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Very Low AEP Estimation:

® Some Facts:

®* The longest streamflow records are on the order of 120 years but
often just a few decades of data are available.

®* Conventional flood frequency requires estimates for return
periods of about 10-500 years. Common guidance in the U.S. is

generally accepted as adequate (log-Pearson type Il distribution;
method of moments; Bulletins 17B and 17C).

* Flood frequency for VL-AEPs (very low annual exceedance

probabilities) requires different approaches and considerations
than used conventionally.

®* This work stresses the communication of uncertainty in VL-AEPS.

® This study shows that choices of probability models and fitting
methods can produce enormous ranges in estimates that are
associated with large uncertainty.
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Overall Project Details

* U.S. Geological Survey in cooperation with U.S. Nuclear
Regulatory Commission (2015-2017)

®* Magnitude and frequency of instantaneous peak streamflow
* Task 1 (This talk and pending USGS Scientific Investigations Report [SIR])
* Tasks 2 and 3 (nonstandard flood information, nonstationarity, another USGS SIR)

®* Task 4 (USGS-led training seminar)

®* Task 1 concerns estimation at very low AEPs (VL-AEPs) and
uncertainty (error) quantification.

®* DATA: annual peaks at two USGS long-term streamgages.

®* AEP: annual exceedance probability and VL-AEP < 0.001 or
>1,000-year equivalent recurrence intervals [“AEP” preferred].

* We might also say “distal tail estimation™ when VL-AEP are sought.
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Task 1 Details — Uncertainty

* At-streamgage analysis (single site data):

* Exclusion of covariates (conditional probabilities) influencing distal tails
(quantile dependency [e.g. Tropical Cyclones as possible trigger for highest
magnitude peaks]). This could be thought of population mixing.

* Quantification of uncertainty into two forms:
* Sampling uncertainty (aleatoric, random chance [stochastic])

®* This is a sampling error related to variances-covariances of either sample
moments or parameters. This uncertainty can be reduced by including more
data.
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Task 1 Details — Uncertainty

* At-streamgage analysis (single site data):

* Exclusion of covariates (conditional probabilities) influencing distal tails
(quantile dependency [e.g. Tropical Cyclones as possible trigger for highest
magnitude peaks]). This could be thought of population mixing.

* Quantification of uncertainty into two forms:
* Sampling uncertainty (aleatoric, random chance [stochastic])

®* This is a sampling error related to variances-covariances of either sample
moments or parameters. This uncertainty can be reduced by including more
data.

* Distribution choice uncertainty (epistemic, model error)

* True probability model unknown, semi-quantitative, dependent on choices.
This uncertainty can possibly be reduced by regional study of distribution tails
and goodness-of-fit evaluations.

Both uncertainties increase as AEP decreases, and
both are relatively large for very low AEP estimation.
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Task 1 Details — Distributions

* Logarithmic transformation of annual peaks used, and the
adjective “log-" (e.g. log-Pearson type lll) implied in talk.

® Nine probability distributions:

Generalized Extreme Value (GEV, three parameter)

Generalized Logistic (GLO, three parameter)

Generalized (“skew”) Normal (GNO, three parameter; log-Normal3)
Generalized Pareto (GPA, three parameter)

Pearson type Il (PE3, three parameter; a standard choice in U.S.)
Weibull (WEI, three parameter; reversed GEV)

Kappa (KAP, four parameters; common in regional L-moments)
Asymmetric Exponential Power (AEP4, four parameters, attractive tails)

Wakeby (five parameters; very flexible)
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Task 1 Details — Parameter Estimation

®* Four methods of parameter estimation are used:

* Expected Moments Algorithm: (EMA, product moments) though
restricted to PE3 (Pearson type lll). “Bulletin 17C” publication pending from USGS.

* Special “Extended Output” option added to M,=E[(X—pn)]= / (x—pu)" f(x)dx
USGS-PeakFQ software for
<0.001 AEP estimation and on out to AEP = 10-S.

* L-moments (LMR): linear combinations of the quantile function

17 n! i i
l,-_ Z( ( )m] F)XFJIX(I—F] “rdF,

®* Maximum Likelihood (MLE): maximization of sum of logarithmic densities
via the probability density function log(L,) Zlﬁg( £ 0

!

* Maximum Product of Spacings (MPS): maximization

of sum of U-statistic increments via the cumulative distribution function

MH(HJ—?flog Ui(8) — U;_1(6)] for Uy(8) = F (x;,,;6)
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Task 1 Details — Goodness-of-Fit

® Goodness-of-Fit measures considered for the distributions:
* Akaike Information Criterion (AIC)
® Cramér-von Mises

) H
M o ra n s M AEP4 extends to theoretical upper limits of L-skew and L-kurtosis »

* Kolmogorov-Smirnov

®* L-moment ratio diagram

®* Delta L-kurtosis — The difference
between L-kurtosis of a fitted
distribution and the sample L-kurtosis.

®* Three-parameter distributions
have their own unique L-kurtosis
once fit to the mean, variation,

w
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Task 1 Results — Raritan River, Manville, NJ
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Raritan River

(Distribution Choice
Uncertainty)

Distribution choice
uncertainty for an
AEP (the dots)

Distribution choice
uncertainty is
extremely large for
VL-AEP and is
sensitive to analyst
choices.

Note: PE3 EMA +
LMR confidence limits
and GPA still plotted.

slide 18

Peak discharge, in base-10 logarithmic cubic feet per second

1,000,000
900,000

800,000
700,000

600,000

500,000

400,000

300,000

200,000

100,000
90,000

80,000
70,000

60,000
50,000

40,000

30,000

The standard
deviation of the five
quantiles for a AEP

can be used to
represent the
uncertainty.

@ Anestimate for a glven distribution

O

Systematic annual peak streamflow plotted
by Hirsch—Stedinger plotting position

0.1 0.04 002 0.01 5x10° 2x10° 1x10° 1x10+ 1x10°5
Exceedance probability, in scienfic notation (as needed)

1x10°




= = 0.3 T I I I I
Raritan River g
_ 01400500|Raritan River near Manville, New Jersey
LMR Diagram e
0.2 | _
Sample L-skew and —>0
L-kurtosis shown for |
Raritan River. g
Monte Carlo [ i
- 0 0 t |
simulation and ellipse [ g
for 90th percentile
joint L-skew/ U= |
. 5 =
L-kurtosis domain. g
éi inaccessible
= region of L-skew
2 and L-kurtosis
We will see on next slide g 09 0. 02 03 0.4 05
that distributions have L-skew, dimensionless

EXPLANATION

Simulated value based on systematic record—Sample variance-covariance matrix of L-moments used
in multivariate-normal simulation of size 3,000 with some values not shown as indicated by note. The
elliptical region demarks an approximate 90-percent confidence region based on covariance structure of

distinguishably different
appearance in the L-
SkeW/L-kU rtOSiS domain_ the size 3,000 simulation.

O Systematic record (1904-1906, 1909-1915, 1922-2014) — L-moments computed for Slide 1 9
record in conventional approach.




AEP4 extends to theoretical upper limits of L-skew and L-kurtosis »
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Raritan River — Goodness-of-Fit (GoF)

®* GofF is immensely challenging with no optimality for VL-AEPs.

®* Sample sizes involved nearly assure zero observations of the
phenomena that the analyst is trying to predict.

Conceptual Three-parameter probability distribution type

Goodness-of-fit statistic under- 1.\ 1= P EEEE————————
pinning GEV GLO GNO GPA PE3 WEI

01400500 Raritan River at Manville, New Jersey Relative ranks amongst the statistics listed by statistic

Cramér—von Mises statistic CDF 3 7 5
Kolmogorov—Smirnov statistic CDF 7
Akaike Information Criterion (AIC) PDF

4
Moran—Darling statistic CDF 3
3

Delta L-kurtosis QDF' 3

®* Ranks for the six 3-parameter dists. + AEP4 (asym. exp. power).
®* Most 3-parm+ distributions pass GoF hypothesis tests.

* Delta L-kurtosis pushes the fit question to the next highest shape
parameter. (Reason AEP4 ranks over GLO.)

~USGS These metrics do not answer the fundamental question:

Is a given fit inclusive of distribution form good enough? EESTISE




Raritan River — Results in Plain Speech

®* The study is designed:

* To explore VL-AEP estimation from a perspective of multiple
distributions and parameter fitting methods,

* To quantify two uncertainties (sampling uncertainty [o.] and
distribution choice [0,.] as standard deviations in log,,), and

®* Not to recommend prescriptive flows for either the Raritan or Potomac
Rivers.

®* Plain Speech Example of a VL-AEP Estimate:

* Of six three-parameter distributions, the GLO has best ‘fit." (However,

this statement implies little in terms of most suitable or good enough for
VL-AER.)

®* “The 104 AEP estimate based on the GLO distribution is
373,600 ft3/s (90-percent conf. interval 103,600 to 2,793,000 ft3/s

based on o, = 0.442 log,,) with o, = 0.250 log,,."
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Future Tasks (2 — 4)

2. Nonstandard flood information (regional + paleo +
climate + historical sources) use in PE3-EMA
(expected moments algorithm).

3. Non-stationarity (land use, regulation, climate
change).

4. Training seminar led by USGS at NRC HQ in late
summer 2017 to review Tasks 1, 2, and 3.

ZUSGS
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Future Research Directions for VL-AEP

®* Regional skew update for Nation:
* Substantial non-USGS sponsorship needed.

* PE3-EMA + vastly improved “low-outlier detection™ +
more peak data since late 1970s (Bulletin 17B).

* Improved error estimates for weighted skew
computations — critically important for short-record
streamgages.

® Include L-skew + L-kurtosis — Value added
component to assess regional distribution forms and
(or) strength of the Pearson type Ill for VL-AEP.

2 USGS Distribution shape parameters (skewness and kurtosis) control
distal tail estimates for very low AEPs (VL-AEPs). slide 24




Future Research Directions for VL-AEP

* EMA extension to other three-parameter distributions:
* Generalized Extreme Value (GEV) and thus Weibull is accessed
®* Generalized Normal and thus the log-Normal3 is accessed

* Unification of theory for historical data (censoring) for L-
moments. (\We use L-moments by left-censoring by indicator
variable within this project.)

* Method of MPS' needs further review. (Sampling properties
appear similar to L-moments.)

®* Further study of four-parameter distributions

* Kappa + Asymmetric Exponential Power distributions as a “joint
family” canvasing the entire L-skew / L-kurtosis domain.

TMaximum product of spacings or “maximum in timation.”
o P P g spacing estimatio
2 USGS
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