NON-PROPRIETARY

EMF-1563 Revision *16*

Safety Analysis Report (SAR) for Transnuclear, Inc. Model SP-1, SP-2, and SP-3 Shipping Containers Certificate of Compliance No. 9248 Docket Number 71-9248

November 2016

Nature of Changes

<u>ltem</u>	<u>Section</u>	Description and Justification
1.	NA	Added the Proprietary Information Notice page. A Proprietary Information Notice page was not previously included in the safety analysis report (SAR).
2.	Chapter 1, Section 1.2	Revised Section 1.2, "This Revision" to discuss the change to Revision 15 of the SAR. Revision 16 of the SAR is due to superseding Drawing EMF-304,416 with AREVA drawing no. 02- 9264132-000 Rev. 0.
3.	Chapter 1, Table 1.1	For the entry for Figure Number 1.1 the drawing, EMF-304,416, is superseded by AREVA drawing no. 02-9264132-000 Rev. 0 and Note 5 on this drawing is revised.
4.	Chapter 1, Drawing EMF-304,416	This drawing is superseded by AREVA drawing no. 02-9264132- 000 Rev. 0. and revised to change Note 5. The changed note is to provide clarification to the licensees on the use of closed cell polyethylene (CCP) foam that is used for packing material in the SP-1, SP-2, and SP-3 inner containers.

Contents

1.	Introdu	uction		1
	1.1	History.		1
	1.2	Revisio	n 16 Changes	1
	1.3	Genera	I Package Description	1
	1.4	Complia	ance	1
		1.4.1	Normal Transport Condition Tests	1
		1.4.2	Hypothetical Accident Conditions	2
	1.5	SP Seri	es Shipping Packages	3
		1.5.1	SP-1 Inner Container	
		1.5.2	SP-2 Inner Container	
		153	SP-3 Inner Container	5
		154	SP-1 Outer Container	6
	16	Content	ts of Shinning Containers	
	1.0	Conton		
2.	Structu	ural Evalu	uation	1
3.	Therm	al Evalua	ation	1
4.	Contai	nment E	valuation	1
5.	Shieldi	ing Evalu	uation	1
e	Critica	lity Evolu	intion	6 1
0.		Introduc	Iduori	0-1 6 1
	0.1	Deserie	tion of Contonto	0-1 6 4
	0.2	Descrip	Turno C1 (Cotogony 1) Fuel Accomplian	0-1 6 1
		0.2.1	Type G1 (Category 1) Fuel Assemblies	0-1
		0.2.2	Type G2 (Category 2) Fuel Assemblies	0-1
		6.2.3	10 x 10 (Category 3) Fuel	6-1
		6.2.4	Fuel Rods (Category 4)	6-1
		6.2.5	10x10 (Category 5) ATRIUM Fuel Assemblies	6-2
		6.2.6	Additional 10x10 (Category 6) ATRIUM Fuel Assemblies	6-2
		6.2.7	9x9 (Category 7) ATRIUM Fuel Assemblies	6-2
		6.2.8	Additional 9x9 (Category 8) ATRIUM Fuel Assemblies	6-2
		6.2.9	Additional 10x10 (Category 9) ATRIUM Fuel Assemblies	6-2
		6.2.10	Low Enriched Gadolinia Free 10x10 (Category 10) ATRIUM Fuel	
			Assemblies	6-3
	6.3	Criticalit	ty Evaluation of Individual Fuel Types	6-3
		6.3.1	Type G1 (Category 1) Fuel Assemblies	6-3
		6.3.2	Type G2 (Category 2) Fuel Assemblies	6-3
		6.3.3	10x10 (Category 3) Fuel Assemblies	6-4
		6.3.4	Fuel Rods (Category 4)	6-5
		6.3.5	10x10 (Category 5)ATRIUM Fuel Assemblies	6-5
		6.3.6	Additional 10x10 (Category 6) ATRIUM Fuel Assemblies	6-6
		6.3.7	9x9 (Category 7) ATRIUM Fuel Assemblies	6-6
		6.3.8	Additional 9x9 (Category 8) ATRIUM Fuel Assemblies	6-7
		6.3.9	Additional 10x10 (Category 9) ATRIUM Fuel Assemblies	6-7

l

		6.3.10	Low Enriched Gadolinia Free 10x10 (Category 10) ATRIUM [™] Fuel Assemblies	. 6-8
7.	Opera 7.1 7.2	ting Proc Contain Shipme	edures for Loading and Unloading SP-1, SP-2 and SP-3 Containers er Handling nt Procedures	. 7-1 . 7-1 . 7-2
8.	Accep 8.1 8.2	tance Te Accepta 8.1.1 8.1.2 Mainten 8.2.1 8.2.2	sts and Maintenance Program nce Tests SP Inner Containers SP-1 Outer Containers ance Program SP Inner Containers SP-1 Outer Container	. 8-1 . 8-1 . 8-1 . 8-2 . 8-2 . 8-2 . 8-2

This document contains 37 pages.

,

List of Appendices

Appendix No.	Title
2A	Current Engineering Evaluation of the RA-Series Fuel Shipping Container
2B	Test Report for Hypothetical Accident Condition Tests of an RA-3 Inner Fuel Shipping Container
2C	Design and Test Information of the Previously Designated RA-1 Inner and Outer Containers Used for Shipping BWR Fuels
2D	Design and Test Information for Earlier Versions of the RA-2 Inner and Outer Containers Used for Shipping BWR Fuels
2E	Test Report for Water Spray of RA-2/RA-3 Fuel Shipping Container
6A	Attachment 2 of Advanced Nuclear Fuels Corporation Supplemental Application to Certificate of Compliance No. 4986
6B	Siemens Power Corporation - Nuclear Division Criticality Safety Analysis for Shipment of FANP 10x10-8B Fuel Assemblies in the SP-1 Shipping Container
6C	Siemens Power Corporation Supplemental Application to Add Gadolinia- Bearing Loose Rods to Certificate of Compliance 9248
6D	Siemens Power Corporation Supplemental Application to Add 10x10 Fuel Assemblies to Certificate of Compliance 9248
6E	Siemens Power Corporation Supplemental Application to Add 9x9 and 10x10 Fuel Assemblies to Certificate of Compliance 9248
6F	Criticality Evaluation for Siemens Power Corporation Consolidated Application for Certificate of Compliance 9248
6G	Siemens Power Corporation Letters of April 18 and April 30, 1996
6H	Siemens Power Corporation Supplemental Application to Add the SP-3 Inner Container to Certificate of Compliance 9248
61	Siemens Power Corporation Supplemental Application to Add Additional 10x10 Fuel Assemblies for SP-1/2/3 Packagings
6J	Framatome ANP Supplemental Application to Certificate of Compliance 9248 to add the Criticality Safety Analysis for ATRIUM [™] -10 Fuel Assemblies with 2.3 Weight Percent U ²³⁵ Maximum Enrichment and No Gadolinia Rods to the SP-1/2/3 Packages

1

List of Figures

Figure No.	Title	Page No.
1.1	SP-1 Inner Shipping Container Assembly	1-10
1.2	SP-1 Outer Shipping Container	1-11
1.3	Gadolinia Rod Shipping Container	1-12

L

List of Tables

Table No.	Title	Page No.
1.1	Summary Listing of Applicable Licensing Drawings	1-9

Transnuclear, Inc.

I

1. Introduction

1.1 History

On April 7, 1992 the NRC notified AREVA NP that NRC Certificate of Compliance 4986 for the RA-2 and RA-3 shipping containers, under which AREVA NP had been a registered user, was being revised for General Electric's use exclusively and that AREVA NP should submit an interim application for a one-year certificate. The notice further stated that a consolidated application would have to be submitted by the expiration date of the one-year certificate. In response to that notice, AREVA NP submitted an abbreviated application for the SP-1 container on May 15, 1992. Subsequently, on December 15, 1992, AREVA NP submitted an amendment application to add the SP-2 container. The SP-1 and SP-2 containers are virtually identical to General Electric's RA-3 and RA-2 containers, respectively.

Revision 0 of Certificate of Compliance 9248 for the SP-1 container was issued June 17, 1992 with an expiration date of June 30, 1993. Subsequent revisions have added the SP-2 and SP-3 container.

1.2 Revision 16 Changes

The purpose of this revision to the Safety Analysis Report (SAR) is for the issuance of Drawing 02-9264132-000 Rev. 0 to supersede drawing EMF 304,416 Rev. 14 and revise Note 5. This note refers to the closed cell polyethylene (CCP) foam that is used for packing material in the SP-1, SP-2, and SP-3 inner containers.

1.3 General Package Description

The SP-series package consists of a right rectangular metal inner container transported in a wooden outer container. The wooden outer container includes cushioning material. The inner metal container has two internal channel sections which may contain one fuel assembly each or group of unassembled rods each. Descriptions of the containers which comprise the SP-series package and the structural evaluations thereof are included in the subsequent chapters of this consolidated application.

The original GE-designed RA-1 inner container was modified to accommodate a longer bundle. This was accomplished by adding a larger end cap to the existing RA-1 body and identifying this design version as the RA-2 (Transnuclear's SP-2) inner container. Subsequently, out of consideration for fabrication and handling, the longer bodied (short end cap) RA-3 (Transnuclear's SP-1) was introduced. Currently in use are three models of the SP series inner containers, SP-1, SP-2 and SP-3. These models are presently being used with the SP-1 wooden outer container. In addition, loose rods containing gadolinia may be shipped in place of fuel assemblies if they are contained in the "Gadolinia Rod Container" or the 5 inch schedule 40 product container.

1.4 Compliance

This section generally describes the tests and evaluations carried out on the RA series of containers by General Electric. The results of such tests and evaluations are applicable also to the SP series of containers. The tests and evaluations are further described in Appendices 2A, 2B, 2C, 2D, and 2E.

The General Electric Model RA series fuel shipping container has been subjected to normal transport condition tests and evaluations specified in Appendix A of 10 CFR *Part* 71 and the hypothetical accident condition tests and evaluations, in the sequence specified in Appendix 2B.

It is concluded that the RA series packaging has successfully passed the acceptance criteria demonstrated as follows:

1.4.1 Normal Transport Condition Tests

1.4.1.1 Heat and Cold

None of the components of the fuel assemblies or the inner metal container on which containment integrity and nuclear safety depend are significantly affected by temperatures within the range of -40 °F to 130 °F.

1.4.1.2 Pressure

A standard breather relief valve installed on the outer shell of the end cap is set to re-seat at a 0.5 psi pressure difference between the inside and outside of the inner container and is capable of airflow adequate for surface or air transport. Therefore, there is no effect on the packaging from an environmental difference of 0.5 *atmospheres*. Note: The functional description of the breather valve by GE in Appendix 2B Section 1.3, third paragraph, is in error and shall be disregarded.

1.4.1.3 Vibration

A 3 inch thick layer of honeycomb cushioning material surrounds the inner metal container at the sides, top and bottom with an additional 9 inch thickness at the ends. Alternatively, there are 3 inches of honeycomb on top and bottom of the inner container and 2 inches on the sides. The inner container is not free to shift during transport since the ethafoam cushioning is slightly compressed during final closure, and the wooden outer container is bolted shut. Since the bolted assemblies in the metal container are held either by clips on the nuts or by lock washers, they cannot loosen during normal transport vibration or shock even if all vibration is not eliminated by the cushioning material.

1.4.1.4 Water Spray

Since the package is designed to remain subcritical assuming any degree of credible in-leakage, water inside the outer container would have no effect on criticality safety considerations. In addition, the effectiveness of the impact limiters and the wooden box structure was not substantially reduced as a result of the water spray test conducted on September 25, 1981. Results of the water spray test showed a maximum reduction of honeycomb compressive

strength of 1-1/2% for one side, 3% for the other side, 5% for the bottom, and an undetectable amount for the ends since no wetting of the end honeycomb could be observed.

1.4.1.5 Drop Test

The complete package is designed to protect the fuel assemblies within the inner metal container from loss of containment integrity or change in nuclear safety reliability by virtue of thick cushioning material surrounding it. The shock absorption to the corners, edges and at all joints in the plywood, supplemented by the inherent elasticity of bolts and nails used in final closure of the outer package, constitutes a more than adequate buffer against the subject tests. Additionally, the RA outer container provides added protection to the end cap and cover of the inner RA container during an accident.

1.4.1.6 Corner Drop

Test not required since the package weight exceeds 110 pounds.

1.4.1.7 Penetration

Tests were conducted in which the flat circular end of a vertical steel cylinder 1-1/4 inches in diameter weighing 13 pounds was dropped four feet onto the center of the ½ inch plywood outer container. No damage resulted after four drop tests.

1.4.1.8 Compression

Tests were conducted in which six loaded packages (15,750 lb.) were stacked for 24 hours. There was no visible or measurable damage to the container on the bottom of the stack. The test weight was greater than either of the conditions specified in 10 CFR *Part* 71 Appendix A.

1.4.2 Hypothetical Accident Conditions

1.4.2.1 Free Drop

Four individual drop tests through a distance of 30 feet have been conducted on the RA containers in 1966, 1974, 1978, and 1980. The test packages contained two dummy fuel assemblies to simulate the actual weight of a loaded RA inner container (1,865 lb.). In all tests, the cover and end caps remained intact. The inside angle spacers maintained the *required* annulus so that criticality safety considerations were not affected. The maximum annular reduction of approximately 1% was produced by the test in 1966.

There were no ruptured fuel rods in any of the tests. Therefore, the fuel pellets would remain contained inside the fuel rods.

1.4.2.2 Puncture

A puncture test on the inner metal container conducted in 1980 produced an indentation, but no puncture. There were no ruptured fuel rods, and even though the container was bowed approximately 2 inches, the angle spacers maintained the spacing required so that criticality safety considerations were not affected. This test was conducted on an inner container only, without the protection of the outer wooden box. It easily can be seen that the damage would be

considerably less with both the outer and inner container packages. Furthermore, the inner package is designed to remain subcritical with water in-leakage such as that which could result from puncture.

1.4.2.3 Thermal

A thermal test was conducted in 1980 that produced a maximum temperature of 1640 °F flame temperature. An actual gasoline fire test was selected to be most representative of the accident considered. The gasket and other combustible materials inside the container, including foamed polyethylene cushioning and plastic rod spacers, completely burned away during the thirty minute test.

Five hundred gallons of gasoline were consumed during the test, and no abnormal thermal distortion was observed. The pressure relief valve and the burnt gasket permitted the pressure inside to be vented away and prevented rupture of the container.

1.4.2.4 Water Immersion

After the fire test mentioned above, a water immersion test was performed. Water leaked into the container since the gasket was consumed during the fire. Residue and debris remaining did not restrict the free flow of water into and out of the container. The presence of water for 8 hours caused no damage to the fuel rods.

There was no significant deformation or distortion of the container that reduced the effectiveness of the annulus to flooding by water entering through the closure joints since the gasket had burnt away.

These conditions were considered in the criticality calculations which showed the reactivity of such an array when flooded to be subcritical.

1.5 SP Series Shipping Packages

1.5.1 SP-1 Inner Container

1.5.1.1 Description

The SP-1 inner container is a right rectangular metal box used inside an SP-1 outer wooden container for shipping fuel assemblies (maximum of two per inner container) or groups of fuel rods in specified containers.

The inner container consists of an outer shell and perforated inner basket separated by structural angle iron. The outer shell is formed of minimum 16-gauge carbon steel plate with an integral welded end of the same material. Four angle stiffeners made of 11-gauge carbon steel are welded on approximately *4* inch centers to the outer end surface of the container. Approximate dimensions of this inner container are 11-1/2 inches high, 18 inches *wide* and 179 inches long.

The inner basket is constructed of 16-gauge carbon steel plate with 3/4 inch perforations on 1-3/4 inch centers. It is welded to the upper edge of the outer shell to form two U-shaped channels approximately 6-7/8 *in*.² in cross-section. The channels may be lined with low-density ethafoam cushioning cemented in place with perforations matching the size and location of those in the inner basket as described on Figure 1.1. To support the inner basket within the outer shell, four angle iron spacers made of 1/8 inch thick carbon steel are positioned longitudinally along the entire length of the body. Two similar angle iron spacers are positioned longitudinally in the cover.

The SP-1 inner metal container is designed with a longer body and shorter end cap than the SP-2 inner container. The SP-3 inner metal container, like the SP-1, is designed with a longer body and shorter end cap than the SP-2 inner container. The SP-1 and SP-2 inner containers are used interchangeably for shipping assemblies and rods while the SP-3 is limited to two types of assemblies. All may be used in the SP-1 wooden outer container.

The cover and end cap of the inner container are of similar construction to the box to provide an approximately 2 inch annulus around the fuel, except at the ends, when the box is closed. A gasket of approximately 1/2 inch thick hollow rubber (isoprene or neoprene) provides a completed seal with the cover in place. Closure of the box is effected by bolted assemblies.

The SP-1 inner container may be welded, riveted and/or screwed, or all welded construction. In the welded, riveted and/or screwed inner container, the cover liner is removable and the cavity is of riveted and welded construction.

1.5.1.2 Containment Vessel Penetrations

A standard breather relief valve installed on the outer shell of the end cap is set to re-seat at a 0.5 psi pressure difference between the inside and outside of the inner container and is capable of airflow adequate for surface or air transport.

1.5.1.3 Safety

The SP-1 inner container's safety was demonstrated to be acceptable based on a hypothetical accident condition test conducted in 1980 in accordance with criteria for compliance with 10 CFR *Part* 71.36. See Appendix 2B for the *t*est *r*eport.

1.5.2 SP-2 Inner Container

1.5.2.1 Description

The SP-2 inner container is a right rectangular metal box used inside an SP-1 outer wooden container for shipping fuel assemblies (maximum of two per inner) or groups of fuel rods strapped together (sometimes referred to as bundles).

The inner container consists of an outer shell and perforated inner basket separated by structural angle iron. The outer shell is formed of minimum 16-gauge carbon steel plate with an integral welded end of the same material. Four angle stiffeners made of 11-gauge carbon steel are welded on approximately *4* inch centers to the outer end surface of the container.

Approximate dimensions of this inner container are 11-1/2 inches high, 18 inches wide and 179 inches long.

The inner basket is constructed of 16-gauge carbon steel plate with 3/4 inch perforations on 1-3/4 inch centers. It is welded or riveted to the upper edge of the outer shell to form two U-shaped channels approximately 6-7/8 *in.*² in cross-section. The channels may be lined with low-density ethafoam cushioning cemented in place with perforations matching the size and locations of those in the inner basket. To support the inner basket within the outer shell, four angle iron spacers made of 1/8 inch thick carbon steel are positioned longitudinally along the entire length of the body. Two similar angle iron spacers are positioned longitudinally in the cover.

The cover and end cap of the inner container are constructed similar to the body to provide an approximately 2 inch annulus around the fuel, except at the ends, when the body is closed. The end cap of the SP-2 container is approximately 7 inches long. A gasket of approximately 1/2 inch thick hollow rubber (isoprene or neoprene) provides a completed seal with the cover in place. Closure of the box is effected by bolted assemblies.

The SP-3 inner metal container, like the SP-1, is designed with a longer body and shorter end cap than the SP-2 inner container. The SP-1 and SP-2 inner containers are used interchangeably for shipping assemblies and rods while the SP-3 is limited to two types of assemblies. All may be used in the SP-1 wooden outer container.

1.5.2.2 Containment Vessel Penetrations

A standard breather relief valve installed on the outer shell of the end cap is set to re-seat at a 0.5 psi pressure difference between the inside and outside of the inner container and is capable of airflow adequate for surface or air transport.

1.5.2.3 Safety

The SP-2 inner container's safety was demonstrated to be acceptable based on tests performed on the GE RA-1 inner container as described in Appendix 2 and according to the current engineering evaluation performed on the RA series containers as discussed in Appendix 2A.

1.5.3 <u>SP-3 Inner Container</u>

1.5.3.1 Description

The SP-3 inner container is a right rectangular metal box used inside an SP-1 outer wooden container for shipping fuel assemblies (maximum of two per inner container) or groups of fuel rods in specified containers.

The inner container consists of an outer shell and perforated inner basket separated by structural angle iron. The outer shell is formed of minimum 16-gauge carbon steel plate with an integral welded end of the same material. Four angle stiffeners made of 11-gauge carbon steel are welded on approximately *4* inch centers to the outer end surface of the container. Approximate dimensions of this inner container are 11-1/2 inches high, 18 inches wide, and 179 inches long.

I

The inner basket is constructed of 16-gauge carbon steel plate with 3/4 inch perforations on 1-3/4 inch centers. It is welded to the upper edge of the outer shell to form two U-shaped channels approximately 6-7/8 *in*.² in cross-section. The channels may be lined with low-density ethafoam cushioning cemented in place with perforations matching the size and location of those in the inner basket as described on Figure 1.1. To support the inner basket within the outer shell, four angle iron spacers made of 1/8 inch thick carbon steel are positioned longitudinally along the entire length of the body. Two similar angle iron spacers are positioned longitudinally in the cover. The body and cover angle iron spacers create a minimum spacing of 1-5/8 inches between the inner basket and the outer shell compared to 1-15/16 in the SP-1 and SP-2 containers. This is the only difference between the SP-1 and SP-3.

The SP-3 inner metal container, like the SP-1, is designed with a longer body and shorter end cap than the SP-2 inner container. The SP-1 and SP-2 inner containers are used interchangeably for shipping assemblies and rods while the SP-3 is limited to two types of assemblies. All may be used in the SP-1 wooden outer container.

The cover and end cap of the inner container are of similar construction to the box to provide an approximately 1-5/8 inch annulus around the fuel, except at the ends, when the box is closed. A gasket of approximately 1/2 inch thick hollow rubber (isoprene or neoprene) provides a completed seal with the cover in place. Closure of the box is *effected* by bolted assemblies.

The SP-3 inner container may be welded, riveted and/or screwed, or all welded construction. In the welded, riveted and/or screwed inner container, the cover liner is removable and the cavity is of riveted and welded construction.

1.5.3.2 Containment Vessel Penetrations

A standard breather relief valve installed on the outer shell of the end cap is set to re-seat at a 0.5 psi pressure difference between the inside and outside of the inner container and is capable of airflow adequate for surface or air transport.

1.5.3.3 Safety

The SP-3 inner container's safety was demonstrated to be acceptable based on a hypothetical accident condition test conducted in 1980 in accordance with criteria for compliance with 10 CFR *Part* 71.36. See Appendix 2B for the *t*est *r*eport.

1.5.4 SP-1 Outer Container

1.5.4.1 Description

The all-wood outer container is a right rectangular box with nominal dimensions of between 31 inches and 33 inches high, 30 inches and 32 inches wide, and up to 207 inches long. It is fabricated of 1/2 inch plywood, cleated with nominal 2 inch x 4 inch studs, and mounted on a 30 to 32 inch wide platform constructed of nominal 2 inch x 10 inch planks and with bolted-on skids of nominal 4 inch x 4 inch wood.

Internal cushioning consists of kraft fiber honeycomb impregnated with phenolic resin. Cushioning nominally 8-1/2 inches to 9 inches thick is used to line the inside of the box at the ends, while one layer of between 2 inches and 3 inches thick material is used for the top, bottom, and sides.

Additional cushioning consists of pads of expanded polyethylene material. Five pads 3 inches thick x 18 inches x 20-1/2 inches are located over the transverse skids at the bottom and at the top, while five pads of material 1/2 inch thick x 18 inches x 12 inches are located at related positions on each side of the box. The SP-1 outer container has a 1/2 inch plywood sheet faced with 1/8 inch steel sheet at each end of the box.

The box has no attached lifting or tiedown devices.

The SP-1 outer container is used primarily to reduce shocks and vibrations to the packaged fuel assemblies which are encountered in normal material handling, warehousing, and transportation. The SP-1 outer container also provides a degree of impact reduction capability for protecting the packaged assemblies against damage in rough material handling, dropping while loading or unloading and in impacts due to low speed accidents. In addition, the outer container provides added protection to the end cap and cover of the SP-1, SP-2 and SP-3 inner containers during an accident.

1.5.4.2 Safety

The SP-1 outer container's safety has been determined as the result of a drop test to be acceptable for the purpose it was designed. See Appendix 2A of this section for the *t*est *r*eport.

1.6 Contents of Shipping Containers

The contents allowed to be shipped in the SP-1, SP-2 and SP-3 containers include BWR fuel assemblies with a maximum enrichment of 5 wt. % U-235 and individual fuel rods enriched to a maximum of 5.0 wt. % U-235 and containing a minimum gadolinia content of 1.0 *wt.* %. The payload of the SP-3 is limited to category 8 and 9 fuel assemblies as discussed in Chapter 6 and Appendices 6H and 6I.

Each fuel assembly is enclosed in an unsealed polyethylene sheath. The ends of the sheath are neither taped nor folded in any manner that would prevent the flow of liquids into or out of the ends of sheathed fuel assemblies.

Individual rods are shipped either in a product container or the gadolinia rod shipping container. The product container consists of a 5 inch schedule 40 stainless steel pipe fitted with either a screw type or flanged closure. The gadolinia rod shipping container is shown in Figure 1.3.

Specific descriptions of fuel assemblies and rods to be shipped in the SP-1, SP-2 and SP-3 containers are given in Chapter 6.

	TABLE 1.1
Su	mmary Listing of Applicable Licensing Drawings
Reference Figure No.	Drawing No. and Description
1.1	02-9264132-000 Rev. 0 SP-1, 2, & 3 Inner Shipping Container Assembly
1.2	EMF-306, 272, Sh. 1, Rev. 10 SP-1 Outer Shipping Container
1.3	EMF-309, 141, Rev. 1 Gadolinia Rod Shipping Container

PROPRIETARY AND SECURITY RELATED INFORMATION WITHHELD UNDER 10 CFR 2.390

EMF-1563 Revision 12A Page 1-11

Framatome ANP

SP-1 OUTER SHIPPING CONTAINER EMF-306,272 R-10-

EMF-1563 Revision 12A Page 1-12

IR

PROPRIETARY AND SECURITY RELATED INFORMATION WITHHELD UNDER 10 CFR 2.390

10

11

11

12

	Sien	nens	зP	ower	Corp	orat	ion	
SCALE:	.15" -	l.,	A	5				
	BATE	NUK	mu		_		_	1
DEAVE	5-11-95	DLP		GA	ADOLII	NIA		۱
orgeo	5-12-95	TGH	1		CLIF	DINC		ſΗ
APPROVED	5-15-95	JCC		ROD	SUIL	FING		ł.
APPROVED	5-15-95	JBE	}	0.0	NT AIN	NFR		1
NPPROVED	5-19-95	ТМН						
			DOWNER NO	•			1	1
			FN	4F - 309	141	R-1	SHEETS	1
			- ··		1.1.1	1. 1	1	
		14		15		1	6	-

2. Structural Evaluation

The structural evaluations of the SP-1, SP-2 and SP-3 containers under normal transport and hypothetical accident conditions are described in Appendices 2A, 2B, 2C, 2D, and 2E. These appendices are comprised of the appendices of Section 2 of General Electric's March 17, 1992 Consolidated Application for the RA-Series Shipping Package. The SP-1 and SP-2 are virtually identical to the RA-3 and RA-2, respectively. The SP-3 is identical to the SP-1 except for the spacing differences described in 1.5.3.1. Appendices 2A, 2B, 2C, 2D and 2E cover structural, thermal, and containment evaluations of these containers.

3. Thermal Evaluation

The thermal evaluations of the SP-1, SP-2 and SP-3 containers under normal transport and hypothetical accident conditions are described in Appendices 2A, 2B, 2C, 2D, and 2E. These appendices are comprised of the appendices of Section 2 of General Electric's March 17, 1992 Consolidated Application for the RA-Series Shipping Package. The SP-1 and SP-2 are virtually identical to the RA-3 and RA-2, respectively. The SP-3 is identical to the SP-1 except for the spacing differences described in 1.5.3.1. Appendices 2A, 2B, 2C, 2D, and 2E cover structural, thermal, and containment evaluations of these containers.

4. Containment Evaluation

The evaluations of containment of contents under normal transport and hypothetical accident conditions of the SP-1, SP-2 and SP-3 containers are described in Appendices 2A, 2B, 2C, 2D, and 2E. These appendices are comprised of the appendices of Section 2 of General Electric's March 17, 1992 Consolidated Application for the RA-Series Shipping Package. The SP-1 and SP-2 are virtually identical to the RA-3 and RA-2, respectively. The SP-3 is identical to the SP-1 except for the spacing differences described in 1.5.3.1. Appendices 2A, 2B, 2C, 2D, and 2E cover structural, thermal, and containment evaluations of these containers.

5. Shielding Evaluation

Because the SP-1, SP-2 and SP-3 shipping containers are designed to carry low enriched unirradiated fuel, there is no need for shielding to reduce radiation. Typical dose rates at the outer surface of a loaded container are 0.05-0.1 mSv/hr (5-10 mr/hr).

6. **Criticality Evaluation**

6.1 *Introduction*

The evaluations of the SP-1, SP-2 and SP-3 containers to retain their contents under both normal transport and hypothetical accident conditions are documented in Appendices 2A-2E.

6.2 Description of Contents

There are eight fuel assembly types, plus fuel rods outside of assemblies which constitute the contents to be shipped under this *report*. They are described below.

6.2.1 Type G1 (Category 1) Fuel Assemblies

 UO_2 fuel assemblies in a 7 x 7, an 8 x 8, or a 9 x 9 square array with a maximum fuel crosssection area of 25.0 in.², maximum fuel length of 174 inches and maximum average enrichment of 3.3 wt. % U-235. Minimum Zircaloy clad thickness is 0.025 inches; maximum pellet diameter is 0.555 inches. Any number of water rods in any arrangement are permitted.

6.2.2 Type G2 (Category 2) Fuel Assemblies

 UO_2 fuel assemblies in a 7 x 7, an 8 x 8, or a 9 x 9 square array with a maximum fuel length of 174 inches, and a maximum average enrichment between 3.3 wt. % to 4.0 wt. % U-235. Pellet and cladding dimensions and nuclear poison specifications are to be in accordance with the limits specified in Appendix 6A.

6.2.3 10 x 10 (Category 3) Fuel

UO₂ fuel assemblies with a maximum enrichment of 5.0 *wt.* % U-235, and a maximum average *planar* enrichment of 4.0 *wt.* % U-235. Each fuel assembly is made up of fuel rods in a 10 x 10 square array, with a maximum fuel cross-section *area* of 25.221 *in.*², a nominal pitch of 0.511 inch, and a maximum fuel length of 174 inches. The maximum pellet diameter is 0.3356 inch, the minimum clad thickness is 0.0225 inch, and the maximum U-235 enrichment in any edge rod is 4.0 percent by weight. Each assembly contains at least 6 rods with minimum nominal 2.0 *wt.* % Gd₂O₃, which are symmetric about the diagonal, and each assembly contains at least 4 water rods in the 4 central rod positions.

6.2.4 Fuel Rods (Category 4)

 UO_2 fuel rods with a maximum U-235 enrichment of 5.0 wt. % and a minimum gadolinia content of 1.0 *wt.* %. The maximum pellet diameter is 0.5 inch and the maximum rod length is 169 inches. The rods may be clad with Zircaloy, steel, or aluminum. Rods meeting the above requirements may be placed into the "Gadolinia Rod Container" or the *5* inch schedule 40 stainless steel pipe product container and shipped in the SP-1, SP-2 or SP-3 in lieu of one or two fuel assemblies.

6.2.5 10x10 (Category 5) ATRIUM Fuel Assemblies

UO₂ fuel assemblies with maximum U-235 enrichment (wt.%) constraints as follows: perimeter rods: 4.0%; UO₂-Gd₂O₃ ("gadolinia") Rods: 5.0%; All other interior rods: 4.0% average and no rod shall exceed 5.0%. Each assembly is composed of a 10x10 array of fuel rods and water rods. A water channel is required in the central 3x3 rod positions. Any number of additional water rods in any arrangement is permitted including part length rods. The maximum fuel *cross-section area is 25.0 in.*² *and the maximum fuel length is* 174 inches. The maximum pellet diameter is 0.35 inches and the minimum clad thickness is 0.018 inches. Each assembly shall include at least twelve rods with at least 2.0 wt.% gadolinia in all axial regions with enriched pellets in a pattern symmetric about one of the assembly diagonals. At least eight of the twelve gadolinia rods shall be located in rows 2 and 9 and columns 2 and 9. The nominal diameter of the gadolinia pellets shall be no less than that of the UO₂ (non-gadolinia) pellets.

6.2.6 Additional 10x10 (Category 6) ATRIUM Fuel Assemblies

 UO_2 fuel assemblies with a maximum U-235 enrichment of 5.0 wt. %. Each assembly is composed of a 10x10 array of fuel rods with a water channel or water rods located in a central 3x3 array of rods location. Any number of additional water rods or water channels in any arrangement is permitted including part length rods. The maximum fuel *cross-section area is* 25.0 in.² and the maximum fuel length is 174 inches. The maximum pellet diameter is 0.35 inches and the minimum clad thickness is 0.018 inches. Each assembly shall contain at least eight rods with at least 2.0 wt. % gadolinia in all axial regions with enriched pellets. Additional gadolinia rod specifications are given in Appendix 6G.

6.2.7 9x9 (Category 7) ATRIUM Fuel Assemblies

 UO_2 fuel assemblies with a maximum U-235 enrichment of 5.0 wt. %. Each assembly is composed of a 9x9 array of fuel rods with a water channel or water rods in the center 3x3 rod locations. Any number of additional water rods or water channels in any arrangement is permitted. The maximum fuel *cross-section area is 25.0 in.*² *and the maximum fuel length is* 174 inches. The maximum pellet diameter is 0.40 inches and the minimum clad thickness is 0.015 inches. Each assembly shall contain at least eight rods with at least 2.0 wt. % gadolinia in all axial regions with enriched pellets. Additional gadolinia rod specifications are given in Appendix 6G.

6.2.8 Additional 9x9 (Category 8) ATRIUM Fuel Assemblies

 UO_2 fuel assemblies in a 9x9 square array with a maximum fuel cross-section *area* of 25.0 *in.*², maximum fuel length of 174 inches, and a maximum average enrichment of 4.0 *wt.* % U-235. The nominal pellet diameter is 0.370 inch. At least the center 3x3 rod locations shall be a water channel. Each assembly must include at least eight rods with a minimum nominal gadolinia (Gd₂O₃) content of 2.0 *wt.* % in all axial regions with enriched pellets. Additional gadolinia rod specifications are given in Appendix 6H.

6.2.9 Additional 10x10 (Category 9) ATRIUM Fuel Assemblies

 UO_2 fuel assemblies in a 10x10 square array with a maximum fuel cross-section *area* of 25.0 *in.*² and a maximum fuel length of 174 inches. The maximum U-235 enrichment is 5.0 *wt.* %, the maximum U-235 enrichment for all edge rods is 4.75 *wt.* %, the maximum enrichment for

the *4* corner edge rods is 3.05 *wt.*%, and the maximum U-235 enrichment for the *8* edge rods immediately adjacent to the *4* corner edge rods is 3.55 *wt.*%. The pellet diameter is between 0.30 and 0.3957 inch and a nominal pitch of 0.510 inch. Each assembly must have a water channel in a central 3x3 position. Each assembly must include at least *10* rods with a minimum nominal content of 2.0 *wt.*% gadolinia (Gd₂O₃) in all axial regions with enriched pellets and in a pattern symmetric about one of the assembly diagonals. Polyethylene shipping shims may be inserted between the fuel rods and between the upper tie plate and the fueled region. Additional gadolinia rod specifications are given in Appendix 6I.

6.2.10 Low Enriched Gadolinia Free 10x10 (Category 10) ATRIUM Fuel Assemblies

UO₂ fuel assemblies composed of fuel rods in a 10x10 square array with a maximum fuel crosssection *area* of 25.0 *in.*² and a maximum fuel length of 174 inches. The maximum U-235 enrichment is 2.3 w. %. The pellet diameter is between 0.30 and 0.3957 inch. Each assembly must have a water channel in a central 3x3 position. Any number of additional water rods in any arrangement is permitted, including part length rods. Polyethylene shipping shims may be inserted between the fuel rods. An additional upper tie plate (UTP) shipping shim may be added between the UTP and the fueled region. This UTP shim may consist of a maximum of 345 g plastic or plastic composite.

6.3 Criticality Evaluation of Individual Fuel Types

6.3.1 <u>Type G1 (Category 1) Fuel Assemblies</u>

<u>Parameter</u>	<u>Value</u>
Assembly size	5.0 inch x 5.0 inch (maximum)
Assembly array	7 x 7, 8 x 8, 9 x 9
Average water/fuel volume ratio (Vw/Vf)	1.0 (minimum)
Pellet to clad radial gap	0.003 inch (minimum)
Clad thickness	0.025 inch (minimum)
Pellet diameter	0.555 inch (maximum)
Water rods	Any number/any arrangement
Assembly-average enrichment ¹	3.3 <i>wt. %</i> U-235 (maximum)
Gd ₂ O ₃ requirement	None

Appendix 6A, as modified by 6F, describes the criticality analyses of the type G1 fuel assembly to be shipped in SP-1 or SP-2 containers.

6.3.2 Type G2 (Category 2) Fuel Assemblies

<u>Parameter</u>	
Assembly size	

<u>Value</u> 5.0 inch x 5.0 inch (maximum)

¹ UO₂ rods and UO₂-Gd₂O₃ rods may contain several inches of natural enrichment UO₂ pellets at either or both ends of the pellet stack. The assembly-average enrichment limits are for the enriched zone only (i.e., the assembly-average enrichment does not include the natural uranium at the ends of the pellet stack).

Assembly array	7 x 7, 8 x 8, 9 x 9
Average water/fuel volume ratio (Vw/Vf)	1.0 (minimum)
Pellet to clad radial gap	0.003 inch (minimum)
Clad thickness	0.025 inch (minimum)
Pellet diameter	0.555 inch (maximum)
Water rods	Any number/any arrangement
Assembly-average enrichment ¹	3.3-4.0 <i>wt. %</i> U-235 (maximum)
Gd ₂ O ₃ requirement	None

- Minimum number of UO₂-Gd₂O₃ rods is four in non-perimeter locations symmetric about the assembly diagonal.
- UO₂-Gd₂O₃ rods may contain various Gd₂O₃ concentrations in the enriched fuel zone but the minimum Gd₂O₃ concentration in the enriched zone to qualify as one of the four UO₂-Gd₂O₃ rods is 2.0 *wt.* %.
- The nominal length of the UO₂-Gd₂O₃ region shall be equal to or greater than the nominal length of the enriched region in the UO₂ fuel rods.
- Gd₂O₃ is not required in the end regions with natural uranium.

Appendix 6A, as modified by 6F, describes the criticality analyses of the type G2 fuel assembly to be shipped in SP-1 or SP-2 containers. Attached Appendix 6H describes the criticality analysis of the Category 2 fuel to be shipped in the SP-3 container.

6.3.3 10x10 (Category 3) Fuel Assemblies

Parameter	<u>Value</u>
Assembly size	5.022 inch <i>by 5.022</i> (maximum)
Enrichment of any pellet in assembly	5.0 <i>wt. %</i> U-235 (maximum)
Enrichment of any pellet in an edge rod	4.0 wt. % U-235 (maximum)
Maximum average planar enrichment ²	4.0 <i>wt. %</i> U-235 (maximum)
Clad thickness	0.0225 inch (maximum)
Pellet diameter	0.3356 inch (maximum)
Fuel density	98.0% TD (maximum)
Rod pitch	0.511 inch (nominal)
UO ₂ -Gd ₂ O ₃ rods	6 (minimum)
Gd ₂ O ₃ content	2.0± 0.08 <i>wt.</i> % (minimum)
Water rods	Center 4 rods (minimum)
Poison rod arrangement	Symmetrical across the diagonal
Fuel rod array in bundle	10 x 10

² Maximum average planar enrichment: The average enrichment at the axial location yielding the highest planar average.

Appendix 6B, as modified by 6F, describes the criticality analyses for 10 x 10 fuel assemblies to be shipped in SP-1 or SP-2 containers.

6.3.4 Fuel Rods (Category 4)

 UO_2 fuel rods with a maximum U-235 enrichment of 5.0 wt. % and a minimum gadolinia content of 1.0 *wt.* %. The maximum pellet diameter is 0.5 inch and the maximum rod length is 169 inches. The rods may be clad with Zircaloy, steel, or aluminum. Rods meeting the above requirements may placed into the "Gadolinia Rod Container" or the 5 inch schedule 40 stainless steel pipe product container and shipped in the SP-1 or SP-2 in lieu of 1 or 2 fuel assemblies.

Appendix 6C, as modified by 6F, describes the criticality analyses for gadolinia-bearing rods to be shipped in the gadolinia rod container in SP-1 and SP-2 containers.

6.3.5 10x10 (Category 5)ATRIUM Fuel Assemblies

Value
5.0 inch <i>by 5.0 inch</i> (maximum)
5.0 <i>wt</i> . % U-235 (maximum)
4.0 <i>wt</i> . % U-235 (maximum)
4.0 <i>wt. %</i> U-235 (maximum)
0.018 inch (minimum)
0.35 inch (maximum)
98.0% TD (maximum)
0.510 inch (nominal)
12 (minimum)
2.0± 0.08 <i>wt. %</i> (minimum)
Center 3 x 3 rods (minimum)
Symmetrical across the diagonal
10 x 10

Appendix 6D, as modified by 6F, describes the criticality analyses for 10 x 10 fuel assemblies to be shipped in SP-1 or SP-2 containers.

Transnuclear, inc.

6.3.6 Additional 10x10 (Category 6) ATRIUM Fuel Assemblies

Parameter	Value
Assembly size	5.0 inch by 5.0 inch (maximum)
Enrichment of any pellet in assembly	5.0 <i>wt</i> . % U-235 (maximum)
Clad thickness	0.018 inch (minimum)
Pellet diameter	0.35 inch (maximum)
Fuel density	98.0% TD (maximum)
Rod pitch	0.510 inch (nominal)
UO ₂ -Gd ₂ O ₃ rods	8 (minimum)
Gd ₂ O ₃ content	2.0± 0.08 wt. % (minimum)
Water rods	Center 3 x 3 rods (minimum)
Fuel rod array in bundle	10 x 10

Appendix 6E, as modified by 6F, describes the criticality analyses for 10 x 10 fuel assemblies to be shipped in SP-1 or SP-2 containers.

6.3.7 9x9 (Category 7) ATRIUM Fuel Assemblies

Parameter	Value
Assembly size	5.0 inch by 5.0 inch (maximum)
Enrichment of any pellet in assembly	5.0 <i>wt</i> . % U-235 (maximum)
Enrichment of any pellet in an edge rod	4.0 wt. % U-235 (maximum)
Maximum average planar enrichment ³	4.0 <i>wt.</i> % U-235 (maximum)
Clad thickness	0.015 inch (minimum)
Pellet diameter	0.40 inch (maximum)
Fuel density	98.0% TD (maximum)
Rod pitch	0.569 inch (nominal)
UO ₂ -Gd ₂ O ₃ rods	8 (minimum)
Gd ₂ O ₃ content	2.0± 0.08 <i>wt. %</i> (minimum)
Water rods	Center 3 x 3 rods (minimum)
Fuel rod array in bundle	9 x 9

Appendix 6E, as modified by 6F, describes the criticality analyses for 9 x 9 fuel assemblies to be shipped in SP-1 or SP-2 containers.

³ Maximum average planar enrichment: The average enrichment at the axial location yielding the highest planar average.

6.3.8 Additional 9x9 (Category 8) ATRIUM Fuel Assemblies

Parameter Assembly size Assembly array Average water/fuel volume ratio (Vw/Vf) Pellet to clad radial gap Clad thickness Pellet diameter Water rods Assembly-average enrichment Gd₂O₃ requirement Value 5.0 inch x 5.0 inch (maximum) 9x9 1.0 (minimum) 0.003 inch (minimum) 0.025 inch (minimum) 0.555 inch (maximum) Center 3x3 rods 4.0 *wt.* % U-235 (maximum)

- Minimum number of UO₂-Gd₂O₃ rods is four in non-perimeter locations symmetric about the assembly diagonal.
- UO₂-Gd₂O₃ rods may contain various Gd₂O₃ concentrations in the enriched fuel zone but the minimum Gd2O3 concentration in the enriched zone to qualify as one of the four UO₂-Gd₂O₃ rods is 2.0 *wt.* %.
- The nominal length of the UO₂-Gd₂O₃ region shall be equal to or greater than the nominal length of the enriched region in the UO₂ fuel rods.
- Gd₂O₃ is not required in the end regions with natural uranium.

Attached Appendix 6H describes the criticality analysis of the Category 8 fuel to be shipped in the SP-1, SP-2 and SP-3 containers.

6.3.9 Additional 10x10 (Category 9) ATRIUM Fuel Assemblies

Parameter	<u>Value</u>
Assembly size	5.0 inch x 5.0 inch (maximum)
Fuel rod array in bundle	10x10
Fuel length	174 inches (maximum)
Enrichment of any pellet in the assembly	5.0 <i>wt.</i> % U-235 (maximum)
Enrichment of any pellet in an edge rod	4.75 <i>wt. %</i> U-235 (maximum)
Enrichment of any pellet in one of the four corner edge rods	3.05 <i>wt.</i> % U-235 (maximum)
Enrichment of any pellet in one of the eight edge rods immediately adjacent to the four corner rods	3.55 <i>wt. %</i> U-235 (maximum)
Clad thickness	Not restricted

L

Pellet diameter	0.30 inch (minimum); 0.3957 inch (maximum)
Rod pitch	0.510 inch (nominal)
Fuel density	98.0% TD (maximum)
$UO_2 - Gd_2O_3$ rods	10 (minimum)
Gd ₂ O ₃ content	2.0 <i>wt. %</i> nominal (minimum)
Water rods	Center 3x3 rods (minimum)

- Each assembly must include a minimum of 10 rods with a minimum 2.0 *wt.* % gadolinia (Gd₂O₃) in all axial regions with enriched pellets.
- The gadolinia rods must be in a pattern symmetric about one of the assembly diagonals.
- At least 10 gadolinia rods must be located in rows 2 and 9 and in columns 2 and 9 of the assembly and cannot be immediately adjacent to another one of the 10 gadolinia rods, however diagonally adjacent is permitted.
- Polyethylene shipping shims may be inserted between the fuel rods up to a maximum volume fraction of 0.14 averaged over the void volume of the assembly.
- An additional upper tie plate shipping shim may be added between the upper tie plate and the fueled region. This upper tie plate shim may consist of a maximum of 345 g plastic or plastic composite.

Appendix 6I describes the criticality analyses for Category 9, 10x10 fuel assemblies to be shipped in SP-1, SP-2 or SP-3 packagings.

6.3.10 Low Enriched Gadolinia Free 10x10 (Category 10) ATRIUM™ Fuel Assemblies

r
Value
5.0 inch x 5.0 inch (maximum)
10x10
174 inches (maximum)
2.3 <i>wt.</i> % U-235 (maximum)
Not restricted
0.30 inch (minimum); 0.3957 inch (maximum)
0.510 inch (nominal)
98.0% TD (maximum)
0 (minimum)
0.0 <i>wt. %</i> nominal (minimum)
Center 3x3 rods (minimum)

• Polyethylene shipping shims may be inserted between the fuel rods up to a maximum volume fraction of 0.14 averaged over the void volume of the assembly.

1

Ι

• An additional upper tie plate shipping shim may be added between the upper tie plate and the fueled region. This upper tie plate shim may consist of a maximum of 345 g plastic or plastic composite.

Appendix 6J describes the criticality analyses for Category 10, 10x10 fuel assemblies to be shipped in SP-1, SP-2 or SP-3 packagings.

7. Operating Procedures for Loading and Unloading SP-1, SP-2 and SP-3 Containers

7.1 Container Handling

Fuel assemblies and individual fuel rods are loaded for shipment into the SP-1, SP-2 and SP-3 containers in the UO2 Building in accordance with standard operating procedures. The following describes the portions of the applicable procedures pertinent to safety.

- Verify that the fuel assemblies have been completed in compliance with applicable acceptance criteria.
- Inspect fuel assemblies for cleanliness.
- Assure that the polyethylene sheath which is placed over the assembly prior to loading into containers, is open at both ends and is no longer than the assembly.
- If loose (not part of a fuel assembly) rods are to be shipped in an SP container, they must be prepared as described below.
 - Only rods containing at least 1.0 wt. % gadolinia, sheathed or unsheathed, may be shipped in the SP-1, SP-2 and SP-3 containers.
 - The rods may be shipped either in the gadolinia rod shipping container, shown in Figure 1-4 or in a product container consisting of a 5 inch schedule 40 stainless steel pipe with a screw type or flange closure. The product container must be vented if it contains material that decomposes at less than 1475 °F.
- Prior to placing fuel assemblies or fuel rods into the SP inner container, visually inspect SP inner container for overall condition including:
 - Proper container preparation (presence of a "release" sticker)
 - Handles and brackets
 - Exterior welds
 - Foam padding
 - Gasket condition
 - Cleanliness
- For fuel assemblies, raise the SP inner container to the vertical position and insert the fuel assembly with the lower tie plate inserted into the thrust block to assure proper orientation. Lower the inner container to horizontal and add shimming to prevent fuel assembly movement.
- For fuel rods, the gadolinia rod shipping container and the product container are loaded into the SP inner container while it is in the horizontal position.

I

- Complete an inspection to assure compliance with loading procedures for the inner SP container.
- Bolt the end cap and lid of the inner container into place.
- Inspect the outer SP-1 container for structural integrity, cleanliness, and loose material.
- Load the inner container into the outer container and shim as necessary to prevent differential movement between the containers.
- Complete a second inspection to assure compliance with the procedures for loading the inner container into the outer SP container.
- Install and bolt the outer lid into place.
- Install tamper indicating seals at each end of the outer container.
- Radioactively survey for compliance with DOT regulations and release the loaded SP container for shipment.

7.2 Shipment Procedures

- Affix proper warning labels to each container.
- Overcheck fuel assembly or fuel rod parameters for compliance with the shipping container NRC Certificate of Compliance requirements.
- Load, tie down, and/or shore the SP containers onto a truck and radioactively survey the truck for compliance with DOT regulations.

8. Acceptance Tests and Maintenance Program

Transnuclear's radioactive material shipping containers, including the SP-1, SP-2 and SP-3 containers, are covered by its NRC-approved quality assurance program for shipping containers. The scope of this QA program includes design, procurement, fabrication, assembly, maintenance, modification and repair of such shipping containers.

8.1 Acceptance Tests

Transnuclear, Inc. conducts quality inspections of SP-1 outer containers and SP inner containers prior to first use. The following steps are included in such inspections.

8.1.1 SP Inner Containers

Typi	cal Characteristic Inspected	Typical Inspection Method
•	Proper marking, general cleanliness, rust, cracks, and dents	Visual
•	Cover and end pieces for fit and function	Visual
•	Container dimensions	Measurements, based on approved drawings, to assure that minimum dimensions for criticality safety are met. Assure that overall length, width and height are within tolerance.
•	Weld integrity, including closure lugs and lifting handle placement and attachment	Visual
•	Gasket condition	Visual
•	Pressure relief valve	Check for presence and proper operation
•	Vendor's certificate of compliance	Review for completeness
•	Vendor's facility and QC program	Transnuclear, Inc. QA

representative inspection

I

8.1.2 SP-1 Outer Containers

- Proper marking, general cleanliness
- Cover/base for fit and function
- Container dimensions
- Shipping damage
- Cover drain holes

Typical Inspection Method

Visual

Visual

Measurements, based on approved drawings, to assure minimum thickness of honeycomb material.

Visual

Probe to make sure holes are not plugged

- Fit of inner container in outer container Visual
- Vendor's certificate of compliance

Review for completeness

8.2 *Maintenance Program*

The SP inner containers and SP-1 outer containers are maintained and repaired at AREVA NP. The following steps are included in the maintenance and repair done at AREVA NP.

8.2.1 SP Inner Containers

- Repair any holes.
- Replace parts or work out dents greater that 1/2 inch deep.
- Replace parts or do weld repair on broken welds, seams, damaged lugs, or damaged lifting handles.
- Replace pressure relief valves which don't pass test or have been damaged.
- Replace or repair gaskets which are damaged, brittle, or flat from overcompression.
- Replace ethafoam if greater that 10% of a piece is missing.
- Replace damaged or missing fasteners.
- Repaint if needed.
- Make sure container is clean and free of loose debris.

8.2.2 SP-1 Outer Container

- Replace 2x4's if cracks exceed 25% of width or are over 6 inches long.
- Replace 2x10's and 2x12's, if cracks exceed 25% of width or length of lumber.
- Replace plywood with punctures, separating laminations, or more than a square foot of missing lamination.
- Replace damaged skids.
- Replace honeycomb if greater than 10% of a piece is missing or damaged.
L

- Replace damaged, heavily corroded, or missing nuts, bolts, nails, and screws. Superficial surface rust is allowed on all carbon steel fasteners.
- Make sure interior is clean and dry.
- Repaint and remark as necessary.

EMF-1563 Revision 12A Appendix 2A Page 1 of 17

Appendix 2A

Sec. 15

CURRENT ENGINEERING EVALUATION OF THE RA-SERIES FUEL SHIPPING CONTAINERS

(From Appendix A to Section 2.0 of General Electric's March 17, 1992 Consolidated Application for Certificate of Compliance 4986)

APPENDIX A TO SECTION 2.0

EMF-1563 Revision 12A Appendix 2A Page 2 of 17

CURRENT ENGINEERING EVALUATION OF THE RA-SERIES FUEL SHIPPING CONTAINERS

1.0 INTRODUCTION

The RA-3 all-wood outer container is a right rectangular box with nominal dimensions of 207 inches long, by 30 inches wide, by 31 inches high. It is fabricated of 1/2 inch plywood, cleated with nominal 2 inch x 4 inch studs, and mounted on a 30 inch wide base constructed of nominal 2 inch x 10 inch planks and with bolted-on skids of nominal 4 inch x 4 inch wood. The cover is secured with thirty 3/8 inch mild steel bolts. Cushioning material is provided on the sides and ends of the container to reduce vibrations and to centrally locate the inner container inside the outer wooden box. Cushioning material is Ethafoam brand closed cell foamed polyethylene, which is impervious to water, and phenolic resin impregnated paper honeycomb.

The RA outer container is used primarily to reduce shocks and vibrations to the packaged fuel assemblies encountered during normal material handling, warehousing, and transportation. In addition, the outer container provides added protection to the inner RA container if accident conditions occur.

NRC CERTIF	ICATE OF	COMPLIANCE	NO. 4986		
LICENSE:	SNM-1097	DATE:	3/17/92	•	Page
DOCKET:	71-4986	REVISION	. 0		2-A1

EMF-1563 Revision 12A Appendix 2A Page 3 of 17

The wood box is neither designed to survive hypothetical accident conditions without significant damage nor to prevent all damage to the inner metal container. The inner metal container, itself, is relied on to maintain containment, integrity and nuclear safety in hypothetical accident conditions, and its capability has been demonstrated.

2.0 PRIOR TEST DROPS

2.1 RA-1 Container

The General Electric RA-series fuel assembly shipping container combination of inner and outer containers has been in service since 1966 and designs have evolved to present configurations shown in Section 3.0 of this application on GE Drawings 769E229, 769E231, and 769E232.

2.1.1 RA-1 Drop Test

The initial outer wood container design (RA-1) did not have the ends bolted in place, and relied on the honeycomb material only as a filler to position the metal inner container. The RA-1 container combination was drop tested in 1966 with two simulated fuel assemblies inside the inner container.

Results of the test indicate that the end of the outer wood container completely separated from the box upon impact (see Appendix A, Photograph 1), thus subjecting the inner metal container to most of the impact energy

NRC CERTIF	ICATE OF	COMPLIANCE	NO. 4986	
LICENSE:	SNM-1097	DATE:	3/17/92	Page
DOCKET:	71-4986	REVISION	. 0	2-A2

produced. Although there was some damage to the inner container, its closure fasteners, and the simulated fuel assemblies, the test was concluded a success because the assemblies were wholly contained, fuel rods were not ruptured, and there was no significant deformation in the metal container.

EMF-1563 Revision 12A Appendix 2A Page 4 of 17

2.2 RA-2 Container

The RA-2 inner and RA-3 outer container design revisions strengthened both inner and outer containers. The RA-2 inner containers used higher strength bolts (ASTM A-354-BD) to secure the end cap and the end cap was lengthened by 4 inches. Conservative engineering calculations were used to justify the need for strong bolts in the end cap. The RA-3 outer container changes included:

- The use of 3/8 inch diameter bolts and nuts to secure the end panels to the wood box, in addition to the nailed construction used in the RA-1 design, to improve the impact strength of the box.
- Replacing the honeycomb in the ends of the container with a honeycomb having a compressive strength of 290 psi, which engineering calculations showed to reduce the impact velocity to zero.

2.2.1 RA-2 Drop Test

The RA-2 inner/RA-3 outer container was drop tested on March 24, 1974, (see Appendix A, Photograph 2) with the

NRC CERTIN	FICATE OF	COMPLIANCE	NO. 4986		
LICENSE:	SNM-1097	DATE:	3/17/92	•	Page
DOCKET :	71-4986	REVISION	: 0		2-A3

EMF-1563 Revision 12A Appendix 2A Page 5 of 17

RA-2 inner container modifications mentioned above and the outer container with the 110 psi honeycomb, and nailed and bolted end panels.

Results of the test showed that the bolted end of the box did not separate completely from the outer wooden container (see Appendix A, Photograph 3). There was some damage to the end cap and fuel assembly tie plate handles (see Appendix A, Photographs 4 and 5). This was also concluded to demonstrate a successful test.

<u>RA-3 Container</u>

2.3

The RA-3 outer container was the same as the container described above. The RA-3 inner container utilized a longer body, and an end cap the same depth as the RA-1. ASTM A-354-BD bolts were used to secure the end cap. These were subsequently changed to mild steel bolts.

2.3.1 RA-3 Drop Test

2.3.1.1 RA-3 Inner Container With a Fiberglass Outer Container

This test was conducted in 1978. The inner container was constructed in accordance with GE Drawing No. 731E674, Revision 6, which used ASTM A-354-BD bolts for the end cap. The outer container was an <u>experimental</u> fiberglass design. Its contents were dummy fuel assemblies simulating the 8x8 BWR fuel assembly.

At impact, the end of the fiberglass container, a piece approximately two feet long, completely separated from

 NRC; CERTII	FICATE OF	COMPLIANCE	NO.	4986	
LICENSE:	SNM-1097	DATE:	3/17	/92	Page
DOCKET:	71-4986	REVISION		0.	2-24

EMF-1563 Revision 12A Appendix 2A Page 6 of 17

the outer container allowing the inner container to impact the unyielding surface, thus absorbing nearly all the impact energy (see Appendix A, Photographs 6 and 7).

Post test inspection showed that damage to the simulated fuel assemblies or the inner container was not significantly large. Therefore, it was concluded that the test passed the acceptance criteria of 10 CFR 71.36(b), which was the regulation in effect at that time.

2.3.1.2 RA-3 Inner Container Drop Test With No Outer Container

This test was conducted in 1980. The RA-3 inner container used mild steel, plated bolts to secure the cover and the end cap. Other features were identical to those previously mentioned in this report. It was constructed in accordance with GE Drawing No. 769E231, Revision 0.

It was free dropped 30 feet, impacting at approximately the same altitude as all other tests described. The major difference with this test was that it had <u>no</u> outer container. The full impact on the unyielding concrete surface was absorbed by the metal inner container, the end cap and the mild steel bolts that secured the end cap and cover.

This was was concluded to have met all acceptance criteria of 10 CFR 71.36(b) which was the regulation in effect at that time.

NRC CERTIE	ICATE OF	COMPLIANCE	NO.	4986	
LICENSE:	SNM-1097	DATE:	3/17	/92	Page
DOCKET:	71-4986	REVISION	•	0	2-A5

EMF-1563 Revision 12A Appendix 2A Page 7 of 17

A comprehensive report of this test, along with the other three hypothetical accident condition tests, and photographs of the entire test program was prepared, is identified and maintained in GE Packaging Engineering, Design Record File No. DRF A-00-01362, Test No. 2.

3.0 CONCLUSIONS

3.1

3.2

3.3

The bolted construction of the RA-3 outer container has improved the impact resistance of the design. This was evident by the 1974 RA-2/RA-3 test.

The RA-3 outer container does not need to maintain complete integrity in the drop test. The RA-2/RA-3 test in 1974 shows that RA-3 outer with 110 psi cushioning is satisfactory.

The 1980 RA-3 inner container test also demonstrates that for the RA-3 inner, no overpack is required. Engineering calculations on the impact limiting capabilities of the honeycomb show that the honeycomb can never reduce the impact velocity of the inner container to zero since the wooden end of the box will not dissipate this amount of energy without damage. It was demonstrated by the tests that the honeycomb used in the RA outer containers is stronger than the wood box. As a result, the minimum honeycomb compressive strength required must be consistent with the load carrying capabilities of the outer wood container.

NRC CERTII	FICATE OF	COMPLIANCE	NO. 4986	
LICENSE:	SNM-1097	DATE:	3/17/92	 . Page
DOCKET:	71-4986	· REVISION:	0	2 . A6

EMF-1563 Revision 12A Appendix 2A Page 8 of 17

Strong bolts are not required in the RA-3 inner container since the 1980 tests verified that RA-3 inners with normal mild steel bolts will meet the container requirements.

3.4

3.5

The 1974 RA-2 inner/RA-3 outer test showed that the improved outer container, having the bolted end panel and 110 psi honeycomb, provided adequate strength to contain the honeycomb and permit it to dissipate the impact energy. In addition, the damage done to the end cap was minimal (see Appendix A, Photographs 4 and 8) and not of sufficient magnitude to justify the conservative design assumptions used in earlier calculations. Based on this data, it is concluded that the high strength AT A-354-BD bolts are not required in the RA-2 end cap attachment.

NRC CERTIFICATE OF COMPLIANCE NO. 4986LICENSE: SNM-1097DATE: 3/17/92PageDOCKET: 71-4986REVISION: 02-A7

EMF-1563 Revision 12A Appendix 2A Page 9 of 17

SUMMARY

RA CONTAINER DROP TEST

1

Year	Guter Container	Inner Container	Honeycomb Compressive Strength	Cover Bolts	End Cap Bolts
1966	: RA-1	RA-1	75 psi	Latches	Latches
1974	RA-3	RA-2	110 psi	Latches	ASTM A-354
1978	Experimental Fiberglass	RA-3	110 psi	ASTM A-307	ASTM A-354
1980	N/A See Note (1)	RA-3	N/A See Note (1)	Mild Steel	Mild Steel

Note: (1) Drop test conducted in 1980 was an RA-3 inner container only, with no outer container overpack

NRC C	ERTIE	ICATE	OF	COMPLIZ	ANCE	NO.	498	5		
LICE	NSE:	SNM-10	97	DATE	5:	3/17/	/92 -		Page	
DOCK	ET:	71-49	86	REVI	ISION:	•	0.		2-A8	

Photograph_No. 1, 1966 RA-1.Drop.Test Results

NRC CERTIE	ICATE OF	COMPLIANCE	NO.	4986	
LICENSE:	SNM-1097	DATE:	3/17,	/92	Page
DOCKET:	71-4986	REVISION	:	0	2-A9

Photograph No. 2, 1974 RA-2/RA-3 Drop Test

	ICATE OF	COMPLIANCE	NO.	4986	
LICENSE:	SNM-1097	DATE:	3/17	/92	Page
DOCKET:	71-4986	REVISION	•	0	2-A10

Photograph No. 3, 1974 RA-2/RA-3 Drop Test

NRC CERTIE	FICATE OF	COMPLIANCE	NO. 4986	
LICENSE:	SNM-1097	DATE:	3/17/92	Page
DOCKET:	71-4986	REVISION	: 0	2-A11

Photograph No. 4, 1974 RA-2/RA-3 Drop Test (End Cap Damage)

	NRC CERTIN	FICATE OF	COMPLIANCE	NO. 4986		
-	LICENSE:	SNM-1097	DATE:	3/17/92		Page
	DOCKET:	71-4986	REVISION	. 0	. •	2-A12

NRC CERTII	FICATE OF	COMPLIANCE	NO. 4986	
LICENSE:	SNM-1097	DATE:	3/17/92	Page '
DOCKET:	71-4986	REVISION	: 0	2-A13

Photograph No. 6, 1978 Drop Test RA-3 Inner/Fiberglass Outer

	NRC CERTII	FICATE OF	COMPLIANCE NO. 4986	
•	LICENSE:	SNM-1097	DATE: 3/17/92	Page
	DOCKET:	71-4986	REVISION: 0	2-A14
	:			

Photograph No. 7, 1978 Drop Test (End Cap Damage)

NRC CERTIN	FICATE OF	COMPLIANCE	NO. 4986	
LICENSE:	SNM-1097	DATE:	3/17/92	Page
DOCKET:	71-4986	REVISION:	0	2-A15

Photograph No. 8 1974 RA-2/RA-3 Drop Test (end cap)

Photograph No. 8, 1974 RA-1/RA-3 Drop Test (End Cap)

NRC CE	RTIFICATE OF	COMPLIANCE NO.	4986	
LICEN	SE: SNM-1097	DATE: 3/17,	/92	Page
DOCKE	r: 71-4986	REVISION:	0	2-A16

ISSUED IN FRA-ANP ON-LINE DOCUMENT SYSTEM DATE: 2-5-04

EMF-1563 Revision 12A Appendix 2B Page 1 of 43

Appendix 2B

1.1.1.1

8

The second s

2

900

TEST REPORT FOR HYPOTHETICAL ACCIDENT CONDITION TESTS OF AN RA-3 INNER FUEL SHIPPING CONTAINER

(From Appendix B to Section 2.0 of General Electric's March 17, 1992 Consolidated Application for Certificate of Compliance 4986)

EMF-1563 Revision 12A Appendix 2B Page 2 of 43

APPENDIX B TO SECTION 2.0

TEST REPORT FOR

HYPOTHETICAL ACCIDENT

CONDITION TESTS OF AN

RA-3 INNER FUEL

SHIPPING CONTAINER

NRC CERTII	FICATE OF	COMPLIANCE	NO. 4986	
LICENSE:	SNM-1097	DATE:	3/17/92	Page
DOCKET:	71-4986	REVISION	: 0	2-31

EMF-1563
Revision 12A
Appendix 2B
Page 3 of 43

DRF No. A00-01362 Test No. 2

TEST REPORT

FOR

HYPOTHETICAL ACCIDENT CONDITION TESTS OF AN

RA-3 INNER FUEL SHIPPING CONTAINER

In accordance with criteria for compliance with 10 CFR 71.36

ΒY

JOHN A. ZIDAK

Packaging Engineering

General Electric Company Nuclear Energy Traffic Operation San Jose, California

EMF-1563 Revision 12A Appendix 2B Page 4 of 43

TEST NEPORT FOR HYPOTHETICAL ACCIDENT CONDITION TESTS OF AN

RA-3 INNER FUEL SHIPPING CONTAINER

1.0 INTRODUCTION

1,1 Purpose

The purpose of the tests described was to demonstrate that the RA inner container loaded with two simulated fuel assemblies could pass the hypo-thetical accident condition tests described in 10 CFR 71, Appendix B, without the additional protection of the wooden RA outer container.

1.2 Test Summary

Hypothetical accident condition tests were conducted on a General Electric Model RA-3 fuel shipping container (inner container only), in accordance with 10 CFR 71 "Packaging of Radioactive Materials for Transport and Transportation of Radioactive Materials Under Certain Conditions". The tests consisted of a free drop test, puncture test, thermal test and water immersion test. The tests were conducted at General Electric Company's Wilmington Manufacturing Department facility on January 29, 1980 and June 18, 1980.

1.3 Packaging Description

The inner container of the RA-3 model packaging is a right rectangular metal box consisting of an outer shell and perforated inner basket separated by structural angle iron.

The outer shell is formed of minimum 16-gauge carbon steel plate with an integral welded end of the same material. Four angle stiffeners made of 11-gauge carbon steel, are welded on approximately four inch centers to the outer surface of the end plate. Approximate dimensions of this inner container are 11-1/4 inches high, 18-1/8 inches wide, and 182-7/8 inches long.

The inner basket is constructed of 16-gauge carbon steel plate with 3/4 inch perforations on 1-3/4 inch centers. It is riveted to the upper edge of the outer shell with 3/16 dia. blind steel rivets to form two U-shaped channels approximately 6-7/8 inch in cross-section. The channels are lined with low-density ethafoam cushioning cemented in place with perforations matching the size and locations of those in the inner basket. To support the inner basket within the outer shell, four 2.66 inch x 2.66 inch angle iron spacers made of 1/8 inch thick carbon steel are positioned longitudinally along the entire length of the body. The cover and end cap of the inner container are constructed similar to the box to provide a 2-inch annulus around the fuel, except at the ends, when the box is closed. A pressure relief valve is installed on the end cap, capable of passing 2-cfm air automatically to a 0.5-psi pressure difference between the outside and the inside of the box. A rectangular gasket of 30 to 53 durometer hollow rubber (isoprene or neoprene) provides a completed scal with the cover and end cap in place. Closure of the box is effected by 1S commercial grade, plated, 3/8 dia. mild steel bolts.

The inner container for the RA-3 packaging was constructed in accordance with the following General Electric drawings:

731E674 - Revision 7 769E231 - Revision 0

1.3.1 Test Containers

RA-3 inner container serial number I-2004 was selected from inventory for the tests. It was manufactured by Precision Metal Products, Wilmington, North Carolina in January 1980.

1.3.2 Test Load

The container was loaded with two durmy fuel assemblies that were manufactured in accordance with General Electric Company's Fuel Fabrication Operation procedures. They were essentially identical in all respects to production bundles except their rods contained lead filler rather than UO_2 pellets. The test bundles were tabricated in accordance with G.E. Fuel Production procedures.

1.3.3 Container Packing

The two dummy bundles were packed into the inner container, serial number I-2004 per Packaging Data Sheet No. PD-016H, except the paragraphs pertaining to the outer wooden container were not applicable.

2.0 ACCEPTANCE CRITERIA

The applicable criteria for acceptance are specified in 10 CFR 71.36(b).

10CFR 71.36(b): A package used for the shipment of fissile material shall be so designed and constructed and its contents so limited that if subjected to the hypothetical accident conditions specified in Appendix B of this part as the Free Drop, Puncture, Thermal, and Water Immersion conditions, in the sequence listed in Appendix B, the package would be subcritical. In determining whether this standard is satisfied, it shall be assumed that:

10CFR 71.36(b)(1): The fissile material is in the most reactive credible configuration consistent with the damaged condition of the package and the chemical and physical form of the contents;

10CFR 71.36(b)(2): Water moderation occurs to the most reactive credible extent consistent with the damaged condition of the package and the chemical and physical form of the contents; and

10CFR 71.36(b)(3): There is reflection by water on all sides and as close as is consistent with the damaged condition of the package.

-2-

3.0 TESTING

The hypothetical accident condition tests were conducted in the sequence specified in Appendix B to 10CFR71, to evaluate the ability of the package to withstand cumulative damage of the four tests. The tests, as specified in above mentioned regulation are as follows:

- a) <u>Free Drop</u> A free drop through a distance of 30 feet onto a flat essentially unyielding horizontal surface, striking the surface in a position for which maximum damage is expected.
- b) <u>Puncture</u> A free drop through a distance of 40 inches striking. in a position for which maximum damage is expected, the top end of a vertical cylindrical mild steel bar mounted on an essentially unyielding horizontal surface. The bar shall be 6 inches in diameter, with the top horizontal and its edge rounded to a radius of not more than one-quarter inch, and of such a length as to cause maximum damage to the package, but not less than 8 inches long. The long axis of the bar shall be perpendicular to the unyielding horizontal surface.
- c) <u>Thermal</u> Exposure to a thermal test in which the heat input to the package is not less than that which would result from exposure of the whole package to a radialton environment of 1,475°F. for 30 minutes with an emissivity coefficient of 0.9, assuming the surfaces of the package have an absorption coefficient of 0.8. The package shall not be cooled artificially until 3 hours after the test period unless it can be shown that the temperature on the inside of the package has begun to fall in less than 3 hours.
- d) <u>Water Immersion</u> (fissile material packages only) Immersion in water to the extent that all portions of the package to be tested are under at least 3 feet of water for a period of not less than 8 hours.
- 3,1 Test Procedure

3.1.1 Free Drop

The top edge of end which has the bolted end cap was established to be the surface most vulnerable to produce a failure of the closure. The container was oriented such that its attitude at impact was about 25° from vertical and would impact at the cover. end cap interface; this attitude was maintained through the use of guying lines attached to the containers.

The container was raised by a crane to a 30 foot height at approximately 25° angle as shown in Photograph No. 1. The height was determined by a measure weighted cord attached to the container. The quick release mechanism was activated and the container fell free 30 feet (Photograph No. 2) impacting at the predetermined angle and point of impact (see Photographs No. 3 and 4), onto a flat reinforced concrete pad.

-3-

EMF-1563 Revision 12A Appendix 2B Page 7 of 43

Results

Damage was confined to the impacted area. End of the container was damaged and one of the 14 cover bolts broke losse (Photographs No. 5 and 6): however, the remaining 13 cover bolts and the 4 or the end cap held the cover and end cap securely in place as evidenced by Photographs No. 3, 4 and 5.

3.1.2 Puncture Test

The container was free dropped through a distance of 40 inches, striking the top end of a vertical steel bar mounted on a reinforced concrete pad. (See Photograph No. 9). The bar was fabricated per the requirements of 10CFR71 (Appendix B).

A vertical drop with the package impacting on the 16-gauge container bottom equidistant from both ends was considered the most vulnerable orientation to puncture.

Results

The container was indented as seen in Photographs No. 8, 9 and 10, but there was no puncture. These photographs, as well as No.'s 13 and 14 indicate that the container was bowed several inches and still remained intact.

After completion of the puncture test, the cover and end cap were removed and a visual inspection of the fuel bundles revealed one broken fuel spacer and deformation of the upper tie plate handle. Photographs 11 and 12. There was no indication of fuel rod rupture as was substantiated by the Fuel Quality Control Engineering report dated August 11, 1980 (see Appendix 1).

3.1.3 Thermal Test

A Thermal Test of Container No. I-2004 followed the 30 foot free drop and puncture tests. The thermal test conducted required exposure to an environment of 1,475° minimum for a period of 30 minutes. Since an actual gasoline fire with open flames provides the most realistic means of satisfying the requirements of 10CFR71 thermal test, this method was chosen for the RA-3 inner container test.

Test set-up as shown in Fig. 1 was used. The gasoline and water supplies were located 100 feet from the fire pan. A thermocouple mounted on the closure adjacent to the slight opening of the container lid monitored the flame temperature using a Honeywell Model R7353A Dail-O-Troll, Serial No. 7812-3849, which was calibrated using a West millivolt pot that has traceability to the National Bureau of Standards.

A rectangular, steel fire pit with the container mounted 2 feet above the surface allowed for approximately 2 feet of flames around all sides of the container. By using the open gasoline fire, the emissivity and absorbtion coefficients were in accordance with those specified in 10CFR71, Appendix B.

EMF-1563 Revision 12A Appendix 2B Page 8 of 43

3.1.3.1 Test Procedure

Approximately 400 gallons of water were fed into the pit resulting in a water level of 5 incnes. Approximately 50 gallons of gasoline were then fed into the steel fire pit to from a layer of fuel about one inch deep on top of the water surface.

After ignition, (see Photograph No. 15) the fuel and water supplies were turned on and manually controlled to one gallon per minute of water and 15 GPM of fuel to maintain a fire that completely enveloped the RA-3 inner container. Photographs No. 16 through 23 are random photographs taken during the test. The temperature measured on the surface of the test container increased rapidly to 1,475°F. (Photographs 24, 25 and 26) and exceeded that throughout the test with a maximum temperature of 1,640°F. being reached. The full fire test continued for 30 minutes, burning 500 gallouof fuel during that period.

Results

Preliminary visual inspection after the thermal test showed no significant damage to the container, its cover or end car that would affect criticality safety considerations. It was also noted that the intense heat of the fire and the weigh of the dummy bundles straightened the RA container that was bowed several inches after the puncture test. (Compare Phor graphs 13 and 14 with Photographs 27 and 28.)

3.1.4 Water Immersion Test

After the fire test, container no. I-2004 with the two durmy bundles was allowed to cool down for the prescribed period of time, and then placed in the water immersion pit (see Photographs 29 and 30) under 3-1/2 feet of water. It remained submerged for 8 hours.

Results

Water leaked into the container since the gasket was consumed during the fire test. The presence of water in the container for 8 hours caused no undue affect on safety since criticality analysis took this into account. And finally, the presence of water for 8 hours caused no damage to the fuel rods, as evidenced by the Quality Control report.

3.1.5 Post Test Inspection

Following immersion as described, the container was opened and inspected. There was no physical damage to the rods in the durmy bundles, as was reported in the Fuel Quality Control Engineering report dated August 11, 1980 (Appendix 1).

EMF-1563 Revision 12A Appendix 2B Page 9 of 43

4.0 CONCLUSION

Hypothetical accident condition test specified in 10CFR71, Appendix B, have been conducted, witnessed by Quality Control Engineering and have passed the acceptance criteria.

The General Electric Model No. RA-3 metal inner fuel shipping container with two dummy fuel bundles has been subjected to the hypothetical accident conditions specified in Appendix B of 10CFR71: the Free Drop, Puncture, Thermal, and Water Immersion tests, in the sequence specified by the regulation.

- It is concluded that the RA-3 inner container has successfully passed the acceptance criteria due to the following:
- 4.1 The cover and end cap remained intact. There was one bolt failure in the cover, but 13 bolts are more than adequate to secure the cover. All four end cap bolts remained intact. Therefore, the contents would be contained inside the package.
- 4.2 There were no ruptured fuel rods. Therefore, the fuel pellets would be contained inside the rods.
- 4.3 There was no significant deformation to the container externally, the end cap or the inside angle spacers, and the basket that supports the fuel. Even though the container was bowed after the Puncture test, the angle spacers in the container maintained the spacing required so that criticality safety considerations were not affected.

THERMAL TEST SETUP

.

EMF-1563 Revision 12A Appendix 2B Page 11 of 43

DRF No. A00-01362 Test No. 2

TEST REPORT

FOR

HYPOTHETICAL ACCIDENT CONDITION TESTS OF AN

RA-3 INNER FUEL SHIPPING CONTAINER

In accordance with criteria for compliance with 10 CFR 71.36.

BY

JOHN A. ZIDAK

Packaging Engineering

General Electric Company Nuclear Energy Traffic Operation San Jose, California

EMF-1563 Revision 12A S Appendix 2B Page 12 of 43

FOR

HYPOTHETICAL ACCIDENT CONDITION TESTS OF AN RA-3 INNER FUEL SHIPPING CONTAINER

1.0 INTRODUCTION

1.1 Purpose

The purpose of the tests described was to demonstrate that the RA inner container loaded with two simulated fuel assemblies could pass the hypo-thetical accident condition tests described in 10 CFR 71, Appendix B, without the additional protection of the wooden RA outer container.

1.2 Test Summary

Hypothetical accident condition tests were conducted on a General Electric Model RA-3 fuel shipping container (inner container only), in accordance with 10 CFR 71 'Packaging of Radioactive Materials for Transport and Transportation of Radioactive Materials Under Certain Conditions'. The tests consisted of a free drop test, puncture test, thermal test and water immersion test. The tests were conducted at General Electric Company's Wilmington Manufacturing Department facility on January 29, 1980 and June 18, 1980.

1.3 Packaging Description

The inner container of the RA-3 model packaging is a right rectangular metal box consisting of an outer shell and perforated inner basket separated by structural angle iron.

The outer shell is formed of minimum 16-gauge carbon steel plate with an integral welded end of the same material. Four angle stiffeners made of 11-gauge carbon steel, are welded on approximately four inch centers to the outer surface of the end plate. Approximate dimensions of this inner container are 11-1/4 inches high, 18-1/8 inches wide, and 182-7/8 inches long.

The inner basket is constructed of 16-gauge carbon steel plate with 3/4 inch perforations on 1-3/4 inch centers. It is riveted to the upper edge of the outer shell with 3/16 dia. blind steel rivets to form two U-shaped channels approximately 6-7/8 inch in cross-section. The channels are lined with low-density ethafoam cushioning cemented in place with perforations matching the size and locations of those in the inner basket. To support the inner basket within the outer shell, four 2.66 inch x 2.66 inch angle iron spacers made of 1/8 inch thick carbon steel are positioned longitudinally along the entire length of the body. The cover and end cap of the inner container are constructed similar to the box to provide a 2-inch annulus around the fuel, except at the ends, when the box is closed. A pressure relief valve is installed on the end cap, capable of passing

1

2-cfm air automatically to a 0.5-psi pressure difference between the outside and the inside of the box. A rectangular gasket of 30 to 53 durometer hollow rubber (isoprene or neoprene) provides a completed scal with the cover and end cap in place. Closure of the box is effected by 1S commercial grade, plated, 3/8 dia. mild steel bolts.

The inner container for the FA-3 packaging was constructed in accordance with the following General Electric drawings:

731E674 - Revision 7 769E231 - Revision 0

1.3.1 Test Containers

RA-3 inner container serial number I-2004 was selected from inventory for the tests. It was manufactured by Precision Metal Products, Wilmington, North Carolina in January 1980.

1.3.2 Test Load

The container was loaded with two durmy fuel assemblies that were manufactured in accordance with General Electric Company's Fuel Fabrication Operation procedures. They were essentially identical in all respects to production bundles except their rods contained lead filler rather than UO₂ pellets. The test bundles were fabricated in accordance with G.E. Fuel Production procedures.

1.3.3 Container Packing

The two durmy bundles were packed into the inner container, serial number I-2004 per Packaging Data Sheet No. PD-016H, except the paragraphs pertaining to the outer wooden container were not applicable.

2.0 ACCEPTANCE CRITERIA

The applicable criteria for acceptance are specified in 10 CFR 71.36(b).

10CFR 71.36(b): A package used for the shipment of fissile material shall be so designed and constructed and its contents so limited that if subjected to the hypothetical accident conditions specified in Appendix B of this part as the Free Drop, Puncture, Thermal, and Water Immersion conditions, in the sequence listed in Appendix B, the package would be subcritical. In determining whether this standard is satisfied, it shall be assumed that:

- 10CFR 71.36(b)(1): The fissile material is in the most reactive credible configuration consistent with the damaged condition of the package and the chemical and physical form of the contents;
- 10CFR 71.36(b)(2): Water moderation occurs to the most reactive credible extent consistent with the damaged condition of the package and the chemical and physical form of the contents; and
- 10CFR 71.36(b)(3): There is reflection by water on all sides and as close as is consistent with the damaged condition of the package.

EMF-1563 Revision 12A Appendix 2B Page 14 of 43

3.0 TESTING

The hypothetical accident condition tests were conducted in the sequence specified in Appendix B to 10CFR71, to evaluate the ability of the package to withstand cumulative damage of the four tests. The tests, as specified in above mentioned regulation are as follows:

- a) <u>Free Drop</u> A free drop through a distance of 30 feet onto a flat essentially unyielding horizontal surface, striking the surface in a position for which maximum damage is expected.
- b) <u>Puncture</u> A free drop through a distance of 40 inches striking. in a position for which maximum damage is expected, the top end of a vertical cylindrical mild steel bar mounted on an essentially unyielding horizontal surface. The bar shall be 6 inches in diameter, with the top horizontal and its edge rounded to a radius of not more than one-quarter inch, and of such a length as to cause maximum damage to the package, but not less than 8 inches long. The long axis of the bar shall be perpendicular to the unvielding horizontal surface.
- c) <u>Thermal</u> Exposure to a thermal test in which the heat input to the package is not less than that which would result from exposure of the whole package to a radialton environment of 1,475°F. for 30 minutes with an emissivity coefficient of 0.9, assuming the surfaces of the package have an absorption coefficient of 0.8. The package shall not be cooled artificially until 3 hours after the test period unless it can be shown that the temperature on the inside of the package has begun to fall in less than 3 hours.
- d) Water Immersion (fissile material packages only) Immersion in water to the extent that all portions of the package to be tested are under at least 3 feet of water for a period of not less, than 8 hours.

3,1 Test Procedure

3.1.1 Free Drop

The top edge of end which has the bolted end cap was established to be the surface most vulnerable to produce a failure of the closure. The container was oriented such that its attitude at impact was about 25° from vertical and would impact at the cover end cap interface; this attitude was maintained through the use of guying lines attached to the containers.

The container was raised by a crane to a 30 foot height at approximately 25° angle as shown in Photograph No. 1. The height was determined by a measure weighted cord attached to the container. The quick release mechanism was activated and the container fell free 30 feet (Photograph No. 2) impacting at the predetermined angle and point of impact (see Photographs No. 3 and 4), onto a flat reinforced concrete pad.

-3-

EMF-1563 Revision 12A Appendix 2B Page 15 of 43

Results

Damage was confined to the impacted area. End of the container was damaged and one of the 14 cover bolts broke losse (Photographs No. 5 and 6); however, the remaining 13 cover bolts and the 4 on the end cap held the cover and end cap securely in place as evidenced by Photographs No. 3, 4 and 5.

3.1.2 Puncture Test

The container was free dropped through a distance of 40 inches, striking the top end of a vertical steel bar mounted on a reinforced concrete pad. (See Photograph No. 9). The bar was fabricated per the requirements of 10CFR71 (Appendix B).

A vertical drop with the package impacting on the 16-gauge container bottom equidistant from both ends was considered the most vulnerable orientation to puncture.

Results

The container was indented as seen in Photographs No. 8, 9 and 10, but there was no puncture. These photographs, as well as No.'s 12 and 14 indicate that the container was bowed several inches and still remained intact.

After completion of the puncture test, the cover and end cap were removed and a visual inspection of the fuel bundles revealed one broken fuel spacer and deformation of the upper tie plate handle. Photographs 11 and 12. There was no indication of fuel rod rupture as was substantiated by the Fuel Quality Control Engineering report dated August 11, 1980 (see Appendix 1).

3.1.3 Thermal Test

A Thermal Test of Container No. I-2004 followed the 30 foot free drop and puncture tests. The thermal test conducted required exposure to an environment of 1,475° minimum for a period of 30 minutes. Since an actual gasoline fire with open flames provides the most realistic means of satisfying the requirements of 10CFR71 thermal test, this method was chosen for the RA-3 inner container test.

Test set-up as shown in Fig. 1 was used. The gasoline and water supplies were located 100 feet from the fire pan. A thermocouple mounted on the closure adjacent to the slight opening of the container lid monitored the flame temperature using a Honeywell Model R7353A Dail-O-Troll, Serial No. 7812-3849, which was calibrated using a West millivolt pot that has traceability to the National Bureau of Standards.

A rectangular, steel fire pit with the container mounted 2 feet above the surface allowed for approximately 2 feet of fluxes around all sides of the container. By using the open gasoline fire, the emissivity and absorbtion coefficients were in accordance with those specified in 10CFR71, Appendix B.

-4-

EMF-1563 Revision 12A Appendix 2B Page 16 of 43

3.1.3.1 Test Procedure

Approximately 400 gallons of water were fed into the pit resulting in a water level of 5 incnes. Approximately 50 gallons of gasoline were then fed into the steel fire pit to from a layer of fuel about one inch deep on top of the water surface.

After ignition, (see Photograph No. 15) the fuel and water supplies were turned on and manually controlled to one gallon per minute of water and 15 GPM of fuel to maintain a fire that completely enveloped the RA-3 inner container. Photographs No. 16 through 23 are random photographs taken during the test. The temperature measured on the surface of the test container increased rapidly to 1,475 F. (Photographs 24, 25 and 26) and exceeded that throughout the test with a maximum temperature of 1,640 F. being reached. The full fire test continued for 30 minutes, burning 500 galloue of fuel during that period.

Results

Preliminary visual inspection after the thermal test showed no significant damage to the container, its cover or end can that would affect criticality safety considerations. It was also noted that the intense heat of the fire and the weigh of the durmy bundles straightened the RA container that was bowed several inches after the puncture test. (Compare Phorgraphs 13 and 14 with Photographs 27 and 28.)

3.1.4 Water Immersion Test

After the fire test, container no. I-2004 with the two durmy bundles was allowed to cool down for the prescribed period of time, and then placed in the water immersion pit (see Photographs 29 and 30) under 3-1/2 feet of water. It remained submerged for 8 hours.

Results

Water leaked into the container since the gasket was consumed during the fire test. The presence of water in the container for 8 hours caused no undue affect on safety since criticality analysis took this into account. And finally, the presence of water for 8 hours caused no damage to the fuel rods, as evidenced by the Quality Control repor

3.1.5 Post Test Inspection

Following immersion as described, the container was opened and inspected. There was no physical damage to the rods in the durmy bundles, as was reported in the Fuel Quality Control Engineering report dated August 11, 1980 (Appendix 1).

-5-

EMF-1563 Revision 12A Appendix 2B Page 17 of 43

4.0 CONCLUSION

Hypothetical accident condition test specified in 10CFR71, Appendix B. have been conducted, witnessed by Quality Control Engineering and have passed the acceptance criteria.

The General Electric Model No. RA-3 metal inner fuel snipping container with two dummy fuel bundles has been subjected to the hypothetical accident conditions specified in Appendix B of 10CFR71: the Free Drop, Puncture, Thermal, and Water Immersion tests, in the sequence specified by the regulation.

It is concluded that the RA-3 inner container has successfully passed the acceptance criteria due to the following:

- 4.1 The cover and end cap remained intact. There was one bolt failure in the cover, but 13 bolts are more than adequate to secure the cover. All four end cap bolts remained intact. Therefore, the contents would be contained inside the package.
- 4.2 There were no ruptured fuel rods. Therefore, the fuel pellets would be contained inside the rods.
- 4.3 There was no significant deformation to the container externally, the end cap or the inside angle spacers, and the basket that supports the fuel. Even though the container was bowed after the Puncture test, the angle spacers in the container maintained the spacing required so that critical-ity safety considerations were not affected.

. . .

· · · · ·
GENERAL C ELECTRIC

EMF-1563 Revision 12A Appendix 2B Page 19 of 43

30 FOOP INSTGRE

INNER CONPAINER PAISED TO

2

PERMIT YEARING NO.

DIAL COMM. 8*292-6072 DATE. August 11, 1980

C C P I ES .

DEPT, WMD-FQCE

ADDRESS. M/C H-39 Wilmington, N.C.

SUBJECT. RA CONTAINER BURN TEST INSPECTION

Packaging Engineer

M/C 512, San Jose

Per your request, the RA container and dummy bundles used in the burn test on 6/18/80 were visually evaluated. Container and bundles were steam cleaned prior to inspection. Listed are my observations and comments.

- A) RA container had some wrapage of metal, but no rupturing occurred.
- B) All ethafoam and lid gaskets were completely destroyed.
- C) Residue from plastic fuel rod separators was accumulated on lower tie plates and the lower eighteen inches of rods. (This probably occurred during lifting of RA after test.)
- D) Dummy bundles show no signs of heat releated damage. (End plug welds and cladding show no signs of rupturing or heat damage.)
- E) Cladding had smoke and carbon residue which should be cleanable, no heat deformities noted.

My observation is that there was no physical damage to rods in dummy bundles, only surface damage (residue, smoke) to bundle components as a result of ethafoam and plastic separators residue.

/John Ragins, Specialist Fuel Quality Control Engineering

1Ь

PHOTOGRAPH NO. 4: RA INNER C

RA INNER CONTAINER AFTER 30 FOOT DROP

DUCTOR CHAINE SEA TO TOTAL TOTAL

. . . .

HOREWELL DIAL-O-THOLL TEMPERATURE READ OFF PHOTO BLAPH NO. 21:

DEFENDED NO. 25. AONEMELD DIAL-O-TROLL TELEBRATCHE HEAD OFF

.

.. .

PERMERSION AND THE DEPARTMENT OF THE COMPACT OF THE STREET

DEGIVERADITION 1971 - BA INDER CONTRATINER AFTER FIDE DEST

EMF-1563 Revision 12A Appendix 2B Page 40 of 43

PHOTOGRAPH NO. 28: RA INNER CONTAINER AFTER FIRE TEST

ISSUED IN FRA-ANP ON-LINE DOCUMENT SYSTEM DATE: 2-5-04

EMF-1563 Revision 12A Appendix 2C Page 1 of 12

Appendix 2C

₹' ₹

6

W.C.

· · · · ·

15

Sec. Sec.

DESIGN AND TEST INFORMATION OF THE PREVIOUSLY DESIGNATED RA-1 INNER AND OUTER CONTAINERS USED FOR SHIPPING BWR FUELS

(From Appendix C to Section 2.0 of General Electric's March 17, 1992 Consolidated Application for Certificate of Compliance 4986)

APPENDIX C TO SECTION 2.0

EMF-1563 Revision 12A Appendix 2C Page 2 of 12

DESIGN AND TEST INFORMATION OF THE PREVIOUSLY DESIGNATED RA-1 INNER AND OUTER CONTAINERS USED FOR SHIPPING BWR FUELS

NOTE: The RA-1 package was the first licensed shipping container for the transport of BWR fuel. While once incorporated in the authorization of certificate USA/4986/B()F, it is no longer in use.

	N	RC CERTIF	ICATE OF	COMPLIANCE	ŃO.	4986	·
•	i.	LICENSE:	SNM-1097	DATE:	3/17,	/92	Page
		DOCKET:	71-4986	REVISION	:	0.	2-C1

EMF-1563 Revision 12A Appendix 2C Page 3 of 12

1.0 MODEL RA-1 PACKAGE *

The Model RA-1 package consists of a right rectangular metal inner container within a wooden outer container and separated from the outer container by cushioning material. Descriptions of these containers and of the structural evaluation thereof are given below.

1.1 Description of RA-1 Inner Container

The inner container of the RA-1 model package is a metal box consisting of an outer shell and perforated inner basket separated by structural angle iron.

The outer shell is formed of minimum.16-gauge carbon steel plate with an integral welded end of the same material. Four angle stiffeners made of 11-gauge carbon steel, are welded on approximately four inch centers to the outer surface of the end plate. Approximate dimensions of this inner container are 11 inches high, 18 inches wide, and 174 inches long.

The inner basket is constructed of 16-gauge carbon steel plate with 3/4 inch perforations on 1 3/4 inch centers. It is welded to the upper edge of the outer shell to form two U-shaped channels approximately 6 7/8 inch square in cross-section. The channels may be lined with low-density ethafoam cushioning cemented in place with perforations matching the size and locations of those in the inner basket. To support the inner basket within the outer shell, four 3 inch x 3 inch angle iron spacers made of 1/8 inch thick carbon steel are positioned longitudinally along the entire length of the body.

*No longer in use. Description included because of references in other sections of this consolidated application to analyses performed on this inner container:

NRC CERTIF	FICATE OF	COMPLIANCE	NO. 498	6	- e
LICENSE:	SNM-1097	DATE:	3/17/92	Page	
DOCKET:	71-4986	REVISION	. 0	2-C2	

·

EMF-1563 Revision 12A Appendix 2C Page 4 of 12

The cover and end cap of the inner container are constructed similar to the box to provide a 2 inch annulus around the fuel, except at the ends, when the box is closed. A manually operable pressure relief valve is installed on the outer shell. capable of passing 2-cfm air automatically to a 0.5-psi pressure difference between the outside and the inside of the box. A gasket of 1/2 inch thick hollow rubber (isoprene or neoprene) provides a completed seal with the cover in place. Closure of the box is effected by bolted assemblies, latches ("Camloc," 3711 series) or equivalent which are inaccessible during transport.

Description of RA-1 All-Wood Outer Container*

The all-wood outer container is a box with dimensions of 33 inches high, 32 inches wide, and up to 207 inches long. It is fabricated of 1/2 inch plywood, cleated with nominal 2 inch x 4 inch studs, and mounted on a 32 inch platform constructed with nominal 2 inch x 10 inch planks with bolted 4 inch x 4 inch skids. Internal cushioning consists of 3 inch layers of 3/8 inch cell kraft fiber honeycomb impregnated with phenolic resin. Three such 3-inch layers are used to line the inside of the box at the ends, while one such layer is used for the top, bottom, and sides. The remaining inner space at the ends is filled with expanded polyethylene cushioning. Five pads of expanded polyethylene cushioning, three inch in thickness and 12 inches wide, are placed

*No longer in use. Description included because of references in other sections of this consolidated application to analyses performed on this outer container.

NRC C	ERTIF	ICATE	OF	COMPLIANCE	NO.	4986	,		
LICI	ENSE:	SNM-10	97	DATE:	3/17,	/92		Page	
DOC	KET:	71-498	86	REVISION:		0		2-03	

inside the box centered over the transverse skids at the sides, top and bottom of the box. The box has no attached lifting or tiedown devices.

1.3

Structural Analysis of RA-1 All-Wood Outer Container

A complete structural analysis was performed for the all wood outer container described on page 2-C3. This analysis was reviewed and approved by registered professional engineers in the State of California, GE #17022 and MET. E. #301. The analysis demonstrates that the container performs very well with respect to the tests described in 10 CFR 71.34(a). Detailed data of the analyses are given in Table 1, page 2-C6.

1.4 <u>Structural Evaluation of RA-1 Package with All-Wood Outer</u> Container

A: sample RA-1 package, consisting of the inner container described on page 2-C2 and the outer wood container described on page 2-C3, was subjected to the tests and assessments set forth in Subpart C of 10 CFR 71.

1.4.1 Normal Transport Conditions

A. <u>General</u>: There are no components of the packaging or its contents which are subject to chemical reaction in normal transportation environment. The package cannot be opened inadvertently, uses no coolant, and has no lifting devices or tiedown attachments.

NRC CERTIF	ICATE OF	COMPLIANCE	NO. 4986	•
LICENSE:	SNM-1097	DATE:	3/17/92	Page
DOCKET:	71-4986	REVISION	: 0	2-C4

EMF-1563 Revision 12A Appendix 2C Page 6 of 12

- B. <u>Thermal</u>: None of the components of the fuel assemblies or the inner metal container on which containment integrity and nuclear safety depend are significantly affected by temperatures within the range of -40° F to 130° F.
- C. <u>Pressure</u>: The breather value opens automatically when the inner container is subjected to \pm 0.5 psi pressure differential. Therefore, there is no effect on the packaging from an environment of 0.5 atmosphere.
- D. <u>Vibration</u>: A 3" thick layer of honeycomb cushioning material surrounds the inner metal container at the sides. top and bottom with an additional 9" thickness at the ends. The ethafoam cushioning is slightly compressed in final closure and banding of the outer container and is therefore not free to shift during transport. Since the bolted assemblies* or latches on the metal container are pinned, they cannot loosen during normal transport vibration or shock even were such vibration able to penetrate the cushioning material.
- E. <u>Water Sprav & Drop Tests</u>: The complete package is designed to protect the fuel assemblies within the inner metal container from loss of containment integrity or change in nuclear safety reliability by virtue of thick cushioning material surrounding it. The shock absorbing qualities of this material and of the heavy wooden cleats at the corners, edges and at all joints in the plywood, supplemented by the inherent resiliency of nails and steel bands used in final closure of the outer package constitute a more than adequate buffer against the subject tests. This conclusion is further supported by analysis of high speed motion pictures recorded during the 30-feet drop test, described on page 2-C9, in

*Bolted (lug) assemblies are features on both the RA-2 and RA-3 inner metal containers.

NRC CERTIE	FICATE OF	COMPLIANCE NO. 498	6
LICENSE:	SNM-1097	DATE: 3/17/92	Page
DOCKET:	71-4986	REVISION: 0	2-C5

TABLE 1

EMF-1563 Revision 12A Appendix 2C Page 7 of 12

RA-1 ALL WOOD OUTER CONTAINER

Property

CONSTRUCTED MATERIALS

 Frame Ultimate Strength Compressive Strength Shear Strength Ductility (%) Modulus of Elasticity 	2" x 4" Wood ³ 1,750 psi 1,400 psi 125 psi No value 1,760,000 psi
 2) Panel Ultimate Strength Compressive Strength Shear, Normal to Face 	CDX Plywood" 2,000 psi 1,600 psi 250 psi
LOAD CARRYING ABILITY ²	
1) Frame - Tension - Compression - Shear	10,500 lbs 8,750 lbs 750 lbs
2) Panels - Tension - Compression - Shear	1,000 lbs 800 lbs 125 lbs
FASTENINGS	20 Penny Nails Spaces 9" Apart
1) Lateral Allowance Load ⁵	94 lbs

- ¹"Consolidated Application for an NRC Certificate of Compliance for the General Electric RA-Series Packages," General Electric Company, January 28, 1975.
- ² Engineering Report #6-9004-1, "Comparison of GE Outer Shipping Container 731E283 with ECC Outer Container 200001," C. H. Martin and J. G. Hill, Environmental Container Corporation, November 11, 1969

NRC CERTIE	ICATE OF	COMPLIANCE	NO. 4986	
LICENSE:	SNM-1097	DATE:	3/17/92	Page
DOCKET:	71-4986	REVISION:	. O	2-06

EMF-1563 Revision 12A Appendix 2C Page 8 of 12

- ³ Timber Construction Manual, Table 2.13, page 2-44, Industrial Douglas Fir
- ^{*} Timber Construction Manual, Table 4.10, page 4-98, Exterior Grade Plywood
- ⁵ The Wood Handbook, U. S. Department of Agriculture, =72, pages 173 and 182.

which the flexibility of the package under impact is clearly evident.

Since the package is designed to remain subcritical assuming any degree or credible mode of inleakage, it was not necessary to subject the package to a water spray test. However, as a result of a specific request made on 4/13/81 by the NRC, a water spray test was conducted on 9/25/81. The test is documented in the 1/14/82 report contained in Section 7.0.

- F. <u>Penetration</u>: Tests were conducted in which the flat circular end of a vertical steel cylinder 1 1/4" in diameter weighing 13 pounds was dropped four feet onto the center of the 1/2" plywood outer container. No damage resulted after four drop tests."
- G. <u>Compression</u>: Tests were conducted in which six loaded packages were stacked. There was no visible or measurable damage to the container on the bottom of the stack.

1.4.2 Hypothetical Accident Conditions

A. <u>Free Drop</u>:1)Table 2, page 2-C9, contains details of the 30-feet free drop test conducted with the RA-1 package consisting of the inner metal container described on page 2-C2 and the all-wood outer container described on page 2-C3.

NRC CERTIE	FICATE OF	COMPLIANCE	NO. 4986	
LICENSE:	SNM-1097	DATE:	3/17/92	Page
DOCKET:	71-4986	REVISION	· 0	2-C7

The inner metal container of the RA-1 package which was Appendix 2C subjected to 30-feet drop tests, is closed with the "Camloc" latches.*: Minor damage occurred to several latches but there was no container lid separation. The metal bolt closure is structurally equivalent to the latch. A comparison of the latch and bolt closure indicates that both are welded directly to the metal RA-1 container with approximately the same surface area of weld.

EMF-1563 Revision 12A

*These latches have been replaced on the RA-2 and RA-3 inner containers, with bolted (lug) assemblies as illustrated in Sections 6.1 and 6.2 and on drawings 769E231'and 769E232, location L-2.

NRC CERTIE	FICATE OF	COMPLIANCE	NO. 4986	· ·
LICENSE:	SNM-1097	DATE:	3/17/92	Page
DOCKET :	71-4986	REVISION	: 0	· 2-C8

EMF-1563 Revision 12A Appendix 2C Page 10 of 12

TABLE 2

DETAILS OF 30-FT FREE DROP TEST CONDUCTED ON RA-1 PACKAGE

Height

30-ft measured by weighed string hung from bottom of package

Attitude of Impact

Long axis about 25° from vertical

Impact Surface of Package

Top edge of end which has the clamped end cap on the inner package. (From a series of drop tests of an earlier prototype, it was clearly established that the end cap and cover edge was the most vulnerable impact attitude. Previous drops also included flat on the cover surface and flat on the bottom.)

Surface Struck

18" thick concrete pad. Pad not damaged by test drop.

Contents 🐳

Two simulated fuel assemblies each fabricated of 3/4" diameter steel rods 157" long over a wood core and welded to typical reactor fuel assembly hardware at both ends. Dummy dimensions - 6" x 6" x 174" long, weight - 632-lbs each.

Results

Damage confined to impacted area. End of outer box separated from body exposing inner container but inner container still in position in outer container. End cap of inner container was still latched but gasketed surface not in contact with shell flange along one end of end cap. Subsequent immersion would have permitted water leakage into inner container. End cap had to be unlatched and pried off with a tool in order to permit subsequent removal of cover and fuel assemblies. Two-inch annulus remained intact except in a 5" long area at one end of the cover where resulting space averaged about one inch: an insignificant (1%) portion of the total container surface.

 · · ·					······································
NRC CERTI	FICATE OF	COMPLIANCE	NO. 4986		•
LICENSE:	SNM-1097	DATE:	3/17/92	·	Page
DOCKET :	71-4986	REVISION	0	· · ·	2-03

1.4.2 Α.

Page 11 of 12 2) The structural support of the latch is a 5/16' steel bolt. The structural support of the bolted closure is a 3/8" steel bolt.

ENE-1563 **Revision 12A** Appendix 2C

3) The lugs will be welded on the FA-1 container in the same number and location as the latches.

The bolted closure has a Tinnerman, No. C7957-3816-24 threated cage nut securely fastened to the bottom of the bolt assembly. This bolted closure is secured or released by using a hand wrench.

It is General Electric's view that the bolted closure assembly represents the same degree of safety as the latched assembly.

- Β., Puncture: In view of the fact that the inner metal container remained firmly within the outer packaging. and since the inner package was properly designed to remain subcritical with water inleakage such as that which could result from a puncture, an actual puncture test was not conducted.
- C'. Thermal: An actual thermal test was not conducted but the outer packaging and cushioning material was assumed to be completely consumed under thermal test conditions. However, the remaining inner package is constructed of noncombustible material and the minimum melting point of the fuel material is 4360° F. The pressure relief valve permits escape of heated air from the metal container. Therefore, this device would prevent rupture of the container even if the gasket did not melt to allow pressure relief. The 18-gauge steel container is internally braced with lengthwise angle iron on both sides and bottom; the cover is similarly braced. Previous tests of an 18 gauge 55-gallon drum in a jet fuel fire which

NRC CERTIN	FICATE OF	COMPLIANCE	NO. 4986	
LICENSE:	SNM-1097	DATE:	3/17/92	Page
DOCKET:	71-4986	REVISION	. 0	2-C10
exceeded an exposure temperature of 1475° F for more than 30 minutes produced no melting or distortion of the outer surfaces. It is, therefore, concluded that a similar thermal test at 1475° F for 30 minutes would result in no damage to the Model RA-1 inner container or its contents more severe that the assumed conditions considered in the criticality analysis presented in Section 8.

D. <u>Water Immersion</u>: Since the package is designed to remain subcritical assuming any degree or credible mode of water inleakage, it was not necessary to subject the package to an immersion test.

NRC CERTIF	ICATE OF	COMPLIANCE	NO.	4986	
LICENSE:	SNM-1097	DATE :	3/17	/92	Page
DOCKET:	71-4986	REVISION	•	0	· 2-C11

ISSUED IN FRA-ANP ON-LINE DOCUMENT SYSTEM DATE: 2-5-04 EMF-1563 Revision 12A Appendix 2D Page 1 of 5

Appendix 2D

A CONTRACTOR

allow allow

No. Con

DESIGN AND TEST INFORMATION FOR EARLIER VERSIONS OF THE RA-2 INNER AND OUTER CONTAINERS USED FOR SHIPPING BWR FUELS

(From Appendix D to Section 2.0 of General Electric's March 17, 1992 Consolidated Application for Certificate of Compliance 4986)

EMF-1563 Revision 12A Appendix 2D Page 2 of 5

APPENDIX D TO SECTION 2.0

DESIGN AND TEST INFORMATION FOR EARLIER VERSIONS OF THE RA-2 INNER AND OUTER CONTAINERS USED FOR SHIPPING BWR FUELS .

NOTE: The RA-2 outer container has been replaced by the RA-3 outer container. The RA-2 inner container has been modified and re-evaluated.

NRC CERTIF	ICATE OF	COMPLIANCE	NO. 4986	
LICENSE:	SNM-1097	DATE:	3/17/92	Page
DOCKET:	71-4986	REVISION:	0	2-D1

1.0

MODEL RA-2 PACKAGE

The model RA-2 package consists of a right rectangular metal Page 3 of 5 inner container within a wooden outer container and separated from the outer container by cushioning material. Descriptions of these containers and of the structural evaluation thereof are given below.

1.1 Description of the RA-2 Inner Container

The inner container for the model RA-2 package is identical to that described on page 2-C2 for the model RA-1 package. with the following exceptions:

- The RA-2 inner container is longer (179 1/8 inches in length) to accommodate fuel assemblies, by redesigning the end cap.
- ASTM A-307-A bolts used to fasten the RA-1 end cap are replaced by stronger ASTM A-354-BD bolts for the RA-2.

The inner container is constructed in accordance with the following General Electric Drawing:

o 769E232 - Revision 3

Section 6.1 contains a copy of this drawing.

1.2 Description of RA-2 All-Wood Outer Container*

The RA-2 outer container has a 1/2 inch plywood sheet faced with 1/8 inch steel sheet replacing the 3 inch thick ethafoam pad at each end of the box. The purpose of the change is to elongate the cavity of the outer container to accommodate the longer inner container.

*No longer in use. Description included because of references in other sections of this consolidated application to analyses performed on this outer container.

NRC CERTIF	ICATE OF	COMPLIANCE	NO. 4986	
LICENSE:	SNM-1097	DATE:	3/17/92	Page
DOCKET:	. 71-4986	REVISION:	0	· 2-D2

Revision 12A Appendix 2D Page 3 of 5

EMF-1563

EMF-1563 Revision 12A Appendix 2D Page 4 of 5

1.3 Structural Evaluation

The RA-2 package evaluation is based on assessment of the effect of differences from the Sub-Model RA-1 design on the results of the 30-ft free fall to which an RA-1 prototype was subjected in 1966. In that test, described on page 2-C9, the end of the outer box separated from the body, exposing the end of the inner container, but with the inner container still in position in the outer container. The end cap, although not undamaged, was in place and latched such that the fuel assemblies remained securely retained in the as-shipped configuration.

Several design changes are made in the RA-2 design to maintain the same impact resistance characteristics of the package system with the hew longer inner package. These are described below.

1.3.1 Cushioning

The outer container of the RA-1 package has three 3" layers of 3/8" cell phenolic resin impregnated kraft fiber honeycomb with an impact resistance of 75-psi and a 3" layer of ethafoam at each end. In the outer container for the RA-2 package, the honeycomb impact resistance is increased to *290-psi by the use of heavier weight paper. For the outer container, the ethafoam (3" thick pads at each end) used in the RA-1 is replaced by a sheet of 1/2" plywood faced with a 1/8" steel sheet. Calculations of the impact resistance inherent in the RA-1 end cushioning brought to

*This evaluation has been reassessed. See Appendix A to this Chapter, especially sections 2.2, 2.2.1, and 3.3.

and the second sec					The second s
 NRC CERTIF	ICATE OF	COMPLIANCE	NO. 4986		
LICENSE:	SNM-1097	DATE:	3/17/92	Page	
DOCKET:	71-4986	REVISION	0	 2-D3	
				 •	

light the fact that the ethafoam pad has <u>only</u> minor energy Appendix 2D page 5 of 5 and was designed primarily to minimize shock and vibration in normal transport. Further, it was discovered that <u>only</u> the area of honeycomb cushioning equivalent to the end cap area was utilized in the RA-1 arrangement.

EMF-1563

To correct this deficiency," a load spreading steel plate 1/8" x 15" x 20" held in position by a 1/2" plywood sheet, is substituted for the ethafoam pad. By this arrangement, the inner metal container weighing a total of 1865 pounds, and contents, as loaded with two assemblies, would result in a 300 square inch impact area on the 290-psi honeycomb and reduce the impact velocity of the metal container to zero* in the 30-ft free fall with a 8.4" thickness of honeycomb.

It is, therefore, concluded that the 9" thick honeycomb pad more than adequately protects the inner container against loss of the fuel assemblies even without the further box strengthening described below.

1.3.2 Joint Strength for Inner Containers

ASTM A-307 Grade A-type bolts are authorized as an alternative to the latching mechanism used on the RA-1 drop-tested prototype. The RA-2 inner container is equipped with stronger bolts - ASTM A-345-BD - at the end cap lug positions.

Stress calculations for the RA-2 with the longer end cap closed by these 90,000-psi yield strength bolts indicated there will be no bolt bending, bolt direction shear, weld shear or box bending forces in excess of that strength.

*This evaluation has been reassessed. See Appendix A to this Chapter, expecially sections 2.2, 2.2.1, and 3.3.

NRC CERTIF	ICATE OF	COMPLIANCE	NO. 4986	-	
LICENSE:	SNM-1097	DATE:	3/17/92		Page
DOCKET:	71-4986	REVISION	0		2-D4

ISSUED IN FRA-ANP ON-LINE DOCUMENT SYSTEM DATE: <u>2-5</u>-04 EMF-1563 Revision 12A Appendix 2E Page 1 of 20

Appendix 2E

P.....

PRESS AND

Sec. 22

Summer of

TEST REPORT FOR WATER SPRAY OF RA-2/RA-3 FUEL SHIPPING CONTAINER

(From Appendix E to Section 2.0 of General Electric's March 17, 1992 Consolidated Application for Certificate of Compliance 4986)

EMF-1563 Revision 12A Appendix 2E Page 2 of 20

APPENDIX E TO SECTION 2.0

TEST REPORT FOR

.

3

WATER SPRAY OF RA-2/RA-3

FUEL SHIPPING CONTAINER

NRC CERTIF	ICATE OF	COMPLIANCE	NO.	4986		
LICENSE:	SNM-1097	DATE:	3/17	/92	Page	
DOCKET:	71-4986	REVISION	: . '	0	 2-E1	

EMF-1563 Revision 12A Appendix 2E Page 3 of 20

TEST REPORT

FOR

WATER SPRAY OF RA-2/RA-3 FUEL SHIPPING CONTAINER

In accordance with criteria for compliance with 10 CFR 71.35

ΒY

JOHN A. ZIDAK

MANAGER

Packaging Engineering

General Electric Co. Nuclear Energy Traffic Operation San Jose, California

DATE ISSUED January 14, 1982

TEST REPORT

FOR

WATER SPRAY OF RA-2/RA-3 FUEL SHIPPING CONTAINER

1.0 INTRODUCTION

1.1 PURPOSE

The purpose of the test described, was to determine the effects of, and take into account for NRC Certificate of Compliance application, the water spray test specified in 10 CFR Part 71, Appendix A - Normal conditions of Transport.

Test was requested in a letter from NRC dated April 13, 1981, relative to application for renewal of NRC Certificate of Compliance No. 4986.

1.2 TEST DESCRIPTION

A representative RA-2/RA-3 outer wood container was selected from inventory, and was to be tested to the requirements of 10 CFR 71, Appendix A, Paragraph 5, which reads as follows:

A water spray sufficiently heavy to keep the entire exposed surface of the package except the bottom continuously wet, during a period of 30 minutes.

However, the test conditions used, which are more demanding, were those specified in proposed revised 10 CFR 71, Appendix A, paragraph 6, which reads as follows:¹

A water spray that simulates exposure to rainfall of approximately 5 cm (2 in.) per hour for at least one hour.

Since both model RA-2 and RA-3 containers are essentially the same with respect to their wood construction, phenolic impregnated paper honeycomb and foamed polyethylene impact limiters, testing one representative container is considered to have satisfied the requirement for both the RA-2 and RA-3 containers.

1.2.1 TEST PLAN

The test was conducted in accordance with the test plan dated September 21, 1981 that was approved by Packaging Engineering, Traffic and Materials Distribution, Fuel Quality Engineering, Nuclear Safety Engineering and Licensing and Compliance Audits.

*Proposed requirements were published in the Federal Register, on 8/17/79, at FR 44 48234.

EMF-1563 Revision 12A Appendix 2E Page 5 of 20

1.2.2 CONTAINERS USED

Inner container model RA-2, serial number I-0888 and Outer container model RA-3, serial No. R2251 were selected from inventory for the test (see figure 1).

1.2.3 TIME, LOCATION AND ENVIRONMENT

The test was conducted on September 25, 1981 at Container Products Corporation, 25rd Street, Wilmington N.C. between the hours of 1:00 p.m. and 4:00 p.m. It was held outdoors, the weather was sunny, temperature approximately S0°F with a slight breeze, about 5 miles per hour.

1.3 PACKAGING DESCRIPTION

The RA-2 and RA-3 packagings are right rectangular boxes consisting of a wooden outer container approximately 207" long by 30" wide by 31" high, and a smaller steel inner container. The outer box is lined with cushioning material that supports and locates the inner container. The cushioning material is closed cell foamed polyethylene (2.2 lb per cubic foot density) which is impervious to water, and, water-resistant phenolic resin-impregnated, paper honeycomb. Closure of outer container is accomplished by thirty 3/8" diameter bolts. The metal inner container has water tight, gasketed closures that are secured by 3/8" diameter bolts. Total packaging weight is approximately 1400 pounds.

1.4 TEST SET-UP

Spray test equipment consisted of a rectangular manifold pipe 21 feet long and 6 feet wide. 24 nozzles were utilized, 10 nozzles on each side, and 2 on each end (see figure 2). The nozzles were mounted 4 feet above the ground and were angled downward at 45°. Three receptacles were used to collect the spray water for measurement at the end of the spray period.

1.5 PRE-TEST INSPECTION

Prior to testing, the containers were open and inspected by a Fuel Fabrication Quality Control inspector to verify they were dry inside and all component parts were present and undamaged. Criteria same as for production packaging (see appendix 1).

2.0 TEST PROCEDURE

The dry package was centered under the spray fixture and the water turned on (see figure 3). The outer container was sprayed with water for one hour. (This is double the time duration of one half hour, currently required by 10CFR 71.) Spray water collected in the three cylindrical receptacles was measured to be 2-5/8 inches, 3 inches, and 4-7/8 inches, depending on location during the spray period. The measured water level exceeded the proposed requirement of 2 inches per hour. (Reference proposed rule published 8/17/79, 44 Federal Register 48234.) The entire exposed surface of the package except the bottom was kept wet during the one hour test period, as required by 10CFR T1 Appendix A.

2.1 OBSERVATIONS

EMF-1563 Revision 12A Appendix 2E Page 6 of 20

During the test it was noted that the water spray impinging on the container was heavier than on the three cylindrical receptacles. Also, water pooled on the cover between the cleats, to a depth of 1/4 inch, and drained away through slots in the cleats provided for this purpose see (figure 4).

3.0 POST TEST INSPECTION

Upon completion of the test, the bolts and steel straps were removed from the outer container and the cover removed. A small amount of water (less than 2.0 fluid ounces) was scattered on the length of the polyethylene shroud that covers the inner container (see figure 5 and 6). The inner container was removed and the following observations were recorded:

- (a) The phenolic-impregnated paper honeycomb and polyethylene foam impact limiting material was dry in both ends (see figure 7).
- (b) The metal and wood plates at both ends were dry.
- (c) The north side (as oriented during test) showed water inleakage.
 However, less than 3% of the visible honeycomb was damp (see figure 8). Damp area pattern was essentially vertical. Foamed polyethylene parts were not damp to touch.
- (d) The south side showed water leakage, with about 6% of the visible honeycomb being damp to touch (see figure 9, 10, and 11). Again, damp area pattern was vertical. Plastic parts were not damp to touch.
- (e) On the bottom, 2 of 5 plastic cushioning pads had drops of standing water, estimated in total to be less than 1 ounce. The other 3 were dry.
- (f) On the bottom, about 10% of the visible phenolic honevcomb was damp to touch (see figure 11). Damp areas corresponded generally to damp areas on adjacent sides of container, described earlier. In crevices at edges of honeycomb, some moisture was observed on the wood bottom. Visible water was limited to a few drops. All pieces of plastic and honeycomb cushioning were checked and it was determined that none had come loose, indicating that adhesives had not functionally weakened where water had touched them.
- (g) After removal of the inner container, its cover and end cap were removed, and inner container parts oriented so that any trapped water would drain in a manner to be visible. No water was found in the inner container, and touch inspection of accessible areas also indicated no moisture. It was concluded no water entered the inner container.

- 5 -

4.0 ACCEPTANCE CRITERIA

The applicable acceptance criteria for meeting the requirements of 10 CFR 71.35:

- (a) 10 CFR [1.35(a)(1) requires that there will be no release of radioactive material from the containment vessel under normal conditions of transport.
- (b) 10 CFR 71.55(a)(2) requires the effectiveness of the package will not be substantially reduced under normal conditions of transport.
- (c) 10 CFR 71.35(b)(2) requires the geometric form of the package contents would not be substantially altered under normal conditions of transport.

In addition the effectiveness of the impact limiters will not be substantially reduced over the short or long term, due to the effects water spray test.

5.0 CONCLUSIONS

The General Electric fuel shipping container model No. RA-2/RA-3 has successfully passed a water spray test that is more severe than that required by 10 CFR 71 paragraph 35. In addition, there was no substantial reduction in the effectiveness of the plastic and paper honeycomb impact limiters. As concluded from the following:

5.1 Reliance is placed on the inner metal container to prevent release of radioactive material. Wetting the wood outer container does not contribute significantly to any weakening of the inner container.

5.2 The impact limiting plastic cushions (foamed polyethylene) are closed cell and waterproof. This same material is used as floatation cushions on commercial aircraft.

5.3 The phenolic resin-impregnated, paper honeycomb is resistant to water. Vendor test have shown that it retains 50% of its compressive strength after a 24 hour water soak test. (Per Hexcel Corporation report No. LSR932114 dated January 11, 1980, appendix 2.) After the water spray test period of 1 hour, the wet areas of the phenolic-impregnated paper honeycomb were 0% for ends, about 3% for one side and 6% for the other, and about 10% in the bottom. This is a relatively insignificant percentage of the total, considering that after even 24 hours of soaking in water, the material retains good compression qualities. Therefore, the maximum reduction in strength is 1-1/2% for one side, 3% for the other, and 5% for the bottom. It is, therefore, concluded that the wetting encountered in the water spray test has no detrimental long-term effect on impactlimiting capabilities.

5.4 Reliance is placed on the inner metal container to protect the geometric form of the package contents. Since the wood container would not be substantially weakened by being wet, it would not contribute substantially to any weakening of the inner container.

- 4 -

EMF-1563 Revision 12A Appendix 2E Page 8 of 20

- 5.5 Packaging is designed to be water-resistant, not water-proof. The outer container, made of nailed and bolted wood and plywood, is strong and resilient. It is water-resistant, due to its covering of paint and sealant, but is not impervious to water. No gasket is used, and some inleakage of water is possible, and even anticipated, on occasion. Water accumulation on the top of the container is quickly drained off through slots in the cleats provided for this purpose.
- 5.6 Maintenance inspections assure that only undamaged containers are used. Moreover, as required in NRC regulations 10 CFR 71.54. routine determinations prior to each use of a package, each container is inspected to ascertain that it (including, specifically, the paper and plastic parts) has not been significantly damaged, either by possible long-term effects of water or by physical activity such as possible careless handling. All containers which are ascertained to have received significant damage are reworked and further inspected prior to use. Containers which do not meet the criteria after rework are removed from service.
- 5. Continued usage experience demonstrates that containers may become wet when stored empty at either reactor sites or the WAD site, or when transported empty without tarpaulin protection. However while the design life of the outer container is considered to be five years, actual life is longer.
- 5.8 Empty containers are inspected prior to use, as described earlier. After containers have been packed with fuel bundles, they are stored only under cover and are transported either in covered vehicles or under tarpaulin protection. Therefore, the bundles are delivered to reactor sites in containers whose quality is undiminished from the condition existing when inspected both before and after packing.

- 5 -

HELMINGTON MANUFACTURING DEFARTMENT	APPENDIX 1 Control Control Co
THOLE SERIAL NOS. (A) (E)	This sheet forts cart of the permanent waity record for the project. When completed, forward to Cartification S / Release - IVC.
TEP SHIPPING CUNTAINER NO. $\beta - 2.251$	AGE INSPECTION FORM
<pre>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>></pre>	6.7 <u>Contract and Clarent tapents on the inner container</u> . 6.7 <u>Contract serial numbers are marked on the clarent to the clarent inner container lie clear.</u> 6.3 All aller labeting except that real red by this instaction has been removed.
container. Check with hand for dampness. 5.3 Container interior and cover for rust or other particles that would affect buncle cleanliness. All paint must be dry to the touch.	6.9 Plastic cover secure. Breather value not obstructed, verify value is operational. *INSPECTOR <u>C. 701</u> 2472 9/24/8/
CHECK SUMPLES FOR THE FOLLOWING: 5.4 Packing spacers properly installed between roos to each direction and assembly properly bagged. 5.5 Finger spring protectors in place per PSDD	 BEFORE LCADING INDER CONTAINED INTO OUTER CONTAINED. CHECK FOR THE FOLLOWING: 7.1. Outer container is solid throughout all corners, lids, sides, etc. Completed traveler present. No water accumulation in the container. Packing absorbers (fillers) correct type, and in the
50.70. 3.6 Visible Sortion of bundles free of finger marks, oil, rust, etc. 4FTER LOADING SUNDLE INTO INNER CONTAINER, CHECK FOR THE FOLLOWING:	AFTER LOADING RA INTO WOUDEN CONTAINER, LASING THE FOLLOWING:
 Euncle has an acceptable final inspection st on-upper tip plate. All characteristics of stamp must be visible and complete. i.2 movisible damage. Correct bundle numbers. hold-down bar is secure. 	 3.1 Siner and outer container numbers match. 3.1 Plastic cover not damaged. 8.1 RA resting level on all supports in wooden container. 8.2 Serial number of bundles and inner container marked
 6.3 Assembly amperly loaded into inner containe (packing, tie cowns; ropës, upper and lower wooden blocks, etc.)	er
 taped or sealed). After end plate is secured. The visible gap between upper tic plate and wooden black. Check rubber gasket around lid and end cap for looseness and smoothness. 	AFTER WOODEN CONTAINER HAS BEEN BOLTED AND BANDED, CHECK FOR THE FOLLOWING: 9.1 Cover fastened securely with all metal straps and bolts in place as required.
 5. After the lid is secured, verify that all bolts are in place and tight. Cover and end cap gaskets tight (check with .015" feeler gage). 5. There chains are affined Record seel 	$\frac{9.1\frac{36}{2} \frac{1}{2} \frac{1}$
#, #, #, #,	Time
fter completion of the inspections required in e ovided to indicate that you have completed the lity limits.	each section, sign and date the checklist at the location required inspections and found no conditions outside of the

QC-241 Key 18

2

KP-3/4-80(11) AND KP-3/4-80(18) WET COMPRESSION THEFT

TUTTE

ALCUDUNT:

REQUESTED BY

The main purpose of this test program was to the program the wat compressive strongth and available record or. of KP-3-4-SO(11) and KP-3/4-SO(18) Honeycomum

G. Smith

APPENDIX

Dublin's P&D rest laboratory received 1" thick · of KP-3/4-SO(11) and KP-3/4-SO(18) nenetrons. KP-3/4-80(11) core appeared to have provenished on edges. 4" x 4" stabilized compression speripons were prepared using 0.020" aluminum skins bypage to the core with a monitemperature curing erea: adhesive. One hole was arrived in the madic of each sample and then the specimens word surveying in water for 48 hours, and sets of specimens were also prepared for 'dry' or as received testing.

Room temperature (63⁰F and 76% relative humidity) tests were accomplished on the 60,000 lb. Safed test machine at a 0.020 in/min loading rate. Lond-deflection curves were obtained autographically by means of a transducer.

Table I contains the test data in which all the specimens exhibited compressive.made failures. The average values are summirized below:

Core Type	Conditioned	DRY	Compression Strength	Compression
KP-3/4-80(11)	Dry	1.35 pcf	35.2 psi	7.54 ksi
	Wet	1.37	5.4	1.09
KP-3/4-80(18)	:	1.20	40, n	9.51
	Wet	1.32	20, n	9.25

The KP-3/4-80(18) core rotained much more of its compressive strength (50%) and wohilds (0%) than did the RP-374-80(11) product, 127 and 14% respectively.

T. N. Bitrey

RESULTS:

UDM LUS IONS

TNH/er

LIST OF FIGURES

EMF-1563 Revision 12A Appendix 2E Page 11 of 20

- 1. RA CONTAINERS, PRE-TEST PHOTO
- 2. TEST SETUP
- 3. WATER SPRAY TEST
- 4. WATER ON SURFACE OF CONTAINER COVER
- 5. INSIDE OF CONTAINER WITH PLASTIC SHROUD
- 6. WATER ON PLASTIC SHROUD
- 7. INSIDE OF CONTAINER WITH SHROUD REMOVED
- 8. DAMP AREA OF HONEY COMB
- 9. SOUTH SIDE OF CONTAINER
- 10. SOUTH SIDE OF CONTAINER
- 11. BOTTOM OF CONTAINER
- 12. INNER CONTAINER, POST TEST PHOTOGRAPH

and the second sec

•

. .

FIGURE 4, WATER ON SURFACE OF CONTAINER COVER

. .

EMF-1563 Revision 12A Appendix 2E Page 13 of 20

NAN ST

EMF-1563 Revision 12A Appendix 2E Page 14 of 20

5-C U č . . .

FICHINE 7 INCIDE OF CONTAINED HITH OUDOUR DEMONST

_ _

FIGURE 8, DAVP AREA OF HOMEYCOMB

FIGURE 9. SOUTH SIDE OF CONTAINER

FIGURE 10, SOUTH SIDE OF CONTAINER

• • •

FIGURE 11, BOTTOM OF CONTAINER

. . . .

· · ·

ISSUED IN FRA-ANP ON-LINE
DOCUMENT SYSTEM
DATE: 2-5-04

EMF-1563 Revision 12A Appendix 6A Page 1 of 31

Appendix 6A

Rein Creek

141.0

18. mar

The state

ATTACHMENT 2 OF ADVANCED NUCLEAR FUELS CORPORATION SUPPLEMENTAL APPLICATION TO CERTIFICATE OF COMPLIANCE NO. 4986

EMF-1563 Revision 12A Appendix 6A Page 2 of 31

ANF-88-120, Re _____ Issue Date: 7/27/88

SUPPLEMENTAL APPLICATION TO CERTIFICATE OF COMPLIANCE NO. 4986

Prepared by

L. D. Gerrald

July 1988

ATTACHMENT 2

ANF-88-120, Rev

EMF-1563 Revision 12A Appendix 6A Page 3 of 31

CRITICALITY SAFETY ANALYSIS FOR FUEL TYPES G1 AND G2 AND FOR OUTER CONTAINER PADDING EFFECTS

INTRODUCTION

The objective is to conservatively demonstrate that the subject generic fuel types meet the criticality safety requirements of 10 CFR Part 71 for a Fissile Class I package. Criticality safety is also demonstrated for any honeycomb/ethafoam thickness in the outer container.

Fuel assemblies typically have one or more "water rods" in locations that could contain a fuel rod. The existing wording in Section 5(b)(1) of the Certificate of Compliance includes phrases such as "an 8x8 square array of <u>fuel rods</u>." This could be interpreted to mean that all lattice locations must be occupied by fuel rods. The generic fuel descriptions in the application include unlimited water rods and the criticality safety analysis demonstrates safety with these water rods.

Attachment 3 contains additional data on water rod effects.

METHODS :

K-inf (k_{eff}) calculations were performed using transport theory codes XSDRNPM (1-D) and CASMO (2-D) and with the Monte Carlo code KENO-Va (3-D). CASMO was used for several calculations in a broad-based sensitivity study. SCALE codes (BONAMI, NITAWL, XSDRNPM and KENO-Va) were used to replicate selected CASMO cases.

MODEL DESCRIPTION

<u>Package</u>

An infinite array of infinite length inner containers was modeled to conservatively demonstrate criticality safety at normal conditions and at hypothetical accident conditions. Each package contained two identical assemblies with an infinite fuel length.

Since the package is symmetric about the plane midway between the two contained assemblies, models typically included only one of these symmetric halves (one assembly) to represent an infinite array of whole packages. An orientation with two assemblies side by side (left-right) was selected for the model. Only the left assembly was modeled in CASMO but both halves were modeled in KENO.

The steel parts modeled are:

 Two edge-to-edge "baskets" of 0.0598 inch thick carbon steel with 0.75 inch diameter holes in a 1.75 inch square pitch pattern. Accordingly, the basket was modeled as 85.57 vol% carbon steel and 14.43 vol% moderation.

EMF-1563 Revision 12A Appendix 6A Page 4 of 31

The outer shell of the inner container was modeled as 0.0598 inch thick carbon steel (100 vol%).

The annulus between the basket and the shell contains six angles of 0.125 inch thick carbon steel. For the left half (CASMO) model, three angles were included: one each above, below, and to the left of the assembly. These angles were represented as "smeared" steel in the moderation occupying the annulus. Other calculations with a more explicit modeling of the geometry of the steel angles yielded results not significantly different from the "smeared steel" model. Since peak reactivity occurs with low density interspersed moderation, neutrons have relatively long mean-free path lengths and would be expected to interact with all steel in the system. Therefore, the smeared steel model is adequate.

The steel mass in the infinite, length inner container model is about 525 pounds per 177.6 inch length. The measured weights of the three inner container components (lid, removable end, main body) are 197, 15 and 399 pounds, respectively. The total tare weight is about 611 pounds. A generous allowance for the weight of the ethafoam and wood in the samples is six pounds. Therefore, the estimated steel weight is 605 pounds. For the infinite length model, twice the mass of the removable end is subtracted to yield a 575 pound weight. Since the actual system contains considerably more steel than that modeled, the model results are conservative.

The basket outer dimensions were 7.0"x7.0" (x infinite length). The assembly was centered in the basket and the two baskets were edge-to-edge; i.e., the plane of symmetry was at the right edge of the left basket.

The annulus was 2.0 inches thick. Therefore, the inner dimensions of the shell of the inner container are 18 inches wide by 11 inches high. With the 0.0598 inch thick shell, the outer dimensions are about 18.12 inches wide by 11.12 inches high.

All volume not occupied by rods or steel was filled with uniform density water.

FUEL MODELS

Three assembly types (7x7, 8x8 and 9x9) were modeled with a fixed 5.0"x5.0" assembly size. To conservatively demonstrate safety for generic assemblies with various numbers of water rods and with various pellet diameters, pellet and clad dimensions were calculated for models with water/fuel volume ratios (Vw/Vf) in the range 1.0 to 4.0. typical Vw/Vf ratios for actual assemblies are in the range 1.5 to 2.5. for flooded conditions, the optimum Vw/Vf is typically 2.5 to 3.5. However, for arrays of edge-to-edge packages, the k-inf with low density interspersed moderation is much greater than that at flooded conditions. With low density interspersed moderation, the dominant effect is increasing k-inf with increasing pellet diameter. At these conditions, the between-assembly moderation is worth more than within-assembly moderation; i.e., the Vw/Vf effect is relatively small and the perimeter rods in an assembly are much better moderated and much more reactive than interior rods in the assembly.

ANF-88-120, Revi:

EMF-1563 Revision 12A Appendix 6A Page 5 of 31

The pellet diameters and the rod pitches used are listed in Table 1. In all cases, the clad ID/OD values are 0.006/0.056 inches larger than the pellet diameter.

TABLE 1

PELLET DIAMETERS/ROD PITCHES MODELED FOR 5.0"x5.0" BUNDLE

<u>Vw/Vf</u>	7x7 Type <u>Dia./Pitch (in)</u>	8x8 Type <u>Dia./Pitch (in)</u>	9x9 Type <u>Dia./Pitch (in)</u>
1.0	0.5550/0.7315	0.4801/0.6377	0.4221/0.5652
1.5	0.5049/0.7399	0.4363/0.6440	0.3835/0.5701
2.0	0.4668/0.7462	0.4031/0.6487	0.3542/0.5737
2.5	0.4364/0.7513	0.3767/0.6525	0.3309/0.5766
3.0	0.4115/0.7554	0.3551/0.6556	0.3118/0.5790
3.5	0.3906/0.7589	0.3369/0.6582	0.2957/0.5810
4.0	0.3726/0.7619	0.3213/0.6604	0.2820/0.5828

For an NxN assembly with rod pitch "PIT" and with a clad outer diameter "COD", the assembly size is defined by:

Assembly Size = PIT * (N-1) + COD

For the 7x7 assembly with a Vw/Vf of 1.0, the assembly size is:

 $0.7315 \pm 6 \pm (0.5550 \pm 0.056) = 5.0$ inches

Figure 1 shows the relation between pellet diameter and Vw/Vf for the three assembly types.

RESULTS FOR TYPE G1 FUEL

All rods were 3.3 percent enriched UO_2 at 95 percent TD (10.412 gm/cc). There was no Gd₂O₃ in the model. All locations in the 7x7, 8x8 or 9x9 assembly were occupied by fuel rods. The CASMO-3 results with various interspersed water densities are in Table 2.

· · · · ·

EMF-1563 Revision 12A Appendix 6A Page 7 of 31

ANF-88-120, Revi

TABLE 2

K-INF DATA FOR EDGE-EDGE INNER CONTAINERS TYPE G1 FUEL AT 3.3% ENRICHMENT CASMO-3 RESULTS

Water Density	Vw/Vf								
<u>Vol%</u>	1.0	1.5	2.0	2.5	3.0	3.5	4.0		
	-		<u>7x7_Ass</u>	<u>embly</u>					
8 10 12 100	0.9595 0.9623 0.9570 0.7370	0.9593 0.9596 0.9526 0.7590	0.9546 0.9529 0.9445 0.7670	0.9473 0.9435 0.9341 0.7670	0.9376 0.9327 0.9225 0.7624	0.9269 0.9209 0.9101 0.7548	0.9155 0.9086 0.8974 0.7455		
			<u>8x8 Ass</u>	<u>embly</u>					
8 10 12 100	0.9554 0.9577 0:9521 0.7344	0.9543 0.9542 0.9469 0.7560	0.9490 0.9469 0.9380 0.7644	0.9468 0.9368 0.9272 0.7646	0.9307 0.9256 0.9151	0.9198 0.9134 0.9023	0.9080 0.9008 0.8895		
			<u>9x9 Ass</u>	<u>embly</u>					
8 10 12 100	0.9516 0.9539 0.9484 0.7264	0.9499 0.9497 0.9424 0.7474	0.9440 0.9417 0.9329 0.7554	0.9352 0.9312 0.9216 0.7555	0.9248 0.9196 0.9090 0.7510	0.9134 0.9070 0.8960 0.7437	0.9014 0.8941 0.8829 0.7348		

The Table 2 results indicate:

• The optimum interspersed water density is about 10 percent.

• The peak reactivity is with the largest pellet diameter; i.e., the 7x7 assembly with the Vw/Vf ratio of 1.0.

• This fuel type is adequately subcritical in a Fissile Class I package.

Figures 2 and 3 show the Table 2 data at 8, 10 and 12 percent water densities. Figure 2 shows a decrease in k-inf with increasing Vw/Vf while Figure 3 shows an increasing k-inf with increasing pellet diameter.

Figure 4 shows water density effects for the 7x7 assembly.

EMF=1563 Revision 12A Appendix 6A Page 9 of 31

RESULTS FOR TYPE G2 FUEL

The specified Gd_2O_3 requirement is at least four rods with at least 2.0 wt% Gd_2O_3 . The four rods shall be symmetric about the assembly diagonal in nonperimeter locations. The cases modeled contained only four UO_2 - Gd_2O_3 (poison) rods in the 7x7, 8x8 and 9x9 assemblies. The poison rod arrangements modeled are:

9

ARRANGEMENT A

7x7 Bundle U U U U U U U U U P U U U P U U U U U U	8x8 Bundle UUUUUUUUUU UPUUUUUUU UUUUUUUUU UUUUUUUU	9x9 Bundle UUUUUUUUUUU UPUUUUUUUUUU UUUUUUUUUUUU
. •	ARRANGEMENT B	
7x7 Bundle UUUUUUU UUPUUUU UPUUUUU UUUUUUU UUUUUUU	8x8 Bundle UUUUUUUUU UVPUUUUU UPUUUUUU UVUUUUU UUUUUUU UUUUUUU UUUUUU UUUUUV UUUUU UUUUU UUUUU UUUUU UUUUU	9x9 Bundle UUUUUUUUUU UUPUUUUUU UPUUUUUUU UUUUUUUU

ARRANGEMENT C

-		8>	(8)	Βι	INC	110	3		
	U	U	U	U	U	U	U	U	
	U	U	U	Ρ	U	U	U	U	
	U	U	U	U	U	U	U	U	
•	U	Ρ	U	U	U	U	U	U	
	U	U	U:	U	U	U	Ρ	U.	
	U	U	ับ	Ų	U	U	U	U	
	U	U	U	U	Ρ	U	U	U	
	U	U	U-	U	U	U	IJ	U	

			;			
-	7x;	78	Buir	nd]	le	
ป	U	U	U	Ū	Ũ	U
U	U	U	Ρ	U	Ĵ	U
U	U	U	U	U	U	U
U	Ρ	U	U	U	Ρ	U
U	U	U	U	U	Ų	U
U	U	U	P	U	U	U
U	U	U	U	U	U	U

ANF-88-120, Revis

U U U U U U U U U U U U U U U U U U

U U U U U V P U U U U U U U U U U U U

U.

U

U

EMF-1563 Revision 12A Appendix 6A Page 11 of 31

EMF-1563 **Revision 12A** Appendix 6A Page 12 of 31

ARRANGEMENT D

9x9 Bundle **UUUUUUUUU UUUU**PUUUU **UUUUUUUUU** 00.00000000 **U P U U U U U U P U** มั้มบับบับบับบับ **U U U U U U U U U U** UUUUPUUUU

The CASMO results for type G2 fuel in various arrangements are in Table 3.

TABLE 3

K-INF DATA FOR EDGE-EDGE INNER CONTAINERS TYPE G2 FUEL AT 4.0% ENRICHMENT CASMO-3 RESULTS

Water Density				Vw/Vf		•	
<u>(Vo1%)</u>	1.0	. 1.5	2.0	2.5	3.0	3.5	_4.0
· .		7x7_Assemb	ly, Poison	Rod Arrand	<u>iement B</u>	·	
4 6 8 10	0.9019 0.9324 0.9417 0.9400	0.9003 0.9259 0.9316 0.9274	0.8954 0.9169 0.9198 0.9136	0.8884 0.9063 0.9069 0.8988	0.8802 0.8949 0.8932 0.8843	0.8710 0.8827 0.8795 0.8697	0.8612 0.8703 0.8659 0.8553
•		7x7_Assemb	<u>ly, Poison</u>	Rod Arrand	<u>iement C</u>		
6 8 10 100	0.9331 0.9427 0.9411 0.7073	0.9265 0.9324 0.9284 0.7206	0.9174 0.9204 0.9143 0.7228	0.9066 0.9073 0.8994 0.7191	0.8950 0.8934 0.8846	0.8827 0.8795 0.8698	0.8701 0.8658 0.8552
		<u>8x8 Assemb</u>	<u>ly, Poison</u>	Rod Arrang	<u>iement A</u>		
8	0.9328	0.9245	0.9142	0.9025	0.8901	0.8773	0.8650

10

EMF-1563 **Revision 12A** Appendix 6A Page 13 of 31

TABLE 3 (Cont.d)

Water 1 Density				. Vw/Vf		•	;
<u>(Vol%)</u>	1.0	1.5	2.0	2.5	3.0	3.5	4.0
		8x8 Assembl	y, Poison	Rod Arranc	iement_B		、
6 8 10 12	0.9354 0.9446 0.9424 0.9338	0.9301 0.9358 0.9312 0.9210	0.9221 0.9248 0.9184 0.9068	0.9122 0.9125 0.9043 0.8923	0.9012 0.8994 0.8904 0.8776	0.8894 0.8864 0.8763 0.8631	0.8774 0.8731 0.8623 0.8490
		8x8 Assembl	y, Poison	Rod Arranc	<u>ement_C</u>		
.6 8 10	0.9368 0.9463 0.9444	0.9312 0.9371 0.9328	0.9229 0.9259 0.9896	0.9127 0.9132 0.9052	0.9015 0.8998 0.8909	0.8895 0.8866 0.8765	0.8773 0.8730 0.8623
•	· · ·	9x9 Assembl	ly, Poison	Rod Arrang	<u>iement B</u>		
6 8 10	0.9370 0.9462 0.9440	0.9325 0.9382 0.9336	0.9250 0.9279 0.9213	0.9156 0.9160 0.9081	0.9049 0.9034 0.8944	0.8935 0.8906 0.8805	0.8818 0.8775 0.8652
		9x9 Assemb	ly, Poison	Rod Arrang	<u>gement C</u>		
6 8 .10	0.9384 0.9480 0.9461	0.9397	0.9290	0.9168	0.9039	0.8909	0.8776
	• • •	<u>9x9 Assemb</u>	l <u>y, Poison</u>	Rod Arrang	<u>gement_D</u>	н	
6 8 10	0.9389 0.9486 0.9468	0.9403	0.9296	0.9172	0.9043	0.8911	0.8778
				,			

The Table 2 results indicate that the peak reactivity condition for type G2 fuel with arrangements A-D is:

- A 9x9 assembly with a Vw/Vf of 1.0. Poison rod Arrangement D. About 8 volume percent interspersed water.

11

EMF-1563 Revision 12A Appendix 6A Page 14 of 31

ANF-88-120, Revision 0

In contrast to the unpoisoned type Gl results which showed that the assembly with the largest pellet diameter (7x7, Vw/Vf=1.0) was most reactive, the poisoned assembly results indicate that the 9x9 assembly is most reactive. A probable reason is that, for a fixed number of poison rods (four here), the fractional poison rod content is decreasing in the sequence 7x7, 8x8 and 9x9; i.e., 4/49, 4/64 and 4/81. The peak reactivity for the three assembly arrays in all poison rod arrangements are nearly equal. The poison effect appears to slightly offset the pellet diameter effect.

Arrangement D is most reactive because the most reactive (best moderated) rods in the assemblies are the corner rods and because the Gd_2O_3 becomes a more effective poison with increasing moderation. As we move the poison rods away from the corner rods, we gain full benefit from corner moderation and decrease the poison effectiveness.

This is actually a very conservative model due to assuming that all rods are at the assembly-average enrichment. Actual assemblies will have multiple enrichments with the lower enrichments on the perimeter and the higher enrichments inside where less moderation is available. This is required to assure approximately equal powers for the rods in the operating assembly.

The models and the limits proposed are also very conservative because the reactivity of new fuel assemblies are approximately constant regardless of the assembly-average enrichment. The typical in-core k-inf values for new fuel will be in the range 1.10 to 1.20. As enrichments are increased, the new fuel reactivity is controlled by increased amounts of burnable poison (Gd₂O₃).

Based on the results in Table 3, additional poison rod arrangements were modeled. These arrangements were based on the premise that moving the poison rods toward the assembly interior would result in higher reactivities. The arrangements are:

7x7 Bundle	9x9 Bundle	9x9 Bundle
Arrangement C2	Arrangement D2	Arrangement D3

The k-inf results are in Table 4.

ANF-88-120, Revi:

EMF-1563 Revision 12A Appendix 6A Page 15 of 31

TABLE 4

K-INF DATA FOR EDGE-EDGE INNER CONTAINERS TYPE G2 FUEL AT 4.0% ENRICHMENT CASMO-3 RESULTS

Water Density					•	<u> </u>	
<u>(Vol%)</u>	1.0	1.5	2.0	2.5	3.0	3.5	4.0
		4	7x7 Arrange	ement C2			
8	0.9588	0.9484	0.9359	0.9222	0.9076	0.8931	0.8787
• :		9	9x9 Arrangi	<u>ement D2</u>	•		
8 100	0.9602 0.7201	0.9512 0.7336	0.9397 0.7370	0.9266 [.]	0.9129	0.8991	0.8851
			9x9 Arrange	<u>ement D3</u>			
8 100	0.9676 0.7258	0.9591 0.7393	0.9477 0.7427	0.9346	0.9208	0.9068	0.8926

The Table 4 results are consistent in showing the 9x9 assembly as most reactive and in showing that the most reactive poison rod arrangement has them removed from the corner/edge fuel rods. As described earlier, poison effectiveness is decreased in regions with depressed thermal flux. Having the poison rods in the center of the assembly and close together is expected and observed to be the most reactive arrangement.

An infinite array of edge-to-edge inner containers will be adequately subcritical with optimum interspersed moderation and with generic fuel types G1 and G2. An infinite array of edge-to-edge packages with the wooden outer container present will be bounded by the results for inner containers.

KENO-Va RESULTS

Selected CASMO cases were replicated using KENO-Va and other codes/cross sections from the SCALE-3 system. The Criticality Safety Analysis Sequence (CSAS) routines were used to calculate atom densities but the CSAS calculated escape cross section input into BONAMI array 9**.was not used for the reasons detailed below.

The CSAS routines provide inputs for BONAMI and NITAWL. When 16-group cross sections are used, as they were here, the self-shielding corrections for U-235 and U-238 are done by BONAMI. The ISSOPT option in BONAMI set by CSAS is for a homogeneous system. Appropriate "extra" cross sections may be entered into

EMF-1563 Revision 12A Appendix 6A Page 16 of 31

ANF-88-120, Revision 0

BONAMI array 9^{**} . The sig-esc calculated by CSAS for a rod array is that for the center rod in a 3x3 array with the assumption that the center rod neutrons encounter only the other eight rods in the 3x3 array. For arrays flooded with water or other media with a similar total cross section, this is a good approximation.

For low density interspersed moderation, this 3x3 model can lead to nonconservative errors:

The Dancoff factor for the 3x3 array is too low because the central rod neutrons may actually encounter more than eight other rods.

The calculated sig-escape will be too high for the same reason.

If this sig-escape is used in BONAMI, the resulting cross sections will be non-conservative; i.e., the k-inf (k_{eff}) results obtained will tend to be lower than actual.

It is noted that the low Dancoff factor is entered by CSAS into the NITAWL input which could also yield non-conservative results when using the 27-group or the 123-group cross section libraries.

If the modeled rods are nearly edge-to-edge, the errors in the 3x3 CSAS model are reduced. Also, as the moderator (water) density is increased, the non-conservative errors are reduced/eliminated.

Others, including code custodians (Lester Petrie) at RSIC have been informed.

Notes on self-shielding calculations follow.

- Dancoff factors and sig-escapes were calculated using a Monte Carlo model of infinite and finite rod arrays.
- The results obtained with BONAMI using ISSOPT equal 2 (unclad) or 9 (clad) agree well with the infinite lattice Monte Carlo results.
 - If self-shielding corrections are based on an infinite array of rods, the results will be very conservative because the perimeter rods are better moderated (they have higher sig-escapes) than the interior rods; i.e., the infinite lattice model contains only interior rods while the actual assembly is about 40 (9x9) to 49 (7x7) percent perimeter rods.
 - KENO models used three UO₂ rod types and, as applicable, one UO₂-Gd₂O₃ rod type. The three UO₂ rod types are interior (non-perimeter) rods, edge rods facing the companion assembly, and the rods on the other three edges of the assembly. The Monte Carlo derived sig-esc was used in BONAMI array 9** with ISSOPT = 0.

EMF-1563 Revision 12A Appendix 6A Page 17 of 31

RESULTS FOR TYPE G1 BUNDLES

7X7 Assembly, Vw/Vf = 1.0, 10% Water Density

 $k-inf = 0.9563 \pm 0.0035$ (KENO-Va)

k-inf = 0.9623 (CASMO) (From Table 2)

The macro sig-esc values used in BONAMI for the interior, edge-out and edge-in (facing other assembly) rods are 0.2321, 0.4059 and 0.3529.

8x8 Assembly, Vw/Vf = 1.0, 10% Water Density

 $k-inf = 0.9521 \pm 0.0032$ (KENO-Va)

k-inf = 0.9577 (CASMO)

The macro sig-esc values used in BONAMI for the interior, edge-out and edge-in (facing other assembly) rods are 0.2531, 0.4409 and 0.3680.

KENO-Va RESULTS FOR TYPE G2 BUNDLES 9X9 ASSEMBLY, POISON ROD ARRANGEMENT D3

Results with 10 percent water density:

• 16-group cross sections: 0.9640 ± 0.0032

123 group cross sections: 0.9610 ±0.0039

27 group cross sections: 0.9514 ± 0.0037

As is often observed, the 27-group cross section results are biased low by about 0.01.

The results with eight percent water density:

- 16-group cross sections: 0.9611 ± 0.0032
- CASMO: 0.9676 (Table 4)

The CASMO-KENO agreement is very good.

Typical inputs to BONAMI, NITAWL, KENO-Va and CASMO are in Attachment 4.

OUTER CONTAINER PADDING EFFECTS

Infinite arrays of undamaged packages were modeled to demonstrate that reduced amounts of honeycomb/ethafoam in the outer container cannot lead to criticality. The outer container cross sectional area is about 29.75 inches wide by about 27.25 inches tall without the spacing of the nominal 4x4 skids at the bottom.

With the skid spacing, the packages are on about 29.75"x30.75" centers.

ANF-88-120, Revision 0

KENO-Va calculations for inner containers on 29.75"x29.75" centers produced the results in Table 5. The outer container was represented by four 0.5 inch thick plywood walls. All volume not occupied by wood, fuel, or the steel of the inner container was filled with low density water. The most reactive unpoisoned fuel type (7x7, Vw/Vf=1.0) was modeled inside the package. According to the results presented, the most reactive type G2 fuel (9x9 arrangement D3) will yield very similar results. The KENO-Va model is identical to that cited earlier (inner container arrays) except for the addition of spacing filled with wood and moderation.

TABLE 5

INFINITE ARRAY OF UNDAMAGED PACKAGES OUTER CONTAINER IS 0.5 INCH PLYWOOD PLUS LOW DENSITY WATER KENO-Va RESULTS

<u>Water Density (Vo</u>	<u>p1%)</u>	<u>k-inf</u>
0 0.5 1 2		$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

All of the results are subcritical and they indicate that adding moderation such as honeycomb, ethafoam, and additional wood (2x4's, 4x4's) to the plywood-only model would result in reduced reactivities. Therefore, the honeycomb/ethafoam in the outer container is not needed for criticality safety nor for cushioning during the hypothetical accident conditions. Accordingly, there is no adverse safety effect by allowing any honeycomb/ethafoam thickness nor by allowing unlimited cutouts of these pads.

Additional KENO cases were run without plywood in the model; i.e., the entire volume between inner containers was filled with low density water. These results are useful for comparison to the k-inf results for edge-edge inner containers and also to determine the optimum interspersed water density.

EMF-1563 **Revision 12A** Appendix 6A Page 19 of 31

TABLE 6

INNER CONTAINERS ON 29.75" X 29.75" CENTERS WATER-ONLY BETWEEN CONTAINERS IN INFINITE ARRAY KENO-Va RESULTS

17

<u>Mater Density (Vol%)</u>	<u> </u>		
1 1.5 2.5 3	0.9264 ± 0.0030 0.9563 ± 0.0033 0.9469 ± 0.0036 0.9425 ± 0.0035 0.9254 ± 0.0035		

The above data indicate that the peak reactivity for the normal array is bounded by the k-inf for edge-edge inner containers. Also, the above data indicate that the package will be subcritical in any array with optimum interspersed moderation; i.e., the outer container is not needed for criticality safety for all fuel types bounded by the reactivities of generic types G1 and G2.

EMF-1563 Revision 12A Appendix 6A Page 20 of 31

ANF-88-120, Revision 0

ATTACHMENT 3

WATER ROD EFFECTS

Additional data are presented supporting the allowance of any number of water rods in any arrangement. All results presented in Attachment 2 for fuel types G1 and G2 indicate a decrease in array k-inf with increasing Vw/Vf. The models in Attachment 2 had fuel rods only; water rods were not explicitly modeled but the moderation from water rods (if any) is averaged into the unit cell.

The Table 2 data at optimum interspersed moderation (10% water) are shown in Figure 5. If the three points at each Vw/Vf are connected by the best straight line, seven lines with potentially different slopes and intercepts will be formed. To establish a single function, the slope and intercept were assumed to be a linear function of Vw/Vf.

k-inf = Slope * (Pellet Diameter) + Intercept

Multiple linear regression yields the following for 10 percent water density.

Slope = -3.8614E-2 + 6.1499E-2 * Vw/Vf

Intercept = 0.98728 - 3.8088E-2 * Vw/Vf

The slope increases with Vw/Vf while the intercept decreases with increasing Vw/Vf. This is obvious from visual examination of Figure 5.

The desired function of pellet diameter (in inches) (POD) and Vw/Vf (VWVF) is:

k-inf = 0.9873 -3.8614E-2 * POD - 3.8088E-2 * VWVF + 6.1499E-2 * (POD * VWVF).

The above equation represents the type G1 k-inf data (10 percent water) with a standard error of 0.00207 in k-inf.

For a 0.555 inch pellet diameter, the regression equation becomes:

k-inf = 0.9658 - 3.9561E-3 * VWVF

The predicted k-inf results for a 0.555 inch diameter pellet with 10 percent dense water are listed in Table 7.

•

EMF-1563 Revision 12A Appendix 6A Page 22 of 31

ANF-88-120, Revision 0

TABLE 7

INFINITE ARRAY (INNERS-ONLY) RESULTS BASED ON REGRESSION EQUATION 0.555 INCH PELLET DIAMETER, 10 PERCENT DENSE WATER

<u>Vw/Vf</u>	<u>k-inf</u>
1.0 2.0	0.9619 0.9579 0.9540
4.0	0.9540

The above data at the maximum (most reactive) pellet diameter, the k-inf decreases with increasing Vw/Vf. This implies that any number of water rods may be present.

Additional cases were run for a 7x7 assembly (10 percent water) with a 0.555 inch pellet diameter but with explicit modeling of water rods as 100 vol% moderation (no clad).

The rods arrangements and the k-inf (CASMO) are given below. The arrangements for the left bundle in the package is shown. It is noted that the right edge of this assembly is less moderated than the other three sides because of the proximity of the companion assembly to the right. Accordingly, added moderation was preferentially added to the right half of the left assembly.

The arrangement of the right bundle is the mirror image of that of the left bundle.

ARRANGEMENT E1	ARRANGEMENT E2	ARRANGEMENT E3
F.F.F.F.F.F F.F.F.F.F.F.F.F.F.F.F.F.F.F	F F F F F F F F F F F F F F F F F F F F	F F F F F F F F F F F F F F F F F F F
Vw/Vf = 1.0461 k-inf = 0.9625	Vw/Vf = 1.0461 k-inf = 0.9626	Vw/Vf = 1.0461 k-inf = 0.9625

20

EMF-1563 Revision 12A Appendix 6A Page 23 of 31

21

ANF-88-120, Revision 0

ARRANGEMENT E4	ARRANGEMENT E5	ARRANGEMENT E6
F F F F F F F F F F F F F F F F F F F F	F F F F F F F F F F F F F F F F F F F F	F F
Vw/Vf = 1.0941 k-inf = 0.9628	Vw/Vf = 1.0941 k-inf = 0.9627	Vw/Vf = 1.1443 k-inf = 0.9628
ARRANGEMENT E7	ARRANGEMENT E8	ARRANGEMENT E9
F F F F F F F F F F F F F F F F W F W F	F F F F F F F F F F F F F F F F W W F F F F W W W F F F F W W W F F F F F F	F F F F F F F F F F F F F F F F F W W W F F F F W W W F F F F F
· · · · · · · · · · · · · · · · · · ·		
Vw/Vf = 1.1966 k-inf = 0.9622	Vw/Vf = 1.4977 k-inf = 0.9610	Vw/Vf = 1.4977 k-inf = 0.9614

The highest k-inf value is 0.9628 as compared to the 0.9623 value with zero water rods (Vw/Vf = 1.0). This 0.0005 difference is trivial. For the first few water rods, moderation and fuel worths are nearly equal; i.e., replacing fuel rods with moderation (water rods) produces little or no change in k-inf. For the higher Vw/Vf cases, the k-inf is seen to be decreasing because fuel is worth more than moderation.

These data support the model with the moderation from water rods averaged over the entire assembly. Therefore, the Attachment 1 results for fuel types G1 and G2 are appropriate.

EMF-1563 Revision 12A Appendix 6A Page 24 of 31

ATTACHMENT 4

BONAMI Input for Most Reactive Type GI Assembly (7x7, Vw/Vf=1.0) ' RA-3 WITH 3.3 0\$\$ 16 15 18 17 1\$\$ 0 3 9 2R1 0 2** 1.0-5 E Т 3\$\$ 3R1 3R2 3R3 4\$\$ 92235 92238 8016 203 5** 7.76071E-04 2.24538E-02 R.64598E-02 2Q3 6\$\$ 1 2 3 7** 1 2.3 8** F2.93E+02 9** 0.2276 0.4095 0.3566 10\$\$ 92501 92801 8016 92502 92802 801602 92503 92803 801603 11\$\$ F0 Т NITAWL Input for Most Reactive Type G1 Assembly (7x7, Vw/Vf=1.0) ' RA-3 WITH 3.3 0\$\$ 6 7 8 11 18 19 9 0 20 1\$\$ 0 11 5R0 0 2R0 -1 0 T 2\$\$ 1192501 92503 1192801 92803 8016 1001 40302 26000 6012 4** F2.93E+02 Т KENO-Va Input for Most Reactive Type G1 Assembly (7x7, Vw/Vf=1.0) 7x7 BUNDLE IN RA-3, 3.3 READ PARAMETERS TME=290.0 GEN=83 NPG=300 LIB=41 TBA=3.0 FLX=YES FDN=YES XS1=YES NUB=YES PWT=YES PLT=YES END PARAMETERS READ MIXT SCT=1 MIX = 1UO2 PELLET, 3.3 92501 7.760713E-04 92801 2.245383E-02 8016 4.645982E-02 MIX = 2UO2 PELLET, 3.3 92502 7.760713E-04 92802 2.245383E-02 8016 4.645982E-02

EMF-1563 Revision 12A Appendix 6A Page 25 of 31

ANF-88-120, Revision 0

MIX=3 UO2 PELLET, 3.3 92503 7.760713E-04 92803 2.245383E-02 8016 4.645982E-02 MIX=4 SMEARED ZR CLAD 1 POD, CID, COD= 0.555", 0.561", 0.611" ' VOL FRACT ZR = 0.8975 '1 AT DENS = 0.8975 * 4.2518E-2 = 3.8157E-2 40302 3.8157E-02 MIX=5 WATER, 10 VOL% 8016 3.337967E-03 1001 6.675933E-03 MIX=6 CARBON STEEL, 100 6012 3.921682E-03 26000 8.350009E-02 MIX=7 CARBON STEEL, 85.57 5 0.1443 6 0.8557 MIX=8. CARBON STEEL, 8.64 VOL 2.75" X 0.125" THICK ANGLE IN 3.8891" X 2.0" AREA 5 0.9136 6 0.0864 RESM 3 3 1 2 3 END MIXT READ GEOMETRY UNIT 1 COM=" INTERIOR UO2 ROD CYLI 1 1 0.70485 2P225.58 CYLI 4 1 0.77597 2P225.58 CUBO 5 1 4P0.929 2P225.58 UNIT 2 COM=" EDGE UO2 ROD CYLI 2 1 0.70485 2P225.58 CYLI 4 1 0.77597 2P225.58 CUBO 5 1 4P0.929 2P225.58 UNIT 3 COM=" EDGE ROD FACING OTHER BUNDLE CYLI 3 1 0.70485 2P225.58 CYLI 4 1 0.77597 2P225.58 CUBO 5 1 4P0.929 2P225.58 UNIT 4 COM=" 7X7 BUNDLE IN LEFT BASKET ARRAY 1 2R-6.503 -225.58 CUBO 5 1 4P8.7381 2P225.58 ADD 0.00598 INCH OF PERFORATED STEEL CUBO 7 1 4P8.89 2P225.58

23

EMF-1563 Revision 12A Appendix 6A Page 26 of 31

ANF-88-120, Revision 0

UNIT 5 COM=" 7X7 BUNDLE IN RIGHT BASKET ARRAY 2 2R-6.503 -225.58 CUBO 5 1 4P8.7381 2P225.58 ADD 0.00598 INCH OF PERFORATED STEEL CUBO 7 1 4P8.89 2P225.58 UNIT 6 COM=" SPACING & STEEL ANGLE BESIDE BASKET CUBO 8 1 2P2.54 2P4.9391 2P225.58 CUBO 5 1 2P2.54 2P8.89 2P225.58 UNIT 7 COM=" ANGLES & SPACING BENEATH & ABOVE BASKETS ANGLE STEEL SMEARED IN 3.8891" X 2.0" VOLUME CUBO 8 1 2P4.9392 2P2.54 2P225.58 CUBO 5 1 2P8.89 2P2.54 2P225.58 UNIT 8 COM=" 2X2 INCH MODERATION REGIONS AT CORNERS CUBO 5.1 4P2.54 2P225.58 UNIT 9 COM=" 1 INNER CONTAINER ARRAY 3 -22.86 -13.97 -225.58 ' ADD 0.0598 INCH WALLS REPL 6 1 6R0.1519 1 GLOBAL UNIT 10 COM="ARRAY OF INNERS THIS IS MULTI-UNIT ARRAY WITH SPECULAR REFLECTION ATTEMPT TO REDUCE COLLISIONS WITH BOUNDARY ARRAY 4 3R0.0 END GEOMETRY READ ARRAY ARA=1 NUX=7 NUY=7 NUZ=1 FILL 22222222 2111113 211113 1 1 1 2 1 1 3 2 1 1 1 11 3 211113 2222222 END FILL ARA=2 NUX=7 NUY=7 NUZ=1 FILL 22222222 11112 31 3 · I 1. 1112 3.1 1 1 2 1 1 3111112 3111112 2222222 END FILL ARA=3 NUX=4 NUY=3 NUZ=1

EMF-1563 Revision 12A Appendix 6A Page 27 of 31

ANF-88-120, Revision 0

8778 6456 8778 END FILL ARA=4 NUX=5 NUY=5 NUZ=1 FILL F9 END FILL END ARRAY READ START NST=1 END START READ BOUNDS ALL=SPECULAR END BOUNDS READ PLOT TTL=" XY SECTION AT Z=10 CM NCH=" 123Z.SBA" XUL=0.0 XLR=46.03 YUL=28.25 YLR=0.0 ZUL=10.0 ZLR=10.0 UAX=1.0 VDN=-1.0 NAX=120 LPI=6 END TTL=" LEFT HALF NCH=" 123Z.SBA" XUL=0.0 XLR=23.02 YUL=28.25 YLR=0.0 ZUL=10.0 ZLR=10.0 UAX=1.0 VDN=-1.0 NAX=120 LPI=6 END TTL=" LOWER RT QUADRANT OF LET HALF NCH=" 123Z.SBA" XUL=0.0 XLR=11.51 YUL=14.13 YLR=0.0 ZUL=10.0 ZLR=10.0 UAX=1.0 VDN=-1.0 NAX=120 LPI=6 END TTL=" UPPER LEFT QUADRANT OF LET HALF NCH=" 123Z.SBA" XUL=0.0 XLR=11.51 YUL=28.25 YLR=14.13 ZUL=10.0 ZLR=10.0 UAX=1.0 VDN=-1.0 NAX=120 LPI=6 END END PLOT END DATA KENO=Va Model for Most Reactive Type G2 Assembly 9X9 BUNDLE IN RA-3, 4.0 **READ PARAMETERS** TME=60.0 GEN=83 NPG=300 LIB=41 TBA=3.0 FLX=YES FDN=YES XS1=YES NUB=YES PWT=YES PLT=NO : END PARAMETERS READ MIXT SCT=1 MIX = 1UO2 PELLET, 4.0 92501 9.4068E-04 92801 2.2291E-02 8016 4.6464E-02 MIX = 24 UO2 PELLET, 4.0 92502 9.4068E-04 92802 2.2291E-02 8016 4.6464E-02

FILL

EMF-1563 Revision 12A Appendix 6A Page 28 of 31

ANF-88-120, Revision O

MIX=3 UO2 PELLET, 4.0 92503 9.4068E-04 - 92803 2.2291E-02 8016 4.6464E-02 MIX=4 U02-GD203 PELLET, 4.0 GD203, 10.331 GM/CC 92504 9.147386E-04 92804 2.167629E-02 8016 4.621194E-02 64000 6.865846E-04 MIX=5 SMEARED ZR CLAD 1 POD,CID,COD= 0.4221",0.4281",0.4781" ' VOL FRACT ZR = 0.8988 AT DENS = 0.8988 * 4.2518E-2 = 3.8215E-2 40302 3.8215E-02 MIX=6 WATER, 8 VOL% 8016 2.6704-3 1001 5.3408-3 MIX=7 CARBON STEEL, 100 6012 3.921682E-03 26000 8.350009E-02 MIX=8 CARBON STEEL, 85.57 6 0.1443 7 0.8557 MIX=9 CARBON STEEL, 8.64 VOL ' 2.75" X 0.125" THICK ANGLE IN 3.8891" X 2.0" AREA 6 0.9136 7 0.0864 END MIXT READ GEOMETRY UNIT 1 COM=" INTERIOR UO2 ROD CYLI 1 1 0.5361 2P225.58 CYLI 5 1 0.6072 2P225.58 CUBO 6 1 4P0.71785 2P225.58 UNIT COM=" EDGE UO2 ROD CYLI 2 1 0.5361 2P225.58 CYLI 5 1 0.6072 2P225.58 CUBO 6 1 4P0.71785 2P225.58 UNIT 3 . COM=" EDGE ROD FACING OTHER BUNDLE 3 1 0.5361 2P225.58 CYFI CYLI 5 1 0.6072 2P225.58 CUBO 6 1 4P0 71785 2P225.58

EMF-1563 Revision 12A Appendix 6A Page 29 of 31

ANF-88-120, Revision 0

UNIT 4 COM=" UO2-GD203 ROD CYLI 4 1 0.5361 2P225.58 5 1 0.6072 2P225.58 CYLI CUBO 6 1 4P0.71785 2P225.58 UNIT 5 COM=" 9X9 BUNDLE IN LEFT BASKET ARRAY 1 2R-6.46065 -225.58 CUBO 6 1 4P8.7381 2P225.58 ADD 0.00598 INCH OF PERFORATED STEEL CUBO 8 1 4P8.89 2P225.58 UNIT 6 COM=" 9X9 BUNDLE IN RIGHT BASKET ARRAY 2 2R-6.46-65 -225.58 CUBO 6 1 4P8.7381 2P225.58 ADD 0.00598 INCH OF PERFORATED STEEL CUBO 8 1 4P8.89 2P225.58 UNIT 7 COM=" SPACING & STEEL ANGLE BESIDE BASKET CUBO 9 1 2P2.54 2P4.9391 2P225.58 CUBO 6 1 2P2.54 2P8.89 2P225.58 UNIT 8 COM=" ANGLES & SPACING BENEATH & ABOVE BASKETS CUBO 9 1 2P4.9392 2P2.54 2P225.58 CUBO 6 1 2P8.89 2P2.54 2P225.58 UNIT 9 COM="2X2 INCH MODERATION REGIONS AT CORNERS CUBO 6 1 4P2.54 2P225.58 UNIT 10 COM=" 1 INNER CONTAINER ARRAY 3 -22.86 -13.97 -225.58 ' ADD 0.0598 INCH WALLS REPL 7 1 6R0.1519 1 GLOBAL UNIT 11 COM="ARRAY OF INNERS ARRAY 4 3RO.0 END GEOMETRY READ ARRAY ARA=1 NUX=9 NUY=9 NUZ=1 FILL 2 2 2 2 2 2 2 2 2 2 2 2 111113 2 1 1 1.1113 2 1 1 14 1 3 1 2 1 1414 3 1 1 2 1 1 1 4 1 1 1 3 2 1.1.1.1.1 1 1 3 21111113 2222222222 END FILL ARA=2 NUX=9 NUY=9 NUZ=1

EMF-1563 Revision 12A Appendix 6A Page 30 of 31

ANF-88-120, Revision 0

. :

: .

END DATA

28

ISSUED IN FRA-ANP ON-LINE DOCUMENT SYSTEM DATE: 2-5-04 EMF-1563 Revision 12A Appendix 6B Page 1 of 38

Appendix 6B

A cher .

· ha ta c

Sec. No.

and the second

W. S.

SIEMENS POWER CORPORATION - NUCLEAR DIVISION CRITICALITY SAFETY ANALYSIS FOR SHIPMENT OF SPC 10X10 - 88 FUEL ASSEMBLIES IN THE SP-1 SHIPPING CONTAINER

EMF-1563 Revision 12A Appendix 6B Page 2 of 38

Siemens Power Corporation

EMF-92-104 Revision 2 Issue Date: 2/2/93

CRITICALITY SAFETY ANALYSIS

FOR SHIPMENT OF SPC 10X10-8B

FUEL ASSEMBLIES IN THE SP-1 SHIPPING CONTAINER

Date: 2/193 Prepared by: Calvin D monnue C. D. Manning, Criticality Safety Specialist Safety, Security, and Licensing Approved by: 93 Date: Z T. C. Probasco, Supervisor, Safety Safety, Security, and Licensing 93 Approved by: Date: R. E. Vaughan, Manager Safety, Security, and Licensing

EMF-1563 Revision 12A Appendix 6B Page 3 of 38

EMF-92-104 Revision 2 Page i

TABLE OF CONTENTS

<u>Sectio</u>	<u>Page</u>
1.0	INTRODUCTION 1
2.0	SUMMARY 1
3.0	METHODS
4.0	MODEL DESCRIPTION 4
5.0	ANALYSIS
5.1	Effect of Interspersed Moderation
5.2	Effect of Poison Rod Positions
5.3	Effect of Interspersed Moderation, Cross Sections and Enrichment
5.4	Effect of Water Rods
5.5	Effect of Fuel Assembly Spacing 16
5.6	Effect Of Outer Container and Spacing 17
5.7	Effect of Poison Content in Poison Rods 20
5.8	The Effect of Fuel Pellet Diameter 20
5.9	Discussion of Results
6.0	METHODS VALIDATION
7.0	REFERENCES
8.0	COMPUTER INPUT LISTINGS

EMF-1563 Revision 12A Appendix 6B Page 4 of 38

EMF-92-104 Revision 2 Page ii

LIST OF TABLES

		lge
TABLE 1	REFERENCE FUEL BUNDLE PARAMETERS	2
TABLE 2	REFERENCE FUEL BUNDLE PARAMETERS	6
TABLE 3	K-INF OF 10X10 FUEL ASSEMBLIES 9 POISON RODS, 4.5 WT.% ²³⁵ U	8
TABLE 4	K-INF OF 10X10 ASSEMBLIES 6 POISON RODS, 4.5 WT.% ²³⁵ U	10
TABLE 5		11
TABLE 6	K-INF OF 10X10 ASSEMBLIES AT VARIOUS URANIUM ENRICHMENTS 6 POISON RODS AND 7 VOL % WATER	12
TABLE 7	K-INF OF 10X10 ASSEMBLIES WITH VARIOUS WATER RODS 4.5 WT.% U, 10 VOL.% WATER AND NO POISON	15
TABLE 8	K-INF OF 10X10 ASSEMBLIES WITH VARIOUS WATER RODS 4.5 WT.% U, 100 VOL.% WATER AND NO POISON	16
TABLE 9		17
TABLE 10	EFFECT OF OUTER CONTAINER PRESENCE AND SPACING	19
TABLE 11	K-INFINITY FOR VARIOUS PELLET DIAMETERS	20
TABLE 12	BENCHMARK CALCULATION RESULTS KENO-Va WITH 16 GROUP CROSS SECTIONS	23

:

EMF-92-104 Revision 2 Page iii

LIST OF FIGURES

•	Page
FIGURE 1	10X10 ASSEMBLY WITH 9 POISON RODS
FIGURE 2	ARRANGEMENTS OF 6 POISON RODS 9
FIGURE 3	EFFECT OF URANIUM ENRICHMENT ON REACTIVITY
FIGURE 4	ARRANGEMENTS OF WATER RODS IN 10X10 ASSEMBLY

EMF-1563 Revision 12A Appendix 6B Page 6 of 38

EMF-92-104 Revision 2 Page 1

Supplemental Application To Certificate of Compliance No. 9248

CRITICALITY SAFETY ANALYSIS FOR SHIPMENT OF SPC 10X10-8B FUEL ASSEMBLIES IN THE SP-1 SHIPPING CONTAINER

1.0 INTRODUCTION

The objective is to conservatively demonstrate that the subject generic fuel type meets the criticality safety requirements of 10 CFR Part 71 for a Fissile Class I package. Criticality safety is also demonstrated for any honeycomb/ethafoam thickness in the outer container. Shipping shims inside the fuel assembly are not allowed.

2.0 SUMMARY

The results of the calculations indicated that an unlimited number of SP-1 Shipping Containers containing two 10x10 assemblies side-by-side each subject to the constraints of Table 1 will not exceed 0.95 at the 95 percent confidence level.

EMF-1563 Revision 12A Appendix 6B Page 7 of 38

EMF-92-104 Revision 2 Page 2

Parameter	Value			
Edge of Outer Square Determined by Peripheral Fuel Rods (Inch)	5.022 Maximum			
Enrichment of Any Pellet in Assembly (wt. %)	5.0 Maximum			
Enrichment of any Pellet in an Edge Rod (wt. %)	4.0 Maximum			
Maximum Average Planar Enrichment (wt. %)*	4.0 Maximum			
Clad Thickness (Inch)	0.0225 Minimum			
Pellet Diameter (inch)	0.3356 Maximum			
Fuel Density (% TD)	98.0 Maximum			
Rod Pitch (inch)	0.511 Nominal			
UO2-Gd2O3 Rods	6.0 Minimum			
Gd ₂ O ₃ Content (wt.%)	2.0 <u>+</u> 0.08			
Water Rods	Center 4 Rods Minimum			
Poison Rod Arrangement	Symmetrical Across the Diagonal			
Fuel Rod Array in Bundle	10x10			

TABLE 1 **REFERENCE FUEL BUNDLE PARAMETERS**

Maximum Average Planar Enrichment: The average enrichment at the axial location yielding the highest planar average.

EMF-1563 Revision 12A Appendix 6B Page 8 of 38

EMF-92-104 Revision 2 Page 3

The analysis includes the effect of interspersed moderation, the placement of poison rods, the effect of the number of water rods and Uranium enrichment on the reactivity of the SP-1 Shipping Container. This analysis used CASMO, a two dimensional transport code, for parametric evaluations and KENO V.a for verification of the results, as appropriate. The reactivities calculated by both CASMO and KENO were in close agreement. The Keno results were slightly higher and more conservative.

3.0 METHODS

K-infinite calculations were performed using transport theory code CASMO-3D. K-effective calculations were performed using the Monte-Carlo code KENO-Va. CASMO was used for several calculations in a broad-based sensitivity study. SCALE codes (BONAMI, NITAWL, XSDRNPM, and KENO-Va) were used to replicate selected CASMO cases.

The Criticality Safety Analysis Sequence (CSAS) routines were used to calculate atom densities but the CSAS calculated escape cross section input into BONAMI 9** was not used for the reasons detailed below.

The CSAS routines provide inputs for BONAMI and NITAWL. When 16-group cross sections are used, as they were for most cases here, the self-shielding corrections for ²³⁵U and ²³⁸U are done by BONAMI. The ISSOPT option in BONAMI, set by CSAS, is for a homogeneous system. Appropriate "extra" cross sections may be entered into BONAMI array 9**. The sig-escape calculated by CSAS for a rod array is that for the center rod in a 3x3 array with the assumption that the center rod neutrons encounter only the other eight rods in the 3x3 array. For arrays flooded with water or other media with a similar total cross section, this is a good approximation.

For low density interspersed moderation, this 3x3 model can lead to non-conservative errors:

- The Dancoff factor for the 3x3 array is too low because the central rod neutrons may actually encounter more than eight other rods.
- The calculated sig-escape will be too high for the same reason.

EMF-1563 Revision 12A Appendix 6B Page 9 of 38

EMF-92-104 Revision 2 Page 4

If this sig-escape is used in BONAMI, the resulting cross sections will be nonconservative; i.e., the k-inf (k_{eff}) results obtained will tend to be lower than actual. It is noted that the low Dancoff factor is entered by CSAS into the NITAWL input which could also yield non-conservative results when using the 27-group or the 123-group cross section libraries.

If the modeled rods are nearly edge-to-edge, the errors in the 3x3 CSAS model are reduced. Also, as the moderator (water) density is increased, the non-conservative errors are reduced/eliminated.

To avoid such non-conservatisms and to be consistent with the methods described in ANF-88-120, Rev. 0 "Supplemental Application to Certificate of Compliance No. 4986", self-shielding calculations were made as follows:

Dancoff factors and sig-escapes were calculated using a Monte Carlo model of an infinite array of fuel assemblies in SP-1 inner containers.

KENO models used three UO₂ rod types and, as applicable, one UO₂-Gd₂O₃ rod type. The three UO₂ rod types are interior (non-perimeter) rods, edge rods facing the companion assembly, and the rods on the other three edges of the assembly. The Monte Carlo derived sig-escape for each rod type was used in BONAMI array 9** with ISSOPT = 0.

4.0 MODEL DESCRIPTION

The model used for the SP-1 is identical to the model used in ANF-88-120 "Supplemental Application to Certificate of Compliance No. 4986." An infinite array of infinite length inner containers was modeled to conservatively demonstrate criticality safety at normal conditions and at hypothetical accident conditions. Each package contained two identical assemblies with an infinite fuel length.

Since the package is symmetric about the plane midway between the two contained assemblies, models typically included only one of these symmetric halves (one assembly) to represent an infinite array of whole packages. An orientation with two assemblies side-by-side (left-right) was

EMF-1563 Revision 12A Appendix 6B Page 10 of 38

EMF-92-104 Revision 2 Page 5

selected for the model. Only the left assembly was modeled in CASMO but both halves were modeled in KENO. A plot of the KENO model is included on pg. 30.

The steel parts modeled are:

- Two edge-to-edge "baskets" of 0.0598 inch thick carbon steel with 0.75 inch diameter holes in a 1.75 inch square pitch pattern. Accordingly, the basket was modeled as 85.57 vol% carbon steel and 14.43 vol% moderation.
- The outer shell of the inner container was modeled as 0.0598 inch thick carbon steel (100 voi%).
- The annulus between the basket and the shell contains six angles of 0.125 inch thick carbon steel. For the left half, (CASMO) model, three angles were included: one each above, below, and to the left of the assembly. These angles were represented as "smeared" steel in the moderation occupying the annulus. Other calculations with a more explicit modeling of the geometry of the steel angles yielded results not significantly different from the "smeared steel" model. Since peak reactivity occurs with low density interspersed moderation, neutrons have relatively long mean-free path lengths and would be expected to interact with all steel in the system. Therefore, the smeared steel model is adequate.

The steel mass in the infinite length inner container model is about 525 pounds per 177.6 inch length. The measured weights of the three inner container components (lid, removable end, main body) are 197, 15 and 399 pounds, respectively. The total tare weight is about 611 pounds. A generous allowance for the weight of the ethafoam and wood in the samples is six pounds. Therefore, the estimated steel weight is 605 pounds. For the infinite length model, twice the mass of the removable end is subtracted to yield a 575 pound weight. Since the actual system contains considerably more steel than that modeled, the model results are conservative.

The basket outer dimensions were 7.0"x7.0" (x infinite length). The assembly was centered in the basket and the two baskets were edge-to-edge; i.e., the plane of symmetry was at the right edge of the left basket.

EMF-1563 Revision 12A Appendix 6B Page 11 of 38

EMF-92-104 Revision 2 Page 6

The annulus was 2.0 inches thick. Therefore, the inner dimensions of the shell of the inner container are 18 inches wide by 11 inches high. With the 0.0598 inch thick shell, the outer dimensions are about 18.12 inches wide by 11.12 inches high. All volume not occupied by rods or steel was filled with uniform density water.

5.0 ANALYSIS

The fuel bundle modeled is a 10x10-8B assembly. The center four rod positions of the bundle are occupied by a single large water rod. Reference Fuel Bundle Parameters for the models are listed in Table 2.

Parameter	Value Used
Average Enrichment (%)	Varied
Clad Outer Diameter (inch)	0.387
Clad Inside Diameter (inch)	0.337
Pellet Diameter (inch)	0.335
Fuel Density (% TD)	98.0
Rod Pitch (inch)	0.511
UO ₂ -Gd ₂ O ₃ Rods	Varied
Gd ₂ O ₃ Content (wt.%)	2.0
Water Rods	Varied
Fuel Rod Array in Bundle	10x10

TABLE 2 REFERENCE FUEL BUNDLE PARAMETERS

The major assumptions made in this analysis reflect the fuel composition typical of SNP 10x10-88 assemblies. They include:

• The fuel bundle is symmetrical across the diagonal and has the physical characteristics listed in Table 1.

The system was at room temperature.

EMF-1563 Revision 12A Appendix 6B Page 12 of 38

EMF-92-104 **Revision 2** Page 7

- Interspersed moderator (water) was uniformly dispersed in the system around the fuel rods and between fuel assemblies.
- The holes in the steel basket were homogenized into the basket.
- The ends of the fuel rods were not modeled.
- The fuel bundle arrays are spectrally reflected to represent an infinite system.
- The steel angles in the space between the basket and the shell was smeared into the interspersed moderation.
- The gadolinia content is at least 2.0 weight percent in at least six rods.

5.1 Effect of Interspersed Moderation

1

1 1

1 1 2 1 1 2 1

1 1 1 1 1

1 1 1

CASMO was used to determine the effect of various amounts of moderation on an infinite array of inner SP-1 shipping containers containing 10x10 fuel assemblies. The purpose of the calculations was to determine the density (volume percent) of interspersed moderation which resulted in the highest reactivity. A display of the rod arrangement is shown in Figure 1 and the calculational results are given in Table 3.

FIGURE 1 10X10 ASSEMBLY WITH 9 POISON RODS

1 1 1 1 1 1 1 1 1	11212	1 1 1 1 1 1 1 1	1211011	1 1 1 W W 0	1 1 0 W W	1 2 1 1 1 0 2	111111	1112112	1111111	Where 1 = fuel rod 2 = poison rod 0 = water rod W = central water rod	d
1	2	1	1	0	1	2	1	2	1		
1	1	1	1	1	1	1	1	1	1		

11

EMF-1563 Revision 12A Appendix 6B Page 13 of 38

EMF-92-104 Revision 2 Page 8

Case Identification	% Int. Mod.	k-inf						
CASMO								
ra3-97	3	0.87229						
ra3-95	5	0.90270						
ra3-93	7	0.90821						
ra3-90	10	0.89719						
ra3-80	20	0.88208						
KENO V.a								
k5oa-cask-b.10	10	0.9056±.0027						

TABLE 3K-INF OF 10X10 FUEL ASSEMBLIES9 POISON RODS, 4.5 WT.%235U

The results show that the highest reactivity was obtained when the interspersed moderation was at 7 volume percent. A confirmatory run made with the KENO V.a code was 0.9056 as compared with 0.8972 from the results of the CASMO calculations.

5.2 Effect of Poison Rod Positions

CASMO was also used to determine the effect of the positions of poison rods on an infinite array of 10x10 fuel assemblies in an SP-1 inner container. Five arrangements of six poison rods around a central water rod are shown in Figure 2. The results of the calculations are given in Table 4. These models assumed 4.5 weight percent ²³⁵U and 3 volume percent water as interspersed moderator. A 7 volume percent water was repeated for arrangement PD which had indicated the highest calculated reactivity due to poison rod placement.

EMF-1563 Revision 12A Appendix 6B Page 14 of 38

Ū

U

U

U

Ũ

EMF-92-104 **Revision 2** Page 9

FIGURE 2 ARRANGEMENTS OF 6 POISON RODS

PA PB PC υυ υυυυυ υυυ συσυσσσσσ συυυυσυυσυ υ υυ σ U U U P U P υ υυ υυ U U P U U U υυυυυ υυ U υυ U Π П U U U υ U. U U υυ Π U U U Π P U U υυ υυ υ P U U U U U Π U ΰ U σ Ū P U υυυυ Π U ΰ υ P U υυ U U U U P U U U U υυ Π U W W U Π υυυυ W W U U U U U U U υ W W U P U U P Π U W W U U υυ υυυυ W W U U U U U U P U W W U U U υ U ט ט ט υυ U υυ UPUU U Ū U U U U υ U U P U U U U U υ ₽ U P υυυ τ υυ **U U P'U** U U U τ U υ . U U U U P U U U υυ υυυυυυυυυ <u>υυυ</u> υυυ υυυυυυυυυ U U U υυυυυυυυυ υυυυυυυυυ υυυυυυυυυ PD PE υσυσυσυσσ υυυυυυυ .U U υ υυυυυ Ū U U U U τ ט ט:ט υυ U υυ U U υ υ U U U U U U U Π υυυ U ₽ P UU σ υ υ U U P U P U υ U U ٠U U υ W P W U υ U U U Ħ P W U Ŵ U U U U U Ū P W W U U U U υυυυ W W P U U υ U U U P υυυ P U U U U U P U P U U U U U υυυυυ υυυ U υυυυ υ U U U υ U υυυυυυυυ U υυυυ U υυ U U U υυυυυυυυυ υυυυ υ υυυυυ

EMF-1563 Revision 12A Appendix 6B Page 15 of 38

EMF-92-104 Revision 2 Page 10

Case Identification	% int. Mod.	Arrangement	k-inf
ra3-t1	3	PA	0.89285
ra3-t3	3	PB .	0.89598
ra3-t4	3	PC	0.90166
ra3-t5	3	PD	0.90526
ra3-t5.07	7	PD .	0.96471
ra3-t6	3	PE	0.90370

TABLE 4 K-INF OF 10X10 ASSEMBLIES 6 POISON RODS, 4.5 WT.% ²³⁵U

These calculations indicate that the highest reactivity for low interspersed moderation occurs when the poison rods are near the center of the assembly (arrangement PD). This arrangement is most reactive because the most reactive (best moderated) rods in the assemblies are the corner rods and because the Gd_2O_3 becomes a more effective poison with increasing moderation. As we move the poison rods away from the corner rods, we gain full benefit from corner moderation and decrease the poison effectiveness. This result agrees with the results in ANF-88-120².

5.3 Effect of Interspersed Moderation, Cross Sections and Enrichment

The effects of interspersed moderation, enrichment and Cross Section Library selection were examined for arrangement PD. This is actually a very conservative model due to assuming that all rods are at the Maximum Planar Enrichment. Actual assemblies will have multiple enrichments with the lower enrichments on the perimeter and the higher enrichments inside where less moderation is available. This is required to assure approximately equal powers for the rods in the operating assembly.

The SCALE system of computer codes was used for this evaluation. Cross sections were prepared by BONAMI and NITAWL. KENO V.a was used to model system. The results of these calculations agreed well with the CASMO calculations and are listed in Table 5.
EMF-1563 Revision 12A Appendix 6B Page 16 of 38

EMF-92-104 Revision 2 Page 11

The KENO V.a calculations confirm the reactivity of an infinite array of assemblies placed in the inner SP-1 shipping container was highest at 7 volume percent interspersed moderator. The KENO V.a result was 0.9691 \pm .0028 (1 σ) as compared to 0.9647 obtained by CASMO.

Case Identification	²³⁵ U Enrichment	% Int. Mod.	Cross Sections	k-inf±1σ
a-cask-c.03	4.5	3	16 group	0.90124±.0023
a-cask-c.07	4.5	7	16 group	0.9691 ±.0028
a-cask-c.10	4.5	10	16 group	0.9651 <u>±</u> .0030
a-cask-c.12	4.5	12	16 group	0.9554±.0035
a-cask-c1.0	4.5	100	16 group	0.7347±.0040
a-cask-d.07	4.0	7 .	16 group	0.9319±.0027
a-cask-c.07	4.5	7	16 group	0.9691±.0028
27-cas-c.07	4.5	. 7	27 group	0.9552±.0031

TABLE 5 REACTIVITY OF ARRANGEMENT PD

The calculated reactivity of the system using 27 group cross sections was less than the corresponding calculation using 16 group cross sections, 0.9552 and 0.9691, respectively. This agrees with previous results documented ANF-88-120.

The results also indicate that the k-inf for 4.5 weight percent enrichment is subcritical but exceeds .95. The reactivity is less than 0.95 for 4.0 weight percent enrichment. The effect of varying the uranium enrichment on k-inf is shown in Figure 3 and tabulated in Table 6.

EMF-1563 Revision 12A Appendix 6B Page 17 of 38

EMF-92-104 Revision 2 Page 12

SP-1 Shipping Container U(x)02 - Gd203 2.0 Wt %; 10x10 Bundle 0.975 0.97 0.965 0.96 <u>-</u> 0.955 0.945 0.94 0.935 0.93 5 4.05 4.1 4.15 4.2 4.25 4.3 4.35 4.4 4.45 4.5 U Enrichment, Wt% U-235 - CASMO KENO Va

FIGURE 3 EFFECT OF URANIUM ENRICHMENT ON REACTIVITY

TABLE 6	K-INF OF 10X10 ASSEMBLIES AT VARIOUS URANIUM ENRICH	MENTS
	6 POISON RODS AND 7 VOL % WATER	

Case Identification	U Enrichment Wt. %	k-inf
400-15.07	4.00	0.93145
425-t5.07	4.25	0.94862
430-15.07	4.30	0.95192
ra3-t5.07	4.50	0.96471
KENO V.a k5oa-cask-d.07	4.00	k-inf+2σ 0.93734
k50a-cask-c.07	4.50	0.97464

.

EMF-1563 Revision 12A Appendix 6B Page 18 of 38

EMF-92-104 Revision 2 Page 13

5.4 Effect of Water Rods

The effect of the presence of water rods on an infinite array 10x10 fuel assemblies placed in the inner SP-1 shipping container was determined by using CASMO. These cases assume 4.5 wt.% ²³⁵-U, 10 Vol.% water, and no poison rods. The arrays are shown in Figure 3 and the results of the calculations are given in Table 7.

FIGURE 4 ARRANGEMENTS OF WATER RODS IN 10X10 ASSEMBLY

	WB	WC
U U	U U	U U
WD	WE	WF
TT VT TT TT TT TT TT TT	** ** ** ** ** ** ** ** **	

EMF-1563 Revision 12A Appendix 6B Page 19 of 38

WG	WH	WI
A A	M M	U U
τw		
U U		
		· · · · · · · · · · · · · · · · · · ·

EMF-1563 Revision 12A Appendix 6B Page 20 of 38

EMF-92-104 Revision 2 Page 15

Case Identification	Arrangement	k-inf
Ogađ	WA	1.00574
0gad-2w	WB	1.00530
0gad-4w	WC	1.00482
0gd-4wd	WD	/ 1.00220
0gd-4wd1	WE	1.00404
Ogad-4ws	WF	1.00507
0gad-6ws	WG	1.00457
Ogad-8ws	WH	1.00392
0gd10ws	WI .	1.00301
Ogad12ws	WJ	1.00207

TABLE 7K-INF OF 10X10 ASSEMBLIES WITH VARIOUS WATER RODS4.5 WT.% U, 10 VOL% WATER AND NO POISON

These results show that for low density interspersed moderator there is a reduction in reactivity when the number of water rods increases. Water rods placed nearer the perimeter of the assembly decreased the reactivity of the system more than those located near the center. The most reactive arrangement is when small water rods are not included in the assembly.

The results listed in Table 8 show that replacing fuel rods with water rods at full flooding causes a small change in reactivity, comparable to the differences between CASMO and KENO. In all cases, k-inf is well below 0.95. The removal of fuel rods at full density water causes a change in reactivity that is approximately equal to the change due to increased moderation in the water rods for two, four, and six water rods. The reduction in fuel appears to be dominant for eight water rods. This shows that the fully flooded containers are safely subcritical without any poison rods. However, poison rods are needed to remain subcritical at optimum moderation.

EMF-1563 Revision 12A Appendix 6B Page 21 of 38

EMF-92-104 Revision 2 Page 16

Case Identification	Arrangement	k-inf
Ogadfw	WA	0.9238
0gad-2wtw	WB	0.9249
Ogd-4wfw	wc ·	0.9254
0gd-4wstw	WF	0.9246
Ogad-6sf	WG	0.9226
Ogad-8wsf	WH	0.9204

TABLE 8K-INF OF 10X10 ASSEMBLIES WITH VARIOUS WATER RODS4.5 WT.% U, 100 VOL.% WATER AND NO POISON

5.5 Effect of Fuel Assembly Spacing

The effect of moving the fuel assemblies normally centered in the SP-1 inner container toward and apart from one another was evaluated using KENO-V.a. The results in Table 9 show an increase in k-inf when the bundles are moved apart and a decrease when the bundles are brought closer together. An infinite array of 4.0 wt.% bundles under certain conditions exceeds a k-eff of 0.95. The results listed in Table 9 show that 260 SP-1 inner shipping containers in a 13 wide X 20 high array are not at optimum moderation at 7-8 vol.% as they are in an infinite array. The data in Table 9 for the finite array were interpolated and optimum moderation was found to be at 18 vol.% water. KENO-Va calculates k-eff for this condition to be $0.9120 \pm .0023$.

EMF-1563 Revision 12A Appendix 6B Page 22 of 38

EMF-92-104 Revision 2 Page 17

Case Identification	Description	Moderation Vol.% Water	k-eff		
e.07	e.07 Bundles inside the basket are as close as design permits. Bundle enrichment is 4.5 wt.% U-235. Pellet Diameter is 0.3356 inches				
c.07	As above with the bundles centered (Standard)	7	.9691 ± .0028		
f.07	As above with the bundles as far apart as design permits	7	.9802 ± .0026		
g-apart	As above with Bundle enrichment 4.0 wt.% U-235	8	.9533 ± .0030		
	A 13 wide by 20 high array of cor	tainers			
a-13x20ap	Bundles inside the basket are as far apart as design permits. Bundle enrichment is 4.0 wt.% U- 235. Pellet Diameter is 0.3356 inches. The array is reflected by 30 cm of full density water.	8	.8659 ± .0028		
a-13x20ap15	As above	. 15	0.9006 _ ±.0028		
a-13x20ap20	As above	20	0.9008 ±.0024		
a-13x20ap30	As above	30	0.8722 ± .0026		

TABLE 9 EFFECT OF SPACING OF FUEL BUNDLES

5.6 Effect Of Outer Container and Spacing

KENO-V.a was used to model infinite arrays of undamaged packages to demonstrate that reduced amounts of honeycomb/ethafoam in the outer container cannot lead to criticality. The inner containers were placed on 29.75" by 27.75" centers to match the normal container spacing

EMF-1563 Revision 12A Appendix 6B Page 23 of 38

> EMF-92-104 Revision 2 Page 18

without 4"x4" skids at the bottom. The model assumed fuel assemblies with 4.5 wt% ²³⁵U and arrangement PD.

Cases with and without the container wood are included. The wood was assumed to have a density of 0.75 g/cc and to be 0.5 inch thick on the top and two sides and 3 5/8 inch thick on the bottom. All volume not occupied by wood, fuel, or the steel of the inner container was filled with low density water. The results are given in Table 10.

EMF-1563 Revision 12A Appendix 6B Page 24 of 38

EMF-92-104 Revision 2 Page 19

Run No. k5oa-cas-	Int. Mod %	k-inf±1 o	k-inf+2σ						
	Without Wood								
. h.010	1.0	.9484±.0024	.9532						
h.015	1.5	.9617±.0032	. 9 680						
h.020	2.0	.9566±.0029	.9625						
h.025	2.5		.9537						
h.030	h.030 3.0		.9332						
·	With	Wood							
i.000	0.0	.8962±.0030	.9023						
i.005	0.5	.8850±.0033	.8915						
i.010	1.0	.8563±.0031	.8625						
1.020	2.0	.8119±.0034	.8187						

TABLE 10 EFFECT OF OUTER CONTAINER PRESENCE AND SPACING

All of the results are subcritical and they indicate that adding moderation such as honeycomb, ethafoam, and additional wood to the plywood only model would result in reduced reactivities. Therefore, the honeycomb/ethafoam in the outer container is not needed for criticality safety nor for cushioning during the hypothetical accident conditions. Accordingly, there is not adverse safety effect by allowing any honeycomb/ethafoam thickness nor by allowing unlimited cutouts of these pads.

The data in Table 10 also indicate that the peak reactivity for the normal array is bounded by the k-inf for edge-edge inner containers. There is no statistically significant difference between k-inf for the close-packed array of inner containers and the outer containers without the wood. Both models are at optimum moderation with the H/U ratio essentially constant.

EMF-1563 Revision 12A Appendix 6B Page 25 of 38

EMF-92-104 Revision 2 Page 20

5.7 Effect of Poison Content in Poison Rods

Casmo was used to examine the sensitivity of reactivity on Gd_2O_3 content in the poison rods. When Gd_2O_3 was reduced from a nominal 2.0 wt.% to 1.95 wt.% for case 400-t5.07 reactivity increased from 0.93145 to .93186, an increase of .00041. When Gd_2O_3 was reduced to 1.5 wt.% for this case reactivity increased to .93596, an increase of .004510. These results indicate that assemblies with allowable variations in Gd_2O_3 will remain subcritical by a substantial margin.

5.8 The Effect of Fuel Pellet Diameter

CASMO was used to examine the sensitivity of k-inf to pellet diameter at various amounts of moderation in and between the fuel assemblies. The models used in this study use fuel arrangement PD, shown in figure 2. The U-235 enrichment was 4.5 wt.%. The results are listed in table 11 and clearly show that reducing pellet diameter causes a decrease in k-inf.

Vol. % Water	K-inf for Peilet OD 0.3350*	K-inf for Pellet OD 0.3300*	K-inf for Peilet OD 0.3250"	K-inf for Pellet OD 0.3200*
6	-0.9631	0.9589	0.9590	0.9567
7	0.9672	0.9628	0.9625	0.9599
8	0.9675	0.9629	0.9622	0.9594
9	0.9655	0.9608	0.9598	0.9566
10	0.9619	0.9571	0.9557	0.9524
100	0.7348	0.7322	0.7339	0.7331

TABLE 11 K-INFINITY FOR VARIOUS PELLET DIAMETERS

The maximum pellet diameter including manufacturing tolerances will be less than 0.3356 inches. At optimum moderation CASMO calculates k-inf to be 0.9682 for 4.5 wt.% enriched bundles. Reducing enrichment to 4.0 wt.% reduces k-inf to 0.9352. Adding a .001 inch gap further reduces

EMF-1563 Revision 12A Appendix 6B Page 26 of 38

EMF-92-104 Revision 2 Page 21

k-inf to 0.9350. A Keno-Va model of the no gap case at 4.0 wt.% U-235 produces a k-eff of 0.9341 \pm .0023.

5.9 Discussion of Results

The greatest reactivity for the system occurred with interspersed moderation at about 7 volume percent. Calculations by both CASMO and KENO-V.a computer codes supported this conclusion. A variation in the position of the six poison rods showed that the most reactive configuration with low density interspersed moderator occurred when the poison rods were placed close to the large central water rod. This was due to the increased moderation of the neutrons near the outer rows of the assemblies which made the neutron poison more effective in those positions.

The CASMO calculations at optimum moderation indicated that the highest reactivity occurred with no small water rods. These calculations also indicate that the reactivity decreased when the water rods were placed nearer the perimeter of the assembly and when the number of water rods was increased.

KENO-V.a demonstrated that for the worst credible arrangement and an uranium enrichment of 4.0 Wt.% the calculated k-eff of an infinite system while the fuel assemblies are centered in the basket is 0.9341 \pm .0023. The worst credible arrangement for 260 SP-1 inner containers is a 13x20 array with the fuel assemblies shifted to the outer region of the basket and 18 vol% water as an interspersed moderator. K-eff + 2 σ for this arrangement and condition is 0.9166. Therefore the requirements for a fissile class 1 package are met.

EMF-1563 Revision 12A Appendix 6B Page 27 of 38

EMF-92-104 Revision 2 Page 22

6.0 METHODS VALIDATION

Supplemental benchmarking was performed using experimental data from 15 critical mass experiments. The experiments selected are described in References 3 and 4. The data are rincluded in table 11. The methods in reference 5 were used to calculate the weighted average k-eff and the standard deviation of the bias.

Weighted average k-eff: 1.0035

Bias Standard Deviation: 0.00368

The weight of each k-eff value is proportional to the reciprocal of its variance.

These results demonstrate the average k-effective reported by KENO + 2oyields a k-eff at a conservative 95% confidence level.

EMF-1563 Revision 12A Appendix 6B Page 28 of 38

.

EMF-92-104 Revision 2 Page 23

TABLE 12 BENCHMARK CALCULATION RESULTS KENO-Va WITH 16 GROUP CROSS SECTIONS

Case Number	Calculated k-eff				
	Reference 3 Experiments				
2378	1.00395 ± 0.00376				
2384	1.00037 ± 0.00306				
2388	0.99886 ± 0.00341				
2420	1.00038 ± 0.00367				
2396	0.99443 ± 0.00360				
2402	1.00694 ± 0.00283				
2411	1.01223 ± 0.00286				
2407	1.00647 ± 0.00332	•			
2414	1.00967 ± 0.00327				
	Reference 4 Experiments				
9	1.00092 ± 0.00487				
10	1.00181 ± 0.00412				
11	0.99786 ± 0.00413				
12	0.99885 ± 0.00487	•			
31	1.00442 ± 0.00421				
······································					

٠ :

EMF-1563 Revision 12A Appendix 6B Page 29 of 38

> EMF-92-104 Revision 2 Page 24

7.0 REFERENCES

- 1. Smith, M.H., "Principal Fuel Design Parameters Gundremmingen C, 10x10-8B Lead Assemblies," ANF-91-017(P), March 29, 1991.
- 2. Gerrald, L.D., "Supplemental Application to Certificate of Compliance No. 4986," ANF-88-120, July, 1988.
- 3. Baldwin, M.N., et.al., "Critical Experiments Supporting Close Proximity Water Storage of Power Reactor Fuel", BAW-1484-7, July 1979.
- Bierman, S.R., Durst, B.M., and Clayton, E.D., "Critical Separation Between Subcritical Clusters of 4.31% Enriched UO₂ Rods in Water With Fixed Neutron Poisons", NUREG/CR-0073, May 1978.

5. Marshall, W., Clemson, P.D., Walker, G., "Criticality Safety Criteria", ANS Trans, 35, 278 (1980).

EMF-1563 Revision 12A Appendix 6B Page 30 of 38

EMF-92-104 Revision 2 Page 25

8.0 COMPUTER INPUT LISTINGS

The following is an example of typical computer input for the BONAMI, NITAWL AND KENO V.a computer codes.

BONAMI input for uranium enriched to 4.5 weight percent, gadolinia at 2:0 weight percent and 7 volume percent of interspersed water:

'SHIPPING CASK RA-3 10X10 6Gd RODS, 0.07 IM U4.5 Gd2.0 ' Gd rods clustered around central water col

055 16 15 18 17 155 0 9 26 2R1 0 2** 1.0E-03 1.35 T

355 1456145613456892389678978

4\$\$ 4R92235 4R92238 7R-8016 -40302 3R-1001 -64000 3R-6012 3R-26000

5** 3R1.09163E-03 1.0596E-03 3R2.28741E-02 2.2203E-02 4.79315E-02 2.335903E-03 2R4.79315E-02 4.75857E-02 3.370708E-04 2.134081E-04 4.25181E-02 4.671806E-03 6.741416E-04 4.268162E-03 7.06997E-04 3.92168E-03 3.35578E-03 3.38833E-04 8.35001E-02 7.1451E-02 7.21441E-03 6\$\$123456789 8** 9R2.93E+02 'zone 1 is uc2 interior rods; zone 2 is zr; zone 3 is h2o; 'zone 4 is uc2 edge rods; zone 5 is uc2 facing rods; zona 6 is uc2-gd2o3 poisori interior rods: zone 7 is c steel; zone 8 is mod c steel; zone 9 is dil c steel 9** .36749 2.2791 0.0 .59538 .50642 .34281 1.6657 2.4331 .13749 10\$\$ 9223501 9223504 9223505 9223506 9223801 9223804 9223805 9223806 8016 10 11 12 13 14 15 40302 1001 18 19 64000 6012 22 23 2600007 2600008 2600009 1155 9R0 12** F293.0 Ť

NITAWL input for uranium enriched to 4.50 weight percent, 2.0 weight percent gadolinia and 7 volume percent of interspersed water:

SHIPPING CASK RA-3 10X10 6Gd RODS, 0.07 IM U4.5 Gd2.0
Gd rods clustered around central water rod
0\$\$ 11 12 13 14 18 19 9 0 20
1\$\$ 0 26 5R0 13 2R0 -1 0
T
2\$\$ 9223501 9223504 9223505 9223506
9223801 9223804 9223805 9223806
8016 10 11 12 13 14 15 40302
1001 18 19 64000 6012 22 23 2600007 2600008 2600009

EMF-1563 Revision 12A Appendix 6B Page 31 of 38

EMF-92-104 Revision 2 Page 26

3**

9223501, 293,00 2,0 4,2550E-01 0,79449 1,4255E+03 1.0916E-03 1.0 15.9994 1.6466E+02 1.0 238.0510 1.7392E+02 1.0 1.0 9223504, 293.00 2.0 4.2550E-01 0.49179 3.4908E+02 1.0916E-03 1.0 15,9994 1.6466E+02 1.0 238.0510 1.7392E+02 1.0 1.0 9223505, 293.00 2.0 4.2550E-01 0.58925 3.4908E+02 1.0916E-03 1.0 15.9994 1.6466E+02 1.0 238.0510 1.7392E+02 1.0 1.0 9223506. 293.00 2.0 4.2550E-01 0.78608 3.5476E+02 1.0596E-03 1.0 15,9994 1.6841E+02 1.0 238.0510 1.7392E+02 1.0 1.0 9223801. 293.00 2.0 4.2550E-01 0.79449 6.8031E+01 2.2874E-02 1.0 15.9994 7.8579E+00 1.0 235.0440 5.0109E-01 1.0 1.0 9223804. 293.00 2.0 4.2550E-01 0.49179 1.6659E+01 2.2874E-02 1.0 15.9994 7.8579E+00 1.0 235.0440 5.0109E-01 1.0 1.0 9223805, 293.00 2.0 4.2550E-01 0.58925 1.6659E+01 2.2874E-02 1.0 15,9994 7.8579E+00 1.0 235.0440 5.0109E-01 1.0 1.0 9223806, 293.00 2.0 4.2550E-01 0.78608 1.6930E+01 2.2203E-02 1.0 15.9994 8.0370E+00 1.0 235.0440 5.0109E-01 1.0 1.0 40302 293.00 1.0 6.3510E-02 0.71227 1.9136E+02 4.2518E-02 1.0 0.0000 0.0000E+00 0.0 0.0000 0.0000E+00 0.0 1.0 64000. 293.00 0.0 0.0000E+00 0.78608 5.3170E+02 7.0700E-04 1.0 15.9994 2.5240E+02 1.0 238.0510 2.6066E+02 1.0 1.0 2600007. 293.00 1.0 2.5400E+00 0.14215 1.1551E+01 8.3500E-02 1.0 12.0110 2.2074E-01 1.0 0.0000 0.0000E+00 0.0 1.0 2600008, 293.00 1.0 2.5400E+00 0:18303 1.1851E+01 7.1451E-02 1.0 1.0079 1.9247E-01 1.0 12.0110 2.2074E-01 1.0 1.0 2500009, 293,00 1.0 2.5400E+00 0.27049 3.0377E+01 7.2144E-03 1.0 1.0079 1.2069E+01 1.0 15.9994 1.5847E+00 1.0 1.0 4** 26R2,93E+02

An example folkENO V.a computer input for uranium enriched to 4.5 weight percent, 2.0 weight percent gadolinia and 7 volume percent of interspersed water:

SHIPPING CASK RA-3 10X10 0.07 IM; U4.50 Gd2.00 6 Gd Rods ' no small water cols _ Gd rods clustered near central water col READ PARM GEN=103 NPG=300 PLT=YES TME=570 TEA=2.0 LIB=41 FLX=YES XS1=YES NUB=YES PWT=YES RUN=YES

END PARM

READ MIXT

'KENO5-TYPE MIXING TABLE XSLIB NUCLIDES
MIX= 1
' U(4.50)O2 AT 0.98 OF 10.96 = 10.7408 INTERIOR ROD
9223501 1.091628E-03
9223801 2.287414E-02
8016 4.793154E-02
MIX= 2

ZIRCALLOY AT 6.44 G/CC 40302 4.251812E-02

MIX = 3

WATER AT 0.9982 G/CC X 7.00E-02 VOL FRACT FOR INTERSPERSED MOD

EMF-1563 Revision 12A Appendix 6B Page 32 of 38

```
8016
          2.335903E-03
   1001
          4.671806E-03
MIX = 4
' U(4.50)O2 AT 0.98 OF 10.96 = 10.7408 EDGE ROD
   9223504 1.091628E-03
   9223804 2.287414E-02
   8016 4.793154E-02
MIX= 5
 U(4.50)O2 AT 0.98 OF 10.96 = 10.7408 FACING ROD
   9223505 1.091628E-03
   9223805 2.287414E-02
   8016 4.793154E-02
MIX = 6
' U(4.50)02 - Gd2O3(2.0) AT 0.98 THEO DENSITY POISON ROD
' UO2 AT (0.98)[(0.980/10.96)]/[(0.980/10.96)+(0.020/7.400)]=0.951247
   9223506 1.059600E-03
   9223806 2.220302E-02
   8016 4.758573E-02
' Gd2O3 AT (0.98) [(0.020/7.400)]/[(0.980/10.96)+(0.020/7.400)] =0.02875254
   64000 7.069965E-04
MIX = 7
 CARBON STEEL AT 7.8212 G/CC, 100%
   6012 3.921683E-03
  2600007 8.350010E-02
MIX = 8
 CARBON STEEL & WATER, 85.57% CS, 14.43% IM
 INTERSPERSED MODERATION VOL FR=(0.1443) (VF OF MATL 3=0.070)=0.010101
   8016 3.370708E-04
   1001 6.741416E-04
' CARBON STEEL: AT 0.8557 VOL FR
   6012 3.355784E-03
   2600008 7.145103E-02
MIX = 9
 CARBON STEEL & WATER, 8.64% CS, 91.36% IM
 INTERSPERSED MODERATION VOL FR=(0.9136) (VF OF MATL 3=0.070) =0.063952
   8016 2.134081E-03
   1001
         4.268162E-03
' CARBON STEEL AT 0.0864 VOL FR
   6012 3.388334E-04
   2600009 7.214409E-03
RESM 1 4 1 4 5 6
RESM 2 1 2
RESM 4 4 4 1 5 6
RESM 5 4 5 1 4 6
RESM 6 4 6 1 4 5
RESM 7 1 7
RESM 8 1 8
RESM 9 1 9
END MIXT
READ GEOM
UNIT 1
```

ADD MODERATION WATER AT 0.511024" PITCH CUBO 3 1 4P0.64900 2P225.58 UNIT 5 COM=" 10X10 BUNDLE IN LEFT BASKET [(PTTCH)(N-1) + (CLAD OD)]/2 = [(1.298*9) + 0.983]/2 = 6.3325 CMUSE (PITCH)(N)/2 = [(1.298*10)/2] = 6.49ARRAY 1 2R-6.49 -225.58 $[(SHELL, SIZE)-(2)(THICKNES)]/2 = {[(7)-(2*0.0598)]/2}*(2.54) = 8.7381 CM$ CUBO 3 1 4P8.7381 2P225.5801 ADD 0.0598 INCH OF PERFORATED STEEL CUBO 8 1 4P8.89 2P225.5801

COM="UO2-GD203 FUEL XXXX ACT FUEL LNGTH AS OX;INTERIOR POISON UO2-GD203 ROD" ' FUEL LENGTH XXXXX+0.355=XXXXXX'; DIAM 0.33504 [na '+0.0005=0.33554']" CYLI 6 1 0.42550 2P225.58 ' CLAD INSIDE DIAM 0.3370 [na '+0.0015=0.3385']" CYLI 0 1 0.42799 2P225.58 ' CLAD OUTSIDE DIAM (ZRALLOY-2) 0.3870 [na '-0.002=0.3868']" CYLI 2 1 0.49150 2P225.58 ' ADD MODERATION WATER AT 0.511024" PITCH

' CLAD INSIDE DIAM 0.3370 [na '+0.0015=0.3385']" CYLI 0 1 0.42799 2P225.58 ' CLAD OUTSIDE DIAM (ZRALLOY-2) 0.3870 [na '-0.002=0.3868']" CYLI 2 1 0.49150 2P225.58 ' ADD MODERATION WATER AT 0.511024" PITCH CUBO 3 1 4P0.64900 2P225.58

CUBO 3 1 4P0.64900 2P225.58 UNIT 3. COM=" UO2 FUEL XXX.XX ACT FUEL LNGTH AS OXIDE;EDGE UO2 ROD FACING OTHER UNIT" ' FUEL LENGTH XXX.XX+0.355=XXX.XXX"; DIAM 0.33504 [na '+0.0005=0.33554']" CYLI 5 1 0.42550 2P225.58 ' CLAD INSIDE DIAM 0.3370 [na '+0.0015=0.3385']"

COM=" UO2 FUEL XXXXX ACTIVE FUEL LENGTH AS OXIDE EDGE UO2 ROD" ' FUEL LENGTH XXXXX+0.355=XXXXXXX'; DIAM 0.33504 [na '+0.0005=0.33554']" CYLI 4 1 0.42550 2P225.58 ' CLAD INSIDE DIAM 0.3370 [na '+0.0015=0.3385']" CYLI 0 1 0.42799 2P225.58 ' CLAD OUTSIDE DIAM (ZRALLOY-2) 0.3870 [na '-0.002=0.3868']" CYLI 2 1 0.49150 2P225.58 ' ADD MODERATION WATER AT 0.511024" PITCH

UNIT 2

UNIT 4

FUEL LENGTH XXX.XX+0.355=XXX.XXX"; DIAM 0.33504 [na '+0.0005=0.33554']"
CYLI 1 0.42550 2P225.58
CLAD INSIDE DIAM 0.3370 [na '+0.0015=0.3385']"
CYLI 0 1 0.42799 2P225.58
CLAD OUTSIDE DIAM (ZFALLOY-2) 0.3870 [na '-0.002=0.3868']"
CYLI 2 1 0.49150 2P225.58
ADD MODERATION WATER AT 0.511024" PITCH
CUBO 3 1 4P0.64900 2P225.58

COM=" UO2 FUEL XXX.XX ACTIVE FUEL LENGTH AS OXIDE INTERIOR UO2 ROD"

EMF-1563 Revision 12A Appendix 6B Page 33 of 38

' 6 GD RODS IN COL-ROW: 6-4 7-4 7-5 4-6 4-7 5-7

ARA=1 NUX=10 NUY=10 NUZ=1

READ ARRAY .

END GEOM -

THIS IS MULTI-UNIT ARRAY WITH SPECULAR REFLECTION ' ATTEMPT TO REDUCE COLLISIONS WITH BOUNDARY ARRAY 4 3R0.0

GLOBAL **UNIT 12**

COM=" ARRAY OF INNERS

UNIT 11 COM=" INTERSPERSED WATER 'WATER HOLE' . CUBO 3 1 4P0.64900 2P225.58

UNIT-10 COM=" 1 INNER CONTAINER 18 X 11 X 177.622 INCHES ARRAY 3 -22.86 -13.97 -225.58 ADD 0.0598 INCH WALLS OF CARBON STEEL REPL 7 1 6R0.1519 1

UNIT 9 COM=" 2X2 INCH MODERATION REGIONS AT CORNERS 3 1 4P2.54 2P225.5801 CUBO

UNIT 8 COM=" ANGLES & SPACING BENEATH & ABOVE BASKETS ANGLE STEEL SMEARED IN 3.8891 INCHES X 2 INCHES VOLUME CUBO 9 1 2P4.9392 2P2.54 2P225.58 7 INCHES X 2 INCHES TOTAL SIZE CUBO 3 1 2P8.89 2P2.54 2P225,5801

UNIT 7 COM=" SPACING & STEEL ANGLE BESIDE BASKET ANGLE STEEL SMEARED IN 2 INCHES X 3.8891 INCHES VOLUME 2 INCHES X (7-3.8891=3.111) INCHES OF WATER DIVIDED INTO 2 PARTS CUBO 9 1 2P2.54 2P4.9391 2P225.58 2 INCHES X 7 INCHES TOTAL SIZE CUBO 3 1 2P2.54 2P8.89 2P225.5801

ARRAY -225.58 2 2R-6.49 $[(SHELL SIZE)-(2)(THICKNES)]/2 = {[(7)-(2*0.0598)]/2}*{2.54} = 8.7381 CM$ CUBO 3 1 4P8.7381 2P225.5801 ADD 0.0598 INCH OF PERFORATED STEEL CUBO 8.1 4P8.89 2P225.5801

[(PITCH)(N-1)+(CLAD OD)]/2 = [(1.298+9)+0.983]/2 = 6.3325 CMUSE (PITCH)(N)/2 = [(1.298 + 10)/2] = 6.49

COM=' 10X10 BUNDLE IN RIGHT BASKET

UNIT 6

EMF-1563 Revision 12A Appendix 6B Page 34 of 38

EMF-1563 Revision 12A Appendix 6B Page 35 of 38

EMF-92-104 Revision 2 Page 30

' no SMALL WATER RODS IN COL-ROW 6-4 4-5 7-6 5-7 FILL

'COL1 2 3 4 5 6 7 8 9 10

2	2	2	2	2	2	2	2	2	2	
2	1	1	1	1	1	1	1	1	3	
2	1	1	1	1	1	1	1	1	3	
2	1	1	1	1	4	4	1	1	3	•
2	1	1	1	11	11	- 4	1	1	3	
2	1	1	4	11	11	1	1	1	3	
2	1	1	4	4	1	1	1	1.	3	
2	1	1	1	1	1	1	1	1	3	
2	1	1	1	1	1	1	1	1	3	
2	2	2	2	2	2	2	2	2	2	END FILL

ARA=2 NUX=10 NUY=10 NUZ=1 '6 GD RODS IN COL-ROW 6-4 7-4 7-5 4-6 4-7 5-7 ' no SMALL WATER RODS IN COL-ROW 6-4 4-5 7-6 5-7 FILL 'COL 1 2 3 4 5 6 7 8 9 10

3 1 1 1 1 1 1 1 1 2 3 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 END FILL ARA=3 NUX=4 NUY=3 NUZ=1

FILL 9889 7567 9889 END FILL

ARA=4 NUX=5 NUY=5 NUZ=1 FILL F10 END FILL

END ARRAY

READ START NST=1 END START

READ BOUNDS ALL=SPECULAR END BOUNDS

READ PLOT TTL=" FUEL CASK X-Y SECTION AT Z=10 NCH='.IZ+OFPSMD' ' VOID INNER ZR IMOD OUT FACING POISON STEEL MOD STEEL' DILUTE STEEL XUL= 0.0 YUL=28.25 ZUL=10.0 XLR=46.03 YLR= 0.0 ZLR=10.0

EMF-1563 Revision 12A Appendix 6B Page 36 of 38

EMF-92-104 Revision 2 Page 31

UAX=1.0 VDN=-1.0 NAX=130 LPI=6 END

TTL=" LEFT HALF XUL= 0.0 YUL=28.25 ZUL=10.0 XLR=23.02 YLR= 0.0 ZLR=10.0 END

TTL='LOWER RIGHT QUADRANT OF LEFT HALF ' XUL= 0.0 YUL=14.13 ZUL=10.0 XLR=11.51 YLR= 0.0 ZLR=10.0 END

TTL="UPPER LEFT QUADRANT OF LEFT HALF " XUL=0.0 YUL=28.25 ZUL=10.0 XLR=11.51 YLR=14.13 ZLR=10.0 END PLOT END DATA END KENO END

EMF-1563 Revision 12A Appendix 6B Page 38 of 38

EMF-92-104 Revision 2 Issue Date:

CRITICALITY SAFETY ANALYSIS

FOR SHIPMENT OF SPC 10X10-8B

FUEL ASSEMBLIES IN THE SP-1 SHIPPING CONTAINER

DISTRIBUTION

- J. B. Edgar (7)
- C. D. Manning
- T. C. Probasco
- Document Control (5)

ISSUED IN FRA-ANP ON-LINE DOCUMENT SYSTEM DATE: 2-5-04

EMF-1563 Revision 12A Appendix 6C Page 1 of 24

Appendix 6C

And the second s

tan sa

201-103 201-103

SIEMENS POWER CORPORATION SUPPLEMENTAL APPLICATION TO ADD GADOLINIA - BEARING LOOSE RODS TO CERTIFICATE OF COMPLIANCE 9248

EMF-1563 Revision 12A Appendix 6C Page 2 of 24

EMF-1563 Supplement 3

Supplemental License Application for Siemens Power Corporation Model SP-1 and SP-2 Shipping Containers Certificate of Compliance No. 9248 Docket No. 71-9248

December 1994

EMF-1563 Revision 12A Appendix 6C Page 3 of 24

Issue Date: 12/23/94

SUPPLEMENTAL LICENSE APPLICATION FOR SIEMENS POWER CORPORATION MODEL SP-1 AND SP-2 SHIPPING CONTAINERS

Certificate of Compliance No. 9248 Docket No. 71-9248

Siemens Power Corporation Nuclear Division Richland, WA

EMF-1563 Revision 12A Appendix 6C Page 4 of 24

Issue Date: 12/23/94

SUPPLEMENTAL LICENSE APPLICATION FOR SIEMENS POWER CORPORATION MODEL SP-1 AND SP-2 SHIPPING CONTAINERS

Certificate of Compliance No. 9248 Docket No. 71-9248

Prepared by:

Accepted by:

Concurred by:

Approved by:

J. B. Eegar/Staff Engineer, Licensing Regulatory Compliance

R. L. Feuerbacher, Manager Materials and Scheduling

A. Reparaz, Manager Fuel Design

L. J. Maas, Manager Regulatory Compliance

Date

12/22/94

Date

12/22/94

Date

Date

EMF-1563 Revision 12A Appendix 6C Page 5 of 24

PAGE

SUPPLEMENTAL LICENSE APPLICATION FOR SIEMENS POWER CORPORATION MODEL SP-1 AND SP-2 SHIPPING CONTAINERS

Certificate of Compliance No. 9248 Docket No. 71-9248

TABLE OF CONTENTS

SECTION

1.0		1
2 <u>.</u> 0	SUMMARY	1
3.0	FISSILE MATERIAL DESCRIPTION	1
4.0	PACKAGING DESCRIPTION	2
5.0	CALCULATION METHODOLOGY AND VALIDATION	2 2
6.0	CALCULATION RESULTS 6.1 Infinite Arrays of Edge-to-Edge Rods 6.2 Infinite Arrays of Spaced Rods	8 8 14
7.0	REFERENCES	15
8.0	INPUT LISTING	16

EMF-1563 Revision 12A Appendix 6C Page 6 of 24

1.0 INTRODUCTION

This application is made as an additional supplement to document EMF-1563, "Consolidated License Application for Siemens Power Corporation Model SP-1 and SP-2 Shipping Containers,"originally submitted in May 1993, revised in December 1993, and supplemented in September and October 1994. The purpose of this application is to add gadolinia-bearing fuel rods to the allowable contents in Section 5(b)(1) of NRC Certificate of Compliance 9248 and to add a stainless steel box to house those rods inside the SP-1 and SP-2 shipping containers in Section 5(a).

2.0 SUMMARY

This document provides demonstration that the following additions to Section 5 of Certificate of Compliance No. 9248 meets the requirements in 10 CFR Part 71.

5(a)(5) Gadolinia Rod Container.

A 10 gauge stainless steel box with a flanged lid and end closure.

5(b)(1)(vi) UO₂ fuel rods with a maximum U-235 enrichment of 5.0 wt.% and a minimum gadolinia content of 1.0 wt%. The maximum pellet diameter is 0.5 inch and the maximum rod length is 169" inches. The rods may be clad with zircaloy, steel, or aluminum. Rods meeting the above requirements may placed into the "Gadolinia Rod Container" and shipped in the SP-1 or SP-2 in lieu of one or two fuel assemblies. Fissile Class I is authorized for shipping Gadolinia Rod Containers.

Criticality safety was demonstrated by modeling infinite arrays of unclad fuel rods. The fuel was 5.0% enriched UO_2 with 0.75 wt.% gadolinia (Gd_2O_3). The fuel density modeled was 100% of theoretical. The maximum k-inf calculated with 75% of the minimum specified gadolinia content is about 0.909. Finite arrays of packages with the spacings and structural materials actually in the packages would be less reactive.

3.0 FISSILE MATERIAL DESCRIPTION

The criticality safety calculations were based on the following very conservative set of conditions and property assumptions:

- a. An infinite array of infinite-length fuel rods was modeled. The modeled rods were unclad and there was no steel in the model.
- b. All rods were modeled at a 5.0% enrichment and with 75% of minimum 1.0 wt.% gadolinia specified.
- c. The spacing and interspersed moderation within the infinite rod array were evaluated to determine the combination for peak k-inf.

EMF-1563 Revision 12A Appendix 6C Page 7 of 24

The theoretical density of UO₂ is 10.96 grams per cc. The theoretical density of gadolinia is 8.31 grams per cc. When gadolinia is added to UO₂, the theoretical density of the twophase mixture or of a solid solution is lower than 10.96 grams per cc. The density modeled in these calculations is 10.9305 grams per cc which is the estimated theoretical density for UO₂ with 0.75 wt.% Gd₂O₃.

4.0 PACKAGING DESCRIPTION

Each SP-1 and SP-2 can contain up to two BWR assemblies or two Gadolinia Rod Containers.

The SP-1 and SP-2 are composed of a steel "inner container" and a wooden "outer container". The inner containers contain two "baskets" made of 0.0598" thick carbon steel with 0.75" diameter holes in a 1.75" square pitch pattern. The baskets are nominally 7"x7" in cross section. The two baskets are placed edge-to-edge in the center of the nominally 18" wide by 11" high steel inner container (0.0598" carbon steel walls). There is a 2" thick annulus between the basket wall and the inner container wall. In this annulus are six carbon steel angles (2.8125"x2.8125"x0.125" nominal).

To demonstrate criticality safety of the package containing Gadolinia Rod Containers, infinite arrays of close-packed gadolinia rods were modeled. All structural members and rod cladding were omitted from the model.

5.0 CALCULATION METHODOLOGY AND VALIDATION

The codes, cross sections, and other data from SCALE 4.2 (1) were used. The "CSASIX" option was used with 16, 27, 123, and 218 group cross sections for most calculations. The codes executed, in sequence, are: DRIVER, CSAS25, BONAMI, NITAWL, and XSDRN.

5.1 Validation/Benchmarking

Additional critical experiments (Reference 3) with gadolinium were modeled. The experiments determined the critical number of UO_2 fuel rods with gadolinium dissolved in the water between the rods. The rods were in a triangular-pitched array in a cylindrical vessel with water reflection on all sides of the approximately cylindrical-shaped rod array. Three rod pitches were used for the 14.40 mm OD rods: 22.86mm, 27.94mm, and 33.02mm. The experiments were modeled using cell-weighted cross sections simulating the unit cell. A cylindrical fuel region with a cross sectional area equal to that of the reported critical number of rods was modeled with full water reflection. The cases were replicated with the 16, 27, 123, and 218 group cross section libraries in SCALE. The calculation results are tabulated and plotted below.

Ten experiments were modeled: seven contain gadolinium and three are water-only reference cases. The average and standard deviations of the calculation bias, based only on the seven cases with gadolinium, are in the following table. Bias corrections will not cause calculated k-inf values to exceed 0.95.

d.

EMF-1563 Revision 12A Appendix 6C Page 8 of 24

.

CALCULATION BIAS FOR CASES WITH GADOLINIUM

Cross Section Library (Energy Groups)	Calculation Bias Average	Calculation Bias Standard Deviation		
` <u>16</u>	0.0001875	0.00774		
27	0.010864	0.002430		
123	0.013481	0.005322		
218	0.011443	0.001899		

Experiment No.	Triangular Lattice Pitch, mm	Gd Concentration, Grams/liter	16-Group k-eff		27-Group k-eff		123-Group k-eff		218 Group k-eff	
			Avg.	Std.Dev.	Avg.	Std.Dev.	Avg.	Std.Dev.	Avg.	Std.Dev.
001	22.86	0	0.98242	0.00251	0.98663	0.00291	0.98478	0.00283	0.98083	0.00267
009		0.0722	0.9891	0.00274	0.99236	0.00237	0.99762	0.00257	0.99304	0.00265
010		0.145	0.99793	0.00248	0.99134	0.00252	0.99013	0.0025	0.9892	0.00232
011		0.213	0.99121	0.00231	0.99164	0.00202	0.99279	0.00259	0.99142	0.00232
012	27.94	0 .	0.99701	0.00277	0.98487	0.0025	0.98348	0.00236	0.99262	0.00231
016		0.0547	0.99769	0.00254	0.98993	0.00198	0.98402	0.00207	0.99019	0.00219
017		0.1169	0.99698	0.00226	0.98901	0.00201	0.98224	0.0023	0.98669	0.00196
018	33.02	0	1.0068	0.00215	0.98841	0.00211	0.98877	0.00223	0.98967	0.00235
023		0.0257	1.01088	0.00211	0.98957	0.00223	0.98482	0.00213	0.98843	0.00201
024		0.044	1.00728	0.00207	0.98352	0.00177	0.98126	0.00192	0.98415	0.00199

EMF-1563 Revision 12A Appendix 6C Page 9 of 24

EMF-1563 Revision 12A Appendix 6C Page 10 of 24

EMF-1563 Revision 12A Appendix 6C Page 11 of 24

EMF-1563 Revision 12A Appendix 6C Page 12 of 24

·

.

EMF-1563 Revision 12A Appendix 6C Page 13 of 24

6.0 CALCULATION RESULTS

6.1 Infinite Arrays of Edge-to-Edge Rods

Infinite arrays of unclad edge-to-edge rods in a triangular-pitched array were modeled with fuel diameters in the range 0.1" to 0.5" and with interspersed water densities in the range 0.1 to 100 volume %.

As shown in Table 6.1 and the following plots, the k-inf results with 16 and 123 group cross sections are higher than those with 27 or 218 group cross sections.

With 16 or 123 group cross sections, the peak k-inf was calculated with about 80 to 90 volume% water between the edge-to-edge rods, which indicates that increased spacings, including a square pitched arrangement, with full density water would result in a lower k-inf.

With 27 and 218 group cross sections, the highest k-inf was calculated with 100 volume % water between the edge-to-edge rods, which could mean that increased spacings between rods might
EMF-1563 Revision 12A Appendix 6C Page 14 of 24

result in slightly higher k-inf values. However, there appears to be little potential for exceeding the values calculated with 16/123 group cross sections. Spacing effects were evaluated in later sections.

. Star

The diameter effect is seen to be small but the highest k-inf was calculated with the largest fuel diameter.

EMF-1563 Revision 12A Appendix 6C Page 15 of 24

TABLE 6.1 Infinite Array of Unclad Rods 5.0% Enriched, 100% TD, 0.75 wt% Gadolinia Edge-to-edge rods, Triangular Pitch

Rod	Interspersed	k-inf			
Diameter, inch	Water, Vol.%	16-grp	27-grp	123-grp	218-grp
	100	0.902341	0.87838	0.905532	0.871947
	90	0.90373	0.876979	0.905889	0.869572
	85	0.904165	0.876043	0.905845	0.868088
•	80	0.904407	0.874934	0.905629	0.866382
1	70	0,904221	0.872153	0.904588	0.862221
0.1	60	0,902972	0.868531	0.902543	0.856882
0.1	40	0.896149	0.858266	0.894008	0.841549
	30	0.889767	0.85135	0.886343	0.830759
	20	0.880665	0.843078	0.875085	0.817148
	10	0.868104	0.833419	0.858495	0.799998
	1	0.853174	0.823744	0.836611	0.780924
:	0.1	0.851473	0.822747	0.833931	0.778812
· · · · · · · · · · · · · · · · · · ·	100	0.903084	0.879937	0,907193	0.873265
	90	0,904322	0.878287	0.907278	0.870701
	85	0.904691	0.87723	0.907102	0.869123
	80	0.904869	0.876005	0.906756	0.867326
:	70	0.904569	0.873	0.90547	0.862987
0.2	60	0,903223	0.869174	0,903199	0.857482
0.5	40	0.896257	0.858575	0.894297	0.841863
	. 30	0.88983	0.851533	0,886502	0.830957
	20	0.880696	0.843165	0.875154	0.817252
	10	0.868114	0,833443	0.858513	0.800031
	1	0.853174	0.823744	0.836611	0.780924
	0.1	0.851473	0.822747	0.833931	0.778812
	100	0,903746	0.881439	0,908798	0,874614
	90	0.904865	0.879574	0.908643	0,871871
	85	0.905177	0,878409	0.908347	0.870205
	80	0.905302	0.877077	0.907883	0.868318
	70	0.904903	0.873865	0.906365	0.863803
0.5	60	0.90347	0.869842	0.903876	0.858129
	40	0.896368	0.858904	0.894605	0.842207
	30	0.889895	0.851731	0.886674	0.831176
	20	0.88073	0.843261	0.87523	0.817367
	10	0.868125	0.833471	0.858532	0.800067
	1	0.853174	0.823745	0.836611	0.780925
	, 0.1	0.851473	0.822747	0.833931	0.778812

EMF-1563 Revision 12A Appendix 6C Page 16 of 24

.

EMF-1563 Revision 12A Appendix 6C Pagu 18 of 24

6.2 Infinite Arrays of Spaced Rods

Infinite arrays of unclad rods in a triangular-pitched array were modeled with various spacings (rod pitches). All cases were modeled with the most reactive fuel diameter (0.5") and with 10 volume % interspersed water. The low water density model was used to make the system less sensitive to changes in the rod pitch.

The calculation results are in Table 6.2. The peak k-inf in these cases is about 0.905-0.907 for 16 and 123 group cross sections, which agrees well with the peak in Table 6.1. The peak with 27 and 218 group cross sections is about 0.882 and 0.878, respectively, which is only slightly higher than the peaks in Table 6.1.

0.5" Diam	5.0% leter Ro	6 Enriched ds, 10 Voli	, 100% TD, ume % Inter	nciad Roo 0.75 wt% spersed	Gadolin Water, T	ia Tiangular	Pitch
	Rod		· k	-inf			
•	. –						

TABLE 6.2

N ~((1))					
16-Grp	27-Grp	123-Grp	218-Grp		
0.868125	0.833471	0.858532	0.800067		
0.89167	0.853524	0.888732	0.834125		
0.902541	0.868143	0.902394	0.856084		
0.90466	0.877465	0.907404	0.869538		
0.900607	0.882038	0.907127	0.876779		
0.879988	0.879181	0.896181	0.87773		
0.850797	0.863824	0.875447	0.865624		
	16-Grp 0.868125 0.89167 0.902541 0.90466 0.900607 0.879988 0.850797	16-Grp27-Grp0.8681250.8334710.891670.8535240.9025410.8681430.904660.8774650.9006070.8820380.8799880.8791810.8507970.863824	16-Grp27-Grp123-Grp0.8681250.8334710.8585320.891670.8535240.8887320.9025410.8681430.9023940.904660.8774650.9074040.9006070.8820380.9071270.8799880.8791810.8961810.8507970.8638240.875447		

Additional cases with spaced rods with full density water were modeled to verify that the peak k-inf is as shown in Table 6.2. These additional calculation results are in Table 6.3.

TABLE 6.3

Infinite Array of Unclad Rods 5.0% Enriched, 100% TD, 0.75 wt% Gadolinia 0.5" Diameter Rods, 100 Volume % Interspersed Water, Triangular Pitch

Rod	k-inf					
Inch	16-Grp	27-Grp	123-Grp	218-Grp		
0.50	0.903746	0.881439	0.908798	0.874614		
0.505	0.898959	0.882972	0.906804	0.877998		
0.51	0.892340	0.882574	0.903356	0.879100		
0.515	0.884383	0.880535	0.898719	0.878394		
0.52	0.875667	0.877173	0.893161	0.876259		
0.53	0.857389	0.867453	0.880011	0.868775		

EMF-1563 Revision 12A Appendix 6C Page 20 of 24

- 7.0 REFERENCES
- 1. NUREG/CR-0200: SCALE: A MODULAR CODE SYSTEM FOR PERFORMING STANDARDIZED COMPUTER ANALYSES FOR LICENSING EVALUATION
- 2. NUREG/CR-0073: "Critical Separation Between Subcritical Clusters of 4.31 wt% Enriched UO, Rods in Water with Fixed Neutron Poisons"
- 3. Lloyd, R.C., Durst, B.M., and Clayton, E.D.: "Effect of Soluble Neutron Absorbers on Criticality of Low U-235 Enriched UO₂ Lattices", <u>Nuclear Science and Engineering: 71, 164-169 (1979)</u>

EMF-1563 Revision 12A Appendix 6C Page 21 of 24

8.0 INPUT LISTING

The data in Table 6.1 were calculated using inputs such as that listed below.

=csasix inf array of gad rods hans latt

uo2 1 den=10.9305 0.9925 293. 92235 5.0 92238 95.0 end arbm-gd2o3 10.9305 2 0 1 0 64000 2 8016 3 1 0.0075 293 end

h2o 21.0293 end

end comp ' 0.5" pellet diam, 0.5"pitch tria 1.27 1.27 1 2 end end =csasix inf array of gad rods hans latt

uo2 1 den=10.9305 0.9925 293. 92235 5.0 92238 95.0 end arbm-gd2o3 10.9305 2 0 1 0 64000 2 8016 3 1 0.0075 293 end

h2o 2 0.9 293 end

end comp ' 0.5" pellet diam, 0.5"pitch tria 1.27 1.27 1 2 end end =csasix inf array of gad rods hans latt

uo2 1 den=10.9305 0.9925 293. 92235 5.0 92238 95.0 end arbm-gd2o3 10.9305 2 0 1 0 64000 2 8016 3 1 0.0075 293 end

h2o 2 0.85 293 end

end comp ' 0.5" pellet diam, 0.5"pitch tria 1.27 1.27 1 2 end end =csasix inf array of gad rods hans latt

uo2 1 den=10.9305 0.9925 293. 92235 5.0 92238 95.0 end arbm-gd2o3 10.9305 2 0 1 0 64000 2 8016 3 1 0.0075 293 end

h2o 2 0.8 293 end

EMF-1563 Revision 12A Appaadix 6C Page 22 of 24

end comp ' 0.5" pellet diam, 0.5"pitch tria 1.27 1.27 1 2 end end =csasix inf array of gad rods hans latt

uo2 1 den=10.9305 0.9925 293. 92235 5.0 92238 95.0 end arbm-gd2o3 10.9305 2 0 1 0 64000 2 8016 3 1 0.0075 293 end

h2o 2 0.7 293 end

end comp ' 0.5" pellet diam, 0.5"pitch tria 1.27 1.27 1 2 end end =csasix inf array of gad rods hans latt

uo2 1 den=10.9305 0.9925 293. 92235 5.0 92238 95.0 end arbm-gd2o3 10.9305 2 0 1 0 64000 2 8016 3 1 0.0075 293 end

h2o 2 0.6 293 end

end comp ' 0.5" pellet diam, 0.5"pitch tria 1.27 1.27 1 2 end end =csasix inf array of gad rods hans latt

uo2 1 den=10.9305 0.9925 293. 92235 5.0 92238 95.0 end arbm-gd2o3 10.9305 2 0 1 0 64000 2 8016 3 1 0.0075 293 end

h2o 2 0.4 293 end

end comp ' 0.5" pellet diam, 0.5"pitch tria 1.27 1.27 1 2 end end =csasix inf array of gad rods hans latt

uo2 1 den=10.9305 0.9925 293. 92235 5.0 92238 95.0 end arbm-gd2o3 10.9305 2 0 1 0 64000 2 8016 3 1 0.0075 293 end

h2o 2 0.3 293 end

EMF-1563 Revision 12A Appendix 6C Page 23 of 24

end comp ' 0.5" pellet diam, 0.5"pitch tria 1.27 1.27 1 2 end end =csasix inf array of gad rods hans latt

uo2 1 den=10.9305 0.9925 293. 92235 5.0 92238 95.0 end arbm-gd2o3 10.9305 2 0 1 0 64000 2 8016 3 1 0.0075 293 end

h2o 2 0.2 293 end

end comp ' 0.5" pellet diam, 0.5"pitch tria 1.27 1.27 1 2 end end =csasix inf array of gad rods hans latt

uo2 1 den=10.9305 0.9925 293. 92235 5.0 92238 95.0 end arbm-gd2o3 10.9305 2 0 1 0 64000 2 8016 3 1 0.0075 293 end

h2o 2 0.1 293 end

end comp ' 0.5" pellet diam, 0.5"pitch tria 1.27 1.27 1 2 end end =csasix inf array of gad rods hans latt

uo2 1 den=10.9305 0.9925 293. 92235 5.0 92238 95.0 end arbm-gd2o3 10.9305 2 0 1 0 64000 2 8016 3 1 0.0075 293 end

h2o 2 0.01 293 end

end comp ' 0.5" pellet diam, 0.5"pitch tria 1.27 1.27 1 2 end end =csasix inf array of gad rods hans latt

uo2 1 den=10.9305 0.9925 293. 92235 5.0 92238 95.0 end arbm-gd2o3 10.9305 2 0 1 0 64000 2 8016 3 1 0.0075 293 end

h2o 2 0.001 293 end

end comp ' 0.5" pellet diam, 0.5"pitch tria 1.27 1.27 1 2 end end

ISSUED IN FRA-ANP ON-LINE DOCUMENT SYSTEM DATE: 2-5-04 EMF-1563 Revision 12A Appendix 6D Page 1 of 108

Appendix 6D

and the second second

NE.

and the second

1. Bada - 110

SIEMENS POWER CORPORATION SUPPLEMENTAL APPLICATION TO ADD 10X10 FUEL ASSEMBLIES TO CERTIFICATE OF COMPLIANCE 9248

EMF-1563, Sup. 1 Revision 1

Supplemental License Application For Siemens Power Corporation Model SP-1 and SP-2 Shipping Containers

Certification of Compliance No. 9248 Docket No. 71-9248

March 1995

And a contract of the second

19. A.L.

N.W.

1 11 1

Siemens Power Corporation

EMF-1563 Revision 12A Appendix 6D Page 3 of 108

Issue Date: 3/14/95

SUPPLEMENTAL LICENSE APPLICATION FOR SIEMENS POWER CORPORATION MODEL SP-1 AND SP-2 SHIPPING CONTAINERS

Certificate of Compliance No. 9248 Docket No. 71-9248

Siemens Power Corporation Nuclear Division Richland, WA

EMF-1563 **Revision 12A** EMF-1563 Appendix 6D Page 4 of 108

Issue Date: 3/14/95

SUPPLEMENTAL LICENSE APPLICATION FOR **SIEMENS POWER CORPORATION MODEL SP-1 AND SP-2 SHIPPING CONTAINERS**

Certificate of Compliance No. 9248 Docket No. 71-9248

1a de

Prepared by:

Accepted by:

R. L. Feuerbacher, Manager Materials and Scheduling

Regulatory Compliance

J. B. Edgar, Staff Engineer, Licensing

A. Reparaz, Manage Fuel Design

Approved by:

Concurred by:

CDT

L. J. Maas, Manager **Regulatory Compliance**

<u> 3/10/95</u> Date

3/14/95

Date

3/10/95 Date

3/10/95 Date

EMF-1563 EMF-1563 Revision 12A Appendix 6D Page 5 of 108

SUPPLEMENTAL LICENSE APPLICATION FOR SIEMENS POWER CORPORATION MODEL SP-1 AND SP-2 SHIPPING CONTAINERS

Certificate of Compliance No. 9248 Docket No. 71-9248

TABLE OF CONTENTS

SECTION

<u>PAGE</u>

. 1.0	INTRODUCTION
	1.2 Scope of Analysis 1 1.3 Summary of Conclusions 1
2.0	PACKAGE AND MODEL DESCRIPTION
3.0	ANALYTICAL METHODOLOGY 2 3.1 Benchmarking 3
4.0	ANALYSIS 11 4.1 Flooded Conditions 12 4.2 Low Density Interspersed Moderation 44 4.3 Normal Condition Arrays 74
5.0	REFERENCES

EMF-1563 Revision 12A Appendix 6D Page 6 of 108

1.0 INTRODUCTION

1.1 Purpose

This document is provided in support of the Revised Supplemental Application To Certificate of Compliance No. 9248 dated March 1995. In that application, an additional category was proposed for Section 5(b)(1) of the Certificate. Calculation descriptions and results are provided to demonstrate that the additional categories meet all criticality safety requirements in 10 CFR Part 71.

1.2 Scope of Analysis

The existing four categories in Section 5(b)(1) of the Certificate are unchanged. A new fuel shipment category is added to Section 5(b)(1) for 10x10 assemblies.

1.3 Summary of Conclusions

The following new category could be added to the Certificate of Compliance since it meets all requirements specified in 10 CFR Part 71. Shipping shims are authorized in the category described.

5(b)(1)(v)

. !

UO, fuel assemblies with maximum U-235 enrichment (wt.%) constraints as follows: Perimeter Rods: 4.0%; UO2-Gd2O3 ("Gadolinia") Rods: 5.0%; All other Interior Rods: 4.0% average and no rod shall exceed 5.0%. Each assembly is composed of a 10x10 array of fuel rods and water rods. A water channel is required in the central 3x3 rod positions. Any number of water rods in any arrangement is permitted in addition to the 3x3 water channel. The maximum fuel dimensions are 5.0" by 5.0" by 174". The maximum pellet diameter is 0.35" and the minimum clad thickness is 0.018". Each assembly shall include at least twelve rods with at least 2.0 wt.% gadolinia in all axial regions with enriched pellets. At least eight of the twelve gadolinia rods shall be located in rows 2 and 9 and columns 2 and 9 in a pattern symmetric about one of the assembly diagonals. The nominal diameter of the gadolinia pellets shall be not less than that of the UO₂ (nongadolinia) pellets. Fissile Class II is authorized with a Minimum Transport Index of 1.0. Polyethylene shims with a thickness up to 0.1267" may be placed between rows or columns of rods along the entire length of the assembly. Shims with a 0.1267 inch thickness are equivalent to a maximum allowable polyethylene volume of 33.93 cubic centimeters per centimeter length per assembly. (Note: This has the same hydrogen density as 40.04 cubic centimeters of water per centimeter length.)

2.0 PACKAGE AND MODEL DESCRIPTION

Each SP-1 can contain up to two BWR assemblies. The SP-1 is composed of a steel "inner container" and a wooden "outer container". Most criticality safety calculations are at "damaged"

EMF-1563 Revision 12A Appendix 6D Page 7 of 108

or "accident" conditions where the outer container is assumed to have burned away and the inner containers are stacked edge-to-edge in an array of at least 250 units (Fissile Class I) or at least 2N (Fissile Class II), where "N" is the maximum number of packages allowed per shipment. "N" is defined as 50 divided by the minimum Transport Index.

The inner containers contain two "baskets" made of 0.0598" thick carbon steel with 0.75" diameter holes in a 1.75" square pitch pattern. The baskets are nominal 7"x7" in cross section. The two baskets are placed edge-to-edge in the center of the nominal 18" wide by 11" high steel inner container (0.0598" carbon steel walls). A 2" thick annulus is between the basket wall and the inner container wall. In this annulus are six carbon steel angles (2.8125"x2.8125"x0.125" nominal).

All previous calculations for the SP-1 have demonstrated that peak reactivity with uniform interspersed moderation is with low density (typically 10 to 20 volume %) water. With low density interspersed water, the edge rods in the assemblies are best moderated. It has been found that the most reactive position for the assemblies is to have both at the outer edges of their baskets, which allows maximum moderation of the edge rods facing the other assembly in the same package. This is the arrangement modeled in these calculations, unless noted otherwise.

3.0 ANALYTICAL METHODOLOGY

The codes, cross sections, and other data from SCALE 4.2 (1) and CASMO-3G were used. All components were modeled as precisely as possible in KENO-Va.

The baskets were modeled as carbon steel with moderation-filled holes (not "smeared") and the angles were closely approximated in volume and geometry using 31 steel segments with a total steel volume slightly less than the minimum (nominal minus tolerances). Finite arrays with 30 cm of water reflection were modeled in KENO-Va. The following figure is a KENO-Va plot for a typical model.

EMF-1563 Revision 12A Appendix 6D Page 8 of 108

CASMO-3G was also used to calculate k-inf for various fuel types. The steel and moderation were "smeared" together in the various regions of the CASMO model. The CASMO model also had the assemblies to the shifted to the outer edges of their baskets. The arrays modeled were either infinite or 8x13x1.

3.1 Benchmarking

The SCALE 4.2 system was developed for use by the USNRC and its licensees. Critical experiments were modeled using the same methodology used in these calculations. The benchmark calculations and the methodology for determining the calculation bias and its uncertainty and for determining the bias-corrected 95% upper limit on k-eff are described in this Section.

3.1.1 Calculation of bias and bias uncertainty

The bias and its standard deviation were calculated using the methods described in Reference 4. These methods use standard Analysis of Variance principles. The average over all cases of the KENO k-eff and its variance (square of standard deviation) are calculated. The average of the average k-eff (grand average) is weighted by the reciprocal of its variance. The average value of the variance is taken as the "within class" variance. The variance of the average k-eff data, weighted as for the grand average, is taken as the "between class" variance. The "within class" variance is subtracted from the "between class" variance to yield the variance of the class effect. Since the true value for all cases is assumed to be 1.0 (critical), the class effect (the change in

EMF-1563 EMF-1563 Revision 12A Appendix 6D Page 9 of 108

average k-eff from case to case) is also the bias and the variance of the class effect is the variance of the bias. A zero variance of the bias would mean that the bias is constant from case to case. Standard statistical techniques test the ratio of the "between" and "within" variances. If this ratio does not exceed the "F" test, it is concluded that the class effect variance is not significant and it is assigned the value zero. The methods in Reference 4 do not include a test of significance. The calculated bias is the value to add to the calculation result. Therefore, a negative bias indicates conservative results. The bias uncertainty is pooled with the KENO uncertainty for a given case by taking the square root of the sum of squares. The pooled uncertainty is multiplied by a factor appropriate for the degrees of freedom (calculated as shown in Ref. 4) for a one-sided 95% confidence limit. The 95% upper limit is the sum of the KENO k-eff plus the bias plus the pooled uncertainty multiplied by the factor. The one-sided confidence limit factor is used because only the upper limit is of interest.

As will be shown in Sections 3.1.2 and 3.1.3, there is no significant difference between the bias for experiments with and without gadolinium. Therefore, all experiments were combined to calculate the bias to be applied to these calculation results.

The bias and bias uncertainty with 16-group cross sections is -2.4405E-3 \pm 4.6889E-3 and with 27-group cross sections it is +6.3419E-3 \pm 4.9757E-3.

3.1.2 PNL Critical Experiments (Reference 2)

The reference 2 experiments involve three flooded clusters of 4.31% enriched rods with variable spacings between the clusters and with various absorbers between the clusters. The case numbers referenced below were taken from Reference 2. Brief descriptions of the cases modeled follow. These experiments were selected because they were the closest available to the conditions being modeled. Experiments with stainless steel and zircaloy were selected because they are in the SP-1 model. Cases with boron were selected to include a strong neutron absorber; gadolinium was not available in these experiments. Separate experiments with gadolinium are reported in Section 3.1.3.

Cases 001,002, and 003 determine the critical size of one cluster. The critical size was interpolated based on experiments with integral numbers of rods per edge; the critical number had a fractional number of rods on one edge and either 8, 9, or 10 rods on the other edge. These three cases were modeled using cell-weighted cross sections. A suffix "x" on the case name was used to denote cases modeled with cell-weighted cross sections.

Case 004 involved three 15x8 clusters with no absorber plates.

Cases 007, 008, 013, and 014 involved three cluster with 304L steel absorber plates. Two plate thicknesses and different absorber spacings from the central cluster were tested.

Cases 009, 010R, 011, and 012 are similar to the previous four except that the 304L steel contained either 1.05 or 1.62% Boron.

Case 031 involved three clusters with BORAL absorber plates.

EMF-1563 EMF-1563 Revision 12A Appendix 6D Page 10 of 108

Cases 029 and 030 involved three clusters with Zircaloy-4 absorber plates.

The "x" suffix on the case name denotes cell-weighted cross-sections. Suffixes such as "a" are for explicitly-modeled rods.

The bias and bias uncertainty calculated for these benchmark cases are tabulated below.

EMF-1563 EMF-1563 Revision 12A Appendix 6D Page 11 of 108

	REFERENC	E 2 CA	SES
	CALCULATI	ON RES	ULTS
WITH	16-GROUP	CROSS	SECTIONS

Case ID	k-eff		
	Avg.	Std.Dev.	
a-c001x	1.00355	0.00249	
a-c002x	1.00905	0.00257	
a-c003x	1.00845	0.00252	
a-c004	1.00435	0.00265	
a-c005a	1.00244	0.00265	
a-c005b	1.00198	0.00252	
a-c006a	1.00177	0.00253	
a-c006b	1.00443	0.00270	
a-c007a	1.00352	0.00252	
a-c007x	1.00788	0.00253	
a-c008a	0.99798	0.00241	
a-c008x	1.00109	0.00242	
a-c009a	1.00365	0.00221	
a-c010a	0.99854	0.00246	
a-c011a	1.00138	0.00255	
a-c012aa	1.00329	0.00244	
a-c013a	0.99712	0.00258	
a-c013x	1.01149	0.00227	
a-c014a	0.99991	0.00241	
a-c014x	1.00732	0.00259	
a-c029a	0.99894	0.00254	
a-c030a	1.00278	0.00257	
a-c031a	1.00582	0.00250	

.::

The bias an bias uncertainty calculated for these 16-group cases are -3.3617E-3 \pm 2.8457E-3.

EMF-1563 Revision 12A Appendix 6D Page 12 of 108

REFERENCE 2 CASES CALCULATION RESULTS WITH 27-GROUP CROSS SECTIONS

Case ID	k-eff			
•	Avg.	Std.Dev.		
b-c001x	1.00591	0.00264		
b-c002x	0.99828	0.00274		
b-c003x	1.00268	0.00234		
b-c004	0.99853	0.00266		
b-c005a	0.98845	0.00348		
b-c006a	0.99000	0.00247		
b-c007a	1.00394	0.00309		
b-c007x	0.99789	0.00256		
b-c008a	0.98856	0.00367		
b-c008x	1.00177	0.00268		
b-c009a	0.99293	0.00344		
b-c010a	0.99237	0.00315		
b-c011a	0.99493	0.00356		
b-c012a	1.00104	0.00327		
b-c013a	0.99779	0.00346		
b-c013x	0.99306	0.0025		
b-c014a	0.99177	0.00343		
b-c014x	0.99708	0.0024		
b-c029a	0.99366	0:0023		
b-c030a	:0.99241	0.00259		

The bias an bias uncertainty calculated for these 27-group cases are $3.4601E-3 \pm 4.0706E-3$.

3.1.3 Experiments with Gadolinium (Ref. 3)

Additional critical experiments (Reference 3) with gadolinium were modeled. The experiments determined the critical number of UO_2 fuel rods with gadolinium dissolved in the water between the rods. The rods were in a triangular-pitched array in a cylindrical vessel with water reflection on all sides of the approximately cylindrical-shaped rod array. Three rod pitches were used for the 14.40 mm OD rods: 22.86mm, 27.94mm, and 33.02mm. The experiments were modeled using cell-weighted cross sections simulating the unit cell. A cylindrical fuel

EMF-1563 Revision 12A Appendix 6D Page 13 of 108

region with a cross sectional area equal to that of the reported critical number of rods was modeled with full water reflection. The cases were replicated with the 16 and 27 group cross section libraries in SCALE. The calculation results are tabulated and plotted below.

Ten experiments were modeled: seven contain gadolinium and three are water-only reference cases. The average and standard deviations of the calculation bias, based only on the seven cases with gadolinium, are in the following table. Comparing these results with those from the previous section indicates that there is no significant difference in the bias due to gadolinium. Therefore, the two sets of data will be combined for the final bias calculation.

Cross Section Library (Energy Groups)	Calculation Bias Average	Calculation Bias Standard Deviation
16	0.0001875	0.00774
27	0.010864	0.002430

CALCULATION BIAS FOR CASES WITH GADOLINIUM

EMF-1563 Revision 12A Appendix 6D Page 14 of 108

Experiment No.	Triangular Lattice	Gd 16-G		up k-eff	27-Group k-eff	
. :	Pitch, mm	Grams/liter	Avg.	Std.Dev.	Avg.	Std.Dev
001	22.86	0	0.98242	0.00251	0.98663	0.00291
009 (0.0722	0.9891	0.00274	0.99236	0.00237
010		0.145	0.99793	0.00248	0.99134	0.00252
011		0.213	0.99121	0.00231	0.99164	0.00202
012	27.94	0	0.99701	0.00277	0.98487	0.0025
016		0.0547	0,99769	0.00254	0.98993	0.00198
017 📜		0.1169	0.99698	0.00226	0.98901	0.00201
018	33,02	0	1.0068	0.00215	0.98841	0.00211
· 023		0.0257	1.01088	0.00211	0.98957	0.00223
024	•	0.044	1.00728	0.00207	0,98352	0.00177

EMF-1563 EMF-1563 Revision 12A Appendix 6D

EMF-1563 EMF-1563 Appendix 6D

4.0 ANALYSIS

The new Category proposed for Certificate Section 5(b)(1) is analyzed in this Section. Included in this Section are several sensitivity studies showing the effect of various parameters plus calculations with the most reactive combination of the various parameters.

The previous applications have demonstrated the key parameters affecting the peak k-eff for an array of SP-1 packages are:

- 1. The number of packages in the array. Larger arrays tend to produce higher k-eff values. In certain cases, Fissile Class II was specified to allow use of smaller arrays.
- 2. The fuel enrichment. Higher enrichments lead to higher k-eff values.
- 3. Assembly size ("Envelope"). Larger transverse dimensions tend to increase k-eff. The length of the assembly has relatively little effect. Assemblies were modeled with the

EMF-1563 Revision 12A Appendix 6D Page 17 of 108

maximum allowable envelope.

4.

- Interspersed Moderation. For limiting conditions, low density interspersed moderation produces a higher k-eff than full flooding. Additional evidence of this fact is included in this application.
- 5. Number, Arrangement, and Composition of Gadolinia Rods. For a given number of Gadolinia rods, the most reactive arrangement is to have them clustered together in the central parts of the assembly. This was demonstrated in the previous two supplemental applications and it is also seen in comparing cases in this application. The gadolinia content was modeled at the 75% of the minimum specified value.
- 6. Water Rods and Water Channels.' Fuel assemblies typically do not have all lattice locations occupied by fuel rods. The missing locations are called "Water Rods" or "Water Channels" in cases such as a 2x2 or 3x3 array of water rods at the assembly center. Water rods and water channels cause lower k-eff relative to assemblies with all locations occupied by fuel rods. This was demonstrated in the previous two supplemental applications and additional evidence is presented in this document.
- 7. Fuel (pellet) diameter: Larger pellet diameters, at least up to about 0.5", lead to higher keff values. This was demonstrated in previous supplemental applications and additional evidence is presented in this application.

The additional evidence discussed in items 4, 5, 6 and 7 above and additional factors affecting the k-eff of arrays of SP-1 packages and fuel types in general are discussed below.

4.1 Flooded Conditions

A single SP-1 has its maximum k-eff at flooded conditions and with the assemblies shifted toward the inner edges of their baskets. The assemblies are well coupled within the package but, for arrays of edge-to-edge inner containers, the assemblies are effectively decoupled between packages. Fully flooded arrays of packages (damaged) were modeled with 5.0% enriched 10x10 assemblies without gadolinia rods. Infinite arrays are acceptable with zero gadolinia.

In this section, it will be demonstrated that an infinite array of edge-to-edge inner containers is adequately subcritical at fully flooded conditions and with:

- 1. Any pellet diameter and any clad thickness $\geq 0.018^{"}$. There was no gap between the pellet and clad in these models.
- 2. Any combination of water and polyethylene within the assemblies in any Moderator-to-Fuel Volume Ratio. This effectively bounds any number of water rods and/or channels in any arrangement and any number of polyethylene shims in any arrangement.
- 3. Any U-235 enrichment up to 5.0% in all rods.

4. No gadolinia is included in these calculations and none is required to assure safety at flooded conditions.

5. Any array of packages is acceptable.

4.1.1 CONSERVATIVE XSDRN MODEL (NO STEEL, FLOODED)

A series of calculations with a conservative 1-D model was performed to develop a family of curves without the "noise" in Monte Carlo (KENO) calculation results. This simple model was a cylindrical approximation of two infinite-length edge-to-edge assemblies (10" wide by 5" high fuel region) in a 18" wide by 11" high inner container. The within-assembly moderator was either water or 100% polyethylene (PE). The between-assembly moderator was always water. The boundary conditions in XSDRN were set for an infinite array. Pellet diameters in the range 0.20" to 0.50" were modeled with a 0.018" thick zircaloy clad. The assemblies were modeled as a cell-weighted mixture with a moderator-to-fuel volume ratio in the range 1.5 to 4.0. This set of calculations was replicated with the 16 and 27 group cross section libraries.

The conservative XSDRN calculation results are tabulated and plotted below. The results are summarized as follows:

1. Pure polyethylene yields a higher SP-1 k-inf than does water. KENO-Va calculation results with the steel in the model are presented later to demonstrate that worst-case polyethylene moderation is acceptable.

2. The optimum moderator-to-fuel volume ratio decreases with increasing pellet diameter.

3. The differences between the peak k-inf for most pellet diameters is relatively small. It is expected that Monte Carlo results would be unable to discern many of these differences without extremely large numbers of histories. The optimum pellet diameter at flooded conditions is about 0.35".

EMF-1563 Revision 12A Appendix 6D Page 19 of 108

CONSERVATIVE XSDRN SP-1 MODEL (NO STEEL) INFINITE ARRAY (3-D) OF EDGED-TO-EDGE INNER CONTAINERS 5.0% ENRICHED, 0.018" THICK CLAD, FULLY FLOODED XSDRN RESULTS WITH 16-GROUP CROSS SECTIONS

Case ID	Within- Assembly Moderator	Pellet Diam, inch	Moderator to Fuel Volume Ratio	Unit Cell k-inf	SP-1 k-inf
a-h2020a	Water	0.20	2.0	1.47723	0.86495
a-h2020c	PE	0.20	2.0	1.50103	0.92599
a-h2025a	Water	0.20	2.5	1.50353	0.88202
a-h2025c	PE	0.20	2.5	1.51765	0.94303
a-h2030 a	Water	0.20	3.0	1.51588	0.89042
a-h2030c	PE	0.20	3.0	1.52216	0.95055
a-h2035a	Water	0.20	3.5	1.51961	0.89317
a-h2035c	[:] PE	0.20	3.5	1.52140	0.95303
a-h2040a	Water	0.20	4.0	1.51948	0.89288
a-h2040c	PE	0.20	4.0	1.51592	0.95145
a-h2520a	Water	0.25	2.0	1.48936	0. 8760 7
a-h2520c	PE	0.25	2.0	1.50941	0.93645
a-h2525a	Water	0.25	2.5	1.51153	0.89051
a-h2525c	PE	0.25	2.5	1.52621	0.95253
a-h2530a	Water	0.25	3.0	1.52391	0.89805
a-h2530c	PE	0.25	3.0	1.53052	0.95900
a-h2535a	Water	0.25	3.5	1.52776	0.90004
a-h2535c	PE	0.25	3.5	1.52718	0.95929
a-h2540a	Water	0.25	4.0	1.52599	0.89829
a-h2540c	PE	0.25	4.0	1.51880	0.95542
a-h3020a	Water	0.30	2.0	1.49838	0.88332
a-h3020c	PE	0.30	2.0	1.51835	0.94439
a-h3025a	Water	0.30	2.5	1.51943	0.89653

EMF-1563 Appendix

EMF-1563 Revision 12A Appendix 6D Page 20 of 108

Case ID	Within- Assembly Moderator	Pellet Diam, inch	Moderator to Fuel Volume Ratio	Unit Cell k-inf	SP-1 k-inf
a-h3025c	PE	0.30	2.5	1.53013	0.95718
a-h3030a	Water	0.30	3.0	1.52782	0.90160
a-h3030c	PE	0.30	3.0	1.53230	0.96174
a-h3035a	Water	0.30	3.5	1.52961	0.90197
a-h3035c	PE	0.30	3.5	1.52739	0.96046
a-h3040a	Water	0.30	4.0	1.52656	0.89899
, a-h3040c	PE.	0.30	4.0	1.51744	0.95509
a-h3520a	Water	0.35	2.0	1.50361	0.88743
a-h3520c	PE	0.35	2.0	1.52314	0.94867
a-h3525a	Water	0.35	2.5	1.52421	0.89976
a-h3525c	PE	0.35	2.5	1.53459	0.96051
a-h3530a	Water	0.35	3.0	1.53213	0.90393
a-h3530c	PE	0.35	· 3.0	1.53339	0.96263
a-h3535a	Water	0.35	3.5	1.53140	0.90254
a-h3535c	PE	0.35	3.5	1.52511	0.95894
a-h3540a	Water	0.35	4.0	1.52546	0.89766
a-h3540c	PE	0.35	4.0	1.51231	0.95147
a-h4010a	Water	0.40	1.0	1.39899	0.82438
a-h4010c	·PE	0.40	1.0	1.43607	0.87738
a-h4015a	Water	0.40	1.5	1.47279	0.86825
a-h4015c	PE	0.40	1.5	1.49917	0.92698
a-h4020a	Water	0.40	2.0	1.50975	0.89093
a-h4020c	PE	0.40	2.0	1.52638	0.95111
a-h4025a	Water	0.40	2.5	1.52665	0.90098
a-h4025c	PE	0.40	2.5	1.53454	0.96056

-

EMF-1563 Revision 12A Appendix 6D Page 21 of 108

Case ID	Within- Assembly Moderator	Pellet Diam, inch	Moderator to Fuel Volume Ratio	Unit Cell k-inf	SP-1 k-inf
a-h4030a	Water	0.40	3.0	1.53202	0.90337
a-h4030c	PE	0.40	3.0	1.53185	0.96121
a-h4035a	Water	0.40	3.5	1.53006	0.90081
a-h4035c	PE	0.40	3.5	1.52160	0.95585
a-h4040a	Water	0.40	4.0	1.52265	0.89468
a-h4040c	PE	0.40	4.0	1.50641	0.94653
a-h4510a	Water	0.45	1.0	1.40557	0.82846
a-h4510c	PE	0.45	1.0	1.44229	0.88175
a-h4515a	Water	0.45	1.5	1.47921	0.87176
a-h4515c	PE	Ó.45	1.5	1.50448	0.93034
a-h4520a	Water	0.45	2.0	1.51402	0.89290
a-h4520c	PE	0.45	2.0	1.52935	0.95265
a-h4525a	Water	0.45	2.5	1.52925	0,90158
a-h4525c	PE	0.45	2.5	1.53470	0.95998
a-h4530a	Water	0.45	3.0	1.53227	0.90229
a-h4530c	PE	0.45	3.0	1.52831	0.95806
a-h4535a	Water	0.45	3.5	1.52730	0.89778
a-h4535c	PE	0.45	3.5	1.51484	0.95040
a-h4540a	Water	0.45	4.0	1.51715	0.88985
a-h4540c	PE	0.45	4.0	1.49687	0.93905
a-h5010a	Water	0.50	1.0	1.41164	0.83179
a-h5010c	PE	0.50	1.0	1.44757	0.88513
a-h5015a	Water	0.50	1.5	1.48419	0.87414
a-h5015c	PE	0.50	1.5	1.50889	0.93270
a-h5020a	Water	0.50	2.0	1.51761	0.89406

EMF-1563 Revision 12A Appendix 6D Page 22 of 108

Case ID	Within- Assembly Moderator	Pellet Diam, inch	Moderator to Fuel Volume Ratio	Unit Cell k-inf	SP-1 k-inf
a-h5020c	• PE	0.50	2.0	1.53095	0.95294
a-h5025a	Water	0.50	2.5	1.53034	0,90099
a-h5025c	PE	0.50	2.5	1.53330	0,95806
a-h5030a	Water	0.50	3.0	1.53091	0.89999
a-h5030c	PE	0.50	3.0	1.52414	0.95405
a-h5035a	Water	0.50	3.5	1.52370	0.89387
a-h5035c	PE	0.50	3.5	1.50780	0.94429
a-h5040a	Water	0.50	4.0	1.51128	0.88435
a-h5040c	PE	0.50	4.0	1.48693	0.93087

CONSERVATIVE XSDRN SP-1 MODEL (NO STEEL) INFINITE ARRAY (3-D) OF EDGED-TO-EDGE INNER CONTAINERS 5.0% ENRICHED, 0.018" THICK CLAD, FULLY FLOODED XSDRN RESULTS WITH 27-GROUP CROSS SECTIONS

Case ID	Within- Assembly Moderator	Pellet Diam, inch	Moderator to Fuel Volume Ratio	Unit Cell k-inf	SP-1 k-inf
b-h2020a	Water	0.20	2.0	1.47339	0.86610
b-h2020c	PE	0.20	2.0	1.49595	0.92761
b-h2025a	Water	0.20	2.5	1.49808	0.88290
b-h2025c	PE	0.20	2.5	1.51245	0.94482
b-h2030a	Water	0.20	. 3.0	1.51030	0.89140
b-h2030c	PE	0.20	3.0	1.51715	0.95246
b-h2035a	Water	0.20	3.5	1.51445	0.89435

EMF-1563 Revision 12A Appendix 6D Page 23 of 108

Case ID	Within- Assembly Moderator	Pellet Diam, inch	Moderator to Fuel Volume Ratio	Unit Cell k-inf	SP-1 k-inf
b-h2035c	PE	0.20	3.5	1.51441	0.95383
b-h2040a	Water	0.20	4.0	1.51311	0.89345
b-h2040c	PE	0.20	4.0	1.50675	0.95096
b-h2520a	Water	0.25	2.0	1.48533	0.87699
b-h2520c	PE	0.25	2.0	1.50630	0.93879
b-h2525a	Water	0.25	2.5	1.50769	0.89179
b-h2525c	PE	0.25	2.5	1.51989	0.95342
b-h2530a	Water	0.25	3.0	1.51751	0.89826
b-h2530c	PE ·	0.25	3.0	1.52167	0.95850
b-h2535a	Water	0.25	3.5	1.51926	0.89921
b-h2535c	PE	0.25	3.5	1.51604	0.95738
b-h2540a	Water	0.25	4.0	1.51556	0.89639
b-h2540c	PE	0.25	4.0	1.50558	0.95215
b-h3020a	Water	0.30	2.0	1.49413	0.88393
b-h3020c	PE	0.30	2.0	1.51335	0.94556
b-h3025a	Water	0.30	2.5	1.51414	0.89684
b-h3025c	PE	0.30	2.5	1.52400	0.95774
b-h3030a	Water	0.30	3.0	1.52153	0.90138
b-h3030c	PE	0.30	3.0	1.52278	0.96036
b-h3035a	Water	0.30	3.5	1.52082	0.90043
b-h3035c	PE	0.30	3.5	1.51420	0.95687
b-h3040a	Water	0,30	4.0	1.51470	0.89578
b-h3040c	PE	0.30	4.0	1.50087	0.94938
b-h3520a	Water	0.35	2.0	1.50068	0.88834
b-h3520c	PE	0.35	2.0	1.51803	0.94947

2A D 108

EMF-1563	Appendix 6I Page 24 of
	EMF-1563 Revision 12

Case ID	Within- Assembly Moderator	Pellet Diam, inch	Moderator to Fuel Volume Ratio	Unit Cell k-inf	SP-1 k-inf
b-h3525a	Water	0.35	2.5	1.51827	0,89939
b-h3525c	PE	0.35	2.5	1.52561	0.95923
b-h3530a	Water	0.35	3.0	1.52313	0.90202
b-h3530c	PE	0.35	3.0	1.52130	0.95943
b-h3535a	Water	0.35	3.5	1.51989	0.89920
b-h3535c	PE	0.35	3.5	1.50968	0.95359
b-h3540a	Water	0.35	4.0	1.51129	0.89275
b-h3540c	ΡĖ	0.35	4.0	1.49342	0.94387
b-h4010a	Water	0.40	1.0	1.39258	0.82241
b-h4010c	PE	0.40	1.0	1.43084	0.87699
b-h4015a	Water	0.40	1.5	1.46895	0.86820
b-h4015c	PE	0.40	1.5	1.49574	0.92817
b-h4020a	Water	0.40	2.0	1.50552	0.89099
b-h4020c	PE	0.40	2.0	1.52087	0.95139
b-h4025a	Water	0.40	2.5	1.52057	0.90016
b-h4025c	PE	0.40	2.5	1.52527	0.95870
b-h4030a	Water	0.40	3.0	1.52282	0.90089
b-h4030c	PE	0.40	3.0	1.51777	0.95648
b-h4035a	Water	0.40	3.5	1.51699	0.89621
b-h4035c	PE	0.40	3.5	1.50304	0.94832
b-h4040a	Water	0.40	.4.0	1.50586	0.88797
b-h4040c	PE	0.40	4.0	1.48379	0.93639
b-h4510a	Water	0.45	1.0	1.40009	0.82675
b-h4510c	PE	0.45	1.0	1.43780	0.88158
b-h4515a	Water	0.45	1.5	1.47477	0.87127

EMF-1563 Revisi

EMF-1563 Revision 12A Appendix 6D Page 25 of 108

Case ID	Within- Assembly Moderator	Pellet Diam, inch	Moderator to Fuel Volume Ratio	Unit Ceil k-inf	SP-1 k-inf
b-h4515c	PE	0.45	1.5	1.50020	0.93091
b-h4520a	Water	0.45	2.0	1.50896	0.89232
b-h4520c	PE	0.45	2.0	1.52221	0.95179
b-h4525a	Water	0.45	2.5	1.52138	0.89959
b-h4525c	PE	0.45	2.5	1.52331	0.95663
b-h4530a	Water	0.45	3.0	1.52094	0.89840
b-h4530c	PE	0.45	3.0	1.51253	0.95197
b-h4535a	Water	0.45	3.5	1.51244	0.89185
b-h4535c	PE	0.45	3.5	1.49461	0.94149
b-h4540a	Water	0.45	4.0	1.49872	0.88182
b-h4540c	PE	0.45	4.0	1.47232	0.92739
b-h5010a	Water	0.50	1.0	1.40671	0.83019
b-h5010c	PE	0.50	1.0	1.44381	0.88515
b-h5015a	Water	0.50	1.5	1.47954	0.87337
b-h5015c	PE	0.50	1.5	1.50353	0.93255
b-h5020a	Water	0.50	2.0	1.51124	0.89263
b-h5020c	PE	0.50	2.0	1.52229	0.95102
b-h5025a	Water	0.50	2.5	1.52094	0.89797
b-h5025c	PE	0.50	2.5	1.52000	0.95336
b-h5030a	Water	0.50	3.0	1.51773	0.89484
b-h5030c	PE	0.50	3.0	1.50585	0.94626
b-h5035a	Water	0.50	3.5	1.50652	0.88642
b-h5035c	PE	0.50	3,5	1.48470	0.93345
b-h5040a	Water	0.50	4.0	1.49017	0.87462
b-h5040c	PE	0.50	4.0	1.45934	0.91716

16-Group Cross Section Results

27-Group Cross Section Results

EMF-1563 Revision 12A Appendix 6D Page 29 of 108

EMF-1563

EMF-1563 EMF-1563 Revision 12A Appendix 6D Page 30 of 108

4.1.2 CONSERVATIVE KENO MODEL (NO STEEL, FLOODED)

Several of the XSDRN model cases were replicated with a conservative KENO model. The KENO model uses cuboidal geometry types (with cell-weighted cross sections) but no steel is in the model. Cases with a water-filled channel at the center of the assembly were included in the KENO cases. The channel was a 1.5" by 1.5" region (30% of assembly dimension). Additional cases with nine discrete 0.1267" thick polyethylene shims equally spaced across the assembly were also included. The calculation results are tabulated and plotted below.

The XSDRN-KENO agreement is judged to be good. Addition of a water-filled channel lowers the peak k-inf for the 100% polyethylene moderated assembly cases. Water-moderated assemblies are clearly acceptable even without steel in the model.

CONSERVATIVE KENO SP-1 MODEL (NO STEEL) INFINITE ARRAY (3-D) OF EDGED-TO-EDGE INNER CONTAINERS 5.0% ENRICHED, 0.018" THICK CLAD, FULLY FLOODED KENO-Va RESULTS WITH 16-GROUP CROSS SECTIONS

Case ID	Within- Assembly	Pellet Diam,	Mod. to	KENO k-inf	
	Channel?	Inch	Vol. Ratio	Avg.	Std.Dev.
a-f2020a	Water/No	0.20	2.0	0.87876	0.00453
a-f2020b	Water/Yes	0.20	2.0	0.88485	0.00479
a-f2020c	PE/No	0.20	2.0	0.93063	0.00390
a-f2020d	PE/Yes	0.20	2.0	0.93336	0.00449
a-f2020e	Water-Shims/No	0.20	2.0	0.92717	0.00426
a-f2025a	Water/No	0.20	2.5	0.89129	0.00451
a-f2025b	Water/Yes	0.20	2.5	0.89513	0.00385
a-f2025c	PE/No	0.20	2.5	0.94557	0.00407
a-f2025d	PE/Yes	0.20	2.5	0.93681	0.00398
a-f2030a	Water/No	0.20	3.0	0.90086	0.00411
a-f2030b	Water/Yes	0.20	3.0	0.89664	0.00424
a-f2030c	PE/No	0.20	3.0	0.94008	0.00414
a-f2030d	PE/Yes	0.20	3.0	0.93018	0.00476
a-f2030e	Water-Shims/No	0.20	3.0	0.91579	0.00458

EMF-1563 Revision 12A Appendix 6D Page 31 of 108

Case ID	Within- Assembly Moderator/	Pellet Diam,	Mod. to	KEN k-ii	IO hf
	Channel?	Inch	Vol. Ratio	Avg.	Std.Dev.
a-f2035a	Water/No	0.20	3.5	0.89583	0.00382
a-f2035b	Water/Yes	0.20	3.5	0.88990	0.00418
a-f2035c	PE/No	0.20	3.5	0.94763	0.00494
a-f2035d	PE/Yes	0.20	3.5	0.92924	0.00448
a-f2035e	Water-Shims/No	0.20	3.5	0.90497	0.00402
a-f2040a	Water/No	0.20	4.0	0.89580	0.00439
a-f2040b	Water/Yes	0.20	4.0	0.88763	0.00441
a-f2040c	PE/No	0.20	4.0	0.94291	0.00412
a-f2040d	PE/Yes	0.20	4.0	0.92183	0.00391
a-f2040e	Water-Shims/No	0.20	4.0	0.90523	0.00429
a-f2520a	Water/No	0.25	2.0	0.87997	0.00398
a-f2520b	Water/Yes	0.25	2.0	0.88920	0.00435
a-f2520c	PE/No	0.25	2.0	0.93842	0.00444
a-f2520d	PE/Yes	0.25	2.0	0.94057	0.00429
a-f2520e	Water-Shims/No	0.25	2.0	0.92728	0.00471
a-f2525a	Water/No	0.25	2.5	0.90276	0.00442
a-f2525b	Water/Yes	0.25	2.5	0.90054	0.00467
a-f2525c	PE/No	0.25	2.5	0.96030	0.00500
a-f2525d	PE/Yes	0.25	2.5	0.94144	0.00494
a-f2525e	Water-Shims/No	0.25	2.5	0.92663	0.00367
a-f2530a	Water/No	0.25	3.0	0.88953	0.00422
a-f2530b	Water/Yes	0.25	3.0	0.89933	0.00463
a-f2530c	PE/No	0.25	3.0	0.94879	0.00460
a-f2530d	PE/Yes	0.25	3.0	0.94276	0.00448
a-f2530e	Water-Shims/No	0.25	3.0	0.92537	0.00455

.

EMF-1563 Revision 12A Appendix 6D Page 32 of 108

Case ID	Within- Assembly Moderator/	Pellet Diam,	Mod. to	KENO k-inf	
	Channel?		Vol. Ratio	Avg.	Std.Dev.
a-f2535a	Water/No	0.25	3.5	0.89364	0.00444
a-f2535b	Water/Yes	0.25	3.5	0.89466	0.00433
a-f2535c	PE/No	0.25	3.5	0.95147	0.00451
a-f2535d	PE/Yes	0.25	3.5	0.93338	0.00452
a-f2535e	Water-Shims/No	0.25	3.5	0.91106	0.00420
a-f2540a	Water/No	0.25	4.0	0.89647	0.00459
a-f2540b	Water/Yes	0.25	4.0	0.88704	0.00474
a-f2540c	PE/No	0.25	4.0	0.94321	0,00496
a-f2540d	PE/Yes	0.25	4.0	0.91946	0.00479
a-f2540e	Water-Shims/No	0.25	4.0	0.90705	0.00476
a-f3020a	Water/No	0.30	2.0	0.89060	0.00420
a-f3020b	Water/Yes	0.30	2.0	0.89189	0.00443
a-f3020c	PE/No	0.30	2.0	0.93445	0.00356
a-f3020d	PE/Yes	0.30	2.0	0.93180	0.00473
a-f3020e	Water-Shims/No	0.30	2.0	0.93166	0.00455
a-f3025a	Water/No	0.30	2.5	0.90312	0.00431
a-f3025b	Water/Yes	0.30	2.5	0.89959	0.00467
a-f3025c	PE/No	0.30	2.5	0.95102	0.00407
a-f3025d	PE/Yes	0.30	2.5	0.94908	0.00445
a-f3025e	Water-Shims/No	0.30	2.5	0.92919	0.00492
a-f3030a	Water/No	0.30	3.0	0.90641	0.00460
a-f3030b	Water/Yes	0.30	3.0	0.90528	0.00447
a-f3030c	PE/No	0.30	3.0	0.94905	0.00421
a-f3030d	PE/Yes	0.30	3.0	0.94281	0.00450
a-f3030e	Water-Shims/No	0.30	3.0	0.93184	0.00433

. .

EMF-1563

EMF-1563 Revision 12A Appendix 6D Page 33 of 108

Case ID	Within- Assembly	Pellet Diam,	Mod. to	KENO k-inf		
	Moderator/ Channel?	Incn	Fuer Vol. Ratio	Avg.	Std.Dev.	
a-f3035a	Water/No	0.30	3.5	0.89289	0.00461	
a-f3035b	Water/Yes	0.30	3.5	0.89449	0.00419	
a-f3035c	PE/No	0.30	3.5	0.95040	0.00422	
a-f3035d	PE/Yes	0.30	3.5	0.94390	0.00482	
a-f3035e	Water-Shims/No	0.30	3.5	0.91050	0.00431	
a-f3040a	Water/No	0.30	4.0	0.89012	0.00472	
a-f3040b	Water/Yes	0.30	4.0	0.88006	0.00425	
a-f3040c	PE/No	0.30	4.0	0.94030	0.00476	
a-f3040d	PE/Yes	0.30	4.0	0.91684	0.00439	
a-f3040e	Water-Shims/No	0.30	4.0	0.89556	0.00400	
a-f3520a	Water/No	0.35	2.0	0.89106	0.00432	
a-f3520b	Water/Yes	0.35	2.0	0.89507	0.00467	
a-f3520c	PE/No	0.35	2.0	0.95105	0.00430	
a-f3520d	PE/Yes	0.35	2.0	0.93813	0.00417	
a-f3520e	Water-Shims/No	0.35	2.0	0.92565	0.00490	
a-13525a	Water/No	0.35	2.5	0.89108	0.00370	
a-f3525b	Water/Yes	0.35	2.5	0.89634	0.00400	
a-f3525c	PE/No	0.35	2.5	0.94660	0.00430	
a-f3525d	PE/Yes	0.35	2.5	0.94669	0.00413	
a-f3525e	Water-Shims/No	0.35	2.5	0.93796	0.00429	
a-f3530a	Water/No	0.35	3.0	0,89969	0.00457	
a-f3530b	Water/Yes	0.35	3.0	0.89847	0.00429	
a-f3530c	PE/No	0.35	3.0	0.95890	0.00426	
a-f3530d	PE/Yes	0.35	3.0	0.93678	0.00411	
a-f3530e	Water-Shims/No	0.35	3.0	0.92420	0.00457	

EMF-1563 Revision 12A Appendix 6D Page 34 of 108

Case ID	se Within- D Assembly		Mod. to	KENO k-inf	
:	Channel?		Fuel Vol. Ratio	Avg.	Std.Dev.
a-f3535a	Water/No	0.35	3.5	0.90120	0.00441
a-f3535b	Water/Yes	0.35	3.5	0.88376	0.00453
a-f3535c	PE/No	0.35	3.5	0.94897	0.00433
a-f3535d	PE/Yes	0.35	3.5	0.92683	0.00427
a-f3535e	Water-Shims/No	0.35	3.5	0.90340	0.00417
a-f3540a	Water/No	0.35	4.0	0.88992	0.00429
a-f3540b	Water/Yes	0.35	4.0	0.87859	0.00406
a-f3540c	PE/No	0.35	4.0	0.94135	0.00433
a-f3540d	PE/Yes	0.35	4.0	0.91071	0.00428
a-f3540e	Water-Shims/No	0.35	4.0	0.88200	0.00450

EMF-1563 Revision 12A Appendix 6D Page 35 of 108

16-Group Cross Section Results

EMF-1563 Revision 12A Appendix 6D Page 36 of 108

16-Group Cross Section Results

EMF-1563 EMF-1563 Revision 12A Appendix 6D Page 37 of 108

EMF-1563 EMF-1563 Revision 12A Appendix 6D Page 38 of 108

Revision 12A EMF-1563 Appendix 6D Page 39 of 108 Conservative KENO SP-1 Model (No Steel), Nine 0.1267" Shims per Assembly Infinite Array of Flooded Inner Containers 5.0% Enriched, 0.018" Thk Clad, Zero Gap Assemblies Shifted Together, No Woter Channel 0.950 0.940 (2 Sigma Bars Shown) 0.930 0.920 0.910 0.900 k-eff Pellet Diam 0.890 0.20" A В 0.25" С 0.30" 0.880 D 0.35" 0.870 2.2 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 2.0 2.4 4.2 Ĩ.8 Moderator-to-Fuel Volume Ratio .

EMF-1563

16-Group Cross Section Results

EMF-1563 Revision 12A Appendix 6D

EMF-1563

Page 40 of 108

4.1.3 KENO MODEL (FLOODED) WITH STEEL INCLUDED

An infinite array (3-D) of flooded edge-to-edge inner containers was modeled with the steel basket, angles, and shell included. Each package contained two 5" by 5" assemblies shifted together as closely as possible. The assemblies were simulated by cell-weighted cross sections based on a unit cell with a pellet diameter in the range 0.2" to 0.5" and with a moderator-to-fuel ratio in the range 2.0 to 4.0. Cases with water and 100% polyethylene in the assembly were modeled. The available volume external to the assemblies was modeled as filled with water. The calculation results are tabulated and plotted below.

The limiting cases are:

16-Group: Case "a-g3530c", bias-corrected 95% UL: 0.93068

27-Group: Case "b-g2525c", bias-corrected 95% UL: 0.93306

It is concluded that the package is adequately subcritical in any array at flooded conditions with any pellet diameter, any number of water rods in any arrangement, with or without a water channel, with or without gadolinia rods, with any arrangement of rods with enrichments up to 5.0%, and with any number of polyethylene shims in any arrangement.

KENO SP-1 MODEL (WITH STEEL) INFINITE ARRAY (3-D) OF EDGED-TO-EDGE INNER CONTAINERS 5.0% ENRICHED, 0.018" THICK CLAD, FULLY FLOODED KENO RESULTS WITH 16-GROUP CROSS SECTIONS

Case ID	Within- Assembly	Pellet Diam,	Mod. to	k	-eff
	Moderator	Incn	Fuel Vol. Ratio	Avg.	Std.Dev.
a-g2020a	Water	0.20	2.0	0.83526	0.00452
a-g2020c	PE	0.20	2.0	0.88592	0.00415
a-g2025a	Water	0.20	2.5	0.84504	0.00451
a-g2030a	Water	0.20	3.0	0.84094	0.00485
a-g2030c	PE	0.20	3.0	0.90552	0.00392
a-g2035a	Water	0.20	3,5	0.85281	0.00426
a-g2035c	PE	0.20	3.5	0.90434	0.00398
a-g2040a	Water	0.20	4.0	0.84752	0.00446
a-g2040c	PE	0.20	4.0	0.90370	0.00440

EMF-1563 Revision 12A Appendix 6D Page 41 of 108

Case ID	Within- Assembly	Pellet Diam,	Mod. to	k	-eff
	Moderator	incn	Fuel Vol. Ratio	Avg.	Std.Dev.
a-g2520a	Water	0.25	2.0	0.84519	0.00465
a-g2520c	PE	0.25	2.0	0.90331	0.00439
a-g2525a	Water	0.25	2.5	0.85445	0.00415
a-g2525c	PE	0.25	2.5	0.90763	0.00455
a-g2530a	Water	0.25	.3.0	0.85372	0.00484
a-g2530c	PE	0.25	3.0	0.91334	0.00403
a-g2535a	Water	0.25	3.5	0.85586	0.00446
a-g2535c	PE	0.25	3.5	0.91780	0.00428
a-g2540a	Water	0.25	4.0	0.85437	0.00498
a-g2540c	PE	0.25	4.0	0.90556	0.00436
a-g3020a	Water	0.30	2.0	0.84923	0.00458
a-g3020c	PE	0.30	2.0	0.90908	0.00410
a-g3025a	Water	0.30	2.5	0.85126	0.00451
a-g3025c	PE	0.30	2.5	0.90900	0.00378
a-g3030a	Water	0.30	3.0	0.86247	0.00433
a-g3030c	PE	0.30	3.0	0.91366	0.00432
a-g3035a	Water	0.30	3.5	0.85584	0.00465
a-g3035c	PE	0.30	3.5	0.90524	0.00389
a-g3040a	Water	0.30	4.0	0.85556	0.00428
a-g3040c	PE	0.30	4.0	0.90460	0.00375
a-g3520a	Water	0,35	2.0	0.85702	0.00452
a-g3520c	PE	0.35	2.0	0.91050	0.00459
a-g3525a	Water	0.35	2.5	0.85422	0.00431
a-g3525c	PE	0.35	2.5	0.91820	0.00521
a-g3530a	Water	0.35	3.0	0.85580	0.00397

Ξ.

EMF-1563 EMF-1563 Appendix 6

Revision 12A Appendix 6D Page 42 of 108

Case ID:	Within- Assembly	Pellet Diam,	Mod. to	k	-eff
	Moderator	Inch	Vol. Ratio	Avg.	Std.Dev.
a-g3530c	. PE	0.35	3,0	0.92188	0.00488
a-g3535a	Water	0,35	3.5	0.85595	0.00410
a-g3535c	PE	0.35	3.5	0.90628	0.00449
a-g3540a	Water	0.35	4.0	0.85456	0.00370
a-g3540c	PE	0.35	4.0	0.89620	0.00435

KENO SP-1 MODEL (WITH STEEL) INFINITE ARRAY (3-D) OF EDGED-TO-EDGE INNER CONTAINERS 5.0% ENRICHED, 0.018" THICK CLAD, FULLY FLOODED KENO RESULTS WITH 27-GROUP CROSS SECTIONS

Case ID	Within Assembly	Pellet Diam,	Mod. to	k-	eff
	Moderator	inch	Fuel Vol. Ratio	Avg.	Std.Dev.
b-g2020a	Water	0.20	2.0	0.84106	0.00456
b-g2020c	PE	0.20	2.0	0.89691	0.00544
b-g2025a	Water	0.20	2.5	0.84771	0.00418
b-g2025c	PE	0.20	2.5	0.90507	0.00451
b-g2030a	Water	0.20	3.0	0.85499	0.00387
b-g2030c	PE	0.20	3.0	0.91254	0.00483
b-g2035a	Water	0.20	3.5	0,86079	0.00418
b-g2035c	PE	0.20	3.5	0,91472	0.00437
b-g2040a	Water	0.20	4.0	0.85637	0.00409
b-g2040c	PE	0.20	4.0	0.90839	0.00469
b-g2520a	Water	0.25	2.0	0.85102	0.00399
b-g2520c	PE	0.25	2.0	0.89825	0.00376
b-g2525a	Water	0.25	2.5	0.86299	0.00505

EMF-1563 Revision 12A Appendix 6D Page 43 of 108

Case ID	Within Assembly	Pellet Diam,	Mod. to	k-	k-eff	
	Moderator	Inch	Vol. Ratio	Avg.	Std.Dev.	
b-g2525c	PE	0.25	2.5	0.92508	0.00415	
b-g2530a	Water	0.25	3.0	0.86711	0.00431	
b-g2530c	PE	0.25	3.0	0.92091	0.00435	
b-g2535a	Water	0.25	3.5	0.85632	0.00449	
b-g2535c	PE	0.25	3.5	0.91707	0.00414	
b-g2540a	Water	0.25	· 4.0	0.85102	0.00420	
b-g2540c	PE	0.25	4.0	0.90408	0.00433	
b-g3020a	Water	0.30	2.0	0.85156	0.00448	
b-g3020c	PE	0.30	2.0	0.91182	0.00455	
b-g3025a	Water	0.30	2.5	0.86442	0.00419	
b-g3025c	PE	0.30	2.5	0.92380	0.00425	
b-g3030a	Water	0.30	3.0	0.85735	0.00457	
b-g3030c	PE	0.30	3.0	0.92194	0.00484	
b-g3035a	Water	0.30	3.5	0.86472	0.00381	
b-g3035c	PE	0.30	3.5	0.91602	0.00411	
b-g3040a	Water	0.30	4.0	0.85676	0.00444	
b-g3040c	ΡE	0.30	4.0	0.91409	0.00462	
b-g3520a	Water	0.35	2.0	0.86583	0.00412	
b-g3520c	PE	0.35	2.0	0.91006	0.00458	
b-g3525a	Water	0.35	2.5	0.86063	0.00397	
b-g3525c	PE	0.35	2.5	0.91983	0.00497	
b-g3530a	Water	0.35	3.0	0.86350	0.00443	
b-g3530c	. PE	0.35	3.0	0.91868	0.00423	
b-g3535a	Water	0.35	3.5	0.85684	0.00402	
b-g3535c	PE	0.35	3.5	0.90675	0.00440	

EMF-1563 Revision 12A EMF-1563

Appe	ndi	x 6	D
Page	44	of	108
		_	-

Case ID [!]	Within Assembly	Pellet Diam,	Mod. to Fuel Vol. Ratio	k-	eff
:	Moderator	inch		Avg.	Std.Dev.
b-g3540a	Water	0.35	4.0	0.85076	0.00397
b-g3540c	PE	0.35	4.0	0.90292	0.00423

EMF-1563 EMF-1563

EMF-1563 Revision 12 Appendix 6

EMF-1563 Revision 12A Appendix 6D Page 47 of 108

27-Group Cross Section Results

27-Group Cross Section Results

4.2 Low Density Interspersed Moderation

Unless stated otherwise, all calculation results in this Section are based on the following set of parameters.

- a. All edge rods are 4.0% enriched, all UO_2 -Gd $_2O_3$ rods are 5.0% enriched and contain 1.5 wt.% Gd $_2O_3$, and all other interior rods have an average 4.0% enrichment and a maximum 5.0% enrichment.
- b. All assemblies contain the maximum allowable amount of polyethylene shims.
- c. All rods contain 0.35" diameter pellets and are clad with 0.018" thick zircaloy. There is no gap between the pellet and clad.
- d. All assemblies are 10x10 type with a 3x3 water channel at the center. The assembly envelope is 5.0" square. The assemblies are shifted apart to the outer edges of their baskets.
- e. Most calculations are for "damaged" conditions. An array of edge-to-edge inner containers was modeled. Section 4.3 contains results for "normal" conditions with the wooden outer container.

The total PE volume modeled (ref. case "a-evk10") is 3.20026E6 cc for 104 packages which contain 208 assemblies. The fuel length modeled is 453.39 cm. The shims are full length except they are not in the 3x3 channel. The PE volume per assembly is 15385.865cc. The PE volume per unit length is 33.935 cc/cm. For a quick check, nine shims of dimensions 0.1267" x 5.0" would occupy 36.78 cc/cm. The 91 rods of 0.386" OD displace 10.6489 cu in/in. Assume that the 3x3 channel occupies 30% of the 5.0" assembly envelope dimension. The 1.5" square channel would then occupy 2.25 cu in/in. The volume between rods is then 12.1011 cu in/in which is 78.07 cc/cm. The shims therefore occupy 43.47% of the between-rod volume, excluding the channel. The maximum allowable volume of polyethylene shims per assembly is 33.93 cubic centimeters per centimeter length.

The calculated normalized (relative to average) fission rates for a typical 10x10 assembly with zero water rods and zero gadolinia rods and 8 volume % interspersed water are tabulated below; the model is an infinite array of edge-to-edge inner containers. It is seen that the corner rods have the highest fission rates with the edge rods declining with increased distance from the corner and interior rods declining with increased distance from the corner rods date a fission rate about double that of the central 2x2 array of rods. As the water density is increased above 8 volume % (peak k-inf for infinite array), the normalized fission rates of the corner/edge rods increases but the system k-inf declines due to decreased coupling among the assemblies. For a finite array such as 13x20x1, the optimum interspersed water density is typically 8 to 12 volume %.

EMF-1563 EMF-1563

Revision 12A Appendix 6D Page 50 of 108

1.489	1.320	1.245	1.206	1.189	1.187	1.200	1.232	1.295	1.430
1.314	1.091	1.000	,955	.935	.933	.947	.983	1.058	1.238
1.235	.996	.887	.835	.813	.810	.826	.867	.956	1.148
1.194	.950	.834	.775	.751	.747	.764	.812	.906	1.101
1.177	.930	.812	.751	.724	.721	.740	.788	.884	1.080
1.176	. 930	.812	.751	.724	.720	.739	.788	.884	1,080
1.193	.949	.833	.774	.749	.746	.763	.81 1	.905	1.100
1.233	.994	.885	.833	.811	.808	.824	.865	.954	1.146
1.310	; 1.088	.997	.952	.932	.930	.944	.980	1.054	1.235
1.484	1.315	1.240	1.201	1.184	1.182	1.195	1.227	1.289	1.424

TYPICAL NORMALIZED FISSION RATES FOR 10X10 ASSEMBLY LOW DENSITY INTERSPERSED MODERATION

Sensitivity Study: Gadolinia Rod Locations 4.21

The fission densities tabulated above are instructive regarding the selection of locations of gadolinia rods for peak reactivity (most conservative locations). With low density interspersed moderation conditions, most of the moderation occurs between assemblies; relatively little occurs within assemblies. This is evidenced by Dancoff factors on the order of 0.90, meaning that neutrons leaving one rod have a 90% chance of having their next collision in another rod rather than in the between-rod moderation. As a result, the thermal flux is depressed in the assembly interior. If a thermal neutron absorber is placed into a region with a depressed thermal flux, the effectiveness of the absorber will be reduced. Similarly, if the gadolinia rods are clustered together in the central parts of the assembly, their effectiveness will be further reduced by the reduction in thermal flux caused by their companions. The most effective (least conservative) locations for gadolinia rods are near the corners/edge and spaced apart.

A simple CASMO model was used for a first series of studies on the effect of gadolinia rod arrangement. The 12 gadolinia rods contained 1.5 wt.% Gd2O3 and their uranium was 5.0% enriched. All other fuel rods were 4.0% enriched which results in a assembly average enrichment near 4.13%.

The CASMO model also contained a water channel in a central 3x3 lattice locations. The various gadolinia rod arrangements were tested with various channel positions. The CASMO model includes one assembly with specular reflection at all faces. The left side of the assembly faces the companion assembly and the right side faces out.

The arrangements modeled and the calculation results are presented in the following figures and table. The most reactive arrangement is "GRA2", which has all gadolinia rods clustered together

EMF-1563 Revision 12A Appendix 6D Page 51 of 108

in the upper right corner. The most reactive position for the 3x3 channel is to be shifted toward the lower left corner. As will shown, arrangements with the gadolinia rods concentrated on the left side are less reactive than with them on the right side (facing out). The rod type numbers shown in the figures were used for other studies with models with multiple rod enrichments. In these cases, Types 1,2, and 3 are 4.0% enriched and Type 4 (shaded) is 5.0% enriched with 1.5% gadolinia.

Pattern GRA1 Pattern GRA2 Pattern GRA3 0000*** **84**2 ٠ ک 0222**** 00000* ۵ ک 0 2 2 3 3 3 * * * 0 0 2 2 3 3 3 * * * 0 **(#**) 1233 * 1 0 2 3 3 3 3 * * 0 0 2 3 3 3 3 3 * * 0 ۲ 0033 3 * 1 0 0 03 3 * 0 1233 3 * 0 1233 3 * 1 023 3 3 * 0 000 3 O * O 00000000000 003 3 3 2 0 1 0 2 3 3 000 0 2 2 3 3 3 2 2 0 0 0 2 3 3 3 2 2 0 0 @ @ @ @ @ @ @ 0 | Pattern GRA4 Pattern GRB1 Pattern GRB2 0222*** ٠ ک 0 2 2 3 3 3 3 3 00000**** ÷. 86 * O 022333* *6*4: 003 3 🎕 ۰ ک 0233 *** 0 0 0 0 0 0 0 ** * 0 023 3 3 & O 0.233 *** 0|||0 0 3 3 🚸 * 1 023 33 * O 0233 3 * 0 0 0 3 3 3 * 0 0 0 0 0 0 0 0 0 0 0 0 03 3 2 0 0 2 2 3 3 3 3 2 2 00 2 2 3 3 3 2 2 0 1 0 2 2 3 3 3 2 2 0 00000000000 Pattern GBB3 Pattern GRB4 Pattern GRC1

		•			. —													•				•					•		
0	1	Ð	0	1	0	1	٦	0	0	0	1	0	1	1	0	0	1	Ð	0	1	1	0	1	0	0	0	1	0	0
0	2	2	2	۲	*	۲	(\$	3	0	0	2	2	2	-	*	۲	8 8 8	3	0	0	2	2	2	۲	*	۲	3	3	0
0	2	2	3	3	۲	*	3	*	1	0	2	0	3	0	۲	*	3	*	1	1	0	2	3	*	۲	*	3	3	Ö
0	2	3	3	3	3	3	8	۲	0	0	2	3				3	8	11	0	O	2	3	3				**	*	0
0	2	3	3				٠	:	0	0	2	3				3	۲	۲	0	0	2	3	3				۲	*	0
0	2	3	3				3	*	0	0	2	3				3	3	*	0	0	2	3	3		·		۲	*	0
0	2	3	3				3	2	1	0	2	3	3	3	3	3	3	2	0	10	2	3	3	3	3	3	3	2	1
0	2	0	3:	3	3	Э	2	2	1	0	2	2	3	3	3	3	2	2	0	0	2	0	3	3	3	3	0	0	0
0	2	2	2	2	2	2	2	2	0	0	2	2	2	@	2	2	2	2	0	0	2	2	2	2	2	2	2	2	0
0	0	1	Đ	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	, ①	0	0	0	0	0	0	0

EMF-1563 EMF-1563 Appendix 6D

Page 52 of 108

Pattern GRC2 Pattern GRC3 Pattern GRC4 0000000000 0000000000 0000****000 0000****0000 0000*** 3 3 0 0003****000 0 0 0 3 * * * 0 0 0 0000****000 00333333***0 0000000000000 003 3 🕷 ٠ 🛞 (1)3 * * 1 0 2 3 3* * ① 003 3 🏶 \odot <u> 46</u> 0 2 30000 * * 0 0 2 33 * * 0 3 🚸 1 * 003 3 3 2 0 0000 300 0 2 3 3 3 3 3 3 2 0 00000000000 0 2 2 3 3 3 3 2 2 000000000000 **`O @ @ @ @ @ @ @ O** 0000000000 00000000000 00000000000

Pattern GRD1

Pattern GRD2

Pattern GRD3

1	1	0	① · ①	Ď	0	1	1	1	0	0	1	0	1	Ō	0	0	0	0	1	0	1	0	1	0	0	1	1	0	0
0	2	2	æ : 4	Þ	**	3	3	3	0	0	2	2	۲	٠	*	3	3	3	1	0	2	0	*	*	*	3	3	3	Ū
①	2	2	ه ک	Þ	۲	3	3	3	1	1	2	2	۲	÷.	\∰	3	0	3	0	0	2	2	۲	*	۲	3	3	3	0
0	2	3	3		,		0	3	0	0	0	3	3	0	3	3	3	3	0	0	2	3	3	3	3	3	3	3	. D
0	0	3	3.				٠	۲	1	0	2	3		•		3	۲	۲	0	0	2	3	3				۲		0
∥⊙	2	3	3				۲	٠	0	0	2	3				3	۲	*	1	0	2	3	3				۲	*	1
0	2	3	3 (Ð	3	3	۰	۲	1	0	2	3				3	**		0	1	2	3	3				*	۲	1
0	2	2	3.0	Ð	3	3	0	2	0	0	2	2	3	3	3	3	2	2	0	0	2	2	3	3	3	3	2	2	0
0	2	2	2.0	Ð	2	2	2	2	0	O	2	2	0	2	2	2	0	2	0	0	2	2	2	2	2	2	2	0	0
0∥	1	1	\mathbf{O}	D	1	1	1	0	0	0	0	0	1	0	0	0	1	0	1	1	1	0	1	0	Ö	1	0	1	0

Pattern GRD4

Pattern GRE1

Pattern GRE2

0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	0	0	1	0	Ð	0	0	0	0
0	2	0	*	*	*	3	3	3	0	0	2	0	2		*	3	3	3	0	0	2	2	2	۲	*	0	0	3	.①
0	2	2	۲	*	*	3	3	3	0	0	2	2	3	3	3	*	3	3	0	0	0	2	3	0	2	*	3	0	.①
0	2	3				3	3	3	0	0	2	3	3				**	3	0	0	2	3	3	3	3	3	8 8	0	0
0	2	3				3	*	*	0	0	۲	3	3	:			3		0	0	۲	3				3	2	۲	1
0	2	3		•		3	۲	÷	0	0	۲	3	3				3	*	0]	0	÷	3				3	3	٠	0
0	2	3	3	0	3	3	*	۲	0	0	2	•	3	0	3	3	3	2	0	0	2	3				3	3	2	0
0	2	2	3	:3	3	3	2	2	0	0	2	2	3	3	3	3	2	0	0	0	2	2	3	3	3	3	2	2	0
0	2	0	2	2	2	2	0	2	0	0	2	2	2	۲	۲	2	2	2	0	0	2	2	2	۲	*	2	2	2	1
0	1	0	0	0	0	0		0	Ð	0	0	0	1	O	1	0	1	0	0	0	1	0	1	0	0	1	0	0	1

EMF-1563 Revision 12A Appendix 6D 108

			÷																							~~	Pa	age	53 of
		P	att	err	۱G	RE	3					P	att	err	۱G	RE	4					P	att	err	ו G	RF	1		
0	1	0	0	Ð	Ō	1	1	1	\odot	1	1	0	1	0	0	1	1	0	1	0	1	0	1	0	0	1	1	Ō	0
	2	2	2	۲	*	3	3	3	0	0	2	2	2	*	*	3	3	3	1	0	2	2	2	۲	*	3	3	3	0
0	2	2	3	3	3	۲	3	3	1	0	2	2	3	3	3	*	3	<u>،</u>	1	0	2	2	3	3	۲	3	3	3	0
0	2	3	3	3	3	3	*	3	0	1	2	3				3	*	3	0	0	2	3	3				3	3	0
0	۲	3	3				3	*	0	0	۲	3				3	3	*	0	0	۲	3	3				۹	*	0
0		3	.3				3	*		0	۲	3				3	3	*	0	0		3	3				3		0
0	2	3	3				3	2	0	1	2	3	3	3	3	3	3	2	0	0	2	İ	3	3	3	3	3	2	0
0	2	0	3	3	3	3	0	0		0	0	2	3	3	3	3	2	2	1	0	2	2	3	3	3	3	2	0	
0	2	2	2		۲	2	2	2	0	0	2	2	2	. 🛞	*	2	2	2	1	1	2	2	2	۲	۲	2	2	2	0
0	0	Ð	D'	\odot	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	Ō	1	0	1	0	0	1	0	0	0
			:																			-							
		- F	ati	err	י G	iRF	2					P	att	eri	ו G	RF	3					P	att	err	۱G	RF	4		
O	1	1	1	1	1	Ū.	1	1	0	0	1	0	1	0	0	(1	0	0					0	1	1	Ð		
0	0	2	2	*	%	2	2	3	0	0	2	2	2		*	3	3	3	0	0	2	2	2	۲	*	3	3	3	0
0	2	0	3	3		3	3	2	0	\mathbb{O}	2	2	3	3	۲	3	0	3	0	0	2	2	3	0	۲	3	3	3	0
0	2	3	3	3	3	3	3	2	0	0	2	3	3	0	3	3	3	3	0	0	2	3				3	3	3	0
0	۲	3	÷			3	۲	÷	0	0	۲	3	3	•			۲	۲	0	0	۲	3				3	Ŷ	*	0
0	۲	3				3	3	\$\$	0	0	*	3	3	:			3	*	0	0	¢	3			•	3	3	*	Ð
0	0	3				3	0	2	0	0	2	3	3	:			3	2	0	0	2	3	3	3	3	3	0	0	ĵ
¶© ∥	2	2	3	3	3	3	2	0	0	0	2	2	3	3	3	3	2	2	0	0	2	0	3	3	3	3	0	0	0
0	2	2	2	*	.	2	2	2	0	0	2	2	2	**	*	2	2	2	0	0	2	2	2	*	**	3	2	2	① .
[0]	0.	0	0	0		0		0	0	\bigcirc		0	0	0		0	0	0	0]	0	0	0	0	0	0	0	0		<u></u>
_		P	att	err	1 G	iRG	1					P	att	err	1 G	RG	i2					P	att	err	1 G	RG	13		
0	1	$^{\odot}$	0	1	0	1	0	0	0	0	0	0	1	1	0	ⓓ	1	1	0	0	1	0	0	1	$^{\odot}$	$^{\odot}$	0	0	0
0	2	2	2	*	**	۲	3	3	0	0	2	2	2	*	*	۲	2	3	0	0	2	2	2	% >	*	*	3	3	0
0	2	2	3	0	3	3	3	3	0	0	2	2	3	O	3	3	3	2	0	0	2	0	3	3	3	3	3	3	0
0	2	3	3				3	۲	0	0	2	3	3	3	3	3	3	\gg	0	1	2	3	3	3	3	3	3	<u>نې</u>	0
0	۲	3	3				3	æ	0	0	۲	3		1		3	3	≫	1	0	۲	3	3				3	۲	0
10	۲	3	3				3	*	0	0	- 🎲	3				3	3	*	1	10	٠	3	3				3	-	0

③ ※ ① ∥ ① ◆ ③ 3 9 * 0 II 0 * 3 3 0 * 3 3 00000000000000 0000000000

Pattern GRG4

Pattern GRH1

Pattern GRH2

 \odot \bigcirc \bigcirc

		the second se		_										-			_						-
$\bigcirc \bigcirc \bigcirc \bigcirc$	000	00	00	0	1	1	0	0	()	1	1	Θ	0	Õ	1	0	1	0	Θ	1	0	0	0
000	2 * *	* 3	3 1	0	2	2	<u>چې</u>	3	3	۲	3	3	0	\odot	2	2	۲	3	3	*	2	3	0
000	3 3 3	3 3	3 1	0	2	2	3	3	3	۲	3	3	1	1	2	2	3	3	2	*	3	2	0
023	11	33	* 0	0		3	3				*	<u>کې</u>	\odot	0	٠	3	3	3	3	3	**	٠	0
0 * 0		33	* 0	0	3	3	3	1			3	3	1	\odot	3	3				3	2	3	0
0 * 3		33	* 0	1	3	3	3	•			3	3	1	0	3	3				3	3	3	0
003	3:3 3	3 3	@ 0	1	۲	3	3	3	3	3	0	<u>چ</u>	1	\odot	۲	3				3	0	۲	Ò
000	333	3 2	00	0	2	2	3	3	3	З	2	2	0	\odot	2	2	3	3	3	3	2	2	0
022	@'****	0 0	00	0	2	2	۲	.3	3		2	2	0	\odot	2	2	۲	3	3	۲	2	2	. 🛈
000	0.00	00	0 0	0	1	0	1	1		1	1		0	[] C		0	1	0	1	1	1	1	1

EMF-1563 Revision 12A Appendix 6D Page 54 of 108

		P	atte	ern	G	RH	3.					P	att	ern	G	RH	4		•			F	Pat	ter	n G	ìRl	1		
0	1	0	1	1	0	1	0	0	0	0	1	0	0	: ①	0	1	1	0	0	0	0	0	0	0	0	0	0	Ō	0
0	2	2	*	3	3	*	2	3	0	0	2	2	*	3	3	۲	3	3	0	0	2	2	2	۲	*	3	3	3	0
∥⊙	2	2	3	3	2	۲	3	2	0	0	2	2	3	3	3	*	3	3	1	1	2	2	3	*	۲	3	0	3	
0	۲	3	3	0	3	3	۲	۲	0	0	۲	3	3	3	3	3	*	۲	1	0	2	3	3				3	3	0
0	3	3	·			3	2	3	0	0	3	3	3				3	3	0		۲	3	3				¢	% >	0
0	3	3				3	3	3	0	0	3	3	3				3	3	0	0	۲	3	3				۲	æ	0
0	۲	3	:			3	3	۲	0	0	۲	3	3	•			0	۲	0	0	2	3	3	3	3	3	3	2	0
0	2	Ò	3	3	3	3	0	2		0	2	0	3	3	3	3	2	2	0	0	2	2	3	3	3	3	2	0	0
0	2	2	٠	3	3	۲	2	2	\odot	0	2	2	۲	3	3	۲	2	2	0	0	2	2	2	۲	*	2	3	2	0
	0	0	0.	0	0	0	1	0	0	\bigcirc	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	1	1	0	0

Pattern GRI2

Pattern GRI3

Pattern GRI4

									the second s	_	1.1			_	The second s			_	_		_	And in case of the local division of the loc	_	_		_		_	_
0	0	Θ	1	1	0	0	0	0	0	0	0	0	Ū	,0	0	0	1	0	1	C	1	0	1	1	Θ	1	0	0	1
0	2	2	2	۲	۲	2	2	3	0	0	2	2	2	۲	*	3	3	3	0	C	2	2	2	\$	*	3	3	3	1
0	0	2	3	*	۲	3	3	2	0	0	2	2	3	*	*	3	0	3	1	C	2	2	3	8 22	*	3	3	3	0
	2	3	3	3	3	Э	3	2	0	0	2	3	3	3	3	Э	3	3	0	0	2	. 3				3	3	3	1
0	۲	3				3	۲	۲	0	0	۲	3	3	:			۲	۲	0	[] T	۲	3		•		3	۲	۲	1
0	Ŷ	3	:			3	۲	*	0	1	۹	3	3				۲	*	0	0		3				3	۲	*	1
0	2	3	:			Э	3	2	0	1	2	3	3				0	2	0	C	2	3	3	3	3	3	3	0	1
∥⊙	2	2	3	3	3	3	2	0	0	0	2	2	3	3	3	3	2	2	0	1 C	2	2	3	3	3	3	2	0	1
0	2	2	2	\$ \$	*	2	0	2	0	0	2	2	2	*	۲	2	2	2	0	C	2	2	2	* *	*	2	2	2	0
0	\odot	0	0	1	1	1	1	1	0	1	1	1		.1	\odot	\bigcirc	1	1	0	0	\odot	1	1		$(\mathbf{\hat{U}})$	1		1	0

Pattern GRJ1

Pattern GRJ2

Pattern GRJ3

0 (D	0	٦.	0	0	0	0	0	0	1	1	0	(1	0	1	1	0	0	0	1	0	1	0	0	0	1	٠Ū	0
0.0	2	2	2		*	3	3	3	\odot	0	2	2	2	۲		2	2	3	1	0	2	2	2	*	*	3	3	3	0
0	2	2	3	3	*	*	3	3	0	0	0	2	3	0	٠	*	3	2	1	0	2	0	3	3	۲	*	3	3	0
0	2	3	3				8	3	0	0	0	3	3	3	3	3	**	2	0	0	2	3	3	3	3	3	**	3	0
0	۲	3	3;					Ś	0	0	۲	3		:		3	*	۲	0	0	۲	3	3				۲	*	0
① ∛	*	3	3				3	8	0	0	۹	3				3	3	۲	0	0		3	3				3	*	0
0	2	3	3	0	3	3	0	2	0	1	2	3				3	3	2	1	0	2	3	3				3	2	1
0	2	2	3	3	3	3	2	2	\odot	1	2	2	3	3	3	3	2	2	0	10	2	2	3	3 [.]	3	3	2	2	0
0	2	2	2		۲	2	2	2	0	0	2	2	2	۲	*	2	2	2	0	①	2	2	2	۲	۲	2	2	2	0
0	Ð	1	0	\bigcirc	1				0	0		0	1	1		1	1	1	0	∥Ɗ	1	1		1				1	0

EMF-1563 A

EMF-1563 Revision 12A Appendix 6D Page 55 of 108

Pattern	GRJ	14					F	Patl	erı	ו G	RK	(1					F	att	err	ו G	i RK	(2		
$\bigcirc \bigcirc $	00	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	1	1	0	1	Ð	രി
0222*	* 3	3	3	0	0	0	2	2	*	**	۲	3	3	0	0	0	2	0	*	*	ě	2	<u>ن</u>	0
00000	* *	3	3	1	0	2	2	3	٩	3	*	3	3	1	0	2	2	3	3	3	*	0	2	Ő
003	3	*	3	1	0	2	3	3				**	۲	0	0	2	3	3	3	3	3	*	*	0
0 * 0 :	3	Ŷ	≫	0	0	۲	3	3				3	*	0	0	۲	3				3	3	*	ົ
0 * 3	3	3	*	0	0	۲	3	3				3	*	0	0	٩	3				3	3	*	0
00000	33	3	2	0	0	2	3	3	3	3	3	3	2	1	0	2	3				3	0	Ø	0
000000	33	2	2	1	0	2	2	3	0	3	3	2	2	0	0	2	2	3	3	3	3	2	Q	0
0222*	* 2	2	2	0	0	2	2	2		*	2	0	2	0	0	2	2	2	*	**	(2)	a	a	6
00000	00		1	1	0	1	1	1	Ō		0	1	1	0	0	1	Ō	0	0	0	ົ	ົ	о П	ົ
Pattern	GRK	3		a.	<u></u>		P	att	err	G	RK	4		انتصحت	1! <u></u>					- <u>-</u> -	_		<u> </u>	<u> </u>
00000	00	٦	0	1	0	1	0	0	1	0	1	1	1	0]										
0000***	* *	3	3	0	0	2	2	2	۲	*	۲	<u>ن</u>	3	0										
0 2 2 3 3	3 🍇	ര	ര	\square	1	ര	ര	ര	6	a		6	6											

O	2	2	3 O	3	*	3	3	۰D	[] ①	2	2	3	0	3	۲	3	3	C
0	2	3	3· 0	3	3	*	۲	0	0	2	3				3	*	۲	C
0	۲	3	3			3	٠	0	0	۲	3				3	3	۲	Œ
1		3	3			3	۲	0	0	۲	3				3	3	*	Œ
1	2	3	3			0	2	0	0	2	3	3	3	3	3	3	0	Ć
1	2	2	3 3	3	3	2	2	0	1	2	2	3	3	3	3	2	0	C
1	2	2	2*	*	2	2	2	1	0	2	2	2	*	*	2	2	2	C
1	1	\odot	ົົ	\odot	\odot	0	ത	0	ທ	n	ወ	എ	መ	ത	ጠ	ത	Ð	G

EMF-1563 EMF-1563 Revision 12A Appendix 6D

Page 56 of 108

Gadolinia Rod Arrangement Studies All Gad Rods are 5.0% Enriched, All other Rods are 4.0% Enriched Gadolinia Rods contain 1.5 wt.% Gd₂O₃

CASMO Model with Maximum Allowable Shims and 10 Vol% Interspersed Water

Gad Rod	Number of	Case ID		3X3 CHANNE CASM	L POSITION, D k-inf	
Fallen	Gau Hous		1	2	3	4
GRA	12	CAVA	0.98154	0.98669	0.98460	0.98466
GRB			0.97896	0.98484	0.98197	0.98202
GRC.	12	CAVB	0.98045	0.98638	0.98294	0.98298
GRD			0.97658	0.98116	0.97761	0.97766
GRE	10	CAVC	0.96905	0.97137	0.97068	0.97068
GRF	10	CAVD	0.97211	0.97433	0.97324	0.97324
GRG	10	CAVE	0.97097	0.97160	0.97136	0.97141
GRH	10	CAVF	0.95944	0.96174	0.96109	0.96108
GRI	12	CAVM	0.95538	0.95851	0.95673	0.95671
GRJ	12	CAVMA	0.95339	0.95675	0.95530	0.95529
GRK	12	CAVMB	0.95197	0.95450	0.95371	0.95372

4.22 Sensitivity Study: Water Rods and Water Channels

When fuel rods are replaced by "water rods", they are actually much closer to "void rods" at the typical 8-12 volume % water conditions for peak k-eff. Therefore, the net effect is closer to removal of fuel with very little added moderation, which causes a decline or no change in k-eff; i.e., the fuel is "worth" more than the slight addition of local moderation.

The new fuel category requires gadolinia rods. If a fuel rod is replaced with a "water rod", the gadolinia rods have the following effects:

- 1. If the water rod is located close to gadolinia rod(s), the added moderation will increase the effectiveness of the absorber.
- 2. If gadolinia rods are moved toward the edge/corner to make room for water rods, the k-eff will tend to decline because of the increased thermal flux near the edge. The gadolinia rods become more effective and some of the higher worth fuel rods are replaced with absorbers.

EMF-1563 Revision 12A Appendix 6D Page 57 of 108

If gadolinia rods remain clustered in the center and fuel rods near the edge/corner are replaced with water rods, the k-eff will tend to decline because of the loss of higher worth fuel rods.

CASMO was used to calculate the k-inf for arrays of edge-to-edge inner containers with various numbers and arrangements of water rods. The model included the maximum allowable amount of polyethylene (shims) and 10 volume % interspersed water. This simple model had zero gadolinia and all fuel was 4.0% enriched. The water rod arrangements (patterns) modeled are shown in the following figures. As shown in the table following the figures, all cases with water rods are less reactive than the case with zero water rods.

			Pat	ter	n۷	VR/	A					I	Pat	ter	n V	VR	B					F	Pat	ter	n V	VR	2		
Í	*	*	*				\otimes	*	۲		- 🙊	۲	۲		-	۲	۲	**	۲	8	-	۲	-		@	40	@	**	۵
*	*	*	-		@	\otimes				«		*				\ll	*		*	🏼			۲	*		۲	*	\$	*
«	*	\otimes		*	\Leftrightarrow	۲	\otimes	*	*	«	-	*	\otimes		$\langle \! \otimes \! \rangle$		\Leftrightarrow	*	*	&		۲	$\langle \! \rangle$	۲		۲		۲	۲
*	*	*	\otimes	*	\otimes	\Leftrightarrow	*		-	«	\otimes		۲		*		*	۵	*	@	\otimes	۲	\otimes	\Leftrightarrow	۲	$\langle \! \otimes \!$		۲	
«	•	*	۵		۲	\otimes	\circledast			⊗	٨	۲	۲	-	\ll	*	\otimes		*	8	\Leftrightarrow	۲	۲	۲		*		۲	
@	•		٠		-	\$	\otimes	\otimes		🎕	۲	۲	-		\otimes	*	۲	-	۲		\otimes		*		۲	۲	۲	*	
*	*	۲	۵,	۲	*	$\langle \! \circ \! \rangle$		*	*	«	\otimes		۲		۲		**	\otimes	*	*	۲	*	*				*	۲	
«	*	۲	٠.	*			\otimes	*	\otimes	⊗		۲	\otimes	*	۲		\circledast	*	*			≫	\ll		۲	۲	۲	*	
*		۲	: 🛞		*	\circledast		\otimes	*	. 🕷	\Leftrightarrow	۲				$\langle \! \otimes \!$	*	\otimes						۲				۲	
	*	<u></u>				*		۲		۲	- 🕸		*		\Leftrightarrow	*		۲	\Leftrightarrow	*		*		۲	\ll	۲	\otimes	<u>ن</u>	۲

Pattern WRD

Pattern WRE

Pattern WRF

11												_		· ·			_				_		Contraction of the local division of the loc			_			-	
🏵	*	\$	<u>م</u>	÷	\otimes	*	\Leftrightarrow	- * *	- (1)	🏽	@	*	\otimes	÷۲	\ll	*	$\langle \! \rangle$	*			\otimes	-	\otimes	\otimes	*		*	-	-	*
🍩	۲	*	ا	-	\otimes	\ll	\$	۱		🛞	\otimes			-		-	*	۲				$\langle \! \! \otimes \rangle$	*	۲				-		*
🍩	***		۲		۲		\Leftrightarrow	۲		-	**	۲	\ll	*	\Leftrightarrow	*	$\langle \! \! \otimes \rangle$	*	۲	I	۵		۲	۲	۲	۲	۲		*	-
1 88	\circledast	-		\Leftrightarrow	*		**	۲		8	\Leftrightarrow	*		<u> </u>	*		()		*		\$				۲				۲	**
8	۲		۲	*	۲	-	\circledast	۲	\otimes	8	٠	۲	0	\otimes		*	-	۲				۲	۲	۲	-	۲	۲	۲		
		۲	۰ 🛞	*		\circledast	\otimes	\otimes	-	8	۲	۲	۲	#		\$	۲	-	۲			۲	٠	*		۲		۲	*	\$
🍩	٢	**	₩.	-	*	$\langle \! \otimes \!$		-	*	 🛞	$\langle \! \otimes \! \rangle$	*	*	*	*		*	\otimes			*	۲	*		~	*	(4)		*	
⊗	*	\otimes	٠	*	\otimes	۲	$\langle \! \otimes \!$	*	*	🛞		۲	\Leftrightarrow		-	۲		*	-	l	۲	*	۲	*	(5)	~		æ	*	
🍩	\Leftrightarrow		畿.			۲		(*	$\langle \rangle$		۲	*		-	٨	۲		ľ	٨	١						**	*	`
*		\Leftrightarrow	** *		\Leftrightarrow		۲			*		≫	۲	۲	\ll		*	۲	*		۲		۲				*		ø	

З.

EMF-1563 Revision 12A Appendix 6D Page 58 of 108

		F	Pat	teri	n.V	VR	G					F	Pat	ter	n V	VRI	ł						1	Pat	ter	n١	٧R	1		٠
*	*	۲	***	\otimes		۲	۲	**	۲	8	۲		*		$\langle \! \rangle$	۲	$\langle \rangle$	*	۲	Π	۲		۲	۲	\$ \$	*	-	۲	ا	
*	۲	*	-	-	8	\ll	*			∥⊗	\Leftrightarrow	\otimes		*	<\>	\Leftrightarrow	\otimes		*		*	$\langle \! \rangle$			\otimes		\ll	*		**
🍩		≫	≪.		\Leftrightarrow	\otimes				∦⊗		\otimes	\ll	: 🏀	\Leftrightarrow	\otimes		*	۲				\otimes	$\langle \! \otimes \! \rangle$		\ll			\ll	`⊗
8	$\langle \! \! \otimes \rangle$	۲			\otimes			\otimes		🏽	$\langle \! \circ \! \rangle$		۲	· 🗇	*		**	۲		ľ		$\langle \! \rangle$				*		8		`⊛
🏽	۲	*	۲		\otimes	\otimes	\otimes	۲		∥⊗	٨	\otimes	۲	*		\otimes	\otimes	≫	\otimes		\$	٨	-	\otimes	-		\otimes	43	46	⊗
1	\otimes	tiy	\otimes		\otimes	#			-	8	$\langle \! \! \! \rangle$	۵	*		۲	\circledast	\otimes	۲	-		۲	٩				۲	42		۲	⊗
	\otimes	\ll		\Leftrightarrow		\Leftrightarrow	*			🍩	۲	۲	*	\ll		\Leftrightarrow	<\>	۲		ŀ		<u>ا</u>	\otimes	$\langle \! \rangle$	\otimes	*	\Leftrightarrow		ا ≪⊳	≈∥
🍩			<u>انتهار انتهار انتها انتها انتهار انتها انتها انتها انتها انتها انتها انتها انتها انتها ان</u>		\Leftrightarrow	۲	\otimes	*		🏽	*		\otimes		\circledast	*	\otimes	*	*	ľ	٨	∞	\otimes	*		$\langle \otimes \rangle$	\otimes	\Leftrightarrow	*	$\otimes \parallel$
🗇	\otimes	*			*	\Leftrightarrow				🛞	$\langle \! \! \otimes \rangle$		۲	\$		\otimes	***	\otimes	-		*	\otimes				*	-	*		≈∥
🏼	۲	٠	*		-		۲	*	\otimes	🏽	\Leftrightarrow	٨	$\langle \! \otimes \!$:		*	$\langle \! \circ \! \rangle$		\otimes		*		٨	\otimes		\ll		\ll		≪

Pattern WRJ

Pattern WRK

Pattern WRL

-	_			-				_			-			-			_		_		_		_							
$\left[\right]$	\$	۲	۲	-	۲	\ll	-	۲	*	۲	-	*	۲	*	, 🐲	-	*		\otimes	۲	8	> «	*	*	۲	$\langle \rangle$	*	\otimes	*	\otimes
	※	\Leftrightarrow	*	\$\$		\otimes	$\langle \! \langle \! \rangle$	\ll			*	$\langle \! \! \otimes \rangle$	\otimes	\$	(*)	₩	\Leftrightarrow	*		*		•	-	4			\otimes		•	*
II.	٠		≫	***	۲	$\langle \! \otimes \!$			-	\otimes	*	*	\otimes	\ll	(\$\$)	$\langle\!\langle\!\rangle$			\$		8	> «	۲			$\langle \! \otimes \!$			*	*
[]			۵						\otimes		*	`	$\langle \! \! \otimes \rangle$	ॐ	:	-		**	٨		\$	8	*	۲	$\langle \! \circ \! \rangle$	*		**	\otimes	
	٩	٨	۲	-	*		-	\otimes		۲	*	۵	*	۲	*		-	\otimes			«	8		۲	-			۲	۲	۲
1	۵	\otimes	۲			۲	۲	۲	۲	۲	8	\otimes			•	\otimes	\otimes	۲	≫	۲	8	>	-	*		٢		\otimes	۲	۲
1	@	۲	*		\Leftrightarrow	۲	۲			-		()	*		· 🛞		\otimes			*	8	*			*		\Leftrightarrow			*
			≫	$\ll_{\mathbb{N}}$	@	\ll	-	\otimes	*	۲	&			\otimes				\otimes	*	-	8	> 🕷	;	\otimes	≫	\Leftrightarrow	₩	\Leftrightarrow	% ?	۲
	畿	\Leftrightarrow			٨		\otimes	*	\otimes		8	۲		*		-	\Leftrightarrow	*	\circledast		1	8	#	\otimes		*	\Leftrightarrow		٩	*
	≫		۵	\ll		$\langle \! \circ \! \rangle$		۲	۲	۲	*		\otimes	1	۲	-		\Leftrightarrow		\otimes	«	2	· · 🕪	$\langle \! \otimes \!$		\Leftrightarrow		\otimes		۲

Pattern WRM

Pattern WRN

Pattern WRO

Π	۲	*	۲	. (%	۲	۲	-	<u>ا</u>	*	\otimes	\otimes	-	\otimes	-		\otimes		\otimes	\otimes	*	:	۵	*	$\langle \rangle$		۲		*	*		۲
$\ $	8 2	\otimes	*		ॐ		\ll		\otimes	\otimes	*	۲			\otimes		\Leftrightarrow	\$ \$\$	\otimes	*		*	\Leftrightarrow	\otimes				\ll	**		*
ł	٨			۱		\otimes			*	\otimes	-		\otimes	$\langle \rangle$	*	-	*	\otimes		\otimes	:	\otimes	*	≫	\Leftrightarrow	۲	*	*	\Leftrightarrow		\otimes
		$\langle \! \circ \! >$	-	۲			\ll	**	\otimes			\otimes	\otimes	۲	•		\otimes	\otimes	\otimes	*		*		\ll				\otimes			**
	\otimes	٨		<u>ج</u>	۲	\otimes	-	≪,		\otimes	-	۲	۲		:		忩	٢		*	{	0	٨	\otimes				\otimes			۲
1	۵	\otimes	۲	٠	\otimes	۲	\otimes	۲	\otimes	\otimes	8	\otimes	۲		· 🗇	۲		\otimes	**	*	:	۲						\otimes	\otimes	۲	۲
Į	*	\Leftrightarrow	*		\circledast	@	\otimes	88 ·	\otimes	-	*	\Leftrightarrow	*		-	*	\ll	***	\otimes	*	:	8	\Leftrightarrow	\otimes		۲	*	\Leftrightarrow	***	\otimes	
	\otimes				\otimes	\Leftrightarrow			**	\otimes	-		≫		<i>.</i>	\Leftrightarrow	*	$\langle \! \! \rangle$	*	\otimes	:	⇔	*		$\langle \! \otimes \!$	۲			\Leftrightarrow	*	۲
	*	\Leftrightarrow	۲	\otimes			\otimes	*	\otimes	-	*	۲			*		\ll	۲	۲	-		1	$\langle \! \rangle \! \rangle$		\otimes	۲	*	\Leftrightarrow		\otimes	
1	\otimes	*	≫	\ll	۲	\otimes	\otimes	\ll	*	\otimes		۲	\otimes	\otimes	*	\otimes	٨	\ll	*		:	0		\otimes	\ll	۲	$\langle \! \! \otimes \!\!\! \rangle$		\otimes		$\langle \! \rangle $

EMF-1563 Re

EMF-1563 Revision 12A Appendix 6D Page 59 of 108

Pattern WRP

			· · · · · ·						_
-		۲	\otimes	4	\Leftrightarrow	<	$\langle \! \! \otimes \rangle$	\Leftrightarrow	\otimes
	$\langle \! \! \otimes \!\! \! \rangle$	\otimes	18 J	\`	\otimes	$\langle \! \rangle$	% 2	۵	*
۲	*	*	**	\otimes	\Leftrightarrow		\otimes	*	-
*		*		\ll		\Leftrightarrow		≫	-
۲	$\langle\!\!\!\langle \otimes$	۲	49				۲		
۲	٠	\otimes	₩.				\otimes	\otimes	۲
**	$\langle \! \otimes \! \rangle$		≫,				**	\otimes	
۲	*	\otimes	۲	۲	\Leftrightarrow			*	\otimes
	\Leftrightarrow		\$	\otimes		\Leftrightarrow	*	⇒	
۲	**	۲		۲	\otimes			\$	-

WATER ROD SENSITIVITY STUDY CASES ALL FUEL IS 4.0% ENRICHED, ZERO GADOLINIA CASMO MODEL WITH MAXIMUM ALLOWABLE SHIMS AND 10 VOL.% WATER

Water Rod Pattern	Case ID	CASMO k-inf
WRA	CEWA	1.11618
WRB		1.11488
WRC	1	1.11558
WRD		1.11584
WRE	- -	1.11594
WRF	-	1.11425
WRG		1.11389
WRH		1.11370
WRI	7	1.11347
WRJ		1.11312
WRK	-	1.11251
WRL		1.11121
WRM		1.11383
WRN		1.11518
WRO		1.11357
WRP		1.11351

Additional water rod studies were done for assemblies with gadolinia rods. The gadolinia rod pattern tested was "GRA2", which was shown to be the most reactive in Section 4.21. As shown in the table following the figures below, adding a water rod lowers k-inf in all cases.

EMF-1563 Revi

EMF-1563 Revision 12A Appendix 6D Page 60 of 108

	•	P	atte	n,	W	RG	iA					P	att	ern	W	RG	ìB					Ρ	att	ern	W	RG	iC		•
0	1	1	0 (D	0	1	(1) ^r	Ō	0	0	0	1	1	0	0	1	0	0	0	0	0	0	0	1	0	0	1	0	0
0	2	2	ŝ	÷	*	۲	÷	۲	0	0	2	2	2	*	*	۲	9 4 6	۲	O	0	2	2	2	۲	*	۲	*	۲	0
0	2	0	3 _. (<u>ک</u>	3	*	۲	*	0	0	2	2	3	0		*	۲	*	1	0	2	2	3		3	*	۲	*	\odot
0	2	3	3 [°] (Э	3	3	*	*	0	0	2	3	3	0	3	3	織	۲	0	0	2	3	3	3	3	3	*	۲	0
0	2	3	1			3	3	*	0	0	2	3				3	3	۲	0	0	2	3				3	3	۲	0
0	2	3				3	3	*	0	0	2	3				3	3	*	0	0	2	3				3	3	*	0
0	2	3				3	3	2		0	2	3				3	3	2	0	0	2	3				3	٩	2	0
0	2	2	3	3	3	3	2	2		0	2	2	3	3	3	3	2	2	0	0	2	2	3	9	3	3	0	2	0
0	2	2	@_(2	2	2	2	2	0	0	2	2	2	2	2	2	2	2	0	0	2	2	2	2	2	2	2	2	0
$[\bigcirc$	0	0		D	0	0	0	0	0	\bigcirc	0	0	0	0	0	0	0	0	0	[0]	0	0	0	0	0	0	0	0	0
_		P	atte	'n	W	RG	iD	•				P	att	ern	W	RG	iE			•		P	att	ern	W	RG	iF		
0	0	1	0,0	D	0	1	(1) (1)	0	1	0	1	0	1	Θ	0	1	0	1	0	0	1	0	1	0	0	0	0	0	0
0	2	2	@∶∛	\$	*	۲	% ,	۲	0	0	2	2	2	۲	Ж¥	۲	*	۲	0	0		2	2	*	*	۲	:	*	0
0	2	2	. (Э I	3	*	۲	۶	1	0	2		3	0	3	۰.	<u>م</u>	*	1	0	2	2	3	0	0	۲	÷2	*	0
O	2	3	3 (3	3	3	*		0	0	0	3	3	3	3	3	*	*	0	0	2	3	3	3	3	3	8	۲	
0	2	3				3	3.	۰	0	0	2	3				3	0	۲	0	\mathbb{O}	2	3				3	3	*	0
Ð	2	3	•			3	3	*	0	0	0	3		•		3	3	*	0	0	2	3				3	3	*	0
0	2	3	i			3	0	2	1	0	0	3				3	3	2	0	0	2	3				3	3	2	. 🛈 🛛
0	2	2	3 (3	3	3	2	2	0	0	0	2	3	3	3	3	2	2	0	0	2	0	3	3	3	3	2	0	0
0	2	2	@`(2	2	2	@	2	0	0	2	2	2	2	2	2	2	2	0	O	2	2	2	2	2	2	2	2	0
	0	0	0.(D	0	0	0	0	0	[0]	0	0	0	0	0	0	0	0	0	\odot	0	0	0	0		0	0	0	0
				4 mm	187	$\neg \frown$						_															•		
		P	attei	'n	W	RG	iG					P		ern	W	RG	iH —					۲	att	err		RO	31 		
0		P		n D	WI ①	1 O	i G	0	1	1	1	Р ()	110 1	ern 0	0	nG ①	iH ①	0	0	0	0	9 0	ontraction of the second secon	O O		0	i 1	0	0
	1) 2)	P i ① ②	1 (2	ר ח D מי	₩I ① ※	1 (1)	i G ① 《	0 **	() ()	() ()	1	P ① ②	1) (2)		•••	T T T T T T T T T T T T T T T T T T T	iH ① ※	() *	() ()	1	1	۲ 0 2	(1) (2) (2)	(1)	0 (0)	(RG)	31 ① ※	() *	0 0
	1) 2)	P () (2) (2) (2)	11 (2 (3 (יח ש ש	₩ ① ※ ③	10 **	i G ① ※	() ** **			① ② ②	P © @ @ @	1 1 2 3		₩ ① ※ ③	10 **	iH ① ※	0 * *	000		100	۲ © © 0	2 (1) (2) (3)	(1) (3) (3)	0 (0) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	(RG)		() **	000
	1) 2) 2)	P (1) (2) (2) (3) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	11 (1 2 3 3 (1 3 (1)	יח שייים שייים שייים	₩ ① ※ ③ ③	RG ① ※ ③	G ① ※ ※				00000	P 0 2 2 3 3	1 (2) (3) (3)	0 0 0	♥ ① ※ ③ ③	RG ① ☀			0000		0000		1 2 3 3	1 ** 3 3	1 W (1) (3) (3)	1 (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	31 ① ※ ※		0000
	1) 2) 2) 2) 2) 2)	P () (2) (2) (3) (3) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	110 (2 : 3 (3 (רח שייי שייי	● ① ③ ③	RG ① ** ③ ③	G ① ※ ※ ③ ③		$\bigcirc \bigcirc $		() () () () () () () () () () () () () (P 0 2 2 3 3	1 2 3 3	0 3	♥ ● ③ ③	RG ① ※ ③							1 (1) (2) (3) (3)	1 ** 3	1 W (1) (3) (3)	(1) (1) (2) (2) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3		() * * * *	00000
	(1) (2) (2) (2) (2)	P 0 2 2 3 3 4	1110 (2) (3) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	'n D ® D 0 0	₩ ① ※ ③ ③	RG ① * * ③ ③ ③ ③ ③	G 0 ≪ ≪ ∞ 0 0 0		$\Theta \Theta \Theta \Theta \Theta \Theta$			P 0 2 2 3 3 3 4	1 2 3 3	0 0 0	♥ ♥ ③ ③	RG ① * * ③ ③					000000		1 (1) (2) (3) (3)	0 ** 3	©. ₩ 3				000000
000000000	1) Ø Ø Ø Ø Ø	P 0 2 2 3 3 3 3 3	1110 (0) ((2) ((3) ((3) (ר ח שייי שייי	♥ ① ※ ③ ③	RG (1) * * 3 (3) (3) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4			$\Theta \Theta \Theta \Theta \Theta \Theta \Theta$	000000000		P 0 2 2 3 3 3 3	1 2 3 3	0 3	♥ ① ※ ③ ③	RG ① * * ③ ③ ③			00000000	$\Theta \Theta \Theta \Theta \Theta \Theta \Theta \Theta$			1 2 3 3	1 ** 3	1 W 0. ** 3 3				00000000
	000000000000000000000000000000000000			'n)))))	₩ ① ※ ③ ③	RG (1 * * 3 3 3 3 3 4	G 0 * * * 0 0 0 0		$\Theta \Theta \Theta \Theta \Theta \Theta \Theta \Theta \Theta$	\bigcirc		P 000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		♥ 1 ** 3 3 3 3	RG (1) ** ** (3) (3) (3) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4			999999999	$\Theta \Theta \Theta \Theta \Theta \Theta \Theta \Theta \Theta$			1 2 3 3	0 3 3				0.*****000	000000000
	() (2) (2) (2) (2) (2) (2) (2) (2) (2) (¥ ① ** 3 3 3 2 0	RG (1) * * 3 3 3 3 3 2 0	G 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		000000000000	$\Theta \Theta $			0 0 0 0 0 0 0 0 0 0 0 0		♥ ① ※ ③ ③ ③ ② ②	RG (1) * * 333300			99999999999	000000000000			1 2 3 3 0 0 0 0	0 ** 0 0 0 0 0	¥]0. ₩33 30	R () * * 3 3 3 3 9 8 0		0 * * * * @ @ @	000000000000
$\bigcirc \bigcirc $	1) 2) 2) 2) 2) 2) 2) 2) 2) 2) 2) 2) 2) 2)			יח שייי שייי שייי שייי	♥ ① ※ ③ ③ ③ ② ① ♥	RG () * * 0 0 0 0 0 0 0 RG		0 * * * * 2 2 0	$\bigcirc \bigcirc $			P 0 2 2 3 3 3 2 2 0 P		0 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	♥ 0 ** 3 3 3 2 0 ₩	RG (0 * * 3333) 3300 RG		0 * * * * * 0 0 0	$\bigcirc \bigcirc $	$\bigcirc \bigcirc $	000000000000000000000000000000000000000		10 23 3 20 1 att	0 ** 3 3 3 2 0 0	₩ 0. ** 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0			0 * * * * @ 2 2 0	0000000000000
	10 20 20 20 20 20 00	P 000000000000000000000000000000000000		rn 1) (3) (3) (1) (3)		RG 0 * * 3 3 3 3 9 9 0 RG						P 0 2 2 3 3 3 2 2 0 P		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 ** 3 2 0 0 0 0 0 0 0	RG 0 * * 3 3 3 3 2 0 RG							10 2 3 3 3 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2	err 0 ** 0 0 0 0 ern		RC 0 * * 3 3 3 3 3 2 0 0 RC		0 * * * * 2 2 0	000000000000000000000000000000000000000
	102 202 202 000 000			rn 1) 3) 3) 3) 1) 1) 1) 1) 1) 1) 1) 1) 1) 1) 1) 1) 1)		RG (1) * * 3 3 3 3 3 3 2 1 K	G 0 ** ** ** ** ** ** ** ** ** ** ** ** *			000000000000000000000000000000000000000					♥ 0 ** 9 3 9 0 0 ♥ 0 **	RG 0 * * 333 33 20 0 RG 0 *			9999999999999	000000000000000000000000000000000000000			10 2 3 3 2 1 1 2 2 3 2 1 2 2 1 2 2 1 2 2 1 2 2 2 2	err 0 ** 0 0 0 0 0 err		7RC 0 * * 3 3 3 3 3 9 0 0 RC RC			000000000000000000000000000000000000000
000000000000000000000000000000000000000	() (2) (2) (2) (2) (2) (2) (2) (2) (2) (P 000000000000000000000000000000000000	0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (rn D 3 D Tn D	♥ 0 * 3 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	RG () * * 3 3 3 3 3 9 0 1 RG () * *			$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	000000000000000000000000000000000000000				ern 0 * 0 0 0 0 ern 0 * 0	♥ 0 * 0 3 3 0 0 V 0 * 0	RG () * * 333300 () RG () * *			000000000000000000000000000000000000000				10233 3001411 020	0 * 0 0 0 0 * 0 * 0		RC 0 * * 3 3 3 3 3 0 0 1 RC 0 * *			99999999999999
					♥ 0 ※ 3 3 8 2 0 1 1 2 2 3 3 3 3 3 4 3 4 3 4 3 4 3 4 3 4 3 4	RG () * * 3 3 3 3 9 9 9 0 RG () * * 4	G 0 * * * 0 0 0 0 0 J 0 * * *			000000000000000000000000000000000000000		P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		ern 0 % 0 0 % 0 0 % 0 % 0 % 0 % 0 % 0 % 0	♥ 0 % 0 3 0 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0	RG 0 * * 333900 RG 0 * * 0			000000000000000000000000000000000000000	000000000000000000000000000000000000000		1 0 2 2 3 3 3 3 3 3 3 3 2 2 3 3 3 3 3 3 3	0 2 3 3 0 0 att	err 0 * 0 3 0 0 0 err 0 * 0 0					000000000000000000000000000000000000000
		P 000000000000000000000000000000000000			♥ 0 * 3 3 3 8 2 1 0 * 3 3 3 3 3 1 0 * 3 3 1 0 * 3 3 3 3 1 0 * 3 3 3 1 0 * 3	RG () * * 3 3 3 3 3 3 0 0 0 0 0 RC () * * 3 4	G 0 * * * 0 0 0 0 0 0 * * * 0			000000000000000000000000000000000000000		P 0 2 2 3 3 3 3 2 2 0 P 0 2 2 3 4		0 * 0 0 0 0 0 0 * 0 0 0 * 0 0 0 * 0 0	♥ 0 ** 3 3 3 2 0 ♥ 0 ** 3 3	RG () * * 3 3 3 3 2 0 RG () * * 3			000000000000000000000000000000000000000	000000000000000000000000000000000000000			0 2 3 3 0 0 att 0 2 3 3	0 ** 0 0 0 0 0 ern 0 ** 0 0	♥ 0.**33 320 ♥ 0.**33 0.	RC 0 * * 3 3 3 3 3 8 0 0 RC 0 * * 3 0			000000000000000000000000000000000000000
			atter ① (② (③ (③ (④ (④ (④ (④ (④ (④ (④ (④		♥ 0 ※ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	RG () * * 9 9 9 9 9 9 0 1 RG () * * 9 9 9	G 0 * * * 0 0 0 0 0 J 0 * * * 0		9999999999999999999	99999999999999999999		P 0 2 2 3 3 3 2 2 0 0 P 0 2 2 3 3 3 2 2 0 0 P		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	♥ 0 * 3 0 0 0 * 3 0 0 * 0 * 3 0 0 * 0 * 3	RG (0 ** ** 3 9 3 9 9 0 1 RG (0 ** ** 3 9 3 9 9 0 1 RG (0 ** ** 3 9 0 1 RG (0 ** ** 3 9 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	₩ 000000 ₩ 000000		99999999999999999999	000000000000000000000000000000000000000			1 1 2 3 3 2 0 1 2 3 3 0 1 1 2 3 3 0 0 1 1 1 2 3 3 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	err 0 ** 0 3 0 0 0 err 0 ** 0 3	♥ 0.**33 3.80 ● 0.**33 • 0.**33 • • • • •	RC 0 * * 3 3 3 3 3 8 0 0 RC 0 * * 3 3 3 6 0 0 RC			000000000000000000000000000000000000000
			atter (0) ((2) ((3) ((3) ((1) ((3) ((3	rn] 3] 1 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	♥ 0 ※ 3 3 3 8 2 0 ♥ 0 ※ 3 3	RG (0 * * 3 3 3 3 3 9 0 0 C RG (0 * * 3 9 3 6	g 0 * * * 0 0 0 0 0 0 * * * 0 0		99999999999999999999	000000000000000000000000000000000000000				0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	♥ 0 ** 9 3 9 2 0 ♥ 0 ** 3 3	RG (0 ** ** 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0) 6 6 * * * 0 0 0 0 0 0 * * * 0 0 0 0 0 0		999999999999999999999	000000000000000000000000000000000000000			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	err 0 ** 0 0 0 0 0 err 0 ** 0 0	♥ 0 ※ 0 3 0 2 0 ♥ 0 ※ 0 3 0 2 0 ♥	RC 0 * * 3 3 3 3 9 8 0 RC 0 * * 3 9 3 6 8 0 0 RC			9999999999999999999999999
000000000000000000000000000000000000000					♥ 0 8 8 9 8 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9	RG 0 * * 3 3 3 3 9 9 9 0 1 RG 0 * * 3 9 9 9 9 0	000000000000000000000000000000000000000		9999999999999999999999	000000000000000000000000000000000000000				ern 0 % 0 9 0 0 0 0 % 0 9 0 0	♥ (0 ** 3 3 3 3 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	RG (0 * * 9 9 9 9 0 0 RG (0 * * 9 9 9 9 0 0 RG (0 * * 9 9 9 9 0 0 RG (0 * * 9 9 9 9 0 0 0 0 0 0 0 0 0 0 0 0 0) 0 0 0 0 % * * 0 0 0 0 0 0 % * * 0 0 0 0		000000000000000000000000000000000000000	000000000000000000000000000000000000000			00000000000000000000000000000000000000	err () ** 3 8 8 8 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8	♥ 0 ** 0 0 0 0 0 0 ** 0 0	R 0 * * 3 3 3 3 9 9 0 0 R 0 * * 3 3 3 9 9 0 0)
000000000000000000000000000000000000000				rn D *** D D **** D *** D ****	◙ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	RG (0 * * 3 3 3 3 3 9 0 0 0 0 R (0 * * 3 3 3 3 3 6) 00 0 0 * * * 0 0 0 0 0 0 0 * * * 0 0		99999999999999999999999999	000000000000000000000000000000000000000					♥ (0 ** 3 3 3 2 0 ♥ (0 ** 3 3 3 0	RG () * * 333300 () RG () * * 333000 () 803000 () 80300 () 803000 () 803000 () 803000 () 803000 () 803) 0 0 0 0 0 0 * * * 0 0 0 0 0 0 0 * * * 0 0 0 0 0 0		99999999999999999999999999	000000000000000000000000000000000000000			1 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3	err ()**)33 30)10**)33 30)10**)33 30)10**)33 30)10**)33 30)10**)33 30)10**)33 30)10**)33 30)10**)33 30)10**)33	♥ 0 * 0 0 0 0 0 0 * 0 0 0 0 0 0 0 0 0 0				9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
		₽ 000000000000000000000000000000000000			♥ 0 ※ 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	RG () * * 3 3 3 3 9 3 9 0 0 C RG () * * 3 9 3 9 3 9 0 0 0)000 0***000000***0000		9999999999999999999999999999	000000000000000000000000000000000000000					♥ 0 ** 9 3 3 8 0 0 1 1 0 1 1 0 1 0 1 0 0 0 0 0 0 0 0	RG () * * 999901RG () * * 99900	◯◯◯◯◯◯◯◯◯◯◯◯◯◯◯◯◯◯◯◯◯◯◯◯◯◯◯◯◯◯		000000000000000000000000000000000000000	000000000000000000000000000000000000000		<u>-</u>) 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		er 0 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	♥ 0 * 0 3 0 0 0 0 0 * 0 3 0 0 0 0 0 0 0 0	R 0 * * 3 3 3 9 9 9 0 0 R 0 * * 3 9 9 9 9 0 0) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)

EMF-1563 Revision 12A Appendix 6D Page 61 of 108 EMF-1563

.

Pattern WRGM	Pattern WRGN	Pattern WRGO
0 0 0 0 0 0 0 0 0 0 0	00000000000	00000000000
0000*****	0000*****	0000*****
0000000****0	0 2 2 3 3 3 * * * 0	000000****0
0233333 *** 0	0033333**0	0033333 * * 0
003 33*0	003 30*0	000 33*0
003 30*0	000 00*0	003 33*0
000 0000	000 ; 0000	009 9300
0223333 20	0000000000	00000000000
00000000000	0000000000	00000000 0
00000000000	$\bigcirc \bigcirc $	0
Pattern WRGP	Pattern WRGQ	Pattern WRGR
00000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\bigcirc \bigcirc $
0022*****	0 2 2 2 * * * * * 0	0000******
000000****0	000000****0	122333****
000000000000000000000000000000000000000	0000000**0	0000000***0
000 00*0	0@0 00*0	000 00*0
003 33*0	000 00*0	000 00*0
000 0000	000 0000	003 . 3300
000000000000	0 2 2 3 3 3 3 2 2 0	00033330000
000000000000	00000 0000	0000 00000
$\bigcirc \bigcirc $	$\bigcirc \bigcirc $	$\bigcirc \bigcirc $
Pattern WRGS		Pattern WRGU
	0000000000000	00000000000
	0000*****	0000*****
	0233333**0	0233333**0
$\bigcirc \bigcirc $	$\bigcirc \bigcirc $	$\bigcirc \bigcirc $
EMF-1563 Revision 12A Appendix 6D Page 62 of 108 EMF-1563

WATER ROD SENSITIVITY STUDY CASES ALL FUEL IS 4.0% ENRICHED, 12 GADOLINIA RODS CASMO MODEL WITH MAXIMUM ALLOWABLE SHIMS AND 10 VOL.% WATER

Pattern	Case ID	CASMO k- inf
gra2 (ref.)	CAVA	0.98669
WRGA		0.98410
WRGB		0.98417
WRGC		0.98429
WRGD		0.98489
WRGE	:	0.98515
WRGF		0.98460
WRGG		0.98500
WRGH		0.98396
WRGI		0.98417
WRGJ	4	0.98431
WRGK	CAVN	0.98438
WRGL	4 	0.98489
WRGM		0.98512
WRGN		0.98473
WRGO		0.98453
WRGP		0.98504
WRGQ		0.98507
WRGR	,	0.98509
WRGS	1	0.98507
WRGT		0.98498
WRGU		0.98470

EMF-1563 Revision 12A Appendix 6D Page 63 of 108

4.2.3 Sensitivity Study: Rod Enrichment Arrangement

Assemblies with 12 gadolinia rods in the most reactive arrangement determined in Section 4.2.1 were modeled with multiple rod enrichments. Edge rods (Type 1) were always 4.0% enriched and gadolinia rods (Type 4) were always 5.0% enriched. The average enrichment of Types 2 and 3 was 4.0% in all cases. The rod arrangements modeled and the CASMO calculation results are in the following figures and tables. The highest k-inf calculated is 0.98692 which was for Pattern "ERC". The k-inf with all Type 2 and 3 rods at 4.0% enriched is 0.98669, which is 0.00023 less than the highest value. Very small differences such as these could not be detected with KENO. It is concluded that the enrichment distribution effect is negligible.

		I	Pat	ter	n E	R/	4					I	Pat	ter	n E	ERE	3				,	ł	Pat	ter	n E	RC)		
0	1	0	٦.	0	0	0	1	0	0	1	1	1	0	0	0	0	0	0	0	0	1	0	1	0	0	0	1	0:	0
0	2	2	2	۲	*	۲	*	۲	0	0	2	2	0	**	*	۲	*	۲	0	0	0	2	2	*	*	۲	*	*	0
0	2	2	3	0	3	*	۲	*	0	O	2	3	3	0	3		۲	*	0	0	2	3	3	3	3	*	*	*	1
0	2	3	3	3	3	3	()	۲		O	2	3	3	0	3	3	*	۲	0	0	2	3	3	3	3	3	鎌	۲	0
0	2	3	:			3	3	۲	0	0	2	3				3	3	۲	0	0	3	3				3	3	۲	0
0	2	3				3	3	\$	0	0	0	3		•		3	3	÷	0	∥①	3	3				3	3	緣.	
0	2	3	•			3	0	2	0	0	2	3				3	3	2	0	0	2	3				3	0	2	1
0	2	0	3	3	3	3	0	2	0	0	0	3	3	.3	3	3	3	2	0	[[①	2	3	3	3	3	3	3	2	0
0	2	2	@ˈ	2	2	2	2	2		0	2	2	2	2	2	2	2	2	0	0	2	2	2	3	3	2	2	@	0
0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0

Pattern ERD

Pattern ERE

0	0	0	0	0	0	0	1	ſ	0	ſ	1	0	0	1	1	1	0	0	0	0
0	2	2	3	۲	*	۲	*	۲	0	H	0	3	3	3	*	*	۲	*	۲	0
1	2	3	3	3	3	۲	۲	8 0	1	I	1	3	3	3	3	0	*	*	۲	1
0	3	3	3	3	3	3	**	۲	0	Į	0	3	2	2	0	2	0	**	۲	0
1	3	3		·		3	3	۲	1		1	3	2				2	3	۲	0
0	3	3				3	3	۶¢	1	I	0	3	2				2	3		0
1	3	3				3	3	3	1	ł	1	3	2				2	3	3	1
0	2	3	3	٦	3	3	3	0	\odot	ł	0	3	2	2	0	2	2	3	3	0
0	2	Ø	3	3	3	3	2	2	0	l	0	3	3	3	0	3	3	3	3	0
0	0	\odot	Ō	1	0	0	1	0	° 🛈	ĺ	0	0	0	0	0	0	0	0	0	0

EMF-1563 Apper

EMF-1563 Revision 12A Appendix 6D Page 64 of 108

Case ID	Type 4 wt.% Gad	Type 4 Enr.	Type 2 Enr.	Type 3 Enr.	ALL Avg. Enr.	INT. Avg. Enr.	CASMO k-inf
cavg	1.5	5.00	5.00	2.9524	4.130	4.000	0.98540
cavg	1,5	5.00	4.75	3.2143	4.130	4.000	0.98610
cavg	1.5	5.00	4.50	3.4762	4.130	4.000	0.98654
cavg	1.5	5.00	4,25	3.7381	4.130	4.000	0.98673
cavg	1.5	5.00	4.00	4.0000	4.130	4.000	0.98669
cavg	1.5	5.00	3.75	4.2619	4.130	4.000	0.98643
cavg	1.5	5.00	3.50	4.5238	4.130	4.000	0.98595
cavg	1.5	5.00	3.25	4.7857	4.130	4.000	0.98521

PATTERN ERA CALCULATION RESULTS CASMO MODEL WITH MAXIMUM ALLOWABLE SHIMS PLUS 10 VOL.% WATER

PATTERN ERB CALCULATION RESULTS CASMO MODEL WITH MAXIMUM ALLOWABLE SHIMS PLUS 10 VOL.% WATER

Case ID	Type 4 wt.% Gad	Type 4 Enr.	Type 2 Enr.	Type 3 Enr.	ALL Avg. Enr.	INT. Avg. Enr.	CASMO k-inf
cavh	1.5	5.00	5.00	3.2083	4.130	4.000	0.98625
cavh	1.5	5.00	4.75	3.4063	4.130	4.000	0.98661
cavh	1.5	5.00	4.50	3.6042	4.130	4.000	0.98680
cavh	1.5	5.00	4.25	3.8021	4.130	4.000	0.98683
cavh	1.5	5.00	4.00	4.0000	4.130	4.000	0.98669
cavh	1.5	5.00	3.75	4.1979	4.130	4.000	0.98639
cavh	1.5	5.00	3.50	4.3958	4.130	4.000	0.98594
cavh	1.5	5.00	3.25	4.5938	4.130	4.000	0,98531
cavh	1.5	5.00	3.00	4.7917	4.130	4.000	0.98447

EMF-1563 Revisio

EMF-1563 Revision 12A Appendix 6D Page 65 of 108

CASMC	MODEL V			OWABLE	SHIMS PLU	S 10 VOL.	% WATER
Case ID	Type 4 wt.% Gad	Type 4 Enr.	Type 2 Enr.	Type 3 Enr.	ALL Avg. Enr.	INT. Avg. Enr.	CASMO k-inf
cavi	1.5	5.00	5.00	3.4643	4.130	4.000	0.98673
cavi	1.5	5.00	4.75	3.5982	4.130	4.000	0.98688
cavi	1.5	5.00	4.50	3.7321	4.130	4.000	0.98692
cavi	1.5	5.00	4.25	3.8661	4.130	4.000	0.98686
cavi	1.5	5.00	4.00	4.0000	4.130	4.000	0.98669
cavi	1.5	5.00	3.75	4.1339	4.130	4.000	0.98641
cavi	1.5	5.00	3.50	4.2679	4.130	4.000	0.98601
cavi	1.5	5.00	3.25	4.4018	4.130	4.000	0.98552
cavi	1.5	5.00	3.00	4.5357	4.130	4.000	0.98488

PATTERN ERC CALCULATION RESULTS CASMO MODEL WITH MAXIMUM ALLOWABLE SHIMS PLUS 10 VOL % WATER

EMF-1563 Revision 12A Appendix 6D Page 66 of 108

CASMC	MODEL V	VITH MAX	(IMUM ALI	OWABLE	SHIMS PL	US 10 VOL.	% WATER
Case ID	Type 4 wt.% Gad	Type 4 Enr.	Type 2 Enr.	Type 3 Enr.	ALL Avg. Enr.	INT. Avg. Enr.	CASMO k-inf
cavj .	1.5	5.00	5.00	3.7353	4.130	4.000	0.98683
cavj	1.5	5.00	4.75	3.8015	4.130	4.000	0.98687
cavj	1.5	5.00	4.50	3.8676	4.130	4.000	0.98686
cavj	1.5	5.00	4.25	3.9338	4.130	4.000	0.98680
cavj	1.5	5.00	4.00	4.0000	4.130	4.000	0.98669
cavj	1.5	5.00	3.75	4.0662	4.130	4.000	0.98653
cavj	1.5	5.00	3.50	4.1324	4.130	4.000	0.98630
cavj	1.5	5.00	3.25	4.1985	4.130	4.000	0.98602
cavj	1.5	5.00	3.00	4.2647	4.130	4.000	0.98568

PATTERN ERD CALCULATION RESULTS CASMO MODEL WITH MAXIMUM ALLOWABLE SHIMS PLUS 10 VOL.% WATER

EMF-1563 Revision 12A Appendix 6D Page 67 of 108 EMF-1563

:

CASMO	MODEL W	PATTERI	N ERE ÇAL MUM ALL(CULATION	N RESULT	S Is 10 Vol	% WATER
Case ID	Type 4 wt.% Gad	Type 4 Enr.	Type 2 Enr.	Type 3 Enr.	ALL Avg. Enr.	INT. Avg. Enr.	CASMO k-inf
cavk	1.5	5.00	5.00	3.4074	4.130	4.000	0.98497
cavk	1.5	5.00	4.75	3:5556	4.130	4.000	0.98557
cavk	1.5	5.00	4.50	3.7037	4.130	4.000	0.98605
cavk	1.5	5.00	4.25	3.8519	4.130	4.000	0.98642
cavk	1.5	5.00	4.00	4.0000	4.130	4.000	0.98669
cavk	1.5	5.00	3.75	4.1482	4.130	4.000	0.98685
cavk	1.5	5.00	3.50	4.2963	4.130	4.000	0.98690
cavk	1.5	5.00	3.25	4.4444	4,130	4.000	0.98682
cavk	1.5	5.00	3.00	4.5926	4.130	4.000	0.98661

EMF-1563 EMF-1563 Revision 12A Appendix 6D Page 68 of 108

4.2.4 Pellet Diameter Effects

Unless noted otherwise, all cases were modeled with a 0.35" pellet diameter (0.386" clad OD), the largest allowable for the new category. KENO calculation results are presented in Section 4.3 to demonstrate that the largest diameter is most reactive with low density interspersed moderation.

4.2.5 Sensitivity Studies: Assembly Orientation and Position

Various combinations of rod enrichment distributions and assembly orientations were evaluated in KENO models. In all cases, all gadolinia rods were 5.0% enriched and contained 1.5 wt% Gd_2O_3 . Also, all edge rods were 4.0% enriched. The average enrichment of internal rods, excluding gadolinia rods, was 4.0%.

The array modeled was 8x13x1 (104 packages) which exceeds the 100 package minimum at damaged conditions for Fissile Class II with a minimum transport index of 1.0. The array was reflected by 30 cm of full density water at all six faces.

The highest bias-corrected 95% upper limit k-eff for these KENO cases is 0.93607 for case "aevk10", which is listed in the "K10 Arrangement" subsection. Certain cases have higher k-eff values but all such cases are outside the specified limits; the data were included for information only. The package is acceptable with the specified quantities of shims and with any interspersed water density.

EMF-1563 Revisi

EMF-1563 Revision 12A Appendix 6D Page 69 of 108

Arrangement K1

This arrangement has 12 Type 4 (gadolinia) rods clustered together at one of outward-facing corners. There are 36 Type 1 (Edge) rods, 22 Type 2 rods, and 21 Type 3 rods. The average enrichment of Types 2 and 3 is 4.0%. The peak k-eff with Type 2 rods at 5.0% enriched is slightly higher but not significantly higher than that with all Type 2 and 3 rods at 4.0% enriched. The 3x3 water channel is shifted toward the inside of the package. The two assemblies per package are shown in the following figure and the KENO calculation results are tabulated below the figure.

1	1	1	1	T	1	1	1	T	1	1		1	1	1	1	1	1	1	1	1	11	1		
i i	1	2	2	2	2	2	2	2	2	1	1	1	2	2	2	4		4	4	4	1	ł		
	1	2	2	3	3	3	3	2	2	1		1	2	2	3	3	3	4	4	4	1			
l l	1	2	3	3			_	3	2	1	1	1	2	3	3	3	3	3	4	4	T			
	1	4	3	3			_	3	2	1	1	1	2	3			·	3	З	4	1			
1	1		3	3				3	2	1		1	2	3				3	3	4	1			
	1			3	3	3	3	3	2	1]	1	2	3				3	3	2	1			
ļ	1			4	3	3	3	2	2	1		1	2	2	3	3	3	3	2	2	1			
· ·	1		4	4		4	2	2	2	1		1	2	2	2	2	2	2	2	2	1			
	1	1	1	1	1	1	1	1	1	1		1	1	1	1	1	1	1	1	1	1	1		
								_		L				_				_	<u> </u>	<u> </u>	-	Ľ		
	V	<u>്</u> പ '	%	Ту	pe	T	ур	e	Гур	ell	ype	A	LL	ΠN	IT.			T			k-(<u>∍</u> ∋ff		_
Case	V	/ol.º	% er	Ty	pe 1	T	yp 4	e	lyp 2	ell	ype 3	A	LL vg.	IN Av	IТ. /g.	Ar	ray				k-(9 ∋ff		
Case ID	V W	′ol.' Vati	% er	Ту % (pe 4 Gac	I I	yp 4 Enr	e	Typ 2 Enr	ell	ype 3 Enr.	A	LL vg. nr.	IN Av Er	iT. /g. hr.	Ar	ray		Av	۲g.	k-0	∍ ∋ff Std	.De	
Case ID A-EVA08	V W	′ol.' /ate 8.(% er	Ту % (pe 4 Gac 50	I I	yp 4 Enr	e	Typ 2 Enr 5.0		ype 3 Enr. 2.95	A A E	LL vg. nr. .13	IN Av Er 4.	IT. /g. hr.	Ari 10	ray 04	0	Av .92	′g. 214	k-0	∍ff Std 0.0	.De	»v. 70
Case ID A-EVA08 A-EVA10	V W	′ol.' /ati 8.(% er 0	Ty % (1. 1.	pe 4 Gac 50 50	I I E E	yp 4 Enr 5.00	e D	Typ 2 Enr 5.0	e 1 • •	ype 3 Enr. 2.95 2.95	A A E 4	U vg. nr. 13	IN A\ Er 4.	11. /g. nr. 00	Ari 10	ray 04	000	Av .92	′g. 214 288	k-0	∍ff Std 0.0 0.0	.De 017 018	»v. 70 32
Case ID A-EVA08 A-EVA10 A-EVA12		′ol.' /ati 8.0 10.0	% er 0 0	Ty % (1. 1. 1.	pe 4 3ac 50 50 50		yp 4 5.00 5.00	e D D	Typ 2 Enr 5.0 5.0		ype 3 Enr. 2.95 2.95	A E 4 4	LL vg. nr. .13 .13	IN Av Er 4. 4.	11. /g. nr. 00 00	Ari 1(1(7ay 04 04	0000	Av .92 .92	/g. 214 288 235	k-0 1 3 0	9 Std 0.0 0.0 0.0	.De 017 018 016	»v. 70 32 37
Case ID A-EVA08 A-EVA10 A-EVA12 A-EVG06		/ol. /atc 8.(10.(12.(6.(% er 0 0	Ty % (1. 1. 1. 1.	pe 4 3ac 50 50 50		yp 4 5.00 5.00 5.00	e	Typ 2 Enr 5.0 5.0 5.0 4.0		ype 3 Enr. 2.95 2.95 2.95 4.00	A A 4 4	LL vg. nr. 13 13 13	IN A E 4. 4. 4.	11. /g. nr. 00 00 00	Ari 10 10 10	7ay 04 04 04	000000000000000000000000000000000000000	Av .92 .92 .92	/g. 214 288 235 77	k-0 1 3 0 8	€ Std 0.0 0.0 0.0 0.0	.De 017 018 016 017	»v. 70 32 37 70
Case ID A-EVA08 A-EVA10 A-EVA12 A-EVG06 A-EVG08		/ol.º /ate 8.0 10.0 12.0 6.0 8.0	% er 0 0 0 0	Ty % (1. 1. 1. 1. 1.	pe 4 3ac 50 50 50 50		yp 4 5.00 5.00 5.00 5.00	e	Typ 2 Enr 5.0 5.0 5.0 4.0 4.0		ype 3 Enr. 2.95 2.95 2.95 4.00	A A 4 4 4 4	vg. nr. 13 13 13 13	IN A E 4. 4. 4. 4. 4.	11. /g. nr. 00 00 00	Ari 10 10 10 10	74 04 04 04 04		Av .92 .92 .92 .92	/g. 214 288 235 77 279	k-1 3 0 8 6	Std 0.0 0.0 0.0 0.0 0.0	.De 017 018 016 017	×. 70 32 70 72
Case ID A-EVA08 A-EVA10 A-EVA12 A-EVG06 A-EVG08 A-EVG08		'ol.' /ati 8.0 10.0 12.0 6.0 8.0	% er 0 0 0 0 0 0 0 0	Ty % (1. 1. 1. 1. 1. 1.	pe 4 3ac 50 50 50 50 50	I I E E E E	yp 4 5.00 5.00 5.00 5.00 5.00	e	Typ 2 Enr 5.0 5.0 5.0 4.0 4.0		ype 3 Enr. 2.95 2.95 2.95 4.00 4.00	A A 4 4 4 4	LL vg. nr. 13 13 13 13 13	IN AV Er 4. 4. 4. 4. 4.	1. /g. nr. 00 00 00 00 00	An 10 10 10 10 10 10	74 04 04 04 04 04		Av .92 .92 .92 .91 .92	/g. 214 288 235 77 279 239	k-0 1 3 0 8 6 1	Std 0.0 0.0 0.0 0.0 0.0 0.0	.De 017 018 016 017 017	»v. 70 32 37 70 72 70

EMF-1563 Revision 12A Appendix 6D Page 70 of 108

Arrangement K2

This arrangement differs from "K1" only in the orientation of the left assembly: it was rotated 180°. The peak k-eff is slightly lower than that for "K1". The two assemblies per package are shown in the following figure and the KENO calculation results are tabulated below the figure.

-	-			_					_	_									-		_	
: .	T	1	1	TT	1	1	1	1	1	1		1	T	1	1	1	1	1	1	1	1	1
	T	2	2	2	4	4	4	4	4	П	1	1	2	2	2	4	4	4	4	4	1	
	1	2	2	3	3	3	4	4	4	1		1	2	2	3	3	3	4	4	4	1	
	1	2	3	3	3	3	3	4		1] [1	2	3	3	3	3	3	4	4	1	
	1	2	3	Ţ.			3	3		1	1	1	2	3				3	3	4	1	
	T	2	3				3	3	4	1] [1	2	3				3	3	4	1	
	1	2	.3				3	3	2	1] [1	2	3				3	3	2	1	·
	1	2	2	3	3	3	3	2	2	1] [1	2	2	3	3	3	3	2	2	1	
	1	2	2	2	2	2	2	2	2	1] [1	2	2	2	2	2	2	2	2	1	
	1	1	1	1	1	1	1	1	1	1			1	1	1	1	1	1	1	1	1	
Case		/ol.'	%	Ту	ipe 4	T	ур 4	eT	ур 2	eT	ype 3	A	LL va.	IN Av	П. /а.	Ar	rav				k-e	əff
	V	Vate	er	% (Gao	3	Enr	.	Enr	. E	Enr.	E	nr.	Er	าr.				Av	g.		Std.Dev
A-EVB08		8.0)	1.	50	5	5.00) [5.00	02	2.95	4	13	4.	00	10	04	0	.92	21	3	0.00182
A-EVB10		10,0	0	1.	50	5	5.00) [5.00	Ö 2	2.95	4	.13	4.	00	10	04	0	.92	31	8	0.00176
A-EVB12		12.0	0	1.	50	1	5.00	וכ	5.00	02	2.95	4	13	4.	00	10	04	0	.91	75	2	0.00185

EMF-1563 Revision 12A Appendix 6D Page 71 of 108

Arrangement K3

This arrangement differs from "K1" only in the orientation of the 3x3 water channel: It is now shifted toward the corner with the gadolinia rods. The peak k-eff is slightly lower than that for "K1" but the difference is not significant. The two assemblies per package are shown in the following figure and the KENO calculation results are tabulated below the figure.

	1	1	1	11	11	TT	1	T	1	1		1	1	1	1	1	1	1	T	11	T.	ł
·	1	2	2	2	2	2	2	2	2	1	1	1	2	2	2	4	4	4	4	4	T	
'	1	2	2	3	3	3	3	2	2	1	1	1	2	2	3	3	3		4	4	1	
	1	2	3	3	3	3	3	3	2	1] [1	2	3	3			ŀ		4	1]
	1	4	3	1			3	3	2	1] [1	2	3	3				3	4	1	
· .	1	4	3	Т			3	3	2	T	1	1	2	3	3	Γ			3	4	T	
· ·	1	4	4				3	3	2	1] [1	2	3	3	3	3	3	.3	2	1	
1	1	4	4		3	3	3	2	2	1] [1	2	2	3	3	3	3	2	2	1	
	1	4				4	2	2	2	П] [1	2	2	2	2	2	2	2	2	1	
:	1	1	1	1	1	1	1	1	1	1]	1	1	1	1	1	1	1	1	1	1	
Case	1	/ol.	%	Ţ	ype 4	T	ур 4	e	yp 2	eT	уре З	A	LL va.		IT. /a.	Ar	rav				k-	əff
ID	M	Nat	er	%	Ġa	d	Enr		Enr	: 1	Enr.	E	nr.	E	nr.		,		A١	۶.		Std.Dev.
A-EVC08	1	8.0	0	1	.50		5.00	<u>כן</u> כ	5.0	0	2.95	4	.13	4.	00	1	04	0	.92	213	5	0.00184
A-EVC10	T	10.	0.	1	.50		5.0	2	5.0	02	2.95	4	.13	4.	00	1	04	C	.92	261	5	0.00171
A-EVC12	1	12.	0	1	.50	!	5.0)	5.0	0	2.95	4	.13	4.	00	1	04	0	.92	210	0	0.00175

EMF-1563 Revision 12A Appendix 6D Page 72 of 108

Arrangement K4

This arrangement differs from "K3" only in the orientation of the right assembly: it was rotated 180°. The peak k-eff is significantly lower than that for arrangement "K1" or "K3". The two assemblies per package are shown in the following figure and the KENO calculation results are tabulated below the figure.

. e				_	_			_		_	_	_	_							_		-
	1	1	1	11	1	1	1	1	T	1		1	1	1	1	1	1	1	1	1	1	1
	1	2	2	2	2	2	2	2	2	1	1 [1	2	2	2	2	2	2	2	2	1	
	T	2	2	3	3	3	3	2	2	1	1 1	1	2	2	3	3	3	3	2	2	1	
	1	2	3	3	3	3	3	3	2	1	1 1	1	2	3	3	3	3	3	3	2	1	
	1	4	3				3	3	2	1	1 [1		3				3	3	2	1	
· ·	1	4	3				3	3	2	1] [1	4	3				3	3	2	1	
	1	4					3	3	2	1	1 [1	4	4				3	3	2	1	
· ·	1	4	4	4	3	3	3	2	2	1	1 [1			4	3	3	3	2	2	1	
· ·	1	4	4	4		4	2	2	2	1	1	1		4	4	4	4	2	2	2	1	
	1	1	1	TT	1	1	1	T	1	1		1	1	1	1	1	1	1	1	1	1	
Case	V	/ol.'	%	Ту	/pe 4	1	ур 4	ell	yp 2	eT	ype 3	A	LL va	IN A\	IT.	Ar	rav				k-	əff
ID	V	Vat	er	%	Gao	1 L	Enr	.	Enr		Enr.	E	nr.	E	nr.	-	y		Av	g.		Std.Dev.
A-EVD08		8.0	ך ס	1.	50	1	5.00	<u>ן כ</u>	5.00	02	2.95	4	.13	4.	00	10	04	0	.91	67	7	0.00182
A-EVD10		10.	0	1	50	1	5.00) !	5.00	2	2.95	4	.13	4.	00	10	04	0	.91	78	1	0.00178
A-EVD12		12.	0 .	1	.50	1	5.00	ין כ	5,00	2	2.95	4	.13	4.	00	11	04	0	.91	62	3	0.00188

EMF-1563 EMF-1563 Revision 12A Appendix 6D Page 73 of 108

Arrangement K5

This arrangement differs from "K2" only in the orientation of the right assembly: it was rotated 180°. The peak k-eff is significantly lower than that for arrangement "K1" but not significantly different from that for arrangement "K2". The two assemblies per package are shown in the following figure and the KENO calculation results are tabulated below the figure.

	T	1	1	1	T	1	1	1	1	1		1	1	1	1	1	1	1	1	1	1	
	1	2	2	2	4		4	4	4	1	1 [1	2	2	2	2	2	2	2	2	1	
	1	2	2	.3	3	3	4	4	4	1	7 1	1	2	2	3	3	3	3	2	2	1	
,	1	2	3	3	3	3	3		4	1	ן ך	1	2	3	3				3	2	1	
	T	2	3				3	3	4	1] [1		3	3				3	2	1	
	T	2	3				3	3	4	1	7 [1		3	3				3	2	1	
	1	2	3				3	3	2	1] [1			3	3	3	3	3	2	1	
	1	2	2	3	3	3	3	2	2	1] [1	4	4	4	3	3	3	2	2	1	
	1	2	2	2	2	2	2	2	2	1] [1		4	4	-		2	2	2	1	
	1	1	1	1	1	1	1	1	1	1		1	1	1	1	1	1	1	1	1	1	
Case	V	/ol.'	%	Тÿ	pe 4	ר	ур 4	e	lyp 2	e	Type 3	A	<u>V</u> TT	IÑ A	IT. /a	Ar	rav				k-e	əff
	Water % Ga		Gao	ı t	Enr		Enr		Enr.	E	nr.	Ei	nr.				Av	g.		Std.Dev.		
A-EVE08		8.0) (1.	50	1	5.00	2	5.0	זן	2.95	4	.13	4.	00	-10	04		.91	50	0	0.00216
A-EVE10		10.0	0	٦.	50	1	5.00)	5.0)	2.95	4	.13	4.	00	10	04	0	.92	11	5	0.00171
A-EVE12		12.0	0	ी.	50	1	5.00	D	5.0	<u>ן</u> כ	2.95	4	.13	4.	00	10)4	0	.91	60	2	0.00183

EMF-1563 Revision 12A Appendix 6D Page 74 of 108

EMF-1563

Arrangement K6

This arrangement is similar to "K1" and "K2". The left assembly was rotated to placed the gadolinia rods at the upper-left corner. The peak k-eff is not significantly different from that for arrangement "K1". The two assemblies per package are shown in the following figure and the KENO calculation results are tabulated below the figure.

	_			_													_					-
	T	11	1	11	1	1	1	1	1	T		1	1	1	1	1	1	1	1	1	1]
	T		4	4	4	4	2	2	2	1	1	T	2	2	2	4	4	4	4	4	1	
	1	4	4	4	3	3	3	2	2	1	1 1	1	2	2	3	3	3	4	4	4	1	
	1	4	4	3	3	3	3	3	2	1	1 1	1	2	3	3	3	3	3	4	4	1	
:	1	4	3	3				3	2	1		1	2	3				3	3	4	1	
	T	4	3	3				3	2	1	1	1	2	3				3	3	4	T	1
: .	1	2	.3	3				3	2	1		1	2	3				3	3	2	1	1
	1	2	2	3	3	3	3	2	2	1	1	1	2	2	3	3	3	3	2	2	1	
•	1	2	2	2	2	2	2	2	2	1	1 [1	2	2	2	2	2	2	2	2	1	l)
	1	11	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
Case	1	Vol,	%	Ту	vpe 4	1	yp 4	eΠ	yp 2	eT	ype	A			IT.	Ar	rav				k-(eff
ID		Nat	er	% (Gao	l It	Enr	.	Enr		Enr.	E	nr.	Er	nr.		y		Av	g.		Std.Dev.
A-EVF08		8.	0	1.	50		5,00	ין כ	5.00	072	2.95	4	.13	4.	00	1	04	0	.92	250	3	0.00181
A-EVF10		10.	0.	1.	50	1	5.00)	5.00	0 2	2,95	4	.13	4.	00	1	04	0	.92	250	1	0.00168
A-EVF12		12.	0	1.	50		5.00) [5,00	0 2	2.95	4	.13	4.	00	1	04	0	.92	237	8	0.00188

EMF-1563 EMF-1563 EMF-1563 Appendix 6D Page 75 of 108

Arrangement K7

This arrangement is similar to "K5". The left assembly was rotated to placed the gadolinia rods at the lower-right corner. The peak k-eff is not significantly different from that for arrangement "K5" but it is significantly lower than that for arrangement "K1". The two assemblies per package are shown in the following figure and the KENO calculation results are tabulated below the figure.

	1	1	.1	T	1	1	1	1	1	1		1	1	1	1	T	1	٦	1	1	1	
	1	2	2	2	2	2	2	2	2	1	1	1	2	2	2	2	2	2	2	2	1	
	1	2	2	3	3	3	3	2	2	1	7	1	2	2	3	3	3	3	2	2	1	
	1	2	3				3	3	2	1	1	1	2	3	3			1	3	2	1	
	1	2	3				3	3		1]	1	4	3	3				3	2	1	
	T	2	3				3	3		1]	1		3	3		·		3	2	1	
· ·]	1	2	3	3	3	3	3			1]	1		4	3	3	3	3	3	2	1	
	1	2	2	3	3	3	1			1]	1		4	4	3	3	3	2	2	1	4
	1	2	2	2	4	4				1]	1		4	4	4	1	2	2	2	1	
	1	1	1	1	1	1	1	1	1	1		1	1	1	1	1	1	1	1	1	1	
Case	V	/ol.'	%	Тÿ	pe 4	T	yp 4	ell	yp 2	ell	ype 3	A	Va.	IN A	IT. /a.	Ar	rav				k-e	eff
ID	V	Vate	er	% (Ġao		Enr	.	Enr	. 1	Enr.	E	nr.	E	nr.				Av	g.		Std.Dev.
A-EVH08	T	8.0	רכ	1.	50	1	5.00	ין כ	5.00	בןכ	2.95	4	.13	4.	00	10	04	0	.91	82	4	0.00166
A-EVH10	T	10.	ס	1.	50	1	5.00) {	5.00	32	2.95	4	.13	4.	00	-10	04	0	.92	200	4	0.00185
A-EVH12		12.	0	ा.	50	1	5.00) [5.00	2	2.95	4	.13	4.	00	1	04	0	.91	27	4	0.00171

EMF-1563 Revision 12A Appendix 6D Page 76 of 108

Arrangement K8

This arrangement is similar to "K1" except that there are now 24 Type 2 rods. The two additional Type 2 rods were placed at the corner with gadolinia rods. The gadolinia rods are now less tightly clustered than before. The enrichment of Type 3 rods was lowered to maintain the average of Types 2 and 3 at 4.0%. The assembly orientation is as for arrangement "K1". The peak k-eff is significantly lower than that for arrangement "K1". The two assemblies per package are shown in the following figure and the KENO calculation results are tabulated below the figure.

	T	1	1	1	1	1	1	1	1	1		1	1	1	1	1	1	1	1	1	T		
	T	2	2	2	2	2	2	2	2	1		1	2	2	2			4		2	T		
	1	2	2	3	3	3	3	2	2	1		1	2	2	3	3	S.		2		1		
• :	1	2	3	3				3	2	1		1	2	3	3	3	3	3			1		
	1		3	3				3	2	1		1	2	3				3			1		
	1			3			_	3	2	1		1	2	3				3	3		1	ļ	
	T			З	3	3	3	3	2	1		1	2	3				3	3	2	1		
	1		2			3	3	2	2	1		1	2	2	3	3	3	3	2	2	1		
• •	1	2					2	2	2	1		1	2	2	2	2	2	2	2	2	1		
	Π	1	1	1	1	1	1	1	1	1		$\begin{bmatrix} 1 \end{bmatrix}$	1	1	1	1	1	1	1	1	1		
Case	Vo	1.%	T	ype ⊿	Ð	Tyj ⊿	De	Ty	pe	Tyr 3)e			NT.	·	rra				ĺ	k-e	ff]
ID	Wa	ter	%	Ga	ad	En	ır.	Er	ar.	En	r.	Enr		Enr.			<u> </u>	A	vg			Std.Dev.	
A-EVI08	8	.0		.50)	5.0)0	5.0	20	2.7	'4	4.1	37	1.00		104	FT	0.9	22	30		0.00190	
A-EVI10	10).0	1	.50)	5.0)0	5.0	20	2.7	'4	4.1	3 4	1.00	<u>ן</u>	104	F	0.9	22	83		0.00169	
A-EVI12	12	2.0	- 1	.50)	5.0	00	5.0	00	2.7	'4	4.1	3 4	1.00)	104		0:9	19	32		0.00184	

Appendix 6D Page 77 of 108

EMF-1563 Revision 12A

Arrangement K9

This arrangement is similar to "K1" except that there are now 19 Type 2 rods. Three Type 2 rods near the corners without gadolinia were converted to Type 3. The enrichment of Type 3 rods was increased to maintain the average of Types 2 and 3 at 4.0%. The assembly orientation is as for arrangement "K1". The peak k-eff is not significantly from that for arrangement "K1". The two assemblies per package are shown in the following figure and the KENO calculation results are tabulated below the figure.

	_	_		_			_															
	1	1	1	1.1	1	1	1	1	1	1		1	1	1	1	11	1	1	1	1	1	7
	1	2	2	2	2	2	2	2	2	T	1	1	2	2	2	4	4	4	4	4	T	
	1	2	3	3	3	3	3	3	2	1	1	T	2	3	3	3	3	4	4	4	T	· ·
· ·	1	2	3	3	1			3	2	1	1	1	2	3	3	3	3	3	4	4	1	
	1		3	3				3	2	1	1	1	2	3				3	3	4	1	
	1		3	3				3	2	Ŧ		1	2	3		1		3	3	4	i	
	1	4	4	3	3	3	3	3	2	1		1	2	3				3	3	2	1	
· · · /	1	4	2	4	3	3	3	3	2	1	┥┝	1	2	3	3	3	3	3	3	2	+	
. 1	1	4		4	4	4	2	2	2	T	1 1	Ť	2	2	2	2	2	2	2	2	i	
	1	1	1	1	1	1	1	1	11	1	1	1	1	1	1	1	1	-	- -	T	Ť	
<u>[L</u>		-	×					-	L					-	-	<u> </u>						
Case	V	ol.9	%	Ту	rpe 4	T	ype 4	Ţ	ype 2	€T	ype 3				Т. ′а	Arı	- 'av				k-e	əff
טו 	N		ər	% (Gad	E	Enr		Enr.	E	Enr.	E	nr.	Er	ŋr.	- u i	∽y		Av	g.		Std.Dev.
A-EVJ10	٦	0.0	דו	1.	50	5	5. 0 0	1	5.00)[3	3.21	4.	13	4.0	20	10)4	0	92	62	T	0.00197

EMF-1563 Re

EMF-1563 Revision 12A Appendix 6D Page 78 of 108

Arrangement K10

This arrangement is similar to "K1" except that there are now 15 Type 2 rods: five near each of the corners without gadolinia. The enrichment of Type 3 rods was increased to maintain the average of Types 2 and 3 at 4.0%. The assembly orientation is as for arrangement "K1". The peak k-eff is not significantly from that for arrangement "K1". The two assemblies per package are shown in the following figure and the KENO calculation results are tabulated below the figure.

In the calculation results, other parameters were also tested. These data demonstrate that the most reactive position for the assemblies is to be shifted apart, the most reactive pellet diameter is the largest allowable, decreasing the gadolinia pellet diameter while holding all others at the largest allowable causes an increase in k-eff, and that the maximum allowable shim quantity is most reactive.

	1 1 1 2 1 2 1 4 1 4 1 4 1 4 1 4 1 4		1	1	1	1	1	Π	1	1		1	1	1	1	1	1	11	1	1	1	ĺ	
	1	2	2	2	3	3	2	2	2			T	2	2	2	4		4	4	4	1		
:	.1	2	3	3	3	3	3	3	2	1		1	2	3	3	3	3	4	4	4	1		
.	1	2	3	3				3	2	11		1	2	3	3	3	3	3	4	4	1		
	1	4	3	3				3	3	11		1	3	3				3	3	4	1		
:	1		3	3				3	3	11		T	3	3				3	3	4	Т		
. 1	1	4	4	3	3	3	3	3	2	1		1	2	3			_	3	3	2	T	1	
	1	4	4	4	3	3	3	3	2	11		1	2	3	3	3	3	3	3	2	1		
	1	4	4	4	4	4	2	2	2	1		1	2	2	2	3	3	2	2	2	1		
۰,	1	1	1	1	1	1	1	1	1	11		T	1	1	1	1	1	1	1	1	1		
			T:				Pe	llet	Ť.		.	Tvn	eľT	Vne	2		Ŧ				off		
Cas	se		A	sse	mb	ly	Dia	am.	ľ	Vol.9	6	2	1	3	A	rra	vL			<u></u>			
			F	'OS	itio	n	i	ייי, ח.	ľ	Nate	r	Enr	. E	Enr.			'	_A	٧g	•	S	td.D	ev.
A-EV	EVK08		Γ	,		Τ	_		T	8.0	Ī	5.00	D]3	3.46	3	104	.	0.9	26	94	0	.001	69
A-EV	-EVK10		1	•						10.0	5	5.00	5	3.46	5	104	- †	0.9	30	01	0	.001	86
A-EV			1						Ĩ	12.0	5	5.00	5	3.46	3	104	·	0.9	22	54	0	.001	81
A-EV	-EVK12 -EVO08		1	•					T	8.0		4.50	5	3.73	3	104	. 1	0.9	27	56	0	.001	79
A-EV	-EVO08 -EVO10		1						ľ	10.0	7	4.50	5 3	3.73	3	04	-	0,9	29	41	0	.001	58
A-EV	-EVO10 -EVO12		1						Γ	12.0)	4.50	5 3	3.73	3	104		0,9	923	69	0	.001	83
A-EVP	08	**	1						ſ	8.0	T	4.5	5	3.73	3	104		0,8	382	56	0	.001	68
A-EVP	10	**	1	•			0.	35	ſ	10.0)	4.50	5 3	3.73	3	104		0.8	888	56	0	.001	76
A-EVP	12	**	1	۸ n	ort				ſ	12.0)	4.5	5 3	3.73	3	104		0,8	888	68	0	.001	90
A-EVP	14	**	1	н р	ari	1			ſ	14.0)	4.5	D	3.73	3	104	-	0.8	390	36	10	.001	89
A-EVQ)6'	***	1						T	6.0		4.5	5	3.73	3	260	1	0.9	956	55	0	.001	69
A-EVQ	08,	**	1	·					f	8.0	T	4.50	5	3.73	3 2	260	1	0.9	958	67	0	.001	77
A-EVQ	10'	**	1						F	10.0	7	4.5	5 3	3.73	3 3	260	1	0,9	955	56	0	.001	79
A-EVQ	12'	**	1						ſ	12.0)	4.5	5 3	3.73	3 2	260	7	0.9	949	85	0	.001	77
A-EVQ	14'	**	1						T	14.0)†	4.5	5 3	3.73	3	260	1	0.9	943	68	0	.001	76
A-EV	SO	B	1		•	ľ			╈	8.0	Π	5.0	5 3	3.46	5	104		0.8	383	63	0	,001	84
A-EV	A-EVS08 A-EVS10						0.	30	ſ	10.0	5	5.0	5 3	3.46	5	104	F	0.8	383	03	0	.001	76
A-EV	S12	2	1			ĺ			T	12.0	7	5.0	5 3	3.40	3	104	F	0.8	379	64		.001	91
	A-EVS10 A-EVS12		J L						-							_							

EMF-1563 Revision 12A EMF-1563 Appendix 6D Page 79 of 108

i Case	Assembly	Pellet Diam	Vol.%	Type	Туре	Array	k-	eff
, ID ,	Position	in.	Water	Enr.	Enr.	7 anay	Avg.	Std.Dev.
A-EVS14			14.0	5.00	3.46	104	0.87240	0.00187
A-EVT08			8.0	5.00	3.46	104	0.81839	0.00191
A-EVI10		0.25	10.0	5.00	3.46	104	0.81099	0.00183
A-EVT12		0.20	12.0	5.00	3.46	104	0.81041	0.00182
A-EVT14			14.0	5.00	3.46	104	0.80900	0.00186
A-EVU08	1		8.0	5.00	3.46	104	0.93439	0.00187
A-EVU10	1	0.35*	10.0	5.00	3.46	104	0.93046	0.00190
A-EVU12			12.0	5.00	3.46	104	0.92825	0.00181
A-EVV08			8.0	5.00	3.46	104	0.89402	0.00176
A-EVV10	Together		10.0	5.00	3.46	104	0.88610	0.00191
A-EVV12		0.95	12.0	5.00	3.46	104	0.87489	0.00190
A-EVW08		0.35	8.0	5.00	3.46	104	0.91458	0.00196
A-EVW10	Centered		10.0	5.00	3.46	104	0.91537	0.00204
A-EVW12			12.0	5.00	3.46	104	0.90501	0.00186

* Cases "A-EVU.." had 0.30" diameter UO_2 -Gd₂O₃ pellets; all other pellets were 0.35" diameter. This is not permitted by the limits specified. The data are presented for information.

** Cases "A-EVP.." had shims about half the maximum allowable thickness.

*** The "A-EVQ.." cases with 13x20x1 arrays exceed the required array size. These data are for reference only.

4.3 Normal Condition Arrays

Normal conditions include the wooden outer container. The outer container wooden parts were closely modeled based on the data in Drawing EMF-306,416. The outer dimensions of the outer container are 75.6cm wide by 78.7 cm high by 523.9 cm long. The following KENO plots are transverse sections at various locations along the length of the package.

EMF-1563 Revision 12A Appendix 6D Page 80 of 108

EMF-1563 Revision 12A Appendix 6D Page 81 of 108

EMF-1563 Revision 12A Appendix 6D Page 83 of 108

The calculation results for an infinite array of edge-to-edge packages are tabulated below. The rod pattern and orientation of the assemblies in each package are shown in the following figure. All models included the maximum allowable shims quantity per assembly. The edge rods were all 4.0% enriched, the gadolinia rods were 5.0% enriched and contained 1.5 wt% Gd_2O_3 , and the average of all other internal rods was 4.0% enriched. The most reactive interspersed water density with shims is zero. The largest bias-corrected 95% upper limit on the k-eff for the infinite array is 0.84425.

	1	1	Ĩ	T	1	1	1	1	1	1	_	T	1	T	1	1	T	1	1	1	1	1		
	1	2	2	2	3	3	2	2	2	11		1	2	2	2		4	4	4	4	1	1		
	1	2	3	3	3	3	3	3	2	1		T	2	3	3	3	3		4	4	1			
	1	2	3	3	<u> </u>		_	3	2	1		1	2	3	3	3	3	3	4	4	1			
	T	4	3	3				3	3	1		1	3	3				3	3	4	1			
• •	Π	4	3	3				3	3	1		1	3	3				3	3	4	1			
· ·	1	4		3	3	3	3	3	2	1		1	2	3		t		3	3	2	1			
	1	4	4		3	3	3	3	2	1		1	2	3	3	3	3	3	3	2	1			
	1	4	4		4	4	2	2	2	1		1	2	2	2	3	3	2	2	2	1			
:	T	1	1	1	1	1	1	1	1	1		1	1	1	1	1	1	1	1	1	1			
Case		V	ol.9	%	Ty	be	T	ype 4	Ĩ	ype 2	T	/pe						·k	-ef	f				
١D		M	/ate) sr	% 0	ad	E	Enr.	I	Enr.	E	inr.		Av	g.		Sto	d.t	ev.).F		95%	UL
A-NEVK)0	T	0.0	$\overline{\mathbf{n}}$	1.	50	5	.00	1	5.00	3	.46	0	.83	82	6	0.0	001	74	13	8.0	ןכ	0.84	425
A-NEVKO)1		1.0	1	1.	50	5	5.0C) [5	5.00	3	.46	0	.80	01(5	0.0	001	71	3	7.	7	0.80	614
A-NEVKO)5	Τ	5.0		1.8	50	5	.00		5.00	3	.46	0	.65	199	ΞŢ	0.0	001	72	3	7.8	8	0.65	798
A-NEVK1	0	11	0.0	דו	1.	50	5	.00		5.00	3	.46	0	.53	792	2	0.0	001	63	3	6.9	9	0.54	386
A-NEVM	00		0.0		1.	50	5	.00	14	1.00	4	.00	0	.83	80	6	0.0	001	65	3	7.	1	0.84	401
A-NEVM)1		1.0		1.	50	5	5.0C) [2	4.OC	4	.00	0	.79	57	1	0.0	001	62	3	6.8	B	0.80	165

5.0 REFERENCES

- 1. NUREG/CR-0200 SCALE A MODULAR CODE SYSTEM FOR PERFORMING STANDARDIZED COMPUTER ANALYSES FOR LICENSING
- 2. NUREG/CR-0073: "Critical Separation Between Subcritical Clusters of 4.31 wt% Enriched UO₂ Rods in Water with Fixed Neutron Poisons"
- 3. Lloyd, R.C., Durst, B.M., and Clayton, E.D.: "Effect of Soluble Neutron Absorbers on Criticality of Low U-235 Enriched UO₂ Lattices", <u>Nuclear Science and Engineering</u>: **71**, <u>164-169 (1979)</u>
- 4. "Criticality Safety Criteria", ANS Trans, Vol.35, p.278

EMF-1563 Revision 12A Appendix 6D Page 84 of 108

Appendix A Sample Computer Inputs For the Models Used For This Analysis

The model of KENO case ("a=evk10") is listed below. =csas25 sp-1 with 4.0% enriched 10x10 fuel hans infh

uo2 1 0.98 293.0 92235 3.4643 92238 96.5357 end

uo2 2 0.98 293.0 92235 3.4643 92238 96.5357 end

uo2 3 0.98 293.0 92235 4.0 92238 96.0 end

uo2 4 0.98 293.0 92235 4.0 92238 96.0 end

uo2 5 0.98 293.0 92235 4.0 92238 96.0 end

uo2 6 0.98 293.0 92235 4.0 92238 96.0 end

' poison rod with 2% gd2o3

' td of uo2-gd2o3 = 10.96 -2.65*p/[p+0.67145*(1-p)], p=wt frac.gd2o3

' "p" is 0.02 here, td is 10.9012

' pellet density is 0.98*10.9012=10.6832
' uo2 density is 0.985*10.6832 = 10.5230
' gd2o3 density is 0.02*10.6832 = 0.1602 gm/cc
uo2 7 den=10.5230 1.0 293.0 92235 5.00 92238 95.00 end
arbmgd2o3 0.1602 2 0 1 0 64000 2 8016 3
7 1.0 293. end

zircalloy 8 1.0 293.0 end

' water, 10 vol.% h2o 9 0.10 293.0 end

' basket steel carbonsteel 10 1.0 293.0 end ' angle steel carbonsteel 11 1.0 293.0 end ' shell steel carbonsteel 12 1.0 293.0 end ' reflector water h20 13 1.0 293 end ' polyethylene, 100 vol% arbmpe 0.92 2 0 1 0 6012 1 1001 2 14 1.0 293. end

EMF-1563 Revision 12A Appendix 6D Page 85 of 108

' higher enriched rods uo2 15 0.98 293.0 92235 5.0 92238 95.0 end

end comp more data

res= 1 cyli 4.2093E-01 dan(1)= 4.7667E-01 res= 2 cyli 4.4836E-01 dan(2)= 4.4193E-01 res= 3 cyli 4.7632E-01 dan(3)= 3.2526E-01 res= 4 cyli 4.6217E-01 dan(4)= 3.1789E-01 res= 5 cyli 4.6279E-01 dan(5)= 3.2938E-01 res= 6 cyli 4.6079E-01 dan(6)= 3.0899E-01 res= 7 cyli 4.1701E-01 dan(7)= 4.7594E-01 res= 15 cyli 4.0242E-01 dan(15)= 4.7318E-01 end more sp-1 with 4.0% enriched 10x10 fuel read parameters tme=90 gen=200 npg=600 nsk=0 flx=yes fdn=yes xs1=yes nub=yes pwt=yes end parameters read geom

' pellet diam: 0.35" ' gap: zero ' clad thk: 0.018" ' pitch: 0.5127"

unit 1

com="interior rod" cyli 1 1 0.4445 2p226.695 cyli 8 1 0.49022 2p226.695 cubo 9 1 2p0.6510866 2p0.49022 2p226.695 ' polyethylene shims between rods cubo 14 1 4p0.6510866 2p226.695

unit 2

com="interior rods around water rod" cyli 2 1 0.4445 2p226.695 cyli 8 1 0.49022 2p226.695 cubo 9 1 2p0.6510866 2p0.49022 2p226.695 ' polyethylene shims between rods cubo 14 1 4p0.6510866 2p226.695

unit 3

com="edge:rod facing up" cyli 3 1 0.4445 2p226.695 cyli 8 1 0.49022 2p226.695

EMF-1563 Revision 12A Appendix 6D Page 86 of 108

cubo 9 1 2p0.6510866 0.6510866 -0.49022 2p226.695 ' polyethylene shims between rods cubo 14 1 4p0.6510866 2p226.695

unit 4 👘

com="edge rod facing down" cyli 4 1 0.4445 2p226.695 cyli 8 1 0.49022 2p226.695 cubo 9 1 2p0.6510866 0.49022 -0.6510866 2p226.695 ' polyethylene shims between rods cubo 14 1 4p0.6510866 2p226.695

unit 5

com="edge rod facing other bundle" cyli 5 1 0.4445 2p226.695 cyli 8 1 0.49022 2p226.695 cubo 9 1 2p0.6510866 2p0.49022 2p226.695 ' polyethylene shims between rods cubo 14 1 4p0.6510866 2p226.695

unit 6

com="edge rod facing out" cyli 6 1 0.4445 2p226.695 cyli 8 1 0.49022 2p226.695 cubo 9 1 2p0.6510866 2p0.49022 2p226.695 ' polyethylene shims between rods cubo 14 1 4p0.6510866 2p226.695

unit 7

com="uo2-gd2o3 rod" cyli 7 1 0.4445 2p226.695 cyli 8 1 0.49022 2p226.695 cubo 9 1 2p0.6510866 2p0.49022 2p226.695 ' polyethylene shims between rods cubo 14 1 4p0.6510866 2p226.695

unit 8

com="water rod" cubo 9 1 4p0.6510866 2p226.695

unit 9

com='side basket element, 0.0598"x1.75"x1.75" steel with 0.75" diam. hole' xcyl 9 1 0.9525 0.1519 0.0 cubo 10 1 0.1519 0.0 4p2.2225

unit 10

com='side basket element, 0.0598"x1.6902"x1.75" steel with 0.75" diam. hole'

EMF-1563 Revision 12A Appendix 6D Page 87 of 108

xcyl 9 1 0.9525 0.1519 0.0 cubo 10 1 0.1519 0.0 2p2.14655 2p2.2225

unit 11

com='one complete basket side' ' 1x4x102 array of units 10 & 11 array 1 0.0 -8.7381 -226.695

unit 12

com='top/bottom basket element' ' 1.75"x0.0598"x1.75" steel with 0.75" diam. hole' ycyl 9 1 0.9525 0.1519 0.0 cubo 10 1 2p2.2225 0.1519 0.0 2p2.2225

unit 13

com='top/bottom basket element' ' 1.6902"x0.0598"x1.75" steel with 0.75" diam. hole' ycyl 9 1 0.9525 0.1519 0.0 cubo 10 1 2p2.14655 0.1519 0.0 2p2.2225

unit 14

com='one complete basket top/bottom' ' 4x1x102 array of units 13&14 array 2 -8.7381 0.0 -226.695

unit 15

com='0.0598" steel at basket corners' cubo 10 1 0.1519 0.0 0.1519 0.0 2p226.695

unit 16

com=" spacing & steel angle at -x side of basket " cubo 91 5.08 0.0 2p8.89 2p226.695 hole 22 0.15875 0.0 0.0 hole 22 0.47625 -0.3175 0.0 hole 22 0.47625 0.3175 0.0 hole 22 0.79375 0.635 0.0 hole 22 0.79375 -0.635 0.0 hole 22 1.11125 0.9525 0.0 hole 22 1.11125 -0.9525 0.0 hole 22 1.42875 1.27 0.0 hole 22 1.42875 -1.27 0.0 hole 22 1.74625 1.5875 0.0 hole 22 1.74625 -1,5875 0.0 hole 22 2.06375 1.905 0.0 hole 22 2.06375 -1.905 0.0 hole 22 2.38125 2.2225 0.0 hole 22 2.38125 -2.2225 0.0

EMF-1563 Revision 12A Appendix 6D Page 88 of 108

hole 22	2.69875 2.54 0.0
hole 22	2.69875 -2.54 0.0
hole 22	3.01625 2.8575 0.0
hole 22	3.01625 -2.8575 0.0
hole 22	3.33375 3.175 0.0
hole 22	3.33375 -3.175 0.0
hole 22	3.65125 3.4925 0.0
hole 22	3.65125 -3.4925 0.0
hole 22	3.96875 3.81 0.0
hole 22	3.96875 -3.81 0.0
hole 22	4.28625 4.1275 0.0
hole 22	4.28625 -4.1275 0.0
hole 22	4.60375 4.445 0.0
hole 22	4.60375 -4.445 0.0
hole 22	4.92125 4.7625 0.0
hole 22	4.92125 - 4.7625 0.0

unit 17 com=" spacing & steel angle at +x side of basket " cubo 91 0.0 -5.08 2p8.89 2p226.695 hole 22 -0.15875 0.0 0.0 hole 22 -0.47625 -0.3175 0.0 hole 22 -0.47625 0.3175 0.0 hole 22 -0.79375 0.635 0.0 hole 22 -0.79375 -0.635 0.0 hole 22 -1.11125 0.9525 0.0 hole 22 -1.11125 -0.9525 0.0 hole 22 -1.42875 1.27 0.0 hole 22 -1.42875 -1.27 0.0 hole 22 -1.74625 1.5875 0.0 hole 22 -1.74625 -1.5875 0.0 hole 22 -2.06375 1.905 0.0 hole 22 -2.06375 -1.905 0.0 hole 22 -2.38125 2.2225 0.0 hole 22 -2.38125 -2.2225 0.0 hole 22 -2.69875 2.54 0.0 hole 22 -2.69875 -2.54 0.0 hole 22 -3.01625 2.8575 0.0 hole 22 -3.01625 -2.8575 0.0 hole 22 -3.33375 3.175 0.0 hole 22 -3.33375 -3.175 0.0 hole 22 -3.65125 3.4925 0.0 · hole 22 -3.65125 -3.4925 .0.0 hole 22 -3.96875 3.81 0.0 hole 22 -3.96875 -3.81 0.0 hole 22 -4.28625 4.1275 0.0 hole 22 -4.28625 -4.1275 0.0

EMF-1563 Revision 12A Appendix 6D Page 89 of 108

hole 22	-4.60375 4.445 0.0
hole 22	-4.60375 -4.445 0.0
hole 22	-4.92125 4.7625 0.0
hole 22	-4.92125 -4.7625 0.0

unit 18

com=" angles & spacing beneath baskets	÷
cubo 9 1 2p8.89 5.08 0.0 2p226.695	;
hole 21 0.0 0.15875 0.0	
hole 21 -0.3175 0.47625 0.0	
hole 21 0.3175 0.47625 0.0	
hole 21 0.635 0.79375 0.0	
hole 21 -0.635 0.79375 0.0	
hole 21 0.9525 1.11125 0.0	
hole 21 -0.9525 1.11125 0.0	
hole 21 1.27 1.42875 0.0	
hole 21 -1.27 1.42875 0.0	
hole 21 1.5875 1.74625 0.0	
hole 21 -1.5875 1.74625 0.0	;
hole 21 1.905 2.06375 0.0	:
hole 21 -1.905 2.06375 0.0	
hole 21 2.2225 2.38125 0.0	
hole 21 -2.2225 2.38125 0.0	
hole 21 2.54 2.69875 0.0	
hole 21 -2.54 2.69875 0.0	
hole 21 2.8575 3.01625 0.0	
hole 21 -2.8575 3.01625 0.0	
hole 21 3.175 3.33375 0.0	
hole 21 -3.175 3.33375 0.0	;
hole 21 3.4925 3.65125 0.0	
hole 21 -3.4925 3.65125 0.0	
hole 21 3.81 3.96875 0.0	÷
hole 21 -3.81 3.96875 0.0	1
hole 21 4.1275 4.28625 0.0	
hole 21 -4.1275 4.28625 0.0	
hole 21 4.445 4.60375 0.0	
hole 21 -4.445 4.60375 0.0	:
hole 21 4.7625 4.92125 0.0	
hole 21 -4.7625 4.92125 0.0	:
unit 19	

com="angles & spacing above baskets " cubo 9 1 2p8.89 0.0 -5.08 2p226.695 hole 21 0.0 -0.15875 0.0 hole 21 -0.3175 -0.47625 0.0 hole 21 0.3175 -0.47625 0.0 hole 21 0.635 -0.79375 0.0

EMF-1563 Revision 12A Appendix 6D Page 90 of 108

hole 21 -0.635 -0.79375 0.0 hole 21 0.9525 -1.11125 0.0 hole 21 -0.9525 -1.11125 0.0 hole 21 1.27 -1.42875 0.0 hole 21 -1.27 -1.42875 0.0 hole 21 1.5875 -1.74625 0.0 hole 21 -1.5875. -1.74625 0.0 hole 21 1.905 -2.06375 0.0 hole 21 -1.905 -2.06375 0.0 hole 21 2.2225 -2.38125 0.0 hole 21 -2.2225 -2.38125 0.0 hole 21 2.54 -2.69875 0.0 hole 21 -2.54 -2.69875 0.0 hole 21 2.8575 -3.01625 0.0 hole 21 -2.8575 -3.01625 0.0 hole 21 3.175 -3.33375 0.0 hole 21 -3.175 -3.33375 0.0 hole 21 3.4925 -3.65125 0.0 hole 21 -3.4925 -3.65125 0.0 hole 21 3.81 -3.96875 0.0 hole 21 -3.81 -3.96875 0.0 hole 21 4.1275 -4.28625 0.0 hole 21 -4.1275 -4.28625 0.0 hole 21 4.445 -4.60375 0.0 hole 21 -4.445 -4.60375 0.0 4.7625 -4.92125 0.0 hole 21 hole 21 -4.7625 -4.92125 0.0

unit 20

com="2x2 inch moderation regions at corners " cubo 9 1 4p2.54 2p226.695

unit 21 com="part of steel angle" ' 0.1552" x 0.125" cubo 11 1 2p0.197104 2p0.15874 2p226.695

unit 22

com="part of steel angle" ' 0.125" x 0.1552" cubo 11 1 2p0.15874 2p0.197104 2p226.695

unit 23

com="left (-x) 10x10 bundle in basket" ' bundle at outer edge, centered vertically array 3 -8.7381 -6.510866 -226.695 cubo 9 1 2p8.7381 2p8.7381 2p226.695

EMF-1563 Revision 12A Appendix 6D Page 91 of 108

unit 24

com="right 10x10 bundle in basket" ' bundle at outer edge, centered vertically array 4 -4.2836334 -6.510866 -226.695 cubo 9 1 2p8.7381 2p8.7381 2p226.695

unit 25

com="complete left basket with bundle" array 5 2r-8.89 -226.695

unit 26

com="complete right basket with bundle" array 6 2r-8.89 -226.695

unit 27

com=" 1 inner container " array 7 -22.86 -13.97 -226.695 ' add 0.0598 inch walls of carbon steel repl 12 1 6r0.1519 1

unit 28

com="2x2 inch regions at corners " cubo 9 1 4p2.54 2p226.695

unit 29

com='higher enriched rods' cyli 15 1 0.4445 2p226.695 cyli 8 1 0.49022 2p226.695 cubo 9 1 2p0.6510866 2p0.49022 2p226.695 ' polyethylene shims between rods cubo 14 1 4p0.6510866 2p226.695

global

unit 30 com=" 8x13x1 array of inners " array 8 -184.0952 -183.5847 -226.695 ' add 30 cm water reflector at all 6 faces repl 13 2 6r3.0 10

end geom

read array

ara=1 nux=1 nuy=4 nuz=102 loop 9 1 1 1 2 3 1 1 102 1

EMF-1563 Revision 12A Appendix 6D Page 92 of 108

10 1 1 1 1 4 3 1 102 1 end loop

ara=2 nux=4 nuy=1 nuz=102 loop 12 2 3 1 1 1 1 1 102 1 13 1 4 3 1 1 1 1 102 1 end loop

05 01 02 08 08 08 02 01 07 06 05 01 02 08 08 08 02 01 07 06 05 29 02 02 02 02 02 07 07 06 05 29 29 29 07 07 07 07 07 06 05 29 29 29 07 07 07 07 07 06 03 03 03 03 03 03 03 03 03 03 03 end fill

ara=5 nux=3 nuy=3 nuz=1 fill 15 14 15 11 23 11

15 14 15 end fill

ara=6 nux=3 nuy=3 nuz=1

EMF-1563 Revision 12A Appendix 6D Page 93 of 108

ara=7 nux=4 nuy=3 nuz=1 fill 20 18 18 20 16 25 26 17 28 19 19 28 end fill

ara=8 nux=08 nuy=13 nuz=1 fill f27 end fill

end array

```
read start nst=1
' xsm=-45.72 xsp=45.72 ysm=-27.94 ysp=27.94 zsm=-10 zsp=10
end start
```

read bounds all=vacuum end bounds read bias id=500 2 11 end bias

end data end

The model for the normal condition KENO case ("a=nevk00") is listed below. =csas25 sp-1 with 4.0% enriched 10x10 fuel

hans infh

uo2 1 0.98 293.0 92235 3.4643 92238 96.5357 end

uo2 2 0.98 293.0 92235 3.4643 92238 96.5357 end

uo2 3 0.98 293.0 92235 4.0 92238 96.0 end

uo2 4 0.98 293.0 92235 4.0 92238 96.0 end

uo2 5 0.98 293.0 92235 4.0 92238 96.0 end

uo2 6 0.98 293.0 92235 4.0 92238 96.0 end

poison rod with 1.5% gd2o3

EMF-1563 Revision 12A Appendix 6D Page 94 of 108

' td of uo2-gd2o3 = 10.96 -2.65*p/[p+0.67145*(1-p)], p=wt frac.gd2o3 ' "p" is 0.015 here, td is 10.9012 pellet density is 0.98*10.9012=10.6832 uo2 density is 0.985*10.6832 = 10.5230 gd2o3 density is 0.015*10.6832 = 0.1602 gm/ccuo2 7 den=10.5230 1.0 293.0 92235 5.00 92238 95.00 end arbmgd2o3 0.1602 2 0 1 0 64000 2 8016 3 7 1.0 293. end zircalloy 8 1.0 293.0 end ' water, 0 vol.% h2o 9 1.0e-15 293.0 end ' basket steel carbonsteel 10 1.0 293.0 end angle steel carbonsteel 11 1.0 293.0 end ' shell steel carbonsteel 12 1.0 293.0 end ' douglas fir, same composition as oak, dens=0.48-0.55 oak 13 den=0.48 1.0 293 end polyethylene, 100 vol% arbmpe 0.92 2 0 1 0 6012 1 1001 2 14 1.0 293. end ' higher enriched rods uo2 15 0.98 293.0 92235 5.0 92238 95.0 end end comp more data res= 1 cyli 4.1526E-01 dan(1)= 5.1433E-01 res= 2 cyli 4.2949E-01 dan(2)= 5.1633E-01 res= 3 cyli 4.6224E-01 dan(3)= 3.4646E-01 res= 4 cyli 4.6288E-01 dan(4)= 3.4454E-01 res= 5 cyli 4.8046E-01 dan(5)= 3.9535E-01 res= 6 cyli 4.5837E-01 dan(6)= 3.2355E-01 res= 7 cyli 3.9685E-01 dan(7)= 5.0663E-01 res= 15 cyli 4.1040E-01 dan(15)= 5.0891E-01 end more sp-1 with 4.0% enriched 10x10 fuel read parameters tme=90 gen=200 npg=600 nsk=0 flx=yes fdn=yes xs1=yes nub=yes pwt=yes end parameters

EMF-1563 Revision 12A Appendix 6D Page 95 of 108

read geom .

pellet diam: 0.35"

gap: zero

clad thk: 0.018"

pitch: 0.5127"

unit 1

com="interior rod" cyli 1 1 0.4445 2p226.695 cyli 8 1 0.49022 2p226.695 cubo 9 1 2p0.6510866 2p0.49022 2p226.695 ' polyethylene shims between rods cubo 14 1 4p0.6510866 2p226.695

unit 2

com="interior rods around water rod" cyli 2 1 0.4445 2p226.695 cyli 8 1 0.49022 2p226.695 cubo 9 1 2p0.6510866 2p0.49022 2p226.695 ' polyethylene shims between rods cubo 14 1 4p0.6510866 2p226.695

unit 3

com="edge rod facing up" cyli 3 1 0.4445 2p226.695 cyli 8 1 0.49022 2p226.695 cubo 9 1 2p0.6510866 0.6510866 -0.49022 2p226.695 ' polyethylene shims between rods cubo 14 1 4p0.6510866 2p226.695

unit 4

com="edge rod facing down" cyli 4 1 0.4445 2p226.695 cyli 8 1 0.49022 2p226.695 cubo 9 1 2p0.6510866 0.49022 -0.6510866 2p226.695 ' polyethylene shims between rods cubo 14 1 4p0.6510866 2p226.695

unit 5

com="edge rod facing other bundle" cyli 5 1 0.4445 2p226.695 cyli 8 1 0.49022 2p226.695 cubo 9 1 2p0.6510866 2p0.49022 2p226.695 ' polyethylene shims between rods cubo 14 1 4p0.6510866 2p226.695

EMF-1563 Revision 12A Appendix 6D Page 96 of 108

unit 6 com="edge rod facing out" cyli 6 1 0.4445 2p226.695 cyli 8 1 0.49022 2p226.695 cubo 9 1 2p0.6510866 2p0.49022 2p226.695 ' polyethylene shims between rods cubo 14 1 4p0.6510866 2p226.695

unit 7

com="uo2-gd2o3 rod" cyli 7 1 0.4445 2p226.695 cyli 8 1 0.49022 2p226.695 cubo 9 1 2p0.6510866 2p0.49022 2p226.695 ' polyethylene shims between rods cubo 14 1 4p0.6510866 2p226.695

unit 8

com="water rod" cubo 9 1 4p0.6510866 2p226.695

unit 9

com='side basket element, 0.0598"x1.75"x1.75" steel with 0.75" diam. hole' xcyl 9 1 0.9525 0.1519 0.0 cubo 10 1 0.1519 0.0 4p2.2225

unit 10

com='side basket element, 0.0598"x1.6902"x1.75" steel with 0.75" diam. hole' xcyl 9 1 0.9525 0.1519 0.0 cubo 10 1 0.1519 0.0 2p2.14655 2p2.2225

unit 11 com='one complete basket side' ' 1x4x102 array of units 10 & 11 array 1 0.0 -8.7381 -226.695

unit 12

com='top/bottom basket element' ' 1.75"x0.0598"x1.75" steel with 0.75" diam. hole' ycyl 9 1 0.9525 0.1519 0.0 cubo 10 1 2p2.2225 0.1519 0.0 2p2.2225

unit 13 com='top/bottom basket element' ' 1.6902"x0.0598"x1.75" steel with 0.75" diam. hole' ycyl 9 1 0.9525 0.1519 0.0 cubo 10 1 2p2.14655 0.1519 0.0 2p2.2225

EMF-1563 :

EMF-1563 Revision 12A Appendix 6D Page 97 of 108

unit 14 com='one complete basket top/bottom' ' 4x1x102 array of units 13&14 array 2 -8.7381 0.0 -226.695

unit 15

com='0.0598" steel at basket corners' cubo 10 1 0.1519 0.0 0.1519 0.0 2p226.695

unit 16

com=" spacing & steel angle at -x side of basket " cubo 91 5.08 0.0 2p8.89 2p226.695 hole 22 0.15875 0.0 0.0 hole 22 0.47625 -0.3175 0.0 hole 22 0.47625 0.3175 0.0 hole 22 0.79375 0.635 0.0 hole 22 0,79375 -0,635 0,0 hole 22 1.11125 0.9525 0.0 hole 22 1.11:125 -0.9525 0.0 hole 22 1.42875 1.27 0.0 hole 22 1.42875 -1.27 0.0 hole 22 1.74625 1.5875 0.0 hole 22 1.74625 -1.5875 0.0 hole 22 2.06375 1.905 0.0 hole 22 2.06375 -1.905 0.0 hole 22 2.38125 2.2225 0.0 hole 22 2.38125 -2.2225 0.0 hole 22 2.69875 2.54 0.0 hole 22 2.69875 -2.54 0.0 hole 22 3.01625 2.8575 0.0 hole 22 3.01625 -2.8575 0.0 hole 22 3.33375 3.175 0.0 hole 22 3.33375 -3.175 0.0 hole 22 3.65125 3.4925 0.0 hole 22 3.65125 -3.4925 0.0 hole 22 3,96875 3,81 0.0 hole 22 3.96875 -3.81 0.0 hole 22 4.28625 4.1275 0.0 hole 22 4,28625 -4,1275 0.0 hole 22 4.60375 4.445 0.0 hole 22 4.60375 -4.445 0.0 hole 22 4,92125 4,7625 0,0 hole 22 4.92125 -4.7625 0.0

unit 17

com=" spacing & steel angle at +x side of basket " cubo 9 1 0.0 -5.08 2p8.89 2p226.695
EMF-1563

EMF-1563 Revision 12A Appendix 6D Page 98 of 108

hole 22 -0.15875 0.0 0.0 hole 22 -0.47625 -0.3175 0.0 hole 22 -0.47625 0.3175 0.0 hole 22 -0.79375 0.635 0.0 hole 22 -0.79375 -0.635 0.0 hole 22 -1.11125 0.9525 0.0 hole 22 -1.11125 -0.9525 0.0 hole 22 -1.42875 1.27 0.0 hole 22 -1.42875 -1.27 0.0 hole 22 -1.74625 1.5875 0.0 hole 22 -1.74625 -1.5875 0.0 hole 22 -2.06375 1.905 0.0 hole 22 -2.06375 -1.905 0.0 hole 22 -2.38125 2.2225 0.0 hole 22 -2.38125 -2.2225 0.0 hole 22 -2.69875 2.54 0.0 hole 22 -2.69875 -2.54 0.0 hole 22 -3.01625 2.8575 0.0 hole 22 -3.01625 -2.8575 0.0 hole 22 -3.33375 3.175 0.0 hole 22 -3.33375 -3.175 0.0 hole 22 -3.65125 3.4925 0.0 hole 22 -3.65125 -3.4925 0.0 hole 22 -3.96875 3.81 0.0 hole 22 -3.96875 -3.81 0.0 hole 22 -4.28625 4.1275 0.0 hole 22 -4.28625 -4.1275 0.0 hole 22 -4.60375 4.445 0.0 hole 22 -4.60375 -4.445 0.0 hole 22 -4.92125 4.7625 0.0 hole 22 -4.92125 -4.7625 0.0 unit 18 com=" angles & spacing beneath baskets

cubo 9 1 2p8.89 5.08 0.0 2p226.695 hole 21 0.0 0.15875 0.0 hole 21 -0.3175 0.47625 0.0 hole 21 0.3175 0.47625 0.0 hole 21 0.635 0.79375 0.0 hole 21 -0.635 0.79375 0.0 hole 21 -0.9525 1.11125 0.0 hole 21 -0.9525 1.11125 0.0 hole 21 1.27 1.42875 0.0 hole 21 1.27 1.42875 0.0 hole 21 1.5875 1.74625 0.0 hole 21 -1.5875 1.74625 0.0 hole 21 1.905 2.06375 0.0

EMF-1563 :

EMF-1563 Revision 12A Appendix 6D Page 99 of 108

hole 21 -1.905 2.06375 0.0 hole 21 2.2225 2.38125 0.0 hole 21 -2.2225 2.38125 0.0 hole 21 2.54 2.69875 0.0 hole 21 -2.54 2.69875 0.0 hole 21 2.8575 3.01625 0.0 hole 21 -2.8575 3,01625 0,0 hole 21 3.175 3.33375 0.0 hole 21 -3.175 3.33375 0.0 hole 21 3.4925 3.65125 0.0 hole 21 -3.4925 3.65125 0.0 hole 21 3.81 3.96875 0.0 hole 21 -3.81 3.96875 0.0 hole 21 4.1275 4.28625 0.0 -4.1275 4.28625 0.0 hole 21 hole 21 4.445 4.60375 0.0 hole 21 -4.445 4.60375 0.0 hole 21 4.7625 4.92125 0.0 hole 21 -4.7625 4.92125 0.0

unit 19

com="angles & spacing above baskets " cubo 91 2p8.89 0.0 -5.08 2p226.695 hole 21 0.0 -0.15875 0.0 hole 21 -0.3175 -0.47625 0.0 hole 21 0.3175 -0.47625 0.0 hole 21 0.635 -0.79375 0.0 hole 21 -0.635 -0.79375 0.0 hole 21 0.9525 -1.11125 0.0 hole 21 -0.9525 -1.11125 0.0 hole 21 1.27 -1.42875 0.0 hole 21 -1.27 -1.42875 0.0 hole 21 1.5875 -1.74625 0.0 hole 21 -1.5875 -1.74625 0.0 hole 21 1.905 -2.06375 0.0 hole 21 -1,905 -2,06375 0.0 hole 21 2.2225 -2.38125 0.0 hole 21 -2.2225 -2.38125 0.0 hole 21 2.54 -2.69875 0.0 hole 21 -2.54 -2.69875 0.0 hole 21 2.8575 -3.01625 0.0 hole 21 -2.8575 -3.01625 0.0 hole 21 3.175 -3.33375 0.0 hole 21 -3.175 -3.33375 0.0 hole 21 3.4925 -3.65125 0.0 hole 21 -3.4925 -3.65125 0.0 hole 21 3.81 -3.96875 0.0

EMF-1563 EMF-1563 Revision 12A Appendix 6D Page 100 of 108

hole 21 -3.81 -3.96875 0.0 hole 21 4.1275 -4.28625 0.0 hole 21 -4.1275 -4.28625 0.0 hole 21 4.445 -4.60375 0.0 hole 21 -4.445 -4.60375 0.0 hole 21 4.7625 -4.92125 0.0 hole 21 -4.7625 -4.92125 0.0

unit 20

com=" 2x2 inch moderation regions at corners " cubo 91 4p2.54 2p226.695

unit 21

com="part of steel angle" ' 0.1552" x 0.125" cubo 11 1 2p0.197104 2p0.15874 2p226.695

unit 22

com="part of steel angle" ' 0.125" x 0.1552" cubo 11 1 2p0.15874 2p0.197104 2p226,695

unit 23

com="left (-x) 10x10 bundle in basket" ' bundle at outer edge, centered vertically array 3 -8.7381 -6.510866 -226.695 cubo 9 1 2p8.7381 2p8.7381 2p226.695

unit 24

com="right 10x10 bundle in basket" ' bundle at outer edge, centered vertically array 4 -4.2836334 -6.510866 -226.695 cubo 9 1 2p8.7381 2p8.7381 2p226.695

unit 25

com="complete left basket with bundle" array 5 2r-8.89 -226.695

unit 26

com="complete right basket with bundle" array 6 2r-8.89 -226.695

unit 27

com="1 inner container " array 7 -22.86 -13.97 -226.695 ' add 0.0598 inch walls of carbon steel repl 12 1 6r0.1519 1

EMF-1563

Revision 12A Appendix 6D Page 101 of 108

EMF-1563

cubo 9 1 2p32.385 2p30.48 2p261.9375

unit 28

com=" 2x2 inch regions at corners " cubo 9 1 4p2.54 2p226.695

unit 29

com='higher enriched rods' cyli 15 1 0.4445 2p226.695 cyli 8 1 0.49022 2p226.695 cubo 9 1 2p0.6510866 2p0.49022 2p226.695 ' polyethylene shims between rods cubo 14 1 4p0.6510866 2p226.695

unit 30

com='top' ' plywood only width: 29.75 - 2*3.25 = 23.25" cubo 13 1 2p29.5275 4.1275 0.0 8.255 0.0 38,25" im repl 9 1 4r0.0 97.155 0.0 1 add stud repl 13 1 4r0.0 8.255 0.0 1 36.75" im . repl 9 1 4r0.0 93.345 0.0 1 add stud repl 13 1 4r0.0 8.255 0.0 1 36.75" im repl 9 1 4r0.0 93.345 0.0 1 ' add stud repl 13 1 4r0.0 8.255 0.0 1 ' 36.75" im repl 9 1 4r0.0 93.345 0.0 1 add stud repl 13 1 4r0.0 8.255 0.0 1 38.25" im repl 9 1 4r0.0 97.155 0.0 1 add studs & plywood repl 13 1 2r8.255 0.0 1.27 8.255 0.0 1

unit 31 com='base' ' space to first skid cubo 9 1 2p37.7825 8.255 0.0 13.97 0.0 ' 4x4 skid repl 13 1 4r0.0 8.255 0.0 1 ' 44.75" im repl 9 1 4r0.0 113.665 0.0 1

EMF-1563 :

EMF-1563 Revision 12A Appendix 6D Page 102 of 108

' 4x4 skid repl 13 1 4r0.0 8.255 0.0 1 ' 44.75" im repi 9 1 4r0.0 113.665 0.0 1 ' 4x4 skid ' repl 13 1 4r0.0 8.255 0.0 1 ' 44.75" im repl 9 1 4r0.0 113.665 0.0 1 ' 4x4 skid repi 13 1 4r0.0 8.255 0.0 1 ' 44.75" im 🛛 repl 9 1 4r0.0 113.665 0.0 1 4x4 skid 🚲 repl 13 1 4r0.0 8.255 0.0 1 ' add space at +z repl 9 1 4r0.0 13.97 0.0 1 ' add 1.605" wood at +y repl 13 1 2r0.0 4.1275 3r0.0 1 unit 32 com='+x side' ' plywood only width: 24.00 - 2*3.25 = 17.5" cubo 13 1 4.1275 0.0 2p22.225 8.255 0.0 ' 38.25" im repl 9 1 4r0.0 97.155 0.0 1 ' add stud repl 13 1 4r0.0 8.255 0.0 1 ' 36.75" im repl 9 1 4r0.0 93.345 0.0 1 ' add stud : repl 13 1 4r0.0 8.255 0.0 1

' 36.75" im repl 9 1 4r0.0 93.345 0.0 1 ' add stud repl 13 1 4r0.0 8.255 0.0 1 ' 36.75" im repl 9 1 4r0.0 93.345 0.0 1 ' add stud repl 13 1 4r0.0 8.255 0.0 1 ' 38.25" im repl 9 1 4r0.0 97.155 0.0 1 ' add stud & plywood repl 13 1 0.0 1.27 2r8.255 8.255 0.0 1

unit 33 com='-x side' ' plywood only width: 24.00 - 2*3.25 = 17.5"

EMF-1563 EMF-1563 ; Revision 12A Appendix 6D

Page 103 of 108

cubo 13 1 4.1275 0.0 2p22.225 8.255 0.0 ' 38.25" im repi 9 1 4r0.0 97,155 0.0 1 ' add stud repl 13 1 4r0.0 8.255 0.0 1 ' 36.75" im repl 9 1 4r0.0 93.345 0.0 1 ' add stud repl 13 1 4r0.0 8.255 0.0 1 ' 36.75" im repi 9 1 4r0.0 93.345 0.0 1 ' add stud repl 13 1 4r0.0 8.255 0.0 1 ' 36.75" im repl 9 1 4r0.0 93.345 0.0 1 ' add stud . repl 13 1 4r0.0 8,255 0,0 1 ' 38.25" im : repl 9 1 4r0.0 97.155 0.0 1 add stud & plywood repl 13 1 1:27 0.0 2r8.255 8.255 0.0 1

unit 34 com='inner container & wood sides' array 8 3r0.0

unit 35 com='complete outer container' array 9 3r0.0

globai

unit 36 com=" 10x10x1 array of inners " array 10 3r0.0

end geom

read array

ara=1 nux=1 nuy=4 nuz=102 loop 9 1 1 1 2 3 1 1 102 1 10 1 1 1 1 4 3 1 102 1 end loop

ara=2 nux=4 nuy=1 nuz=102 loop

EMF-1563

EMF-1563 Revision 12A Appendix 6D Page 104 of 108

12 2 3 1 1 1 1 1 102 1 13 1 4 3 1 1 1 1 102 1 end loop

11 23 11 15 14 15 end fill

ara=6 nux=3 nuy=3 nuz=1 fill 15 14 15 11 24 11 15 14 15 end fill

EMF-1563 EMF-1563 Revision 12A Appendix 6D Page 105 of 108

ara=7 nux=4 nuy=3 nuz=1 fill 20 18 18 20 16 25 26 17 28 19 19 28 end fill

ara=8 nux=3 nuy=1 nuz=1 fill 33 27 32 end fill

ara=9 nux=1 nuy=3 nuz=1 fill 31 34 30 end fill

ara=10 nux=10 nuy=10 nuz=1 fill f35 end fill end array

read start nst=1 end start read bounds all=spec end bounds ' read bias id=500 2 11 end bias end data end

The model for XSDRN case ("a=h3530c") at flooded conditions is listed below. =csasix sp-1 with 5.0% enriched 10x10 fuel hans latt

' external water, 100 vol.% h2o 1 1.0 293.0 end

uo2 2 0.98 293.0 92235 5.0 92238 95.0 end

' polyethylene in unit cell, 100 vol% arbmpe 0.92 2 0 1 0 6012 1 1001 2 3 1.0 293. end

zircalloy 4 1.0 293.0 end

end comp squa 1.61775 .8890 2 3 .98044 4 end end =xsdrn ' inf array of inners 0\$\$ a3 2 e 1\$\$ 2 2 100 1 3 2 2 8 2r1 10 80 3r0 2\$\$ -1 -1 4r0 -1 e

EMF-1563

EMF-1563 Revision 12A Appendix 6D Page 106 of 108

3\$\$ 0 e '4\$\$-1160e 5** 2r1.0e-5 e t 13\$\$ 1 2 14\$\$ 500 1 15** f1.0 t 33## f1.0 t 35** 49i0.0 49i10.133134 20.164682 36\$\$ 50r1 50r2 39\$\$ 1 2 51\$\$ 1411 16 t end A typical CASMO case ("cava") is listed below. DIM 10.1 TIT TFU=293.15 TMO=293.15 BOR=0 * INNERS ONLY FUE 1 10.7408/4.0 *98%TD, 4.0%ENR FUE 2 10.7408/4.0 *98%TD, 4.0%ENR FUE 3 10.7408/4.0 *98%TD, 4.0%ENR FUE 4 10.6832/5.00,7301 = 1.5 *98%TD, 5.00%ENR VOI, 90. MOD, .099820/1001=11.19,8000=88.81 MI1 .686305/26000=84.829155 ,6000= 1.731207 ,1001= 1.503896 ,8000=11.935745 MI2 .303433/26000=66.611275 ,6000= 1.359414 ,1001= 3.584080 ,8000=28.445229 MI3 .494868/26000=79.243896 ,6000= 1.617222 ,1001= 2.141640 ,8000=16.997234 MI4 6.705978/26000=97.789505,6000=1.995704,1001=.024035,8000=.190758 MI5 .646048/26000=83.929482 ,6000= 1.712847 ,1001= 1.606623 ,8000=12.751048 Mi6 .541578/26000=80.970863 ,6000= 1.652467 ,1001= 1.944449 ,8000=15.446123 COO .465105/1001=13.991474,6000=75.437164,8000=10.571368 MI7 0.001/8000=100.0 * 0.5127" pitch, * POD/CID/COD=0.35/0.35/0.386" PIN 1 0.4445 0.49022/'1' 'CAN'//1 PIN 2 0.4445 0.49022/'2' 'CAN'//1 PIN 3 0.4445 0.49022/'3' 'CAN'//1 PIN 4 0.4445 0.49022/'4' 'CAN'//1 PIN 5 0.4445 0.6510/'MOD' 'MOD'//1 BWR 10 1.30217 13.0217 0.0 3*0.0 1 LPI 11111111111 1222444441 1223334441 1233555441

EMF-1563

EMF-1563 Revision 12A Appendix 6D Page 107 of 108

1233555341 1233555341 1233333321 1223333221 1222222221 111111111111 /'F' FST 4.9281,2.54,0.1519,2.54/0.001,3*5.2319/ 'MI1','MI2','MI1','MI3',3*'MI4','MI3'/ 'MI7', 'MI7', 'MI7', 'MI5', 'MI6', 'MI5', 'MI6', 'MI5'/ 8,4,2,4/1,3*8/ STA TIT TFU=293.15 TMO=293.15 BOR=0 * INNERS ONLY LPI 11111111111 1222444441 1223334441 1233333441 1235553341 1235553341 1235553321 1223333221 1222222221 11111111111 /'F' **STA** TIT TFU=293.15 TMO=293.15 BOR=0 * INNERS ONLY LPI 1111111111 1222444441 1223334441 12333333441 1233555341 1233555341 1233555321 1223333221 1222222221 11111111111 /'F' STA TIT TFU=293.15 TMO=293.15 BOR=0 * INNERS ONLY LPI 1111111111 1222444441 1223334441 1235553441 1235553341

EMF-1563 Revision 12A Appendix 6D Page 108 of 108

/'F' STA

END

ISSUED IN FRA-ANP ON-LINE
DOCUMENT SYSTEM
NOTE: 2-5-14
Cruch O O T

EMF-1563 Revision 12A Appendix 6E Page 1 of 83

Appendix 6E

14 N. V.

SIEMENS POWER CORPORATION SUPPLEMENTAL APPLICATION TO ADD 9X9 AND 10X10 FUEL ASSEMBLIES TO CERTIFICATE OF COMPLIANCE 9248

Supplemental License Application for Siemens Power Corporation Model SP-1 and SP-2 Shipping Containers

Certificate of Compliance No. 9248 Docket No. 71-9248

February 1996

EMF-1563 EMF-1563, Revision 12A Appendix 6E Page 2 of 83

EMF-1563 Revision 12A Appendix 6E Page 3 of 83

Issue Date: 2/9/96

SUPPLEMENTAL LICENSE APPLICATION FOR SIEMENS POWER CORPORATION MODEL SP-1 AND SP-2 SHIPPING CONTAINERS

Certificate of Compliance No. 9248 Docket No. 71-9248

Siemens Power Corporation Nuclear Division Richland, WA

EMF-1563 **Revision 12A** Appendix 6E Page 4 of 83

Issue Date:

2/9/96

SUPPLEMENTAL LICENSE APPLICATION FOR SIEMENS POWER CORPORATION MODEL SP-1 AND SP-2 SHIPPING CONTAINERS

Certificate of Compliance No. 9248 Docket No. 71-9248

Prepared by:

. •

ranning C. D. Manning, Team Leader

Criticality Safety

RLF

Accepted by:

R. L. Feuerbacher, Manager Materials & Scheduling

Concurred by:

A. Reparaz, Manager Product Mechanical Engineering

Concurred by:

. J. Maas, Manager **Regulatory Compliance**

Date: 2/8/96

Date:

Date: 5

Date:

EMF-1563 Revision 12A Appendix 6E Page 5 of 83

TABLE OF CONTENTS

1.0	INTRODUCTION	
•	1.1 [·] Purpose	
•	1.2 Scope of Analysis	1
	1.3 Summary of Conclusions	
2.0	PACKAGE AND MODEL DESCRIPTION	
3.0	ANALYTICAL METHODOLOGY	
	3.1 Nuclear Analysis	
	3.1.1 Codes and Databases Used	
,	3.1.2 Cross Section Preparation	
	3.1.3 Benchmarking	
4.0	ANALYSIS	17
	4.1 Flooded Conditions	18
	4.1.1 Conservative XSDRN Mode	(No Steel, Flooded) 19
	4.1.2 Conservative KENO Model	No Steel, Flooded) 20
	4.1.3 KENO Model (Flooded) With	Steel Included 21
•	4.2 Low Density Interspersed Moderat	ion 23
·	4,2.1 Sensitivity Study: Pellet Dia	ameter and Water Rods and Water
	Channels	
	4.2.2 Sensitivity to Pellet Diameter	er and Interspersed Moderators 26
	4.2.3 Sensitivity Study: Gadolinia	Rod Locations 27
	4.2.4 10x10 Assemblies with All	Rods Enriched to 5 wt. % and Eight
	Gadolinia Rods at 1.5	
	4.2.5 9x9 Assemblies with All Oth	ner Rods Enriched to 5.0 Wt. % and
	Eight Gadolinia Rods at 1.5	wt.% Gd ₂ O ₃
	4.3 Normal Condition Arrays	

• . •	:							. ·			
•											
										EMF-156 Revision Appendix Page 6 o	53 12/ c 6E f 83
	•				:				,		
5.0	REFE	RENCES	• • • • • •		• • • • • •	• • • • • •			•••••		4
Apper	ndix A	• • • • • • • • • •		• • • • • •		••••					5
							•				
					:			•			
							·				
	• .										
			·								
	t										
				•							
	i									• •	
	:								,	•	
	•										
	:		•								
	·				•						
	:					•					
					÷			•			
								• •	•		
				•							
	• •										
						,					
		•		•	:						
	: :										
					1					• •	

.

, ' , ;

: : :

•

• .

;

i

EMF-1563 Revision 12A Appendix 6E Page 7 of 83

LIST OF TABLES

ī.

Table		
1		Page
1	Reference 4 Cases Calculation Results With 16-Group Cross Sections	. 9
2	Reference 4 Cases Calculation Results With 27-Group Cross Sections	10
3	Calculation Bias for Cases with Gadolinium	11
4	Critical Experiments with Gadolinium Calculation Results	12
5	Conservative XSDRN SP-1/SP-2 Model (No Steel) Infinite Array (3-D)	
	of Edge-to-Edge Inner Containers 5.0% Enriched, 0.015" Thick Clad,	
	Fully Flooded XSDRN Results with 16-Group and 27-Group Cross Sections	20
6	Conservative KENO SP-1/SP-2 Model (No Steel) Infinite Array (3-D)	
	of Edge-to Edge Inner Containers 5.0% Enriched, 0.015" Thick Clad,	
	Fully Flooded KENO-Va Results with 16-Group and 27-Group Cross Sections	21
7	KENO SP-1/SP-2 Model (With Steel) Infinite Array (3-D) of Edge-to-Edge	
	Inner Containers 5.0% Enriched, 0.015" Thick Clad, Fully Flooded	
	KENO Results with 16-Group and 27-Group Cross Sections	22
8 ·	Water Rod and Pellet Diameter Sensitivity CASMO Model with Shims	
	and 10 Vol. % Water All Fuel is 4.0% Enriched, Zero Gadolinia	26
9	Sensitivity to K-eff to Pellet Diameter and Interspersed Moderator	26
10	Typical Normalized Fission Rates for 10x10 Assembly Low Density	
	Interspersed Moderation	27
11	Gadolinia Rod Arrangement Studies Six Gadolinia Rods, All Rods,	
	are 5.0% Enriched, Gadolinia Rods contain 1.5 wt.% Gd ₂ O ₃ CASMO	
	Model with Various Amounts of Interspersed Water	34
12	Gadolinia Rod Arrangement Studies Eight Gadolinia Rods, All Rods	
	are 5.0% Enriched, Gadolinia Rods contain 1.5 wt.% Gd ₂ O ₃ KENO-Va	
J	Model with Various Amounts of Interspersed Water	35
13	Sensitivity of K-eff to 10x10 Assembly Orientation	36
		00

EMF-1563 Revision 12A Appendix 6E Page 8 of 83

;

14	Gadolinia Rod Arrangement Studies Eight Gadolinia Rods, All Rods	
	are 5.0% Enriched, Gadolinia Rods contain 1.5 wt.% Gd ₂ O ₃ CASMO	
	Model with Various Amounts of Interspersed Water	40
15	K-eff for Rod Patterns 3A, 5, and 5A at Various Amounts of	
	Interspersed Water	41
16	Sensitivity of K-eff to 9x9 Assembly Orientation	42
17	K-eff for Infinite Arrays of SP-1/SP-2 Containers at Normal Conditions	48

١

.:'

:.

EMF-1563 Revision 12A Appendix 6E Page 9 of 83

1.0 INTRODUCTION

1.1 <u>Purpose</u>

This report is provided in support of the application dated February 9, 1996, to revise Certificate of Compliance No. 9248. In that application, additional categories were proposed for Section 5(b)(1) of the Certificate. Calculation descriptions and results are provided to demonstrate that the additional categories meet all criticality safety requirements in 10 CFR Part 71.

1.2 <u>Scope of Analysis</u>

The existing categories in Section 5(b)(1) of the Certificate are unchanged. New fuel shipment categories are added to Section 5(b)(1) for 10x10 and 9x9 assemblies.

EMF-1563, Sup. 1, Rev. 1 demonstrated that the SP-1/SP-2 inner shipping container is adequately subcritical for any array at full flooded conditions with any pellet diameter, any number of water rods in any arrangement, with or without a water channel, with or without gadolinia rods, with any arrangement of rods with enrichments up to 5.0 wt.%, with rod diameters up to .5" and minimum clad thickness of .18", and with any number of polyethylene shims in any arrangement. This report re-confirms this data for assemblies with rod diameters up to .4" and minimum clad thickness of 0.015" in addition to demonstrating safety for new fuel types at low density interspersed moderation.

1.3 <u>Summary of Conclusions</u>

The following new categories may be added to Certificate of Compliance No. 9248 since they meet all requirements specified in 10 CFR Part 71. The highest bias corrected 95% upper limit for k_{eff} at accident conditions for the new 10x10 and new 9x9 categories are, respectively, .9337 and .9136.

EMF-1563 Revision 12A Appendix 6E Page 10 of 83

5(b)(1)(vii)

 UO_2 fuel assemblies with a maximum U-235 enrichment of 5.0 wt.%. Each assembly is composed of a 10x10 array of fuel rods with a water channel or water rods located in a central 3x3 array of rods location. Any number of additional water rods or water channels in any arrangement is permitted. The maximum fuel dimensions are 5.0" by 5.0" by 174". The maximum pellet diameter is 0.35" and the minimum clad thickness is 0.018".

Each assembly shall contain at least eight rods with at least 2.0 wt. % gadolinia in all axial regions with enriched pellets.

The eight gadolinia rods shall be located in a pattern symmetric about one of the assembly diagonals and meet the following constraints.

1. The nominal diameter of the gadolinia pellets shall be not less than that of the $\rm UO_2$ (non-gadolinia) pellets and rods shall be in non-perimeter positions.

2. At least two gadolinia rods shall be in row two and two additional rods shall be in column nine.

3. At least two gadolinia rods shall be in rows eight and / or nine and at least two additional gadolinia rods shall be in columns eight and / or nine.

4. A unit cell containing a gadolinia rod shall not share a common face with another gadolinia rod unless those sharing a common face are counted as one rod. Gadolinia rods may share a common corner without being counted as one rod.

5(b)(1)(viii)

 UO_2 fuel assemblies with a maximum U-235 enrichment of 5.0 wt.%. Each assembly is composed of a 9x9 array of fuel rods with a water channel or water rods in the center 3x3 rod locations. Any number of additional water rods or water channels in any arrangement is permitted. The maximum fuel dimensions are 5.0" by 5.0" by 174". The maximum pellet diameter is 0.40" and the minimum clad thickness is 0.015".

Each assembly shall contain at least eight rods with at least 2.0 wt. % gadolinia in all axial regions with enriched pellets.

The eight gadolinia rods shall be located in a pattern symmetric about one of the assembly diagonals and meet the following constraints:

1. The nominal diameter of the gadolinia pellets shall be not less than that of the UO_2 (non-gadolinia) pellets and the rods shall be in non-perimeter positions.

2. At least 2 gadolinia rods shall be in rows two and eight and two additional rods shall be in columns two and eight.

EMF-1563 Revision 12A Appendix 6E Page 11 of 83

3. A unit cell containing a gadolinia rod shall not share a common face with another gadolinia rod unless those sharing a common face are counted as one rod. Gadolinia rods may share a common corner without being counted as one rod.

Fissile Class II is authorized for both fuel types with a minimum Transport Index of 1.0. Polyethylene shims are not permitted for either fuel type.

EMF-1563 Revision 12A Appendix 6E Page 12 of 83

2.0 PACKAGE AND MODEL DESCRIPTION

Each SP-1/SP-2 can contain up to two BWR assemblies. The SP-1/SP-2 is composed of a steel "inner container" and a wooden "outer container". Most criticality safety calculations are at "damaged" or "accident" conditions where the outer container is assumed to have burned away and the inner containers are stacked edge-to-edge in an array of at least 250 units (Fissile Class I) or at least 2N (Fissile Class II), where "N" is the maximum number of packages allowed per shipment. "N" is defined as 50 divided by the Transport Index.

The inner containers contain two "baskets" made of 0.0598" thick carbon steel with 0.75" diameter holes in a 1.75" square pitch pattern. The baskets are nominally 7"x7" in cross section. The two baskets are placed edge-to-edge in the center of the nominal 18" wide by 11" high steel inner container (0.0598" carbon steel walls). A 2" thick annulus is between the basket wall and the inner container wall. In this annulus are six carbon steel angles (2.8125"x2.8125"x0.125" nominal).

All previous calculations for the SP-1/SP-2 have demonstrated that peak reactivity with uniform interspersed moderation is with low density (typically 10 to 20 volume %) water. With low density interspersed water, the edge rods in the assemblies are the best moderated. It has been found that the most reactive position for the assemblies is to have both at the outer edges of their baskets, which allows maximum moderation of the edge rods facing the other assembly in the same package. This is the arrangement modeled in these calculations, unless noted otherwise.

The codes, cross sections, and other data from SCALE 4.2 (1) and CASMO-3G (2) were used. All components were modeled as precisely as possible in KENO-Va.

The baskets were modeled as carbon steel with moderation-filled holes (not "smeared") and the angles were closely approximated in volume and geometry using 31 steel segments with a total steel volume slightly less than the minimum (nominal minus tolerances). Finite arrays

EMF-1563 Revision 12A Appendix 6E Page 13 of 83

with 30 cm of water reflection were modeled in KENO-Va. The following figure is a KENO-Va plot for a typical model.

CASMO-3G was also used to calculate k-inf for several cases. The steel and moderation were "smeared" together in the various regions of the CASMO model. The CASMO model also had the assemblies to the shifted to the outer edges of their baskets. The arrays modeled were either infinite or 8x13x1.

EMF-1563 Revision 12A Appendix 6E Page 14 of 83

3.0 ANALYTICAL METHODOLOGY

3.1 Nuclear Analysis

The codes, cross sections, and other data from SCALE $4.2^{(1)}$ were used.

3.1.1 Codes and Databases Used

Version ujul94a of SCALE 4.2 was used for these calculations.

The computer codes used for this analysis are part of the SCALE 4.2 system of codes on the SPC HP workstation SSL01. The following codes and cross section libraries are part of the SCALE 4.2 system of codes placed on the SPC HP workstation SSL01.

3.1.2 Cross Section Preparation

BONAMI and NITAWL were used to prepare case-specific cross sections from the 16 and 27 group master libraries.

3.1.3 Benchmarking

The SCALE 4.2 system was developed for use by the USNRC and its licensees. Critical experiments were modeled using the same methodology used in these calculations. The benchmark calculations and the methodology for determining the calculation bias and its uncertainty and for determining the bias-corrected 95% upper limit on k-eff are described in this section.

EMF-1563 Revision 12A Appendix 6E Page 15 of 83

3.1.3.1 <u>Calculation of Bias and Bias Uncertainty</u>

The bias and its standard deviation were calculated using the methods described in Reference 4. These methods use standard analysis of variance principles. The average over all cases of the KENO k-eff and its variance (square of standard deviation) are calculated. The average of the average k-eff (grand average) is weighted by the reciprocal of its variance. The average value of the variance is taken as the "within class" variance. The variance of the average k-eff data, weighted as for the grand average, is taken as the "between class" variance. The "within class" variance is subtracted from the "between class" variance to yield the variance of the class effect. Since the true value for all cases is assumed to be 1.0 (critical), the class effect (the change in average k-eff from case to case) is also the bias and the variance of the class effect is the variance of the bias. A zero variance of the bias would mean that the bias is constant from case to case. Standard statistical techniques test the ratio of the "between" and "within" variances. If this ratio does not exceed the "F" test, it is concluded that the class effect variance is not significant and the class effect (bias) is assigned the value zero. The methods in Reference 4 do not include a test of significance. The calculated bias is the value to add to the calculation result. Therefore, a negative bias indicates conservative results. The bias uncertainty is pooled with the KENO uncertainty for a given case by taking the square root of the sum of squares. The pooled uncertainty is multiplied by a factor appropriate for the degrees of freedom (calculated as shown in Ref. 4) for a one-sided 95% confidence limit. The 95% upper limit is the sum of the KENO k-eff plus the bias plus the pooled uncertainty multiplied by the factor. The one-sided confidence limit factor is used because only the upper limit is of interest.

As will be shown in Sections 3.1.3.2 and 3.1.3.3, there is no significant difference between the bias for experiments with and without gadolinium. Therefore, all experiments were combined to calculate the bias to be applied to these calculation results.

The bias and bias uncertainty with 16-group cross sections is -2.4405E-3 \pm 4.6889E-3 and with 27-group cross sections it is +6.3419E-3 \pm 4.9757E-3.

EMF-1563 Revision 12A Appendix 6E Page 16 of 83

3.1.3.2 PNL Critical Experiments (Reference 4)

The Reference 4 experiments involve three flooded clusters of 4.31% enriched rods with variable spacings between the clusters and with various absorbers between the clusters. The case numbers referenced below were taken from Reference 4. Brief descriptions of the cases modeled follow. These experiments were selected because they were the closest available to the conditions being modeled. Experiments with stainless steel and zircaloy were selected because they are in the SP-1/SP-2 model. Cases with boron were selected to include a strong neutron absorber; gadolinium was not available in these experiments. Separate experiments with gadolinium are reported in Section 3.1.3.3.

Cases 001,002, and 003 determine the critical size of one cluster. The critical size was interpolated based on experiments with integral numbers of rods per edge; the critical number had a fractional number of rods on one edge and either 8, 9, or 10 rods on the other edge. These three cases were modeled using cell-weighted cross sections.

Case 004 involved three 15x8 clusters with no absorber plates.

Cases 007, 008, 013, and 014 involved three clusters with 304L steel absorber plates. Two plate thicknesses and different absorber spacings from the central cluster were tested.

Cases 009, 010R, 011, and 012 are similar to the previous four except that the 304L steel contained either 1.05 or 1.62% Boron.

Case 031 involved three clusters with BORAL absorber plates.

Cases 029 and 030 involved three clusters with Zircaloy-4 absorber plates.

The "x" suffix on the case name denotes cell-weighted cross-sections. Suffixes such as "a" are for explicitly modeled rods.

EMF-1563 Revision 12A Appendix 6E Page 17 of 83

The bias and bias uncertainty calculated for these benchmark cases are tabulated below.

With 16-Group Cross Sections							
Case ID	k-eff						
	Avg.	Std.Dev.					
a-c001x	1.00355	0.00249					
a-c002x	1.00905	0.00257					
a-c003x	1.00845	0.00252					
a-c004	1.00435	0.00265					
a-c005a	1.00244	0.00265					
a-c005b	1.00198	0.00252					
a-c006a	1.00177	0.00253					
a-c006b	·1.00443	0.00270					
a-c007a	1.00352	0.00252					
a-c007x	1.00788	0.00253					
a-c008a	0.99798	0.00241					
a-c008x	1.00109	0.00242					
a-c009a	1.00365	0.00221					
a-c010a	0.99854	0.00246					
a-c011a	1.00138	0.00255					
a-c012aa	1.00329	0.00244					
a-c013a	0.99712	0.00258					
a-c013x	1.01149	0.00227					
a-c014a	0.99991	0.00241					
a-c014x	1.00732	0.00259					
a-c029a	0.99894	0.00254					
a-c030a	1.00278	0.00257					
a-c031a	1.00582	0.00250					

Table 1 Reference 4 CasesCalculation ResultsWith 16-Group Cross Sections

The bias and bias uncertainty calculated for these 16-group cases are -3.3617E-3 \pm 2.8457E-3.

EMF-1563 Revision 12A Appendix 6E Page 18 of 83

Case ID	k-eff				
	Avg.	Std.Dev.			
b-c001x	1.00591	0.00264			
b-c002x	0.99828	0.00274			
b-c003x	1.00268	0.00234			
b-c004	0.99853	0.00266			
b-c005a	0.98845	0.00348			
b-c006a	:0.99000	0.00247			
b-c007a	1.00394	0.00309			
b-c007x	0.99789	0.00256			
b-c008a	0.98856	0.00367			
b-c008x	1.00177	0.00268			
b-c009a	0.99293	0.00344			
b-c010a	0.99237	0.00315			
b-c011a	0.99493	0.00356			
b-c012a	1.00104	0.00327			
b-c013a	0.99779	0.00346			
b-c013x	0.99306	0.0025			
b-c014a	0.99177	0.00343			
b-c014x	0.99708	0.0024			
b-c029a	0.99366	0.0023			
b-c030a	0.99241	0.00259			

Table 2 Reference 4 Cases Calculation Results With 27-Group Cross Sections

The bias and bias uncertainty calculated for these 27-group cases are 3.4601E-3 \pm 4.0706E-3.

.3.1.3.3

Experiments with Gadolinium (Ref. 5)

Additional critical experiments (Reference 5) with gadolinium were modeled. The experiments determined the critical number of UO_2 fuel rods with gadolinium dissolved in the water between the rods. The rods were in a triangular-pitched array in a cylindrical

EMF-1563 Revision 12A Appendix 6E Page 19 of 83

vessel with water reflection on all sides of the approximately cylindrical-shaped rod array. Three rod pitches were used for the 14.40 mm OD rods: 22.86mm, 27.94mm, and 33.02mm. The experiments were modeled using cell-weighted cross sections simulating the unit cell. A cylindrical fuel region with a cross sectional area equal to that of the reported critical number of rods was modeled with full water reflection. The cases were replicated with the 16, 27, 123, and 218 group cross section libraries in SCALE. The calculation results are in Table 4 and plotted below.

Ten experiments were modeled: seven contain gadolinium and three are water-only reference cases. The average and standard deviations of the calculation bias, based only on the seven cases with gadolinium, are in Table 3. Comparing these results with those from the previous section indicates that there is no significant difference in the bias due to gadolinium. Therefore, the two sets of data will be combined for the final bias calculation.

Cross Section Library (Energy Groups)	Calculation Bias Average	Calculation Bias Standard Deviation
16	0.0001875	0.00774
27	0.010864	0.002430

Table 3 Calculation Bias for Cases with Gadolinium

EMF-1563 Revision 12A Appendix 6E Page 20 of 83

Experiment No.	Triangular Lattice	Gd Concentration,	16-Group k-eff		Gd 16-Group k-eff 27-Gr		27-Gro	up k-eff	
	Pitch, mm	Grams/liter	Avg.	Std.Dev.	Avg.	Std.Dev.			
001	22.86	0	0.98242	0.00251	0.98663	0.00291			
009		0.0722	0.9891	0.00274	0.99236	0.00237			
010		0.145	0.99793	0.00248	0.99134	0.00252			
011		0.213	0.99121	0.00231	0.99164	0.00202			
012	27.94	0	0.99701	0.00277	0.98487	0.0025			
016		0.0547	0.99769	0.00254	0.98993	0.00198			
017		0.1169	0.99698	0.00226	0.98901	0.00201			
018	33.02	0	1.0068	0.00215	0.98841	0.00211			
023		0.0257	1.01088	0.00211	0.98957	0.00223			
024		0.044	1.00728	0.00207	0.98352	0.00177			

Table 4 Critical Experiments with GadoliniumCalculation Results

EMF-1563 **Revision 12A** Appendix 6E Page 21 of 83

EMF-1563 Revision 12A Appendix 6E Page 22 of 83

.

.

EMF-1563 Revision 12A Appendix 6E Page 23 of 83

EMF-1563 Revision 12A Appendix 6E Page 24 of 83

.

• • • •

EMF-1563 Revision 12A Appendix 6E Page 25 of 83

4.0 ANALYSIS

The new categories proposed for Certificate Section 5(b)(1) are analyzed in this section. Included in this section are several sensitivity studies showing the effect of various parameters plus calculations with the most reactive combination of the various parameters.

The previous applications have demonstrated the key parameters affecting the peak k-eff for an array of SP-1/SP-2 packages are (see EMF-1563, Sup. 1, Rev. 1):

- The number of packages in the array. Larger arrays tend to produce higher k-eff values.
 In certain cases, Fissile Class II was specified to allow use of smaller arrays.
- 2. The fuel enrichment. Higher enrichments lead to higher k-eff values.
- Assembly size ("Envelope"). Larger transverse dimensions tend to increase k-eff. The length of the assembly has relatively little effect. Assemblies were modeled with the maximum allowable envelope.
- Interspersed moderation. For limiting conditions, low density interspersed moderation produces a higher k-eff than full flooding. Additional evidence of this fact is included in this application.

5. Number, arrangement, and composition of gadolinia rods. For a given number of gadolinia rods, the most reactive arrangement is to have them clustered together in the central parts of the assembly. This was demonstrated in the previous two supplemental applications and it is also seen in comparing cases in this application. The gadolinia content was modeled at 75% of the minimum specified value.
EMF-1563 Revision 12A Appendix 6E Page 26 of 83

- 6. Water rods and water channels. Fuel assemblies typically do not have all lattice locations occupied by fuel rods. The missing locations are called "Water Rods" or "Water Channels" in cases such as a 2x2 or 3x3 array of water rods at the assembly center. Water rods and water channels cause lower k-eff relative to assemblies with all locations occupied by fuel rods at low density interspersed moderation. This was demonstrated in the previous two supplemental applications and additional evidence is presented in this document.
- Fuel (pellet) diameter. Larger pellet diameters, at least up to about 0.5", lead to higher k-eff values. This was demonstrated in previous supplemental applications and additional evidence is presented in this application.

4.1 Flooded Conditions

EMF-1563, Sup. 1, Rev. 1 demonstrated that damaged containers at flooded conditions were safe in an infinite array for all pellet diameters, 0.18" thick clad, and any amount of poly provided enrichment is limited to 5.0 wt. % and the lattice envelope is up to 5.0" x 5.0". This section will confirm this conclusion is also valid for pellet diameters less than 0.40" and clad thicknesses of at least 0.015". As previously shown in EMF-1563, Sup. 1, Rev. 1, a single SP-1/SP-2 has its maximum k-eff at flooded conditions and with the assemblies shifted toward the inner edges of their baskets. The assemblies are well coupled within the package but, for arrays of edge-to-edge inner containers, the assemblies are effectively decoupled between packages. Fully flooded arrays of packages (damaged) were modeled with 5.0% enriched assemblies without gadolinia rods. Infinite arrays are acceptable with zero gadolinia at flooded conditions.

EMF-1563 Revision 12A Appendix 6E Page 27 of 83

4.1.1 Conservative XSDRN Model (No Steel, Flooded)

A repeated calculation of case a-h4025c from EMF-1563, Sup. 1, Rev. 1 with a 0.015" thick clad. This case had the highest k-inf of all 0.4" diameter pellet cases using 16 group cross sections. The resulting k-inf is .96436 which is a net increase of .0038. This model is a conservative 1-D model that does not include any structural steel. This simple model was a cylindrical approximation of two infinite-length edge-to-edge assemblies (10" wide by 5" high fuel region) in a 18" wide by 11" high inner container. The within-assembly moderator was either water or 100% polyethylene (PE). The between-assembly moderator was always water. The boundary conditions in XSDRN were set for an infinite array. The pellet diameter of 0.40" was modeled with a 0.015" thick zircaloy clad. The assemblies were modeled as a cell-weighted mixture with a moderator-to-fuel volume ratio of 2.5. This set of calculations was replicated with the 16 and 27 group cross section libraries.

EMF-1563 Revision 12A Appendix 6E Page 28 of 83

The conservative XSDRN calculation results are in Table 5.

Table 5 Conservative XSDRN SP-1/SP-2 Model (No Steel) Infinite Array (3-D) of Edge-to-Edge Inner Containers 5.0% Enriched, 0.015" Thick Clad, Fully Flooded XSDRN Results with 16-Group and 27-Group Cross Sections

Case ID	Within- Assembly Moderator	Pellet Dịam, inch	Moderator to Fuel Volume Ratio	Unit Cell k-inf	SP-1/SP-2 k-inf						
·	16 Group Cross Sections										
a-h4025a	Water	0.40	2.5	1.52812	.90467						
a-h4025c	PE	0.40	2.5	1.53558	.96436						
	27 Group Cross Sections										
b-h4025a	Water	0.40	2.5	1.52163	.90368						
b-h4025c	PE	0.40	2.5	1.52577	.96222						

4.1.2 Conservative KENO Model (No Steel, Flooded)

The XSDRN model cases were replicated with a conservative KENO model. The KENO model uses cuboidal geometry types (with cell-weighted cross sections) but no steel is in the model. A case with a water-filled channel at the center of the assembly was included in the KENO cases. The channel was a 1.5" by 1.5" region (30% of assembly dimension). An additional cases with discrete 0.1267" thick polyethylene shims equally spaced across the assembly was also included. The calculation results are in Table 6.

The XSDRN-KENO agreement is judged to be good. Water-moderated assemblies are clearly acceptable even without steel in the model.

EMF-1563 Revision 12A Appendix 6E Page 29 of 83

Table 6 Conservative KENO SP-1/SP-2 Model (No Steel) Infinite Array (3-D) of Edge-to Edge Inner Containers 5.0% Enriched, 0.015" Thick Clad, Fully Flooded KENO-Va Results with 16-Group and 27-Group Cross Sections

Case ID	Within- Assembly	Pellet Diam,	Mod. to	KENO k-inf							
	Wioderator	Inch	Vol. Ratio	Avg.	Std.Dev.						
1	16 Group Cross Sections										
a-f4025c	PE/No	0.40	2.5	0.96626	0.00436						
a-f4023d	PE/Yes	0.40	2.5	0.94337	0.00444						
a-f4025e	Water-Shims/No	0.40 2.5		0.93330	0.00443						
· · ·	27 Grou	p Cross Section	ons								
b-f4025C	PE/No	0.40	2.5	0.94963	0.00430						
b-f4025d	PE/Yes	0.40	2.5	0.94096	0.00417						
b-f4025d	Water-Shims/No	0.40	2.5	0.93242	0.00383						

4.1.3 KENO Model (Flooded) With Steel Included

An infinite array (3-D) of flooded edge-to-edge inner containers was modeled with the steel basket, angles, and shell included. Each package contained two 5" by 5" assemblies shifted together as closely as possible. The assemblies were simulated by cell-weighted cross sections based on a unit cell with a pellet diameter of 0.40" and with a moderator-to-fuel ratio of 2.5. 100% polyethylene for moderator in the unit cell was used in the model. The available volume external to the assemblies was modeled as filled with water. The calculation results are in Table 7.

EMF-1563 Revision 12A Appendix 6E Page 30 of 83

Table 7 KENO SP-1/SP-2 Model (With Steel) Infinite Array (3-D) of Edge-to-Edge Inner Containers 5.0% Enriched, 0.015" Thick Clad, Fully Flooded KENO Results with 16-Group and 27-Group Cross Sections

Case ID	Within- Assembly	Pellet Diam,	Mod. to	k-eff						
÷	Woderator	Jerator inch		Avg.	Std.Dev.					
·	16	Group Cross	Sections							
a-g4025c	PE	0.40	2.5	0.92088	0.00433					
:	27 Group Cross Sections									
b-g4025c	PE	0.40	2.5	0.92472	0.00415					

It is concluded that the package is adequately subcritical in any array at flooded conditions with any pellet diameter, any number of water rods in any arrangement, with or without a water channel, with or without gadolinia rods, with any arrangement of rods with enrichments up to 5.0%, and with any number of polyethylene shims in any arrangement.

EMF-1563 Revision 12A Appendix 6E Page 31 of 83

4.2 Low Density Interspersed Moderation

Unless stated otherwise, all calculations in this section are based on the 16-group cross sections. The calculations in section 4.1 as well as those documented in EMF-1563, Sup. 1, Rev. 1 demonstrate that the 16-group cross sections produce a higher k_{eff} than the 27-group cross sections.

4.2.1 Sensitivity Study: Pellet Diameter and Water Rods and Water Channels

Previous analyses have shown that arrays of SP-1/SP-2 inner shipping containers at low density moderation are more reactive with larger pellet diameters. When fuel rods are replaced by "water rods", they are actually much closer to "void rods" at the typical 8-12 volume % water conditions for peak k-eff. Therefore, the net effect is closer to removal of fuel with very little added moderation, which causes a decline or no change in k-eff; i.e., the fuel is "worth" more than the slight addition of local moderation.

Consistent with the model used previously in EMF-1563, Sup. 1, Rev. 1 for 10x10 assemblies, the model used for 9x9 assemblies in this supplement is an infinite array of inner containers with 10 volume % interspersed water and polyethylene shims equivalent to 43.47 vol. % of the between rod volume. The rods in the modeled assembly contain zero gadolinia and enriched to 4.0 wt.% u-235. Pellet diameters of .30, .35, and .40 inches were evaluated.

The water rod arrangements (patterns) modeled are shown in the following figures. As shown in Table 8, all cases with water rods are less reactive than the case with zero water rods.

EMF-1563 **Revision 12A** Appendix 6E Page 32 of 83

WRB

WRC

1

1

1

WRA

EMF-1563 Revision 12A Appendix 6E Page 33 of 83

EMF-1563 Revision 12A Appendix 6E Page 34 of 83

Table 8 Water Rod and Pellet Diameter Sensitivity CASMO Model with Shims and 10 Vol. % Water All Fuel is 4.0% Enriched, Zero Gadolinia

Water Rod	Case I.D.	CASMO K-inf					
Pattern		.30" Pellet	.35" Pellet	.40" Pellet			
WRA [,]	d.podxx where xx	1.09139	1.11669	1.11865			
WRB-	is 10 times the	1.08276	1.11150	1.11661			
WRC	pellet diameter in	1.07217	1.10575	1.11503			
WRD	inches.	1.08377	1.11267	1.11786			
WRE		1.07266	1.10638	1.11633			

4.2.2 Sensitivity to Pellet Diameter and Interspersed Moderators

To confirm the conclusion made in Section 4.2.1 that increasing pellet diameter increases k_{eff} and to find the optimum vol. % interspersed moderator, a series of calculations using KENO.Va were completed. The fuel assemblies modeled here had no polyethylene shims, no gadolinia, and no water rods. The bundle enrichment was 5.0 wt. % U-235 except for the exterior rods which were 4 wt. %. The bundles were moved apart. EMF-1563, Sup. 1, Rev. 1 showed that this was the worst orientation. Various pellet diameters were evaluated. The results of this evaluation are listed in Table 9.

Table 9 Sensitivity to K-eff to Pellet Diameter and Interspersed Moderator

Case I.D.	Vol. % Water	;	K _{eff} ± α	
:		.25" Pellet	.35" Pellet	.40" Pellet
a-xx.01	1	.50971 ± .00181	.60246 ± .00187	.63839 ± .00175
a-xx.03	3	.66125 ± .00177	.74158 ± .00181	$.76260 \pm .00184$
a.xx-05	5	.76433 ± .00186	.83752 ± .00176	.85439 ± .00168
a-xx.07	.7	.81774 ± .00204	.89112 ± .00184	.90678 ± .00178
a-xx.09	9	.85350 ± .00190	.93189 ± .00196	.94408 ± .00178
a-xx.11	11	.85513 ± .00187	.94169 ± .00191	
a-xx.12	12			.96837 ± .00183
a-xx.13	13	.85914 ± .00216	.95370 ± .00208	.96511 ± .00184
a-xx.14	14			$.96436 \pm .00200$
a-xx.15	15	.85540 ± .00181	.94840 ± .00192	.96917 ± .00191
a-xx.16	16			.96708 ± .00184

EMF-1563 Revision 12A Appendix 6E Page 35 of 83

4.2.3 Sensitivity Study: Gadolinia Rod Locations

EMF-1563, Sup. 1, Rev. 1 documents the calculated normalized (relative to average) fission rates for a typical 10x10 assembly with no water rods and no gadolinia rods and 8 volume % interspersed water. These normalized fission rates are listed in Table 10. The model is an infinite array of edge-to-edge inner containers. It is seen that the corner rods have the highest fission rates with the edge rods declining with increased distance from the corner and interior rods declining with increased distance from the corner rods have a fission rate about double that of the central 2x2 array of rods. As the water density is increased above 8 volume % (peak k-inf for infinite array), the normalized fission rates of the corner/edge rods increases but the system k-inf declines due to decreased coupling among assemblies. For a finite array such as 13x20x1, the optimum interspersed water density is typically 8 to 12 volume %. The conclusions made from the results listed below are directly applicable to 9x9 assemblies.

				and the second se					
1.489	1.320	1.245	1.206	1.189	1.187	1.200	1.232	1.295	1.430
1.314	1.091	1.000	,955	.935	.933	.947	.983	1.058	1.238
1.235	.996	.887	.835	.813	.810	.826	.867	.956	1.148
1.194	.950	.834	.775	.751	.747	.764	.812	.906	1.101
1.177	.930	.812	.751	.724	.721	.740	.788	.884	1.080
1.176	. 9 30	.812	.751	.724	.720	.739	.788	.884	1.080
1.193	.949	.833	.774	.749	.746	.763	.811	.905	1.100
1.233	.994	.885	.833	.811	.808	.824	.865	.954	1.146
1.310	1.088	.997	.952	.932	.930	.944	.980	1.054	1.235
1.484	1.315	1.240	1.201	1.184	1.182	1.195	1.227	1.289	1.424

Table 10	Typical Normalized Fission Rates for 10x10 Assembly
	Low Density Interspersed Moderation

The fission densities in Table 10 are instructive regarding the selection of locations of gadolinia rods for peak reactivity (most conservative locations). With low density interspersed

EMF-1563 Revision 12A Appendix 6E Page 36 of 83

moderation conditions, most of the moderation occurs between assemblies; relatively little occurs within assemblies. This is evidenced by Dancoff factors on the order of 0.90, meaning that neutrons leaving one rod have a 90% chance of having their next collision in another rod rather than in the between-rod moderation. As a result, the thermal flux is depressed in the assembly interior. If a thermal neutron absorber is placed into a region with a depressed thermal flux, the effectiveness of the absorber will be reduced. Similarly, if the gadolinia rods are clustered together in the central parts of the assembly, their effectiveness will be further reduced by the reduction in thermal flux caused by their companions. The new fuel category require gadolinia rods. If a fuel rod is replaced with a "water rod", the gadolinia rods have the following effects:

- If the water rod is located close to gadolinia rod(s), the added moderation will increase the effectiveness of the absorber.
- If gadolinia rods are moved toward the edge/corner to make room for water rods, the k-eff will tend to decline because of the increased thermal flux near the edge. The gadolinia rods become more effective and some of the higher worth fuel rods are replaced with absorbers.
- 3. If gadolinia rods remain clustered in the center and fuel rods near the edge/corner are replaced with water rods, the k-eff will tend to decline because of the loss of higher worth fuel rods.

Additional discussion on gadolinia rod locations is included in sections 4.2.4 and 4.2.5.

EMF-1563 Revision 12A Appendix 6E Page 37 of 83

4.2.4 <u>10x10 Assemblies with All Rods Enriched to 5 wt. % and Eight Gadolinia Rods at 1.5</u> wt. % Gd₂O₃

EMF-1563, Sup. 1, Rev. 1 concluded the most reactive arrangement of gadolinia rods in a 10x10 assembly is to have all gadolinia rods clustered together in the upper right corner and with the water channel in the central 3x3 cells that are shifted to the right and up one row and column. The same simple CASMO model used previously was used here to evaluate the most reactive gadolinia rod arrangement for 10x10 assemblies that meet the following restrictions:

- At least two gadolinia rods are in row two and at least two additional gadolinia rods are in column nine.
- At least two gadolinia rods are in rows eight and/or nine and at least two additional gadolinia rods are in columns eight and/or nine.
- A unit cell containing a gadolinia rod shall not share a common face with another gadolinia rod. i.e. they may have a common corner but not a common side unless the rods with a common side are considered one rod.

Only six gadolinia rods containing 1.5 wt.% Gd_2O_3 were modeled in most cases even though eight are specified at a minimum of 2.0 wt.% Gd_2O_3 . All fuel rods were also 5.0% enriched. The arrangements modeled are shown in the following figures. The results are listed in Table 11.

EMF-1563 Revision 12A Appendix 6E Page 38 of 83

.

11	4	3	3	3	3	13	8.23	4	1
1	2	3				3	3	G	1
1	2	3				3	G	2	1
1	2	3				3	3	2	1
1	2	3	3	3	3	3	3	2	1
1	2	3	3	3	3	3	3	2	1
1	G	2	2	2	2	2	2	G	1
1	1	1	1	1	1	1	1	1	1
-		-				_	<u> </u>		
1	1	1	1	1	1	1	1	1	1
1	2	2	2	2	2	2	2	G	1
1	2	3	3	3	3	3	G	2	1
1	2	3	3				3	G	1
1	.2	3	3		-		3	2	1
1	2	3	3		-		3	2	1
1	2	3	3	3	3	3	3	2	1
1	2	3	3	3	3	3	3	2	1
1	G	2	2	2	2	2	2	G	1
1	1	1	1	1	1	1	1	1	1
;							_		
1	11	1	1	1 I	1	1	1	1	1
1		2	2	2	2	2	2	8 6 8	-
1	2	2	3	3	2	3		2	1
1	2	3	3	Ĕ	-	-	3	, References	1
1	2	3	3		_			2	1
1	$\overline{2}$	3	3				3	2	1
1	$\frac{-}{2}$	3	3	3	3	3	3	2	1
1	-2	3	3	3	3	3	3	2	1
1	2	2	2	$\frac{1}{2}$	2	2	2		1
1	1	1	1	-	Ę.			<u>ه</u>	1
Ŀ						11	11		
			<u> </u>	-		1	1	1	-
-						1	1		
1	1	1	1	1	1	1	1	1	1
1	1 G	1	1	1	1	1 1 2	1 1 2	1	1
1 1 1	1 G	1 2 3	1 2 3	1 2 3	1 2 3	1 1 2 3	1 1 2 6	1 G 2	1 1 1
1 1 1	1 3 2 2	1 2 3 3	1 2 3 3	1 2 3	1 2 3	1 2 3	1 2 3	- 1 3 2 3	1 1 1
1 1 1 1	1 2 2 2	1 2 3 3 3 3	1 2 3 3 3	1 2 3	1 2 3	1 2 3	1 2 3 3	- 1 5 2 5 2	1 1 1 1 1
1 1 1 1	1 2 2 2 2 2 2	1 2 3 3 3 3	123333	1 2 3	1 2 3	1 2 3	1 2 3 3 3 3	- 1 3 2 3 2 2 2	1 1 1 1 1 1
1 1 1 1 1	1 3 2 2 2 2 2 2 2 2 2	1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1 2 3 3 3 3 3 3 3	1 2 3 3	1 2 3 3	1 2 3 3	1 2 3 3 3 3	1 G 2 G 2 2	$\frac{1}{1}$
$\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		12333333	123	1 2 3 3 3	1 2 3 3 3	1 2 3 3 3 3 3 3 3	1 3 2 3 2 2 2 2 2 2 2 2	
$1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1233333322	12333333	123332	1 2 3 3 3 2	1 2 3 3 2	1 2 3 3 3 3 2 2		
$1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$	1 0 2 2 2 2 2 2 2 1	123333333321	1 2 3 3 3 3 3 3 2 1	123 3321	1 2 3 3 2 1	1 1 2 3 3 2 1	1 2 3 3 3 3 2 1	1 3 3 3 3 3 3 3 3 3 3 3 3 3	

 1
 1
 1
 1
 1
 1
 1
 1
 1
 1

 1
 2
 2
 2
 2
 2
 2
 3
 1
 1
 1
 1
 1

ta

tb

tc

td

EMF-1563 Revision 12A Appendix 6E Page 39 of 83

			_	_	_		_	_
111	1	1	1	1	1	1	11	ח
112	2 2	G	2	2	2	2	2	1
Hitz	0	2	3	3	3	3	2	ill
	· 🕅	2	-	-	-	2	2	╢
I-P		0				3	~	4
	13	3				3	2	4
12	: 3	3				3	2	Ц
12	2 3	3	3	3	3	3		1
	273	3	3	3	3	G	2	1
12	2 2	2	2	2	G	2	2	1
	1	1	1	1	1	1	11	11
يلحك				_	-	_		للے
		-		_			- 1 -	51
	1	1	1	1	1-	1	1 [1
12	2 2	2	2	·2	G	2	G	1
1 2	2 3	3	3	3	3	G	2	1
12	2 3	3				3	G ′	1
1 2	2 3	3				3	2	1
112	: 3	3				3	2	11
12	13	3	3	3	3	3	2	1
	13	3	3	3	3	3	2	H
110		2	2	3	2	5		1
	4-	-	-	1	1	1	<u> </u>	╢
ĽĽ,	<u></u>	<u> </u>	-		_	<u> </u>		1
111	<u>7</u> 1	1	1	1	1	1	11	ก
	1	1	1	1	1	1	1 G]
	1	1 2 3	1 2 3	1 2 3	1003	1 2	1	
$ \begin{bmatrix} 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \end{bmatrix} $	1	1 2 3 3	1 2 3	1 2 3	103	1263	1 G 2	
$ \begin{bmatrix} 1 & 1 \\ 1 & 2 \\$	1	1 2 3 3 3	1 2 3	1 2 3	1 0 3	1 2 6 3 3	1 G 2 G	
$ \begin{bmatrix} 1 & 1 \\ 1 & 2 \\$	1 2 3 3 3	12333	1 2 3	1 2 3	103	1 2 3 3 3 3	1 2 2 2	
$ \begin{bmatrix} 1 & 1 \\ 1 & 2 \\$	1 2 3 3 3 3	123333	1 2 3	1 2 3		1 2 6 3 3 3 5	1 2 2 2 2	
	1 2 3 3 3 3 2 3 2 3	1233333	1 2 3 3	1 2 3 3	- 00 03 - 1 Ο 00 02 - 1	1 2 6 3 3 3 3 3	1 / 2 / 2 / 2 / 2 /	
	1 2 3 3 3 3 2 3 2 3 2 3	12333333		1 2 3 3 3 3		12033333	1 2 2 2 2 2 2 2	
	1 2 3 3 3 3 3 2 3 2 3 2 3 2 3 2 3 2 3 2	1 2 3 3 3 3 3 3 3 2	1 2 3 3 2	1 2 3 3 3 2	1 3 3 2	120333332	1 2 2 2 2 2 2 2 2	
	1 2 3 3 3 3 3 2 3 2 3 2 3 2 3 2 3 2 3 2	1 2 3 3 3 3 3 3 3 2 1	1233321	1 2 3 3 3 2 1	1 0 3 3 2 1	1 2 6 3 3 3 3 3 2 1	1 2 2 2 2 2 2 1	
	1 2 3 3 3 3 3 2 3 2 3 2 3 2 3 2 3 2 3 2	1 2 3 3 3 3 3 3 3 2 1	1 2 3 3 3 2 1	1 3 3 3 2 1	1 3 3 2 1	1203333321	1 2 2 2 2 2 2 2 1 2 1	
	1 2 3 3 3 3 3 2 3 2 3 2 3 2 3 2 3 2 3 1 1	1 2 3 3 3 3 3 3 3 2 1	1 2 3 3 2 1	1 2 3 3 2 1	1 3 3 2 1	1 2 3 3 3 3 3 2 1		
	1 2 2 3 3 2 3 2 3 2 3 2 3 2 2 3 2 2 3 2 1 1	1 2 3 3 3 3 3 3 3 2 1		1 2 3 3 2 1	1 3 3 2 1	1 2 6 3 3 3 3 3 2 1 1	1 2 2 2 2 2 2 2 1 1 1	
	1 2 3 3 3 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3	1 2 3 3 3 3 3 3 2 1 1 2	1 3 3 2 1 1 2	1 2 3 3 2 1 1 2	1 3 3 2 1 1 5	1263333321	1 1 2 2 2 2 2 2 1 1 1 1 0	
	1 2 3 3 3 3 2 3 2 3 2 3 1 1 1 2 3 2 3 2	1 2 3 3 3 3 3 3 3 2 1 1 2 3	1 3 3 2 1 1 2 3	1 3 3 2 1 1 2 3	1 3 3 2 1 1 3 3 2	1203333321	1 1 2 1 2 1 2 1 2 1 2 1 2 1 1 1 1 1 0 1 2	
	1 2 3 3 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2	1 3 3 3 3 3 3 3 3 2 1 1 2 3 3 3 2 1	1 2 3 3 3 2 1 1 2 3 3	1 3 3 2 1 1 2 3 3	1 3 3 3 2 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1203333321 1203	1 1 2 2 2 2 2 2 2 2 1 1 2 2 2 2 2 2 2 2	
	1 2 3 3 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2	1 3 3 3 3 3 3 3 3 2 1 1 2 3 3		1 3 3 2 1 1 2 3 3	1 00 3 1 3 3 2 1 1 00 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1203333321	1 (2 (2 (2 (2 (2 (2 (2 (2	
	1 2 3 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3	1 3 3 3 3 3 3 3 3 2 1 1 2 3 3	123 321 1233	1 2 3 3 2 1 1 2 3 3	1031321 103333	1203333321 12333	1 · · · · · · · · · · · · · · · · · · ·	
		1 3 3 3 3 3 3 3 3 2 1 1 2 3 3	1233321	1 2 3 3 2 1 1 2 3 3	1 0 3 3 2 1 1 0 3 3 3 3 3 3 3	1 2 3 3 3 3 3 2 1 1 2 3 3 3 3 3 3	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
		1 2 3 3 3 3 3 3 3 3 2 1 1 2 3 3 3 3 2 1 2 3 3 3 3	123 321 1233 3	1 2 3 3 3 2 1 2 3 3 3 2	1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 2 3 3 3 3 3 2 1 1 2 3 3 3 3 3 3 3 3 3 3 3 3	1 · · · · · · · · · · · · · · · · · · ·	
	1 2 3 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3	1 2 3 3 3 3 3 3 2 1 1 2 3 3 3 3 2 1 2 3 3 3 2 1 2 3 3 3 3	1 2 3 3 2 1 1 2 3 3 2 1 2 3 3 2 1 1 2 3 3 2	1 2 3 3 2 1 1 2 3 3 2 1 1 2 3 3 3	1 0 3 2 1 1 0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1 2 6 3 3 3 3 2 1 1 2 6 3 3 3 3 3 3 ° °	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
	1 2 3 2 3 2 3 2 3 2 2 2 3 2 3 2 3 2 3 2 3 2 3 2 3 3 2 2 3 3 2 2 3 3 2 2 3 3 2 2 3 3 2 2 3 3 2 2 3 3 2 2 3 3 2 2 3 3 2 2 3 3 2 2 3 3 2 2 3 3 2 2 3 3 2 3 3 3 3 2 3 3 3 2 3 3	1 2 3 3 3 3 3 2 1 1 2 3 3 2 1 3 2 1 3 2 1	1 2 3 3 2 1 1 2 3 3 2 1 1 2 3 3 2 1 1 2 3 3 2 1	1 2 3 3 3 2 1 2 3 3 2 1	1 0 3 3 2 1 1 0 3 3 3 3 3 3 4 1	1 2 0 3 3 3 3 3 2 1 1 2 0 3 3 3 3 3 2 1	1 1 2 1 2 1 2 1 1 1 2 2 2 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1	

tg

tf

th

ti

Ŀ

EMF-1563 Revision 12A Appendix 6E Page 40 of 83

1

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14	_								
1 G 2 2 2 2 G 2 G 1 1 2 3 3 3 3 3 G 2 1 1 2 3 3 3 3 3 3 2 1 1 2 3 3 3 3 3 3 2 1 1 2 3 3 3 3 3 3 2 1 1 2 3 3 3 3 3 3 2 1 1 2 2 2 2 2 2 2 1	11	1	1	1	1	1	1	1	1	1
1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 1 1 2 3 3 3 3 3 3 2 1 1 2 3 3 3 3 3 3 2 1 1 2 3 3 3 3 3 3 3 2 1 1 2 3 3 3 3 3 3 3 2 1 1 <t< td=""><td>1</td><td>G</td><td>2</td><td>2</td><td>2</td><td>2</td><td>G</td><td>2</td><td>C</td><td>1</td></t<>	1	G	2	2	2	2	G	2	C	1
1 2 3 3 3 3 3 2 1 1 2 3 3 3 3 3 2 1 1 2 3 3 3 3 3 3 2 1 1 2 3 3 3 3 3 3 2 1 1 2 3 3 3 3 3 3 2 1 1 2 2 2 2 2 2 2 2 1 <t< td=""><td>1</td><td>2</td><td>3</td><td>3</td><td>3</td><td>3</td><td>3</td><td>G</td><td>2</td><td>1</td></t<>	1	2	3	3	3	3	3	G	2	1
1 2 3 3 1 3 2 1 1 2 3 3 3 3 3 3 2 1 1 2 3 3 3 3 3 3 2 1 1 2 3 3 3 3 3 3 2 1 1 2 2 2 2 2 2 2 2 1 1 1 <t< td=""><td>1</td><td>2</td><td>3</td><td>3</td><td></td><td>-</td><td></td><td>3</td><td>G</td><td>1</td></t<>	1	2	3	3		-		3	G	1
1 2 3 3 3 3 3 2 1 1 2 3 3 3 3 3 3 2 1 1 2 3 3 3 3 3 3 2 1 1 2 2 2 2 2 2 2 2 1 1 1	1	2	3	3				3	2	1
1 2 3 3 3 3 3 3 2 1 1 2 2 2 2 2 2 2 2 1 1 1 2 2 2 2 2 2 2 2 1 1 1<	T	2	3	3				3	2	1
1 2 3 3 3 3 3 3 2 1 1 2 2 2 2 2 2 2 2 1 1 1 <td>1</td> <td>2</td> <td>3</td> <td>3</td> <td>3</td> <td>3</td> <td>3</td> <td>3</td> <td>2</td> <td>1</td>	1	2	3	3	3	3	3	3	2	1
1 2 2 2 2 2 2 0 1 1	1	2	3	3	3	3	3	3	2	1
1 1	1	2	2	2	2	2	2	2	(C)	1
1 1	1	1	1	1	1	1	1	1	1	1
1 1	_			_				-		
1 2 2 2 2 2 2 2 2 1 1 2 3 3 3 3 3 3 3 3 3 3 1 1 1 1 2 3 3 3 3 3 3 3 3 3 1 1 1 2 3 3 3 3 3 3 2 1 1 2 3 3 3 3 3 3 2 1 1 2 3 3 3 3 3 3 2 1 1 2 3 3 3 3 3 3 2 1 1	1	1	1	1	1	1	1	1	11	1
1 2 2 2 2 2 2 2 1 1 2 3 2 1	1	2	2	1	5	5		2	-	1
1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 1 1 1 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 1 1 2 3 3 3 3 3 3 3 3 2 1 1 2 3 3 3 3 3 3 3 2 1 1 2 3 3 3 3 3 3 3 2 1 1	1	2	3	3	3	3	<u>ال</u>	2	2	1
1 2 3 3 3 2 1 1 2 3 3 3 3 2 1 1 2 3 3 3 3 3 2 1 1 2 3 3 3 3 3 2 1 1 2 3 3 3 3 3 3 2 1 1 2 3 3 3 3 3 3 2 1 1	1	5	3	2	3	3	10	<u> </u>		+
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	2	2	-	<u> </u>	3	2	2	2	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	2	2				3	3	2	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	2	3			-	3	3	2	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	2	2		2	5	3	2	2	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	2	5	3	5	2	5	3	2 300	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			4	2	4	2	4	4		1
1 2 2 2 2 2 2 2 1 1 2 3 3 3 3 3 3 3 2 1 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 1 1 2 3 3 3 3 3 3 2 1 1 2 3 3 3 3 3 3 2 1 1 2 3 3 3 3 3 3 2 1 1 2 3 3 3 3 3 3 2 1 1			_					_		_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	- 	1	1	1	1	1	1	1	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1	1	1	1	1	1	1	1	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1 2 2	1 2 3	1 2 3	1 2 3	1	1 G	1 2	1 2 2	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1 2 2 2	1 2 3 3	1 2 3	1 2 3	1 2 3	1 3	1 2 3	1 2 2 6	1 1 1 1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 1 1 1 1	1 2 2 2 2	1 2 3 3 3	1 2 3 3 3	1 2 3	1 2 3	1 (3 (3	1 2 3 3	1 2 2 6 2	1111
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 1 1 1	1 2 2 2 2 2 2	1 2 3 3 3 3	1 2 3 3 3 3	1 2 3	1 2 3	1 3 0	120333	1 2 2 3 2 2 2 2	11111
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1 2 2 2 2 2 2 2 2	1 2 3 3 3 3 3 3	1 2 3 3 3 3 3 3 3 3	1 2 3 3	1 2 3	1 3 3	123333	1 2 2 2 2 2 2 2	111111
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1 2 3 3 3 3 3 3 3 3	1 2 3 3 3 3 3 3 3 3 3	1 2 3 3 3	1 2 3	1030	1 2 3 3 3 3 3 3 3 3	1 2 2 0 2 2 2 2 2 2	1111111
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1222222	1 2 3 3 3 3 3 3 2	1 2 3 3 3 3 3 3 3 2	1 2 3 3 3 2	1 2 3 3 3 2	1 3 3 3 3 2	1 2 3 3 3 3 3 2	1 2 2 6 2 2 2 2 6	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		12222222	1 2 3 3 3 3 3 3 2 1	1 2 3 3 3 3 3 3 3 3 2 1	1 2 3 3 3 2 1	1 2 3 3 3 2 1	1 3 3 3 2 1	1 2 3 3 3 3 3 2 1	1 2 2 6 2 2 2 2 6 1	1111111111
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1222222201	1 2 3 3 3 3 3 3 2 1	1 2 3 3 3 3 3 3 3 2 1	1 2 3 3 3 2 1	1 2 3 3 3 2 1	1 3 3 3 2 1	1 2 3 3 3 3 3 3 2 1	1 2 2 6 2 2 2 2 6 1	
1 2 3 3 3 3 3 3 3 3 3 3 3 1		12222222	1 2 3 3 3 3 3 3 3 3 2 1 1	1 2 3 3 3 3 3 3 3 2 1 1	1 2 3 3 2 1	1 2 3 3 3 2 1	1 3 3 3 2 1	1 2 3 3 3 3 3 3 2 1 1	1 2 2 6 2 2 2 2 6 1	
1 2 3 3 3 3 3 2 1 1 2 3 3 3 3 2 1 1 2 3 3 3 2 1 1 2 3 3 3 2 1 1 2 3 3 3 2 1 1 2 3 3 3 3 2 1 1 2 3 3 3 3 2 1 1 2 3 3 3 3 2 1 1 2 3 3 3 3 2 1 1 2 2 2 2 2 2 5 1 1			1 2 3 3 3 3 3 3 2 1 1 2	1 2 3 3 3 3 3 3 3 2 1 1 2	1 2 3 3 2 1 1 2	1 2 3 3 2 1 1 2	1 3 3 2 1 1 2	1 2 3 3 3 3 3 2 1 1 3	122622261	
1 2 3 3 3 2 1 1 2 3 3 3 3 2 1 1 2 3 3 3 3 2 1 1 2 3 3 3 3 2 1 1 2 3 3 3 2 1 1 2 3 3 3 2 1 1 2 2 2 2 2 2 3 1 1 1 1 1 1 1 1		1222222201	1 2 3 3 3 3 3 3 2 1 1 2 3	1 2 3 3 3 3 3 3 2 1 1 2 3	1 2 3 3 2 1 1 2 3	1 2 3 3 2 1 1 2 3	1 3 3 3 2 1 1 2 3	1 2 6 3 3 3 3 3 2 1 1 6 3	1 2 2 G 2 2 2 G 1 1 G G	
1 2 3 3 2 1 1 2 3 3 3 2 1 1 2 3 3 3 2 1 1 2 3 3 3 2 1 1 2 3 3 3 2 1 1 2 2 2 2 2 3 1 1 1 1 1 1 1		1222222201	1 2 3 3 3 3 3 3 2 1 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1 2 3 3 3 3 3 3 3 2 1 1 2 3 3	1 2 3 3 2 1 1 2 3 3	1 2 3 3 2 1 1 2 3 3 2 1	1 G 3 G 3 3 2 1 1 2 3 G	1203333321 1033	1 2 2 6 2 2 2 2 6 1 1 6 6 2	
1 2 3 3 3 2 1 1 2 3 3 3 2 1 1 2 3 3 3 2 1 1 2 2 2 2 2 2 1 1 1 1 1 1 1			1 2 3 3 3 3 3 3 2 1 1 2 3 3 3 3 3 3 2 1	1 2 3 3 3 3 3 3 3 2 1 1 2 3 3	1 2 3 3 2 1 1 2 3 3	1 2 3 3 2 1 1 2 3 3 2 1	1 G 3 G 3 3 2 1 1 2 3 G 3	1 2 6 3 3 3 3 3 2 1 1 6 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1226222261	
1 2 3 3 2 1 1 2 2 2 2 2 1			12333333211 123333	1 2 3 3 3 3 3 3 3 2 1 1 2 3 3	1 2 3 3 2 1 1 2 3 3	1 2 3 3 2 1 1 2 3 3	1 0 3 0 3 3 2 1 1 2 3 0 3 3	1 2 6 3 3 3 3 3 2 1 1 6 3 3 3 3 3 3 2 1	1 2 2 6 2 2 2 2 6 1 1 6 6 2 2 2 2	
1 2 2 2 2 2 2 2 2 0 1 1 1 1 1 1 1 1 1 1 1 1			12333333321 12333333	1 2 3 3 3 3 3 3 3 2 1 1 2 3 3	1 3 3 2 1 1 2 3 3	1 2 3 3 2 1 2 3 3 2		1203333321 10333333	1226222201 10022222	
			1 2 3 3 3 3 3 3 2 1 1 2 3 3 3 3 3 3 3 3	1 3 3 3 3 3 3 3 2 1 1 2 3 3	1 2 3 3 2 1 1 2 3 3	1 3 3 2 1 1 2 3 3 2		1203333321 103333333		
			1 2 3 3 3 3 3 3 2 1 1 2 3 3 3 3 3 3 3 2 2	1 2 3 3 3 3 3 3 2 1 1 2 3 3 2 1 2 2	1 2 3 3 2 1 1 2 3 3 2 1 2 3 3 2 2 2	1 2 3 3 2 1 1 2 3 3 2 1		120333321111333333322		

tj ,

tk

•

۰.

ti

tm

3

EMF-1563 Revision 12A Appendix 6E Page 41 of 83

1.1

	the second se		_					_	
1	1	1	1	1	1	1	1	1	1
1	G	2	2	2	2	2	G	G	1
1	2	3	3	3	3	3	3	G	1
1	2	3	3	-			3	2	1
1	2	3	3				3	2	1
1	2	3	3	-			3	2	1
1	2	3	3	3	3	3	3	2	1
1	2	3	3	3	3	3	G	2	1
1	2	2	2	2	2	2	2	G	1
1	1	1	1	1	1	1	1	1	1
4	4	1	1	4			1	1	É.
-	1								1
1	6	2	2	2	2	9	2	2	1
1	2	3	3	3	3	.3	G	2	1
1	2	3				3	3	G	1
1	2	3				3	G	2	1
1	2	3				3	3	2	1
1	2	3	3	3	3	3	3	2	1
1	2	3	3	·3	3	3	3	2	1
1	2	2	2	2	2	2	2	G	1
1	1	. 1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	,1
1	G	2	2	2	2	G	2	2	1
1	2	3	3	3	3	3	G	2	1
1	2	3	3			-	3	G	1
1	2	3	3				G	2	1
1	2	3	3				3	2	1
1	2	3	3	3	3	3	3	2	1
1	2	3	3	3	3	3	3	G	1
1	2	2	2	2	2	2	2	2	1
1	1	1	1	1	1	1	1	1	1

tn

to

tp

.

.

EMF-1563 Revision 12A Appendix 6E Page 42 of 83

Table 11 Gadolinia Rod Arrangement Studies Six Gadolinia Rods, All Rods, are 5.0% Enriched, Gadolinia Rods contain 1.5 wt.% Gd₂O₃ CASMO Model with Various Amounts of Interspersed Water

			K-inf	
Gad Rod Pattern	Case Id	14 Vol. %	15 Vol. %	10 wt.% + poly shims
ta		1.00822	1.01026	1.07946
tb	•	1.00577	1.00769	1.07619
tċ		1.00837	1.01045	1.07961
td		1.00571	1.00760	1.07620
te.		1.01195	1.10388	1.08072
tg		1.00557	1.00769	1.07832
th	. 8GDxx where xx is	1.0391	1.00593	1.07638
ti	the Vol. %	1.00587	1.00800	1.07861
tj	Interspersed Moderator	1.00395	1.00594	1.07650
tk		1.00987	1.01189	1.07965
tľ		1.00812	1.00994	1.07793
tm		.99813	1.00015	1.06769
. tn		1.00503	1.00711	1.07958
to		1.00971	1.01174	1.07982
tp		1.00898	1.01081	1.07738

EMF-1563 Revision 12A Appendix 6E Page 43 of 83

KENO.Va was used to model an array of 104 inner shipping containers. The array was 8x13x1. The most reactive rod arrangement found using CASMO was used. The effect of various amounts of interspersed moderator on k_{eff} was evaluated. The results are in Table 12. The highest bias corrected 95% upper limit for k_{eff} for assemblies without polyethylene shims is .9337 for case t6.16.

Table 12 Gadolinia Rod Arrangement Studies Eight Gadolinia Rods, All Rods are 5.0% Enriched, Gadolinia Rods contain 1.5 wt.% Gd₂O₃ KENO-Va Model with Various Amounts of Interspersed Water

0 10		K-eff		
	Woderator Vol. %	Average K-eff	σ	
t6.10p	10+ poly	1.01211	.00174	
t6.11	11	.91378	.00185	
t6.12	12	.91903	.00171	
t6.13	13	.92333	.00179	
t6.14	14	.92123	.00188	
t6.15	15	.92232	.00191	
t6.16	16	.92544	.00186	
t6.17	17	.92169	.00197	

Assembly Orientation

To evaluate the possible effects of assembly orientation, several cases for fuel pattern to at various Vol. % interspersed moderator were repeated with one of the fuel bundles in the inner container rotated 180 degrees. The results of this evaluation are listed in Table 13.

EMF-1563 Revision 12A Appendix 6E Page 44 of 83

Table 13	Sensitivity	of K-eff to	10x10	Assembly	Orientation
----------	-------------	-------------	-------	----------	-------------

Case ID	Vol. % Moderator	K-eff	σ.
<u>tb.12r180</u>	12	.91912	.00243
tb.13r180	13	.92511	.00252
tb.14r180	14	.92244	.00242

These data imply that the orientation of these types of assemblies in the shipping container will not have a significant impact on k-eff, but will shift the point of optimum interspersed moderation.

EMF-1563 Revision 12A Appendix 6E Page 45 of 83

4.2.5 <u>9x9 Assemblies with All Other Rods Enriched to 5.0 Wt. % and Eight Gadolinia Rods</u> at 1.5 wt.% Gd₂O₃.

EMF-1563, Sup. 1, Rev. 1 concluded the most reactive arrangement of gadolinia rods in a 10x10 assembly is to have all gadolinia rods clustered together in the upper right corner. A simple CASMO model was used to confirm this type of rod arrangement is also the most reactive for 9x9 assemblies. The water channel is in the center 3x3 cells. The rod arrangements evaluated are shown in the figures below and results are listed in Table 14.

	•								
	1	1]	1	1	1	1	1	1	1
	1	2	2	2	2	2	2	2	7
	1.	2	3	3	3	3	3	2	1
]	1.	2	3	-			3	2	1
1	-1-	2	3				3	2	1
	1.	2	3	-			3	2	1
	1,	2	3	3	3	3	3	2	1
	1	2	2	2	2	2	2	2	1
	1	1	1	1	1	1	1	1	1
Ľ					-	_			
6			-		-	-			-
· 1	1	1	1	1	1	1	1	1	1
	1	C.	2	2		2	2	5	1
	1	2	3	3	3	3	3	2	1
	1	2	3				3	2	1
- 1	1	0	3				3	2	1
	1	2	3				3	2	1
	T	2	3	3	3	3	3	2	1
	1	G	2	2	C	2	2	6	1
	1	1	1	1	1	1	1	1	1
•		_			-				
	Î Î	[1	1	11	1	1	1	1	n
	1	G	2	2	2	G	2	G	П
	1	2	3	3	3	3	G	2	Н
	1	2	3	-			3	G	Ы
	1	2	3		┝		3	2	h
	łī	2	3	├	-		3	2	
	h	12	3	3	3	3	3	2	
	1	G	2	2	2	2	2	G	1
	h	1	1	1	1	1	1	1	1
	<u> </u>	1					_		

N1

N2

NЗ

EMF-1563 Revision 12A Appendix 6E Page 46 of 83 ı.

:

1

NЗа

1				_		_	-	_	
Η.	1	1	1	1	1	1	1		
1	G	2	2	2	G	2	G	1	
1	2	3	3	3	3	G	2		
1	G	3			\vdash	3	G	7	
1	2	3			-	3	2	$\frac{1}{1}$	
1÷	2	3				2	2	-	
+	2	3	2	5	2	5	4	-1	
Ļ	4	3	3	3	5	2	2 200	÷1	
4	2	2	4	2	2	2	3	-	
Ľ		1	1		Ľ.	1	1	<u> </u>	
						•			
1	[1]	1	1	1	11	1	1	71	
1	G	2	2	2	G	2			
1	2	3	3	2	3	-	2		
┢╴	5	3	Ľ	۲,	H	3	-	H	
-	4	2				5	<u>ال</u>	H	
4	5	S				3	4		
Ľ	2	3	_		_	3	2		
	2	3	3	3	3	C I	2	Ц	
1	2	2	2	2	2	2	G	1	
1	1	1	1	1	1	1	1	1	
		-					_		
-		-	-	_		-	_		
1	1	.1	1	1	1	1	1	1	
1	1 G	.1 .2	1	1	1 G	1 2	1 G	1 1	
1	1 G 2	1 2 3	1 2 3	1 2 3	1 G 3	1 2 3	1 G 2	1 1 1	
1 1 1	1 6 2 6	1 2 3 3	1 2 3	1 2 3	1 3	1 2 3 3	1 G Q	1 1 1	
1 1 1	1 2 3 2	1 2 3 3 3	1 2 3	1 2 3	1 G 3	1 2 3 3 3	1 2 2 2 2	1 1 1 1	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 2 2 2 2 2	1 2 3 3 3 3	1 2 3	1 2 3	103	1 2 3 3 3 3 3	1 2 2 2 2 2		
	1 2 2 2 2 2	1233333	1 2 3 3	1 3 3	1 3 3	1 2 3 3 3 3 3	1 0 2 0 2 2 2		
		1 2 3 3 3 3 3 2	1 2 3 3 2	1 2 3 3 2	1 3 3 0	<u>1</u> 2 3 3 3 3 3 2 2			
111111111111111111111111111111111111111	10202201	1 3 3 3 3 3 2 1	1 2 3 3 2 1	1 2 3 3 2 1	1 0 3 0 1	1 2 3 3 3 3 3 2 1	1 2 2 2 2 2 1	1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +	
11111111	1 2 2 2 2 3 1	1 3 3 3 3 3 2 1	1 3 3 2 1	1 3 3 2 1	1 3 3 1	1 2 3 3 3 3 3 2 1	1 6 2 6 2 2 6 1		
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 2 2 2 2 3 1	1 3 3 3 3 2 1	1 2 3 2 1	1 3 3 2 1	1 3 3 0 1	1 2 3 3 3 3 3 2 1	1 6 2 6 2 2 6 1	$\frac{1}{1}$ $\frac{1}$	
	1 2 2 2 2 2 3 1	1 3 3 3 3 3 2 1	1 3 3 2 1	1 3 3 2 1	1 3 3 1 1	1 2 3 3 3 3 3 2 1	1 G 2 G 2 2 G 1 1		
	1 2 2 2 2 2 3 1 3 3 3 1 3 3	1 2 3 3 3 3 3 2 1 1 2	1 2 3 2 1 1 2	1 3 3 2 1 1 2	1 3 3 1 1 2	1 2 3 3 3 3 3 2 1 1 2			
	1 2 2 2 2 2 3 1 1 3 2 2 3 1 2 2 3 1 2 2 3 2 3	1 2 3 3 3 3 3 2 1 1 2 3	1 2 3 2 1 1 2 3	1 2 3 2 1 1 2 0	1 3 3 1 2 3	123333321	1 G 2 G 2 2 G 1 1 G 2		
	1 2 2 2 2 2 2 1 1 3 2 3 1 3 3 3 3 3 3 3	1 2 3 3 3 3 3 2 1 1 2 3 3	1 3 3 2 1 1 2 3	1 3 3 2 1 1 2 3	1 3 3 1 1 2 3	123333321 1203	1 G 2 G 2 2 G 1 1 G 2 2		
	1 2 2 2 2 2 3 1 1 3 2 2 3 1 2 3 2 3 2 3	1 2 3 3 3 3 3 2 1 1 2 3 3 3 3 3 2 1	1 3 3 2 1 1 2 3	1 3 3 1 1 2 6	1 3 3 1 1 2 3	1 2 3 3 3 3 3 2 1 1 2 3 3 3 3 2 1	1 G 2 G 2 2 G 1 1 G 2 2 2		
	1 2 2 2 2 2 2 3 1 1 3 2 3 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3	1 3 3 3 3 2 1 1 2 3 3 3 2 1	1 3 3 2 1 1 2 3	1 3 2 1 2 0	1 3 3 1 2 3	1 2 3 3 3 3 2 1 1 2 3 3 3 3 2 1	1 0 2 0 2 2 0 1 1 0 2 2 2 2		
	1 2 2 2 2 2 2 2 1 1 3 2 2 2 2 2 2 2 2 2	1 2 3 3 3 2 1 1 2 3 3 3 2 1	1 2 3 3 2 1 1 2 3 1 1 2 3 1 1 2 3 1 1 2 3 1 1 2 3 1 1 2 3 1 1 1 2 3 1 1 1 1		1 3 3 1 2 3	123333321 12033030	1 0 2 0 2 0 1 0 2		
	1 2 2 2 2 2 2 2 2 2 2 2 2 2	12333321 1233333	1 2 3 2 1 1 2 3 3 2 1 3 3 3 3	1 3 2 1 1 2 3 3 2 1 3 3 2 1 3 3 3 3 3 3	1 3 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		10202201 1022222		
	1 2 2 2 2 2 2 2 2 2 2 2 2 2	1 2 3 3 3 2 1 1 2 3 3 3 3 2	1 2 3 2 1 1 2 3 2 1 3 2 1 3 2 3 2	1 3 2 1 1 2 0 3 2 1 3 2 1 3 2	1 3 1 2 3 3 0 1 3 0	12333321 12033332	102022201 10222220		
	1 2 2 2 2 2 2 2 2 2 2 2 2 2	1 2 3 3 3 2 1 1 2 3 3 3 2 1 1 2 3 3 3 3 2 1	1 2 3 2 1 3 2 1 3 2 1 3 2 1	1 2 3 2 1 1 2 0 3 2 1 3 2 1	1 3 1 2 3 0 1	12333321 12333321	1 0 2 0 2 0 1 0 2 2 2 0 1		

N4

NЗb

N5

• ; ;

EMF-1563 Revision 12A Appendix 6E Page 47 of 83

· .

11	19	2	2	2	2	2	1
1	2	3	3	G	3	3	2 1
1		3				3	2 1
1	2	3				G	21
1	2	3				3	21
1	2	3	3	3	3	G	21
1	2	2	2	2	G	2	<u>e</u> 1
1	1	1	1	1	1	1	11
1	1	1	1	1	1	1	111
1	G	2	2	2	2	2	G 1
1	2	3	3	G	3	3	21
1		3				3	21
1	2	3				G	21
T	2	3				3	21
1	2	3	3	G	3	3	21
1	2	2	2	2	G	2	G 1
T	1	1	1	1	1	1	11
		_					
÷.					_		
1	1	1	1	1		1	111
1	1	1	1	1	1	1	11
1 1 1	1 2 2	1 2 3	1	1 2 3	1 ወ የ	1	1 1 G 1 2 1
1 1 1	1 2 2 2	1 2 3	1 2 3	123	103	1 2 3	1 1 3 1 2 1 2 1
1111	1 2 2 2	1 2 3 3	1 2 3	1 2 3	103	1 2 3 3	1 1 3 1 2 1 2 1 3 1
11111	1 2 2 2 2	1 2 3 3 3 3 3	1 2 3	1 2 3	103	1 2 3 3 3 3 3 3	1 1 0 1 2 1 2 1 0 1 0 1 2 1
11111	1 2 2 2 2 3 2	1 2 3 3 3 3 3 3	1 2 3 3 3	1 2 3 3	103	1 2 3 3 3 3 3 3 3	1 1 3 1 2 1 2 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 2 2 2 2 2 0 2 0	1 2 3 3 3 3 3 2 2	1 2 3 3 2			1 2 3 3 3 3 3 2	1 1 2 1 2 1 G 1 G 1 G 1 G 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 2 2 2 2 2 3 2 3 2 3 1	1 2 3 3 3 3 3 2 1	1 2 3 3 2 1	12333031		1 2 3 3 3 3 3 2 1	1 1 2 1 2 1 G 1 G 1 G 1 G 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 2 2 2 3 6 2 6 1	1 2 3 3 3 3 2 1	1 2 3 3 2 1	1 2 3 3 0 1	1 0 3 3 0 1	1 2 3 3 3 3 3 2 1	1 1 2 1 2 1 6 1 6 1 6 1 1 1
	1 2 2 2 2 2 3 6 1	1 2 3 3 3 3 3 2 1	1 2 3 3 2 1 1	1 2 3 3 1 1	103	1 2 3 3 3 3 3 3 2 1	1 1 3 1 2 1 2 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3
	1 2 2 2 2 3 3 2 3 3 1 1 2	1 2 3 3 3 3 3 2 1 1 2	1 2 3 3 2 1 1 2	1 2 3 3 1 1 2 7	1 3 3 1 1	1 2 3 3 3 3 3 2 1 1 7	1 1 2 1 2 1 2 1 2 1 3 1 3 1 3 1 1 1 1 1 3 1
	1 2 2 2 2 2 3 2 3 2 3 1 1 2 2 2 3 1	1 2 3 3 3 3 3 2 1 1 2	1 2 3 2 1 1 2 3	1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		1 2 3 3 3 3 3 2 1 1 2 3	1 1 2 1 2 1 2 1 6 1 6 1 1 1 1 1 6 1 1 1 7 1 7 1
	1 2 2 2 2 2 3 2 6 2 6 1 1 2 2 2 2 2 5	123333321 1233	1 2 3 2 1 1 2 3	1 2 3 3 0 1 2 3 1 2 3		1 2 3 3 3 3 3 2 1 1 2 3 3	1 1 2 1 2 1 2 1 2 1 6 1 1 1 1 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2
	1 2 2 2 2 2 2 2 2 2 2 2 1 1 2 2 2 2 2 2	12333321 12333	1 2 3 2 1 1 2 3	1 2 3 3 3 1 1 2 3	103	1233333211123337	1 1 2 1 2 1 2 1 2 1 2 1 2 1 3 1 1 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
	1 2 2 2 2 3 3 2 3 3 2 3 1 1 2 2 2 2 2 2	12333321 123333	123321	1 2 3 3 1 1 2 3	103	123333321 123333	$ \begin{array}{c} 1 \\ 0 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$
	1 2 2 2 2 3 3 2 3 2 3 1 1 2 2 2 3 2 3 2	12333321 1203333	1 2 3 3 2 1 1 2 3 3 3 3 3 3 3 3 3 3 3 3	123 301 123 303		1 2 3 3 3 3 3 2 1 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	$ \begin{array}{c} 1 \\ 1 \\ 0 \\ 1 \\ 2 \\ 1 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$
	1 2 2 2 2 3 2 6 2 6 1 1 2 2 2 2 6 2 6 1 1 2 2 2 2 6 2 6	12333321 12333322	1 2 3 2 1 1 2 3 2 1 3 2 1 3 2 1 3 2 1 3 2	1233301123		123333321 12333330	$\begin{array}{c} 1 \\ 1 \\ 0 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$
	1 2 2 2 2 3 3 2 6 1 1 2 2 2 2 6 2 6 1 1 2 2 2 2 6 2 6	12333321 12333321	1 2 3 2 1 1 2 3 2 1 3 2 1 3 2 1			12333321 123333321	$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$

N5a

N5b

N6

N7

EMF-1563 Revision 12A Appendix 6E Page 48 of 83

Table 14 Gadolinia Rod Arrangement Studies Eight Gadolinia Rods, All Rods are 5.0% Enriched, Gadolinia Rods contain 1.5 wt.% Gd₂O₃ CASMO Model with Various Amounts of Interspersed Water

				K-inf		
Gad Rod Pattern	Case ID	12% Water	13% Water	14% Water	15% Water	10 Vol. % + poly shims
N1 :		1.07986	1.08245	1.08512	1.08771	1.16982
N2		.96510	.96685	.96867	.97042	1.02799
N3 :		.97120	.97310	.97498	.979678	1.03579
NЗа		.97336	.97314	.97698	.97877	1.03669
ΝЗЬ	d.8GDxx.out	.96418	.96582	.96750	.96914	1.02277
N4	the Vol. %	.96571	.96752	.96941	.97122	1.03014
N5	interspersed water	.97478	.97631	.97787	.97939	1.03193
N5a		-	.97683	~	.97990	1.03264
N5b		-	.97576	-	.97859	1.02948
N6		.97250	.97425	.97606	.97782	1.03481
N7		.97027	.97200	.97377	.97550	1.03186

EMF-1563 Revision 12A Appendix 6E Page 49 of 83

KENO.Va was used to model an array of 104 inner shipping containers. The array was 13x13x1. The most reactive rod arrangement found using CASMO was used. The effect of various amounts of interspersed moderator on k_{eff} was evaluated. The results are in Table 15. The highest bias corrected 95% upper limit for k_{eff} for assemblies without polyethylene shims is .91360 for case a-3a.15.

Case ID	Rod Pattern	Vol. % Water as	К-е	əff
		Interspersed Moderator	Average	·σ
a-3a.11		11	.89078	.00154
a-3a.12	,	12	.89799	.00182
a-3a.13	2	13	.89700	.00178
a-3a.14	3	14	.89664	.00177
a-3a.15		15	.90532	.00173
a-3a.16		16	.90424	.00186
a-5.13		13	.89104	.00190
a-5.14		14	.88916	.00174
a-5.15	5	15	.89322	.00160
a-5.16		16	.88673	.00159
a-5.10p		10+ poly shims	.97402	.00183
a-5a.12		12	.89102	.00173
a-5a.13	,	13	.89028	.00180
a-5a.1 [:] 4	F_	14	.89085	.00187
a-5b.15	ba	15	.89061	.00186
a-5a.16		16	.88961	.00164
a-5a.10p	·	10+ poly shims	.97854	.00188

Table 15 K-eff for Rod Patterns 3A, 5, and 5A at Various Amounts of Interspersed Water

EMF-1563 Revision 12A Appendix 6E Page 50 of 83

Assembly Orientation

To evaluate the possible effects of assembly orientation, several cases for fuel patterns 3a and 5a at various Vol. % interspersed moderator were repeated with one of the fuel bundles in the inner container rotated 180 degrees. The results of this evaluation are listed in Table 16.

Case ID	Vol. % Moderator	K-eff	σ
a-3a.12r180	12	.90168	.00257
a-3a.13r180	13	.90470	.00239
a-3a.14r180	14	.90230	.00274
a-3a.15r180	15	.89958	.00286
a-5.14r180	14	.88917	.00260
a-5.15r180	15	.89464	.00261
a-5.16r180	16	.88397	.00264
a-5a.13r180	13	.89093	.00278
a-5a.14r180	14	.89020	.00251
a-5a.15r180	15	.89429	.00253
a-5a.16r180	16	.89416	.00270

Table 16 Sensitivity of K-eff to 9x9 Assembly Orientation

These data imply that the orientation of these types of assemblies in the shipping container will not have a significant impact on k-eff, but will shift the point of optimum interspersed moderation.

EMF-1563 Revision 12A Appendix 6E Page 51 of 83

4.3 Normal Condition Arrays

Normal conditions include the wooden outer container. The outer container wooden parts were closely modeled based on the data in Drawing EMF-306,416. The outer dimensions of the outer container are 75.6cm wide by 78.7 cm high by 523.9 cm long. The following KENO plots are transverse sections at various locations along the length of the package.

EMF-1563 Revision 12A Appendix 6E Page 52 of 83

EMF-1563 Revision 12A Appendix 6E Page 53 of 83

.

EMF-1563 Revision 12A Appendix 6E Page 54 of 83

. .

EMF-1563 Revision 12A Appendix 6E Page 55 of 83

EMF-1563 Revision 12A Appendix 6E Page 56 of 83

The calculation results for an infinite array of edge-to-edge packages are in Table 17. The rod patterns and orientation of the assemblies in each package are shown in sections 4.2.4 and 4.2.5.

The most reactive interspersed water density for both assembly types is zero. The largest biascorrected 95% upper limit on k-eff for the infinite array is 0.9150.

•	001112			
Case	Bod Pattern	Vol.%	k-	eff
ID ;		Moderator Avg.		Std.Dev.
· · · · · · · · · · · · · · · · · · ·		0	.87498	.00174
a-n3a.005	30	:.5	.84803	.00170
a-n3a.010	- 30	: 1	.82883	.00159
a-n3a.015		1.5	.80380	.00175
a-nt6		0	.90673	.00172
a-nt6.005	1	.5	.88406	.00164
a-nt6.010	t6	1	.86140	.00179
a-nt6.015	1	1.5	.83264	.00161

Table 17 K-eff for Infinite Arrays of SP-1/SP-2 Containers at Normal Conditions

EMF-1563 Revision 12A Appendix 6E Page 57 of 83

5.0 **REFERENCES**

- 1. NUREG/CR-0200 <u>Scale a Modular Code System for Performing Standardized Computer</u> <u>Analyses for Licensing</u>
- 2. CASMO-3 STUDSVIK/NFA-86/7 <u>A Fuel Assembly Burnup Program User's Manual</u>
- 3. NUREG/CR-0073: "Critical Separation Between Subcritical Clusters of 4.31 wt% Enriched UO₂ Rods in Water with Fixed Neutron Poisons"
- Lloyd, R.C., Durst, B.M., and Clayton, E.D.: "Effect of Soluble Neutron Absorbers on Criticality of Low U-235 Enriched UO₂ Lattices", <u>Nuclear Science and Engineering</u>: 71, <u>164-169 (1979)</u>
- 5. "Criticality Safety Criteria", ANS Trans, Vol.35, p.278

EMF-1563 Revision 12A Appendix 6E Page 58 of 83

Appendix A

Sample computer inputs used for this analysis:

The model of inner shipping containers KENO case ("a-3a.15") is listed below. =csas25 sp-1 with 5.0% enriched 9x9 fuel except exterior rods 5.0% hans infh

' uo2 1 0.98 293.0 92235 3.4643 92238 96.5357 end uo2 1 0.98 293.0 92235 5.0 92238 95.0 end

' uo2 2 0.98 293.0 92235 3.4643 92238 96.5357 end uo2 2 0.98 293.0 92235 5.0 92238 95.0 end

' uo2 3 0.98 293.0 92235 4.0 92238 96.0 end uo2 3 0.98 293.0 92235 5.0 92238 95.0 end

uo2 4 0.98 293.0 92235 5.0 92238 95.0 end

uo2 5 0.98 293.0 92235 5.0 92238 95.0 end

uo2 6 0.98 293.0 92235 5.0 92238 95.0 end

' poison rod with 2% gd2o3

' td of uo2-gd2o3 = 10.96 -2.65*p/[p+0.67145*(1-p)], p=wt frac.gd2o3

"p" is 0.02 here, td is 10.9012

pellet density is 0.98*10.9012=10.6832

uo2 density is 0.985*10.6832 = 10.5230

' gd2o3 density is 0.02*10.6832 = 0.1602 gm/cc uo2 7 den = 10.5230 1.0 293.0 92235 5.00 92238 95.00 end

arbmgd2o3 0.1602 2 0 1 0 64000 2 8016 3 7 1.0 293. end

zircalloy 8 1.0 293.0 end

' water, 15 vol.% h2o 9 0.15 293.0 end

' basket steel carbonsteel 10 1.0 293.0 end ' angle steel carbonsteel 11 1.0 293.0 end ' shell steel carbonsteel 12 1.0 293.0 end ' reflector water h2o 13 1.0 293 end ' polyethylene, 100 vol% arbmpe 0.92 2 0 1 0 6012 1 1001 2 14 1.0 293. end

higher enriched rods

EMF-1563 Revision 12A Appendix 6E Page 59 of 83

```
uo2 15 0.98 293.0 92235 5.0 92238 95.0 end
 end comp
 more data
  res = 1 cyli 3.8729E-01 dan( 1) = 6.8905E-01
  res = 2 cyli 4.5924E-01 dan( 2) = 6.3178E-01
  res = 3 cyli 5.4268E-01 dan( 3) = 4.1004E-01
  res = 4 cyli 5.5080E-01 dan( 4) = 4.0273E-01
  res = 5 cyli 5.3948E-01 dan( 5) = 4.6477E-01
 res = 6 cyli 5.3770E-01 dan( 6) = 4.6765E-01
 res = 7 cyli 4.3370E-01 dan( 7) = 6.1057E-01
 end more
 sp-1 with 5.0% enriched 9x9 fuel except 4.0% edge rods
 read parameters
 tme = 90 gen = 200 npg = 600 nsk = 0
 flx=yes fdn=yes xs1=yes nub=yes pwt=yes
 run=yes plt=yes
 end parameters
 read geom
  pellet diam: 0.40"
  gap: zero
  clad thk: 0.015"
  pitch: 0.5696"
 unit 1
com = "interior rod"
cyli 1 1 0.5080 2p226.695
cyli 8 1 0.54610 2p226.695
cubo 9 1 2p0.723428 2p0.54610 2p226.695
  polyethylene shims between rods
  cubo 14 1 4p0.7234280 2p226.695
' use Id water inplace of shims
 cubo 9 1 4p0.7234280 2p226.695
unit 2
com = "interior rods around water rod"
cyli 2 1 0.5080 2p226.695
cyli 8 1 0.54610 2p226.695
cubo 9 1 2p0.7234280 2p0.54610 2p226.695
  polyethylene shims between rods
  cubo 14 1 4p0.7234280 2p226.695
' use Id water inplace of shims
cubo 9 1 4p0.7234280 2p226.695
unit 3
com = "edge rod facing up"
cyli 3 1 0.5080 2p226.695
cyli 8 1 0.54610 2p226.695
cubo 91 2p0.7234280 0.7234280 -0.54610 2p226.695
 polyethylene shims between rods
 cubo 14 1 4p0.7234280 2p226.695
```

,

EMF-1563 Revision 12A Appendix 6E Page 60 of 83

' use id water in place of shims cubo 9 1 4p0.7234280 2p226.695

unit 4

com = "edge rod facing down" cyli 4 1 0.5080 2p226.695 cyli 8 1 0.54610 2p226.695 cubo 9 1 2p0.7234280 0.54610 -0.7234280 2p226.695 ' polyethylene shims between rods ' cubo 14 1 4p0.7234280 2p226.695

' use Id water in place of shims cubo 9 1 4p0.7234280 2p226.695

unit 5

com = "edge rod facing other bundle" cyli 5 1 0.5080 2p226.695 cyli 8 1 0.54610 2p226.695 cubo 9 1 2p0.7234280 2p0.54610 2p226.695 ' polyethylene shims between rods ' cubo 14 1 4p0.7234280 2p226.695

' use ld water in place of shims cubo 9 1 4p0.7234280 2p226.695

unit 6

com = "edge rod facing out" cyli 6 1 0.5080 2p226.695 cyli 8 1 0.54610 2p226.695 cubo 9 1 2p0.7234280 2p0.54610 2p226.695 ' polyethylene shims between rods ' cubo 14 1 4p0.7234280 2p226.695

use Id water in place of shims cubo 91 4p0.7234280 2p226.695

unit 7

com = "uo2-gd2o3 rod" cyli 7 1 0.5080 2p226.695 cyli 8 1 0.54610 2p226.695 cubo 9 1 2p0.7234280 2p0.54610 2p226.695 ' polyethylene shims between rods cubo 14 1 4p0.7234280 2p226.695

' use Id water in place of shims ' cubo 914p0.72342802p226.695

unit 8 com = "water rod" cubo 9 1 4p0.7234280 2p226.695

unit 9

com = 'side basket element, 0.0598"x1.75"x1.75" steel with 0.75" diam. hole'

EMF-1563 **Revision 12A** Appendix 6E Page 61 of 83

xcyl 9 1 0.9525 0.1519 0.0 cubo 10 1 0.1519 0.0 4p2.2225

unit 10

com='side basket element, 0.0598"x1.6902"x1.75" steel with 0.75" diam. hole' xcyl 9 1 0.9525 0.1519 0.0 cubo 10 1 0.1519 0.0 2p2.14655 2p2.2225

unit 11

com='one complete basket side' ' 1x4x102 array of units 10 & 11 array 1 0.0 -8,7381 -226.695

unit 12

com = 'top/bottom basket element' ' 1.75"x0.0598"x1.75" steel with 0.75" diam. hole' ycyl 9 1 0.9525 0.1519 0.0 cubo 10 1 2p2.2225 0.1519 0.0 2p2.2225

unit 13

unit 14

com='top/bottom basket element' ' 1.6902"x0.0598"x1.75" steel with 0.75" diam. hole' ycyl 9 1 0.9525 0.1519 0.0 cubo 10 1 2p2.14655 0.1519 0.0 2p2.2225

' 4x1x102 array of units 13&14 array 2 -8.7381 0.0 -226.695

unit 15 com = '0.0598" steel at basket corners' cubo 10 1 0.1519 0.0 0.1519 0.0 2p226.695

com='one complete basket top/bottom'

unit 16

	,
com = " sp	acing & steel angle at -x side of basket "
cubo 91	5.08 0.0 2p8.89 2p226.695
hole 22	0.15875 0.0 0.0
hole 22 0	.47625 -0.3175 0.0
hole 22 (0.47625 0.3175 0.0
hole 22 (0.79375 0.635 0.0
hole 22 0	.79375 -0.635 0.0
hole 22 1	.11125 0.9525 0.0
hole 22 1	.11125 -0.9525 0.0
hole 22 1	.42875 1.27 0.0
hole 22 1	.42875 -1.27 0.0
hole 22 1	.74625 1.5875 0.0
hole 22 1	.74625 -1.5875 0.0
hole 22 2	.06375 1.905 0.0
hole 22 2	.06375 -1.905 0.0
hole 22 2	.38125 2.2225 0.0
hole 22 2	.38125 -2.2225 0.0
hole 22 2	.69875 2.54 0.0
hole 22 2	.69875 -2.54 0.0
	· ·
EMF-1563 Revision 12A Appendix 6E Page 62 of 83

hole 22	3.01625 2.8575 0.0	
hole 22	3.01625 -2.8575 0.0	
hole 22	3.33375 3.175 0.0	
hole 22	3.33375 -3.175 0.0	
hole 22	3.65125 3.4925 0.0	
hole 22	3.65125 -3.4925 0.0	
hole 22	3.96875 3.81 0.0	:
hole 22	3.96875 -3.81 0.0	
hole 22	4.28625 4.1275 0.0	
hole 22	4.28625 -4.1275 0.0	
hole 22	4.60375 4.445 0.0	
hole 22	4.60375 -4,445 0.0	
hole 22	4.92125 4.7625 0.0	÷
hole 22	4.92125 -4.7625 0.0	
unit 17		
com = "	spacing & steel angle at +x side of basket	11
cubo 9	1 0.0 -5.08 2p8.89 2p226.695	
hole 22	-0.15875 0.0 0.0	
hole 22	-0.47625 -0.3175 0.0	
hole 22	-0.47625 0.3175 0.0	1
hole 22	-0.79375 0.635 0.0	
hole 22	-0.79375 -0.635 0.0	:
hole 22	-1.11125 0.9525 0.0	
hole 22	-1.11125 -0.9525 0.0	
hole 22	-1.42875 1.27 0.0	
hole 22	-1.42875 -1.27 0.0	
hole 22	-1.74625 1.5875 0.0	
hole 22	-1.74625 -1.5875 0.0	
hole 22	-2.06375 1.905 0.0	
hole 22	-2.06375 -1.905 0.0	
hole 22	-2.38125 2.2225 0.0	,
hole 22	-2.38125 -2.2225 0.0 ⁻	÷
hole 22	-2.69875 2.54 0.0	:
hole 22	-2.69875 -2.54 0.0	,
hole 22	-3.01625 2.8575 0.0	
hole 22	-3.01625 -2.8575 0.0	
hole 22	-3.33375 3.175 0.0	
hole 22	-3.33375 -3.175 0.0	
hole 22	-3.65125 3.4925 0.0	
hole 22	-3.65125 -3.4925 0.0	
hole 22	-3.96875 3.81 0.0	;
hole 22	-3.96875 -3.81 0.0	
hole 22	-4.28625 4.1275 0.0	
hole 22	-4.28625 -4.1275 0.0	
hole 22	-4.60375 4.445 0.0	
hole 22	-4.60375 -4.445 0.0	
hole 22	-4.92125 4,7625 0.0	
hole 22	-4.92125 -4.7625 0.0	

unit 18 com = " angles & spacing beneath baskets " cubo 9 1 2p8.89 5.08 0.0 2p226.695 hole 21 0.0 0.15875 0.0

Ċ

EMF-1563 Revision 12A Appendix 6E Page 63 of 83

hole 21 -0.3175 0.47625 0.0 hole 21 0.3175 0.47625 0.0 hole 21 0.635 0.79375 0.0 hole 21 -0.635 0.79375 0.0 hole 21 0.9525 1.11125 0.0 hole 21 -0.9525 1.11125 0.0 hole 21 1.27 1.42875 0.0 hole 21 -1.27 1.42875 0.0 hole 21 1.5875 1.74625 0.0 hole 21 -1.5875 1.74625 0.0 hole 21 1.905 2.06375 0.0 hole 21 -1.905 2.06375 0.0 hole 21 2.2225 2.38125 0.0 hole 21 -2.2225 2.38125 0.0 hole 21 2.54 2.69875 0.0 hole 21 -2.54 2.69875 0.0 hole 21 2.8575 3.01625 0.0 hole 21 -2.8575 3.01625 0.0 hole 21 3.175 3.33375 0.0 hole 21 -3.175 3.33375 0.0 hole 21 3.4925 3.65125 0.0 hole 21 -3.4925 3.65125 0.0 hole 21 3.81 3.96875 0.0 hole 21 -3.81 3.96875 0.0 hole 21 4.1275 4.28625 0.0 hole 21 -4.1275 4.28625 0.0 hole 21 4.445 4.60375 0.0 hole 21 -4.445 4.60375 0.0 hole 21 4.7625 4.92125 0.0 hole 21 -4.7625 4.92125 0.0

unit 19

com = "angles & spacing above baskets " cubo 9 1 2p8.89 0.0 -5.08 2p226.695 hole 21 0.0 -0.15875 0.0 hole 21 -0.3175 -0.47625 0.0 hole 21 0.3175 -0.47625 0.0 hole 21 0.635 -0.79375 0.0 hole 21 -0:635 -0.79375 0.0 hole 21 0.9525 -1.11125 0.0 hole 21 -0.9525 -1.11125 0.0 hole 21 1.27 -1.42875 0.0 hole 21 -1.27 -1.42875 0.0 hole 21 1.5875 -1.74625 0.0 hole 21 -1.5875 -1.74625 0.0 hole 21 1.905 -2.06375 0.0 hole 21 -1.905 -2.06375 0.0 hole 21 2.2225 -2.38125 0.0 hole 21 -2.2225 -2.38125 0.0 hole 21 2.54 -2.69875 0.0 hole 21 -2.54 -2.69875 0.0 hole 21 2.8575 -3.01625 0.0 hole 21 -2.8575 -3.01625 0.0 hole 21 3.175 -3.33375 0.0

EMF-1563 Revision 12A Appendix 6E Page 64 of 83

 hole 21
 -3.175 -3.33375 0.0

 hole 21
 3.4925 -3.65125 0.0

 hole 21
 -3.4925 -3.65125 0.0

 hole 21
 -3.4925 -3.65125 0.0

 hole 21
 3.81 -3.96875 0.0

 hole 21
 -3.81 -3.96875 0.0

 hole 21
 -4.1275 -4.28625 0.0

 hole 21
 -4.1275 -4.28625 0.0

 hole 21
 -4.445 -4.60375 0.0

 hole 21
 -4.445 -4.60375 0.0

 hole 21
 -4.7625 -4.92125 0.0

unit 20

com = " 2x2 inch moderation regions at corners " cubo 9 1 4p2.54 2p226.695

unit 21 com = "part of steel angle" ' 0.1552" x 0.125" cubo 11 1 2p0.197104 2p0.15874 2p226.695

unit 22 com = "part of steel angle" ' 0.125" x 0.1552" cubo 11 1 2p0.15874 2p0.197104 2p226.695

unit 23 com = "left (-x) 10x10 bundle in basket" ' bundle at outer edge, centered vertically array 3 -8.7381 -6.510866 -226.695 cubo 9 1 2p8.7381 2p8.7381 2p226.695

unit 24

com = "right 10x10 bundle in basket" ' bundle at outer edge, centered vertically array 4 -4.2836334 -6.510866 -226.695 cubo 9 1 2p8.7381 2p8.7381 2p226.695

unit 25 com = "complete left basket with bundle" array 5 2r-8.89 -226.695

unit 26, com = "complete right basket with bundle" array 6 2r-8.89 -226.695

unit 27 com = " 1 inner container " array 7 -22.86 -13.97 -226.695 ' add 0.0598 inch walls of carbon steel repi 12 1 6r0.1519 1

unit 28 com = " 2x2 inch regions at corners "

EMF-1563 Revision 12A Appendix 6E Page 65 of 83

cubo 914p2.54 2p226.695

unit 29 com = 'higher enriched rods' cyli 15 1 0.4445 2p226.695 cyli 8 1 0.49022 2p226.695 cubo 9 1 2p0.6510866 2p0.49022 2p226.695 ' polyethylene shims between rods cubo 14 1 4p0.6510866 2p226.695

global

unit 30 com = " 8x13x1 array of inners " array 8 -184.0952 -183.5847 -226.695 ' add 30 cm water reflector at all 6 faces repl 13 2 6r3.0 10

end geom

read array

ara = 1 nux = 1 nuy = 4 nuz = 102 loop 9 1 1 1 2 3 1 1 102 1 10 1 1 1 1 4 3 1 102 1 end loop

ara=2 nux=4 nuy=1 nuz=102 loop 12 2 3 1 1 1 1 1 102 1 13 1 4 3 1 1 1 1 102 1

end loop

' left bundle, poison corner at II ara=3 nux=09 nuy=09 nuz=1 fill 04 04 04 04 04 04 04 04 04 04 04

05 07 01 07 01 01 01 07 06 05 01 02 02 02 02 02 01 06 05 07 02 08 08 08 02 07 06 05 01 02 08 08 08 02 01 06 05 01 02 08 08 08 02 01 06 05 01 02 02 02 02 02 01 06 05 01 02 02 02 02 02 01 06 05 07 01 07 01 01 01 01 06 03 03 03 03 03 03 03 03 03 03 end fill

' right bundle, poison corner at ur ara=4 nux=09 nuy=09 nuz=1 fill 04 04 04 04 04 04 04 04 04 04 05 07 01 01 01 07 01 07 06 05 01 02 02 02 02 02 01 06

EMF-1563 Revision 12A Appendix 6E Page 66 of 83

05 07 02 08 08 08 02 07 06 05 01 02 08 08 08 02 01 06 05 01 02 08 08 08 02 01 06 05 01 02 02 02 02 02 01 06 05 01 01 01 01 07 01 07 06 03 03 03 03 03 03 03 03 03 03 end fill ara=5 nux=3 nuy=3 nuz=1 fill 15 14 15 11 23 11 15 14 15 end fill ara=6 nux=3 nuy=3 nuz=1fill 15 14 15 11 24 11 15 14 15 end fill ara = 7 nux = 4 nuy = 3 nuz = 1fill 20 18 18 20 16 25 26 17 28 19 19 28 end fill ara = 8 nux = 08 nuy = 13 nuz = 1fill f27 end fill end array read start nst = 1 ' xsm = -45.72 xsp = 45.72 ysm = -27.94 ysp = 27.94 zsm = -10 zsp = 10 end start read bounds all = vacuum end bounds read bias id = 500 2 11 end bias read plot ttl = " yx section of single storage location nch=" xx^d>g: .\$\$\$*x" xul = -10.0 xlr = 10.0 yul = 10.0 ylr = -10.0 zul = 0.0 zlr = 0.0uax = 1.0 vdn = -1.0 nax = 120 lpi = 10 end ttl = " yx section of single storage location nch=" xx^d>g: .\$\$\$*x" xul = -40.0 xir = 40.0 yul = 40.0 yir = -40.0 zul = 0.0 zir = 0.0uax = 1.0 vdn = -1.0 nax = 120 lpi = 10 end ttl = " yx section of two bundles in inner container " nch = " 123456789abcde" xul = -10.0 xir = 10.0 yul = 10.0 yir = -10.0 zul = 1.0 zir = 1.0

EMF-1563 Revision 12A Appendix 6E Page 67 of 83

÷ 1

ttl=" yx section of two bundles in inner container " nch = " 123456789abcde" xul = -25.0 xlr = 25.0 yul = 15.0 ylr = -15.0 zul = 1.0 zlr = 1.0 uax = 1.0 vdn = -1.0 nax = 140 lpi = 10 end tti = " yx section of left bundle in inner container " xul = -5.0 xlr = 55.0 yul = 10.0 ylr = -10.0 zul = 1.0 zlr = 1.0uax = 1.0 vdn = -1.0 nax = 140 |pi = 10 endttl = " yx section of left bundle in inner container " nch = " 123456789abcde" xui = -20.0 xir = 0.0 yui = 10.0 yir = -10.0 zui = 1.0 zir = 1.0uax = 1.0 vdn = -1.0 nax = 140 lpi = 10 endttl=" yx section of risght bundle in inner container " nch = " 123456789abcde" xui = 0.0 xir = 20.0 yui = 10.0 yir = -10.0 zui = 1.0 zir = 1.0uax = 1.0 vdn = -1.0 nax = 140 lpi = 10 endend plot ÷

end data end

The model for the nominal condition KENO case ("a-n3a") is listed below. = csas25

sp-1 with 5.0% enriched 9x9 fuel except exterior rods 5.0% hans infh

' uo2 1 0.98 293.0 92235 3.4643 92238 96.5357 end uo2 1 0.98 293.0 92235 5.0 92238 95.0 end

' uo2 2 0.98 293.0 92235 3.4643 92238 96.5357 end uo2 2 0.98 293.0 92235 5.0 92238 95.0 end

' uo2 3 0.98 293.0 92235 4.0 92238 96.0 end uo2 3 0.98 293.0 92235 5.0 92238 95.0 end

uo2 4 0.98 293.0 92235 5.0 92238 95.0 end

uo2 5 0.98 293.0 92235 5.0 92238 95.0 end

uo2 6 0.98 293.0 92235 5.0 92238 95.0 end

' poison rod with 2% gd2o3

′ td of uo2-gd2o3 = 10.96 -2.65*p/[p+0.67145*(1-p)], p=wt frac.gd2o3

' "p" is 0.02 here, td is 10.9012

pellet density is 0.98*10.9012=10.6832

uo2 density is 0.985*10.6832 = 10.5230

EMF-1563 Revision 12A Appendix 6E Page 68 of 83

' gd2o3 density is 0.02*10.6832 = 0.1602 gm/cc uo2 7 den = 10.5230 1.0 293.0 92235 5.00 92238 95.00 end arbmgd2o3 0.1602 2 0 1 0 64000 2 8016 3 7 1.0 293. end

zircalloy 8 1.0 293.0 end

' water, 0 vol.% h2o 9 1.e-15 293.0 end

' basket steel carbonsteel 10 1.0 293.0 end ' angle steel carbonsteel 11 1.0 293.0 end ' shell steel carbonsteel 12 1.0 293.0 end

' douglas fir, same composition as oak, dens=0.48-0.55 oak 13 den=0.48 1.0 293 end

' polyethylene, 100 vol% arbmpe 0.92 2 0 1 0 6012 1 1001 2 14 1.0 293. end

' higher enriched rods uo2 15 0.98 293.0 92235 5.0 92238 95.0 end

```
end comp

more data

res = 1 cyli 3.6257E-01 dan( 1) = 7.4052E-01

res = 2 cyli 4.5228E-01 dan( 2) = 6.8442E-01

res = 3 cyli 5.6262E-01 dan( 3) = 4.5534E-01

res = 4 cyli 5.7306E-01 dan( 4) = 4.5112E-01

res = 5 cyli 5.5324E-01 dan( 5) = 4.9582E-01

res = 6 cyli 5.4917E-01 dan( 6) = 4.9697E-01

res = 7 cyli 3.4934E-01 dan( 7) = 7.3961E-01

end more

sp-1 with 5.0% enriched 9x9 fuel except 4.0% edge rods

read parameters
```

```
tme=90 gen=200 npg=600 nsk=0
flx=yes fdn=yes xs1=yes nub=yes pwt=yes
run=yes plt=yes
end parameters
read geom
```

.

/ pellet diam: 0.40"

' gap: zero

' clad thk: 0.015"

' pitch: 0.5696"

unit 1 com = "interior rod" cyli 1 1 0.5080 2p226.695

EMF-1563 Revision 12A Appendix 6E Page 69 of 83

cyli 8 1 0.54610 2p226.695 cubo 9 1 2p0.723428 2p0.54610 2p226.695 ' polyethylene shims between rods ' cubo 14 1 4p0.7234280 2p226.695 ' use ld water inplace of shims cubo 9 1 4p0.7234280 2p226.695 unit 2 com = "interior rods around water rod" cyli 2 1 0.5080 2p226.695 cyli 8 1 0.54610 2p226.695 cubo 9 1 2p0.7234280 2p0.54610 2p226.695 ' polyethylene shims between rods ' cubo 14 1 4p0.7234280 2p226.695 ' use ld water inplace of shims cubo 9 1 4p0.7234280 2p226.695

unit 3 com = "edge rod facing up" cyli 3 1 0.5080 2p226.695 cyli 8 1 0.54610 2p226.695 cubo 9 1 2p0.7234280 0.7234280 -0.54610 2p226.695 ' polyethylene shims between rods ' cubo 14 1 4p0.7234280 2p226.695

' use ld water in place of shims cubo 9 1 4p0.7234280 2p226.695

unit 4 com = "edge rod facing down" cyli 4 1 0.5080 2p226.695 cyli 8 1 0.54610 2p226.695 cubo 9 1 2p0.7234280 0.54610 -0.7234280 2p226.695 ' polyethylene shims between rods ' cubo 14 1 4p0.7234280 2p226.695

' use ld water in place of shims cubo 9 1 4p0.7234280 2p226.695

unit 5 com = "edge rod facing other bundle" cyli 5 1 0.5080 2p226.695 cyli 8 1 0.54610 2p226.695 cubo 9 1 2p0.7234280 2p0.54610 2p226.695 ' polyethylene shims between rods ' cubo 14 1 4p0.7234280 2p226.695

' use ld water in place of shims cubo 914p0,72342802p226.695

unit 6 com = "edge rod facing out"

EMF-1563 Revision 12A Appendix 6E Page 70 of 83

cubo 9 1 2p0.7234280 2p0.54610 2p226.695 polyethylene shims between rods cubo 14 1 4p0.7234280 2p226.695 use Id water in place of shims cubo 914p0.72342802p226.695 unit 7 com = "uo2-gd2o3 rod" cyli 7 1 0.5080 2p226.695 cyli 8 1 0.54610 2p226.695 cubo 9 1 2p0.7234280 2p0.54610 2p226.695 polyethylene shims between rods cubo 14 1 4p0.7234280 2p226.695 use ld water in place of shims cubo 9 1 4p0.7234280 2p226.695 unit 8 com = "water rod" cubo 914p0.7234280 2p226.695 unit 9 com = 'side basket element, 0.0598"x1.75"x1.75" steel with 0.75" diam. hole'xcyl 9 1 0.9525 0.1519 0.0 cubo 10 1 0.1519 0.0 4p2.2225 unit 10 com = 'side basket element, 0.0598"x1.6902"x1.75" steel with 0.75" diam. hole' xcyl 9 1 0.9525 0.1519 0.0 cubo 10 1 0.1519 0.0 2p2.14655 2p2.2225 unit 11 com = 'one complete basket side' ' 1x4x102 array of units 10 & 11 array 1 0.0 -8.7381 -226.695 unit 12 com = 'top/bottom basket element' ' 1.75"x0.0598"x1.75" steel with 0.75" diam. hole' ycyl 9 1 0.9525 0.1519 0.0 cubo 10 1 2p2.2225 0.1519 0.0 2p2.2225 unit 13 com = 'top/bottom basket element' ' 1.6902"x0.0598"x1.75" steel with 0.75" diam. hole' ycyl 9 1 0.9525 0.1519 0.0 cubo 10 1 2p2,14655 0.1519 0.0 2p2.2225 unit 14 com = 'one complete basket top/bottom' 4x1x102 array of units 13&14

cyli 6 1 0.5080 2p226.695 cyli 8 1 0.54610 2p226.695

EMF-1563 Revision 12A Appendix 6E Page 71 of 83

array 2 -8.7381 0.0 -226.695

unit 15

com = '0.0598" steel at basket corners' cubo 10 1 0.1519 0.0 0.1519 0.0 2p226.695

unit 16
com = " spacing & steel angle at -x side of basket "
cubo 9 1 5.08 0.0 2p8.89 2p226.695
hole 22 0.15875 0.0 0.0
hole 22 0.47625 -0.3175 0.0
hole 22 0.47625 0.3175 0.0
hole 22 0.79375 0.635 0.0
hole 22 0.79375 -0.635 0.0
hole 22 1.11125 0.9525 0.0
hole 22 1.11125 -0.9525 0.0
hole 22 1.42875 1.27 0.0
hole 22 1.42875 -1.27 0.0
hole 22 1.74625 1.5875 0.0
hole 22 1.74625 -1.5875 0.0
hole 22 2.06375 1.905 0.0
hole 22 2.06375 -1.905 0.0
hole 22 2.38125 2.2225 0.0
hole 22 2.38125 -2.2225 0.0
hole 22 2.69875 2.54 0.0
hole 22 2.69875 -2.54 0.0
hole 22 3.01625 2.8575 0.0
hole 22 3.01625 -2.8575 0.0
hole 22 3.33375 3.175 0.0
hole 22 3.33375 -3.175 0.0
hole 22 3.65125 3.4925 0.0
hole 22 3.65125 -3.4925 0.0
hole 22 3.96875 3.81 0.0
hole 22 3.96875 -3.81 0.0
hole 22 4.28625 4.1275 0.0
hole 22 4.28625 -4.1275 0.0
hole 22 4.60375 4.445 0.0
hole 22 4.60375 -4.445 0.0
hole 22 4.92125 4.7625 0.0
hole 22 4.92125 -4.7625 0.0
com = " spacing & steel angle at +x side of basket "
CUDO 9 1 0.0 -5.08 2p8.89 2p226.695
hole 22 -0.47625 -0.3175 0.0
hole 22 -0.4/625 0.3175 0.0
hole 22 -0.79375 0.635 0.0
$\frac{100}{22} = \frac{2}{1} = \frac{1}{1105} = \frac{100}{25} = \frac{1000}{25} = \frac{100}{25} = 100$
$\frac{100}{22} = 1.11125 0.9525 0.0$
10/2 44 -1.11/25 -0.9525 0.0

hole 22 -1.42875 1.27 0.0 hole 22 -1.42875 -1.27 0.0 hole 22 -1.74625 1.5875 0.0

EMF-1563 Revision 12A Appendix 6E Page 72 of 83

hole 22 -1.74625 -1.5875 0.0 hole 22 -2.06375 1.905 0.0 hole 22 -2.06375 -1.905 0.0 hole 22 -2.38125 2.2225 0.0 hole 22 -2.381,25 -2.2225 0.0 hole 22 -2.69875 2.54 0.0 hole 22 -2.69875 -2.54 0.0 hole 22 -3.01625 2.8575 0.0 hole 22 -3.01625 -2.8575 0.0 hole 22 -3.33375 3.175 0.0 hole 22 -3.33375 -3.175 0.0 hole 22 -3.65125 3.4925 0.0 hole 22 -3.65125 -3.4925 0.0 hole 22 -3.96875 3.81 0.0 hole 22 -3.96875 -3.81 0.0 hole 22 -4.28625 4.1275 0.0 hole 22 -4.28625 -4.1275 0.0 hole 22 -4.60375 4.445 0.0 hole 22 -4.60375 -4.445 0.0 hole 22 -4.92125 4.7625 0.0 hole 22 -4.92125 -4.7625 0.0 unit 18 com = " angles & spacing beneath baskets cubo 91 2p8.89 5.08 0.0 2p226.695 hole 21 0.0 0.15875 0.0 hole 21 -0.3175 0.47625 0.0 hole 21 0.3175 0.47625 0.0 hole 21 0.635 0.79375 0.0 hole 21 -0.635 0.79375 0.0 hole 21 0.9525 1.11125 0.0 hole 21 -0.9525 1.11125 0.0 hole 21 1.27 1.42875 0.0 hole 21 -1.27 1.42875 0.0 hole 21 1.5875 1.74625 0.0 hole 21 -1.5875 1.74625 0.0 hole 21 1.905 2.06375 0.0 hole 21 -1.905 -2.06375 0.0 hole 21 2.2225 2.38125 0.0 hole 21 -2.2225 2.38125 0.0

hole 21 2.54 2.69875 0.0 hole 21 -2.54 2.69875 0.0 hole 21 2.8575 3.01625 0.0 hole 21 -2.8575 3.01625 0.0 hole 21 3.175 3.33375 0.0 hole 21 -3.175 3.33375 0.0 hole 21 3.4925 3.65125 0.0 hole 21 -3.4925 3.65125 0.0 hole 21 3.81 3.96875 0.0 hole 21 -3.81 3.96875 0.0 hole 21 4.1275 4.28625 0.0 hole 21 -4.1275 4.28625 0.0 hole 21 4.445 4.60375 0.0

hole 21 -4.445 4.60375 0.0

EMF-1563 Revision 12A Appendix 6E Page 73 of 83

hole 21	4.7625 4.92125 0.0	
hole 21	-4.7625 4.92125 0.0	

unit 19

com = "angles & spacing above baskets " cubo 91 2p8.89 0.0 -5.08 2p226.695 hole 21 0.0 -0.15875 0.0 hole 21 -0.3175 -0.47625 0.0 hole 21 0.3175 -0.47625 0.0 hole 21 0.635 -0.79375 0.0 hole 21 -0.635 -0.79375 0.0 hole 21 0.9525 -1.11125 0.0 hole 21 -0.9525 -1.11125 0.0 hole 21 1.27 -1.42875 0.0 hole 21 -1.27 -1.42875 0.0 hole 21 1.5875 -1.74625 0.0 hole 21 -1.5875 -1.74625 0.0 hole 21 1.905 -2.06375 0.0 hole 21 -1.905 -2.06375 0.0 hole 21 2.2225 -2.38125 0.0 hole 21 -2.2225 -2.38125 0.0 hole 21 2.54 -2.69875 0.0 hole 21 -2.54 -2.69875 0.0 hole 21 2.8575 -3.01625 0.0 hole 21 -2.8575 -3.01625 0.0 hole 21 3.175 - 3.33375 0.0 hole 21 -3.175 -3.33375 0.0 hole 21 3.4925 -3.65125 0.0 hole 21 -3.4925 -3.65125 0.0 hole 21 3.81 -3.96875 0.0 hole 21 -3.81 -3.96875 0.0 hole 21 4.1275 -4.28625 0.0 hole 21 -4.1275 -4.28625 0.0 hole 21 4.445 -4.60375 0.0 hole 21 -4.445 -4.60375 0.0 hole 21 4.7625 -4.92125 0.0 hole 21 -4.7625 -4.92125 0.0

unit 20

com = " 2x2 inch moderation regions at corners " cubo 9 1 4p2.54 2p226.695

unit 21 com = "part of steel angle" ' 0.1552" x 0.125" cubo 11 1 2p0.197104 2p0.15874 2p226.695

unit 22 com = "part of steel angle" ' 0.125" x 0.1552" cubo 11 1 2p0.15874 2p0.197104 2p226.695

unit 23 com = "left (-x) 10x10 bundle in basket"

EMF-1563 Revision 12A Appendix 6E Page 74 of 83

' bundle at outer edge, centered vertically array 3 -8.7381 -6.510866 -226.695 cubo 9 1 2p8.7381 2p8.7381 2p226.695

unit 24

com = "right 10x10 bundle in basket" ' bundle at outer edge, centered vertically array 4 -4.2836334 -6.510866 -226.695 cubo 9 1 2p8.7381 2p8.7381 2p226.695

unit 25

com = "complete left basket with bundle" array 5 2r-8.89 -226.695

unit 26

com = "complete right basket with bundle" array 6 2r-8.89 -226.695

unit 27

com = " 1 inner container " array 7 -22.86 -13.97 -226.695 ' add 0.0598 inch walls of carbon steel repl 12 1 6r0.1519 1 cubo 9 1 2p32.385 2p30.48 2p261.9375

unit 28 com = " 2x2 inch regions at corners " cubo 9 1 4p2.54 2p226.695

unit 29

com = 'higher enriched rods' cyli 15 1 0.4445 2p226.695 cyli 8 1 0.49022 2p226.695 cubo 9 1 2p0.6510866 2p0.49022 2p226.695 ' polyethylene shims between rods cubo 14 1 4p0.6510866 2p226.695

unit 30 com = 'top'' plywood only width: 29.75 - 2*3.25 = 23.25" cubo 13 1 2p29.5275 4.1275 0.0 8.255 0.0' 38.25" im repl 9 1 4r0.0 97.155 0.0 1 ' add stud repl 13 1 4r0.0 8.255 0.0 1 ' 36.75" im repl 9 1 4r0.0 93.345 0.0 1 ' add stud repl 13 1 4r0.0 8.255 0.0 1 ' add stud repl 9 1 4r0.0 93.345 0.0 1 ' add stud

repl 13 1 4r0.0 8.255 0.0 1

EMF-1563 Revision 12A Appendix 6E Page 75 of 83

' 36.75" im repi 9 1 4r0.0 93.345 0.0 1 ' add stud repi 13 1 4r0.0 8.255 0.0 1 ' 38.25" im repi 9 1 4r0.0 97.155 0.0 1 ' add studs & plywood repi 13 1 2r8.255 0.0 1.27 8.255 0.0 1

unit 31 com = 'base' ' space to first skid cubo 9 1 2p37.7825 8.255 0.0 13.97 0.0 ' 4x4 skid repl 13 1 4r0.0 8.255 0.0 1 ' 44.75" im repl 9 1 4r0.0 113.665 0.0 1 ' 4x4 skid repl 13 1 4r0.0 8.255 0.0 1 44.75" im repl 9 1 4r0.0 113.665 0.0 1 ′ 4x4 skid repl 13 1 4r0.0 8.255 0.0 1 ′ 44.75" im repl 9 1 4r0.0 113.665 0.0 1 ' 4x4 skid repl 13 1 4r0.0 8.255 0.0 1 ′ 44.75" im repl 9 1 4r0.0, 113.665 0.0 1 ′ 4x4 skid repl 13 1 4r0.0 8.255 0.0 1 ' add space at +z repl 9 1 4r0.0 13.97 0.0 1 ' add 1.605" wood at +y repl 13 1 2r0.0 4.1275 3r0.0 1 unit 32 com = ' + x side'' plywood only width: 24.00 - 2*3.25 = 17.5" cubo 13 1 4.1275 0.0 2p22.225 8.255 0.0 ' 38.25" im repl 9 1 4r0.0 97.155 0.0 1 ' add stud repl 13 1 4r0.0 8.255 0.0 1 ' 36.75" im repl 9 1 4r0.0 93.345 0.0 1 ' add stud repl 13 1 4r0.0 8.255 0.0 1 ′ 36.75" im repl 9 1 4r0.0 93.345 0.0 1 'add stud repl 13 1 4r0.0 8.255 0.0 1 ′ 36.75" im repl 9 1 4r0.0 93.345 0.0 1

P

EMF-1563 Revision 12A Appendix 6E Page 76 of 83

' add stud repl 13 1 4r0.0 8.255 0.0 1 ' 38.25" im repl 9 1 4r0.0 97.155 0.0 1 ' add stud & plywood repl 13 1 0.0 1.27 2r8.255 8.255 0.0 1

unit 33 com='-x side' ' plywood only width: 24.00 - 2*3.25 = 17.5" cubo 13 1 4.1275 0.0 2p22.225 8.255 0.0 ′ 38.25" im repl 9 1 4r0.0 97.155 0.0 1 ' add stud repl 13 1 4r0.0 8.255 0.0 1 ′ 36.75" im repl 9 1 4r0.0 93.345 0.0 1 ' add stud repl 13 1 4r0.0 8.255 0.0 1 ′ 36.75" im repi 9 1 4r0.0 93.345 0.0 1 ' add stud repl 13 1 4r0.0 8.255 0.0 1 ' 36.75" im repl 9 1 4r0.0 93.345 0.0 1 'add stud repl 13 1 4r0.0 8.255 0.0 1 ' 38.25" im repl 9 1 4r0.0 97.155 0.0 1 ' add stud & plywood repi 13 1 1.27 0.0 2r8.255 8.255 0.0 1

unit 34 com = 'inner container & wood sides' array 8 3r0.0

unit 35 com = 'complete outer container' array 9 3r0.0

global

unit 36 com ≂ " 10x10x1 array of inners " array 10 3r0.0

end geom read array

ara=1 nux=1 nuy=4 nuz=102 loop 9 1 1 1 2 3 1 1 102 1

EMF-1563 Revision 12A Appendix 6E Page 77 of 83

10 1 1 1 1 4 3 1 102 1 end loop

ara=2 nux=4 nuy=1 nuz=102 loop 12 2 3 1 1 1 1 1 102 1

13 1 4 3 1 1 1 1 102 1 end loop

' left bundle, poison corner at II ara=3 nux=09 nuy=09 nuz=1 fill 04 04 04 04 04 04 04 04 04 04 05 07 01 07 01 01 01 07 06

05 01 02 02 02 02 02 01 06 05 07 02 08 08 08 02 07 06 05 01 02 08 08 08 02 07 06 05 01 02 08 08 08 02 01 06 05 01 02 08 08 08 02 01 06 05 01 02 02 02 02 02 01 06 05 01 02 02 02 02 02 01 06 05 07 01 07 01 01 01 01 06 03 03 03 03 03 03 03 03 03 03 end fill

ara=6 nux=3 nuy=3 nuz=1 fill 15 14 15 11 24 11 15 14 15 end fill

end fill

ara=7 nux=4 nuy=3 nuz=1 fill 20 18 18 20

•

EMF-1563 Revision 12A Appendix 6E Page 78 of 83

16 25 26 17 28 19 19 28 end fill

ara = 8 nux = 3 nuy = 1 nuz = 1 fill 33 27 32 end fill

ara = 9 nux = 1 nuy = 3 nuz = 1fill 31 34 30 end fill

ara = 10 nux = 10 nuy = 10 nuz = 1 fill f35 end fill: end array

read start nst=1 end start read bounds all=spec end bounds ' read bias Id=500 2 11 end bias end data end

The model for XSDRN case ("a-h4025a") at flooded conditions is listed below. =csasix sp-1 with 5.0% enriched 10x10 fuel hans latt

' external water, 100 vol.% h2o 1 1.0 293:0 end

uo2 2 0.98 293.0 92235 5.0 92238 95.0 end

' water in unit,cell h2o 3 1.0 293.0 end

zircalloy 4 1.0 293.0 end

end comp ' pod .4" clad .015" vw/vf = 2.5 pitch = 1.726326 cm squa 1.726326 1.0160 2 3 1.09220 4 end end = xsdrn ' inf array of inners 0\$\$ a3 2 e 1\$\$ 2 2 100 1 3 2 2 8 2r1 10 80 3r0 2\$\$ -1 -1 4r0 -1 e

3\$\$0e

EMF-1563 Revision 12A Appendix 6E Page 79 of 83

' 4\$\$ -1 16 0 e 5** 2r1.0e-5 e t 13\$\$ 1 2 14\$\$ 500 1 15** f1.0 t 33## f1.0 t 35** 49i0.0 49i10.133134 20.164682 36\$\$ 50r1 50r2 39\$\$ 1 2 t

end

A typical CASMO case ("d.8gd15") is listed below.

DIM 9,1

```
TIT TFU=293.15 TMO=293.15 BOR=0 * INNERS ONLY
FUE 1 10.7408/5.0 *98%TD, 5.0%ENR
FUE 2 10.7408/5.0 *98%TD, 5.0%ENR
FUE 3 10.7408/5.0 *98%TD, 5.0%ENR
FUE 4 10.6832/5.00,7301 = 1.5 *98%TD, 5.00%ENR
<sup>1</sup> VOI, 90.
 MOD, .149730/1001 = 11.19,8000 = 88.81
 MI1 .686305/26000=84.829155 ,6000= 1.731207 ,1001= 1.503896 ,8000=11.935745
 MI2 .303433/26000=66.611275,6000=1.359414,1001=3.584080,8000=28.445229
 MI3 .494868/26000=79.243896 ,6000= 1.617222 ,1001= 2.141640 ,8000=16.997234
 MI4 6.705978/26000=97.789505,6000=1.995704,1001=.024035,8000=.190758
 MI5 .646048/26000=83.929482 ,6000= 1.712847 ,1001= 1.606623 ,8000=12.751048
MI6 .541578/26000=80.970863 ,6000= 1.652467 ,1001= 1.944449 ,8000=15.446123
* COO .465105/1001 = 13.991474,6000 = 75.437164,8000 = 10.571368
 COO, .149730/1001 = 11.19,8000 = 88.81
MI7 0.001/8000 = 100.0
 * 0.5127" pitch,
* POD/CID/COD = 0.40/0.40/0.436"
PIN 1 0.5080 0.55372/'1' 'CAN'//1
PIN 2 0.5080 0.55372/'2' 'CAN'//1
PIN 3 0.5080 0.55372/'3' 'CAN'//1
PIN 4 0.5080 0.55372/'4' 'CAN'//1
PIN 5 0.5080 0.7234/'MOD' 'MOD'//1
BWR 9 1.446856 13.0217 0.0 3*0.0 1
I PI
111111111
12322221
123333321
123555321
123555321
123555321
```

EMF-1563 Revision 12A Appendix 6E Page 80 of 83

£.

123333321 122222221 111111111 /'F' FST 4.9281,2.54,0.1519,2.54/0.001,3*5.2319/ 'MI1','MI2','MI1','MI3',3*'MI4','MI3'/ 'MI7', 'MI7', 'MI7', 'MI5', 'MI6', 'MI5', 'MI6', 'MI5'/ 8,4,2,4/1,3*8/ STA TIT,* + TRY #2 * RES,,0.0 LST,2*1 LPI 11111111 142242241 123333321 123555321 143555341 123555321 123333321 142242241 111111111 /'F' ۰. STA TIT, * + TRY #3 * RES,0.0 LST,2*1 LPI 111111111:1 14222424:1 123333421 123555341 123555321 12355532:1 124333321 142222241 111111111 /'F' STA TIT,*+ TRY #3a * RES,0.0 LST,2*1 LPI 1111111111 142224241 12333342:1 143555341 123555321 123555321 123333321 122224241 111111111 /'F' STA

EMF-1563 Revision 12A Appendix 6E Page 81 of 83

TIT, * + TRY #3b * RES,0.0	
LST,2*1 LPI	
1 4 2 2 2 4 2 4 1 1 2 3 3 3 3 4 2 1	
1 2 3 5 5 5 3 4 1 1 4 3 5 5 5 3 2 1 1 2 3 5 5 5 3 2 1	
1 2 3 3 3 3 3 4 2 1 1 2 2 2 2 4 2 4 1	
1111111 /'F' STA	
TIT,* + TRY #4 * RES,0.0	
LST,2*1 LPI 1 1 1 1 1 1 1 1	
1 4 2 2 2 4 2 4 1 1 2 3 3 3 3 3 2 1	
1 4 3 5 5 5 3 4 1 1 2 3 5 5 5 3 2 1 1 2 3 5 5 5 3 2 1	
1 2 3 3 3 3 3 2 1 1 4 2 2 2 4 2 4 1	
//F′ STA	
TIT, * + TRY #5 * RES,0.0 !ST 2*1	
LPI 111111111	
1 4 2 2 2 2 2 4 1 1 2 3 3 4 3 4 2 1 1 4 3 5 5 5 3 2 1	
1 2 3 5 5 5 5 4 2 1 1 2 3 5 5 5 3 2 1	
1 2 3 3 3 3 3 2 1 1 2 2 2 2 4 2 4 1 1 1 1 1 1 1 1 1 1	
/'F' STA	
* RES,0.0 LST,2*1	
LPI 111111111 142222241	
1 2 3 3 4 3 3 2 1 1 4 3 5 5 5 3 2 1	
123555421	

ł

1 2 3 5 5 5 3 2 1 1 2 3 3 3 3 4 2 1 1 2 2 2 2 4 2 4 1 1 1 1 1 1 1 1 1 /'F'
TIT, * + TRY #5b * RES,0.0 LST,2*1 LPI
1 1 1 1 1 1 1 1 1 1 1 4 2 2 2 2 2 2 4 1 1 2 3 3 4 3 3 2 1 1 4 3 5 5 5 3 2 1 1 2 3 5 5 5 4 2 1 1 2 3 5 5 5 3 2 1
1 2 3 3 4 3 3 2 1 1 2 2 2 2 4 2 4 1 1 1 1 1 1 1 1 1 1 /'F' STA
TIT,* + TRY #6 * RES,0.0 LST,2*1 LPI 1 1 1 1 1 1 1 1 1 1
1 2 2 2 2 4 2 4 1 1 2 3 3 3 3 3 2 1 1 2 3 5 5 5 3 2 1 1 2 3 5 5 5 3 4 1 1 4 3 5 5 5 3 2 1 1 2 3 3 3 3 2 4 1
1 4 2 2 4 2 4 2 1 1 1 1 1 1 1 1 1 1 /'F' STA TIT,*+ TRY #7
* RES,0.0 LST,2*1 LPI 1 1 1 1 1 1 1 1 1 1 2 2 2 2 4 2 4 1
1 2 4 3 3 3 3 2 1 1 2 3 5 5 5 3 2 1 1 2 3 5 5 5 3 2 1 1 4 3 5 5 5 3 4 1 1 2 3 3 3 3 3 2 1 1 4 2 2 2 4 2 4 1
1 1 1 1 1 1 1 1 1 /'F' STA TIT,*+ TRY #8 * RES,0.0 LST,2*1

1

EMF-1563 Revision 12A Appendix 6E Page 82 of 83

;

LPI

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 1

<u>:</u>.

. · :

EMF-1563 Revision 12A Appendix 6E Page 83 of 83

ISSUED IN FRA-ANP ON-LINE
DOCUMENT SYSTEM
DATE: 2-5-04

EMF-1563 Revision 12A Appendix 6F Page 1 of 37

Appendix 6F

3

1. A.S.

A. S. A.

ALL REAL

CRITICALITY EVALUATION FOR SIEMENS POWER CORPORATION CONSOLIDATED APPLICATION FOR CERTIFICATE OF COMPLIANCE 9248

EMF-1563 Revision 12A Appendix 6F Page 2 of 37

Siemens Power Corporation - Nuclear Division

1

.

777 - N 1977 - N 1978 - N

. .

. M EMF-1563 Revision 3

Issue Date:

Consolidated License Application for Siemens Power Corporation Model SP-1 and SP-2 Shipping Containers

Certificate of Compliance No. 9248 Docket No. 71-9248

EMF-1563 **Revision 12A** Siemens Power Corporation - Nuclear Division Appendix 6F Page 3 of 37 ξ. EMF-1563 Revision 3 -Consolidated License Application for Siemens Power Corporation Model SP-1 and SP-2 Shipping Containers Prepared: 5/20/98 J. B. Edgar, Staff Engineer Licensing **Regulatory Compliance** Concurred: -BFR koles B. F. Bentley, Manager Date Plant Operations Concurred: S. F. Gaines, Manager Date Materials and Scheduling Concurred: Xano 20/98 T. M Howe, Manager Date Product Mechanical Engineering Concurred: Usia D. A. Adkisson, Manager Quality Engineering έ. Concurred: ·20-44 C. M. Powers, Vice)President 8.3 Date Quality and Regulatory Affairs . . Approved: DV-L.J. Maas, Manager **Regulatory** Compliance

CANNEL STATIN

and the second se

EMF-1563 Revision 12A Appendix 6F Page 4 of 37

Nature of Changes

ltem	Page(s)	Description and Justification
1.	Fig.1.1, 1.2, 1.3	Revised license drawings.
2. .	Table 1.1	Revised list of license drawings.
3.	Pages 1-10 through 1-12	Revised container drawings
4.	Pages 6-1 through	Revised criticality evaluation.

Siemens Power Corporation - Nuclear Division

Calder

5-44-V

5

.

1. 2. 80. 30

.

Contents

1. Introduction	
1.1 History	
1.2 This Application	
1.3 General Package Description	
1 4 Compliance	
1.5 SP Sories Shinning Packages	
2 Structural Evaluation 2.1	
3. Thermal Evaluation	
4. Containment Evaluation	
· · · · · · · · · · · · · · · · · · ·	
5. Shielding Evaluation	
6. Criticality Evaluation	
6.1 Introduction and Summary	
6 2 Analysis Methodology 6-1	
6.2 Component Description and Analysis	
0.5 Sample Computer Inputs	
6.6 References6-32	

Siemens Power Corporation - Nuclear Division

EMF-1563 Revision 12A Appendix 6F Page 6 of 37

6. Criticality Evaluation

6.1 *Introduction and Summary*

6.1.1 Introduction

This supplemental Criticality Safety Evaluation (CSE) for the SP-1 and SP-2 shipping containers improves the CSE's provided in References 1 through 3 by justifying the use of the SP-1 and SP-2 inner containers with reduced spacing dimensions (see Section 6.3.1).

Section 6.2 details the methodologies used for the criticality analysis. Component description and analysis are provided in Section 6.3. Section 6.4 contains the Quality Assurance (QA) review. Section 6.5 provides sample input listings. Section 6.6 documents the references.

6.1.2 <u>Summarv</u>

This CSE shows that shipping SP-1 and SP-2 inner containers with the materials and transport indices provided in the current shipping certificate (Reference 6) is justified if a space of at least 1.9375" (1-15/16") exists between the channel and the outer steel shell (this space is occupied/established by angle steel; previous analyses used 2").

6.2 Analysis Methodology

6.2.1 <u>Nuclear Analysis Methodology</u>

Monte Carlo techniques were used in this analysis. The sensitivity of pellet diameter, pellet pitch, interspersed moderator, and placement of the fuel assemblies within SP-1 and SP-2 inner containers were evaluated.

6.2.2 Computer Codes and Databases Used :

The following codes and cross section libraries are part of the SCALE 4.2 system of codes (Reference 4) placed on the SPC HP workstation SSL01.

```
Jun 22 1994 11:36:41 000001.a (XSDRN)
791176 -
         Feb 21 1994 10:25:06 000002.a (NITAWL)
545416
516744<sup>::</sup>
         Feb 21 1994 10:14:38 000008.a (BONAMI)
         Jun 22 1994 11:46:27 000009.a (KENO.Va)
1094280
         Feb 23 1994 15:16:47 albdata.bin
112000 /
4256216 Feb 23 1994 14:40:21 pxs123.bin (123 group master cross section
library)
362140
         Feb 25 1994.16:54:21 pxs16.bin (16 group master cross section
library)
9020996
         Feb 23 1994 14:53:45 pxs218.bin (218 group master cross section
library)
824404
         Feb 23 1994 14:38:03 pxs27.bin (27 group master cross section
library)
94400
         Feb 23 1994 15:12:03 stdcomp.bin (standard comp. library)
44812
         Feb 23 1994 15:14:40 wtdata.bin
287
         Jul
              7 1994 09:35:35 csas25
2295
         Jul 7 1994 17:07:41 drva
```

EMF-1563 Revision 12A

Appendix 6F

Page 7 of 37

0

6.2.3 Cross Section Preparation

BONAMI and NITAWL adjust the cross section data for the specific problem (e.g., perform resonance self-shielding corrections). The Hansen-Roach 16-energy group cross sections available in SCALE were used for all calculations.

6.2.4 Benchmarking

The SCALE 4.2 system of codes was developed for use by the USNRC and its licensees. SPC benchmarking of SCALE 4.2 on HP Workstations includes critical experiments of 4.31% enriched assemblies from NUREG/CR-0073 (Reference 5) which were modeled using the same methodology used in these calculations. The benchmark data used for this CSE includes the same data used to support previous revisions to Certificate of Compliance 9248. A bias estimate based on 23 pooled cases was calculated from the 16-group data in Table 12 of Reference 10 and is -0.00321 \pm 0.00261. Negative bias indicates conservative results.

6.3 Component Description and Analysis

6.3.1 Reduced Dimensions of SP-1 and SP-2 Inner Containers

The dimensions of the SP-1 and SP-2 inner containers are shown on drawings EMF-304,416 and EMF-308,257, respectively. In previous analyses, the SP-1 and SP-2 inner containers were modeled with a 2" space between the channel and the outer steel shell (this space is occupied/established by angle steel). The calculations of this section justify the use of a 1-15/16" space, instead of 2". This change in dimension only affects the calculations for damaged conditions, as the outer container provides the container spacing for undamaged conditions. The types and forms of fuel categories listed in the SP-1/SP-2 Certificate of Compliance (Reference 6) are evaluated below.

EMF-1563 Revision 12A Appendix 6F Page 8 of 37

The KENO models used in this section are consistent with those used previously for the respective material types with one exception, i.e., the inner container spacing, discussed above.

6.3.1.1 Fuel Category 1

Ŵ

The following fuel description is listed under 5(b)(1)(i) of Reference 6:

" UO_2 fuel assemblies in a 7x7, an 8x8, or a 9x9 square array with a maximum fuel cross-section area of 25 square inches, maximum fuel length of 174 inches and maximum average enrichment of 3.3 w/o U-235. Minimum zircaloy clad thickness is 0.025 inches; maximum pellet diameter is 0.555 inches. Any number of water rods in any arrangement are permitted."

The original calculations for this material type were performed by General Electric. In order to perform calculations supporting the reduced inner container dimensions, as discussed above, the calculations from Section 6.3.1.2, below, were modified and used here. The following changes were made to the Section 6.3.1.2 input decks:

- Reduced the ²³⁵U enrichment from 4.0 to 3.3 wt%
- Replaced the Gd₂O₃ rods with 3.3 wt% enriched UO₂ rods
- Reduced the array size from infinite to 13x20x1 (260 containers)

A sensitivity study was performed for interspersed moderator and the reduced inner container dimensions, as discussed above. The results of these calculations are provided in Table 6.1 and presented graphically in Figure 6.1. As shown, the peak reactivity for both the old dimensions and the new dimensions occurs at 12 vol% interspersed moderator. The reduced dimensions result in a Δk_{eff} of +0.00507 at peak interspersed moderator. The results show sufficient margin to 0.95 to support a Transport Index of 0.4 (125 containers).

EMF-1563 Revision 12A Appendix 6F Page 9 of 37

1. A. A. A.

- 97772.89

a X

. 2 . 1

•

ст. 2...

: ۱

· .

Table 6.1 Container Spacing and Interspersed Moderator (IM) Sensitivity Study for Fuel Category 1 Inside SP-1/SP-2 Inner Containers, 13x20x1 Array (260 containers), Damaged Conditions

File Name (droa-)	Vol% IM	K _{eff}	σ	k _{eff} + 2σ		
	2" Spacing around Channel Steel					
sp1.c1.010	10	0.89276	0.00290	0.89856		
sp1.c1.011	11	0.89750	0.00265	0.90280		
sp1.c1.012	12	0.90216	0.00251	0.90718		
sp1.c1.013	13	0.89881	0.00262	0.90405		
sp1.c1.014	. 14	0.89107	0.00224	0.89555		
:	1-15/16" Sp	bacing around Channel	Steel			
sp1.c1.s2.010	10	0.89350	0.00290	0.89930		
sp1.c1.s2.011	• 11	0.90288	0.00275	0.90838		
sp1.c1.s2.012	12	0.90789	0.00218	0.91225		
sp1.c1.s2.013	13	. 0.90547	0.00269	0.91085		
sp1.c1.s2.014	14	0.90177	0.00264	0.90705		

Siemens Power Corporation - Nuclear Division

ب الجنير الحين : I

:

EMF-1563 Revision 12A Appendix 6F Page 11 of 37

. .

 \sim

÷.,

6.3.1.2 Fuel Category 2

The following fuel description is listed under 5(b)(1)(ii) of Reference 6:

" UO_2 fuel assemblies in a 7x7, an 8x8, or a 9x9 square array with a maximum fuel length of 174 inches, and a maximum average enrichment between 3.3 and 4.0 w/o U-235. The maximum pellet diameter is 0.555 inch, and the minimum clad thickness is 0.025 inch. Any number of water rods in any arrangement is permitted, including part length rods. Each assembly contains at least 4 rods with nominal 2 weight percent Gd_2O_3 , which are in non-perimeter locations and are symmetric about the diagonal."

The original calculations for this material type are found in Appendix 6A of Reference 7. The Reference 7 calculations are unavailable from permanent storage, so the listing of the most reactive case was retyped and rerun. The most reactive case from Reference 7 is for a 9x9 assembly (type G2) with a k_{inf} of 0.9611 \pm 0.0032 (see page 6-A18 of Reference 7). The retyped version of this calculation yielded a k_{inf} of 0.96200 \pm 0.00306. This ensures that the correct case was found and input correctly. Note that the Reference 7 calculations are for an infinite array of containers.

Next, a sensitivity study was performed for interspersed moderator and the reduced inner container dimensions, as discussed above. The results of these calculations are provided in Table 6.2 and presented graphically in Figure 6.2. As shown, the peak reactivity for both the old and new dimensions occurs at 9 vol% interspersed moderator. The reduced dimensions result in a Δk_{int} of +0.00320 at peak interspersed moderator.

The peak cases (both old and new dimensions) were rerun with 260 containers in a 13x20x1 array. The results are summarized below and show a Δk_{eff} of ± 0.00204 between the reactivities calculated for the 13x20x1 arrays with the old and new dimensions.

248494 May 19 15:59:55 199	/ssl01b/t3517/SP1/CAT2/droa-sp1.g2.009.260	.90362	.00376	. 90990	.91114
248563 May 19 16:08:25 199	/ssl0lb/t3517/SP1/CAT2/droa-spl.g2.s2.009.260	.90508	.00405	.91184	.91318

The maximum reactivity for the 13x20x1 array of 0.91318 has a sufficient margin to 0.95 to support a transport index of 0.4 (125 containers).

Siemens Power Corporation - Nuclear Division

. . .

and the state of the state of the

N. N. C.

and the state

EMF-1563 Revision 12A Appendix 6F Page 12 of 37

 Table 6.2 Container Spacing and Interspersed Moderator Sensitivity Study for Fuel

 Category 2 Inside SP-1/SP-2 Inner Containers, Infinite Array, Damaged Conditions

File Name (droa-)	Vol% IM	k _{inf}	σ	k _{inf} + 20	
2" Spacing around Channel Steel					
sp1.g2.007	7	0.95103	0.00318	0.95739	
• sp1.g2	8	0.96200	0.00306	0.96812	
sp1.g2.009	9	0.96376	0.00330	0.97036	
sp1.g2:0010	10	0.96111	0.00337	0.96785	
sp1.g2.011	11	0.95593	0.00327	0.96247	
sp1.g2.012	12	0.95280	0.00362	0.96004	
	1-15/16" Spaci	ng around Channel St	eei		
sp1.g2.s2.007	7	0.95201	0.00318	0.95837	
sp1.g2.s2.008	. 8	0.96354	0.00313	0.96980	
sp1.g2.s2.009	9	0.96674	0.00341	0.97356	
sp1.g2.s2.010	. 10	0.96650	0.00344	0.97338	
sp1.g2.s2.011	11	0.96169	0.00311	0.96791	
sp1.g2.s2:012	12	0.95505	0.00354	0.96213	

Siemens Power Corporation - Nuclear Division

EMF-1563 Revision 12A Appendix 6F Page 14 of 37

6.3.1.3 Fuel: Category 3

The following fuel description is listed under 5 (b)(1)(iii) of Reference 6:

" UO_2 fuel assemblies with a maximum U-235 enrichment of 5.0 percent by weight, and a maximum average U-235 enrichment of 4.0 percent by weight. Each fuel assembly is made up of fuel rods in a 10 x 10 square array, with a maximum fuel cross section of 5.022 inches square, a nominal pitch of 0.511 inch, and a maximum fuel length of 174 inches. The maximum pellet diameter is 0.3356 inch, the minimum clad thickness is 0.0225 inch, and the maximum U-235 enrichment in any edge rod is 4.0 percent by weight. Each assembly contains at least 6 rods with nominal 2 weight percent Gd_2O_3 , which are symmetric about the diagonal, and each assembly contains at least 4 water rods in the 4 central rod positions."

The original calculations for this material type are found in Appendix 6B of Reference 7. The Reference 7 calculations are unavailable from permanent storage, so the listing of the most reactive case was retyped and rerun. The most reactive case from Reference 7 yielded a k_{inf} of 0.9675 (see page 6-B25 of Reference 7). The retyped version of this calculation yielded a k_{inf} of 0.96743 \pm 0.00293. This ensures that the correct case was found and input correctly. Note that the Reference 7 calculations are for an infinite array of containers.

Next, a sensitivity study was performed for interspersed moderator and the reduced inner container dimensions, as discussed above. The results of these calculations are provided in Table 6.3 and presented graphically in Figure 6.3. As shown, the peak reactivity for both the old and new dimensions occurs at 8 vol% interspersed moderator. The reduced dimensions result in a Δk_{inf} of ± 0.00506 at peak interspersed moderator.

The peak cases (both old and new dimensions) were rerun with 260 containers in a 13x20x1 array. The results are summarized below and show a Δk_{eff} of ± 0.00416 between the reactivities calculated for the 13x20x1 arrays with the old and new dimensions.

 261636 May 19 16:49:23 1998 /ssl01b/t3517/SP1/CAT3/droa-sp1.c3.308.260
 .88981
 .00320
 .89515
 .89621

 261634 May 19 16:13:39 1998 /ssl01b/t3517/SP1/CAT3/droa-sp1.c3.s2.008.260
 .89363
 .00337
 .89926
 .30037

The maximum reactivity for the 13x20x1 array of 0.90037 has a sufficient margin to 0.95 to support a Transport Index of 0.4 (125 containers).

Siemens Power Corporation - Nuclear Division
EMF-1563 Revision 12A Appendix 6F Page 15 of 37

 $\langle \gamma \rangle$

4

-

.

Table 6.3 Container Spacing and Interspersed Moderator Sensitivity Study for Fuel Category 3 Inside SP-1/SP-2 Inner Containers, Infinite Array, Damaged Conditions

File Name (droa-)	Vol% IM	k _{inf}	σ	k _{inf} + 2o			
2" Spacing around Channel Steel							
sp1.c3.005	5	0.94681	0.00236	0.95153			
sp1.c3.006	6	0.95859	0.00259	0.96377			
sp1.c3.007	7	0.96235	0.00314	0.96863			
sp1.c3.008	8	0.96743	0.00293	0.97329			
sp1.c3.009	9	0.96594	0.00294	0.97182			
	1-15/16" Spaci	ng around Channel St		1			
sp1.c3.s2.005	5	0.94994	0.00249	0.95492			
sp1.c3.s2.006	6	0.96068	0.00240	0.96548			
sp1.c3.s2.007	7	0.96964	0.00295	0.97554			
sp1.c3.s2.008	. 8	0.97373	0.00261	0.97835			
sp1.c3.s2.009	9 ·	0.96700	0.00271	0.97242			

Figure 6.3 Container Spacing and Interspersed Moderator Sensitivity Study for Fuel Category 3 Inside SP-1/SP-2 Inner Containers, Infinite Array, Damaged Conditions

Siemens Power Corporation - Nuclear Division

ALL LAND BUD

1

6.3.1.4 Fuel Category 4

The following fuel description is listed under 5(b)(1)(iv) of Reference 6:

" UO_2 fuel rods with a maximum U-235 enrichment of 5.0 percent by weight, and a minimum Gd_2O_3 content of 1.0 percent by weight. The rods may be clad with zircaloy, steel or aluminum. The rods have a maximum fuel pellet diameter of 0.5 inch, and a maximum fuel length of 169 inches."

The calculations for this material type in Reference 3 show that this material is infinitely subcritical. Therefore, no new calculations are required to justify use of the SP-1/SP-2 container with reduced inner container dimensions for this material type.

6.3.1.5 Fuel Category 5

The following fuel description is listed under 5(b)(1)(v) of Reference 6:

"UO₂ fuel assemblies composed of fuel rods in a 10 x 10 square array, with a maximum fuel cross section of 5.0 inches square, and a maximum fuel length of 174 inches. The maximum U-235 enrichment is 5.0 weight percent, the maximum U-235 enrichment for all edge rods is 4.0 weight percent, and the maximum average enrichment, excluding perimeter rods and rods containing gadolinia (Gd₂O₃), is 4.0 weight percent U-235. The maximum pellet diameter is 0.35 inch, and the minimum clad thickness is 0.018 inch. Each assembly must have a water channel in the central 3 x 3 rod positions. Any number of additional water rods in any arrangement is permitted, including part length rods. Each assembly must include at least twelve rods with minimum nominal content of 2.0 weight percent gadolinia (Gd₂O₃), in a pattern symmetric about one of the assembly diagonals. At least eight of the twelve gadolinia rods must be located in rows 2 and 9, and in columns 2 and 9 of the assembly."

The original calculations for this material type are found in Reference 8. The most reactive case from Reference 8 yielded a k_{eff} of 0.93001 ± 0.00186 (10 vol% interspersed moderator; case drda-evk10; page 73).

The most reactive case from Reference 8 was retrieved from tape and modified to reduce the inner container spacing, as described above. A sensitivity study was performed for interspersed moderator and the reduced inner container dimensions. The results of these calculations are provided in Table 6.4 and compared graphically to the Reference 8 results in Figure 6.4. As shown, the peak reactivity for both the old and new dimensions occurs at 10 vol% interspersed moderator. The reduced dimensions results in a Δk_{eff} of $\div 0.00499$ at peak interspersed moderator. The peak k_{eff} (0.93528 \pm 0.00172) for the reduced dimensions and 104 containers has adequate margin to 0.95 to justify retention of a Transport Index of 1.0 for this material type.

Š

Table 6.4 Container Spacing and Interspersed Moderator Sensitivity Study for Fuel Category 5 Inside SP-1/SP-2 Inner Containers, 8x13x1 Array (104 containers), Damaged Conditions

File Name (droa-)	Vol% IM	k _{eff}	σ	k _{sff} + 2σ				
2" Spacing around Channel Steel (Results from Page 73 of Reference 8)								
evk08 8 0.92694 0.00169 0.93032								
evk10	10	0.93001	0.00186	0.93373				
evk12	12	0.92254	0.00181	0.92616				
·	1-15/16" Spac	ing around Channel St	eel					
evk10.s2.008	8	0.93017	0.00181	0.93379				
evk10.s2.009	9	0.93280	0.00177	0.93634				
evk10.s2.010	10	0.93528	0.00172	0.93872				
evk10.s2.011	11	0.93156	0.00180	0.93516				
evk10.s2,012	12	0.92962	0.00163	0.93288				

EMF-1563 Revision 12A Appendix 6F Page 20 of 37

6.3.1.6 Fuel Category 6

The following fuel description is listed under 5(b)(1)(vi) of Reference 6:

"UO₂ fuel assemblies composed of fuel rods in a 10 x 10 square array, with a maximum fuel cross section of 5.0 inches square, and a maximum fuel length of 174 inches. The maximum U-235 enrichment is 5.0 weight percent. The maximum pellet diameter is 0.35 inch, and the minimum clad thickness is 0.018 inch. Each assembly must have a water channel in the central 3 x 3 rod positions. Any number of additional water rods in any arrangement is permitted, including part length rods. Each assembly must include at least eight rods with minimum nominal gadolinia (Gd_2O_3) content of 2.0 weight percent in all axial regions with enriched pellets. Additional gadolinia rod specifications are included in supplement dated April 30, 1996."

The original calculations for this material type are found in Reference 9. The most reactive case from Reference 9 yielded a k_{eff} of 0.92544 \pm 0.00186 (16 vol% interspersed moderator; case drda-t6.16; page 35).

The most reactive case from Reference 9 was retrieved from tape and modified to reduce the inner container spacing, as described above. A sensitivity study was performed for interspersed moderator and the reduced inner container dimensions. The results of these calculations are provided in Table 6.5 and compared graphically to the Reference 9 results in Figure 6.5. As shown, the peak reactivity for both the old and new dimensions occurs at 16 vol% interspersed moderator. The reduced dimensions result in a Δk_{eff} of +0.00494 at peak interspersed moderator. The peak k_{eff} (0.93016 \pm 0.00197) for the reduced dimensions and 104 containers has adequate margin to 0.95 to justify retention of a Transport Index of 1.0 for this material type.

Siemens Power Corporation - Nuclear Division

. . .

Sec. Sugar

Table 6.5 Container Spacing and Interspersed Moderator Sensitivity Study for Fuel Category 6 Inside SP-1/SP-2 Inner Containers, 8x13x1 Array (104 containers), Damaged Conditions

File Name (droa-)	Vol% IM	sin sk _{∎tf,} 2 s	σ	k _{eff} + 2σ
2" Spac	ing around Channel Ste	el (Results from Page	35 of Reference 9)	
t6.15	15	0.92232	0.00191	0.92614
t6.16	16.	0.92544	0.00186	0.92916
t6.17 _:	17	0.92169	0.00197	0.92563
	1-15/16" Spaci	ng around Channel S	iteel	· <u>····································</u>
t6.16.015	15	0.92788	0.00174	0.93136
t6.16.016	16	0.93016	0.00197	0.93410
t6.16.017	17	0.92708	0.00183	0.93074
t6.16.018	18	0.92419	0.00197	0.92813

; 1

The star was wanted

EMF-1563 Revision 12A Appendix 6F Page 22 of 37

÷

Figure 6.5 Container Spacing and Interspersed Moderator Sensitivity Study for Fuel Category 6 Inside SP-1/SP-2 Inner Containers, 8x13x1 Array (104 containers), Damaged Conditions

Siemens Power Corporation - Nuclear Division

Siemens Power Corporation - Nuclear Division

EMF-1563 Revision 12A Appendix 6F Page 23 of 37

<u>ا</u>

÷ . .

6.3.1.7 Fuel Category 7

The following fuel description is listed under 5(b)(1)(vii) of Reference 6:

" UO_2 fuel assemblies composed of fuel rods in a 9 x 9 square array, with a maximum fuel cross section of 5.0 inches square, and a maximum fuel length of 174 inches. The maximum U-235 enrichment is 5.0 weight percent. The maximum pellet diameter is 0.40 inch, and the minimum clad thickness is 0.015 inch. Each assembly must have a water channel in the central 3 x 3 rod positions. Any number of additional water rods in any arrangement is permitted, including part length rods. Each assembly must include at least eight rods with minimum nominal gadolinia (Gd₂O₃) content of 2.0 weight percent in all axial regions with enriched pellets. Additional gadolinia rod specifications are included in supplement dated April 30, 1996."

The original calculations for this material type are found in Reference 9. The most reactive case from Reference 9 yielded a k_{eff} of 0.90532 ± 0.00173 (15 vol% interspersed moderator; case drda-3a.15; page 41).

The most reactive case from Reference 9 was retrieved from tape and modified to reduce the inner container spacing, as described above. A sensitivity study was performed for interspersed moderator and the reduced inner container dimensions. The results of these calculations are provided in Table 6.6 and compared graphically to the Reference 9 results in Figure 6.6. As shown, the peak reactivity shifts from 15 vol% interspersed moderator for the old dimensions to 14 vol% interspersed moderator for the new dimensions. The reduced dimensions result in a Δk_{eff} of +0.00795 at peak interspersed moderator. The peak k_{eff} (0.91283 \pm 0.00195) for the reduced dimensions and 104 containers has adequate margin to 0.95 to justify retention of a Transport Index of 1.0 for this material type.

4 ; 3 }

272 - 273

:::

EMF-1563 Revision 12A Appendix 6F Page 24 of 37

Table 6.6 Container Spacing and Interspersed Moderator Sensitivity Study for FuelCategory 7 Inside SP-1/SP-2 Inner Containers, 8x13x1 Array (104 containers), DamagedConditions

File Name (droa-)	Vol% IM	k _{att}	σ	k _{stf} +∷2σ				
2" Spacing around Channel Steel (Results from Page 41 of Reference 9)								
3a:14 14 0.89664 0.00177 0.90018								
3a.15	15	0.90532	0.00173	0.90878				
3a.16	16	0.90424	0.00186	0.90796				
	1-15/16" Spaci	ng around Channel St	eel					
3a.15.013	13	0.91079	0.00186	0.91451				
3a.15.014	14	0.91283	0.00195	0.91673				
3a.15.015	15	0.91075	0.00183	0.91441				
3a:15.016	16	0.90957	0.00182	0.91321				
3a.15.017	17	0.90689	0.00178	0.91045				

Siemens Power Corporation - Nuclear Division

11

EMF-1563 Revision 12A Appendix 6F Page 26 of 37

6.4 **OA Review Description**

Alter and the second

Particulari - Carallari - Carallari

1)

- Methodology used in this CSE is clearly defined and was verified to be applicable. The calculation methods including details on cross section preparation, atom densities assumed, and geometry models were reviewed and determined to be adequate. Each of these items was verified to be conservative.
- 2) Assumptions were reviewed for reasonableness and applicability to this analysis.
- 3) Modeling was reviewed and determined to conservatively model the actual system. A listing of one or more of the most reactive cases is included in the CSE.
- 4) Referenced sources were reviewed for applicability to this CSE.
- 5) Input information was checked against referenced sources.
- 6) Input for computer calculations were checked for agreement with values in the CSE text.
- 7) Hand calculations were independently checked.
- 8) K_{eff} for worst case accident conditions is specifically stated in the text.
- 6.5 Sample Computer Inputs
- <u>Case "drda-sp1.c1.s2.012"</u>: Category 1 Material (see Reference 6) in SP-1 Inner Container, 12 vol% Interspersed Moderator, 13x20x1 Array (260 Containers), Damaged Conditions

```
=csas25
model for category 1 assembly
hans infhom
' mixture 1
interior uo2 pellets, 3.3 wt% u235
u-235 1 0.0 5.16852e-04 293 end
u-238 1 0.0 2.36339e-02 293 end
0
      1 0.0 4.89015e-02 293 end
' mixture 2
  edge uo2 pellets, 3.3 wt% u235
u-235 2 0.0 8.16852e-04 293 end
u-238 2 0.0 2.36339e-02 293 end
      2 0.0 4.89015e-02 293 end
C
' mixture 3
   edge up2 pellets facing other bundle, 3.3 wt% u135
u-235 3 0.0 8.16852e-04 293 end
u-238 3 0.0 2.36339e-02 293 end
0
      3 0.0.4.89015e-02 293 end
```

' mixture 4

	Consolidated License Application for SPC Model SP-1 and SP-2 Shipping Containers			· .	· .	EMF-1563 Revision 12A Appendix 6F Page 27 of 37		ie : . :
								·.
	gd-uc2 pellets, 4 wtł u235, 4 wtł gd u-235 4 0.0 9.4068e-04 293 end u-238 4 0.0 2.2291e-02 293 end o 4 0.0 4.6464e-02 293 end	:				: .		
	ga a 0,0 6,6836466-04 233 cha							
	' mixture 5 ' smeared zr clad ' pod, cid, cod = 0.4221", 0.4281", 0.4781" ' vol fract zr = 0.8988							
	<pre></pre>					•		
	<pre>' mixture 6 ' 12 vol% interspersed moderator o 6 0.0 4.0056e-03 293 end h 6 0.0 8.0112e-03 293 end</pre>							
	' mixture 7 ' carbon steel, 100 vol¥ c 7 0.0 3.921682e-03 293 end				·	· ·		
	fe 7 0.0 8.350009e-02 293 end	:				• •		
	carbon steel, 85.57 volk smeared with 12 volk c 8 0.0 3.355783e-03 293 end fe 8 0.0 7.145103e-02 293 end c 8 0.0 5.2503e-04 203 end	n h20						
	h 8 0.0 1.1560e-03 293 end							
	<pre>mixture 9 ' carbon steel, 8.54 volt c 9 0.0 3.3B8333e-04 293 end fe 9 0.0 7.21440Be-03 293 end</pre>							
	o 9 0.0 3.6595e-03 293 end h 9 0.0 7.3190e-03 293 end						·	
	' mixture 10				1			80%
	o 10 0.0 3.344e-02 293 end h 10 0.0 5.689e-02 293 end							
	end comp : more data res= 1 cyli 3.9493E-01 dan(1)= 7.9334E-01					· ·		
	res= 2 cyli 6.2643E-01 dan(2)= 4.8377E-01 res= 3 cyli 5.9010E-01 dan(3)= 5.6605E-01 end more							
	model for category 1 assembly read parameters tme=60.0 gen=103 npg=500							
	flx=yes fdn=yes xsl=yes nub=yes pwt=yes run=yes plt=yes end parameters	¢			• •			
	read geometry unit 1 com=" interior uo2 rod "	•						
	cyli 1 0.5361 2p225.58 cyli 5 1 0.6072 2p225.58 cubo 6 1 4p0.71785 2p225.58							\$ 5.3
	unit 2 com=" edge uo1 rod " cyli 2 1 0.5361 2p125.58							
	суli 5 l 0.6072 2p225.58 сиро 6 l 4p0.71785 2p225.58							
			•		• •			<i>21</i>
•	Siemens Power Corporation - Nuclear Division	•			•	· ·		

. ...

;

and a second
EMF-1563 Revision 12A Appendix 6F Page 28 of 37

unilt 3 com=" edge rod facing other bundle cyli 3 1 0.5361 2p225.58 cyli 5 1 0.6072 2p225.58 cubo 6 1 4p0,71785 2p225.58 unit 4 ' com=" uo2-gd203 rod " ' cyli 4 1 0.5361 2p225.58 ' cyli 5 1 0.5072 2p225.58 ' cubo 6 1 4p0.71785 2p225.58 unit S com=" 9x9 bundle in left basket " array 1 2r-6.46065 -225.58 cubo 6 1 4p8.7381 2p225.58 ' add 0.00598 inch of perforated steel cubo 8 1 4p8.89 2p225.58 . unit 6 com=" 9x9 bundle in right basket " array 2 2r-6.46065 -225.58 cubo 6 1 4p8,7381 2p225.58 ' add 0.00598 inch of perforated steel cubo 8 1 4p8.89 2p225.58 unit 7 com=" spacing & steel angle beside basket " cubo 9 1 2p2.46063 2p4.9391 2p225.58 cubo 6 1 2p2.46063 2p8.89 2p225.58 unit 8 com=" angles & spacing beneath & above baskets : cubo 9 1 2p4:9392 2p2.46063 2p225.58 cubo 6 1 2p8.89 2p2.46063 2p225.58 unit 9 com="1 15/16 x 1 15/16 inch moderation regions at corners " cubo 6 1 4p2,46063 2p225.58 unit 10 com=" 1 inner container " array 3 -22.86 -13.97 -225.58 ' add 0.0598 inch walls repl 7 1 5r0.1519 1 global unit 11 com="array of inners " array 4 3r0.0 repl 10 2 6r3.0 10 end geometry read array ara=1 nux=9 nuy=9 nuz=1 5111 2 2 2 2 2 2 2 2 2 2 21111113 2111113 2111113 2-1 1 1 1 1 1 1 3 21111113 21111113 21111113 end fill ara=2 nux=9 nuy=9 nuz=1 ££11 $3 1 1 1 1 1 1 1^{3}$ 3 1 1 1 1 1 1 1 1 2 3 1 1 1 1 1 1 1 2 31111111 3 1 1 1 1 1 1 1 1

Consolidate Model SP-1	ed License App and SP-2 Shi	plication for SP pping Containe	C Irs				EMF-1563 Revision 12A Appendix 6F Page 29 of 37	•
	·				,		·	
311111 311111	112							N 16
2 2 2 2 2 2 2	2 2 2				•			6 °
end fill								
Eill	nuy=3 nuz=1		,				· ·	h.,
9889	:							ي•
7557 99990								
and fill	• ;				•			
ara=4 nux=13	nuy=20 nuz=1						:	£ 1
nd arrav	1 6111						:	
ead start		·						ł., ,
ISC=1							• •	
nd start ead bounds	:							
11=vacuum								1.1
nd bounds	•							
esd bi				1				
id=500 2 1	2							ř.
nd bias							•	-
and plac	:							ş.
ad piot							,	
l=' xy sect	tion of bottom	left containe	r '					
1=0	yul=28.2438	zul=10						Ē
.5=46.0238 Ex=1	yir=0 ydp=-1	zlr=10						
	· · · · ·	max=150 1D:	1=10 G	na			:	
l=' xy sect	ion of 5x5 ar:	ray '					· .	÷.,
1=0 T=230.119	yu1=141.219 ylr=0	zul=10						574 2
x=1	y0 vân=-1	nax=150 lpi	i=10 e	nd			, *.	
d plac	•		-				:	<u>Est</u>
n proc	•			1			•	
d data,	·							W.S.
d			·					83.) 8
						•		8 - E
								5.3
Case	<u>"drda-t6.16.</u>	.016": Cat	tegory (6 Material (s	ee Reference f) in SP-1 In	ner	معازيح
Cont	ainer, 16 volg	% Intersperse	d Mode	rator, 8x13>	<1 Array (104	Containers)	· _ ·	×
Dama	aged Conditio	ons						14
	•							•
sas25				1		•		
-1 with 5.0 ns infr	<pre>% enriched 10x</pre>	cl0 fuel	·					<u>и</u> ,
2 1 0.98 29	3.0 92235 5.0	92238 95.0	end					
			- · •					i.
0.30 29	J.V 74m15 5.0	92238 95.0	end				•	
2 3 0,98 29	3.0 92235 5.0	92239 95.0 end					,	
		00000 <u>66 -</u> ·					•	
1 4 0 00 00	J.U 92235 5.0	92238 95.0 end						
2 4 0.98 29	· •							
2 4 0.98 29 1 5 0.98 29	3.0 [.] 92235 5.0	92238 95.0 end						ł -
2 4 0.98 29 3 5 0.98 29 3 6 0 00 25	3.0 92235 5.0	92238 95.0 end						61 201 201
2 4 0.98 29 2 5 0.98 29 2 5 0.98 29	3.0 92235 5.0 3.0 92235 5.0	92238 95.0 end 92238 95.0 end						67 27 27
2 4 0.98 29 2 5 0.98 29 2 5 0.98 29 2 5 0.98 29 Poison rod	3.0 92235 5.0 3.0 92235 5.0 with 2% gd203	92238 95.0 end 92238 95.0 end						

Siemens Power Corporation - Nuclear Division

۰,

State of the second

Report - Contraction

EMF-1563 Revision 12A Appendix 6F Page 30 of 37

td of uo2-gd2o3 = 10.96 -2.65*p/[p+0.67145*(1-p)], p=wt frac.gd2o3 "p" is 0.02 here, td is 10.9012 pellet density is 0.98*10.9012=10.6832 ' uo2 density is 0.985*10.6832 = 10.5230 gd203 density is 0.02*10.6832 = 0.1602 gm/cc uo2 7 den=10.5230 1.0 293.0 92235 5.00 92238 95.00 end arbmgd2o3 0.1602 2 0 1 0 64000 2 8016 3 7 1.0 293. end zizcalloy 8 1.0 293.0 end water, 15 vol.s h20 9 0.16 293.0 end ' basket steel carbonsteel 10 1.0 293.0 end angle steel carbonsteel 11 1.0 293.0 end ' shell steel: carbonsteel 12:1.0 293.0 end ' reflector water h2o 13 1.0 293 end ' polyethylene, 100 vol% arbmpe 0.92 2 0 1 0 6012 1 1001 2 14 1.0 293. end " higher enriched rods uo2 15 0.98 293.0 92235 5.0 92238 95.0 end end comp. more data res= 1 cyli [3.3257E-01 dan(1)= 7.2144E-01 res= 2 cyli 4.0773E-01 dan(2)= 6.6051E-01 res= 3 cyli 4.9805E-01 dan(3)= 4.3406E-01 res= 4 cyli 4.9935E-01 dan(4) = 4.3695E-01 res= 5 cyli 4.8315E-01 dan(5)= 4.7915E-01 res= 6 cyli 4.8334E-01 dan(6)= 4.8263E-01 res= 7 cyli 3.2811E-01 dan(7)= 7.3696E-01 end more sp-1 with 4.0% enriched 10x10 fuel read parameters tme=90 gen=200 npg=600 nsk=0 flx=yes fdn=yes xsl=yes nub=yes pwt=yes run≂yes plt≃yes end parameters . read geom ' pellet diam: 0.35" gap: zero clad thk: 0.018" ' pitch: 0.5127" unit 1 com="interior rod" cyli 1 1 0.4445 2p226.695 cyli 9 1 0.49022 2p226.695 cubo 9 1 2p0.6510866 2p0.49022 2p225.695 ' polyethylene shims between rods cubo 14 1 4p0.6510866 2p226.695 ' use 1d water; in place of shims сиво 9 1 4р0.6510866 2р226.695 unit 2 com="interior rods around water rod" cyli 2 1 0.4445 2p226.695 Siemens Power Corporation - Nuclear Division

Consolidated License Application for SPC Model SP-1 and SP-2 Shipping Containers			: .		EMF-1563 Revision 12A Appendix 6F Page 31 of 37	
	•					'e
cyli 8 1 0.49022 2p226.695						÷:
' polyethylene shims between rods		•				
' Cubo 14 1 4p0.6510866 2p226.695						
cubo 9 1 4p0.6510866 2p226.695						
11717 7						۰., .
com="edge rod facing up"					•	
cyli 3 1 0.4445 2p226.695	:		•			F,
CV11 8 1 0.49022 2p226.695 CUDO 9 1 2p0.6510866 0.6510866 -0.49022	26 625					50
polyethylene shims between rods	26.695					
' cubo 14 1 4p0.6510866 2p226.695					1	č
cubo 9 1 4p0.6510866 2p226.695		,				۰.
Dom="edge rod facing down"						1
yli 4 1 0.4445 2p226.695		•				83.
Y11 8 1 0.49022 2p226.695						
polyethylene shims between rods	26.695					
cubo 14 1 4p0.6510866 2p226.695				•••		83
use 1d water in place of shims					:	
						6-11F
unit 5						(=:;
ne edge fod facing other nundle"			·			
/li 8 1 0.49022 2p226.695				•		P201.2
1bo 9 1 2p0.6510866 2p0.49022 2p226.695				·		\sim
cubo 14 1 4p0.6510866 2p226.695				•		
use ld water in place of shims					•	1000
LO 9 1 4p0.6510866 2p226.695						<u>.</u>
				,		
m="edge fod facing out" /li 6 1 0.4445 2n226 ses						<i>1</i>
li 8 1 0.49022 2p226.695					· ·	
bo 9 1 2p0.6510866 2p0.49022 2p226.695						
cubo 14 1 4p0.6510866 2p226.695						
use 1d water in place of shims					· ·	0
9 1 4p0.6510866 2p226.695						
nit 7						
n="uo2-gd2o3 rod"						•
Li 8 1 0.49022 20226.695	1					
00 9 1 2p0.6510866 2p0.49022 2p226.695		•				
polyethylene shims between rods					,	
use 1d water in place of shims						р 1
9 1 4p0.6510866 2p226.695						
12 9						
"water rod"						
0 9 1 4p0.6510866 2p226.695						
E 9 ·						
='side basket element, 0.0598"x1.75"x1.75" sta	el with 0.75"	diam. hole'				!-;
1 및 1 0.9525 0.1519 0.0 10 1 0.1519 0 0 4mp pape		· · · · ·				
· · · · · · · · · · · · · · · · · · ·						
·	, i					\$ \$
		•				
mens Power Corporation - Nuclear Division	:				۰ ۱	

- - -

1. A.A.A.

e Alexandre en el composition de la compo

· · · · · · ·

÷...

.

. :

}

and a second a second

.

EMF-1563 Revision 12A Appendix 6F Page 32 of 37

diam. hole'

(·		
	unit 10	
	com='side basker element o econtra coopura actu	
	xcyl 9 1 0.9525 0 1518 0 0	ceel with 0.75"
	cubo 10 1 0 1519 0 0 3ng MCEE 2-2 2225	
	_*	
	unit 11	
	com='one complete packet side	
	1x4x102 array of units 10 c 12	
	array 1 0 0'-2 7781 -255 605	
	unit 12	
	Com='top/bottom basket alemant	
	1.75"x0 0598"x1 750 creat with a rem it	
	Yeyl 9 1 0 9555 0 1510 0 0	
	Celo 10 1 2p2.2225 0.1519 0.0 2p2.2225	
	unit 13	
	5902"x0 0500 masket element '	
	2:0902 x0.0598"x1.75" steel with 0.75" diam. hole	e'
	5^{-} 5^{-	
	Cable 10 1 202.14655 0.1519 0.0 202.2225	
	1101-1-14	
	Avivion and complete basket top/bottom	
	ATTRY 2 - 2 7721 0 0 000 000	
	unit 15	•
	Cubo 10 1 0 2510 p o reserve corners'	
	0.0 20 2 0.1319 0.0 0.1519 0.0 20226.595	
	unit 16	
)	Come" spacing (spacing (
	Cubo 9 1 4 Poloc a page at -x side of basket "	
	hole 27 0 15275 0 0 0 0 0 0	
	hole 22 0 47625 0 200	
	hole 22 0.47625 0.3175 0.0	
	hole 22 0.79375 0.655 0.0	
	hole $22 + 0.79375 = 0.635 + 0.0$	
	bole 22 1.11125 0.9525 0.0	
	hole 22 1.11125 -0.9525 0.0	
	hole 22 1.428/5 1.27 0.0	
	bole 22 1.428/5 -1.27 0.0	
	hole $22 + 1.74625 + 1.5875 + 0.0$	
	hole 22 1.74625; -1.5875 0.0	
	hole 22 2.06375 1.905 0.0	
	bole 22 2.063/5 -1.905 0.0	
	bole 22 2.38125 2.225 0.0	
	$b0^{1}e^{-27} = 2.38125 + 2.2225 = 0.0$	
	hole 22 2.698/5 2.54 0.0	
	bole 22 2.898/5 -2.54 0.0	
	bole 22 3.01625 2.8575 0.0	
	hole 22 3.01625 -2.8575 0.0	
	hole 22 3.33375, 3.175 0.0	
	hole 22 3.333/5 -3.175 0.0	
	hole 22 3 65125 -3 4925 0.0	
	hole 77 3 96975 5 65 6 6	
	hole 77 3 george 7 og 6 -	
	hole 72 4 78676 4 7967 6 6	
	hole 22 1 78675 -4 1976 A A	
	hole 22 4 60375 A 41275 0.0	
	hole 22 4 60375 -4 (46 6 6 7	
	······································	

Siemens Power Corporation - Nuclear Division

:

Consolidated License Application for SPC Model SP-1 and SP-2 Shipping Containers				⊨MF-1563 Revision 12A Appendix 6F Page 33 of 37	;
unit 17					
cube 9 1 0 0 -4 92725 2m2 2 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5	и .				
hole 22 -0.15875 0 0 0 0			•		2
hole 22 -0.47625 -0.3175 0:0					
hole 22 -0.47625 0.3175 0.0					
hole 22 -0.79375 0.635 0.0					
hole 22 -0.79375 -0.535 0.0					·
noie 22 -1.11125 0.9525 0.0					2.00 2.0
hole 22 -1.11125 -0.9525 0.0					•
hole 22 -1.42875 -1.27 0.0					
hole 22 -1.74625 1.5875 0 0					
hole 22 -1.74625 -1.5875 0.0					
hole 22 -2.06375 1.905 0.0					
hole 22 -2.06375 -1.905 0.0					<i>t</i> ••
hole 22 -2.38125 2.225 0.0					
noie 22 -2.38125 -2.2225 0.0					C:
noie 22 -2.69875 2.54 0.0					
hole 22 -2.69875 -2.54 0.0					÷.
hole $22 - 3.01625 2.8575 0.0$			1		ģ.
hole 22 -3.01625 -2.8575 0.0				÷.	5.
hole 22 -3.3375 3.130.0	-		•		
hole 22 -3 65125 3 4975 0 0					÷.
hole 22 -3.65125 -3 4925 0.0					
hole 22 -3.96875 3.81 0 0					23
hole 22 -3.96875 -3.81 0.0					
nole 22 -4.28625 4.1275 0.0				,	Į.
hole 22 -4.28625 -4.1275 0.0					Č.
nole 22 -4.60375 4.445 0.0	-		•		5
nole 22 -4.60375 -4.445 0.0					
					Į.
"bo B l Dro on the seath baskets "		•			
pole 71 0 0 0 15275 0 0 2p226.695					Ø712
1012 21 -0.3175 0 47707 0 0					
lole 21 0.3175 0 47675 0 0					
ole 21 0.635 0.79375 0 0					
ole 21 -0.635 0.79375 0.0					51
ole 21 0.9525 1.11125 0.0					is.
ole 21 -0.9525 1.11125 0.0					¥.,
ole 21 1.27 1.42875 0.0					
OLE 21 -1.27 1.42875 0.0				•	¢.
ole 21 1.5875 1.74625 0.0					
ole 21 -1.5875 1.74625 0.0					k.,
Die 21 1.905 2.06375 0.0			,		
Die 21 -1.905 2.06375 0.0					ý.
DIE 21 2.2225 2.38125 0.0					Ŷ
ble 21 -2.2225 2.38125 0.0					h.,
21 - 21 - 2.54 - 2.698/5 - 9.0					
2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 =					2
ble 21 -2.8575 3.01675 n n				•	
ble 21 3,175 3,33375 0.0				•	٤.
le 21 -3.175 3.33375 0.0					
le 21 3.4925 3.65125 0.0					
le 21 -3.4925 3.65125 0.0					6 - 2
le 21 3.91 3.96875 0.0					1.2 1.2
le 21 -3.81 3.96875 0.0			,		
le 21 4.1275 4.28625 0.0		•			بر د
Le 21 -4.1275 4.28625 0.0	•	•			<u>۶</u>
12,21 4.445 4.60375 5.0					£.,
ie 21 -4.445 4.60375 0.0					
! ·					i.
· ·					
					e

. .

· > > () -

. .

.

. . .

Siemens Power Corporation - Nuclear Division

.

2

.

· · · · .

.

:

EMF-1563 Revision 12A Appendix 6F Page 34 of 37

unit 19
.com="angles & spacing above baskets "
cubo 9 1 2p8.89 0.0 -4.92126 2p226.695
hole 21 0.0 -0.15875 0.0
hole 21 -0.3175 -0.47625 0.0
hole 21 0 3175 -0 47625 0.0
hole 21 0.635 -0.79375 0.0
hole 21 -0.535 -0.79375 0.0
hole 21 0,055 -0,7575 0.0
hole 21 0.5525 -1.1125 0.0
nole 21 1:27 -1.42875 0.0
noie 21 -1.27 -1.42875 0.0
Nole 21 1.5875 -1.74625 0.0
nole 21 -1.5875 -1.74625 0.J
hole 21 1.905 -2.06375 0.0
hole 21 -1.905 -2.06375 0.0
hole 21 2.2225 -2.38125 0.0
hole 21 -2.2225 -2.38125 0.0
hole 21 2.54 -2.69875 0.0
hole 21 -2.54'-2.69875 0.0
hole 21 2.8575 -3.01625 0.0
hole 21 -2.8575 -3.01625 0.0
hole 21 3.175 -3.33375 0.0
hole 21 -3.175 -3.33375 0.0
hole 21 3,4925 -3,65125 0.0
hole 21 -3.4925 -3.65125 0.0
hole 21 3.81 -3.96875 0.0
hole 21 -3.81 -3 96875 0 0
hole 21 4.1 $\ddot{1}$ 75 -4.28625 0.0
hole 21 -4 1275 -4 28625 0 0
hole 21 $445 - 4 = 0.275 0 0$
bole 21 -4 445 -4 60375 0.0
NOIE 214.445 -4.603/5 0.0
anne 1 15/16 m 1 15/16 inch rederation regions at corners
come i 15/16 X 1 15/16 inch moderation regions at corners
Cubb 9 1 4p2 46063 2p226.695
unit 21
com="part of steel angle"
0.1552" x 0.125"
cubo 11 1 2p0.197104 2p0.15874 2p226.695
unit 22 :
com="part of steel angle"
0.125" x 0.1552"
cubo 11 1 2p0.15874 2p0.197104 2p226.695
unit 23
com="left (-x) l0x10 bundle in basket"
' bundle at outer edge, centered vertically
array 3 -8.7381 -6.510866 -226.695
cubo 9 1 2p8, 7381 2p8, 7381 2p226, 595
unit 24
com="right 10x10 bundle in basket"
' bundle at outer edge, centered vertically
array 4 -4 2836334 -6 510866 -226 695
cubo = 9 + 2 p 8, 7381 + 2 p 8, 7381 + 2 p 226, 695
· · · · · · · · · · · · · · · · ·
unit 25
com="complete left basket with bundle"
array 5 2r-8.89 -226.695

unit 26

Siemens Power Corporation - Nuclear Division

:.

; ;	Consolidated License Application for SPC Model SP-1 and SP-2 Shipping Containers				EMF-1563 Revision 12A Appendix 6F	
•		· · · · · · · · · · · · · · · · · · ·			Page 35 of 37	
	com="complete right basket with bundle" array 6 2r-8.89 -226 695	1				;
	unit 27		• •			
:	com=" 1 inner container "					È
:	array 7 -22.86 -13.97 -226.695 ' add 0.0598 inch walls of carbon seed					ť
· ·	repl 12 1 6r0.1519 1			·		5
:	unit 28					
	$com=" 1 15/16 \times 1 15/16$ inch moderation regions cubo 9 1 4D2.46063 2D226 car	at corners "				
1	unit 29			• .		€** 20 8
	com='higher enriched rods' cyli 15 1 0 4445 process					÷.,
	cyli 8 1 0.49022 2p226.695					
	Cubo 9 1 2p0.6510866 2p0.49022 2p226.695 ' polyethylene shims between rods Cubo 14 1 4p0.6510866 2p326 cor					
	g]nha]		•			5-12 19
ł	unit 30					
	Com=" 8x13x1 array of inners " array 8 -184 0852 102 -2015					
·	add 30 cm water reflector at all 6 faces					
•	repi 13 2 6r3.0 10			•	•	1-2 <u>,</u> ,
	end geom					r j
	read array		·			
	ara=1 nux=1 nuy=4 nuz=102 loop					
	⁹ - 1 1 2 3 1 1 102 1 10 1 1 1 1 4 3 1 102 1					12
•	end loop					
	loop				·	
•	$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
•	end loop					
•	' right bundle, poison corner at ll ara=3 nux=10 nuy=10 nuz-1					er sa Se o
	05 01 01 01 01 01 07 01 01 05					
	05 01 01 01 01 01 01 07 01 06 05 01 02 01 02 07 03 03 03 05					
	05 01 01 02 08 08 08 02 01 06					S.S.
	05 01 01 02 08 08 08 02 01 06 05 07 01 02 08 08 08 07 01 06					
	05 01 07 02 02 02 02 02 01 06					
1	04 04 04 04 04 04 04 04 04 04 04 04 04					
:	end fill					
•	left bundle, poison corner at ur					
:	ara=4 nux=10 nuy=10 nuz=1			•		,
	04 04 04 04 04 04 04 04 04 04 04					
•	06 01 07 01 01 01 01 01 05 06 01 07 01 01 01 01 01 01 05					27
	·- ·- ·- ·· ·· ·· ·					
	н. н					
	Siemens Power Corporation			•.		
:	Sections Fower Corporation - Nuclear Division			· ·		
			•	•		

÷ • ; :

:

· ··· · · · · · · · ·

		•	
Consolidated License Application for SPC	4		
Model SP-1 and SP-2 Shipping Container	e 1		
			· ·
, •	•		
06 07 02 02 02 02 02 03 03 05	•	•	\$
		•	
	:		
end fill			
	•		
ara=5 nux=3 nux=? nux=?			
fill		•	
15 14 15			
11 23 11			
15 14 15			
end fill			
ara=6 pur-3 pur-2 1			
f_{11}			
15 14 15		•	
13 24 13			
15 14 15			
and fill .			
412a = 1 $10x = 4$ $10y = 3$ $10z = 1$			
20 18 19 20			
16 75 76 17.			
29 19 10 20			
end fill			
	,		
fill f27 end fill			
·			
YSMERALE 77 HERE 15 CO			
and starr $xsp=45.72$ ysm=-27.94 ysp=27.	94 zsm=-10 zsp=10		
	•		
read bounds all unguin and have to			
read bias id=500 2 11 and bias			
cead plot			
the" vy section of minute sector i	1		
the " yr decion of single storage location	n "		
(1) = 10.0 $(1) = 10.0$ $(1) = 10.0$			
121-10.0 XIT=10.0 Yul=10.0 Ylr=-10.0 Zu	il=0.0_zlr=0.0		
ax=1.0 $von=-1.0$ $nax=120$ $lpi=10$ end			
yx section of single storage location	1 "		
CH=" XX Q>g: ,\$\$\$ * X"			
$x_{1}=40.0 x_{1}=40.0 y_{1}=40.0 y_{1}=-40.0 z_{1}$	1=0.0 clr=0.0		
ax-1.0 Van=-1.0 nax=120 lpi=10 end			
"" yx section of two bundles in inner co	ntainer "		
Ch=" 143456789abcde"			
u1=-10.0 xlr=10.0 yul=10.0 ylr=-10.0 z	ul=1.0 zlr=1.0		
tl=" yx section of two bundles in inner co	ntainer "		
cn=" 123456789abcde"			
ul=-25.0 xlr=25.0 yul=15.0 ylr=-15.0 z	ul=1.0, zlr=1.0		
ax=1.0 vdn=-1.0 nax=140 lpi=10 end			
tl=" yx section of left bundle in inner co	ntainer "		
ul=-5.0 xlr=55.0 yul=10.0 ylr=-10.0 zu	l=1.0 :1r=1 0		
ax=1.0 vdn=-1.0 nax=140 lpi=10 end			
tl=" yx section of left bundle in inner co	ntainer "		
ch=" 123456789abcde*			•
11=-20.0 x1r=0.0; wil=10 0 w1r=-10 1 -0	1=1.0 =1==1 0		
	v		

Siemens Power Corporation - Nuclear Division

1

EMF-1563 Revision 12A Appendix 6F Page 36 of 37

EMF-1563 Revision 12A Appendix 6F Page 37 of 37

. .

uax=1.0 vdn=-1.0 nax=140 lpi=10 end							
ttl=" yx section of risght bundle in inner container "							
nch=" 123456789abcde"							
xul=0.0 xlr=20.0 yul=10.0 ylr=-10.0 zul=1.0 zlr=1.0							
uax=1.0 vdn=-1.0 nax=140 lpi=10 end							
end plot							

end data end

- 6.6 References
- 1) SPC Criticality Safety Analysis BFQ-SP1.1, <u>SP-1 SHIPPING CONTAINER</u>.
- 2) SPC Criticality Safety Analysis BFQ-SP1.2, SP-1 SUPPLEMENTAL APPLICATION.
- 3) SPC Criticality Safety Analysis BFQ-SP1.3, <u>SP-1 SHIPMENTS WITH GADOLINIA</u> <u>ROD CONTAINER</u>.
- SCALE Standardized Computer Analyses for Licensing Evaluation, NUREG/CR-2000 ORNL/NUREG/CSD-2, Volumes 1, 2, and 3.
- 5) Critical Separation Between Subcritical Clusters of 4.31 wt% Enriched UO₂ Rods in Water with Fixed Neutron Poisons, NUREG/CR-0073.
- 6) Certificate USA/9248/AF, Revision 11, <u>SP-1 and SP-2 Shipping Certificate</u>
- 7) EMF-1563, Revision 1, <u>Consolidated License Application for Siemens Power</u> <u>Corporation Model SP-1 and SP-2 Shipping Containers</u>, December 1993.
- 8) EMF-1563, Supplement 1, Revision 1, <u>Supplemental License Application for</u> Siemens Power Corporation Model SP-1 and SP-2 Shipping Containers, March 1995.

9) EMF-1563, Supplement 4, <u>Supplemental License Application for Siemens Power</u> <u>Corporation Model SP-1 and SP-2 Shipping Containers</u>, February 1996.

10) EMF-94-175, "Validation and Verification of KENO.Va" by R. E. Coen, Siemens Power Corporation - Nuclear Division, 2101 Horn Rapids Road, Richland, WA 99352.

ISSUED IN FRA-ANP ON-LINE
DOCUMENT SYSTEM,
DATE: 2-5-04

EMF-1563 Revision 12A Appendix 6G Page 1 of 4

Appendix 6G

: }

· : 1

Ŷ

WWW WITH VIEW

: · · · · ·

SIEMENS POWER CORPORATION LETTERS OF APRIL 18 AND APRIL 30, 1996

SIEMENS

EMF-1563 Revision 12A Appendix 6G Page 2 of 4

April 18, 1996 JBE:96:031

U.S. Nuclear Regulatory Commission Attn: Mr. C. R. Chappell, Section Leader Cask Certification Section Spent Fuel Project Office: NMSS Washington, D.C. 20555

Dear Mr. Chappell:

Subject: Application to Amend Certificate of Compliance 9248

Per my recent telephone conversation with Nancy Osgood of your staff, Siemens Power Corporation (SPC) requests the following wording changes for clarification in Certificate of Compliance 9248 when it is next revised:

In 5(b)(1)(iii) the statement, "Any number of water rods in any arrangement are permitted." Should be changed to, "Any number of water rods in any arrangement is permitted, including part length rods."

In 5(b)(1)(vi) the statement, "Any number of additional water rods in any arrangement are permitted" should be changed to, "Any number of additional water rods in any arrangement is permitted, including part length rods."

In the revision applied for on February 9, 1996, in 5(b)(1)(vii) and 5(b)(1)(viii) the statement, in the first paragraphs, "Any number of additional water rods or water channels in any arrangement is permitted" should be changed to "Any number of additional water rods or water channels in any arrangement is permitted, including part length rods."

If you need further information on this request, please call me at 509-375-8663.

Very truly yours,

James B. Edgar Staff Engineer, Licensing

pm

Siemens Power Corporation

Nuclear Division Engineering & Manufacturing 2101 Horn Rabids Road P.O. Box 130 Richiand, W4 99352-0130 Tel: 509) 375-8100 Fax: 509) 375-8402

SIEMENS

EMF-1563 Revision 12A Appendix 6G Page 3 of 4

April 30, 1996 JBE:96:034

U.S. Nuclear Regulatory Commission Attn: Mr. C. R. Chappell, Section Leader Cask Certification Section Spent Fuel Project Office: NMSS Washington, D.C. 20555

Dear Mr. Chappell:

Subject: Application to Amend Certificate of Compliance 9248

Per my telephone conversation today with Nancy Osgood of your staff, this application supplements Siemens Power Corporation's (SPC's) application dated February 9, 1996. SPC requests an amendment of Certificate of Compliance 9248 to add fuel assembly types 5(b)(1)(vii) and 5(b)(1)(viii) as described below:

5(b)(1)(vii) - UO₂ fuel assemblies with a maximum U-235 enrichment of 5.0 wt.%. Each assembly is composed of a 10x10 array of fuel rods with a water channel or water rods in a central 3x3 rod location. Any number of additional water rods or water channels in any arrangement is permitted, including part length rods. The maximum fuel dimensions are 5.0" by 5.0" by 174". The maximum pellet diameter is 0.35" and the minimum clad thickness is 0.018". Each assembly shall include at least eight rods with at least 2.0 wt.% gadolinia in all axial regions with enriched pellets.

The eight gadolinia rods shall be located in a pattern symmetric about one of the assembly diagonals and meet the following constraints:

- 1. The nominal diameter of the gadolinia pellets shall be not less than that of the UO_2 (non-gadolinia) pellets and the rods shall be in non-perimeter positions.
- 2. At least two gadolinia rods shall be in row 2 and two additional rods shall be in column 2.
- 3. At least two gadolinia rods shall be in rows 8 and/or 9 and at least two additional gadolinia rods shall be in columns 8 and/or 9.
- 4. A unit cell containing a gadolinia rod shall not share a common face with another gadolinia rod unless those sharing a common face are counted as one rod; i.e., gadolinia rods may share a common corner.

5(b)(1)(viii) - UO₂ fuel assemblies with a maximum U-235 enrichment of 5.0 wt.%. Each assembly is composed of a 9x9 array of fuel rods with a water channel or water rods in Siemens Power Corporation

Nuclear Division Engineering & Manufacturing 2101 Horn Racids Read P.O. Box 130 Richland, WA 99352-0130

Tel. (509) 375-8100 Fax. (509) 375-8402 the center 3x3 rod locations. Any number of additional water rods of water channels in any arrangement is permitted, including part length rods. The maximum fuel dimensions are 5.0" by 5.0" by 174". The maximum pellet diameter is 0.40" and the minimum clad thickness is 0.015". Each assembly shall include at least eight rods with at least 2.0 wt.% gadolinia in all axial regions with enriched pellets.

The eight gadolinia rods shall be located in a pattern symmetric about one of the assembly diagonals and meet the following constraints:

- 1. The nominal diameter of the gadolinia pellets shall be not less than that of the UO_2 (non-gadolinia) pellets and the rods shall be in non perimeter positions.
- 2. At least two gadolinia rods shall be in rows 2 and 8 and two additional rods shall be in columns 2 and 8.
- 3. A unit cell containing a gadolinia rod shall not have share a common face with another gadolinia rod unless those sharing a common face are counted as one rod; i.e., gadolinia rods may share a common corner.

The assemblies will be loaded and unloaded and the containers handled; maintained and shipped in accordance with Sections 7 and 8 of SPC's "Consolidated License Application for Siemens Power Corporation Model SP-1 and SP-2 Shipping Containers", document EMF-1563.

SPC has a contractual commitment to deliver a reload of assemblies of the design described in 5(b)1(viii) beginning in early June of this year. We would, therefore, appreciate an expedited review to permit these shipments.

If I can provide further information to facilitate your review, please call me at (509) 375-8663.

Very truly yours,

Edgar Staff Engineer, Licensing

pm

ISSUED IN FRA-ANP ON-LINE DOCUMENT SYSTEM DATE: 2-5-04

EMF-1563 Revision 12A Appendix 6H Page 1 of 22

Appendix 6H*

SIEMENS POWER CORPORATION SUPPLEMENTAL APPLICATION TO ADD THE SP-3 INNER CONTAINER TO CERTIFICATE OF COMPLIANCE 9248

*This Appendix 6H replaces that provided with revision 9 of EMF-1563 submitted April 12, 1999.

_

EMF-1563 Revision 12A Appendix 6H Page 2 of 22

Criticality Evaluation

1. Introduction and Summary

1.1 Introduction

This supplemental Criticality Safety Evaluation (CSE) for the SP-1 shipping container was created due to reduced spacing dimensions and the resulting impact on k_{eff}. This spacing reduction has led to some SP-1 inner containers being redesignated as SP-3. The following CSE is based on SP-3 inner containers and a new category fuel type which shall be referred to as category 8.

Section 2 of this evaluation details the methodologies used for the criticality analysis. Component description and analysis are provided in Section 3. Section 4 contains the Quality Assurance (QA) review. Section 5 documents the references.

1.2 Summary

This CSE replaces Appendix 6H of EIME-1563, rev. 9 (submitted to the NRC April 12, 1999) by creating a new category fuel bundle type (Category 8). To facilitate review of this CSE, only those sections described above are included. The text which is revised from Appendix H of rev. 9, is shaded.

The conclusion of this CSE is that the new fuel type (category 8) can be supported with spacing as little as 1.5/8" between the channel and outer steel box in inner containers identified as the SP-3.

2. Analysis Methodology

2.1 Nuclear Analysis Methodology

Monte Carlo techniques were used in this analysis. The sensitivity of pellet diameter, pellet pitch, and interspersed moderator within the SP-3 inner container were evaluated.

2.2 Computer Codes and Databases Used

The following codes and cross section libraries are part of the SCALE 4.2 system of codes (Reference 4) placed on the SPC HP workstation SSL01.

791176	Jun	22	1994	11:36:41	000001.a (XSDRN)
545416	Feb	21	1994	10:25:06	000002.a (NITAWL)
516744	Feb	21	1994	10:14:38	000008.a (BONAMI)
1094280	Jun	22	1994	11:46:27	000009.a (KENO.Va)
112000	Feb	23	1994	15:16:47	albdata.bin
4256216	Feb	23	1994	14:40:21	pxs123.bin (123 group master cross section
					library)
362140	Feb	25	1994	16:54:21	<pre>pxs16.bin (16 group master cross section library)</pre>
9020996	Feb	23	1994	14:53:45	pxs218.bin (218 group master cross section
					library)
824404	Feb	23	1994	14:38:03	pxs27.bin (27 group master cross section library)
94400	Feb	23	1994	15:12:03	stdcomp.bin (standard comp. library)
44812	Feb	23	1994	15:14:40	wtdata.bin
287	Jul	7	1994	09:35:35	csas25
2295	Jul	7	1994	17:07:41	drva

2.3 Cross Section Preparation

The Hansen-Roach 16-energy group cross sections available in SCALE were used for all calculations. BONAMI and NITAWL adjust the master format cross section data for the specific problem cross sections (e.g., perform resonance self-shielding corrections).

2.4 Benchmarking

The SCALE 4.2 system of codes was developed for use by the USNRC and its licensees. SPC benchmarking of SCALE 4.2 on HP Workstations includes critical experiments of 4.31% enriched assemblies from NUREG/CR-0073 (Reference 5) which were modeled using the same methodology used in these calculations. A bias estimate based on 23 pooled cases was calculated from the 16-group data in Table 12 of Reference 10 and is -0.00321 ± 0.00261. Negative bias indicates conservative results.

3. Component Description and Analysis

3.1 Reduced Dimensions of SP-3 Inner Container

The dimensions of the SP-3 inner container are shown on drawing EMF-309,818. In previous analyses, the SP-1 inner container (drawing EMF-304,416) was modeled with a 1-15/16" space between the channel and the outer steel box (space occupied by angle steel). The calculations of this section justify the use of a 1-5/8" space, instead of 1-15/16". This change in dimension only affects the calculations for damaged conditions, as the outer container provides the container spacing for undamaged conditions. The type and form of material identified in section 63.8 of this rev. 10 of EMF-1563, and to be added to Certificate of Compliance 9248, are evaluated below.

The KENO models used in this section are consistent with those used previously for the respective material types with one exception, i.e., the inner container spacing, discussed above.

3.2 Category 8 Fuel Assemblies

The following material is listed as a new Category 8 of section 6:2.8 of EMF-1563, rev: 10:

²UO₂ fuel assemblies in a 9x9 square array with a maximum fuel cross-section area of 25 square inches, maximum fuel length of 174 inches and maximum average enrichment of 4.0 w/o U-235. The nominal pellet diameter is 0.0370 inch. At least the center 3x3 rod locations shall be a water channel. Each assembly must include eight rods with a minimum nominal gadolinia. (Gd₂O₃) content of 2.0 w/o in all axial regions with enriched pellets as shown in Figure 1.*

A comparison of the actual and modeled fuel bundle parameters and polyethylene (PE) shipping shim is included in Table 1.

Table 1 Comparison of Nominal vs. Modeled Conditions

Parameter	Nominal	Modeled		
	Pellet			
Diameter	94 cm	94 cm abd 11 cm		
Density	96,5 %TD (does not include dish or land taper which is ~1!5%)	95%		
235U Enrichment	3.4 average	20		
	Ród			
Cladding ID	.96.cm	Cladding, and gap is conservatively		
Cladding OD	111 cm	omitted		
Pellet-Clad Gap	0102.cm			
Active fuel Length	37018 cm	451.16 cm		
	Fuel Assembly: 9x9B			
Rod Pitch	1,445.cm	1.445.cm		
Water Channel Outer Dimension	3.85 cm square	Center 3x3 rods		
Number of Eucli Rods	72	72		
Number of Rods with Gd ₂ O ₃	ģ	8		
	Poly Shipping Shims			
Total Number of Shims	128 @ 5.9 gramsteach =vol. Fraction of 0.028	591 @ 6 grams each /modeled/as vol. fraction = 13 in space between rods for normal case		

The new fuel bundle type will be shipped with PE shims placed between the rods. A total of 16 shims are used in each of the 8 sections of a fuel bundle. A conservative total mass of PE shims is 3,546 grams (591*6). If this mass is homogenized over a volume of 28,527 cm³, the effective PE density = 0.12. TD for PE is 92 therefore the volume fraction is 0.13 for a normal condition.

EMF-1563 Revision 12A Appendix 6H Page 6 of 22

The volume available for shims is calculated as follows:

Assembly Envelope: 811 445 + 1.1= 12 7 cm .: Cross sectional area = 160 3 cm

Channel Envelope: 3.85 cm; Cross sectional area = 14-8 cm²

Area of 72 rods 72 x /4*1 21=68 4 cm2

Area of shims/cm length = 160.3 - 68.4 - 14 8= 77.1

Assuming an active fuel length of 370 cm, the volume for shims is: 28,527 cm³

(Note: For the model with a rod diameter of 94 cm and excluding cladding, the modeled

amount of PE exceeds 3:546 grams. To obtain 3:546 grams in this model; the volume fraction PE should be approximately 0:10.)

1								523 523
Ĩ		骤	Į,		il yr,			剤.
	· · · · · · · · · · · · · · · · · · · ·	凝	E		81 32	7203 *		22. 22. 21. 21. 21. 21. 21. 21. 21. 21.
8		£.						
· ·			XX	ater Chanr	el			.
		1						
<u>ت</u> .	- -	and the second sec						
						1		
			包 示:			E ALIXES	and the second se	

Figure 1 Gd Rod Locations

EMF-1563 Revision 12A Appendix 6H Page 7 of 22

Sensitivity studies based on the load pattern in Figure 1 and the modeled parameters described In Table 1 were completed and are reported in Table 2. One can conclude from this sensitivity study that all criticality safety criteria are met for these shipping containers.

Table 2 Reactivity Results for New SP-3 Category 8 Fuel

Fliename (droa- ?)	Völ% IM	Comments / Description	Avg. ker	σ	Avg. keff + 2o
260 units (13x20) between n	x1 array). ods:as.sh	at damaged conditions, nomin pping shims, and various amo	al pellet diame ounts of inters	iter, no clad. persed model	3 vol% PE rator
ex8d.000	Ō	Pellet Diameter = 0.94cm	.7367	.0035	.7437
ex8d.001	1	(0:370:2)	.7642	.0037	7717
ex8d.003	3		.8194	.0035	.8265
ex8d:008	8	<i>,</i>	.8756	.0039	.8833
ex8d.009	9		.8764	.0034	8833
ex8d.010	10		.8691	.0032	.8754
ex8d.011	11		.8735	.0034	.8803
ex8d:012	12		.8768	0033	8834
ex8d:013	13		8682	.0041	.8764
ex8d.014	14		8689	.0035	8759
ex8d.015	15		.8712	.0040	8791
ex8d.100	100		7104	.0046	.7197
Infinite number between r	of units a ods as sh	damaged conditions, nomina pping shims, and various amo	l pellet diamet ounts of inters	er, no clad, 1 persed mode	3 vol% PE rator
ex8d.006inf	Ģ	Rellet Diameter = 0.94cm	9436	.0028	.9491
ex8d.007inf	Z	(0.3703)	.9439	0034	9507
ex8d:008inf	8		.9351	.0034	.9419
ex8d.009inf	9		.9336	0036	.9409
ex8d.0/10inf	10		.9274	0036	.9345
ex8d.011inf	11		.9215	0040	9295
ex8d:012inf	12	· · · · · · · · · · · · · · · · · · ·	9250	.0039	9328

EMF-1563 Revision 12A Appendix 6H Page 8 of 22

Supplemental License Application for SPC Model SP-3 Shipping Container

٠.

260 (13x20x1 arra between ro	ay) units a ods as sh	at damaged conditions, nomina Ipping shims, and various amo	h pellet diame unts of inters	ter, no clad, : persed moder	26 vol% PE ator
ex8d.008.26	8	Pellet Diameter = 0.94cm	.9030	.0037	.9103
ex8d.009.26	9	0.370"	.9089	.0042	9172
ex8d:010.26	10		9031	.0038	.9107
ex8d.011.26	M		.9099	0035	9168
ex8d.012.26	12		9049	.0034	.9117
800 (20x20x2 arr between rods	ay) units as shipp	at undamaged spacing, nomina ing shims, and various amoun between inner and outer co	al pellet diame ts of PE as int ntainers.	eter, no clad, 1 erspersed mo	3 vol% PE derator
<u>anc.00pe800</u>	Ż	As case ex8d 007inf with 800 units at undamaged container spacing and no PE between inner and outer containers	7622	.0045	<u> 17413</u>
anc.01pe800		As above 1 vol% PE between inner and outer containers	17.757	0033	7824
anc:03pe800	· ·	As above with 3 vol% PE	.7.537	0040	.7618
anc:05pe800		As above with 5 vol% PE	7178	0035	7249
260 (13x20x1 arr between r	ay) units ods as sh	at damaged conditions, 1.1 cm ipping shims, and various amo	diameter pell ounts of inters	ets, no clad, 1 persed model	3 vol% PE rator
ex8d.000.11	Q	A 1.1 cm diameter pellet	7226	.0037	7299
ex8d.001.11	1	of a nominally clad fuel rod.	.7689	.0031	7751
ex8d:003.11	3	Construction of the second	.8298	.0033	.8363
ex8d:008.11	8		.8900	.0037	.8974
ex8d.009.11	9 10 11		.9092	.0042	9175
ex8d.010.11			9021	.0037	.9094
ex8d.011.11			.9110	.0032	.9174
ex8d.012.11	12		.9094	.0038	9170
ex8d.013.11	13		.9003	.0033	9069
ex8d:014.11	14		8978	.0036	9050
ex8d.100.11	100		7298	.0048	.7395

Infinite number between ro	of units a ods as sh	at damaged conditions, 1.1 cm lipping shims, and various amo	diameter pelle unts of inters	ets, no clad, 1 persed mode	3 vol% PE rator				
ex8d.009.11inf	9	A 11 cm diameter pellet	.9539	:0031	.9601				
ex8d.011.111inf	11	corresponds to the rod O.D.	.9540	0033	9605				
ex8d.012.111nf	12	rod.	.9508	.0036	.9579				
Infinite number of units at undamaged spacing, 1.1 cm diameter pellets, no clad, 13 vol% PE between rods as shipping shims, and various amounts of PE as interspersed moderator. between inner and outer containers									
nc:00pe	<u>in an /u>	As case ex8d.009.11 with undamaged container spacing and no PE between inner and outer containers	9560	0027	9615				
nc.01pe		1 vol% PE between inner and outer containers	9180	;0037	.9253				
nc.03pe		As above with 3 vol% PE	.8377	.0030	.8438				
nc.05pe		As above with 5 vol% PE	.7746	.0038	.7822				
800 units (20x20x2 array) at undamaged spacing, 1.1 cm diameter pellets, no clad, 13 vol% PE between rods as shipping shims, and various amounts of PE as interspersed moderator between inner and outer containers									
nnc.00pe800	9	As case nc.00pe with only 800 units	.8217	.0041	.8298				
nnc.01pe800		As above with 1 vol% PE	.8201	.0035	.8271				
nnc:03pë800		As above with 3 vol% PE	7953	.0040	.8034				
nnc.05pe800	,	As above with 5 vol% PE	7461	.0037	.7536				
4. **QA Review Description**

- Methodology used in this CSE is clearly defined and was verified to be applicable. The calculation methods including details on cross section preparation, atom densities assumed, and geometry models were reviewed and determined to be adequate. Each of these items was verified to be conservative.
- 2) Assumptions were reviewed for reasonableness and applicability to this analysis.
- 3) Modeling was reviewed and determined to conservatively model the actual system. A listing of one or more of the most reactive cases is included in the CSE.
- 4) Referenced sources were reviewed for applicability to this CSE.
- 5) Input information was checked against referenced sources.
- 6) Input for computer calculations were checked for agreement with values in the CSE text.
- 7) Hand calculations were independently checked.
- 8) K_{eff} for worst case accident conditions is specifically stated in the text.

5. **References**

- 1) SPC Criticality Safety Analysis BFQ-SP1.1, <u>SP-1 SHIPPING CONTAINER</u>.
- 2) SPC Criticality Safety Analysis BFQ-SP1.2, <u>SP-1 SUPPLEMENTAL APPLICATION</u>.
- 3) SPC Criticality Safety Analysis BFQ-SP1.3, <u>SP-1 SHIPMENTS WITH GADOLINIA ROD</u> <u>CONTAINER</u>.
- 4) SCALE Standardized Computer Analyses for Licensing Evaluation, NUREG/CR-2000 ORNL/NUREG/CSD-2, Volumes 1, 2, and 3.
- 5) Critical Separation Between Subcritical Clusters of 4.31 wt% Enriched UO₂ Rods in Water with Fixed Neutron Poisons, NUREG/CR-0073.
- 6) Certificate USA/9248/AF, Revision 13, <u>SP-1 and SP-2 Shipping Certificate</u>
- 7) EMF-1563, Revision 1, <u>Consolidated License Application for Siemens Power</u> <u>Corporation Model SP-1 and SP-2 Shipping Containers</u>, December 1993.
- 8) EMF-1563, Supplement 1, Revision 1, <u>Supplemental License Application for Siemens</u> Power Corporation Model SP-1 and SP-2 Shipping Containers, March 1995.
- 9) EMF-1563, Supplement 4, <u>Supplemental License Application for Siemens Power</u> <u>Corporation Model SP-1 and SP-2 Shipping Containers</u>, February 1996.

EMF-1563 Revision 12A Appendix 6H Page 11 of 22

10) EMF-94-175, "Validation and Verification of KENO.Va" by R. E. Coen, Siemens Power Corporation - Nuclear Division, 2101 Horn Rapids Road, Richland, WA 99352.

EMF-1563 **Revision 12A** Appendix 6H Page 12 of 22

APPENDIX C SAMPLE COMPUTER INPUTS FOR SP-3 CONTAINERS WITH SPC 9X9 FUEL

Case drda-ex8d.012

=csas25

model for most reactive type g2 assembly hans, infhom

mixture 1

interior uo2 pellets, 41 wt% u235
u-235 1 0.0 9.4068e-04 293 end
u-238 1 0.0 2.2291e-02 293 end
o 1 0.0 4.6464e-02 293 end

' mixture 2

edge uc2 pellets; 4 wt3 u235 u-235 2 0 0 9 4068e-04 293 end u-238 2 0 0 2 2291e-02 293 end 0 2 0 0 4 6464e-02 293 end

imixture 3
 edge uc2 pelletsufacing other bundle; 14 wt% u235
 u-235 3 0; 0 9 4068e-04 293 end
 u-238 3 0 0 2 2291e-02 293 end
 o 1 3 0 0 4 6464e-02 293 end
 ,

mixture 4 gd-uc2 pellets 4 wt8 u235 1.5 wt8 gd u 235 4 0 0 2 2291e 02 293 end u 238 4 0 0 2 2291e 02 293 end 0 4 0 0 4 5464e 02 293 end gd 4 0 0 5 32467e 04 293 end

mixture 5

smeared zr clad Sileared 21 cod = 0:4221"! 0.4281"; 0.4781" vol fract 21 = 0.8988 at dens = 0.8988 \$14.2518 2 = 3.8215e202 zircalloy 5 0.0 3.8215e202 293 (end

mixture 6 12 vol% interspersed moderator h2o 6 den=1.00 0.12 293 end

mixture 7

c 7.0.0 8.350009e=02.293 end fe 7.0.0 8.350009e=02.293 end

mixture 8 carbon steel: 85.57 vols smeared with 10 vols h20 c 8 0 0 3 355783e 03 293 end fe 8 0 0 7 145103e 02 293 end o 8 0 0 4 8167e 04 293 end h 8 0 0 9 6335e 04 293 end

"mixture.9

Carbonisteel, 8,64, vol* c: 9,0:0:3 368333e 04,293 end te 9,0:0:7,214408e 03,293 end o: 9,0.03:0496e 03,293 end

EMF-1563 **Revision 12A** Appendix 6H Page 13 of 22

h. 9 0 0 6 0992e-03 293 end

i mixtire 10

water for reflector o 10 0.0 3.344e-02 293 end h 10 0.0 6.689e-02 293 end

% mixture 11

pe and interspersed water. vf pe = 0.126 use 0.13 here Water at full density us (1-13) = .87 g/cc h2o 11 den=0 37 0:12: 293 end arbmepe 0:92 2 0 11:0012:1 1001 2 11 0:13: end

end comp

 $\begin{array}{l} \label{eq:res} \text{using} \\ \text{ires=} & 1 \ \text{dyln} & 4.2706\text{E-01} \ \text{dar}(-1) = 5.5963\text{E-01} \\ \text{res=} & 2 \ \text{cyln} & 4.9281\text{E-01} \ \text{dar}(-2) = 3.6920\text{E-01} \\ \text{res=} & 3 \ \text{cyln} & 4.7047\text{E-01} \ \text{dar}(-3) = 44.2215\text{E-01} \\ \text{res=} & 4 \ \text{cyln} & 3.9028\text{E-01} \ \text{dar}(-3) = 5.7420\text{E-01} \\ \text{end more} \end{array}$

nodel for most reactive type g2 assembly read parameters tme=60.0 gen=83 npg=300 flx=yes fdn=yes xsl=yes nub=yes pwt=yes

flx=yes fdn=yes xsl=yes nub-run-yes plt=yes end parameters read geometry unit 1 com=" intErior uo2 rod." cyli +1.1 0.470 2p225:58 cubo 11 1 4p0.7225 2p225:58 unit 2 com=" !edge uo2 rod " cyli 2 1 0.470 2p225.58 cubo 11 1 4p0.7225 2p225.58 unit 2 com=" !edge rod.1" com=" .water rod.1" cubo 6.1 4p0.7225 2p225.58 unit 3 com=" .water rod.1"

com="", edge rod facing other bundle; " cyl1:3,1,0,470, 2225,58 cubo, 11,1,420,7225,2225,58

cubo 1111 4p0./225 20225.58 unit 4 com="...u02.gd203...rod1... cyl1...225.58 cubo 111 1 4p0.7225...2p225.58 unit...5

unite p com "" 9x9 bundle in left basket" " array 1 2r 6 4005 225 58 cubo 6 1 4pa 7361 20225 58 " add 0 00598 inch of perforated steel

"add 0 00598 inch of perforated sceet cubo 8 1 4p8.89 2p225 58 unit 6 com=" 1989 bundle in right basket."" array 2 2r.6 46065 225 58 cubo 6 1. 4p8 7381 2p225 58 dd 0.00598 inch of perforated steel cubo 8 1 4p8 89 2p225 58

EMF-1563 Revision 12A Appendix 6H Page 14 of 22

Supplemental License Application for SPC Model SP-3 Shipping Container

unit 7 com=" spacing & steel angle beside basket cubo 9 1.222.06375.224/93914/2222.58 cubo 6 1.222.06375.228.895.22225.58 unit 8 unit 8 com=" angles! & spacing/beneath & above/baakets."" cubo 9 1 2p4.0392 2p2.06375.2p225.58 cubo 6 1 2p8.89.12p2.06375 2p225.58 unit 9 com="1 15/16 x 1 15/16 inch moderation regions at corners " cubo 6 1 4p2.06375 2p225.58 Cubo bi 2 402 063/5,20225.58 unit 10 com="1" 1 inmer container "" array 3 -22 86 13 97 -225.58 add 0 0598 inch walls repl 7 1 6r0 1519 1 global one drift of Thers if cone drift of Thers if aray 12 370 0 repl 10 2 673 0 10 array 2 370.0 rep1 10 2 673 01.10 unit 16 Com=: spacing & Steel angle 2t = x side of basket: " cubo 6 1 4 12750.0.0 268.89 20225.58 hole 22 0.15875 0.00 00 hole 22 0.47625 0.3175 0.0 hole 22 0.47625 0.3175 0.0 hole 22 0.79375 0.635 0.0 hole 22 0.79375 0.635 0.0 hole 22 1.11125 0.9525 0.0 hole 22 1.11125 0.9525 0.0 hole 22 1.11125 0.9525 0.0 hole 22 1.11125 10.9525 0.0 hole 22 1.1125 10.9525 0.0 hole 22 1.42875 11.27 0.0 hole 22 1.74625 1.5875 0.0 hole 22 1.74625 1.5875 0.0 hole 22 2.3176625 1.5875 0.0 hole 22 2.38125 2.2225 0.0 hole 22 2.38125 2.2225 0.0 hole 22 2.38125 2.2225 0.0 hole 22 3.01625 2.8575 0.0 hole 22 3.01625 3.4925 0.0 hole 22 3.05125 3.4925 0.0 hole 22 3.96875 3.81 0 init 17 com=" spacing & steel angle at +x side of basket*" cubo = 6 1 0:0 4 12750 2p8 89 + 2p225 58 hole 22 -0 15875 0.0 0.0 0 hole 22 -0 15875 0.0 10 0 hole 22 -0 47625 0 3175 0.0 hole 22 -0 47625 0 3175 0.0 hole 22 -0 79375 0.635 0.0 hole 22 -0 79375 -0 635 0.0 hole 22 -1 11225 0 9525 0.0 hole 22 -1 11225 -0 9525 0.0 hole 22 -1 142875 1.27 0.0 · • ;

EMF-1563 **Revision 12A** Appendix 6H Page 15 of 22

Supplemental License Application for SPC Model SP-3 Shipping Container

11272.5	Kalolo	International	MARKARNA	ana	100 🖬		
note	22	-1.428		.2/U	. U A A		
nore. Voi e	22	-1.7464	(2000) 2000	28/2	0.0		
nore	24	-1./462	.5 - 1	.56/5	<u>in se</u>		
note	42	-2.063	(5°±,9		e N		
nore	2 6	-2.063	5 1:	905-0	.0		
note:	22.	-2:3812	15 Z.	2225	0.0		
note	22	-2,3812	.5 72.	2225	0.0		
hote:	22	-2.698	/ 5 2.	54, 0.	0		:
hole	22	-2.6987	/52.	54 0	, O		
hole	22 -	3.01625	5 . 2 . 8	575 0	.0		1
hole	22	-3.0162	5 -2.	8575	0.0		1
hole	22	-3.3337	53.	175/0	. 0		
høle.	22	-3.3337	153.	175	0.0		•
hole.	22	-3.6512	5 3.	4925	0,0		i –
hole	22	-3.6512	15,-3,	4925	×0,0		:
hole	22.0	-3.9687	15 3.	81 0.	Q		,
hole	22	~39687	53.	81 0	. Ó		
		:	ere oraș și 1791	10 00 4 0100 0	e-1111		
unit	18	1					
com⇒"	ang	les & s	bacin	a ben	eathit	askets	
cubo	61	208.8	9 4.1	2750	o.o	D225.5	8
hole	21	0.0 0.	15875	0.0	Hold Black Cite &	14-11 (10-11) (10-13) (10-1	1474
holé	21	0.3175	0.47	625	0::0		
hole	21	0.3175	0.47	625	0.0		
hole	21	0.635	0:793	75 0	.0		
hole	21 -	0.635	0.793	75 × 0	80		
hole	21	0.9525	-1.11	125	0.0		
hole	211-4	0.9525	1.11	125	0.0		
hole	21	1.27	4287	5 0.	0		
hole	21	1.27	4287	5 0.	0.		
hole	21	1:5875	1.74	625	000		
hole	21 -	1.5875	1.74	625	0 0		
hole	21	1.905	2.063	75 0	š0		
hole	21	1.905	2.063	75 0	á		
hole	21	2 2225	2 38	125	n in		
hole	27 -	2.2225	2 28	125	ñ n		
hole	21	2 54 2	6987	5 0.0	Network:		
hale	51	-2-54-2	6987	5 n n			
	•+ <u>-</u>	0 8575	2 612	28.8.9 28.0	6		
hole	51	22 0575	3 01	225 A	ĥ		
hole	マオ		0 232	75 0	e A		
hole	5	ist fine			n in		
	21	3.402	5.2.2	5125			
ĥĂŢĔ	27		5.0	65195			
	21		3 000	75 0	(1983) N		:
	51 51	0.01	9 9 9 0 0 9 9 0 6 6	7 C A	ă		1
n an en	e a a a a a a a a a a a a a a a a a a a	UENSKERSKE	လူ႔ခဲ့မှစ		M		

unit 19 com="angles s spacing above baskets "" cubo 6 1 2p8 89 0.0.44 12750 2p225 58 hole 21 0.0 0 15875 0.0 hole 21 0.3175 -0.47625 0.0 hole 21 0.3175 -0.47625 0.0 hole 21 0.635 0.79375 0.0 hole 21 0.635 10.79375 0.0 hole 21 0.9525 -1.11125 0.0 hole 21 0.9525 -1.11125 0.0 hole 21 1.27 -1.42875 0.0 hole 21 1.5875 10.74625 0.0 hole 21 1.5875 11.74625 0.0

.

EMF-1563 Revision 12A Appendix 6H Page 16 of 22

1

hole hole hole	21 1.905 -2 21 1.905 -2 21 2.2225 -	06375 0.0 06375 0.0 238125 0.0				
hole hole hole	21 -2.2225 - 21 2.54 - 2.6 21 -2.54 - 2.6	2838125 0.0 59875 0.0 59875 0.0				
hole: hole: hole:	21 2.8575 -3 21 -2 8575 - 21 3 175 -3	01625 0.0 3.01625 0.0 33375 0.0				
· hole hole	21 - 3 175 - 21 - 3 4925	8:33375 0.0 3.65125 0.0				
hole. hole:	21 3.4925 21 3.813 21 7.3.81 3	96875 0.0 96875 0.0				
unit com≌″ 1≣0,	21 part of steel 1552 x 0.125	angle in hor I	z sections of	etringer"		
unit com="	22 part of steel	angle in veri	sections of	Cringer".		
cubo endig	125"~X 0.1552 7 1 2p0 1587 cometry	 2p0 197104 :	2p225+58			
read ara=1	array nux=9 nuy=9 i	ivz II				
2 2 2 2 4 1	2 2 2 2 2 3 1 4 1 1 4 3					
	$\begin{pmatrix} 1 & 1 & 1 & 3 \\ 23 & 23 & 23 & 1 & 1 \\ 23 & 23 & 23 & 1 & 4 \\ 23 & 23 & 23 & 1 & 4 \end{pmatrix}$					
2.1 2.1 2.4 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
2, 2, 2 2, 2 2-2-2-2-2-3 fTTT nux=9-nuy=9-1	₩Z⊇				·	
E101 3 2 2 3 4 1	2222222					
3, 1, 1 3, 1, 1 2, 4, 1	11111122 123-23,23,111 23-23-23	2				
3 1 1 3 1 1 3 1 1	23 23 23 1 1 41 1 1 1 1 2	2			:	
3 4 1 3 2 2 end	2,2,2,2,2,2 fill				,	
ara=3 fill :9 18	"nux=4∥nuy=3 T 18, §9	NZ-1				
16 5 19 19 end f	6110 19719 101					
ara=4 £111	nux=13 nuv=20 610 end fint	niz‡i				
read nst=1						
end s read	eazc oounds					

EMF-1563 **Revision 12A** Appendix 6H Page 17 of 22

all=vacuum end bounds read bias id=500 2 11 end blas : read plot

ttl='.xy section of bottom left container xul=0 _____ yul=26.2438 { zul=10 xlr=46.0238 ylr=0 ____ zlr=10 uax=1 ____ yun=-1 ____ nax=150 ___lpl=10 = end

end plot

end data

NUMBER OF

end

Case drda-anc.01pe800

mixture 2 edge uo2;pellets, 4 wt3 u235 u-235 2 0 0 9 4068e 04 293 end u-238 2 0 0 2 2291e 02 293 end o 2 0 0 4 6464e 02 293 end

mixture 3 edge uo2 pellets facing other bundle, 4 wc% u235 u-235 3 0-0 9 4068e-04 293 end u-238 3 010 2 2291e-02 293 end o 3 0.0 4 6464e-02 293 end

mixture 4 gd-uc2 pellets: 4 wF4 1285 I.5 wts gd u 235 4 0 0 9,4068e 04 293 end u-238 4 0 0 2,2291e 02 293 end o 4 0 0 4 6464e 02 293 end gd 4 0 0 5 32467e 04 293 end

imixture 5
imixture 5
imixture 5
imixture 5
imixture 5
imixture 6
imixture 6
imixture 6
imixture 7
imixtu

EMF-1563 **Revision 12A** Appendix 6H Page 18 of 22

mlxture 6 7 vol: interspersed moderator h2o:6 den=1.0 0/07 293 end ' mixture 7 ' carbon steel, T60 vol% c 7 0.0 3.921682e-03.293 end fe 7 0.0 8.350009e-02.293 end

• mixture 8

mixture 8
carbon steel, 85.57 Vol% smeared with 10 vol% h2o
c 8 0.0 3.355783c.03 293 end
fe 8 0.0 7.145103e.02 293 end
0 8 0.0 4.8167e.04 293 end
n 8 0.0 9.6335e.04 293 end
n

mixture 9 Carbon steel, 8.64 vol8 C 9 0.0 3.3883326-04 293 end fe 9 0.0 7.2144086-03 293 end 0 9 0.0 3.04966-03 293 end h 9 0.0 6.09926-03 293 end

mixture 10 water for reflector o 10 0.0 3:344e-02 293 end h 10 0.0 6.689e-02 293 end

mixture 11

mixture if pe and interspersed water. vf pe = 0.126 use 0.13 here water at full density is (1+.13)/ = ...87 g/de h20 11 den=0.87 0.07 293 end arbmepe 0.92 2 0 1 1 6012 1 1001 2 11 0.13 end

maxture 12 pe as interspersed moderator for ethafdam vf pe use 0.01 here arbmepe 0.92.2 0 1 1 6012 1 1001 2 12 0.01 end

énd comp more data

end more

model for most reactive type g2 assembly

read parameters

: tme=60.0 gen=83 npg=300 flx=yes fdn=yes xsl=yes nub=yes pwt=yes

run=yes.plt=yes

end parameters

read geometry unit 1 com=" interior uc2 rod "" cyli 1.1.0.470 + 2p225.58

EMF-1563 **Revision 12A** Appendix 6H Page 19 of 22

:

cubo 11 1 4p0 7225 2p225 58 n1C 2 com=": edge uo2 rod ... cy11 2 1 0 470 2 2p225 58 cubo 11 1 4p0 7225 2p225 58

unit 23 com 1. water 4. frod 11 oubo 16 1 400 7225 20225 58

cubo 6 1490-7225 29225.58 unit 3 com="edge rod facing other bundle"." cyli 3 1: 0:470 2225:58 cubo 1: 1 4p0.7225 2225:58 unit 4

unit 4 com 1 102-gd2034 rod 14 cylu 4 1 0.470 20225 58 cubo 11 1 400 7225 20225 58 unit 5 com 1 9x9 bundle in left basket ** array 1 2z-6.46065 225 58 cubo 6 1 4p8 7381 20225 58 add 0.00598 inch of perforated steel cubo 18 1 4p8 89 20225 58 unit 6 com 1 9x9 bundle in codf basket **

com±": 9x9 bundle in right basket " array 2 27.6 46065 225.58 cubo. 61 1 498 7391 29225 58 add 0.00598 inch of perforated steel guho 8:1,4p8:891,2p225:58 unit:7

unit: 7
com="spacing.constructions angle: beside basket "
cubo; 9: 1 2p2 06375 2p4 9391 2p225.58
cubo; 6: 1 2p2 06375 2p8 891 2p225.58
unit: 8
com=" iangles & spacing beneath & above baskets !!
cubo; 9: 1 2p4 9392 2p2 06375 2p225.58
cubo; 9: 1 2p4 9392 2p2 06375 2p225.58
cubo; 9: 1 2p4 9392 2p2 06375 2p225.58
cubo; 9: 1 2p3 891 2p2 06375 2p225.58

com="11 15/16 x:1 15/16 inch moderation regions at corners " cubo: 6 1 4p2 06375 2p225:58 unit: 10

unit:10 com=* 1 linner container * array 3 = 22.86 - 13:97 - 225.58 add 0 0598 inch walls repl 7 l 6r0.1519 l add exterior wood box: use low density PE here and box size of 24* x 24* x 206* curo 12 1 4930 48* ; 2p261.62

glóbal

unit,11 com=farray.of inners...

inplt*16 com="repacting & steel angle at -x side of basket!" cubo : 6, 1, 4, 12750 0, 0, 298.89, 29225.58 noie 22, 0, 47625 0, 3175, 0, 0 noie 22, 0, 47625 0, 3175, 0, 0 noie 22, 0, 79375 0, 635, 0, 0 noie 22, 0, 79375 0, 635, 0, 0 noie 22, 0, 79375 -0, 635, 0, 0

EMF-1563 Revision 12A Appendix 6H Page 20 of 22

i

	hole 22:11.11125 0 952520.0	
	hole 22 1142875 1.27 010	
	hole 22 1,74625 1,5875 0 0 hole 22 1,74625 1,5875 0 0	
	hole 22 $(2, 06375, 1, 905, 0, 0)$	
	hole 22 22 38125 2 2225 0 0	
	bole 22 2: 69875 2: 5440.0 bole 22 2: 69875 2: 5440.0	
	hole 22 33 01626 228575 0 0	
	hole 22 3:33375 3.175 0:0	
	hole 22 3 65125 3 4925 0 0	
	hole 22 3.96875 3.31.0.0	
•	com=" spacing & steel angle at +x side of basket " Gubo 6 1 0 0 44 12 x60 25 8 89 25224 54	
	hole 22 - 0.15875 0.0 0.0 0.0 bole 22 - 0.47625 - 0.9175 0.0	
	hole 22 -0.47625 0.3175 0.0 hole 22 -0.79375 0.635 0.0	
	hole 22 + -0.79375 -10.835 0.0 hole 22 -1.41125 0.9525 0.0	
	hole 22: -1:11125 0:9525 0:0 hole 22: -1:42875 1.27 0:0	
	hole 22 1 42875) 1 27:0.0 hole 22 1 74625 1 5875 0 0	
	hole 22 - 1.74625 -1.5875 0:0 hole 222.06375 1.905 010	
	hole 22 -2.06375 -1.905 0.0 hole 222.38125 12-2225 0.0	
	hole 22 - 2 38125 - 2 225 0 0 hole 22 - 2 69875 2 54 0 0	
	no1e 22 -2169875 -2.54 0.0 hole 22 -3 01625 2.8575 0.0	
	note 22 - 3 01 625 72 80% 010 hole 22 - 3 33375 31175 0 0	
	hole 22 3,537 3 3,173 0.0 hole 22 3 65125 3,4925 0.0	
	hole 22 - 33 96875 3 81 0 0 hole 22	
·		
	com-", angles & spacing beneath baskets" cuba 611 208 89 4 12750 0.0 20225.58	
	hole 21 0.0 0.15975 0.0 hole 21 -0.3175 0.47625 0.0	
	hole 21 0.3375 0.47625 0.0 hole 21, 0.635 0.79375 0.0	
	hole 21 0,635 0.79375 0.0 hole 21 0.9525 1.11125 0.0	
	hole (21 = 0, (9525) 11 (1125) 0, 0 hole (21 = 1, 27, 1, 42875) 0, 0	

EMF-1563 Revision 12A Appendix 6H Page 21 of 22

EMF-1563 Revision 12A Appendix 6H Page 22 of 22

EMF-1563 Revision 12A Appendix 61 Page 1 of 72

Appendix 6I

SIEMENS POWER CORPORATION SUPPLEMENTAL APPLICATION TO ADD THE CRITICALITY SAFETY ANALYSIS FOR ATRIUM[™]-10 WITH POLYETHYLENE SHIPPING SHIMS TO THE SP-1/2/3 INNER PACKAGES TO CERTIFICATE OF COMPLIANCE 9248

EMF-1563 Revision 12A Appendix 61 Page 2 of 72

Criticality Evaluation

1. Introduction and Summary

1.1 Introduction

This Criticality Safety Evaluation (CSE) provides the criticality safety basis for shipping ATRIUMTM-10 fuel assemblies with shipping shims in the SP-1/2/3 packaging.

Section 2 details the methodologies used for the criticality safety analysis. Component description and analysis are provided in Section 3. Section 4 contains the Quality Assurance (QA) review and comment resolution. Section 5 documents the references. Sample computer inputs are provided in Appendix A.

1.2 Summary

This CSE shows that sufficient margin to safety exists for SP-1/2/3 packagings when they contain the following payload type and transport index:

Pavload Description: "UO₂ fuel assemblies composed of fuel rods in a 10x10 square array, with a maximum fuel cross section of 5.0 inches square, and a maximum fuel length of 174 inches. The maximum U-235 enrichment is 5.0 weight percent, the maximum U-235 enrichment for all edge rods is 4.75 weight percent, the maximum U-235 enrichment for the four (4) corner edge rods is 3.05 weight percent, and the maximum U-235 enrichment for the eight (8) edge rods immediately adjacent to the four corner edge rods is 3.55 weight percent. The pellet diameter is between 0.30 and 0.3957 inch. Each assembly must have a water channel in a central 3x3 position. Any number of additional water rods in any arrangement is permitted, including part length rods. Each assembly must include at least ten rods with a minimum nominal content of 2.0 weight percent gadolinia (Gd_2O_3) in all axial regions with enriched pellets, and in a pattern symmetric about one of the assembly diagonals. At least ten gadolinia rods must be located in rows 2 and 9, and in columns 2 and 9 of the assembly and cannot be immediately adjacent to another one of the ten gadolinia rods; however, diagonally adjacent is permitted. Polyethylene (PE) shipping shims may be inserted between the rods within the fuel assemblies described above up to a maximum volume fraction (VF) of 0.14 averaged over the void volume of the assembly. An additional upper tie plate (UTP) shipping shim may be added between the UTP and the fueled region. This UTP shim may consist of a maximum of 345 g plastic or plastic composite."

Transport Index: TI = 1.0

A summary of the results in this CSE is provided in Table 1.

Table 1 Summary of Criticality Safety Evaluation for ATRIUM[™]-10 Fuel Assemblies with Shipping Shims in the SP-1/2/3 Packaging

Description of Most Reactive Gase	ker : 🏤	σ	bias.	$k_{eff} + 2\sigma + bias^{(1)}$
ATRIUM [™] -10 Fuel Assemblies with PE Shippin	ng Shims (see detailed p	payload description list	ed in Section 1.2)	
Single SP-3 Inner Package , Assemblies Moved as Close as Physically Possible within Inner Packaging, Asymmetric Gd ₂ O ₃ Rods in Assemblies are Toward Outside of Inner Packaging, 0.35" Diameter Pellets, 0.14 VF PE ⁽²⁾ as Shipping Shims, Fully Flooded, All Rods 5.0 wt% ²³⁵ U (see Section 3.1.2)	0.75413	0.00323	-0.00321 ⁽¹⁾	0.76059
Undamaged Spacing, 256 SP-1/2/3 Inner/Outer Packages (16 Wide x 16 High), Assemblies as Far Apart as Physically Possible within Inner Packaging; Asymmetric Gd ₂ O ₃ Rods in the Assemblies in Each Group of Two Vertically Adjacent Inner Packages Facing Towards the Inside of the Group, 0.3957" Diameter Pellets, 0.14 VF PE within Inner Packaging as Shipping Shims, 13 vol% Interspersed Moderator, 1 vol% PE between Inner and Outer Packages (see Section 3.1.3)	0.81454	0.00248	-0.00321 ⁽¹⁾	0.81950
Damaged Spacing , <u>404</u> SP-3 Inner Packages (8 Wide x <u>13</u> High), Assemblies as Far Apart as Physically Possible within Inner Packaging, Asymmetric Gd ₂ O ₃ Rods in the Assemblies in Each Group of Two Vertically Adjacent Inner Packages Facing Towards the Inside of the Group, 0.3957" Diameter Pellets, 0.14 VF PE ⁽²⁾ as Shipping Shims, 13 vol% Interspersed Moderator (see Section 3.1.4)	0.93506	0.00274	-0.00321 ⁽¹⁾	0.94054

⁽¹⁾ Note that as discussed in Section 2.4, the bias is negative (conservative), so it is not included in the results as presented in Table 1.

⁽²⁾ Under severe accident conditions, the UTP shim may increase the PE VF between the fuel rods from 0.14 to 0.151. Calculations in Section 3 show that this increase in the PE VF within the void volume produces statistically identical results.

2. Analysis Methodology

2.1 Nuclear Analysis Methodology

Monte Carlo techniques were used in this analysis. The following sensitivities were evaluated in this CSE:

- Assembly rotation (for asymmetric loading of Gd₂O₃ rods) and placement within the inner packaging
- VF PE as shipping shims
- Pellet diameter
- Edge rod ²³⁵U enrichment
- Interspersed moderator
- UO₂ theoretical density (TD)

2.2 Computer Codes and Databases Used

The following codes and cross section libraries are part of the SCALE 4.2 system of codes (Reference 1).

791176	Jun	22	1994	11:36:41	000001.a (XSDRN)
545416	Feb	21	1994	10:25:06	000002.a (NITAWL)
516744	Feb	21	1994	10:14:38	00008.a (BONAMI)
1094280	Jun	22	1994	11:46:27	000009.a (KENO.Va)
112000	Feb	23	1994	15:16:47	albdata.bin
4256216	Feb	23	1994	14:40:21	<pre>pxs123.bin (123 group master cross section library)</pre>
362140	Feb	25	1994	16:54:21	pxs16.bin (16 group master cross section library)
9020996	Feb	23	1994	14:53:45	pxs218.bin (218 group master cross section library)
824404	Feb	23	1994	14:38:03	pxs27.bin (27 group master cross section library)
944'00	Feb	23	1994	15:12:03	stdcomp.bin (standard comp. library)
44812	Feb	23	1994	15:14:40	wtdata.bin
287	Jul	7	1994	09:35:35	csas25
2295	Jul	7	1994	17:07:41	drva

2.3 Cross Section Preparation

BONAMI and NITAWL adjust the cross section data for the specific problem (e.g., perform resonance self-shielding corrections). The Hansen-Roach 16-energy group cross sections available in SCALE were used for all calculations.

2.4 Benchmarking

The bias and its standard deviation are calculated using the methods described in Reference 4. These methods use standard analysis of variance principles.

 k_c is the value of k_{eff} that results from the calculation of benchmark experiments using a particular calculation method. This value represents a combination of theoretical techniques and numerical data. The value for k_c is the weighted average (grand average) of the average k_{eff} values for a

series of benchmark cases that are applicable to the system being modeled. Each individual benchmark case is weighted by the inverse of the k_{eff} variance (square of standard deviation).

The average value of the variance is taken as the "within class" variance. The variance of the average k_{eff} data, weighted as for the grand average, is taken as the "between class" variance. Since the true value for all benchmark cases is assumed to be 1.0 (critical), the class effect (the change in average k_{eff} from case to case) is also the bias and the variance of the class effect is the variance of the bias.

The calculation bias, Δk_b , is therefore calculated as 1- Δk_c . A negative bias indicates conservative calculation results.

The SCALE 4.2 system of codes was developed for use by the USNRC and its licensees. SPC benchmarking of SCALE 4.2 on HP Workstations includes critical experiments of 4.31% enriched assemblies from NUREG/CR-0073 (Reference 2) which were modeled using the same methodology used in these calculations.

The critical experiments used for the benchmarking activities in this application are the same as those SPC has used to support licensing of other bundle packaging (SP1, SP-2, SP-3, NT-IV, and 51032). These cases were chosen because they have been validated by the international community, include bundles spaced various distances apart with neutron absorbing materials between the bundles, and the average energy group causing fission is similar to that observed in the calculations to support this license application.

A bias estimate based on 23 pooled cases was calculated from the 16-group data in Table 12 of Reference 3 and is -0.00321 ± 0.00261 . Again, a negative bias indicates conservative results. The benchmark data used to calculate this bias is provided in Table 2.

EMF-1563 Revision 12A Appendix 6I Page 6 of 72

Table 2 Benchmark Data Used for Determination of Calculation Bias for the SP-1/2/3 Package Analysis

CaseID	Average k _{eff}	σ
a-c001x	1.00355	0.00249
a-c002x	1.00905	0.00257
a-c003x	1.00845	0.00252
a-c004	1.00435	0.00265
a-c005a	1.00244	0.00265
a-c005b	1.00198	0.00252
a-c006a	1.00188	0.00236
a-c006b	0.99954	0.00237
a-c007a	1.00425	0.00247
a-c007x	1.00788	0.00253
a-c008a	1.00148	0.00231
a-c008x	1.00109	0.00242
a-c009a	1.00062	0.00233
a-c010a	1.00481	0.00239
a-c011a	1.00356	0.00275
a-c012a	1.00063	0.00244
a-c013a	1.00142	0.00240
a-c013x	1.01149	0.00227
a-c014a	0.99991	0.00241
a-c014x	1.00732	0.00259
a-c029a	0.99956	0.00242
a-c030a	1.00278	0.00257
a-c031a	0.99736	0.00239

EMF-1563 Revision 12A Appendix 61 Page 7 of 72

3. Component Description and Analysis

The dimensions of the SP-1 outer packaging are shown on drawing EMF-306,272. The SP-1 outer packaging may contain either an SP-1, SP-2, or SP-3 inner packaging. The dimensions of these inner packagings are shown on drawings EMF-304,416; EMF-308,257; and EMF-309,818; respectively.

Since the stringer height of the SP-3 inner packaging is the smallest (most conservative) of the SP-1/2/3 inner packagings, the SP-3 inner packaging is used in the computer models in this CSE. The calculations of this section address placing ATRIUMTM-10 fuel assemblies with PE shipping shims into the SP-3 inner packaging. Calculations are also provided for these packages inside the SP-1 outer packaging.

3.1 **Payload Type 1 (ATRIUM[™]-10 with PE Shipping Shims)**

The following material is provided as a new category of fuel to be shipped in the SP-1/2/3 packaging:

"UO₂ fuel assemblies composed of fuel rods in a 10x10 square array, with a maximum fuel cross section of 5.0 inches square, and a maximum fuel length of 174 inches. The maximum U-235 enrichment is 5.0 weight percent, the maximum U-235 enrichment for all edge rods is 4.75 weight percent, the maximum U-235 enrichment for the four (4) corner edge rods is 3.05 weight percent, and the maximum U-235 enrichment for the eight (8) edge rods immediately adjacent to the four corner edge rods is 3.55 weight percent. The pellet diameter is between 0.30 and 0.3957 inch. Each assembly must have a water channel in a central 3x3 position. Any number of additional water rods in any arrangement is permitted. including part length rods. Each assembly must include at least ten rods with a minimum nominal content of 2.0 weight percent gadolinia (Gd₂O₃) in all axial regions with enriched pellets, and in a pattern symmetric about one of the assembly diagonals. At least ten gadolinia rods must be located in rows 2 and 9, and in columns 2 and 9 of the assembly and cannot be immediately adjacent to another one of the ten gadolinia rods; however, diagonally adjacent is permitted. PE shipping shims may be inserted between the rods within the fuel assemblies described above up to a maximum VF of 0.14 averaged over the void volume of the assembly. An additional UTP shipping shim may be added between the UTP and the fueled region. This UTP shim may consist of a maximum of 345 g plastic or plastic composite."

3.1.1 Computer Model Description

The SP-1/2/3 inner packaging and SP-1 outer packaging are modeled exactly as they were modeled in Reference 7, which was prepared for the previous submittal (EMF-1563 Appendix 6H). The only difference between the computer models of Reference 7 and this CSE is the payload type. This CSE provides an analysis of ATRIUMTM-10 fuel assemblies with PE shipping shims as the payload.

A comparison of the actual and modeled ATRIUM[™]-10 fuel assembly parameters and PE shipping shim loading is included in Table 3.

Reference 8 provides results of an analysis that investigated various placements of the ten Gd_2O_3 rods in rows 2 and 9 and columns 2 and 9 of the ATRIUMTM-10 fuel assembly. Figure 1 shows the Gd_2O_3 rod placement that provides the most reactive assembly (Reference 8).

According to Reference 6, the Taipower fuel assemblies are shipped with PE shipping shims placed between the fuel rods. The normal PE shim loading is shown in Table 3 (1213.8 g PE; 32 @ 5.194 g each and 152 @ 6.892 g each). A conservative mass of PE shims (maximum number of shims which will fit into an ATRIUMTM-10 fuel assembly along the length of the assembly) is 4493 g PE (122 @ 5.5 g each and 546 @ 7.0 g each). If this mass is homogenized over a volume of 34,783 cm², the effective PE density is 0.129 g/cm³. The TD of PE is 0.92. Therefore, under normal conditions, the VF of PE between the fuel rods of an assembly would be (0.129 g/cm³)/(0.92 g/cm³) or 0.14. The model assumes a PE VF of at least 0.14 for all conditions. The normal PE loading is approximately 0.035 g/cm³, 3.7 times less than the amount included in the computer model.

The volume available to the PE shims is calculated as follows:

Assembly Envelope: 9*1.2954 + 1.00508 = 12.66368 cm; Cross sectional area = 160.37 cm^2 Channel Envelope: 3.50012 cm; Cross sectional area = 12.25 cm^2 Area of 91 Rods: $91*\pi(0.4445)^2 = 56.49 \text{ cm}^2$ Area of Shims per cm Length = $160.37 - 12.25 - 56.49 = 91.63 \text{ cm}^2$ Volume Available to Shims = $91.63 \text{ cm}^{2}*379.603 \text{ cm} = 34,783 \text{ cm}^3$

An additional shipping shim option is to place a PE fork-shaped shim between the UTP and the shoulder of the upper end caps. This shim is to prevent the fuel rods from sliding axially toward the upper tie plate. Under normal (undamaged) conditions, this shim will remain outside the active fuel region of the assemblies. However, under damaged conditions, the shim could conceivably migrate (melt or break) into the active fuel region of the assemblies. Therefore, Sections 3.1.2 (Analysis of a Single Package) and 3.1.4 (Analysis of Array of Damaged Packages) provide additional calculations, which increase the PE content within the assemblies to include the extra shim. According to Reference 9, the upper tie plate shim has a maximum volume of 375 cm³ and may be constructed of plastic or plastic composite. At a PE density of 0.92 g/cm³, this shim has a maximum mass of 345 g. As previously discussed, the volume within the assemblies available to the PE shims is 34,783 cm³. The total maximum PE mass within each assembly (including the shims between the rods and the upper tie plate shim) is 4,838 g. Therefore, the PE density averaged over the volume available is 0.139 g/cm³ and the effective VF is (0.139 g/cm³)/(0.92 g/cm³) or 0.151.

Pads of ethafoam are also used within the inner packaging, but outside of the fuel assemblies. Under severe accident conditions, it is conceivable that a small amount of ethafoam could migrate between the fuel rods. However, due to its low density, the ethafoam is bounded by varying the interspersed moderator (water) between the fuel rods from dry to fully flooded. Since the upper tie plate shim is PE (a much higher density plastic), it is included in the model for damaged conditions.

Internet Sectors and a sector that have, the sector sectors	M more and the second	w a marth round little chart in a second bit.	Commission (C. C. Martin and C. Martin Martin Commission (C. C. C	
Parameter	Nominal	Modeled	Reference For Nominal Condition	
		Pellet		
Diameter	0.3413"	0.30", 0.325", 0.35", 0.375", and 0.3957"	Reference 5 Page 5	
Density	$95.85 \pm 1.5\%$ TD (does not include dish or land taper which is minimally 1.16%)	Most cases use 96% TD The most reactive cases are run with 98% TD	Reference 10	
²³⁵ U Enrichment	4 corner rods ≤ 3.05 wt% 8 edge rods immediately adjacent to corner rods ≤ 3.55 wt% Remainder of edge rods ≤ 4.75 wt% Remainder of rods ≤ 5.00 wt%	Maximum stated enrichments Some additional cases use edge rod enrichment of 5.00 wt%	Pending Certificate of Compliance	
		Rod		
Cladding ID	0.3480"	Cladding and gap is	Reference 5 Page 4	
Cladding OD	0.3957"	conservatively omitted		
Pellet-Clad Gap	0.00335"	1	•	
Active Fuel Length	149.45"	177.62205"		
Read Straw		uel Assembly 10x10	化理论"和其他的理想是会会了不同的主义	
Rod Pitch	0.510"	÷0.510"	Reference 5 Page 3	
Water Channel Outer Dimension	1.378" square	Center 3x3 rods	Reference 5 Page 6	
Number of Fuel Rods	91	91	Reference 5 Page 3	
Number of Rods with Gd ₂ O ₃	10 Minimum in Rows 2 & 9 and Columns 2 & 9	Minimum Nominal (Placement per Reference 8)	Pending Certificate of Compliance	
Gd ₂ o ₃ Content	2.0 wt%	1,5 wt%	Pending Certificate of Compliance	
		PE Shipping Shims	17. 行行的法律的任务的法律的代表的正式运行	
Total Number of	32 @ 5.194 g each,	122 @ 5.5 g each	Reference 6	
Shims Between the	<152 @ 6.892 g each	546 @ 7.0 g each) · · · · · · · · · · · · · · · · · · ·	
	VF < 0.04	Modeled as VF = 0.14 in space between rods for normal case		
Upper Tie Plate	1 @ <375 cm² (<345 g PE)	1 @ 345 g	Reference 9	
Shim	VF ~ 0.01	VF ~ 0.01 in addition to other shims (damaged conditions)		

Table 3 Comparison: of Nominal vs. Modeled Conditions

EMF-1563 Revision 12A Appendix 6I Page 10 of 72

Supplemental License Application for FRA-ANP Model SP-3 Shipping Container

Figure 1 Gd₂O₃ Rod Placement which Produces Most Reactive Assembly (Reference 8)

3.1.2 <u>Analysis of a Single Package with Payload 1 (ATRIUM[™]-10 with PE Shipping Shims)</u>

A single SP-3 inner package was modeled to show that the k_{eff} limits are met for all normal and hypothetical accident conditions. The assemblies within the SP-3 inner packaging are ATRIUMTM-10 design as specified in Table 3.

First, since the most reactive Gd_2O_3 rod placement per Reference 8 is asymmetric within the assembly (see Figure 1), a sensitivity study was performed to determine the most reactive assembly rotation within the inner packaging. The following two assembly rotations were investigated:

- 1. Asymmetric Gd₂O₃ rods in each assembly facing towards the inside of the inner packaging (Figure 2)
- Asymmetric Gd₂O₃ rods in each assembly facing towards the outside of the inner packaging (Figure 3)
- For this study, the assemblies were each centered horizontally and vertically within their respective channels. A pellet diameter of 0.3957" (corresponding to the actual clad OD) was used, as well as a PE VF of 0.14 as shims between the fuel rods. Interspersed moderator was varied from dry to fully flooded. The results of this study are provided in Table 4 and Table 5. The case with the asymmetric Gd_2O_3 rods in each assembly facing towards the outside of the inner packaging and fully flooded conditions provided the peak reactivity (k_{eff} =0.72089, including 2 σ) in this sensitivity study.

Next, the assemblies were moved horizontally within their respective inner packaging, so that they were

1. As close as physically possible within the inner packaging (Figure 4)

2. As far apart as physically possible within the inner packaging (Figure 5)

The most reactive Gd_2O_3 rod arrangement from the previous sensitivity study (asymmetric Gd_2O_3 rods in each assembly facing towards the outside of the inner packaging) was used. Again, a pellet diameter of 0.3957" was used, as well as a PE VF of 0.14 as shims between the fuel rods. Interspersed moderator was varied from dry to fully flooded. The results of this study are provided in Table 6 and Table 7. The case with the assemblies as close as physically possible within the inner packaging and fully flooded conditions resulted in the peak reactivity (k_{eff} =0.73524, including 2σ) in this sensitivity study.

An additional sensitivity study was performed using a PE VF of 0.28 as shims between the fuel rods. This represents more than twice the amount of PE shims that will fit between the rods and 7.4 times the amount of PE shims that is called for in the parts list. For this study, 0.3957" diameter pellets were used. The asymmetric Gd_2O_3 rods in each assembly were rotated such that they face towards the outside of the inner packaging. The assemblies are located horizontally as close as physically possible within the inner packaging. Interspersed moderator was again varied from dry to fully flooded. The results of this study are provided in Table 8. Fully flooded conditions resulted in the peak reactivity (k_{eff} =0.73772, including 2 σ), which is less than one standard deviation higher than the same conditions with a PE VF of 0.14 (see Table 6). This study bounds any migration of

the upper tie plate shim into the active fuel region of the assemblies. Since the Δk at peak interspersed moderator conditions was less than one standard deviation higher than the same conditions with a PE VF of 0.14, the remaining calculations in this section were performed with a PE VF of 0.14.

Next, the most reactive arrangement from the previous sensitivity studies with 0.14 VF PE (asymmetric Gd_2O_3 rods in each assembly facing towards the outside of the inner packaging and the assemblies as close as physically possible within the inner packaging) was modified to reduce the pellet diameter to 0.35". Again, a PE VF of 0.14 was used as shims between the fuel rods. Interspersed moderator was again varied from dry to fully flooded. The results of this study are provided in Table 9. Again, fully flooded conditions resulted in the peak reactivity (k_{eff} =0.74572, including 2 σ), which is approximately 10.5 mk higher than the same conditions with larger rods (0.3957" diameter, see Table 6).

Since, in the previous sensitivity study, the reactivity increased for smaller rods, an additional sensitivity study was performed to investigate the reactivity effect of various pellet diameters. Additional pellet diameters of 0.3", 0.325", and 0.375" were used with fully flooded conditions. All other conditions are identical to the previous sensitivity study. The results are provided in Table 10 and show that for a single package and pellet diameters from 0.30" to 0.3957", the peak reactivity occurs with 0.35" pellets.

The most reactive case from Table 10 (drda-d1a.gout.i.100) was modified to discretely model the shipping shims as shown in drawing EMF-310,001. A cross-sectional image of this model is provided in Figure 6. The shim thickness in this model was set such that the total mass of PE in an inner package equaled that used in case drda-d1a.gout.i.100. The results are summarized below and show that the maximum k_{eff} , including 2 σ , is 0.74502. This is approximately 0.2 standard deviations less than the result from the Table 10 calculation, which smears the shipping shim PE throughout the void volume of the assembly. Therefore, it is adequate to smear the shipping shim PE throughout the void volume of the assembly.

388105 Sep 14 05:06:01 2000 droa-dlaDSR.gout.i.100 .73806 .00348 .74387 .74502

Next, a sensitivity study was performed which increased the enrichment of all edge rods to 5.0 wt% ²³⁵U, so that all rods in the assemblies are 5.0 wt% ²³⁵U. All other conditions are identical to those described above, i.e. asymmetric Gd_2O_3 rods in each assembly facing towards the outside of the inner packaging, the assemblies as close as physically possible within the inner packaging, pellet diameter of 0.35", PE VF of 0.14 as shims between the fuel rods, and interspersed moderator varied from dry to fully flooded. The results of this study are provided in Table 11. Again, fully flooded conditions resulted in the peak reactivity (k_{eff} =0.76028, including 2 σ) in this sensitivity study.

The most reactive case from the previous sensitivity study (see Table 11) was reran with a 98% UO_2 TD (increased from 96%). The results are summarized below and show that the maximum k_{eff} , including 2σ , is 0.76059, slightly higher but statistically identical (~0.1 σ) to the most reactive case in Table 11.

357440 Oct 18 08:48:37 2000 droa-table11.98

,75413 .00323 .75952

.76059

As shown above, all cases for a single SP-3 inner package yielded reactivities much less than 0.95.

EMF-1563 Revision 12A Appendix 6I Page 13 of 72

Figure 2 Assembly Rotation with Asymmetric Gd₂O₃ Rods Facing Towards Inside of Inner Packaging

EMF-1563 Revision 12A Appendix 61 Page 14 of 72

Table 4 Single SP-3 Inner Package,	Assemblies Centered in Char	nnels, Asymmetric Gd ₂ O ₃ Rods in
Assemblies are Toward Inside	of Inner Packaging, 0.3957" D	iameter Pellets, 0.14 VF PE

Filename (droa+?)	Vol% Interspersed Moderator	Kan	G	k _e n+2σ
d1.gin.c.000	0	0.34803	0.00266	0.35335
d1.gin.c.001	1	0.34397	0.00262	0.34921
d1.gin.c.003	3	0.34563	0.00255	0.35073
d1.gin.c.005	5	0.34629	0.00244	0.35117
d1.gin.c.007	7	0.35201	0.00297	0.35795
d1.gin.c.010	10	0.35568	0.00238	0.36044
d1.gin.c.015	15	0.37439	0.00222	0.37883
d1.gin.c.020	20	0.39464	0.00224	. 0.39912
d1.gin.c.030	30	0.44554	0.00288	0.45130
d1.gin.c.040	40	0.49876	0.00280	0.50436
d1.gin.c.050	50	0.53914	0.00289	0.54492
d1.gin.c.060	60	0.58359	0.00310	0.58979
d1.gin.c.070	. 70	0.61530	0.00281	0.62092
d1.gin.c.080	80	0.64775	0.00355	0.65485
d1.gin.c.090	90	0.67351	0.00286	0.67923
d1.gin.c.100	100	0.70451	0.00311	0.71073.

Table 5 Single SP-3 Inner Package, Assemblies Centered in Channels, Asymmetric Gd₂O₃ Rods in Assemblies are Toward Outside of Inner Packaging, 0.3957" Diameter Pellets, 0.14 VF PE

Ellename (droa:?)	Vol%Interspersed Moderator	Ket	σ	likert2σ
d1.gout.c.000	' O	0.34759	0.00252	0.35263
d1.gout.c.001	1	0.34334	0.00280	0.34894
d1.gout.c.003	3	0.34774	0.00287	0.35348
d1.gout.c.005	5	0.35203	0.00252	0.35707
d1.gout.c.007	7	0.35351	0.00260	0.35871
d1.gout.c.010	10	0.35474	0.00254	0.35982
d1.gout.c.015	15	0.37696	0.00257	0.38210
d1.gout.c.020	. 20	0.39556	0.00265	0.40086
d1.gout.c.030	30	0.45090	0.00258	0.45606
d1.gout.c.040	40	0.49840	0.00252	0.50344
d1.gout.c.050	50	0.54523	0.00273	0.55069
d1.gout.c.060	60	0.59099	0.00277	0.59653
d1.gout.c.070	70	0.62516	0.00313	0.63142
d1.gout.c.080	80	0.65990	0.00323	0.66636
d1.gout.c.090	90	0.68844	0.00352	0.69548
d1.gout.c.100	100	0.71413	0.00338	0.72089

· ·

Figure 5 Assemblies Moved as Far Apart as Physically Possible within Inner Packaging

Table 6 Single SP-3 Inner Package, Assemblies Moved as Close as Physically Possible within Inner Packaging, Asymmetric Gd_2O_3 Rods in Assemblies are Toward Outside of Inner Packaging, 0.3957" Diameter Pellets, 0.14 VF PE

Filename (droa-?)	Vol% Interspersed Moderator	jan ang ang ang ang ang ang ang ang ang a	σ 	kerr+2σ
d1.gout.i.000	0	0.34259	0.00271	0.34801
d1.gout.i.001	1	0.33890	0.00241	0.34372
d1.gout.i.003	3	0.34457	0.00231	0.34919
d1.gout.i.005	5	0.34598	0.00250	0.35098
d1.gout.i.007	7	0.34599	0.00266	0.35131
d1.gout.i.010	10	0.35787	0.00231	0.36249
d1.gout.i.015	15	0.36886	0.00240	0.37366
d1.gout.i.020	· 20	0.38776	0.00237	0.39250
d1.gout.i.030	30	0.44089	0.00265	0.44619
d1.gout.i.040	40	0.49256	0.00305	0.49866
d1.gout.i.050	50	0.54001	0.00321	0.54643
d1.gout.i.060	60	0.58479	0.00279	0.59037
d1.gout.i.070	70	0.62792	0.00338	0.63468
d1.gout.i.080	80	0.66302	0.00272	0.66846
d1.gout.i.090	90	0.70108	0.00376	0.70860
d1.gout.i.100	100	0.72918	0.00303	0.73524

EMF-1563 Revision 12A Appendix 6I Page 20 of 72

Table 7Single SP-3 Inner Package, Assemblies Moved as Far Apart as Physically Possible within
Inner Packaging, Asymmetric Gd2O3 Rods in Assemblies are Toward Outside of Inner Packaging,
0.3957" Diameter Pellets, 0.14 VF PE

Filename (droa-?)	Vol% Interspersed Moderator	Keff	ο.	k _{eff} +2σ
d1.gout.o.000	0	0.34636	0.00216	0.35068
d1.gout.o.001	1	0.34747	0.00247	0.35241
d1.gout.o.003	3	0.35152	0.00255	0.35662
d1.gout.o.00¦5	5	0.34843	0.00231	0.35305
d1.gout.o.007	7	0.35681	0.00275	0.36231
d1.gout.o.010	10	0.36141	0.00252	0.36645
d1.gout.o.015	15	0.38704	0.00249	0.39202
d1.gout.o.020	20	0.40466	0.00252	0.40970
d1.gout.o.030	. 30	0.44985	0.00253	0.45491
d1.gout.o.040	40	0.48696	0.00278	0.49252
d1.gout.o.050	50	0.52553	0.00270	0.53093
d1.gout.o.060	60	0.55415	0.00311	0.56037 [.]
d1.gout.o.070	70	0.58196	• 0.00277	0.58750
d1.gout.o.080	80	0.60583	0.00304	0.61191 _:
d1.gout.o.090	90	0.62597	0.00307	0.63211
d1.gout.o.100	100	0.65008	0.00296	0.65600

EMF-1563 Revision 12A Appendix 6I Page 21 of 72

Table 8 Single SP-3 Inner Package, Assemblies Moved as Close as Physically Possible within Inner Packaging, Asymmetric Gd_2O_3 Rods in Assemblies are Toward Outside of Inner Packaging, 0.3957" Diameter Pellets, 0.28 VF PE

Filename (droa-?)	Vol% Interspersed Moderator	Ka	σ	Kent20
d1P.gout.i.000	0	0.37358	0.00225	0.37808
d1P.gout.i.001	1	0.37317	0.00276	0.37869
d1P.gout.i.003	3	0.37564	0.00264	0.38092
d1P.gout.i.005	5	0.37762	0.00274	0.38310
d1P.gout.i.007	7	0.38375	0.00252	0.38879
d1P.gout.i.010	10	0.39079	0.00258	0.39595
d1P.gout.i.015	15	0.40557	0.00265	0.41087
d1P.gout.i.020	20	0.42934	0.00269	0.43472
d1P.gout.i.030	30	0.47345	0.00252	0.47849
d1P.gout.i.040	40	0.52457	0.00298	0.53053
d1P.gout.i.050	50	0.56828	0.00258	0.57344
d1P.gout.i.060	60	0.60188	0.00301	0.60790
d1P.gout.i.070	70	0.64770	0.00336	0.65442
d1P.gout.i.080	80	0.67838	0.00307	0.68452
d1P.gout.i.090	90	0.70905	0.00287	0.71479
d1P.gout.i.100	100	0.73174	0.00299	0.73772

Table 9 Single SP-3 Inner Package, Assemblies Moved as Close as Physically Possible within Inner Packaging, Asymmetric Gd_2O_3 Rods in Assemblies are Toward Outside of Inner Packaging, 0.35" Diameter Pellets, 0.14 VF PE

Filename (droa-?)	Vol% Interspersed Moderator	K _{eff}	ġ	kert-2σ
d1a.gout.i.000	0	0.31607	0.00240	0.32087 [.]
d1a.gout.i.001	1	0.31712	0.00255	0.32222
d1a.gout.i.003	3	0.31145	0.00220	0.31585
d1a.gout.i.005	5	0.31920	0.00241	0.32402
d1a.gout.i.007	7	0.32138	0.00220	0.32578
d1a.gout.i.010	10	0.33355	0.00241	0.33837
d1a.gout.i.015	15	0.35040	0.00238	0.35516
d1a.gout.i.020	20	0.37842	0.00260	0.38362
d1a.gout.i.030	30	0.42381	0.00261	0.42903
d1a.gout.i.040	40	0.48858	0.00302	0.49462
d1a.gout.i.050	50	0.54453	0.00272	0.54997
d1a.gout.i.060	60	0.58865	0.00331	0.59527 [.]
d1a.gout.i.070	70	0.63132	0.00301	0.63734
d1a.gout.i.080	80	0.66702	0.00307	0.67316
d1a.gout.i.090	90	0.70798	0.00299	0.71396
d1a.gout.i.100	100	0.73904	0.00334	0.74572

:

Table 10 Single SP-3 Inner Package, Assemblies Moved as Close as Physically Possible within Inner Packaging, Asymmetric Gd₂O₃ Rods in Assemblies are Toward Outside of Inner Packaging, Various Diameter Pellets, 0.14 VF PE, Fully Flooded Conditions

Eilename (droa-?)	Rellet Diameter (in)	Keff	G State	ker+2o
d10300.100	0.300	0.72798	0.00336	0.73470
d10325.100	0.325	0.73517	0.00274	0.74065
d1a.gout.i.100	0.350	0.73904	0.00334	0.74572
d10375.100	0.375	0.73410	0.00324	0.74058
d1.gout.i.100	0.3975	0.72918	0.00303	0.73524
. !

EMF-1563 Revision 12A Appendix 6I Page 24 of 72

Figure 6 Discrete Model of PE Shims

EMF-1563 Revision 12A Appendix 6I Page 25 of 72

Table 11Single SP-3 Inner Package, Assemblies Moved as Close as Physically Possible withinInner Packaging, Asymmetric Gd2O3 Rods in Assemblies are Toward Outside of Inner Packaging,0.35" Diameter Pellets, 0.14 VF PE, All Rods 5.0 wt%

Filename (droa-?)	Vol% Interspersed	Ket	O	Kertt20
d1aE.gout.i.000	0	0.32519	0.00255	0.33029 [.]
d1aE.gout.i.001	1	0.32635	0.00238	0.33111
d1aE.gout.i.003	3	0.32574	0.00241	0.33056
d1aE.gout.i.005	5	0.32941	0.00257	0.33455
d1aE.gout.i.007	7	0.33525	0.00222	0.33969
d1aE.gout.i.010	10	0.34679	. 0.00279	0.35237
d1aE.gout.i.015	15	0.36086	0.00218	0.36522
d1aE.gout.i.020	20	0.38738	0.00242	0.39222
d1aE.gout.i.030	30	0.44312	0.00257	0.44826
d1aE.gout.i.040	40	0.50066	0.00281	0.50628
d1aE.gout.i.050	50	0.55570	0.00285	0.56140
d1aE.gout.i.060	60	0.60254	0.00284	0.60822
d1aE.gout.i.070	70	0.64405	0.00366	0.65137
d1aE.gout.i.080	80	0.68267	0.00259	0.68785
d1aE.gout.i.090	90	0.72017	0.00339	0.72695
d1aE.gout.i.100	100	0.75376	0.00326	0.76028

EMF-1563 Revision 12A Appendix 6I Page 26 of 72

3.1.3 <u>Analysis of Array of Undamaged Packages (Normal Conditions) with Payload 1 (ATRIUMTM-10 with PE Shipping Shims)</u>

For undamaged conditions, SP-1 outer packaging provides additional spacing between the inner packagings. As previously stated, the packaging dimensions used in this analysis are identical to those used in Reference 7, which was prepared for the previous submittal (EMF-1563 Appendix 6H).

Again, of the SP-1/2/3 inner packagings, the SP-3 inner packaging is used in all models, since it has the smallest stringer height (most conservative). The assemblies within the SP-3 inner packaging are ATRIUM[™]-10 design as specified in Table 3.

The cases from Table 22 and Table 23 represent the most reactive cases for credible accident conditions. Specifically, the assemblies are as far apart as physically possible within the inner packaging and the asymmetric Gd_2O_3 rods in the assemblies in each group of two vertically adjacent inner packaging face towards the inside of the group (see Figure 13). A PE VF of 0.14 is used as shims between the fuel rods and interspersed moderator within the inner packaging is at 13 vol%. The most reactive cases from Table 22 (case d112.gin.o.013) and Table 23 (case d112a.gin.o.013) were modified to represent undamaged conditions by increasing the package spacing to account for SP-1 outer packaging. The space between the inner packages was filled with low density PE to simulate the ethafoam filling. The PE density was varied until the peak reactivity was located. Pellet diameters of 0.3957" and 0.35" were studied, along with an array of packages 16 wide x 16 high x 1 long (256 packages). The results of this study are provided in Table 12 and Table 13. Since the system reactivity was maximized by varying the contributing factors in the calculations of Section 3.1.4, the peak reactivity occurred in both sets of cases with only 1 vol% PE between the inner packages. In these cases, the larger pellet diameter (0.3957") produced a higher peak reactivity (k_{eff}=0.81384, including 2 σ), which is well below 0.95.

The most reactive case from the previous sensitivity study (see Table 12) was reran with a 98% UO_2 TD (increased from 96%). The results are summarized below and show that the maximum k_{eff}, including 2σ , is 0.81950, higher than the most reactive case in Table 12.

393478 Oct 17 16:25:43 2000 droa-table14.98 .81454 .00248 .81868 .81950

The calculations in this section demonstrate that the reactivity of an array of 256 SP-3 inner packages, each contained within an SP-1 outer packaging, remains below the 0.95 limit, provided a payload of ATRIUMTM-10 fuel assemblies meeting the specifications listed in Table 3 are met. For normal (undamaged) conditions, an array of 5N packages (where N is the desired number of packages to be shipped at one time) must be shown to yield $k_{eff} < 0.95$. Therefore, the calculations of this section show that 256/5 or 51 SP-3 packages may be shipped at one time with the payload described herein.

Table 12 256 SP-1/2/3 Inner/Outer Packages (16 Wide x 16 High), Undamaged Spacing, Assemblies as Far Apart as Physically Possible within Inner Packaging, Asymmetric Gd₂O₃ Rods in the Assemblies in Each Group of Two Vertically Adjacent Inner Packages Facing Towards the Inside of the Group, 0.3957" Diameter Pellets, 0.14 VF PE within Inner Packages, 13 vol% Interspersed Moderator, Various vol% PE between Inner and Outer Packages

Filename (droa-?)	Vol% PE Between (Inner Packages)	Kei	σ	kert25.
u256.013.pe000	0	0.80127	0.00260	0.80647
u256.013.pe001	1	0.80810	0.00287	0.81384
u256.013.pe003	3	0.79973	0.00268	0.80509
u256.013.pe005	5	0.77434	0.00292	0.78018

Table 13 256 SP-1/2/3 Inner/Outer Packages (16 Wide x 16 High), Undamaged Spacing, Assemblies as Far Apart as Physically Possible within Inner Packaging, Asymmetric Gd₂O₃ Rods in the Assemblies in Each Group of Two Vertically Adjacent Inner Packages Facing Towards the Inside of the Group, 0.35" Diameter Pellets, 0.14 VF PE within Inner Packages, 13 vol% Interspersed Moderator, Various vol% PE between Inner and Outer Packages

Filename (droa-?)	Vol% PE Between Inner Packages	Kạr	G	kerf20
u256a.013.pe000	0	0.78078	0.00312	0.78702
u256a.013.pe001	1	0.78456	0.00248	0.78952
u256a.013.pe003	3	0.76862	0.00266	0.77394
u256a.013.pe005	5	0.74535	0.00269	0.75073

3.1.4 <u>Analysis of Array of Damaged Packages (Accident Conditions) with Payload 1 (ATRIUM[™]-</u> 10 with PE Shipping Shims)

For damaged conditions, the outer packaging is assumed to burn away so that the inner packages contact one another. Also, water is assumed to leak into the inner packages. As previously stated, the packaging dimensions used in this analysis are identical to those used in Reference 7, which was prepared for the previous submittal (EMF-1563 Appendix 6H).

Also as previously stated, the dimensions of the SP-3 inner packaging are used in all models, since it has the smallest stringer height (most conservative). The assemblies within the SP-3 inner packaging are ATRIUMTM-10 design as specified in Table 3.

First, since the most reactive Gd_2O_3 rod placement per Reference 8 is asymmetric within the assembly (see Figure 1), a sensitivity study was performed to determine the most reactive assembly rotation within the inner packaging in an infinite array. The following four assembly rotations were investigated:

- 1. Asymmetric Gd₂O₃ rods in each assembly facing towards the inside and bottom of the inner packaging (Figure 7)
- 2. Asymmetric Gd₂O₃ rods in each assembly facing towards the outside and bottom of the inner packaging (Figure 8)
- 3. Asymmetric Gd₂O₃ rods in the assemblies in each group of two vertically adjacent inner packages facing towards the inside of the group (Figure 9)
- 4. Asymmetric Gd₂O₃ rods in the assemblies in each group of two vertically adjacent inner packages facing towards the outside of the group (Figure 10)

For this study, the assemblies were each centered horizontally and vertically within their respective channels. A pellet diameter of 0.3957" (corresponding to the actual clad OD) was used, as well as a PE VF of 0.14 as shims between the fuel rods. For the first set of cases, interspersed moderator was varied from dry to fully flooded. Only dry, fully flooded, and the peak interspersed moderator region were studied in the remaining sets. The results of this study are provided in Table 14 through Table 17. At optimum interspersed moderation, arrangements 1 and 3 (Figure 7 and Figure 9) yielded statistically identical results. The same is true of arrangements 2 and 4 (Figure 8 and Figure 10). However, arrangement 3 (Figure 9; asymmetric Gd_2O_3 Rods in the assemblies in each group of two vertically adjacent inner packages facing towards the inside of the group) at 7 vol% interspersed moderator produced the highest reactivity (k_{eff} =1.01423, including 2\sigma) in this sensitivity study.

Next, the assemblies were moved horizontally within their respective inner packaging in conjunction with the most reactive assembly rotations. The following three sets of cases were studied:

1. Assemblies as close as physically possible within the inner packaging and asymmetric Gd₂O₃ rods in the assemblies in each group of two vertically adjacent inner packages facing towards the outside of the group (Figure 11)

EMF-1563 Revision 12A Appendix 61 Page 29 of 72

- Assemblies as close as physically possible within the inner packaging and asymmetric Gd₂O₃ rods in the assemblies in each group of two vertically adjacent inner packages facing towards the inside of the group (Figure 12)
- Assemblies as far apart as physically possible within the inner packaging and asymmetric Gd₂O₃ rods in the assemblies in each group of two vertically adjacent inner packages facing towards the inside of the group (Figure 13)

Again, an infinite array of SP-3 inner packages were used, as well as a pellet diameter of 0.3957" and a PE VF of 0.14 as shims between the fuel rods. Dry, fully flooded, and the peak interspersed moderator region were studied, as in the previous sensitivity study. The results of this study are provided in Table 18 through Table 20. The case with the assemblies as far apart as physically possible within the inner packaging, asymmetric Gd_2O_3 rods in the assemblies in each group of two vertically adjacent inner packages facing towards the inside of the group, and 8 vol% interspersed moderator resulted in the peak reactivity (k_{eff} =1.01900, including 2 σ) in this sensitivity study.

The most reactive case from the previous sensitivity study was repeated with 0.35" diameter pellets. The results of this study are provided in Table 21. The peak reactivity (k_{eff} =1.00952, including 2 σ) occurs at 7 vol% interspersed moderator. These results show that in a large array of packages and low density interspersed moderator, assemblies with larger diameter pellets are more reactive than those with smaller diameter pellets.

The most reactive case from the previous sensitivity studies (assemblies as far apart as physically possible within the inner packaging and asymmetric Gd_2O_3 rods in the assemblies in each group of two vertically adjacent inner packages facing towards the inside of the group) was repeated with an array of inner packages 8 wide x 14 high x 1 long (112 packages). Pellet diameters of 0.3957" and 0.35" were studied. Again, a PE VF of 0.14 as shims between the fuel rods and dry, fully flooded, and the peak interspersed moderator region were studied, as in the previous sensitivity studies. The results of this study are provided in Table 22 and Table 23. In both sets of cases, the peak reactivity occurred with 13 vol% interspersed moderator. In these cases, the larger pellet diameter (0.3957") produced a higher peak reactivity (k_{eff} =0.94634, including 2 σ), which is below 0.95.

The 0.3957" diameter pellet case from the previous sensitivity study was modified to increase the PE VF to 0.152 to account for the accident condition where all of the upper tie plate shim (345 g PE) migrates to the space between the fuel rods within the assemblies. The results are provided in Table 24. The peak interspersed moderator shifted from 13 vol% to 12 vol%. However, the peak k_{eff} from these two studies are statistically identical (differ by approximately 0.25 σ). Compare these results to those in Section 3.1.2 where an increase in PE VF from 0.14 to 0.28 resulted in an increase in the peak k_{eff} of less than one standard deviation. As discussed in Section 3.1.2, since the Δk at peak interspersed moderator conditions was within one standard deviation of that at the same conditions with a PE VF of 0.14, the remaining calculations in this section were performed with a PE VF of 0.14.

The most reactive case in Table 22 was reran with a 98% UO₂ TD (increased from 96%). The results are summarized below and show that the maximum k_{eff} , including 2 σ , is 0.94784, slightly higher but statistically identical (~0.6 σ) to the most reactive case in Table 22.

380248 Oct 18 07:51:40 2000 droa-table24.98

.94242 .00271 .94695 .94784

EMF-1563 **Revision 12A** Appendix 6I Page 30 of 72

In order to investigate the sensitivity of decreasing the number of packagings (increasing the TI) at damaged conditions, the following calculations were performed. The conditions for these calculations are identical to those in the calculation above (droa-table24.98 dtm=001018.075140). except for the number of packagings in the array [104 (8x13), 98 (7x14), 91 (7x13), and 84 (7x12), respectively). The results follow and show the expected trend, i.e. as the number of packagings is decreased. k.r decreases.

The calculations in this section demonstrate that the reactivity of an array of 112 SP-3 packages at credible damaged conditions remains below the 0.95 limit, provided a payload of ATRIUMTM-10 fuel assemblies meeting the specifications listed in Table 3 are met. For accident (damaged) conditions, an array of 2N packages (where N is the desired number of packages to be shipped at one time) must be shown to yield $k_{eff} < 0.95$. Therefore, the calculations of this section show that 112/2 or 56 SP-3 packages may be shipped at one time with the payload described herein. Further, margin to the 0.95 limit is gained if the number of packagings is decreased. Decreasing the number of packagings to 104 (N=52) provides approximately 1% margin to the 0.95 limit and maintains a TI of 1.0.

Figure 7 Assembly Rotation with Asymmetric Gd₂O₃ Rods in Each Assembly Facing Towards the Inside and Bottom of the Inner Packaging

EMF-1563 Revision 12A Appendix 6I Page 32 of 72

Figure 8 Assembly Rotation with Asymmetric Gd₂O₃ Rods in Each Assembly Facing Towards the Outside and Bottom of the Inner Packaging

EMF-1563 Revision 12A Appendix 6I Page 33 of 72

Figure 9 Assembly Rotation with Asymmetric Gd₂O₃ Rods in the Assemblies in Each Group of Two Vertically Adjacent Inner Packages Facing Towards the Inside of the Group

EMF-1563 Revision 12A Appendix 6I Page 34 of 72

Figure 10 Assembly Rotation with Asymmetric Gd₂O₃ Rods in the Assemblies in Each Group of Two Vertically Adjacent Inner Packages Facing Towards the Outside of the Group

EMF-1563 Revision 12A Appendix 6I Page 35 of 72

Table 14 Infinite Array of SP-3 Inner Packages, Assemblies Centered in Channels, AsymmetricGd2O3 Rods in Each Assembly Facing Towards the Inside and Bottom of the Inner Packaging,0.3957" Diameter Pellets, 0.14 VF PE

Filename (droa-?)	Vol%Interspersed Moderator	Kaft	O S	kert20
dinf.gaid.c.000	0	0.92323	0.00181	0.92685
dinf.gaid.c.001	1	0.94699	0.00193	0.95085
dinf.gaid.c.003	3	0.98123	0.00183	0.98489
dinf.gaid.c.005	5	0.99967	0.00186	1.00339
dinf.gaid.c.006	6	1.00265	0.00188	1.00641
dinf.gaid.c.007	7 :	1.01025	0.00190	1.01405
dinf.gaid.c.008	8	1.00657	0.00193	1.01043
dinf.gaid.c.009	9	1.00501	0.00241	1.00983
dinf.gaid.c.010	10 ·	1.00394	0.00217	1.00828
dinf.gaid.c.011	11	1.00192	0.00259	1.00710
dinf.gaid.c.012	12	0.99742	0.00229	1.00200
dinf.gaid.c.013	13	0.98882	0.00236	0.99354
dinf.gaid.c.014	14	0.98946	0.00287	0.99520
dinf.gaid.c.015	15	0.98496	0.00247	0.98990
dinf.gaid.c.020	20	0.95308	0.00264	0.95836
dinf.gaid.c.030	30	0.88224	0.00286	0.88796
dinf.gaid.c.040	40	0.82924	0.00296	0.83516
dinf.gaid.c.050	50	0.79270	0.00281	0.79832
dinf.gaid.c.060	60	0.77535	0.00279	0.78093
dinf.gaid.c.070	70	0.76404	0.00276	0.76956
dinf.gaid.c.080	80	: 0.75932	0.00322	0.76576
dinf.gaid.c.090	90	0.75432	0.00311	0.76054
dinf.gaid.c.100	100	0.75971	0.00319	0.76609

•

EMF-1563 Revision 12A Appendix 6l Page 36 of 72

Table 15 Infinite Array of SP-3 Inner Packages, Assemblies Centered in Channels, Asymmetric Gd_2O_3 Rods in Each Assembly Facing Towards the Outside and Bottom of the Inner Packaging, 0.3957" Diameter Pellets, 0.14 VF PE

Filename (droa-?)	Vol% Interspersed Moderator	kar	σ	Kert20
dinf.gaod.c.000	0	0.92424	0.00165	0.92754
dinf.gaod.c.001	1	0.94487	0.00190	0.94867
dinf.gaod.c.003	3	0.98327	0.00201	0.98729
dinf.gaod.c.005	5	0.99553	0.00196	0.99945
dinf.gaod.c.006	6	0.99787	0.00223	1.00233
dinf.gaod.c.007	7	1.00351	0.00208	1.00767
dinf.gaod.c.008	8	1.00517	0.00207	1.00931
dinf.gaod.c.009	9	1.00629	0.00225	1.01079
dinf.gaod.c.010	10	1.00246	0.00250	1.00746
dinf.gaod.c.011	11	1.00046	0.00242	1.00530
dinf.gaod.c.012	12	0.99507	0.00256	1.00019 [.]
dinf.gaod.c.013	13	0.98759	0.00221	0.99201
dinf.gaod.c.014	14	0.98204	0.00253	0.98710
dinf.gaod.c.015	15	0.97558	0.00230	0.98018
dinf.gaod.c.020	20	0.94668	0.00265	0.95198
dinf.gaod.c.100	100	0.76648	0.00310	: 0.77268

Table 16 Infinite Array of SP-3 Inner Packages, Assemblies Centered in Channels, Asymmetric Gd_2O_3 Rods in the Assemblies in Each Group of Two Vertically Adjacent Inner Packages Facing Towards the Inside of the Group, 0.3957" Diameter Pellets, 0.14 VF PE

Filename (droa-?)	Vol% Interspersed Moderator	K _{eff}	σ	kert-20
dinf.gin.c.000	. 0	0.91819	0.00168	0.92155
dinf.gin.c.001	1	0.94700	0.00157	0.95014
dinf.gin.c.003	3	0.98014	0.00187	0.98388
dinf.gin.c.005	5	0.99650	0.00198	1.00046
dinf.gin.c.006	6	1.00441	0.00208	1.00857
dinf.gin.c.007	7	1.01029	0.00197	1.01423
dinf.gin.c.008	8	1.00601	0.00225	1.01051
dinf.gin.c.009	9	1.00429	0.00213	1.00855
dinf.gin.c.010	10	1.00568	0.00226	1.01020
dinf.gin.c.011	11	1.00249	0.00238	1.00725
dinf.gin.c.012	12	0.99487	0.00222	0.99931
dinf.gin.c.013	13	0.98789	0.00248	0.99285
dinf.gin.c.014	14	0.98459	0.00253	· 0.98965 [:]
dinf.gin.c.015	15	0.98040	0.00246	0.98532
dinf.gin.c.020	20	0.95008	0.00246	0.95500
dinf.gin.c.100	100	0.75750	0.00316	0.76382

Table 17 Infinite Array of SP-3 Inner Packages, Assemblies Centered in Channels, Asymmetric Gd_2O_3 Rods in the Assemblies in Each Group of Two Vertically Adjacent Inner Packages Facing Towards the Outside of the Group, 0.3957" Diameter Pellets, 0.14 VF PE

Filename (droa-?)	Vol% Interspersed Moderator	بر ريخي	р С	Kert2o
dinf.gout.c.000	0	0.92009	0.00168	0.92345
dinf.gout.c.001	1	0.94614	0.00222	0.95058
dinf.gout.c.003	3	0.98264	0.00201	0.98666
dinf.gout.c.005	5	0.99750	0.00211	1.00172
dinf.gout.c.006	6	1.00265	0.00232	1.00729
dinf.gout.c.007	7	1.00422	. 0.00210	1.00842
dinf.gout.c.008	8	1.00332	0.00203	1.00738
dinf.gout.c.009	9	1.00633	0.00218	1.01069
dinf.gout.c.010	10	0.99957	0.00227	1.00411
dinf.gout.c.011	11 '	0.99697	0.00202	1.00101
dinf.gout.c.012	12	0.99408	0.00233	0.99874
dinf.gout.c.013	13	0.99039	0.00259	0.99557
dinf.gout.c.014	14	0.98530	0.00263	0.99056
dinf.gout.c.015	15	0.96907	0.00239	0.97385
dinf.gout.c.020	20	0.94723	0.00242	0.95207
dinf.gout.c.100	100	0.77638	0.00332	0.78302

Figure 11 Assemblies as Close as Physically Possible within Inner Packaging and Asymmetric Gd₂O₃ Rods in the Assemblies in Each Group of Two Vertically Adjacent Inner Packages Facing Towards the Outside of the Group

• ;

EMF-1563 Revision 12A Appendix 6I Page 40 of 72

Figure 12 Assemblies as Close as Physically Possible within Inner Packaging and Asymmetric Gd_2O_3 Rods in the Assemblies in Each Group of Two Vertically Adjacent Inner Packages Facing Towards the Inside of the Group

EMF-1563 Revision 12A Appendix 6I Page 41 of 72

EMF-1563 Revision 12A Appendix 6I Page 42 of 72

Table 18 Infinite Array of SP-3 Inner Packages, Assemblies as Close as Physically Possible within Inner Packaging, Asymmetric Gd₂O₃ Rods in the Assemblies in Each Group of Two Vertically Adjacent Inner Packages Facing Towards the Outside of the Group, 0.3957" Diameter Pellets, 0.14 VF PE

Filename (droa-?)	Vol% Interspersed Moderator	Kar	9	kent2o
dinf.gout.i.000	0	0.92285	0.00163	0.92611
dinf.gout.i.001	1	0.94633	. 0.00155	0.94943
dinf.gout.i.003	3	0.97010	0.00177	0.97364
dinf.gout.i.005	5	0.98161	0.00183	0.98527
dinf.gout.i.006	6	0.98611	0.00218	0.99047
dinf.gout.i.007	7	[:] 0.98110	0.00206	0.98522
dinf.gout.i.008	8	0.97736	0.00215	0.98166
dinf.gout.i.009	9	0.97445	0.00245	0.97935
dinf.gout.i.010	10	0.97364	0.00235	0.97834
dinf.gout.i.011	11	0.96551	0.00248	0.97047
dinf.gout.i.012	12	0.95505	0.00260	0.96025
dinf.gout.i.013	13	0.94978	0.00216	0.95410
dinf.gout.i.014	14	0.94445	0.00245	0.94935
dinf.gout.i.015	15	0.94069	0.00228	0.94525
dinf.gout.i.020	20	0.89590	0.00271	0.90132
dinf.gout.i.100	100	0.77836	0.00343	0.78522

EMF-1563 Revision 12A Appendix 6I Page 43 of 72

Table 19 Infinite Array of SP-3 Inner Packages, Assemblies as Close as Physically Possible within Inner Packaging, Asymmetric Gd₂O₃ Rods in the Assemblies in Each Group of Two Vertically Adjacent Inner Packages Facing Towards the Inside of the Group, 0.3957" Diameter Pellets, 0.14 VF PE

Filename (droa-?)	Vol% Interspersed Moderator	Keir	G	ken+2o
dinf.gin.i.000	0	0.92523	0.00163	0.92849
dinf.gin.i.001	. 1	0.94837	0.00198	0.95233
dinf.gin.i.003	. 3	0.97876	0.00209	0.98294
dinf.gin.i.005	5	0.98673	0.00213	0.99099
dinf.gin.i.006	6	0.98894	0.00216	0.99326
dinf.gin.i.007	7	0.99107	0.00206	0.99519
dinf.gin.i.008	8	0.98939	0.00220	0.99379
dinf.gin.i.009	9	0.98154	0.00204	0.98562
dinf.gin.i.010	10	0.98022	0.00252	0.98526
dinf.gin.i.011	11	0.97373	0.00245	0.97863
dinf.gin.i.012	12	0.96553	0.00280	0.97113
dinf.gin.i.013	13	0.95736	0.00225	0.96186:
dinf.gin.i.014	14	0.95353	0.00260	0.95873
dinf.gin.i.015	15	0.94179	0.00259	0.94697
dinf.gin.i.020	20	0.90522	0.00301	0.91124
dinf.gin.i.100	100	0.77375	0.00339	0.78053

EMF-1563 Revision 12A Appendix 6I Page 44 of 72

Table 20 Infinite Array of SP-3 Inner Packages, Assemblies as Far Apart as Physically Possible within Inner Packaging, Asymmetric Gd_2O_3 Rods in the Assemblies in Each Group of Two Vertically Adjacent Inner Packages Facing Towards the Inside of the Group, 0.3957" Diameter Pellets, 0.14 VF PE

Filename (droa-?)	Vol% Interspersed Moderator	Ker	σ.,	ker+2ởi⊶
dinf.gin.o.000	0	0.92342	0.00175	0.92692
dinf.gin.o.001	1	0.94465	0.00165	0.94795
dinf.gin.o.003	3	0.98368	0.00210	0.98788
dinf.gin.o.005	. 5	1.00329	0.00208	1.00745
dinf.gin.o.006	6	1.00689	0.00186	1.01061
dinf.gin.o.007	7	1.00911	0.00198	1.01307
dinf.gin.o.008	8	1.01488	. 0.00206	1.01900
dinf.gin.o.009	9	1.01294	0.00218	1.01730
dinf.gin.o.010	10	1.01241	0.00239	1.01719
dinf.gin.o.011	11	1.01139	0.00248	1.01635
dinf.gin.o.012	12	1.01062	0.00227	1.01516
dinf.gin.o.013	13	1.00426	0.00237	1.00900
dinf.gin.o.014	14	0.99882	0.00234	1.00350
dinf.gin.o.015	15	0.99208	0.00227	0.99662
dinf.gin.o.020	20	0.96620	0.00261	0.97142
dinf.gin.o.100	100	0.73189	0.00298	0.73785

Table 21 Infinite Array of SP-3 Inner Packages, Assemblies as Far Apart as Physically Possible within Inner Packaging, Asymmetric Gd_2O_3 Rods in the Assemblies in Each Group of Two Vertically Adjacent Inner Packages Facing Towards the Inside of the Group, 0.35" Diameter Pellets, 0.14 VF PE

Filename (droa-?)	Vol% Interspersed Moderator	Ker	G.A.	ker+20
dinfa.gin.o.000	0	0.93601	0.00182	0.93965
dinfa.gin.o.001	1	0.95844	0.00204	0.96252
dinfa.gin.o.003	3	0.98718	0.00214	0.99146
dinfa.gin.o.005	5	1.00056	0.00216	1.00488
dinfa.gin.o.006	6	1.00266	0.00231	1.00728
dinfa.gin.o.007	7	1.00500	0.00226	1.00952
dinfa.gin.o.008	8	1.00372	0.00268	1.00908
dinfa.gin.o.009	9	0.99917	0.00231	1.00379
dinfa.gin.o.010	10	0.99534	0.00206	0.99946
dinfa.gin.o.011	11	0.99324	0.00240	0.99804
dinfa.gin.o.012	12	0.98843	0.00244	0.99331
dinfa.gin.o.013	13	0.98192	0.00268	0.98728
dinfa.gin.o.014	14	0.98071	0.00281	0.98633
dinfa.gin.o.015	15	0.97225	0.00266	0.97757
dinfa.gin.o.020	20	0.94173	0.00292	0.94757
dinfa.gin.o.100	100	0.72278	0.00315	0.72908

Table 22 112 SP-3 Inner Packages (8 Wide x 14 High), Assemblies as Far Apart as Physically Possible within Inner Packaging, Asymmetric Gd₂O₃ Rods in the Assemblies in Each Group of Two Vertically Adjacent Inner Packages Facing Towards the Inside of the Group, 0.3957" Diameter Pellets, 0.14 VF PE

Filename (droa-?)	Vol% Interspersed Moderator	kar	9	k _{en} +2σ
d112.gin.o.000	0	0.73315	0.00237	0.73789
d112.gin.o.001	1	0.77394	0.00246	0.77886
d112.gin.o.003	3	0.83914	0.00241	0.84396
d112.gin.o.005	5	0.88059	0.00259	0.88577
d112.gin.o.006	6	0.89472	0.00241	0.89954
d112.gin.o.007	7	0.90996	0.00248	0.91492
d112.gin.o.008	8	0.91947	0.00278	0.92503
d112.gin.o.009	9	0.92806	0.00237	0.93280
d112.gin.o.010	10	0.93178	0.00276	0.93730
d112.gin.o.011	11	: 0.93350	0.00270	0.93890
d112.gin.o.012	12	0.93638	0.00273	0.94184
d112.gin.o.013	13	0.94134	0.00250	0.94634
d112.gin.o.014	14	0.93746	0.00257	0.94260
d112.gin.o.015	15	0.93109	. 0.00295	0.93699
d112.gin.o.020	20	0.91940	0.00279	0.92498
d112.gin.o.100	100	0.73110	0.00354	0.73818

Table 23 112 SP-3 Inner Packages (8 Wide x 14 High), Assemblies as Far Apart as Physically Possible within Inner Packaging, Asymmetric Gd_2O_3 Rods in the Assemblies in Each Group of Two Vertically Adjacent Inner Packages Facing Towards the Inside of the Group, 0.35" Diameter Pellets, 0.14 VF PE

Filename (droa-?)	Vol% Interspersed Moderator	Kaf	σ	K _{ell} +2ở
d112a.gin.o.000	0	0.72927	0.00252	0.73431
d112a.gin.o.001	. 1	0.76529	0.00228	0.76985 [.]
d112a.gin.o.003	3	0.82126	0.00256	0.82638
d112a.gin.o.005	5	0.86408	0.00260	0.86928
d112a.gin.o.006	6	0.87822	0.00279	0.88380
d112a.gin.o.007	7	0.88682	0.00236	0.89154
d112a.gin.o.008	8	0.89857	0.00272	0.90401
d112a.gin.o.009	9	0.90166	0.00296	0.90758
d112a.gin.o.010	10	0.90884	0.00249	0.91382
d112a.gin.o.011	11	0.90866	0.00251	0.91368
d112a.gin.o.012	12	0.91260	0.00271	0.91802
d112a.gin.o.013	13	0.91596	0.00234	0.92064
d112a.gin.o.014	14	0.91333	0.00273	0.91879
d112a.gin.o.015	15	0.90806	0.00253	0.91312
d112a.gin.o.020	20	0.88571	0.00293	0.89157
d112a.gin.o.100	100	0.71794	0.00311	0.72416

Table 24 112 SP-3 Inner Packages (8 Wide x 14 High), Assemblies as Far Apart as Physically Possible within Inner Packaging, Asymmetric Gd₂O₃ Rods in the Assemblies in Each Group of Two Vertically Adjacent Inner Packages Facing Towards the Inside of the Group, 0.3957" Diameter Pellets, 0.152 VF PE

Filename (drca-?)	Vol% Interspersed Moderator	ker	G .	k _{ert} +2ơ
d112PS.gin.o.000	0	0.74824	0.00248	0.75320
d112PS.gin.o.001	1	0.78211	0.00248	0.78707 [.]
d112PS.gin.o.003	3 ·	0.84317	0.00225	0.84767
d112PS.gin.o.005	5	0.88074	0.00270	0.88614
d112PS.gin.o.006	6	0.89791	0.00280	0.90351
d112PS.gin.o.007	7	0.90794	0.00269	0.91332
d112PS.gin.o.008	8	0.92254	0.00264	0.92782
d112PS.gin.o.009	9	0.92537	0.00276	0.93089
d112PS.gin.o.010	10	0.93228	0.00281	0.93790
d112PS.gin.o.011	11	0.93473	0.00275	0.94023
d112PS.gin.o.012	12	0.94048	0.00261	0.94570
d112PS.gin.o.013	13	0.93828	0.00250	0.94328
d112PS.gin.o.014	14	0.93512	0.00313	0.94138
d112PS.gin.o.015	15	0.93594	0.00296	0.94186
d112PS.gin.o.020	20	0.92188	0.00266	0.92720
d112PS.gin.o.100	100	0.72353	0.00276	0.72905

3.1.5 Calculation of Transport Index (TI) with Payload 1 (ATRIUMTM-10 with PE Shipping Shims)

The TI for criticality safety is set such that five times the allowed number of packages at undamaged conditions and two times the allowed number of packages at damaged conditions must have a k_{eff} less than 0.95. Note that as discussed in Section 2.4, the bias is negative (conservative), so it is not included in the results as presented below.

Damaged Conditions

Array size = 8x13x1 = 104 (N=52)

Undamaged Conditions

Array size = 16x16x1 = 256 (N=51)

Maximum k_{eff} = 0.81950

Maximum $k_{eff} = 0.94054$

Using the smaller of the N values above and rounding to the highest tenth, the TI is calculated below:

TI = 50/51 = 1.0

4. **QA Review Description**

- Methodology used in this CSE is clearly defined and was verified to be applicable. Agreement is indicated by a check mark in the CSE text. The calculation methods including details on cross section preparation, atom densities assumed, and geometry models were reviewed and determined to be adequate. Each of these items was verified to be conservative.
- 2) Assumptions were reviewed for reasonableness and applicability to this analysis. Agreement is indicated by a check mark in the CSE text.
- 3) Modeling was reviewed and determined to conservatively model the actual system. A listing of one or more of the most reactive cases is included in the CSE.
- 4) Referenced sources were reviewed for applicability to this CSE.
- 5) Input information was checked against referenced sources.
- 6) Input for computer calculations were checked for agreement with values in the CSE text.
- 7) Hand calculations were independently checked.
- 8) K_{eff} for worst case accident conditions is specifically stated in the text.
- 9) Comments are provided below and are referenced in the CSE text as QA-N, where N is the corresponding comment number.
- 4.1 **QA Review Comments and Resolution**

All comments were editorial in nature and were incorporated into the body of the text.

4.2 Listing of Archived Computer Files

The computer input listings for this analysis have been archived on the DMS system under the following directories:

/critsafety/CSA/SHIPPING/SP-1/SP-1-DATA/SP1.6/...

Listings of the most reactive cases are provided in Appendix A.

EMF-1563 Revision 12A Appendix 6I Page 51 of 72

5. References

- 1) SCALE Standardized Computer Analyses for Licensing Evaluation, NUREG/CR-2000 ORNL/NUREG/CSD-2, Volumes 1, 2, and 3.
- Critical Separation Between Subcritical Clusters of 4.31 wt% Enriched UO₂ Rods in Water with Fixed Neutron Poisons, NUREG/CR-0073.
- 3) EMF-94-175, "Validation and Verification of KENO.Va" by R. E. Coen, Siemens Power Corporation - Nuclear Division, 2101 Horn Rapids Road, Richland, WA 99352.
- 4) UCRL-53369, <u>Nuclear Criticality Safety Experiments, Calculations, and Analyses 1958 to 1982:</u> <u>Compilation of Papers from the Transactions of the American Nuclear Society, Volume 2:</u> <u>Summaries</u>, Lawrence Livermore National Laboratory, W. Marshall, et al, "Criticality Safety Criteria," pp.687-688.
- 5) EMF-2418(P) Revision 0, <u>Principal Reload Fuel Design Parameters Kuosheng Unit 1 Fabrication</u> <u>Batch KS1-F13 ATRIUM[™]-10</u>, July 2000.
- KJW:00:014, <u>Shipping Shim Mass for ATRIUM[™]-10</u>, K. J. Wahlquist to C. D. Manning, June 21, 2000.
- 7) CSE BFQ-SP1.5 Revision 2, <u>SP-1 Shipping Container Supplemental Criticality Safety</u> <u>Evaluation</u>, C. D. Manning, Siemens Power Corporation, 7/20/1999.
- RF:00:012, <u>CASMO-4 Analysis of the Kuosheng and Chinshan ATRIUM[™]-10 Reload Fuel Design</u> for the SP-1 Shipping Containers, R. Fundak to J. M. Deist, September 20, 2000.
- 9) JKS:00:033, <u>Upper Tie Plate Shipping Shim for Taipower ATRIUM[™]-10 Fuel Shipments</u>, J. K. Schuette to J. M. Deist, June 13, 2000.
- 10) EMF-CS-1121, <u>Characteristics Specification, Kuosheng Unit 1 KS1-F13 ATRIUM[™]-10</u>, Siemens Power Corporation.

EMF-1563 Revision 12A Appendix 6I Page 52 of 72

APPENDIX A SAMPLE COMPUTER INPUTS

Case "drda-table11.98":

Single SP-3 Inner Package, Assemblies Moved as Close as Physically Possible within Inner Packaging, Asymmetric Gd_2O_3 Rods in Assemblies are Toward Outside of Inner Packaging, 0.35" Diameter Pellets, 0.14 VF PE as Shipping Shims, Fully Flooded

=csas25 : atrium-10 in sp1 shipping container hans infhom

' mixture 1
' interior rods not immed. adj. to water channel, no gd2o3, 5 wt% u235
uo2 1 0.98 293 92235 5.0 92238 95.0 end

' mixture 2
' interior rods immed. adj. to water channel, no gd2o3, 5 wt% u235
uo2 2 0.98 293 92235 5.0 92238 95.0 end

' mixture 4 ' corner rods facing other bundle, 5 wt% u235 uo2 4 0.98 293 92235 5.00 92238 95.00 end

' mixture 5 - not used ' smeared zr clad ' pod, cid, cod = 0.4221", 0.4281", 0.4781" ' vol fract zr = 0.8988 ' at dens = 0.8988 * 4.2518-2 = 3.8215e-02 zircalloy 5 0.0 3.8215e-02 293 end

' mixture 6
' interspersed moderator
h20 6 1.00,293 end

' mixture 7
' carbon steel, 100 vol%
c 7 0.0 3.921682e-03 293 end
fe 7 0.0 8.350009e-02 293 end

' mixture 8
' carbon steel, 85.57 vol% smeared with 10 vol% h2o
c 8 0.0 3.355783e-03 293 end
fe 8 0.0 7.145103e-02 293 end
o 8 0.0 4.8167e-04 293 end
h 8 0.0 9.6335e-04 293 end

' mixture 9 - not used ' carbon steel, 8.64 vol% c 9 0.0 3.388333e-04 293 end fe 9 0.0 7.214408e-03 293 end o 9 0.0 3.0496e-03 293 end h 9 0.0 6.0992e-03 293 end

EMF-1563 Revision 12A Appendix 61 Page 53 of 72

' mixture 10 water for reflector h2o 10 1.00 293 end ' mixture 11 pe and interspersed water vf pe = 0.14 water at full density is (1-.14) = .86 g/cc h2o 11 den=0.86 1.00 293 end arbmepe 0.92 2 0 1 1 6012 1 1001 2 11 0.14 end ' mixture 12 . corner rods not facing other bundle, 5 wt% u235 uo2 12 0.98 293 92235 5.00 92238 95.00 end ' mixture 13 1 rods immed. adj. to corner rod, facing other bundle, 5 wt% u235 uo2 13 0.98 293 92235 5.00 92238 95.00 end ' mixture 14 ' rods immed. adj. to corner rod, not facing other bundle, 5 wt% u235 uo2 14 0.98 293 92235 5.00 92238 95.00 end ' mixture 15 ' balance of edge rods facing other bundle, 5 wt% u235 uo2 15 0.98 293 92235 5.00 92238 95.00 end ' mixture 16 ' balance of edge rods not facing other bundle, 5 wt% u235 uo2 16 0.98 293 92235 5.00 92238 95.00 end end comp more data res= 1 cyli 4.3004E-01 dan(1)= 2.9485E-01 res= 2 cyli 4.4115E-01 dan(2)= 2.0949E-01 res= 3 cyli 4.2363E-01 dan(3)= 2.9202E-01 res= 4 cyli 4.3896E-01 dan(4)= 1.8340E-01 res= 12 cyli 4.2580E-01 dan(12)= 1.3547E-01 res= 13 cyli 4.4412E-01 dan(13)= 2.9408E-01 res= 14 cyli 4.6283E-01 dan(14) = 2.1325E-01 res= 15 cyli 4.2695E-01 dan(15)= 2.7553E-01 res= 16 cyli 4.4358E-01 dan(16) = 2.0248E-01 end more atrium-10 in sp1 shipping container read parameters tme=90.0 gen=103 npg=500 flx=yes fdn=yes xs1=yes nub=yes pwt=yes run=yes plt=yes end parameters read geometry unit 5 com=" 10x10 bundle in left basket " array 1 -4.2151 -6.477 -225.58 cubo 6 1: 4p8.7381 2p225.58 ' add 0.00598 inch of perforated steel cubo 8 1 4p8.89 2p225.58 unit 6 com=" 10x10 bundle in right basket " array 2 -8.7381 -6.477 -225.58 cubo 6 1 4p8.7381 2p225.58 add 0.00598 inch of perforated steel cubo 8 1 4p8.89 2p225.58 unit 9 com="1 5/8 x 1 5/8 inch moderation regions at corners "

EMF-1563 Revision 12A Appendix 6I Page 54 of 72

cubo 6 1 4p2.06375 2p225.58
global unit 10 com=" 1 inner container " array 3 -21.9075 -13.97 -225.58 ' add 0.0598 inch walls repl 7 1.6r0.1519 1 repl 10 2.6r3.0 10
unit 11 com="array of inners " array 4 3r0.0 repl 10 2 6r3.0 10
<pre>unit 16 com=" spacing & steel angle at -x side of basket " cubo 6 1 4.12750 0.0 2p8.89 2p225.58 hole 22 0.15875 0.0 0.0 hole 22 0.47625 -0.3175 0.0 hole 22 0.47625 0.3175 0.0 hole 22 0.79375 0.635 0.0 hole 22 0.79375 -0.635 0.0 hole 22 1.11125 0.9525 0.0 hole 22 1.11125 -0.9525 0.0 hole 22 1.42875 1.27 0.0 hole 22 1.42875 1.27 0.0 hole 22 1.42875 -1.5875 0.0 hole 22 1.74625 -1.5875 0.0 hole 22 1.74625 -1.5875 0.0 hole 22 2.06375 1.905 0.0 hole 22 2.06375 1.905 0.0 hole 22 2.38125 -2.2225 0.0 hole 22 2.69875 2.54 0.0 hole 22 3.01625 2.8575 0.0 hole 22 3.01625 -2.8575 0.0 hole 22 3.3375 3.175 0.0 hole 22 3.3375 3.175 0.0 hole 22 3.65125 -3.4925 0.0 hole 22 3.65125 -3.4925 0.0 hole 22 3.96875 3.81 0.0</pre>
unit 17 com=" spacing & steel angle at +x side of basket ' cubo 6 1 0.0 -4.12750 2p8.89 2p225.58 hole 22 -0.15875 0.0 0.0 hole 22 -0.47625 -0.3175 0.0 hole 22 -0.47625 0.3175 0.0 hole 22 -0.79375 0.635 0.0 hole 22 -0.79375 -0.635 0.0 hole 22 -1.11125 0.9525 0.0 hole 22 -1.1125 -0.9525 0.0 hole 22 -1.42875 1.27 0.0
hole 22 -1.42875 -1.27 0.0 hole 22 -1.74625 1.5875 0.0 hole 22 -1.74625 -1.5875 0.0 hole 22 -2.06375 1.905 0.0 hole 22 -2.06375 -1.905 0.0 hole 22 -2.38125 2.2225 0.0 hole 22 -2.38125 -2.2225 0.0 hole 22 -2.69875 -2.54 0.0 hole 22 -2.69875 -2.54 0.0 hole 22 -3.01625 2.8575 0.0 hole 22 -3.01625 -2.8575 0.0 hole 22 -3.33375 -3.175 0.0 hole 22 -3.65125 3.4925 0.0

EMF-1563 Revision 12A Appendix 61 Page 55 of 72

hole 22 -3.65125 -3.4925 0.0 hole 22 -3.96875 3.81 0.0 hole 22 -3.96875 -3.81 0.0 unit 18 com=" angles & spacing beneath baskets " cubo 6 1 2p8.89 4.12750 0.0 2p225.58 hole 21 0:0 0.15875 0.0 hole 21 -0.3175 0.47625 0.0 hole 21 0.3175 0.47625 0.0 hole 21 0.635 0.79375 0.0 hole 21 -0.635 0.79375 0.0 hole 21 0.9525 1.11125 0.0 hole 21 -0.9525 1.11125 0.0 hole 21 1.27 1.42875 0.0 hole 21 -1.27 1.42875 0.0 hole 21 1.5875 1.74625 0.0 hole 21 -1.5875 1.74625 0.0 hole 21 1.905 2.06375 0.0 hole 21 -1.905 2.06375 0.0 hole 21 2.2225 2.38125 0.0 hole 21 -2.2225 2.38125 0.0 hole 21 2.54 2.69875 0.0 hole 21 -2.54 2.69875 0.0 hole 21 2.8575 3.01625 0.0 hole 21 -2.8575 3.01625 0.0 hole 21 3.175 3.33375 0.0 -3.175 3.33375 0.0 3.4925 3.65125 0.0 -3.4925 3.65125 0.0 hole 21 hole 21 hole 21 hole 21 3.81 3.96875 0.0 hole 21 -3.81 3.96875 0.0 unit 19 com="angles & spacing above baskets " cubo 6 1 2p8.89 0.0 -4.12750 2p225.58 hole 21 0.0 -0.15875 0.0 hole 21 -0.3175 -0.47625 0.0 hole 21 0.3175 -0.47625 0.0 hole 21 0.635 -0.79375 0.0 hole 21 -0.635 -0.79375 0.0 hole 21 0.9525 -1.11125 0.0 hole 21 -0.9525 -1.11125 0.0 hole 21 1.27 -1.42875 0.0 hole 21 -1.27 -1.42875 0.0 hole 21 -1.27 -1.42675 0.0 hole 21 1.5875 -1.74625 0.0 hole 21 -1.5875 -1.74625 0.0 hole 21 1.905 -2.06375 0.0 hole 21 -1.905 -2.06375 0.0 hole 21 2.2225 -2.38125 0.0 hole 21 -2.2225 -2.38125 0.0 hole 21 2.54 -2.69875 0.0 hole 21 -2.54 -2.69875 0.0 hole 21 2.8575 -3.01625 0.0 hole 21 -2.8575 -3.01625 0.0 hole 21 3.175 -3.33375 0.0 hole 21 -3.175 -3.33375 0.0 hole 21 3.4925 -3.65125 0.0 -3.4925 -3.65125 0.0 hole 21 3.81 -3.96875 0.0 -3.81 -3.96875 0.0 hole 21 hole 21 unit 21 com="part of steel angle in horiz sections of stringer" ' 0.1552" x 0.125" cubo 7 1 2p0.197104 2p0.15874 2p225.58 unit 22 🕚 com="part of steel angle in vert sections of stringer" - 1

.....

EMF-1563 Revision 12A Appendix 6I Page 56 of 72

Supplemental License Application for FRA-ANP Model SP-3 Shipping Container

' 0.125" x 0.1552" cubo 7 1 2p0.15874 2p0.197104 2p225.58 unit 101 com=" interior rods not immed. adj. to water channel, no gd2o3, 5 wt% u235 " cyli 1 1 0.44450 2p225.58 cubo 11 1 4p0.6447 2p225.58 unit 102 com=" interior rods immed. adj. to water channel, no gd2o3, 5 wt% u235 " cyli 2 1 0.44450 2p225.58 cubo 11 1 4p0.6447 2p225.58 unit 103 com=" interior rods, 1.5 wt% gd2o3, 5 wt% u235 " cyli 3 1 0.44450 2p225.58 cubo 11 1 4p0.6447 2p225.58 unit 104 com=" corner rods facing other bundle, 3.05 wt% u235 " cyli 4 1 0.44450 2p225.58 cubo 11 1 4p0.6447 2p225.58 unit 105 com=" corner rods not facing other bundle, 3.05 wt% u235 " cyli 12 1 0.44450 2p225.58 cubo 11 1 4p0.6447 2p225.58 unit 106 com=" rods immed adj. to corner rod, facing other bundle, 3.55 wt% u235 " cyli 13 1 0.44450 2p225.58 cubo 11 1 4p0.6447 2p225.58 unit 107 com=" rods immed adj. to corner rod, not facing other bundle, 3.55 wt% u235 " cyli 14 1 0.44450 2p225.58 cubo 11 1 4p0.6447 2p225.58 unit 108 com=" balance of edge rods facing other bundle, 4.75 wt% u235 " cyli 15 1 0.44450 2p225.58 cubo 11 1 4p0.6447 2p225.58 unit 109 com=" balance of edge rods not facing other bundle, 4.75 wt% u235 " cyli 16 1 0.44450 2p225.58 cubo 11 1 4p0.6447 2p225.58 unit 110 com=" water rod " cubo 6 1 4p0.6447 2p225.58 end geometry read array ' array 1 is bundle in left basket ara=1 nux=10 nuy=10 nuz=1 fill 105 107 109 109 109 109 109 109 107 104 107 101 103 101 103 101 101 101 101 106 109 103 101 101 102 102 102 101 101 108 109 101 101 102 110 110 110 102 101 108 109 103 101 102 110 110 110 102 101 108 109 101 101 102 110 110 110 102 103 108 109 101 101 101 102 102 102 101 101 108 109 103 101 101 101 101 101 101 103 108 107 101 103 101 101 103 101 103 101 106 105 107 109 109 109 109 109 109 107 104

EMF-1563 Revision 12A Appendix 6I Page 57 of 72

Supplemental License Application for FRA-ANP Model SP-3 Shipping Container

end fill

' array 2 is bundle in right basket ara=2 nux=10 nuy=10 nuz=1 fill 104 107 109 109 109 109 109 109 109 107 105 106 101 101 101 101 103 101 103 101 107 108 101 101 102 102 102 101 101 103 109 108 101 102 110 110 110 102 101 101 109 108 101 102 110 110 110 102 101 103 109 108 103 102 110 110 110 102 101 101 109 108 101 101 102 102 102 101 101 101 109 108 103 101 101 101 101 101 101 103 109 106 101 103 101 103 101 101 103 101 107 104 107 109 109 109 109 109 109 107 105 end fill ara=3 nux=4 nuy=3 nuz=1 ' array 3 is 1 inner container fill 9 18 18 9 16 5 6 17 9 19 19 9 end fill ' array 4 is an array of inner containers ara=4 nux=8 nuy=13 nuz=1 fill f10 end fill end array read start nst=1 end start read bounds all=vacuum end bounds read bias ' id=500 2 11 end bias read plot ttl=' xy section of one inner container ' xul=-22.0594 yul=12.2169 zul=10 xlr=22.0594 ylr=-14.1219 zlr=10 uax=1 -vdn≈-1 nax=150 lpi=10 end ttl=' xy section of one inner container plus reflector ' xul=-54yul≈44 zul=10 xlr=54 ylr=-46 zlr=10 -vdn=-1 nax=150 uax=1 lpi=10 end ttl=' xz section of one inner container plus reflector ' xul=-54 yul=-5.8323 zul=-258 xlr=54 vlr=5.8323 zlr=258 lpi=10 uax=1 wdn=1 nax=150 end end plot

end data end

EMF-1563 Revision 12A Appendix 6I Page 58 of 72

Case "drda-table14.98": Undamaged Spacing, 256 SP-1/2/3 Inner/Outer Packages (16 Wide x 16 High), Assemblies as Far Apart as Physically Possible within Inner Packaging, Asymmetric Gd₂O₃ Rods in the Assemblies in Each Group of Two Vertically Adjacent Inner Packages Facing Towards the Inside of the Group, 0.3957" Diameter Pellets, 0.14 VF PE within Inner Packages as Shipping Shims, 13 vol% Interspersed Moderator, 1 vol% PE between Inner and Outer Packages = csas25atrium-10 in spl shipping container hans infhom ' mixture 1 ' interior rods not immed. adj. to water channel, no gd2o3, 5 wt% u235 uo2 1 0.98 293 92235 5.0 92238 95.0 end ' mixture 2 interior rods immed. adj. to water channel, no gd2o3, 5 wt% u235 uo2 2 0.98'293 92235 5.0 92238 95.0 end ' mixture 3 interior rods, 1.5 wt% gd2o3, 5 wt% u235 td of uo2-gd2o3 = 10.96-2.65*p/[p+0.67145*(1-p)], p = wt fraction gd2o3 p is 0.015 here, so td of uo2-gd2o3 is 10.90123 g/cc pellets are 0.98 td, so 0.98*10.90123 = 10.68321 g/cc gd2o3 density is 0.015*10.68321 = 0.16025 uo2 3 den=10.68321 1.0 293 92235 5.0 92238 95.0 end arbmgd2o3 0.16025 2 0 1 0 64000 2 8016 3 3 1.0 293 end ' mixture 4 ' corner rods facing other bundle, 3.05 wt% u235 uo2 4 0.98 293 92235 3.05 92238 96.95 end ' mixture 5 - not used smeared zr clad pod, cid, cod = 0.4221", 0.4281", 0.4781" vol fract zr = 0.8988at dens = 0.8988 * 4.2518-2 = 3.8215e-02 zircalloy 5 0.0 3.8215e-02 293 end ' mixture 6 interspersed moderator h20 6 0.13 293 end mixture 7 carbon steel, 100 vol% c 7 0.0 3:921682e-03 293 end fe 7 0.0 8.350009e-02 293 end ' mixture 8 carbon steel, 85.57 vol% smeared with 10 vol% h20 c 8 0.0 3:355783e-03 293 end fe 8 0.0 7.145103e-02 293 end o 8 0.0 4.8167e-04 293 end h 8 0.0 9.6335e-04 293 end ' mixture 9 - not used carbon steel, 8.64 vol% c 9 0.0 3.388333e-04 293 end fe 9 0.0 7.214408e-03 293 end o 9 0.0 3:0496e-03 293 end h 9 0.0 6.0992e-03 293 end

' mixture 10

EMF-1563 Revision 12A Appendix 61 Page 59 of 72

' water for reflector h2o 10 1:00 293 end ' mixture 11 pe and interspersed water ı. vf pe = 0.14water at full density is (1-.14) = .86 g/cc h2o 11 den=0.86 0.13 293 end arbmepe 0.92 2 0 1 1 6012 1 1001 2 11 0.14 end ' mixture 12 . corner rods not facing other bundle, 3.05 wt% u235 uo2 12 0.98 293 92235 3.05 92238 96.95 end ' mixture 13 ' rods immed. adj. to corner rod, facing other bundle, 3.55 wt% u235 uo2 13 0.98 293 92235 3.55 92238 96.45 end ' mixture 14 ' rods immed. adj. to corner rod, not facing other bundle, 3.55 wt% u235 uo2 14 0.98 293 92235 3,55 92238 96.45 end ' mixture 15 ' balance of edge rods facing other bundle, 4.75 wt% u235 uo2 15 0.98 293 92235 4.75 92238 95.25 end ' mixture 16 balance of edge rods not facing other bundle, 5 wt% u235 uo2 16 0.98 293 92235 5.00 92238 95.00 end ' mixture 17 ' pe as interspersed moderator for ethafoam arbmepe 0.92 2 0 1 1.6012 1 1001 2 17 0.01 end end comp more data res= 1 cyli 3.9693E-01 dan(1)= 7.1095E-01 res= 2 cyli 4.9947E-01 dan(2)= 6.3439E-01 res= 3 cyli 3.8942E-01 dan(3) = 7.1464E-01 res= 4 cyli 6.1041E-01 dan(4)= 2.9373E-01 res= 12 cyli 6.2199E-01 dan(12) = 3.0272E-01 res= 13 cyli 5.0252E-01 dan(13)= 4.8509E-01 res= 14 cyli 5.0306E-01 dan(14) = 4.8213E-01 res= 15 cyli 5.4301E-01 dan(15)= 5.0055E-01 res= 16 cyli 5.6070E-01 dan(16)= 4.7538E-01 end more atrium-10 in sp1 shipping container read parameters tme=90.0 gen=103 npg=500 flx=yes fdn=yes xs1=yes nub=yes pwt=yes : run=yes plt=yes end parameters read geometry unit 5 com=" 10x10 bundle in left basket (top inner) " array 1 -8.7381 -6.477 -225.58 cubo 6 1: 4p8.7381 2p225.58 ' add 0.0598 inch of perforated steel cubo 8 1 4p8.89 2p225.58 unit 6 com=" 10x10 bundle in right basket (top inner) array 2 -4.2151 -6.477 -225.58 cubo 6 1 4p8.7381 2p225.58 ' add 0.0598 inch of perforated steel
EMF-1563 Revision 12A Appendix 6I Page 60 of 72

Supplemental License Application for FRA-ANP Model SP-3 Shipping Container

cubo 8 1 4p8.89 2p225.58 unit 7 com_{-} " 10x10 bundle in left basket (bottom inner) array 5 -8.7381 -6.477 -225.58 cubo 6 1 4p8.7381 2p225.58 ' add 0.0598 inch of perforated steel cubo 8 1 4p8.89 2p225.58 unit 8 com=" 10x10 bundle in right basket (bottom inner) " array 6 -4.2151 -6.477 -225.58 cubo 6 1: 4p8.7381 2p225.58 ' add 0.0598 inch of perforated steel cubo 8 1 4p8.89 2p225.58 unit 9 com="1 5/8 x 1 5/8 inch moderation regions at corners " cubo 6 1 4p2.06375 2p225.58 unit 10 com=" 1 inner + outer container (top) array 3 -21,9075 -13.97 -225.58 ' add 0.0598 inch walls repl 7 1 6r0.1519 1 ' add exterior wood box (outer container) ' use low density pe here and box size of 24" x 24" x 206" cubo 17 1 4p30.48 2p261.62 unit 11 com="array of 2 inners + outers (top & bottom) " array 8 3r0.0 'repl 10 2.6r3.0 10 unit 12 com=" 1 inner + outer container (bottom) array 7 -21.9075 -13.97 -225.58 ' add 0.0598 inch walls repl 7 1.6r0.1519 1 ' add exterior wood box (outer container) ' use low density pe here and box size of 24" x 24" x 206" cubo 17 1 4p30.48 2p261.62 global unit 13 com="large array of inners " array 9 3r0.0 repl 10 2 6r3.0 10 unit 16 com=" spacing & steel angle at -x side of basket " cubo 6 1 4.12750 0.0 2p8.89 2p225.58 0.15875 0.0 0.0 hole 22 hole 22 0.47625 -0.3175 0.0 hole 22 0.47625 0.3175 0.0 hole 22 0.79375 0.635 0.0 hole 22 0.79375 -0.635 0.0 hole 22 1:11125 0.9525 0.0 hole 22 1.11125 -0.9525 0.0 hole 22 1.42875 1.27 0.0 hole 22 1.42875 -1.27 0.0 hole 22 1.74625 1.5875 0.0 hole 22 1:74625 -1.5875 0.0 hole 22 2,06375 1.905 0.0 hole 22 2:06375 -1.905 0.0 hole 22 2:38125 2:2225 0.0 hole 22 2.38125 -2.2225 0.0 hole 22 2.69875 2.54 0.0 hole 22 2.69875 -2.54 0.0

EMF-1563 Revision 12A Appendix 6I Page 61 of 72

Supplemental License Application for FRA-ANP Model SP-3 Shipping Container

hole 22 3'01625 2 8575 0 0	
hole 22 3 01625 -2 8575 0.0	
	•
noie 22 3.33375 -3.175 0.0	
hole 22 3,65125 3.4925 0.0	
hole 22 3.65125 -3.4925 0.0	
hole 22 3.96875 3.81 0.0	
hole 22 3,96875 -3.81 0.0	
unit 17	
com-" angring (atool angle at an aide of	1
com- spacing a sceer angle at $+x$ side of $com-$	Dasket "
Cubo 6 1 0.0 -4.12/50 2p8.89 2p225.58	
noie 22 -0.47625 -0.3175 0.0	
nole 22 -0.47625 0.3175 0.0	
hole 22 +0.79375 0.635 0.0	
hole 22 -0.79375 -0.635 0.0	
hole 22 -1.11125 0.9525 0.0	•
hole 22 -1.11125 -0.9525 0.0	
hole 22 -1.42875 1.27 0.0	
hole 22 -1.42875 -1.27 0.0	
hole 22 -1.74625 1.5875 0.0	
hole 22 -1.74625 -1.5875 0.0	
hole 22 -2 06375 1 905 0 0	
hole 22 -2 06375 -1 905 0 0	
hole $22 = 2.00375 = 2.005 0.0$	
note 22 -2.69875 2.54 0.0	
nole 22 -2.69875 -2.54 0.0	
nole 22 -3.01625 2.8575 0.0	
hole 22 -3.01625 -2.8575 0.0	
hole 22 -3.33375 3.175 0.0	
hole 22 -3.33375 -3.175 0.0	
hole 22 -3.65125 3.4925 0.0	
hole 22 -3.65125 -3.4925 0.0	
hole 22 -3.96875 3.81 0.0	
hole 22 -3.96875 -3.81 0.0	
unit 18	
com=" angles & spacing beneath baskets "	
cubo 6 1 2p8.89 4.12750 0.0 2p225.58	
hole 21 0.0 0.15875 0.0	
hole 21 -0-3175 0.47625 0.0	
hole 21 $0'3175 0 47625 0 0$	
hole $21 0.635 0.79375 0.0$	
hole 21 .0 635 0.79375 0.0	
hole 21 -0.855 0.79375 0.0	
hole 21 0.9525 1.11125 0.0	
	1
nole 21 1.27 1.42875 0.0	1
hole 21 -1.27 1.42875 0.0	;
hole 21 1.5875 1.74625 0.0	I.
hole 21 -1.5875 1.74625 0.0	
hole 21 1.905 2.06375 0.0	
hole 21 -1.905 2.06375 0.0	
hole 21 2.2225 2.38125 0.0	•
hole 21 -2.2225 2.38125 0.0	,
hole 21 2.54 2.69875 0.0	
hole 21 -2.54 2.69875 0.0	
hole 21 2.8575 3.01625 0.0	
hole $21 - 2.8575 - 3.01625 - 0.0$	
hole 21 3 175 3 33375 0 0	
hole $21 = 3.175 3.33375 0.0$	
hole 21 '2 4025 2 65125 0 0	
hold $21 = 3.4025 - 3.05125 - 0.0$;
hole 21 - 2.4223 3.02123 U.U	
0.0 C 10.0 C 10.	
HOTE ST -3.87 3.368/2 0.0	'
whith 10	•
unit 13	
commendies & spacing above baskets "	
	1
	I
:	I

EMF-1563 Revision 12A Appendix 6l Page 62 of 72

Supplemental License Application for FRA-ANP Model SP-3 Shipping Container

cubo 6 1 2p8.89 0.0 -4.12750 2p225.58 hole 21 0.0 -0.15875 0.0 hole 21 -0.3175 -0.47625 0.0 hole 21 0.3175 -0.47625 0.0 hole 21 0.635 -0.79375 0.0 hole 21 -0.635 -0.79375 0.0 hole 21 0.9525 -1.11125 0.0 hole 21 -0.9525 -1.11125 0.0 hole 21 1.27 -1.42875 0.0 hole 21 -1.27 -1.42875 0.0 hole 21 1.5875 -1.74625 0.0 hole 21 -1.5875 -1.74625 0.0 hole 21 1.905 -2.06375 0.0 hole 21 -1.905 -2.06375 0.0 hole 21 2.2225 -2.38125 0.0 hole 21 -2.2225 -2.38125 0.0 hole 21 2.54 -2.69875 0.0 hole 21 -2.54 -2.69875 0.0 hole 21 2.8575 -3.01625 0.0 hole 21 -2.8575 -3.01625 0.0 hole 21 3.175 -3.33375 0.0 hole 21 -3.175 -3.33375 0.0 hole 21 3.4925 -3.65125 0.0 hole 21 -3.4925 -3.65125 0.0 hole 21 · 3.81 -3.96875 0.0 -3.81 -3.96875 0.0 hole 21 unit 21 . com="part of steel angle in horiz sections of stringer" ' 0.1552" x 0.125" cubo 7 1 2p0.197104 2p0.15874 2p225.58 unit 22 com="part of steel angle in vert sections of stringer" ' 0.125" x 0.1552" cubo 7 1 2p0.15874 2p0.197104 2p225.58 unit 101 <code>com=" interior rods not immed. adj. to water channel, no gd2o3, 5 wt% u235 " cyli 1 1 0.50254 2p225.58</code> cubo 11 1 4p0.6447 2p225.58 unit 102 com=" interior rods immed. adj. to water channel, no gd2o3, 5 wt% u235 " cyli 2 1 0.50254 2p225.58 cubo 11 1 4p0.6447 2p225.58 unit 103 com=" interior rods, 1.5 wt% gd2o3, 5 wt% u235 " cyli 3 1 0.50254 2p225.58 cubo 11 1 4p0.6447 2p225.58 unit 104 com=" corner rods facing other bundle, 3.05 wt% u235 " cyli 4 1 0.50254 2p225.58 cubo 11 1 4p0.6447 2p225.58 unit 105 com=" corner rods not facing other bundle, 3.05 wt% u235 " cyli 12 1 0.50254 2p225.58 cubo 11 1 4p0.6447 2p225.58 unit 106 com=" rods immed adj. to corner rod, facing other bundle, 3.55 wt% u235 " cyli 13 1 0.50254 2p225.58 cubo 11 1 4p0.6447 2p225.58 unit 107 [°] com=" rods immed adj. to corner rod, not facing other bundle, 3.55 wt% u235 "

EMF-1563 Revision 12A Appendix 6I Page 63 of 72

Supplemental License Application for FRA-ANP Model SP-3 Shipping Container

EMF-1563 Revision 12A Appendix 6I Page 64 of 72

Supplemental License Application for FRA-ANP Model SP-3 Shipping Container

109 101 102 110 110 110 102 101 101 108

109 101 102 110 110 110 102 101 103 108 109 103 102 110 110 110 102 101 101 108
 109
 101
 101
 102
 102
 102
 101
 101
 101
 101
 101
 101
 103
 103
 101
 101
 101
 101
 103
 108
 107 101 103 101 103 101 101 103 101 106 105 107 109 109 109 109 109 109 107 104 end fill ' array 6 is bundle in right basket (bottom inner) ara=6 nux=10 nuy=10 nuz=1 fill 104 107 109 109 109 109 109 109 107 105 106 101 103 101 103 101 101 101 101 107 108 103 101 101 102 102 102 101 101 109 108 101 101 102 110 110 110 102 101 109 108 103 101 102 110 110 110 102 101 109 108 101 101 102 110 110 110 102 103 109 108 101 101 101 102 102 102 101 101 109 108 103 101 101 101 101 101 101 103 109 106 101 103 101 101 103 101 103 101 107 104 107 109 109 109 109 109 109 107 105 end fill ' array 7 is 1 inner container (bottom inner) ara=7 nux=4 nuy=3 nuz=1 fill 9 18 18 c 16 7 8 17 9 19 19 9 end fill ' array 8 is 2 inner + outer containers (top & bottom) ara=8 nux=1 nuy=2 nuz=1 fill 12 10 end fill ' array 9 is array of 256 (16x16x1) containers ara=9 nux=16 nuy=8 nuz=1 fill f11 end fill end array read start nst=1end start read bounds all=vacuum end bounds read bias id=500 2 11 end bias read plot ttl=' xy section of two inner containers ' xul=0 yul=52.6776 zul=10 xlr=44.1188 ylr=0 zlr=10 uax≈1 vdn=-1 : nax=150 loi=10 end ttl=' xy section of entire array ' xul=-32 yul=401 zul=10 zul=10 x1r=385 ylr=-32 zlr=10 . vdn≃-1 uax=1 nax=150 lpi=10 end ttl=' xz section of one inner container ' xul=0 yul=7.1882 zul=0 xlr=44.1188 ylr=7.1882 zlr=452 :

EMF-1563 Revision 12A Appendix 6I Page 65 of 72

Supplemental License Application for FRA-ANP Model SP-3 Shipping Container

;;

•	uax=1	: wdn=1		nax=150	lpi=10	end
	ttl=' xz s xul=-32 . xlr=385 uax=1 '	section of a yul=7.1 ylr=7.1 wdn=1	entire 1882 1882	array ' zul=-32 zlr=484 nax=150	lpi=10	end
	end plot	1				
	end data	ł				
	end					
		•	,			
					;	
		•				
		:				
		,				
		•				
		н - н				
					•	
		:		•	·	
		1				
		1				
					:	
		1				
•						
		:				
					:	
·		1				
		• •				
		:			;	
·		I			:	
					:	
		: .			ţ.	

Supplemental License Application for FRA-ANP Model SP-3 Shipping Container EMF-1563 Revision 12A Appendix 61 Page 66 of 72

Case "drda-table24.98": Damaged Spacing, 112 SP-3 Inner Packages (8 Wide x 14 High), Assemblies as Far Apart as Physically Possible within Inner Packaging, Asymmetric Gd₂O₃ Rods in the Assemblies in Each Group of Two Vertically Adjacent Inner Packages Facing Towards the Inside of the Group, 0.3957" Diameter Pellets, 0.14 VF PE as Shipping Shims, 13 vol% Interspersed Moderator =csas25 atrium-10 in sp1 shipping container hans infhom ' mixture 1 interior rods not immed. adj. to water channel, no gd2o3, 5 wt% u235 uo2 1 0.98 293 92235 5.0 92238 95.0 end ' mixture 2 interior rods immed. adj. to water channel, no gd203, 5 wt% u235 uo2 2 0.98;293 92235 5.0 92238 95.0 end ' mixture 3 interior rods, 1.5 wt% gd2o3, 5 wt% u235 td of uo2-gd2o3 = 10.96-2.65*p/[p+0.67145*(1-p)], p = wt fraction gd2o3 p is 0.015 here, so td of uo2-gd2o3 is 10.90123 g/cc pellets are 0.98 td, so 0.98*10.90123 = 10.68321 g/cc gd2o3 density is 0.015*10.68321 = 0.16025 uo2 3 den=10.68321 1.0 293 92235 5.0 92238 95.0 end arbmgd2o3 0.16025 2 0 1 0 64000 2 8016 3 3 1.0 293 end ' mixture 4 corner rods facing other bundle, 3.05 wt% u235 uo2 4 0.98 293 92235 3.05 92238 96.95 end ' mixture 5 - not used smeared zr clad pod, cid, cod = 0.4221", 0.4281", 0.4781" vol fract zr = 0.8988at dens = 0.8988 * 4.2518-2 = 3.8215e-02 zircalloy 5 0.0 3.8215e-02 293 end ' mixture 6 ' interspersed moderator h2o 6 0.13 293 end ' mixture 7 carbon steel, 100 vol% c 7 0.0 3.921682e-03 293 end fe 7 0.0 8.350009e-02 293 end ' mixture 8 carbon steel, 85.57 vol% smeared with 10 vol% h2o c 8 0.0 3.355783e-03 293 end fe 8 0.0 7.145103e-02 293 end o 8 0.0 4.8167e-04 293 end h 8 0.0 9.6335e-04 293 end ' mixture 9 - not used carbon steel, 8.64 vol% c 9 0.0 3,388333e-04 293 end fe 9 0.0 7.214408e-03 293 end o 9 0.0 3.0496e-03 293 end h 9 0.0 6.0992e-03 293 end ' mixture 10 water for reflector

EMF-1563 Revision 12A Appendix 6I Page 67 of 72

Supplemental License Application for FRA-ANP Model SP-3 Shipping Container

h2o 10 1.00 293 end mixture 11 pe and interspersed water vf pe = 0.14water at full density is (1-.14) = .86 g/cc h2o 11 den=0.86 0.13 293 end arbmepe 0.92 2 0 1 1 6012 1 1001 2 11 0.14 end ' mixture 12 ' corner rods not facing other bundle, 3.05 wt% u235 uo2 12 0.98 293 92235 3.05 92238 96.95 end ' mixture 13 ' rods immed. adj. to corner rod, facing other bundle, 3.55 wt% u235 uo2 13 0.98 293 92235 3.55 92238 96.45 end ' mixture 14 rods immed. adj. to corner rod, not facing other bundle, 3.55 wt% u235 uo2 14 0.98 293 92235 3.55 92238 96.45 end ' mixture 15 balance of edge rods facing other bundle, 4.75 wt% u235 uo2 15 0.98 293 92235 4.75 92238 95.25 end ' mixture 16 ' balance of edge rods not facing other bundle, 4.75 wt% u235 uo2 16 0.98 293 92235 4.75 92238 95.25 end end comp more data res= 1 cyli 4.0208E-01 dan(1)= 7.1142E-01 2 cyli 4.9742E-01 dan(2) = 6.3618E-01 res≍ res= 3 cyli 3.6730E-01 dan(3)= 7.2001E-01 res= 4 cyli 5.8128E-01 dan(4) = 3.1823E-01 res= 12 cyli 5.6362E-01 dan(12) = 3.0332E-01 res= 13 cyli 5.5527E-01 dan(13) = 4.5415E-01 res= 14 cyli 5.1895E-01 dan(14) = 4.7205E-01 res= 15 cyli 5.5759E-01 dan(15)= 4.9719E-01 res= 16 cýli 5.6282E-01 dan(16) = 4.7439E-01 end more atrium-10 in sp1 shipping container read parameters tme=90.0 gen=103 npg=500 flx=yes: fdn=yes xs1=yes nub=yes pwt=yes run=yes plt=yes end parameters read geometry unit 5 com=" 10x10 bundle in left basket (top inner) " array 1 -8.7381 -6.477 -225.58 cubo 6 1 4p8.7381 2p225.58 ' add 0.0598 inch of perforated steel cubo 8 1 4p8.89 2p225.58 unit 6 com=" 10x10 bundle in right basket (top inner) " array 2 -4.2151 -6.477 -225.58 cubo 6 1 4p8:7381 2p225.58 ' add 0.0598 inch of perforated steel cubo 8 1 4p8.89 2p225.58 unit 7 com=" 10x10 bundle in left basket (bottom inner) " array 5 -8.7381 -6.477 -225.58 cubo 6 1.4p8.7381 2p225.58 add 0.0598 inch of perforated steel

Supplemental License Application for FRA-ANP Model SP-3 Shipping Container

EMF-1563 Revision 12A Appendix 6I Page 68 of 72

cubo 8 1 4p8.89 2p225.58

unit 8 com=" 10x10 bundle in right basket (bottom inner) " array 6 -4.2151 -6.477 -225.58 cubo 6 1 4p8.7381 2p225.58 ' add 0.0598 inch of perforated steel cubo 8 1 4p8.89 2p225.58 unit 9 com="1 5/8 x 1 5/8 inch moderation regions at corners " cubo 6 1 4p2.06375 2p225.58 unit 10 com=" 1 inner container (top) array 3 -21.9075 -13.97 -225.58 ' add 0.0598 inch walls repl 7 1 6r0.1519 1 unit 11 com="array of 2 inners (top & bottom) array 8 3r0.0 'repl 10 2 6r3.0 10 unit 12 com=" 1 inner container (bottom) array 7 -21.9075 -13.97 -225.58 ' add 0.0598 inch walls repl 7 1 6r0.1519 1 global unit 13 com="large array of inners " array 9 3r0.0 repl 10 2 6r3.0 10 unit 16 com=" spacing & steel angle at -x side of basket " cubo 6 1 .4.12750 0.0 2p8.89 2p225.58 hole 22 0.15875 0.0 0.0 hole 22 0.47625 -0.3175 0.0 0.47625 0.3175 0.0 0.79375 0.635 0.0 hole 22 hole 22 hole 22 0.79375 -0.635 0.0 hole 22 1.11125 0.9525 0.0 hole 22 1.11125 -0.9525 0.0 hole 22 1.42875 1.27 0.0 hole 22 1.42875 -1.27 0.0 hole 22 1.74625 1.5875 0.0 hole 22 1.74625 -1.5875 0.0 hole 22 2.06375 1.905 0.0 hole 22 2.06375 -1.905 0.0 hole 22 2.38125 2.2225 0.0 hole 22 2.38125 -2.2225 0.0 2.69875 2.54 0.0 hole 22 hole 22 2.69875 -2.54 0.0 hole 22 3.01625 2.8575 0.0 hole 22 3.01625 -2.8575 0.0 3.33375 3.175 0.0 hole 22 3.33375 -3.175 0.0 3.65125 3.4925 0.0 hole 22 hole 22 hole 22 3.65125 -3.4925 0.0 hole 22 3.96875 3.81 0.0 hole 22 3.96875 -3.81 0.0 unit 17 com=" spacing & steel angle at +x side of basket " cubo 6 1 .0.0 -4.12750 2p8.89 2p225.58 hole 22 -0.15875 0.0 0.0

ί.

EMF-1563 Revision 12A Appendix 61 Page 69 of 72

Supplemental License Application for FRA-ANP Model SP-3 Shipping Container

-0.47625 -0.3175 0.0 -0.47625 0.3175 0.0 hole 22 hole 22 -0.79375 0.635 0.0 hole 22 -0.79375 -0.635 0.0 -1.11125 0.9525 0.0 hole 22 hole 22 hole 22 -1.11125 -0.9525 0.0 hole 22 -1.42875 1.27 0.0 hole 22 -1.42875 -1.27 0.0 -1.74625 1.5875 0.0 hole 22 hole 22 -1.74625 -1.5875 0.0 hole 22 -2.06375 1,905 0.0 -2.06375 -1.905 0.0 hole 22 -2,38125 2.2225 0.0 hole 22 -2.38125 -2.2225 0.0 -2.69875 2.54 0.0 hole 22 hole 22 hole 22 -2.69875 -2.54 0.0 hole 22 -3.01625 2.8575 0.0 hole 22 -3.01625 -2.8575 0.0 hole 22 -3.33375 3.175 0.0 -3.33375 -3.175 0.0 -3.65125 3.4925 0.0 hole 22 hole 22 -3.65125 -3.4925 0.0 -3.96875 3.81 0.0 hole 22 hole 22 hole 22 -3.96875 -3.81 0.0 unit 18 com=" angles & spacing beneath baskets " cubo 6 1 2p8.89 4.12750 0.0 2p225.58 hole 21 0.0 0.15875 0.0 hole 21 -0.3175 0.47625 0.0 hole 21 0.3175 0.47625 0.0 hole 21 0.635 0.79375 0.0 hole 21 -0.635 0.79375 0.0 hole 21 0.9525 1.11125 .0.0 hole 21 -0.9525 1.11125 0.0 hole 21 1.27 1.42875 0.0 hole 21 -1.27 1.42875 0.0 hole 21 -1.27 1.42875 0.0 hole 21 1.5875 1.74625 0.0 hole 21 -1.5875 1.74625 0.0 hole 21 1.905 2.06375 0.0 hole 21 -1.905 2.06375 0.0 hole 21 2.2225 2.38125 0.0 hole 21 -2.2225 2.38125 0.0 hole 21 2.54 2.69875 0.0 hole 21 -2.54 2.69875 0.0 hole 21 2.8575 3.01625 0.0 hole 21 -2.8575 3.01625 0.0 hole 21 3.175 3.33375 0.0 -3.175 3.33375 0.0 hole 21 3.4925 3.65125 0.0 -3.4925 3.65125 0.0 hole 21 hole 21 hole 21 3.81 3.96875 0.0 hole 21 -3.81 3.96875 0.0 unit 19 com="angles & spacing above baskets " cubo 6 1 2p8.89 0.0 -4.12750 2p225.58 hole 21 0.0 -0.15875 0.0 hole 21 -0.3175 -0.47625 0.0 hole 21 0.3175 -0.47625 0.0 hole 21 0.635 -0.79375 0.0 hole 21 -0.635 -0.79375 0.0 hole 21 0.9525 -1.11125 0.0 hole 21 -0,9525 -1.11125 0.0 hole 21 1.27 -1.42875 0.0 hole 21 -1.27 -1.42875 0.0 hole 21 1.5875 -1.74625 0.0 hole 21 -1.5875 -1.74625 0.0 hole 21 1.905 -2.06375 0.0

EMF-1563 Revision 12A Appendix 6I Page 70 of 72

Supplemental License Application for FRA-ANP Model SP-3 Shipping Container

hole 21 -1.905 -2.06375 0.0 hole 21 2.2225 -2.38125 0.0 hole 21 -2.2225 -2.38125 0.0 hole 21 2.54 -2.69875 0.0 hole 21 -2.54 -2.69875 0.0 hole 21 2.8575 -3.01625 0.0 hole 21 -2.8575 -3.01625 0.0 3.175 -3.33375 0.0 hole 21 -3.175 -3.33375 0.0 hole 21 · · 3.4925 -3.65125 0.0 ·3.4925 -3.65125 0.0 hole 21 hole 21 hole 21 · 3.81 -3.96875 0.0 hole 21 -3.81 -3.96875 0.0 unit 21 com="part of steel angle in horiz sections of stringer" ' 0.1552" x 0.125" cubo 7 1 2p0.197104 2p0.15874 2p225.58 unit 22 com="part of steel angle in vert sections of stringer" ' 0.125" x 0.1552" cubo 7 1 2p0.15874 2p0.197104 2p225.58 unit 101 com=" interior rods not immed. adj. to water channel, no qd2o3, 5 wt% u235 " cyli 1 1 0.50254 2p225.58 cubo 11 1 4p0.6447 2p225.58 unit 102 com=" interior rods immed. adj. to water channel, no gd2o3, 5 wt% u235 " cyli 2 1 0.50254 2p225.58 cubo 11 1 4p0.6447 2p225.58 unit 103 com=" interior rods, 1.5 wt% gd2o3, 5 wt% u235 "
cyli 3 1 0.50254 2p225.58 cubo 11 1 4p0.6447 2p225.58 unit 104 com=" corner rods facing other bundle, 3.05 wt% u235 " cyli 4 1 0.50254 2p225.58 cubo 11 1 4p0.6447 2p225.58 unit 105 com=" corner rods not facing other bundle, 3.05 wt% u235 " cyli 12 1 0.50254 2p225.58 cubo 11 1 4p0.6447 2p225.58 unit 106 com=" rods immed adj. to corner rod, facing other bundle, 3.55 wt% u235 " cyli 13 1 0.50254 2p225.58 cubo 11 1 4p0.6447 2p225.58 unit 107 com=" rods: immed adj. to corner rod, not facing other bundle, 3.55 wt% u235 " cyli 14 1 0.50254 2p225.58 cubo 11 1 4p0.6447 2p225.58 unit 108 com=" balance of edge rods facing other bundle, 4.75 wt% u235 " cyli 15 1 0.50254 2p225.58 cubo 11 1 4p0.6447 2p225.58 unit 109 com=" balance of edge rods not facing other bundle, 4.75 wt% u235 " cyli 16 1 0.50254 2p225.58 cubo 11 1 4p0.6447 2p225.58

Supplemental License Application for FRA-ANP Model SP-3 Shipping Container

unit 110 com=" water rod " cubo 6 1 4p0.6447 2p225.58

end geometry

read array

' array 1 is bundle in left basket (top inner)
ara=1 nux=10 nuy=10 nuz=1
fill

 105
 107
 109
 109
 109
 109
 109
 107
 104

 107
 101
 103
 101
 101
 101
 103
 101
 103
 101
 106

 109
 103
 101
 101
 101
 101
 101
 103
 108

 109
 101
 101
 101
 101
 101
 101
 101
 108

 109
 101
 102
 102
 102
 102
 101
 101
 108

 109
 101
 102
 110
 110
 102
 101
 101
 108

 109
 101
 102
 110
 110
 102
 101
 103
 108

 109
 101
 102
 101
 110
 102
 101
 108

 109
 101
 102
 102
 102
 101
 103
 108

 109
 101
 102
 102
 102
 101
 103
 108

 109
 101
 101
 103
 101
 103
 101
 1

' array 2 is bundle in right basket (top inner)
ara=2 nux=10 nuy=10 nuz=1
fill
104 107 109 109 109 109 109 109 109 107 105
106 101 103 101 101 103 101 103 101 107
108 103 101 101 101 101 101 101 103 109
108 101 101 102 110 110 102 101 109
108 101 101 102 110 110 102 103 109
108 103 101 102 110 110 102 101 109
108 103 101 101 102 102 101 109
108 103 101 101 102 102 102 101 109
108 103 101 101 102 102 102 101 109
108 103 101 101 102 102 101 109
108 103 101 101 102 102 101 101 109
108 103 101 101 102 102 102 101 109
108 103 101 101 102 102 102 101 109
106 101 103 101 103 101 101 101 101 107
104 107 109 109 109 109 109 109 107 105
end fill

' array 3 is 1 inner container (top inner)
ara=3 nux=4 nuy=3 nuz=1
fill
9 18 18 9
16 6 17

16 5 6 17 9 19 19 9 end fill

' array 4 is an array of inner containers ara=4 nux=8 nuy=13 nuz=1 fill f10 end fill

' array 5 is bundle in left basket (bottom inner)
ara=5 nux=10 nuy=10 nuz=1
fill
105 107 109 109 109 109 109 109 107 104
107 101 101 101 101 103 101 103 101 106
109 101 101 102 102 102 101 101 103 108
109 101 102 110 110 110 102 101 103 108
109 101 102 110 110 110 102 101 101 108
109 101 101 101 101 101 101 101 108
109 101 101 101 101 101 101 103 108
109 101 101 101 101 101 101 103 108
109 103 101 101 101 101 101 103 108
109 103 101 101 101 101 101 103 108
109 103 101 101 101 101 101 103 108
109 103 101 101 101 101 101 103 108
109 103 101 101 101 101 101 103 108
107 101 103 101 103 101 101 103 101 106
105 107 109 109 109 109 109 109 107 104
end fill

' array 6 is bundle in right basket (bottom inner)
ara=6 nux=10 nuy=10 nuz=1
fill

104 107 109 109 109 109 109 109 107 105

Supplemental License Application for FRA-ANP Model SP-3 Shipping Container

EMF-1563 Revision 12A Appendix 6I Page 72 of 72

106 101 103 101 103 101 101 101 101 107 108 103 101 101 102 102 102 101 101 109 108 101 101 102 110 110 110 102 101 109 108 103 101 102 110 110 110 102 101 109 108 101 101 102 110 110 110 102 103 109 108 101 101 101 102 102 102 101 101 109 108 103 101 101 101 101 101 101 103 109 106 101 103 101 101 103 101 103 101 107 104 107 109 109 109 109 109 109 107 105 end fill ' array 7 is 1 inner container (bottom inner) ara=7 nux=4 nuy=3 nuz=1 fill 9 18 18 9 16 7 8 17 9 19 19 9 end fill ' array 8 is 2 inner containers (top & bottom) ara=8 nux=1 nuy=2 nuz=1 fill 12 10 end fill ' array 9 is array of 112 (8x14x1) containers ara=9 nux=8 nuy=7 nuz=1 fill fll end fill end array read start nst=1 end start read bounds all=vacuum end bounds read bias id=500 2 11 end bias read plot ttl=' xy section of two inner containers ' xul=0 yul=52.6776 zul=10 . . xlr=44.1188 ylr=0 zlr=10 uax=1 vdn=-1 nax=150 lpi=10 end . ttl=' xy section of entire array ' xul=-32 yul=401 zul=10 xlr=385 ylr=-32 zlr=10 uax=1 vdn=-1 nax=150 lpi=10 end ttl=' xz section of one inner container ' xu1=0 yul=7.1882 ; zul=0 xlr=44.1188 ylr=7.1882 zlr=452 uax=1 wdn=1 nax=150 lpi=10 end ttl=' xz section of entire array ' xul≃-32 yul=7.1882 zul=-32 xlr=385 ylr=7.1882 zlr=484 uax=1 wdn=1 nax=150 lpi=10end end plot end data

end

1

Appendix 6J

FRAMATOME ANP SUPPLEMENTAL APPLICATION TO CERTIFICATE OF COMPLIANCE 9248 TO ADD THE CRITICALITY SAFETY ANALYSIS FOR ATRIUM[™]-10 FUEL ASSEMBLIES WITH 2.3 WEIGHT PERCENT U²³⁵ MAXIMUM ENRICHMENT AND NO GADOLINIA RODS TO THE SP-1/2/3 PACKAGES

Criticality Evaluation

1. Introduction

This Criticality Safety Evaluation (CSE) provides the criticality safety basis for shipping ATRIUM[™]-10 fuel assemblies with a maximum U²³⁵ enrichment with no gadolinia (Gd₂O₃) containing rods. The CSE is the same one that was submitted and approved by the NRC in the letter amendment submittal dated October 23, 2002 (Reference 3). That submittal was for a one time letter amendment for one particular customer. In the mean time other customers have demonstrated a need for the same type of low enriched, no poison fuel to replace multiple burned fuel assemblies due to fuel failures. Therefore FANP would like the fuel description analyzed in this appendix permanently to the certificate.

2. Evaluation

Previously burned fuel assemblies are significantly less reactive than fresh fuel, and as a result in order to match the necessary physics criteria of the operating core, replacement fuel must be comprised of lower maximum and assembly average enrichments. In addition, since the fuel assemblies are replacing previously burned fuel assemblies, gadolinia poison, typically used for reactivity hold down at the beginning of a cycle, is not necessary. The CSE shows that sufficient margin to safety exists for SP-1/2/3 packagings that contain fuel assemblies enriched to maximum of 2.3 w/o U²³⁵ but containing no gadolinia rods.

The following calculations will demonstrate that the reduction in fresh fuel enrichment is sufficient to offset the removal of the neutron poison gadolinia material. The analysis used in Appendix 6I was essentially repeated using the same general methodology to calculate the nuclear safety margin for the worst case conditions, using reduced enrichments and no burnable poison content. The evaluation considers a single undamaged flooded container with full water reflection, an array of undamaged reflected packages, and an array of damaged packages with various amounts of interspersed moderator and full water reflection. The previous revision of the SAR (EMF-1563 Revision 11) contains 9 categories of allowable contents. The new category 10 is essentially a modification of the category 9 ATRIUM[™] 10x10 fuel design.

With the exception of the two parameters mentioned (enrichment and poison), the contents in this Appendix are the same as those in Appendix 6I and Section 5.(b)(1)(ix) of the C of C.:

 UO_2 fuel assemblies composed of fuel rods in a 10 x 10 square array, with a maximum fuel cross section of 5.0 inches square, and a maximum fuel length of 174 inches. The maximum U²³⁵ enrichment is 2.3 weight percent. The pellet diameter is between 0.30 and 0.3957 inch. Each assembly must have a water channel in a central 3 x 3 position. Any number of additional water rods in any arrangement is permitted, including part length rods. Polyethylene shipping shims may be inserted between the fuel rods. An additional upper tie plate (UTP) shipping shim may be added between the UTP and the fueled region. This UTP shim may consist of a maximum of 345 g plastic or plastic composite.

Reference 1 involved a transmittal to the NRC which updated Table 1 of the initial submittal (Reference 2) in accordance with concerns that were raised during the NRC review. Reference 1 also identified the most reactive isolated reflected undamaged package reactivity to be Keff = 0.75413 ± 0.00323 . By maintaining all parameters the same and simply removing the gadolinia rods and making all fuel rods equal to the maximum rod enrichment of 2.3 w/o U²³⁵, the reactivity decreased to Keff = 0.72278 ± 0.00335 . The same calculation was repeated where enrichment in

each rod was set at 1.9 w/o which represents the assembly average. The resulting multiplication factor was calculated to be Keff = 0.68706 ± 0.00296 .

The second set of calculations involved determination of the effect of the reduced enrichment(s) on an undamaged array of packages. Again the evaluation involved a comparison to the data previously approved and presented in Reference 1. The original reactivity listed in Table 1 of Reference 1 was Keff = 0.81454 ± 0.00248 . The reductions in reactivity based on the changes in enrichment and the removal of burnable poisons were Keff = 0.77748 ± 0.00291 and Keff = 0.73442 ± 0.00260 for 2.3 w/0 and 1.9 w/o enrichments, respectively.

Again, referencing the transmittal listed in Reference 1, the accident mode of transportation was evaluated by examining the effects of reducing the enrichments to 2.3 w/o and again to 1.9 w/o and removing the burnable poison material from the previously determined worst case accident situation. The same methodology was employed as in the isolated and the undamaged array calculations. The reduction(s) in the enrichment and removal of poisons resulted in reductions in the maximum reactivity of Keff = 0.90901 \pm 0.00279 and Keff = 0.85100 \pm 0.00230 for each of the two lower enrichments. This is relative to the existing values of 0.93506 \pm 0.00274. The revised input deck is provided in Figure 2.

In order to demonstrate that the conditions resulting in the maximum reactivity did not change due to the reduction in enrichment or exclusion of poison material, the worst case accident case was evaluated over the entire range of interspersed moderator, from 1% to a full flooded condition. Figure 1 demonstrates the system is well behaved as evidenced by the consistency in the curves. For comparisons to the previously transmitted values, Table 1 contains reactivity values for both the existing licensed conditions, and those proposed in this appendix.

Reference: 1	Letter, Framatome ANP to NRC, Mr. Hansen, March 21, 2001
	"Certificate of Compliance Amendment Request (Framatome ANP Richland, Inc.
	Docket 71-9248; Revision 11 of EMF-1563", PCR:01:009.

- Reference: 2 Letter, Framatome ANP to NRC, Mr. Hansen, November 17, 2000 "Certificate of Compliance Amendment Request (Framatome ANP Richland, Inc. Docket 71-9248; Revision 11 of EMF-1563", PCR:01:009.
- Reference: 3 Letter, Framatome ANP to NRC, Mr. Monninger, October 23, 2002 "Request for a Letter Amendment to the Certificate of Compliance No. 71-9248 for the SP-1 Shipping Package", EHSLR-02-038.

Table 1Update to Table 1 in Ref.1Comparative listing of Reactivity Changes

Description of Most Reactive Case	Kar	•	Bies	k a + 20 + bias ¹
ATRIUM [™] -10 Fuel Assemblies with PE Shipping Shims (see	detailed payload des	cription listed	d in Section 1.2)
Single SP-3 Inner Package, Assemblies Moved as Close as Physically	Base =0.75413	0.00323	-0.00321 ⁽¹⁾	0.76059
Possible within Inner Packaging, Asymmetric Gd ₂ O ₃ Rods in Assemblies are Toward Outside of Inner Packaging, 0.35" Diameter	2.3 w/o = 0.72278			
Pellets, 0.14 VF PE ⁽²⁾ as Shipping Shims, Fully Flooded, All Rods 5.0 wt% 235 U (see Section 3.1.2)	1.9 w/o = 0.68706			
Undamaged Spacing, 256 SP-1/2/3 Inner/Outer Packages (16 Wide x	Base =0.81454	0.00248	-0.00321 ⁽¹⁾	0.81950
Packaging, Asymmetric Gd ₂ O ₃ Rods in the Assemblies in Each Group	2.3 w/o = 0.77748			
of Two Vertically Adjacent Inner Packages Facing Towards the Inside of the Group 0.3957" Diameter Pollets 0.14 VE PE within Inner	1.9 w/o = 0.73442			
Packaging as Shipping Shims, 13 vol% Interspersed Moderator, 1 vol% PE between Inner and Outer Packages (see Section 3.1.3)				
Damaged Spacing, 104 SP-3 Inner Packages (8 Wide x 13 High),	Base =0.93506	0.00274	-0.00321 ⁽¹⁾	0.94054
Assemblies as Far Apart as Physically Possible within Inner Packaging, Asymmetric Gd ₂ O ₃ Rods in the Assemblies in Each Group of Two	2.3 w/o = 0.90901			
Vertically Adjacent Inner Packages Facing Towards the Inside of the Group, 0.3957" Diameter Pellets, 0.14 VF PE ⁽²⁾ as Shipping Shims, 13 vol% Interspersed Moderator (see Section 3.1.4)	1.9 w/o = 0.85100			

⁽¹⁾ Note that as discussed in Section2.4 the bias is negative (conservative), so it is not included in the results as presented in Table 1.

Under severe accident conditions, the UTP shim may increase the PE VF between the fuel rods from 0.14 to 0.151. Calculations in Section 3 show that this increase in the PE VF within the void volume produces statistically identical results.

(2)

Figure 1

Comparison of Reactivity for Reduced Enrichment, No Burnable Poison(s) vs. Base Case

Figure 2 SCALE Input Deck Accident Mode Array of Packages (Changes to Ref 1 input are marked in Column)

=csas25 atrium-10 in sp1 shipping container hans infhom ' mixture 1 ' interior rods not immed. adj. to water channel, no gd2o3, 2.3 wt% u235 uo2 1 0.98 293 92235 2.3 92238 97.7 end ' mixture 2 ' interior rods immed. adj. to water channel, no gd2o3, 2.3 wt% u235 uo2 2 0.98 293 92235 2.3 92238 97.7 end ' mixture 3 ' interior rods, 2.3 wt% u235 uo2 3 0.98 293 92235 2.3 92238 97.7 end ' mixture 4 ' corner rods facing other bundle, 2.30 wt% u235 uo2 4 0.98 293 92235 2.30 92238 97.70 end ' mixture 5 - not used smeared zr clad pod, cid, cod = 0.4221", 0.4281", 0.4781" vol fract zr = 0.8988. at dens = $0.8988 \times 4.2518-2 = 3.8215e-02$ zircalloy 5 0.0 3.8215e-02 293 end ' mixture 6 ' interspersed moderator h2o 6 0.13 293 end ' mixture 7 ' carbon steel, 100 vol% c 7 0.0 3.921682e-03 293 end fe 7 0.0 8.350009e-02 293 end ' mixture 8 carbon steel, 85.57 vol% smeared with 10 vol% h2o c 8 0.0 3.355783e-03 293 end fe 8 0.0 7.145103e-02 293 end o 8 0.0 4.8167e-04 293 end h 8 0.0 9.6335e-04 293 end ' mixture 9 - not used ' carbon steel, 8.64 vol% c 9 0.0 3.388333e-04 293 end fe 9 0.0 7.214408e-03 293 end o 9 0.0 3.0496e-03 293 end h 9 0.0 6.0992e-03 293 end

mixture 10 water for reflector h2o 10 1.00 293 end ' mixture 11 pe and interspersed water vf pe = 0.14water at full density is (1-.14) = .86 g/cch2o 11 den=0.86 0.13 293 end arbmepe 0.92 2 0 1 1 6012 1 1001 2 11 0.14 end ' mixture 12 ' corner rods not facing other bundle, 2.30 wt% u235 uo2 12 0.98 293 92235 2.30 92238 97.70 end ' mixture 13 ' rods immed. adj. to corner rod, facing other bundle, 2.30 wt% u235 uo2 13 0.98 293 92235 2.30 92238 97.70 end ' mixture 14 ' rods immed. adj. to corner rod, not facing other bundle, 2.30 wt% u235 uo2 14 0.98 293 92235 2.30 92238 97.70 end ' mixture 15 ' balance of edge rods facing other bundle, 2.30 wt% u235 uo2 15 0.98 293 92235 2.30 92238 97.70 end ' mixture 16 ' balance of edge rods not facing other bundle, 2.30 wt% u235 uo2 16 0.98 293 92235 2.30 92238 97.70 end end comp more data res= 1 cyli 3.9373E-01 dan(1)= 7.1462E-01 res= 2 cyli 4.9179E-01 dan(2)= 6.3800E-01 res= 3 cyli 3.7646E-01 dan(3)= 7.1738E-01 res= 4 cyli 5.4253E-01 dan(4)= 3.2492E-01 res= 12 cyli 5.7437E-01 dan(12)= 2.9006E-01 res= 13 cyli 4.9373E-01 dan(13)= 4.7915E-01 res= 14 cyli 5.1981E-01 dan(14)= 4.6880E-01 res= 15 cyli 5.6427E-01 dan(15)= 4.9128E-01 res= 16 cyli 5.6151E-01 dan(16)= 4.7466E-01 end more atrium-10 in sp1 shipping container read parameters tme=90.0 gen=103 npg=500 flx=yes fdn=yes xs1=yes nub=yes pwt=yes run=yes plt=yes end parameters read geometry unit 5 com=" 10x10 bundle in left basket (top inner) " array 1 -8.7381 -6.477 -225.58 cubo 6 1 4p8.7381 2p225.58 add 0.0598 inch of perforated steel

cubo 8 1 4p8.89 2p225.58 unit 6 com=" 10x10 bundle in right basket (top inner) ." array 2 -4.2151 -6.477 -225.58 cubo 6 1 4p8.7381 2p225.58 ' add 0.0598 inch of perforated steel cubo 8 1 4p8.89 2p225.58 unit 7 com=" 10x10 bundle in left basket (bottom inner) " array 5 -8.7381 -6.477 -225.58 cubo 6 1 4p8.7381 2p225.58 ' add 0.0598 inch of perforated steel cubo 8 1 4p8.89 2p225.58 unit 8 com=" 10x10 bundle in right basket (bottom inner) " array 6 -4.2151 -6.477 -225.58 cubo 6 1 4p8.7381 2p225.58 ' add 0.0598 inch of perforated steel cubo 8 1 4p8.89 2p225.58 unit 9 com="1 5/8 x 1 5/8 inch moderation regions at corners " cubo 6 1 4p2.06375 2p225.58 unit 10 com=" 1 inner container (top) ** array 3 -21.9075 -13.97 -225.58 ' add 0.0598 inch walls repl 7 1 6r0.1519 1 unit 11 com="array of 2 inners (top & bottom) " array 8 3r0.0 'repl 10 2 6r3.0 10 unit 12 com=" 1 inner container (bottom) array 7 -21.9075 -13.97 -225.58 ' add 0.0598 inch walls repl 7 1 6r0.1519 1 unit 13 com="8x12 array of inners " array 9 3r0.0 unit 14 com="8x1 array of inners " array 10 3r0.0 global unit 15 com="8x13 array of inners " array 11 3r0.0 repl 10 2 6r3.0 10

EMF-1563 Revision 12A Page 6J-9

hole 22 -3.96875 -3.81 0.0

. .

	unit	18			
	com="	' an	gles & spacing beneath b	askets "	
	cubo	6	1 2p8.89 4.12750 0.0 2	p225.58	
	hole	21	0.0 0.15875 0.0		
	hole	21	-0.3175 0.47625 0.0		
	hole	21	0.3175 0.47625 0.0		
	hole	21	0.635 0.79375 0.0		
	hole	21	-0.635 0.79375 0.0		
	hole	21	0.9525 1.11125 0.0		
	hole	21	-0.9525 1.11125 0.0		
	hole	21	1.27 1.42875 0.0		
	hole	21	-1.27 1.42875 0.0		
	hole	21	1.5875 1.74625 0.0		
	hole	21	-1.5875 1.74625 0.0		
	hole	21	1.905 2.06375 0.0		
	hole	21	-1.905 2.06375 0.0		
	hole	21	2.2225 2.38125 0.0		
	hole	21	-2,2225 2.38125 0.0		
	hole	21	2.54 2.69875 0.0		
	hole	21	-2.54 2.69875 0.0		
	hole	21	2.8575 3.01625 0.0		
	hole	21	-2.8575 3.01625 0.0		
	hole	21	3.175 3.33375 0.0		
	hole	21	-3.175 3.33375 0.0		
	hole	21	3.4925 3.65125 0.0		
	hole	21	-3.4925 3.65125 0.0		
	hole	21	3.81 3.96875 0.0		
	hole hole	21 21	3.81 3.96875 0.0 -3.81 3.96875 0.0		
)	hole hole	21 21	3.81 3.96875 0.0 -3.81 3.96875 0.0		
)	hole hole unit	21 21 19	3.81 3.96875 0.0 -3.81 3.96875 0.0		
)	hole hole unit com=	21 21 19 "and	3.81 3.96875 0.0 -3.81 3.96875 0.0 gles & spacing above bas	cets "	
)	hole hole unit com=	21 21 19 "ang 6	3.81 3.96875 0.0 -3.81 3.96875 0.0 gles & spacing above bas 1 2p8.89 0.0 -4.12750	cets " 2p225.58	
)	hole hole unit com= cubo hole	21 21 19 "ang 6 21	3.81 3.96875 0.0 -3.81 3.96875 0.0 gles & spacing above bas 1 2p8.89 0.0 -4.12750 0.0 -0.15875 0.0	cets " 2p225.58	
)	hole hole unit com= cubo hole hole	21 21 19 "ang 6 21 21	3.81 3.96875 0.0 -3.81 3.96875 0.0 gles & spacing above bas 1 2p8.89 0.0 -4.12750 0.0 -0.15875 0.0 -0.3175 -0.47625 0.0	cets " 2p225.58	
)	hole hole unit com= cubo hole hole	21 21 19 "ang 21 21 21	3.81 3.96875 0.0 -3.81 3.96875 0.0 gles & spacing above bas 1 2p8.89 0.0 -4.12750 0.0 -0.15875 0.0 -0.3175 -0.47625 0.0 0.3175 -0.47625 0.0	cets " 2p225.58	
)	hole hole unit com= cubo hole hole hole	21 21 19 "ang 21 21 21 21 21	3.81 3.96875 0.0 -3.81 3.96875 0.0 gles & spacing above bas 1 2p8.89 0.0 -4.12750 0.0 -0.15875 0.0 -0.3175 -0.47625 0.0 0.3175 -0.47625 0.0 0.635 -0.79375 0.0	cets " 2p225.58	
)	hole hole unit com= cubo hole hole hole	21 21 19 6 21 21 21 21 21 21	3.81 3.96875 0.0 -3.81 3.96875 0.0 gles & spacing above bask 1 2p8.89 0.0 -4.12750 0.0 -0.15875 0.0 -0.3175 -0.47625 0.0 0.3175 -0.47625 0.0 0.635 -0.79375 0.0 -0.635 -0.79375 0.0	cets " 2p225.58	
)	hole hole unit com= cubo hole hole hole hole hole	21 21 19 6 21 21 21 21 21 21	3.81 3.96875 0.0 -3.81 3.96875 0.0 gles & spacing above bask 1 2p8.89 0.0 -4.12750 0.0 -0.15875 0.0 -0.3175 -0.47625 0.0 0.3175 -0.47625 0.0 0.635 -0.79375 0.0 -0.635 -0.79375 0.0 0.9525 -1.11125 0.0	cets " 2p225.58	
)	hole hole cubo hole hole hole hole hole hole	21 21 19 6 21 21 21 21 21 21 21 21	3.81 3.96875 0.0 -3.81 3.96875 0.0 gles & spacing above bask 1 2p8.89 0.0 -4.12750 0.0 -0.15875 0.0 -0.3175 -0.47625 0.0 0.635 -0.79375 0.0 0.9525 -1.11125 0.0 -0.9525 -1.11125 0.0	cets " 2p225.58	
)	hole hole cubo hole hole hole hole hole hole	21 21 19 21 21 21 21 21 21 21 21 21	3.81 3.96875 0.0 -3.81 3.96875 0.0 gles & spacing above bask 1 2p8.89 0.0 -4.12750 0.0 -0.15875 0.0 -0.3175 -0.47625 0.0 0.635 -0.79375 0.0 0.9525 -1.11125 0.0 -0.9525 -1.11125 0.0 1.27 -1.42875 0.0	cets " 2p225.58	
)	hole hole cubo hole hole hole hole hole hole hole	21 21 19 6 21 21 21 21 21 21 21 21 21	3.81 3.96875 0.0 -3.81 3.96875 0.0 gles & spacing above bask 1 2p8.89 0.0 -4.12750 0.0 -0.15875 0.0 -0.3175 -0.47625 0.0 0.635 -0.79375 0.0 0.9525 -1.11125 0.0 0.9525 -1.11125 0.0 1.27 -1.42875 0.0 -1.27 -1.42875 0.0	cets " 2p225.58	
	hole hole cubo hole hole hole hole hole hole hole hol	21 21 19 6 21 21 21 21 21 21 21 21 21 21 21 21	3.81 3.96875 0.0 -3.81 3.96875 0.0 gles & spacing above bask 1 2p8.89 0.0 -4.12750 0.0 -0.15875 0.0 -0.3175 -0.47625 0.0 0.635 -0.79375 0.0 0.9525 -1.11125 0.0 0.9525 -1.11125 0.0 1.27 -1.42875 0.0 1.5875 -1.74625 0.0	cets " 2p225.58	
)	hole hole cubo hole hole hole hole hole hole hole hol	21 21 19 6 21 21 21 21 21 21 21 21 21 21 21 21	3.81 3.96875 0.0 -3.81 3.96875 0.0 9 (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	ets " 2p225.58	
	hole hole cubo hole hole hole hole hole hole hole hol	21 21 19 6 21 21 21 21 21 21 21 21 21 21 21 21 21	3.81 3.96875 0.0 -3.81 3.96875 0.0 (les & spacing above bas) 1 2p8.89 0.0 -4.12750 0.0 -0.15875 0.0 -0.3175 -0.47625 0.0 0.3175 -0.47625 0.0 0.635 -0.79375 0.0 -0.635 -0.79375 0.0 0.9525 -1.11125 0.0 1.27 -1.42875 0.0 1.27 -1.42875 0.0 1.5875 -1.74625 0.0 1.905 -2.06375 0.0	ets " 2p225.58	
	hole hole cubo hole hole hole hole hole hole hole hol	21 21 19 6 21 21 21 21 21 21 21 21 21 21 21 21 21	3.81 3.96875 0.0 -3.81 3.96875 0.0 (les & spacing above bas) 1 2p8.89 0.0 -4.12750 0.0 -0.15875 0.0 -0.3175 -0.47625 0.0 0.3175 -0.47625 0.0 0.635 -0.79375 0.0 -0.635 -0.79375 0.0 0.9525 -1.11125 0.0 1.27 -1.42875 0.0 1.27 -1.42875 0.0 1.5875 -1.74625 0.0 1.5875 -1.74625 0.0 1.905 -2.06375 0.0 -1.905 -2.06375 0.0	ets " 2p225.58	
	hole hole cubo hole hole hole hole hole hole hole hol	21 19 19 21 21 21 21 21 21 21 21 21 21	3.81 3.96875 0.0 -3.81 3.96875 0.0 -3.81 3.96875 0.0 gles & spacing above bask 1 2p8.89 0.0 -4.12750 0.0 -0.15875 0.0 -0.3175 -0.47625 0.0 0.3175 -0.47625 0.0 0.635 -0.79375 0.0 -0.635 -0.79375 0.0 0.9525 -1.11125 0.0 1.27 -1.42875 0.0 1.27 -1.42875 0.0 1.5875 -1.74625 0.0 1.5875 -1.74625 0.0 1.905 -2.06375 0.0 -1.905 -2.06375 0.0 2.2225 -2.38125 0.0	ets " 2p225.58	
	hole hole cubo hole hole hole hole hole hole hole hol	21 21 19 6 21 21 21 21 21 21 21 21 21 21 21 21 21	3.81 3.96875 0.0 -3.81 3.96875 0.0 -3.81 3.96875 0.0 gles & spacing above bask 1 2p8.89 0.0 -4.12750 0.0 -0.15875 0.0 -0.3175 -0.47625 0.0 0.3175 -0.47625 0.0 0.635 -0.79375 0.0 -0.635 -0.79375 0.0 0.9525 -1.11125 0.0 1.27 -1.42875 0.0 -1.27 -1.42875 0.0 1.5875 -1.74625 0.0 1.5875 -1.74625 0.0 1.905 -2.06375 0.0 2.2225 -2.38125 0.0 -2.2225 -2.38125 0.0	ets " 2p225.58	
	hole hole cubo hole hole hole hole hole hole hole hol	21 19 "and 21 21 21 21 21 21 21 21 21 21	3.81 3.96875 0.0 -3.81 3.96875 0.0 -3.81 3.96875 0.0 gles & spacing above bask 1 2p8.89 0.0 -4.12750 0.0 -0.15875 0.0 -0.3175 -0.47625 0.0 0.3175 -0.47625 0.0 0.635 -0.79375 0.0 -0.635 -0.79375 0.0 0.9525 -1.11125 0.0 1.27 -1.42875 0.0 -1.27 -1.42875 0.0 1.5875 -1.74625 0.0 1.5875 -1.74625 0.0 1.905 -2.06375 0.0 2.2225 -2.38125 0.0 -2.2225 -2.38125 0.0 2.54 -2.69875 0.0	ets " 2p225.58	
	hole hole cubo hole hole hole hole hole hole hole hol	21 19 "and 21 21 21 21 21 21 21 21 21 21	3.81 3.96875 0.0 -3.81 3.96875 0.0 -3.81 3.96875 0.0 gles & spacing above bask 1 2p8.89 0.0 -4.12750 0.0 -0.15875 0.0 -0.3175 -0.47625 0.0 0.3175 -0.47625 0.0 0.635 -0.79375 0.0 -0.635 -0.79375 0.0 0.9525 -1.11125 0.0 1.27 -1.42875 0.0 1.27 -1.42875 0.0 1.5875 -1.74625 0.0 1.5875 -1.74625 0.0 1.905 -2.06375 0.0 2.2225 -2.38125 0.0 2.54 -2.69875 0.0 -2 54 -2 69875 0.0	ets " 2p225.58	
	hole hole cubo hole hole hole hole hole hole hole hol	21 21 19 21 21 21 21 21 21 21 21 21 21 21 21 21	3.81 3.96875 0.0 -3.81 3.96875 0.0 -3.81 3.96875 0.0 gles & spacing above bask 1 2p8.89 0.0 -4.12750 0.0 -0.15875 0.0 -0.3175 -0.47625 0.0 0.3175 -0.47625 0.0 0.635 -0.79375 0.0 -0.635 -0.79375 0.0 0.9525 -1.11125 0.0 1.27 -1.42875 0.0 1.27 -1.42875 0.0 1.5875 -1.74625 0.0 1.5875 -1.74625 0.0 1.905 -2.06375 0.0 2.2225 -2.38125 0.0 2.54 -2.69875 0.0 2.54 -2.69875 0.0 2.8575 -3.01625 0.0	ets " 2p225.58	
	hole hole cubo hole hole hole hole hole hole hole hol	21 19 "and 21 21 21 21 21 21 21 21 21 21	3.81 3.96875 0.0 -3.81 3.96875 0.0 -3.81 3.96875 0.0 gles & spacing above bask 1 2p8.89 0.0 -4.12750 0.0 -0.15875 0.0 -0.3175 -0.47625 0.0 0.3175 -0.47625 0.0 0.635 -0.79375 0.0 -0.635 -0.79375 0.0 0.9525 -1.11125 0.0 1.27 -1.42875 0.0 1.27 -1.42875 0.0 1.5875 -1.74625 0.0 1.5875 -1.74625 0.0 1.905 -2.06375 0.0 2.2225 -2.38125 0.0 2.2225 -2.38125 0.0 2.54 -2.69875 0.0 2.8575 -3.01625 0.0 -2.8575 -3.01625 0.0	cets " 2p225.58	
	hole hole hole hole hole hole hole hole	21 19 "and 21 21 21 21 21 21 21 21 21 21	3.81 3.96875 0.0 -3.81 3.96875 0.0 -3.81 3.96875 0.0 gles & spacing above bask 1 2p8.89 0.0 -4.12750 0.0 -0.15875 0.0 -0.3175 -0.47625 0.0 0.635 -0.79375 0.0 -0.635 -0.79375 0.0 0.9525 -1.11125 0.0 -0.9525 -1.11125 0.0 1.27 -1.42875 0.0 1.27 -1.42875 0.0 1.5875 -1.74625 0.0 1.905 -2.06375 0.0 2.2225 -2.38125 0.0 2.2225 -2.38125 0.0 2.54 -2.69875 0.0 2.8575 -3.01625 0.0 3.175 -3.3375 0.0	cets " 2p225.58	
	hole hole hole hole hole hole hole hole	21 21 19 21 21 21 21 21 21 21 21 21 21 21 21 21	3.81 3.96875 0.0 -3.81 3.96875 0.0 -3.81 3.96875 0.0 1 2p8.89 0.0 -4.12750 0.0 -0.15875 0.0 -0.3175 -0.47625 0.0 0.3175 -0.47625 0.0 0.635 -0.79375 0.0 -0.635 -0.79375 0.0 0.9525 -1.11125 0.0 1.27 -1.42875 0.0 1.27 -1.42875 0.0 1.5875 -1.74625 0.0 1.5875 -1.74625 0.0 1.905 -2.06375 0.0 2.2225 -2.38125 0.0 2.2225 -2.38125 0.0 2.54 -2.69875 0.0 2.8575 -3.01625 0.0 3.175 -3.33375 0.0 -3.175 -3.33375 0.0 -3.175 -3.33375 0.0 -3.175 -3.33375 0.0 -3.175 -3.33375 0.0	cets " 2p225.58	
	hole hole hole hole hole hole hole hole	21 21 19 21 21 21 21 21 21 21 21 21 21 21 21 21	3.81 3.96875 0.0 -3.81 3.96875 0.0 -3.81 3.96875 0.0 1 2p8.89 0.0 -4.12750 0.0 -0.15875 0.0 -0.3175 -0.47625 0.0 0.635 -0.79375 0.0 0.635 -0.79375 0.0 0.9525 -1.11125 0.0 1.27 -1.42875 0.0 1.27 -1.42875 0.0 1.5875 -1.74625 0.0 1.5875 -1.74625 0.0 1.905 -2.06375 0.0 2.2225 -2.38125 0.0 2.2225 -2.38125 0.0 2.54 -2.69875 0.0 2.8575 -3.01625 0.0 3.175 -3.33375 0.0 3.4925 -3.65125 0.0 3.49	cets " 2p225.58	
	hole hole hole hole hole hole hole hole	21 19 19 21 21 21 21 21 21 21 21 21 21	3.81 3.96875 0.0 -3.81 3.96875 0.0 -3.81 3.96875 0.0 gles & spacing above bask 1 2p8.89 0.0 -4.12750 0.0 -0.15875 0.0 -0.3175 -0.47625 0.0 0.635 -0.79375 0.0 -0.635 -0.79375 0.0 0.9525 -1.11125 0.0 -0.9525 -1.11125 0.0 1.27 -1.42875 0.0 1.27 -1.42875 0.0 1.5875 -1.74625 0.0 1.905 -2.06375 0.0 2.2225 -2.38125 0.0 2.2225 -2.38125 0.0 2.54 -2.69875 0.0 2.8575 -3.01625 0.0 3.175 -3.33375 0.0 3.4925 -3.65125 0.0 -3.4925 -3.65125 0.0 -3.4925 -3.65125 0.0	cets " 2p225.58	

3.81 -3.96875 0.0 hole 21 hole 21 -3.81 -3.96875 0.0 unit 21 com="part of steel angle in horiz sections of stringer" ' 0.1552" x 0.125" cubo 7 1 2p0.197104 2p0.15874 2p225.58 unit 22 com="part of steel angle in vert sections of stringer" ' 0.125" x 0.1552" cubo 7 1 2p0.15874 2p0.197104 2p225.58 unit 101 com=" interior rods not immed. adj. to water channel, no gd2o3, 5 wt% u235 " cyli 1 1 0.50254 2p225.58 cubo 11 1 4p0.6447 2p225.58 unit 102 com=" interior rods immed. adj. to water channel, no gd2o3, 5 wt% u235 " cyli 2 1 0.50254 2p225.58 cubo 11 1 4p0.6447 2p225.58 unit 103 com=" interior rods, 1.5 wt% gd2o3, 5 wt% u235 " cyli 3 1 0.50254 2p225.58 cubo 11 1 4p0.6447 2p225.58 unit 104 com=" corner rods facing other bundle, 3.05 wt% u235 " cyli 4 1 0.50254 2p225.58 cubo 11 1 4p0.6447 2p225.58 unit 105 com=" corner rods not facing other bundle, 3.05 wt% u235 " cyli 12 1 0.50254 2p225.58 cubo 11 1 4p0.6447 2p225.58 unit 106 com=" rods immed adj. to corner rod, facing other bundle, 3.55 wt% u235 " cyli 13 1 0.50254 2p225.58 cubo 11 1 4p0.6447 2p225.58 unit 107 com=" rods immed adj. to corner rod, not facing other bundle, 3.55 wt% u235 " cyli 14 1 0.50254 2p225.58 cubo 11 1 4p0.6447 2p225.58 unit 108 com=" balance of edge rods facing other bundle, 4.75 wt% u235 " cyli 15 1 0.50254 2p225.58 cubo 11 1 4p0.6447 2p225.58 unit 109 com=" balance of edge rods not facing other bundle, 4.75 wt% u235 " cyli 16 1 0.50254 2p225.58 cubo 11 1 4p0.6447 2p225.58

```
109 101 102 110 110 110 102 101 101 108
109 101 102 110 110 110 102 101 103 108
109 103 102 110 110 110 102 101 101 108
109 101 101 102 102 102 101 101 101 108
109 103 101 101 101 101 101 101 103 108
107 101 103 101 103 101 101 103 101 106
105 107 109 109 109 109 109 109 107 104
end fill
' array 6 is bundle in right basket (bottom inner)
ara=6 nux=10 nuy=10 nuz=1
fill
104 107 109 109 109 109 109 109 107 105
106 101 103 101 103 101 101 101 101 107
108 103 101 101 102 102 102 101 101 109
108 101 101 102 110 110 110 102 101 109
108 103 101 102 110 110 110 102 101 109
108 101 101 102 110 110 110 102 103 109
108 101 101 101 102 102 102 101 101 109
108 103 101 101 101 101 101 101 103 109
106 101 103 101 101 103 101 103 101 107
104 107 109 109 109 109 109 109 107 105
end fill
' array 7 is 1 inner container (bottom inner)
ara=7 nux=4 nuy=3 nuz=1
fill
 9 18 18 9
16 7 8 17
 9 19 19 9
end fill
' array 8 is 2 inner containers (top & bottom)
ara=8 nux=1 nuy=2 nuz=1
fill 12 10 end fill
' array 9 is array of 96 (8x12x1) containers
ara=9 nux=8 nuy=6 nuz=1
fill fll end fill
' array 10 is array of 8 (8x1x1) containers
ara=10 nux=8 nuy=1 nuz=1
fill f12 end fill
' array 11 is array of 104 (8x13x1) containers
ara=11 nux=1 nuy=2 nuz=1
fill 13 14 end fill
end array
read start
nst=1
end start
read bounds
all=vacuum
end bounds
      Framatome ANP, Inc.
```

υ

Consolidated License Application for FANP Model SP-1, SP-2 and SP-3 Shipping Containers

read bias id=500 2 11 end bias read plot ttl=' xy section of two inner containers ' xul=0 yul=52.6776 zul=10 zlr=10 xlr=44.1188 ylr=0 nax=150 uax=1 vdn=-1 lpi=10 end . ttl=' xy section of entire array ' xul=-32 yul=401 zul=10 xlr=385 ylr=-32 zlr=10 vdn=-1 nax=150 lpi=10 uax=1 end . ttl=' xz section of one inner container ' yul=7.1882 xul=0 zul=0 ylr=7.1882 xlr=44.1188 zlr=452 nax=150 uax=1 wdn=1 lpi=10 end 1 ttl=' xz section of entire array ' zul=-32 xul = -32yul=7.1882 xlr=385 ylr=7.1882 zlr=484 uax=1 wdn=1 nax=150 lpi=10 end ۲ end plot end data end

