

(ń

THE ATTACHED FILES ARE OFFICIAL RECORDS OF THE DIVISION OF DOCUMENT CONTROL. THEY HAVE BEEN CHARGED TO YOU FOR A LIMITED TIME PERIOD AND MUST BE RETURNED TO THE <u>RECORDS FACILITY</u> <u>BRANCH 016</u>. <u>PLEASE DO NOT SEND DOCUMENTS</u> <u>CHARGED OUT THROUGH THE MAIL</u>. REMOVAL OF ANY PAGE(S) FROM DOCUMENT FOR REPRODUCTION MUST BE REFERRED TO FILE PERSONNEL.

NIAGARA MOHAWK POWER CORPORATION POWER AUTHORITY OF THE STATE OF NEW YORK

1980 NINE MILE POINT AQUATIC ECOLOGY STUDIES

MARCH 1981

P.O. B	TS INCORPORATED AL SERVICES \times 225621 \times 25565
	RECORDS FACILITY BRANCH
8104060354	REGULATORY DOCKET FILE COPY

•

۰. • افتارین

1980 NINE MILE POINT

AQUATIC ECOLOGY STUDIES

12

Prepared for:

Niagara Mohawk Power Corporation Syracuse, New York

and

Power Authority of the State of New York New York, New York

Prepared by: '

Texas Instruments Incorporated Ecological Services P.O. Box 225621 Dallas, Texas 75265

March 1981

REGULATORY DOCKET FILE COPY

science services division

. · . . **`** . e . \$.tyne ۶, • • . .

*

•

• .

FOREWORD

The 1980 annual report presents the results of aquatic ecology studies conducted in the vicinity of Nine Mile Point on Lake Ontario (Oswego County, New York) during 1980. Nine Mile Point is the site of the 610-MWe Nine Mile Point Unit-I and 821-MWe James A. FitzPatrick Nuclear Power Stations. The studies were conducted by Niagara Mohawk Power Corporation (NMPC) and the Power Authority of the State of New York (PASNY) and represent a continuation of ecological studies that were initiated as the stations were being constructed (Nine Mile Point began producing power in 1969; FitzPatrick in The sampling program included surveys in Lake Ontario in the vicinity ' 1975). of the Nine Mile Point promontory from April through November (December samples were not taken due to adverse weather) and impingement studies at both power stations during the entire year. The ecological studies were conducted in accordance with Environmental Technical Specifications prepared by the U.S. Nuclear Regulatory Commission.

The objective of this report is to summarize results of the 1980 program, presenting data on lake fish catches in the vicinity of the plants. Comparisons are made among samples from the discharge plume areas, from areas of the lake that are outside immediate influence of the discharges, and from within the plants. Conclusions are presented regarding the effects of power plant operation on the temporal, and spatial distribution, of fish and on selected water quality parameters in the area.

science services division

ii

· · · · · · · • لم . • ÷ . , . . • ٠ -· ·

:

ø

• 4

TABLE OF CONTENTS

٠

จ

t

Section	Title	Page
	FOREWARD	ii
I .	SUMMARY A. SUMMARY OF LAKE ONTARIO STUDIES 1. Fish 2. Water Quality B. SUMMARY OF IMPINGEMENT STUDIES 1. Impingement - Nine Mile Point Unit-1 2. Impingement - James A. FitzPatrick	I-1 I-1 I-1 I-2 I-2 I-2 I-2
II	INTRODUCTION	II-1
III	METHODS AND MATERIALS A. LAKE ONTARIO STUDIES 1. Fisheries 2. Water Quality B. IN-PLANT STUDIES - IMPINGEMENT	III-1 III-1 III-3 III-4 III-5
IV	RESULTS AND DISCUSSION - LAKE ONTARIO STUDIES A. FISHERIES 1. Species Composition 2. Temporal and Spatial Distribution	IV-1 IV-1 IV-1 IV-1 IV-5
	 Selected Species Studies B. WATER QUALITY 1. Water Temperature 2. Dissolved Oxygen 	IV-7 IV-7 IV-9
v	RESULTS AND DISCUSSION - IN-PLANT STUDIES A. INTRODUCTION B. IMPINGEMENT 1. Nine Mile Point Unit-1 2. James A. FitzPatrick	.V-1 V-1 V-3 V-3 V-6
VI	COMPARISON OF SPECIES COMPOSITION AND TEMPORAL DISTRIBUTION FOR FISH COLLECTED IN GILL NET AND IMPINGEMENT SAMPLES, 1980	VI-1
VII	CITED REFERENCES	VII-1

APPENDIXES

.

Appendix	Title
A	FISHERIES
В	IMPINGEMENT
	B-1. Plant Operating Conditions at Nine Mile Point Unit-1 during 1980
	B-2. Plant Operating Conditions at James A. FitzPatrick Nuclear Power Plant during 1980
С	EXCEPTIONS TO ESTABLISHED STANDARD OPERATING PROCEDURES AND/OR ENVIRONMENTAL TECHNICAL SPECIFICATIONS
D	ENVIRONMENTAL IMPACT ASSESSMENT

ILLUSTRATIONS

Figure	Description .	Page
ÍII-1	Sampling Area for Nine Mile Point Aquatic Ecology Studies Showing Location of Sampling Transects and Intake and Discharge Structures	II-2
IV-1	Monthly Occurrence of Fish Collected by Gill Nets, Nine Mile Point Vicinity, 1980	IV-3
V-1	Seasonal Variation in Impingement Rates at Nine Mile Point Unit-1, January-December, 1980	V- 5
V-3	Seasonal Variation in Impingement Rates at James A. FitzPatrick Nuclear Plant, January-December, 1980	V-9

SECTION I

SUMMARY

Α.

SUMMARY OF LAKE ONTARIO STUDIES

1. Fish

Gill net collections in the vicinity of Nine Mile Point yielded 20 taxa during the 1980 study. During every month of sampling, five species were present in the area, and three other species were observed during at least six of the eight months. The dominant species included alewife, spottail shiner, yellow perch, white sucker and trout-perch.

In terms of temporal distribution, gill-net catches were dominated by alewives from April through July and in September. Yellow perch were most abundant in August and co-dominant with alewife in November. Temporal distribution patterns observed during 1980 were typical for fish populations in eastern Lake Ontario: larger catches in the spring and early summer; smaller catches during mid-summer; and a secondary peak of abundance in the fall (October).

Spatial distribution based on gill-net catches at the 30-foot depth contour varied from month to month in 1980 as in 1979 and displayed no consistent trend with respect to experimental and control areas.

2. Water Quality

Evaluation of water temperature and dissolved oxygen data revealed that values were well within normal ranges for the Nine Mile Point area specifically and Lake Ontario generally. No consistent differences in thermal conditions were observed between control and experimental transects. Temperature differences greater than 1°C above control transects were observed at the experimental transects on a minority of sampling dates,

I-1

indicating that the thermal plume influenced only a relatively small zone which commonly did not impact the fixed sampling stations. No significant differences were observed in dissolved oxygen (DO) concentrations among transects and at no time was DO low enough to stress aquatic organisms.

B. SUMMARY OF IMPINGEMENT STUDIES

1. Impingement - Nine Mile Point Unit I

There were 36 taxa in impingement samples collected at the Nine Mile Point power plant during 1980. Estimated annual impingement was approximately 401,000 fish weighing approximately 7,946 kilograms. Compared with previous years (1976 and earlier) this estimated total impingement was low, although greater than 1979. No threatened or endangered species were observed during 1980.

Numerically, alewife and rainbow smelt dominated 1980 impingement collections, while alewife, rainbow smelt and gizzard shad dominated catches in terms of biomass. Impingement rates were highest in January, April, June, July and October. Length-frequency distributions indicated that primarily adults and subadults were impinged during the winter and spring, while young-of-the-year were encountered in the summer and fall samples.

2. Impingement - James A. FitzPatrick

At the James A. FitzPatrick power plant during 1980 an estimated 296,000 fish of 43 taxa weighting some 5,676 kilograms were impinged. As at Nine Mile Point, impingement at James A. FitzPatrick during 1980 was low compared with impingements of 1976 and earlier years and no threatened or endangered species were observed.

I-2

Numerically, alewife and rainbow smelt dominated impingement sampling; rainbow smelt, gizzard shad, and alewife comprised approximately 92 percent of the total biomass. Impingement rates were highest in January, June, July, and October. Adult and subadult fish were generally impinged from January through July, while young-of-the-year were encountered in summer.

£

•

.

•

•

• • • •

. .

•

SECTION II

INTRODUCTION

Ecological studies in the vicinity of the Nine Mile Point promontory during 1980 represented continuing efforts begun in the 1960s by Niagara Mohawk Power Corporation (NMPC) and the Power Authority of the State of New York (PASNY) to evaluate the potential effects of existing power station operations at Nine Mile Point on the near-field aquatic ecosystem of Lake Ontario.

Two nuclear electric generating stations are located on the Nine Mile Point promontory on the south shore of Lake Ontario: Nine Mile Point Nuclear Station Unit 1, which has been operating since December 1969; and James A. FitzPatrick Nuclear Station, which began operating in July 1975 (Figure II-1). A third nuclear station (Nine Mile Point Nuclear Station Unit 2) is under construction at this site.

This annual report fulfills the utilities commitment to assess changes, if any, in the aquatic ecosystem caused by power plant operations. These studies fulfill monitoring requirements established by the Nuclear Regulatory Commission (NRC) in operating licenses issued to the Nine Mile Point Unit 1 and the James A. FitzPatrick plants.

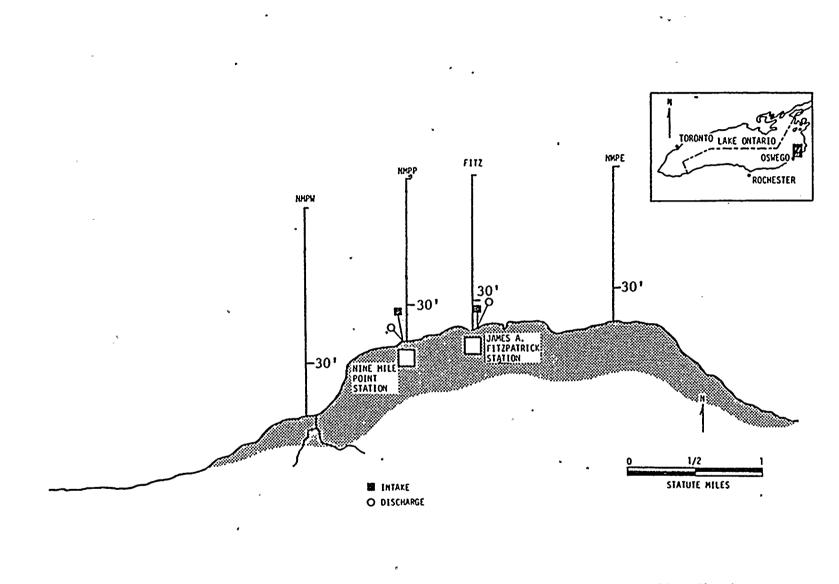


Figure II-1 Sampling Area for Nine Mile Point Aquatic Ecology Studies Showing Location of Sampling Transects and Intake and Discharge Structures

SECTION III

METHODS AND MATERIALS

A. LAKE ONTARIO STUDIES

The sampling design and methods described in this section represent a program that has evolved as a result of changes which occurred during the spring of 1979 in U.S. Nuclear Regulatory Commission Environmental Technical Specifications for the Nine Mile Point Unit - 1 and the James A. FitzPatrick Nuclear Power Plants.

Sampling for the 1980 program was conducted along four transects extending perpendicular from the Lake Ontario shoreline (Figure II-1 and Table III-1). The transects - NMPP (Nine Mile Point Plant) and FITZ (J. A. FitzPatrick Plant) - represent a zone in the lake near the two plants' submerged intake and discharge structures. This zone can be influenced by the removal of cooling water and by subsequent thermal discharges and has been referred to as the experimental area. The transect to the west of the power stations, NMPW (Nine Mile Point West), is upcurrent (approximately .7 statuate miles) of the experimental area most of the time with respect to the prevailing currents and thus represents a zone considered outside the influence of the intakes and thermal discharges; this area has been referred to as a control area. The NMPE (Nine Mile Point East) transect is usually downcurrent (approximately 1.2 statuate miles) from the discharge structures with respect to the prevailing currents and represents an area that sometimes is influenced by the thermal discharges; this zone has been referred to as the farfield area.

TASK	FREQUENCY*,**	- <u>SEASON</u>	DEPTH CONTOUR (ft)	TRANSECT	<u>DEPTH</u>	SAMPLES <u>PER YEAR</u>
Fisheries		•	-			
Gill Net	Semimonthly (N)	AprAug.	30	NMPW, NMPP, FITZ,	Bottom	56
	Monthly (N)	• SeptDec.		NMPE		
Water Quality DO	Semimonthly (N)	AprAug.	30	NMPW, NMPP, FITZ, NMPE	Bottom	56
	Monthly (N)	SeptDec.				
Water Temperature	Semimonthly (N)	AprAug.	30 .	NMPW, NMPP, FITZ, NMPE	Bottom	56
	Monthly (N)	SeptDec.				

TABLE III-1

Sampling Schedule for Aquatic Ecology Studies in Lake Ontario near Nine Mile Point and James A. FitzPatrick

III-2

*(N) = Night Sampling

Power Plants, 1980

** Semimonthly is defined as twice per month

1. Fisheries

In an aquatic ecosystem fish represent the higher consumer levels and provide a base for sport and commercial fishing activities. The fish population in the vicinity of Nine Mile Point includes both primary and secondary consumers.

a. Field Sampling

Adult and juvenile fish populations in the Nine Mile Point study area were sampled with experimental gill nets during 1980. The experimental nets were 8 feet deep and had six 25-foot-long panels. Mesh sizes of the panels ranged from 0.5 to 2.5 inches bar measure in 0.5 inch increments. Gill net sets were made twice monthly from April through August and monthly from September through November at four locations*. All nets were set at the bottom, parallel to shore along the 30-foot depth contour. To the extent weather permitted sets were made the night preceeding an impingement collection (approximately at sunset) and retrieved approximately 12-hours later (near sunrise).

b. Laboratory Processing

Fish were identified to the species level when possible and enumerated. Total lengths (millimeters) and total weights (grams) were determined for a minimum of 40 individuals per species per catch. Additionally, total weights were determined for all specimens by species. Total lengths were recorded to the nearest millimeter, while weights were recorded to the nearest 0.1 gram for fish less than 10 grams, the nearest gram for fish between 10 and 2000 grams, and the nearest 10 grams for fish weighting more than 2000 grams.

*Note that December collections were missed due to adverse weather and heavy icing of near shore areas.

c. Data Reduction

Catch data from gill nets were expressed as a catch-per-unit-effort (C/f) where the number of individuals per gill net set was standarized to a 12-hour set.

The gill net C/f, for example, was estimated as:

Gill net C/f =
$$\frac{(x_1)(12)}{T_1}$$

where

 x_1 = number of fish caught in ith sample T_1 = duration of set in hours

2. Water Quality

The water quality sampling effort (dissolved oxygen and bottom water temperature collection) was designed to provide an indication of possible environmental stress in the vicinity of the gill net set locations.

a. Field Sampling

Water samples collected for dissolved oxygen (DO) analysis were obtained from the near bottom strata using either a 4 or 5 liter water sample collection bottle. Water temperatures were determined in situ using a thermistor or taken with a hand held thermometer ($\frac{+}{0.5^{\circ}C}$) using a water sample bottle to collect the near-bottom sample. DO and water temperature samples were taken at the 30-foot depth contour of the four transects, in conjunction with gill net collections. Samples were obtained twice monthly from April through August and monthly from September through November. b. Laboratory Processing

Dissolved oxygen values were determined (nearest 0.1 mg/1) from collected water samples utilizing the azide modification of the Winkler method (APHA, 1976).

B. IN-PLANT STUDIES

In accordance with requirements of NRC's Environmental Technical Specifications, impingement rates were monitored 4 to 20 times per month from January through December at the Nine Mile Point Unit - 1 and the James A. FitzPatrick Nuclear Power Stations (Tables III-2, III-3).

Fish impingement range limitations resulting from Environmental Technical Specification changes for the Nine Mile Point Unit-1 and James A. FitzPatrick Nuclear Power Stations are provided in Tables III-4 and 5. Data relating to these tables is considered in Appendix D.

1. Impingement

a. Field Sampling

Impingement was monitored from January through December at the Nine Mile Point Unit 1 and the James A. FitzPatrick plants. Sampling was conducted for a 24-hour period on each randomly selected day (Table III-3). Impingement monitoring generally began at 0001 (military time) each sampling day and the collection baskets remained in sampling position until the end of the 24-hour period (unless very high impingmement rates or debris loads required emptying the basket more often).

Plant operational data were obtained for each sampling date to document cooling-water flow rates, intake and discharge temperatures, and power production.

Table III-2

Schedule for Impingement Studies at Nine Mile Point Unit One and James A. FitzPatrick Power Plants, 1980

<u>Plant</u>	Frequency.	Season	Location	Depth	<u>Samples/Year</u>	Comments
Nine Mile Point Unit One	4-20/month	Jan-Dec	Traveling screens	Whole water column	78	Composite 24-hr sample ob- tained on 4 to 20 randomly selected days per month
James A. FitzPatrick	4-20/month	Jan-Dec	Traveling screens	Whole water column	78 .	Composite 24-hr sample ob- tained on 4 to 20 randomly selected days per month
			۰.			~
					•	
						•
				`		
			•			

TABLE III-3

Impingement Sampling Regime Associated with Revised Environmental Technical Specifications for the Nine Mile Point and James A. FitzPatrick Power Plants

No.	of	Sampling	Days	per	Month*
-----	----	----------	------	-----	--------

	Nine Mile Point	James A. FitzPatrick
January	. ′	4 .
February	- 4	4
March	4	4
April	16	. 16
Мау	20	20
June	4	6
July	4	. 4
August	6	. 4
September	4	4
October	. 4	- 4
November	4	4
December	. 4	4

*Days assigned within each month were selected randomly through utilization of the random numbers generator of a calculator,

Table III-4

Fish Impingement Range Specification* for the Nine Mile Point Unit - 1 Nuclear Power Station

Month	Daily Average N Low	umber of Fish High
JAN	231	631
FEB	211	. 718
MAR	482	2,864
APR	5,552	20,923
MAY	8,501	50,759
· JUN	1,366	3,213
JUL	718	. 2,648
AUG	0	5,020
SEP	0	1,397
OCT .	154	338
NOV	103	1,565
DÉC	294	1,713

* From Table 3.1-4, Section 3.1.2. of the Nine Mile Point Unit-1 Nuclear Power Station's Environmental Technical Specifications.

Table III-5

Fish Impingement Collection Specification* for the James A. FitzPatrick Nuclear Power Plant

Month	Monthly Maximum Number of Fish
JAN	41,596
FEB	16,646
MAR	. 22,595
APR	413,854
МАУ	1,750,162
JUN	131,769
JUL	67,249
AUG	33,708
SEP	31,570 .
OCT	32,428
NOV	87,928
DEC	30,837 ·

* From Table 4.1.1-2 Section 4.1.1-B of the James A. FitzPatrick Nuclear Power Plant's Environmental Technical Specifications

When impingement rates at either plant exceeded 20,000 fish per 24-hour period, impingement sampling was continued on a daily basis until the rate dropped below 20,000 fish per 24-hour period at the affected plant.*

b. Laboratory Processing

All impinged fish were identified to species when possible and eumerated after collection. Total numbers and weights for each species and individual total lengths and weights for a maximum of 40 fish of each species per 24-hour sample period were recorded. Unusual conditions (e.g. damaged individuals or presence of fish tags) were documented.

c. Data Reduction and Analysis

Data were tabulated to present impingement rates (number and weight) for each species as well as all species combined. Three separate techniques were used to estimate the number of fish impinged at the Nine Mile Point and FitzPatrick Plants: a standard ratio estimator, a mean sample density estimator, and the Hartley-Ross ratio estimator. Examination of the impingement data collected during previous studies indicated that there were relatively distinct periods of high, low, and intermediate impingement. Total impingement was estimated for each month to reduce the bias of combining high and low impingement rates, and the impingement estimates for twelve months were added to obtain the annual estimate.

Although three different techniques were initially used to calculate annual impingement estimates, comparison of these estimates suggested that the Hartley-Ross method produced the best estimates due to its unbiased nature. Final results in this report are based on the unbiased Hartley-Ross technique.

*Note: At the James A. FitzPatrick Plant there was also a plan for additional impingement sampling to meet New York State Department of Environmental Conservation requirements.

are based on the unbiased Hartley-Ross technique. However, since the standard ratio estimator and the mean sample density estimator are more commonly used, although biased, the three techniques are described and discussed in the following paragraphs.

The three methods differ in the estimation of the number of fish impinged per volume of cooling water used. The data for all three estimates consist of the number of fish collected during the sample period (c_i) , the volume of cooling water used during the sample day (v_i) , and the number of sampling days in the time period (n).

The average density method is strongly biased and inconsistent (Cochran, 1963): $D_1 = \frac{1}{n} \sum \frac{c_i}{v_i}$

The standard ratio estimator of density is also biased and has a relatively small standard error (Cochran, 1963). The standard ratio estimate formula is:

$$D_2 = \frac{\sum c_i}{\sum v_i}$$

The Hartley-Ross estimator is unbiased (Goodman and Hartley, 1958):

$$D_{3} = \frac{1}{n} \sum \frac{c_{i}}{v_{i}} + \frac{\sum c_{i} - \frac{1}{n} \sum \frac{c_{i}}{v_{i}} \sum^{v_{i}}}{\overline{v} (n-1)}$$

where v is the average volume pumped during all days of the season, including both sample and non-sample days.

Then, using the following notation (after Goodman and Hartley, 1958):

$$s_{01} = \sum d_{i} = \sum \frac{c_{i}}{v_{i}} \qquad s_{02} = \sum d_{i}^{2}$$

$$s_{10} = \sum v_{i} \qquad s_{11} = \sum c_{i} \qquad s_{12} = \sum c_{i}d_{i}$$

$$s_{20} = \sum v_{i}^{2} \qquad s_{21} = \sum c_{i}v_{i} \qquad s_{22} = \sum c_{i}^{2}$$

where all the summations are $i = 2, \ldots, n$, and n is the number of samples taken. The Hartley-Ross estimator can be expressed as:

$$D_{3} = \frac{S_{01}}{n} + \frac{S_{11} - \frac{1}{n} S_{01} S_{10}}{\overline{v}(n-1)}$$

Occasionally, high debris loads inhibited the collection of all fish and debris impinged during a 24-hour sampling period. When this occurred at Nine Mile Point Unit-1, a volumetric subsampling technique was employed. The total catch (numbers and weight) was estimated using the formula:

$$\operatorname{No}_{d} = \frac{(x_{n}) \cdot v}{f}$$

where

No.d = estimated impingement for 24-hour period

x_n = total number (or weight) of species (or all species combined) with subsample

f = volume of subsample

V = volume of total 24-hour catch

A concerted effort was made to obtain a subsample of at least 25 percent of the total catch.

SECTION IV

RESULTS AND DISCUSSION - LAKE ONTARIO STUDIES

The 1980 Lake Ontario monitoring program was designed to describe the composition and relative abundance, both spatially and temporally, of fish — a major component of the aquatic biota. The program also monitored water quality (dissolved oxygen and temperature) in the study area. Following is a discussion of the results obtained for the 1980 sampling program using methods described in Section III.

A. FISHERIES

1. Species Composition

From the 3,265 fish collected with gill nets in the Nine Mile Point vicinity during 1980, 20 taxa were identified (Table IV-1 and Appendix Table A-1). Alewife and spottail shiners accounted for over 85 percent of all fish collected with gill nets. Five taxa — alewife, spottail shiner, white perch, white sucker, and yellow perch were collected during each month sampled while lake chub, rainbow smelt and stonecat were collected during at least six of the eight months (Figure IV-1). The ramaining 12 taxa appeared sporadically in the gill net samples.

2. Temporal and Spatial Distribution.

The temporal distribution of fish collected by gill nets was characterized by periods of peak abundance (catch per 12-hour set) during April, June, and July and lower catch rates during the remainder of the sampling period especially November (Table IV-2). Alewife dominated monthly catches from April through July and in September. Yellow perch were dominant in August and alewife and yellow perch were co-dominant during November. Catch rates among transects along the 30-foot contour were variable, although as in 1979 catches were frequently lowest at the transect nearest the Nine Mile Point plant (NMPP) and highest near the FitzPatrick plant (transect FITZ). Catches at the transects NMPW (the westernmost and not subject to thermal influence from power plant discharges — and NMPE — (the easternmost) were intermediate to catches observed at the NMPP and FITZ transects (Table IV-3).

Table IV-1

Species*	Number	Percent Composition . (%)
Alewife American eel Brown bullhead Brown trout Burbot Gizzard shad Lake chub Rainbow smelt Rainbow trout Rock bass Salvelinus spp. Shorthead redhorse Smallmouth bass Spottail shiner Stonecat Trout-perch White bass White perch White sucker Yellow perch	2,018 1 13 6 2 8 17 37 2 11 10 767 11 90 1 51 98 111	61.8 T** 0.4 0.2 0.1 0.2 0.5 1.1 0.3 0.3 T 0.3 23.5 0.3 2.8 T 1.6 3.0 3.4
Total	3,265	0.7

Number and Percent Composition of Fish Collected with Gill Nets, Nine Mile Point, April through November 1980

*Common names according to the American Fisheries Society (Robins et al 1980).

**T = <0.1%.

Common Name Sep. Nov Dec* May Jun Jul Aug 0ct Apr 1776 092 A 199 X 19 4 8 4 1212111 P. P. S. W. Sanding I 1. M. A. P. W. NUMBER STRUCTURE ST Alewife American eel 14、"爱欢乐"之族心之意思。 深水水的 网络 Brown bullhead Brown trout Sec. 23. San States Burbot Gizzard shad Lake chub Rainbow smelt Rainbow trout Rock bass 1 19 19 18 2 4 19 M 100000 William Jakor Salvelinus spp. Cour The Shorthead redhorse Smallmouth bass 1220123115317 Spottail shiner Stonecat Trout-perch White bass White perch White sucker Yellow perch

Samples not collected in December due to adverse weather.

Figure IV-1. Monthly Occurrence of Gill Net Fish, 1980

Table IV-2 Temporal Abundance of Fish Collected by Gill Net,

Nine Mile Point Vicinity, 1980

			<u> </u>	atch per	12-Hr Se	<u>t*</u>			
Common Name	<u>Apr</u>	May	Jun	. <u>Jul</u>	Aug	Sep	Oct	Nov	Dec**
Alewife Rainbow smelt Smallmouth bass White perch Yellow perch	72.0 3.0 0 0.8 1.0	23.0 0.3 0.1 2.0 0.2	80.0 0.2 0 2.0 0.9	106.0 0 0.1 0.9 1.0	0.8 0.3 0.7 0.3 6.0	5.0 0 1.0 1.0 3.0	6.0 1.0 0 2.0 6.0	2.0 1.0 0 0.8 2.0	
Total Catch	83.0	40.0	116.0	162.0	30.0	21.0	42.0	10.0	

*Monthly mean catch rates for samples collected at the 30-ft depth contour of four transects. **Samples not collected during December due to adverse weather.

Table IV-3

Spatial Distribution of Total Fish Collected by Gill Net, Nine Mile Point Vicinity, 1980

<u>Catch per 12-Hr Set*</u>									Annua 7	
Transect	<u>Apr</u> .	<u>May</u>	<u>Jun</u>	<u>Ju1</u>	<u>Aug</u>	<u>Sep</u>	<u> 0ct</u>	<u>Nov</u>	Dec**	Annua1 <u>Mean</u>
NMPW	12	13	189	139	32	20	38	6		64
NMPP	25	15	156	174	14	21	16	3		62
FITZ	202	19	66	187	12	34	72	7		83
NMPE	95	112	53	147	61	10	43	23		78

*Monthly mean catch rates for samples collected at the 30-ft depth contour.

** Samples not collected during December due to adverse weather.

3. Selected Species Studies

Species selected for detailed studies of several of their population characteristics were alewife, rainbow smelt, smallmouth bass, white perch, and yellow perch. They were selected due to their classification as representative important species by Niagara Mohawk Power Corporation, the Nuclear Regulatory Commission, the Power Authority of the State of New York, EPA, and the New York Department of Environmental Conservation. This subsection discusses the temporal and spatial distribution and length — frequency distribution of the selected fishes.

a. Alewife

1) Temporal and Spatial Distribution

Gill net catches (catch per 12-hour set) of alewives reached peak levels during April, June, and July and declined sharply during summer (Table IV-2 and Appendix Table A-1). As in previous years, no fall peak in alewife levels was observed during 1980. Although alewives were collected during every month sampled, very few were taken by gill net during August. Annual mean catch rates were nearly identical at all four transects (Appendix Table A-2).

2) Length - Frequency Distribution

Alewives collected by gill net during 1980 ranged from approximately 91 to 230 millimeters in total length and were primarily adult fish (Appendix Table A-3). During spring and early summer collections of alewife in the 151-160, 161-170, and 171-180 size ranges were predominant.

b. Rainbow Smelt

1) Temporal and Spatial Distribution

Gill net catches of rainbow smelt were highest during the April 1980. No rainbow smelt were collected in July or September and very few were taken during other months sampled (Table IV-2). Annual mean catch rates were highest at transects NMPE and FITZ (Appendix Table A-2).

2) Length - Frequency Distribution

Rainbow smelt collected by gill nets ranged from approximately 121 to 230 millimeters in total length. During the spring, the predominant size class was from 131-160 millimeters in total length. Rainbow smelt in the 151-180 size range were predominant during fall collections (Appendix Table A-3).

c. White Perch

1) Temporal and Spatial Distribution

Gill net catches of white perch increased in the spring (April through June) and declined during summer (Table IV-2). A secondary peak in white perch abundance was observed in October with a subsequent decline during November. Along the 30-foot depth contour, the highest annual mean catch was at transect NMPP (Appendix Table A-2).

2) Length - Frequency Distribution

White perch collected with gill nets ranged from approximately 91 to 310 millimeters in total length. Adult and or subadult white perch were taken during each month of the study (Appendix Table A-3). Young-of-the-year white perch were observed only during October:

d. Yellow Perch

1) Temporal and Spatial Distribution

In 1980 gill net catches of yellow perch were greatest during August and October with few specimens collected during the spring (Table IV-2). In contrast, 1979 yellow perch catches increased steadily through the spring, declined in summer, reached peak levels in September, and declined through the fall months. Based on 1980 annual mean catches, yellow perch abundance was greatest at the FITZ and NMPE transects (Appendix Table A-2).

2) Length - Frequency Distribution

The approximate total length range of yellow perch collected with gill nets was 101 to 290 millimeters (Appendix Table A-3). Spring and summer

collections yielded yellow perch predominantly in the 171 to 210 millimeter total length range, representing primarily age-III and age IV fish. Several 261- to 290-millimeter total length yellow perch (representing ages IV through VI) were collected during the summer.

e. Smallmouth Bass

1) Temporal and Spatial Distribution

Gill nets deployed along the 30-foot depth contour captured only ten smallmouth bass during the 1980 study (Table IV-1). All specimens were taken in spring and summer. As in 1979, no spatial distribution pattern among transects could be determined because of the low catches (Appendix Table A-2).

2) Length - Frequency Distribution

Smallmouth bass collected with gill nets ranged from approximately 261 to 430 millimeters in total length (Appendix Table A-3).

B. WATER QUALITY

During 1980, water temperature and dissolved oxygen were measured in conjunction with monthly gill net efforts to provide an indication of possible environmental stress in the vicinity of the gill net set locations.

1. Water Temperature

Bottom strata water temperatures taken at four transects along the 30-foot depth contour ranged from 4.1°C to 24.8°C during the 1980 study (Table IV-4). Water temperatures at all transects increased gradually during the spring and early summer to peak levels in August and then gradually decreased through the fall. Bottom temperatures taken at the FITZ transects (in the vicinity of the FitzPatrick discharge) exceeded by more than 1°C those of NMPW and NMPE transects (not in the immediate vicinity of the discharges), on 21 July and 27 August. At the NMPP transect near the Nine Mile Point discharge, bottom water temperatures were not elevated more than 1°C above those at the NMPW or NMPE transects on any sampling occasion.

IV-7

Table IV-4

Parameter	Transect	Apr	May	Jun	Jul	Aug	Sep	<u>Oct</u>	Nov	<u>Dec</u> †
Temperature (°C) First Bi-monthly collection**	NMPW NMPP FITZ NMPE	4.1 4.4 4.5 5.5	8.0 7.5 5.9 6.5	11.7 11.5 11.7 11.8	18.5 18.5 18.2 18.3	22.6 22.7 22.7 22.5	21.2 21.0 21.1 21.3	12.5 12.8 12.9 12.9	6.8 6.9 6.9 7.2	
Second Bi-monthly collection	NMPW NMPP FITZ NMPE	6.4 6.0 5.4 5.3	8.4 8.5 7.6 8.3	10.0 10.6 10.7 11.4	20.4 21.4 22.7 21.6	24.8 22.5 23.1 20.8	*** *** ***	*** *** ***	*** *** ***	*** *** *** ***
Dissolved Oxygen First Bi-monthly collection	NMPW NMPP FITZ NMPE	14.0 13.7 13.6 13.7	12.5 12.5 12.6 13.1	11.5 11.5 11.8 11.1	10.0 10.3 10.2 10.2	8.7 8.5 8.8 8.7	8.7 8.3 8.4 9.4	10.0 10.4 10.4 10.5	11.8 11.7 11.8 11.5	
Second Bi-monthly collection	NMPW NMPP FITZ NMPE	13.2 13.2 13.7 13.4	13.0 13.8 13.2 13.2	13.4 13.4 13.4 14.2	7.8 9.2 9.7 9.1	9.4 10.1 9.4 8.8	*** *** ***	*** *** ***	*** *** *** ***	*** *** ***

Monthly Variation in Water Temperature and Dissolved Oxygen in the Vicinity of Nine Mile Point, 1980*

^{*}All samples taken in conjunction with monthly gill net efforts at the bottom water strata of the 30-foot depth contour.

** Bi-monthly = twice per month.

*** Not required.

 $^{\rm t}$ Samples not collected in December due to adverse weather.

IV-8

science services division

2. Dissolved Oxygen

Dissolved oxygen (DO) concentrations were lowest in July, dropping to 7.8 mg/ ℓ (approximately 86% of saturation) during that month (Table IV-4). At no time was DO low enough to stress aquatic organisms. Oxygen levels were lower during summer because of decreased solubility of dissolved oxygen in the warmer water.

. . . , • • • • • • . · · · · · · · . n. •

•

ħ.

. •

•

SECTION V RESULTS AND DISCUSSION - IN PLANT STUDIES

A. INTRODUCTION

When a natural water body such as Lake Ontario is used by an electric power station for once-through cooling, debris, fish, and larger invertebrates are drawn into the cooling-water system, impinged on the bar racks and/or traveling screens, and consequently removed from the cooling water. Both the Nine Mile Point and James A. FitzPatrick power stations have once-through cooling systems with offshore submerged intakes and discharges. At maximum operation, the Nine Mile Point plant requires 597 cubic feet per second (cfs) of cooling water, while the James A. FitzPatrick plant requires 825 cfs. Water from Lake Ontario enters the cooling-water systems at the Nine Mile Point and James A. FitzPatrick plants through separate submerged intake structures at velocities of approximately 1.8 and 1.2 feet per second (fps) respectively, with all circulating pumps running. The intakes are located directly offshore of each plant near the 25-foot depth contour. Fish entering the cooling-water systems are impinged on traveling screens and subsequently backwashed from the screens into washwater sluiceways where the impingement collection baskets are located.

Specific studies of fish impingement at Nine Mile Point Unit-1 began in the spring of 1972 and were initiated at FitzPatrick when the plant began operating in 1975. The impingement of fish on the traveling screens at these two plants has been monitored to estimate yearly total loss of fish, in terms of species, numbers and weights. In addition to estimating annual impingement, the principal objectives of the 1980 impingement program were to:

- Determine species composition of impinged fish
- Describe seasonal patterns of impingement rates

Since plant operations could have a direct impact on the effects of impingement (i.e., changing intake velocities and discharge temperatures), certain parameters describing plant operation for each day of 1980 are presented in text Table V-1 and Appendix Tables B-1 and B-2.

V-1

Table	V-1
-------	-----

Record of Outages during 1980 at the Two Power Stations on the Nine Mile Point Promontory

<u>Nine Mile</u>	e Point Unit-l	James A. FitzPatrick				
<u>Start Date</u>	Duration Generator Off* (days)	<u>Start Date</u>	Duration Generator Off* (days)			
Mar 1 Jul 11.	, 9 , 17	Feb 5 Feb 11 Feb 21 Mar 10 Apr 28 May 7 Aug 12 Oct 13	4 2 1 2 96 4 5			

^{*}Dates are inclusive in the outage duration.

The results presented in this section of the report document the impingement at both power stations during 1980, satisfying NRC and NPDES permit requirements to monitor the plants for potential effects on the aquatic biota.

B. IMPINGEMENT

- 1. Nine Mile Point Unit-I
 - a. Species Composition

Impingement sampling at Nine Mile Point during 1980 resulted in the collection of 36 fish taxa, 33 of which were identified to species (Table V-2). Approximately 94% of the total were comprised of rainbow smelt and alewife (Appendix Table B-3). Rainbow smelt dominated January through March, August and December samples, while alewives were dominant during every other month. Four species — alewife, rainbow smelt, yellow perch, and spottail shiner were consistently present in impingement samples while two other species — white perch and sculpins — were found during at least 10 of the 12 months.

Alewife, rainbow smelt, and gizzard shad comprised over 96 percent of the total fish biomass collected (Table V-2 and Appendix Table B-4) during impingement sampling. Alewife dominated during spring and summer (April-August) and in early fall (October), while gizzard shad were dominant in the winter months (January, November and December). Rainbow smelt and white sucker dominated collections (in terms of biomass) in February/March and September, respectively.

b. Temporal Distribution

The temporal distribution for total catch rate (number collected per 1000 cubic meters of cooling water used) during 1980 was characterized by peak periods of abundance (Figure V-1) in January, April, June, July, and early fall (October). Rainbow smelt accounted for nearly 80 percent of the fish impinged during January. During every other peak in fish impingement alewife comprised more than 90 percent of the total catch.

V-3

Table V-2

Number	Weight
Collected	Collected (g)
Number <u>Collected</u> 85,228 12 6 12 1 2 2 2 32 13 4 1 981 93 2 1,167 29 184	Weight <u>Collected (g)</u> 2,401,596.4 3,391.0 21.3 64.5 1.3 83.7 2,075.0 3,425.9 134.9 1,842.9 NA 351.3 4,551.6 380.4 30.5 141,190.2 76.7 576.5
2 1,167 29 184 26 2 1	30.5 141,190.2 76.7 576.5 123.0 35.0 18.0
24	. 53.3 616.1
	174,161.3 825.5
53 6 16 668 48 14 780 639 1,059 16 · 381 38 104,200	1,353.8 224.0 3,557.6 6,712.0 3,464.0 15.8 8,041.2 7,858.4 19,293.2 11,603.1 22,212.8 718.4 2,820,680.6
	Collected 85,228 12 6 12 2 22 32 13 4 1 981 93 2 1,167 29 184 26 2 12,655 1 53 6 16 668 48 14 780 639 1,059 16 381

Number and Weight of Fish Collected during Impingement Sampling at Nine Mile Point I, 1980

*Common names are according to the American Fisheries Society list of common and scientific names of fishes from the United States and Canada (Robins et al 1980).

**Primarily mottled sculpin.

NA = Damaged specimen, weight not available.

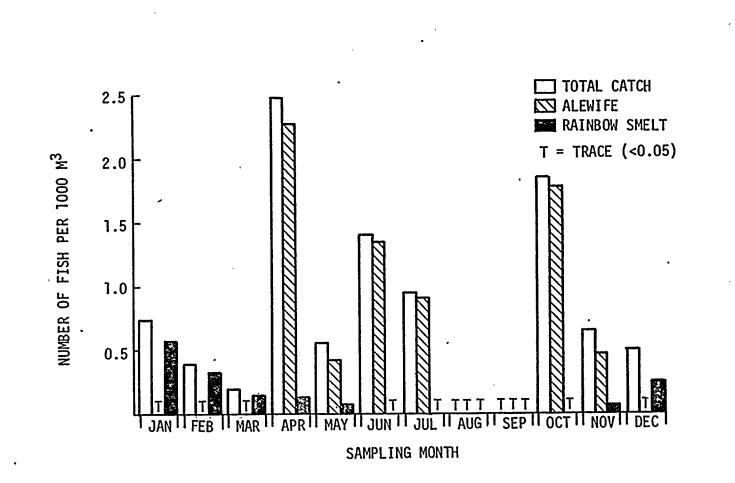


Figure V-1. Seasonal Variation in Impingement Rates at Nine Mile Point Unit-1, Jan-Dec, 1980

V-5

science services division

c. Estimated Impingement

The total number of fish impinged at Nine Mile Point Unit-1 during January - December 1980 was estimated to be approximately 401,000 over 75 percent of which were alewife. Total weight was estimated to be approximately 7,946 kilograms, with alewife, gizzard shad, and rainbow smelt contributing 94 percent (75, 12, and 7 percent respectively) of the total biomass. The estimated numbers and weights of fish impinged during each month of 1980 are presented in Appendix Table B-5.

d. Length Frequency

Alewife, rainbow smelt, smallmouth bass, threespine stickleback, white perch, and yellow perch length-frequency distributions are presented in Appendix Table B-6. As in 1979, length frequencies suggested that adults and subadults were generally impinged during the winter and spring seasons (January - June). Young-of-the-year fish were encountered in the summer and young-of-the-year alewife dominated late summer and fall samples.

2. James A. FitzPatrick Nuclear Plant

a. Species Composition

Impingement sampling at James A. FitzPatrick in 1980 resulted in the collection of 43 fish taxa, 38 of which were identified to species (Table V-3). Of the total number of fish collected, rainbow smelt and alewife comprised nearly 89 percent. Rainbow smelt dominated impingement samples from January through March and in December while alewife were most abundant during all other months (Appendix Table B-7). Five species — alewife, rainbow smelt, sculpin, yellow perch, and spottail shiner — were consistently present in impingement samples while two other species — rock bass and white perch — were found during at least 10 of the 12 months.

Rainbow smelt, gizzard shad, and alewife comprised approximately 92 percent of the total fish biomass collected at FitzPatrick (Table V-3 and Appendix Table B-8). Gizzard shad was the dominant species collected during January, March, and again in December. Alewives dominated samples during the spring and

V-6

Table V-3

		10-2-1-6
	Numbraia	Weight Collected
Common Nome*	Number	(q)
<u>Common Name*</u>	<u>Collected</u>	
Alouifo	39,098	994,322.2
Alewife American eel	55,050	820.6
	1	4.4
Black crappie	24	169.6
Bluegill Bluntnose minnow	3	6.0
Brook stickleback	` 5	4.9
Brown bullhead	14	1,693.5
Brown trout		5,336.9
Burbot	5 3	2,038.1
Carp	1	5.8
Central mudminnow	130	412.0
Channel catfish	• 7	619.4
Centrachidae (unidentified)	4	NA
Cottus spp. (sculpin)**	546	2,023.1
Creek chub	ĩ	48.0
Cyprinidae	•	1010
Emerald shiner	167	380.2
Freshwater drum	2	29.2
Gizzard shad	1,785	202,678.2
Golden shiner	3	21.4
Goldfish	i	10.6
Johnny darter	301	653.1
Lake chub	14	216.6
Largemouth bass	· 1 *	9.4
Log perch	1	19.4
Morone spp.	1	NA
Northern pike	2	29.3
Pumpkinseed	27	908.9
Rainbow smelt	14,718	170,979.8
Rainbow trout	1	1,043.3
Rock bass	86	7,478.8
Salvelinus spp.***	4	15.0
Sea lamprey	1	340.5
Smallmouth bass	33	9,800.6
Spottail shiner	392	2,793.4
Stonecat	13	630.7
3-spine stickleback	11	13.1
Trout-perch	367	4,155.0
Walleye	2	1,089.0
White bass	1,406	14,799.0
White perch	927	20,384.9
White sucker	8 319	3,992.7 18,823.2
Yellow perch Unidentified	319	18,823.2 NA
Total	60,477	1,468,799.5
IULAI	00,477	1,400,799.0

Number and Weight of Fish Collected during Impingement Sampling, James A. FitzPatrick Nuclear Station, 1980

*Common names are according to the American Fisheries Society list of common and scientific names of fishes from the United States and Canada (Robins et al 1980).

**Primarily mottled sculpin.

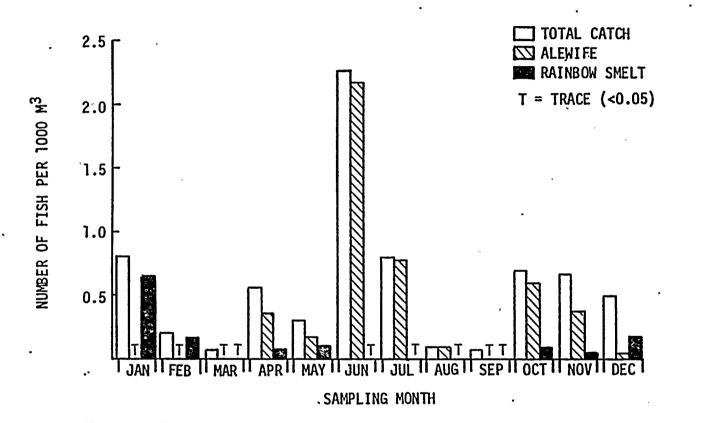
***Species identification of lake trout and splake remains tentative because of overlapping identifying characteristics of native and stocked populations.

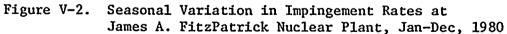
NA = Damaged specimen, weight not available.

Total weight may not sum correctly due to rounding-off error.

summer (April - September) and in early fall (October). Rainbow smelt and gizzard shad were co-dominant during February and white bass was the most abundant species collected during November.

b. Temporal Distribution


The temporal distribution of impingement rates (number of fish impinged per 1000 cubic meters of water sampled) during 1980 was characterized (Figure V-2) by high catch in rates in January, June, July, and October. Most fish impinged during the January peak were rainbow smelt. Alewife comprised the majority of fish (over 80 percent) taken during the other peaks.


c. Estimated Impingement

The total number of fish impinged at James A. FitzPatrick during 1980 was estimated to be approximately 296,000, over half of which were alewife. The total weight of all impinged fish was estimated to be approximately 5,676 kilograms, with alewife, gizzard shad, and rainbow smelt contributing 88 percent of the total biomass (52, 25, and 11 percent, respectively). The estimated numbers and weights of fish impinged duirng each month of 1980 are presented in Appendix Table B-9.

d. Length Frequency

Length-frequency distributions for alewife, rainbow smelt, smallmouth bass, threespine stickleback, white perch, and yellow perch impinged at Fitz-Patrick indicated trends similar to those observed at Nine Mile Point Unit-1 (Appendix Table B-10). Adults and subadults were generally impinged in winter and spring, while young-of-the-year were encountered during the summer and were frequently taken through the fall.

-. × · , • . • · · · · · . . · · · · ·

SECTION VI

COMPARISON OF SPECIES COMPOSITION AND TEMPORAL DISTRIBUTION FOR FISH COLLECTED IN GILL NET AND IMPINGEMENT SAMPLES, 1980

Gill net catches made in the vicinity of Nine Mile Point from April through November, 1980 yielded 20 fish taxa. January through December impingement collections conducted at Nine Mile Point Unit 1 and James A. FitzPatrick yielded 36 and 43 fish taxa respectively. Largest gill net catches (catch per 12-hour set) were observed in April, June, and July while highest impingement collections (number per 1000 m³ of water pumped) were observed in January, April, June, July and October at Nine Mile Point and in January, June, July and October at FitzPatrick.

Alewife dominated gill net catches during the peak abundance periods of April, June, and July. Alewife was also the dominant species during spring and summer impingement collections at Nine Mile Point Unit 1 and at James A. FitzPatrick. Rainbow smelt dominated Nine Mile Point Unit 1 and FitzPatrick impingement collections from January through March, and in December. Very few rainbow smelt were taken with gill nets during any season.

During the 1980 study alewife, rainbow smelt, gizzard shad and white perch were among the five most abundant species taken in impingement collections, while alewife, spottail shiner and yellow perch were among the most abundant in gill net collections. Some smaller fish species (e.g., three-spine stickleback), species preferring mid-depth and/or surface water strata, rather than near-bottom (e.g., rainbow smelt), and species common during the winter (no gill net collections made) were taken in impingement collections but were not represented or not represented in substantial numbers in gill net catches.

.

. . . . • • .

· · ·

.

SECTION VII

CITED REFERENCES

- American Public Health Association (APHA). 1976. Standard Methods for the Examination of Water and Wastewater. 14th ed. New York, N.Y. 874p.
- Burbidge, R.G. 1969. Age, Growth, Length-Weight Relationships, Sex Ratio and Food Habits of American Smelt, <u>Osmerus</u> mordax (Mitchill) from Gull Lake, Michigan. Trans. Act. Am. Fish. Soc. 98(4):631-640.
- Christie, W.J. 1974. Changes in the Fish Species Composition of the Great Lakes. J. Fish. Res. Bd. Canada. 31(5):837-854.
- Cochran, W.G. 1963. Sampling Techniques. John Wiley and Sons, New York, N.Y. 413 p.
- Elrod, J.H., R. O'Gorman, R. Gergstedt, and C.P. Schneider. 1979. Status of Major Forage Fish Stocks U.S. Waters of Lake Ontario - 1978. Report presented at the Great Lakes Fishery Commission, Lake Ontario committee meeting. March 13-14, 1979.
- Elrod, J.H., R. O'Gorman, R. Gergstedt, and C.P. Schneider. 1980. Status of Major Forage Fish Stocks U.S. Waters of Lake Ontario - 1979. Report presented at the Great Lakes Fishery Commission, Lake Ontario Committee meeting. March 4-5, 1980.
- Goodman, L. and H.O. Hartley. 1958. The Precision of Unbiased Ratio Type Estimators. J. Am. Stat. Assn. 53:491-508.
- Hubbs, C.L. and K.F. Lagler. 1958. Fishes of the Great Lakes Region. Univ. Mich. Press, Ann Arbor, 213 p.
- Lakey, R.T. 1970. Observations on Newly Introduced and Land Locked Alewives in Maine. N.Y. Fish Game J. 17(2):110-116.
- Lagler, K.F. 1956. Freshwater Fishery Biology. W.C. Brown Co., Dubuque, Iowa. 421 p.
- Lawler, Matusky and Skelly Engineers (LMS). 1975a. 1974 Nine Mile Point Aquatic Ecology Studies. LMS Project Nos. 191-21, 22, 23. Prepared for NMPC and PASNY.
- Lawler, Matusky and Skelly Engineers (LMS). 1975b. Oswego Steam Station Unit-6 316(a) demonstration submission. Prepared for NMPC.
- Lawler, Matusky and Skelly Engineers (LMS). 1976a. 1975 Nine Mile Point Aquatic Ecology Studies. LMS Project Nos. 191-31, 32, 33. Prepared for NMPC and PASNY.

- Lawler, Matusky and Skelly Engineers (LMS). 1976b. James A. FitzPatrick Nuclear Power Plant 316(a) demonstration submission, Permit No. NY0020109. Prepared for PASNY.
- Lawler, Matusky and Skelly Engineers (LMS). 1977a. 1976 Nine Mile Point Aquatic Ecology Studies. LMS Project Nos. 191-40, 41, 42. Prepared for Niagara Mohawk Power Corp. and Power Authority of the State of New York.
- Lawler, Matusky and Skelly Engineers (LMS). 1977b. James A. FitzPatrick Nuclear Power Plant 316(a) demonstration submission, Permit No. NY0020109. Prepared for the Power Authority of the State of New York.
- New York State Electric and Gas Corporation. 1979. Response to PSC question, No. 74-7 (NYS letter 3, dated 4-5-79).
- Niagara Mohawk Power Corporation (NMPC). 1975. NMPC Nine Mile Point Unit 1. , 316 (a) demonstration submission, NPDES Permit NY0001015.
- Power Authority of the State Of New York (PASNY). 1971. Environmental Report for James A. FitzPatrick Nuclear Power Plant. Prepared for United States Atomic Energy Commission.
- Power Authority of the State of New York (PASNY). 1977. James A. FitzPatrick Nuclear Power Plant 316(b) demonstration submission, Permit No. NY0020109.
- Quirk, Lawler, and Matusky Engineers (QLM). 1972. Effect of Circulating Water System on Lake Ontario Water Temperature and Aquatic Biology. (Oswego Steam Station Unit 6). Prepared for Niagara Mohawk Power Corp.
- Quirk, Lawler, and Matusky Engineers (QLM). 1973a. Effect of Circulating Water Systems on Lake Ontario Water Temperature and Aquatic Biology. 1972 ecological investigations of Lake Ontario at Nine Mile Point. Rpt. to Niagara Mohawk Power Corp.
- Quirk, Lawler, and Matusky Engineers (QLM). 1973b. The Effects of Impingement at Nine Mile Point on the Fish Populations of Lake Ontario. Prepared for Niagara Mohawk Power Corp., Syracuse, New York.
- Quirk, Lawler, and Matusky (QLM). 1974. 1973 Nine Mile Point Aquatic Ecology Studies. A report prepared for Niagara Mohawk Power Corp., Syracuse, New York and Power Authority of the State of New York, New York, N.Y.
- Robins, C.R., R.M. Bailey, C.E Bond, J.R. Brooker, E.A.Lachner, R.N. Lea, and W.B. Scott. 1980. A List of Common and Scientific Names of Fishes from the United States and Canada. Special Pub. No. 12, 4th ed. Comm. on Names of Fishes. Bethesda, Maryland.
- Rochester Gas and Electric (RGE). 1974. The Sterling Power Project (August 1973, revised January 1974), Rochester, NY.

Rothschild, B.J. 1966. Observations on the Alewife (Alosa pseudoharengus) in Cayuga Lake, New York. Fish Game J. 13(2):187-195.

- Schneider, C.P. 1975. Status of Major Inshore Fish Stocks in Lake Ontario in 1974. Report presented at the Great Lakes Fishery Commission, Lake Ontario Committee Meeting. March 13, 1975.
- Schneider, C.P. 1977. Preliminary Biomass Estimates for the Demersal Portion of Alewife, Rainbow Smelt, and Slimy Sculpin Stocks in New York Water's of Lake Ontario. Report presented at the Great Lakes Fishery Commission, Lake Ontario Committee Meeting. March 8-9, 1977.
- Scott, W.B. and E.J. Crossman. 1973. Freshwater Fishes of Canada. Fish. Res. Bd. Can., Ottawa, Canada. 966 p.
- Smith, S.H. 1970. Species Interactions of the Alewife in the Great Lakes. Trans. Amer. Fish. Soc. 99(4):754-764.
- Storr, J.F. 1973. Summary of Studies to Evaluate Ecological Effects from the Introduction of a Thermal Discharge into Lake Ontario in the Area of the Nine Mile Point Nuclear Station Unit One. Niagara Mohawk Power Corporation.
- Storr, J.F. 1977. Lake Ontario Fish Tag Report Summary 1972-1976. Prepared for Niagara Mohawk Power Corp.
- Texas Instruments Incorporated (TI). 1978a. Nine Mile Point aquatic Ecology Studies, 1977 Data Report. Report prepared for Niagara Mohawk Power . Corporation, Syracuse, NY and the Power Authority of the State of New York, New York, NY.
- Texas Instruments Incorporated (TI). 1978b. 1977 Nine Mile Point Aquatic Ecology Studies. Report prepared for Niagara Mohawk Power Corporation, Syracuse, NY and the Power Authority of the State of New York, New York, NY.
- Texas Instruments Incorporated (TI). 1979a. Nine Mile Point Aquatic Ecology Studies, 1978 data report. Report prepared for Niagara Mohawk Power Corporation, Syracuse, NY and the Power Authority of the State of New York, New York, NY.
- Texas Instruments Incorporated (TI). 1979b. 1978 Nine Mile Aquatic Ecology Studies. Report prepared for Niagara Mohawk Power Corporation Syracuse, N.Y. and the Power Authority of the State of New York, New York, NY.
- Texas Instruments Incorporated (TI). 1980. 1979 Nine Mile Point Aquatic Ecology Studies: Report prepared for Niagara Mohawk Power Corporation, Syracuse, N.Y. and the Power Authority of the State of New York, New York, NY.

U.S. Atomic Energy Commission. 1973. Final Environmental Statement Related to Construction Nine Mile Point Nuclear Station Unit 2. Niagara Mohawk Power Corp. Docket No. 50-40.

• •

APPENDIX A

FISHERIES

- Catch Rate Data
- Length-Frequency

. • . . . -• , , • • * • • x.

Table A-1

Temporal Abundance of Fish Collected by Gill Net, Nine Mile Point Vicinity, 1980

					<u>Actua</u>	al Catch	_		` .	
Common Name	<u>Apr</u>	May	<u>Jun</u>	<u>Jul</u>	<u>Aug</u>	<u>Sep</u>	<u>0ct</u>	<u>Nov</u>	<u>Dec</u> *	<u>Total</u>
Alewife	555	154	530	704	18	21	26	10		2,018
American eel			1	_						.]
Brown bullhead	*	_	_	1	4	8				13
Brown trout		2	2 2	1	1					6
Burbot			2					• •		2
Gizzard shad	-				5	3 4				8
Lake chub	. 1	3 -1	4		2	4	2 6	1		17
Rainbow smelt	20	·1	2		2		6	6		37
Rainbow trout					2 2					2
Rock bass	2 3		1	2	2	- 4				11
<u>Salvelinus</u> spp.	3	1					4	2		10
Shorthead redhorse								1		1
Smallmouth bass		1		1	5	3				10
Spottail shiner	31	36	175	297	97	21	100	10		767
Stonecat	. 2	·]	1	2	4		1			11
Trout-perch	10	46	20	11			3			90
White bass	1				•					٦
White perch	6	13	10	6	2	4	7	3		51
White sucker	5	6	6	36	11	4 5	ື 17	12		98
Yellow perch	9	2	6	9	42	12	26	5		111
Total	645	266	760	1,070	197	85	192	50		3,265

*December samples not collected due to adverse weather.

Table .	A-2
---------	-----

			Nine	MILE E	oint	Vicin	109,	1980		
•	Apr**	<u>May</u>	Jun	AL Jul	EWIFE <u>Aug</u>	<u>Sep</u>	<u>0c</u>	t Na	<u>. v</u> <u>Ďec***</u>	Annua] Mean
NMPW	5	1	163	115	5	11	<u> </u>			23.90
NMPP	21	2	121	123	1	7	C)	l	21.20
FITZ	172	5	18	122	1	3	2	; ()	25.00
NMPE	90	84	· 20	66	3	0	וו	i (5	· 21.50
<u></u>				RAINBO	W SMEL	т				• Annual
	<u>Apr**</u>	<u>May</u>	<u>Jun</u>	<u>Jul</u>	<u>Aug</u>	<u>Sep</u>	<u>0ct</u>	<u>Nov</u>	Dec***	Mean
NMPW	2	0	1	0	0	0	0	ו		0.31
NMPP	0	0	0	0	1	0	0	0		0.08
FITZ	7	1	0	0	0	0	1	0		0.69
NMPE	2	0	1	0	1	0	4	4		0.92
				SMALLM	OUTH B	ASS			-	
	<u>Apr**</u>	<u>May</u>	<u>Jun</u>	<u>Jul</u>	<u>Aug</u>	<u>Sep</u>	<u>Oct</u>	Nov	Dec***	Annual <u>Mean</u>
NMPW	0	1	0	`o	0	0	0	0		0.08
NMPP	0	0	0	0	3	2	0	0		0.38
FITZ	0	0	0	1	1	1	0	0		0.23
NMPE	0	0	0	0	1	0	0	0		0.08
				WHITE	PERCH					
	Apr**	May	<u>Jun</u>	<u>Ju1</u>	Aug	<u>Sep</u>	<u>Oct</u>	Nov	<u>Dec***</u>	Annua1 <u>Mean</u>
NMPW	0	3	1	1	0	2	1	0		0.61
NMPP	1	3	4	2	1	1	2	0		1.00
FITZ	2	2	1	1	0	1	1	1		0.69
NMPE	1	0	0	0	1	0	3	2		0.54
				YELL	OW PERC	ж				Annual
	<u>Apr**</u>	May	<u>Jun</u>	<u>Ju1</u>	<u>Aug</u>	<u>Sep</u>	<u>0ct</u> *	Nov	Dec***	Mean
NMPW	1	0	2	1	5	1	9	1		1.54
NMPP	0	1	1	0	3	6	3	1	0	1.15
FITZ	4	0	.1	2	4	5	7	2		1.92
NMPE	0	1	ļ	2	13	0	3	1		1.62

Spatial Distribution of Fish Collected with Gill Nets,* Nine Mile Point Vicinity, 1980

*Mean monthly catch per 12-hr set (rounded to nearest whole fish).

**Bi-monthly collection (twice per month) April through August.

*** No collection in December.

Table A-3

5

			A	LEWIFE				•		
Length Range (mm)	<u>Apr</u>	May	Jun	Jul	<u>Aug</u>	<u>Sep</u>	<u>0ct</u>	<u>Nov</u>	<u>Dec</u> *	
61- 70 71- 80 81- 90 91-100 101-110 111-120 121-130 131-140 141-150 151-160 161-170 171-180 181-190 191-200 201-210 211-220 221-230	1 4 59 82 38 7 6 1	1 1 2 4 16 16 11 1 3 2	3 22 83 55 15 7 1 1	2 9 1 2 14 50 112 49 18 6 1	* 1 • 1 3 5. 1 1 1	5 4 5 2 1	43111112211	1 4 1 3 1		
	•			RAINBOW	SMELT					
Length Range (mm)	<u>Apr</u>	May	<u>Jun</u>	<u>Jul</u>	~	Aug	<u>Sep</u>	<u>0c</u> 1	<u>t Nov</u>	Dec
61-70 71-80 81-90 91-100 101-110 111-120 121-130 131-140 141-150 151-160 161-170 171-180 181-190 191-200 201-210 211-220 221-230	1 5 3 7 1 2	1	2			1		2 2 1 1	 2 3 1	
Length Range			SMALI	MOUTH B	ASS					
(mm) 261-270 271-280	<u>Apr</u>	<u>May</u>	<u>Jun</u>	<u>Ju1</u>	<u>Aug</u>	<u>Sep</u> 1	<u>Oct</u>	<u>Nov</u>	<u>Dec</u>	
281-290 291-300 201-310 311-320 321-330				1		1				
331-340 341-350 351-360 361-370 371-380 381-390 391-400		1			1 1 1 1		۹ ۲			
401-410 401-410 411-420 421-430 *No collection	in De	cember.			1	1				

Length Distribution of Fish Collected by Gill Net, Nine Mile Point Vicinity, 1980

,

Table A-3 (Contd)

Length Range (mm)	Apr	May	Jun	Jul	Aug	Sep	<u>Oct</u>	Nov	Dec*
91-100							2		
101-110									
111-120									
121-130									
131-140									
141-150			•	1			•		
151-160	1	1						•	
161-170	2		2			-		2	
171-180						1	1		
181-190							,		
191-200							1		
201-210		-				•	2		
211-220	1	ļ	•	,		ļ	2		
221-230		2	2	ļ		i	1		
231-240		2 5	2 2 2	1			L.		
241-250	1 .	1	2	•					
251-260			-	2	,	1			
261-270		~	ļ	1	1	1		•	
271-280	I	2	1	I					
281-290		•						•	v
291-300		1			1				
301-310					1				

WHITE PERCH

YELLOW PERCH

Length Range (mm)	<u>Apr</u> ·	May	<u>Jun</u>	<u>Ju1</u>	Aug	<u>Sep</u>	<u>0ct</u>	<u>Nov</u>	Dec
101-110			1	1					
111-120		1		1			1		
121-130									
131-140	2								
141-150				1				1	
151-160	1		2		1		1		
161-170					4		1		
171-180			1		· 9		2	2	
181-190	1	1			7	2	6 2		
191-200	32			1	9		2	1	
201-210	Ž			i	2	3	7		
211-200	-				2 2 6	3 3	1	1	
221-230					6	-	i	-	
231-240			•	2	ī		i		
241-250			1	ī	-		i		
251-260			-	-		2	•		
261-270						ĩ			
271-280			1		1 -	•			
281-290			•		-	1	2		-
291-300						•	-		

*No collection in December.

APPENDIX B

IMPINGEMENT

- Nine Mile Point Unit-1
 B-1 Plant Operating Conditions at the Nine Mile Point Unit-1 Nuclear Power Station during 1980
- James A. FitzPatrick
 - B-2 Plant Operating Conditions at the James A. FitzPatrick Nuclear Power Plant during 1980

· · · · · · • . , ۰ ۰ , · · • ۲ • . • . v •

Table B-1

. •

Plant Operating Conditions at Nine Mile Point Nuclear Station Unit during 1980

' (Mo.	late Cay	No. of Circulating Water Pumps	No. of Service Water Pumps	Total Yolume of Water Pumped1 (m ³)	Mean Electrical Output ² (MWe)	Terper Discharge	ature (*C) Intake	3 At	
Jan	123456789011231456789221223245672829031			$1,439,057.644\\1,439,057.644\\1,439,057.644\\1,439,057.644\\1,362,744.000\\1,357.293,024\\1,357.293,024\\1,357.293,024\\1,357.293,024\\1,270,077.408\\1,259,175.456\\1,242,822,528\\1,259,175.456\\1,242,822,528\\1,259,175.456\\1,242,822,528\\1,259,175.456\\1,242,822,528\\1,259,175.456\\1,242,822,528\\1,259,175,456\\1,242,822,528\\1,259,175,456\\1,242,822,528\\1,259,175,456\\1,242,822,528\\1,259,175,456\\1,242,822,528\\1,259,175,456\\1,242,822,528\\1,259,175,456\\1,242,822,528\\1,259,175,456\\1,242,822,528\\1,259,175,456\\1,259,175,456\\1,242,822,528\\1,259,175,456\\1,253,724,480\\1,253,724,480\\1,253,724,480\\1,253,724,480\\1,253,924,480\\1,253,924,480\\1,253,924,480\\1,253,924,480\\1,253,924,480\\1,253,924,480\\1,253,926,320\\1,253,984\\1,155,606,912\\1,17,450,080\\1,662,940,320\\1,662$	599 592 589 601 603 601 602 604 420 604 420 588 596 600 600 698 598 599 601 600 699 600 585 576 598 599 501 600 585 576 598 599 501 579 561 569	20.8 20.1 199 20.3 20.7 21.4 18.9 20.9 21.8 20.9 21.8 20.9 21.8 20.9 21.6 20.2 21.2 22.7 20.8 20.4 20.3 20.7 22.4 20.8 20.7 22.4 20.8 20.7 22.8 20.7 22.8 22.9 22.6 16.2 22.8 22.9 22.3	$\begin{array}{c} \textbf{3.5} \\ \textbf{2.9} \\ \textbf{3.1} \\ \textbf{1.6} \\ \textbf{2.74} \\ \textbf{0.1} \\ \textbf{2.0} \\ \textbf{0.09} \\ \textbf{2.3} \\ \textbf{0.8} \\ \textbf{2.80} \\ \textbf{1.6} \\ \textbf{1.6} \\ \textbf{3.6} \\ \textbf{3.6} \\ \textbf{5.7} \\ \textbf{6.3} \\ \textbf{0.3} \\ \textbf{0.3} \\ \textbf{0.3} \\ \textbf{6.3} \\ \textbf{0.5} \\ \textbf{6.2} \end{array}$	17.3 17.2 16.8 17.2 18.1 18.1 18.5 18.4 19.3 19.3 19.7 19.4 19.2 19.3 19.4 19.2 19.4 19.2 19.3 18.7 18.7 18.7 18.7 18.7 22.4 22.5	
Feb	12345678901123145167892012232452672829	* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		1,062,940,320 1,062,940,320 1,068,391,296 1,068,391,296 1,050,195,200 1,090,195,200 1,090,195,200 1,150,155,936 1,150,155,936 1,151,959,840 1,171,959,840 1,171,959,840 1,177,410,816 1,177,410,816 1,177,410,816 1,177,410,816 1,177,410,816 1,177,410,816 1,177,410,816 1,177,410,816 1,177,410,816 1,177,410,816 1,177,410,816 1,177,410,816 1,177,410,816 1,177,410,816 1,177,410,816 1,177,410,816 1,177,410,816 1,177,410,816	582 583 582 570 570 565 560 240 405 519 581 589 593 593 593 593 593 593 595 595 595 59	22.7 22.9 22.4 22.4 22.4 22.4 11.1 15.6 20.5 20.7 20.8 21.2 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20	-0.2 0.1 2.0 0.2 0.2 0.2 0.2 0.2 0.4 0.4 0.3 -0.3 -0.3 0.4 0.3 0.4 0.3 0.4 1.3 0.6 0.2 0.3 0.4 0.3 0.2 0.3 0.2 0.3 0.2 0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	22.9 22.8 22.7 22.6 23.3 22.2 22.2 22.0 10.7 15.3 20.8 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0	
Mar	1 2 3 4 5 6 7 8 9 0 11 12 13 14 15 6 7 18 9 0 11 12 13 14 15 16 7 18 19 20 21 22 3 4 2 26 7 28 29 0 31	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		1,177,410,816 1,177,410,816 1,177,410,816 1,177,410,816 1,177,410,816 1,177,410,816 1,177,410,816 1,177,410,816 1,177,410,816 1,231,920,576 1,231,920,576 1,231,920,576 1,231,920,576 1,231,920,576 1,231,920,576 1,231,920,576 1,231,920,576 1,231,920,576 1,231,920,576 1,231,920,576 1,231,920,576 1,231,920,576 1,237,371,552 1,237,371,552 1,237,371,552 1,237,371,552 1,237,371,552 1,237,371,552 1,237,371,552 1,237,371,552 1,237,371,552 1,237,371,552 1,237,371,552 1,237,371,552 1,237,371,552 1,237,371,552 1,237,371,552 1,237,371,552 1,242,822,528 1,242,	034 21225 00 90 90 432 537 586 537 586 537 586 577 558 579 588 579 584 580 579 584 580 579 584 580 579 584 580 579 584 580 579 584 580 579 584 580 579 579 584 586 579 579 584 586 579 579 579 584 586 579 579 579 584 586 579 579 579 579 579 579 579 579 579 579	NA 5.6 3.9 0.1 4.6 0.1 0.3 16.9 18.4 19.6 18.6 19.6 18.8 20.2 20.6 21.3 21.6 21.4 20.6 20.9 21.7 21.7 22.7 22.7 22.7 22.0 23.3	KA 0 -0.3 -0.2 -0.2 -0.2 -0.2 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3	NA 5.6 3.9 0.4 0.5 0.3 0.5 18.1 19.5 19.4 18.5 16.1 17.1 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19	

Table B-1 (Contd)

Da	te	No. of	No. of	Total Volume of	- Mean Electrical Output ²	Terper	ature (*C)	3
No.	Cay	Circulating Water Pumps	Service Water Pumps	Water Pumped (m3)	(Mie)	Discharge	Intake	Δt
Arp	1 2 3 4 5 6 7 8 9 0 1 1 2 3 1 4 5 6 7 8 9 0 1 1 2 3 1 4 5 6 7 8 9 0 1 1 2 3 1 4 5 6 7 8 9 0 1 1 2 3 1 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 1 2 3 4 5 6 7 8 9 0 1 1 1 2 3 4 5 6 7 8 9 0 1 1 1 2 3 4 5 6 7 8 9 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			$1,259,175,456\\1,275,528,384\\1,275,528,384\\1,275,528,384\\1,275,528,384\\1,291,881,312\\1,291,881,312\\1,291,881,312\\1,291,881,312\\1,291,881,312\\1,291,881,312\\1,291,881,312\\1,270,077,403\\$	594 595 604 603 603 604 603 605 603 605 605 605 605 605 605 605 605 599 599 599 599 599 599 599 599 599 5	24.0 22.8 21.9 23.1 24.1 23.8 24.3 24.6 24.9 24.6 23.9 24.7 24.7 24.7 24.7 24.7 24.7 24.4 23.9 24.2 24.2 24.1 21.6 14.9 23.8 19.2 23.8 19.2 23.8 19.2 23.8 24.2 23.8 24.3 24.3 24.3 24.3 24.3 24.3 24.3 24.3	3.2.2.8.6.3.8.3.4.8.4.7.6.2.88880.9.6.9.1.4.7.4.9.7.0.9	20.5 20.7 19.9 20.2 21.0 1 20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3
Мау	1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 1 4 5 1 6 7 1 8 9 0 2 1 2 2 3 4 2 5 2 6 7 2 8 9 0 3 1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		1,379,096,928 $1,395,449,856$ $1,395,449,856$ $1,395,449,856$ $1,395,449,856$ $1,395,449,856$ $1,395,449,856$ $1,395,449,856$ $1,395,449,856$ $1,395,449,856$ $1,395,998,880$ $1,389,998,880$ $1,389,998,880$ $1,389,998,880$ $1,389,998,880$ $1,389,998,880$ $1,389,998,880$ $1,389,998,880$ $1,389,998,880$ $1,389,998,880$ $1,389,998,880$ $1,389,998,880$ $1,389,998,880$ $1,389,998,880$ $1,389,998,880$ $1,389,998,880$ $1,389,998,880$ $1,389,998,880$ $1,389,998,880$ $1,389,998,880$ $1,395,449,856$ $1,395,998,820$ $1,400,900,832$ $1,400,900,832$ $1,400,900,832$	600 600 598 599 599 599 600 599 599 601 603 605 606 605 606 605 594 595 594 595 599 606 601 603 602 602 602 602 603	23.4 24.9 25.8 24.8 26.3 25.6 27.4 26.8 26.1 26.6 27.4 26.6 27.4 26.6 27.4 26.6 27.4 26.6 27.4 26.6 27.4 26.6 27.4 26.6 23.6 26.6 23.6 26.1 26.8 27.4 26.3 26.3 26.3 26.3 26.3 26.3 26.4 27.4 26.3 26.4 27.4 26.3 26.3 26.3 26.3 26.3 26.3 26.3 26.3	5.3 6.7 7.9 8.2 4.7 8.3 7.9 8.4 9.8 8.4 9.8 8.7 8.8 9.7 10.1 11.2 1.2 1.2 1.2 1.2 1.2 1.2	$\begin{array}{c} \textbf{18.1}\\ \textbf{18.6}\\ \textbf{18.6.29}\\ \textbf{18.8.221}\\ \textbf{18.8.1}\\ \textbf{18.8.220}\\ \textbf{18.8.220}\\ \textbf{28.3220022000}\\ \textbf{2000}\\ \textbf{18.8.2002000}\\ 18.8.20020000000000000000000000000000000$
Jun	1 2 3 4 5 6 7 8 9 10 11 2 13 4 15 6 7 8 9 10 11 2 13 14 15 6 17 8 9 22 22 22 22 22 22 22 22 22 22 22 22 2	222222222222222222222222222222222222222	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$1,400,900,832\\1,395,449,856\\1,379,096,928\\1,373,645,952\\1,373,645,952\\1,369,998,880\\1,362,744,000\\1,373,645,952\\1,389,998,880\\1,395,449,856\\1,395,449,856\\1,395,449,856\\1,395,449,856\\1,395,449,856\\1,395,449,856\\1,395,449,856\\1,395,998,880\\1,395,998,89\\1,395,998,89\\1,395,998,89\\1,395,998,89\\1,39$	599 597 596 595 595 595 592 592 592 592 592 592 592	30.0 29.3 29.8 29.8 28.8 23.3 29.4 30.0 30.7 30.7 30.7 30.7 30.7 30.9 31.4 30.6 31.3 32.0 32.8 31.3 32.0 33.4 31.3 32.3 35.4 12.3 35.4 12.3 35.4	11.8 10.9 11.9 11.9 11.8 11.1 10.5 11.8 11.1 11.8 11.2 11.7 11.6 11.2 12.5 12.1 12.6 13.6 4 13.6 4 16.5 11.4 12.7	$\begin{array}{c} 8.2 \\ 18.3 \\ 18.3 \\ 0 \\ 18.3 \\ 18.3 \\ 18.3 \\ 18.3 \\ 18.3 \\ 18.4 \\$

Table B-1 (Contd)

.

.

•			No. ad	No. of	Tabut Valuma of	-	Terroer	ature (*C)	3
	Mo.	Day	No. of Circulating Water Pumps	No. of Service Water Pumps	Total Volume of Water Pumped ¹ (m ³)	Mean Electrical Output ² (MMe)	Discharge	Intake	Δt
	Jul	1 2 3 4 5 6 7 8 9 101 1 12 3 4 5 6 7 8 9 101 1 12 13 4 15 6 7 8 9 101 1 12 13 4 15 6 17 8 19 201 2 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1,411,802,784 1,411,802,784 1,406,351,803 1,395,449,856 1,395,449,856 1,400,900,832 1,411,802,784 1,411,802,784 1,411,802,784 1,411,802,784 1,384,547,904 1,379,096,928 1,384,547,904 1,379,096,928 1,385,549,856 1,395,449,856 1,499,118,400 1,504,459,376 1,499,3567,424	551 550 549 547 545 552 551 555 521 3e 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	32.1 32.3 34.4 35.0 35.2 34.5 35.2 34.7 35.4 35.4 36.3 19.1 19.4 19.4 19.4 20.1 20.1 20.1 20.1 NA NA NA NA NA NA 22.6 33.9 33.7 39.7	14.5 14.6 15.2 16.7 17.2 16.7 17.3 18.5 19.3 19.9 20.7 21.9 21.9 21.9 21.9 21.9 21.8 21.9 21.8 21.8 21.8 21.8 21.8 21.8 21.8 21.8	17.67 17.62 18.32 18.8.00 18.8.0 18.00 0.00 0.00 0.00 0.0
	Aug	1 2 3 4 5 6 7 8 9 101 12 3 4 5 6 7 8 9 101 12 3 14 5 16 7 18 9 0 11 12 3 14 5 16 7 18 9 0 21 2 23 24 5 26 7 28 9 0 31	~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1,526,273,280 1,526,273,280 1,526,273,280 1,526,273,280 1,526,273,280 1,542,526,223,280 1,542,526,203 1,542,526,203 1,542,526,203 1,542,526,203 1,542,526,203 1,542,526,203 1,542,526,203 1,542,526,203 1,542,526,273,280 1,526,273,280 1,526,273,280 1,526,273,280 1,526,273,280 1,526,273,280 1,526,273,280 1,526,273,280 1,526,273,280 1,526,273,280 1,526,273,280 1,526,273,280 1,526,273,280 1,526,273,280 1,526,273,280 1,526,273,280 1,526,273,280 1,526,273,280	546 546 542 542 542 540 532 540 553 553 553 553 555 557 557 557 557 553 556 553 556 557 553 556 557 557 557 557 557 553 563 563 564 578 482 522 578 584 572 580 572 580 572 574 559	39.1 39.8 40.3 39.7 39.7 40.3 40.3 40.3 40.3 40.3 40.3 40.3 40.3 40.3 40.3 39.9 39.9 39.3 39.3 39.8 39.9 31.9 29.1 29.1 29.1 36.4 32.3 36.9	22.4 22.9 23.1 23.3 23.4 23.2 24.7 23.2 23.2 23.3 23.4 23.3 23.4 23.3 23.4 23.3 23.5 23.5 23.5 23.1 22.2 23.1 22.9 23.4 23.5 23.5 23.5 23.5 23.1 22.9 23.4 23.7 23.2 23.3 23.4 23.5 23.5 23.5 23.5 23.1 23.9 24.7 7 23.3 23.1 23.2 23.2 23.3 23.4 23.5 23.5 23.5 23.5 23.5 23.1 23.5 23.5 23.5 23.5 23.5 23.5 23.5 23.1 23.5 23.5 23.5 23.5 23.5 23.5 23.5 23.5	16.7926589996667980380177.22442115166.89996667980380177.22442115166.8899966679880380177.2244211525.881.788
	Sep	1 2 3 4 5 6 7 8 9 0 11 2 13 4 15 16 7 8 9 0 11 2 13 4 15 16 7 8 9 0 21 2 23 4 25 6 7 8 9 0 21 2 2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	*****	***************************************	1,493,567,424 1,499,018,400 1,499,018,400 1,499,018,400 1,499,018,400 1,499,018,400 1,499,018,400 1,499,018,400 1,499,018,400 1,499,018,400 1,499,018,400 1,499,018,400 1,499,018,400 1,499,018,400 1,499,018,400 1,499,018,400 1,504,459,376 1,504,459,376 1,504,459,376 1,504,459,376 1,504,459,376 1,504,459,376 1,504,459,376 1,504,459,376 1,504,459,376	572 567 567 572 571 571 571 573 568 569 572 568 569 572 568 484 553 569 571 573 521 0 49 49 49 49 401 450 566 575 582 579 582 579 582 576	37.4 38.4 38.9 38.7 38.7 38.7 38.7 38.7 38.8 38.9 38.9 38.9 37.8 38.9 37.8 35.5 37.7 36.5 35.9 35.9 35.9 35.2 19.4 33.0 2 33.0 2 33.7 33.7 33.7 33.7 33.7 33.7 33.7 33	20.64 21.4 21.85 22.8 21.9 22.8 21.9 22.8 21.9 20.0 21.9 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	16.09 16.09 16.99 16.99 16.7 16.7 17.7 17.1 17.1 16.7 16.7 16.7

.

Table B-1 (Contd)

a.

		No. of	No. of	Total Volume of	Mean Electrical Output ²	Tenper	ature (*C)	3
Mo.	Day	Circulating Water Pumps	 Service Water Pumps 	Water Pumped ¹ (m ³)	(Mie)	Discharge	Intake	۵t
Oct ;	1 2 3 4 5 6 7 8 9 0 11 12 3 14 5 16 7 8 9 0 11 12 3 14 5 16 7 18 9 0 22 22 24 5 26 7 8 9 0 31	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	$1,504,469,376\\1,504,469,376\\1,504,469,376\\1,504,469,376\\1,504,469,376\\1,499,018,400\\1,499,018,400\\1,499,018,400\\1,499,018,400\\1,499,018,400\\1,499,018,400\\1,499,018,400\\1,499,018,400\\1,499,018,400\\1,499,018,400\\1,499,018,400\\1,499,018,400\\1,499,018,400\\1,499,018,400\\1,499,018,400\\1,499,018,400\\1,499,018,400\\1,499,018,400\\1,504,469,376\\1,504,469,376\\1,504,469,376\\1,504,469,376\\1,504,469,376\\1,504,469,376\\1,493,567,424\\1,493,567,567\\1,592,567\\1,592,567\\1,592,567\\1,592,567\\1,592,567\\1,592,567\\1,592,567\\1,592,567\\1,592,567\\1,592,567\\1,592,567\\1,592,567\\1,592,567\\1,592,567\\1,592,567\\1,59$	577 574 574 576 578 578 578 578 576 576 576 580 581 583 582 584 583 583 583 583 583 583 584 583 583 584 583 584 583 584 583 584 583 584 585 585 585 585 585 585 585 585	32.7 33.2 32.9 32.3 32.1 31.8 31.6 31.7 31.7 31.7 29.7 29.7 29.8 29.8 30.5 30.5 29.5 29.3 28.7 28.9 28.4 26.9 225.4 25.9 25.6	$\begin{array}{c} 16.1\\ 16.3\\ 16.3\\ 16.4\\ 15.2\\ 14.7\\ 15.2\\ 14.7\\ 15.2\\ 14.9\\ 13.1\\ 13.1\\ 13.1\\ 13.6\\ 12.9\\ 12.6\\ 12.4\\ 12.6\\ 12.4\\ 10.1\\ 8.8\\ 9.2\\ 9.0\\ 9.0\\ \end{array}$	$\begin{array}{c} 16.6\\ 16.7\\ 16.6\\ 16.9\\ 16.5\\ 16.9\\ 16.5\\ 16.9\\ 16.7\\ 16.6\\ 17.1\\ 16.6\\ 16.7\\ 16.6\\ 16.6\\ 16.6\\ 16.7\\ 16.9\\ 17.1\\ 16.6\\ 16.7\\ 16.9\\ 17.3\\ 16.3\\ 16.6\\ 16.7\\ 16.6\\ 16.7\\ 16.6\\ 16.7\\ 16.6\\ 16.7\\ 16.6\\ 16.7\\ 16.6\\ 16.7\\ 16.6\\ 16.7\\ 16.6\\ 16.7\\ 16.6\\ 16.7\\ 16.6\\ 16.7\\ 16.6\\ 16.7\\ 16.6\\ 16.7\\ 16.6\\ 16.7\\ 16.6\\$
Nov	1 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 2 2 3 4 5 6 7 8 9 0 11 2 2 3 4 2 5 6 7 8 9 0 11 2 2 3 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2,22,22,22,22,22,22,22,22,22,22,22,22,2		$1,482,655,472\\1,504,469,376\\1,499,018,400\\1,488,116,443\\1,493,567,424\\$	466 552 567 566 563 565 565 566 566 566 566 566 566	22.1 24.8 24.8 24.2 24.2 24.2 24.9 24.7 23.4 23.4 23.4 23.4 23.4 23.4 23.4 23.7 24.7 23.4 23.7 24.4 23.7 24.8 21.8 21.8 21.8 22.3 21.2 22.3 21.2 22.3 21.2 20.1	7.8.8.7.7.8.8.8.6.4.4.9.2.4.6.9.4.8.2.0.8.5.3.5.0.4.4.5.8.1 8.8.6.4.4.9.2.4.6.9.4.8.2.0.8.5.3.5.0.4.4.5.8.1 8.6.6.7.6.6.5.4.1	14.2 16.1 16.3 16.4 16.1 16.1 16.1 16.1 16.2 16.0 16.1 16.2 16.0 15.7 15.8 15.7 15.8 15.7 15.9 15.9 15.4 16.0
•Oec	1 2 3 4 5 6 7 8 9 10 1 12 3 14 5 6 7 8 9 10 1 12 3 14 5 6 7 8 9 10 1 12 3 14 5 6 7 8 9 10 1 12 3 2 2 2 2 2 2 2 2 2 3 3 1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		$1,493,567,424\\1,493,567,424\\1,493,567,424\\1,493,567,424\\1,493,567,424\\1,493,567,424\\1,493,567,424\\1,493,567,424\\1,493,567,424\\1,493,567,424\\1,493,567,424\\1,493,567,424\\1,493,567,424\\1,460,861,568\\1,303,998,880\\1,395,449,856\\1,395,449,856\\1,395,449,856\\1,395,449,856\\1,395,449,856\\1,395,449,856\\1,395,449,856\\1,395,449,856\\1,395,449,856\\1,395,449,856\\1,395,449,856\\1,395,449,856\\1,395,449,856\\1,395,449,856\\1,391,072\\1,351,842,048\\1,35$	558 556 556 556 558 556 558 555 557 554 552 555 557 554 552 550 409 485 505 548 505 548 555 516 96 423 457 540 548 551 551 551 551 551 552 555	21.1 22.1 20.7 20.9 21.0 21.4 20.9 20.9 20.0 20.6 20.2 14.0 18.4 18.1 18.4 18.1 19.7 17.7 4.6 6.6 14.1 16.6 17.6 19.5 18.6 18.0 17.7	5.3 5.9 4.9 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5	15.8 16.2 15.9 16.0 16.1 15.5 15.5 15.6 15.6 15.5 15.6 15.4 15.5 15.8 16.0 13.2 15.8 16.3 17.1 4.2 17.0 17.0 17.4

Table B-1 (Contd)

Footnotes for Table

¹Yolume of water pumped each day derived from net discharge flow data in Nine Hile Point Unit 1 "401" monthly report. ²Power production is daily average (net Hke) from Nine Hile Point Unit 1 "401" monthly reports.

³Water temperatures derived from Nine Hile Point Unit 1 "401" monthly reports or Nine Hile Point Unit 1 periodic logs.

⁴1 March unit off line.

^b2 March unit on line; unit off line.

^C9 March unit on line.

 d_{27} June 2 of 2 service water pumps operating.

*11 July unit off line.

^f12 July 1 of 2 service pumps operating.

 $^{\rm g}$ 18 July 0 of 2 circulating water pumps operating at 1800 hr.

^h24 July 1 of 2 circulating water pumps operating at 1120 hr.

 $^{1}\mathbf{26}$ July 2 of 2 circulating water pumps operating at 1120 hr.

 $J_{26}\ July\ 2$ of 2 service water pumps operating.

^k27 July unit on line.

~

Table B-2

Plant Operating Conditions at the James A. FitzPatrick Nuclear Plant during 1980

		No. of	No. of	Total Volume of	Mean Electrical	Tenper	ature (*C)	3 *
<u>ro.</u>	Qay.	Circulating <u>Water Purps</u>	Service <u>Water Pumps</u>	Water Pumped ¹ (m ³)	Output ² (Mie)	Discharge	Intake	
Jan	1 2 3 4 5 6 7 8 9 10 11 12 13 4 15 6 7 8 9 10 11 12 13 4 15 16 17 18 19 20 12 22 34 25 26 7 28 29 30 31	2/3 ³⁴ 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1,359,473,414 1,855,384,386 1,770,040,926 1,856,334,386 1,839,556,116 1,992,727,846 2,007,485,441 1,834,798,521 1,977,970,251 1,972,727,846 1,839,556,116 1,877,970,251 1,877,970,251 1,877,970,251 1,877,970,251 1,877,970,251 1,877,970,251 1,877,970,251 1,877,970,251 1,877,970,251 1,877,970,251 1,877,970,251 1,875,99,576 1,921,141,981 1,995,589,576 1,921,141,981 1,939,556,116 2,007,485,441 1,791,626,791 1,791,626,791 1,791,626,791 1,791,626,791 1,791,626,791 1,791,626,791 1,813,212,656 1,834,798,521 1,813,212,656 1,813,212,656 1,834,798,522	543 671 766 807 803 801 799 797 794 770 531 612 720 786 818 818 821 821 821 821 821 821 821 821	19.7 18.1 19.6 19.5 19.5 18.4 19.1 17.3 18.3 18.6 12.1 18.4 18.4 18.0 20.8 19.8 19.6 20.8 19.6 20.8 19.6 20.2 18.4 19.1 18.0 20.8 19.6 20.2 18.4 19.1 18.4 18.0 20.8 19.5 18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.4	$\begin{array}{c} 6.6\\ 5.8\\ 5.4.6\\ 2.5.4.6\\ 2.5.4.6\\ 2.5.4.6\\ 2.5.4.6\\ 3.5.4.6\\ 3.5.4.6\\ 3.5.4.1.8\\ 9.8.6\\ 7.1\\ 4.1.8\\ 9.8.6\\ 7.1.1\\ 5.5.1\\ 3.5.5\\ 1.3.5\\$	13.1 12.3 14.0 15.3 15.3 14.7 14.7 14.6 14.7 14.6 14.7 14.5 15.5
Feb	1 2 3 4 5 6 7 8 9 10 11 12 3 14 5 6 7 8 9 10 11 12 3 14 15 6 17 8 19 20 1 22 23 4 25 6 27 28 9 10 10 10 10 10 10 10 10 10 10 10 10 10	3 3 3/2 ^{3b} 2/13e 1/3i 3 3/131 1/23k 2 2/33m 3/23n 2/33q 3 3 3/23n 2/33q 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	<pre></pre>	1,856,384,387 1,705,283,332 1,554,182,277 1,551,82,277 1,161,275,905 947,161,590 947,161,590 947,161,590 947,161,590 947,161,590 947,161,590 947,161,590 947,161,590 947,161,590 1,123,51,355 1,273,566,033 1,273,566,033 1,273,566,033 1,273,566,031 2,306,252,137 1,640,525,737 1,640,525,737 1,640,525,737 1,640,525,737 1,640,525,737 1,640,525,737 1,640,525,737 1,640,525,737 1,640,525,737 1,640,525,737	788 520 665 762 763 0 0 0 723h 442 670 272 65 426 536 536 536 536 536 536 536 720 739 731 324 575 575 575 575 575 575 575 57	17.4 12.9 18.8 1.0 0.6 15.4 15.4 15.3 17.3 17.3 17.3 17.3 17.3 17.3 17.3 17	2.9 3.3 4.9 1.2.6 2.2.2 4.4 2.7 7 4.6 4.2 2.7 7 4.6 4.2 2.7 7 4.6 4.2 2.5 5.6 4.4 4.2 2.3 4.4 4.2 2.3 4.4 4.2 2.3 3.4 4.4 4.2 2.3 3.4 4.4 4.2 2.3 3.4 4.4 4.2 2.3 4.4 4.4 4.4 2.5 3.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4	14.5 9.6 12.2 13.9 0.0 0.0 1.4 9.0 12.2 13.9 0.0 0.0 1.4 9.0 12.3 10.7 13.0 10.9 13.5 16.4 13.9 3.9 3.9 12.1 10.5 12.0 13.7 13.8 13.7
Nar	123456789011123451678902122234556789031	33333333333333333333333333333333333333	*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1,575,768,142 1,575,768,142 1,575,768,142 1,575,768,142 1,575,768,142 1,575,768,142 1,552,596,412 1,552,596,412 1,552,596,412 1,662,114,632 1,662,114,632 1,662,114,632 1,662,114,632 1,662,114,632 1,662,114,632 1,662,114,632 1,662,114,632 1,662,114,632 1,662,114,632 1,662,114,632 1,662,114,632 1,662,114,632 1,662,114,632 1,618,939,872 1,618,939,872 1,618,939,872 1,618,939,872 1,775,783,142 1,775,783,142 1,770,040,927 1,770,040,927 1,770,040,927 1,770,040,927 1,770,040,927 1,770,040,927	781 778 776 777 772 772 595 649 522 545 612 522 545 612 774 777 775 774 777 775 776 776 768 766 622 758 766 622 758 766 622 758 768 768 768 768 768 758 758 758 758 758 758 758 758 758 75	17.9 17.9 18.0 17.8 17.8 13.7 18.4 13.3 14.9 18.3 18.3 18.4 18.8 18.4 18.8 18.4 18.8 18.4 18.8 18.4 18.8 18.4 18.8 18.4 19.0 19.8 14.7 7 19.8 14.7 19.0 14.7 19.0 14.7 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0	4.22 4.4.4.1 4.4.4.1 4.4.4.1 4.4.4.4.4.4.4.5.2 4.4.4.5.2 4.4.7 2.3.3.6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3	13.8 13.7 13.7 13.6 13.6 13.7 13.6 13.7 13.6 9.9 10.8 13.7 13.6 13.7 13.6 13.7 13.6 13.6 13.5 13.6 13.6 13.6 13.6 13.6 13.6 13.6 13.6

Table B-2 (Contd)

<u>мо.</u>	Day	No. of Circulating Water Pumps	No. of Service Water Pumps	Total Yolume of Water Pumped (m3)	Mean Electrical Output ² (MVe)	Tenper. Discharge	ature (*C)	3
Αpr ,	1 2 3 4 5 5 6 7 8 9 10 11 12 13 4 5 5 6 7 8 9 10 11 12 13 4 5 5 6 7 8 9 10 11 12 13 14 5 5 6 7 8 9 10 11 12 13 14 5 5 6 7 8 9 10 11 12 13 14 5 5 6 7 8 9 10 11 12 13 14 15 15 17 10 10 10 10 10 10 10 10 10 10 10 10 10	3 * 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	22222222222222222222222222222222222222	1,856,384,387 1,899,556,116 1,921,141,981 1,829,556,116 1,921,141,981 1,942,727,846 1,942,727,846 1,942,727,846 1,942,727,846 1,942,727,846 1,942,727,846 1,942,727,846 1,942,727,846 1,942,727,846 1,942,727,846 1,942,727,846 1,942,727,846 1,942,727,846 1,942,727,846 1,942,727,846 1,942,727,846 2,057,171 2,050,857,	787 783 780 761 610 709 787 795 795 786 786 786 786 785 786 786 785 786 786 786 786 786 786 786 786 786 786	19.4 18.3 17.4 18.1 16.6 17.2 18.7 19.4 18.9 18.3 18.3 19.9 18.3 18.3 19.9 18.7 18.7 18.7 18.7 18.7 18.7 18.7 18.7	5.4 3.4 3.4 5.4 5.4 4.5 4.6 1.8 6 1.0 7 3.4 6 8 3.4 7 2.2 1.5 8 7 5.4 8 7 5.4 5.4 8 7 5.4 5.4 7 2.2 1.5 8 7 5.4 8 7 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4	$\begin{array}{c} 14.0\\ 13.4\\ 12.7\\ 11.3\\ 14.1\\ 14.3\\ 14.3\\ 14.3\\ 14.3\\ 14.3\\ 14.3\\ 14.3\\ 14.3\\ 14.3\\ 14.3\\ 14.3\\ 14.3\\ 14.3\\ 14.3\\ 14.3\\ 11.8\\ 10.3\\ 11.9\\ 11.7\\ 11.8\\ 11.6\\ 6.8\\ 8.7\\ \end{array}$
Nay	1 2 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 12 3 14 5 6 7 8 9 10 11 12 2 12 24 5 22 24 5 22 22 22 24 5 5 6 7 8 9 10 11 12 21 14 5 5 6 7 8 9 10 11 12 21 14 5 5 6 7 8 9 10 11 12 21 14 5 15 10 11 11 12 21 22 14 11 11 12 21 22 21 22 21 22 21 22 22 22	3 3 3 3/2 ³ t 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2/1 ³ u 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1,942,727.846 1,942,727.846 1,964,313,714 1,964,313,714 1,856,334,387 1,315,502,208	566 551 567 565 526 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	15.5 16.6 17.7 18.5 17.5 7.1 8.6 7.4 8.2 8.2 7.6 7.6 7.6 7.6 8.5 8.5 8.4 9.4 9.4 10.1 10.2 10.2 10.2 7.5 9.2	6.04 6.43 8.04 8.23 7.37 9.02 8.8 8.7 8.7 9.4 8.7 9.4 8.1 11.6 9.4 9.4 11.1 11.3 8.6 10.3	9.24 9.24 10.55 9.0000 9.00000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.00000 9.0000 9.0000 9.00000000
Jun	1 2 3 4 5 6 7 8 9 90 11 1 2 3 4 5 6 7 8 9 90 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 2 2 2 2/1 ³ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1,315,502,208 1,315,502,208 1,315,502,208 1,315,502,208 1,315,502,208 1,315,502,208 1,315,502,208 1,315,502,208 752,234,688	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10.6 10.5 11.0 9.7 9.7 11.3 NA 11.3 13.3 13.3 13.1 13.2 13.2 13.2 13.2	11.8 12.1 11.8 12.1 11.8 10.6 13.4 12.9 13.7 13.7 13.7 13.7 14.3 14.3 14.3 14.3 14.6 15.7 2.3 16.2 15.7 18.6 15.7 18.6 15.7 18.6 19.7 18.1 19.7 19.7 19.7 19.7 19.7 19.7 19.7 19	0000000 000000 00000 00000 00000 000000

B-7

•

Table B-2 (Contd)

,

.

		No. of Circulating	No. of Service	Total Yolume of	Mean Electrical Output ²	Temper	ature (*C)	3 -
Mo.	<u>Day</u>	Water Pumps	Water_Pumps	Water Pumped ¹ (m ³)	(Mie)	Discharge	Intake	<u>at</u>
Jul	1 2 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 12 3 14 15 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 12 3 14 5 6 7 8 9 10 11 12 3 14 5 6 7 8 9 10 11 12 3 14 5 6 7 8 9 10 11 12 3 14 5 6 7 8 9 10 11 12 3 14 5 6 7 8 9 10 11 12 3 14 5 16 7 8 9 10 11 12 3 14 5 16 16 17 8 10 10 10 10 10 10 10 10 10 10 10 10 10		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	752,234,683 752,234,683 752,234,683 752,234,683 752,234,683 752,234,683 752,234,683 752,234,683 752,234,683 752,234,683 752,234,683 752,234,683 752,234,683 752,234,683 752,234,683 752,234,683 752,234,683 752,234,683 752,234,683 755,235,256 850,352,256 850,352,256 850,352,256 850,352,256 850,352,256 850,352,256 850,352,255	000000000000000000000000000000000000000	15.0 15.0 16.5 16.5 16.7 16.7 16.6 17.2 18.4 18.7 18.7 18.9 19.0 20.3 21.1 22.8 21.2 21.2 21.2 21.2 21.2 21.2	16.1 16.7 17.4 17.4 17.4 18.7 18.7 18.7 18.1 19.2 19.1 19.2 19.1 19.2 20.0 20.4 20.4 20.4 20.4 21.6 22.7 23.3 23.1 23.1 23.1 23.3 23.8 23.8	
Aug	1 2 3 4 5 6 7 8 9 10 1 12 13 4 5 6 7 8 9 10 1 12 13 4 15 16 7 18 9 20 21 22 33 4 25 26 7 28 9 30 31	1 1 1 1/2 ³ y 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3		$\begin{array}{c} 850,352,256\\ 850,352,256\\ 850,352,256\\ 850,352,256\\ 850,352,256\\ 850,352,256\\ 850,352,256\\ 1,191,038,256\\ 1,504,469,376\\ 2,158,586,496\\ 2,158,$	0 0 0 0 0 0 0 153z 0 0 0 105 178 250 239 342 238 310 420 482 468 465 462 455 462 455 547 547 547 547	22.2 23.6 23.6 23.6 24.9 25.1 25.2 26.9 26.9 26.9 25.3 25.2 26.9 26.9 26.9 25.3 25.2 26.9 26.9 26.9 25.3 25.2 26.9 26.9 27.3 31.3 33.1 32.4 31.8 27.3 32.4 31.8 27.3 32.9 31.8 32.9 31.8 32.9 31.8 32.9 31.8 32.9 31.8 32.9 31.8 32.9 31.8 32.9 31.8 32.9 32.9 31.8 32.9 31.8 32.9 32.9 33.8 32.9 32.9 33.8 32.9 33.8 32.9 33.8 32.9 33.8 32.9 33.8 32.9 33.8 32.9 33.8 32.9 33.8 32.9 33.8 33.9 33.9 33.9 33.8 33.9 33.9 33	23.2 23.5 23.5 23.7 23.4 24.2 24.3 24.2 24.3 24.0 24.2 24.4 23.7 23.7 23.7 23.7 23.7 23.7 23.7 23.7	0.0 0.0 0.0 0.7 0.7 1.2 9.3 10.2 9.3 9.3 9.3 9.3 10.2 10.0 10.1 10.1 10.1 112.8 10.2
Sep	1 2 3 4 5 6 7 8 9 0 11 12 3 4 15 6 7 8 9 0 11 12 3 14 15 16 7 18 9 20 12 22 3 4 25 6 7 8 9 30	333333333333333333333333333333333333333	222222222222222222222222222222222222222	2,153,586,496 2,153,586,496	554 602 670 717 563 691 793 792 793 794 794 794 794 794 794 794 794 809 822 824 824 824 824 824 824 824 824 825 824 824 824 824 824 825 824 824 825 824 824 825 824 824 825 824 824 825 824 825 826 826 826 826 827 826 826 826 826 826 826 826 826 826 826	32.8 34.4 36.5 37.2 34.2 36.8 37.8 37.8 37.8 36.4 35.9 35.2 35.4 34.5 34.5 34.5 34.5 34.3 34.5 34.4 34.3 34.6 34.4 34.3 34.6 34.4 33.5 32.7 32.7 32.1 33.1 32.1	21.3 22.9 22.6 22.8 23.9 22.4 23.9 21.1 21.1 21.1 21.1 21.1 21.1 21.1 21	$\begin{array}{c} 11.5\\ 12.5\\ 13.6\\ 14.6\\ 14.6\\ 16.0\\ 15.4\\ 14.5\\ 14.5\\ 14.5\\ 14.5\\ 14.5\\ 14.5\\ 14.6\\ 14.4\\ 14.4\\ 14.5\\ 14.5\\ 14.5\\ 14.5\\ 14.5\\ 14.5\\ 14.5\\ 14.5\\ 14.5\\ 14.5\\ 14.5\\ 14.5\\ 14.5\\ 14.5\\ 14.6\\ 15.0\\ 15.0\\ 15.6\\ 14.6\end{array}$

Table B-2 (Contd)

.

		No. of	No. of Service	Total Yolume of	Hean Electrical	Temper	ature (°C)	3
Ho.	<u>Day</u>	Circulating Water Pumps	Service Water Pumps	Water Pusped ¹ (m ³)	Output ² (Mie)	<u>Oischarge</u>	<u>Intake</u>	st
<u>Ho.</u> Oct	Day 1 2 3 4 5 6 7 8 9 10 11 12 13 4 15 16 17 18 19 20 22 23 4 25 26 27 28 29		Service <u>Kater Pumps</u> 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	44ter Purped (m) 2,007,485,441 1,964,313,711 2,007,485,441 2,	Output- (Mie) 835 835 836 838 839 839 839 839 839 835 839 466 0 0 0 148344 463 572 703 798 793 793 797 797 797 797 797 797 797 798 793 797 798 793 797 797 798 793 797 798 793 797 798 799 829 840 845	Discharge 31.9 32.0 32.0 31.3 31.3 33.0 32.5 32.7 32.1 32.3 31.6 21.8 12.9 13.2 18.4 24.1 27.3 29.0 28.2 28.8 27.3 29.0 28.2 28.8 21.9 24.4 26.7 27.8 26.7 27.8 26.7 27.8 26.7 26.7 26.7 26.7 26.7 26.7 26.7 26.7 26.7 26.7 26.7 26.7 26.7 26.7 26.7 26.7 26.7 26.7 27.8 26.7 26.7 26.7 27.8 26.7 26.7 26.7 27.3 27.8 2	Intake 17.2 17.4 17.5 16.7 16.3 16.1 15.9 16.6 15.6 14.9 14.2 13.3 13.3 13.3 13.6 14.3 13.4 13.1 13.6 14.2 13.1 13.2 13.4 13.2 13.4 13.2 13.4 13.2 13.4 13.2 13.4 14.2 13.4 14.2 14.3	<u>At</u> 14.76 14.68 14.68 16.67 16.34 16.68 16.67 16.34 16.68 9.85 14.24 15.24 15.24 15.24 15.24 16.24 16.44
	' 30 31	3	2 2	1,985,899.576 2,007,485.441	844 843	27.1 26.7	10.8 10.3	16.3 16.4
Nov	1 2 3 4 5 6 7 8 9 101 112 134 15 16 6 7 8 9 101 112 134 15 16 17 18 19 201 22 234 25 22 7 28 23 30	333333333333333333333333333333333333333		2,007,485,441 2,007,485,441 2,007,485,441 2,007,485,441 2,007,485,441 2,007,485,441 2,007,485,441 2,007,485,441 2,007,485,441 2,029,071,306 2,007,485,441 2,029,071,306 2,007,485,441 2,029,071,306 2,007,485,441 2,029,071,306 2,007,485,441 2,029,071,306 2,007,485,441 2,029,071,306 2,007,485,441 2,029,071,306 2,007,485,441 2,029,071,306 2,007,485,441 2,029,071,306 2,007,485,441 2,029,071,306 2,007,485,441 2,029,071,306 2,007,485,499,576 1,985,899,576 1,985,899,576 1,985,899,576 1,985,899,576 1,985,899,576 1,985,899,576 1,985,899,576	848 846 846 845 848 848 848 848 849 849 849 849 849 849	25.3 26.6 26.3 25.2 24.1 25.8 25.7 24.7 24.7 24.7 24.7 24.7 24.4 25.1 24.4 25.1 24.4 25.1 24.4 25.1 24.6 24.2 24.1 23.6 23.6 23.6 23.6 23.6 23.6 21.2	8.7 10.1 9.7 9.6 9.8 8.8 9.4 9.2 7.2 7.8 7.8 8.6 2 8.8 8.2 7.2 7.8 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3	656662545876552657955455555 6666625455876552657955456665555 6666625545587655265795545555555 6666555555555555555555555555
Dec . , ,	1 2 3 4 5 6 7 8 9 101 11 12 13 4 4 5 6 7 8 9 101 13 14 15 6 17 18 9 201 22 23 4 25 6 27 28 29 201 31		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1,964,313,711 1,954,313,711 1,955,899,576 1,955,899,576 1,954,313,711 1,964,313,711 1,964,313,711 1,964,313,711 1,964,313,711 1,985,899,576 1,942,272,846 1,964,313,711 1,999,556,116 1,791,662,111,602 1,662,62,731 1,705,283,332 1,683,697,467 1,662,62,737 1,637,634,007 1,597,354,007 1,597,354,007 1,597,354,007 1,597,354,007 1,597,354,007 1,597,354,007 1,597,354,007 1,597,354,007 1,597,354,007 1,597,354,007 1,597,354,007 1,597,354,007 1,597,354,007 1,597,354,007 1,597,354,007	848 849 847 849 851 848 849 845 849 845 849 845 849 845 846 848 850 848 850 848 850 851 852 851 852 851 852 851 852 851	23.8 23.7 22.7 22.7 22.4 23.1 23.7 23.1 21.6 21.6 21.6 21.6 21.6 21.6 21.6 21	7,1 6,2,3 5,9,9 5,4,1 6,4,5,7,7,9 4,2,1 4,2,7,1 4,2,7,1 4,2,7,1 4,2,1,7,7,4 4,2,1,7,7,4 4,2,1,7,7,4 4,2,5,1,3,2,2,4 5,5,2,4,3,5,1,3,2,4 5,5,2,4,3,5,1,3,2,4 5,5,2,4,3,5,1,3,2,4,4,4,5,5,1,3,2,4,4,4,4,4,5,5,1,3,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4	$\begin{array}{c} \textbf{16.7}\\ \textbf{16.6.8}\\ \textbf{16.6.8}\\ \textbf{16.6.8}\\ \textbf{16.6.7}\\ \textbf{16.6.7}\\ \textbf{16.6.7}\\ \textbf{16.6.7}\\ \textbf{16.3.2}\\ \textbf{16.3.2}\\ \textbf{17.2.9}\\ \textbf{26.3.2}\\ \textbf{16.8.8}\\ 16.8$

Table B-2 (Contd)

Footnotes for Table

¹Yolume of water pumped each day derived from gross circulating water flow data in James A. FitzPatrick "401" monthly reports. Water volumes have been corrected for tempering when data were available.

²Power production is daily average (gross Mke) from James A. FitzPatrick "401" monthly reports.

³Average water temperatures reported in James A. FitzPatrick "401" monthly reports.

^al January - 3 of 3 circulating water pumps operating.

^b5 February - 2 of 3 circulating water pumps operating.

C5 February - 1 of 3 service water pumps operating.

^d6 February - plant shut down.

^e7 February - 1 of 3 circulating water pumps operating.

^f8 February - 3 of 3 circulating water pumps operating

⁹8 February - 2 of 3 service water pumps operating.

^h8 February - plant on line.

¹12 February - 1 of 3 circulating water pumps operating.

 J_{12} February - 1 of 3 service water pumps operating.

k13 February - 2 of 3 circulating water purps operating.

¹13 February -2 of 3 service water pumps operating.

^m17 February -3 of 3 circulating water pumps operating.

ⁿ21 February - 2 of 3 circulating water pumps operating.

⁰21 February - 1 of 3 service water purps operating.

P22 February - 2 of 3 service water pumps operating.

⁹23 February - 3 of 3 circulating water pumps operating.

²28 April - 2 of 3 circulating water pumps operating.

\$30 April - 3 of 3 circulating water pumps operating.

 t_7 May - 2 of 3 circulating water pumps operating.

⁴⁷ May -1 of 3 service water pumps operating. ⁴⁷ May - plant shut down.

^W8 June - 1 of 3 circulating water purps operating. ^X17 July - 2 of 3 service water pumps operating.

 y_9 August - 2 of 3 circulating water pumps operating. .²11 August - plant on line: plant off line (same day). ³⁸20 August - 3 of 3 circulating water pumps operating. ^{bb}13 October - 2 of 3 circulating water pumps operating. ^{CC}14 October - plant off line.

^{dd}17 October - plant on line.

ee18 October - 3 of 3 circulating water pumps operating.

Table B-3

Numerical Abundance and Percent Composition of Impinged Fish Collected at Nine Mile Point Nuclear Plant, Jan-Dec 1980

	Ja	n	Fet	,	м	ar	Ар	r	May	,	Ju	n	Ju	1	Au	g	Se	p	0ct		No	۷	De	c	Total	
Common Name	No.	r	No.	x	No.	x	No.	x	No.	r	No.	z	No.	x	No.	r	No.	x	No.	ĩ	No.	x	No.	z	No.	x
Alcwife American eel Black crappie Bluegill	31 2 4	0.8 T 0.1	4 1	0.2 T	4 1	0.4 0.1	48,033 1	92.0 T	11,736	77.2 T	7,509 3	95.8 T	4,010 1	97.4 T	46 1	28.8 0.6	112 1	64.7 0.6 0.6	10,742 1 2 8	96.2 T T 0.1	2,779	71.3	222	7.9 T	85,528 12 6 12	81.8 T T T
Brook stickleback Brown bullhead Burbot Carp	1 1	T T T	3	т			1	T	1 1	T T												ş			1 2 2 2 2	T T T T
Central mudminnow Channel catfish Centrachidae (unident.)*	1	T			6	0.6	21 11	T	5 1	T T							4	2.3							32 13 4 1	T T
<u>Coregonus</u> spp. <u>Cottus</u> spp. (sculpin) Emerald shiner Freshwater drum	47 17	T 1.2 0.4	132 13 1	7.4 0.7 T	64 22	6.4 2.2	364 17	0.7 T	265 10	1.7 T	22	0.2			6	3.8	7	4.0	47	0.4	13 1	0.33 T	13 1	0.5 0.5 T	981 93 2	0.9 0.1 T
Gizzard shad Golden shiner Johnny darter	75	1.9	70	3.9	16	1.6	24 11 5	T T T	2 163	т 1 <u>-</u> 1	10	0.1			r	0.6	2	1.2	127 2	ו.ו ד	287 1	7.4 T	584	20.7	1,183 13 184 25	1.1 T 0.2
Lake chub Largemouth bass Logperch	1	0.1 T			5	0.5	14 1	T T	2	T					•				2	T T			ı	T	23 3 1 2	Ť
Northern pike Pumpkinseed Rainbow smelt Rainbow trout	3,046	78.8	1 1,483	T 82.7	752	76.0	4 2,914	T 5.6	2,209	14.5	197	2.5	7	0.2.	67	41.9	27	15.6	15 152	0.1	1	10.2 T	4 1,405	0.1 49.8	24 12,655 1	1 12.1 1
Rock bass Sea lamprey Smallmouth bass	11 3 2	0.2 T T	10 1 1	0.6 T T	2	0.2	5	T T			1	T	1	T T	.1	0.6			10 7	0.1 0.1	3 3 10	0.1	10 2 20	0.4 0.1 0.7	53 6 16 668	1 T T 0.6
Spottail shiner Stonecat 3-spine stickleback	75 3 2	1.9 T	9 1 3	0.5 T 0.2	28 3	2.8 0.3	215 32	0.4 T	156 4 563	1.0 T	58 1 30	0.7 T 0.4	59 2 19	1.4 T 0.5	14	8.8	13 1	7.5 0.6	11 2 1 2	0.1 T T	4	0.3 0.1	20 2 1 3	0.1 0.1 T 0.1	48 14 780	1 1 0.7
Trout perch White bass White perch White sucker	13 4 43]	0.3 0.1 11.1	2 3 48	0.1 0.2 2.7	- 19 - 2 52	1.9 0.2 5.2	129 254	0.2 0.5 T	28 3	3.7 0.2 T	30 1	U.4 T	85	0.5	3	1.9	2 1	1.2	2 25 2	Ť 0,2 Ť	344 28	8.8 0.7	284 180 2	10.1 6.4 0.1	639 1,059 16	0.6 1.0 T
Yellow perch Unidentified*	84 1	2.2 T	8 1	0.4 T	13	1.3	146	0.3 T	33 3	0.2 T	21	Ť	3		10 11	6.2 6.9		1.2	1	Ť	7 20 3,897	0.2 0.5	72 2,821	2.6	381 38 104,200	0.4 T
Totals No. Fish/1000 m ³	3,862 0.740	'	1,793 [°] 0.392		989 0.19	9	52,206 2.488		15,186 0.544		7,835 1.416		4,116 0.947		160 0.01	7	173 0.0		11,162 1.860		0.652		0.507		101100	

Damaged specimens.

T = Trace.

B-11

Table B-4

Biomass (g) and Percent Composition of Impinged Fish Collected at Nine Mile Point Nuclear Plant Unit 1, Jan-Dec 1980.

	auL		fe	6	Hat	-	Apr		Nay		Jun		اىد		A.	s.	Se	P	Oct		Nov	,	Dec		Total	
Comos Nume	Wt.	x	¥t.	x	Wt.	x	Wt.	x	¥t.	x	Wt.	x	Wt.	x	Wt.	x	Wt.	ĩ	Wt.	x	Wt.	x	WE.	x		• 1
Aleuife American eel	268.2 172.6 14.4	0.2 0.2	96.6 M	0.3	90.2+ NA	0.4	1,723,017.8 2,525.0	95.2 0.1	324,676.3	87.2	191.095.9 202.0	97.8 0,1	112,224.2 106.4	95.6 0.1	731.3 61.6	34.6 2.9	727.8 215.3	24.4 7.2	32,745.8 108.1 6,9	66.1 0.2 T	8,481.1	23.7	7,441.2	11.3	2,401,596.4 3,391.0 21.3	85. 0. 1
Black crappie Bluegill		:		,			18.2	T	21.1	T							1.9	0.1	10.8	Ť			12.5	T	64.5	
Brook stickleback Brown bullhead	1.3						44.1	T	39.6	T															83.7 2.075.0	1
Burbot Carp	2,075.0 3,400.0	1.9 3.1	25.9	0.1					м																3,425.9	
Central mudminnow Channel catfish Centrachidae (unid.)	1.4	T			32.9	0.1	84.0 1,732.0	0.1	18.0 109.5	Ĭ					•		NA								134.9 1,842.9 NA	
Coregonus spp. Cottus spp. (sculpin) Enerald shiner	351.3 185.5 75.6	0.3 0.2 0.1	483.9 24.3	1.3 0.1	251.7 105.9	1.1 0.4	1,495.1 72,5	0.1 T	844.5 54.5	0.2 T	49.0	T			13.9	0.7	21.5	0.7	1,122.7	2.3	· 33.6 4.4	0.1 T	50.2 43.2 6.0	0.1 0,1	351.3 4,551.6 390.4 30.5	
Freshwater drum Gizzard shud Golden shiper	50,019.2	45.4	24,5	0.1 38.0	8,488.2	36.4	12,889.0 67.7	0.1 I	9.0 531.9	т 0.1					8.3	0.4	4.9	0.2	8,708.7 3.5	17.6 T	14,848.0 KA	41.6		49.6	141,190.2 76.7 576.5	5
Johany darter Lake chub Largemouth bass	44.0	ĩ			43.9	0.2	10.5 8.8	ł	26.3	ï	1/13	•			0.5				35.0	0.1		,			123.0 35.0	
Logperch Northern pike							18.0	T											11.6	T			41.7	0.1	18.0 53,3	
Pumpkinseed Raisbow smelt	39,296.4	35.7	173.2 19,635.2	0.5 54.6	10,092.2	43.3	61.6 48,012.3	۲ 2.6	33,335.4	9.0	1,941.3	1.0	72.6	0.1	271.5	12.8	201,0	6.7	130.2 2,502,5	0.3 5.0	5,966.0 825.5		251.1 12,834.9	0.4 19.6	616.1 174,161.3 825.5	6
Rainbow trout Rock bass Sea lamprey	652.2 53.4	0.6 T	41.6 NA	0.1	18.4	0.1	NA 5.1				305.2	0.2	67.5 170.6	0.1 0.1					212.2	0.4	11.0	0.3	40.6	0.1	1,353.8 224.0	
Smallmouth bass Spottail shiner Stonecat	1,197.0 629.7 167.1	1.1 0.6 0.2	810.7 65.7 83.6	2.2 0.2 0.2	304.2	1.3	2,534.8 2,639.4	0.1 0.1	1,457.6 9.1	0.4 T	570.6 43.7	0.3 T	590.4 170.9	0.4 0.1	NA 150.0		169.0 90.9	5.7 3.0	940.4 67.2 84.8	1.9 0.1 0.2	600.9 74.5	0.2	179.3 174.5	1 0.3 0.3	3,557.6 6,712.0 3,464.0	0
Three-spine stickleback Trout-perch	1.9 105.8	T 0.1	4.8 27.6	1 0.1	4.1 116.3	1 0.5	1,335.5	0.1	5,995.1	1.6	231.3	0.1	172.9	0.2			•		1.1 27.3	0.1	2.9		1.0 29.4	Ŧ	15.8 8,011.2	
white bass White perch	86.0 5,388.3	0.1 4.9	45.2	0.1	61.8	0.3	5.037.0	0.3	1,093.0	0.3			1,758.3	1.5	158.3	7.5	290.2		480.6 84.3	1.0	3,235.8 1,125.8	9.1 3.2	3,949.0 1,693.3	6.0 2.6	7,858.4	000
White sucker Yellow perch Unidentified	1,325.3 4,542.7 NA	1.2 4.1	432.1 NA	1.2	1,341.8	5.8	1,315.2 7,548.3 NA	0.1 0.4	2,786.6 1,161.2 NA	0.8 0.3	780.0 123.4 NA	0.4 0.1	2,076.5 100.5		718.4	34.0	1,135.9 128.7	38.0 4,3	2,183.6 ,36.0	4.4 0.3	503.7 NA	1.4	6,295.4	9.6	11,603.1 22,212.8 718.4	
Total	110,054.3		35,961.7		23,303.2		1,810,471.9		372,168.7		195,359.8		117,429.8		2,113.3		2,987.1		49,503.3		35,713.2		65,614.3		2,820,630.6	

NA = Damaged specimen; weight not available. T = Trace.

																				Ta	ble H	8-5						
•						-					,	Est	imate	ed. N	umbe												e Poin	t Unit-I
	Ja	n	Fet	,	Mai	r		Apr		May			Jun			ul .		Aug		Sep		Oct		ember	1	Dec		La]
11-16-	No.	Wt.	No.	Wt.	No.	Wt.	•No.	Wt	-	No.	Wt.	No.	Wt	•	No.	Wt.	No. <u>.</u>	Wt.	No.	Wt	No.	Wt.	No.	Wt.	No.	Wt.	No.	Wt.
Alevife ADE** RRE*** URE****	216 234 240	1,709.3 1,876.9 1,938.9	30 29 29	375.7 351.1 343.0	26 20 15	460.0 459.5 459.0	91,445 90,083 89,992	3,266, 3,215, 3,212,	,369.7 18 ,730.5 18 ,370.5 18	173 49	13,974.9 14,232.9 14,246.6	56,29 56,29 56,30	5 1,342, 9 1,343, 1 1,343,	985.8 109.7 151.0	28,209 33,494 34,931	576,152.5 736,488.5 768,112.4	238 238 238	1,579.6 1,585.7 1,587.0	839 839	1,339.9 1,341.0 1,342.2	82,964 83,185 83,258	18,894.1 18,930.7 18,942.9	20,842 20,842 20,842	35,724.0 35,724.0 35,724.0	1,723 1,749 1,757	54,288.2 54,778.2 54,931.0	298.991 305,185 306,615	5,793,853.7 5,904,609.3 5,933,148.5
American eel ADE RRE URE	18 15 14	-1,599.2 1,302.1 1,192.2	7 7 7	na Na Na	3 5 8	na Na Na	2 2 2	4. 4.	868.6 735.8 727.0	•		22		,515.3 ,514.5 ,514.2	7 8 9	697.2 888.7 926.5	5 5 5	318.9 318.7 318.7	8 8 8	1,609.9 1,612.0 1,613.0	8 8 8	834.8 837.1 837.9					80 80 83	11,443.9 11,209.7 11,130.3
Black crappie ADE RRE URE	29 30 31	104.5 108.6 110.2					ı						-								15 15 16	53.3 53.4 53.5					44 - 45 47	157.8 162.0 163.7
Bluegill ADE RRE URE							222		33.5 34.1 34.2	222	32.7 32.7 32.7								8 8 8	14. 14. 14.	62 62 62	83.4 83.6 83.7			8 8 8	101.6 98.5 97.5	82. 83 85	265.4 263.1 262.3
Brook stickleback ADE RRE URE	7 8 8	8.9 9.8 10.1								۰.																	- 7 8 8	8.9 9.8 10.1
Brom bullhead ADE RRE URE							2 2 2		84.0 82.7 82.6	2 2 2	61 61	.6 .3 .3															4 4	145.6 144.0 143.9
Burbot ADE RRE URE	9 8 7	19,225.7 15,653.5 14,332.6								2 2 2	NA NA NA									I							11 10 9	19,225.7 15,653.5 14,332.6
Carp ADE RRE URE	7 8 8	23,268.7 25,649.1 26,529.2	7 7 7	182.8 183.3 190.1																							14 15 15	23,451.5 25,837.4 26,719.3
Central mudminnow ADE RRE URE					36 31 25	197.5 167.6 135.8	5 40 5 39 8 39	0 9 9	161.6 157.5 157.3	8 8 8	27 27 27	.9 .9	-			-											84 78 72	387.0 353.0 322.0
Centrarchidae (sunfishes) ADE RRE URE																			30 30 30	NA NA NA							30 30 30	NA NA NA
Channel catfish ADE RRE URE	7 8 8						27		3,341.0 3,248.5 3,242.3	2 2 2	170 169 169	.3			F												30 31 31	3,520.9 3,428.7 3,422.8
Coregonus spp. ADE RRE URE	788	2,538.8 2,650.2 3 2,691.3																									7 8 8	2,538.8 2,650.2 2,691.3
Cottus spp. (sculpin) ADE RRE URE	374 355 347	1,257.6	973 960 955	3.410.8	424 326 225	1,577. 1,221. 854.	6 67 0 66 3 66		2,844.0 2,804.1 2,801.5	410 411 411	1,299		165 165 165	320. 320. 320.	1 1 2		31 31 31	72.1 71.9 71.9	53 53 53	117. 117. 117.	6 363 6 364 6 364	947.7 950.2 951.0	98 98 98	252.0 252.0 252.0	113 110 109	404.7 395.4 392.6	3,677 3,536 3,420	12,556.9 12,029.6 11,614.6
Emerald shiner ADE RRE URE	13: 12: 12:		95	162.3 162.4 162.4	153 112 70	717. 539. 356.	.2 3 .4 3 .7 3	32 32 32	136.9 136.0 135.9	16 16 16	8- 8- 8-	4.5 4.4 4.4											8 8 8	33.0 33.0 33.0	104 102 103	300.0 293.0 290.9	546 492 447	1,878.8 1,694.4 1,510.1
Freshwater drum ADE RRE URE			7 7 7	172. 178. 179.	9 1 8					•															8 8 8	48.6 47.3 46.8	15 15 15	221.5 225.4 226.6
Gizzard shad ADE RRE URE	61 56 55	0 399,017.8 6 372,577.6 0 362,800.7	515 509 507	89,733. 89,508. 89,434.	2 112 5 82 4 50	55,268 43,238 30,865	.5 .7 .7	46 45 45	24,537.0 24,174.0 24,149.9											•	981 983 984	64,055.0	2,152 2,152 2,152 2,152	92,337.8 92,337.8 92,337.8	4,639 4,600 4,588	260,914.2 255,465.8 253,767.2	9,055 8,937 8,876	985,689.4 941,357.4 917,468.9
Golden shiner ADE RRE URE								21 21 21	130.8 127.0 126.7	3 3 3		3.9 3.9 13.9															24 24 24	144.7 140.9 140.6
Goldfish ADE RRE URE		•					1 2 2	195 201 201	3,828.0 3,946.4 3,954.2																		- 195 201 201	3,828.0 3,946.4 3,954.2
Johnny darter ADE RRE URE		·						10 9 9	20.0 19.7 19.7	240 240 240	5 8 5 8 5 8	18.2 18.4 18.4	75 75 75	115 115 115	.5 .5 .4		5 5 5	4.1 4.1 4.1		36. 36. 36.	15 7 15 7 16	27.0 27.1 27.1	8 8 8	na Na Na			374 373 374	1,021.5 1,021.5 1,021.4
Lake chub ADE RE URE		38 255. 38 265. 38 269.	4 5 3			3 31 5 22 17 12	5.3 3.6 9.3	27 26 26	17.0 16.5 16.5		33	40.7 40.7 40.7	·		=	<u> </u>											101 92 84	628.4 546.3 455.8
																					1	`						a division

F

111

Ĩ

.

-

5

11

1

TAL

.

B-13

science services division

、

1

-										-							Ta	ble	8-5 (Contd)	ł					
	J No.	an - Wt.	Fo No.	eb Wt.	No.	ar Wt	A No.	φr Wt.	No.	ly Wt.	J No.	un Kt.	Ja No.	ul ¥t.	Au No.	ig Wt.	Se No.	p Wt.	Oct No.	Wt.	No.	Wt.	Dec No.	¥t. ~	Tot No.	ka] Wt.
Largemouth bass ADE RRE URE					£					-	-	•		,				an and a second seco	15 15 16	135.1 135.5 135.6			¥	'	15 15 16 .	135.1 135.5 135.6
Logoerch ADE RRE URE							2 2 2 2	32.7 33.8 33.8						,				-							222	32.7 33.8 33.8
Northern piké ADE RRE URE							-	-									-		8 8 8	89.6 89.8 89.9			8 8 8	339.1 328.5 325.2	16 16 16	428.7 418.3 415.1
Pumpkinseed ADE RRE URE	¥		8 7 7	1,347.4 1,259.1 1,229.9			8 8 8	118.8 115.5 115.3							-		¥	•	116 116 116	1,005.5 1,008.2 1,009.2	×		31 32 32	1,477.5 1,483.3 1,485.1	163 163 163	3,949.2 3,866.1 3,839.5
Rainbow smelt ADE RRE URE	22,978	207,184.1 209,162.1 209,893.5	10,780		5,360 3,831 2,257	53,759.4 38,649.6 23,108.5	5,309 5,265 5,262	78,798.5 78,257.9 78,222.0	3,421 3,422 3,422	46,994.9 46,999.5 46,999.8	1,477 1,477 1,477	9,155.9 9,156.7 9,157.0	46 58 61	347.3 442.7 461.5	344 347 346	964.5 960.8 960.0	202 202 202	1,008.7 1,010.5 1,011.1	1,175 1,177 1,178	13,907.9 13,940.5 13,951.4	2,970 2,970 2,970	24,784.5 24,784.5 24,784.5	11,217 11,068 11,021	84,201.1 82,554.9 82,041.7	65,550 63,575 61,865	628,368.0 611,155.5 595,158.8
Rainbow trout ADE RRE URE	CE 1909						-,				-	-						-	-		8 8 8	6,191.2 6,191.2 6,191.2			8 8 8	6,191.2 6,191.2 6,191.2
Rock bass ADE RRE URE	84 83 83	4,721.2 4,903.8 4,978.1	71 73 73	264.0 271.9 274.5	15 10 5	141.2 93.7 44.9	10 9 9	9.8 9.6 9.5			7 7 8	2,285.0 2,283.2 2,289.0	7 8 9	442.3 563.8 587.8					77 77 77	1,639.1 1,643.2 1,644.6	22 22 22	82.5 82.5 82.5	79 79 79	262.7 263.9 264.3	372 368 365	9,848.8 10,125.6 10,175.2
Sea lamprey ADE RRE URE	18 15 14	329.8 268.6 245.9	7 7 7	na Na Na			2 2 2 2	NA NA NA					8 8 8	na Na Na											35 32 31	329.8 268.6 245.9
Smallmouth bass ADE RRE URE	18 15 14	11,090.7 9,030.0 8,268.0	7777	5,722.8 5,893.3 5,949.5											5 5 5	NA NA NA			54 54 54	4,597.1 4,593.7 4,592.5	22 22 22	4,506.8 4,506.8 4,506.8	16 16 16	67.5 67.7 67.8	122 119 118	25,984.9 24,091.5 23,384.6
Spottail shiner ADE RRE URE	559 566 568	4,453.2 4,547,4 4,582.3	64 65 66	473.2 477.6 479.0	189 143 -95	1,792.9 1,412.1 1,020.3	410 403 403	4,802.7 4,719.8 4,714.3	242 242 242	2,168.4 2,167.7 2,167.6	435 435 435	3,040.6 3,041.0 3,041.1	360 459 479	1,757.9 2,241.0 2,336.3	72 72 72	715.0 720.7 721.8	98 97 97	97.6 97.4 97.3	85 85 85	471.9 473.2 473.6	75 75 75	438.8 438.8 438.8	159 157 157	974.6 963.4 958.9	2,748 2,799 2,774	21,186.8 21,300.1 21,032.3
Stonecat ADE RRE URE	- 28 23 21	1,548.2 1,260.6 1,154.2	8 7 7	650.4 607.7 593.7			61 60 60	5.038.5 4,950.3 4,944.5	6 6 6	14.1 14.1 14.1	7 7 8	327.3 327.6 327.8	13 17 17	1,119.8 1,427.4 1,488.1			7 7 7	679.7, 680.9 681.3	16 16 16	657.1 656.7 656.5			16 16 16	1,390.5 1,374.6 1,369.7	162 159 158	11,425.6 11,299.9 - 11,229.9
Threespine stickleback ADE RRE URE	18 15 14	17.6 14.3 13.1	21 22 22	33.9 34.9 35.2	23 15 7	31.5 20.9 10.0													8 8 8	8.5 8.5 8.5	30 30 30	21.8 21.8 21.8	8 8 8	8.1 7.9 7.9	108 98 89	121.4 108.3 96.4
Trout-perch ADE RRE URE	96 98 99	784.2 798.1 803.3	14 14 15	97.4 100.3 101.3	130 97 62	705.8 505.3 299.1	244 242 242	2,499.4 2,483.6 2,482.6	872 872 872	9,179.5 9,179.1 9,179.1	225 225 225	1,685.6 1,683.9 1,683.4	124 159 166	1.132.9 1,444.2 1,505.6					16 16 16	211.5 211.4 211.4			24 24 24	234.4 231.6 230.7	1,745 1,747 1,721	16,530.7 16,637.5 16,496.5
Unidentified fish ADE RRE URE	9 8 7	na Na Na	7 7 7	na Na Na			2 2 2	na Na Na	5 5 5	29.4 29.4 29.4	8 8 8	na Na Na			57 57 57	na Na Na					136 136 136	NA NA NA			224 223 222	29.4 29.4 29.4
White bass ADE RRE URE	29 30 31	624.0 648.8 657.9	21 22 22	319.1 328.6 331.7	15 10 5	314.8													15 16 16	3,711.6 3,721.7 3,725.1	2,580 2,580 2,580 2,580	24,084.0 24,084.0 24,084.0	2,190 2,237 2,252	30,473.8 31,108.1 31,305.8	4,850 4,895 4,906	59,686.8 60,206.0 60,255.3
White perch ADE RRE URE	3,167 3,251 3,283	38,858.8 40,366.3 40,923.8	350 349 349	2.172.9 2.191.7 2.197.9	394 265 132	18,013.6 11,979.0 5,772.2	483 476 476	9,301.6 9,255.9 9,252.8	42 42 42	1,681.6			50 67 70	10,867.1 14,686.3 15,439.6	16 16 16	811.1 819.0 820.6	15 15 15	1.088.9 1.086.9 1,086.3	193 194 194	644.9 646.6 647.2	210 210 210	8.443.5 8,443.5 8,443.5	1,426 1,418 1,416		6,346 6,303 6,203	105.281.8
White sucker ADE RRE URE	9 8 7	12,279,4 9,997,8 9,154,2					222	2,422.0 2,466.7 2,469.7	5 5 5	4,334.5 4,316.8 4,315.8	8 8 8	5,842.3 5,848.1 5,850.0	32 42 44	7,890.6 10,406.5 10,902.7			7777	8,524.4 8,508.9 8,503.8	15 16 16	16,889.2 16,909.5 16,916.3		-	16 16 16	NA NA NA	94 104 105	58,182.4 58,454.3 58,112.5
Yellow perch ADE RRE URE	620 634 639	31,711.2 32,780.3	56 58 59	304.2 313.3 316.3	100 66 32	10,298.0 6,835.1 3,273.4	280 274 273	14,443.5 14,157.2 14,138.2	53 53 53	1.809.8 1.810.4 1.810.5	15 15 15	924.8 925.2 925.3	20 25 26	658.5 839.4 875.1		2,601.6 2,601.9 2,601.9	15 15 15	965.8 964.1 963.5	• 8 • 8	280.1 278.8 278.4	52 52 52	3,251.2 3,251.2 3,251.2	573 567 565		1,844 1,819 1,789	117,389.5
Total ADE RRE URE								3,423,839.6 3,371,663.1 3,368,201.0										1	-	128,970.3 129,254.4 129,349,5				499,035.8 492,392.7 490,321.7	397,775 401,691	7,926,071.2 7,968,448.5 7,946,184,1

*Biomass of damaged fish (designat **ADE = Average density estimate. ***RE = Regular ratio estimate. ****URE = Unblased ratio estimate.

.

NA = Not available.

.

1

1

...

}

Ĺ

Table B-5 (Contd)

.

з

.

• .

ч ч ч ч ч ч ч ч ч ч ч ч •

• . .

· · · · ·

.

• • • • ¢ 4 .

... : .

Table B-8

Biomass (g) and Percent Composition of Impinged Fish Collected at James A. FitzPatrick Nuclear Power Plant, Jan-Dec 1980

	Jar	ı	fet	>	Ka	r	Арг		Мау		Jun		Jul		Aug		Se	P	0ct		Nov		Dec		Total	
Cosmon Name	Wt.	X	¥٤.	2	WE.	2	Wt.	z	Wt.	X	Wt.	x	WE.	x	Wt.	x	Wt.	x	Wt.	x	WL.	x	Wt.	x	Wt.	*
Alewife American eel	2,045.8	1.0	34.0	0.1	133.4	1.7	410,119.5	86.7	135,720.1 586.5	66.3 0.3	328,872.8	98.0	66,125.5	9 3. 0	12,586.7	73.5	3,697.6 234.1	47.1 3.0	15,661.9	52.7	9,283.7	25.3	10,051.2	14.6	994.322.2 820.6	1
Black crapple Bluegill Bluntnose minnow	4.4 133.0 1.4	o, i				_	23.2 4.6	ł	2.7	ĭ									10.7	T					4.4 169.6 6.0	Ī
Brook stickleback Brown bullhead Brown trout	40.9	T	131.0	0.5	1.1	•	3.8 641.6 637.4	0.1 0.1	76.8 1,976.9 1,273.9	1 1.0				• •	2,750.0	16.0	348.4	4.4	163,9 60,0	0.6 0.2	253.9	0.7	37.0 550.0	T 0.8	4.9 1.693.5 5,336.9 2,038.1	0.1
Burbot Carp Central mudisinnow Channel catfish	2.3 9.3 2.4	Ţ			21.1 110.3	0.3	379.8 499.6	0.1	1,2/3.9	0,6 T			126.8 3.5	T T									7.1		2,038.1 5.8 412.0 619.4	Ī
Centrachidae (unid.) Cottus spp. (sculpin)	157.6	0.1	82.5	0.3	84.6		983.6	0.2	561.7	0.3	n.†	т			0.3	T	0.4	T	NA 49.8	0.2	15.3	T	15.6	т	NA 2,023.1	0.1
Creek club Enerald shiner Freshwater drum	155.5	0.1	63.3	0.2	44.9	0.6	33.2	T	6.4	T	48.0	T									6.2 10.0	Ţ	70.7	0.1 T	48.0 330.2 29.2	T
Gizzard shad Golden shiner Goldfish	126,869.0	65.3	11,516,1	44.0	3,276.8	42.6	10,525.6 10.6	2.2 T	ŅĀ								27.5	0.4	6,469.1	21.8	8,882.5	24.2	35,111.6 10.8 10.6	51.2 Ţ	202,678.2 21.4 10.6	13.8 T
Johnny darter Lale chub Largenouth bass Logperch	17.3 103.8 9.4	I I I			10.1	0.2	16.7 75.9	Ŧ	203.1 36.9	0.1 T	376.2	0.1			3.7	T	14.9	0.2	18.8	0.1	2.4	T	10.0	•	653.1 216.6 9.4 19.1	I
Northern pike Northern pike Pumpkinseed Rainbow smelt	466.8 51.241.7	0.2 26.4	11,528.2	44.0			NA 29.3 NA 29,163.6	I 6.2	10.0 49,982.1	T 24.4	NA 2.8 1,680.2	T 0.5	68.9	0.1	127.3 378.4	0.7	504.8	6.4	16.0 3.676.7	1 12.4	6,105,3	16.6	286.0 13.600.3	0.4	NA 29.3 903.9 170,979.8	1 0.1
Kalnbow trout Rock bass Salvelinus spp.	1,243.8	0.6			••••		514.4	0.1	981.3	0.5	222.6	0.1	228.7	0.3			968.7	•••	••	1.7	12.0	T	1,043.3	1.5 2.1	1,043.3 7,478.8 15.0	0.
Salmonidae (unid.) Smallmouth bass Spottail shiner Stonecat	1,081.3 584.4 1.3	0.6 0.3	672.4 72.2		38.2	0.5	465.4 31.5	0.1 T	4,071.3 725.3 110.2	2.0 0.4 T	2,105.0 363.7 20.0	0.6 0.1 1	NA 117.4 188.1 159.7	0.2 0.3 0.2	35.9 87.5	0.2 0.5	1,109.9 131.6 194.2	14.2 1.7 2.5	624.5 108.8 8.8	2.1 0.4	340.5 13.4 59.2	0.9 T 0.2	5.4 20.6 17.5	Ţ	340.5 9,800.6 2,793.4 630.7	1 0. 0.
Three-spine stickleback Trout-perch Walleye	1.8 10.6	Ï	2.6	T	3.0 26.2	T 0.3	288.6 1.089.0	0.1 0.2	3,127.7	1.5	631.1	.2	17.7	T						•	2.0 3.1	Ī	3.7	i	13.1 4,155.0 1,089.0	0.
alte bass alte perch alte sucker	918.5 5,024.4	0.5 2.6	28.6 437.2	0.1 1.7	713.0	9.2	•	2.4	537.7 2,047.1 1,052.0	0.3 1.0 0.5	47.0	T			1.7	T	9.2	0.1	462.3 127.0 1,297.3	1.6	11,081.4 32.2 NA	30.2 0.1	1,770.5 779.0	2.6 1.1	14.799.0 20,384.9 3,922.7) 1.0 1.4
Vellow perch Unidentified	4,121.3 KA	2.1	269.0	1.0	179.0 NA	2.3		1.0	1,631.8	0.8	924.7 NA	0.3	470.7 NA	0.7	1,162.1	6.8	591.9	7.7	457.3	4.4 1.5	557.4	1.5	3,775.7	5.5	18,823.2 NA	
Total	194,263.0		26,189.1		7,700.3		473,029.7		204,723.3		335,415.8		67,507.0		17.133.6		7,823.2		29,730.0		36,660.5		68,624.0		1,468,799.5	. •

NA = Damaged specimen; weight not available. T = Trace

B-18

Table B-7

Numerical Abundance and Percent Composition of Impinged Fish Collected at James A. FitzPatrick Nuclear Plant, Jan-Dec 1980

		Ja	n	Fei	Ь	Ma	ir	, Ap	r	Ma	, Y	Ju	n	Ju	I	Aug	1	Se	P	0c1	2	No	۷	De	c	Total	
	Common Name	No.	z	No.	X	No.	x	No.	r	No.	7	No.	ĩ	No.	x	No.	X	No.	x	No.	*	No.	x	No.	*	No.	x
Alewife America		63	1.0	3	0.3	5	1.2	11,209	77.5	4,604 1	53.6 T	11,576	95.2	2,548	98.7	806	86.6	359 [°] 4	66.0 0.7	4,438	84.4	3,140	59.0	347	11.4	39,098 5	64.6 T
Black (Bluegi	crappie 11	1 13 1	T 0.2 T					4	Ţ	1	T									6	0.1					1 24 3	Ţ
Brook :	ose minnow stickleback bullhead	1	ı T	1	0.1	1	0.2	4	Ì	2	т							1	T	ı	т	ı	т	1	T	5 14	Ť
Brown Burbot	trout		-					1	т	1 1	Ť T			ı	T	1	0.1		×	1	T			2	0.1	53	T T T
	l mudainnow l catfish	4	Ť			5 1	1.2 0.2	119 4	0.8 T	2	T													ı	т	130 7	0.2 T
Centra Cottus	chidae (unident.)* spp. (sculpin)	63	1.1	27	2.3	18	4.2	213	1.5	154	1.8	27	0.2	3	0.1	ı	0.1	ı	0.2	4 26	0.1 0.5	8	0.2	5	0.2	4 546	1 0.9
	chub d shiner ater drum	95	1.6	24	2.0	9	2.1	7	T	4	T	1	T	•								2	Ţ	26 1	0.9 T	167	1 0.3 1
Gizzar Golden	d shad shiner	234	3.9	40	3.3	5	1.2	17 1	0.1 T	1	T							3	0.6	84	1.6	446	8.4	956 1	32.0 T	1,785	3.0 Ţ
Goldfi Johnny Lake c	darter	7	0.1 0.1					12 5	Ŧ	77 3	0.9 T	185	1.5			3	0.3	9	1.6	6	0.1	2	T	I	I	301 14	Т 0.5 Т
Largen Logper	outh bass ch	i	T			ı	0.2		-	•	•															ì	Ţ
<u>Horone</u> Northe Pumpki	rn pike	6	0.1				_	1	I	1	т	}	Ţ			ı	0.1		-	12	0.2			5	0.2	2 27	ţ
Rainbo Rainbo	w smelt w trout	4,758	79.7	1,038	86.9	355	83.5	2,371	16.4	3,348	38.9	198	1.6	2	0.1	81	8.7	122	22.4	626	11.9	442		1	45.4 T	14,718	24.3 T
Rock b <u>Salvel</u> Sea la	inus spp.	40 1	0.7 T	9	0.8			8 1	T	4	T	1	T	1	Ţ			3	0.6	4	0.1 T	3	0.1 T	13	0.4	86 4 1	0.1 T T
Smallm Spotta	outh bass 11 shiner	7 117	0.1 2.0	1 17	0.1 1.4	8	1.9	72	0.5	4 66	T 0 <u>.</u> 8	2 34	T 2.8	1 13	T 0.5	14	1.5	5 24	0.9 4.4	9 16	0.2 0.3	3 6	0.1 0.1	1	T 0.2	33 392	T 0.6
Stonec 3-spin Trout	e stickleback		T T T	2	0.2	2	0.5 0.9	1 7 31	т 0.2	1 253	т 2.9	1 72	т 0.6	2 2	0.1 0.1	1	0.1	2	0.4	3	0.1	2 1	Ţ	4	т 0.1	13 11 367	T 0.6
Walley White	e bass	8	0.1	4	0.3			2	т	1	T			-	••••	_		-		2	Ţ	1,249	23.4	142	4.7	2 1,406	T 2.3
White White	sucker	433 86	7.3 1.4	20 8	1.7 0.7	9 1	2.1 0.2	290 2. 83	2.0 . T 0.6	39 2 26	0.5 T 0.3	7 22	0.1 0.2	7	0.3	21	0.1 0.1 2.2	4	0.7	14 2 4	0.3 T 0.1	12	0.2 T 0.1	98 48	3.2 1.6	927 8 319	
	tified*	4	1.4 T	ī	0.1	i 425	0.2	3	T T		0.5	27 12,155	0.2	í 2,582	Ť	21. 931		544	,	5,259		5,326		3,036		37 60,477	0.1
Tota No.	Fish/1000 m ³	5,957 0.816		1,195 0.201		425 0.061	ı	14,471 0.561		8,596 0.303		2.287		0,806		0.112	,	0.06	3	0.707		0.669	•	0.437	-	00,477	
* Damag	od specimens.																					•					

Damaged specimens.

T = Trace.

B-17

				Tab 1		G (Co						•
	Jan	Feb	Mar	Apr	Three <u>May</u>	spine S <u>Jun</u>	tickleba Jul	ack <u>Aug</u>	Sep	0ct	Nov	Dec
41- 50 51- 60 61- 70 71- 80	2	3	3					<u> </u>			3	1
71- 80						Uhita	Perch					
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
41- 50 51- 60 61- 70 71- 80 81- 90 91-100 101-110 111-120 121-130 131-140 141-150 151-160	1 16 26 12 16 5 1	1 4 15 7 12 6	3 3 6 5 5 3 1 1	2 22 24 9 5 5 9 6 1	1 5 7 2 1 1			1 1	×	4 2 9 5 3 1	4 3 5 7 5	1 6 22 38 39 14 1
161-170 171-180 181-190 201-210 211-220 221-230 231-240 241-250 251-260 261-270 271-280 281-290	1 2 1 1	ì	4 5 2 2 1 1 1	2 5 4 1 2 1	3 1 1	ų	2 1 1 2	1	1		1	1
291-300 301-310 311-320 321-330 331-340 341-350 351-360 361-370 371-380 381-390 391-400 401-410 411-420			1	•	ł		1				1	
	Jan	Feb	Mar	Apr	May	Yellow Jun	Perch Jul	Aug	Sep	0ct	Nov	Dec
61- 70 71- 80 81- 90 91-100 101-110 111-120 121-130 131-140 141-150 151-160 161-170 71-180 181-190 201-210 201-210 201-210 21-220 221-230 231-240 241-250 251-260 261-270 271-280 281-290 291-300 301-310 311-320 331-340	Jan 1 1 3 4 7 1 2 2 5 4 2 3	2 1 1 1 1	Mar 2 1 2 1	Apr 1 7 5 4 3 2 2 3 3 3 3 3 3	May 1 1 2 2 2 2 1 2 2 2 2	<u>Jun</u> 1	<u>Jur</u> 1 1 1	2 2 1 1	<u>Sep</u> ۱	1	2 3 1	2 2 2 1 4 5 10 9 8 6 9 6 4 1 3

ŧ

.

Table B-6

Length Distribution of Fish Impinged, Nine Mile Point Nuclear Plant, Jan-Dec 1980

						Alew	i fe					
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
41- 50 51- 60 61- 70 71- 80 81- 90 91-100 101-110 111-120 121-130 131-140 141-150 151-160 161-170 171-180	1 1 6 9 2 1	1	1 1 1	2 4 13 6 11 8 12 21 49 160 169	2 19 34 56 40 39 57 73 159 140	4 2 4 6 2 8 8 8 8 1 5 3 3	1 4 5 2 1 12 28 32	2 1 1 2 3	3 5 11 2 1 3	3 34 32 25 10 1	17 54 29 3 2 8 1	1 5 3 1 4 14 31
181-190 191-200 201-210 211-220 221-230 231-240 241-250 251-260		·	1	103 48 12 1 1 1	83 44 12 1	23 14	17 14 3 1	42	1	3 2 1 5 1	4 1 1	18 8 3
	Jan	Feb	Mar	Åpr	Ra May	ainbow S Jun	melt Jul	Aug	Sep	Oct	Nov	Dec
31- 40	,	<u></u>								1	*****	
41- 50 51- 60 61- 70 71- 80 81- 90 91-100 101-110 111-120 121-130 131-140 141-150 151-160 161-170 171-180 181-190 191-200 201-210 201-210 211-220 231-240 241-250 251-260	1 6 11 8 4 14 36 35 19 9 3 3 - 1	4 2 8 5 1 6 23 6 40 15 4 1 1 1	8 10 14 4 7 12 29 21 15 11 5 1	1 5 11 10 16 6 7 18 44 73 124 18 93 48 14 5 1 1	3 37 562 22 12 22 64 105 135 108 81 24 15 6 2 1	2 10 18 4 3 8 10 9 10 6 13 1 2 3) 1 1	2 1 7 16 10 5 1 . 1 1	2 3 6 1 1 1 1 3	1824423431637543 31	1 6 7 6 7 10 21 20 9 7 9 3 3 3 3	1 3 12 3 9 7 5 28 40 12 13 4 6 3 1
	•••	5 .1	Maria	1		nallmout				. .		
51- 60 61- 70 71- 80 81- 90	<u>Jan</u>	Feb	Mar	<u>Apr</u>	<u>May</u>	<u>Jun</u>	Jul	<u>Aug</u>	<u>Sep</u>	0ct 1 1 3 1	<u>Nov</u> 2	<u>Dec</u> 2
111-120 121-130 131-140												
211-220 221-230 231-240 241-250					٩		-					
311-320 321-330 331-340 351-350 351-360 361-370 371-380 381-390 391-400	2	۱								1	ľ	

-

-

1

~

-

7

ł. /

	Ja No.	n Kt.	Fe No.	b Wt.	Ma No.	r Wt.	Ap: No.	r Wt.	Ma No.	Y Wt.	No.	Jun Wt.	Ju No.	ıl ¥t.	Aug No.	9 Wt.	Se; No.	P Wt.	0 No.	ct Wt.	No.	Wt.	De No.	c Wt.,	Tot	
Alevife ADE** RRE*** URE****	502 500 499	8,582.2 8,602.9 8,609.2	25 26 26	285. 4 290.0	35 36 37	935.0	20,839 7 21,198 7	52,116.8	6,943 7,154	205,348.7 209,114.5 209,303.0	58.269	1,766,235.3	12,930	313,347.1 305,427.6 303,085.5	4,678	9,625.4 8,726.1	2,692 2,692 2,692	7,659,7 7,659.8 7,659.8	32,767 35,321	31,299.6 32,870.1 33,338.7		48,744.1 48,882.6 48,928.5			No.	Wt. 3,217,461.6
Alosa sp. ADE RE RE URE	499	8,609.2	26	290.6	37	967.4 980.7	21,198 7 21,220 7	66,033.8	7,164	209,303.0	56,948	1,512,398.4		303,085.5 193,193.8 181,365.7 177,867.8		8,118.8	2,692	8.8CO, \	36,083	33,338.7	24,397	48,928.5	2,868	73,549.4	7,407 6,954 6,820	3,217,461.6 3,014,553.4 2,972,301.4 193,193.8 181,365.7 177,867.8
American eel ADE RRE URE									1 2 2	696.9 911.3 922.0							30 30 30	1,170.8 1,170.8 1,170.8							31 32 32	1.867.7 2.082.1 2.092.8
Black crappie ADE RRE URE	8 8 8	36.0 34.9 34.6																							8 8 8	36.0 34.9 34.6
Bluegill ADE RRE URE	102 103 103	336.5 338.7 339.4					7 8 8	42.0 43.7 43.8	2 2 2	4.5 4.2 4.2									44 48 49	78.9 85.2 87.0					155 161 162	461.9 471.8 474.4
Bluntnose minnow ADE RRE URE	8 8 8	10.7 11.1 11.2					4 4 4	8.3 8.7 8.7											•						12 12 12	19.0 19.8 19.9
Brook stickleback ADE RRE URE					7777	7.6 8.0 8.1	8 8 8	7.1 7.2 7.2										4							15 15 15	14.7 15.2 15.3
Brown bullhead ADE RRE URE	8 8 8	322.5 324.4 325.0	9 9 8	1,228.9 1,117.2 1,102.3			11 11 11	1,171.0 1,209.7 1,212.0	2 3 3	86.8 119.3 121.0			-				8 8 8	2,613.0 2,613.0 2,613.0	10 8 7	1,714.8 1,394.4 1,182.0	8 8 8	1,912.5 1,907.3 1,905.6	8 8 8	298.6 293.0 391.3	64 63 61	9,348.1 8,888.3 8,752.2
Brown trout ADE RRE URE									222	3,315.1 3,071.7 3,059.6					8 8 5	22,340.0 16,962.4 13,331.1		ł	7 8 8	442.2 477.5 488.0			16 16 16	27,753.7 27,123.4 26,931.3	33 32 31	53,851.0 47,635.0 43,810.0
Burbot ADE REE URE							2 2 2	1,226.6 1,201.8 1,200.3	2 2 2	2,136.2 1,979.4 1,971.6			7 8 8	922.1 978.6 995.3											11 12 12	4,284.9 4,159.8 4,167.2
Carp ADE RXE URE	8 8 8	18.1 18.2 18.3																4							8 8 8	18.1 18.2 18.3
Central mudminnow ADE RRE URE	32 32 32	32.6 32.5 32.5			35 36 37	147.2 153.0 155.5	230 224 224	694.1 677.8 676.8	3 3 3	1.5 1.4 1.4															300 295 296	875.4 864.7 866.2
Centrarchidae (sunfishes) ADE RRE URE																		r	29 32 32	NA NA NA					29 32 32	NA NA NA
Channel çatfish ADE RRE URE	8 8 8	18.9 19.0 19.1			7777	775.8 799.8 810.1	8 8 8	944.9 942.0 941.8										1 1 1					8 8 8	60.4 56.2 55.0	31 31 31	1,800.0 1,817.0 1,826.0
Cottus spp. ACE RRE UNE	500 500 500	1,158.5 1,158.1 1,157.9	233 230 230	651.2 643.9 642.9	129 131 131	598.6 613.5 619.8	399 402 402	1,869.5 1,854.5 1,853.6	228 241 242	793.3 872.8 876.8	126 136 138	329.2 349.3 353.2	24 23 23	17.9 17.8 17.7	6 6 6	1.7 1.8 2.0	8 8 8	3.1 3.1 3.1	0 192 0 207 0 212	367.1 396.3 405.1	52 53 53	100.1 100.7 100.8	40 40 39	125.6 123.5 122.9	1,937 1,977 1,984	6,015.7 6,135.2 6,155.7
Creek chub ADE RRE URE								·			3 5 5	241.6													3 5 5	162.7 241.6 256.8
Emerald shiner ADE RRE URE	765 754 750	921.4 913.8 911.4	202 205 205	494.7 504.9 506.2	72 65 62	361.9 325.6 310.1	13 13 13	56.3 57.1 57.2	5 5 5	10.7 9.9 9.9								4 1			15 15 15	46.5 46.5 46.6	217 206 202	582.5 559.9 553.0	1,289 1,263 1,252	2,474.0 2,417.8 2,394.4
Freshwater drum ADE RRE URE																					7 8 8	74.5 75.1 75.3	8 8 8	154.9 152.0 151.2	15 16 16	
Gizzard shad ADE RRE URE -	1,862 1,856 1,854	898,832.8 892,704.8 890,849.5	340 341 341	90,504.9 90,789.6 90,827.6	37 36 36	17,736.3 17,302.2 17,117.7	32 32 32	19,970.2 19,845.8 19,838.3									22 22 22	137. 137. 137.	2 622 2 668 2 682	45,698.7 49,344.5 50,432.3	3,354 3,350 3,349	63,675.2 63,603.5 63,579.8	7,143 7,570 7,701	253,058.3 260,275.9 262,476.1	- 13.412 13.875 14,017	1,389,613.6 1,394,003.5 1,395,258.5
- *																										

Țable B-9

Estimated Numbers and Biomass (g)* of Fish Impinged at the James A. FitzPatrick Nuclear Power Plant, Jan-Dec 1980

.

• B-19

и

· · · · · ·

. •

	x .					-				لح																
				•				**		Ŭ	7.	•					Т	able 1	B-9.((Contd))	<u></u>				
•	No.	Jan Vt.	Feb No.	¥t.	Mar No.	¥t.	Apr No.	Vt.	May No.	¥t.	Jur No	i Wt.	Jul No	i M+	A:	ug Wt.	Se No.	p Wt.	00 No.	t Wt.	No.	v Wt.	Dec No.	C Wt.	Tota No.	l Vt.
Golden shiner ADE RRE URE							2	19.1 20.0 20.0	1 2 2			-													3 4	19.1 20.0 20.0
URE Goldfish ADE RRE URE							2	20.0	2	* KÅ									ţ				16	177.3	4	
																							16 16 16	177.3 169.5 167.1	16 16 16	177.3 169.5 167.1
Johnny darter ADE RRE URE	55 56 56	114.5 115.0 115.2					22 23 23	31.2 31.5 31.5	125 120 119	314.6 303.9 303.4	835 931 950	1,515.0 1,692.3 1,726.3			17 18 20	20.9 22.8 24.1	68 68 68	111.8 111.8 111.8	44 48 49	69.3 74.8 76.5	15 15 15	18.1 18.0 18.0			1,181 1,279 1,300	2,195.4 2,370.1 2,406.8
Lake chub ADE RXE URE	48 48 48	624.7 627.4 628.2					9 9 9	138.2 143.1 143.4	4 5 5	45.9 57.3 57.9									ł						61 62 62	808.8 827.8 829.5
Largemouth bass ADE RRE URE	8 8 8	75.9 74.6 74.2																							8 8 8	75.9 74.6 74.2
Logoerch ADE RRE URE					7777	134.3 138.5 140.3													Ì	2					7	134.3 138.5 140.3
Morone sp. ADE RRE URE	×				,	140.5	222	NA NA NA			•					-			l l						2 2	NA NA
URE Northern pike ADE RRE URE							2 2 2	NA 56.4 55.2 55.2			4	NA NA NA							9						2 6 7	NA 56.4 55.2 55.2
Purokinseed	47	3,610.7					2	NA	2	16.8	5				8	1,034.1			88	117.9			42	2,367.5	7	
ADE RRE URE Rainbow smelt	48 48	3,610.7 3,702.6 3,730.4					222	NA NA	222	16.8 15.5 15.5	- 4 5 5	12.6 14.1 14.4			6 5	1,034.1 785.2 617.1		a raa r	88 96 98	117.9 127.3 130.1			42 40 39	2,367.5 2,264.9 2,233.6	193 194 199	7,159.6 6,906.6 6,741.1
ADE RRE URE	36,261 36,281 36,286	259,681.6 259,085.1 258,904.5	8,819 8,852 8,857	86,594.7 86,870.0 86,906.7	2,758 2,574 2,496	13,766.9 17,856.2 17,469.2	4,495 4,470 4,469	47,117.9 47,042.6 47,038.0	5,275 5,668 5,688	67.172.9 74,142.3 74,491.1	878 997 1,019	4,633.2 5,021.5 5,096.0	16 15 15	566.4 531.7 521.5	459 500 527	2,142.5 2,334.0 2,463.4	915 915 915	2,500.5 2,500.5 2,500.5	4,629 4,982 5,087	13,240.9 14,242.8 14,541.8	2,535 2,539 2,540	32,243.8 32,304.7 32,324.9	10,406	102,111,4 100,296.6 99,743.4	77,642 78,199 78,245	636,772.7 642,228.0 642,001.0
Rainbow trout ADE RRE URE																			i				8 8 8	8,419.0 8,262.2 8,214.3	8 8 8	8,419.0 8,262.2 8,214.3
Rock bass ADE RRE URE	321 317 316	6,701.7 6,712.0 6,715.1	75 77 77	6,374.2 6,437.2 6,445.6			15 15 15	939.0 969.9 971.7	6 6	1,426.9 1,524.8 1,529.6	6 5 5	1,319.2 1,120.5 1,082.3	7 8 8	1,663.2 1,765.0 1,795.1			22 22 22	7,265.2 7,265.2 7,265.2	33 32 32	5,394.5 4,115.4 3,733.8	23 23 23	90.4 90.1 90.1	106 103 102	11,800.3 11,389.5 11,264.2	614 603 606	42,974.6 41,389.6 40,892.7
Salmonidae (trouts) ADE RRE URE	-												7 8 8	NA NA NA											7 8 8	na Na Na
<u>Salvelinus</u> spp. ADE RRE URE	8 8 8	118.3 119.0 119.2					2 2 2	NA NA NA											. 7 8 8	na Na Na					17 18 18	118.3 119.0 119.2
Sea lamprey ADE RRE URE							-												.,		8 8 8	2,564.8 2,557.9 2,555.6		_	8 8 8	2,564.8 2,557.9 2,555.6
Smallmouth bass ADE RRE URE	55 56 56	7,308.0 7,351.3 7,364.4	8 8 9	5,616.6 5,734.4 5,750,1					7 6 6	6,827.2 6,326.0 6,301.0	12 10 10	12,474.5 10,595.7 10,234.9	7 8 8	853.8 906.1 921.5			38 38 38	6,659.2 6,659.2 6,659.2	66 72 73	4,561.7 4,925.6 5,034.2	23 23 23	100.9 100.7 100.6	8 8 8	44.7 42.8 42.2	224 229 231	44,446.6 42,641.8 42,403.1
Spottail shiner ADE RRE URE	925 928 929	3,265.6 3,285.4 3,291.4	142 145 145	602.9 615.7 617.5	63 58 56	293.2 277.0 270.1	137 136 136	836.9 828.8 828.3	109 103 102	1,157.3 1,079.3 1,075.4	159 171 173	832.7 833.1 833.1	61 62 62	613.3 620.5 622.6	82 86 89	224.2 221.4 219.6	172 172 172	694.5 694.5 694.5	121 127 129	808.4 814.2 815.9	45 45 45	371.4 370.4 370.0	40 40 39		2,056 2,073 2,077	9,866.7 9,803.4 9,800.6
Stonecat ADE RRE URE	8 8	10.2 10.3 10.3	145	017.5	50	270.1	130 2 2 2	57.4 59.4 59.5	2 2 2	260.3 171.2 166.8	173 3 5 5	67.8 100.7 107.0	16 15 15	1,312.9 1,232.5 1,208.7	5 6 6	495.4 539.7 569.6	15 15 15	728.2 728.2 728.2 728.2	22 24 24	64.9 70.0 71.6	•,	3/0.0	8 8	141.2	81 85 85	3,138.3 3,050.6 3,059.5
URE Threespine stickleback ADE RRE URE	8 8 8	10.3 14.7 14.3 14.1	18 17 17	23.5 22.2 22.0	15 14 14	22.6 21.8 21.4	2	59.5	2	166.8	5	107.0	15	1,208.7	6	269.6	15	728.2	, 24	71.6	15 15 15	14.9 15.0 15.1	8 34 32 31		85 90 86 85	3,059.5 107.1 102.6 101.2
URE Trout-perch ADE RRE URE	8 32 32 32	14.1 85.1 84.1 83.8	17	22.0			60	563.4	408	5,020.1	338	3,029.1	16 15 15	145.5 136.6 134.0					1 1		8	15.1 23.4 23.3 23.3	31	28.6	85 893 896 899	101.2 9.071.6 8.977.9 8,989.6
			8	NA	31 29 28 7	205.0 190.0 183.6 NA	60 58 - 58 6	563.4 544.1 543.0 NA	408 392 391	5,020.1 4,798.0 4,786.9	338 362 367 123	3,029.1 3,201.8 3,235.0 NA	7	NA					ł		8 8	23.3				
Unidentified fish ADE RRE URE	32 32 32	na Na Na	89	na Na Na	777	NA NA NA	6 6 6	na Na Na		-	123 136 138	NA NA NA	8	NA NA										·····	183 197 200	NA NA NA
																			B-20)		5	scier	100 50	rvice	s divisio

-

ć

....

-

ſĽ

• •

.

*

science services division

B-20

verale a vita 🖷 a Deve -. . .

• » " -4 i

.

-

Table B-9 (Contd)

		b		. .												_		اد								
		Jan		Feb		Mar		Apr		May		Jun	i	Jul		Aug	:	Sep		Oct		Nov		Dec		Total
	No.	Wt.	No.	Wt.	No.	Wt.	No.	Wt.	No.	Wt.	No.	Wt.	No.	Wt.	No.	Wt.	No.	Wt.	No.	Wt.	No.	Wt.	No.	Wt.	No.	Wt.
Walleye ADE RRE URE							4 4 4	2,106.7 2,053.2 2,050.0															•		4	2,106.7 2,053.2 2,050.0
Khite bass ADE RRE URE	64 63 63	5,510.8 5,536.5 5,544.2	34 34 34	240.7 243.9 244.3					222	901.7 835.5 832.2								1	15 16 16	3,407.4 3,679.3 3,760.4	9,404 9,383 9,376	84,249.2 84,063.0 84,001.3	1,105 1,124 1,130	13,631.6 13,846.0 13,911.4	10,624 10,622 10,621	107,941.4 108,204.2 108,293.8
White perch ADE RRE URE	3,431 3,434 3,436	32,717.0 32,821.4 32,853.0	169 171 171	3,285.9 3,348.2 3,356.5	64 65 66	5,002.8 5,170.4 5,241.5	541 547 547	20,678.6 21,054.8 21,077.6	58 61 61	3,083.8 3,180.8 3,185.7	32 35 36	121.2 135.4 138.1			6 6 6	9.6 10.5 11.1	30 30 30	69.0 69.0 69.0	103 111 114	865.3 934.3 954.9	90 90 90	241.9 241.9 241.9	720 689 679	5.387.0 5,172.8 5,107.6	5,244 5,239 5,236	71,462.1 72,139.5 72,236.9
White sucker ADE RRE URE							4 4 4	2,996.0 3,098.5 3,104.7	3 3 3	1,764.1 1,634.6 1,628.1					6 6 6	NA NA NA		i i	15 16 16-	9,561.9 10,324.8 10,552.4	8 8 8	na Na Na			36 37 37	14,322.0 15,057.9 15,265.2
Yellow perch ADE RRE URE	684 682 682	21,672.6 21,769.1 21,798.3	67 68 68	2,247.0 2,294.1 2,300.4	8 7 7	1,451.3 1,298.0 1,232.9	157 156 156	8,902.5 8,828.2 8,823.6	40 40 40	2,374.5 2,535.5 2,543.6	102 111 112	4,299.3 4,473.8 4,507.4	55 54 54	3,714.7 3,632.7 3,608.5	134 130 126	7.244.8 6.783.7 6.472.4	52 52 52	4,439.2 4,439.2 4,439.2	29 32 32	3,370.6 3,639.5 3,719.7	45 45 45	4,198.7 4,187.3 4,183.5	392 380 376	30,698.0 29,900.7 29,657.7	1,765 1,757 1,750	94,613.2 93,781.8 93,287.2
Tota) ADE RRE URE	45,794	1,251,781.6 1,245,466.5 1,243,554.4	10,191	198,150.6 198,911.3 199,012.7	3,275 3,079 2,998	46,439.5 45,121.4 44,561.0	27,015 27,350 27,371	862,550,1 875,818,9 876,625.0	13,826	302,759.8 312,689.2 313,186.7	67,774 61,183		20,560	516,350.7 496,614.8	5,409		4,072	34.051.3 34.051.4	38.843	121,064.1 127,426.0 129,324.4	39,942 40,006	238,670.4 238,588.1 238,560.9	23,246	530,291.0 533,746.7	299,305	5,940,279.7 5,725,886.2 5,676,267.0
* Biomass of damaged f ** ADE = Average densit *** RRE = Regular ratio	ish (desi y estimate estimate.	gnated as not	avatlabl	e) not incl	uded in	monthly or	annual to	otals.		,	,,,,,,		13,030	-301/101E	3,300	31,069.1	4,072	34,051.4	467/21	169,324.4	70,020	200,000.9	¢31032	339,00013	· 670,601	31010100110

*** RRE = Regular ratio estimate. **** URE = Unbiased ratio estimate.

NA = Not available.

C

.

8 Ke 13 4

.

æ

¥

Table B-10

.

								•				
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	0ct	Nov	Dec
31- 40 40- 50 51- 60 61- 70 71- 80 81- 90 91-100 101-110 111-120 121-130 131-140 141-150 151-160 161-170 151-160 161-170 171-180 181-190 191-200 201-210 211-220 231-240 241-250 251-260 261-270 271-280	3 10 14 8 2 3 4 7 20 24 19 21 8 6 5 8 1	4 13 9 7 3 1 2 8 7 2 4 1 2 4	7 15 12 16 7 4 5 5 7 12 15 7 1 1 1	5 27 47 56 48 16 10 22 47 67 91 80 35 17 3 2 1	3 27 70 111 47 5 3 10 15 41 108 117 128 73 32 13 32 13 3 1 1	1 9 13 11 7 1 1 6 5 7 12 11 9 3	1	1 1 5 12 9 3 2 1 2 1 1 1 1	4 7 16 20 16 2 2 5 1 1	10 43 20 9 2 8 7 5 3 5 5 6 4 3	2 8 5 2 7 17 19 14 12 21 15 12 9 3 4 3	1 1 10 7 7 17 44 31 22 10 2 4 14 1 1

Length Distribution of Fish Impinged at James A. FitzPatrick Nuclear Plant, Jan-Dec 1980

RAINBOW SMELT

ALEWIFE

$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Jan F	Feb M	lar Apr	May	Jun	Jul	Aug	Sep	0ct	Nov	Dec
201-210 1 23 7 4 211-220 3 3 1 2 221-230 2 ' 231-240 2 ' 231-240 2 ' 251-260 2 ' 261-270 271-280 281-290 291-300	41- 50 51- 60 61- 70 71- 80 81- 90 91-100 101-110 111-120 121-130 131-140 141-150 151-160 161-170 171-180 181-190 191-200 201-210 211-220 221-230 231-240 241-250 261-270 271-280 281-290	5 4 1 1	1 1 1	2 1 6 7 13 13 16 12 1 9 1 22 24 94 138 2 149	2 6 12 30 34 29 42 77 58 158 161 98	1 3 2 10 14 37 66 4 31 16 4	1 1 12 19 50 47 21 .9	19 7 4 1 3 15 14 12 5	2 12 18 6 2 . 1 . 4 10	1 9 20 10 7 13	1 39 70 38 6 1	Dec 1 16 4 1 1 2 15 22 18 8

• . , . e . 、 ・ • • . • • .

) Ĵ

Î

Ľ

Ĩ

а,

.

•

۰.

Table B-10 (Contd)

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	0ct	Nov	Dec
61- 70 71- 80 81- 90 91-100 101-110 111-120 121-130 131-140 141-150 151-160 161-170 161-170 171-180 181-190 191-200 201-210 201-210 210-220 221-230 231-240 241-250 251-260 251-260 251-260 251-260 251-260 251-270 251-280 25	3687294345 322	1 1 2 1 1 1	1	1 3 2 10 12 11 6 6 5 6 9 7 1 3	1 5 4 3 2 1 3 1 1 1 1 1 1 1	1 6 1 3 2 1 1 1 1 2 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 3 4 3 2 3 2 1	1 1 2 1 2	1 1 1	1 2 1 1 1	2 15 1432937431 111

YELLOW PERCH

WHITE PERCH

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	0ct	Nov	Dec
41- 50	2								2	1		
51- 60	23	3 3 1		1				1	6		5	3
61- 70	28	3		n	2	,		•	1	4 3	5 4 3	10
71- 80	21	3		42	2 8 7	1			i	Ŭ	3	19 32 31
81-90	⁻ 20	1	1	41	7	1			•	1	Ŭ	31
91-100	6	2	1 2	21		1				1 2		6
101-110	1	1		9	6					-		6 2
111-120	1			11	4 6 2 2	1						-
121-130				27	2							
131-140				27 25 2 6								
141-150				2								
191-100				6			*					
161-170	1		1	12	1					1		
171-180	2			13								
181-190	1		1	20	2					-		
191-200			1	12								
201-210			2 1	1	1							
211-220	1		1	2								1
221-230	i			4								
231-240				1 2 4 2 2	1						•	
241-250				2								
251-260		_			2							
261-270		1		1								
271-280												
281-290												
291-300					1							
301-310												
351-360				1			1					
	•			-								

Table B-10 (Contd)

Jan Feb Mar Apr May Jun Jul Aug Sep 0ct Nov Dec 51- 60 61- 70 71- 80 81- 90 91-100 1 2 2 2 4 1 1 11 2 1 241-250 1 331-340 341-350 351-360 1 1 371-380 1 391-400 401-410 1 • 1 1 1 441-450 451-460 1 1 1

. SMALLMOUTH BASS

3-SPINE STICKLEBACK

	Jan	Feb	Mar	Apr	May	Jun	Ju1	Aug	Sep	0ct	Nov	Dec	
41- 50 51- 60 61- 70 71- 80	1	2	1 1							-	1 1	1 3	

٠

APPENDIX C

EXCEPTIONS TO ESTABLISHED STANDARD OPERATING PROCEDURES AND/OR ENVIRONMENTAL TECHNICAL SPECIFICATIONS

Q,

¥ . • . . • • . . 3 • • . • ı . * • ۴ r A. \$

EXCEPTIONS TO ESTABLISHED STANDARD OPERATING PROCEDURES AND/OR ENVIRONMENTAL TECHNICAL SPECIFICATIONS

- O October 25, 1980 The scheduled impingement sample at James A. FitzPatrick Plant was considered invalid due to the following:
 - 1. Severity of weather conditions during sampling period were such that the sample was not representative of normal impingement during month of October.
 - 2. The large quantity of biomass (cladophora) collected with the impingement sample rendered it almost physically impossible to work up as per established standard operating procedures for the FitzPatrick Plant.
 - 3. Small, but undetermined portions of the sample were lost due to collection basket overflow resulting from plant operations and the heavy demand on the plant intake traveling screen system resulting from the tremendous quantity of cladophora impinged.

This sample was biased due to the abnormal weather conditions and would have resulted in data of poor quality A subsample (at approximately the 10% level) of fish impinged on 25 October was analyzed and unusually high numbers were not indicated. A make-up sample date was randomly selected and . the sample was successfully repeated on October 28, 1980.

- O October 27, 1980 Fish contingency plan at James A. FitzPatrick implemented because more than the 60 fish per day limit of smallmouth bass was collected on October 26. The number of smallmouth bass decreased below 60 fish per day on October 28 and the fish contingency plan was suspended.
- O December, 1980 Lake collections (gill net, water temperature and dissolved oxygen) not made due to adverse weather and nearshore icing. As

per established standard operating procedures gill net, water temperature and dissolved oxygen collections were to be made the night preceeding scheduled impingement collections.

Impingement Sample DateWeather - night preceeding impingement sample12 Dec.N-NW wind, 15-24 knots, 4-7' waves15 Dec.N wind, 25-40 knots, 7-10' waves18 Dec.NW wind changing to SW, 5-15 knots increasing
to 30-40 knots, gale warnings, 6-10' waves30 Dec.Boat launch and nearshore lake areas frozen
hard - no open area to launch sampling vessel

C-2

APPENDIX D

ENVIRONMENTAL IMPACT ASSESSMENT

4 1 . . . • ۲ • ji, • - . • • . • ۰ ۰ , . ,

.

```. · A. Introduction

Ecological studies in the vicinity of the Nine Mile Point promontory were initiated in the late 1960's by Niagara Mohawk Power Corporation (NMPC) and by the Power Authority of the State of New York (PASNY) in 1975. These studies were designed to evaluate potential effects of power station operations at Nine Mile Point on the near-field aquatic ecosystem of Lake Ontario.

Two nuclear electric generating stations are located on the Nine Mile Point promontory on the south shore of Lake Ontario: Nine Mile Point Nuclear Station Unit One, which has been operating since December 1969; and James A. FitzPatrick Nuclear Power Plant, which initiated operation in July 1975. A third nuclear station (Nine Mile Point Nuclear Station Unit Two) is under construction at this site.

This report is provided in reponse to Niagara Mohawk Power Corporation's and the Power Authority of the State of New York's requirements as ammeded by the U. S. Nuclear Regulatory Commission in the spring of 1979 to assess environmental impact in the event that total monthly impingement collections deviate from ranges specified in section 3.1.2 of the Nine Mile Point Unit-1 Environmental Technical Specification; or exceeds the monthly maximum limit by greater than 50 percent as specified in Section 4.1.1-B of the James A. FitzPatrick Nuclear Power Plant Environmental Technical Specification (Tables D-1 and D-2). Table D-1 lists the monthly range for impingement as specified on Table 3.1-4 of the Nine Mile Point Unit-1 Environmental Technical Specification and the corresponding actual 1980 sampling result. Table D-2 lists the monthly maximum limit for impingement

collections as specified on Table 4.1.1-2 of the James A. FitzPatrick Nuclear Power Plant Environmental Technical Specification and the corresponding monthly estimated impingement for 1980.

The abundance of fish observed in impingement collections since 1976 has generally been lower than in the previous years (although on the increase) resulting in deviations from daily ranges at Nine Mile Point Unit-1 and from monthly ranges at the James A. FitzPatrick Nuclear Power Plant. During 1980, exceptions to the general occurance of actual impingement levels being lower than or within specified ranges were observed in January and October at Nine Mile Point Unit-1. At the FitzPatrick Plant during 1980, actual impingement collections did not exceed by 50 percent the monthly maximum on any occasion.

Impingement collections at Nine Mile Point Unit-1 during January were approximately one third greater than the specified range (Table D-1). These collections were comprised of 79 percent rainbow smelt, the population of which is believed to have increased elevenfold in Lake Ontario from 1972-78.

The October impingement collection at Nine Mile Point Unit-1 was nearly ten times greater than this month's specified range. Over 96 percent of the fish in this October collection were alewife, a species whose population is presently on the increase in Lake Ontario. Additionally, a large percentage of the alewife (91%) was collected during one 24 hour sampling period (16 October).

Secondary peaks in numbers of fish, collected at Nine Mile Point Unit 1 (NMP-1) have been observed in fall impingement collections since 1974. These secondary peaks have often been composed of schooling young-of-the-year fish (primarily alewife), probably moving off-shore from their summer nursery

grounds to over winter in deeper water. Alewife, for example, were the most abundant species collected during the fall of 1975\*. In October 1979, impingement rates greater than the range specified by the Nuclear Regulatory Commission's Environmental Technical Specifications were also encountered at NMP-1 with alewife comprising over 90% of these impingements.

It seemed likely that the high impingement observed at NMP-1 on 16 October 1980 resulted from the passage of a school of young-of-the-year alewife in close proximity to the NMP-1 intake. Although warm water effluent from NMP-1 may have served as an attractant to these alewife, it should be noted that only on this occasion (out of 4 collection days in October when ambient lake temperature and NMP-1 discharge temperature were similar to those on October 16) was impingement unusually high.

Additionally, observations made by Texas Instruments personnel since 1977 have indicated an increase in impingement rates at the two Nine Mile Point power stations during specific weather conditions - in particular, strong west to northwest winds. In the fall of 1980 as in 1979, strong west to northwest winds were common (occurring on approximately one third of the days in the month of October 1980). Although the explanation for weather related impingement rate increases is unknown (periods of high wind and waves and associated turbid waters may result in spatial disorientation of fish) several years of observation have indicated the existence of this phenomenon in the Nine Mile Point vicinity.

\*Lawler, Matusky, and Skelly (LMS). 1976. 1975 Nine Mile Point Aquatic Ecology Studies. LMS project Nos. 191-31, 32, 33. Prepared for NMPC and PASNY.

TABLE D-1 Comparison of Specified Monthly Impingement Ranges and Actual Sampling Results, Nine Mile Point Unit-1 Nuclear Power Station, 1980

| Month     |        | rage Number<br>Fish* | Actual Daily Average<br>Impingement<br>(No. of Fish/Day) |  |  |  |
|-----------|--------|----------------------|----------------------------------------------------------|--|--|--|
|           | LOW    | HIGH                 |                                                          |  |  |  |
| January   | 231    | 631                  | 966                                                      |  |  |  |
| February  | 211    | 718                  | 448                                                      |  |  |  |
| March     | 482    | 2,864                | 247                                                      |  |  |  |
| April     | 5,552  | 20,923               | 3,263                                                    |  |  |  |
| May       | 8,501  | 50,759               | 759 .                                                    |  |  |  |
| June      | 1,366  | 3,213                | 1,959                                                    |  |  |  |
| July      | 718    | 2,648                | 1,029                                                    |  |  |  |
| August    | 0      | 5,020                | 27                                                       |  |  |  |
| September | ٥<br>٥ | . 1,397              | 44                                                       |  |  |  |
| October   | 154 .  | • 338                | 2,791                                                    |  |  |  |
| November  | 103    | 1,565                | 975                                                      |  |  |  |
| December  | 294    | 1,713                | 706                                                      |  |  |  |
|           |        | •                    |                                                          |  |  |  |

\* From Table 3.1-4, Section 3.1.2 of the Nine Mile Point Unit-1 Nuclear Power Station's Environmental Technical Specification.

TABLE D-2 Comparison of Specified Monthly Maximum Impingement Ranges and Actual Sampling Results, James A. FitzPatrick Nuclear Power Plant, 1980

| Month     | Monthly Maximum<br>Impingement* | Total Estimated<br>Monthly Impingement |
|-----------|---------------------------------|----------------------------------------|
| January   | 41,596                          | 45,794                                 |
| February  | 16,646                          | 10,197                                 |
| March     | 22,595                          | . 2,998                                |
| April     | 413,854                         | 27,371                                 |
| Мау       | 1,750,162                       | 13,854                                 |
| June      | 131,769                         | 59,916                                 |
| July      | , 67,249                        | 19,690                                 |
| August    | 33,708                          | 5,966                                  |
| September | 31,570                          | 4,072                                  |
| October   | 32,428                          | 42,751                                 |
| November  | 87,928                          | 40,026                                 |
| December  | 30,837                          | 23,632                                 |
|           |                                 |                                        |

\*From Table 4.1.1-2, Section 4.1.1-B of the James A. FitzPatrick Nuclear Power Plant's Environmental Technical Specifications. Maximum unreportable impingement is limit specified plus 50%.

# B. <u>Result of Impingement Collections at Nine Mile Point Nuclear Power Station</u> Station Unit One and James A. FitzPatrick Nuclear Power Plant

Fish have been collected from traveling screens at Nine Mile Point Unit One since 1972 and from the James A. FitzPatrick Plant since late 1975. Nine Mile Point impingement collections have yielded between 37 and 48 species of fish each year since 1973; the FitzPatrick Plant has yielded between 43 and 54 species each year since 1976. Alewives consistently dominated impingement samples at both plants through 1977; they comprised at least 80 percent of the fish impinged annually at Nine Mile Point during 1973-76 and 90 percent of the 1976 catch at FitzPatrick. Rainbow smelt have been second in abundance at both power plants except in 1976 when threespine stickleback were second at Nine Mile Point. Rainbow smelt were relatively more abundant in 1977 than in earlier years, accounting for 27 percent and 30 percent, respectively, of the fish impinged annually at Nine Mile Point and FitzPatrick; alewives comprised 48 percent and 56 percent of the annual catch respectively at the plants in 1977. During 1978, threespine stickleback were very abundant in impingement samples, replacing alewife as the dominant species, while smelt again were second in abundance; e.g., stickleback, smelt, and alewives comprised 52, 22, and 7 percent, respectively, of the total 1978 catch at Nine Mile Point. Threespine stickleback abundance as indicated from Nine Mile Point Unit One impingement collections increased consistently from 1974 through 1976. Although collection of this species declined markedly in 1977; 1978 collections had increased to a level similar to that of 1975. Rainbow smelt was the most abundant species impinged in 1979, with alewife second in total Threespine stickleback were collected at very low levels at both abundance. plants during 1979. Alewife dominated 1980 impingement collections with this species representing 82 and 65 percent of the total catch at Nine Mile

Point Unit 1 and James A. FitzPatrick, respectively. Rainbow smelt was second in abundance in 1980 accounting for 12 and 24 percent respectively at Nine Mile Point Unit 1 and FitzPatrick.

Estimated annual impingement at Nine Mile Point Unit One from 1974-80 ranged from between 135,000 and 3.4 million fish, with 1976 establishing the largest impingement. James A. FitzPatrick also had its largest estimated annual impingement in 1976 (compared with subsequent years), when 4.3 million fish were impinged on the traveling screens.

Several methods were used to assess the impact of impingement on selected fish species, including comparing annual impingement estimates to standing-stock estimates, lake-stocking data, and commercial-fishing harvest. Based on individual species analysis using the above comparisions, the numbers of fish impinged at Nine Mile Point Unit One and James A. FitzPatrick represented a negligible portion of the Lake Ontario fish comunity. Existing fish populations are not expected to be altered by power plant operations.

Information concerning alewife population variations in Canadian waters of Lake Ontario generally supported that obtained from the Nine Mile Point and James A. FitzPatrick impingement collections, thus indicating a lake wide fluctuation in alewife numbers and not one solely in the vicinity of Nine Mile Point. It was believed that alewife impingement at Ontario Hydro power stations on Lake Ontario had also been dropping steadily since 1975 (personal communication with Harold Bolesic, Ontario Hydro). Additionally, although no published data were available, personnel of the Glenora Fisheries Station -Piction Ontario indicated that their "feeling" was 1977-78 constituted a low period for alewife, but the 1979 year class was showing somewhat of an upswing (personal communication, Dr. Harley).

# C. <u>Results of Nearshore Fish Collections Conducted in the Vicinity of Nine</u> <u>Mile Point</u>

Temporal and spatial distribution of fishes in the vicinity of Nine Mile Point in Lake Ontario were monitored at varying levels of effort from 1969 through 1980. Preoperational and early postoperational studies (1969-72) utilized accoustic techniques, gill nets, and traps. Subsequent postoperational surveys (1973-79) of greater intensity, employed a combination of gear (gill nets, trawls, seines, and traps). These studies examined data from a thermally influenced area and control regions to the east and west of the discharge area.

Fish community structure in the Nine Mile Point vicinity was found to vary seasonally during any given year, changing from a simple system (few species) in winter and early spring to a highly complex community (many species) from late spring and fall. Data provided by preoperational and postoperational studies indicated that the fish community in Lake Ontario was not diverse; rather, for most of the year, it was dominated by one or two species and had a small number of other species in low and intermediate numbers. Species diversity proved to be highest in spring, resulting from an inshore movement of a number of lake fish. During months in which alewives were most abundant, typically June through August, diversity values remained low. Diversity usually rebounded in the fall, coinciding with offshore movement of alewives.

During the past ten years, lake monitoring in the vicinity of Nine Mile Point has yielded 72 fish species. Alewives comprised a major portion of the total catch at lake stations during a typical sampling year, with rainbow smelt, spottail shiners, yellow perch, and white perch accounting for the majority of the remaining catch.

Overall, normal life-cycle development patterns were observed for species designated as representative of the area (e.g., alewife, rainbow smelt, smallmouth bass, white perch, and yellow perch). Temporal and spatial distribution patterns depended on the species, the stage of development, and temperature patterns and gradients.

Seasonally, fish were collected in greatest numbers during the spring, coinciding with the shoreward migration of the two most abundant species, alewife and rainbow smelt. Abundance typically declined during the warmer summer months and increased during the fall, corresponding to increased catches of young-of-the-year fish.

During 1973-78, the shorezone fish community typically remained low in abundance and was dominated by young-of-the-year alewives. Cyprinids, primarly forage species such as spottail and emerald shiners, centrarchids, and white perch, comprised the other major community constituents. In the lake, fish concentrations were highest at the easternmost transects, and lowest at the westernmost transect.

Annual gill-net catch data for rainbow smelt, white perch, and smallmouth bass in the Nine Mile Point vicinity displayed no significant changes among years (1969-80). Alewife abundance oscillated, displaying highest numbers in 1974 and 1976, declining through 1979 and increasing again during 1980. Fish abundance trends based on gill net data generally mimicked the patterns displayed for impingement catches at the Nine Mile Point and FitzPatrick plants.

No incidents of cold-shock fish mortality due to plant shutdown at either Nine Mile Point Unit-1 or the James A. FitzPatrick Plant were reported. Additionally, no rare, endangered, or threatened fish species were collected in the Nine Mile Point area by Texas Instruments.

Nearshore fish collections conducted during 1977 by New York State Electric and Gas Corporation off New Haven, New York (east of Nine Mile Point) were similar to collections in the vicinity of Nine Mile Point during that same year (NYSEG, 1979). Species composition and relative composition of the fish community at both sites`were similar, with alewife the major constituant.

An explanation for the reduced impingement collections since 1976 at power stations in the vicinity of Nine Mile Point was provided by the New York State Department of Environmental Conservation (NYSDEC) and the U. S. Fish and Wildlife Service (FWS). Following is a summary of results generated by the above agencies regarding alewife and rainbow smelt populations in Lake Ontario. These two species were generally dominant in impingement collections at the Nine Mile Point and FitzPatrick Plants between 1972 and 1980 and the decrease in their collection after 1976 was most noticeable.

#### D. Results of NYSDEC Trawling Efforts in Lake Ontario

During trawling efforts conducted by NYSDEC crews in the spring of 1977, many dead and decaying alewives were collected. It appeared to the NYSDEC that fewer live alewives were captured than at the same time the previous year. Data from trawling conducted in the fall of 1977 indicated a decline in abundance of several species including alewife and rainbow smelt at western and eastern Lake Ontario sampling locations (Schneider, 1978).

Substantial declines based on geometric mean catches were noted between the 1976 and 1977 catches of alewives in the western region of Lake Ontario. Mean total catches of alewife in 1977 were 89 percent lower than in

1976. A moderate (17 percent) reduction was also obseved in rainbow smelt collection during 1977 in western portions of the lake.

At the eastern end of Lake Ontario, a "dramatic" decline in the 1977 geometric mean of alewives was observed. Catches were reduced by 99 percent from 1976 levels. Rainbow smelt collections in the eastern end of Lake Ontario exhibited a moderate 28 percent reduction from the previous year.

The substantial declines observed in catches of alewife at both ends of the lake indicated a sizeable reduction in stock size. This decline in alewife stock was strongly suported by greatly increased condition based on weight-length regressions of alewife collected during fall trawling activities. Broun (1972) as reported by Schneider (1978) showed that alewife condition in Lake Michigan was closely related to stock density. During periods of high population density, intraspecific competition resulted in relatively poor condition, and poor condition in the fall increased probability of winter and spring alewife mortality. It was reported that below average winter temperatures could also cause appreciable mortality.

Relating Broun's findings to Lake Ontario, Schneider suggested that the winter of 1976-77, which was the coldest on record for the last 100 years, resulted in a serious winter mortality. The surviving portion of the alewife stock showed a dramatic increase in condition and growth response to reduced density. Whether this explanation related to the lesser decline noted for rainbow smelt was unknown.

E. Results of Coordinated FWS and NYSDEC Trawling Efforts in Lake Ontario

Trawling efforts conducted in 1978 and 1979 by the U. S. Fish and Wildlife Service (FWS) and the NYSDEC provided information that was compared with data obtained during the 1972, International Field Year for the Great Lakes (Elrod, O'Garman, Bergstedtand and Schneider, 1979 and 1980). A summary of findings from these coordinated efforts is provided below.

Since 1972 a substantial reduction in alewife numbers was found to have occurred in Lake Ontario. Biological information collected in 1972 and in 1976-79 by the FWS and NYSDEC indicated that the alewife stock of Lake Ontario had increased during the late 1960's and early 70's and was probably at a level near the lakes carrying capacity by the mid-70's. Additionally, during the harsh winter of 1976-77 as many as 60-75 percent of the alewives may have succumbed to temperature stress. The cold-induced mortality was undoubtedly made more severe by the poor condition of the fish, a result of the large population.

It was determined that the average size of Lake Ontario alewives in age groups II and older decreased as the population expanded during the early to mid-70's and then increased "dramatically" following the 1976-77 mass mortality. In the early and mid-70's the size of adults (fish that completed two or more growing seasons) decreased because of the progressively smaller juvenile fish entering the older age groups. Length increments during the third and fourth years of life were found to be stable from 1970 through 1976. Growth increments of yearling alewives, (probably in response to elevated population levels), decreased each year from 1969 to 1974 and then remained unchanged from 1974 through 1976. During 1977, after collapse of the alewife

population increments of growth during the third and fourth years of life increased 250 and 375 percent, respectively. In 1978, growth decreased among four and five year old alewives to a rate like that observed during the mid-1970's. Growth rates for two year old alewives however, was greater in 1978 than in the mid-1970's.

Mean age of adult alewives collected with bottom trawls increased from 3.1 in spring of 1972 to 4.7 in spring of 1978. Difference in age structure was attributed to increased survival of older age groups at the lower population levels of 1977-78 and mortality rates that were inversely proportional to age during the winter of 1976-77. Overwinter mortality was so high for smaller alewives that it was believed few if any of the 1976 year class survived.

The condition of alewives was found to be poor in the early and mid 70's and annual overwinter and spring mortalities probably varied with the severity of the weather. At the much lower population levels of 1977, "dramatic" increases in body weight of mature alewives occurred and no die-offs were observed in 1978. By the fall of 1978 recruitment of the large 1977 year class to the offshore alewife stock was believed to have substantially increased the population, and conditon of Lake Ontario alewives declined noticeably. Accoustical and midwater trawl surveys conducted by FWS and NYSDEC in the summer of 1978 indicated substantial numbers of yearling alewives, supporting the indication of recruitment to offshore stocks. In 1979 the condition of larger alewives continued to decline and 1979-80 winter losses were expected to be greater than those observed during the previous year.

The spring die-off of alewives in 1979 was actually considerably larger than expected in southeastern Lake Ontario. During early May, 1979, dead alewives were found in near shore waters and by mid-month more than 31,000 alewives per kilometer were observed along beaches near Oswego. The prolonged period of hot, calm weather during spring 1979 probably precipitated. the die-off. The rapid rise in near shore water temperatures and/or the sharp temperature differences encountered during the species spring shoreward migration probably were more than many alewives could tolerate.

Data on recent changes in the alewife population of Lake Ontario combined with information on historic changes in alewife populations in other Great Lakes enabled FWS and NYSDEC to make predictions regarding Lake Ontario alewife. Alewife numbers were expected to increase rapidly during the succeeding two or three years and the population would be dominated by the large 1977 year class. By 1981 alewife stock size would probably approach carrying capacity of the lake. The condition of alewives would slowly decline and annual die-offs would increase in severity. A large decrease in growth during 1978 would be followed by smaller, continuing decreases through the early 1980's. The magnitude and biological characteristics of the Lake Ontario alewife stock after 1981 would be influenced by climatic conditions and possibly by the numbers of salmonids stocked.

Investigations of rainbow smelt by FWS and NYSDEC indicated an eleven fold population increase from 1972 to 1978 in the U.S. waters of Lake Ontario and tentatively a population decrease from 1978 to the present. The largest concentration of smelt was found in the Cape Vincent Section of Lake Ontario. The FWS estimated that nearly half the smelt in all U.S. waters of Lake Ontario were in the Cape Vincent Section. Abundance of smelt in the Cape Vincent area was partly attributed to the larger proportion of that area which was of a depth (temperature) preferred by smelt.

Growth of smelt in Lake Ontario was found to be similar or slightly slower than in the upper Great Lakes. Mean total lengths of smelt in Lake Ontario were similar to those of Lake Huron except at age II. Growth for the second year of life in 1977, however, was considered unusually large for Lake Ontario. Rapid growth of I+ smelt in 1977 coincided with the reduced abundance and increased growth of alewives. The increased growth of smelt following the 1976-77 alewife die-off was probably the result of a larger food supply as typically, numbers of zooplankters increase following decreases in alewife populations. Growth of two and three year old smelt was less in 1978 than in 1977.

#### F. Summary

Fish abundance in the vicinity of Nine Mile Point as evidenced through impingement collections showed wide variation from year to year. Years of relatively low abundance were followed by years of great abundance through 1976. Generally, increasing numbers of fish have been collected in impingement sampling since the 1976-77 collapse of the alewife stock, suggesting that populations are again on the increase. Changes in fish abundance from 1972 through 1980 as observed in impingement collections were within bounds expected from natural variations (Scott and Crossman, 1973; Smith, 1970; Rothchild, 1967) and no alterations to existing fish populations due to plant operations were detected. Alewife population variations were also indicated in Canadian waters of Lake Ontario with impingement of this species at Ontario Hydro power stations dropping steadily from 1975 through 1978. Such variations in Canadian waters would suggest lake wide fluctuationsnot limited to the vicinity of Nine Mile Point.

Comparisons of temporal and spatial abundance based on catch-per-effort data as well as length-frequency distribution, age and

growth, gonad maturity, and diet analysis were made on fish in the vicinty of Nine Mile Point from 1969 through 1978. No distinct or consistent alterations to the normal seasonal life-cycle patterns of the fish community directly attributable to operations at the Nine Mile Point or James A. FitzPatrick Nuclear Stations were revealed from these comparisons. Similar data from a Lake Ontario area (Mexico Bay) adjacent to Nine Mile Point, but outside immediate influence of the Nine Mile Point and James A. FitzPatrick Stations reinforced the conclusion of no harm resulting from plant operations.

Trawling efforts conducted in 1977 by NYSDEC and during 1978 and 1979 by NYSDEC and FWS documented a lake wide (U.S. waters) reduction of alewife stocks and variations in rainbow smelt populations. Natural, environmental factor's were suggested as causative agents for these fish population fluctuations. From trawling activities and historic information the FWS provided a prediction of future Lake Ontario alewife abundance levels based on year class strength and climatic conditions. Considering information provided above, variations of fish abundance observed since 1976 in impingement collections at the Nine Mile Point and James A. FitzPatrick Power Stations can be attributed to natural,' temporal variations in fish stocks (especially alewife and rainbow smelt) and not impact due to plant operations. Such fish population fluctuations are common in literature.

LMS (1975) reported natural concentrations of alewife to fluctuate from year to year by as much as 800 percent in the vicinity of Oswego Steam Station in Oswego, New York. Yearly variations of alewife population size in the vicinity of Nine Mile Point have been reported at half an order of magnituded (LMS, 1977). Christie (1974) reported that in Lake Ontario, alewife have shown two to three year oscillations resulting in 10-fold changes

in abundance during spawning. Cyclic changes of a similar nature have been reported of alewife from other lake populations (Lackey, 1970; Rothschild, 1966; Smith, 1970).

In the Great Lakes rainbow smelt abundance has also fluctuated greatly as reported by Hubbs and Lagler (1958). This species has been reported sensitive to both temperature and light (Scott and Crossman, 1973) which may have contributed to the variations noted in smelt populations. Additionally, rainbow smelt have been noted to suffer substantial population losses in the great Lakes due to diseases. Van Oosten (1947) as cited in Scott and Crossman (1973) reported that Great Lakes smelt populations suffered from 1942-46 one of the most catastrophic natural mortalities ever recorded for a North American animal when huge stocks in Lake Huron and Lake Michigan died-off, presumably as a result of some communicable disease, possibly a virus. Severe losses of young-of-the-year smelt were also observed in Lake Erie as recently as 1969 (Scott and Crossman, 1973).

Very little information was available regarding population variations for the threespine stickleback. This species, however, has shown fluctuations in annual abundance as reported by LMS (1976b) for the Oswego, New York area. Such fluctuations were reported as possibly being related to the species schooling and spawing habits. Male threespines establish and defend territories during breeding season. They require bottom with vegetation in order to build a nest. Since area of such bottom is relatively small near Oswego as it is in the vicinity of Nine Mile Point, only a portion of the male population becomes established or fixed to a territory. The remaining males and non-reproductive females move about in groups and schools. Such movement may make a portion of the stock of this species unavailable to impingement cropping, and this portion may be extremely variable from year to year.

#### G. Conclusion

In conclusion, fish abundance changes documented since 1972 in the Nine Mile Point vicinity were not beyond ranges expected to occur as a result of natural fish stock variations. Similar, lake-wide fish population fluctuations have been observed indicating that such variations were not limited to the Nine Mile Point area and were not the result of power plant operations at Nine Mile Point. After nearly ten years of intensive environmental monitoring, no alteration to existing fish populations has been detected and no harm to the aquatic ecosystem resulting from operation of the Nine Mile Point Unit-1 and the James A. FitzPatrick Nuclear Power Plants has been observed.