d in the torus. Actually,
the result can be developed more simply by a judicious application
of Eq. (13). As shown in Figure 3, the symmetry of the torus causes
the force on the area in the left-hand sketch to be the same as the
sum of the forces on the two areas in the right-hand sketch. Using
Eq. (13) to find the forces on these two areas, and adding the re-
sults to obtain the average vertical .pressure for the entire averaging
area gives:

av 2 - d av 2 - dd=Qz d=~-z
0<z d

2

p (z)
L

p (z)
D=L

d
p (L --)'r(L-)

d d<z <L—
2 (17)

+ v(L-P) d L2< Ld d

d=p-(L-z)

10
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sourc averaging areas

Q<z d
2

d d—< z < L-—
2 — — 2

L--<z<Ld
2

reflection
plane

Figure 3. Geometry for Computing Average Pressure in a Torus.
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The new function p is a modification of Eqs. (13) and (14) inav
accordance with the areas shown in Figure 3, namely

where

p (q) = Q~" ) K. cosh[a . (L-q)]
3=1 3

(18)

sin 6
K. v

Q
2lj sinh 01.

3 1( 1)

sinh(~l 2) Jl. (ml a )
v

(m31)

(1) -1 (19)

Note that retaining the total averaging area "a~d" in Eq. (18)
provides correct weighting for the additional pressure contributions
in Eq. (17) .

The approach to be taken, using the results just developed, will
first be summarized. Depending on the geometry, Eq. (13) or Eq. (17)
can be used to relate the average vertical pressure to the volume
flow rate (of source strength Q ) of a single vent. Thus, these
equations can be used to relate the net average vertical pressure
to the source strength in containment configurations with multiple
vents (correlated or uncorrelated), such as FSTF. This result is
achieved by suitably defining the dimensions "d" and "D", and by
adding the source contributions in the appropriate manner. Given
the p as a function of frequency (determined experimentally inav
FSTF), the corresponding function Q can be determined, assuming
either that all vent sources are correlated or uncorrelated. The
function Q can be used to predict p as a function of frequencyav
in a toroidal vessel, assuming correlated, partly correlated, or
uncorrelated sources.

DETERMINATION OF VENT SOURCE STRENGTH

Case 1: All Vents Correlated

Let the notation ( ) denote the properties characterizing
the FSTF ~ Figure 4 shows a schematic of the FSTF configuration
which has a length "2" between hard walls with fi = 2 vents atv
each of the q = 4 vent stations. Assuming all vents are cor-

s
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Figure 4. FSTF Geometry for Case l: All Uents Correlated.
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related, they form an image system equivalent to placing rigid
walls at a distance R /2 on each side of a single vent pair.v
The average vertical pressure component is the same below each
vent. Thus, p is found using Eqs. (13) and (14) and settingv
D = R /2 , d = R /2 , z = R /4 , corresponding to the cross-hatchedv v v
area in Figure 4. Since there are two vents at each station,. the
experimentally measured pressure in the FSTF is actually p = 2px av
Making the substitutions into Eqs. (13) and (14) and solving for the .

source strength gives

a 4'
1 x ~p(d

00 -1
K. cosh [nl . ~]=1 31 lj (20)

where

K.
31 0 avlj sinh[el. ~]

(ml)j 2

(m~)
1

(21)

The subscript ( )1 indicates that this result applies to Case 1,
all vents correlated.

Case 2: All Vents Uncorrelated

When n uncorrelated pressure signals p.(t) are added, the
3.

net rms level is

n

i=1
(22)

For example, if there are only two pressure contributions

P = Pl" +P2" = Pl+P2+ P1P2
2 2 (23)

When the time average is taken to compute the mean square, the
third term on the right averages to zero since pl and p2 are un-
correlated. What remains corresponds to Eq. (22) for n = 2

Equation (22) cannot be applied to the FSTF configuration with-
out some additional consideration. Although .the vent sources within

14
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the facility are uncorrelated, the rigid end walls cause each source
to have a correlated image system. A single source and its cor-
related image system is shown schematically in Figure 5. Formally,
the contributioa p of each source and its image system mustav.
first be found. The value of p v. must be based on R , the

3.

length of the entire FSTF segment. The net value of pav is then
found by adding the uncorrelated contributions pav. according toi
Eq. (22) . This procedure, which is straightforward but tedious, can

be circumvented by reasoning from a different point of view.
I

Xf a single pulsating source is placed in an infinitely long
cylinder, it produces a certain net vertical force, Suppose an

infinite numbex of sources are placed in the cylinder in a periodic
pattern to form the image system shown in Figure 5, with one

source per length 2 . Then the net foxce acting on the length
k must be the same as the net force produced by a single source
on the entire tube. Tn particular, the force on the segment is
independent of the specific source location, as long as the sources
are distributed to satisfy the image pattern. The conclusion is
that each source in the segment makes the same contribution pav s
independent of its location. Xf these sources were correlated, as

in Case 1 above, theix net contribution would be 8pav . However,
s

since these sources are uncorrelated, Eq, (18) gives their net
contribution as Apav . Since the source strength is linearly

sproportional to pressure, it follows that the strength of uncoxrelated
sources (Case 2) is

~2 ~~1 2.8284 ~l (24)

where Ql is determined using Eqs. (20) and (21),

As a check on this reasoning, the same result was obtained .

by the formal method described earlier. The approach is summarized

below, but the detailed dexivation is omitted. Equations (13)
and (14) were evaluated for the case D ~ ~ , namely a single source
in an infinitely long cylinder. The contribution of each source
and image system was obtained for each subsegment R . The con-v
tribution of each source on the entire segment of length R was

15
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Figure 5.. FSTF Geometry for Case 2: All Vents Uncorrelated.
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determined, and indeed was found to be independent of source loca-
tion. Finally, the source strength was found to be given by the
following expression:

Q2
= v

x ~/pe (25)

where

sin 5
K. v sinh[nl.

J CO 13Gl.j

k. Jl (mal ) (mal)

(mjl
(26)

Numerical evaluation of these expressions shows the result to be
identical,to Eq. (24) .

PREDICTION OF VERTICAL PRESSURE IN TORUS

Case I: All Vents Correlated

This case is similar to Case 1 discussed in the previous sec-
Lion. As indicated in Figure 6, the correlated vents form an image
system equivalent to placing rigid walls at a distance R /2 onv
each side of the vent station. Therefore, in Eqs ~ (13) and (14)
set D = R /2 . Evaluation of pav on the cross-hatched area isv
equivalent to set ting d = R /2 and z = R /4 . The net averagev v
vertical pressure component is thus

9.

pT =n pI D=a /2v
d=k /2v

(27)

where p and gl are given by Eqs. (13) and (20), respectively,
and n is the number of vents at each station (Figure 6 showsv
n =2).

A comment on using the source strengths as found in the previous
section is now appropriate. The direct use of these source strengths
is really only valid '-if the water in the vessel provides the same
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18



~ w

~ P

1'

0 4

E

Al

l
4

E3

0,



unsteady loading on the end of the vent in each case. This condi-
tion does not require that the geometry of the torus (radius, vent
spacing, etc.) be identical to that of FSTF, but of course it is
satisfied in that case. The point is that, in geometries that are
substantially different, an additional source transfer procedure
would improve accuracy. However, such a source transfer procedure
cannot be readily performed without additional detailed calcula-
tions.

Case II: All Vents Uncorrelated

The geometry or this case is sketched in Figure 7. Since the
vents are uncorrelated, the influence of each vent on a fixed area
of the torus is first determined, and the contributions are then
added according to Eq. (22). Since the torus closes on itself, half
of the torus can be replaced by a reflection plane (rigid wall)
directly across from the vent. Equations (17), (18) and (19) give
the appropriate expression for the average vertical pressure in
this case. The re lection from the plane of symmetry accounts for
the second (longer) transmission path around the torus from the
source to the point of evaluation. The effect of different sources
on a fixed area is equivalent to the effect of a fixed source on

different (equal) areas, since it is the distance between them that
is important. The length over which the area averaging takes place
is chosen to be d = R the length of a segment. Referring to
Eq. (17), the 'contribution of a source a distance z = fs-~>] R ,

"s"
v

an integer, from the center of the averaging area is p ([s-~>) R 3avL
Because of the symmetry of the torus, there are two vent stations
(on opposite sides) at this distance, and there are nv vents at
each station. Adding all such contributions according to Eq. (22)
gives the Case II result:

N /2
pT = 2n ) pav ([s->2] ~ )'II =1 d=k

(28)

where N /2
(N, = Nn,) .

is the number of vent stations in half of the torus
The uncorrelated source strength Q2 is determined

'19
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Figure 7. Unwrapped Torus Geometry for Case "II:
All Vents Uncorrelated.
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by Eq. (24) or Eqs. (25) and (26) .

It is also possible to arrive at a related result of some in-
terest. The value of pT averaged over the planform area of the "

TII
entire torus, namely d = 2L, is easily deduced. A single vent
produces a given net vertical force in the entire torus regardless
of its location due to symmetry. This force can be found by dividing
the correlated source (Case I) result by the total number of sources

N n = Nn n . However, by Eq, (24) the source strength Q2
= v%Q1

s v s v
is to be used when all sources are uncorrelated. Thus, the contribu-
tion to the average vertical pressure of any one of the uncorrelated
vents is WpT /Nn n , where the averaging area is the entire torus

s v
planform. Adding all the contributions according to Eq. (22) gives

TII Nn n TI
ENTIRE TORUS

(29)

where pT is given by Eq. (27). Because of the lack of correla-
TI

tion between segments, Eq. (29) always gives a lower value than

Eq. (28).

Case III: Correlated Vents in Each Se ment, Se ments Uncorrelated

As an intermediate case between the two just considered, sup-

pose that the vents in each segment are correlated, but that each

segment is uncorrelated from the others'he averaging area is
again chosen to be d = R , the segment length. The contribution of
each segment of correlated sources on the averaging area is first
determined, and then these uncorrelated segment contributions are
added according to Eq. (22), This approach is illustrated schematical-

ly in Figure 8 . The correlated pressure from a segment centered
a distance sR , s=l,...,N/2-1 , away from the center of the

averaging area is the sum of the individual pressures given by

Eq. (17):
n

p v6=1

n +1
(su. + [~ — 6J ag

d=g,
Q=Q1

21

n even or odd
s

(30)



~ J



correlated vents

Figure 8 . Unwrapped Torus Geometry for Case III: Correlated Vents in
Each Segment, Segments Uncorrelated.
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where n is the number of stations in a segment and n is the
s v

number of vents at each station. The most reasonable choice of
source stxength seems to be Ql since most adjacent sources are
correlated and since a torus segment length is comparable to the
length of FSTF. For the segment directly over the averaging area
(s=0) the pressure is given by:

n /2
p = 2n ( p ([5->2]a )o v 6=1 avL v

d=k
n even

s
(31)

Similarly, for the segment directly opposite the averaging area
(s = N/2) the pressure is

n /2s
p = 2n ) p (L — [d-~a]R )N/2 v 6=1 avL v n even

d=k s
(32)

Similar expressions for
The special forms of Eq

restriction 0 < z < L

metry of the torus, the
located within 0 < z

xelated pressures given

p and pN 2 may be derived for n odd.
0 N/2 s

(31) and (32) are necessary because the
applies to Eq. (17). Because of the sym-

contribution of half the sources (those
L) can be doubled. Adding these uncor-
the Case III result:

p = p + 2III Ps + PN/2s=l
(33)

The factor of two befoxe the summation sign accounts for the fact
that there are two uncorrelated segments of equal distance on either
side of the averaging area. Since Case III is a reduction in the
degree of correlation as compared to Case I, Eq. (27), the following
inequality always holds: pT < pT'III

The related result for which the torus planform is the averaging
area is easily deduced. The net vertical pressure of a single vent
in the torus is the Case I result divided by the total number of
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sources, namely pT /Nn n . The net pressure
s v

having n n correlated sources is therefores v
(22) to add N such equal uncorrelated levels
the segments gives

due to a segment

p /N . Us ing Eq.
to account for allI

l
PT PTI

ENTIRE TORUS

(34)

Because the individual segments are uncorrelated, the level given
by Eq. (34) is always less than that given by Eq. (33) . Interest-
ingly, comparing Eqs. (29) and (34), the Case II and III levels for
the entire torus, shows these levels to be comparable although Case
III should be higher. This reflects the fact that the choice of
gl for the source strength in Case III is an approximation and
that the value fox a partially correlated case actually should be

used.
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IV. CALCULATION OF THE PSD LOAD REDUCTION FACTORS IN FSTF

The FSTF downcomer pressures have been shown earlier to be

nearly uncorrelated in the 0 - 50 Hz frequency range, (except at
5 Hz and in the frequency range 8 - 10 Hz) . The analysis then
shows that for all of the vents uncorrelated within the bay,
Eqs. (24), (20), and (21) are needed to determine the vent source
strength, given the FSTF geometry. Once this source strength 'is

obtained, the analysis for all vents uncorrelated, including the
effects of all uncorrelated (image) bays, Eq. (28), results in
the net average vertical pressure in a protypical plant, It is

'he

purpose of this section to calculate the PSD reduction factors
available by this analysis, before discussing the effect of partial
correlation.

For the FSTF geometry, the normalized source strength
for Case 2 may be determined by defining the quantity

po) sin 6

~2 p
(35)

so that

with

CO -1
q = vY ) K. cosh[el. —]j=l 3 lj

j 2
(ml)

(36)

(37)'... hl. i 'it 1>lj F (1) 1

u . = — (mJ) — (—)
1 03a 2lj a 1 c (38)

and ml is the zeros of the slope of J . Equations (36) andj
(37) are a rewriting of Eqs. (24), (20) and (21) appropriate for
the definition in Eq. (35) . Using these equations, the vent
source strength q may be obtained; q is a function of the plant
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geometry, frequency I and sound speed c

An application of Eqs. (13), (14), (17) -(19) and (28) to
the equivalent FSTF plant (where R = 2R ) yields the resultantV
average vertical pressure for Case II as

pT N /2—= q 2n ) p'[s3)k )
px V

1 aVL V (39)

where p is the experimentally determined pressure andx
n

p (n)
L

av 2 " " av
d +" d

d=l +q d=|E, -q
V V

p (~1)
8=2K

V

0

n n n
q < L-R

V V

(40)

(L-2)... Pav(L-P)
d=R +L-rl

V
n n
d=9 -L+11

V
n

L-R < q < LV

CO

p (n) =
$ K. cosh[a . (L-q) ]av .

1 j3= lj (41)

dsinh(al. -)
j 6 ~ .lj'inh(0 .L)lj

r
~1(ml -a=)

al (m~ ) (m~1) - 1
(42)

For the FSTF geometry,

N
s
R

a

rv =

4

2

64

9.75 ft (a = 4.88 ft)V
13.83 ft
7.21 ft (e = 56.3')
156 ft
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The square of the results of Eq. (39) yields the PSD

reduction factors shown in Figure 9. Although the curves begin
at 0 Hz, the reduction factor is strictly valid only in the
frequency range where the sources are random and uncorrelated,
The results are a function of the sound speed c and a function
of frequency. The reduction factor is always less than 0.53.
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F igure 9: P.S.D. Reduction factor as a function of frequency for
Uncorrelated Vents Case IX in FSTF,

28



~ ~

g

l w'

~

4

I'



V. EFFECT OF PARTIAL CORRELATION BETWEEN VENTS

GENERAL APPROACH
So far in this report we have considered primarily the cases

of perfect correlation or perfect uncorrelation between vents.
In this section-we examine the theoretical and practical limitations
of paxtial correlation between vents.

The multivent FSTFlPlant configuration may be thought of as

a linear system in which many time dependent inputs give a

single time dependent output. The inputs in this case are the
unsteady pressures in the steam vents. The linear system transfers
these pressures to volume flow fluctuations at the ends of the
vents and then converts these into averaged pxessure fluctuations
on the bottom of the torus. The output is the net fluctuating
area-averaged pressure on a specified portion of the torus,

The frequency xesponse function in the ith vent will be

denoted by H (~). The power spectral density of the input at the
3.ith vent will be denoted by S .. (~), while the cross-spectral

density of the ith and j th vent will be denoted by S .. (~) .ij
The frequency response functions H. (~) depend on configuration

3. thgeometry, size of the averaging area, and distance of the i vent
from the averaging area. The notation ( )" will denote the

'omplex conjugate. Thus, the power spectral density of the output
is given formally by

N N

ST (o)) = ) ) H. (u)) H. ((u)S . (u))

i=1 j=l
(43)

The frequency response functions H. (~) may be assumedi
known. The transfer function between the vent volume source and

the averaged bottom pressure was determined earlier in this
report. (See Equations 13-15 and 17-19 f'r the result in general
form). The transfer function between internal vent pressure and

volume flow is actually not known (and really may not be entirely
lineax). However, since this function is the same in every vent,

1 D.E. Newland, Random Vibrations and S ectral Anal sis, Publisher:
Longman, 1975, apter , Eq. . page

29



f g

f

I 4



and since ultimately the FSTF pressure data is used to infer torus
pressures, this part of the frequency response function effectively
cancels out.

The important point to observe in Eq. (43) is that to compute

ST(~) in general requires a knowledge of not only all the spectral
densities, but also all the cross-spectral densities, Phile it
may reasonably be assumed that all the spectral densities S..((u)

3.3.

are identical, such an assumption may not in general be applied
to the cross-spectral densities. The cross-spectral density is
given by the transform of the cross-correlation function:

+oo

S.. (o)) = — R.. (z)e dv1 i(OT

'%I
(44)

where

R..(v) = p~c p. t + i (45)

for input pressures p(t).

The correlation coefficient for any two vents is defined as

where -1 < p.. < 1. Notice that specifying all the correlation3-j-
coefficients does not in general provide enough information to
calculate ST(~) . In fact, two sets of inputs which are
fundamentally different may have the same correlation coefficient
but different cross-spectra, and thus produce a different system
output. However, the, correlation coefficient is useful when

narrow frequency bands are considered, as will be discussed later.

RELATION TO RESULTS IN PREVIOUS SECTIONS

Earlier in the report, results were computed for two
limiting cases of interest. In Case I all the vent pressures
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have identical time histories so that all the spectra and

cross-spectra are identical, namely S..(~) = S..(~) for allii 3-3i and j . Independent of this assumption, we may always write

(47)

Here F(~) is the complex transfer function across the vent
steam/water interface., which is the same for all vents. The

function H.(z) is the transfer function from the vent to thei
torus wall; from Eq. (19), H. (~) = Fav</Q. The analysis has

shown that H. (u;) is real for frequencies below the acoustic
1

cut-off frequency for the torus. The power spectral density of
the pressure on the torus becomes:

N N

ST(o)) = Sll(ld) (F(ld)
~ ) ) H. (u)H. (m)

i=1 j=1

The double summation may be re-expressed to give the result
2

i " 2
ST (u) = Sll(z) ) F(u) ( ) Hi(z)I 1.=1

(48)

(49)

Equation (49) is the equivalent of the result for all vents
perfectly correlated, called Case I and given by Eq. (27).
The actual Case I result was obtained in a different and more

convenient way by using an image method.

The other result obtained previously was for all vent
pressures perfectly uncorrelated, namely R..(v) = 0 and

3-3

S .(~) = 0 whenever i p j . All vent pressures were assumed toij
have identical power spectral densities, namely Sll(~) = S . (~)
for all i. Then Eq. (49) becomes

2
N

ST ( ) Sll( )( (+) ) $ (+)II i=1
(50)

This result is equivalent to the Case II result of Eq. (28),
obtained by performing a summation equivalent to'hat given by

(~0)
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Earlier in the report, the..factor corresponding to Sll(~) ~
F(z).( ~

which appears in both Eqs, (49) and (50) was related to the wall
pressures measured in FSTF for the cases of pexfectly correlated
and perfectly uncoxrelated vents. It was then possible to
pxedict torus wall pxessures in terms of FSTF wall pressures,
The torus diameter and vent geometry were assumed to be the same

as in FSTF. Then if all sources are perfectly correlated, the
wall pressures in the torus are the same as in FSTF, However, if
all sources are uncorrelated, the wall pressures in the torus are
lower than those in FSTF because the rigid end walls in FSTF

produce correlated image sources, It was, therefore, possible to
plot a power spectral density reduction factor as a function of
frequency to show the effect of perfectly uncorrelated vent sources,
Fig. 9.
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EFFECT OF PARTIAL CORRELATION

When some degree of correlation exists between the input pres-
sures from various vents, the problem becomes much more difficult.
Equation (43) 'shows that all the'ross-spectral densities in the torus
must be known. These cannot be obtained from FSTP, except perhaps
for. adjacent vents. In particular, specifying just the co relation
coefficients is not in general adequate unless the data is analyzed
in narrow frequency bands. Even so, it is necessary to specify all
the pairs of correlation coefficients. In the following analysis,
the correlation coefficients of all possible vent pairs are assumed
to be equal.

The spectral density and correlation function are a Fourier
transform pair; thus, corresponding to Equation (44),

R. (v) = S..(au)e duij ij (51)

,It follows that for a very narrow bandwidth, hv, the correlation
function is approximately

R.. (v) = S.. (~)eij ij (52)

where v is in'terpreted as the band center frequency. Then

R.. (o) = s.. (~)aM (53)

Equation (46) may be rewritten first using Equation (45) and then
Equation (53), to give

R.. (O)

RE ~ 0 R. ~ 0ii jj
S.. (u))

v S. ~ 0) S ~ ~ (0jj
(54)

Assuming that all vents have the same power spectral density gives
'
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The cross-spectral density is assumed to be the same between all
vent pairs, so that for all i and j, not equal,

S. (o)):— S (o)) (56)

Equations (55) and (56) represent the only assumptions that can

reasonably be made without full scale tests on a complete torus
geometry. Equations (54), (55) and (56) give

S.. (u)
ij S..

3.1
(57)

which may also be expressed as

pc
(58)

where

S (~)
c ~Spy tl!) (59)

The correlation coefficient p is common to all vent pairs.c

It is now possible to find the load reduction factor as a func-
tion of p . The cases p = 1 and p = 0 have already been

c c c
worked out when the FSTF and torus segment geometries are identical.
There is no reduction for identical geometries when p = 1

Fig..9 gives the case p = 0 . The power spectral density of thec
output is found by combining Equations (43), (47), (55) and (57):

N N n
ST(o))=S11(o)) iF(o)) i ) ) p..H. (o))H. ((o)

i=1 j=l
(60)

Next, using Equations (58) and rearranging the summation operations
gives
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~ N N

S (o)) = S (o)))F(M)I' ) H.((o) + ( -p ) ) H.( )
T ll c ~

1
X C

1
(61)

A corresponding result applies to the FSTF geometry, where the trans-
fer functions are now denoted by A. (~)

8 8

FSTF
e = Sll I) IF((o) ( P ) H. (I) . + (1-P ) $ H. (u)) (62)

3.=1 1.=1

where there are eight vents in FSTF.

The reduction factor of the torus pressure loads as compared to
the FSTF loads is defined as

s (~)
RF (P, (o)

FSTF (~)

Substituting Equations (61) and (62) into the above then gives

'KGP + (1- P ) KFK
R

G c c F cF(O,~) =

c c c

(63)

where

G

N

Hi
l.=1

8 p

H.
i=1

(64)

and

and

Kc

8

i=1
8

i=1

N

i=1
8

H'.
i=1

(65)

(66)
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By considering the limit p = 1, the constant K is seenc
to reflect the difference between the FSTF segment geometry and the
torus segment geometry. it is, in fact, the ratio of mean square
torus pressure ta the mean square FSTF pressure when all sources
are perfectly correlated in both case s. Xt is the square or" the
ratio of the Case i and Case 1 pressure results obtained earlier
in this report. When the segment geometries are identical, as

they are assumed to be in the calculations to obtain Fig. 9,

KG = 1.0

The factor K is the ratio of the uncorrelated to correlated
c

mean square pressures in FSTF given identical volume source strengths.
Alternatively, it is the square of the ratio of the correlated to
uncorrelated volume flow strengths, Q, given the same pressure
in both cases. From Equation (24), K = 1/8

Finally, the factor KF = RF(0,~), as can be seen by setting
pc = 0 . Since RF(0,u>) is just the reduction factor for all sources
uncorrelated, it may be read directly from Fig. 9. Note, however,
that Fig. 9 may be used only for identical segment geometries of
the torus and FSTF, i. e., only when KG

- 1 . New results for
RF(0,~) must first be computed if the segment geometries are dif-
ferent.

Thus, for the purposes of this report, the power spectral
density reduction factor takes on a relatively simple form:

p +
cRF(P, P

c

(1-~ )RF(O,>)/8
-p /8 (67)

Xn the next paragraph, it is suggested that the restriction
0 < p < 1 apply to this equation. This load reduction factor is
plotted in Fig. 10 for several values of p assuming c = 2500 ft/sec.c
Xt may be seen that small values of p quickly increase the load
reduction factor above the uncorrelated value RF(0,~)

~ Finally, the range of admissible values of p must be dis-
c

cussed. The only range of possible physical interest is -1 < p < 1
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F igure 10: P.S.D. reduction factor as a function of frequency and
correlation coefficient for an acoustic speed c 2500 fps.
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However, a further restriction is necessary. The function RF(p,u)
given by Equation (67) approaches minus infinity as p ~ -1/7

c
from above. Negative reduction factors for the power spectral
density are c1 ear ly meaningless . For larger values of p, the

c
function increases monotonically. At p = -RF (0, ~) / (8-RF (0, to) ),c „F
the reduction factor RF(p,v) = 0 . This behavior reflects the

c-'actthat it is not physically realistic to assume that all correla-
tion coefficients are equal and negative. For instance, assuming

p = -1 implies that all vent pair combinations are out of phase,
which is physically impossible. Thus, although the analysis shows

a value of p for- which the reduction factor is zero, thisc
result is suspect. It should be noted that very small reduction
factors can also be achieved by judicious phasing of sources, in
which case p is not the same for all vent pairs. In practice,
however, these possibilities are too specific to warrant inclusion
in an analysis of realistic reduction factors. Thus, Equation (67)
should carry the restriction 0 < p < 1
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