

APP B-10

Map Sheet Location

MAP L	EGEND	MAP INFORMATION
Area of Interest (AOI)Image: Area of Interest (AOI)SoilsImage: Soil Map Unit PolygonsImage: Soil Map Unit PolygonsImage: Soil Map Unit PointsSpecial Fort FeaturesImage: Special PolygontImage: Polygon	EGEND Spoil Area Story Spot Story Story Spot Wet Spot Net Spot Net Spot Spocial Line Features Storeans and Canals Transport FFF Rails Storatter Highways Storatter Highways Storatter Brade Storatter Stores Sto	<section-header><section-header><text><text><text><text><text><text><text></text></text></text></text></text></text></text></section-header></section-header>
 Severely Eroded Spot Sinkhole Slide or Slip Sodic Spot 		Soil map units are labeled (as space allows) for map scales 1:50,000 or larger. Date(s) aerial images were photographed: Data not available. The orthophoto or other base map on which the soil lines were
		compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

	Andrews County, Texas (TX003)										
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI								
ВсВ	Blakeney and Conger soils, gently undulating	795.1	28.6%								
FdB	Faskin and Douro soils, gently undulating	40.8	1.5%								
ImB	Ima loamy fine sand, 0 to 3 percent slopes	61.8	2.2%								
JPC	Jalmar-Penwell association, undulating	907.7	32.6%								
KmB	Kimbrough soils, gently undulating	21.2	0.8%								
RaB	Ratliff soils, gently undulating	342.7	12.3%								
ТwB	Triomas and Wickett soils, gently undulating	109.6	3.9%								
Subtotals for Soil Survey Are	a	2,278.8	82.0%								
Totals for Area of Interest		2,780.3	100.0%								

Lea County, New Mexico (NM025)										
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI							
АВ	Amarillo-Arvana loamy fine sands association	12.5	0.5%							
во	Brownfield-Springer association	47.5	1.7%							
BS	Brownfield-Springer association, hummocky	134.3	4.8%							
КМ	Kermit soils and dune land, 0 to 12 percent slopes	11.5	0.4%							
MU	Mixed alluvial land	19.4	0.7%							
PG	Portales and gomez fine sandy loams	17.9	0.6%							
SE	Simona fine sandy loam, 0 to 3 percent slopes	117.0	4.2%							
SR	Simona-Upton association	141.3	5.1%							
Subtotals for Soil Survey Area		501.5	18.0%							
Totals for Area of Interest		2,780.3	100.0%							

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Andrews County, Texas

BcB—Blakeney and Conger soils, gently undulating

Map Unit Setting

National map unit symbol: d53f Elevation: 1,500 to 3,600 feet Mean annual precipitation: 10 to 17 inches Mean annual air temperature: 63 to 68 degrees F Frost-free period: 210 to 240 days Farmland classification: Not prime farmland

Map Unit Composition

Blakeney and similar soils: 49 percent Conger and similar soils: 47 percent Minor components: 4 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Blakeney

Setting

Landform: Ridges, divides Landform position (two-dimensional): Summit Down-slope shape: Convex Across-slope shape: Convex, linear Parent material: Loamy eolian deposits in the blackwater draw formation of

pleistocene age overlying calcareous loamy alluvium in the ogallala formation of miocene-pliocene age

Typical profile

H1 - 0 to 18 inches: fine sandy loam H2 - 18 to 32 inches: cemented material H3 - 32 to 68 inches: gravelly loam

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: 7 to 20 inches to petrocalcic
Natural drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.57 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum in profile: 70 percent
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Available water storage in profile: Very low (about 2.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6e Hydrologic Soil Group: D Ecological site: Shallow 12-17" PZ (R077DY048TX)

Description of Conger

Setting

Landform: Ridges, divides

Landform position (two-dimensional): Summit

Down-slope shape: Convex

Across-slope shape: Convex, linear

Parent material: Loamy eolian deposits in the blackwater draw formation of pleistocene age overlying calcareous loamy alluvium in the ogallala formation of miocene-pliocene age

Typical profile

H1 - 0 to 17 inches: loam

H2 - 17 to 39 inches: cemented material

H3 - 39 to 75 inches: gravelly loam

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: 8 to 20 inches to petrocalcic
Natural drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.57 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum in profile: 70 percent
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Available water storage in profile: Very low (about 2.9 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6e Hydrologic Soil Group: D Ecological site: Shallow 12-17" PZ (R077DY048TX)

Minor Components

Unnamed

Percent of map unit: 4 percent

FdB—Faskin and Douro soils, gently undulating

Map Unit Setting

National map unit symbol: d53h Elevation: 2,750 to 3,400 feet Mean annual precipitation: 13 to 17 inches Mean annual air temperature: 57 to 70 degrees F Frost-free period: 210 to 240 days Farmland classification: Not prime farmland

Map Unit Composition

Faskin and similar soils: 63 percent *Douro and similar soils:* 21 percent *Minor components:* 16 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Faskin

Setting

Landform: Plains Down-slope shape: Convex Across-slope shape: Linear Parent material: Loamy eolian deposits from the blackwater draw formation of pleistocene age

Typical profile

H1 - 0 to 8 inches: fine sandy loam
H2 - 8 to 42 inches: sandy clay loam
H3 - 42 to 80 inches: sandy clay loam

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.57 to 1.98 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum in profile: 50 percent
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Available water storage in profile: Moderate (about 8.5 inches)

Interpretive groups

Land capability classification (irrigated): 3e Land capability classification (nonirrigated): 4e Hydrologic Soil Group: B Ecological site: Sandy Loam 12-17" PZ (R077DY047TX)

Description of Douro

Setting

Landform: Plains Down-slope shape: Convex Across-slope shape: Linear Parent material: Loamy eolian deposits in the blackwater draw formation of pleistocene age overlying calcareous loamy alluvium in the ogallala formation of miocene-pliocene age

Typical profile

H1 - 0 to 9 inches: fine sandy loam

- H2 9 to 30 inches: sandy clay loam
- H3 30 to 51 inches: cemented material
- H4 51 to 75 inches: gravelly loam

Properties and qualities

Slope: 0 to 3 percent

Custom Soil Resource Report

Depth to restrictive feature: 20 to 40 inches to petrocalcic
Natural drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.57 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum in profile: 80 percent
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Available water storage in profile: Low (about 4.3 inches)

Interpretive groups

Land capability classification (irrigated): 3e Land capability classification (nonirrigated): 4e Hydrologic Soil Group: C Ecological site: Sandy Loam 12-17" PZ (R077DY047TX)

Minor Components

Unnamed

Percent of map unit: 16 percent

ImB—Ima loamy fine sand, 0 to 3 percent slopes

Map Unit Setting

National map unit symbol: d53j Elevation: 4,000 to 4,600 feet Mean annual precipitation: 12 to 17 inches Mean annual air temperature: 57 to 63 degrees F Frost-free period: 180 to 210 days Farmland classification: Not prime farmland

Map Unit Composition

Ima and similar soils: 100 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Ima

Setting

Landform: Plains Down-slope shape: Convex Across-slope shape: Linear Parent material: Sandy alluvium and eolian deposits derived from calcareous sandstone of triassic and/or permian age

Typical profile

H1 - 0 to 14 inches: loamy fine sand

- H2 14 to 55 inches: fine sandy loam
- H3 55 to 80 inches: very fine sandy loam

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.57 to 1.98 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum in profile: 15 percent
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum in profile: 4.0
Available water storage in profile: Moderate (about 7.1 inches)

Interpretive groups

Land capability classification (irrigated): 4e Land capability classification (nonirrigated): 6c Hydrologic Soil Group: A Ecological site: Sandy 12-17" PZ (R077DY046TX)

JPC—Jalmar-Penwell association, undulating

Map Unit Setting

National map unit symbol: d53k Elevation: 2,400 to 3,500 feet Mean annual precipitation: 10 to 17 inches Mean annual air temperature: 61 to 70 degrees F Frost-free period: 210 to 240 days Farmland classification: Not prime farmland

Map Unit Composition

Jalmar and similar soils: 56 percent Penwell and similar soils: 40 percent Minor components: 4 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Jalmar

Setting

Landform: Sand sheets Down-slope shape: Convex Across-slope shape: Linear Parent material: Sandy eolian deposits of holocene age over loamy eolian deposits from the blackwater draw formation of pleistocene age

Typical profile

H1 - 0 to 14 inches: fine sand H2 - 14 to 26 inches: fine sand H3 - 26 to 80 inches: sandy clay loam

Properties and qualities

Slope: 0 to 8 percent

Depth to restrictive feature: More than 80 inches Natural drainage class: Well drained Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.57 to 1.98 in/hr) Depth to water table: More than 80 inches Frequency of flooding: None Frequency of ponding: None Calcium carbonate, maximum in profile: 25 percent Available water storage in profile: Low (about 6.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6e Hydrologic Soil Group: B Ecological site: Sandy 12-17" PZ (R077DY046TX)

Description of Penwell

Setting

Landform: Sand sheets Down-slope shape: Convex Across-slope shape: Linear Parent material: Sandy eolian deposits of holocene age

Typical profile

H1 - 0 to 13 inches: fine sand *H2 - 13 to 80 inches:* fine sand

Properties and qualities

Slope: 1 to 8 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Excessively drained
Capacity of the most limiting layer to transmit water (Ksat): High to very high (5.95 to 19.98 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Available water storage in profile: Low (about 3.6 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7e Hydrologic Soil Group: A Ecological site: Sand Hills 12-17" PZ (R077DY045TX)

Minor Components

Unnamed

Percent of map unit: 4 percent

KmB—Kimbrough soils, gently undulating

Map Unit Setting

National map unit symbol: d53I Elevation: 2,000 to 5,000 feet Mean annual precipitation: 10 to 17 inches Mean annual air temperature: 57 to 75 degrees F Frost-free period: 175 to 215 days Farmland classification: Not prime farmland

Map Unit Composition

Kimbrough and similar soils: 100 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Kimbrough

Setting

Landform: Plains Down-slope shape: Convex Across-slope shape: Linear Parent material: Calcareous, loamy alluvium in the ogallala formation of miocenepliocene age

Typical profile

H1 - 0 to 8 inches: loam H2 - 8 to 31 inches: cemented material

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: 4 to 20 inches to petrocalcic
Natural drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.57 to 1.98 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum in profile: 10 percent
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Available water storage in profile: Very low (about 1.2 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7s Hydrologic Soil Group: D Ecological site: Shallow 12-17" PZ (R077DY048TX)

RaB—Ratliff soils, gently undulating

Map Unit Setting

National map unit symbol: d53s Elevation: 2,500 to 3,400 feet Mean annual precipitation: 13 to 17 inches Mean annual air temperature: 63 to 70 degrees F Frost-free period: 210 to 240 days Farmland classification: Not prime farmland

Map Unit Composition

Ratliff and similar soils: 100 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Ratliff

Setting

Landform: Plains Down-slope shape: Convex Across-slope shape: Linear Parent material: Calcareous, loamy eolian deposits from the blackwater draw formation of pleistocene age

Typical profile

H1 - 0 to 10 inches: loam *H2 - 10 to 25 inches:* clay loam *H3 - 25 to 80 inches:* clay loam

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.57 to 1.98 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum in profile: 50 percent
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Available water storage in profile: Moderate (about 8.5 inches)

Interpretive groups

Land capability classification (irrigated): 3e Land capability classification (nonirrigated): 4e Hydrologic Soil Group: B Ecological site: Limy Upland 12-17" PZ (R077DY042TX)

TwB—Triomas and Wickett soils, gently undulating

Map Unit Setting

National map unit symbol: d53w Elevation: 2,300 to 3,500 feet Mean annual precipitation: 10 to 17 inches Mean annual air temperature: 63 to 68 degrees F Frost-free period: 210 to 240 days Farmland classification: Not prime farmland

Map Unit Composition

Triomas and similar soils: 78 percent *Wickett and similar soils:* 16 percent *Minor components:* 6 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Triomas

Setting

Landform: Plains Down-slope shape: Convex Across-slope shape: Linear Parent material: Sandy eolian deposits from the blackwater draw formation of pleistocene age

Typical profile

H1 - 0 to 16 inches: fine sand H2 - 16 to 68 inches: sandy clay loam H3 - 68 to 80 inches: sandy clay loam

Properties and qualities

Slope: 0 to 5 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.57 to 1.98 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum in profile: 30 percent
Available water storage in profile: Moderate (about 7.5 inches)

Interpretive groups

Land capability classification (irrigated): 4e Land capability classification (nonirrigated): 6e Hydrologic Soil Group: B Ecological site: Sandy 12-17" PZ (R077DY046TX)

Description of Wickett

Setting

Landform: Plains

Landform position (three-dimensional): Talf

Down-slope shape: Convex

Across-slope shape: Linear

Parent material: Sandy eolian deposits overlying calcareous, loamy alluvium in the ogallala formation of miocene-pliocene age

Typical profile

H1 - 0 to 16 inches: loamy fine sand
H2 - 16 to 33 inches: fine sandy loam
H3 - 33 to 53 inches: cemented material
H4 - 53 to 67 inches: gravelly loam

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: 20 to 40 inches to petrocalcic
Natural drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.57 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum in profile: 85 percent
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Available water storage in profile: Low (about 3.5 inches)

Interpretive groups

Land capability classification (irrigated): 4e Land capability classification (nonirrigated): 6e Hydrologic Soil Group: B Ecological site: Sandy 12-17" PZ (R077DY046TX)

Minor Components

Unnamed

Percent of map unit: 6 percent

Lea County, New Mexico

AB—Amarillo-Arvana loamy fine sands association

Map Unit Setting

National map unit symbol: dmnr Elevation: 3,500 to 4,400 feet Mean annual precipitation: 12 to 16 inches Mean annual air temperature: 58 to 60 degrees F Frost-free period: 190 to 205 days Farmland classification: Farmland of statewide importance

Map Unit Composition

Amarillo and similar soils: 50 percent Arvana and similar soils: 40 percent Minor components: 10 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Amarillo

Setting

Landform: Plains Landform position (three-dimensional): Rise Down-slope shape: Linear Across-slope shape: Linear Parent material: Calcareous alluvium and/or calcareous eolian deposits derived from sedimentary rock

Typical profile

A - 0 to 8 inches: loamy fine sand Bt - 8 to 36 inches: sandy clay loam Bk - 36 to 60 inches: marly loam

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum in profile: 50 percent
Gypsum, maximum in profile: 1 percent
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum in profile: 2.0
Available water storage in profile: Moderate (about 8.7 inches)

Interpretive groups

Land capability classification (irrigated): 4e Land capability classification (nonirrigated): 4e Hydrologic Soil Group: B Ecological site: Sandy Plains (R077CY056NM)

Description of Arvana

Setting

Landform: Plains Landform position (three-dimensional): Rise Down-slope shape: Linear Across-slope shape: Linear Parent material: Calcareous alluvium and/or calcareous eolian deposits derived from sedimentary rock

Typical profile

A - 0 to 6 inches: loamy fine sand Bt - 6 to 28 inches: sandy clay loam Bkm - 28 to 38 inches: cemented material BCk - 38 to 60 inches: sandy clay loam

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: 20 to 40 inches to petrocalcic
Natural drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): Low to moderately high (0.01 to 0.60 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum in profile: 50 percent
Gypsum, maximum in profile: 1 percent
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum in profile: 2.0
Available water storage in profile: Low (about 3.8 inches)

Interpretive groups

Land capability classification (irrigated): 6e Land capability classification (nonirrigated): 6e Hydrologic Soil Group: C Ecological site: Sandy Plains (R077CY056NM)

Minor Components

Portales

Percent of map unit: 2 percent Ecological site: Limy Upland 16-21" PZ (R077CY028TX)

Brownfield

Percent of map unit: 2 percent *Ecological site:* Sandy 12-17" PZ (R077DY046TX)

Patricia

Percent of map unit: 2 percent Ecological site: Sandy Plains (R077CY056NM)

Gomez

Percent of map unit: 2 percent *Ecological site:* Sandy Plains (R077CY056NM)

Mansker

Percent of map unit: 1 percent

Ecological site: Limy Upland 16-21" PZ (R077CY028TX)

Tivoli

Percent of map unit: 1 percent Ecological site: Sandy 12-17" PZ (R077DY046TX)

BO—Brownfield-Springer association

Map Unit Setting

National map unit symbol: dmpj Elevation: 3,500 to 4,400 feet Mean annual precipitation: 12 to 16 inches Mean annual air temperature: 58 to 60 degrees F Frost-free period: 190 to 205 days Farmland classification: Farmland of statewide importance

Map Unit Composition

Brownfield and similar soils: 60 percent Springer and similar soils: 30 percent Minor components: 10 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Brownfield

Setting

Landform: Plains Landform position (three-dimensional): Rise Down-slope shape: Linear Across-slope shape: Linear Parent material: Eolian deposits derived from sedimentary rock

Typical profile

A - 0 to 22 inches: fine sand Bt - 22 to 60 inches: sandy clay loam

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Well drained
Runoff class: Very low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum in profile: 2.0
Available water storage in profile: Moderate (about 7.0 inches)

Interpretive groups

Land capability classification (irrigated): 6e Land capability classification (nonirrigated): 6e Hydrologic Soil Group: B Ecological site: Sandy 12-17" PZ (R077DY046TX)

Description of Springer

Setting

Landform: Plains Landform position (three-dimensional): Rise Down-slope shape: Linear Across-slope shape: Linear Parent material: Eolian deposits derived from sedimentary rock

Typical profile

A - 0 to 14 inches: loamy fine sand *Bt - 14 to 60 inches:* fine sandy loam *Bk - 60 to 79 inches:* fine sandy loam

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Well drained
Runoff class: Very low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 6.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum in profile: 20 percent
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum in profile: 2.0
Available water storage in profile: Moderate (about 7.1 inches)

Interpretive groups

Land capability classification (irrigated): 4e Land capability classification (nonirrigated): 4e Hydrologic Soil Group: A Ecological site: Sandy 12-17" PZ (R077DY046TX)

Minor Components

Patricia

Percent of map unit: 4 percent Ecological site: Sandy Plains (R077CY056NM)

Amarillo

Percent of map unit: 4 percent Ecological site: Sandy 16-21" PZ (R077CY035TX)

Tivoli

Percent of map unit: 1 percent Ecological site: Sandy 12-17" PZ (R077DY046TX)

Gomez

Percent of map unit: 1 percent *Ecological site:* Sandy Plains (R077CY056NM)

BS—Brownfield-Springer association, hummocky

Map Unit Setting

National map unit symbol: dmpk Elevation: 3,500 to 4,400 feet Mean annual precipitation: 12 to 16 inches Mean annual air temperature: 58 to 60 degrees F Frost-free period: 190 to 205 days Farmland classification: Farmland of statewide importance

Map Unit Composition

Brownfield and similar soils: 65 percent Springer and similar soils: 25 percent Minor components: 10 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Brownfield

Setting

Landform: Plains Landform position (three-dimensional): Rise Down-slope shape: Linear Across-slope shape: Linear Parent material: Eolian deposits derived from sedimentary rock

Typical profile

A - 0 to 22 inches: fine sand Bt - 22 to 60 inches: sandy clay loam

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Well drained
Runoff class: Very low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum in profile: 2.0
Available water storage in profile: Moderate (about 7.0 inches)

Interpretive groups

Land capability classification (irrigated): 6e Land capability classification (nonirrigated): 6e Hydrologic Soil Group: B Ecological site: Sandy 12-17" PZ (R077DY046TX)

Description of Springer

Setting

Landform: Plains Landform position (three-dimensional): Rise Down-slope shape: Linear Across-slope shape: Linear Parent material: Eolian deposits derived from sedimentary rock

Typical profile

A - 0 to 7 inches: loamy fine sand Bt - 7 to 60 inches: fine sandy loam Bk - 60 to 79 inches: fine sandy loam

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Well drained
Runoff class: Very low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 6.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum in profile: 20 percent
Gypsum, maximum in profile: 1 percent
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum in profile: 2.0
Available water storage in profile: Moderate (about 7.4 inches)

Interpretive groups

Land capability classification (irrigated): 4e Land capability classification (nonirrigated): 4e Hydrologic Soil Group: A Ecological site: Sandy 12-17" PZ (R077DY046TX)

Minor Components

Amarillo

Percent of map unit: 4 percent Ecological site: Sandy 16-21" PZ (R077CY035TX)

Arvana

Percent of map unit: 3 percent Ecological site: Sandy 16-21" PZ (R077CY035TX)

Tivoli

Percent of map unit: 2 percent Ecological site: Sandy 12-17" PZ (R077DY046TX)

Dune land

Percent of map unit: 1 percent

KM—Kermit soils and dune land, 0 to 12 percent slopes

Map Unit Setting

National map unit symbol: dmpx Elevation: 3,000 to 4,400 feet Mean annual precipitation: 10 to 15 inches Mean annual air temperature: 60 to 62 degrees F Frost-free period: 190 to 205 days Farmland classification: Not prime farmland

Map Unit Composition

Dune land: 45 percent Kermit and similar soils: 45 percent Minor components: 10 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Kermit

Setting

Landform: Dunes Landform position (two-dimensional): Shoulder, backslope, footslope Landform position (three-dimensional): Side slope Down-slope shape: Convex, linear, concave Across-slope shape: Convex Parent material: Calcareous sandy eolian deposits derived from sedimentary rock

Typical profile

A - 0 to 8 inches: fine sand C - 8 to 60 inches: fine sand

Properties and qualities

Slope: 5 to 12 percent Depth to restrictive feature: More than 80 inches Natural drainage class: Excessively drained Runoff class: Very low Capacity of the most limiting layer to transmit water (Ksat): Very high (20.00 in/hr) Depth to water table: More than 80 inches Frequency of flooding: None Frequency of ponding: None Calcium carbonate, maximum in profile: 3 percent Gypsum, maximum in profile: 1 percent Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm) Sodium adsorption ratio, maximum in profile: 2.0 Available water storage in profile: Low (about 3.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7e Hydrologic Soil Group: A Ecological site: Sandhills (R042XC022NM)

Description of Dune Land

Setting

Landform: Dunes Landform position (two-dimensional): Shoulder, backslope, footslope Landform position (three-dimensional): Side slope Down-slope shape: Convex, linear, concave Across-slope shape: Convex

Typical profile

A - 0 to 6 inches: fine sand C - 6 to 60 inches: fine sand

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 8e Hydrologic Soil Group: A

Minor Components

Palomas

Percent of map unit: 3 percent Ecological site: Loamy Sand (R042XC003NM)

Pyote

Percent of map unit: 3 percent Ecological site: Loamy Sand (R042XC003NM)

Maljamar

Percent of map unit: 2 percent Ecological site: Loamy Sand (R042XC003NM)

Wink

Percent of map unit: 2 percent Ecological site: Loamy Sand (R042XC003NM)

MU—Mixed alluvial land

Map Unit Setting

National map unit symbol: dmqg Elevation: 3,600 to 4,400 feet Mean annual precipitation: 12 to 16 inches Mean annual air temperature: 58 to 62 degrees F Frost-free period: 190 to 205 days Farmland classification: Not prime farmland

Map Unit Composition

Ustifluvents and similar soils: 85 percent *Minor components:* 15 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Ustifluvents

Setting

Landform: Drainageways Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Tread Down-slope shape: Concave Across-slope shape: Linear Parent material: Mixed alluvium derived from sedimentary rock

Typical profile

C - 0 to 60 inches: stratified sand to loamy fine sand to loam to sandy clay loam to clay loam to clay

Properties and qualities

Slope: 0 to 7 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Well drained
Runoff class: Negligible
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to very high (0.06 to 20.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: Frequent
Frequency of ponding: None
Calcium carbonate, maximum in profile: 20 percent
Gypsum, maximum in profile: 5 percent
Salinity, maximum in profile: Nonsaline to moderately saline (0.0 to 8.0 mmhos/cm)
Available water storage in profile: Moderate (about 7.8 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6e Hydrologic Soil Group: A Ecological site: Bottomland (R042XC017NM)

Minor Components

Amarillo

Percent of map unit: 7 percent Ecological site: Sandy Plains (R077CY056NM)

Portales

Percent of map unit: 7 percent Ecological site: Limy Upland 16-21" PZ (R077CY028TX)

Playas

Percent of map unit: 1 percent Landform: Flood-plain playas Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Tread Down-slope shape: Concave Across-slope shape: Concave

PG—Portales and gomez fine sandy loams

Map Unit Setting

National map unit symbol: dmqm Elevation: 3,600 to 4,400 feet Mean annual precipitation: 12 to 16 inches Mean annual air temperature: 58 to 60 degrees F Frost-free period: 190 to 205 days Farmland classification: Farmland of statewide importance

Map Unit Composition

Portales and similar soils: 45 percent Gomez and similar soils: 45 percent Minor components: 10 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Gomez

Setting

Landform: Plains Landform position (three-dimensional): Dip Down-slope shape: Linear Across-slope shape: Linear Parent material: Calcareous alluvium and/or calcareous lacustrine deposits derived from sedimentary rock

Typical profile

A - 0 to 6 inches: fine sandy loam Bk1 - 6 to 22 inches: fine sandy loam Bk2 - 22 to 60 inches: fine sandy loam

Properties and qualities

Slope: 0 to 3 percent Depth to restrictive feature: More than 80 inches Natural drainage class: Well drained Runoff class: Very low Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00 in/hr) Depth to water table: More than 80 inches Frequency of flooding: None Frequency of ponding: None Calcium carbonate, maximum in profile: 50 percent Gypsum, maximum in profile: 1 percent Salinity, maximum in profile: 1 percent Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm) Sodium adsorption ratio, maximum in profile: 2.0 Available water storage in profile: Moderate (about 6.2 inches)

Interpretive groups

Land capability classification (irrigated): 3e Land capability classification (nonirrigated): 4c Hydrologic Soil Group: A Ecological site: Sandy 16-21" PZ (R077CY035TX)

Description of Portales

Setting

Landform: Plains Landform position (three-dimensional): Dip Down-slope shape: Linear Across-slope shape: Linear Parent material: Calcareous alluvium and/or calcareous eolian deposits derived from sedimentary rock

Typical profile

A - 0 to 8 inches: fine sandy loam Bk - 8 to 60 inches: clay loam

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum in profile: 50 percent
Gypsum, maximum in profile: 1 percent
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum in profile: 2.0
Available water storage in profile: High (about 11.0 inches)

Interpretive groups

Land capability classification (irrigated): 3e Land capability classification (nonirrigated): 4e Hydrologic Soil Group: B Ecological site: Sandy 16-21" PZ (R077CY035TX)

Minor Components

Lea

Percent of map unit: 4 percent *Ecological site:* Limy Upland 16-21" PZ (R077CY028TX)

Arvana

Percent of map unit: 3 percent Ecological site: Sandy 16-21" PZ (R077CY035TX)

Amarillo

Percent of map unit: 2 percent Ecological site: Sandy Plains (R077CY056NM)

Playas

Percent of map unit: 1 percent Landform: Playa floors Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Dip Down-slope shape: Concave Across-slope shape: Concave

SE—Simona fine sandy loam, 0 to 3 percent slopes

Map Unit Setting

National map unit symbol: dmr2 Elevation: 3,000 to 4,400 feet Mean annual precipitation: 10 to 16 inches Mean annual air temperature: 58 to 62 degrees F Frost-free period: 190 to 205 days Farmland classification: Not prime farmland

Map Unit Composition

Simona and similar soils: 85 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Simona

Setting

Landform: Plains Landform position (three-dimensional): Rise Down-slope shape: Linear Across-slope shape: Linear Parent material: Calcareous eolian deposits derived from sedimentary rock

Typical profile

A - 0 to 8 inches: fine sandy loam Bk - 8 to 16 inches: gravelly fine sandy loam Bkm - 16 to 26 inches: cemented material

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: 7 to 20 inches to petrocalcic
Natural drainage class: Well drained
Runoff class: Very high
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.06 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum in profile: 35 percent
Gypsum, maximum in profile: 1 percent
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum in profile: 2.0
Available water storage in profile: Very low (about 2.0 inches)

Interpretive groups

Land capability classification (irrigated): 6s Land capability classification (nonirrigated): 7s Hydrologic Soil Group: D Ecological site: Shallow Sandy (R042XC002NM)

Minor Components

Kimbrough

Percent of map unit: 7 percent Ecological site: Very Shallow 16-21" PZ (R077CY037TX)

Lea

Percent of map unit: 7 percent *Ecological site:* Limy Upland 16-21" PZ (R077CY028TX)

Playas

Percent of map unit: 1 percent Landform: Playa floors Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Dip Down-slope shape: Concave Across-slope shape: Concave

SR—Simona-Upton association

Map Unit Setting

National map unit symbol: dmr3 Elevation: 3,000 to 4,400 feet Mean annual precipitation: 10 to 16 inches Mean annual air temperature: 58 to 62 degrees F Frost-free period: 190 to 205 days Farmland classification: Not prime farmland

Map Unit Composition

Simona and similar soils: 50 percent Upton and similar soils: 35 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Simona

Setting

Landform: Ridges Landform position (two-dimensional): Shoulder Landform position (three-dimensional): Rise Down-slope shape: Convex Across-slope shape: Linear Parent material: Calcareous eolian deposits derived from sedimentary rock

Typical profile

A - 0 to 8 inches: gravelly fine sandy loam Bk - 8 to 16 inches: fine sandy loam Bkm - 16 to 26 inches: cemented material

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: 7 to 20 inches to petrocalcic
Natural drainage class: Well drained
Runoff class: Very low
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.06 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum in profile: 50 percent
Gypsum, maximum in profile: 1 percent
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum in profile: 2.0
Available water storage in profile: Very low (about 1.9 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7s Hydrologic Soil Group: D Ecological site: Shallow Sandy (R042XC002NM)

Description of Upton

Setting

Landform: Ridges Landform position (two-dimensional): Shoulder Landform position (three-dimensional): Rise Down-slope shape: Convex Across-slope shape: Linear Parent material: Calcareous eolian deposits derived from sedimentary rock

Typical profile

A - 0 to 8 inches: gravelly loam Bkm - 8 to 18 inches: cemented material BCk - 18 to 60 inches: very gravelly loam

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: 7 to 20 inches to petrocalcic
Natural drainage class: Well drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): Low to moderately high (0.01 to 0.60 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum in profile: 75 percent
Gypsum, maximum in profile: 1 percent
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum in profile: 2.0
Available water storage in profile: Very low (about 0.9 inches)

Interpretive groups

Land capability classification (irrigated): 6e Land capability classification (nonirrigated): 7s Hydrologic Soil Group: D Ecological site: Shallow (R042XC025NM)

Minor Components

Stegall

Percent of map unit: 5 percent *Ecological site:* Limy Upland 16-21" PZ (R077CY028TX)

Kimbrough

Percent of map unit: 5 percent Ecological site: Very Shallow 16-21" PZ (R077CY037TX)

Slaughter

Percent of map unit: 4 percent Ecological site: Limy Upland 16-21" PZ (R077CY028TX)

Playas

Percent of map unit: 1 percent Landform: Playa floors Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Dip Down-slope shape: Concave Across-slope shape: Concave

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/nrcs/ detail/national/soils/?cid=nrcs142p2_054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ home/?cid=nrcs142p2_053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/ detail/national/landuse/rangepasture/?cid=stelprdb1043084 United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/soils/scientists/?cid=nrcs142p2_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/? cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

APPENDIX C CALCULATIONS

APPENDIX C WCS - CISF FLOOD ANALYSIS POST-DEVELOPMENT CURVE NUMBER CALCULATIONS

DES CHK DD 9/6/2016 DD 3/8/2016

DD

WCS File: 15052 - CN Revised 12/08/2016 CURVE NUMBER

Reference: 1. drawing: S:\CAD\WCS\15052 CISF Floodplain\Engineering\15052 - P CN.dwg

 Soil information taken from US Department Of Agriculture, Natural Resources Conservation Service Custom Soil Resource Report For Andrews County, Texas, And Lea County, New Mexico, dated December 22, 2015
 Texas Engineering Technical Note, No. 210-18-TX5, *Estimating Runoff for Conservation Practices*, 1990

Drainage Area - P DA 1	A=	100.86	Acres	0.15	8 sq mi	ARC I Adjustment**	ARC III Adjustment**
Cover Type & Hydrologic Condition	Soil Type	Hyd. Soil Group	Area	CN*	Area x CN	(60 Min.)	(60 Min.)
Desert Shrub Poor	JPC	B/A***	55.08	77	4241.2		
		Imp. Cover	0.00	98	0.0		
Desert Shrub Poor	TwB	В	12.79	77	984.8		
		Imp. Cover	0.00	98	0.0		
Desert Shrub Poor	BCB	D	13.19	88	1160.7		
		Imp. Cover	0.00	98	0.0	~	
Desert Shrub Poor	RaB	В	17.80	77	1370.6		
		Imp. Cover	2.00	98	196.0		
Total			100.9		7953.3		
COMPOSITE CN			79			62	91

Drainage Area - P DA 2	A=	46.1 /	Acres	0.07	2. sq mi	ARC Adjustment**	ARC III Adjustment**
Cover Type & Hydrologic Condition	Soil Type	Hyd. Soil Group	Area	CN*	Area x CN	(60 Min.)	(60 Min.)
Desert Shrub Poor	BcB	D	34.88	88	3069.8		
		Imp. Cover	0.00	98	0.0		
Desert Shrub Poor	SE	D	7.88	88	693.0		
		Imp. Cover	0.00	0	0.0		
Desert Shrub Poor	SR	D	0.84	88	73.7		
		Imp. Cover	0.00	0	0.0		
Desert Shrub Poor	RaB	В	2.50	77	192.2		
		Imp. Cover	0.00	98	0.0		
Total			46.1		4028.7		
COMPOSITE CN			87			73	95

5

15

DWORACZY

G.

APPENDIX C WCS - CISF FLOOD ANALYSIS POST-DEVELOPMENT CURVE NUMBER CALCULATIONS

Drainage Area - P DA 3	A=	42.8	Acres	0.06	7 sq mi	ARC I Adjustment**	ARC III Adjustment**
Cover Type & Hydrologic Condition	Soil Type	Hyd. Soil Group	Area	CN*	Area x CN	(60 Min.)	(60 Min.)
Desert Shrub Poor	RaB	В	2.95	77	227.1		
		Imp. Cover	0.00	0	0.0		
Desert Shrub Poor	BcB	D	34.20	88	3009.6		
		Imp. Cover	5.65	98	553.8		
Total			42.8		3790.5		
COMPOSITE CN			89			76	96

Drainage Area - P DA 4	A=	679.34 /	Acres	1.06	1 sq mi	ARC I Adjustment**	ARC III Adjustment**
Cover Type & Hydrologic Condition	Soil Type	Hyd. Soil Group	Area	CN*	Area x CN	(60 Min.)	(60 Min.)
Stockpile (Bare soil)		D	60.67	94	5703.3		
Desert Shrub Poor	JPC	B/A***	150.67	77	11601.5		
		Imp. Cover	21.88	98	2143.9		
Desert Shrub Poor	RaB	В	215.19	77	16569.4		
		Imp. Cover	4.48	98	439.3		
Desert Shrub Poor	BcB	D	98.43	88	8662.1		
		Imp. Cover	54.29	98	5320.2		
Desert Shrub Poor	TwB	В	25.88	77	1992.8		
		Imp. Cover	47.81	98	4685.8		
Total			679.3		57118.4		
COMPOSITE CN			84			68	93

*Taken from Table 2c of Texas Engineering Technical Note, Hydrology, No. 210-18-TX5, Estimating Runoff for Conservation Practices

**Taken from Table 3 of Texas Engineering Technical Note, Hydrology, No. 210-18-TX5,

Estimating Runoff for Conservation Practices

***USDA Soil Survey indicates 46% A and 50% B. CN is conservatively calculated to be 100% B

APPENDIX C WCS - CISF FLOOD ANALYSIS POST-DEVELOPMENT DRAINAGE AREA TIME OF CONCENTRATION

	DES		CHK	
WCS	DD	9/6/2016	DD	3/8/2016
Revised 12/08/16		DD		

Revised 12/08/16

Reference: 1. United States Department of Agriculture, Urban Hydrology for Small Watersheds TR-55, 1986

2. Reference Drawing: S:\CAD\WCS\15052 CISF Floodplain\Engineering\15052 - P Hydraulic Calcs PMP.dwg

		P DA 1			P DA 2			P DA 3			P DA 4	
Drainage Area	Α	100.86	(acres)	Α	46.1	(acres)	Α	42.8	(acres)	Α	679.3	(acres)
		0.158	(sqmi)		0.072	(sqmi)		0.067	(sqmi)		1.061	(sqmi)
Sheet Flow												
Manning's roughness coef.1	n	0.15	n/a	n	0.011	n/a	n	0.011	n/a	n	0.15	n/a
Flow Length	L	300	feet									
2-year, 21-hour rainfall	P2	2.5	inches									
Slope	S	0.015	ft/ft	s	0.003	ft/ft	s	0.003	ft/ft	s	0.01400	ft/ft
Travel time ²	Tt	0.50	hours	Tt	0.11	hours	Tt	0.11	hours	Tt	0.51	hours
		30.0	min.		6.8	min.		6.8	min.		30.8	min.
Shallow Concentrated Flow												
Flow Length	L	1540	feet	L	1656	feet	L	1681	feet	L	3545	feet
Slope	s	0.01650	ft/ft	s	0.00477	ft/ft	s	0.00476	ft/ft	s	0.00555	ft/ft
Surface (1=paved or 2=unpaved)		2	n/a									
Velocity ³	V	2.07	ft/sec	V	1.11	ft/sec	V	1.11	ft/sec	V	1.20	ft/sec
Travel time	Tt	0.21	hours	Tt	0.41	hours	Tt	0.42	hours	Tt	0.82	hours
		12.38	min.		24.77	min.		25.17	min.		49.15	min.
Manning's Equation												
Flow Length	L	1605	feet	L	1196	feet	L	0	feet	L	0	feet
Slope	S	0.00460	ft/ft	S	0.01589	ft/ft	S	0.00000	ft/ft	S	0.00000	ft/ft
roughness ⁴	n	0.028	n/a									
Open Channel												
Bottom Width	BW	150	feet	BW	3.5	feet	BW	0	feet	BW	0	feet
Side Slopes (ft/ft, H:V) Rt.	H:V	125	feet	H:V	5.5	feet	H:V	0	feet	H:V	0	feet
Side Slopes (ft/ft, H:V) Lt.	H:V	125	feet	H:V	2.66	feet	H:V	0	feet	H:V	0	feet
Depth	d	0.5	feet	d	1.5	feet	d	0	feet	d	0	feet
Flow Rate	Q	203	cfs	Q	90	cfs	Q	0	cfs	Q	0	cfs
Velocity	V	1.91	ft/sec	V	6.23	ft/sec	V	1	ft/sec	V	1	ft/sec
Travel time	Tt	0.23	hours	Tt	0.05	hours	Tt	0.00	hours	Tt	0.00	hours
		14.01	min.		3.20	min.		0.00	min.		0.00	min.
Total Travel Time	Т	0.94	hours	Т	0.58	hours	Т	0.53	hours	Т	1.33	hours
	Т	56.34	min.	Т	34.73	min.	Т	31.93	min.	Т	79.94	min.
Lag Time (Tc*0.6)	Tlag	0.56	hours	Tlag	0.35	hours	Tlag	0.32	hours	Tlag	0.80	hours
	Tlag	33.80	min.	Tlag	20.84	min.	Tlag	19.16	min.	Tlag	47.97	min.

Notes:

1. Manning's roughness coefficient taken from 'Table 3-1 Roughness coefficients (Manning's n) for sheet flow' - United States Department of Agriculture, Urban Hydrology for Small Watersheds TR-55, 1986

2. Equation 3-3, United States Department of Agriculture, Urban Hydrology for Small Watersheds TR-55, 1986

3. Figure 3-1, United States Department of Agriculture, Urban Hydrology for Small Watersheds TR-55, 1986

4. Reference Manning's 'n' calculations in APPDX C: POST-DEVELOPMENT HYDRAULIC CALCULATIONS

S:\Projects\W - Z\WCS (Waste Control Specialists)\draft\15052 Floodplain Analysis CISF\Engineering\15052 - Tc.xls

APPENDIX C WCS - CISF FLOOD ANALYSIS **POST-DEVELOPMENT HYDRAULIC CALCULATIONS**

WCS	DES AVV	3/8/2016	CHK DD	3/8/2016
Reference:		for Selecting M artment of Tran	•	Roughness Coefficients for Natural Channels and Flood Plains, The on, 1984
Manning's Rou	ghness Coe	fficient		
	Eq. 3	n = (n ₀ + n ₁ +	n ₂ + n ₃ +	n ₄)m
Where:	n _c	= a base value	of n for s	traight, uniform, smooth channel in natural materials

 n_0 = a base value of n for straight, uniform, smooth channel in natural materials

 n_1 = a value added to correct for the effect of surface irregularities

 n_2 = a value for variations in shape and size of the channel cross section

n₃= a value for obstructions

 n_4 = a value for vegetation and flow conditions

m= a correction factor for meandering of the channel

Channel Roughness

n ₀ =	0.020 earth	Table1
n ₁ =	0.000 smooth	Table 2
n ₂ =	0.000 gradual	Table 2
n ₃ =	0.000 neglible	Table 2
n ₄ =	0.008 low	Table 2
m=	1.0 minor	Table 2

n = (0.02 + 000 + 000 + 000 + 0.008)1.0= 0.028

APPENDIX C WCS - CISF FLOOD ANALYSIS **POST-DEVELOPMENT HYDRAULIC CALCULATIONS**

DES СНК WCS AVV 3/8/2016 DD 3/8/2016 DD

Revised 12/09/2016

Reference: 1. Topographic aerial survey provided by Dallas Aerial Surveys, Inc., flown 5-29-2014. 10220 Forest Lane, Dallas, Texas 214-349-2190, 800-862-2190, Fax 214-349-2193.

2. Reference Drawing: S:\CAD\WCS\15052 CISF Floodplain\Engineering\15052 - P Hydraulic Calcs PMP.dwg

Manning's Formula

 $Q = vA = (1.49/n)AR^{2/3}s^{1/2}$

Where:

Q=	Flow Rate (cfs)
v=	velocity, (ft/s)
A=	Flow Area, (ft ²)
n=	Manning's Roughness Coefficient
R=	Hydraulic Radius, (ft)
s=	Channel Slope, (ft/ft)
R=	Hydraulic Radius, (ft)

AP-1 Stateline Road

Road Elevation at P AP 1: 3486.5 ft

AMC I

100 YR

Roughness	Channel	Left Side	Right Side	Bottom	Peak	Peak	Peak
Coef	Slope	Slope	Slope	Width	Discharge	Velocity	Depth
n ²	(ft/ft)	(ft/ft) (H:V)	(ft/ft) (H:V)	(ft)	(CFS)	(ft/s)	(ft)
0.028	0.0046	125	125	150	118.3	1.58	0.38

500 YR

Roughness	Channel	Left Side	Right Side	Bottom	Peak	Peak	Peak
Coef	Slope	Slope	Slope	Width	Discharge	Velocity	Depth
n ²	(ft/ft)	(ft/ft) (H:V)	(ft/ft) (H:V)	(ft)	(CFS)	(ft/s)	(ft)
0.028	0.0046	125	125	150	245.4	1.99	0.56

PMP

Roughness	Channel	Left Side	Right Side	Bottom	Peak	Peak	Peak
Coef	Slope	Slope	Slope	Width	Discharge	Velocity	Depth
n ²	(ft/ft)	(ft/ft) (H:V)	(ft/ft) (H:V)	(ft)	(CFS)	(ft/s)	(ft)
0.028	0.0046	125	125	150	410.7	2.33	0.73

AMC II

100 YR

Roughness	Channel	Left Side	Right Side	Bottom	Peak	Peak	Peak
Coef	Slope	Slope	Slope	Width	Discharge	Velocity	Depth
n ²	(ft/ft)	(ft/ft) (H:V)	(ft/ft) (H:V)	(ft)	(CFS)	(ft/s)	(ft)
0.028	0.0046	125	125	150	223.4	1.95	0.53

APPENDIX C WCS - CISF FLOOD ANALYSIS POST-DEVELOPMENT HYDRAULIC CALCULATIONS

500	VD	
500	IR	

Roughness	Channel	Left Side	Right Side	Bottom	Peak	Peak	Peak
Coef	Slope	Slope	Slope	Width	Discharge	Velocity	Depth
n ²	(ft/ft)	(ft/ft) (H:V)	(ft/ft) (H:V)	(ft)	(CFS)	(ft/s)	(ft)
0.028	0.0046	125	125	150	373.1	2.24	0.7

PMP

Roughness	Channel	Left Side	Right Side	Bottom	Peak	Peak	Peak
Coef	Slope	Slope	Slope	Width	Discharge	Velocity	Depth
n ²	(ft/ft)	(ft/ft) (H:V)	(ft/ft) (H:V)	(ft)	(CFS)	(ft/s)	(ft)
0.028	0.0046	125	125	150	421.5	2.35	0.74

AMC III

1	00	۱V	D
-	υι	, 1	n

· · ·								
	Roughness	Channel	Left Side	Right Side	Bottom	Peak	Peak	Peak
	Coef	Slope	Slope	Slope	Width	Discharge	Velocity	Depth
	n ²	(ft/ft)	(ft/ft) (H:V)	(ft/ft) (H:V)	(ft)	(CFS)	(ft/s)	(ft)
	0.028	0.0046	125	125	150	292	2.12	0.61

500 YR

Roughness	Channel	Left Side	Right Side	Bottom	Peak	Peak	Peak
Coef	Slope	Slope	Slope	Width	Discharge	Velocity	Depth
n²	(ft/ft)	(ft/ft) (H:V)	(ft/ft) (H:V)	(ft)	(CFS)	(ft/s)	(ft)
0.028	0.0046	125	125	150	440.6	2.37	0.76

PMP

Roughness	Channel	Left Side	Right Side	Bottom	Peak	Peak	Peak
Coef	Slope	Slope	Slope	Width	Discharge	Velocity	Depth
n ²	(ft/ft)	(ft/ft) (H:V)	(ft/ft) (H:V)	(ft)	(CFS)	(ft/s)	(ft)
0.028	0.0046	125	125	150	424.2	2.36	0.74

Notes:

1. Channel geometry sources from aerial survey provided by Dallas Aerial Surveys, Inc., flown 5-29-2014.

2. See Manning's Roughness Coefficient calculation. Manning's n from Guide for Selecting Manning's Roughness Coefficients for Natural Channels and Flood Plains, The U.S. Department of Transportation, 1984

3. Peak velocity and depth calculated using AutoCAD Civil 3D Hydraflow Express 2014.

Ci

APPENDIX C WCS - CISF FLOOD ANALYSIS POST-DEVELOPMENT ELEVATION-STORAGE TABLES

	DES		СНК	
WCS	AVV	2/1/2016	DD	2/4/2016

Elevation-Storage-Discharge

Reference:	1. 2008 URS As-Built Rail Drawings - R/T Infrastructure Improvements Facilities G.E. Hudson River Project
	Andrews County, Texas Project No. 29600
	2. Topographic aerial survey provided by Dallas Aerial Surveys, Inc., flown 5-29-2014. 10220 Forest Lane, Dallas,
	3. WCS CISF Rail Plans, 1/22/16
	Reference Drawing: S:\CAD\WCS\15052 CISF Floodplain\Engineering\15052 - Elevation-Storage
	Calcs.dwg.dwg

P DA 2

Elevation ¹	Storage	Storage
ft	cu yd	ac-ft
3465	0	0.0000
3468	77	0.0474
3470	295	0.1829
3472	966	0.5987
3474	2112	1.3090
3476	4106	2.5450
3478	7221	4.4756
3480	11613	7.1979
3482	17893	11.0903
3484	27141	16.8228
3486	42007	26.0373
3488	69708	43.2069
3490	124344	77.0723

Notes:

1. Topographic elevations reference aerial survey provided by Dallas Aerial Surveys, Inc., flown 5-29-2014.

Ci

APPENDIX C WCS - CISF FLOOD ANALYSIS POST-DEVELOPMENT ELEVATION-STORAGE TABLES

 DES
 CHK

 WCS
 AVV
 2/1/2016
 DD
 2/4/2016

Elevation-Storage-Discharge

Reference:	1. 2008 URS As-Built Rail Drawings - R/T Infrastructure Improvements Facilities G.E. Hudson River Project				
	Andrews County, Texas Project No. 29600				
	2. Topographic aerial survey provided by Dallas Aerial Surveys, Inc., flown 5-29-2014. 10220 Forest Lane, Dallas,				
	3. WCS CISF Rail Plans, 1/22/16				
	4. Reference Drawing: S:\CAD\WCS\15052 CISF Floodplain\Engineering\15052 - Elevation-Storage				
	Calcs.dwg.dwg				

P DA 3

Elevation ¹	Storage	Storage
ft	cu yd	ac-ft
3484	0	0.0000
3486	12111	7.5068
3488	43926	27.2267
3490	103970	64.4437

Notes:

1. Topographic elevations reference aerial survey provided by Dallas Aerial Surveys, Inc., flown 5-29-2014.

Ci

APPENDIX C WCS - CISF FLOOD ANALYSIS POST-DEVELOPMENT ELEVATION-STORAGE TABLES

	DES		СНК	
WCS	AVV	2/1/2016	DD	2/4/2016

Revised 12/08/16 DD

Elevation-Storage-Discharge

Reference: 1. 2008 URS As-Built Rail Drawings - R/T Infrastructure Improvements Facilities G.E. Hudson River Project Andrews County, Texas Project No. 29600

2. Topographic aerial survey provided by Dallas Aerial Surveys, Inc., flown 5-29-2014. 10220 Forest Lane, Dallas,

3. WCS CISF Rail Plans, 1/22/16

4. Reference Drawing: S:\CAD\WCS\15052 CISF Floodplain\Design\Surfaces\15052 - EX TOPO & PROP.dwg

Playa

Elevation ¹	Storage	Storage
ft	cu yd	ac-ft
3476.65	0	0
3478	3559	2.2060
3480	34133	21.1567
3482	84014	52.0744
3484	172618	106.9938
3486	476370	295.2684
3487	762062	472.3489
3488	1104022	684.3060
3489	1514069	938.4654
3490	1963987	1217.3381

Notes:

1. Topographic elevations reference aerial survey provided by Dallas Aerial Surveys, Inc., flown 5-29-2014.

APPENDIX C WCS - CISF FLOOD ANALYSIS POST-DEVELOPMENT NON-LEVEL DAM TOP CROSS SECTIONS

DES CHK WCS AVV 3/8/2016 DD 3/8/2016

Cross Sections

Reference: 1. WCS CISF Rail Plans, 1/22/16

2. 2008 URS As-Built Rail Drawings - R/T Infrastructure Improvements Facilities G.E. Hudson River Project Andrews County, Texas Project No. 29600

Non-Level Dam - P DA 2

	Rail	XS	Station	Slope
	Station	Station	Elevation	Ahead
p-rail ¹	1863.4	0.00	3489.35	0.37%
p-rail ¹	1463.4	400.00	3487.87	1.50%
p-rail ¹	700.0	1163.36	3476.42	1.63%
p-rail ¹	0.0	1863.36	3465.02	0.19%
ex-rail ²	3000.0	2243.36	3470.72	1.50%
ex-rail ²	3600.0	2843.36	3479.72	0.98%
ex-rail ²	4400.0	3643.36	3487.52	0.30%
ex-rail ²	4800.0	4043.36	3488.72	-

NOTES:

1. Proposed rail stations reference the proposed WCS CISF Rail Plans, 1/22/16

2. Existing rail stations reference 2008 URS rail as-built drawings - R/T Infrastructure Improvements Facilities G.E. Hudson River Project Andrews County, Texas Project No. 29600 and are approximate

APPENDIX C WCS - CISF FLOOD ANALYSIS POST-DEVELOPMENT NON-LEVEL DAM TOP CROSS SECTIONS

 DES
 CHK

 WCS
 AVV
 3/8/2016
 DD
 3/8/2016

Cross Sections

Reference: 1. WCS CISF Rail Plans, 1/22/16

Non-Level Dam - P DA 3

	Rail XS	Station	Slope
	Station ¹	Elevation	Ahead
p-rail	5477.49	3489.00	-0.16%
p-rail	5489.81	3488.98	-0.13%
p-rail	5689.81	3488.72	-0.13%
p-rail	5889.81	3488.46	-0.13%
p-rail	6089.81	3488.20	-0.12%
p-rail	6262.89	3488.00	0.22%
p-rail	6632.18	3488.80	0.06%
p-rail	7407.91	3489.23	-

NOTES:

1. Proposed rail stations reference the proposed WCS CISF Rail Plans, 1/22/16

APPENDIX C WCS - CISF FLOOD ANALYSIS POST-DEVELOPMENT NON-LEVEL DAM TOP CROSS SECTIONS

DES CHK WCS AVV 3/8/2016 DD 3/8/2016

Cross Sections

Reference: 1. 2008 URS As-Built Rail Drawings - R/T Infrastructure Improvements Facilities G.E. Hudson River Project Andrews County, Texas Project No. 29600

2. Topographic aerial survey provided by Dallas Aerial Surveys, Inc., flown 5-29-2014. 10220 Forest Lane, Dallas, Texas 214-349-2190, 800-862-2190, Fax 214-349-2193.

3. Reference Drawing: S:\CAD\WCS\15052 CISF Floodplain\Engineering\15052 - P Hydraulic Calcs PMP.dwg

Non-Level Dam - P DA 4

	Rail	XS	Station	Slope
	Station	Station	Elevation	Ahead
$ex-rail^1$	8500.00	8500.00	3489.96	-0.12%
$ex-rail^1$	9900.00	9900.00	3488.28	-0.15%
$ex-rail^1$	10017.67	10017.67	3488.10	-0.20%
$ex-rail^1$	10387.00	10387.00	3487.36	-8.00%
topo ²	-	10404.00	3486.00	5.58%
topo ²	-	10439.87	3488.00	0.00%
topo ²	-	10742.10	3488.00	0.65%
topo ²	-	11051.85	3490.00	-

NOTES:

1. Existing rail stations reference 2008 URS rail as-built drawings - R/T Infrastructure Improvements Facilities G.E. Hudson River Project Andrews County, Texas Project No. 29600 and are approximate

2. Topographic elevations come from the topographic aerial survey provided by Dallas Aerial Surveys, Inc., flown 5-29-2014.

APPENDIX C WCS - CISF FLOOD ANALYSIS POST-DEVELOPMENT PAD OVERLAND DEPTH OF FLOW

WCS Revised 11/11/16	DES AVV Clarifications	3/8/2016 ;	CHK DD DD	3/8/2016	
Reference:		Drawing: Figure Intals of Hydraluic		ing Systems,	Ned H.C. Hwang, 1982
Manning Equation		Where,	v= n= R _h =	1.49/n*R _h ² velocity (ft/s Manning's n hydraulic ra slope (ft/ft)	s)
		And Where,		v*y unit dischar depth	ge (ft²/s)
		For sheet flow	and a w R _h ≅	-	lar channel: Reference 2, page 182
		Therefore	q= =	(1.49/n*y ^{2/3} 1.49/n*y ^{5/3} *	'*s ^{1/2})(γ) ∗s ^{1/2}
		And	y= v=	(q/(1.49/n*s q/y	s ^{1/2})) ^{3/5}
		Where,	v= n= y=	unit dischar velocity (ft/s Manning's n depth slope (ft/ft)	s)
Max flow		Where,	=	maximum u	nit discharge (ft ² /s) ainfaill Intensity ad

Çi

Max depth			
		y _{max} = (q _{max} /(1.4	9/n*s ^{1/2})) ^{3/5}
	Where,		
		y _{max} = Maximun	n depth of flow (ft)
		q _{Max} = Maximun	-
		n= Manning'	
		s= slope (ft/	t)
Max velocity			
		v _{max} = q _{max} /y _{max}	
	Where,		
		q _{Max} = maximum	n unit discharge (ft²/s)
		y _{max} = Maximun	n depth of flow (ft)
Inputs	s=	0.0075 ft/ft	phase slope
	L=	515 ft	length of phase
	I=	0.210 in/min	Max 500 yr-24hr rainfall intensity (HEC-HMS 500 yr SCS Storm)
	2	2.92E-04 ft/s	
	n=	0.015	manning's n for concrete
Calculation			
	q _{Max} = I*L		
	q _{Max} = 1	50E-01 ft ² /s	
		00154 6	7
	y _{max} = 0.0 = 1.1)88154 ft . in	
	- 1.1		J

ft/s

APPENDIX D HEC-HMS OUTPUT

Project: 15052-CISF Simulation Run: 100 YR 24 HR

Start of Run:01Jan2016, 00:00End of Run:02Jan2016, 12:00Compute Time:09Dec2016, 10:04:16

Basin Model:P AP 1 AMC IMeteorologic Model:100 yrControl Specifications:Control 24 HR Storr

Hydrologic	Drainage Area	Peak Discharg	eTime of Peak	Volume
Element	(MI2)	(CFS)		(IN)
P DA 1	0.158	118.3	01Jan2016, 12:29	2.09

Project: 15052-CISF Simulation Run: 500 YR 24 HR

Start of Run:01Jan2016, 00:00End of Run:02Jan2016, 12:00Compute Time:09Dec2016, 10:25:57

Basin Model: P AP 1 AMC I Meteorologic Model: 500 yr Control Specifications:Control 24 HR Storms

Hydrologic	Drainage Area	Peak Discharge	Time of Peak	Volume
Element	(MI2)	(CFS)		(IN)
P DA 1	0.158	245.4	01Jan2016, 12:27	4.11

Project: 15052-CISF Simulation Run: PMP Dist A

Start of Run:01Jan2016, 00:00End of Run:05Jan2016, 00:00Compute Time:09Dec2016, 10:38:57

Basin Model: P AP 1 AMC I Meteorologic Model: PMP Distribution A Control Specifications:Control PMP

Hydrologic	Drainage Area	Peak Discharge	Time of Peak	Volume
Element	(MI2)	(CFS)		(IN)
P DA 1	0.158	410.7	03Jan2016, 06:00	33.97

Project: 15052-CISF Simulation Run: 100 YR 24 HR

Start of Run:01Jan2016, 00:00End of Run:02Jan2016, 12:00Compute Time:09Dec2016, 10:08:25

Basin Model:P AP 1 AMC IIMeteorologic Model:100 yrControl Specifications:Control 24 HR Storr

Hydrologic	Drainage Area	Peak Discharg	eTime of Peak	Volume
Element	(MI2)	(CFS)		(IN)
P DA 1	0.158	223.4	01Jan2016, 12:26	3.68

Project: 15052-CISF Simulation Run: 500 YR 24 HR

Start of Run:01Jan2016, 00:00End of Run:02Jan2016, 12:00Compute Time:09Dec2016, 10:34:17

Basin Model: P AP 1 AMC II Meteorologic Model: 500 yr Control Specifications:Control 24 HR Storms

Hydrologic	Drainage Area	Peak Discharge	Time of Peak	Volume
Element	(MI2)	(CFS)		(IN)
P DA 1	0.158	373.1	01Jan2016, 12:26	6.17

Project: 15052-CISF Simulation Run: PMP Dist A

Start of Run:01Jan2016, 00:00End of Run:05Jan2016, 00:00Compute Time:09Dec2016, 10:40:20

Basin Model: P AP 1 AMC II Meteorologic Model: PMP Distribution A Control Specifications:Control PMP

Hydrologic	Drainage Area	Peak Discharge	Time of Peak	Volume
Element	(MI2)	(CFS)		(IN)
P DA 1	0.158	421.5	03Jan2016, 06:00	37.48

Project: 15052-CISF Simulation Run: 100 YR 24 HR

Start of Run:01Jan2016, 00:00End of Run:02Jan2016, 12:00Compute Time:09Dec2016, 10:11:24

Basin Model: P AP 1 AMC III Meteorologic Model: 100 yr Control Specifications:Control 24 HR Storms

Hydrologic	Drainage Area	Peak Discharge	Time of Peak	Volume
Element	(MI2)	(CFS)		(IN)
P DA 1	0.158	292.0	01Jan2016, 12:25	4.96

Project: 15052-CISF Simulation Run: 500 YR 24 HR

Start of Run:01Jan2016, 00:00End of Run:02Jan2016, 12:00Compute Time:09Dec2016, 11:10:06

Basin Model: P AP 1 AMC III Meteorologic Model: 500 yr Control Specifications:Control 24 HR Storms

Hydrologic	Drainage Area	Peak Discharge	Time of Peak	Volume
Element	(MI2)	(CFS)		(IN)
P DA 1	0.158	440.6	01Jan2016, 12:25	7.63

Project: 15052-CISF Simulation Run: PMP Dist A

Start of Run:01Jan2016, 00:00End of Run:05Jan2016, 00:00Compute Time:09Dec2016, 10:41:24

Basin Model: P AP 1 AMC III Meteorologic Model: PMP Distribution A Control Specifications:Control PMP

Hydrologic	Drainage Area	Peak Discharge	Time of Peak	Volume
Element	(MI2)	(CFS)		(IN)
P DA 1	0.158	424.2	03Jan2016, 06:00	39.34

Project: 15052 - CISF Simulation Run: 100 YR 24 HR

Start of Run:01Jan2016, 00:00End of Run:02Jan2016, 12:00Compute Time: 08Mar2016, 14:18:56

Basin Model: P AP 2 AMC I Meteorologic Model: 100 yr Control Specifications:Control 24 HR Storms

Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (IN)
P DA 2	0.072	118.1	01Jan2016, 12:14	3.09
P DA 2 STORAGE	0.072	118.6	01Jan2016, 12:14	3.08

Project: 15052 - CISF Simulation Run: 500 YR 24 HR

Start of Run:01Jan2016, 00:00End of Run:02Jan2016, 12:00Compute Time:08Mar2016, 14:21:22

Basin Model: P AP 2 AMC I Meteorologic Model: 500 yr Control Specifications:Control 24 HR Storms

Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (IN)
P DA 2	0.072	209.2	01Jan2016, 12:13	5.44
P DA 2 STORAGE	0.072	209.9	01Jan2016, 12:13	5.42

Project: 15052 - CISF Simulation Run: PMP Dist A

Start of Run:01Jan2016, 00:00End of Run:05Jan2016, 00:00Compute Time:08Mar2016, 14:21:46

Basin Model:P AP 2 AMC IMeteorologic Model:PMP Distribution AControl Specifications:Control PMP

Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (IN)
P DA 2	0.072	191.1	03Jan2016, 06:00	36.38
P DA 2 STORAGE	0.072	191.1	03Jan2016, 06:00	36.37

Project: 15052 - CISF Simulation Run: 100 YR 24 HR

Start of Run:01Jan2016, 00:00End of Run:02Jan2016, 12:00Compute Time: 08Mar2016, 14:22:36

Basin Model: P AP 2 AMC II Meteorologic Model: 100 yr Control Specifications:Control 24 HR Storms

Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (IN)
P DA 2	0.072	170.8	01Jan2016, 12:13	4.52
P DA 2 STORAGE	0.072	170.9	01Jan2016, 12:13	4.50

Project: 15052 - CISF Simulation Run: 500 YR 24 HR

Start of Run:01Jan2016, 00:00End of Run:02Jan2016, 12:00Compute Time: 08Mar2016, 14:23:04

Basin Model: P AP 2 AMC II Meteorologic Model: 500 yr Control Specifications:Control 24 HR Storms

Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (IN)
P DA 2	0.072	264.8	01Jan2016, 12:13	7.14
P DA 2 STORAGE	0.072	265.3	01Jan2016, 12:13	7.11

Project: 15052 - CISF Simulation Run: PMP Dist A

Start of Run:01Jan2016, 00:00End of Run:05Jan2016, 00:00Compute Time:08Mar2016, 14:23:26

Basin Model:P AP 2 AMC IIMeteorologic Model:PMP Distribution AControl Specifications:Control PMP

Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (IN)
P DA 2	0.072	193.1	03Jan2016, 06:00	38.76
P DA 2 STORAGE	0.072	193.1	03Jan2016, 06:00	38.75

Project: 15052 - CISF Simulation Run: 100 YR 24 HR

Start of Run:01Jan2016, 00:00End of Run:02Jan2016, 12:00Compute Time: 08Mar2016, 14:24:13

Basin Model: P AP 2 AMC III Meteorologic Model: 100 yr Control Specifications:Control 24 HR Storms

Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (IN)
P DA 2	0.072	193.2	01Jan2016, 12:12	5.41
P DA 2 STORAGE	0.072	194.1	01Jan2016, 12:12	5.40

Project: 15052 - CISF Simulation Run: 500 YR 24 HR

Start of Run:01Jan2016, 00:00End of Run:02Jan2016, 12:00Compute Time: 08Mar2016, 14:24:59

Basin Model: P AP 2 AMC III Meteorologic Model: 500 yr Control Specifications:Control 24 HR Storms

Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (IN)
P DA 2	0.072	284.4	01Jan2016, 12:12	8.11
P DA 2 STORAGE	0.072	284.6	01Jan2016, 12:13	8.08

Project: 15052 - CISF Simulation Run: PMP Dist A

Start of Run:01Jan2016, 00:00End of Run:05Jan2016, 00:00Compute Time:08Mar2016, 14:25:18

Basin Model:P AP 2 AMC IIIMeteorologic Model:PMP Distribution AControl Specifications:Control PMP

Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (IN)
P DA 2	0.072	193.5	03Jan2016, 06:00	39.88
P DA 2 STORAGE	0.072	193.5	03Jan2016, 05:59	39.86

Project: 15052-CISF Simulation Run: 100 YR 24 HR

Start of Run:01Jan2016, 00:00End of Run:02Jan2016, 12:00Compute Time:09Dec2016, 10:44:51

Basin Model:P AP3 AMC IMeteorologic Model:100 yrControl Specifications:Control 24 HR Storms

Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (IN)
P DA 3	0.067	127.5	01Jan2016, 12:12	3.38
P DA 4	1.061	803.6	01Jan2016, 12:43	2.62
P DA 3 STORAGE	0.067	0.0	01Jan2016, 00:00	0.00
PLAYA	1.128	0.0	01Jan2016, 00:00	0.00

Project: 15052-CISF Simulation Run: 500 YR 24 HR

Start of Run:01Jan2016, 00:00End of Run:02Jan2016, 12:00Compute Time:09Dec2016, 11:27:08

Basin Model:P AP3 AMC IMeteorologic Model:500 yrControl Specifications:Control 24 HR Storms

Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (IN)
P DA 3	0.067	218.2	01Jan2016, 12:11	5.81
P DA 4	1.061	1523.1	01Jan2016, 12:42	4.84
P DA 3 STORAGE	0.067	0.0	01Jan2016, 00:00	0.00
PLAYA	1.128	0.0	01Jan2016, 00:00	0.00

Project: 15052-CISF Simulation Run: PMP Dist A

Start of Run:01Jan2016, 00:00End of Run:05Jan2016, 00:00Compute Time:09Dec2016, 11:35:24

Basin Model: P AP3 AMC I Meteorologic Model: PMP Distribution A Control Specifications:Control PMP

Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (IN)
P DA 3	0.067	178.4	03Jan2016, 06:00	36.94
P DA 4	1.061	2786.9	03Jan2016, 06:01	35.35
P DA 3 STORAGE	0.067	178.3	03Jan2016, 06:01	29.18
PLAYA	1.128	2874.6	03Jan2016, 06:19	26.75

Project: 15052-CISF Simulation Run: 100 YR 24 HR

Start of Run:01Jan2016, 00:00End of Run:02Jan2016, 12:00Compute Time:09Dec2016, 10:48:24

Basin Model:P AP3 AMC IIMeteorologic Model:100 yrControl Specifications:Control 24 HR Storms

Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (IN)
P DA 3	0.067	173.8	01Jan2016, 12:11	4.74
P DA 4	1.061	1324.0	01Jan2016, 12:41	4.20
P DA 3 STORAGE	0.067	0.0	01Jan2016, 00:00	0.00
PLAYA	1.128	0.0	01Jan2016, 00:00	0.00

Project: 15052-CISF Simulation Run: 500 YR 24 HR

Start of Run:01Jan2016, 00:00End of Run:02Jan2016, 12:00Compute Time:09Dec2016, 11:30:31

Basin Model:P AP3 AMC IIMeteorologic Model:500 yrControl Specifications:Control 24 HR Storms

Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (IN)
P DA 3	0.067	265.4	01Jan2016, 12:11	7.38
P DA 4	1.061	2113.8	01Jan2016, 12:40	6.78
P DA 3 STORAGE	0.067	0.0	01Jan2016, 00:00	0.00
PLAYA	1.128	4.6	02Jan2016, 01:53	0.09

Project: 15052-CISF Simulation Run: PMP Dist A

Start of Run:01Jan2016, 00:00End of Run:05Jan2016, 00:00Compute Time:09Dec2016, 11:41:03

Basin Model: P AP3 AMC II Meteorologic Model: PMP Distribution A Control Specifications:Control PMP

Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (IN)
P DA 3	0.067	179.8	03Jan2016, 06:00	39.05
P DA 4	1.061	2839.4	03Jan2016, 06:00	38.30
P DA 3 STORAGE	0.067	179.8	03Jan2016, 06:00	31.29
PLAYA	1.128	2980.6	03Jan2016, 06:13	29.65

Project: 15052-CISF Simulation Run: 100 YR 24 HR

Start of Run:01Jan2016, 00:00End of Run:02Jan2016, 12:00Compute Time:09Dec2016, 11:21:27

Basin Model:P AP 3 AMC IIIMeteorologic Model:100 yrControl Specifications:Control 24 HR Storms

Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (IN)
P DA 3	0.067	191.1	01Jan2016, 12:11	5.53
P DA 4	1.061	1574.7	01Jan2016, 12:40	5.18
P DA 3 STORAGE	0.067	0.0	01Jan2016, 00:00	0.00
PLAYA	1.128	0.0	01Jan2016, 00:00	0.00

Project: 15052-CISF Simulation Run: 500 YR 24 HR

Start of Run:01Jan2016, 00:00End of Run:02Jan2016, 12:00Compute Time:09Dec2016, 11:32:30

Basin Model:P AP 3 AMC IIIMeteorologic Model:500 yrControl Specifications:Control 24 HR Storms

Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (IN)
P DA 3	0.067	279.9	01Jan2016, 12:11	8.23
P DA 4	1.061	2346.9	01Jan2016, 12:40	7.87
P DA 3 STORAGE	0.067	2.7	02Jan2016, 00:18	0.41
PLAYA	1.128	16.0	02Jan2016, 01:22	0.35

Project: 15052-CISF Simulation Run: PMP Dist A

Start of Run:01Jan2016, 00:00End of Run:05Jan2016, 00:00Compute Time:09Dec2016, 11:37:50

Basin Model: P AP 3 AMC III Meteorologic Model: PMP Distribution A Control Specifications:Control PMP

Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (IN)
P DA 3	0.067	180.1	03Jan2016, 06:00	40.00
P DA 4	1.061	2849.7	03Jan2016, 06:00	39.61
P DA 3 STORAGE	0.067	180.0	03Jan2016, 05:58	32.24
PLAYA	1.128	3004.8	03Jan2016, 06:11	30.94

		Project: 15052-CISF Res	Simulation Run: 100 YR 2 servoir: PLAYA	24 HR	
	End of Run: 0	01Jan2016, 00:00 02Jan2016, 12:00 09Dec2016, 11:16:19	Basin Model: Meteorologic Model: Control Specifications:	P AP3 AMC I 100 yr Control 24 HR Storms	
Volume Units IN					
	-Computed Result	ts			
	Peak Inflow: Peak Dischar	803.6 (CFS) ge: 0.0 (CFS)	Date/Time of Peak Inflow: Date/Time of Peak Dischar	01Jan2016, 12:43 rge: 01Jan2016, 00:00	

Peak Storage:

Peak Elevation:

Inflow Volume:

Discharge Volume: 0.00 (IN)

2.47 (IN)

148.30 (AC-FT)

3484.4 (FT)

	Project: 15052-CISF Re	Simulation Run: 500 YR 24 HR eservoir: PLAYA			
End of Run:	01Jan2016, 00:00 02Jan2016, 12:00 09Dec2016, 11:27:08	Basin Model:P AP3Meteorologic Model:500 yrControl Specifications:Control			
Volume Units N					
Computed Resul	ts				
Peak Inflow:	· · · · · · · · · · · · · · · · · · ·	Date/Time of Peak Inflow: 07	1Jan2016, 12:42		

Peak Discharge:	0.0 (CFS)	Date/Time of Peak Discharge:	01Jan2016, 00:00
Inflow Volume:	4.55 (IN)	Peak Storage:	273.77 (AC-FT)
Discharge Volume:	0.00 (IN)	Peak Elevation:	3485.8 (FT)

Project: 15052-CISF Simulation Run: PMP Dist A Reservoir: PLAYA

	Start of Run: End of Run:	01Jan2016, 00:00 05Jan2016, 00:00	Basin Model: Meteorologic Model:	P AP3 AMC I PMP Distribution A	
	Compute Time:	09Dec2016, 11:35:24	Control Specifications:	Control PMP	
		Volume Unit	s:N		
-Co	mnuted Results				
Co	mputed Results				
Col	mputed Results Peak Inflow:	2965.2 (CFS)	Date/Time of Peak Inflow:	03Jan2016, 06:01	
Co	•	2965.2 (CFS)	Date/Time of Peak Inflow: Date/Time of Peak Discharg		
Co	Peak Inflow:	2965.2 (CFS) e: 2874.6 (CFS)			

	Project: 15052-CISF Res	Simulation Run: 100 YR : ervoir: PLAYA	24 HR		
Start of Run: End of Run: Compute Time:	01Jan2016, 00:00 02Jan2016, 12:00 09Dec2016, 11:19:04	Basin Model: Meteorologic Model: Control Specifications:	P AP3 AMC II 100 yr Control 24 HR Storms		
Volume Units:N					
Computed Resu			04 1		
-Computed Resu Peak Inflow:		Date/Time of Peak Inflow:	01Jan2016, 12:41		

Peak Inflow:	1324.0 (CFS)	Date/Time of Peak Inflow:	01Jan2016, 12:41
Peak Discharge:	0.0 (CFS)	Date/Time of Peak Discharge:	01Jan2016, 00:00
Inflow Volume:	3.95 (IN)	Peak Storage:	237.47 (AC-FT)
Discharge Volume:	: 0.00 (IN)	Peak Elevation:	3485.4 (FT)

P	roject: 15052-CISF Rese	Simulation Run: 500 YR 2 ervoir: PLAYA	4 HR	
	Jan2016, 00:00 Jan2016, 12:00 Dec2016, 11:30:31		P AP3 AMC II 500 yr Control 24 HR Storms	
Volume Units:1N				
Computed Results Peak Inflow: Peak Discharge Inflow Volume:	2113.8 (CFS) : 4.6 (CFS) 6.38 (IN)	Date/Time of Peak Inflow: Date/Time of Peak Dischar Peak Storage:	01Jan2016, 12:40 rge: 02Jan2016, 01:53 381.51 (AC-FT)	

Peak Elevation:

3486.5 (FT)

Discharge Volume: 0.09 (IN)

Project: 15052-CISF Simulation Run: PMP Dist A Reservoir: PLAYA Start of Run: 01Jan2016.00:00 Basin Model: P AP3 AMC II

		unzo10, 00.00	Dasin Woder.		
	End of Run: 05J	an2016, 00:00	Meteorologic Model:	PMP Distribution A	
	Compute Time: 09D	ec2016, 11:41:03	Control Specifications:	Control PMP	
		Volume Units	51N		
1	Computed Results				
	Peak Inflow:	3019.2 (CFS)	Date/Time of Peak Inflow:	03Jan2016, 06:00	
	Peak Discharge:	2980.6 (CFS)	Date/Time of Peak Discharg	je: 03Jan2016, 06:13	
	Inflow Volume:	37.88 (IN)	Peak Storage:	900.69 (AC-FT)	
	Discharge Volume:	: 29.65 (IN)	Peak Elevation:	3488.9 (FT)	

Р	roject: 15052-CISF Rese	Simulation Run: 100 YR 2 rvoir: PLAYA	24 HR	
	Jan2016, 00:00 Jan2016, 12:00 Dec2016, 11:21:27		P AP 3 AMC III 100 yr Control 24 HR Storms	
Volume Units:1N				
Computed Results				
Peak Inflow: Peak Discharge	(,	Date/Time of Peak Inflow: Date/Time of Peak Discha		

Peak Discharge:	0.0 (CFS)	Date/Time of Peak Discharge:	01Jan2016, 00:00
Inflow Volume:	4.87 (IN)	Peak Storage:	293.26 (AC-FT)
Discharge Volume:	0.00 (IN)	Peak Elevation:	3486.0 (FT)

Project: 15052-CISF Simulation Run: 500 YR 24 HR Reservoir: PLAYA							
Start of Run: End of Run: Compute Time:	01Jan2016, 00:00 02Jan2016, 12:00 09Dec2016, 11:32:30	Basin Model: Meteorologic Model: Control Specifications:	P AP 3 AMC III 500 yr Control 24 HR Storms				
Volume Units1N							
Computed Resu	lts						
Peak Inflow: Peak Discha	2346.9 (CFS) rge: 16.0 (CFS)	Date/Time of Peak Inflow: Date/Time of Peak Discha	,				

Peak Storage:

Peak Elevation:

Inflow Volume:

Discharge Volume: 0.35 (IN)

7.42 (IN)

436.95 (AC-FT)

3486.8 (FT)

Project: 15052-CISF Simulation Run: PMP Dist A Reservoir: PLAYA

Inflow Volume:

Discharge Volume: 30.94 (IN)

39.17 (IN)

	Start of Run:	01Jan2016, 00:00	Basin Model:	P AP 3 AMC III	
	End of Run:	05Jan2016, 00:00	Meteorologic Model:	PMP Distribution A	
	Compute Time:	09Dec2016, 11:37:50	Control Specifications:	Control PMP	
		Volume Units	51N		
CO	mputed Results	5			
	Peak Inflow: Peak Discharg	3029.7 (CFS) je: 3004.8 (CFS)	Date/Time of Peak Inflow: Date/Time of Peak Discharg	03Jan2016, 06:00 e: 03Jan2016, 06:11	

Peak Storage:

Peak Elevation:

902.03 (AC-FT)

3488.9 (FT)

APPENDIX E HEC-HMS INPUT (CD)