Official Transcript of Proceedings

NUCLEAR REGULATORY COMMISSION

Title:	Advisory Committee on Reactor Safeguards Reliability and PRA Subcommittee Open Session	
Docket Numbe	er: (n/a)	
Location:	Rockville, Maryland	
Date:	Tuesday, December 13, 2016	

Work Order No.: NRC-2782

Pages 1-162

NEAL R. GROSS AND CO., INC. Court Reporters and Transcribers 1323 Rhode Island Avenue, N.W. Washington, D.C. 20005 (202) 234-4433

	1
1	
2	
З	
4	DISCLAIMER
5	
6	
7	UNITED STATES NUCLEAR REGULATORY COMMISSION'S
8	ADVISORY COMMITTEE ON REACTOR SAFEGUARDS
9	
10	
11	The contents of this transcript of the
12	proceeding of the United States Nuclear Regulatory
13	Commission Advisory Committee on Reactor Safeguards,
14	as reported herein, is a record of the discussions
15	recorded at the meeting.
16	
17	This transcript has not been reviewed,
18	corrected, and edited, and it may contain
19	inaccuracies.
20	
21	
22	
23	
	NEAL R. GROSS
	COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.
	(202) 234-4433 WASHINGTON, D.C. 20005-3701 www.nealrgross.com

1 UNITED STATES OF AMERICA NUCLEAR REGULATORY COMMISSION + + + + +ADVISORY COMMITTEE ON REACTOR SAFEGUARDS (ACRS) + + + + +RELIABILITY AND PRA SUBCOMMITTEE + + + + +OPEN SESSION + + + + +TUESDAY DECEMBER 13, 2016 + + + + +ROCKVILLE, MARYLAND + + + + +The Subcommittee met at the Nuclear Regulatory Commission, Two White Flint North, Room T2B1, 11545 Rockville Pike, at 8:32 a.m., John W. Stetkar, Chairman, presiding. COMMITTEE MEMBERS: JOHN W. STETKAR, Chairman RONALD G. BALLINGER, Member DENNIS C. BLEY, Member

WALTER L. KIRCHNER, Member

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

JOSE MARCH-LEUBA, Member

DANA A. POWERS, Member

JOY REMPE, Member

MATTHEW W. SUNSERI, Member

DESIGNATED FEDERAL OFFICIAL:

JOHN LAI

ALSO PRESENT:

ALI AZARM, IESS

ERICK BALL, ERI

KEVIN COYNE, RES

MARY DROUIN, RES

FELIX GONZALEZ, RES

DONALD HELTON, JR., RES

DAN HUDSON, RES

ROY KARIMI, ERI

ALAN KURITZKY, RES

MARVIN LEWIS, Public Participant*

BRIAN WAGNER, RES

*Present via telephone

CONTENTS

Opening Remarks4
Project Status Overview5
Integrated Site Risk (Approach)74
Adjourn

	4
1	PROCEEDINGS
2	8:32 a.m.
3	CHAIRMAN STETKAR: The meeting will now
4	come to order. This is a meeting of the Reliability
5	and PRA Subcommittee. I'm John Stetkar, Chairman of
6	the Subcommittee meeting.
7	ACRS Members in attendance are Ron
8	Ballinger, Matt Sunseri, Dana Powers, Dennis Bley,
9	Walt Kirchner and Joy Rempe. Dr. Mike Corradini
10	will join us later in the afternoon, perhaps. John
11	Lai of the ACRS Staff is the Designated Federal
12	Official for this meeting.
13	The Subcommittee will hear the Staff's
14	presentation on the progress of the Level 3 PRA
15	Project, any integrated site risk approach in an
16	open session of the meeting. The Staff will discuss
17	the pilot study of integrated site risk, lower
18	power shutdown, and dry cask storage risk
19	assessment in a closed session of the meeting. A
20	portion of this meeting will be closed in order to
21	discuss and protect information designated as
22	proprietary by U.S. NRC pursuant to 5 USC
23	552(b)(c)(4). I hope I got that right.
24	There will be a phone bridgeline during
25	the open portion of the meeting, and we will switch
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

to a different bridgeline to protect the discussion 1 2 of proprietary information for the closed portion 3 of the meeting. To preclude interruption of the meeting 4 the phone will be placed in listen-in mode during 5 the presentations and Committee discussions. I'll 6 7 open the public bridgeline at the end of the open 8 session to see if there's any public comments on 9 that session. 10 We received no written comments or 11 requests for time to make oral statements from 12 members of the public regarding today's meeting. 13 The Subcommittee will gather 14 information, analyze relevant issues and facts, and 15 formulate proposed positions and actions, as 16 appropriate, for deliberation by the Full 17 Committee. The rules for participation in today's 18 meeting have been announced as part of the notice of this meeting previously published in the Federal 19 20 Register. 21 A transcript of the meeting is being 22 kept and it will be made available, as stated in 23 the Federal Register Notice. Therefore, we request 24 that participants in this meeting use the 25 microphones located throughout the meeting room

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	6
1	when addressing the Subcommittee. Participants
2	should first identify themselves and speak with
3	sufficient clarity and volume so that they may be
4	readily heard. And I'll ask everybody to please
5	check your little communications devices and turn
6	them off.
7	We will now proceed with the meeting,
8	and I call upon Kevin Coyne to begin. Kevin.
9	MR. COYNE: Okay. Good morning, and
10	thank you, Chairman Stetkar. I'm Kevin Coyne. I'm
11	the Acting Deputy Director of the Division of Risk
12	Analysis in the Office of Research. Thank you again
13	for this opportunity to brief the Subcommittee.
14	As a reminder, this project is being
15	done per SRM-SECY-11-0098, which kicked off the
16	Level 3 PRA project for the Vogtle site.
17	Just as a reminder of some of the
18	objectives, we've stripped out some of the
19	background material, but one of the key objectives
20	of the project was to incorporate the last 20 years
21	of experience and insights into a full complete
22	Level 3 project to get a better understanding of
23	risk at operating nuclear plants. A secondary
24	objective, and maybe the key one in my mind is also
25	knowledge management for the Staff, to have the
	NEAL R. GROSS

(202) 234-4433

	7
1	Staff develop PRA skills by actually doing the PRA.
2	So although we had contractor support for the
3	project, and you'll hear from one of our key
4	contractors today, the Staff involvement in the
5	project is really one of the key objectives.
6	Alan and I tried to count up the number
7	of meetings. I think this is the 10th meeting that
8	we've had on the project, and we've had about a
9	half dozen fact finding meetings with Chairman
10	Stetkar over the last five years. We've really
11	enjoyed a high level of engagement with the ACRS.
12	It's really benefitted the project. The
13	consistency, quality, and completeness of the
14	project has really been improved through these
15	engagements, so they're very valuable for us.
16	Word on the schedule, I think we're in
17	year five of our four-year project, and there's
18	reasons for that, and Alan will go through some of
19	them in his initial presentation. But it's been a
20	very active last five years for the NRC, and so
21	we've had diversion of some key Staff, and we've
22	basically been assigning appropriate level of
23	priority on this project, so we've kept it moving
24	but we recognize some high priority issues have
25	come up over the last five years; Fukushima
	NEAL R. GROSS

(202) 234-4433

	8
1	response, waste confidence, and those types of
2	things. But we're moving forward; we had a good
3	production year in '16, we expect the same in '17,
4	so the agenda today reflects some of the work that
5	we're getting done.
6	With that, I think I will conclude the
7	opening remarks and turn it over to Alan.
8	MR. KURITZKY: Thank you, Kevin. As
9	Kevin mentioned, I'm Alan Kuritzky.
10	CHAIRMAN STETKAR: By the way, all of
11	you are pretty familiar with this. Make sure the
12	green light is on when you're speaking, and make
13	sure it's off when you're not. It helps extraneous
14	noise on the bridgeline.
15	MEMBER BLEY: You have one behind your
16	computer.
17	CHAIRMAN STETKAR: And it's on.
18	MR. KURITZKY: Here we go.
19	CHAIRMAN STETKAR: And don't do a lot of
20	that because it's really loud over there.
21	MR. KURITZKY: Okay. Again, Alan
22	Kuritzky. I'm the Program Manager for the Level 3
23	PRA Project. I want to echo Kevin's sentiments that
24	we appreciate the time and effort that the
25	Subcommittee puts into this project. We've met with
	NEAL R. GROSS

(202) 234-4433

	9
1	you very often, and it's been very valuable to us.
2	I hope it's been interesting and useful to you, but
3	it definitely has been useful to us.
4	I want to also mention that even though
5	well, first of all, with me up here today also
6	is Mary Drouin, who's the Principal Technical
7	Advisor for the project, and Dan Hudson, who is
8	going to talk to you a little bit later about
9	integrated site risk effort, and Roy Karimi who is
10	one of our contractors with Energy Research,
11	Incorporated, who was supporting Dan on the
12	integrated site risk work. And after the luncheon
13	break we'll be shuffling some other people up here,
14	so just to let you know who's going to be coming.
15	Going to the outline for today's
16	session, Chairman Stetkar mentioned earlier on
17	what's going to be covered. In the open session it
18	will be my overview, then we'll have a discussion
19	of the general approach for the Integrated Site PRA
20	work that we've been doing.
21	I want to stress that even though we
22	recognize that intersource dependencies are the
23	primary drivers for multi-source risk or integrated
24	site risk, what we're primarily going to be
25	discussing is the nuts and bolts of how we're going
	NEAL R. GROSS

(202) 234-4433

model together. How we're going put that to prioritize which types of dependencies to look at and how we're going to put the actual model together; the actual full hunt for various dependencies which is a major part of the work is

not going to be the focus of the discussions we'll

8 In the closed session we'll go over and 9 discuss some of the applications we've been 10 performing for that Integrated Site Risk approach, 11 and then you'll hear about our Low Power Shutdown 12 Level 1 PRA model that we've developed for internal events. And then, finally, our Dry Cask Storage 13 14 PRA, which covers all PRA levels and all hazards.

15 Okay. So the project status, I'm 16 talking to you today, Mary is going to be with me, 17 but this is actually a huge group of people that 18 have been performing this project. It spans many 19 organizations both within and without the NRC in 20 contractors, industrv terms of and even 21 organizations. I'll talk a little bit more about 22 that at the end of the presentation when I do some 23 acknowledgments, but I just want to stress that 24 it's a very large team effort here.

> MEMBER qiven BLEY: Just Kevin's

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

25

to

have today.

(202) 234-4433

11 introduction, at the end are you going to show us a 1 2 timeline of when you expect things to happen in the 3 future, or do you have one? 4 MR. KURITZKY: Ι have actually а 5 timeline, like a Microsoft Project timeline. It's not on here. It would require like 14 of those 6 7 screens to put this 8 timeline --9 MEMBER BLEY: Perhaps simplified. 10 MR. KURITZKY: But we have a status, 11 kind of like a bar chart about where we are, and 12 then I'll talk about some of the more near term deliverables. But I can also --13 14 MEMBER BLEY: But you'll get to that. MR. KURITZKY: Yes. 15 16 MEMBER BLEY: So I'll wait. 17 MR. KURITZKY: And when we get to that, 18 if you want to know more about long term schedules 19 then just ask the questions. 20 MEMBER BLEY: Okay. 21 MR. KURITZKY: Then I can tell you. 22 Here is the list of the topics we're 23 going to hit on in my presentation. It's not broken 24 down equally. In other words, we have Level 1, 25 Level 2, Level 3 separately broken out for the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

reactor at power, internal events, and floods but not for some of the other things like fires; and the reason being that we've done a lot of work in Level 1, Level 2, and Level 3 for internal events and floods, and so we have separate viewgraphs for each of those. Some of the other ones we focused primarily on Level 1 to date, so I haven't bothered to make separate viewgraphs for those.

9 Okay. So here's the first thing on 10 project status. And what these bar charts represent 11 there, they reflect the combined progress for both 12 the model development and documentation, as well as 13 the various review and update cycles that are 14 involved with each area, and also their weighted 15 combinations of the Level 1, 2, and 3 PRAs. So if 16 you look at the charts you'll see that the reactor, 17 at-power, internal event, flood, and the dry cask 18 storage are the ones that are far along, because in 19 both of those cases we've done a lot of work for 20 the Level 1, Level 2, and Level 3 PRA models. For 21 most of the other areas we've really just worked on 22 the Level 1 to date, maybe a little bit of Level 2 23 work, so that's what makes those couple far ahead of the other ones. 24

And a gross look, you can see that

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

25

(202) 234-4433

	13
1	we're probably roughly 50 percent of the way done.
2	You know, these are, of course, loose estimates,
3	but about 50 percent of the way done with the
4	project. I do anticipate between the end of this
5	year and next year we're going to be making
6	substantial headway.
7	One of the things that's kind of
8	dragging this out has been the whole peer the
9	review and update cycle which has really dragged
10	for some of the earlier studies. I think we're
11	going to have to streamline that for a number of
12	reasons. One, just for schedule purposes, and I'll
13	get to later in the presentation there's been
14	changes in our strategy for reviews, and I'll
15	discuss those reasons in a few minutes.
16	Going on to the internal event and
17	floods, the Level 1 model. We have completed that
18	initial model. It was peer reviewed by the PWR
19	Owner's Group leading a PRA Standards Base Peer
20	Review. It also received a substantial feedback
21	from members of this Subcommittee, from the
22	Subcommittee, and also in fact finding meetings

23 with Mr. Stetkar. And that's led to a vastly improved model, but it also led to major changes in 25 the model, so it was a very substantial effort to

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

24

redo it. The document -- the model has been redone, 1 2 the documentation is essentially complete. The only 3 thing that we're still waiting to complete is 4 there's one appendix with operator action dependencies that we're just resolving a couple of 5 last comments, but that's going to be done probably 6 7 within days or a week or two. 8 The internal flood report or the 9 internal flood modeling, that's also been redone. 10 That report is also nearing completion. There was a 11 few areas that just need to be cleaned up there, 12 but that as you're going to hear later from --MEMBER BLEY: You got me curious on the 13 14 last one you said. The human models where you're looking at dependencies, and the one we're going to 15 16 look at today on dry cask, and they're on the human 17 reliability analysis, you say the state of the art 18 and thinking about dependencies is the old simple 19 formula that was in the third manual and that 20 doing essentially applies to people routine 21 checking kinds of things. 22 I expect your overall dependency model 23 looks complex issues. more Is that at same 24 assumption that that's all you can do applying over 25 there, or are you doing some new work in that --

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	15
1	MR. KURITZKY: For the internal events?
2	MEMBER BLEY: Yes.
3	MR. KURITZKY: For the internal events -
4	- well, I will say that anything in the thing is
5	all you can do. We're doing a state of practice
6	study and there are various people have ideas,
7	there's different ways of doing things, and it's
8	been the state of practice. We have used a
9	dependency approach that we feel is appropriate for
10	the model, and it's yes, I think it's primarily
11	THRP Based.
12	MEMBER BLEY: Okay.
13	MS. DROUIN: The dependency model,
14	whether it's on the Level 1 across is all pretty
15	much based on the good practices document. And if
16	you go in there there's quite a bit of extensive
17	discussion on
18	MEMBER BLEY: Yes, there is. It isn't
19	just the table out of THRP.
20	MS. DROUIN: That's right.
21	MEMBER BLEY: Okay.
22	MS. DROUIN: That's right.
23	MEMBER BLEY: That makes me happy. Thank
24	you. I look forward to seeing what you've done
25	there.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

```
(202) 234-4433
```

1 MR. KURITZKY: Okay. So, essentially, 2 the internal event one is done except for a few 3 loose ends. The internal flood, there's a couple of 4 things that just need to revised and cleaned up in 5 the report. Jeff Wood will be talking to you later our Low Power Shutdown model. He's also in 6 about 7 charge of internal flood, so he's got to get the 8 Low Power Shutdown report done before he can qo 9 back and tie up the loose ends on the internal 10 flood work. That's one of the things that we've 11 been juggling of late. We have a lot of people on 12 the project now double booked, and so that's one of 13 the reasons that we are dragging some things out. 14 Also, as we've briefed the Subcommittee 15 before, completed an expert elicitation we on 16 system LOCA frequencies interfacing and break 17 locations, and that work has been completed and has 18 already been documented. 19 Going on to the Level 2 modeling for 20 internal events and floods, but also we completed 21 the initial model, had that peer reviewed. Again, a 22 PWR Owner's Group led peer review, Standards Based 23 Peer Review. We also got a lot of feedback from our 24 Technical Advisory Group on that model, as well as 25 feedback from the Subcommittee.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

revising that model In we went and reran all the MELCOR calculations, also we had to run a few new ones. That's all been completed. into the probabilistic modeling part; We're now most of that has now been completed, also. What we're working on right now is cleaning up some of uncertainty analysis work, and primarilv the documenting it. So that should be completed in the near future.

1

2

3

4

5

6

7

8

9

25

10 One thing we did come up with in doing 11 the Level 2 regualification is because we link our 12 Level 1 and Level 2 event trees together, we have a 13 lot of accident sequences, and that's caused some 14 hiccups with our PRA computer code, and so we're 15 exploring various options for how to crunch that 16 giant model. What we've been doing right now is 17 quantifying in stages or phases, you know, a set of 18 sequences then combining the results and 19 afterwards. That may be the way we ultimately do 20 it, but I don't want to say that's final right now, 21 but just because it's too big right now just to run 22 whole thing But it's the at once. not а 23 showstopper, but it's have to just work -- we 24 around that.

We hope to have that model and the

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	18
1	results ready to go to the Level 3 PRA Team
2	hopefully in the next few weeks. The source terms
3	have already been handed off to the Level 3 PRA
4	Team, so right now it's just a question of
5	finishing up the qualification and giving them the
6	report.
7	MEMBER BLEY: I'm still looking at your
8	bar chart.
9	MR. KURITZKY: Yes.
10	MEMBER BLEY: And the Level 2 and Level
11	3, is that all kind of embedded in the reactor, at-
12	power, all hazards?
13	MR. KURITZKY: Yes. Each bar is kind of
14	like a weighted average of the Level 1, 2, and 3.
15	MEMBER BLEY: Oh, okay.
16	MR. KURITZKY: All based on numbers that
17	I made up using engineering judgment.
18	MEMBER BLEY: Okay.
19	MR. KURITZKY: Okay.
20	CHAIRMAN STETKAR: By the way, just for
21	the record, we've been joined by ACRS Member, Dr.
22	Jose March-Leuba. I just want to make sure you got
23	your attendance on the attendance sheet here.
24	MEMBER MARCH-LEUBA: Yes, thank you very
25	much.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

19
MR. KURITZKY: Okay. Moving on to the
Level 3 analysis, that part of the study also
received a Standards Based Peer Review, and we're
in the process of updating that model to reflect
the peer review feedback, our TAG feedback, and
other comments.
While much of the work is being done in
parallel now to our Level 2 work because since the
source term information has already been available
to the Level 3 Team, they can do a lot of what they
need to do to update their model in parallel with
wrapping up the Level 2 study. There are some
things that will just, obviously, have to wait
until the Level 2 is complete, some of the final
frequency numbers, et cetera. But, nonetheless, we
hope to have that updated model completed sometime
in the spring, in which case they will pass that
off to our Risk Characterization Team, and that
team essentially just takes the release category
frequencies, combines it with the consequences and
comes up with the risk metrics.

For internal fires, reactor, at-power internal fires we completed an initial model I think relatively early last year. But since that time -- and it was heavily leveraged on the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

licensee's peer reviewed Fire PRA model, but since 1 2 that time the licensee redid their Fire PRA model 3 because there was a number of issues particularly 4 with electrical cabinet fire modeling. They gave us 5 their new model, necessitating us to go ahead and redo our Fire PRA model. Now we have essentially 6 7 redone that Fire PRA model. It was going through 8 review. One thing we identified in the review was 9 some issues with the Human Reliability Analysis, 10 particularly with -- we had initially adopted the 11 fire HEPs from the licensee's Fire PRA model, but 12 then we realized there were some inconsistencies 13 because we had requantified many of the HEPs from licensee's 14 internal -- the internal the event 15 model, and because of that we were coming up with 16 some situations where we might have an HEP for a 17 particular action in the fire model that was lower 18 than the one we now had in our internal event 19 model. So what we decided to do there is also since 20 we couldn't really own and support some of the HEPs 21 from the licensee's model, we decided to use the 22 NUREG 1921 scoping approach to do the fire HRA 23 initially, and that come up with a new set of 24 values.

We already have some interim results

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

(202) 234-4433

	21
1	from that. There are certainly some of the scoping
2	values that are driving, heavily driving the risk,
3	so we're going to have to look back into those and
4	see if we can get enough information to do a more
5	detailed evaluation of them.
6	MEMBER BLEY: 1921, is it the fire HRA?
7	MR. KURITZKY: Yes, the scoping
8	approach.
9	MEMBER BLEY: Oh, well it includes the
10	scoping approach, but most everybody we've talked
11	to who's tried using it has eventually given up on
12	that and gone just on the analysis because they
13	said it didn't work very well for them.
14	MR. KURITZKY: Right. Most people
15	working with utilities who have access to all the
16	information needed
17	MEMBER BLEY: That's true.
18	MR. KURITZKY: to do what we do.
19	Unfortunately, we don't have that information so we
20	that's why I'm saying we're we've used it. It
21	is definitely skewing our results badly, and we
22	need to take at least the good thing is, it
23	looks like there's a very small subset of actions
24	that are really driving things, so those are the
25	ones we need to do a more focused analysis on. I'm
	NEAL R. GROSS

(202) 234-4433 (202) 234-443 (202) 234-443 (202) 234-443 (202) 234-443 (202) 234-443 (202) 234-443 (202) 234-443 (202) 234-443 (202) 234-443 (202) 234-443 (202) 234-443 (202) 234-443 (202) 234-443 (202) 234-443 (202) 234-443 (202) 234-4443 (202) 234-2444 (202)

	22
1	hoping that since it's a small set we might be able
2	to get enough information from the licensee to be
3	able to reevaluate those.
4	MEMBER BLEY: Well, I guess that's what
5	you'd hope with the scoping analysis. Okay.
6	MR. KURITZKY: Yes.
7	CHAIRMAN STETKAR: And be aware of the
8	boulders, and rocks, and pebble syndrome; that once
9	you get rid of the big boulders, you're going to
10	start seeing the rocks.
11	MR. KURITZKY: Right. But the rocks will
12	not be nearly as alarming to us as the boulder
13	sitting on the top of the hill is a lot more scary
14	than the rock sitting up there. So yes, but we
15	appreciate that.
16	Okay. So we hope to have the internal
17	fire model and documentation completed in the next
18	probably sometime in January, I'm hoping
19	optimistically, depending on how long it takes to
20	wrap up those HRA issues. And then we'll be ready
21	for what we previously called the peer review, now
22	we call it the Technical Adequacy Review. And that
23	brings me to the thing I mentioned earlier about
24	peer reviews.
25	Up until now, we've been very fortunate
	NEAL R. GROSS

(202) 234-4433

	23
1	that the PWR Owner's Group has led and funded our
2	Standards Based Peer Reviews. Unfortunately, going
3	forward they're not in a position to fund those to
4	the extent that they had in the past, so we're
5	going to have to explore different options for
6	doing some type of Technical Adequacy Review that
7	is not necessarily going to be a full Standards
8	Based Peer Review. And that's something we're still
9	working out, so right now we just call them
10	Technical Adequacy Reviews, and what that's going
11	to involve we haven't quite decided yet.
12	CHAIRMAN STETKAR: Do you have any idea
13	is it too premature to ask who might be doing
14	those Technical Adequacy Reviews?
15	MR. KURITZKY: It is too because we
16	don't even know what the nature how they're
17	going to be done yet.
18	CHAIRMAN STETKAR: It's just something
19	that's this big and will have this visibility,
20	you're well aware should have a certainly an
21	independent notion of that review in as much depth
22	as you can afford.
23	MS. DROUIN: We are hoping that the PWR
24	Owner's Group will be doing some of these. They're
25	meeting right now to discuss this. Their budget was
	NEAL R. GROSS

(202) 234-4433

(202) 234-4433

	24
1	severely cut, so we're not going to be able
2	CHAIRMAN STETKAR: No, I recognize that.
3	It's just that and even having people in house
4	or even in your contracting labs do it is just part
5	of the same family looking at the stuff that the
6	family does, and that's not necessarily a good
7	thing.
8	MS. DROUIN: I know the PWR Owner's
9	Group wants to do something, and so they as I
10	said, they're in meetings literally this week.
11	CHAIRMAN STETKAR: Okay.
12	MS. DROUIN: And we hope to receive good
13	news from them that they'll be able to do
14	something.
15	MEMBER BLEY: But they've already done a
16	number of reviews. They looked at the Level 1
17	MR. KURITZKY: The Level 1, internal
18	event and flood. The Level 2 internal event and
19	flood, Level 3 internal event and flood, and the
20	Level 1 high wind and other hazards.
21	MEMBER BLEY: Okay.
22	MR. KURITZKY: And they also worked with
23	us to come up with review criteria for the dry cask
24	storage.
25	MEMBER BLEY: Okay. They haven't looked
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	25
1	at all at Level 2.
2	MR. KURITZKY: Level 2 for internal
3	MEMBER BLEY: Oh, internal.
4	MR. KURITZKY: Level 2 and Level
5	MEMBER BLEY: Level 2.
6	MR. KURITZKY: They had we had the
7	draft standards for a pilot application
8	MEMBER BLEY: Okay, thank you.
9	MR. KURITZKY: The next thing they were
10	going to do for us was the Low Power Shutdown with
11	the draft standard. Unfortunately, now we're in a
12	new regime so I don't know exactly how that's going
13	to play out. I think they seem
14	CHAIRMAN STETKAR: But the Low Power
15	Shutdown is next up on the
16	MR. KURITZKY: Was supposed to be the
17	next up.
18	CHAIRMAN STETKAR: Okay.
19	MR. KURITZKY: It's
20	(Simultaneous speech)
21	MR. KURITZKY: They're all coming up
22	around the same time, the fire, the seismic,
23	they're all coming to fruition at the same time.
24	Okay. Seismic events, similar to the
25	fire we have completed the initial seismic model
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

earlier last year, but again later in the year a whole bunch of new plant-specific seismic hazard occurs, and plant-specific fragility information so we've gone and redone that model. We've completed the redo of that model and the documentation. The only thing that we still have to do is we're just finalizing some of the writeups for the new hazard and fragility information.

9 CHAIRMAN STETKAR: And I want -- really 10 I was going to ask this earlier but I decided to 11 wait. When you characterized the linking of the 12 Level 1, 2, 3 models you said well, you know, the Level 3 people have things already set up, and all 13 14 you need to do is take the frequencies from the --15 the release categories the frequencies of from 16 Level 2 and assign them to the right Level 3 17 conditions, and you're done there. Not so easy on 18 seismic events, and that's done in flooding which 19 probably is not a big issue at Vogtle, but seismic 20 events; how are you looking at tailoring your Level 21 3 analyses to account for the seismic damage? 22 MR. KURITZKY: Okay. So let me just 23 clarify. I may have misrepresented. We -- the idea 24 was taking the release category frequencies

combined with the consequences to get the

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

25

(202) 234-4433

	27
1	measurements, that's the risk characterization test
2	at the end.
3	For Level 3, what I mentioned was
4	there's a lot of the work they can do right now
5	because they have the source terms, but there are
6	some things they can't do until they get the
7	frequencies.
8	CHAIRMAN STETKAR: Right.
9	MR. KURITZKY: That's not to say that
10	there's no work. The Level 3 Team is doing very
11	specific work for each of these different things,
12	and for seismic we'll have to consider impact on
13	the evacuation models and EP based on impacts of
14	seismic, et cetera.
15	CHAIRMAN STETKAR: Okay. But, I mean, in
16	terms of the work that the Level 3 folks do, you're
17	not going to have them do a continuous spectrum of
18	possible damages out there in the infrastructure or
19	the full range of the seismic hazard, are you? You
20	know, in principle they could do that, or maybe not
21	even for the I don't know how you're doing the
22	seismic stuff because we haven't seen it, but the -
23	- even the discrete seismic bins that you have, it
24	may not be necessary.
25	MR. KURITZKY: Right. It's premature for
	NEAL R. GROSS

(202) 234-4433

	28
1	me to speak to that because
2	CHAIRMAN STETKAR: Okay.
3	MR. KURITZKY: we haven't started
4	doing the Level even our Level 3, of course,
5	I don't think is even at this point, I don't
6	think he would be able to tell you much until we
7	get to that stage.
8	CHAIRMAN STETKAR: Okay.
9	MR. KURITZKY: But, again, we're going
10	to do like anything, we're going to do the
11	minimum necessary to get a good answer, you know.
12	We're not going to try to over do the problem if we
13	don't have to.
14	CHAIRMAN STETKAR: Okay.
15	MR. KURITZKY: Okay. Again, so the
16	seismic report for the Level 1 should be done I
17	said late '16/early '17. At this point, late '16 is
18	looking a little shaky since we're already into
19	December, so let's say let's go with January on
20	that one, but it should be done very soon.
21	For the reactor, at-power, high winds
22	and other hazards, again these as we just mentioned
23	were also subjected to a PWR Owner's Group led
24	Standards Based Peer Review. We're in the process
25	of addressing that feedback, as well as the
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

feedback from our TAG.

1

2 One of the main comments from the -- I 3 think both the Peer Review and the TAG was that 4 they really didn't have a hiqh wind walkdown 5 performed. Ιt really usinq seismic was our walkdown, and they made a few notes or observations 6 7 related to wind. And so we have since gone back and 8 primary commercial contractor, had our Energy 9 Research, Incorporated, subcontractor а with 10 Applied Research Associates, which is a very well 11 known wind PRA outfit, and they went down and did a 12 walkdown for us in November of 2015 at the Voqtle 13 site. They also went and looked and took a look at 14 our initial wind PRA report, and they gave us some 15 recommendations on some further work that they 16 thought, you know, might be warranted. Again, we 17 did not have the full budget to do everything they 18 would, obviously, like us to do and pay them to do, 19 but we did agree to have them do some additional 20 work for us. We've got all that back from them now 21 this past October, and we need to just go ahead and 22 incorporate that into our wind PRA so we can update 23 that. 24 CHAIRMAN STETKAR: Are you actually

going to quantify some wind PRA models?

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

(202) 234-4433

	30
1	MR. KURITZKY: Yes, we did. We have
2	quantified that we have event trees and we've
3	quantified wind PRA in the beginning.
4	CHAIRMAN STETKAR: Okay.
5	MR. KURITZKY: But it was a more
6	simplified analysis. Now it's going to be a little
7	more specific and a little higher
8	CHAIRMAN STETKAR: Yes, but I mean you
9	are going to have frequencies
10	MR. KURITZKY: Yes.
11	CHAIRMAN STETKAR: and fragilities.
12	MR. KURITZKY: Yes, we have
13	CHAIRMAN STETKAR: And all that kind of
14	thing.
15	MR. KURITZKY: Yes, yes.
16	CHAIRMAN STETKAR: Good.
17	MEMBER REMPE: Remind me again on who's
18	on the Technical Advisory Group. It's internal,
19	right?
20	MR. KURITZKY: The Technical Advisory
21	it's primarily internal. The Technical Advisory
22	Group is essentially the Senior-Level advisors in
23	PRA across the Agency, as well as in related areas
24	like thermal hydraulics and EP, structural
25	analysis. And then we also have two people from
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	31
1	Industry, Westinghouse and EPRI have both provided
2	a senior staff member to participate on our TAG, so
3	that's what makes them up.
4	MEMBER REMPE: Thanks.
5	MR. KURITZKY: Okay. The Low Power and
6	Shutdown, that's something you're going to hear
7	about in detail in the afternoon session, so I'm
8	not going to take up too much time here. I just
9	want to mention that we essentially have that model
10	complete. And a common thing, some operator action
11	dependencies is the only thing that we're still
12	wrapping up there.
13	The thing there is we have a lead for
14	human reliability analysis who's been tasked with a
15	whole bunch of stuff all of a sudden at one time,
16	and so she had to try and prioritize which things
17	she's getting done, so that's kind of like a
18	Critical Path item. But, anyway, so we're getting
19	that wrapped up.
20	And as I mentioned, the recent work we've been
21	focusing on has been the HRA. That's been one of
22	the major and the Low Power Shutdown PRA, not
23	surprising. That's one of the major issues that got
24	addressed.
25	Also, because the scope of the Low
	NEAL R. GROSS

(202) 234-4433

Power Shutdown PRA can be very vast and assuming 1 2 you do not have unlimited time and resources, you 3 need to have some kind of scheme for managing that 4 scope. And so we came up with what we believe was 5 an appropriate systematic approach to control that 6 scope. We got feedback on that approach from our 7 TAG, and that's been how we've directed our Low Power Shutdown effort. And we have -- like I said, 8 9 we're going to have a report done, hopefully, very 10 soon, and then it will be available for -- whatever 11 that Technical Adequacy Review will be going 12 forward. We also had -- we reinitiated work on 13 14 Shutdown for Level 2. We actually did Low Power 15 in Level 2 for Low Power Shutdown some work 16 earlier on. We've put together some work on the --17 did some work on the bridge tree and the plant 18 damage states. Also we've put together and shook 19 down some MELCOR models, but we kind of put that on 20 the shelf temporarily because we needed to wait for 21 the Level 1 effort to be further along. Now that 22 coming to closure, we've jump started it's the 23 Level 2 again. The Level 2 Team is now interfacing 24 with the Level 1 Team to get that work going again. 25 One of the main things that they are

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

focusing on is what HRA approach to use. We have an 1 2 HRA approach that we use for the Level 2 analysis 3 for at-power, internal events and floods, which 4 could serve as kind of a starting point for this, 5 but we also have an HRA approach that we use for Low Power and Shutdown Level 1, which could be a 6 7 starting point. So whether we try to do our Level 2 8 Low Power Shutdown HRA approach, kind of base in our at-power Level 2 approach, or our Level 1 Low 9 10 Power Shutdown approach, or some combination 11 thereof remains to be decided.

12 determined Also, because we that 13 focusing the scope was such an important item for 14 Low Power Shutdown PRA, we felt that this project 15 Low Power Shutdown PRA, in general, and would 16 benefit if we put together an expert elicitation to 17 kind of rank order what were the important aspects 18 to be included in a Low Power Shutdown PRA in terms 19 of plant outage types, plant operating states, you 20 to consider, various know, hazards influencing 21 equipment factors like maintenance and thermal 22 hvdraulic, containment RCS or and boundary 23 conditions, et cetera. So we have now started an 24 expert elicitation using the Phenomena 25 Identification and Ranking Technique to come up

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

33

with that kind of rank ordered list so that theoretically a future PRA Team that's going to do a Low Power Shutdown PRA, they could start at the top of the list and work their way down until they've used up their resources, and they will have hopefully addressed the most important things as determined by this set of experts.

CHAIRMAN STETKAR: Alan, we're going to 8 9 have a lot more discussions on the Low Power and 10 Shutdown PRA this afternoon, so I don't want to go 11 into details about that. But just, you know, my 12 first thought regarding the HRA for Level 1 and Level 2, because human performance is so important 13 14 during Low Power and Shutdown, and there's so much 15 -- so many human actions in those Low Power and 16 Shutdown Level 1 models, it strikes me that there 17 could be an incentive for having -- using the same 18 methodology all the way through Level 2, because 19 changing methodologies just at that artificial, you 20 know, line in the sand, if you will, could cause 21 problems. I don't know, you know, what vou're 22 planning to do, and I'm not necessarily endorsing 23 the method that you've used for the Level 1, but 24 just whatever method is used, because the human 25 performance tends to be so important in Low Power

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

(202) 234-4433

	35
1	and Shutdown, it strikes me that it would be
2	useful, anyway, to use the same methodology all the
3	way through, if it's feasible. And if it's not, you
4	
5	MR. KURITZKY: Right.
6	CHAIRMAN STETKAR: need to be really
7	careful about that break point.
8	MR. KURITZKY: Right. So I'm very
9	sensitive to that concern, but the issue is that
10	it's not really arbitrary break from Level 1 to
11	Level 2. I don't know how exactly it plays out in
12	the Low Power Shutdown, and we're still looking at
13	that.
14	CHAIRMAN STETKAR: It is in some sense
15	because, for example, if one of the actions early I
16	would assume in Level 2 model is operators
17	reclosing the containment hatch, if it's open. Now,
18	that actually occurs in the midst of things that
19	are going on in the Level 1 models, like when stuff
20	starts to boil. And that's why I say it's an
21	artificial just saying well, the action to close
22	the hatch is in the Level 2 model, and the actions
23	taken while boiling is imminent or progressing as
24	in a Level 1 model doesn't necessarily catch the
25	notion that it's sort of a group of people
	NEAL R. GROSS

(202) 234-4433 (202) 234-443 (202) 234-443 (202) 234-443 (202) 234-443 (202) 234-443 (202) 234-443 (202) 234-443 (202) 234-443 (202) 234-443 (202) 234-443 (202) 234-443 (202) 234-443 (202) 234-443 (202) 234-443 (202) 234-443 (202) 234-4443 (202) 234-2444 (202)

	36
1	responding within a continuous timeline. That's my
2	notion of this artificial break of, you know, which
3	bin do you throw those operator actions in.
4	MR. KURITZKY: Right, and I agree.
5	That's a good example of something that
6	CHAIRMAN STETKAR: Yes, because that,
7	for example, isn't in the Level 1 model.
8	MR. KURITZKY: Right.
9	CHAIRMAN STETKAR: You know, those types
10	of things.
11	MR. KURITZKY: Right. Now, and this is
12	why I'm saying, I'm not sure how it will play out
13	for Low Power Shutdown. For internal event for
14	at-power, it was a bigger concern because the SAMG,
15	the Severe Accident Management Guidelines, et
16	cetera, it's a whole different paradigm than the
17	operator procedure based
18	CHAIRMAN STETKAR: Yes, I could twist my
19	mind in internal events, at-power to somehow
20	rationalize that break; although, on the record I'm
21	not twisting my mind that way, but I think it's a
22	lot easier to think of that in the context of that
23	model. But Low Power and Shutdown seems to be a bit
24	different.
25	Dr. Powers, you've been shut off twice
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	37
1	now, and I'm
2	(Simultaneous speech)
3	CHAIRMAN STETKAR: ceding the floor
4	to you quickly.
5	MEMBER POWERS: It seems to me that I
6	would make a transition or would not be surprised
7	that somebody would make a transition in their
8	treatment of HRA between Level 1 and Level 2,
9	simply because errors of commission become far more
10	likely and consequential once you go into the Level
11	2 regime. Is that not correct? Am I thinking poorly
12	here?
13	CHAIRMAN STETKAR: I don't know,
14	actually. I don't like to make those value
15	judgments about the relative importance of omission
16	or commission in that sense on Level 1 versus Level
17	2. I'm more concerned
18	MEMBER POWERS: It seems to me that you
19	get into a regime that's unpracticed here where
20	CHAIRMAN STETKAR: It may be
21	MEMBER POWERS: remarkable
22	phenomenological events occur that are at best
23	poorly predicted with existing technologies.
24	CHAIRMAN STETKAR: It may be and I
25	think you're right, that you may you want to
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	38
1	make sure that whatever methodology you select is
2	capable of addressing those concerns. And whether
3	those concerns are more important in, you know, the
4	Level 2 chunk of the model than the Level 1 of the
5	model kind of depends on scenarios and stuff.
6	MEMBER POWERS: Presumably, you could
7	have an HRA model that's perfectly capable for low
8	phases to handle errors of commission, but I got
9	the impression that there was a certain element of
10	expediency here to quote the speaker, don't
11	overwork the problem, just get a good answer, which
12	I'm not sure everybody would fall all over
13	themselves on that, but I think I understand the
14	sentiment.
15	CHAIRMAN STETKAR: I'm a bit more
16	concerned about the types of conditions that I
17	mentioned earlier where you have actions that are
18	evaluated in the so-called Level 2 PRA models
19	MEMBER POWERS: Oh, I understand your
20	
21	CHAIRMAN STETKAR: that are being
22	taken in the midst of things that are going on
23	MEMBER POWERS: Yes, you're saying
24	you're binning it one and in the other.
25	CHAIRMAN STETKAR: Right.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	39
1	MEMBER POWERS: And then somehow you
2	change, but I think a good answer should be the
3	same for actions that simply fall from bin to bin,
4	but in general in Level 2 PRA land, I think you're
5	tracing into areas that where proceduralization
6	is more qualitative than it is during Level 1 PRA.
7	I mean, it just
8	CHAIRMAN STETKAR: That's certainly
9	true, I mean, as Alan mentioned.
10	(Simultaneous speech)
11	MEMBER POWERS: That I might
12	especially under Low Power Shutdown conditions, if
13	I went into transitioned into an accident where
14	I was likely to get core damage, that the potential
15	impact of errors of commission would be much more
16	consequential. It just seems to me. I don't know,
17	but I would not leap up and be shocked if a more
18	sophisticated approach to HRA were adopted.
19	CHAIRMAN STETKAR: Don.
20	MR. HELTON: Don Helton, Office of
21	Research. I was just going to clarify that so
22	you brought up the issue of containment closure,
23	and that is certainly an action that falls in the
24	modeling of the bridge tree, which can be called
25	the Level 2, but it's occurring prior to core
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	40
1	damage. That's something that we're specifically
2	addressing by having quantified initially by the
3	Level 1 HRA method and then extending it to the
4	various the suite of different situations that
5	are of interest to the Level 2. So, in effect, from
6	an HRA perspective we're treating that as a Level 1
7	HRA issue.
8	Specifically, what Alan is referring to
9	in his slide is are actions that are being taken
10	following core damage using the extensive damage
11	mitigation guidelines as opposed to the procedures
12	the different set of procedures that are in play
13	prior to core damage.
14	So all of that said, we agree with much
15	of what you're saying, and then these are the sorts
16	of things we're trying to factor in and consider
17	the pros and cons in selecting a method.
18	CHAIRMAN STETKAR: Are you going to be
19	around this afternoon?
20	MR. HELTON: I will be for the Low Power
21	through the Low Power Shutdown.
22	CHAIRMAN STETKAR: All right, good.
23	Thanks. We can talk a little bit more in detail
24	then in closed session. Thank you.
25	MR. KURITZKY: Okay. Again, this
	NEAL R. GROSS

(202) 234-4433

(202) 234-4433

feedback is very timely, because we are 1 in the 2 process of trying to come up with a method, so all this feedback is very useful. And as you saw, many 3 4 of the people that are going to be involved in that decision are either here or listening in, so it's 5 good feedback. Thank you. 6 7 CHAIRMAN STETKAR: All right. 8 MR. KURITZKY: Okay. Moving on to the 9 Spent Fuel Pool. That's one that -- an area that we 10 haven't made a lot of progress on, but we have made 11 some. This is a situation where we have essentially 12 double booked our own Staff in a sense that the 13 person to lead this is in charge of many other 14 activities both in this project and outside the 15 project, but we have gotten some things done over 16 the last couple of years. 17 did define operating states, We and 18 we've been interfacing with the parts of the study 19 that are most relevant for the Spent Fuel Pool; 20 that is the dry cask storage, and the Low Power 21 Shutdown modeling. We also have done some work in 22 developing a MELCOR model for the Spent Fuel Pool, 23 and developed and been shaking it down. And we have 24 put together some event trees for seismic events 25 which we believe to be one of the more dominant

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

contributors to Spent Fuel Pool risk for all 1 the different seismic bins, and operating states 2 for 3 the Spent Fuel Pool. But the reality is, is that we 4 just haven't been making enough progress here, so 5 we have decided to shuffle things up a little bit. 6 We're putting a new -- we put a new Task Lead onto 7 of the work to kind of break this part that 8 bottleneck, and we're also going to farm more of 9 the work to our contractor just to get the whole 10 thing moving forward a little bit more quickly. 11 Dry Cask Storage PRA; again, this is one that you'll be hearing a lot more details about

12 13 in the afternoon session, SO I'm not going to 14 belabor it, just to mention that we have completed 15 our Level 1, 2, and 3 PRA for all hazards for the 16 Dry Cask Storage. But as part of the review of that 17 work, we made a decision that we wanted to revise 18 the consequence analysis. The initial model used 19 the consequence analysis from NUREG -- largely used 20 the consequence analysis from NUREG 1864, which was 21 the NRC's previous Dry Cask Storage PRA, but that 22 work was not done -- it was done for a different 23 site, and so we decided it was worth the time and 24 effort to do a little more rigorous look into the 25 consequence analysis for Vogtle itself. So we're in

NEAL R. GROSS

1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

COURT REPORTERS AND TRANSCRIBERS (202) 234-4433

(202) 234-4433

	43
1	the process of redoing that; that should be done
2	momentarily. You're going to actually hear I
3	think most of that stuff has been completed, and
4	you're going to hear some of that in the
5	presentation this afternoon. We just need to tie up
6	some loose ends and get the documentation cleaned
7	up.
8	MEMBER BALLINGER: Are you going to
9	factor in I think there's an EPRI project now to
10	do consequence analysis for Dry Cask Storage, which
11	I think the report is supposed to be issued
12	sometime in 2017, I guess. Is that going to be
13	factored in in any way?
14	MR. KURITZKY: I don't know whether or
15	not we had that information in time to do any work
16	with it. I think not. I think that time-wise it's
17	just something we have not considered. When we
18	discuss this in the closed session you can bring it
19	up, because then the people who have been doing the
20	work will be able to respond to you.
21	MEMBER BALLINGER: Thank you.
22	MR. KURITZKY: But I think time-wise
23	that's not lining up. We hope to have this thing
24	ready for whenever that next step Technical
25	Adequacy Review is going to be, that should again
	NEAL R. GROSS

(202) 234-4433

(202) 234-4433

	44
1	be ready by the beginning of next year.
2	CHAIRMAN STETKAR: Beginning of next
3	year being like 2018, or 15 days from now?
4	MR. KURITZKY: Like I said, I think the
5	analysis has been done. You're going to hear about
6	it this afternoon. It's just tying up the
7	documentation and doing a few more have that
8	part internally reviewed again before we go out for
9	external review.
10	Okay. Integrated Site PRA; again,
11	something you'll hear about this in fact, you'll
12	hear about the approach right after my presentation
13	right now, and then you'll hear about the pilot
14	studies in the afternoon session since they involve
15	some proprietary information.
16	But, again, I just want to reemphasize
17	that we recognize that this was the driving force
18	here for Integrated Site Risk, or multi-source
19	Risk. So that's, obviously, a key focus of the
20	work. But what we're talking about now is even once
21	you have identified those dependencies, you need to
22	put the model together. And so what we're actually
23	going to discuss, primarily, is our approach for
24	putting the whole model together and coming up with
25	the Integrated Site results.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	45
1	And, also, because there's almost a
2	limitless source of potential intersource
3	dependencies, you have to have some type of
4	prioritization on what you're looking at to get
5	more bang for your buck, so to speak. So you don't
6	want to spend a lot of time and effort looking at
7	various potential dependencies that aren't really
8	going to make a big difference in the risk picture.
9	And so we have an approach that we have come up
10	that we think will help us be much more efficient
11	and focusing our effort, and that will also get
12	described in the next presentation.
13	MEMBER BLEY: You haven't given us any
14	reading information on this.
15	MR. KURITZKY: No, all we have is the
16	present we don't have any documentation on this
17	yet. Just the slides that you're going to get is
18	all we've internally has been the Team giving us
19	presentations, and you're getting essentially the
20	same presentation.
21	MEMBER BLEY: Okay.
22	MR. KURITZKY: You'll know as much about
23	it as I will by the end of
24	MEMBER BLEY: I've been in a couple of
25	meetings in the last few weeks outside of here.
	NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. (202) 234-4433 WASHINGTON, D.C. 20005-3701 (202) 234-4433

	46
1	There's an awful lot of interest in this idea.
2	MR. KURITZKY: Yes.
3	MEMBER BLEY: And people are going to be
4	watching very closely for this when it comes out.
5	MR. KURITZKY: Right. Okay. And now Mary
6	is going to talk to you a little bit about some of
7	the documentation that we are going to produce, or
8	have been producing for this project.
9	MS. DROUIN: Okay. You know,
10	documentation sorry. As important as the
11	technical work is, you know, how you judge the
12	adequacy of the technical work is on the
13	documentation, and how well we do that.
14	The documentation is a huge challenge
15	on this project just because of the shear size of
16	it. And when you break it down, we essentially have
17	six types of documentation. There will be the
18	published NUREG which will be publicly available,
19	and I'm going to get more into detail what that
20	NUREG is going to look like. We're using to a
21	certain extent NUREG-1150 as our guideline of what
22	to include in that NUREG report.
23	Technical reports, those are more akin
24	to like the NUREG/CR-4550s. These have all the
25	details, but another key part of the working files,
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

and we've put a lot of effort into these working 1 2 files because this, in my mind, is what's providing you the traceability of the work. We went into a 3 4 lot of effort to make sure that the Staff -- you 5 that they're documenting the know, normal assumptions you make in the course of your work. 6 7 When you're having discussions and decisions that 8 you make, these are the things that, you know, 9 really in a lot of sense can drive the results, and 10 you don't get those documented very well. And you 11 have to go back to the actual offer. Well, we're 12 trying to create a program where, you know, five years down the road the documentation will hold on 13 14 its own, and you don't need the people there if you wanted to go back and truly understand, you know, 15 16 how this model was built and everything. 17 MEMBER BLEY: That's really important if 18 you can do that. I'm remembering there was an NRC 19 project a few years ago in PRA where because the 20 area -- and Alan mentioned that you're having to 21 maybe make some modifications in the computer code. 22 By the time the project was finished there had been 23 so many modifications in that computer code that by

the end you couldn't run the work that had been done in the early year or two and get the same

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	48
1	answers. Things had been changed, and I hope part
2	of this documentation is maybe retaining versions
3	of the code that you used to do the analysis, even
4	though it's being changed in the future.
5	MR. KURITZKY: And let me just Dr.
6	Bley mentioned, just on top of that. So one of the
7	things we do for all of our technical reports where
8	we produce results is we document the version of
9	the code and the version of the model, because we
10	have many, many versions of both, more of the model
11	than the code, but still many, so we want to have
12	that code and model version so that we can, in fact
13	
14	MEMBER BLEY: And you've actually got
15	those archived, because they disappear.
16	(Simultaneous speech)
17	MR. KURITZKY: The concern is going to
18	be years going forward will they still be archived.
19	It's on a server that the lab maintains for us. I
20	don't know what the long-term prognosis for that
21	is, but at least for the time being we have them
22	all archived and documented.
23	MEMBER BLEY: Budgets are tight but
24	right now storage is almost free, so you think of
25	other ways to back it up.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	49
1	MEMBER REMPE: When you say the "lab,"
2	which lab is it?
3	MR. KURITZKY: Idaho.
4	MEMBER REMPE: Okay. So experience has
5	indicated when NRC budgets dry up, the archival
6	information at a National Laboratory will
7	disappear, so you might want to consider having it
8	somehow or other transferred back to NRC.
9	MR. KURITZKY: Yes. We haven't decided
10	yet exactly how we're going to deal with the long-
11	term storage. It's something we've already Kevin
12	and I have already started discussing, and so we
13	haven't come up with an actual answer. But it's on
14	our radar, because we want to have some way to
15	preserve that and have access to it after the
16	project is completed.
17	MEMBER KIRCHNER: How are you dealing
18	with the QA of the codes? You just mentioned the
19	codes are evolving. Do you go back and then rerun
20	earlier studies and results, and do you get
21	conversions?
22	MS. DROUIN: We do some level of
23	benchmarking, but probably not to the level of
24	detail that you perhaps are desiring.
25	MR. KURITZKY: Kevin, you want to speak
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	50
1	to that?
2	MR. COYNE: Yes, so SAPHIRE is the name
3	of the computer code we use for the PRA modeling.
4	It's developed and maintained under our formal QA
5	Program that meets NUREG/BR-0167, which is our
6	software QA requirement. And we've got a stack of
7	QA documentation a couple of feet high that both
8	the QA Plan and the supporting documentation, and
9	it falls under INL's normal lab processes for
10	software development and control.
11	So the other thing we've done with this
12	project is we haven't had a philosophy of
13	developing a breakaway version of SAPHIRE just for
14	the purposes of the Vogtle Level 3. We're using the
15	main production version of SAPHIRE that we used to
16	support SPAR models in the ROP. It's the same
17	version that is running the model.
18	Now, there's some time issues that, you
19	know, we may have the capability that supports the
20	Level 3 project that doesn't exist in the, you
21	know, production released the code but eventually
22	we merge those back, so our goal is to have a
23	single version of SAPHIRE used for all NRC
24	applications. And that will make it easier for us
25	to maintain the accessibility of the Vogtle model
	NEAL R. GROSS

(202) 234-4433

	51
1	going forward.
2	We had a Lesson Learned with the NUREG
3	I'm drawing a blank. The previous PRA study.
4	MS. DROUIN: 1150.
5	MR. COYNE: 1150. I kept thinking of
6	2150 and I knew that wasn't right. NUREG-1150,
7	where they did find the archived PRA models on
8	paper taped in a closet in Idaho National Lab, and
9	so
10	MEMBER REMPE: You were lucky.
11	MR. COYNE: Well, we were lucky we found
12	it, but we had no means to run it, so that's one of
13	the things that we've been considering longer term,
14	is that because knowledge management is such a big
15	part of the project, we want to be able to keep
16	this code at least being able to run under the
17	current release of SAPHIRE going forward. As Alan
18	said, we're still kind of working out what the best
19	way to do that would be, but that is our end goal,
20	is to make the model runable with future versions
21	of SAPHIRE. But, Dr. Bley, you bring up a good
22	point, and that's why we've done this archiving,
23	that the Low Power Shutdown may have been version
24	237 which, you know, there'll be another version in
25	the future. So the availability of those earlier
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	52
1	versions may be something that we have to give some
2	more thought of how we maintain that.
3	MEMBER BLEY: Okay, thank you.
4	MS. DROUIN: So, I think that we given
5	you a presentation in the past on our QA Plan, and
6	our QA plan goes into quite a bit of detail on
7	documentation and the templates that we've created
8	that, you know, the whole team follows. And
9	documenting, hopefully, every little thought; I
10	mean, it's not quite, you know, that extensive but,
11	you know, we really have tried to do a good job on
12	documentation. And I can tell you the documentation
13	we're doing on this job far exceeds the
14	documentation we did on 1150. It far exceeds it, so
15	we have made, you know, substantial strides in that
16	area.
17	CHAIRMAN STETKAR: And kind of playing
18	on your theme of every little thought; you can't
19	document every little thought.
20	MS. DROUIN: No.
21	CHAIRMAN STETKAR: I have
22	(Simultaneous speech)
23	CHAIRMAN STETKAR: No, but I brought
24	this up in the past. I've personally been
25	frustrated when I've picked up Risk Assessments
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	53
1	done by others, and I've been probably more
2	frustrated when I've picked up Risk Assessments
3	done by myself years later looking at them and
4	asking myself well, my heavens, why didn't they
5	look at X? And in many cases, analysts are fairly
6	good, fairly good, not always very good at saying
7	today I made the decision to do X because. They're
8	not as good at saying today I made an active
9	decision not to do Y because. And that's really,
10	really important in terms of the legacy of the PRA
11	because it's awfully useful to future analysts to
12	know that at least today I thought about it, and
13	had a reason why I didn't do something. That means
14	that I, in the future, don't need to go back and
15	recreate everything to figure out whether it was
16	just an oversight or, you know, something like
17	that. That's really important in terms of this sort
18	of growing the ability of people within the Agency
19	to do these types of analyses, and to understand
20	sort of the progression of them in the future. So I
21	hope you're trying to encourage analysts to
22	MS. DROUIN: We certainly are
23	encouraging them
24	CHAIRMAN STETKAR: When they're making
25	those active decisions. Now, if they don't think
	NEAL R. GROSS

(202) 234-4433

(202) 234-4433

	54
1	about something, they don't think about something.
2	So, basically, if I see silence, I assume it was,
3	you know, an oversight, or they didn't think about
4	it. But if there's an active decision made, that
5	I'm not going to model this because, then that's
6	important.
7	MS. DROUIN: They certainly have been
8	encouraged to do that.
9	CHAIRMAN STETKAR: Okay.
10	MS. DROUIN: And when you do go into our
11	QA Plan on the template and the instructions, you
12	know and we've given the analysts a lot of
13	flexibility, because we don't want to get, you
14	know, so black and white and prescriptive. So, you
15	know, there is, you know, guidance and, you know
16	there is guidance for that. And, hopefully, we
17	have captured more of that than not.
18	CHAIRMAN STETKAR: You certainly don't
19	want to make it a fill in the box type process.
20	MS. DROUIN: Right. And we've tried
21	CHAIRMAN STETKAR: Because that
22	MS. DROUIN: you know, not to do
23	that.
24	CHAIRMAN STETKAR: That is, actually,
25	useless.
	NEAL R. GROSS

(202) 234-4433

	55
1	MS. DROUIN: Yes.
2	CHAIRMAN STETKAR: so, okay. All right.
3	MR. KURITZKY: Also, let me, if I could,
4	Mary, just to step into that just one minute. So as
5	Mary said, we have tried to encourage that. And no
6	one is going to document every little thing. You're
7	doing work; you can't document every thought. And
8	we don't make any claims that we're anywhere close
9	to that, but we have tried to push that envelope
10	much further than it has typically been done in the
11	past. We have the meeting templates that Mary had
12	mentioned that she designed for us that to
13	capture the decisions, and we do have quite a few
14	of those filled out, and so we do have things, the
15	basis for why we did something, or why we didn't
16	decide to look at something. And we have an issue
17	tracking list that we maintain for the project,
18	which is now at well over 300 items that identifies
19	issues when they come up, and then as their
20	proposed resolution, and then when it is resolved,
21	how we resolved it. And a lot of times you'll see
22	in there things that we decide to pursue or not to
23	pursue, and the reason why. So we're not going to
24	claim anywhere near 100 percent completeness, but I
25	think we're doing a lot more in that regard than
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

may have been --

1

2

3

4

5

6

7

CHAIRMAN STETKAR: That's good. You're never going to get 100 percent, and it's silly to strive for that. But it's just a matter of kind of instilling that notion among people that if they do make an active decision and they think it's important, you know, write it down.

8 MS. DROUIN: You know, as Alan said, we 9 have the assumptions. You know, we ask them to 10 document decisions they make, you know, in meetings extensive 11 and stuff like that. We've provided 12 quidance on documenting the assumptions they make 13 just in the course of doing the analysis. So, you 14 know, once again, you know, we really have tried to 15 you know, that extra mile in capturing that qo, 16 kind of information which is normally, you know, 17 not captured in analyses. And then it's hard to 18 reproduce and understand how the model was created, 19 we really have tried -- we've put a lot of SO 20 thought into that. It would have been really nice 21 if we could have done, you know, an interactive 22 thing, but that was way beyond us. There's also an incredible amount 23 of

24 information from Vogtle that we have that's just 25 within, you know, the Team for use. It's not

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	57
1	publicly available information; a lot of reference
2	sources. And then the last set of documentation
3	they're all the different project reviews, and
4	extensive reviews, because each team member does a
5	self-assessment of their work, and we have a TAG
6	review. The goal was, hopefully, to have peer
7	reviews on everything but, you know, because of the
8	budget of the PWR Owner's Group, so we're looking
9	at that to do these adequacy reviews. And there are
10	reports from all of these that are documented.
11	CHAIRMAN STETKAR: I hate to bring this
12	up but I'm forced to. How are you handling that
13	bridge between the Vogtle proprietary stuff and
14	what is available in the rest of the project
15	documentation? I'll give you an example, perhaps a
16	silly example.
17	I have a Vogtle pump that puts out X.YY
18	gpm flow. Is that a proprietary set of information,
19	or is that non-proprietary because that X.YY gpm of
20	flow might appear in some thermal hydraulic
21	analysis?
22	MS. DROUIN: Let me get to the next
23	slide and try and answer that as part of what
24	CHAIRMAN STETKAR: Okay.
25	MS. DROUIN: well, it's probably in
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	58
1	two slides from now. But in the next one, you know,
2	on the NUREG and this is what's going to be
3	publicly available. So, you know, we want enough
4	information so that, you know, you can understand
5	the technical approach, you know what the major
6	assumptions are, you have a fundamental
7	understanding of the design and operation of the
8	plant, the results, you know, the insights and
9	perspectives. And then these last two, you know,
10	the potential uses and the future work; the future
11	work one is continually growing because, you know,
12	as we get closer we're not able to do as much as we
13	want, so we're documenting this stuff as future
14	work. We are going to try and insert hyperlinks
15	where we can.
16	Now this, I think, next point gets to
17	your point that you raised, Dr. Stetkar, that, you
18	know, the level of detail that we can put in this
19	report, you know, recognizing, you know, the
20	concern from Southern Nuclear, the proprietary, you
21	know, that's the challenge that we are facing. So,
22	you know and then just the shear size of this
23	program, you know, the fact that it's not just a
24	Level 1, 2, 3 for a reactor, you know, it's all
25	operating states, all hazards, reactor, spent fuel

(202) 234-4433

(202) 234-4433

	59
1	pool, so how do we capture all of this, you know,
2	in a document, just the shear amount of
3	information? And to organize it in a manner that's
4	understandable and you're not overwhelming the
5	reader, because there's many different ways that
6	you could organize this information. You could go
7	through and say I'm going to do all the Level 1 by
8	itself, or I'm going to do all one hazard by
9	itself. So, hopefully, the way we've organized it,
10	you know, I don't know if it hopefully, it makes
11	the most sense and the easiest for the reader to
12	comprehend.
13	We are also we've already started
14	having dialogues with publications because I'm sure
15	you all have seen from other programs, publications
16	is a challenge. So we're trying to work with them
17	right away so that when we actually go to
18	publications it'll be smooth. You know, we're
19	contemplating or we're pursuing the idea of maybe
20	we publish different volumes at different times,
21	and it's not all one at the end, but these are all
22	things that will happen. Go ahead.
23	MEMBER BLEY: For me, this is a good
24	overview of the public report. Are you having some
25	kind of parallel internal report that ties for
	NEAL R. GROSS

(202) 234-4433

	60
1	NRC Staff next year or the year after, ties you
2	back to the proprietary information, or is it just
3	in a big catalogue?
4	MS. DROUIN: We have guidance for the
5	next level of reports, the technical reports, and
6	there are references I mean, everything has to
7	be referenced.
8	MEMBER BLEY: Okay. Back to the if
9	it's proprietary back to the
10	MS. DROUIN: Yes, yes.
11	MEMBER BLEY: Okay, so you can track
12	MS. DROUIN: So, in the technical
13	reports you will see the proprietary information.
14	Okay, so if we go to the next slide.
15	Okay. Here is how right now we've sort
16	of organized the public report. So right now we're
17	contemplating, you know, having three parts and it
18	may be in three separate volumes. Depending on how
19	much it turns out, it may end up being five
20	volumes, so nothing here has been pre-decided, but
21	pretty much the organization. So in the first part
22	we're looking at doing an introduction, you know,
23	and a summary of the approach, and a plant
24	description. So, you know, the introduction
25	standard stuff you see, you know, background,
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	61
1	objective, scope, all that kind of stuff.
2	Then when we get to the summary of the
3	approach, the way we've tried to do this is that
4	and a lot of this is actually written, is that,
5	you know, kind of an overall approach. But when you
6	look at, you know, your different parts of your
7	PRA, your technical elements at a generic letter
8	you know, you have to do a systems analysis, you
9	have to do HRA, you've got to do data analysis, so
10	we've taken all these technical elements and
11	written a high-level generic approach to how you do
12	each one of those. And then as we go into the
13	reactor risk model we'll say okay, for HRA here's
14	how we did it for this part of the model. So we
15	won't keep repeating, so we have the generic
16	elements written up front in 2.2, and then how we
17	applied them to the different parts of the model,
18	you know, are then in 2.3, 2.4, 2.5, and 2.6.
19	The summary of the plant description;
20	I'm really pushing the envelope here, and anything
21	that I can find on the internet, it's going you
22	know, so I'm sort of doing a double check to see
23	what I can find there. And then, you know, we're
24	going to allow, of course, Southern Nuclear to take

a look at this, but hopefully they will not have a

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

	62
1	problem with the level of detail that we've put in
2	terms of summarizing the plant description.
3	Then Part 2 is getting into the
4	results, and we just organized it by, you know, the
5	reactor, the spent fuel pool, dry cask, the site
6	risk results, and then it's broken down into Level
7	1, Level 2. So here's how we've divvied up the pie
8	there.
9	And then the third part is trying to
10	get into, okay, given some insights, you know, what
11	are the overall, you know, perspective, you know,
12	your dominant accident sequences, your significant
13	contributors, et cetera. And then we would go and
14	give the perspective for each piece of the PRA
15	model, you know, the reactor, the spent fuel pool,
16	the dry cask storage, you know, and the site risk
17	results.
18	Then we thought it was important to
19	kind of step back and say, okay, what have we
20	learned from this study, you know, and compare it
21	to the we've gone all the way back to LARS 1400,
22	you know, starting with the Reactor Safety Study,
23	looking at NUREG-1150, you know, what insights we
24	got out of IPE and what's been updated since then.
25	And then looking at
	NEAL R. GROSS

(202) 234-4433

63 MEMBER POWERS: I can certainly see 1 whv 2 you might want to go back to 1150, and even the IPE 3 and, of course, we can't comment without failing to 4 mention the superb, and excellent, and wonderful 5 summary study conducted by someone who will ΙPΕ remain anonymous, but I can't see what the utility 6 7 is going back to RSS. 8 MS. DROUIN: You know, it may turn out 9 that when we looked at that we may delete it, but I 10 don't know. But I didn't want to pre-throw it away. 11 You know, maybe --12 MEMBER POWERS: Well --MS. DROUIN: -- just from a historical 13 14 point to show what we've learned, you know, since 15 that -- since 1975. 16 MEMBER POWERS: It seems to me that what 17 learned from 1150 forward is far you've more 18 germane. I mean, I absolutely endorse taking from 19 the IPE summary document forward, and certainly if 20 you could produce something of equivalent impact to 21 your IPE summary document, that would be superb. 22 completely MEMBER BLEY: Ι wouldn't 23 agree. I mean, LARS 1400 was such a major step 24 forward. Some of the things that were looked at in 25 detail there been looked have never at again

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

	64
1	because of what was found looking there. For
2	example, a lot of the stuff on containment
3	isolation, I mean, that was a massive piece of work
4	in their study and nobody's ever approached it at
5	that level again. For me, it's worth a look and
6	pulling out salient things from back then.
7	MS. DROUIN: Yes, as I've said, you
8	know, as we start going down into this how much
9	you know, it's you know, we haven't even
10	started this part of the report yet; no more than
11	thinking this should be in the report. And, you
12	know, we may revisit this as we start writing it,
13	but that's our intent, was to go and look all the
14	way back to LARS 1400.
15	MEMBER BLEY: But it is 40 years ago.
16	MEMBER POWERS: One can't omit the
17	overall perspective item called "Significant
18	Uncertainties." It catches attention, especially
19	when you plunge into Level 2 land, because there
20	are substantial uncertainties there. And I wonder
21	what that encompasses; in particular, does it
22	encompass things that are inherent to your core
23	degradation modeling that dictate the accident
24	progression?
25	And I think, for instance, the I
	NEAL R. GROSS

(202) 234-4433

believe the accident analysis model you're using is 1 2 MELCOR, and in it is a predilection especially for 3 consequential accident sequences such as station 4 blackout to put an enormous heat load on the piping 5 system so that you get a creep rupture which, 6 unfortunately, is something that no hint of it 7 during the TMI accident. So it occurred must 8 represent some sort of uncertainty in that core 9 degradation modeling. 10 Similarly, the code has a predilection 11 to seal the loop seals and enter into a counter-12 current natural convection that minimizes the heat

13 load on the piping system, and reduces the 14 probability of consequential steam generator tube 15 rupture.

16 Do those kinds of significant 17 uncertainties get exposed in this study?

18 MS. DROUIN: You certainly are when 19 we're looking at the uncertainties -- you know, we 20 certainly are looking phenomenological at the 21 uncertainties, so those are included. And as you 22 can see, you know, that was one of the key things 23 that we have.

24 We also -- that's -- if Ι skip back 25 over approach, to the you know, one of the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	66
1	technical elements is, you know, the uncertainty
2	analysis. So we're starting to grapple with that,
3	and what those how we're going to go about and
4	identify those uncertainties, and how we're going
5	to get our perspectives in terms of how significant
6	they are, what their potential impacts are.
7	MEMBER POWERS: One of the things that's
8	being done with phenomenological codes now that I
9	think has a potential to be revealing is this walk
10	through activity that was conducted between the
11	MAAP code and the MELCOR code for Fukushima. That's
12	not so pertinent for Vogtle, but now they're doing
13	their walk through for between the AZTEC and the
14	MELCOR code. Are you looking at those results?
15	The problem I see is problem
16	inherent obstacle to develop codes is that once you
17	become a code developer, I can say from experience,
18	you put your heart and soul into it, and you have a
19	tendency to believe it's true. And you don't step
20	back in fact, it's quite impossible for the
21	individual developer to step back and say what are
22	my assumptions and major uncertainties here,
23	because if he could identify those things he would
24	have done something about it in the code. And so I
25	think a lot of the phenomenological uncertainties
	NEAL R. GROSS

(202) 234-4433

(202) 234-4433

	67
1	maybe of most importance can't be identified by the
2	code developer himself.
3	MS. DROUIN: That may
4	MR. KURITZKY: Excuse me. Don Helton is
5	here. He can talk to
6	CHAIRMAN STETKAR: We need to be a
7	little bit aware of time because we don't want to
8	get too backed up at the end of the day, unless you
9	folks want to stay until 7 or 8 tonight. I'm just
10	telegraphing that.
11	MR. KURITZKY: Yes, and I wanted to
12	mention that we have three very long presentations
13	coming up.
14	CHAIRMAN STETKAR: We, indeed, do.
15	MR. KURITZKY: So Don will give you a
16	brief response.
17	MR. HELTON: Don Helton, Office of
18	Nuclear Regulatory Research.
19	So the points are well taken.
20	Obviously, when we're trying to characterize the
21	phenomenological uncertainty, we're both looking at
22	that from the perspective of running some study
23	analyses and MELCOR to see the different outcomes
24	depending on different boundary conditions, or
25	input conditions to that particular code.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

68 1 And then we are trying to take a step 2 for instance on CSGTR to leverage the work back 3 that's been done over the last 15 years by the NRC 4 and industry on the CSGTR issue, and also 5 specifically looking at things like the MAAP/MELCOR crosswalk that was done for Fukushima and what that 6 7 tells us about the core degradation phenomenon, 8 hydrogen production when using a different set of 9 models. So it certainly will not be the end all/be 10 all of phenomenological uncertainty assessment, but 11 trying to look across that cadre of we are 12 information sources. 13 MEMBER POWERS: I think you -- I don't 14 I want to pursue that in any greater know that 15 depth. will point out, run Ι you sensitivity 16 studies until your eyes fall out, you will not ever 17 reveal embedded inherent assumptions. 18 MEMBER BLEY: I want to slip in two 19 comments. And I apologize I have to leave for a 20 little while for something else. 21 The first one is looking back at your 22 Volume 1, and dry cask storage jumped off the chart 23 for me down there in summary of plant description. 24 When I look at the plant description there, it's 25 all in a big proprietary section. Have you thought

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

	69
1	about how you're going to untangle the description
2	stuff as proprietary from that which is not?
3	MS. DROUIN: There is quite a bit of
4	information that's not proprietary on the dry cask
5	storage.
6	MEMBER BLEY: Okay. You just can't tell
7	it from the version I've got because the whole
8	thing is labeled proprietary, but that's okay.
9	MS. DROUIN: Yes.
10	MEMBER BLEY: Just so you've thought
11	about it.
12	The other is, I want to jump ahead for
13	a second because I won't be here to talk about it.
14	When I look back at your project status slide,
15	there are a fair number of things between 15 and 30
16	percent complete, and then I look at your path
17	forward slides with all but one item finishing in
18	early 2017, it seems optimistic. And with that,
19	I'll see you a little later.
20	MR. KURITZKY: Okay, so just to respond
21	to that. What you're seeing in the path forward are
22	the near-term deliverables.
23	MEMBER BLEY: Ahh.
24	MR. KURITZKY: So that's not there
25	are many more things there are essentially 20
	NEAL R. GROSS

(202) 234-4433

	70
1	PRA models associated with this whole project, and
2	so you're seeing the first maybe
3	MEMBER BLEY: That makes sense. Thank
4	you. That's what I was worried about.
5	MS. DROUIN: Okay. You know, just to
6	wrap up. I won't go through all of those but, you
7	know, we are going to have a whole chapter in
8	there, you know, how to use this document as a
9	resource document. We plan to have some appendices
10	here, some initial thoughts, you know, I mean, to
11	have a glossary. We think that's an important
12	thing, you know, describe the project organization.
13	We're going to have a slimmer down version of our
14	QA plan, we'll put in there. And the results of the
15	independent whether or not we pursue that has
16	not been decided at this point, but that's it for
17	the documentation.
18	MR. KURITZKY: Okay. Thank you, Mary.
19	Okay, so just to wrap this up. We want
20	to get back on schedule.
21	The path forward here really is just a
22	summary of the things I already mentioned in the
23	previous viewgraphs. This just shows the same
24	deliverables I was mentioning earlier, the
25	milestones that will get wrapped up in the early
	NEAL R. GROSS

(202) 234-4433

part of next year. We're going to have the seismic, 1 internal fire models be ready for whatever level of 2 next stage review they're going to undergo; will be 3 ready in early 2017. That's also true for our dry 4 cask storage PRA which covers all PRA levels and 5 all hazards. And it's also true for our Low Power 6 7 Shutdown Level 1 model for internal events. All 8 these things will be ready for the next stage 9 technical adequacy review in early 2017. 10 We also will be completing the revised 11 Level 2 model for internal events, internal flood. 12 Just like we completed the one for Level 1, we'll 13 have completed the one for Level 2 in early 2017, 14 and the one for Level 3 in the spring of 2017, as 15 will show here. And then also, the at-power it 16 Level 1 modeling for high wind and other hazards, 17 that will also be revised and ready for -- that one has already been through the external review, 18 SO 19 that one will be finalized in early 2017. 20 So, again, this is just for those _ _ 21 just the near term milestones. There's this is 22 many other aspects of the study which we haven't 23 yet addressed, or aren't close to completion. 24 And I just want to mention one last 25 that the schedule challenges -- we've been thing,

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

plagued with schedule challenges all along. Kevin mentioned a number of them in the beginning. Some of them continue to plague us. The diversion of key Staff has always been a big one, and rightfully so. Again, there are many high priority projects the Agency has had to respond to, and these people are needed to deal with those other projects, so that's clear.

Right now we've gotten to the point because of varying delays at different rates in different parts of the project, we've gotten some comping where we have internal now conflicts, where the person was in charge of multiple things but they are well laid out apart initially, now have gotten compressed, and now the same person has to do multiple things at once, and so that's why we're juggling a little bit with some of the assignments, and also getting stuck behind a few areas.

19 Contractor staff availability is also 20 something that has still been getting us. Quite 21 honestly, there is still hangover effects of the 22 sequester from 2013. One of our primary labs had to 23 let some people go and they haven't really come 24 back up to full speed in our area, and so we're 25 still feeling some pains from that.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

(202) 234-4433

The peer reviews is another thing, as I mentioned before, since the PWR Owner's Group is now going to have to scale back some of their support in terms of what we're going to use to replace that going forward, or how we're going to make use of them going forward, that's something that still needs to be resolved, but it's clearly going to have some impact on the schedule.

9 And the last thing I want to mention on 10 this is, as much we're trying to maintain the 11 schedule -- and Kevin said, I think before, that 12 we're trying to look for ways to try and get the schedule moving a little efficiently or quickly, 13 14 have taken time in different but we cases to 15 some technical issues that we explore felt were 16 really necessary to address to really improve the 17 quality of the study. Some examples the are 18 frequency, interfacing system, LOCA and break 19 location that we discussed earlier that we had the expert elicitation for. Another one is what 20 we 21 refer to as the safe and stable issue, cases where 22 you have 24 hours after the initial event you may 23 not have core damage, but the plant isn't stable, 24 and you will probably end up getting core damage 25 after that without further mitigative sometime

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

(202) 234-4433

actions. And so we've done a re-look at that issue, and it required us to make some major modifications to our event trees and fault tree modeling to address that.

5 And another one is the impact on system 6 success criteria, and accident sequence timing 7 based on what types of boundary conditions or 8 assumptions you make in doing the thermal hydraulic 9 analyses. As Dr. Powers mentioned, we use the 10 MELCOR code, and depending on what assumptions and 11 boundary conditions you use you can come up with 12 some different results. A good example is in the 13 LOCA break size categories. You know, depending on 14 where in that spectrum of size breaks you pick to 15 do your calculations, particularly as you get close 16 to the boundaries, you can get some very different results. And so we spent some time looking at that 17 18 and comparing results to, for instance, what the 19 MAAP calculations showed from the Southern's runs, 20 from other work that we've done in related or 21 projects, so that's another area where we took the 22 time to try and drill down a little bit more deeply 23 just to improve the quality of the study.

Okay. I mentioned earlier on that this has been a very broad team effort, so I just want

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

24

25

1

2

3

4

(202) 234-4433

to close by giving a shout-out to some of the support we've received. Southern Nuclear, first and foremost, has just been tremendous in their support for this project. They have not only hosted us at many, many, many site visits, but also provided us, as Mary mentioned before, a tremendous amount of information for the study.

The PWR Owner's Group, as I mentioned, have been leading and supporting, and funding a lot of the peer reviews, the Standards Based Peer Reviews that have occurred to the project to date. Westinghouse and EPRI, in response to Dr. Rempe's question, have been -- they've supplied senior members for our TAG.

15 In terms of the NRC itself, not only 16 have all three technical divisions of the NRC been 17 -- of the Office of Research have been heavily 18 involved in this project, but we also have gotten 19 support from across the Agency, almost all the 20 technical offices in Agency have provided the 21 either by front support line workers through 22 rotations or being part of review panels, or just 23 being available to answer guestions, and that 24 includes people from the Regions and the Technology 25 Transfer Center, our Training Center, also.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(202) 234-4433

	76
1	National Laboratories, we've dealt with
2	four different National Laboratories. Idaho
3	National Lab has been our primary contractor. They
4	maintain the SAPHIRE model for us, and they are in
5	charge of our actual the PRA model for this
6	project.
7	Sandia National Labs has supported us
8	both in HRA area, as well as in our fire
9	exploration of the fire PRA, and also now becoming
10	heavily involved in our spent fuel pool work.
11	Pacific Northwest National Labs has led
12	our two expert elicitations, and they also have
13	been heavily involved, as you're going to hear
14	later, in the structural analysis work for our dry
15	cask storage PRA.
16	And Brookhaven National Lab is now
17	getting involved in working with us for external
18	reviews, independent reviews of the whole study, so
19	a lot of support from the labs and commercial
20	contractors.
21	Energy Research, Incorporated has been
22	our primary commercial support, and they've been
23	involved in almost all aspects, all areas of the
24	study. You're going to I think everything you're
25	going to hear about this afternoon has been
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	77
1	supported by someone in ERI. And through their
2	subcontracts we've gotten Applied Research
3	Associates, who is like I said, did this high
4	wind walkdown for us and reviewed our wind PRA. And
5	IESS has also under ERI has supported us in a
6	number of areas. Most recently they've been
7	involved heavily in our Low Power Shutdown PRA, and
8	you're going to Ali Azarm will be here to talk
9	to that also, I think, later.
10	So, again, a very broad team effort, a
11	lot of folks across the Agency and across other
12	organizations outside the Agency have been really
13	supporting this project, and tremendous thanks to
14	all of them. And that's all I have.
15	CHAIRMAN STETKAR: Anything more on
16	this? Member comments, questions? If not, let's
17	switch gears. We're behind schedule here, but
18	that's to be expected.
19	(Off microphone comments)
20	CHAIRMAN STETKAR: Turn your microphone
21	on so you're clearly on the record there.
22	Dan, please.
23	MR. HUDSON: Thank you. All right, I'll
24	do my best to make up some ground during this open
25	session presentation. So good morning, everyone.
	NEAL R. GROSS

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	78
1	I'm Dan Hudson. I'm a Reliability Risk Engineer in
2	the Office of Nuclear Regulatory Research Division
3	of Risk Analysis. It's a pleasure to be here this
4	morning. The last time are you having difficulty
5	hearing me?
6	Okay. So, it's a pleasure to be here
7	this morning. The last time I spoke before this
8	group was a bit more than five years ago. At the
9	time, I was the Project Manager for the Level 3 PRA
10	Scoping Study that preceded this project. Now I'm
11	working as the Technical Lead for two major tasks
12	for the Vogtle project. The first is the Integrated
13	Site PRA Task that I'm going to be talking more
14	about in the open and closed sessions today. The
15	second major task that I'm the Technical Lead for
16	is the Risk Characterization Task, which you heard
17	Alan mention before. And that's where we're
18	combining the outputs from the Level 1 and Level 2
19	Logic Models with the outputs from the Conditional
20	Offsite Radiological Consequences Models to develop
21	qualitative and quantitative characterizations of
22	risk.
23	Before I dive into the details of the
24	presentation, it's important to acknowledge, as
25	Alan mentioned, that while I'm going to be doing
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	79
1	much of the talking today, the work that I'm going
2	to be describing has been supported throughout by
3	our contracting team at ERI, including Roy Karimi,
4	who's sitting beside me.
5	Some caveats that I want to put out up
6	front. I had the opportunity to talk about this
7	part of the project a couple of weeks ago with our
8	Technical Advisory Group, and had some important
9	Lessons Learned from that interaction which I've
10	benefitted from.
11	The first thing I need to do is be
12	clear about where we are in this part of the
13	project, and what our expectations are for engaging
14	with the ACRS right now. Dr. Bley mentioned that
15	there's intense interest in this area across the
16	international PRA community, so people are going to
17	be looking at this project.
18	I'm not here to tell you this morning
19	that we have solved the Integrated Site Risk
20	problem. We're talking about an approach that we
21	developed that we think is practical, that's going
22	to generate some new risk insights that supports
23	one of the major objectives of this Level 3 PRA
24	project. I'm going to talk about some small-scale
25	studies that will be done to evaluate the technical
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	80
1	feasibility of this approach.
2	Alan mentioned that there's going to be
3	a lot of interest on the topic of Intersource
4	Dependencies that we think are going to be dominant
5	contributors to Integrated Site Risk, but we're not
6	going to talk a lot about that today. I expect that
7	there's going to be opportunities for future
8	engagement with our Technical Advisory Group and
9	the ACRS on that subject.
10	Another Lesson Learned from my
11	engagement with the TAG. In this open session we're
12	talking about the general approach, and we're going
13	to talk more about the pilot applications in the
14	closed session. But for the benefit of the members
15	of the public who are able to follow along during
16	the open session, I developed a simplified
17	hypothetical example that walks individuals through
18	the general approach. We learned through our
19	engagement with the TAG that talking about the
20	general approach benefits from having some concrete
21	examples that you can point to, and so there's a
22	set of supplementary slides that we could go to at
23	any point during this session, as Members desire,
24	but they're intended to be a standalone set of
25	slides that a member of the public can step through

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

81 when they get their hands on the slides and 1 the transcripts for the meeting. 2 3 All right. With all those caveats, I'll 4 start by talking about what is Integrated Site 5 Risk? What are we trying to do at this part of the project? Overall, we're trying to assess the risk 6 7 to the public of a broad spectrum of postulated 8 accidents involving the Vogtle site. That includes 9 the accidents that involve the individual onsite 10 radiological sources, the reactors, the spent fuel 11 pools, the dry cask storage facility. 12 That's an important part, but because 13 we are going to have the insights from the single 14 source PRA models, the focus of this task is really 15 on evaluating the contributions risk from accident 16 scenarios that involve different combinations of 17 more than one onsite radiological source. And here, like in other parts of the project, we're assessing 18 19 risk from broad spectrum of the а accident 20 scenarios that include those initiated by internal 21 and external hazards, except deliberate malevolent 22 acts which are excluded from the scope of the study 23 from the beginning, and also accident scenarios 24 that are initiated during at-power, low power, or 25 shutdown plant operating states. And as Level 3 PRA

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

	82
1	study, we're quantifying the frequency of nuclear
2	fuel damage accidents, accidental radiological
3	releases, and offsite radiological consequences.
4	I'd like to talk a bit about our
5	motivation for developing this approach that we're
6	talking about. First, through our experience
7	conducting some small-scale trials early on in the
8	project, we learned that trying to logically
9	combine the accident sequences from the single
10	source PRA models is not going to be feasible using
11	our existing analytical tools. So we did some
12	trials involving the SAPHIRE code where we
13	logically combined loss of offsite power accident
14	scenario from Unit 1 and Unit 2 and solving that
15	model took several hours. So we know that we need
16	to develop an approach that's going to be that's
17	going to allow us to use our existing tools to
18	develop a solution for this part of the project.
19	CHAIRMAN STETKAR: Dan, just because
20	something takes several hours given on a
21	computer which I can push a button and go home and
22	have dinner, and sleep, and come back, and check on
23	it, doesn't strike me as an impediment to doing
24	this, because you may not yes, we've all done

25 that, so there must --

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

NEAL R. GROSS

	83
1	MEMBER POWERS: Every time the code
2	blows up on me when I'm
3	CHAIRMAN STETKAR: Blowing up the code
4	is a different thing, you know. The inability of
5	the code to solve the model is something else, but
6	simply a long run time on a project like this
7	you might only have to do it once to gain a lot of
8	insights. So my question is, is it simply run time
9	on a code or is it the fact that you can't solve
10	the model?
11	MR. HUDSON: I think it's more than
12	that. I mean, these trials that we're talking
13	about, we're talking about, you know, a single two-
14	unit accident sequence. And Alan mentioned earlier
15	some of the issues that we're having with the Level
16	2 quantifying the Level 2 model where we have
17	the integration between the Level 1 and Level 2
18	models. And we're running into problems now with
19	just a single source PRA model, when you consider
20	the number of accident sequences that are involved.
21	MR. KURITZKY: And also, Dan, let me
22	further say that we're also talking that
23	previous thing with Level 2 for just the reactor, a
24	single source unit, and that was also just for
25	internal events and floods. When we throw in fire
	NEAL R. GROSS

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	84
1	and seismic, and the high winds, and then try to
2	put all the things together, let alone at-power and
3	low power shutdown, it's just not going to be
4	practical.
5	CHAIRMAN STETKAR: Okay.
6	MR. KURITZKY: And it goes beyond just
7	the quantification scheme itself. I mean, you can't
8	just throw the model you still have to do a lot
9	of work to get the dependencies represented, too.
10	CHAIRMAN STETKAR: No, no, no. I
11	understand the problem is very, very difficult. I
12	just my eyes glaze over on these big projects
13	when somebody says well, it took several hours to
14	run the computer code. Well, you know, fine. We've
15	all suffered through times when it's taken days,
16	and days, and days to finally run computer codes.
17	And, you know, that as long as the computers can
18	solve it, let it go do it.
19	But, anyway, let's hear the approach
20	here. I just don't want to use computer run time as
21	an excuse for trying to get clever about things.
22	MR. HUDSON: I understand. Thank you.
23	A second Lesson Learned is that trying
24	to use a purely deductive approach, some people
25	call it a top down approach, where you try to
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

multi-source accident 1 identify up front the 2 scenarios that are going to be important and all of the different intersource dependencies that apply 3 to different combinations of accidents involving 4 5 multiple radiological sources on the site, that the problem -- the problem 6 makes gets out of 7 control very quickly; extremely massive and we're 8 concerned that, you know, we do have, you know, schedule and resource constraints on this project. 9 10 We're concerned that trying to do that could end up 11 focusing resources on factors that may not 12 ultimately be important in the end to Integrated 13 Site Risk. So that motivated our approach to 14 developing a focused approach using single source 15 PRA models that will allow us to make some informed 16 approximations and obtain useful risk insights in 17 the end. 18 There are a couple of key assumptions 19 or hypotheses that underlie the approach that we

20 developed. The first, you've heard it a few times 21 this morning, is that the intersource dependencies 22 are likely going to be the dominant contributors to 23 Integrated Site Risk. We, therefore, anticipate 24 that the majority of our effort and resources will 25 focused identification, be on the systematic

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

characterization, and accounting for these dependencies. So, again, I expect that we'll come back and have further discussions on that topic as the project progresses.

The other key assumption is that the risk insights from the single source PRA models can be used to prioritize our efforts. A related assumption is that factors that are not important to the single source PRA models are generally not going to be significant to Integrated Site Risk, even when you do account for potential intersource dependencies for these insignificant factors.

CHAIRMAN STETKAR: I listen to this, and 13 14 I don't want to slow us down too much, but one of 15 things we've learned from the old Level the 1, 16 Level 2, Level 3 PRA is that the things that are 17 important in Level 1 PRA space often are not SO 18 important in Level 2 and Level 3. So, for example, 19 Interfacing System LOCAs, steam generator tube 20 ruptures, they kind of show up to core damage 21 frequency, but not SO much. They're reallv 22 important for Level 2, Level 3 releases.

Is there a danger of focusing on what we know about a single unit event and trying to use that as the basis for this winnowing approach akin

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

(202) 234-4433

	87
1	to that process where there may be very, very low
2	frequency things that are really, really important
3	to the risk for multi units that we don't we're
4	not particularly sensitive to when we look at a
5	single unit? I don't know. You know, I have my own
6	opinions, but I
7	MR. KURITZKY: Let me just
8	CHAIRMAN STETKAR: I'm just because
9	we've not seen this before.
10	MR. KURITZKY: Right, right.
11	CHAIRMAN STETKAR: This is kind of
12	realtime reaction.
13	MR. KURITZKY: And that's a real
14	concern, but I what I want to stress is that right
15	now while Dan is going to walk through our approach
16	for Level 1 and Level 2, the pilot approach he'll
17	discuss, of course, in detail in the closed
18	session. And so you're right; to try and base it on
19	just the Level 1 results, or even just the Level 2
20	results isn't necessarily going to give you the
21	risk you have a chance of losing some of the
22	risk, major risk contributors. But we will be doing
23	it for the we'll have single source Level 3
24	models for all in all the different sources, so
25	it will be those results as we get to that stage
	NEAL R. GROSS

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	88
1	that will be driving it. So the point is not that
2	we're using Level 1 to tell us what's important in
3	Level 3, or
4	CHAIRMAN STETKAR: No, no, no, no.
5	You're missing the point. I was using the analogy
6	of Level 1, 2, and 3, that if you focus only on
7	Level 1 you might miss stuff for Level 3. I'm
8	saying focusing only on single source, are you
9	going to miss things for multi-unit effects because
10	you're focusing only on that single unit?
11	MR. KURITZKY: Right. And so
12	CHAIRMAN STETKAR: And saying well, this
13	is not important to single units, so I'll place a
14	lower priority on it.
15	MR. KURITZKY: Right. And I think, Dan -
16	- you know, the hypothesis or assumption that Dan
17	is providing is that we feel if something is not an
18	important contributor to the single source, there
19	is not a high likelihood that it's going to
20	contribute to now, there could be something
21	CHAIRMAN STETKAR: That's my danger.
22	MR. KURITZKY: Right.
23	CHAIRMAN STETKAR: That's exactly
24	MR. KURITZKY: And there's no guarantee.
25	CHAIRMAN STETKAR: Okay.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	89
1	MR. KURITZKY: There's no guarantee, but
2	we haven't been able to postulate things that might
3	
4	CHAIRMAN STETKAR: Okay. We'll see how
5	the you know
6	MS. DROUIN: I think one of the big
7	things here that when you do start looking at your
8	dependencies, and I think that when you're looking
9	at your results from your reactor that aren't
10	important and will they play a role in the overall
11	site risk, I think that will come out when you
12	start looking at the dependencies, because how can
13	those results affect your spent fuel or your dry
14	cask? So I don't think that they're going to be
15	they aren't going to be disregarded. I think what
16	Dan is saying is that we are looking at that, and
17	our guess at this point is that once we take the
18	dependencies into consideration, they probably will
19	not be important.
20	MR. COYNE: Alan, if I could also add.
21	This is Kevin Coyne from the Research Staff.
22	I think a key factor here is what's
23	significant in the single source models, and Dan's
24	going to talk about that in a minute, but the
25	objective here is to try to trim the single source
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	90
1	models so that we can combine them together to try
2	to get to run them through SAPHIRE and get the
3	risk results. So to clarify Dan's earlier point,
4	the model running a couple of hours is of no
5	concern to us. I think the current version runs
6	overnight or even more. It's we're hitting
7	limitations in the SAPHIRE code, and any code would
8	hit the same limitations, the number of cut sets,
9	and the amount of memory you need to run the
10	models, so we absolutely have to get these single
11	source contributions trimmed down. And so really
12	the trick here, and where we really appreciate
13	feedback is what is significant in the single
14	source model relative to the Integrated Site Risk
15	portion, because we have to get the single source
16	models down and then combine them. So, like I said,
17	Dan has some screening criteria that he's worked
18	out, but that's an area that feedback would really
19	be appreciated to make sure that we're capturing
20	80, 90, or even more percent of the answer. I think
21	there's always going to be something that gets left
22	out, but we want to get the majority of the
23	insights from that.
24	MR. HUDSON: Yes. Thank you, Kevin. And
25	coupling the review of the risk insights from the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

single source PRA models with the dependencies that we'll be talking about, I think that is going to be a critical aspect of this that can help bridge that gap, or give us some confidence that we're not missing something important. And we'll talk some more about that as we step through the approach. I won't spend too much time on this

overview slide. It's meant to provide a high-level summary of the approach that we can refer back to, as needed. I'm going to be talking about each step in more detail as we step through this in this open session presentation.

13 MEMBER KIRCHNER: Does this 14 philosophical approach essentially assume in some 15 way physical separation of each of these sources, 16 bounds on that? or put some It's а leading 17 question, because I'm thinking ahead new to а 18 reactor design.

19 HUDSON: Yes. I think we'll address MR. 20 talking about your question as we start the 21 dependencies. We're not making any explicit 22 assumptions up front about the degree of separation 23 between the units on the site. That's going to be 24 an aspect that is evaluated.

So, the first step of the process is to

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

8

9

10

11

12

25

specify the scope of the multi-source PRA model. 1 2 And to do that, you have to address four different 3 PRA scope elements; the radiological sources, SO 4 which sources are going to be included in the 5 model. For the Vogtle site we have operating reactor Units 1 and 2, the operating reactor spent 6 7 fuel pools for Unit 1 and 2, and the dry cask 8 storage facility. You also have to specify the 9 plant operating states for each of the sources that 10 we're talking about, so you can think about the at-11 power and low power shutdown operating states. You 12 specify the initiating event hazard groups, and 13 we'll be looking at internal hazards, including 14 internal events, floods and fires, and the external 15 hazards, as well. And then, finally, you specify 16 the PRA end state of interest for the multi-source 17 PRA model, and you can specify that you're looking 18 at the frequency of nuclear fuel damage accidents, 19 or radiological release categories, or the offsite 20 radiological consequences. 21 figure on Slide 29 is meant The to 22 illustrate the different inputs to the Integrated 23 Site PRA Task for the Vogtle Project and the 24 relationships between them. And I put a note on

(202) 234-4433

there,

you

know,

where we

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

25

(202) 234-4433

that

bullet

have a

93 specifies all plant operating states, all hazards, 1 2 all sources, what we mean by that are those that have been selected for inclusion within the scope 3 each individual PRA model, and the overall 4 of 5 project, as well. Next slide, please. involves reviewing the results 6 Step 2 7 from the single PRA models that source are 8 providing input to the multi-source PRA model. And 9 by this, we're going to be taking a look at for 10 each end state that we're interested in, the 11 significant cut sets. And here we rely on the Level 12 large early release frequency PRA standard for 1 nuclear power plant applications for our definition 13 14 of what is considered a significant cut set. And 15 for which those cut sets the combined are 16 contribution of the set contributes greater than or 17 equal to 95 percent to total end state frequency, 18 or an individual cut set that contributes greater 19 than or equal to 1 percent to total end state frequency. 20

Now, the number of cut sets that you're going to be looking at for a particular end state depends on a number of factors, including the truncation threshold that you're using quantifying the model, but here in particular it depends on the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

	94
1	end state risk profile. So end states that have a
2	concentrated risk profile will have a limited
3	number of significant cut sets to evaluate, and
4	that actually makes the problem a bit easier for
5	us; if you have a few cut sets that are the
6	dominant contributors to end state frequency.
7	When you have end states that have a
8	diffuse risk profile it makes the problem more
9	challenging, and will require us to make some
10	decisions that balance our desire for completeness
11	with our schedule and resource constraints to get
12	the project done.
13	The set of significant cut sets are
14	then coupled with importance measure results to
15	identify other events that could be of interest
16	that may not be identified by just taking a look at
17	the dominant cut sets. Here we're using the
18	Fussell-Vesley Importance Measure, which is the
19	fractional contribution to total end state
20	frequency of cut sets that include the event of
21	interest with the criterion that Fussell-Vesley
22	measure is greater than .005. And then we're also
23	using the Risk Achievement Worth Importance
24	Measure, which is the factor by which total end
25	state frequency would increase if the event of
	NEAL R. GROSS

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	95
1	interest is assumed to occur with 100 percent
2	probability. And here the criterion is that the raw
3	importance measure value is greater than 2. Again,
4	these criteria were pulled from the Level 1 LERF
5	PRA Standard.
6	Step 3 is really a critical step for
7	this approach, and that's where we attempt to
8	systematically identify the intersource
9	dependencies that will be important. And here, this
10	is really coupled with the work that is done in
11	Step 2. So the existence of a potential intersource
12	dependency is what determines whether a significant
13	cut set that was found in the single source PRA
14	model results would contain a basic event that
15	could have a potential intersource dependency that
16	would, therefore, make that cut set one that we
17	would include in the multi-source PRA model.
18	CHAIRMAN STETKAR: Dan, to go back, and
19	we'll discuss more of this in the closed session,
20	but go back to my kind of previous theme.
21	Suppose in my documentation I wrote
0.0	

down I, today, John Stetkar, decided not to model Initiating Event X, because I don't think it's important in my single source PRA. Therefore, that was done. And, indeed, that are no cut sets in my

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

	96
1	single source PRA from Initiating Event X because I
2	didn't think it was important. And yet, lo and
3	behold, Initiating Event X might be important for
4	coupled risk. Now come in the closed session
5	I'll give you a couple of examples of those.
6	MR. HUDSON: Okay.
7	CHAIRMAN STETKAR: How can any
8	evaluation of my single source cut sets identify
9	the fact that I missed X? It can't.
10	MR. HUDSON: Well yes.
11	CHAIRMAN STETKAR: It cannot. There are
12	no cut sets there.
13	MR. KURITZKY: Okay. Dan, if I may.
14	MR. HUDSON: Yes.
15	MR. KURITZKY: Okay. So in that
16	situation clearly, once it's ruled out from the
17	single source model we're not going to catch it.
18	CHAIRMAN STETKAR: Right. So my whole
19	point is why are you focusing a lot of effort
20	looking at that single source model? Why are you
21	doing all of this one and two steps? Why don't you
22	look at intersource dependencies? What can affect
23	both of those reactor units, as the first thing?
24	MR. KURITZKY: Right.
25	CHAIRMAN STETKAR: And the primary
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	97
1	thing.
2	MR. KURITZKY: As Dan mentioned
3	previously, if we were to go right jump into
4	looking at all the intersource dependencies, you
5	could quickly get into a big quagmire, and it
6	wouldn't necessarily be
7	CHAIRMAN STETKAR: How many cut sets do
8	you have from your Level 1, 2, 3 internal events
9	at-power model, if you're looking at those cut sets
10	and examining them?
11	MR. HUDSON: Well, the internal events
12	model that we worked with for our pilot study that
13	we're talking about, it's on the order of tens of
14	thousands
15	CHAIRMAN STETKAR: Yes. Loss of offsite
16	power is an internal initiating event last I
17	checked.
18	MR. HUDSON: Right.
19	CHAIRMAN STETKAR: Four different causes
20	for loss of offsite power, grid, weather, switch
21	yard, and plant-centered. So I'm just what I'm
22	asking you is this focus on looking at cut sets
23	from a single source and somehow using that as
24	it's presented as Steps 1, 2, and 3 here
25	MR. KURITZKY: Well, it's
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	98
1	CHAIRMAN STETKAR: strikes me as not
2	a top down approach. It strikes me as a very bottom
3	up kind of mechanistic approach to looking for
4	things.
5	MR. HUDSON: Right.
6	MR. KURITZKY: Okay. So to get to your
7	point, even though there are many cut sets, what
8	our pilot studies applications are going to
9	demonstrate hopefully is that using the approach
10	that we have, we feel we can efficiently go through
11	that and come up with the insights to help us
12	identify the important dependencies to model. Okay?
13	And that's the whole premise of why we're doing
14	this approach.
15	CHAIRMAN STETKAR: We'll see. I'm just
16	trying to challenge you here in terms of your as
17	I said, we haven't seen this before.
18	MR. KURITZKY: Right.
19	CHAIRMAN STETKAR: So this is the first
20	exposure to it. Are approaching the question is,
21	are you approaching the problem with the correct
22	emphasis on things?
23	MR. KURITZKY: Right, and that's
24	hopefully the
25	CHAIRMAN STETKAR: In this slide, Number
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	99
1	3, Intersource Dependencies, but not looking at cut
2	sets seems to be the way to approach it.
3	MR. KURITZKY: Right, and that and
4	Dan's presentation is going to go into explain
5	CHAIRMAN STETKAR: Okay.
6	MR. KURITZKY: why we feel that our
7	approach is appropriate.
8	CHAIRMAN STETKAR: Okay.
9	MR. KURITZKY: But, again, as Dan
10	stated, it's not the end all and be all, and we're
11	open to other ideas.
12	But to get back to the issue that you
13	raised about something being screened out in the
14	internal event model, or single source model, and
15	then we don't know if it could be potentially
16	important to the multi-risk model. No guarantee,
17	but the thinking there is that if something is not
18	important to the single source model, which means
19	it's orders of magnitude below other things that
20	are important, okay?
21	CHAIRMAN STETKAR: I'm sorry. Orders of
22	magnitude means you quantified it and you know
23	that. I'm saying I today decided not to model it at
24	all because I didn't think it was important to my
25	single source model.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	100
1	MR. KURITZKY: Right, and
2	CHAIRMAN STETKAR: I didn't model. It's
3	not there.
4	MR. KURITZKY: Right.
5	CHAIRMAN STETKAR: It's zero.
6	MR. KURITZKY: Right, and the basis for
7	making that decision theoretically would be that
8	you have information or good reason
9	CHAIRMAN STETKAR: Okay.
10	MR. KURITZKY: to say that it's not a
11	major contributor, which means it's orders of
12	magnitude lower than the stuff you have modeled.
13	CHAIRMAN STETKAR: Okay.
14	MR. KURITZKY: And if that's the case, a
15	multi-source release is not going to be orders of
16	magnitude higher than a single source release, so
17	it should theoretically not be important to multi-
18	source release.
19	CHAIRMAN STETKAR: Okay.
20	MR. KURITZKY: And that's our
21	justification for why we feel that wouldn't be a
22	limitation of our approach.
23	CHAIRMAN STETKAR: Okay.
24	MR. HUDSON: I think your point is well
25	taken, and I think an issue here is the order in
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	101
1	which these steps are presented. When you talk
2	about looking at the cut sets from a single source
3	PRA model, it screams of a very bottom up approach,
4	as you said, but we're coupling that with a look
5	for the intersource dependencies that is more of a
6	top down kind of approach. So it's a hybrid
7	approach that leverages the advantages of both
8	approaches to developing the model. And if you
9	let's go ahead and step through, and I think
10	CHAIRMAN STETKAR: I made my point.
11	We've got to get
12	MR. HUDSON: Yes. Okay, so but this
13	framework that we're going to be talking about on
14	the next slide, we relied on a review of the
15	literature taking a look at past multi-source PRAs
16	that have been done, such as the Seabrook study
17	that was done in the '80s, and some other research
18	that has been done taking a look at operational
19	experience. You know, some work was done by one of
20	our Staff members, Suzanne Dennis, former Suzanne
21	Strayer, for her Master's thesis work under
22	Professor Mohammad Modarres at the University of
23	Maryland. They took a look at the dependencies that
24	were involved with various events associated with
25	licensee event reports. So the categorization
	NEAL R. GROSS

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	102
1	scheme that we've developed is going to be used
2	during our single source PRA model results review,
3	is driven by what we've learned from multi-unit
4	events and previous multi-source PRA models.
5	This table is intended to define the
6	five major categories of dependencies that we
7	consider to be important to developing a multi-
8	source PRA model. We define them and provided some
9	examples to clarify them. So under the category of
10	Initiating Events, and I think this is getting at
11	your question that you just raised. How do you
12	identify an initiator that is not included in the
13	single source PRA model?
14	So here we have two major groups of
15	initiators under that category. The common-cause
16	initiators that can simultaneously challenge
17	multiple sources on the site, and the consequential
18	initiators that arise from events that occur in
19	another unit that is co-located with multiple
20	sources.
21	An example of the common-cause
22	initiator is the loss of the shared electrical
23	grid, as you highlighted, or loss of ultimate heat
24	sink. A consequential initiator is a transient that
25	occurs in one reactor unit, ends up causing a loss
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

103 of offsite power to the other units on the site. 1 2 The next category of dependencies are 3 the shared structures, systems, and components. This was asked about earlier. These are the SSCs 4 5 that can support multiple sources on the site under conditions, illustrative 6 various and here an 7 example are electrical power sources that can swing 8 between different sources on the site. 9 The third category are common-cause 10 failure events. These are dependent failures of 11 structures, systems, or components across multiple 12 radiological sources due to a shared cause that are 13 not otherwise explicitly included in the model. An 14 example here are the failure of similar components 15 that are installed in each unit due to a shared 16 defect. 17 The fourth category the are 18 phenomenological dependencies, and these can arise 19 of multiple SSCs from exposure to shared 20 phenomenological or environmental conditions. Here 21 an example is the failure of components in multiple 22 to shared environmental conditions; for sources 23 high temperature levels, high moisture example, 24 levels, or radiation levels that end up exceeding

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS

the capacity of the equipment.

25

(202) 234-4433 (202) 234-4443 (202) 234-4434 (202) 234-4433 (202) 234-4433 (202) 234-4433 (202) 234-4433 (202) 234-4433 (202) 234-4433 (202) 234-4433 (202) (202) 234-4433 (202)

	104
1	And then the final category of the
2	dependencies are the human or organizational
3	dependencies. These are those dependencies between
4	operator actions associated with multiple sources
5	that can arise from many different causes,
6	including shared organizational factors. So here an
7	example could be, you know, shared training
8	procedures or command and control structure that
9	causes recovery actions in response to an accident
10	in one unit to be dependent upon those that are
11	taken in response to an accident involving another
12	unit.
13	After we've performed this review of
13 14	After we've performed this review of the single source PRA model results coupled with
14	the single source PRA model results coupled with
14 15	the single source PRA model results coupled with our dependency categorization scheme, we construct
14 15 16	the single source PRA model results coupled with our dependency categorization scheme, we construct our multi-source PRA model using top level end
14 15 16 17	the single source PRA model results coupled with our dependency categorization scheme, we construct our multi-source PRA model using top level end gates that combine our end states of interest for
14 15 16 17 18	the single source PRA model results coupled with our dependency categorization scheme, we construct our multi-source PRA model using top level end gates that combine our end states of interest for the selected radiological sources. From there we
14 15 16 17 18 19	the single source PRA model results coupled with our dependency categorization scheme, we construct our multi-source PRA model using top level end gates that combine our end states of interest for the selected radiological sources. From there we use mid-level ore gates that combine the cut sets
14 15 16 17 18 19 20	the single source PRA model results coupled with our dependency categorization scheme, we construct our multi-source PRA model using top level end gates that combine our end states of interest for the selected radiological sources. From there we use mid-level ore gates that combine the cut sets with intersource dependencies that were selected
14 15 16 17 18 19 20 21	the single source PRA model results coupled with our dependency categorization scheme, we construct our multi-source PRA model using top level end gates that combine our end states of interest for the selected radiological sources. From there we use mid-level ore gates that combine the cut sets with intersource dependencies that were selected for inclusion in the model. And then, finally, you
14 15 16 17 18 19 20 21 22	the single source PRA model results coupled with our dependency categorization scheme, we construct our multi-source PRA model using top level end gates that combine our end states of interest for the selected radiological sources. From there we use mid-level ore gates that combine the cut sets with intersource dependencies that were selected for inclusion in the model. And then, finally, you have these bottom level end gates that combine the

NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

105 model 1 model is to the intersource your 2 the "model" dependencies. And here Ι use term 3 rather loosely. What we really mean here is we 4 developed a set of rules for identifying multi-5 sets that include dependencies of source cut 6 interest, and we implement а procedure that 7 accounts for the impact of those dependencies on 8 the conditional probability, so we're not trying to 9 actually model the dependencies themselves so much 10 as we're trying to model the impact on conditional 11 probabilities. 12 approach here And the that we use 13 depends on the particular event of interest. So you 14 can imagine there are site level events that are in 15 each of the single source PRA models that represent 16 the same event across all radiological sources, so 17 it's important here that the same event applies to 18 all of the modeled radiological sources to insure 19 structure and quantification amenable the proper 20 multi-source end states cut sets are the of 21 interest. 22 events other dependent For we use а 23 different approach. We start off using a screening

different approach. We start off using a screening analysis where we assume that there is a complete dependence across the sources of interest for the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

24

25

model-dependent events, so we set the conditional 1 2 probability of the dependent event and the co-3 located sources to one given that the related 4 dependent event occurs in another source. And from 5 there we take a look at the results that emerge, 6 and for those dependencies that we find to be 7 significant, we iterate on that and attempt to 8 refine the conditional probability estimate. In doing so you can imagine that you may end up seeing 9 10 other dependencies rise to the top, and so again 11 this is going to have to be an iterative process. 12 Then the last step is quantifying the

model, so you select your multi-source end states specify of interest, а cut set probability 15 truncation level, and I mention that here because 16 we're going to talk about it more in the closed session when we take a look at the pilot studies and what we've learned. But it's important that you probability truncation have the right level: otherwise, you're going to up screening out a bunch of important sequences.

22 When I say that -- again, the next step 23 in this process is getting into the details of the 24 SAPHIRE code that we use, but this is where vou 25 have to implement the rules that I just mentioned

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

13

14

17

18

19

20

21

	107
1	to account for the dependencies when you're solving
2	the model. And then, finally, we take a look at our
3	results of interest for the multi-source cut sets
4	and the importance measures.
5	We're going to talk more about the
6	pilot applications in the closed session, but for
7	the benefit of the members of the general public
8	who are listening in, I want to just briefly
9	highlight what we did with them.
10	We conducted a couple of pilot studies
11	to evaluate the technical feasibility of
12	implementing this approach using our existing
13	analytical tools. And an important objective here
14	was to identify any potential barriers to
15	implementing this approach. We've recognized that
16	the identification and characterization of
17	intersource dependencies is important. That would
18	be true of any approach that we used, so we know
19	that that's a part of the problem that is going to
20	have to be addressed. Right now, we're concerned
21	about the technical feasibility of this approach.
22	For these two pilot studies we first
23	took a look at the reactor at-power internal events
24	Level 1 PRA for Unit 1 and Unit 2, and then the
25	second pilot study took a look at reactor at-power
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	108
1	internal events and floods Level 2 PRA. And I'll
2	mention this now but we used different versions of
3	the model, so the Level 1 PRA model that we used
4	for the first pilot study was circa April 2016 when
5	the study was done, or no, it would have been
6	February 2016; whereas, the version that we used
7	for the Level 2 pilot application, because we don't
8	have a current completed Level 2 PRA model, we used
9	a Fall 2014 version for the study.
10	MR. KURITZKY: Just to clarify
11	CHAIRMAN STETKAR: It's okay. This is a
12	work in progress, so that's fine.
13	MR. HUDSON: So, our key finding from
14	these pilot studies is that for the scoping
15	elements that we included in the pilot studies, the
16	technology that we have available to us with some
17	work-arounds that we'll talk about during the
18	closed session can be used to develop a focused
19	Integrated Site PRA model that relies on the risk
20	insights from the single source models.
21	And there's a big note at the bottom,
22	we're trying to drive this point home. These were
23	small-scale focused pilot studies that we did not
24	attempt to do a systematic comprehensive
25	identification of the intersource dependencies. And
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	109
1	that concludes the open session presentation,
2	unless we have some specific questions that we'd
3	like to address.
4	CHAIRMAN STETKAR: Any Member questions
5	on this topic? If not, there's a couple of things
6	that I need to do before we take a break.
7	First of all, if there's anyone in the
8	room who would like to make a comment, please come
9	up to the mic and do so. Seeing no stampede to the
10	microphone, I'll ask if there's anyone on the
11	bridgeline, member of the public who would like to
12	make a comment, please identify yourself and do so.
13	MR. LEWIS: Marvin Lewis, member of the
14	public.
15	CHAIRMAN STETKAR: Hello, Marvin.
16	(Off microphone comment)
17	CHAIRMAN STETKAR: Do you have a
18	comment?
19	MR. LEWIS: Yes, please.
20	CHAIRMAN STETKAR: Speak up.
21	MR. LEWIS: All right. Well, first of
22	all, you're going into closed session. You're
23	going into closed session on paperwork, not on
24	anything that you're going to buy on the open
25	market. And I'm just thinking that, you know, here
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	110
1	the public who are from the Level 3 consequence
2	CHAIRMAN STETKAR: Marvin.
3	MR. LEWIS: study are the ones that
4	are being excluded. I'm not saying that's wrong.
5	I'm saying you can get the feeling that
6	CHAIRMAN STETKAR: Marvin
7	(Simultaneous speech)
8	MR. LEWIS: that over the years I've
9	seen the NRC avoid, let's call it avoid, I don't
10	know if that's the correct legal term, but like
11	Three Mile Island Alert wanted some more security
12	on the approach to Three Mile Island. They even
13	went to I guess the ASLB with it, yes, ASLB, and
14	their comments were not in the record, and they
15	couldn't get their own comments that were pointed
16	into the record. I don't know if this is a good way
17	to do PRA work or any work.
18	I, myself, have after I got the
19	Three Mile Island Number One Restart Hearing, I
20	talked the licensee into putting an opening, a
21	filter, an opening on the Three Mile Island Number
22	One before restart. And, you know, I never see that
23	sort of question come up when you're looking at
24	anything. Hey, how can we do it better? How can we
25	maybe we do need an opening on the filter vent
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	111
1	on some of these things.
2	Well, obviously, it isn't happening. It
3	isn't going to happen for eight years. But,
4	luckily, now you've decided to do that. That's a
5	good idea. Thank you.
6	The point I'm making is you have such
7	power to look at things or ignore things, and I
8	feel your power is being used preferentially and
9	improperly. Thank you.
10	CHAIRMAN STETKAR: Thank you. And by the
11	way, I wasn't trying to interrupt you earlier. When
12	you in the early part of your comments you were
13	breaking up a little bit, so I but we I think
14	we got everything; certainly, after the first
15	minute or so we have everything on the record. So
16	when I was trying to break in, I wasn't trying to
17	stop you at all, it's just that you were breaking
18	up on our end.
19	For the record, I have to say that
20	we're going into closed session because we have to
21	do that legally. There is plant proprietary
22	information that will be presented in that closed
23	session that cannot be made public, so we can't
24	make those we can't make the closed session of
25	this meeting open to the public. It's as much as
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	112
1	I would like to, we can't. We're kind of legally
2	bound that way.
3	Are there any other members of the
4	public on the line who would like to make a
5	comment? Hearing none, to close out the public
6	session what I'd like to do, as we usually do in
7	these Subcommittee meetings, I'd like to go around
8	the table and see if any of the Subcommittee
9	Members have any final comments or questions
10	related to the open session material. Ron, I'll
11	start with you?
12	MEMBER BALLINGER: No.
13	CHAIRMAN STETKAR: Matt?
14	MEMBER SUNSERI: No comments. Thanks.
15	CHAIRMAN STETKAR: Dana? That was no.
16	Walt?
17	MEMBER KIRCHNER: Nothing. Thank you.
18	CHAIRMAN STETKAR: Jose?
19	MEMBER MARCH-LEUBA: No, I have no
20	comment.
21	CHAIRMAN STETKAR: And Joy?
22	MEMBER REMPE: I have no comments, but I
23	just wanted to thank the Staff for their
24	presentations and their efforts.
25	CHAIRMAN STETKAR: Great, and with that
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

		113
1	we will close the open session. We	will recess
2	until 10 minutes to 11, and we'll co	ome back in
3	session in closed session.	
4	(Whereupon, the proceeding	s went off
5	the record at 10:35 a.m.)	
6		
7		
8		
9		
10		
11		
12		
	NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS	
	(202) 234-4433 (202) 234-2423 (202) (202)	(202) 234-4433

Full-Scope Site Level 3 PRA

Advisory Committee on Reactor Safeguards Reliability and PRA Subcommittee

> December 13, 2016 (Open Session)

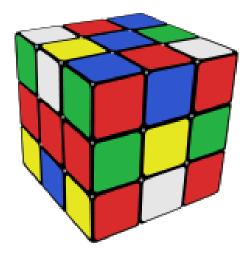
Alan Kuritzky Division of Risk Analysis Office of Nuclear Regulatory Research (301-415-1552, <u>Alan.Kuritzky@nrc.gov</u>)

Outline

- Open Session
 - Project status overview
 - Integrated Site PRA (general approach)
- Closed Session
 - Integrated Site PRA (pilot applications)
 - Low Power and Shutdown Level 1 PRA for Internal Events
 - Dry Cask Storage PRA

Level 3 PRA Project Status Overview

Advisory Committee on Reactor Safeguards Reliability and PRA Subcommittee


> December 13, 2016 (Open Session)

Alan Kuritzky Division of Risk Analysis Office of Nuclear Regulatory Research (301-415-1552, <u>Alan.Kuritzky@nrc.gov</u>)

Mary Drouin Division of Risk Analysis Office of Nuclear Regulatory Research (301-415-2091, <u>Mary.Drouin@nrc.gov</u>)

Outline of Presentation

- Reactor, at-power, internal events and floods, Level 1
- Reactor, at-power, internal events and floods, Level 2
- Reactor, at-power, internal events and floods, Level 3
- Reactor, at-power, internal fires
- Reactor, at-power, seismic events
- Reactor, at-power, high winds and other hazards
- Reactor, low power and shutdown
- Spent fuel pool
- Dry cask storage
- Integrated site
- Documentation
- Path Forward

Project Status

Combined status of model development, project reviews, and project documentation

	0% I	20% I	40% I	60% I	80% I	100% I
Rx, at-power, internal events and floods	1	I	I	I	·	
Rx, at-power, all hazards						
Rx, LPSD, all hazards						
Spent fuel pool, all hazards						
Dry cask storage, all hazards						
Integrated site						
OVERALL						

Reactor, At-Power, Internal Events and Floods, Level 1

- Completed ASME/ANS PRA standard-based peer review, led by PWR Owners Group
- Completed substantive update to address peer review and other comments
 - Internal event report essentially complete
 - Internal flood report nearing completion
- Completed expert elicitation for interfacing systems LOCA

Reactor, At-Power, Internal Events and Floods, Level 2

- Completed ASME/ANS PRA standard-based peer review, led by PWROG
- Revising model and documentation to address peer review, TAG, and other comments
 - Re-performed all MELCOR calculations and performed some new ones
 - Updating probabilistic model to reflect revised Level 1 PRA and feedback on initial Level 2 model
 - Quantification has become problematic due to sheer size of model (i.e., number of sequences)
- Complete model and handoff results to the Level 3 PRA team by late 2016/early 2017

Reactor, At-Power, Internal Events and Floods, Level 3

- Completed ASME/ANS PRA standard-based peer review, led by PWROG
- Updating model to reflect revised source terms and address peer review, TAG, and other comments
- Complete model and handoff results to the risk characterization team in Spring 2017

Reactor, At-Power, Internal Fires

- Completed initial revision of Level 1 fire PRA model and documentation based on new input from SNC
- Revising HEPs using NUREG-1921 scoping approach for fire HRA
 - Addressing internal consistency of HEPs for internal events and internal fires
 - More detailed HRA will be performed for selected HFEs, as needed
- Anticipate Level 1 model and documentation ready for technical adequacy review by early 2017

Reactor, At-Power, Seismic Events

- Completed initial revision of Level 1 seismic PRA model based on new input from SNC
- Finalizing seismic PRA report
 - Updating discussion of plant-specific seismic hazard and fragility analysis
- Anticipate Level 1 model and documentation ready for technical adequacy review by late 2016/early 2017

Reactor, At-Power, High Winds and Other Hazards

- Completed ASME/ANS PRA standard-based peer review, led by PWROG
- Currently addressing peer review and TAG comments
- Applied Research Associates high wind walkdown performed in November 2015; follow-on analyses received in October 2016
- Anticipate completion of revised models/analyses and documentation by early 2017

Reactor, Low Power and Shutdown

- Initial LPSD Level 1 PRA model for internal events is essentially complete
 - Systematic approach used to manage scope (feedback received from the TAG)
 - Recent work has focused heavily on HRA
- Model and documentation should be ready for technical adequacy review in early 2017
- Work initiated on LPSD Level 2 PRA
 - Interactions with Level 1 LPSD team
 - Discussions on HRA approach
 - Initiated work on bridge tree and PDSs
 - Developed initial MELCOR model
- Currently establishing a Phenomena Identification and Ranking Technique (PIRT) expert elicitation to identify ranked list of focus areas for LPSD PRA

Spent Fuel Pool PRA

- Many tasks are underway, but progress has been limited
- Focus so far has been primarily on:
 - Defining operating states
 - Interfaces with other analyses (i.e., dry cask storage and LPSD)
 - Thermal-hydraulic model development
 - Accident sequence modeling for large seismic events
- Reshuffling task lead and increasing contractor support to rebalance work load and accelerate progress

Dry Cask Storage PRA

- Completed initial Level 1/2/3 model and documentation for all hazards
- Revising consequence analysis to be Vogtle-specific
- Anticipate model and documentation ready for technical adequacy review by early 2017

Integrated Site PRA

- Inter-source dependencies are expected to be dominant contributors to integrated site risk
- Developed an approach for an integrated site PRA model using single-source PRA model results and risk insights to prioritize the systematic identification and modeling of inter-source dependencies
- Completed pilot applications of the approach for:
 - Reactor Units 1 & 2, at-power, internal events, Level 1 PRA
 - Reactor Units 1 & 2, at-power, internal events and floods, Level 2 PRA

Documentation – Six Types

- 1. NUREG report which contains publicly available information
- 2. Technical reports which are not publicly available
- 3. Working files (including both staff and contractor files) which are not publicly available and generally not available outside of project team
- 4. Vogtle plant information not available outside of project team
- 5. Reference sources
- 6. Project reviews (e.g., self-assessments and peer review reports)

NUREG-xxxx, "An Assessment of Site Risk for the Vogtle Electric Generating Plant, Units 1 and 2"

- Contains sufficient information to understand:
 - The technical approach
 - Major assumptions
 - Design and operation of the plant
 - Major results
 - Major insights and perspectives
 - Potential uses
 - Potential future work
- Hyper-links where practical
- Major challenges
 - The level of detail of information in the report recognizing SNC concern regarding propriety information
 - The significant amount of information what to and not to include so as not to overwhelm the reader but remain informative
 - How to represent the information in an efficient and understandable manner for a "four dimensional" PRA model that addresses multiple sources, multiple hazards, multiple operating states, and all three PRA levels
- Working with publications; for example
 - Publish individual volumes as they are completed?

TABLE OF CONTENTS NUREG-xxxx, "An Assessment of Site Risk for the Vogtle Electric Generating Plant, Units 1 and 2"

Part 1 (Volume 1)

Introduction and Summary of Approach and Plant Description

Executive Summary

- 1. Introduction
 - 1.1 Background
 - 1.2 Objectives
 - 1.3 Scope of Risk Analysis
 - 1.4 Assumptions and Limitations
 - 1.4 Structure of NUREG
- 2. Summary of Approach*
 - 2.1 Overall Approach
 - 2.2 Approach for Generic Technical Elements
 - 2.3 Reactor Risk Model
 - 2.4 Spent Fuel Pool Risk Model
 - 2.5 Dry Cask Storage Risk Model
 - 2.6 Site Risk Model
- 3. Summary of Plant Description
 - 3.1 Site
 - 3.2 Reactor Units
 - 3.3 Spent Fuel Pool
 - 3.4 Dry Cask Storage

*Approach addresses the different hazards and operating states

Part 2 (Volume 2) Summary of Results

- 4. Reactor Risk Results*
 - 4.1 Level 1
 - 4.2 Level 2
 - 4.3 Level 3
- 5. Spent Fuel Pool Risk Results*
 - 5.1 Level 1/2
 - 5.2 Level 3
- 6. Dry Cask Storage Risk Results*
 - 6.1 Level 1/2
 - 6.2 Level 3
- 7. Site Risk Results*
 - 7.1 Level 1
 - 7.2 Level 2
 - 7.3 Level 3

*Results are presented for the different hazards and operating states

> Appendices (Volume 4)

- A. Glossary
- B. Project Organization
- C. Quality Assurance
- D. Results of Independent Expert
 - **Review and Public Review**

Part 3 (Volume 3) Perspectives and Uses

8. Overall Perspectives

- Significant accident sequences
- Significant contributors
- Important design and operational features
- Significant uncertainties
- 9. Reactor Risk Perspectives*
- 10. Spent Fuel Pool Risk Results*
- 11. Dry Cask Storage Risk Results*
- 12. Site Risk Results*
- 13. Comparison to Previous Studies 13.1 Reactor Safety Study
 - 13.2 NUREG-1150
 - 13.3 IPE/IPEEE Results
- 14. NUREG-xxxx as a Resource Document
 - 14.1 Guidance for Enhancing the Technical Basis for the Use of Risk Information
 - 14.2 Guidance for Improving the PRA State-of-Practice
 - 14.3 Identifying Safety and Regulatory Improvements
 - 14.4 Supporting Knowledge Management
- 15. Potential Future Research

*Same subset of perspectives as listed for Section 8

Path Forward (1 of 2)

- Continue work in all technical areas of the study
 - Reactor, at-power, Level 1, seismic event PRA ready for technical adequacy review (late 2016/early 2017)
 - Reactor, at-power, Level 1, internal fire PRA ready for technical adequacy review (early 2017)
 - Dry cask storage, Level 1, 2, and 3 PRA ready for technical adequacy review (early 2017)
 - Reactor, LPSD, Level 1, internal event PRA ready for technical adequacy review (early 2017)
 - Complete updated reactor, at-power, Level 2, internal event and flood PRA (early 2017)

Path Forward (2 of 2)

- Continue work in all technical areas of the study (continued)
 - Complete updated reactor, at-power, Level 1, high wind PRA and other hazards analyses (early 2017)
 - Complete updated reactor, at-power, Level 3, internal event and flood PRA (Spring 2017)
- Schedule challenges
 - Diversion of key staff
 - Contractor staff availability
 - Peer reviews
 - Resolution of key technical issues

Acknowledgements

- SNC
- PWR Owners Group
- Westinghouse
- EPRI
- NSIR, NRO, NRR, NMSS, Regions, TTC
- National Laboratories (INL, SNL, PNNL, BNL)
- Commercial Contractors (ERI, ARA, IESS)

Acronyms and Definitions

ANS	American Nuclear Society
ARA	Applied Research Associates
ASME	American Society of Mechanical Engineers
BNL	Brookhaven National Laboratory
EPRI	Electric Power Research Institute
ERI	Energy Research, Inc.
HEP	Human error probability
HFE	Human failure event
HRA	Human reliability analysis
IESS	Innovative Engineering & Safety Solutions, LLC
INL	Idaho National Laboratory
LOCA	Loss of coolant accident
LPSD	Low power and shutdown
PDS	Plant damage state
PIRT	Phenomena Identification and Ranking Technique
PNNL	Pacific Northwest National Laboratory
PRA	Probabilistic risk assessment
PWROG	PWR Owners Group
SNC	Southern Nuclear Operating Company
SNL	Sandia National Laboratories
TAG	Technical Advisory Group

Level 3 PRA Project Integrated Site PRA: General Approach

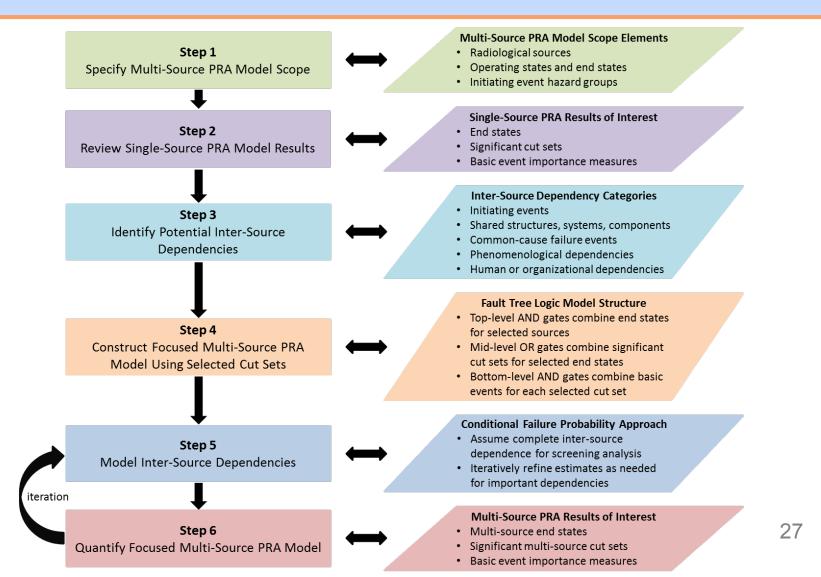
Advisory Committee on Reactor Safeguards Reliability and PRA Subcommittee

> December 13, 2016 (Open Session)

Dan Hudson Division of Risk Analysis Office of Nuclear Regulatory Research (301-415-2411, <u>Daniel.Hudson@nrc.gov</u>)

Integrated Site PRA Problem Definition

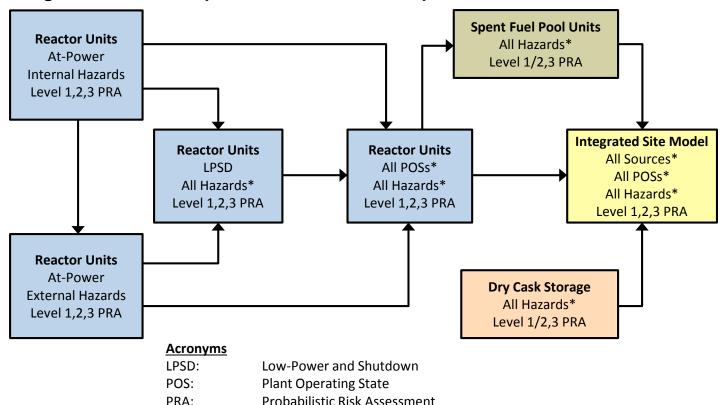
- Focuses on accident scenarios involving different combinations of more than one major on-site radiological source (i.e., reactors, spent fuel pools, dry cask storage facility).
- Assesses risks attributable to a broad spectrum of postulated accident scenarios.
 - Accident scenarios initiated by internal and external hazards, except deliberate malevolent acts.
 - Accident scenarios initiated during at-power, low-power, or shutdown plant operating states.
- Level 3 PRA considers:
 - Frequency of nuclear fuel damage accidents.
 - Frequency of accidental radiological releases.
 - Frequency of offsite radiological consequences.


Motivation for Approach

- Logically combining accident sequences from single-source PRA models is not feasible using existing analytical tools.
- Purely deductive approaches can make problem intractable and focus resources on factors that may not be important.
- We therefore need a focused approach that makes informed approximations to obtain useful insights.

Philosophy of Approach

- Inter-source dependencies will likely be dominant contributors to integrated site risk.
 - Majority of effort will thus be focused on systematically identifying and accounting for these dependencies.
- Risk insights from single-source PRA models can be used to prioritize efforts.
 - Factors not significant to single-source risk are generally not likely to be significant to integrated site risk, even when considering inter-source dependencies.


Overview of Approach

1. Specify Multi-Source PRA Model Scope

PRA Scope Element	Scoping Options			
	Operating Reactor Units (Unit 1 & Unit 2)			
Radiological Sources	Operating Reactor Spent Fuel Pools (Unit 1 & Unit 2)			
	Dry Cask Storage Facility			
Plant Operating States (POSs)	At-Power			
Plant Operating States (POSs)	Low-Power and Shutdown (LPSD)			
Initiating Event Hazard Croups	Internal Hazards (Internal Events, Floods, and Fires)			
Initiating Event Hazard Groups	External Hazards			
	Level 1: Nuclear Fuel Damage			
PRA End States	Level 2: Radiological Release Categories			
	Level 3: Offsite Radiological Consequences			

1. Specify Multi-Source PRA Model Scope

Integrated Site PRA Inputs and Interrelationships

* <u>NOTE</u>: The term "all" in this context means all factors (sources, POSs, or hazards) selected for inclusion in the scope of the project and individual PRAs that provide input to the integrated site PRA task. It does not mean that all possible factors are included within the scope of each PRA.

2. Review Single-Source PRA Results

End state significant cut sets

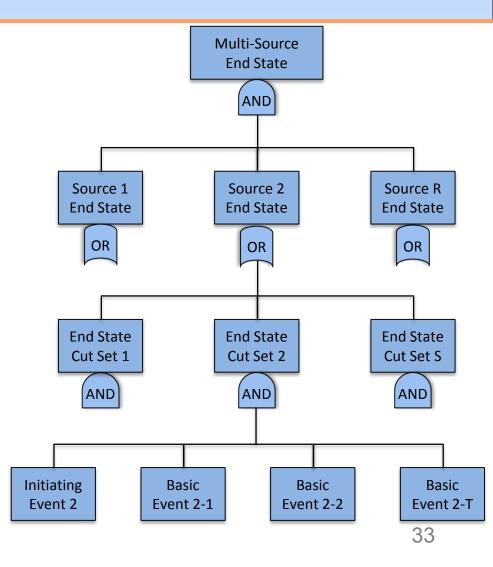
- Combined contribution ≥ 95% OR individual contribution ≥ 1% to total end state frequency.*
- Number depends on end state risk profile.
 - End states with a concentrated risk profile have a limited number of significant cut sets to evaluate.
 - End states with a diffuse risk profile may require balancing completeness with schedule and resource constraints.

End state significant basic events

- Fussell-Vesely (F-V) > 0.005.*
 - Fractional contribution to total end state frequency of cut sets that include event of interest.
- Risk Achievement Worth (RAW) > 2.*
 - Factor by which total end state frequency increases if event of interest is assumed to occur with 100% probability.

* **NOTE**: These criteria are consistent with definitions specified in the ASME/ANS *Standard for Level 1/Large Early* Release Frequency Probabilistic Risk Assessment for Nuclear Power Plant Applications.

3. Identify Inter-Source Dependencies


- Existence of a potential inter-source dependency determines whether a significant cut set or cut set containing a significant basic event is selected for inclusion in the multi-source PRA model.
 - Dependencies of interest are scenario-related causal links between basic events.
- Literature review on multi-source PRAs and operational experience involving multi-source events led to identification of five broad dependency categories.
- Categorization scheme is coupled with review of single-source PRA model results to identify cut sets that will be included in the multi-source PRA model.

3. Identify Inter-Source Dependencies

Category	Definition	Example(s)				
Initiating events						
Common-cause initiators	Initiators that simultaneously challenge multiple radiological sources.	Loss of shared electrical grid or ultimate heat sink.				
Consequential initiators	Initiators that arise from events involving another radiological source.	Transient in one reactor unit causes loss of offsite power to another unit.				
Shared SSCs	SSCs that support multiple radiological sources under various conditions.	Electrical power sources that can swing between radiological sources.				
CCF Events	Dependent failures of SSCs across multiple radiological sources due to a shared cause that are not otherwise explicitly modeled.	Failure of similar components installed in each unit due to a shared defect.				
Phenomenological Dependencies	Arise from exposure of multiple SSCs to shared phenomenological or environmental conditions.	Failure of components in multiple radiological sources due to shared environmental conditions (e.g. temperature, moisture, or radiation levels) that exceed capacity.				
Human or Organizational Dependencies	Dependencies between operator actions associated with multiple radiological sources that can arise from multiple causes, including shared organizational factors.	Shared training, procedures, or command and control structure cause recovery actions taken in response to an accident affecting one radiological source to be dependent upon those taken in response to an accident affecting another radiological source.				

4. Construct Multi-Source PRA Model

- Top-level AND gates combine end states for selected radiological sources.
- Mid-level OR gates combine cut sets with inter-source dependencies.
- Bottom-level AND gates combine basic events for selected cut sets.

5. Model Inter-Source Dependencies

- Approach depends on event of interest.
- Site-level events in each single-source PRA model that represent same event across all radiological sources.
 - Ensure same event applies to all modeled radiological sources to ensure proper structure and quantification of minimal cut sets for multi-source end states of interest.

Other dependent events:

- Screening analysis
 - Assume complete inter-source dependence for modeled dependent events (i.e., conditional probability of dependent event in co-located sources is 1.0 given event occurrence in one source).

Iteration

 Iteratively refine conditional probability estimates for dependent events that are significant contributors to multi-source end state frequency.

6. Quantify Focused Multi-Source PRA Model

- Select multi-source end states of interest.
- Specify cut set probability truncation.
- Account for modeled inter-source dependencies.
- Results of interest:
 - Significant multi-source cut sets.
 - Significant basic event importance measures.

Pilot Applications

- Purposes*
 - Evaluate technical feasibility of implementing the focused approach using existing analytical tools.
 - Identify potential barriers to implementation.
- Scope
 - Reactor, At-Power, Internal Events, Level 1 PRA
 - Reactor, At-Power, Internal Events and Floods, Level 2 PRA
- Key finding
 - For scoping options addressed in the pilot applications, available technology with workarounds can be used to efficiently develop a focused Integrated Site PRA model based on risk insights from singlesource models.

36

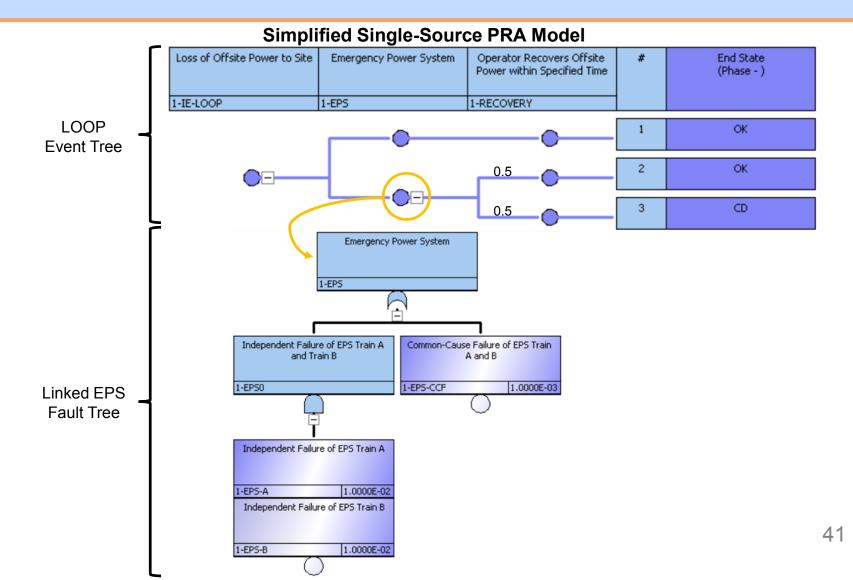
* **NOTE:** No attempt was made to comprehensively identify, characterize, and model inter-source dependencies for each of the pilot applications. Since the main purpose of the pilot applications was to evaluate the technical feasibility of implementing the focused approach using existing analytical tools, only a limited set of inter-source dependencies was identified, characterized, and modeled as part of the pilot applications.

Acronyms and Definitions

- ASME American Society of Mechanical Engineers
- ANS American Nuclear Society
- CCF Common-Cause Failure
- CD Core Damage
- EPS Emergency Power System
- F-V Fussell-Vesely
- LOOP Loss Of Offsite Power
- LPSD Low-Power and Shutdown
- POS Plant Operating State
- PRA Probabilistic Risk Assessment
- RAW Risk Achievement Worth
- SAPHIRE Systems Analysis Programs for Hands-on Integrated Reliability Evaluations
- SSC Structure, System, Component

Supplementary Information

A Simplified Hypothetical Example for Illustrating Application of the Integrated Site PRA Approach


Introduction

- Purpose
 - To illustrate application of the general Integrated Site PRA approach using a relatively simple hypothetical example.
- Simplifying Assumptions
 - A hypothetical site of interest includes only two identical operating reactor units (Unit 1 & Unit 2).
 - A loss of offsite power (LOOP) is the only initiating event that can result in reactor core damage.
 - Each unit includes two Emergency Power System (EPS) trains (Train A and Train B). Each individual train is capable of providing electrical power to critical safety systems needed to prevent reactor core damage.

1. Specify Multi-Source PRA Model Scope

- Radiological sources
 - Operating reactor units (Unit 1 & Unit 2)
- Plant operating states
 - At-power
- Initiating event hazard groups
 - Internal events
 - Simplified LOOP scenario for illustrative purposes
- PRA end states
 - Reactor core damage

2. Review Single-Source PRA Results

2. Review Single-Source PRA Results

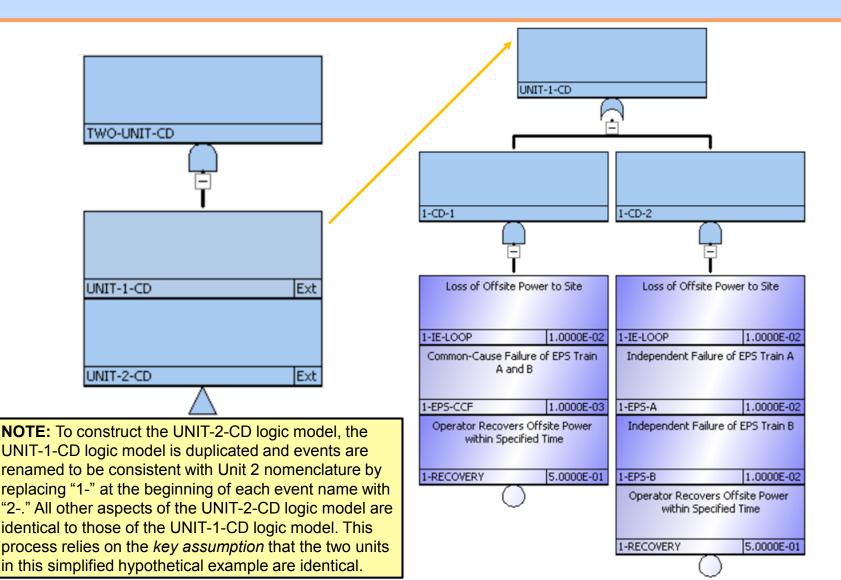
End State Significant Cut Sets

Cut Set No.	Prob/Freq	Total %	Cut Set Event	Event Description	
	6.E-06	100		Reactor Core Damage	
1	5.E-06	91	Loss of Offsite Po	ower Core Damage Sequence	
	1.E-02		1-IE-LOOP	Loss of Offsite Power to Site	
	1.E-03		1-EPS-CCF	Common-Cause Failure of EPS Train A and B	
	5.E-01		1-RECOVERY	ERY Operator Recovers Offsite Power within Specified Time	
2	5.E-07	9	Loss of Offsite Power Core Damage Sequence		
	1.E-02		1-IE-LOOP	Loss of Offsite Power to Site	
	1.E-02		EPS-A	Independent Failure of EPS Train A	
	1.E-02		EPS-B	Independent Failure of EPS Train B	
	5.E-01		1-RECOVERY	Operator Recovers Offsite Power within Specified Time	

End State Significant Basic Events

Event	Event Description	Prob/Freq	F-V	RAW
1-IE-LOOP	Loss of Offsite Power to Site	1.E-02	1.E+00	1.E+02
1-RECOVERY	Operator Recovers Offsite Power within Specified Time	5.E-01	1.E+00	2.E+00
1-EPS-CCF	Common-Cause Failure of EPS Train A and B	1.E-03	9.E-01	9.E+02
1-EPS-A	Independent Failure of EPS Train A	1.E-02	9.E-02	1.E+01
1-EPS-B	Independent Failure of EPS Train B	1.E-02	9.E-02	1.E+01

NOTE: Fussell-Vesely (F-V) and Risk Achievement Worth (RAW) importance measure results highlighted in green indicate those that satisfy one or both of the following criteria used to identify significant basic events:


- F-V > 0.005
- RAW > 2

3. Identify Inter-Source Dependencies

- Initiating events
 - LOOP impacts both Unit 1 and Unit 2.
- Shared structures, systems, components (SSCs)
 - Assumed to not apply to this simplified hypothetical example.
- Common-cause failure (CCF) events
 - EPS Train A and Train B fail due to shared cause in both Unit 1 and Unit 2.
- Phenomenological dependencies
 - Assumed to not apply to this simplified hypothetical example.
- Human or organizational dependencies
 - Operator recovery of offsite power within specified time impacts both Unit 1 and Unit 2.

IMPORTANT CAVEAT: Consistent with its intended purpose, this simplified hypothetical example does not address all potential inter-source dependencies that would need to be considered in performing an Integrated Site PRA for a commercial nuclear power plant site.

4. Construct Multi-Source PRA Model

44

5. Model Inter-Source Dependencies

- Treatment of site-level events: Needed to ensure proper structure and quantification of minimal cut sets.
 - LOOP initiating event: If Unit 1 and Unit 2 LOOP initiating events jointly occur in same cut set, remove Unit 2 LOOP.
 - Operator recovery of offsite power: If Unit 1 and Unit 2 recovery actions jointly occur in same cut set, remove Unit 2 recovery action.
 - Treatment of inter-source CCF events
 - CCF of EPS Train A and B: If Unit 1 and Unit 2 CCF of EPS Train A and B jointly occur in same cut set, replace Unit 2 CCF event with a factor that represents the conditional probability of the CCF event occurring in Unit 2, given that the CCF event occurred in Unit 1.

6. Quantify Focused Multi-Source PRA Model

Case 1: Independent Case (Truncation = 1E-16)

	Prob/Freq	Total %	Cut Set
	3.E-11	100	
1	3.E-11	83	1-IE-LOOP 1-EPS-CCF, 1-RECOVERY 2-IE-LOOP 2-EPS-CCF, 2-RECOVERY
2	3.E-12	8	1-IE-LOOP,1-EPS-CCF,1-RECOVERY,2-IE-LOOP,2-EPS-A,2-EPS-B,2-RECOVERY
3	3.E-12	8	1-IE-LOOP,1-EPS-A,1-EPS-B,1-RECOVERY,2-IE-LOOP,2-EPS-CCF,2-RECOVERY
4	3.E-13	1	1-IE-LOOP,1-EPS-A,1-EPS-B,1-RECOVERY,2-IE-LOOP,2-EPS-A,2-EPS-B,2-RECOVERY

NOTE 1: Case 1 assumes Unit 1 and Unit 2 are completely independent to provide a reference point for comparison with Case 2, which assumes complete inter-source dependence. While multiplying two LOOP initiating event frequencies is mathematically incorrect, this practice provides a conservative estimate of the frequency of Unit 1 and Unit 2 *independently* experiencing a LOOP within the specified mission time, given that Unit 1 or Unit 2 experienced a LOOP.

Case 2: Complete Dependence Case (Truncation = 1E-16)

Cut Set No.	Prob/Freq	Total %	Cut Set
	5.E-06	100	
1	5.E-06	100	1-IE-LOOP, 1-EPS-CCF, 1-RECOVERY, EPS-FACTOR
2	5.E-10	< 0.01	1-IE-LOOP, 1-EPS-A, 1-EPS-B, 2-EPS-CCF, 1-RECOVERY
3	5.E-10	< 0.01	1-IE-LOOP, 1-EPS-CCF, 2-EPS-A, 2-EPS-B, 1-RECOVERY
4	5.E-11	< 0.01	1-IE-LOOP, 1-EPS-A, 1-EPS-B, 2-EPS-A, 2-EPS-B, 1-RECOVERY

NOTE 2: Assuming complete dependence has two main impacts on the two-unit core damage results:

• The frequency of two-unit core damage events increases by several orders of magnitude.

• Results are completely dominated by a LOOP scenario in which CCF of EPS Train A and Train B occurs in both units, with the assumption that CCF of EPS Train A and Train B in either unit implies CCF of both trains in both units.

6. Quantify Focused Multi-Source PRA Model

Case 2: Importance Measure Results

Event	Event Description	Prob/Freq	F-V	RAW
1-IE-LOOP	Loss of Offsite Power to Site	1.E-02	1.E+00	1.E+02
1-RECOVERY	Operator Recovers Offsite Power within Specified Time	5.E-01	1.E+00	2.E+00
1-EPS-CCF	Common-Cause Failure of EPS Train A and B	1.E-03	1.E+00	1.E+03
EPS-FACTOR	Probability of EPS Train A & B in Unit 2 Failing Given CCF Failure of EPS Train A & B in Unit 1	1.E+00	1.E+00	1 E+00
1-EPS-A	Independent Failure of EPS Train A	1.E-02	1.E-04	1.E+00
1-EPS-B	Independent Failure of EPS Train B	1.E-02	1.E-04	1.E+00
2-EPS-A	Independent Failure of EPS Train A	1.E-02	1.E-04	1.E+00
2-EPS-B	Independent Failure of EPS Train B	1.E-02	1.E-04	1.E+00
2-EPS-CCF	Common-Cause Failure of EPS Train A and B	1.E-03	1.E-04	1.E+00

NOTE: The factor that represents the conditional probability of a CCF of EPS Train A and Train B occurring in Unit 2, given that this CCF event occurred in Unit 1 (EPS-FACTOR) appears as a significant basic event with a F-V importance measure value of 1 (F-V > 0.005). This is based on the *key assumption* of complete inter-source dependence, which is consistent with the screening analysis step outlined in the general Integrated Site PRA approach. In practice, this step would be followed by subsequent analyses in which the conditional probability estimate that EPS-FACTOR represents would be iteratively refined until reasonable estimates are obtained for inter-source dependency factors that are determined to be significant contributors to multi-source end state frequency, recognizing that the set of significant inter-source dependency factors can change as conditional probability estimates are iteratively refined.