ATTACHMENT TO LICENSE AMENDMENT NO. 67

TO FACILITY COMBINED LICENSE NO. NPF-91

DOCKET NO. 52-025

Replace the following pages of the Facility Combined License No. NPF-91 with the attached revised pages. The revised pages are identified by amendment number and contain marginal lines indicating the areas of change.

Facility Combined License No. NPF-91		
<u>REMOVE</u>	INSERT	
7	7	

Appendix C of Facility Combined License No. NPF-91

<u>REMOVE</u>	INSERT
C-287	C-287
C-451	C-451
C-453	C-453
	C-453a

- (7) <u>Reporting Requirements</u>
 - (a) Within 30 days of a change to the initial test program described in FSAR Section 14, Initial Test Program, made in accordance with 10 CFR 50.59 or in accordance with 10 CFR Part 52, Appendix D, Section VIII, "Processes for Changes and Departures," SNC shall report the change to the Director of NRO, or the Director's designee, in accordance with 10 CFR 50.59(d).
 - (b) SNC shall report any violation of a requirement in Section 2.D.(3), Section 2.D.(4), Section 2.D.(5), and Section 2.D.(6) of this license within 24 hours. Initial notification shall be made to the NRC Operations Center in accordance with 10 CFR 50.72, with written follow up in accordance with 10 CFR 50.73.
- (8) Incorporation

The Technical Specifications, Environmental Protection Plan, and ITAAC in Appendices A, B, and C, respectively of this license, as revised through Amendment No. 67, are hereby incorporated into this license.

(9) <u>Technical Specifications</u>

The technical specifications in Appendix A to this license become effective upon a Commission finding that the acceptance criteria in this license (ITAAC) are met in accordance with 10 CFR 52.103(g).

(10) Operational Program Implementation

SNC shall implement the programs or portions of programs identified below, on or before the date SNC achieves the following milestones:

- (a) Environmental Qualification Program implemented before initial fuel load;
- (b) Reactor Vessel Material Surveillance Program implemented before initial criticality;
- (c) Preservice Testing Program implemented before initial fuel load;
- (d) Containment Leakage Rate Testing Program implemented before initial fuel load;
- (e) Fire Protection Program
 - The fire protection measures in accordance with Regulatory Guide (RG) 1.189 for designated storage building areas (including adjacent fire areas that could affect the storage area) implemented before initial receipt

Table 2.5.1-3DAS Sensors and Displays		
Equipment Name	Tag Number	
Containment Temperature	VCS-053A	
Containment Temperature	VCS-053B	
Core Exit Temperature	IIS-009	
Core Exit Temperature	IIS-013	
Core Exit Temperature	IIS-030	
Core Exit Temperature	IIS-034	
Rod Control Motor Generator Voltage	PLS-001	
Rod Control Motor Generator Voltage	PLS-002	

Table 2.5.1-4 Inspections, Tests, Analyses, and Acceptance Criteria				
No.	ITAAC No.	Design Commitment	Inspections, Tests, Analyses	Acceptance Criteria
505	2.5.01.01	1. The functional arrangement of the DAS is as described in the Design Description of this Section 2.5.1.	Inspection of the as-built system will be performed.	The as-built DAS conforms with the functional arrangement as described in the Design Description of this Section 2.5.1.
506	2.5.01.02a	2.a) The DAS provides an automatic reactor trip on low wide-range steam generator water level, or on low pressurizer water level, or on high hot leg temperature, separate from the PMS.	Electrical power to the PMS equipment will be disconnected and an operational test of the as- built DAS will be performed using real or simulated test signals.	The generator field control relays (contained in the control cabinets for the rod drive motor-generator sets) open after the test signal reaches the specified limit.
507	2.5.01.02b	2.b) The DAS provides automatic actuation of selected functions, as identified in Table 2.5.1-1, separate from the PMS.	Electrical power to the PMS equipment will be disconnected and an operational test of the as- built DAS will be performed using real or simulated test signals.	Appropriate DAS output signals are generated after the test signal reaches the specified limit.
508	2.5.01.02c.i	2.c) The DAS provides manual initiation of reactor trip, and selected functions, as identified in Table 2.5.1-2, separate from the PMS. These manual initiation functions are implemented in a manner that bypasses the control room multiplexers, if any; the PMS cabinets; and the signal processing equipment of the DAS.	Electrical power to the control room multiplexers, if any, and PMS equipment will be disconnected and the outputs from the DAS signal processing equipment will be disabled. While in this configuration, an operational test of the as-built system will be performed using the DAS manual actuation controls.	i) The generator field control relays (contained in the control cabinets for the rod drive motor-generator sets) open after reactor and turbine trip manual initiation controls are actuated.

based on their degree of risk significance. The risk-significant components are listed in Table 3.7-1.

The objective of the D-RAP program is to provide reasonable assurance that risk-significant SSCs (Table 3.7-1) are designed such that: (1) assumptions from the risk analysis are utilized, (2) SSCs (Table 3.7-1) when challenged, function in accordance with the assumed reliability, (3) SSCs (Table 3.7-1) whose failure results in a reactor trip, function in accordance with the assumed reliability, and (4) maintenance actions to achieve the assumed reliability are identified.

1. The D-RAP ensures that the design of SSCs within the scope of the reliability assurance program (Table 3.7-1) is consistent with the risk insights and key assumptions (e.g., SSC design, reliability, and availability).

Table 3.7-1 Risk-Significant Components			
Equipment Name	Tag No.		
Component Cooling Water System (CCS)			
Component Cooling Water Pumps	CCS-MP-01A/B		
Containment System (CNS)			
Containment Vessel	CNS-MV-01		
Hydrogen Igniters	VLS-EH-1 through -66		
Chemical and Volume Control System (CVS)			
Makeup Pumps	CVS-MP-01A/B		
Makeup Pump Suction and Discharge Check Valves	CVS-PL-V113 CVS-PL-V160A/B		
Letdown Discharge Isolation Valves	CVS-PL-V045 CVS-PL-V047		
Diverse Actuation System (DAS)			
DAS Processor Cabinets and Control Panel (used to provide automatic and manual actuation)	DAS-JD-001 DAS-JD-002 DAS-JD-003 OCS-JC-20		
Auxiliary Building UPS Distribution Panels (provide power to DAS)	EDS2-EA-12, EDS3-EA-14A		
Control Cabinets for the Rod Drive MG Sets (generator field control relays)	PLS-JD-RDM001 PLS-JD-RDM002		
Containment Isolation Valves Controlled by DAS	CVS-PL-V045, -V047 VFS-PL-V003, -V004, -V009, -V010 WLS-PL-V055, -V057		
Main ac Power System (ECS)			

Table 3.7-1 Risk-Significant Components			
Equipment Name	Tag No.		
250 Vdc 24-Hour Inverters	IDSA-DU-1, IDSB-DU-1, IDSC-DU-1, IDSD-DU-1		
Passive Containment Cooling System (PCS)			
Recirculation Pumps	PCS-MP-01A/B		
PCCWST Drain Isolation Valves	PCS-PL-V001A/B/C		
Plant Control System (PLS)			
PLS Actuation Software (used to provide control functions)	Refer to Table 3.7-2		
PLS Actuation Hardware (used to provide control functions)	Refer to Table 3.7-2		
Protection and Monitoring System (PMS)			
PMS Actuation Software (used to provide automatic control functions)	Refer to Tables 2.5.2-2 and 2.5.2-3		
PMS Actuation Hardware (used to provide automatic control functions)	Refer to Tables 2.5.2-2 and 2.5.2-3		
MCR 1E Displays and System Level Controls	OCS-JC-10, -11		
Reactor Trip Switchgear	PMS-JD-RTS A01/02, B01/02, C01/02, D01/02		
Passive Core Cooling System (PXS)			
IRWST Hood Vent Covers	PXS-MY-Y21, -Y22, -Y23, -Y24, -Y25, -Y26, -Y27, -Y28, -Y29, -Y30, -Y31, -Y32, -Y33, -Y41, -Y47, -Y48		
IRWST Steam Generator Wall Vent Covers	PXS-MY-Y61, -Y62, -Y63, -Y64		
IRWST Overflow Weir Covers	PXS-MY-Y71, -Y72, -Y73, -Y74, -Y75, -Y76		
IRWST Screens	PXS-MY-Y01A/B/C		
Containment Recirculation Screens	PXS-MY-Y02A/B		
CMT Discharge Isolation Valves	PXS-PL-V014A/B, -V015A/B		
CMT Discharge Check Valves	PXS-PL-V016A/B, -V017A/B		
Accumulator Discharge Check Valves	PXS-PL-V028A/B, -V029A/B		
PRHR HX Control Valves	PXS-PL-V108A/B		
Containment Recirculation Squib Valves	PXS-PL-V118A/B, -V120A/B		
IRWST Injection Check Valves	PXS-PL-V122A/B, -V124A/B		
IRWST Injection Squib Valves	PXS-PL-V123A/B, -V125A/B		
IRWST Gutter Bypass Isolation Valves	PXS-PL-V130A/B		

Table 3.7-1 Risk-Significant Components		
Equipment Name	Tag No.	
Reactor Coolant System (RCS)		
ADS Stage 1/2/3 Valves (MOVs)	RCS-PL-V001A/B, -V011A/B RCS-PL-V002A/B, -V012A/B RCS-PL-V003A/B, -V013A/B	
ADS Stage 4 Valves (Squibs)	RCS-PL-V004A/B/C/D	