REGULARY INFORMATION DISTRIBUTION SYSTEM (RIDS)

ACCESSION NBR: 8609250146 DDC. DATE: 86/09/19 NOTARIZED: YES DOCKET # FACIL: 50-410 Nine Mile Point Nuclear Station, Unit 2, Niagara Moha 05000410

AUTH. NAME AUTHOR AFFILIATION

MANGAN, C. V. Niagara Mohawk Power Corp.

RECIP. NAME ADENSAM, E. G. RECIPIENT AFFILIATION
BWR Project Directorate 3

SUBJECT: Forwards responses to NRC questions re changes to FSAR submitted in util 860822 ltr. Encl marked-up pages to FSAR supercedes 860822 submittal. Changes will be included in

subsequent FSAR update.

DISTRIBUTION CODE: BOO1D COPIES RECEIVED: LTR __ ENCL __ SIZE: _____
TITLE: Licensing Submittal: PSAR/FSAR Amdts & Related Correspondence

NOTES:

RECIPIEN	RECIPIENT ID CODE/NAME BWR EB			RECIPIENT	COPIES		
ID CODE/N				ID CODE/NAME	LTTR	ENCL	
BWR EB				BWR EICSB	2	2	
BWR FOB		1	1	BWR PD3 LA	1	1	
BWR PD3 PD		1	1	HAUGHEY, M 01	2	2	
BWR PSB		1	1	BWR RSB	1	1.	
INTERNAL: ACRS	41	6	6	ADM/LFMB	1	0	
ELD/HDS3		1	0	IE FILE	1	1	
IE/DEPER/EF	PB 36	1	1	IE/DQAVT/QAB 21	1	1	
NRR BWR AD		1	0	NRR PWR-B ADTS	1	0	
MRP_ROF_M. I	_	1	1	NRR/DHFT/MTB	1	1	
REP EILE	04	1	1	RGN1	3	3	
RNZDDANI/M	IB	1	0				
EXTERNAL: BNL (AMDTS (ONLY)	1	1	DMB/DSS (AMDTS)	1	1	
LPDR	03	1	1	NRC PDR 02,	1	1	
NSIC	05	1	1	PNL GRUEL, R	1	1	

and the state of the control of the ATTENTION OF THE TOTAL ATTENTION A u u i i i i

ិស្សិស្សាស្ត្រី ប្រសាជនធ្លើ ស្រុក ប្រជាជា ប្រជាជា ស្រុក ប្រឹក្សាស្ត្រី ស្រែក ស្រុក ស្រុក ស្រុក ស្រុក ស្រុក ស្រ ការស្ត្រី ស្រុស្សាស្ត្រី ស្រុក ស ស្រុក ប្រឹក្សាស្ត្រី ស្រុក ស្រុស្សាស្ត្រី ស្រុក ស

ADEC FOR MANAN CONT. T.

a 2 1

	6.3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			7 3 s	oφ. • ξt
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		, 1, 4	*	ager (&)	C. A.	, § t
	* ,		े ज स	7		r a graduation
f.,	1	4 4	1.6	, a an		3
*	*	۶ ٧		¥ ور		e de la companya de l
I N	3	κ [†]	4-13	7g 12	\$	ં પૈક
,	ą.	$a^{\dagger}_{-\mu} = 0$	riCi-4	i.		· · · · · · · · · · · · · · · · · · ·
	1	0 1 ± 1	81 67 2 4 48	(**		* (
	4	A The second second	14	Ž		No. of the second of the secon
1 1	4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5444			# 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
40 1 - 154 - 41 - 2	4	er et	Sa 4.			' A' 44
•	> 2			ż	k.	graph of the second sec
	·			e m*	ř	(* Jana - Carlos
•	Å Š	e Marie Land	E 3 3)n. 611		Same of the property of
	₹,					r v _{ator}
ř	•	• J	й) эмг ^у			, * * ×

NIAGARA MOHAWK POWER CORPORATION/300 ERIE BOULEVARD WEST, SYRACUSE, N.Y. 13202/TELEPHONE (315) 474-1511

September 19, 1986 (NMP2L 0882)

Ms. Elinor G. Adensam, Director BWR Project Directorate No. 3 U.S. Nuclear Regulatory Commission 7920 Norfolk Avenue Washington, DC 20555

Dear Ms. Adensam:

Re: Nine Mile Point Unit 2
__Docket_No. 50-410

The NRC staff forwarded questions to Niagara Mohawk related to changes to the Final Safety Analysis Report which were submitted by our letter dated August 22, 1986 (NMP2L 0851). This letter provides responses to these questions and, where necessary, marked-up pages of the Final Safety Analysis Report. The marked-up pages to the Final Safety Analysis Report are provided in the enclosure of this letter and supercede those that were submitted on August 22, 1986. These changes will be included in a subsequent Final Safety Analysis Report update.

Very truly yours,

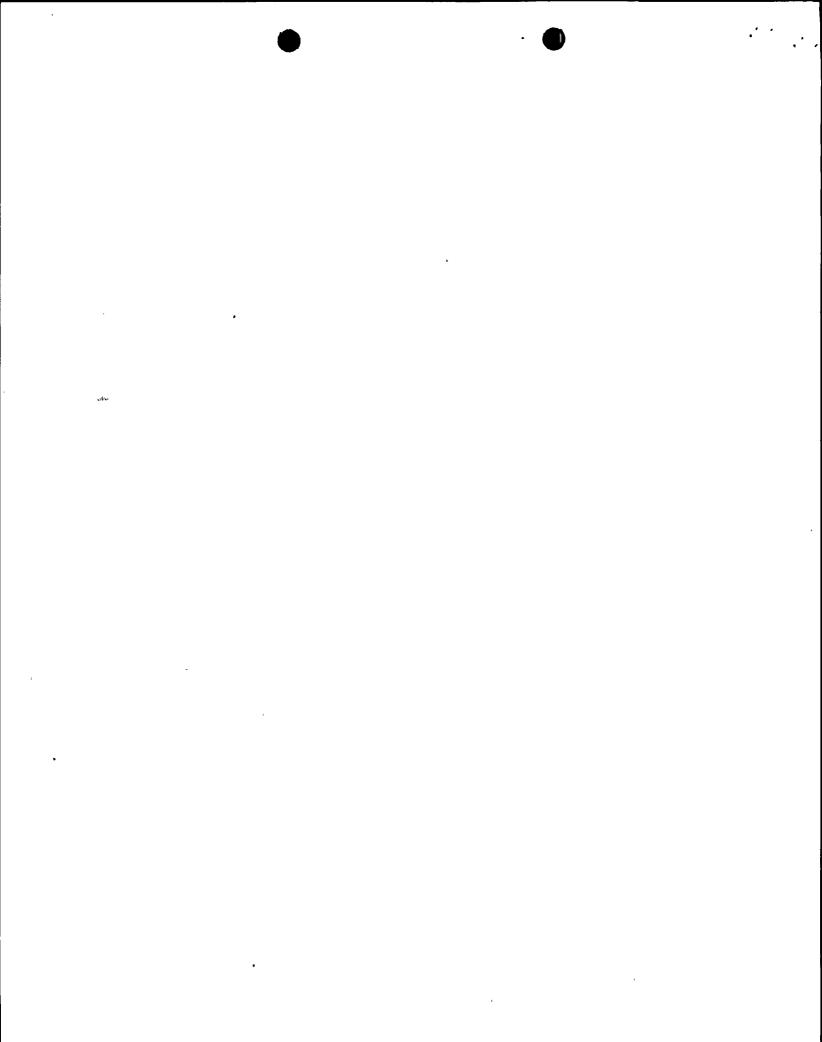
C. V. Mangan Senior Vice President

LL/ps 2054G Enclosure

xc: W. A. Cook, NRC Resident Inspector Project File (2)

8609250146 860919 PDR ADDCK 05000410 A PDR 1/1 Bool

• enter de la companya , .


UNITED STATES OF AMERICA NUCLEAR REGULATORY COMMISSION

In the Matter of) ,			
Niagara Mohawk Power Corporation)	Doo	ket No. 5	60-410
(Nine Mile Point Unit 2))			
	-	,	•	
	<u>AFFIDAVI</u>			
C. V. Mangan, bein	g duly swor	n, states tha	at he is S	Senior Vice
President of Niagara Mohawk Power part of said Corporation to sign	Corporatio	n; that he is	authoriz	ed on the
Commission the documents attached	hereto; an	d that all su	ich docume	
and correct to the best of his kn	owieage, in	rormation and	oener.	
	•		•	
		MAIN	M	
		(Q	
Subscribed and sworn to before me York and County of () monday	, a Notary	Public in and	for the	State of New , 1986.
Tork and country of Thornaces	_, 11113 11	_ uay or <u>zex</u>	gunae	
	•	•	•	
		1. 1.		
	NS NS	tary Public i	in and for	
•	Um	ande gr Cou	inty, New	York

My Commission expires: JANIS M. MACRO

Notary Pu --- of New York
Qualified in On. n a No. 4784555

ty Commission Expl.cs ...arch Jos. 19.8.7...

Comment 1: In FSAR page 7.1-7, the phrase should be removed to be

consistent with SSER2, Section 7.2.2.3 which does not reflect any continuing review of setpoint methodology program by the NRC.

Response 1: Comment accepted. Enclosed is a marked-up page 7.1-7 to the

Final Safety Analysis Report (FSAR).

Comment 2a: ' In Table 421.36-1 (page 1 of 18), no justification provided for

deviation from R.G. 1.97 on seismic and environmental

qualification for Source Range Flux Level.

Response 2a: These measurement devices are not environmentally qualified for

long-term post-accident monitoring. Our letter dated April 1, 1986 (NMP2L 0676) documents our commitments regarding installation of qualified neutron monitoring system.

Specifically, we will continue to monitor industry efforts to develop a qualified Neutron Monitoring System for long-term post-accident monitoring. When qualified equipment becomes available, we will install it at Unit 2 by the first refueling

following availability, unless we justify to the Nuclear Regulatory Commission that installation of the specific

equipment would result in an overall decrease in the safety of

the plant. In this case, we will continue our efforts to

identify and procure acceptable qualified equipment.

Comment 2b: In Table 421.36-1 (page 6 of 18), no justification provided for

deviation from R.G. 1.97 on seismic qualification of primary

containment isolation NMS.

Response 2b: The change to Table 421.36-1, sheet 6 for primary containment isolation - NMS is withdrawn. These valves are seismically

qualified, as verified from the NSSS seismic qualification master list. Enclosed is a marked-up page to Table 421.36-1,

sheet 6. which reflects this information.

Comment 2c: In Table 421.36-1 (page 10 of 18), no justification for

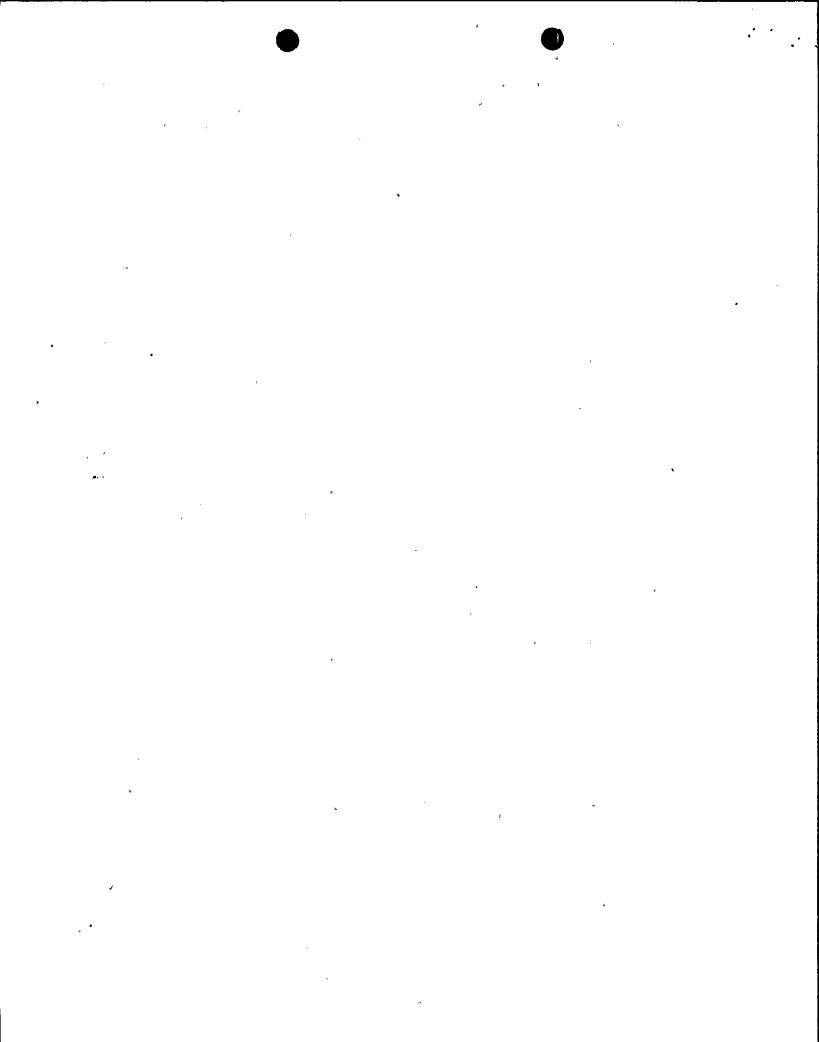
deviation from R.G. 1.97 recommendation on containment effluent

radioactivity and effluent radioactivity.

Response 2c: The range for the containment effluent radioactivity

(2RMS-CAB170) is 10⁻⁶ to 10⁵ µci/cc, consistent with

FSAR Table 11.5-1 and meets Regulatory Guide 1.97, Rev. 3


requirements.

The range for effluent radioactivity (2RMS-CAB180) should be 10^{-6} to 10^4 (not 10^{-6} to 10^4 µci/cc. The range of 10^{-6} to 10^4 µci/cc is consistent with FSAR Table 11.5-1 and

meets Regulatory Guide 1.97, Rev. 3 requirements.

Enclosed is a marked-up page to Table 421.36, sheet 10, which

reflects this information.

Comment 2d: In Table 421.36-1 (page 13 of 18), no justification provided for deviation from R.G. 1.97 for RHR Heat Exchanger Outlet Temperature - A and B.

Response 2d: Instruments 2RHS*TE13A, B measure RHR heat exchangers outlet temperature, which provides an indication of RHR system operation and its effectiveness in removing heat from the primary containment. These instruments are seismically qualified but are not environmentally qualified. These instruments perform no active safety function, thus do not need to be environmentally qualified. Other instruments, provided in accordance with Regulatory Guide 1.97, provide the operator with sufficient information to verify the RHR system is operating and effectively removing heat from the primary containment. These instruments are:

a. RHR system flow (2RHS*FT14A, B)

b. Cooling water flow to ESF components exchangers (2SWP*FT13A, B)

c. Drywell/suppression chamber pressure

d. Drywell atmosphere temperature

e. Suppression pool water temperature

f. Drywell spray header flow

g. Cooling water temperature to ESF components (service water supply temperature - 2SWP*TE31A, B).

It is therefore concluded that adequate indication of RHR system' operation is provided without the instruments 2RHS*TE13A, B; thereby meeting the intent of Regulatory Guide 1.97, Rev. 3. Enclosed is a marked-up page to Table 421.36-1, sheet 13, which indicates that the instruments 2RHS*TE13A, B are seismically qualified but not environmentally qualified. This change corrects the change previously submitted by our letters dated January 20, 1986 (NMP2L 0589) and August 22, 1986 (NMP2L 0851).

*1 र **पृष्कुम्भहः** अतिका^क्षा s) ¹,

Nine Mile Point Unit 2 FSAR

- 2. Physical separation between divisions of essential systems and between essential systems and essential circuits is maintained for all essential nuclear steam supply systems (NSSS) except the NMS, the RPS, the PRM system, and the control rod drive (CRD) hydraulic system.
- 3. Design criteria for fire protection is discussed in Section 9.5.1.

Regulatory Guide 1.89 Refer to Sections 3.10 and 3.11.

Regulatory Guide 1.97 Refer to Section 1.10.

Regulatory Guide 1.177 Refer to Section 3.10.

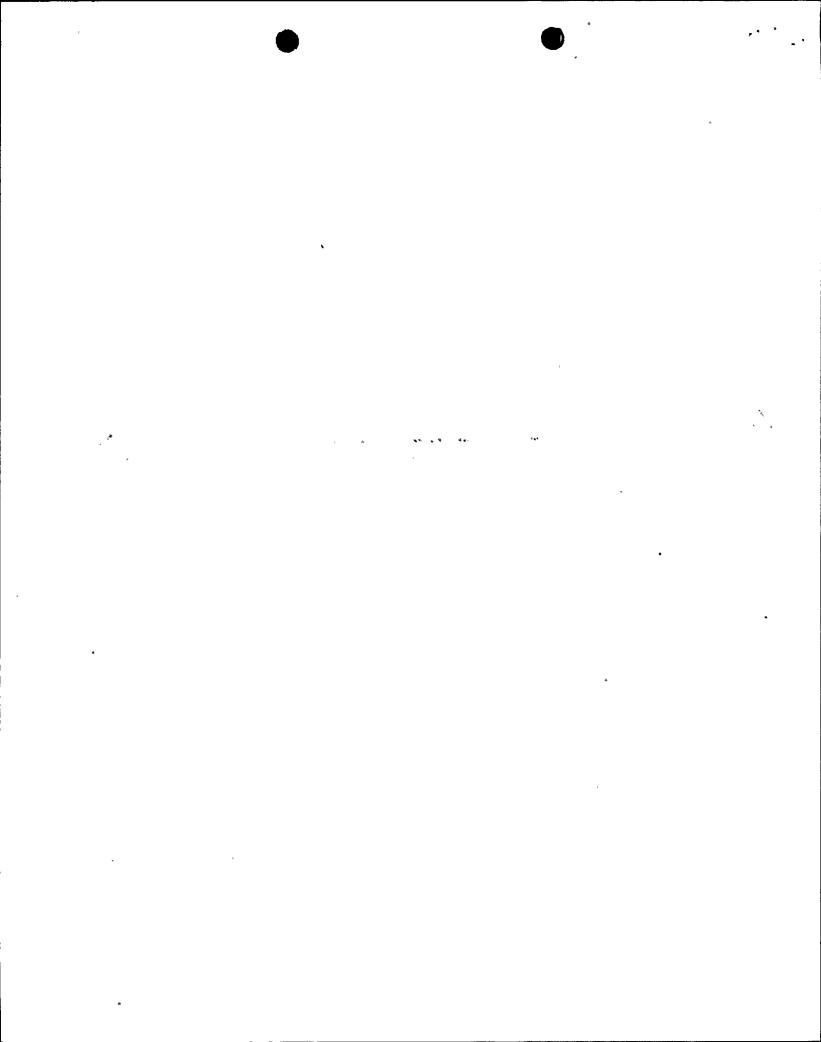
Regulatory Guide 1.105 The trip set point (instrument set point) and allowable value (technical specification limit) are contained in Chapter 16. These parameters are all appropriately separated from each other and their selection is based on instrument accuracy, calibration capability, and design drift (estimated) allowance data. The set points are within the instrument accuracy range. The established set points provide margin to satisfy both safety requirements and plant availability objectives.

Regulatory Guide 1.118 This guide endorses/modifies IEEZ-338-1975. Discussion of IEEE-338 is presented on a system-by-system basis in the analysis portions of Sections 7.2, 7.3, 7.4, and 7.6 with the following clarification of the regulatory guide requirements.

Position C.6b Trip of an associated protective channel or actuation of an associated Class IE load group is required on removal of fuses or opening of a breaker only for the purpose of deactivating instrumentation and control circuits.

7.1.2.4 Instrument Errors

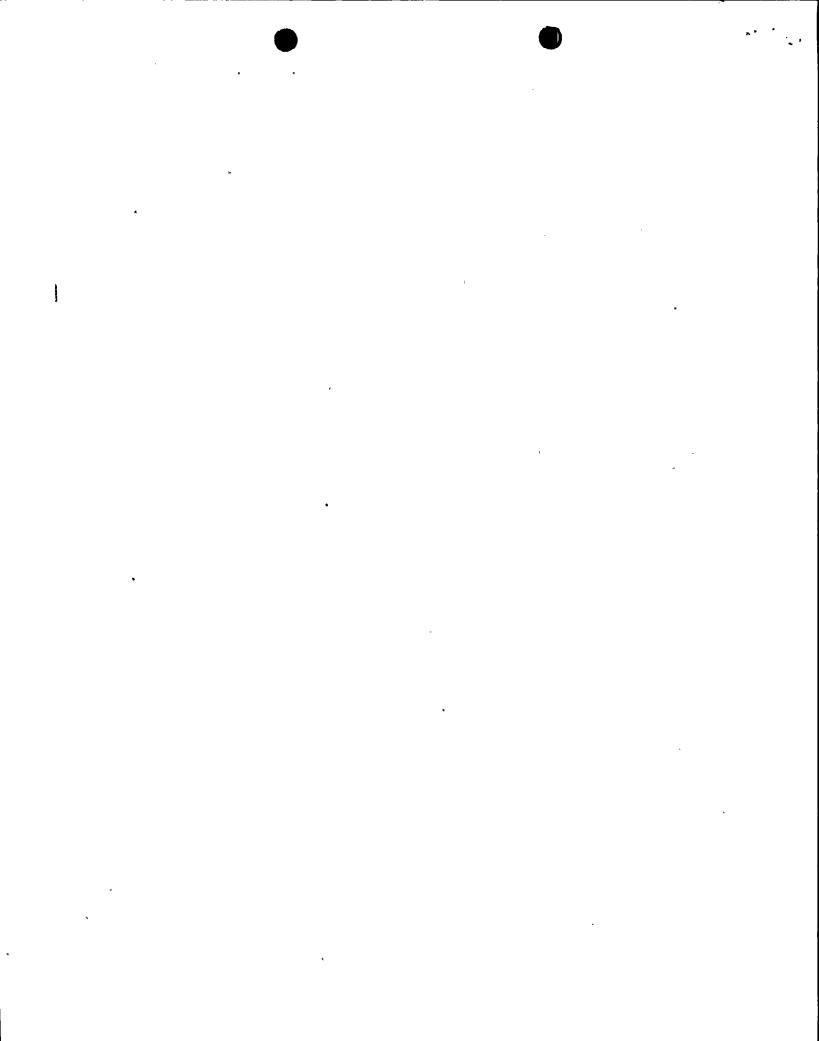
The determination of set points requires that during the design of safety-related systems, instrument drift, setability, and repeatability be considered when selecting instruments and controls.


Adequate margin between safety limits and instrument set points is provided to allow for instrument error. The appropriate trip setpoints and allowable values are listed in Chapter 16. The amount of instrument error is determined by test and experience. The set point is selected based on these

Amendment 26

7.1-7

May 1986


2 6

NMPC will provide to the NRC, prior to the startup following the first refueling outage, a detailed technical assessment of the methods used to establish protection system setpoints and allowable values supplied by General Electric. The assessment will be based on the generic findings of the Instrument Setpoint Methodology Program currently in process.

The technical assessment will include the following:

- 1) The values assigned to each component of the combined channel error allowance (e.g., modeling uncertainties, analytical uncertainties, transient overshoot, response times, trip unit setting accuracy, sensor accuracy, test equipment accuracy, sensor drift, nominal and harsh environmental allowances, trip unit drift), the basis for these values, and the methods used to sum the individual errors. Where zero is assumed for an error, a justification that the error is negligible shall be provided.
- 2) Confirmation that the setpoints selected for the initiation of protective actions ensure that the reactor core and reactor coolant system are prevented from exceeding the licensing safety limits for the transients and accidents analyzed.

Nine Hile Point Unit 2 FSAR

TABLE 421.36-1 (Cont)

		Reg. Guid	de 1.97, Rev. 3									
SWEC/ GE-NED I.D.#	Parameter <u>Description</u>	Pa	arameter Classification		ensor Instr. Pange		<u>Lification</u> <u>Environmental</u>	OA Class	Power Supply	Display <u>Location</u>	<u>Notes</u>	
2MSS*MOV 111 B22-F016	Primary Containment Isolation - MSS	B10q3	`1	n/a	N/A	Yes	Yes	I	Div. 2	P602	- ' .	
2MSS*HYV6A, B,C,D B22-F022A,B, C,D	Containment	B10q4	1	n/a	N/A	Yes	Yes	I	RPS Div 2	P602	- .	•
C51-J004A,B, C,D,E	Primary Containment Isolation - NMS	B10r	1	N/A	N/A ,	Yes	ИО	II	Non-1E	P607	_10	
2RCS*SOV65A, B; 66A,B; 67A, B; 68 A,B 2RCS*SOVBY B35-F020	Containment Isolation -	B10s1	1	n/a	N/A	Yes	Yes		Div. 1	P602	-	
2RCS*SOV79A, B;80A,B;81A, B;82A,B 2RCS*SOV(05) B35-F019	Containment Isolation -	B10s2	1	N/A	N/A	Yes	Yes	I	Div. 2	P602	-	
2RHS*NOV1A, 15A, 78K) 24A, 25A-26A-27A.	Containment	B10t1	1	N/A	N/A	Yes ·	Yes	I	Div. 1	P601	-	

25A, 26A, 27A, Isolation 30A, 33A, (3K) RHS
40A, 67A, 104,
113; # Aov 16A, 39A
E12-F004a, F016A, F041A,
F042A, F017A, F074A, F073A
F105A, F027A, F050A, F053A
F099A, F023, F008

4

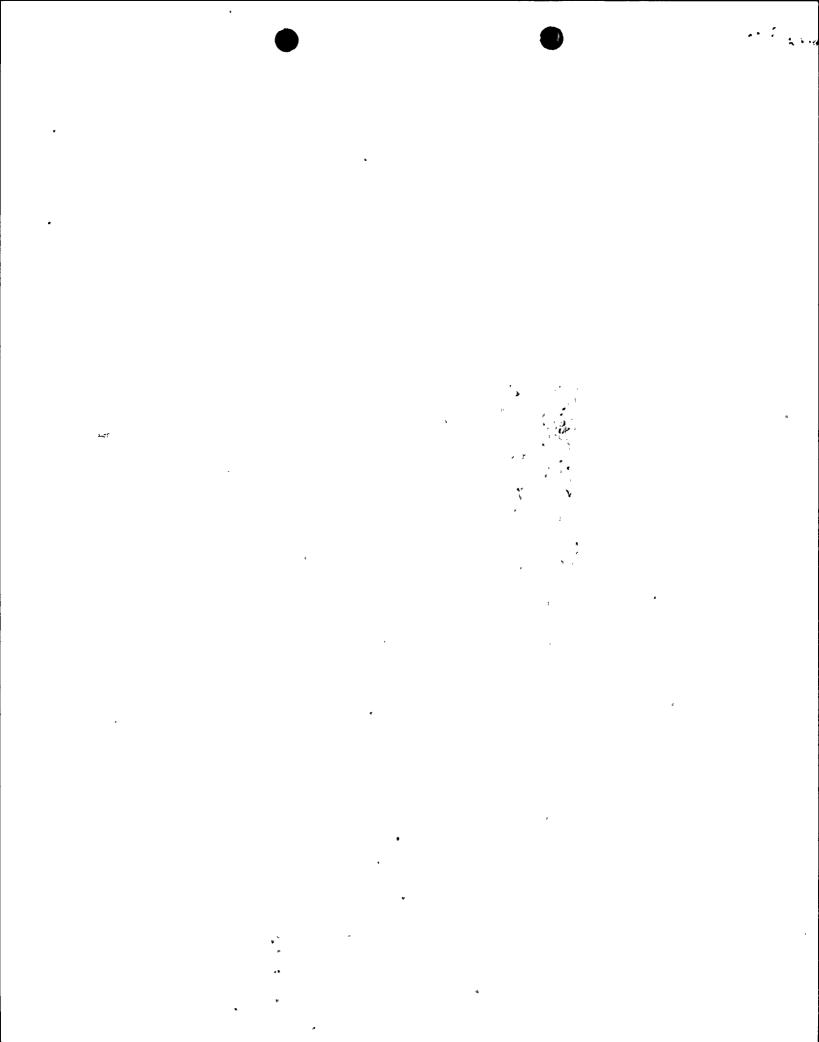
•

•

.

•

•


ŧ

•

Nine Mile Point Unit 2 FSAR

TABLE 421.36-1 (Cont)

SWEC/ Parameter GE-NED I.D.# Description		ide 1.97, Rev. 3 Parameter Classification		ensor Instr. Pange		lification Environmental	QA <u>Class</u>		Display Location	<u>Notes</u>	
2RMS-CAB170 Containmen Effluent Radioactiv		3	Main Stack Enclosure	Isotopic	No 106-11 ucife	Yes 0 ⁵	II	Non-1E	P882	39` ′	
2RMS-CAB180 Effluent Radioactiv	C14 ity	2	Turb Bldg Turb Oper Floor	Isotopic 1077/105 uci/cc	No	Yes	II	Non-1E (UPS)	P882	39	
2HVS-PT1A,B Main Feeds C33-N001A,B Flow -A,B	ater	3	Turb Bldg	Turb Bldg 0-8.5 lbs/hr (each)	No	No	II .	Non-1E	P603		
2CNS-LT8A,B Condensate Storage Tk Level - A;		3	Cond Stor TK1A,TK1B		No	Но	II	Non-1E	P851	-	-
2RHS*PT64A Suppression E12-N091A Chamber Spray Header Flow - A	n D3a	2 .	Rx Bldg (Sec Contnt)	0-450 gpm	Yes	Yes	I	Div. 1	P601	-	
2RHS*FT64B Suppression E12-N091B Chamber Spray Header Flow - B	n D3b	2	Rx Bldg (Sec Contnt)	0-450 gpm	Yes	Yes	I `	Div. 2	P601	-	•
See Note 18 Drywell Pressure	D4	2	-	-	-		-	-	-	18,41	, ^{2 6} .
See Note 19 Suppression Water Level (Weir Well	1 .	2	-	-		-	-	-	-	19	
2CMS*TE67A, Suppression 68A,69A,70A Pool Water Temp-A		2	Suppression Pool	on 50- 250°P	Yes	Yes	I	.Div. 1	P601	20,41	26
2CMS*TE67B, Suppression 68B,69B,70B Pool Water Temp-B		2	Suppressi Pool	on 50- 250°F	Yes	Yes	I	Div. 2	P601/ P598	20,41	26
Amendment 26				10 of 18				•	May 1986	•	

Nine Mile Point Unit 2 FSAR

TABLE 421-36-1 (Cont)

SWEC/	Parameter		de 1.97, Rev. 3 arameter			0	1:6:		D	D:		
			<u>Classification</u>		ensor Instr. Range		<u>lification</u> Environmental	QA <u>Class</u>	Supply	Display ·	Notes	
2SLS*FT113 E41-H007	SICS Plow ·	D17	2	Rx Bldg (Sec (Contmt)	0-86 gpm	Yes	Yes	I ,	Div. 1	P601	,-	
2SLS*LT103 C41-N001	SLCS Storage Tank Level	D18	2	Px Bldg (Sec Contnt)	0-10,000 Gal	Yes	Yes	I	Div. 1	P601	40 .	
See Note 22 See Note 22	RHR System Flow	D19	2	-	-	-	•-	-	-	-	22	*
2RHS*TE13A E12-N027A	RHR Heat Exchanger Outlet Temp - A	D20a	2	Rx Bldg (Sec Contmt)	0-600°P	Yes	€€ED NO	I	Non-1E	P601	-	1:
28HS*TE13B E12-N027B	RHR Heat Exchanger Outlet Tenp - B	р20Ъ	2	Rx Bldg (Sec Contat)	0-600°F	Yes 4	(PEB) NO	I	Non-1E	P601	-	 :
;2SWP*TE31A	Cooling Water Temp to ESF Syste Components		2	Screen- well Bldg	35-130°F	Yes	Yes	I	Div. 1	P601	_20	
2SWP*TE31B	Cooling Water Temp to ESP Syste Components		2	Screen- well Bldg	35-130°P	Yes	Yes	I	Div. 2	P601	20	
25WP*FT13A E12-N007A	Cooling Water Flow to ESF Syst Components		2	Rx Bldg (Sec Contnt)	0-10,000 gpm	Yes	Yes	I	Div. 1	P601	23	*
25#P*FT130 E12-H0078 LB	Cooling Water Flow to ESF Syst Components		2 .	Rx Bldg (Sec Contmt)	0-10,000 gpm	Yes	Yes		Div. 2	P601	23	

26

. , •