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After ten, years of service since its construction, with no noted
I

damage, West Breakwater at Diablo Canyon Nuclear Power Plant was damaged

by a wave storm on January 28, 1981

Pacific Gas and Electric Company, the owner, adopted recczraenda-

tions of its consulting engineer that a three dirrensional physical rmdel

be built and used in efforts to confirm the mode or rmdes of wave attack

that had done the damage, and as a device for developing, verifying and

describing appropriate repairs or modifications to the breakwater for

consideration by the owner.

Sane months later, when construction and outfitting of the rrodel

was nearly finished, another inquiry was begun that would use the mxlel

first, to gain answers to another question. Paraphrased for brevity,

that question was: "With West Breakwater damaged, willwater levels

during storms be unacceptably high at the two ventilating air intake

risers for. the Auxiliary Salt Water Pump chanhers in the Intake Struc-

ture for Diablo Canyon Nuclear Power Plant?" PG&E was advised the

question could not be answered responsibly if based on calculations.

'Ihe approach by waves is across extremely irregular suhnerged terrain,

so that waves are mxLified in ways that are unique to the site. It was

recognized that the aedel, which was nearly completed, could be employed

to answer the new question. Consequently the mx1el study schedule was

modified, so as to defer the investigation of damage mechanisms and of

renedial schemes, to study first the question of water levels and

related matters at the air intakes.





Subsequently two phases of investigation of the new cpmstion

evolved. Ihose phases looked separately at the conditions that would

prevail if there were no breakwaters in existence at all, and at condi-

tions ifbreakwaters were present but extensively damaged.

Phase "l -'ave 'Hei ts - With 'No 'Breakwaters

Periodic oscillatory water waves eventually break and lose energy

when their motion is iapeded as they enter into shallower depths. What

the critical depth may be at which breaking occurs is largely related to

how high the wave is. High waves b~ at. greater depths than low waves

do. If the sea floor continues to x'ise and the water thereby beconas

mare shallow as already broken waves wash further landward, there is a

persistent decrease in the energy the waves contain as they rmve onward

tmrard the shoreline. On the other hand, if after breaking the broken

waves rmve forward into water that is deeper again, or in sana cases

even through water of 'the sane depth, they usually xesune a wave form

rather than a breaker form. Then with amplitude diminished, because of

the energy lost in the breaking, they proceed onward.

In a complex way the sea floor terrain in front of the Diablo

Intake Structure is of the latter type. A discontinuous but generally

overlapping sill of natural rock formations exists offshore and the

water deepens again along the wave path be~ that sill and the Intake

Structure. Jhe Phase 1 Question to be answered then was:

"Do the natural terrain features seaward of Diablo

Canyon Intake Structure limit the heights of waves

that can reach that structure?"
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Tb answer that question, Phase 1 of the mxlel studies was carried

out with only the'natural sea floor mxhlled for the waves to cross. No

breakwaters were simulated. Comprehensive tests denanstrated that wave

heights at the intake locality would be limited in height by the natural

sea floor terpin at Diablo Canyon Site. Data taken during the Phase 1

investigation and analyses of those data are on file and can be made

available for review by interested ~es. To only a limited d~ do

thay relate to Phase 2, ha@ever, which is the subject of this report.

However, pertinent applicable data free the Phase 1 work that is also

applicable to the Phase 2 matters willbe extracted and displayed and

discussed in the body of the report.

Phase 2'- Wave'Hei ts With'Extensivel 'Dama ed'Breakwaters

Breakwaters are built in order to limit the height of waves that

can reach an area in their lee. %hey can be viewed as if they were a

local alteration of natural terpin features, producing a new ccirqmsite

effect on waves in concert with the effect of the remaining unaltered

natural terrain.

Recognizing that breakwaters do now exist at Diablo Canyon Site,

and that they cover over sure of the topographic "sill" formations that

contributed to the wave limiting effect before the breakwaters were

built, and considering that the wave storm of January 28, 1981 had

damaged part of West Breakwater, it became mre pm~ent and necessary

to answer another QUBsMon

"Ifboth breakwaters at Diablo Canyon Site were to

incur cumulative damage, without interim ~ili-
tation, until both structures were levelled by the

combined effect of a seismic event and recurring
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violent wave storms to as low a profile as zero tide

level, would the carqmsite effect of such levelled

breakwaters and the natural submarine terrain

surrounding 'the br~ters continue to limit the

heights of waves that can reach the Diablo Canyon

Intake Structure?

"Further, whether or not limited by the composite

effect of levelled brealamters and submarine terrain,

to what, heights willwater rise or splash at the

ventilating air risers for the Auxiliary Salt Water

Pumps, due to wave action, and with what force will
the water strike those risers?"

lhe answer from the model data to the basic'irst part of the Phase

2 question is "yes". Under the hypothesized exceptionally damaged

breakwaters condition, the composite effect of the levelled breakwaters

and the terrain is to limit the wave heights that can reach the Intake
\

Structure.

'Ihe data compiled in the Phase 2 tests also yield quantitative

information on water runup, or splash, and on wave loading against -the

Intake Structure's ventilating air intake/exhaust risers, called "huts"

in this report. 'lhey serve the Auxiliary Salt Water Pump chambers that

are located within the Intake Structure.

Phase 3

Dhe original scope of investigation for the model psngram has

becom referred to as Phase 3 of the studies that make use of the model.

'Ihat is the study of how West Breakwater became damaged and the testing





of appropriate pcs for'its rehabilitation. The work is now under, way

and the results willbe the subject of another report for Pacific Gas
E

and Electric Campany. That report's content willbe devoted to that

separate subject; it willnot expand the present one on wave conditions

at the Cooling Water Intake Structure.





SYtGPSIS

A three dimensional physical model of the Cooling Water Intake

Basin at Diablo Canyon Nuclear Power Plant has been built and used to

examine the characteristics waves would develop at the plant's Cooling

Water Intake Stature under hypothetical conditions of m~wa damage

to the breakwaters that are seaward of the Intake. She objective was to

determine the height of splash which high waves could cause at two

safety-related ventilation "huts" that rise above the deck near the

landward of the Intake Structure, and the magnitude of forces on the

huts due to waves. In'he test condition, both breakwaters have been

reduced to profiles where their crests, by a combination of seismic

and wave storm events, stand at zero tide level, i.e. at the elevation

of Mean Zawm Lcm Water Datum. 'Jhat zero tide level at Diablo Canyon

Site is 2.61 feet lower than Mean Sea Level.

Figure 1, following, is a contour map of the sea floor at and West

of Diablo Intake Basin. 'Ihe ex~nely rough relief of the submerged

terrain makes detailed mathematical calculations of wave conditions in the

area virtually impossible. Generally such calculations require that

averaging assurrptions be made in predicting the interaction of the

rising sea floor, and its shape, on the wave forms that mve over it.
In the Diablo case it is unlikely such averagings could be depended

upon. 'Ihe results would at. best be suspect. For that reason the physical

mxhl was used as the dependable means of solving the problem. An area

of nearly 20 acres of the sea floor was surveyed in m ticulous detail

near and West of West Breakwater in early 1981, and mapped with 2 feet

contour intervals at a scale of 1 inch to 20 feet. An additional sur-

rounding area of 250 acres was also surveyed with nearly as densely





4
NW0
~ '

n
Figure 1

WASH ROCK

DEPTH CONTOURS
NEAR DIABLO CANYON INTAKE

1" = 2001





spaced soundings, and mapped from those surveys at 1 inch to 100 feet,

also with 2 feet contour spacing. Figure 1 covers only part of the

whole map and includes the Wash Rock just West of the end of West Break-

water. 'Ihat feature's slopes proved to be so abrupt and contorted that

there was roam only to draw contours for each 10 feet interval of eleva-

tion. The two maps were then reprodu=ed with care, in effect as a

physical relief map, in a basin 80 feet by 120 feet at a scaled size

which is one forty-fifthof nature. Wavemaking machines were positioned

at various parts of the basin to drive waves of defined heights and

periods and directions toward the Intake Basin. Probes were distributed

strategically about the nadel area to record the waves. 'Ihe information

they sensed was delivered by telemetry to cczrputer storage for subse-

cpmnt display or processing. Load cells were rmunted on the air intake

"huts", and independently on tubular breathers extended up from the

huts. Jhose cells were devised to sense forces and @ments due to waves

on those structural elerrents. The reactions of the cells were also

telem tered into computer storage. Figure 2 is a photograph that

illustrates how the huts with breather tube, or "snorkel," extensions

would look.

lhe wave machines were located seaward of the 100 feet depth con-

tour, which is the depth limitof the @aided terrain in the rrodel basin.

Testing was done with two different water surface levels. Water depths

at the machines were 107.5 feet and 117 feet. lhe forE represents a

tide level referred to Mean l~: Zow Water Datum of +7.5 feet and the

latter a water level at +17 feet. Jhat is the combination of a 7.5 feet

tide, a 1 foot storm surge, and an 8.5 feet tsunami. 'three directions

of wave advance were considered; southerly origin waves (203'efracted





Figure 2 Intake Structure with Snorkels





azimuth at the site), sou~terlymrigin waves (essentially unchanged

in direction at the site) and westerly waves (258'efracted azimuth at

the site) . Along two of those three directions, southerly and westerly,

there are narxow ravine-like paths through the terpin on their routes

tow~xi the Intake Stature; Southwest origin waves are baffled'to a

greater extent by a massive rock anund, the "Wash Rock", in their path

toward the intake. It was concluded that southerly waves would provide
I

aare severe test conditions than the southwesterly ones would. 'Ihere-

fore the southerly and westerly wave directions were adopted for the

test runs in which the hypothetically darraged breakwaters were incorpo-

rated.

lhe mxlel studies have been carried out under the general super-

vision of Omar J. Lillevang, Consulting Engineer, as part of a series of

on-going civil engineering assignments from Pacific Gas 6 Electric

Company that relate to coastal engineering matters at Diablo Canyon

Site.

Dr. Fredric Raichlen, fun'ctioning as staff consultant, for the

Lillevang-Office, is identified as the principal investigator in the

rgx3el studies. He has provided invaluable advice and guidance regarding

methods, scope, quality and interpretation and is the originator of

several unusual and some unique techniques in the aadel's construction

and operation.

'Ihe aedel was built, equipped and operated by Offshore Technology

Corporation alongside its existing deep water wave laboratory at Escon-

dido, California. Supervision of all construction, assembly of instru-

mentation and computer facilities, direction of tests, compilation of

data and presentation of results was entrusted by Offshore Technology

Corporation to Jack C. Cox.





CXMLUSIONS

Measurements, photographic and video xecords, observations and

analyses of the waves and of their interactions with the Intake Struc-

ture in the raxhl yield the following conclusions:

The heights of waves at the locality of the
Cooling Water Intake Structure reach "limited"
values due to the effects of offshore terrain
features and of the breakwaters. Further
increases in the offshore wave heights above
those values do not increase the height of
waves at the Intake.

'.

The limited heights for the waves at the
Intake'tructurelocality,differ according to the period

or frequency of the waves that are occurring and
according to the direction in offshore waters
from which they approach the Intake Basin.

3. The limited heights of waves at the Intake Struc-
ture locality also differ according to the pro-file elevations of the breakwaters that bound
the Intake Basin. The limited wave heights are
greater when the breakwater profiles are lowered
in elevation;

4, If the profiles of both breakwaters have been
levelled to elevation 0.0 feet by cumulative
unrepaired damage due to storm waves and seis-
micity the maximum rise of splashed water (runup)
observed in the model near the Air Intake Struc-
tures due to maximum limited waves indicates that
some modifications to the huts are necessary

to'reventingestion of splashed water.

5. Steel tube riser stacks (snorkels) added to,the
present Air Intake Structures remain clear. of
splashed water and appear to provide means for
a satisfactory solution to the splash ingestion
risk.





6. With. maximum limited wave heights occurring with the
profiles of both breakwaters levelled to Mean Lower Low
Water elevation, the structural loading on the concrete
huts due to moving water impinging against and rising
around those huts is substantially less than'the magni-
tude of loads for which the huts were designed.

7. Under the same conditions of limited wave heights set
forth in Number 6 above, there are no measurable loads
against twin cylindrical upward extensions (snorkels) of
the ventilation air intake huts due to water splashed

'pward after impinging against the existing ventilation
air huts. It appears therefore that structural adequacy
of such snorkels can readily be attained.

Omar J. Lillevang
Whittier, California
March 15, 1982
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CHAPTER I

G1M~ZLL Q3NSIDERATIONS

Limitin Effect 'Of De 'On WaVes

Car@only, i.'n technical practices, waves are said to be in "deep"

water, or are referred to as deep water waves if the depth. is as much or

is greater than half the distance be~ crests of the waves that would

be caalculated if it were assumed the water depth were infinite. In

feet,. that wave length in infinitely deep water equals 5.12 tim s the

square of the period, in, seconds, between passage of two successive wave

crests. For example, for waves of a 20 seconds period the conventional

approach separates deep and shallow water at the 1024 feet depth contour,

or if the waves occur each 10 seconds the sane separation of categories

occurs at the 256 feet depth location.

'lhe wave action that is visually evident on'he surface of the sea

persists throughout the water depths below. It is greatest at the

surface and least at the sea floor, and varies consistently between

those limits. Where the water is very deep the notion at the bottom is
negligible-in an engineering sense; not really discernible. Where the

water is quite shallow the motion at, the sea floor approaches being as .

great as it is at the surface. %he breal~g limit occurs when the

bottom is too near the surface for the wave to persist as an oscillatory

phenceenon. Lhe wave then breaks and is no longer a wave. In the
I

breaking process the energy within the wave is diminished. In the

depth limiting context, breaking occurs when the still water depth

approximates 1.28 tim s the height of the wave, neasured vertically
between its trough level and its crest level. 'lhat relationship is used





aast reliably when* the sea floor rises gradually and uniformly along a

coastline, and with adnbral suhnerged terrain features such as clefts,

pinnacles, abounds, ridges or other pronounced forms.

Natural Mrrain "Effeet At 'Diablo Can on 'Site

'Ihe submarine terrain at Diablo Canyon Site is est enphatically

not gradual or regular, and there are rouncy forms between the Intake

Structure and the deep ocean waters that create a discontinuous sill,
which waves must cross enroute to the intake. Beyond that sill the

waves traverse an area of scaewhat deeper water before reaching the

structure.

Because the sill is discontinuous, and irregular in profile, there

was no confidence in calculating its effect on waves passing over it.
'Jhe physical mxlel was considered to be the best neans for determining

if there is a terrain limitation that prevents higher waves from getting

to the Intake Stature.unbroken. If such a'imitation were found to

exist, then the maximum condition for design of intake facilities inso-

far as wave related influences are concerned would be established,

without recourse to probabilistic definitions or other derivations of

A set of experiaental runs of the rxxhl was carried out in which no
* i

1

breakwaters were built on the sea floor, and it was found that the

terrain did in fact limit the height of waves that could reach the

Intake. 'Ihe limit differed for each wave period and for each tide

level, but the largest waves used in any of those experim nts were

diminished in height to limiting values before reaching the Intake

Structure.
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LimitatiOnS 'Eh'To 'BreakWaters

Many of the tenpin features that limited.the'pproaching waves

have been covered over by parts-of both of the Diablo Canyon break-

waters. As built, with crests standing 20 feet above Mean B~r law

Water Datum, those breakwaters intercept a+st of the wave action saving

toward the Intake Structure, -no matter hew high the waves are that nave

toward the breakwaters from the deep sea and no matter fnxn what direc-

tian they approach. 9he full height. breakwaters in fact combine their

effect on waves with that of the sukeerged terrain features they have

not covered over, to limit significantly the height of the waves that

can anve against the Intake Structur'e.

Any substantial damage the breakwaters might suffer could reduce

their effectiveness in limiting the height and strength of waves that

nave against the Intake Structure in their lee. She test prog~n reported

here was carried out to determine hei@ ash limitation on waves would

remain ifboth brea1oraters, were to be extensively damaged.

Seismic 'Alteration 'Of 'Be~ter 'Cross-Sections

Pacific Gas and Electric Company asked Professor H. Bolton Seed of
the University of California to consider the response of the Diablo

Canyon brealmaters to a postulated seismic event. Dr. Seed reported his

conclusion, that a consolidation of the core material by seismic vibra-

tion would red~ the overall height of the structure by less than 4.5

per cent and that minor slumping would occur in the upper parts -of the

side slope on the basin side of the trapezoidal cross-section. Figures

3 and 4 show surveyed cross-sections of the sea floor at three locations

along the alignment of West Breakwater, one at the terminus where con-

structed slopes of the breakwater were flattened to 3:1, one where the





sea floor is relatively high and one where it is quite low. %he break-
r

water at the latter two locatians has apprcecumtely its least and its
greatest stnx:tural heights. Figure 3 is the full height breakwater as

it was designed and built. Figure 4 assum s that a st".ession of wave

events had carried away all crest, materials above the plane of khan

lower law.Water, and dropped those materials on the basin side slope

below l4 an Lower Low Water.

%hen West Breakwater's seaward end was damaged during the wave

storm of January 28, 1981, part of the most affected area was left at

elevation zero feet, i.e. at the level of ~'Lower Lear Water, and the

rubble of stone and concrete fragnents derived from the original con-

struction above that level were deposited as shown on Figure 5.

On each of the basic cross-sections discussed above is shown Seed's

delineation of hcw the cross-section would be altered by the assuaged

subsequent seismic episode. In the case which assmes waves had first
rerraved the materials that were above bkan Lower Imr Water, 'Figure 4,

the subsequ nt seismic changes to the cross-section are so slight that

it is doubtful they could be detected on the site, either visually or by

conventi.onal hydrographic surveying procedures. It was apparent that

whether the seismic event preceded or followed the wave sequences was

not significant in developing a hypothetically levelled cross-section.

'Iherefore the stage of damage to both breakwaters to be tested for

limiting effect on waves was selected with both breakwater crests at
elevation zero feet, the seaward slopes below that level remaining as

originally constructed, and the basin sides widened by as much as the

materials transported there from above elevation zero oould achieve

while coming to rest at a slope of 1.5 horizontal to 1 vertical.
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Construction Of 'Cross-Sections For Noded.lin

The question to be investigated can be stated as, "Shat is the*

combined effect of natural vermin features, and of the breakwaters, in

limiting the wave heights at the..Intake Stature, ifboth brealmaters

are levelled to a crest elevation at the plane of Mean Zower Low Water?"

To freeze that hypothetical condition for testing, the cross-section

might have been made in almost any way, a solid concreted mass for

ezanple. It was judged to be a rare appropriate hypothesis to use

surface textures and poxosities in the model assembly that would reserrble

prototype textures and porosities. thus, the core and the sub-arnar (B

and E stone) and concrete Tribar armor zones were constr'=ted of scaled
C

materials. Jhe resultant cross-section was then fixed against -changing

during the pxogress of testing by various neans, the nest visible being

a plastic filam nt coarse mesh screen, stretched over the particles of
material.

Numerical Mxlel 'For Wave Hei ts ixections

A nurrerical riedel was developed to represent the gross terrain

features of the ocean floor along the paths of waves that can approach

Diablo Canyon Site. 'Lhe axea modelled is shown by the shaded xegions

on Figure 6. It reaches fran the coast, where it extends roughly one

mile along the shore either way fram Diablo Canyon, and- flares out to
the 206 fathoms contour line. At that depth, along the 206 fathoms

contour, it, is 36 miles long and the contour lies on the order of 15

miles from the coast. Between shore and about the 40 fathoms contour, eleva-

tion data were read into the rredel from grid points 250 feet apart.

Seaward from that general depth limit, grid elevations each 500 feet

were used, out to roughly 75 fathoms. Dhe rest of the riedel had grid
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data .each 1,000 feet. We special hydrographic maps produced fram the

surveys of early 1981 were used for data at the grid points they cover.

We balance of the numerical rmdel data were taken from unpublished

"srrooth sheets" of field surveys made in the'mid-thirties by the U.S.

Coast and Geodetic Survey, predecessor of the U.S. National Ocean Sur-

vey. About 16,000 grid points comprised the myel.

We numerical model was used to calculate and to display the refrac-

tian of waves of selected periods, and of 'selected deep water directions,
> ~

as they @ave icarus the breaJmaters at Diablo Canyon Site. We program

used for wave refraction calculations is an extension by Dr. R.C.Y. Koh

and Professor Fredric Raichlen at California Institute of 'ichnology of

concepts and procedures described in the Journal of the Waterways and

Harbors Division of the American Society of Civil Engineers by Coudert

and Raichlen*.

We computer output of refracted wavi characteristics can be both

graphic and tabular. Both were produced in the present case. Figure 7

is an ~anple of a tabular output, and Figure 8 of the graphic output

for waves of 14 seconds period appxoaching in deep water from
180'zimuth,

South. In the tabular example two wave rays, numbered 6 and 7,

are calculated along their refracting paths from two initial points that.

are 200 feet apart at 97 fathoms (582 feet) depth. Referring to the

colurm numbers over-written on the tabular data:

* Coudert, J.F. and Raichlen F., Discussion of: "Wave Refraction Near
San Pedro Bay, California," JNNH, ASCE, August 1970.
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Column 1 identifies. for each line the accumulated tina of wave
travel fram the initial point to the point for'hich that line
dis'plays calculated refracted wave conditions.

Colurtns 2, 3, 12 and 13 give the coordinate position that each
of the rays reaches at that tim . The coordinate units are
feet. 'Ihe coordinate system is rotated 58'7'0" clockwise
fran California State Goordinate System (Zone V) orientation".
At Diablo Canyon Site that is a clockwise rotation of 57
degrees from True North. 'Jhe grid origin is at California
Zone V coordinates N 592,492.4 feet; E 1,022,451.1 feet.

Columns 4 and 14 display the water depths, in feet rather than
fathoms, at the coordinate locations.

Columns 5 and 15 shaw the azimuth angle fram which the wave
ray z.s movrng at each tim represented by each line, azimuths
being turned close fram Zone V North, in degrees tim s
10.

Golurms 6 and'16 shaw, in degrees tirres 10, the obliquity of
wave ~cidence with the contours being crossed. "

Colures 7 and 17 are Shoaling Factors, the relative changed
wave height due only to changed depth.

Columrrs 8 and 18 display KRI, the wave height at the calcu-
laMon pox.nt due only to refraction, expressed as a fraction
of the height in deep water before the effects of refraction,
as determined along each ray for each increrrantal advance of
that single ray.

Columns 9 and 19 display the combined effects of .shoaling and
refraction along Rays 6 and 7 that a deep water wave of unit
height would display at the location represented by each line
of the table. 'Ihe values are the product of Shoaling Factor
tirres KRI, i.e., Column 7 tirres Colum 8 for Ray Number 6 and
Golurm 17 tines Golurrn 18 for Ray Number 7.

Colunn 10 is derived from the spread or convergence, at each
'ccumulatedtim valm, of Rays 6 and 7. It is the usually

calculated, Coefficient of Refraction and gives the average
height of the refracted wave between two adjoining rays if the
deep water wave height were unity. If there have not been
important localized terrain

influences

along the individual
rays, to affect wave heights along a narrow path of advance,
one can expect a fairly srrooth variation of refraction coef-
ficient from KRIRay 6 to KR to KRIRay 7 ~ If in any case the
variation appears to be less than systematic, one mcamines
the train features that have been crossed to assess what
effects they may have had and judgerrents can be made to gain
sensible appreciation of wave conditions along the route of
rays that are under study.
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(Deep Water Ray Spacing Of 200 Feet)
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The information ccapiled. for the tabular display also is used to

plot graphic displays. Selectively, .the diagrams can plot the path of

any wave ray all the way fry deep water to shoal water near the shore-

line, or the plots can be limited. to specific areas of interest as

required. Figure 8 is an example of the latter type of display. It
shciws twelve refracted rays during the last mile-of advance toward

Diablo Canyon Intake Basin. In this ezanple the 100 feet-depth contour

and the two breakwaters and the face of the Intake Structure have been

added to aid visualizing the l~ effects of the waves, but the rays

are plotted as if the b~cwaters wexe not present. We wave rays were

uniformly spaced 200 feet apart in deep water and the plots shear her

much each pair of rays has diverged or converged. 'Ihe ratio of their

spacing at deep water to the spacing at any shallow location is the

Subfraction Coefficient tabulated by Colurm 10 of Figure 7.
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CHAPTER

II'HE

'PHYSICAL"M)DEL:

CONSTROCTICN, 'INSTHUMEÃGKTIGN; OPINION

Creatin 'The '"Relief 'Ma "

A rmdel of the Diablo Canyon Sea Water Intake Structure and of

hypothetically damaged breakwaters was constructed in the outdoor test

basin. It is 120 feet long by 80 feet wide, with walls 4 feet high. At

a model scale of 1:45 this represents an area 3600 "feet by 5400 feet,

446 acres. 'Jhe,walls of the basin were assigned North-South. and East-
1

West map limits bounded*by California Zone V grid ooordinates N 630,400

feet' 634 000 feet' 1 g 143 000 feet and E 1 g 148'00 feet

Figure 9 is a contour map that illustrates the complex sea floor

topography that then was nedeled in the basin. Its borders represent

the walls surrounding the mxhl basin. Ihe mxhl was constructed so as

to represent all apparent feature above the contour at 100 feet below

Mean Lower law Water Datum. ')he detail of the contours shown in Figure

9 suggests the density of the field surveying done at Diablo Canyon

Site. 'Jhe parts of the map mxhlled'West and South of West Brea1nvater

were dane in Spring 1981.

Ihe areas closest to lk.st Brealmater were sounded more densely than

elsewhere, to permit mapping at 1:240 (1" = 20') . She balance of the

area was mapped at 1:1200 (1" = 100') . Contours were interpolated and

drawn for each' feet change in'levation, from digital values of

soundings recorded during the field surveys. Jhe resulting maps at

those two scales were enlarged 5.33 tim s and 26.67 tibias, respectively,
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Figure 9 BASIN BOUNDARIES AND TERRAIN MODEL CONTOURS





to attain map sheets at the adopted 'scale for the mxhl, 1:45 or 1" =

3.75'. Jhe enlargeEts were printed in sections on a heavy photo-

graphic paper. Each of these 4' 4.5'eparate scale-.controlled

sheets depicted an area in nature 150 by 200 feet. 'Ihe sheets were

placed on the floor of the model basin in a carefully fitted nasaic,

under direction of a licensed surveyor, and were firmly glued to the

floor. lhe use of these map sheets is shown in Figure 10. With the

contours delineated by the map being thus "drawn" to scale on the basin

floor, a detailed guide was available for melding the model terrain.

We approach for reproducing the "relief map" to scale in the mxhl

was first to follow each of the contour limes with a 16 gage galvanized

ribbon, bent to follow the shape of the contour. 'lhe ribbons were fixed

in place by spot welding to small angle iron clips that had first been

anchored to the concrete floor with nails driven by a 22-caliber car-

tridge stud driver. Figure 11 shows close-up details of the shaping
/

of the ribbons and the method of anchoring. She upper edge of each

contour ribbon was,set to its appropriate elevation at each of the

anchoring clips, which were typically spaced 4 to 6 inches apart along

the contour length. Optical levels were used in standard surveyor

procedures to confirm that the elevation of each ribbon's ~ edge was

accurately represented. If any was found to be anre than .005 feet

different. than the desired contour elevation it was corrected. 'Ihis

corresponds to a tolerance in prototype elevation of 2.7 inches or less.

Horizontal accuracy in the model was controlled by survey nethods to

within a quarter of an inch, which is to say less than 1 foot in full
scale. lhe ribbons were not welded to the clip angles until the surveyor

concluded they were clamped to the angles with the intended elevation

17





Figure 10 Floor of Model Basin with Map
Sheets in Place
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Figure 11 Spot Welding Clamped Contour Ribbons





and position. Where the contour lines becam so closely spaced as to

leave no room for the angle iron'clips, the use of ribbons becam irrprac-

tical. In st locations 10 inch long eaves gutter spikes were used

like grade stakes. 'Ihey were driven along each contour line on noel
spacings of 2 inches or less. 'lhese "stakes" were individually surveyed

for co~ height. Figure 12 illustrates the techniques of ribbons and

stakes used to form the three dim nsional shapes and shows the detail

'involved in constructing the required texrain forms. Once the ribbons

and stakes were installed,. the myel was filled with sand to about 2

inches below the ribbon edges. lhen a sand/~t mixtuxe was spread to

fillthat 2 inches and was txmrelled to produce the finished three

dim nsional terrain. Figure 13 shows the finished mlding of som of

the sane terrain features that are in the area viewed by Figure 12. By

utilizing this contour ribbon approach, rather than relying on the @axe

traditional straight profile-line templates, greater and nnxe faithful
detail could be achieved in the rmdel than could otherwise have been

accorrplished with such contorted terpin.

'Ihe Intake 'Structure

A 1:45 scaled model of the wave influencing elements of the Sea

Mter Intake Structure was also built and was installed in the test

basin. As shown in Figure 14, all below-deck compertaents in the first
38 feet and apertures between those comparbrents and through the stxuc-

tuxe's upper deck, were rredeled. Beyond the 38 foot distance there'are

no openings through the deck. Except for the fxont parapet wall, the

above-deck region seaward of the huts was left flush. lhe contxol

building behind the huts was included in the aedel, for its effect on

the rmvenent of water from waves that passes across the Intake Structure.
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Figure l2 NORTHEASTERLY AREA OF MODEL BEFORE FILLING WITH SAND
AND MORTAR
Intake Structure Model at Upper Right, Ready for
Lowering Into Position.
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Figure 13 Part of Finished Terrain Model Viewed
Along Axis of West Breakwater
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'Ihe ventilation huts were isolated styx:turally from the rest of the

intake mxhl and were fitted with instrurrents installed to sense and

record any forces and point of applicatian of forces against the huts

due to the moving water. Above each of the huts vertical. twin cylin-

drical extensions, referred-to as "snorkels", were built to permit

ventilating.air to be taken from higher e1evations. The snorkels in the

mxhl were tot'ally separated from the huts so that the huts and snorkels

were free to neve relative to each other. 'Ihus, any loads sustained by

the snorke1s were independently sensed and.naasured, in the sane fashion

as the hut loads were independently. sensed and'easured. Details of
rxxhling these snorkels are shown in Figure 15.

' lhe 'Le~lied 'Breakwaters

A major phase of investigation during the test program was to

establish, with a hypothetical case of damaged breakwaters, the extent

to which waves overtop the Sea Water. Intake S~ure and wash against

the ventilation huts and splash upward at the snorkels. For the hypo-

thetical case the condition of the breakwater was assuned to be the

cumulative affect of a seismic event which would consolidate the break-

waters and also cause them to slump, and to a succession of severe wave

storms that would ~re all of the breakwater materials that originally
were in place above the zero tide level and deposit them against the

basinward slopes. 'lhe central core and the seaward portions of the sub-

amor and of the armored zones of both breakwaters were built from the

sea floor up to elevation zero in the manner of the original design.

Carefully scaled materials, both in size and in shape were'used. 'Ihe

levelled rmunds were completed to a broadened trapezoidal shape by

adding sufficient annunts of core material of azar sub-layer stones (B .
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and E rock) and of broken amer elements to the basin side of the break-

waters, so that the resultant cross-sectional area would be the sane in

the levelled condition as it had been in the original undamaged gecxretxy.

Cross-sections of this hypothetical levelled condition are illustrated
I/

by Figure 16. Since it was the objective of .the tests to observe theinfluence

of the terrain and of, this'evelled cxoss-section on the waves
'

at. that stage of damage,.rathei than the'ffect of waves on the cross-

section, a coarse netting was placed over the breakwaters to,hold the

test configuration through the duration. of the data taking.

Generation 'Of 'Nhves

Generation of waves in the mxlel basin was done with a wave machine

which operates on a swinging parallelogram principle, producing waves by

nearly a piston type of action. 'Ihe articulation of the wavemaker is

shown in Figure 17. 9he wavemaker blade is mved back and forth in the

water by reciprocating hydraulic.rams that respond to variable voltage

signals for control- of blade anvem nt, both rate of mtion and amplitude

of stroke. Jhe available ram stroke is 18 inches. Jhe corrplete wave-

maker is an assenbly of modules, each designed to,be mvable'bout the

basin so that waves may be dire+ted on the model from various angles.

In the present tests five rmdular units were joined to make up the

wa~naker. Each unit is 11 feet in length and can be individually

driven. However, all five were driven synchronously, as if one naving

wall, to produce waves of long continuous crests.

The motion of the wavemaker blade is always started and stopped

from the fully retracted position, where the wave trough occurs and at

which tine the horizontal velocity of the blade is zero. ~.s produces

mnoth starts and stops, by avoiding an instantaneous mismatch, be~
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the zero start-up velocity of the'avemaker and a.non-zexo blade tra-

jectoxy requires't that nment which oould cause the blade to lurch.

Perhaps axe iaportant to the testing, this quite effectively avoids the

transient form waves that usually lead and terminate nodel wave trains

at the start and at the end of an experinent. Those transients often

distort nodel results. Figure '18 shows an example of the wavemaker

being activated at a. trough point in the blade displacenent control

signal. %he resulting clean form of the initial wave in the train is

apparent in Figure 18.

Wave guides. were extended from each end of the canposite 5S feet

long waveroaker, aligned perpendicular to the blade in the initial dixec-

tion of wave nution to prevent "spilling" .of'wave energy laterally from

the ends of the waves as they aeved turanK the areas of interest in the

nodel. Ihe guides axe'an assembly of ~cally adjustable boards which.

can be independently shifted up or down to conform to terrain features

along the length of the guide.

Mvable wave absorbers wexe placed along sme of the side walls of
the basin and in areas where inappropriate side reflections of the waves

could develop. The absorbers are wooden cribs containing stainless

steel shavings, a machine shop waste. The curled shavings tend to act

as giant springs, dissipating nnxh of the unwanted wave notion that

otherwise would be reflected. Wave reflection fram the nodel ooast and
'I

from structures is allowed to occur undamped, as it does in nature.

However, once these reflected waves travel back to the wavemaker and are

xecombined with newly generated waves, the resultant combination of
newly generated waves and re-reflected waves greatly complicates analysis.

'Iherefoxe testing is usually done in bursts of waves that continue only
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3ong enough to avoid re-reflections, from'he waveraRer. Typically this

represents a set of fourteen waves.

Instrunentation

. Instruaentatian for the mxhl consisted of:

1) A field of sixteen wave probes that sense water level;

2) Load cells and bending ncnent gages to monitor wave or

runup forces sustained by the air intake huts and their

snorkels;

3) Visual recordings, which included making of videotapes,

high speed 16 am movies and 35 mn still photography.

The wave probes that were used. are a capacitance type, capable of
measuring changes in water surface displacement of up to 24 inches in
mxtel scale, i.e., 90 feet in nature. As the water level shifts at, the

probe, a change in the electrical capacitance of the probe is sensed.

By calibrations the capacitance is converted into the change in water

surface elevation. 'Ihe sateen probes were deployed in the rmdel basin

at various selected locations, vaunted on adjustable tripod stands to
'I

facilitate placem nt in various water depths. 9he legs of the tripods

were made of 3/4 inch all-thread rod, causing minimal disruption to the

passing wave motion while still providing complete flexibilityin locating

the wave probe over any sort of rough bottom topography. Kb relate wave

probe signals to the change in water level, the probes are calibrated

reaately by driving the probe up and down in the water, triggering a

micro-switch at. one inch increm nts of anverent of the probe. 9he

capacitance reading of the probe and the trigger signal are sensed by a

Tektronix 4052 cmputer. A calibration relationship is automatically
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mnputed for each wave probe. An example of the linearity of the cali-

bration is shown in Figure 19. Each of the wave probes is sampled. by

the co~aster, during testing at/ a rate of 10 Hz. 'lhe sampled record is

then stored on floppy disk in digital fora'nd a hard copy tim history.

of the water surface elevation'at each probe location can be printed

immediately, or at any later time, from the disk."

Runup loads on the air intake huts and.snorkels were naasured by

utilizing I-'beam style load cells installed inside the hut structures.

Separate load ce1ls were mounted to sense force components perpendicular

to each face of each hut, representing the onshore (x) and„,the longshore

(y) components of loading. Bending migrant gages were linked to the load

ceU.s to measure bending nments, also in the sam component directions.

'Jhe acquired information was resolved to give resultant force values.and

resultant directions of forces against each hut. From the recorded and

resolved forces, and the separately recorded merit values, the points

of application of the resultants also are determined. %he load cells

are statically calibrated. in 1 ounce increaents, mxhl scale, from zero

to 32 ounces, the equivalent of zero to 91 tons at full scale. As is

demonstrated in Figures 20 and 21, the load cells are also strongly

linear in this range. 5he analag output of the load cells was aanitored

on a high speed oscillograph, in order to detect any peak loadings of

ihpulse type which might be sustained by the structure. lhe dynamic

response of the load cells was examined to deterrtuae if their sensitivity

was sufficient so that typical impact loads would be sensed. 'lhe dynamic

response of the load cells to an impulsively applied test load showed

that measured forces sensed by using these load cells are at least as

great as the actual applied force. It is probable that the reported

measured force in scm cases is larger than the actual applied force.
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Gherefore, the reported forces are conservative, statements of the actual

applied loads.

Visual Records

Photographic records of the wave transforaations in the basin and

of their inpingenents on the Intake Stature played an imgortant role

in the data tang. Three video caneras, a high speed mtion picture

canera and still photography were employed in va'rious configurations at

one tine or another to docunent the tests.

Video caneras were used to nonitor runup behavior on the air intake

huts, and for observation of wave diffraction/refraction patterns as the

waves noved across changing depths ~d the Intake. Lhe diffraction

recordings were accomplished by suspending a video canera 70 feet in the

air above the tank. Runup on the air intake huts was obsenM by uti-
lizing two video cameras ained slightly obliquely toward opposite sides

'f

the two huts. 'Ihat pernu.ts a clear view of the side face of the

nearest hut and the back faces of both huts in one view and the opposite

side face and the front faces in the other. %he two views can be dis-

played separately on a video monitor or in split-screen form on'he one

nonitor so that the runup and overtopping of the structures can be seen

on each side of each hut simultaneously. %he nonitor image can also be

switched to the overhead video canera, to observe behavior in the basin

at any tea during progress of a test. 'Ihe various images on the nonitor

were recorded on videotape for play back and,review.

When working with models which involve phenczrena responding to

gravity, s~h as waves, physical behavior follows Froude Number scaling.

In this type of aadelling, the tine scale is the square root of the

nadel's linear scale. With a aedel scale of 1:45, nation in the mxhl
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occurs 6.71 tirres faster than at full size. Many details of wave sation,

and associated phencmma, happen so quickly in the mxhl that it becom-s

useful to photograph them at selected tim s with a high speed cam ra.

When such high speed photography is projected at standard rates, the

behavior of the mxhl is seen at a more familiar speed. In these tests,

high speed photography was shot at 128 fram s per second. When pro-

jected at 24 fram s per second the action appears to occur at a speed of

only 1.26 tines the speed in nature at full size, rather than-at, 6.71

tines as fast as real'im for the prototype. &is proved to be of

great value in appreciating "the effect of wave action at the intake

site. Jhe high speed movie canera was used to photograph overall wave

behavior in a wide field of view on the mxhl. 'Ihese shots, taken from

eye level, provided a record of the transformation process of the waves

as they would refract over the rough bottom topography and impact three
ll

dimwsionally on the stature. Both the high speed film and the video

were supplemented by 35 ran photographs taken both overhead and at aadel

level.
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CHAPTt& III
" 'TEST 'PBDCEDUR1H

Confi ations Of 'Test Corlditions

Two basic conditions were investigated in the= rxdel: A condition

without the breakwaters constructed and one with the, breakwaters con-

structed but'with crests levelled to the elevation of ~'Lower Law

Water. 'Ihe latter is referred to as the levelled breakwaters condition.

For the case without the breakwaters only a few data are pxesented",

later in this report, in explanation of bases for choices of wave attack

directions. 'Jhe measu~ts with the levelled, breakwaters condition

willbe presented arid discussed in detail..

&@~rents were conducted at two different water levels in the

mxlel basin: First, at a leve1 with the maximum astxonomica1 tide of

7.5 feet above Mean Lmmr Zaw Water, and second with a level 1.7 feet

above l4.an l~ Low Water, derived by adding to the 7.5 feet astxo-

nomical tide a 1 foot meteorological surge and an 8.5 feet tsunami. For

both these water leve1 stages the mxhl was exposed to periodic waves

with various heights at each of se~ wave periods and for several

wave dixmtions. Layouts of the wavemaker and the guide walls in the

mxhl basin axe presented in Figures 22 and 23. 'Ihey shaw the orienta-

tion of the wave machines located in the areas where the basin floor is
at a depth of 100 feet below khan Zawer Low Water Datum and is not

@aided to represent terrain. Figuxe 22 is the layout for waves approach-

ing fran South in deep water (180 degrees Azimuth) and Figure 23 shows

it for waves from West in deep water (270 degrees Azimuth) .
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As can be seen in Figures 22 and 23, this left room in the constant

depth areas of. the model basin for flexibilityin an~ging the wave

machines, to aller them to be oriented in desired directions. Figures

22 and 23 also show the locations, marked by lettered disks, where wave

gages were placed. Prototype coordinates for each location were deter-

mined by the surveyor and recorded for future reference. Each location
'as

paint marked on the floor of the nadel.

Orientin She Wave Machines

'lhe orientations of the wave machines were selected with the help

of refraction diagrams for waves from the deep water directions of

interest. Refraction diagrams describe the change in direction of

periodic waves due to variations in the depth and in the form of such

variations. With change in depth there is change in wave speed. Shen

such changes differ along the crest of an advancing wave it results in

concentrating or in diminishing of wave energy at a given location. It
is a refraction phenomenon analogous to lens effects on light. Since

the change in direction is a function of wave speed, refraction is a

function of wave period and of depth variation for waves. 'Xhese are

well described by a linear wave theory. For this study a nurrerical

refraction program was used that is based on the work of Coudert and

Raichlen*, which applies the nurrerical method for simultaneously solving

the differential equation of wave ray curvature and.the equations which

describe the coordinate transformations. Examples of graphical output

for such calculations appear in Figures 24 and 25 which display, for
the'iven

wave directions and for equal spacing (or equal energy flux) between

* Coudert, J.F. and Raichlen, F., Discussion of: "Wave Refraction Near
San Pedro Bay, California", JNNH, ASCE, August 1970
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wave rays in deep',water, where and how and in what degree there would be

changes in those waves at shallow water locations. 'Ihese diagrams also

shor the wave direction at the beginning of the nnlded contours in the

rxxhl basin, thus providing the required infornation to locate the. wave

machines. In Figures 24 and 25, the refracted wave rays are shown for

waves of two different periods .and'rom two different original directions

in deep water.. An 18 seconds wave wi.th a direction of 180 degrees

(South), and a 14 seconds wave with a deep water direction of 270 degrees

(Wst) . With these wave rays plotted and the outline of the wave basin

and the 100 feet contour superimposed on the re, the direction of the

wave machine for the wave periods which are considered mast'mportant

could be decided. In general, the wave machines-were oriented so that

the wave plate was perpendicular to the average directions of the rays

at the 100 feet contour line for wave periods between 14 seconds and 18

seconds; the rays given est attention were. those that proceeded toward

the Cooling Water Intake. this approach was quite satisfactory and

allowed the wave machines- to be placed as far as possible fram the 100

feet contour in the model, in the urmalded region'of constant depth, and

thus to allow for proper wave profile development.

Generatin Of 'Cnoidal 'Waves

In general, the wavemaker should be located at a sufficient dis-

tance from the noded contours to allow for the wave to develop a natural

shape before it begins to pass over the contoured areas. Since for soaa

directions in this mxlel it was necessary to place portions of the wave

rnachine at distances which were less than normally considered to be

desirable, means were applied to offset that disadvantage. It was
I"

accomplished by programtning the stroke of the wavemaker to vive with
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varying rates of motion, rather than in uniform periodic nation. By that

rreans a wave profile was produced imnediately that is very ocaqmrable

with shallow water forms which occur in nature. 'Ihese waves, referred

to as "cnoidal"~ waves, differ in shape from a sinusoidal wave. Charac-

teristically the crests are a+re peaked and the troughs are flattened.

Goring and Raichlen"* recognized the pr'oblem of using an incorrect

wave form for testing in shallow water conditions. Figure 26 shows the

impact of using a.sinusoidal wave form for shallow water studies versus

a cnoidal wave form. 'Ihe two wave traces shown on the left hand side of

the figure respectively represent a cnoidal and a regular sinusoidal

wave, shortly after being generated in "shallow"'water. Both are fairly
clean and uniformly shaped. On the. right'hand side are the sane waves

after their forms have,moved.down a,tank of constant water depth. It is
k

easy to see that the cnoidal wave has retained. its shape to a notable

mctent while the sinusoidal wave has broken down into a crest with

several frequency ~nents that are evidenced by its changing mare

jagged profile. Ihese aberrations are the xesult of artificially
generating a sinusoidal wave form, which is not really, stable in shallow

water. Following the aforementioned method developed by Goring and

Raichlen, a cnoidal wave plate trajectory was incorporated into the wave

generation cmrnand signal, to create waves in the model which were very

close to cnoidal in shape and therefore closely approximated the desired

wave characteristics. Nxhl waves were thus achieved that would be

* 'Ihe term cnoidal is used since the wave profile is given by the
Jacobian elliptical cosine function, usually designated by the
symbol cn.

** Goring, D. and Raichlen F., "Ihe Generation of Long Waves in the
Laboratory," Proceedings of the 17th International Coastal Engi-
neering Conference, March 1980, Sydney Australia
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peananent in profile character except for changes in form dm only to

changing depths. It also meant that because the correct wave form was

imrediately generated, less distance was required for the wave form to

adapt to its natural shape. Figure 27 gives an exarple of the water

surface tine history measured in the rradel at a distance from the wave-

maker equal to about four tim s the water depth in front of the machine.

Ghe wave formmxleU.ed is of a prototype 16 seconds wave'with a height

of 35.73 feet. Note that the wave does possess peaked crests and flattened

troughs. 'Ihe uniformity of the wave demonstrates the success with

generating close approximations of cnoidal wave forms in the mxIel.

Sea surface elevations that were aeasured by the sixteen wave

probes, and stored by the computer, were processed and analyzed to

extract desired wave data for any given test. Jhe typical test length,

utilizing periodic wave forms, required 45 seconds of model tirra to run.

Typically, fourteen waves could generate at the wavemaker before the

initial wave reflected from the rmdel and returned to the wavemaker. By

limiting the sample tine period to 45 seconds, wave p~ in the

vicinity of the intake stature would see only the waves which do not

contain ccaqmnents of a re-reflected wave system. For analysis pur

poses, only the second through sixth waves in the wave train were oon-

sidered. Ihese were analyzed for both wave height and relative position

of both wave crest and trough relative to still water. level.

Similar to the analysis of wave heights, forces on the air intake

huts were also ezmnined for loading only by waves two through six. 'lhe

force cceponents were assured separately, in the directions pexpendicular

to the walls of the huts. 'Ihey then were combined in a vector concept
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in,order to get both magnitude and direction of the resultant force.

9he extended ventilating air snorkels; suspended over the top of the air

intake huts with no physical interconnection, were instrurrrmted independ-

ently of the huts to neasure force and bending ncrrent on the snorkels

only. Thus, they could sense any noticeable forces on the snorkels,

should water splashed upward at the air intake huts strike the snorkels.

Simultaneous measu~t of bending rrcrrent corqnnents in the same planes

as used for force neasuremmt allowed the resolution of forces into

point of application of the resultant force separately on the huts and

separately on the snorkels. All loads were recorded as individual

traces, conc~tly on a single continuous analog high speed oscillo-

graph record, in order to identify peak inpact occurrences and to

rronitor the tine relationships between the different ccarponents. 9he

corrponent forces, the magnitude and'the dhxx:tion of the resultant

force, and the point of application of the force could then be extracted

in terms of average values, and of maxinmzn and minimum observed values,

during the several waves that were examined.

As a corrplenent to force neasurerrent on the hut structures, stop

action video was utilized to determine green water runup on the huts.

Accuracy in estimating runup in, this manner was about 1 Rot in the

prototype. Overhead video records were helpful in considering how the

actual wave refraction and diffraction patterns evolved as the waves

saved across the complex topography of the Intake Basin area. They were

further used to identify locations of focused wave energy on the break-

waters.
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CHAPXt& IV

Limited Wave 'Hei ts

In discussing limitwaves near the intake stnetuxe it. is best to

look first at the aodel without the breakwaters present. In this case,

referring to Figures 1 or 22 or 23. it is seen that the intake is pro-

tected in a sense by the underwater "ridges" upon which the breakwaters

were built. 'Ihese features, and others offshore, trigger wave breaking

to produce a depth limiting condition for incident waves. In order to

define these waves, neasmwm nts were made at two positions in the

Intake Basin in front of the Cooling Water Intake Structure.
Simul-'aneous

wave measuxmrents were made at other locations in the'odel, but

these do not necessarily define limiting wave conditions in front of the

intake and are generally not described in this report.
1

Certain of these results are presented in Figure 28 for waves

approaching the Cooling'Water Intake Basin from a deep. water direction

of 180'a refracted direction of 203't the 100 feet contour region of

the aadel) and for waves from a deep water direction of 225'about
225'n

the constant depth region in the model) . In the three parts of
Figure 28, graphical plots are presented for the= variation of the wave

height at. two. positions in front of the Intake Structure, denoted as

Positions R and S, for wave periods of 12, 16 and 20 seconds. Khese

locations can be seen in the inset map of each figure. In each portion

of the figure, the abscissa is the wave height, aeasured at a point

distant from the wave machine equal to four tim s the water depth at the,
machine. %hat depth of water is 100 feet plus a 7.5 feet tide above
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i%an ~r,Low Water (Positian B). 'Ihe ordinate of each graph is the
1

wave height measured at locations R and S. Ihose locations were about

100 feet in the prototype out from the Intake's seaward face. Shown

also are experimental curves fitted to the data to indicate the trend of

these data. A cursory examination of Figure 28 indicates that, in

general, after wave heights near the wave machine reach about 10 feet,

the waves are .limited in height in front of the Intake Structure to

approximately 20 feet, possibly a little anre. thus, it appears that

the offshore tannin, with no breakwaters existing, caused the larger

waves to break and then to nave toward the intake structure with heights
R

that would then be relatively independent of offshore conditions.

We question of whether'the location of the wave gages might uniquely

inf lance such conclusions was investigated. For waves with a direction

of 225'n deep water, additional wave gages were located approximately

200 feet in the prototype fram the face of the Intake, at points labeled

DD and EE, and their recordings were compared with those made'by gages R

and S which were at about 100 feet from that face. 'lhe length of a wave

with a 16 seconds period in a 30 feet water depth would be about 485

feet; thus wave gages R and S are not far free being one-quarter of a

wave length away from the Intake Structure and wave gages EE and DD are

close to being one-half of a wave length from the structure. In terms

of a standing wave, this would produce the a+st severe test of the

degree of reflectivity of this structure.

In Figure 29 results are shown for gages at locations R and S and

at locations DD and EE for waves with a period of 16 seconds. It is
seen that for all these locations the wave height in the basin is limited

to a maximum of approximately 20 feet. 3he data shor the wave height is
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Figure 29 COMPSiRISON OF WAVE HEIGHTS AT 100 FEET DISTANCE WITH
HEIGHTS AT 200 FEET FROM INTAKE STRUCTURE
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relatively independent of location; therefore, due to significant dissi-

pation of. wave energy within it and:by runup and spray on the -deck of

the structure, there must be.auniaal reflection from the Intake Structure.

This lends confidence, that wave height naasurenents in front of the

Intake Structure at locations R and S do describe satisfactorily the

heights of depth limited progressive waves'nd that -therefore the nea-

sureaents at those gages are representative of the waves striking the

Intake Stature for the series of experiments where the breakwaters

have been levelled.

Ezperinental results are presented on the following pages for wave

heights in front of the Intake Structure for southerly and-westerly

waves for the mo'del where the breakwaters are levelled. to the elevation

of Mean Lower Low Water. 9he variations of the wave heights at posi-

tians R and S in front of the Intake Structure with the wave heights at

the wave-machine are presented in Figure 30 for wave periods of 12, 16

and 20 seconds and with the water. surface elevation for these records at

7.5 feet above Mean Lower Low Water. Ihat is the elevation of amrinnxn

high tide. Results are also presented in Figure 31 for wave periods of

12, 16 and 20 seconds, but with a water surface elevation of +17.0 feet,

referred to Mean Lower Low Water. Ghat assunas coincidence of a high

tide of 7.5 feet plus a tsunami of 8.5 feet plus a meteorological tide

of 1 foot. For these two cases, depths at B (and at the wave machine)

of 107.5 feet and 117 'feet are shown on the figures. Experinental

curves which describe the trend of the data are presented in each figure.

It is seen that, for both depths, the wave height is limited in front of

the intake to between 10 and 20 feet, practically independent of what

the wave height offshore in the region of the wave machine aey be. 'Ibis
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HEIGHTS'F WAVES FROM SOUTH AT INTAKE STRUCTURE VERSUS HEIGHTS
OFFSHORE IN 107.5 FEET DEPTH WITH LEVELLED BREAKWA ERS
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HEIGHTS OF WAVES FROM SOUTH AT INTAKE STRUCTURE VERSUS HEIGHTS
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emphasizes that the combined effect of the sea floor terrain with the

levelled breakwaters limits the height of the waves near the
Intake'tature.

In the.mxhl with the "levelled brea1maters it was observed that, as

each wave overtops a breakwater, a mass of water is delivered into the

Cooling Water Intake Basin. When the overtopping jet plunges into the

basin water surface its impact starts a new wave system on the basin

side of the breakwaters; it is these "regenerated" waves that rrove

across the basin to the Cooling Water Intake Stature.

In the mxhl it was possible to produce waves of 20 seconds
periods'hat

were higher at the 100 feet depth contour than 20 feet. At the site,
such wave heights do not occur when periods are as long as or longer

than 20 seconds. Nevertheless model data for these nonmredible heights

were acquired in order to better visualize the trends before entering

those height plots. Sat they would not actually occur.is emphasized on

all graphs by shading the plots beyond the 20 feet abscissae.

For waves approaching from Wst (270'), the refracted direction at
the depth of the wave machine is approximately 258'. Jhe results for
this case with the levelled breakwaters, for the lower and the higher

still water levels, as before are presented in Figures 32 and 33 for
the sane three wave periods.'gain, the abscissa is the wave height

near the wave machine (Position B) and the ordinate is the wave height

measured at Positions R and S in front of the Cooling Water Intake

Structure. 'It is observed that for the case with the lower still water

level the wave heights in the basin are again limited, to slightly anre

than 10 feet even for waves that in deeper water are of the order of 45

feet in height. Again the limita~s to be caused by the protection
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HEIGHTS OF WAVES FROM WEST AT INTAKE STRUCTURE VERSUS HEIGHTS
OFFSHORE IN 107.5 FEET DEPTH WITH LEVELLED BREAKWATERS
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HEIGHTS OF WAVES FROM WEST AT INTAKE STRUCTURE VERSUS HEIGHTS
OFFSHORE IN 117 FEET DEPTH WITH LEVELLED BREAKWATERS
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a

afforded by the canbined influences of the sea floor terrain and the

levelled breakwaters. For the higher still water level, a depth of 117

feet at Position B, the wave heights inside the Cooling Water Basin for

the longer wave periods are sarrewhat greater than those shown at the

sane locations for the lcmer water level. Again, it should be recalled

that for the waves with periods as. lang as or longer than 20 seconds,

attention should be limited to only those waves'which in deep water are

less than 20 feet high.

Recapitulating,'t appears that for the case of the levelled break-

waters, the wave heights in-the Cooling Water Basin in front of the

Intake Stature are limited by the conbined effects of the offshore

terrain, the levelled breakwaters and the Intake Structure itself.

A visual sunmary of certain important aspects-of the limit wave

concept is presented in Figure 34. Shown in the three parts of this

figure are the wave -heights at locations R and S for four different

conditions:

(1) Figure 34a shows an incident wave of 16 seconds period

approaching from azimuth 225'n a depth of 107.5 feet and

with no breakwaters existing;

(2) In Figure 34b are two curves of an incident wave of 16

seconds period approaching fiom azimuth 203; in a depth of

107.5 feet and with both breakwaters existing but levelled to

elevation zero, Mean Zower Lmr Water;

(3) And also in Figure 34b an incident wave of 16 seconds period

approaching fram azimuth 203'n a depth of 107.5 feet and

with both brealmaters levelled;
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COMPARISONS OF WAVE HEIGHT LIMITATIONS FOR THREE
DIRECTIONS OF APPROACH
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(4) Figure 34c shows an incident wave of 16 seconds period

approaching from azimuth 258'n a depth of 107.5 feet with

both brea)alters levelled.

In all of these it is evident that limiting effects on wave height

takes place. As the wave height increases in a depth of 107.5 feet, a

limitingwave height is reached near the Cooling Water Intake Structure.

%he plotted data that cxxapare wave heights at the Intake Struc-

tuxe's vicinity with the heights those waves had at the 100 feet contour

locality of the wave machines illustrate the limiting effect'of the

terrain," of the levelled bxealeaters and of the Intake Stru=tuxe on the

heights of waves that can reach the Intake.

It is also of interest to note that the extent to which wave heights

are'imited by the terrain and the stru.tuxe alone, in the pre-breakwater

conditions, is essentially the sane for waves approaching from Southwest

(225'zimuth) as for those approaching from South (203'zimuth at 100

feet contour) . Jhe gap between brea1avaters at the basin entrance admits

mere energy to the basin when the waves approach from the South than is
admitted when the waves approach from Southwest. For that reason the

203'zimuth wave direction was selected for testing the levelled break-

waters situation, instead of 225'.

'lhe effect of the offshore submarine ten~in on waves is evident in-

a coaparison of the wave heights at locations R and S due to waves from

203'nd from 258'or the case with the levelled breaJmmters. Waves

from West. arrive at the'00 feet depth curve with 258'zimuth. 9he

waves in the Intake Basin for the southerly direction are s~at
higher than those from the westerly ~tion. Indeed waves of rrare
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southerly approach generated larger overtopping of the levelled break-

waters, and correspondingly greater wave activity in the Intake Basin.

Forces On 'Ventilatin 'Stacks 'Due 'Tb Waves
I

'Ihe forces acting perpendicularly on each of the two intersecting

faces of each of the two air intake risers, or huts, and the correspond-

ing bending anmnts exerted against each face were measured. Resolving

the two perpendicular forces at each hut into their resultant and their

mnants, provides the basis for defining the magnitude, direction and

the vertical distance above the deck to the effective point of applica-

tion of the resultant. In addition, the maximum rise of the water level

in the proximity of the air intake structure (referred M as the maximum

runup) was observed by using the stop action capability. of the labora-

tory video system. Mesc observations were made to determine whether or

not the air intakes would. need nxxLifications to rerrave the threat of

ingestion of water. In Figures 35 and 36, the resultants of forces

against each hut dm to southerly waves, with an azimuth direction of

203't the wave machines, are plotted. %here are six graphs presented

by the two figures, the abscissa on each is the wave height at a. loca-

tion which is four times the water depth away from and in front of the

wave machine in the constant depth region of the model basin. 'Ihe

ordinates are the annunt of the. resultant of the naasured forces. Data

are presented for wave periods of 12, 16 and 20 seconds for 'e'ach of the

two depths considered; i.e., 'Mean Xawer Low Water plus 7i5 feet high,

tide in Figure 35, and Mean Zmmr law Water plus 7.5 feet, high tide,

plus 8.5 feet tsunami, and plus 1 foot m teoxological tide in Figure 36.

Data points are indicated for what is terned the East hut and the West

hut, smatines called Huts 1 and 2 respectively. 'Ihe syahols are
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FORCES INDUCED ON HUTS BY WAVES FRQM SQUTH FQR THREE WAVE,PERIODS
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FORCES INDUCED ON HUTS BY WAVES FROM SOUTH FOR THREE WAVE PERIODS, WITH
CONCURRENT MAXIMUM TIDE I TSUNAMI AND METEOROLOGICAL SURGE (+1 7 FEET )
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described in the inset above each graph. She data points shown are the

average of the force which occurs on the hut for five or six waves in

the first part of the wave U~, before the
influence

of reflected

waves from the boundaries of the rmdel can return fnxn the wave machine

to distort the measurenents. Ihe bar extending up and down from each

data point indicates the range of the measurements, i.e., the maximum

and the minim measured forces anang the five or six that. have been

averaged.

It should be kept in mind in viewing these graphs that with a force=

applied in the positive x~lirection on the huts, which is a wave ~
tion from azimuth 205.5', the capacity of the huts as determined by an

analysis conducted by others is 450,000 pounds. %hat is if the point of

application is assured to be at one-thiM of the overall height of the

hut above the deck. We huts are 14.5 feet high, with parapets at
elevation 34.6 feet above Mean Iawer Lear Water. Wus, the assumed point

of application of the resultant force would be about 4.83 feet above the

deck at an elevation of 24.93 feet above ~ Lower Low Water Datum.

Note that in Figure 35, for the lower water level and for wave periods

of 12 and 16 seconds, the average forces axe less than 100,000 pounds.

For the sam water level with waves of 20 seconds period and for wave

heights offshore of less than 20 feet, the aeasured forces also are less

than 100,000 pounds.

When the still water level is increased to 17 feet above iten Lower

Low Water, overtopping of the levelled brealmaters and the water depth

in the intake basin increase. this takes place in a transient manner,

causing the resultant force to be larger carrpared to similar waves at
the lower water level. For example, for the 16 seconds waves the naximum
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force recorded is 300,000 pounds, with the average force less than about.

250,000 pounds. Ghe forces neasured with 20 seconds waves, with wave

heights near. the wave machines less than 20 feet, are of curable
magnitude with those measured with 16 seconds waves.

In Figures '37 and 38 the azimuths of the resultant forces are shown

for the two water level conditions and for each of three wave periods.

'n each graph a dotted line indicates the direction 205.5, which is
perpendicular to the face of the Intake Structure and the azimuth of the

plus x~rection. It is seen that in general, except for one isolated

case for the 20 seconds wave (Figure 37), the direction of the resultant

force is between approximately 205'nd 220'. 'Ihus the applied force is
close to perpendicular to the front face of the air intake huts.

In Figures 39 and 40, the height above the Intake Structure deck of
the point of application of the resultant force is shown for the two

different water level conditions and the three different wave periods

defined previously. It is seen that there is a tendency for the dis-

tance off the deck to the point of application to increase with increasing

offshore wave height and with increasing wave. period. For the runs with
the lower water level the average point of resultant force application

is always less than 7 feet above the deck. For the runs with higher

water level the average points of application of the forces is sanewhat
I

higher on the huts but in general it is at distances fram the deck close

to or less than half their height.

It is apparent from these data that the resultant forces, the

directions of the resultants and'the points of application of the re-

sultant forces are in keeping with the assumptions made in determining

analytically the load capacity of the huts.

67





RESULTANT DIRECTION OF FORCES ON HUTS DUE TO WAVES FROM SOUTH FOR THREE
WAVE PERIODS AT MAXIMUM TIDE LEVEL (+7 5 FEET)
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RESULTANT DIRECTION OF FORCES ON HUTS DUE TO WAVES FROM SOUTH FOR THREE WAVE
PERIODS WITH CONCURRENT MAXIMUMTIDE, TSUNAMI AND METEOROLOGICAL SURGE (+17 FEET)
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HEIGHT ABOVE DECK OF RESULTANT FORCES DUE TO WAVES FROM SOUTH FOR THREE WAVE
PERIODS AT MAXIMUMASTRONOMICAL TIDE LEVEL (+7-5 FEET)
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HEIGHT ABOVE DECK OF RESULTANT FORCES DUE TO WAVES FROM SOUTH FOR THREE WAVE
PERIODS WITH CONCURRENT MAXIMUMTIDE, TSUNAMI AND METEOROLOGICAL SURGE (+17 FEET)
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It also is app-ment that the huts as designed are stronger 'than

necessary to resist the forces and mxrents recorded in the tests during

the levelled brea)maters case with waves approaching from South.

Run / lash At. VMtilatin 'Stacks Due Kb 'Waves 'Fecm 'South

Figures 41 and 42 slam runup observations at the huts for the

southerly waves, with the sane two different water. levels and the sane

three wave periods. %he ordinate indicates the heights above the deck

to which water rises or splashes at the air Intake Structures when it
'

impacts against them. As shown earlier on Figure 15 (Page 25), aper-

tures in the existing concrete huts have their sills at 9.92 feet above

the deck, that is at 30 feet above Mean Lower law Water Datum. Runup

above that height presents the possibility, of ingestion of water into

the air intakes of the present structures, unless they are mxLified.

Me'observations as presented by Figures 41 and 42 st that the eleva-

tion of the sills of the apertures in the existing huts is exceecM by

runup due to waves at the high tide level (+7.5 feet) as well as at the

corrbined high tide, tsunami and aeteorological tide (+17 feet). 'Ihexe-

fore the existing air intakes need to be mx3ified to avoid water ingestion

during the hypothetical events.

'Snorkel 'R~nsions Of Ventilatin Facilities

Tm cylindrical risers, (usually referred to herein as snorkels)

therefore were extended upward fram each of the huts in the nudel to an

elevation 52.0 feet above M an lower Imr Water Datum, 31.9 feet above

the Intake Structure deck, and the existing apertures were closed. A

photograph of the concept has been seen earlier in Figure 2 (Page xiv)

and in the outline sketch of the mxhl, Figure 15.
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HEIGHT OF SPLASH RUNUP ABOVE DECK DUE TO WAVES FROM SOUTH FOR THREE WAVE PERIODS
AT MAXIMUMASTRONOMICAL TIDE LEVEL (+7.5 FEET)
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HEIGHT OF SPLASH RUNUP ABOVE DECK DUE TO WAVES FROM" SOUTH FOR THREE WAVE PERIODS
WITH CONCURRENT MAXIMUMTIDE, TSUNAMI AND METEOROLOGICAL SURGE (+17 FEET)
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In addition to measuring the forces and. bending meants on the existing

air intake structures, the huts, similar aeasurem nts of forces and

bending moments acting on the snorkels were measured conc~~tly. In

the mxhl the snorkels were not connected to the rectilinear concrete

huts. Thereby the forces and moments on the snorkels and on the huts

were separately detemnined. It was found that for all expeiiaents the

forces on the snorkels were negligible, or in many instances could not

be detected at all. 'Ibis is dm.to the setback of the snorkel pipes

fram the faces of the huts. As the water moving across the deck of the

Intake Structure strikes the huts it rises nearly vertically, to a

aaxUnum height, and then falls back. Although at tim s the maximum

elevation of the splash is significantly above the tops of the huts,

solid water does not inpinge against the snorkels. It is evident there-

fore, from these ezperinents, that solid water would not be ingested by

the ventilation sysbm if the snorkels were to be added to the present

concrete huts and the existing apertures in the huts were closed.

Further, considering that the forces on the snorkels were found to be

negligible at rmst, and that forces, on the huts due to waves would be

resisted readily by their present design, it is apparent that the

snorkel solution is functionally and structurally feasible for condi-

tions when waves approach from South and advance across the near coast

terrain and the levelled breakwaters.

Waves 'From West

The sam ezperinents as were carried out for waves from South were

conducted with the wave machines rrnved to a position to generate westerly

waves. At the 100 feet contour waves from West have been changed
12'are

or less in direction by refraction, to about 258's determined

from the nuerical refraction studies referred to earlier (see Figure 25,
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Page 43) . Therefore, for the westerly waves experiments the wave

machines in the rxxhl tank were xe-positioned to produce waves of that

,258'irection. 'lhe limited height waves that were identified in this

series of tests have been discussed earlier and are illustrated by

Figures 32 and 33, Pages 58 and 59.

In Figures 43 and 44, the forces on the air intake huts are shown

as before, as a function of the wave height near the wave machines for

the sane two still water levels and for the sane three wave periods used

'throughout these studies. Again the average of the forces- for the first
five to six waves and the range of the nmcimum and minimum forces are

presented. It is seen that even for the higher still water level these

forces are considerably less than the forces for the southerly waves.

'Ihe explanation for this lies in the difference in the s~ine terrain

features affecting the waves as they approach the levelled breakwaters

fnxn these two different directions, and also is related to the presence

of the high rock mass at the shore just West of the Intake Structure.

this large rock mass scaetim s has been referred to as the" "110 foot
'ock",because it rises to an elevation of about 110 feet abovebhan

Lmmr-low Water Datum. Although the waves from Nest are not greatly

affected by refraction as they approach Nest Breakwater near or just
West of the Intake Structure, the rock nass does provide significant

shelter for the Intake Structure from waves from that direction.

In Figures 45 and 46, the azimuths of the resultant forces on the

huts for these West waves are presented and show- that, on the average,

the directions of the resultant forces are about 240'. As would be

expected, this indicates a force which has mere of a oomganent in the y-

direction (see the inset figure) than the forces which arose dm to the
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southerly waves. However, this difference may be. unimportant, because

of the relatively'mall, forces the huts sustain fram waves in these

ezperinents.

'Ihe, locations of the point of application of the forces above the

deck are shown in Figures 47 and 48.

Me runup and splash on the huts due to westerly waves is presented

in Figures 49 and 50. 'Ihe elevations to which water rises axe much less

than are the elevations for waves from. South. Nevertheless there could

be scca problems of water ingestion even for the westerly direction if
the air intake level were not exuded upward'with snorkels. No force

was neasurable on'he snorkels due to westerly waves, indicating that

solid water does not dash against them.
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FORCES INDUCED ON HUTS BY WAVES FROM WEST FOR THREE WAVE PERIODS AT
MAXIMUMTIDE LEVEL (+7.5 FEET)
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FORCES INDUCED ON HUTS BY WAVES FROM WEST FOR THREE WAVE PERIODS WITH
CONCURRENT 14iZ~XIMUM TIDE, TSUNAMI AND METEOROLOGICAL SURGE (+17 FEET)
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RESULTANT DIRECTION OF FORCES ON HUTS DUE TO WAVES FROM WEST FOR THREE WAVE PERIODS
AT MAXIMUMASTRONOMICAL TIDE LEVEL (+7 ' FEET)
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RESULTANT DIRECTION OF FORCES ON HUTS DUE TO WAVES FROM WEST FOR THREE WAVE PERIODS
WITH CONCURRENT MAXIMUM TIDE, TSUNAMI AND METEOROLOGICAL SURGE (+17 FEET)
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HEIGHT ABOVE DECK OF RESULTANT FORCES DUE TO WAVES FROM WEST FOR THREE
WAVE PERIODS AT MAXIMUM TIDE LEVEL (+7.5 FEET)
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HEIGHT ABOVE DECK OF RESULTANT FORCES DUE TO WAVES FROM WEST FOR THREE WAVE
PERIODS WITH CONCURRENT MAXIMUMTIDE, TSUNAMI AND METEOROLOGICAL SURGE (+17 FEET)
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HEIGHT OF SPLASH RUNUP ABOVE DECK DUE TO WAVES FROM WEST FOR THREE WAVE
PERIODS AT MAXIMUMASTRONOMICAL TIDE LEVEL (+7-5 FEET)





HEIGHT OF SPLASH RUNUP ABOVE DECK DUE TO WAVES FROM WEST FOR THREE WAVE PERIODS
WITH CONCURRENT MAXIMUMTIDE, TSUNAMI AND METEOROLOGICAL SURGE (+17 FEET)
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C05CUJSIONS

1. 'he heights of waves at the locality of the
Cooling Mater Intake Structure reach ."limited"
values due to the effects 'of offshore terrain
features and of the breakwaters. Further
increases in the offshore wave. heights above
those values do not increase the height of
waves at the Intake.

2.. The limited heights for the waves at the Intake
Structure locality dier�.according to the period
or frequency of the'waves that are occurring and
according to the direction in offshore waters
from which they approach the Intake Basin.

3. The limited heights of waves at the Intake Struc-
ture locality also differ according,to the pro-
file elevations of the breakwaters that bound,
the Intake Basin. 'Ihe limited wave heights are
greater when the breakwater profiles are lowered
in elevation.

4. =If the profiles of both breakwaters have been
levelled to elevation 0.0 feet by cumulative
unrepaired damage due to storm waves and seis-
micity the maximum rise of splashed water (runup)
observed in the model near the. Air'ntake Struc-
tures due to maximum lim'ited waves indicates that
some modifications to the huts are necessary to
prevent ingestion of splashed water.

S. Steel tube riser stacks (snorkels) added to the
present Air Intake Structures remain clear of
splashed water and appear to .provide means for
a satisfactory solution to the splash ingestion
risk.
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6. With maximum limited wave heights occurring with the
profiles of both breakwaters levelled to Mean Lower Low
Water elevation, the structural loading on the concrete
huts due to moving water impinging against and rising
around those huts is substantially less than the magni-
tude of loads for which the huts were designed.

7. Under the same conditions of limited wave heights set
forth in Number 6 above, there are no measurable loads
against @sin cylindrical upward extensions (snorkels) of
the ventilation air intake huts due to water splashed
upward after impinging against the existing ventilation
air huts. It appears therefore that structural adequacy
of such snorkels can readily be attained.

Omar J. Lillevang
Whittier, California
Kucch 15, 1982
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