FACILITY NAME (1)		· · · · ·		•	•				1	CKET	NUME	ER (2)				PAGE (3	»
· Diablo Ca	anyon	Unit 1						0 5	0	0	0	2	7	5	1	OF	
Compone	ent Coo	oling Wa	ater.((ccw	Svs	tem Ma	v Hav	e On	erat	ed (Out	tside	e of	lts [Desia	n Bas	sis
Due to th	e Limit	ed Cap	acity	of the	Aux	iliary S	altwate	er Sy	sten	n Co	oml	bine	d W	lith I	ncre	ases i	'n
the Calcu	lated H	leat Loa	ad int	o the	<u>çcv</u>	V Syste	<u>m </u>										
DATE (5) MON DAY YR	YR ; SE	NUMBER (REVISION	·: MON	REPORT	·* ·		ACILITY			ACILIT	IES INV	OLVED			
		4	<u>.</u>	NUMBER		<u> </u>											
10 10 95 OPERATING T	95 -	U 7 IS SUBMITTE	3 -		12 REOU			iablo	Can	yon	<u>ı Uı</u>	nit 2	0	5	00	03	2
MODE (9)			1 ×		\$14.5			1 21	i ,	47				874 - IIN I	•		
POWER		<u>, </u>).73(a)(2)(II)(E	3) ,				·		1.5		••••	
	<u>`</u>	·			(SPE	CIFY IN AB	STRACT	SELOW A		TEXT	r, NR	C FOR	M 366,	<u>,</u> 4)			
		· · · ·		<u>8)677</u> LI		E CONTAC	T FOR TH	IS LER (12)								
			3	,		£ •	,							AR	TELEPH EA CODE	IONE NUN	IBER
Vickie A.	Backm	an - Se	nior F	Regula	tory	Servic	es Eng	ginee	er		•				805	545	-42
CAUSE SYSTEM	СОМР	ONENT	MANUF	ACTURER	RE	ORTABLE	CAUSE	SYSTE			IEPOR IPONE		- M	NUFAC	TURER		RTAB
	1.	1 1	1	1 1	-[-'	UNAPUS		 ,		1	1					101	NRPD
					_ _	· · ·		┼──└	_ _								
	5	SUPPLEMENT	AL REPOR	T EXPECT	5D (14)												
[]YES (If		niete EXE										ECTE		(4.5)	MON	DAY	<u> </u>
[] YES (If ABSTRACT (16)		plete EXF	PECTE	D SUBM		ON DATE) [[X] NO	su					(15)	MON	DAY	
ABSTRACT (16) On O(yes, com ctober 1	10, 199	5, at 1	1700 F		, with U	nit 1 d	lefuel	led a	BMI	ssic Un	DND	ATE	lode	• 1 (F	ower	
ABSTRACT (16) On Oc Opera	yes, com ctober 1 ition) at	10, 199 t 100 pe	5, at 1 ercent	1700 F	PDT,	, with U review	nit 1 d of per	lefuel forma	led a	and e tes	SSIC Un st re	it 2 esul	ATE in N ts d	lode	e 1 (F mine	ower	
ABSTRACT (16) On Oc Opera residu	yes, com ctober ition) at al heat	10, 199 t 100 pe : remova	5, at 1 ercent al hea	1700 F powe	PDT er, a	, with U review jer ther	nit 1 d of per mal pe	lefue form erforn	led a ance	and tes	Un St re	it 2 esul	ATE in N ts d re e	lode eter	e 1 (F mine ent (r	Power d that	<u> </u>
ABSTRACT (16) On Oc Opera residu conse analys	yes, com ctober tion) at al heat rvative) sis. On	10, 1999 t 100 pe t remova) than h i Octobe	5, at f ercent al hea ad be er 10,	1700 F powe at excl en as 1995	PDT er, a hang sum	, with U review Jer ther Jed in ther 1715 Pl	nit 1 d of per mal per ne con DT, thi	lefue forma erform npone is cor	led a ance nance ent c nditio	and e tes cool cool	Un st re vas ling was	it 2 esul mo wat	ATE in N ts d re e ter (lode eter fficie CC\	e 1 (F mine ent (r W) sy the	Power d that ion- vstem NRC	<u> </u>
ABSTRACT (16) On Oc Opera residu conse analys for Un	yes, com tion) at al heat rvative) sis. On it 1 as	10, 1999 t 100 pe t remova) than h i Octobe a 4-hou	5, at 1 ercent al hea ad be er 10, ir, nor	1700 F powe at exch een as 1995 n-eme	PDT, er, a nang sum at	, with U review ler ther led in ther 1715 Pl licy repo	nit 1 d of per mal per ne con DT, thi ort in a	lefue forma erform npone is cor	led a ance nance ent c nditio	and e tes ce w cool on v ce w	Un st re vas ling vas vith	it 2 esul mo wat rep 10	In N ts d re e ter (orte CFF	lode eter fficie CCV d to 8 50	e 1 (F mine ent (r W) sy the .72(b	Power d that ion- vstem NRC	<u> </u>
ABSTRACT (16) On Oc Opera residu conse analys for Un and fo	yes, com tion) at al heat rvative) sis. On it 1 as r Unit 2	10, 1999 t 100 pe t remova) than h i Octobe a 4-hou 2 as a 1	5, at 1 ercent al hea ad be er 10, ir, nor	1700 F powe at exch een as 1995 n-eme	PDT, er, a nang sum at	, with U review ler ther led in ther 1715 Pl licy repo	nit 1 d of per mal per ne con DT, thi ort in a	lefue forma erform npone is cor	led a ance nance ent c nditio	and e tes ce w cool on v ce w	Un st re vas ling vas vith	it 2 esul mo wat rep 10	In N ts d re e ter (orte CFF	lode eter fficie CCV d to 8 50	e 1 (F mine ent (r W) sy the .72(b	Power d that ion- vstem NRC	<u> </u>
ABSTRACT (16) On Oc Opera residu conse analys for Un and fo	yes, com tion) at al heat rvative) sis. On it 1 as	10, 1999 t 100 pe t remova) than h i Octobe a 4-hou 2 as a 1	5, at 1 ercent al hea ad be er 10, ir, nor	1700 F powe at exch een as 1995 n-eme	PDT, er, a nang sum at	, with U review ler ther led in ther 1715 Pl licy repo	nit 1 d of per mal per ne con DT, thi ort in a	lefue forma erform npone is cor	led a ance nance ent c nditio	and e tes ce w cool on v ce w	Un st re vas ling vas vith	it 2 esul mo wat rep 10	In N ts d re e ter (orte CFF	lode eter fficie CCV d to 8 50	e 1 (F mine ent (r W) sy the .72(b	Power d that ion- vstem NRC	
ABSTRACT (16) On Oc Opera residu conse analys for Un and fo 50.72(This e	yes, com tion) at al heat rvative) sis. On it 1 as r Unit 2 (b)(1)(ii) vent wa	10, 1999 t 100 pe remova) than h Octobe a 4-hou 2 as a 1)(B). as caus	5, at 1 ercent al hea ad be er 10, ir, nor -hour	1700 F powe at exch een as 1995 n-eme , non-	PDT er, a hang sum at rger eme	, with U review let ther led in th 1715 Pl locy repo rgency d capa	nit 1 d of per mal per ne con DT, thi ort in a repor	lefuel forma erform is corr accord t in a the a	led a ance nance ent c nditio danc ccor	and e tes cool con v ce w dan	Un st revas ling was vith nce	it 2 esul mo va rep 10 with	in M ts d re e ter (orte CFF 10	lode eter fficie CCV ed to CFI CFI	e 1 (F mine ent (r W) sy the .72(b R	Power d that non- vstem NRC o)(2)(i)),
ABSTRACT (16) On Oc Opera residu conse analys for Un and fo 50.720 This e Increa	yes, com tion) at al heat rvative) sis. On it 1 as r Unit 2 (b)(1)(ii) vent wa ses in t	10, 1999 t 100 pe remova) than h Octobe a 4-hou 2 as a 1)(B). as caus the calc	5, at 1 ercent al hea ad be er 10, ir, nor -hour ed by culated	1700 F powe t excl een as 1995 n-eme , non- the li d heat	PDT, er, a nang sum at ⁻ rger eme mite	, with U review let ther led in th 1715 Pl locy repo rgency d capa d into th	nit 1 d of per mal per ne con DT, thi ort in a repor	lefuel forma erform is corraccord t in a the a W ov	led a ance nance ent c nditio danc ccor	and testes cool con v ce w dan	Un st revas ling was vith nce	it 2 esul mo wa rep 10 with	in M ts d re e ter (orte CFF 10	lode eter fficie CCV ed to CFI CFI	e 1 (F mine ent (r W) sy the .72(b R	Power d that non- vstem NRC o)(2)(i)),),
ABSTRACT (16) On Oc Opera residu conse analys for Un and fo 50.720 This e Increa	yes, com tion) at al heat rvative) sis. On it 1 as r Unit 2 (b)(1)(ii) vent wa ses in t	10, 1999 t 100 pe remova) than h Octobe a 4-hou 2 as a 1)(B). as caus	5, at 1 ercent al hea ad be er 10, ir, nor -hour ed by culated	1700 F powe t excl een as 1995 n-eme , non- the li d heat	PDT, er, a nang sum at ⁻ rger eme mite	, with U review let ther led in th 1715 Pl locy repo rgency d capa d into th	nit 1 d of per mal per ne con DT, thi ort in a repor	lefuel forma erform is corraccord t in a the a W ov	led a ance nance ent c nditio danc ccor	and testes cool con v ce w dan	Un st revas ling was vith nce	it 2 esul mo wa rep 10 with	in M ts d re e ter (orte CFF 10	lode eter fficie CCV ed to CFI CFI	e 1 (F mine ent (r W) sy the .72(b R	Power d that non- vstem NRC o)(2)(i)),
ABSTRACT (16) On Oc Opera residu conse analys for Un and fo 50.72(This e Increa decrea	yes, com tion) at al heat rvative) sis. On it 1 as r Unit 2 (b)(1)(ii) vent wa ses in t ase in t	10, 1999 t 100 pe remova) than h Octobe a 4-hou 2 as a 1)(B). as caus the calc he desig	5, at 1 ercent al hea ad be er 10, ir, nor -hour ed by culated gn ma	1700 F t powe t exch een as 1995 n-eme , non- the li d heat argin i	PDT, er, a nang sum at ⁻ rger eme mite loa n the	, with U review let ther led in the 1715 Pl locy report rgency d capa d capa d into the e CCW	nit 1 d of per mal per ne con DT, thi ort in a repor	lefuel forma erform is corr accord t in a the a W ov m to a	led a ance nance ent c nditio danc ccor nuxili rer th a mi	and testes ce w cool on v ce w dan	Un st revas ling was vith nce sast	it 2 esul mo wa rep 10 with lt wa 20	in N ts d teree CFF 10 ter vea	lode eter fficie CCV ed to CFI (AS rs re	e 1 (F mine ent (r W) sy the .72(b R W) s esulte	Power d that non- vstem NRC o)(2)(i)),
ABSTRACT (16) On Oc Opera residu conse analys for Un and fo 50.72(This e Increa decrea A desi	yes, com tion) at al heat rvative) sis. On it 1 as r Unit 2 (b)(1)(ii) vent wa ses in t ase in t	10, 1999 t 100 pe remova) than h Octobe a 4-hou 2 as a 1)(B). as caus the calc he designed	5, at 1 ercent al hea ad be er 10, ir, nor -hour -hour ulated gn ma d TS I	1700 F powe t excl een as 1995 n-eme , non- the li d heat argin i	PDT, er, a sum at rger eme mite loa n the cha	, with U review let ther led in the 1715 Pl locy report rgency d capa d into the CCW	nit 1 d of per mal per ne con DT, thi ort in a repor city of ne CC system ve bee	lefuel forma erform npond is corra ccord t in a the a W ov m to a en co	led a ance nance ent c ent c danc ccor nuxili er th a mi mple	and tester cool con v ce w dan	Un strevas ling was vith nce sal	it 2 esul mo va rep 10 with It wa 20	ATE in N ts d te e ter (orte CFF 10 ater yea	lode eter fficie CCV ed to CFI (AS rs re eak	e 1 (F mine ent (r W) sy the .72(b R W) s esulte	Power d that ion- vstem NRC b)(2)(i) ystem ed in a),
ABSTRACT (16) On Oc Opera residu conse analys for Un and fo 50.72(This e Increa decrea A desi allowa	yes, com ctober ition) at al heat rvative) sis. On it 1 as r Unit 2 (b)(1)(ii) vent wa ses in t ase in t gn cha ble CC	10, 1999 t 100 pe remova) than h Octobe a 4-hou 2 as a 1)(B). as caus the calc he desig nge and	5, at 1 ercent al hea ad be er 10, ir, nor -hour -hour ed by culated gn ma d TS I em te	1700 F t powe at exch een as 1995 h-eme , non- the li d heat argin i bases mpera	PDT, anang sum at r ger eme loa n the cha ture	with U review let ther led in the 1715 Pl locy repo rgency d capa d into the CCW nge ha to 140	nit 1 d of per mal per ne con DT, thi ort in a repor city of ne CC system ve bee degree	lefue forma erform is corr is corr t in a the a W ov m to a en co ees F	led a ance nance ent c nditio danc ccor nuxili rer th a mi mple ahre	and e tes ce w cool on v ce w dan fary ne p nim etec	Un stravas ling was vith ce sast bum d re eit f	it 2 esul mo wa rep 10 with t wa 20	ATE in N ts d tere e ter (orter CFF 10 ater yea	lode eter fficie CCV d to CFI (AS rs re eak 6 h	e 1 (F mine ent (r W) sy the .72(b R W) s esulte	Power d that ion- vstem NRC i)(2)(i) ystem ed in a),),
ABSTRACT (16) On Oc Opera residu conse analys for Un and fo 50.72(This e Increa decrea A desi allowa	yes, com ctober ition) at al heat rvative) sis. On it 1 as r Unit 2 (b)(1)(ii) vent wa ses in t ase in t gn cha ble CC	10, 1999 t 100 pe remova) than h Octobe a 4-hou 2 as a 1)(B). as caus the calc he designed	5, at 1 ercent al hea ad be er 10, ir, nor -hour -hour ed by culated gn ma d TS I em te	1700 F t powe at exch een as 1995 h-eme , non- the li d heat argin i bases mpera	PDT, anang sum at r ger eme loa n the cha ture	with U review let ther led in the 1715 Pl locy repo rgency d capa d into the CCW nge ha to 140	nit 1 d of per mal per ne con DT, thi ort in a repor city of ne CC system ve bee degree	lefue forma erform is corr is corr t in a the a W ov m to a en co ees F	led a ance nance ent c nditio danc ccor nuxili rer th a mi mple ahre	and e tes ce w cool on v ce w dan fary ne p nim etec	Un stravas ling was vith ce sast bum d re eit f	it 2 esul mo wa rep 10 with t wa 20	ATE in N ts d tere e ter (orter CFF 10 ater yea	lode eter fficie CCV d to CFI (AS rs re eak 6 h	e 1 (F mine ent (r W) sy the .72(b R W) s esulte	Power d that ion- vstem NRC i)(2)(i) ystem ed in a),
ABSTRACT (16) On Oc Opera residu conse analys for Un and fo 50.72(This e Increa decrea A desi allowa	yes, com ctober ition) at al heat rvative) sis. On it 1 as r Unit 2 (b)(1)(ii) vent wa ses in t ase in t gn cha ble CC	10, 1999 t 100 pe remova) than h Octobe a 4-hou 2 as a 1)(B). as caus the calc he desig nge and	5, at 1 ercent al hea ad be er 10, ir, nor -hour -hour ed by culated gn ma d TS I em te	1700 F t powe at exch een as 1995 h-eme , non- the li d heat argin i bases mpera	PDT, anang sum at r ger eme loa n the cha ture	with U review let ther led in the 1715 Pl locy repo rgency d capa d into the CCW nge ha to 140	nit 1 d of per mal per ne con DT, thi ort in a repor city of ne CC system ve bee degree	lefue forma erform is corr is corr t in a the a W ov m to a en co ees F	led a ance nance ent c nditio danc ccor nuxili rer th a mi mple ahre	and e tes ce w cool on v ce w dan fary ne p nim etec	Un stravas ling was vith ce sast bum d re eit f	it 2 esul mo wa rep 10 with t wa 20	ATE in N ts d tere e ter (orter CFF 10 ater yea	lode eter fficie CCV d to CFI (AS rs re eak 6 h	e 1 (F mine ent (r W) sy the .72(b R W) s esult	Power d that ion- vstem NRC i)(2)(i) ystem ed in a),),
ABSTRACT (16) On Oc Opera residu conse analys for Un and fo 50.72(This e Increa decrea A desi allowa	yes, com ctober ition) at al heat rvative) sis. On it 1 as r Unit 2 (b)(1)(ii) vent wa ses in t ase in t gn cha ble CC	10, 1999 t 100 pe remova) than h Octobe a 4-hou 2 as a 1)(B). as caus the calc he desig nge and	5, at 1 ercent al hea ad be er 10, ir, nor -hour -hour ed by culated gn ma d TS I em te	1700 F t powe at exch een as 1995 h-eme , non- the li d heat argin i bases mpera	PDT, anang sum at r ger eme loa n the cha ture	with U review let ther led in the 1715 Pl locy repo rgency d capa d into the CCW nge ha to 140	nit 1 d of per mal per ne con DT, thi ort in a repor city of ne CC system ve bee degree	lefue forma erform is corr is corr t in a the a W ov m to a en co ees F	led a ance nance ent c nditio danc ccor nuxili rer th a mi mple ahre	and e tes ce w cool on v ce w dan fary ne p nim etec	Un stravas ling was vith ce sast bum d re eit f	it 2 esul mo wa rep 10 with t wa 20	ATE in N ts d tere e ter (orter CFF 10 ater yea	lode eter fficie CCV d to CFI (AS rs re eak 6 h	e 1 (F mine ent (r W) sy the .72(b R W) s esult	Power d that ion- vstem NRC i)(2)(i) ystem ed in a),),
ABSTRACT (16) On Oc Opera residu conse analys for Un and fo 50.72(This e Increa decrea A desi allowa Relate	yes, com ctober ition) at al heat rvative) sis. On it 1 as r Unit 2 (b)(1)(ii) vent wa ses in t ase in t gn cha ble CC	10, 1999 t 100 pe remova) than h Octobe a 4-hou 2 as a 1)(B). as caus the calc he design ge and W syste on basis	5, at 1 ercent al hea ad be er 10, ir, nor -hour -hour ed by sulated gn ma d TS I em tel s docu	1700 F t powe at exch een as 1995 h-eme , non- the li d heat argin i bases mpera	PDT, anang sum at r ger eme loa n the cha ture	with U review let ther led in the 1715 Pl locy repo rgency d capa d into the CCW nge ha to 140	nit 1 d of per mal per ne con DT, thi ort in a repor city of ne CC system ve bee degree	lefue forma erform is corr is corr t in a the a W ov m to a en co ees F	led a ance nance ent c nditio danc ccor nuxili rer th a mi mple ahre	and e tes ce w cool on v ce w dan fary ne p nim etec	Un stravas ling was vith ce sast bum d re eit f	it 2 esul mo wa rep 10 with t wa 20	ATE in N ts d tere e ter (orter CFF 10 ater yea	lode eter fficie CCV d to CFI (AS rs re eak 6 h	e 1 (F mine ent (r W) sy the .72(b R W) s esult	Power d that ion- vstem NRC i)(2)(i) ystem ed in a),

, . .

· · ·

FACILITY NAME (1)		D	OCKET	NUME	BER (2)					LEF	NUM	BER (6)			1	PAGE	(3)
		_			-			YEAR			UMBE				ISION IBER			
Diablo Canyon Unit 1	0	5 0	0	0	2	7 ·	5	95	1	0	1	3	-	0	2	2	OF	15

TEXT

I. <u>Plant Conditions</u>

Unit 1 was defueled and Unit 2 was in Mode 1 (Power Operation) at 100 percent power. Both Units 1 and 2 have operated in various modes with the potential for the condition described in this LER.

II. <u>Description of Problem</u>

A. Summary

CALL NOT A

On October 10, 1995, at 1700 PDT, with Unit 1 defueled and Unit 2 in Mode 1 at 100 percent power, a review of thermal performance testing results determined that Residual Heat Removal (RHR) Heat Exchanger (BP)(HX) 1-1 was more efficient than had been assumed in the design basis analysis. For component cooling water (CCW) system (BI) overheating analysis, this is non-conservative.

On October 10, 1995, at 1715 PDT, this condition was conservatively reported to the NRC for Unit 1 as a 4-hour, non-emergency report in accordance with 10 CFR 50.72(b)(2)(i), and for Unit 2 as a 1-hour, non-emergency report in accordance with 10 CFR 50.72(b)(1)(i)(B).

B. Background

The CCW system is designed to provide normal plant operational and postaccident cooling to the containment fan cooler units (CFCUs) (BK)(CLR), RHR HXs, skid coolers (SJ)(CLR) for the centrifugal charging pumps (CCPs) (SJ)(P), safety injection (SI) pumps (BQ)(P), CCW pumps(BI)(P), RHR pumps (BP)(P), and post-accident sampling system coolers (IP)(CLR). Additionally, the CCW system removes heat from nonvital components via the system's nonvital C Header. The waste heat from the vital and nonvital components is rejected to the ultimate heat sink via the auxiliary saltwater (ASW) system (KE). Under accident conditions, the cooling water flow to the nonvital loads is automatically isolated by closure of flow control valve FCV-355. The Final Safety Analysis Report (FSAR) Update and Supplemental Safety Evaluation Report (SSER) Number 16 contain a 132 degrees Fahrenheit (F) upper limit, remaining above 120 degrees F for no more than 20 minutes, to assure availability of vital equipment.

The CCW system temperature is a function of several factors, including the heat loads on the system, the number of CCW HXs in service, the number

• .

FACILITY NAME (1)			DO	CKET	NUMBI	ER (2)		-		<u> </u>	LER	NUM	BER (6)				PAGE	(3)
									YEAR			UENT				ISION ABER			
Diablo Canyon Unit 1	0	5	0	0	0	2	7·	5	95	-	0	1	3	-	0	2	3	OF	15
TEXT																			

of ASW pumps in service, as well as the temperature of the ultimate heat sink. Following a design basis large break loss of coolant accident (LOCA) or main steam line break (MSLB), large amounts of energy are released into containment. This significantly increases the heat load placed on the CCW system by the CFCUs. The heat load on the system is further increased when the RHR HXs are placed in operation to cool the water collected in the containment sump.

Cargo de

PG&E letters dated March 18, April 4, and May 18, 1983, provided the results of a reanalysis of the heat removal capability of the CCW system, assuming the worst design basis heat load resulting from a LOCA and the most limiting single active failure. The NRC's review of the reanalysis is documented in SSER 16. Subsequent to that analysis, several conditions, such as those documented in PG&E letters DCL 88-215, dated September 13, 1988, and DCL 92-148, dated June 29, 1992, have reduced the reported margin in the 1983 analysis of the CCW system. Each of these conditions were due to changes in assumptions made in the 1983 analysis. Actions taken following these submittals include performance of a new Westinghouse mass and energy release model for post-LOCA containment analysis, a review of the CCW overheating analysis, and revisions to emergency operating procedures.

In 1995, a new CCW overheating analysis was performed by Westinghouse using the new LOCA mass and energy release model to demonstrate that a single ASW pump and a single CCW HX provide sufficient cooling to maintain the CCW temperature within its design basis limits assuming the most limiting accidents. This analysis is conservative since, as stated in the FSAR Update, a second CCW HX is credited to be placed in service within 20 minutes. The analysis assumed that the ASW pump flow rate satisfied the requirements of Surveillance Test Procedure (STP) M-26, "ASW System Flow Monitoring," and design CFCU and RHR HX fouling factors of 0.0005 and 0.0008, respectively. The Westinghouse analysis identified three accident scenarios which resulted in the limiting CCW temperature transients. These were:

 An MSLB with an assumed failure of the secondary side isolation which results in high CCW temperatures in the short term. Following the isolation of the faulted steam generator, containment and the CCW system cool rapidly.

T.

•

. . . **`**

. •

• •

5

						,			1.4.1.1	NO	110	IN [.]		
FACILITY NAME (1)		DOCKET	NUMBER (2	2)	YEAR		SEQ	NUMBER (REVISIO		PAGE	(3)	
Diablo Canyon Unit 1	0 5	0 0	0 2	2 7 !	5 95		0	JMBER	_	NUMBE		OF	Γ	15
техт 2. / 3. ··· / у / /	A LOCA which ecircula alysis pe led that ild exce ng no op cal Spec ag Wate torage to able to o	CW ter with result ation p erform the C eed 12 perato cificati er Stor ank (F cool at	mpera a failu ts in th ohase ned for CW te 20 deg or action rage T RWST	ature tra ire of S he wor of an a or the L empera grees F on to a S) 3.5. Fank," s	ansien Solid S st case accider OCA v ature v for gr align a 5, "Em specifi isure a	tate e CO nt. with voul eate sec nerg es t	e Pro Pro CW an Id re er th ond enc he o deq	g the in otection tempo SSPS emain nan 20 I CCW operation uate s	njec on Sy eratu Tra belc) min / HX e Co bility supp	tion p yster ure tr in A ow 13 ow 13 outes outes	ohase n (SSi ansiei failure 32 deg (26.1 g Syst he refu borat	PS) Trant int in the grees F minute ems - ueling ed wat	e . es),	
TS 3/4.6 specifie heat ren containr TS 3/4.7 specifie cooling e equipme	5.2.3, "C s the op noval ca ment sp 7.3.1, "F s the op capacity	Contai perabi apacit pray sy Plant S perabi y is av	ility of ty is av ystem: Syster lity of vailabl	the CF vailable s durin ms - Vi the vita le for c	CUs t e wher g post tal Cor al CCV ontinu	io ei n op t-LO mpc W sy ed c	nsui bera DCA oner yste	re that ted in condi nt Coo m to e ration	t ade con itions oling ensu	equa junct s. Wate	te con lion wi er Sys at suf	itainme ith the stem," ficient	ent	
TS 3/4.7 of the ul less that analysis tempera when the coolant service i 64 degre	itimate f n 132 di . One (iture is 6 e ocear system is adequ	heat s legree CCW 64 deg n temp temp	ink to es F du HX is grees peratu eratur	ensur uring a requir F or le ire is g re is les	e the C iny cor ed to b ess. Ty reater ss thar	CCV nditi pe ir wo (than 1 35	V te on a n se CCV n 64	mpera assum rvice v V HXs 4 degr egrees	ature ied i wher s are ees s F,	e rem n the n the e requ F. If one	ains e safet ocea uired i the re CCW	equal to ty n in servi eactor	o or	
STP M-2 meet de												cient to)	

.

N

LICENSEE	EVENT REPORT	(LER) TEXT	CONTINUATION
----------	--------------	------------	--------------

FACILITY NAME (1)		CKET	NUMBER	(2)		<u> </u>		LEF	RNUMBER	2 (6)		· · · · · · · · · · · · · · · · · · ·		PAGE	(3)
						YEAR		SEC	UMBER			ISION MBER	·		·
.Diablo.Canyon Unit 1	0 5 0	0	0	2 7	5	95	-	0	13	3 -	0	2	5	OF	15
TEXT Operati Shutdo the opp second within 2 comper (PEP) M a Speci ensure i STP R- RWST TS 3.5.4 C. Event D Generic good ch closed o control v effective environi concern	ng Procee wn and Cl ositë unit ASW pur 0 minutes satory ac A-229, "Ev fic Duratic CCW syst 20, "Boric water volu 5 and des escription Letter 89 emistry co cooling syst with the us biocide. mentally a was raise	dure lear s st np, s by tion valu on o tem Aci ign -13 ontr ster se c Th	e (OP ning," andb or the man is th ation of Tim capa d Inv , bord requi) F-2 ensitive AS e securation of A le for ability ento on co iremo	2.III, ures W p cond pera forr llow Ma once ents eents eents eents	"Com that bump CCV ator a nance Takin intens Takin intens orman istori s both were of date-l	dur thr V H actic e of anc des on, des con, cha cha bas	nen ing oug X con. f Pla Cre e/C for an tes y m con ed	ed co ting. anita ant E dit fo Dpera the r d terr	bling V HX unite ret Itern ngin r a S tions neas neas neas neas neas neas neas ne	Wa C mate t cro urn ate eer Sing s E sure atur g w c CC I go iibit t to Sir	ater ainte osst ing ile T volu eme to ater CW s of a or a noce	Syste enancie val o ser inten Proce rain / tions, nt of mee syste syste chem nd ar nore this c	e, eith ve, th vice ance edure ASW f " to ar s of the t t ems w m is a istry n	ner e for .
microfou performa phase a results in CCW sy lower tha The HXs performa heat tran fouling fa plus 0.00 with resp	onducted uling and i ance test t the start ndicated t stem thar an expect s are sized ance to be nsfer capa actor is 0. 003 hr-ft ² - poect to component	its e was of t hat a as ed t bilit 000 °F/E ntai	effect s con- the U the H sume foulin ensu v des ty is r 8 hr- Btu of nmer	on h ducte nit 1 IX w ed in g fac ure th ign s reduc ft ² -°F n the nt an	eat ed o sev as c safe tor. at fo peci ced o /Btu tub	transi n RH enth i apab ety an ficatio due to i (0.00 e side is, bu	fer (R H refu le co naly dc ons o fo 005 e). t is	cap IX Jelir of transis oes S. L oulin 5 hr- Thi non	not d ng ou ansfe calcu not d OCA ng. T -ft ² -°F is ass n-con	y. A uring tage rring latic egra ana he a /Btu sump	the the (1) ons ade ssu ssu on otion vativ	erma e co R7). ore bec the es a imee the n is ve ir	Al poldov The heat ause HX ssum d des shell conse the	wn to the of a ign side ervativ CCW	/e

FACILITY NAME (1)			DO	CKET	NUMB	ER (2)		· · · ·			LER	NUM	8ER (6)				PAGE	(3)
		,							YEAR			UENT				ISION ABER			
Diablo Canyon Unit 1	0	5	0	0	0	2	7 ·	5	95	-	0	1	3	-	0	2	6	OF	15
TEXT																		•	

.. :

it was judged that the use of a fouling factor as low as 0.0001 hr-ft²-°F/Btu was appropriate.

Because of similar water chemistry conditions, it is conservatively assumed that the same condition exists for the other RHR HX and for the CFCUs, so that they also reject heat to CCW at a higher rate than assumed in the analysis. The CFCU design fouling factor is 0.0005 hr-ft²-°F/Btu. At the same time, the fouling factor for the CCW HX is conservatively assumed to be at its design value of 0.001. Finally, because the same water chemistry control program is in effect for both units, this concern was conservatively assumed to exist on Unit 2.

These lower fouling factors were used to assess the heat input to the CCW system from the RHR HXs and the CFCUs. The FSAR Update and SSER 16 contained a 132 degrees F upper limit, remaining above 120 degrees F for no more than 20 minutes to assure availability of vital equipment. An analysis using a new Westinghouse containment mass and energy release methodology showed that the FSAR Update and SSER CCW temperature limits could have been exceeded during the LOCA recirculation phase if only one CCW HX was in operation (during CCW HX maintenance). PG&E has judged that the CCW system would also have exceeded the temperature limits stated in the FSAR Update and SSER 16 if the old containment mass and energy release methodology had been used.

On October 10, 1995, at 1715 PDT, this condition was conservatively reported to the NRC as a 4-hour, non-emergency report in accordance with 10 CFR 50.72(b)(2)(i) for Unit 1, and as a 1-hour, non-emergency report in accordance with 10 CFR 50.72(b)(1)(ii)(B) for Unit 2. A preliminary operability evaluation (OE) was issued with applicable compensatory measures.

On November 17, 1995, a formal OE was approved and compensatory measures were established to ensure that the CCW temperature profile remains within its design limits until corrective actions can be completed to provide additional CCW system design margin.

PG&E letter DCL 95-265, dated December 11, 1995, submitted the new Westinghouse containment analysis using the new mass and energy release methodology to the NRC and committed to perform 10 CFR 50.59 evaluations to include the new Westinghouse containment analysis in the Units 1 and 2 design basis. PG&E letter DCL 95-265, also committed that a

• • • .

LICENS	EE EVE	NT	REP	OR.	T (l	.ER)) TI	EX.	гсо	NT	INU	JAT	ΓΙΟΝ	1	ũ	
FACILITY NAME (1)	DO	CKET	NUMBER (2)	,		YEAR	 	SEQ	NUMBER	(6)		SION	•	PAGE	(3)	-
Diablo Canyon Unit 1	0 5 0	0	02	7	5	95	-	<u>اہ</u>	JMBER	-		ABER	7	OF	15	
basis:ir 50.59 e January via PG8 20 On Apri tempera and 120	R 50.59 ev the next valuations y 17, 1996 &E Letter il 25, 1997 ature from 0 degrees and 120	sch swe 5. T DCI ; 7, a r , a F t	edulec ere app The FS L 96-22 desigr beak of hereaft	i rev prov AR 25. n cha f 132 ter, t	visio red a Upo ang 2 de to a	on of t and b late v e was egree peal	the vas s is s F c of	FS/ ame iss sue for	AR Uj the o ued o d cha no lo	odai desi m [:] N ngii nge	te. gn l love ng t r th	The basi mbo he (an 3	10 C s.of i er 25 CCW	CFR record , 1996 syste nutes	on 3, m .	
D. Inopera the Eve None.	ble Struct nt	ure	s, Con			s, or	,	sten	ns tḥa	at Co	ontr	ibut	ed to			
E. Dates a	nd Approx	kim	ate Tin	nes	for	Major	r Oo	ccur	rence	es						
1. Octo	ober 10, 19	995	, at 17	00 F	PDT	E	Eva lete	luat ermi	ate/d ion of ne Rł ent is	'HX HR I	tes HX	st re hea	sults t tran	sfer		
2. Octo	ber 10, 19	995	, at 17	15 F	PDT	a (I e	is a icco b)(2 ime	4-ł orda 2)(i) erge	nour, i ince v for U ncy re	non- vith nit 1 epoi	-em 10 I, ai rt in	erge CFF nd a acc	ency R 50. 1-ho orda	e NRC report 72 our, no nce w	t in on- ith	
F. Other S	ystems or	Se	condai	y Fi	unc	tions	Affe	ecte	ed							
None.																
G. Method	of Discove	ery														
loop CC test of R that the l	anging the W system HR HX 1- heat trans to that use	, P(1 in fer	G&E ol iitiated capabi	bser to e ility	ved eval of th	l micr uate t ne RH	rofo the -IR	ulin effe HX	g. A ect of was r	thei mic 10n-	rma rofo	l pe bulin	rform Ig ide	ance entified		

a,

. .

н ¹

, .

	•	L	ICENSE	ΞE	EVE	NT	RE	PC	R	Г (L	.ER)) T I	EX	Т	cc)NT	ΓIN	UA	TIO	N			
	FACILITY N	AME (1)			DC	OCKET	NUMBE	R (2)			YEAR		SEC	QÚE	UMBER INTIAL BER	(6)		VISION MBER	•	P.	AGE (3))	
ļ		Canyo	n Unit 1	0	50	0	0	2	7	5	95	-	0	1	1 3	-	0		8	01	=	1	5
	TEXT	Н.	Operato	or A	ctions	;			-					•									
			None.					z	•	.•	•	• •• •	•	, - •	,	2	•	• r		a			
н - -		1.	Safety S	, N	日二、			es		•			μ	ز بر	1 1 8 1		1° 7	9 <u>.</u>		• •	٩		
	III.	<u>Cause</u>	<u>e of the P</u>	rob	lem			-	1		* 1.				- Srt			•					
		Α.	Immedia	ate	Cause	•	'1					,											
			The heat the heat fouling v analysis tempera	tra vas . T	nsfer: signif his wa	coe icar as n	fficie ntly l on-c	ent less cons	use tha serv	ed ir an t	n the he fo	CC ulir	:W : ng fa	sy ac	vster stor	m a use	naly ed ir	ysis. 1 the	Act des	ual ign t	basi	S	
		, B.	Root Ca	use	•													•					
			This eve Increase reduced	s ir	n the c	alc	ulate	ed h	ieat	t loa	ad inf	io ti	ne (C	CW	sys	tem	sysi I sin	tem. ce 19	983	hav	е	
	IV.	Analys	sis of the	Eve	<u>ent</u>			•															
		Evalua	ation of th	e fo	ollowir	ng c	ond	litior	ns ł	nav	e bee	en p	berf	for	me	d as	s dis	scus	sed	belo	w:		
		• • •	New con New con Old conta Evaluatio	tair ainr	nment nent a	ana anal	alysi Iysis	is (v s (wi	vith itho	coi out c	mper comp	nsat ens	tory sato	/ n ory	nea / m	sur eas	es)	-					
		A.	New Cor	ntai	nment	t An	alys	sis (1	with	nou	t con	ipe	nsa	atc	ory r	nea	Isur	es):					
			The assure results in results in evaluatin temperate profile where the profile where	an hig g th ure	incre ther p ne imp trans	ase ost- oact ient	in t acc of t , We	he l ider he i estii	hea ht C redi ngh	it tra CV uce ious	ansfe V sys d fou se de	erre ten Iling ten	d in n te g fa min	nto m ict	o the pera ors d the	e C(atui on e C	CW res. the CW	syst To CC\ ' ten	em. assis N npera	This st in ature	5)1	

• ••

v . . ×

							-	_												
FACILITY NAME (1)			DO	CKETI	NUMB	ER (2)					LEF	R NUM	BER (6)				PAGE	(3)	
									YEAR			UMBE				ISION ABER				
Diablo Canyon Unit 1	0	5	0	0	0	2	7	5	95	-	0	1	3	1	0	2	9	OF	15	;
TEXT																				_

performed using the new Westinghouse mass and energy release methodology. An RWST temperature of 90 degrees F was assumed for all cases. A PG&E calculation demonstrates that the water in the RWST has never exceeded this temperature. Each of the limiting scenarios is discussed below.

1. Effect of Reduced Fouling on CCW Temperatures Following an MSLB:.

The analysis of the impact of the lower fouling factor on the results of the MSLB analysis indicated that the CCW temperature reaches a peak of 132.09 degrees F before dropping rapidly. At the time, this was essentially equal to the design basis CCW temperature limit of 132 degrees F. The analysis was performed by conservatively estimating the CFCU heat input increases by 20 percent as a result of the decreased fouling. Westinghouse CFCU analysis later demonstrated that the actual increase in heat transfer would be less, and therefore it was judged that the peak CCW temperature would have been less than 132 degrees F.

In Revision 1 of this LER, PG&E noted, in error, that Westinghouse had performed the MSLB analysis assuming only one ASW pump was in service. Since the MSLB analysis already assumes a single active failure on the secondary side, the second ASW pump would be in operation. In the process of revising the CCW overheating analysis, PG&E realized that Westinghouse did assume two ASW pumps were in operation. Therefore, there was not as much margin to the old 132 degrees F limit as previously thought. The revised CCW analysis, currently being finalized, will document that the CCW temperatures are well within the current design temperature limits.

2. Effect of Reduced Fouling on CCW Temperatures During LOCA Injection Phase:

Westinghouse analysis, using the new mass and energy release methodology, determined that the limiting LOCA injection phase accident resulted in peak CCW temperatures that were lower than the MSLB case. It is judged that the MSLB would remain the bounding short term temperature transient even with the new lower fouling factors. Because Westinghouse has demonstrated that the CCW design basis temperature limits were not exceeded by the MSLB, •

.

.

·

. .

.

۰ ۱

LICENSEE EVENT REPORT	(LER)	TEXT	CONTI	NUATION
-----------------------	-------	-------------	-------	---------

FACILITY NAME (1)			DOCKET	NUMBE	K (2)		YEAR		SEQ	NUMB UENTI IMBER	AL I	٦	REVIS		•	PAGE	(3)
Diablo Canyon U	nit 1 (0 5	0 0	0	2	7 5	95	-	0	1	3	-		2	10	OF	
TEXT					L					I		- I					
	it ca	ın be	conclu	Ided	l tha	it the	LOC	A inj	ecti	on j	ohas	se	tran	ısie	ent is		
	acce	eptat	ole as v	vell.											•		
3	[,] Effe	ct of	n i Roduo	े वर्त ह	Touil	ing of			~~~r		•••		Dur	ina		^	
0.			ation Pl					/ 1	emh	Jera	lure	:5	Dun	ng	LUU/	A	
Γ.,	(151) Q			;		,		e d	•	a					•		
			act of th														
: <i>ذ</i> رً-	recir																
			uated. tion kee														
	limit	s. Al	though	i not	t cre	dited	, opei	rato	r ali	gnn	nent	0	f the	e se	cond		
			uld hav														
	trans	sient.	. There	SIOLE	e, th	le dec / deci	reas	ed fo	oulii tom	ng c	loes	s n	ot re	esu for	It in this I	, imiti-	~
	scenario.																
4	Effo		Mainta			a f Ala a	0014	, , ,,,		~~			- 1	•		-	
4.			Mainte	nan	cec	or the	CCW		s on	CC	VV F	\П а	aiys	IS:			
	In ac	ditio	n to th	e ca	ses	discu	issed	abo	ive,	the	e ma	in	tena	inc	e of a		V
			the 72									tic	on st	ate	ment	with	no
,	auui	lond	l single	י מטו	IVC	annie	53 Wd	5 21	raiu	ale	4.						
			CCW H														
			np pro														
			nce. E CWH														
			I maint														
			second											•			
	Top	nalva	ze the c	conc	litio	n that	ovict	- 4 ho	hefo	ne ('nm	ne	nea	ton	u mor	euro	•
			lement														2
	oniy	one	ASW p	ump	o an	d one	e CCV	ŃН	Xw	ere	ava	ila	ble.	Α	reduc	ced	
			fouling				•										
•			servativ Althoug														
			also as														
	analy	ysis p	oredicte	ed a	pea	ak CC	W te	mpe	erati	ıre	less	th	ian '	132	2 degr	rees I	Ξ,
			mperat														
			tes. Th this an														

·

,

.

.

Υ

FACILITY NAME (1)			DO	CKET	NUMBI	ER (2)					LER	NUM	BER (PAGE (3)					
								YEAR		SEQUENTIAL NUMBER					ISION ABER					
Diablo Canyon Unit 1	0	5	0	0	0	2	7.	5	95	-	0	1	3	-	0	2	11	OF	15	
TEXT																				-

been run without the additional single active failure of the SSPS train, the CCW system would still have exceeded 120 degrees F for more than 20 minutes. It is also judged that CCW temperature would still have exceeded the design basis temperature limits using the old

containment mass and energy release methodology. Therefore, Unit 1 and/or Unit 2 may have operated in a condition outside the design basis of the plant.

Acceptability of this past condition is demonstrated by the following evaluation of equipment. A review of the RHR, SI, and CCW pumps performed by Westinghouse in 1994, indicated that these pumps would be qualified for operation at, or above, 120 degrees F for as much as six hours. The Westinghouse qualification of the CCPs for the higher CCW temperature was based on a minimum flow to the skid coolers. Skid flow measurements indicated that the actual flow to the coolers may have been less than that used to qualify the CCPs. PG&E has demonstrated, that the impact of the reduced flow rates would have been small, and therefore the CCPs would have been capable of performing their design basis function. The CCW pumps were reviewed by Sulzer-Bingham, the pump manufacturer, and they indicated that the pumps can operate with elevated cooling water temperatures as high as 140 degrees F for up to 24 hours. Based on the vendor input, and supported by PG&E's analysis, it was judged that operation above the existing temperature limit of 120 degrees F for a period of 139 minutes would not have prevented the CCW system from performing its design basis function in the event of a design basis accident while performing maintenance activities on the CCW HX.

It should be noted that the CCW temperature profile for the CCW HX cleaning scenario, without compensatory measures evaluated above, was provided by Westinghouse for information only. A similar evaluation was performed using the same assumptions except that an RWST temperature of 80 degrees F was used. This evaluation was checked and the results were provided in the same reference. A comparison of the checked and unchecked cases shows a consistency of the results relative to the design inputs. This provides confidence that the unchecked cases may be used as the basis for the engineering judgments made above.

. • . *,* 1

4 .

.

i

,

η

. .

,

FACILITY NAME (1)	DOCKET NUMBER (2)										LEF	NUM	BER (. PAGE (3)				
												UMBE		REVISION NUMBER					
Diablo Canyon Unit 1	0	5	0	0	0	2	7	5	95	-	0	1	3	-	0	2	13	OF	15

TEXT

C. Old Containment Analysis (without compensatory measures):

Although the new mass and energy release analysis methodology did not become part of the Diablo Canyon Power Plant design basis until

January 17, 1996, the old Westinghouse mass and energy release

methodology was not used in evaluating this event. The new analysis is considered more accurate and realistic than the old analysis. As discussed above, the new analysis demonstrates that the CCW system would have

performed its design basis function following a design basis accident even
 before compensatory measures were in place. Thus, the old analysis
 methodology is not needed to evaluate past operability and the health and

safety of the public were not affected by this event.

D. Evaluation of Lower Fouling Factors on Other Heat Loads:

The heat input to the CCW system following a LOCA or MSLB comes primarily from the RHR HXs and the CFCUs. The impact of lower fouling factors on these components has already been analyzed. The balance of the vital component heat loads are small by comparison, and therefore the impact of lower fouling on these components would not significantly alter the CCW temperature profile.

CCW has a nonvital C Header which provides cooling to nonvital components. In the event of a large break LOCA or MSLB, a signal is generated to isolate the C Header. Accordingly, the potentially lower fouling of the C Header components would only impact the CCW temperature transient if the C Header fails to automatically isolate, and then only until the beginning of the recirculation phase when the C Header is manually isolated. An evaluation of the failure of C Header to isolate during a large break LOCA injection phase was conducted and it was judged that there is enough margin to accommodate lower fouling without exceeding the CCW temperature limits. Further, the limiting MSLB includes a failure of the secondary side isolation. Accordingly, the additional failure of the C Header to isolate does not need to be postulated.

The scenarios evaluated for this event bound all operating evolutions the plant has experienced. Though for some scenarios, the design temperature would be exceeded, all equipment would have fulfilled its design functions. Thus, the health and safety of the public were not affected by this event.

. .

• .

.

.

•

è

FACILITY NAME (1)	ACILITY NAME (1) DOCKET NUMBER (2) LER NUMBER (6) PAGE (3) YEAR SEQUENTIAL REVISION										(3)							
· · · · · · · · · · · · · · · · · · ·	_								SEQ	UENTIAL JMBER	, ,		ISION ABER					
Diablo Canyon Unit	0	5 0	0	0	2 7	5	95	-	0	1 3	-	0	2	14	OF	15		
V. <u>Corrective A</u>	ctions																	
The fo کردی استرابط C completion کردی 1. I کردی 1. I fe fe fe fe fe fe fe fe fe fe fe fe fe	 The following compensatory measures were initiated as part of OE 95-11. The OE will remain in place until the revised CCW overheating analysis is completed. Solver 200 - 2															s n f to		
s u . v s															ice			
	TP R-									t the I F.	RW	ST	wate	er				
B. Correc	tive A	ction	is to	Prev	ent F	Reci	urren	ce		۶								
tř		k CC	W:	systei	m ter	npe	rature								nange 6 hou			
· re d	vised	to de	emo	onstra	te th	at th	ie sys	ster	n wi	WCA ill rem e corr	ain	wit	hin f	the ne		in		
	E 95- cepte				ed at	fter '	WCA	P-1	428	32 Rev	visio	on 1	l is ı	reviev	ved a	nd		

۰. ۰ ۰

.

FACILITY NA	ME (1)	CKET	NUMBE	ER (2)	<u> </u>		T		160	> MILIN	0007		<u> </u>	PAGE	(2)					
							YEAR SEQUENTIAL RE								VISION MBER	•	(3)			
Diablo	Canyon Unit 1	0	5	0	0	0	2	7	5	95	-	0	1	3	-	0	2	15	OF	15
TEXT																				
VI.	Additional Info	<u>rma</u>	<u>atio</u>	n						•										

A. Failed Components

None.

B.... Previous LERs on Similar Problems

LER 1-91-018-01, submitted on June 29, 1992, reported that the heat load on the CCW system during the cold leg recirculation phase following a LOCA could potentially exceed the heat load during the injection phase. Because the injection phase had previously been considered to be the limiting case for CCW temperature, this condition was considered to be outside the design basis of the CCW system. The root cause was attributed to personnel error. The corrective actions to prevent recurrence included additional training for design engineers to emphasize that data known to be conservative for one application, may be non-conservative for another application. These corrective actions could not have prevented the condition reported in this LER since these conditions existed before the corrective actions were effective.

LER 1-93-001, submitted on February 12, 1993, reported that under a combination of worst-case conditions and parameters, the CCW system water temperature design basis temperature limits may be exceeded. The root cause of this event was non-conservatism in the design basis analysis for the CCW system. Corrective actions were procedural revisions to improve flow balancing. These corrective actions could not have prevented the condition reported in this LER since these conditions existed before the corrective actions were effective.

. . • ι, . . • *,* .