Enclosure 1

MARSOCIATES, INC.

8508190285 850815 PDR ADUCK 05000220 PDR PDR

REPORT OF THEEXAMINATION, TESTING, AND EVALUATIONOF IRRADIATED REACTOR VESSELSURVEILLANCE SPECIMENS FROMNINE MILE POINT UNIT 1

• • •

.

U U

.

, •

.

ĸ

•

LIPR ASSOCIATES, INC.

TABLE OF CONTENTS

- I. INTRODUCTION
- II. SUMMARY
- III. DESCRIPTION OF THE TEST SPECIMENS
 - IV. EXPERIMENTAL PROCEDURES
 - A. Neutron Dosimetry Measurements
 - B. Charpy Impact Tests
 - C. Tensile Tests
 - D. Chemical Analysis
 - V. RESULTS OF TESTS
 - A. Dosimetry Results
 - B. Charpy Impact Test Results
 - C. Tensile Test Results
 - D. Chemical Analysis Results
 - VI. DISCUSSION
 - A. Predicted Fluence
 - B. Initial RTNDT Value
 - C. RTNDT Shift Prediction

i

. .

, **A** . .

• ,

.

. •

.

VII. CONCLUSIONS

A. Neutron Dosimetry

B. Charpy

C. Tensile

- D. Chemistry
- E. Measured and Calculated RTNDT Shifts

.

VIII. REFERENCES

.

I. INTRODUCTION

In accordance with the Code of Federal Regulations (10CFR50), Niagara Mohawk Power Corporation has instituted a reactor vessel materials surveillance program for Nine Mile Point Unit 1 (NMP-1). The program is described in reports issued by the General Electric Company (GE), 1, 2 and consists of the periodic testing of samples installed in the reactor vessel to monitor irradiation embrittlement of the reactor vessel material. Three surveillance capsules, each containing Charpy and tensile mechanical property test specimens and iron, copper and nickel dosimeter wires, were inserted in the reactor vessel prior to initial start-up. One of these capsules was removed in March 1979 after having been irradiated for 5.80 effective full power years. A second capsule, the one of primary interest, was removed in March 1982 after an exposure of 7:98 effective full power years (approximately one-fourth of the expected reactor vessel lifetime). This report describes mechanical and physical tests performed on test specimens removed from both capsules at Battelle Columbus Laboratories in accordance with the surveillance testing requirements of 10CFR50.

۰.

•

•

,

•

II. SUMMARY

Both 300-degree and 30-degree azimuthal reactor vessel surveillance capsule assemblies were removed from the Nine Mile Point Unit 1 vessel and sent to Battelle Columbus Laboratories for testing. The 300-degree capsule was irradiated for 7.98 effective full power years (efpy) and was removed from the reactor after shutdown on March 19, 1982. The 30-degree capsule was removed in March, 1979 and sent to Battelle in November, 1984 for a series of limited tests to confirm results from the 300-degree capsule. This capsule was irradiated for 5.80 efpy. Both capsules were visually examined, opened, and the specimens inventoried. Both baskets contained a complete compliment of six tensile specimens and 24 Charpy specimens.

Two iron, two copper, and two nickel neutron monitor wires from Charpy packets P7 and P8 in the 300-degree capsule were analyzed. The capsule specimens received a fast neutron fluence (E > 1 MeV) of 4.78 x 10¹⁷ n/cm². The calculated maximum fast neutron fluence at the 1/4-T pressure vessel wall position occurred at about 286-degree azimuthal and was 4.93 x 10¹⁷ n/cm² at the time the capsule was removed from the reactor vessel. The lead factor from the capsule to the wall surface was 0.66 which indicates that the flux at the capsule lags the flux at certain vessel wall positions. The lead factors at the 1/4-T and 3/4-T position were calculated to be 0.97 and 3.62, respectively.

Iron and copper neutron monitor wires were also removed from the 30-degree capsule to determine the fast neutron fluence received by the specimens in that capsule. The capsule specimens received a fast neutron fluence of 3.6 x 10^{17} nvt

II-l

· · · · .

.

4

.

.

.

•

•

(E > 1MeV). Lead factors were not calculated for this capsule since the limited tests performed were only intended to confirm results from the 300-degree capsule.

Charpy impact specimens were tested to determine the impact behavior, including the impact energy, lateral expansion, fracture appearance, and upper shelf energies for irradiated base metal, weld metal, and heat affected zone (HAZ) metal. The base metal exhibited the largest 30 ft-lb shift and therefore is the limiting material for the Nine Mile Point Unit 1 reactor pressure vessel. The measured change in the 30 ft-lb and 50 ft-lb transition temperatures from the 300degree capsule are 114°F and 113°F, respectively, for the base metal Charpy specimens.

Limited Charpy tests were also performed on six base material specimens removed from the 30-degree capsule. These tests were performed to confirm the large measured shifts in the 300-degree capsule. The 30 ft-lb and 50 ft-lb shifts were 89 and 86°F, respectively. Both the shifts measured for this capsule and the 300-degree capsule are considerably larger than would have been predicted from current USNR Regulatory guidelines based on measured-specimen fluence and chemistry.

The halves of five broken weld metal Charpy V-notch specimens from the 300-degree capsule and five specimens from the 30degree capsule were analyzed for copper (Cu), nickel (Ni), and phosphorus (P) using the method of X-ray fluorescence. The base metal from both capsules averaged 0.25 weight percent Cu, 0.52 weight percent Ni, and 0.041 weight percent P, while the weld metal (tested only from the 300degree capsule) averaged 0.17 weight percent Cu, 0.07 weight percent Ni, and 0.022 weight percent P.

II-2

.

,

.

4

•

11

Because the adjusted RTNDT for the vessel beltline region enters the pressure-temperature (P-T) calculations directly via the stress intensity factor relation, it is necessary to provide reasonable and conservative estimates of the shift in the adjusted RTNDT over the period of time for which the P-T calculations are performed. The shift in RTNDT at 20 efpy for the 1/4-T position was conservatively estimated to be 183°F based on an extrapolation of Charpy test data from the 300-degree capsule. This value is greater than would be predicted from base metal chemistry and fluence measurements and the guidelines of Regulatory Guide 1.99, Revisions 1 or 2.

Selected capsule Charpy specimens from both the 30-degree and 300-degree capsules are being reconstituted for re-insertion in the reactor vessel. It is planned to adjust the reinserted capsule position to be somewhat closer to the core for future irradiation. This action will increase the specimen lead factor to make up for time out of core, and, if possible, to achieve end-of-life fluence levels in advance of the reactor vessel.

II-3

. . • + , ι. .)

•

III. DESCRIPTION OF THE TEST SPECIMENS

The 300-degree and 30-degree azimuthal surveillance capsule assemblies from the NMP-1 reactor were examined at Battelle Columbus Laboratories. The baskets contained a complete compliment of six tensile specimens and 24 Charpy specimens each, representing reactor vessel beltline base metal, weld metal and heat affected zone material. Only base metal specimens from the 30-degree capsule were examined.

The base metal for the NMP-1 reactor pressure vessel is A302 Grade B, Class 1 steel. Charpy V-notch and tensile specimens were prepared from actual beltline plates (shell plates G-8-3 and G-8-4). The specimens were prepared from A302 steel plate (Heat No. P2130) provided by Lukens Steel Corporation in 1964. Both plates G-8-3 and G-8-4 were fabricated from this heat. Base metal specimens were taken from flat slabs cut parallel to both plate Surfaces at a depth of one-quarter and three-quarter plate thickness. The Charpy and tensile base metal specimens were machined with their longitudinal axes parallel to the plate rolling direction, and the Charpy specimen notches were cut perpendicular to the plate surface. Both Charpy and tensile base metal specimens were designated longitudinal specimens.

The weld metal for the NMP-1 reactor pressure vessel was welded in accordance with Combustion Engineering Welding Specifications SAA-33A(3) and MA-33A(7) using the submerged arc process. The Charpy weld metal specimens were machined in a direction transverse to the weld direction; thus, only the notched section of the specimen would necessarily be composed of weld-deposited metal. Charpy specimens were taken throughout the weld section to a depth of 1-1/16 inch

III-l

"

.

. .

5

from the weld root. The Charpy weld metal specimens' long axes were therefore parallel to the plate surface, and the notches were cut perpendicular to the plate surface. The tensile weld metal specimens were composed entirely of weld metal and were obtained by machining the specimens parallel to the weld length and parallel to the plate surface.

The Charpy HAZ metal specimens were machined in a direction transverse to the weld length and parallel to the plate surface. The axes of the notches were then cut perpendicular to the plate surfaces, with the notch located at the intersection of the base metal and weld deposit. The tensile HAZ metal specimens were machined transverse to the weld length and parallel to the plate surface. The joint between the base metal and weld deposit was located at the center of the tensile specimen gage length. .

.

. .

·

IV. EXPERIMENTAL PROCEDURES

A. Neutron Dosimetry Measurements

Flux monitor wires of iron, copper, and nickel, were recovered from the surveillance capsules, cleaned, sampled, weighed and counted for specific activity using a 50cc high purity germanium detector. ASTM procedures³⁻⁸ were followed in the measurement of the specific activities and in the calculation of neutron fluence for the two capsules.

The integrated neutron fluence at the surveillance location was determined from the radioactivity induced in the irradiated detector materials. The gamma radiation from the dosimeter was measured and used to calculate the flux required to produce this level of activity. The fluence was then calculated from the integrated power output of the reactor during the exposure interval.

In order to determine the effective cross section to be used in the fluence calculations, the cross section as a function of energy must be known and the neutron flux intensity as a function of energy must be known. A cross section library of this nature is available⁹ and a computer code DETAN¹⁰ was used to retrieve the cross sections desired from this library. The neutron flux. and spectrum was calculated with computer code DOT.¹¹ This code solves the two-dimensional Boltzmann transport equation using the method of discrete ordinates. The reactor geometrical configuration design was modeled to simulate the core structure, the relative power level of

IV-1

. , ۰ ۰

.

.

٠

4

important fuel bundles, intervening structures, and the pressure vessel. This is shown in Figure 1.

Calculations were performed in the S₈P₃ approximation using 47 neutron group cross sections from the DLC-75 library.¹² The effective cross sections were generated by the DOT calculation. Coincidental with the calculation of the effective cross sections in the DOT run, the lead factor and neutron flux profile in the reactor vessel wall were also determined. Based on core symmetry, the 300-degree and 30-degree capsules occupied equivalent azimuthal positions.

The neutron fluence was calculated by multiplying the flux (neutrons per square centimeter per second) by the time of operation at full power (using effective full power seconds). To perform the computations, the following information was used:

- (1) A description or sketch of the fuel bundle arrangement making up the core, the structures between the core and the pressure vessel, and the pressure vessel itself. This descripion included materials, thicknesses, and distances between components. The cladding material properties and thickness were also included.
- (2) The average fast flux distribution in the core. These data included the fuel bundles in one octant of the core and covered the entire time span during which the capsule was in the reactor.
- (3) Detailed capsule and capsule holder drawings and, the exact position of the capsule relative to other structures.
- (4) A complete energy generation history by month (MWH_t per month) for the time during which the capsule was in the reactor, plus a value considered to be full power.

、

' . ⊻ .

a.

. .

۴ ۱

.

FIGURE 1 - NINE MILE POINT CORE, INTERNAL VESSEL STRUCTURES, AND VESSEL WALL GEOMETRY USED IN THE DOT CALCULATION

,

i

•

.

A

u

.

,

.

B. Charpy Impact Tests

Charpy impact tests were conducted using a 264 ft-lb Tinius-Olsen Model 74 impact machine in accordance with ASTM specifications.^{13,14} Testing of the irradiated Charpy V-notch specimens followed the general recommendations of General Electric Service Information Letter No. 14, Supplement 1.

ASTM Procedure E23-82 for specimen temperature control was utilized. The low temperature bath consisted of a refrigeration unit containing methyl alcohol. Tests above room temperature were conducted in a similar manner using a heated oil bath.

The Battelle's Columbus Laboratory approach was to test each type specimen (base, weld, and HAZ metal) in the approximate temperature range of -50°F to 400°F with the actual test temperature mutually agreed upon prior to The data generated was used to construct testing. conventional Charpy transition curves. Emphasis was placed on establishing 30 ft-lb, 50 ft-lb, and 35 mil lateral expansion index temperatures. Because of the current concern regarding the upper shelf energy level of pressure vessel materials, tests were also conducted in a manner such that the upper shelf was well-defined. Items reported include test temperature, energy absorbed by the specimen in breaking, lateral expansion, percent ductile fracture, upper shelf energy, 30 ft-lb level nil-ductility transition (NDT) temperature, and the 50 ft-lb level NDT temperature. The Charpy impact data were prepared and reported in accordance with ASTM E185-82.15

Six additional samples from the 300-degree capsule were tested which were reconstituted from broken halves of

IV-3

)

• •

معید ۲

tested Charpy bars. The fracture surfaces of the broken halves are first machined to obtain a smooth end surface for welding. Machining stud ends of the same material are then welded to both ends of the machined halves. The arc welding is done using a stud gun and alignment fixture. The bar was then machined to the approximate length. Previous studies have shown that arc stud welding successfully produces reconstituted Charpy specimens under hot laboratory conditions. It was also shown that no welding-induced annealing occurs in the notch area as a result of the welding.

C. <u>Tensile Tests</u>

Tensile tests were conducted using a screw-driven Instron machine having a 20,000 pound capacity. The tensile properties of base metal, weld metal, and HAZ metal specimens were determined following ASTM procedures.^{13,16,17} Prior to testing, each tensile specimen diameter was measured using a blade micrometer, and an initial cross-sectional area was calculated for each specimen. The samples of each material were tested at room temperature ($^{\circ}$ 80°F) and 550°F. Tensile specimens were heated by means of a hot air-furnace.

Load-elongation data were recorded on the testing machine strip chart. Yield strength, ultimate tensile strength, uniform elongation, and total elongation were determined from these charts. The reduction in area was determined from specimen measurements made using a blade micrometer. Total elongation was also determined from the increase in distance between two punch marks (originally one-inch apart) which were made in the gage section prior to testing.

IV-4

*

A

•

1

. .

D. <u>Chemical Analysis</u>

The method of X-ray fluorescence (XRF) was used to determine copper (Cu), phosphorus (P), and nickel (Ni) contents. Each sample consisted of a separate half of a broken weld metal Charpy specimen which was polished through 600 grit grinding paper to provide a satisfactory surface for analysis. The samples and NBS standards (with known amounts of each element) were bombarded with primary X-rays to produce measurable characteristic or secondary X-rays of the desired elements. Qualification and calibration was achieved by comparing the accumulated intensity and wavelengths of the X-rays from the sample to those from NBS standards possessing a known concentration range for each element.

IV-5

A.

· ·

. · •

~

•

•

• ø •• ۲ ۳ •

. '.

Ó

V. RESULTS OF TESTS

A. Dosimetry Results

The primary surveillance capsule was located at the 300-degree azimuthal position at approximately the core midplane position and at 7/16 inch from the inner pressure vessel wall. This capsule was in the reactor for 2913 equivalent full power days or about 7.98 equivalent full power years. The second capsule tested was located at the 30-degree azimuthal position at the same radial and axial position as the first. This capsule was in the reactor for 2117.8 equivalent full power days, or about 5.80 equivalent full power years. The neutron monitor wires from Charpy packets P7 and P8 in the 300-degree capsule and packets P1, P2, and P3 from the 30-degree capsule were counted to determine their specific activity. The fast flux and fluence was calculated using the count rate from each wire. The results represent an average over the 4-inch length of each wire. The E > 0.1 MeV and E > 1.0 MeV full power flux and fluence calculated from initial startup to March 1982 for the 300-degree capsule are given in Tables 1a and 2a, respectively, for each of the dosimeter wires, along with the average of the flux and fluence derived from the Fe, Cu, and Ni wire pairs. In. addition, the grand average values of the results for Fe and Cu are given. The Ni results were not used in the grand average because the very short half life makes its results dependent on only the latest operating history. Similar flux and fluence results for the 30-degree capsule are shown in Tables 1b and 2b,

V-1

, ,

1

. .

v

.

1

respectively. Nickel results are not available for the 30-degree capsule because of the short half-life of Co-58. Flux and fluence results for this capsule were not used for calculating reactor vessel lead factors. These were calculated solely on the basis of the 300-degree dosimetry results.

Using the average fluxes of 3.32 x 10^9 n/cm²/sec for E > 0.1 MeV and 1.90 x 10⁹ n/cm²/sec for E > 1.0 MeV for the 300-degree capsule, the fluxes at full power at the inside of the pressure vessel wall, at 1/4 T and at 3/4 T directly behind the capsule (300-degree orientation), and at the maximum position (285.66-degree orientation) were calculated. The flux results are tabulated in Table 3. The end of life (EOL) fluences were also calculated and tabulated in Table 3 assuming a reactor pressure vessel lifetime of 40 years and a capacity factor of 80 percent. The fine mesh and time integrated relative power values shown in Figure 1 for each fuel assembly was used in the DOT 4.3 code to generate the values in Table 3. A plot of neutron flux (E > 1.0 MeV) as a function of azimuthal angle (in degrees) is shown in Figure 2. The fluence values at the maximum position for inner vessel wall, 1/4 T and 3/4 T are plotted as a function of time in equivalent full power years (efpy) for the NMP-1 pressure vessel in Figure 3. The lead factor, i.e., the ratio of the flux (E > 1.0 MeV) at the surveillance capsule to the largest flux (E > 1.0 MeV) received by the vessel wall at any azimuthal location, is approximately 0.66 (1.90 x $10^9/2.86 \times 10^9$) at the vessel surface. This result indicates that the flux at the capsule actually lags the flux at certain vessel wall positions. The lead

V-2

·

4

.

,

ν.

.

TABLE	1a	FLUX	AND	FLUE	NCE	VALUE	<u>IS WIT</u>	<u>'H ENER</u>	RGY
		GREAT	ER T	HAN	0.1	MeV /	AT THE	NINE	MILE
		POINT	UNI	T 1	SURV	EILLA	ANCE C	CAPSULE	5
		(300-	DEGR	EE A	ZIMU	THAL	POSIT	ION)	-

Energy	Dosimeter Material	Full_Power Flux ₉ (n/cm ² /sec) x 10 ⁹	Fluence* (n/cm ²) x 10 ¹⁷
0.1 MeV	Fe (P7) ^a	3,549	8.933
	(P8) ^b	3.210	8.078
	Average of Fe	3.380	8.506
	Cu (P7) ^a	3.253	8.188
μ.	(P8) ^b	3.253	8.188
	Average of Cu	3.253	8.188
	Ni (P7) ^a	3.230	8.130
	(P8) ^b	3.117	7.844
	Average of Ni	3.174	7.987
	Average of Fe and Cu	3.32	8.35

*Fluence based on 2913.1 equivalent full power days of operation.

a) P7 refers to bottom packetb) P8 refers to top packet

.

۹,

· · · ·
TABLE 1bFLUX AND FLUENCE VALUES WITH ENERGY
GREATER THAN 0.1 MeV AT THE NINE MILE
POINT UNIT 1 SURVEILLANCE CAPSULE
(30-DEGREE AZIMUTHAL POSITION)

.

-

Energy	Dosimeter Material	Full_Power Flux ₉ (n/cm ² /sec) x 10 ⁹	Flyence* (n/cm ²) x 10 ¹⁷
0.1 MeV	Fe (P1-Fe)	3.8	6.9
	(P2-Fe)	3.6	6.6
	(P3-Fe)	3.5	-6.4
	Average of Fe	3.6	6.6
	Cu (P2-Cu)	3.3	6.1
	(P3-Cu)	3.1	5.7
	Average of Cu	3.2	5.9
	Average of Cu and F	e 3.4	6.3

*Fluence based on 2117.8 equivalent full power days of operation.

<u>.</u>

.

٨

.

•

•

•

Energy	Dosimeter Material	<pre>- Full_Power Flux (n/cm²/sec) x 10⁹</pre>	Flyence* (n/cm ²) x 10 ¹¹
1.0 MeV	Fe (P7) ^a	2.033	4.118
	(P8) ^b	1.839	4.629
	Average of Fe	1.936	4.874
		6	
	Cu (P7) ^a	1.864	4.691
	(P8) ^b	1.864	4.691
	Average of Cu	1.864	4.691
	Ni (P7) ^a	1.851	4.659
	(P8) ^b	1.786	4.494
,	Average of Ni	1.819	4.577
	Average of	1.90	4.78

 TABLE 2a
 FLUX AND FLUENCE VALUES WITH ENERGY

 GREATER THAN 1.0 MeV AT THE NINE MILE

 POINT UNIT 1 SURVEILLANCE CAPSULE

 (300-DEGREE AZIMUTHAL POSITION)

*Fluence based on 2913.1 equivalent full power days of operation.

a) P7 refers to bottom packetb) P8 refers to top packet

۲<u>۰</u>۰ .

· · ,

•

۹. ۲ .

TABLE 25	FLUX AND FLUENCE VALUES WITH ENERGY
	GREATER THAN 1.0 MeV AT THE NINE MILE
	POINT UNIT 1 SURVEILLANCE CAPSULE
	(30-DEGREE AZIMUTHAL POSITION)

Energy	Dosimeter Material	Full_Power Flux (n/cm ² /sec) x 10 ⁹	Flyence* (n/cm ²) x 10 ¹⁷
1.0 MeV	Fe (P1-Fe)	2.2	4.0
	(P2-Fe)	2.0	· 3.8
	(P3-Fe)	2.0	-3.7
	Average of Fe	2.1	3.8
	Cu (P2-Cu	1.9	3.5
	(P3-Cu)	1.8	3.3
	Average of Cu	1.9	3.4
	Average of Cu and Fe	e 2.0	3.6

*Fluence based on 2117.8 equivalent full power days of operation.

.

`

•

,

,

.

TABLE 3 FLUX AND FLUENCE IN THE PRESSURE VESSEL WALL OF THE NINE MILE POINT UNIT 1 REACTOR - BEHIND THE SURVEILLANCE CAPSULE (300-DEGREE) AND AT THE PEAK FLUX LOCATION IN THE VESSEL WALL (285.66-DEGREE)

					Fluence in	Vessel Wall	
		Full Power Flux in Vessel Wall		Behind Caps	ule (300 ⁰)	Haximum (285.66 ⁰)
Energy (Heỵ)	Location	Behind Capsule (300 ⁰) (n/cm ² /sec) x 10 ⁹	Maximum (285.66 ⁰) (n/cm ² /sec) x 10 ⁹	March 82 (1) (n/cm ² x 10 ¹⁷)	EOL (2) (n/cm ² x 10 ¹⁸)	March 82 (1) (n/cm ² x 10 ¹⁸)	EOL (2) (n/cm ² x 10 ¹⁸)
0.1	Surface	3.26	5.68	8.20	3.29	1.43	5.73
0.1	1/4 T	2.91	5.12	7.32	2.94	1.29	5.19
0.1	3/4 Ţ	1.34	2.30	3.37	1.35	0.582	2.33
1.0	Surface	1.54	2.86 and the	₩ <i>3+</i> 3 . 88	1.55	0.721	2.89
1.0	1/4 T	1.04	1.95	2.63	1.05	0.492	1.97
1.0	3/4 T	0.287	0.525	0.722	0.290	0.132	0.521

(1) Fluence based on 7.98 effective full power years of operation.

(2) Fluence based on 32 effective full power years of operation.

1

n , v

r" .

.

•

•

,

FIGURE 2 - CALCULATED FLUX AT PRESSURE VESSEL INNER WALL, 1/4 T THICKNESS AND 3/4 T THICKNESS AS A FUNCTION OF AZIMUTHAL ANGLE

•

· · ·

۰ ۲

.

,

•

FIGURE 3 - FLUENCE AT INNER WALL 1/4 T AND 3/4 T POSITIONS AS A FUNCTION OF TIME FOR THE NINE MILE POINT UNIT 1 REACTOR VESSEL .

`

· ,

.

factors at the pressure vessel 1/4 T and 3/4 T positions were calculated to be 0.97 (1.90 x $10^9/1.95$ x 10^9) and 3.62 (1.90 x $10^9/5.25$ x 10^8), respectively.

The accuracy of the fluence values generated at BCL is estimated by BCL to be \pm 20 percent. Although the specific activity of fluence monitor wires can be determined to \pm 5 percent, uncertainties in neutron spectrum and spectrum averaged across sections result in the large variances in the computed flux and fluence values.

The rate of displacements per atom was also calculated using the cross sections for displacement available with the DETAN code. Table 4 shows calculated values of displacements per atom per second at full power in the pressure vessel wall behind the capsule and in the pressure vessel wall at the angle of peak fluence in the wall. Table 4 also shows calculated values of displacements per atom at these same positions in the wall for 7.98 effective full power years of operation (to time of capsule removal) and for 32 effective full power years of operation.

B. Charpy Impact Test Results

1. 300-Degree Capsule Results

Eight irradiated base metal Charpy V-notch impact, specimens, eight irradiated weld metal Charpy V-notch impact specimens, and eight irradiated HAZ metal Charpy V-notch specimens from the 300-degree capsule with 7.98 efpy of exposure were tested. Four additional base and weld metal specimens which were reconstituted from the halves of broken

.V-3

U.

g

1

*

TABLE 4 ATOM DISPLACEMENTS IN THE PRESSURE VESSEL WALL OF THE NINE MILE POINT UNIT I REACTOR

			Displacement per Atom				
	Displacement per Atom per Second		Behind Capsule		Maximum (285.66 ⁰)		
Location	Behind Capsule	Maximum (285.66 ⁰)	Ma	arch 82 (1)	EOL (2)	March 82 (1)	EOL (2)
 Sùrface	2.56x10 ⁻⁹	4.82x10 ⁻⁹		0.644	2.582	1.214	4.868
1/4 T	1.79x10 ⁻⁹	3.28x10 ⁻⁹	ı	0.452	` 1. 813 ·	0.825	3,308
3/4 T	6.19x10 ⁻¹⁰	1.10x10 ⁻⁹ , 1.10x	in sing 🖓	0.156	0.626	0.277	1.111

(1) Fluence based on 7.98 effective full power years of operation.

(2) Fluence based on 32 effective full power years of operation.

• . ٤

.

v

x

Charpy bars were also tested. The results of tests conducted between -40 and 320°F for the base metal specimens are shown in Figures 4-6. The results of tests conducted between -120 and 320°F for the weld metal specimens are shown in Figures 7-9 and the results of tests conducted between -40 and 280°F for the HAZ metal specimens are shown in Figures 10-12. In addition to the total impact energy values, the measured lateral expansion values and the estimated fracture appearance for each specimen are also shown in the figures noted above.

The total impact energy is the amount of energy absorbed by the specimen tested at the indicated temperature. Lateral expansion is a measure of the plastic "shear lip" deformation produced by the striking edge of the impact machine hammer when it impacts the specimen. Lateral expansion is determined by the change of specimen thickness directly adjacent to the notch location. Fracture appearance is a visual estimate of the amount of shear (ductile type of fracture) appearing on the specimen fracture surface.

2. 30-Degree Capsule Results

As a means of confirming the Charpy impact tests results from the 300-degree capsule reported above, Niagara Mohawk authorized limited Charpy` tests on specimens removed from the 30-degree capsule which was removed from the reactor vessel in 1979. Testing was limited to six Charpy tests on base material (which appears to be limiting) in order to determine 30 and 50 ft-lb temperature

• V−4

.* •

•

.

.

2

.

,

Test Temperature F.

•

`

1

h

,

•

50

100.

150

Test Temperature

200

250

F

300

350

400

,Ø

0.

--50,

0 -100.

FIGURE 5 - CHARPY V-NOTCH EXPANSION VERSUS TEST TEMPERATURE FOR THE IRRADIATED BASE METAL SPECIMENS FROM THE NINE MILE POINT 300-DEGREE SURVEILLANCE CAPSULE

·

,

1

,

FIGURE 6 - CHARPY V-NOTCH PERCENT DUCTILE SHEAR VERSUS TEST TEMPERATURE FOR THE IRRADIATED BASE METAL SPECIMENS FROM THE NINE, MILE POINT 300-DEGREE SURVEILLANCE CAPSULE

, , ,

·

٠ ٠

.

.

•

FIGURE 7 - CHARPY V-NOTCH IMPACT ENERGY VERSUS TEST TEMPERATURE FOR THE IRRADIATED WELD METAL SPECIMENS FROM THE NINE MILE POINT 300-DEGREE SURVEILLANCE CAPSULE

.

0

.

.

4 1

•

щ

Test: Temperature

į

FIGURE 8 - CHARPY V-NOTCH LATERAL EXPANSION VERSUS TEST TEMPERATURE FOR THE IRRADIATED WELD METAL SPECIMENS FROM THE NINE MILE POINT 300-DEGREE SURVEILLANCE CAPSULE

•

.

9

1.4

FIGURE 9 - CHARPY V-NOTCH PERCENT DUCTILE SHEAR VERSUS TEST TEMPERATURE FOR THE IRRADIATED WELD METAL. SPECIMENS FROM THE, NINE MILE POINT 300-DEGREE SURVEILLANCE CAPSULE

1 1 . , . , ,

FIGURE 10 - CHARPY V-NOTCH IMPACT ENERGY VERSUS TEST TEMPERATURE FOR THE IRRADIATED HAZ METAL SPECIMENS FROM THE NINE MILE POINT 300-DEGREE SURVEILLANCE CAPSULE

• .

?

.

-. .

· · · ·

•

FIGURE 11 - CHARPY V-NOTCH LATERAL EXPANSION VERSUS TEST TEMPERATURE FOR THE IRRADIATED HAZ METAL SPECIMENS FROM THE NINE MILE POINT 300-DEGREE SURVEILLANCE CAPSULE

.

.

,

۲

Test Temperature F.

FIGURE 12 - CHARPY V-NOTCH PERCENT DUCTILE SHEAR VERSUS TEST TEMPERATURE FOR THE IRRADIATED HAZ METAL SPECIMENS FROM THE NINE MILE POINT 300-DEGREE SURVEILLANCE CAPSULE

Æ

,

.

.

•
shifts. Unirradiated baseline data and irradiated results for the tests are shown in Figure 13.

A summary of the 300-degree and the 30-degree NMP-1 surveillance capsule Charpy V-notch impact test data, including the 30 and 50 ft-1b transition temperatures, the 35-mil lateral expansion temperature and the upper shelf energy, is given in Table 5.

Unirradiated archive baseline Charpy V-notch data come from Combustion Engineering Mechanical Test Reports for tests on material taken from the same heat of the pressure vessel steel as was used to fabricate the Charpy specimens and heat treated in like fashion.¹⁸ These data are plotted in Figures 4 and 13. From these data, the 30 and 50 ft-1b unirradiated transition temperatures and the upper shelf energy were obtained. Bv difference, the shift or change in transition temperatures and upper shelf energy were calculated for the base material, as shown in Table 5. The upper shelf energy is essentially unchanged from the base metal. In all cases; (base, weld, and HAZ) the upper shelf energy values are well above the minimum allowable EOL value of 50 ft-lb specified in 10CFR50 Appendix G.

There are no archive data for HAZ metal and only limited (10°F) data for weld metal.¹⁸ The archive weld data are plotted in Figure 7, and show that all values are above 30 ft-lb at 10°F, and the average energy is above 45 ft-lb. It also suggests that only a negligible shift occurs as a result of irradiation. This is consistent with the low nickel and copper content of the weld metal as determined by chemical analysis of the irradiated Charpy specimens. The General Electric design specification calls for a vessel RT_{NDT} of < 10°F

V-5 ·

i.c.

. .

•

r

NINE MILE POINT 1

DATA AND CURVES

13. COMPARISON OF THE CHARPY V-NOTCH IMPACT ENERGY VERSUS TEST TEMPERATURE FOR THE UNIRRADIATED AND IRRADIATED BASE METAL SPECIMENS FROM THE 30-DEGREE CAPSULE

-

• 2

.

ı

•

•

•

.

Material	E > 1.0 MeV Fluence, n/cm ²	30 ft-1b Transition Temperature, F	50 ft-lb Transition Temperature, F	35-Mil Lateral Expansion Temperature, F	Upper Shelf Energy, ft-lb
Base	0	-24	10-25		100
Base	4.78×10^{17}	90	139	130	102
Weld	4.78×10^{17}	-43	. 4	-22	116
HAZ	4.78×10^{17}	, ≛⊴a %r ar ±10 ≠+	37	20	96
Base	Change	114	113	• 0	2
Base	3.6 \times 10 ¹⁷	63	100	79	
Base	Change	89	86 (
	Material Base Base Weld HAZ Base Base Base	MaterialE > 1.0 MeV Fluence, n/cm^2 Base0Base 4.78×10^{17} Weld 4.78×10^{17} HAZ 4.78×10^{17} BaseChangeBase 3.6×10^{17} BaseChange	Material $E > 1.0 \text{ MeV}$ Fluence, n/cm^2 30 ft-lb Transition Temperature, FBase0-24Base 4.78×10^{17} 90Weld 4.78×10^{17} -43HAZ 4.78×10^{17} , 4.78×10^{17} BaseChange114Base 3.6×10^{17} 63BaseChange89	MaterialE > 1.0 MeV Fluence, n/cm230 ft-lb Transition Temperature, F50 ft-lb Transition Temperature, FBase0-2410-25Base 4.78×10^{17} 90139Weld 4.78×10^{17} -434HAZ 4.78×10^{17} BaseChange114113Base 3.6×10^{17} 63100BaseChange8986 $\frac{1}{2}$	MaterialE > 1.0 MeV Fluence, n/cm^2 30 ft-1b Transition Temperature, F50 ft-1b Transition Temperature, F35-Mil Lateral Expansion Temperature, FBase0-2410-25Base4.78 x 10^{17}90139130Weld4.78 x 10^{17}-434-22HAZ4.78 x 10^{17}.434-22BaseChange1141130Base3.6 x 10^{17}6310079BaseChange8986

•

· · · · · ·

. .

,

.

•

for all material in the core beltline region.¹⁸ Since the 30 ft-lb value for the irradiated HAZ metal is <10°F, it is again suggested that only a negligible shift occurs for that material as well. Since the shifts in weld and HAZ metal are small, the shift for the base metal at higher neutron exposure will probably be the limiting criterion for pressure vessel operation.

C. Tensile Test Results

The tensile test parameters and irradiated specimen tensile properties are listed in Table 6. All tests were performed on specimens removed from the 300-degree capsule. Table 6 lists the specimen number, material, and test temperature. Also listed are the 0.2 percent offset yield strength, ultimate tensile strength, fracture strength, fracture stress, reduction in area, uniform elongation, and total elongation for each specimen tested.

Tensile tests were conducted at room temperature (75°F), and 550°F. All three materials, base metal, weld metal, and HAZ metal exhibited decreases in yield strength and ultimate: strength when the test temperature was increased from room temperature to 550°F. Fracture strength was the same or slightly higher at 550°F than at room temperature. The percent reduction in area for the three materials are relatively constant at test temperatures of 75°F (room temperature), but decreased slightly (8 to 13 percent) at a test temperature of 550°F. The uniform and total elongation also decreased when the test temperature was increased from 75°F to 550°E.

V-6

ب ۳ ۳ ۳ ۲

.

• •

,

r

TABLE 6 TENSILE PROPERTIES FOR THE IRRADIATED MATERIALS FROM THE NINE MILE POINT UNIT 1 300-DEGREE SURVEILLANCE CAPSULE

Specimen No.	Material Type	Test Temp.(1) (F)	<u>Yield</u>	itrength, psi Ultimate	Fracture	Fracture Stress (psi)	Reduction in Area (percent)	Elogation, p Uniform	ercent(2) Total
UUA	Base	, RT	79,170	99,700	66,060	192,300	65.7	12.5	27.7
JDB	Base	550	69,410	92,890	68,090	161,800	58.0	8.9	19.7
G-8-3	Base(3)	RT	65,000	86,200	0,	0	65.4	· _	26.0
G-8-4	_{Base} (3)	RT	59,300	85,500	-	-	68.0	-	29.0
JLB	We1d	RT	73,680	90,240	59,450	186,300	68.1	13.0	23.2
JL7	Weld	550	67,760	84,690	59,180	157,600	. 62.4	10.5	20.9
JUD	Haz	RT	63,720	85,060	54,880	181,200	69.7	7.5	19.8
JTU	HAZ	550	59,960	81,500	56,910	145,100	60.8	7.1	18.4

(1) Room temperature (RT) is approximately $75^{\circ}F$.

- (2) The elongation is for a 1-inch gauge length, except for the baseline, which is 2 inches.
- (3) Unirradiated baseline material reported by Lukens Steel.

,

и

. . . • •

r

.

Archive base line tensile data are limited to two tests at room temperature, as shown in Table 6.¹⁸ From these data one can see that there is an increase in yield and ultimate strengths and a decrease in (1-in) total elongation as a result of the irradiation. However, the reduction in area is essentially unchanged. The data for the irradiated base and weld metal compare favorably. The HAZ metal ductility is somehwat reduced; however, this is consistent with data from other BWR surveillance capsules.

D. Chemical Analysis Results

The method of X-ray fluorescence (XRF) was used to determine the copper (Cu), nickel (Ni), and phosphorus (P) contents of the base and weld metal specimens. Five irradiated base metal and five irradiated weld metal samples from the 300-degree capsule consisting of broken halves of tested Charpy V-notch specimens were analyzed for Cu, Ni, and P content. Five irradiated base metal samples (with two duplicate tests) were taken from the 30-degree capsule as well. The analytical results for all the samples are listed in Table 7.

The calculated accuracy for this X-ray fluorescence chemical analysis is \pm 15% for copper, \pm 6.0% for nickel, and \pm 10% for phosphorus. The estimated detection limit is 0.02 weight percent for copper and 0.01 weight percent for both nickel and phosphorus.

The average Cu and Ni contents for the 30-degree capsule Charpy base specimens are 0.30 and 0.56 weight percent, respectively. The average Cu and Ni contents for the 300-degree capsule Charpy base specimens are 0.23 and 0.46 weight percent, respectively. These differences

V-7

x

,

.

• .

 TABLE 7
 CHEMICAL ANALYSIS RESULTS FOR NINE MILE POINT UNIT 1 BASE AND WELD MATERIAL SPECIMENS

Capsule	Specimen No.	Material Type	Elements, Cu	Weight Ni	Percent ^(a) P
300-degree	G-8-3(b)	Base (U)	0.18	0.56	0.012
300-degree	G-8-4	Base (U)	0.18	0.56	0.012
300-degree	E1U	Base (I)	0.21	0.48	0.017
300-degree	ElU	Base (I)	0.22	0.47	0.020
300-degree	EIM	Base (I)	0.22	0.46	. 0.021
300-degree	E42	Base (I)	0.22	0.48	0.022
300-degree	E7E	Base (I)	0.23	0.45	0.021
300-degree	E3T	Base (I)	0.25	0.46	0.024
300-degree	E3T	Base (I)	0.23	0.45	0.027
300-degree	EDK	Weld (I)	0.17	0.05	0.020
300-degree	EDK	Weld (I)	0.18	0.05	0.022
300-degree	EJD	Weld. (I)	0.16	0.06	0.020
300-degree	EJC.	Weld (I)	0.17	0.08	0.022
300-degree	EDT	Weld (I)	0.16	0.09	0.022
300-degree	EDL	Weld (I)	0.16	0.08	0.023
300-degree	EDL	Weld (I)	0.17	0.08	0.022
30-degree	EIC	Base (I)	0.26	0.57	0.06
30-degree	E1C	Base (I)	0.30	0.59	0.06
30-degree	EBK	Base (I)	0.30	0.51	0.08
30-degree	EBK	Base (I)	0.34	0.54	0.07
30-degree	E71	Base (I)	0.33	0.58	0.05
30-degree	E2U	Base (I)	0.28	0.52	0.03
30-degree	E31	Base (I)	0.28	0.61	0.07

(a) Estimated analysis accuracy is ± 30 percent for P, \pm 60 percent for Ni, and \pm 10 percent for Cu.

(b) From Lukens Test Certificates, (U) - Unirradiated, (I) - Irradiated.

are not believed to be inconsistent with compositional variations in thick-section steel. The average Cu and Ni contents for all the data are 0.25 and 0.52 percent, respectively.

The chemical analysis results of unirradiated base metal samples reported in the Lukens test certificates for the same heat from which the surveillance specimens were fabricated are also listed for comparison. The results for the base metal are similar, as expected, within the error band noted above. The weld metal samples showed low copper and very low nickel. Unfortunately, no archive weld and HAZ metal samples were available for . chemical analysis.

V-8

. . .

`

ı.

.

, wi

۰ ۰

VI. DISCUSSION

The shifted nil ductility reference temperature (RTNDT) for the vessel beltline enters reactor vessel pressuretemperature (P-T) calculations directly via the reference stress intensity factor-temperature relation. Therefore, it is necessary to determine conservative estimates of RTNDT for the period of time during which P-T operating limits are in effect. Without surveillance capsule data, estimates of RTNDT are calculated based on the methods of Regulatory Guide 1.99,¹⁹ which take into account material chemistry, estimated fluence and initial values of RTNDT. An assessment shall be made here of the expected value of RTNDT for 10 and 20 efpy of plant service based on Regulatory Guide 1.99 methods and material 'chemistry only, draft Regulatory Guide 1.99 (Revision 2) methods ²⁰ and material chemistry only, and on surveillance capsule data extrapolated to 10 and 20 efpy.

A. Predicted Fluence

Based on the flux wire data presented in Section III.A and calculated lead factors, the expected fluence at the 1/4-T location of highest fluence at core midplane is as follows:

Table 8

Expected 1/4-T Fluence (> 1 MeV)

Exposure Time	<u>1</u>	/4-	T	Fluen	ce
10 efpy	. 6.	.16	x	10 ¹⁷	nvt
20 efpy	12.	.32	X	10 ¹⁷	nvt

VI-1

,

.

, ,

B. Initial RTNDT Value

The measured or calculated shift in RTNDT must be added to some initial value determined from unirradiated reactor vessel belt material samples. Charpy impact data for all heats of shell material in the core region of the vessel are available as shown in Table $\cdot 9$. As can be seen from the table, the plate in the lower shell course has a 30 ft-lb temperature (equivalent to RTNDT) of 8°F. The next highest initial RTNDT plate lies in the intermediate shell course opposite the core mid-plane and has a 30 ft-lb temperature of -4°F. It is assumed that the fast flux (>1 MeV) peak will lie in the core mid-plane region or higher due to the increased void fraction higher in the core. Therefore, the limiting initial RTNDT for Nine Mile Point Unit 1 is taken as $-4^{\circ}F'$.

C. <u>30-Degree and 300-Degree Capsule Comparison</u>

Limited Charpy tests were performed on specimens removed from the 30-degree capsule to confirm the large shifts observed in the 300-degree capsule specimens. Measured shifts in the 30 ft-lb temperature for both sets of specimens exceed the expected shifts predicted by references 19 and 20 by considerable margins, as shown in Table 10. The 30-degree capsule exceeds the Reg. Guide 1.99 (Rev. 2) expected shift by over three standard deviations, and the 300-degree specimens exceed the expected shift by about four standard deviations. Therefore, the 30-degree capsule results confirm the large measured shifts in the 300-degree capsule specimens.

VI-2

• . . * .

4 . A. .

TABLE9

UNIRRADIATED BASELINE CHARPY TEST RESULTS FOR VESSEL HEATS IN CORE REGION AT NINE MILE POINT UNIT 1

PLATE NO.	HEAT NO.	SHELL COURSE*	30 FT-LB ȚEMPERATURE	50 FT-LB TEMPERATURE	UPPER SHELF ENERGY
G-8-1	P2112	Lower	+ 8 ⁰ F	+52 ⁰ F	90 ft-1bs
G-8-3	P2130	Lower	-24 ⁰ F	+24 ⁰ F	96 ft-lbs
G-8-4	P2130	Lower	-26 ⁰ F	+12 ⁰ F	106 ft-1bs
G-307-3	P2074	Intermediate	- 4 ⁰ F	+36 ⁰ F	104 ft-1bs
G-307-10	P2091	Intermediate	-12 ⁰ F	+40 ⁰ F	100 ft-16s
G-307-4	P2076	Intermediate	- 4 ⁰ F	+44 ⁰ F	80 ft-1bs

* The lower sheel course extends from the bottom head to a level 33.7" above the bottom of the active fuel. The intermediate course covers the remainder of the core elevations.

۱,

•

e ,

,

.

т

,

u.

*

Table 10

Measured and Predicted Charpy 30 ft-1b Temperature Shifts for the 30-Degree and 300-Degree Capsules

Capsule ^a	Fluence (>lMeV)	Measured Shift (30 ft-lb)	Reg. Guide 1.99 (Rev. 1) Shift	Reg. Guide 1.99 (Rev. 2) Shift ^D
30-Degree	3.6 x 10^{17}	89°F	63°F`	74°F
300-Degree	4.78 x 10^{17}	114°F	79°F	81°F

a) Assumed chemistry is the average for all specimens tested: .25% Cu, .52% Ni, .04% P.

b) This predicted shift includes the two standard deviation "margin" required by the Reg. Guide.

. .

•

.

· · ·

Table 11

Predicted 1/4-T RTNDT Shifts

Method	10 efpy Shift	20 efpy Shift
Extrapolated Capsule. Data*	130°F	183°F
Reg. Guide 1.99** (Revision 1)	82.°F	ll6°F
Reg. Guide 1.99*** (Revision 2)	88°F	110°F

. . . .

•____

:.

* Based on a measured shift of 114°F after 7.98 efpy of exposure.

** Based on .25% Cu and 0.04% P (average of all samples).
*** Based on .25% Cu and 0.52% Ni (average of all samples).

r.

D. RTNDT Shift Prediction

Three methods were used to determine the expected shift in RTNDT for 10 and 20 efpy: (1) 300-degree surveillance capsule impact data were extrapolated to 10 and 20 efpy using a square-root-of-fluence extrapolation (which is consistent with Reg. Guide 1.99); (2) Regulatory Guide 1.99 (Revision 1) analytical methods were used with material chemistry (copper and phosphorous) and fluence data; and (3) Regulatory Guide 1.99 (Draft Revision 2) analytical methods were used with chemistry (copper and nickel) and fluence data only. For the last case, a temperature of 34°F was included in the temperature shift to cover the "twosigma" uncertainty in shift data required by Regulatory Guide 1.99 (Revision 2). Results of these calculations are shown in Table 11.

As can be seen from Table 11, the extrapolated shift of RTNDT for 10 and 20 efpy is considerably greater when based on capsule data than when calculated by Regulatory Guide 1.99 (Revisions 1 or 2) methods. Table 12 shows that the expected values of 1/4-T RTNDT at 10 and 20 efpy, based on the three methods discussed

above, and based on an initial RTNDT of -4°F.

VI-3

, · ·

.

.

,

Table 12

Expected RTNDT Values at 10 and 20 efpy*

Method	10 efpy Shift	20 efpy Shift
Extrapolated Capsule Data	126°F	179°F
Reg. Guide 1.99 (Revision 1)	78°F [.]	ll2°F
Reg. Guide 1.99 (Revision 2)	84°F	106°F

. . . .

* Based on an initial RTNDT of -4°F and the temperature shifts shown in Table 10.

\$,

3

•

.

,

VII. CONCLUSIONS

Evaluation of the fast neutron dosimetry, chemical analysis, and mechanical property test (Charpy V-notch and tensile) results for specimens from the Nine Mile Point Unit 1 surveillance capsules leads to the following conclusions:

A. Neutron Dosimetry

The Nine Mile Point capsule and surveillance specimens at the 300-degree azimuthal location received a fast neutron fluence (E > 1.0 MeV) of 4.8 x 10^{17} n/cm² as a result of operation from initial startup to March, 1982 (7.98 efpy). The 30-degree capsule received a fast neutron fluence of 3.6 x 10^{17} nvt (E > 1.0 MeV).

The Nine Mile Point pressure vessel azimuthal fluence (or flux) varied by as much as a factor of 3. The maximum fast neutron exposure occurred at about the 286-degree aximuthal position and the lead factor was 0.66 for the pressure vessel inside surface, 0.97 for the 1/4-T, and 3.62 for the 3/4-T positions at the 286degree azimuth.

The maximum fast neutron fluence (E > 1.0 MeV) at the pressure vessel 1/4-T position was 4.92 x 10^{17} n/cm² as a result of operation from initial startup to March, 1982 (7.98 efpy).

B. <u>Charpy</u>

After a fast neutron fluence (E > 1.0 MeV) of 4.78 x 10^{17} n/cm², the irradiated Charpy V-notch specimens from the Nine Mile Point 300° surveillance capsule indicate a base metal upper shelf energy of 102 ft-lb,

VII-1

.

`

a weld metal upper shelf energy of 116 ft-lb, and a HAZ metal upper shelf energy of 96 ft-lb. The base metal value is actually slightly higher than that obtained with the unirradiated baseline materials. Because of the limited number of tests, Charpy results for the 30degree capsule did not include tests at temperatures appropriate to obtain upper shelf energies. All values from the 300-degree capsule are well above the minimum allowable upper shelf energy of 50 ft-lb specified in 10 CFR 50 Appendix G.

C. <u>Tensile</u>

All tensile test specimens exhibited ductile failures as evidenced by the cup-and-cone type fracture shape. The tensile properties were essentially the same as those given for the available unirradiated baseline materials.

D. Chemistry

The copper, nickel, and phosphorus content obtained at BCL for irradiated specimens from the 300-degree capsule compare well (within about 15 percent) to the content reported for the available base metal specimens.

For the 300-degree capsule, the base metal averaged 0.23 weight percent Cu, 0.46 weight percent Ni and 0.022 weight percent P, while the weld metal averaged 0.17 weight percent Cu. 0.07 weight percent Ni, and 0.022 weight percent P.

For the 30-degree capsule, base metal averaged 0.30 percent Cu and 0.56 percent Ni. The differences are

x

,

- 4 #

٩

۲

believed by Battelle to be within the normal compositional variation expected for thick section steel. The average Cu and Ni contents for all data from both capsules are 0.25 and 0.52 weight percent, respectively.

E. Measured and Calculated RTNDT Shifts

Measured 30 and 50 ft-1b Charpy energy shifts for the 300-degree capsule specimens with 7.98 efpy were approximately 114°F. This same shift is expected for the 1/4-T location in the reactor vessel wall since the lead factor between capsule specimens and the 1/4-T location is The measured shift for the essentially unity (0.97). 30-degree capsule with 5.80 efpy exposure is 89°F. Both capsules display shifts considerably larger than would be predicted on the basis of fluence and chemistry alone, using the methods of Reg. Guide 1.99 (Rev. 1 or 2). Extrapolated RTNDT shifts for 10 and 20 efpy of operation, based on 300-degree capsule data, are also larger than would be calculated from material chemistry and fluence and Regulatory Guide 1.99, Revision 1 or Revision 2 methods.

•

,
MPR ASSOCIATES. INC.

VIII. REFERENCES

- Higgins, J. P. and Brandt, F. A., "Mechanical Property Surveillance of General Electric BWR Vessels," General Electric Report NEDO-10115 (July, 1969).
- 2. "Modified Surveillance Program For General Electric BWR Pressure Vessel Steels," General Electric Report APED-5490, May.
- 3. ASTM E261-77, "Measuring Neutron Flux, Fluence, and Spectra by Radioactivation Techniques."
- 4. ASTM E263-82, "Determining Fast-Neutron Flux by Radioactivation of Iron."
- 5. ASTM E264-77, "Determining Fast-Neutron Flux by Radioactivation of Nickel."
- 6. ASTM E522-78, "Calibration of Germanium Detectors for Measurements of Gamma-Ray Emission Rates of Radionuclides."
- 7. ASTM E523-76, "Measuring Fast-Neutron Flux Density by Radioactivation of Copper."
- 8. ASTM E482-76, "Application of Neutron Transport Methods for Reactor Vessel Surveillance."
- 9. Evalution Reference Cross Section Library by R. L. Simons and W. N. McElroy, BnWL-1312, May, 1970, Battelle Memorial Institute, Pacific Northwest Laboratories, Richland, Washington 99352.
- 10. <u>DETAN 81: Computer Code for Calculating Detector</u> <u>Responses in Reactor Neutron Spectra</u>, C. Esenhauer, National Bureau of Standards, Washington, D.C.
- 11. RSIC Computer Code Collection, DOT 4.3 One- and Two-Dimensional Transport Code System, Radiation Shielding Information Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee, November 17, 1975.
- 12. <u>BUGLE 80 Coupled 47 Neutron, 20 Gamma-Ray, P3 Cross</u> Section Library for LWR Shielding Calculations, RSIC Library DLC-75.

VIII-1

. .

γ.

•

μ

, .

- 13. "Standard Methods and Definitions for Mechanical Testing of Steel Products," ASTM Designation A370-77, Annual Book of ASTM Standards, Part 10 (1982), pp 28-83.
- 14. Standard Methods for "Notched Bar Impact Testing of Metallic Materials," ASTM Designation E23-82, Book of ASTM Standards, Part 10 (1982), pp 277-300.
- 15. "Standard Practice for Conducting Surveillance Tests for Light-Water Cooled Nuclear Power Reactor Vessels," ASTM Designation E195-82, Annual Book of ASTM Standards, Part 45 (1982), pp 888-896.
- 16. Standard Methods of Tension Testing of Metallic Materials," ASTM Designation E8-71, Annual Book of ASTM Standards, Part 10 (1982), pp 197-217.
- 17. Standard Recommended Practice for Elevated Temperature Tension Tests of Metallic Materials," ASTM Designation E21-79, Annual ASTM Book of Standards, Part 10 (1982), pp 267-276.
- 18. Private Communications, John Conway of Niagara Mohawk Power Corporation to L. M. Lowry of Battelle's Columbus Laboratories, March 24, 1984 and May 2, 1984.
- 19. <u>Regulatory Guide 1.99</u>, Revision 1, "Effects of Residual Elements on Predicted Radiation Damage to Reactor Vessel Material," U.S. Nuclear Regulatory Commission, Washington, D.C., April, 1977.
- 20. Regulatory Guide 1.99, Revision 2, Draft.
- 21. ASME Boiler and Pressure Vessel Code, Section III, Subsection NB (Class 1 Components) for Nuclear Power Plant Components, Division 1, NB-2330 and 2331, "Test Requirements and Acceptance Standards," 1983 Edition.
- 22. Standard Review Plan (5.3.2) NUREG-0800, Rev. 1, July, 1981.

VIII-2.

.

MPR ASSOCIATES, INC.

Enclosure 2

PRESSURE-TEMPERATURE LIMITS FOR ELEVEN EFPY

· · ·

. . . ₽ .

4

.

4

MPR ASSOCIATES F-85-53-19 7/23/85

MINIMUM TEMPERATURE FOR PRESSURIZATION DURING HEATUP OR COOLDOWN (REACTOR NOT CRITICAL) (HEATING OR COOLING RATE ≤ 100 F/HR) FOR UP TO ELEVEN EFFECTIVE FULL POWER YEARS OF CORE OPERATION

FIGURE I

•

æ

.

÷ 1

*

.

ø

,

MINIMUM TEMPERATURE FOR PRESSURIZATION DURING HEATUP OR COOLDOWN (REACTOR NOT CRITICAL) (HEATING OR COOLING RATE \leq 100 F/HR) FOR UP TO ELEVEN EFFECTIVE FULL POWER YEARS OF CORE OPERATION

TEMPERATURE	PRESSURE	TEMPERATURE	PRESSURE
<u>(°F)</u>	<u>(psia)</u>	(°F)	(psia)
100	0	223	800
100	279	225	820
105	287	227	840
110	295	229	860
115	304	231	880
120	314	233	900
125	324	235	920
130	336	237	940
135	348	239	960
140	361	240	980
145	375	242	1000
150	375	244	1020
160	375	245	1040
160	425	247	1060
164	440	249	1080
169	460	250	1100
174	480	251	1120
178	500	253	1140
182	520	254	1160
186	540	256	1180
190	560	257	1200
193	580	258	1220
196	600	260	1240
200	620	261	1260
203	640	262	1280
206	660	263	1300
208	680	265	1320
211	700	266	1340
214	720	267	1360
216	740	268	1380
218	760	269	1400
221	780		

.

۰

4

. . .

•

.

MINIMUM TEMPERATURE FOR PRESSURIZATION DURING HEATUP OR COOLDOWN (REACTOR CRITICAL) (HEATING OR COOLING RATE ≤ 100 F/HR) FOR UP TO ELEVEN EFFECTIVE FULL POWER YEARS OF CORE OPERATION

•

.

,

£

MINIMUM TEMPERATURE FOR PRESSURIZATION DURING HEATUP OR COOLDOWN (REACTOR CRITICAL) (HEATING OR COOLING RATE ≤ 100 F/HR) FOR UP TO ELEVEN EFFECTIVE FULL POWER YEARS OF CORE OPERATION

TEMPERATURE	PRESSURE	TEMPERATURE	PRESSURE
(°F)	<u>(psia)</u>	(°F)	<u>(psia)</u>
100	0	263	800
100	233	265	820
109	241	267	840
118	250	269	860
127	261	271	880
136	273	273	900
145	287	275	920
154	302	277	940
163	320	279	960
172	340	280	980
181	363	282	1000
190	375	284	1020
200	375	285	1040
200	425	287	1060
204	440	289	1080
209	460	290	1100
214	480	291	1120
218	500	293	1140
222	520	294 🕠	1160
226	540	296	1180
230	560	297	1200
233	580	298	1220
236	600	300	1240
240	620	301	1260
243	640	302	1280
246	660	303	1300
248	680	305	1320
251	700	306	1340
254	720	307	1360
256	740	308	1380
258	760	309	1400
261	780		

,

MINIMUM TEMPERATURE FOR PRESSURIZATION DURING HYDROSTATIC TESTING (REACTOR NOT CRITICAL) FOR UP TO ELEVEN EFFECTIVE FULL POWER YEARS OF CORE OPERATION

8

=

,

MINIMUM TEMPERATURE FOR PRESSURIZATION DURING HYDROSTATIC TESTING (REACTOR NOT CRITICAL) FOR UP TO ELEVEN EFFECTIVE FULL POWER YEARS OF CORE OPERATION

TEMPERATURE	PRESSURE	TEMPERATURE	PRESSURE
(°F)	(psia)	(°F)	<u>(psia)</u>
100	0	195 ·	1020
100	375	197	1040
130	375	200	1060
130	683	. 202	1080
135	700	204	1100
141	720	206	1120
146	740	208	1140
151	760	210	1160
156	780	212	1180
160	800	214	1200
164	820	216	1220
168	840	218	1240
171	860	220	1260
175	880	221	1280
178	900	223	1300
181	920	225	1320
184	940	226	1340
187	960	228	1360
190	980	229	1380
192	1000	231	1400

r •

•

MPR ASSOCIATES, INC.

PRESSURE-TEMPERATURE LIMITS FOR THIRTEEN EFPY

.

.

,

x

.

•

. .

MINIMUM TEMPERATURE FOR PRESSURIZATION DURING HEATUP OR COOLDOWN (REACTOR NOT CRITICAL) (HEATING OR COOLING RATE ≤ 100 F/HR) FOR UP TO THIRTEEN EFFECTIVE FULL POWER YEARS OF CORE OPERATION

υ * , 1 и ,

MINIMUM TEMPERATURE FOR PRESSURIZATION DURING HEATUP OR COOLDOWN (REACTOR NOT CRITICAL) (HEATING OR COOLING RATE ≤ 100 F/HR) FOR UP TO THIRTEEN EFFECTIVE FULL POWER YEARS OF CORE OPERATION

TEMPERATURE	PRESSURE	TEMPERATURE	PRESSURE
(°F)	(psia)	(°F)	(psia)
100	0	232	780
100	263	235	800
106	271	237	820
112	280	· 239	840
118	290	241	860
125	300	243	880
131	312	245	900
137	325	247	920
143	339	249	940
149	355	250	960
155 -	371	252	980
161	375 ,	254	1000
160	375	255	1020
160	386	257	1040
164	400	259	1060
170	420	260	1080
176	440	262	1100
181	460	263	1120
185	480	265	1140
190	500	266	1160
194	520	267	1180
198	540	269	1200
201	560	270	1220
205	580	271	1240
208	600	273	1260
211	620	274	1280
214	640	275	1300
217	660	276	1320
220	680	278	1340
223	700	279	1360
225	720	280	1380
228	740	281	1400
230	760		

·

, ,

.

•

.

.

. .

, , MPR ASSOCIATES F-85-53-23 7/27/85

:

MINIMUM TEMPERATURE FOR PRESSURIZATION DURING HEATUP OR COOLDOWN (REACTOR CRITICAL) (HEATING OR COOLING RATE ≤ 100 F/HR) FOR UP TO THIRTEEN EFFECTIVE FULL POWER YEARS OF CORE OPERATION . .

. . .

.

· ·

MINIMUM TEMPERATURE FOR PRESSURIZATION DURING HEATUP OR COOLDOWN (REACTOR CRITICAL) (HEATING OR COOLING RATE ≤ 100 F/HR) FOR UP TO THIRTEEN EFFECTIVE FULL POWER YEARS OF CORE OPERATION

TEMPERATURE	PRESSURE	TEMPERATURE	PRESSURE
(°F)	(psia)	(°F)	<u>(psia)</u>
100	0	272	780
100	223	275	800
110	231	277	820
120	240	279	840
130	251	281	860
141	263	283	880
151	277	285	900
.161	294	287	920
171	313	289	940
181	335	290	960
191	360	292	980
201	375	294	1000
200	375	295	1020
200	386	297	1040
204	400	299	1060
210	420	300	1080
216	440	302	1100
221	460	303	1120
225	480	305	1140
230	500	306	· 1160
234	520	307	1180
· 238	540	309	1200
241	560	310	1220
245	580	311	1240
248	. 600	313	1260
251	620	314	1280
254	640	315	1300
257	660	316	1320
260	680	318	1340
263	700	319	1360
265	720	320	1380
268	740	321	1400
270	760		

. . . , . .

I

•

,

MPR ASSOCIATES F-85-53-24 7/27/85

MINIMUM TEMPERATURE FOR PRESSURIZATION DURING HYDROSTATIC TESTING (REACTOR NOT CRITICAL) FOR UP TO THIRTEEN EFFECTIVE FULL POWER YEARS OF CORE OPERATION

FIGURE 3

,

.

1

*

ń

MINIMUM TEMPERATURE FOR PRESSURIZATION DURING HYDROSTATIC TESTING (REACTOR NOT CRITICAL) FOR UP TO THIRTEEN EFFECTIVE FULL POWER YEARS OF CORE OPERATION

TEMPERATURE (°F)	PRESSURE (psia)	TEMPERATURE (°F)	PRESSURE (psia)
100	0	204	1000
100	375	206	1020
130	375	209	1040.
130.	649	211	1060
134	660	213	1080
141	680	216	1100
147	700	218	1120
153	720	220	1140
158	740	222	1160
. 163	760	224	1180
167	780	226	1200
171	800	228	1220
175	820	229	1240
179	840	231	` 1260
183	860	233	1280
186	880	235	1300
190	900	236	1320
193	920	238	1340
196	940	339	1360
198	960	241	1380
201	980	242	1400

. . • **)** . i. .

.

e

.

*

•

* n ju

•

~

