Graded Approach to Dry Storage Licensing at ISFSI Only Sites

By: Paul Plante, Cask Relicensing Project Manager

Connecticut Yankee/Maine Yankee/Yankee Rowe

Expectation

 Certificate of Compliance (CoC) and technical specification requirements (TS) should be simpler and easy to implement once a site has reached <u>ISFSI Only</u> status.

Reality

 The few requirements that remain still pose significant challenges for many <u>ISFSI Only</u> sites.

The 3 Yankees

15 Spent Fuel Dry Casks 1 GTCC Dry Casks NAC MPC System CoC Expires 4/10/20

40 Spent Fuel Dry Casks 3 GTCC Dry Casks NAC MPC System CoC Expires 4/10/20

60 Spent Fuel Dry Casks 4 GTCC Dry Casks NAC UMS System CoC Expires 11/20/20

Typical Vertical Concrete Cask

Applicability

TS#	MPC Applicability	UMS Applicability
A 3.1.1 CANISTER Maximum Time in Vacuum Drying	LOADING OPS	LOADING OPS
A 3.1.2 CANISTER Vacuum Drying Pressure	LOADING OPS	LOADING OPS
A 3.1.3 CANISTER Helium Backfill Pressure	LOADING OPS	LOADING OPS
A 3.1.4 CANISTER Maximum Time in TRANSFER CASK	LOADING OPS, TRANSFER OPS, UNLOADING OPS	LOADING OPS, TRANSFER OPS, UNLOADING OPS
A 3.1.5 CANISTER Helium Leak Rate	LOADING OPS	LOADING OPS
A 3.1.6 CONCRETE CASK Heat Removal System	STORAGE OPS	STORAGE OPS
A 3.1.7 Fuel Cooldown Requirements	UNLOADING OPS	N/A
A 3.2.1 CANISTER Surface Contamination	LOADING OPS	LOADING OPS
A 3.2.2 CONCRETE CASK Average Surface Dose Rates	Prior to or at the Beginning of STORAGE OPS	STORAGE OPS
A 3.3.1 Dissolved Boron Concentration	N/A	LOADING OPS

Example 1: Tech Spec A 3.2.2 on Concrete Cask Average Surface Dose Rate

Amend. No.	Applicability	Surveillance
2	Loading Ops	Once after completion of transfer of CANISTER into CONCRETE CASK and prior to beginning STORAGE OPERATIONS.
3	Storage Ops	Once after completion of transfer of CANISTER into CONCRETE CASK and prior to beginning STORAGE OPERATIONS.
4	Storage Ops	Prior to Storage Operations
5	Storage Ops	Prior to Storage Operations

Example 1: Continued

LCO 3.2.2		e average surface dose rates of each CONCRETE CASK shall ceed the following limits unless required ACTIONS A.1 and A.2 et.	
	a.	50 mrem/hour (neutron + gamesurfaces);	ma) on the side (on the concrete
	b.	50 mrem/hour (neutron + game	ma) on the top;
	C.	100 mrem/hour (neutron + gan	nma) at air inlets and outlets.
APPLICABILITY:	During STORAGE OPERATIONS		
ACTIONS			
		NOTE	
ACTIONS		NOTEowed for each NAC-UMS® SYST	 EM.
			 EM.
	entry is allo		COMPLETION TIME
Separate Condition e	entry is allo	owed for each NAC-UMS® SYST	

Example 1: Continued

CONCRETE CASK Average Surface Dose Rate A 3.2.2

CONDITION	REQUIRED ACTION	COMPLETION TIME
	A.2 Perform analysis to verify compliance with the ISFSI offsite radiation protection requirements of 10 CFR 20 and 10 CFR 72	7 days
B. Required Action and associated Completion Time not met.	B.1 Remove all fuel assemblies from the NAC-UMS® SYSTEM	30 days

Example 2: Tech Spec A 5.3 on Surveillance after Off Normal, Accident or Natural Phenomena Event

Amend. No.	Applicability	Surveillance	
1	A 5.4.1 Concrete Cask Thermal Monitoring Program	 Delta T measured every 24 hrs Unexplained behavior provision Notify NRC if it exceeds 92°F 	
2	A 5.3 Surveillance After an Off-Normal, Accident, or Natural Phenomena Event	 Monitor Delta T per SR 3.1.6.2 within 4 hrs of occurrence. Inspect if T doesn't register or exceeds SR 3.1.6.2 limits Inspect after Natural Phenomena event 	
3	Same as Rev. 2	To the above added: At least one half of inlets and outlets shall be cleared of debris within 24 hrs.	
4	Same as Rev. 2	Same as Rev. 3	
5	Same as Rev. 2	Deleted SR 3.1.6.2 provision and replaced with the words "Inspected" and must verify all inlets and outlets are not blocked or obstructed.	

Summary

- While there maybe good reasons to have a technical verification requirement, careful consideration should be given to its safety significance before it is added to the technical specifications.
- There are always unintended compliance issues that can affect ISFSI's as they transition from operating plants to **ISFSI Only** status.

Graded Approach to Dry Storage Licensing at ISFSI Only Sites

By: Paul Plante, Cask Relicensing Project Manager

Connecticut Yankee/Maine Yankee/Yankee Rowe

