

EPRI • 3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 • USA
800.313.3774 • 650.855.2121 • askepri@epri.com • www.epri.com

RETRAN-3D — A Program for
Transient Thermal-Hydraulic
Analysis of Complex Fluid Flow
Systems

 Volume 2: Programmer's Manual

NP-7450(A), Volume 2, Revision 10
Research Project 889-10

Computer Code Manual, September 2014

Prepared by
COMPUTER SIMULATION & ANALYSIS, INC.
410 Memorial Dr., Suite 205
Idaho Falls, ID 83402

Principal Investigators
M. P. Paulsen
C. E. Peterson

 G. C. Gose
 J. H. McFadden
 J. G. Shatford
 J. L. Westacott
 H. J. Kadakia

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

DISCLAIMER OF WARRANTIES AND LIMITATION OF LIABILITIES
THIS DOCUMENT WAS PREPARED BY THE ORGANIZATION(S) NAMED BELOW AS AN ACCOUNT OF WORK
SPONSORED OR COSPONSORED BY THE ELECTRIC POWER RESEARCH INSTITUTE, INC. (EPRI). NEITHER
EPRI, ANY MEMBER OF EPRI, ANY COSPONSOR, THE ORGANIZATION(S) BELOW, NOR ANY PERSON ACTING
ON BEHALF OF ANY OF THEM:
(A) MAKES ANY WARRANTY OR REPRESENTATION WHATSOEVER, EXPRESS OR IMPLIED, (I) WITH
RESPECT TO THE USE OF ANY INFORMATION, APPARATUS, METHOD, PROCESS, OR SIMILAR ITEM
DISCLOSED IN THIS DOCUMENT, INCLUDING MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE, OR (II) THAT SUCH USE DOES NOT INFRINGE ON OR INTERFERE WITH PRIVATELY OWNED
RIGHTS, INCLUDING ANY PARTY'S INTELLECTUAL PROPERTY, OR (III) THAT THIS DOCUMENT IS SUITABLE
TO ANY PARTICULAR USER'S CIRCUMSTANCE; OR
(B) ASSUMES RESPONSIBILITY FOR ANY DAMAGES OR OTHER LIABILITY WHATSOEVER (INCLUDING ANY
CONSEQUENTIAL DAMAGES, EVEN IF EPRI OR ANY EPRI REPRESENTATIVE HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES) RESULTING FROM YOUR SELECTION OR USE OF THIS DOCUMENT OR
ANY INFORMATION, APPARATUS, METHOD, PROCESS, OR SIMILAR ITEM DISCLOSED IN THIS DOCUMENT.
ORGANIZATION(S) THAT PREPARED THIS DOCUMENT
Computer Simulation & Analysis, Inc.

NOTE

For further information about EPRI, call the EPRI Customer Assistance Center at 800.313.3774 or
e-mail askepri@epri.com.

Electric Power Research Institute, EPRI, and TOGETHER…SHAPING THE FUTURE OF ELECTRICITY are
registered service marks of the Electric Power Research Institute, Inc.

Copyright © 2014 Electric Power Research Institute, Inc. All rights reserved.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

REVISION 10 CHANGE PAGES FOR EPRI NP-7450 VOLUME 2
RETRAN-3D PROGRAMMER'S MANUAL

The pages listed below are the replacement pages that comprise Revision 10 of the RETRAN-3D
Programmer's Manual, Volume 2. These pages are either replacements pages for those with the
same page number in Revision 9 of the Programmer's Manual, or additional pages for those with
new page numbers. Those pages which have changes are indicated by "Revision 10" in the
lower, outside corner of the page, and the change is indicated by a vertical bar adjacent to the
change, along the outside margin of the page.

Section Pages Description of Changes

 Title Page Changed revision number and date

 viii, ix, xiii Update Contents, Illustrations, & Tables

II II-1, II-2 Changed supported platforms.

IV IV-49 Changed supported platforms.

VI VI-1-VI-4, VI-11, VI-13 Changed supported platforms.
 VI-14, VI-20, VI-22
 VI-24-VI-27, VI-37,
 VI-38

B B-1, B-2 Changed supported platforms

C C-1, C-2, C-25-C-60 Added code modifications for MOD004.7.1.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

 iii Revision 7

ABSTRACT

RETRAN-02 has proven to be a versatile and reliable computer program for use in best-estimate
transient thermal-hydraulic analysis of light water reactor systems. The RETRAN-3D computer
program is an extension of the RETRAN-02 program designed to provide analysis capabilities
for (1) BWR and PWR operational transients, (2) small break loss-of-coolant accidents, (3)
anticipated transient without scram, (4) long-term transients, (5) transients with thermodynamic
nonequilibrium phenomena, (6) mid-loop operation with noncondensable gas present, (7)
transients where 3-D dimensional power shapes and reactivity feedback effects are important,
and (8) BWR stability events. RETRAN-3D also maintains the complete analysis capabilities of
RETRAN-02.

The RETRAN-3D computer code is written in standard Fortran 95 to provide for ease in
maintenance and installation on new computer platforms. It uses dynamic memory allocation to
assign memory at execution time; thus, memory use is tailored to the problem being executed.

This report (the second of a four-volume computer code manual) describes the programming
aspects of the RETRAN-3D code. The three companion volumes describe the theory and
numerical algorithms; the required input, output, and sample problems; and the verification and
qualification for RETRAN-3D.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Abstract

Revision 7 iv

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

 v Revision 7

ACKNOWLEDGMENT

The RETRAN-3D Programmer's Manual has the programming conventions and practices used
for the RETRAN-3D code and its implementation using the Fortran 95 language.

The vision, guidance, and encouragement offered by Lance Agee, the EPRI RETRAN project
manager during the development of RETRAN-3D, and other members of the EPRI staff are
gratefully appreciated. The participation of the RETRAN User Group members has made the
continued development and maintenance of RETRAN-3D possible.

The preparation of a document like the RETRAN-3D Computer Code Manual requires the
assistance of many individuals. We are grateful to Pam Richardson for editing and typing this
report. Our final acknowledgment is given to all of the CSA staff for their support and interest in
the RETRAN project.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Acknowledgment

Revision 7 vi

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

 vii Revision 9

CONTENTS

Section Page

I. INTRODUCTION .. I-1

II. PROGRAMMING PRACTICES...II-1
 1.0 PROGRAMMING LANGUAGE ..II-1
 1.1 Programming Guidelines ...II-1
 1.2 Source Code Structure ...II-2
 1.3 Obsolete Code Constructs ..II-8
 2.0 DYNAMIC MEMORY ALLOCATION ...II-8
 2.1 Module Use and Requirements ..II-8
 2.2 Segmented Arrays ..II-17
 3.0 RESTART FILE ..II-23
 3.1 File Content ..II-24
 3.2 File Use ..II-25
 4.0 MINOR EDIT VARIABLES ...II-29
 4.1 Creating a List of Possible Minor Edit VariablesII-29
 4.2 Checking for Valid Minor Edit Variable Flags ..II-33
 4.3 Retrieving the Value of a Minor Edit Variable ..II-34
 5.0 MAJOR EDITS ..II-34
 6.0 CODE DOCUMENTATION...II-34
 7.0 ERROR MESSAGE HANDLING ..II-35
 7.1 Input Processing Errors ..II-37
 7.2 Memory Allocation Errors ...II-40
 7.3 Transient Solution Errors ...II-41

III. RETRAN PROGRAM FLOW .. III-1
 1.0 INITIAL RUNS ... III-1
 2.0 RESTART RUNS .. III-13
 3.0 REEDIT RUNS .. III-16

IV. RETRAN INPUT/OUTPUT .. IV-1
 1.0 UNIT DESCRIPTION ... IV-1
 2.0 DATA FILE DESCRIPTION AND USE .. IV-1
 2.1 Restart Data File .. IV-1
 2.2 One-Dimensional Space-Time Kinetics Data File IV-10
 2.3 Three-Dimensional Space-Time Kinetics Data Files IV-14
 2.4 Optional Output Data Files .. IV-38
 2.5 Temporary Files ... IV-45
 2.6 Input Data File ... IV-45
 2.7 Output Print File .. IV-45

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Contents

Revision 10 viii

Section Page

 2.8 Plot Data File ... IV-45
 2.9 Remark Log ... IV-48
 2.10 Error Log .. IV-48
 2.11 RETRAN-3D Configuration File ... IV-48

V. inp FREE FORM INPUT.. V-1
 1.0 USER APSECTS OF inp PACKAGE .. V-1
 1.1 Data Deck Organization .. V-1
 1.2 Title Card .. V-2
 1.3 Comment Cards .. V-2
 1.4 Data Cards ... V-2
 2.0 PROGRAMMING USE OF THE inp PACKAGE ... V-4
 2.1 call inp (xl1, nl1, title*, ncase*, ndata*, iws*) ... V-6
 2.2 call inp2 (xl1, xl2, l3) .. V-7
 2.3 call inp4 (ic1, +ic2, min, max, nj, j*, ic3, ntimes,
 newj, xl1, xl2, l5) .. V-8
 2.4 call inp5 (ic1, +ic2, ic3, +n1, +nmin, +nmax, +nstore,
 ntimes, newj, j*, xl1, xl2, l5, xl6, nl6) .. V-9
 2.5 call inp6 (ic1, ic2, icard, item, xl1) ... V-11
 2.6 call inp7 (icard, item) .. V-11
 2.7 call link (ic, ix, n3, n4, xl1) ... V-11
 2.8 call moder (xl1, l3, n3, n4, n5, n6) .. V-11
 2.9 function inp8 (nprint, xl1) ... V-12
 2.10 function inp9 (xl1) and function inp10 (xl1, ic1, ic2) V-12
 2.11 function ncards (start, end, incr, cards) ... V-12
 2.12 function nitems (start, end, cards) ... V-13
 3.0 LOW LEVEL inp SUBROUTINES ... V-14
 3.1 call cvi (char, binary, cond, num, ipos) ... V-14
 3.2 call conv (a, xnum, type, lstart, lend, err) ... V-14
 3.3 call holstr (a, l1, wrk, cond, nwrds, err) .. V-14
 4.0 inp SUMMARY .. V-15
 4.1 Summary of inp Package Calls ... V-15
 4.2 Array Summary ... V-15
 4.3 Variable Summary .. V-16
 4.4 Error Message Summary ... V-18
 4.5 Control Word Structure ... V-18
 4.6 Table Entries ... V-18
 4.7 Mode Indicator Word Structure .. V-18

VI. MAINTENANCE AND INSTALLATION .. VI-1
 1.0 LINUX SOURCE CODE TRANSMITTAL ... VI-2
 1.1 Linux Source Code Installation ... VI-2
 1.2 Linux Platform Testing .. VI-11
 1.3 Installing on Other Platforms ... VI-22
 2.0 WINDOWS TRANSMITTAL... VI-22
 2.1 Windows Installations .. VI-23

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Contents

 ix Revision 10

Section Page

 3.0 LINUX CODE MAINTENANCE ... VI-40
 4.0 TECHNICAL SUPPORT .. VI-40

VII. REFERENCES ... VII-1

APPENDIX A - THE COMPARE2 PROGRAM
APPENDIX B - THE BXFTOOL PROGRAM
APPENDIX C - CODE MODIFICATION SUMMARY
APPENDIX D - FORTRAN 95 CONVERSION AND TESTING SUMMARY
APPENDIX E - THE get_R3D_plot_vars UTILITY PROGRAM

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Contents

Revision 9 x

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

 xi Revision 9

ILLUSTRATIONS

Figure Title Page

III.1-1 Subroutine Calls from Main Program RMAIN ... III-2
III.1-2 Subroutine Calls from INTRAN .. III-3
III.1-3 Subroutine Calls from ARRINP .. III-4
III.1-4 Subroutine Calls from POWRT, SPACTM, and STATIC III-6
III.1-5 Subroutine Calls from STSTAT and ZFLOWH .. III-7
III.1-6 Subroutine Calls from TRAN .. III-8
III.1-7 Subroutine Calls from JUNPRP, ADVFLO, MDOT, and PRSORK III-9
III.1-8 Subroutine Calls from ENERGY, SLIP, and DNBM .. III-10
III.1-9 Subroutine Calls from PRESUR, VOLPRP, STATAC, STAPH,
 STPH4A, and CARDBC .. III-11
III.1-10 Fluid Property Routine Calls ... III-12
III.1-11 Subroutine Calls from LOGIC ... III-14
III.3-1 Subroutine Calls from REEDIT ... III-17
IV.2-1 RETRAN-3D Channel Model Data Flow .. IV-16

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Illustrations

Revision 9 xii

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

 xiii Revision 10

TABLES

Table Title Page

II.2-1 RETRAN-3D Static Data Modules ..II-12
II.2-2 Pointer Array Associations in the Volumes Real Data Block r_volII-16
II.2-3 RETRAN-3D Dynamic Data Modules ..II-18
II.3-1 Restart Block List Derived Data Type ...II-25
II.3-2 Data Blocks Used for Boundary Condition Retrieval from a
 RETRAN-3D Restart File ..II-28
II.4-1 Minor Edit Variable List Data Structure ..II-30
II.4-2 Block List Data Structure for Minor Edit Variables ..II-31
IV.1-1 File Unit Description.. IV-2
IV.2-1 Header Record Description .. IV-4
IV.2-2 Data Record Description .. IV-5
IV.2-3 Data Tape Processing Subroutine Descriptions ... IV-7
IV.2-4 RETRAN Data Tape FORTRAN Unit Number Cross Reference IV-8
IV.2-5 Cross-Section Data Record Structure - Multiple Control State Model IV-12
IV.2-6 Cross-Section Limit Data Format - Multiple Control State Model IV-15
IV.2-7 CDI File Structure and Content ... IV-17
IV.2-8 Cross-Section Model Independent Variables ... IV-34
IV.2-9 Multidimensional Kinetics Cross-Section File Structure IV-35
IV.2-10 Multidimensional Cross-Section File TABLE Array Data Types IV-39
IV.2-11 VBC File Format.. IV-41
IV.2-12 Sample VBC File ... IV-43
IV.2-13 RETRAN-3D Plot File Built-In Minor Edit Lists ... IV-46
IV.2-14 RETRAN-3D Plot File Structure ... IV-47
IV.2-15 RETRAN-3D Configuration File Variables .. IV-50
V.2-1 inp User Error Summary ... V-19
VI.1-1 Linux Installation and Maintenance Script: bld ... VI-4
VI.1-2 Example Subroutine Compilation Order File: compile_list VI-10
VI.1-3 Linux Execution Script: run .. VI-12
VI.1-4 Linux Installation Verification Script: checkin.sh .. VI-20
VI.2-1 Windows Execution Procedure: run.bat ... VI-27
VI.2-2 Windows Installation Verification Script: checkin.bat VI-38

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Tables

Revision 9 xiv

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

 I-1 Revision 8

I

INTRODUCTION

The RETRAN computer programs are a series of best-estimate transient thermal-hydraulic
analysis program used to analyze the behavior of light-water reactors or experimental facilities
subjected to postulated transient conditions. RETRAN-3D is the latest result of an extensive code
development effort sponsored by EPRI since 1975. The objective of this development effort has
been to provide a versatile and reliable thermal-hydraulics code that can be used for best-estimate
analysis of light-water reactor systems. The RETRAN-01 code,[I-1] was released in
December 1978, RETRAN-02 was released in April 1981,[I-2] RETRAN-03[I-3] in 1991, and
now RETRAN-3D which represents the results of recent development efforts focusing on
applications affecting current operational issues. These include midloop operations with
noncondensable gas present, multidimensional power and reactivity feedback events, and BWR
stability events.

In 2007 the RETRAN User Group (RUG) initiated a development effort to convert the
RETRAN-3D source code to Fortran 95. The intent of this code modernization effort was to
improve the long term viability of RETRAN-3D by replacing or eliminating obsolete
programming and language features, using new language constructs that simplify the structure of
the code, and the elimination of obsolete programming techniques. Specifically, the FTB variable
dimensioning feature that had been used to implement dynamic dimensioning was replaced with
Fortran 95 features for dynamic memory allocation. Other source code revisions eliminated
obsolete coding constructs and replaced them with Fortran 95 features with the intent to improve
the long term use of the code with new compilers and operating systems and to also reduce future
maintenance costs.

As a result of the conversion effort, the RETRAN-3D source code is now written completely in
Fortran 95. The SLIB77 program that had been used to maintain the source code is no longer used.
The contractor responsible of on going development and maintenance of the code is using a
version control program to maintain the revision history for the code. Prior to the Fortran 95
version, three separate SLIB77 program libraries were use to maintain the code. They were also
included with source code transmittal packages. Source code from the three program libraries has
been combined into a single source code archive. This Fortran 95 source code is now included
with the source transmittals.

Programming guidelines were developed as part of the conversion effort. They are discussed in
Section II.1.1 and will allow different programmers to produce uniform and consistent source code
that will be easier to maintain and revise in the future. Major implementation changes were made
in the following areas

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Introduction

Revision 7 I-2

 dynamic memory allocation,
 restart file structure and content,
 major edit subroutines, and
 minor edit variables.

Discussions of each of these implementation changes are given in Section II.

With the conversion to Fortran 95, RETRAN-3D can be easily transported to a variety of computer
platforms, a development requirement long imposed by EPRI and the RUG.

Topics presented in this document have little to do with the theoretical basis of the RETRAN-3D
computer program or actual use and application of the code, but rather, deal with the programming
aspects of the code package. Specifically, RETRAN-3D utilizes dynamic memory allocation to
allow for efficient usage of main memory storage, where the main memory required for any given
problem depends on the nodalization detail used for the problem and the RETRAN-3D modeling
options that are used.

The Programmer's Manual discusses the programming techniques used to implement dynamic
memory allocation, as well as coding conventions used to ensure that the code package is
transportable to a variety of computing platforms and operating systems. A discussion of each I/O
unit used by the code package is presented with particular emphasis placed on the structure and use
of RETRAN-3D data files (restart files or data sets). Also contained in the manual is the general
program flow from the executive subprogram, RMAIN, to each of the program modules, and
program flow within each module. Installation and maintenance of the code package are also
covered.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

 II-1 Revision 10

II

PROGRAMMING PRACTICES

The RETRAN-02 and RETRAN-3D transient thermal-hydraulics analysis codes have been widely
used as analysis tools by the nuclear power industry in support of licensing applications and
operational issues. RETRAN-3D is the most recent of these codes. It is written entirely in Fortran
95, thus facilitating RETRAN-3D installation on a variety of microcomputers and workstations
using various Fortran 95 compilers and a single source. Currently supported platforms include
personal computers running Windows or Linux workstations and related Fortran 95 compilers.
Note that HP, IBM, and SUN workstations using proprietary versions of UNIX and FORTRAN 95
are no longer formally support. However, the UNIX options have been retained so the installation
and execution scripts should work for these platforms with minimal change.

This section provides specific guidance regarding the use of the programming language, memory
allocation, defining minor edit variables and the content of the restart file.

1.0 PROGRAMMING LANGUAGE

RETRAN-3D source code is written entirely in Fortran 95 and uses the free form source code
feature provided by the language that allows up to 132 columns to be used for programming
content. While coding can begin in column 1, the RETRAN-3D source uses the convention where
statement or format labels are right justified in columns 1 through 5, column 6 is not used, and
programming instructions begin in column 7 unless indentation is used on the line.

The RETRAN-3D source code is generally written in lower case. Upper case can be use as needed
for format statements to provide the desired output. Upper case can also be used to help make
comments more readable, e.g., sentences should begin with a capital letter. Most output formats
are written in upper case. New additions or revisions should be done in a manner consistent with
the existing code.

Programming guidelines were established for use with the RETRAN-3D in an attempt to
standardize the content and structure of the RETRAN-3D source code. This should aid
programmers as they either modify or maintain the code. These are summarized in the following
sections, which also include programming constructs that should be avoided.

1.1 Programming Guidelines

Programming guidelines have been established for use with the RETRAN-3D code in an attempt
to standardize the structure and content of the new Fortran 95 source code. This will aid

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Programming Practices

Revision 7 II-2

programmers as they develop new models, modify existing models or maintain the code. The
guidelines are summarized in the following sections. Obsolete programming constructs that
should be avoided are also included.

By following the programming guidelines, different programmers will be able to produce uniform
and consistent source code that will be easier to maintain and revise in the future. This will require
programmers to follow the intent of the guidelines and also use them in a manner consistent with
existing coding style (when in Rome, do as the Romans do). The goal is to keep the source
appearance and structure as if it had a single author rather than many authors with disparate
programming styles.

With free form source code,

 variable names can be up to 31 characters in length. Make variable names meaningful in
the context they are use.

 function and subroutine names can also be up to 31 characters in length. Give them
descriptive names that will help document their purpose or function.

 Fortran 95 requires interfaces in calling subroutines for every function referenced,

 blanks are significant in names,

 up to 39 continuation lines can be used (& at end of line),

 while Fortran 95 allows multiple statements per line (; is statement separator), their use is
discouraged for RETRAN-3D,

 the ! is the comment symbol and can be placed any where on a line (comments follow),

 the include option inserts source text from a file is supported, but will not find significant
use in RETRAN-3D since public data storage is defined in data modules rather than
common blocks (historically include statements were used to insert common block
specifications).

Fortran 95 compilers recognize source files with “.f90” extensions as Fortran 95 source code, but
some do not recognize “.f95” extensions. Consequently, “.f90” extensions are used for source
code files even though they are Fortran 95 compliant.

1.2 Source Code Structure

Source code indentation is used to clearly identify the body of do loops and if blocks. For do loops,
the do and end do statements will begin in the same column and intermediate statements will be
indented by 3 spaces. If and case constructs are treated similarly where the control statements are
at the same level and intermediate coding is indented by 3 columns. If there are many nested
blocks, 2 columns may be used for indentation in order to retain more columns for instructions.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

 Programming Practices

 II-3 Revision 7

Functions and subroutines should include prolog information as comments that define the
purpose of the subprogram and any dummy arguments. It should also include the name of all
subprograms that call it, unless it is called by a large number of subroutines (more than 6). A
template for the subroutine prolog is shown below. Each dummy argument should be defined and
the use of the argument indicated, whether input, output or input/output. This information will
also be included in intent specifications as indicated below

 [Subroutine or function subprogram_name] ([dummy1,] [dummy2])
!
! A description of the subroutine or function should be included
! here.
!
! subprogram_name is called by subroutine sub_1, [sub_2,] …
!
! [dummy1] = definition of dummy argument 1 (input)
! = Also each value for control variables
! [dummy2] = definition of dummy argument 2 (input/output)

Following the subprogram prolog, all data modules required by the subprogram must be
referenced via use [module_name] statements. Modules are used to create storage pools that can
be accessed from multiple subroutines. They replace common blocks used in most Fortran 77
programs. Modules can contain scalar variables, fixed dimensions arrays or deferred shape arrays
or pointers. For RETRAN-3D, modules for most deferred shape arrays also contain related coding
that allocates memory for the arrays at execution time. Section II.2.1 Module Use and
Requirements identifies the standards used for RETRAN-3D modules.

The kind_specs module is a RETRAN-3D specific module that contains parameters that should
be used to define the precision of various variable types, e.g., rkd, ikd and lkd for real, integer and
logical data types, respectively. They should be used to specify the precision of all real, integer
and logical data types used in RETRAN-3D. The real date type precision specification included
in kind_specs, rkd, defines real variables and arrays to be double precision. The use of the
kind_specs module will facilitate changing the precision of the code if required in the future by
simply modifying the parameters shown below in the kind_specs module. The precision of
character data should use the ckd parameter, using the length attribute to define the string length,
e.g. len=8 for an 8-character string. The kind_specs module as currently defined is shown below.

!==
! Define global kind specifications
!==
!
 module kind_specs
!
 integer(kind=4), parameter :: &
 ikd=4, & ! integer kind specification (kind=4)
 lkd=4, & ! logical kind specification (kind=4)
 rkd=8, & ! real kind specification (kind=8)
 ckd=1 ! character kind specification (only kind=1 is
 ! currently supported)
!
 end module kind_specs

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Programming Practices

Revision 7 II-4

When modules are included in a subprogram, they should be used in a manner similar to the
following example.

!
! Data specification modules
!
 use kind_specs
 use [module_name1]
 use [module_name2]
 …
 …
 …
 use [module_namen]

Following the data module use specifications, an implicit none statement should be included in
each subprogram. It should be preceded by a comment line to help make it more visible in the
source code. With the implicit none specification, all local variables must be explicitly typed.
This helps to insure that undefined variables are not inadvertently used because of a typographical
error. It also makes the programmer explicitly define the variable type while the coding is being
developed, reducing the chance that a variable with the wrong type will be used.

!
 implicit none

If a subprogram uses dummy arguments, type specifications should be included for each argument.
These specifications should include the associated precision for each type using the parameters
defined in the kind_specs module. The specification statements should be preceded by the
comments shown below (or similar comments). A type specification and associated precision is
also required for any function name.

The intended use of each dummy argument should also be specified using an intent statement
where (in) indicates the argument is input, (out) indicates the argument is output or calculated
within the subprogram and (inout) indicates that the argument is both input and output. An
example code segment follows.

!
! Dummy Arguments
!
 integer(kind=ikd) :: [dummmy1]
 real(kind=rkd) :: [dummy2]
 intent (in) [dummy1]
 intent (inout) [dummy2]

Following the dummy argument specifications, specifications for local variables should be given
if local variables are used in the subprogram. They should be preceded by the comments (or
similar comments) as shown in the following code segment. Any real, integer and logical
variables should use the appropriate type size parameter to define the precision, e.g., rkd, ikd, lkd
and ckd, from the kind_specs module.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

 Programming Practices

 II-5 Revision 7

!
! Local variables
!
 integer(kind=ikd) :: var1
 real(kind=rkd) :: var2
 logical(kind=ikd) :: var3

Comments should be preceded and followed by blank comment lines to help the comment stand
out from the remainder to the source code. This aids in making the source code more readable.
The actual text of comments should also be indented similar to the instructions it applies to.
Typically comments should be indented 3 columns less than the associated instructions, which
should generally follow the comment, i.e. comments should preceded the instructions being
described, including do, else, else if, case, etc.

Fortran 95 type specifications include a number of attributes that can be used as needed. The kind
attribute for type specifications provides a clean way to control numeric precision. The
kind_specs module contains parameters that should be used to define the precision of real, integer,
and logical variables. The dimension attribute of the type statements should be used for arrays
rather than Fortran 77 style dimension statements. Array bounds or rank should be specified with
the dimension attribute. The length of character data types should be specified as needed.
Generally, local variables should not use the save attribute. If a variable needs to be saved so its
value is retained after a subprogram is exited, it should be placed in a module. Examples are
illustrated in the following code segment.

!
! Local variables
!
 real(kind=rkd), dimension(4) :: a, d
 character(kind=ckd,len=30) :: title

Program flow should generally be designed to flow from the top of a subprogram to the bottom.
The use of go to statements should be minimized; however, there are situations where go to
statements may be the most appropriate control construct. The use of label statements should be
minimized. When labels are used, it is preferable to use them with continue statements rather than
executable statements.

Computed and assigned go to statements should not be used since they are classified as
detrimental to good programming practices; rather, select case/case constructs should be used. If
then/else constructs are also useful alternatives to assigned or computed go to constructs.

Do loops should be terminated with end do statements where possible (rather than labels) and
control transfers should use the cycle and exit options where possible. There will be occasions
when a go to transfer will be required, but they should only be used if the other options won’t
provide the necessary control transfers. Do while, and associated end do should be used to control
iterative loops rather than backward go to statements when practical.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Programming Practices

Revision 7 II-6

Additionally, the following general guidelines should also be followed when writing code for
RETRAN-3D.

• Modules offer a cleaner solution to most situations where entry points might be used in
Fortran 77, particularly for large subprograms. For this case a private data module can be
used to save the necessary data for related calls (entries). The use of entry points should
be limited to small compact subprograms.

• Where possible, whole array processing should be used since it is now possible to treat
whole arrays as objects in Fortran 95. It is preferable to write
a = 0.0d0

to initialize array a rather than initializing each element of an array using a do loop.
Similarly, whole array operations can be performed such as
a = b*sin(a)

where a and b are arrays. This is also preferable to using a do loop to operate on the
individual array elements.

Partial array processing can also be used to zero part of an array, e.g. if array a is rank
(1:100), the first n elements (n<100) can be zeroed using

a(1:n) = 0.0d0

to zero them. Similarly, partial array processing can be used to move elements from one
array to another. If array b has the same rank as array a,

b(51:100) = a(1:50)

moves the first 50 elements of array a to the final 50 elements of array b.

• The use of equivalence statements can make programs difficult to understand and
maintain. They can also hinder data flow analysis and, consequently, automatic compiler
optimizations. For these reasons, their use should be limited in RETRAN-3D.

• Generic intrinsic functions should be used rather than type specific forms. Intrinsic
functions and new features available in Fortran 95 can be used when writing RETRAN-3D
source code.

• Return statements are not required at the end of a subprogram and should not be included.
 A return is automatically issued in Fortran 95.

• All format statements should be placed at the end of the subprogram, making it easier to
locate them. They should be ordered by increasing label number.

• Include all separators between fields in format statements. Some compilers will accept
missing separators but others will consider missing separators to be errors. The following
example first illustrates good programming practice and the second poor practice. Use

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

 Programming Practices

 II-7 Revision 7

100 format (i6,a8)
200 format (i8, 1p, 5e13.5)

rather than
100 format (i6a8)
200 format (i8, 1p5e13.5)

• Do not wrap strings in format statements across continuation cards. The following example
illustrates good programming practice, followed by poor practice. Use
100 format (' do not wrap hollerith strings across' &
 ' continuation cards, terminate the string' &
 ' then start new string')

rather than

100 format (' do not wrap hollerith strings across continuation cards &

 &as is done here')

• Character data types should be used to store Hollerith data when possible. Because all
RETRAN-3D input data is stored in a real(kind=8) array when processed by the inp free
form input processing package, character data must be extracted using in memory writes
into a character type variable (see Section V.2.0 for additional discussion).

• Limit the magnitude of large literal floating point constants to exponents of 75 and small
literal floating point numbers to exponents of -75. This will help prevent unnecessary
overflow and underflow problems.

• When defining real data constants, use the d specification, e.g., 1.0d0 rather than 1.0.

• Use consistent data types when performing arithmetic and logical tests. The following
example illustrates both good and poor practice. Use

i = ione ! i and ione are integer(kind=4)
i = 2
if (i.eq.3) then
z = 5.0d0 ! z is a real(kind=8)

rather than

i = one ! i is integer(kind=4) and one is real(kind=8)

i = 1.0d0
if (i.eq.zero) then ! zero is a real(kind=8)
z = 5 ! z is a real(kind=8)

All function and subroutine end statements should include the subroutine name as shown in the
following example.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Programming Practices

Revision 7 II-8

 subroutine subroutine_name ([arg1,] [arg2,] …… [argn])
 …
 …
 end subroutine_name

Avoid using Fortran read operations from Fortran Unit 5, since they will conflict with the free
form input processor INP which uses Unit 5.

1.3 Obsolete Code Constructs

As noted above, computed and assigned go to statements should not be used. Instead, the case and
block if constructs should be use.

Additionally, the following statements shown on the left are obsolete. The indicated statements on
the right should be used in their place.

 print n,... write (*,n) ...
 accept n,... read (*,n) ...
 type n,... write (*,n) ...
 pause 'message' write (*,*) 'message'

 read (*,'()'

2.0 DYNAMIC MEMORY ALLOCATION

RETRAN-3D uses the dynamic memory allocation features of Fortran 95 to assign main memory
storage strictly based on the size of the problem and program options that are used. Thus, most
storage for data arrays is allocated dynamically at execution time, not at compile time via
dimensioned local or global arrays. There are a few situations where fixed dimension arrays are
used. For these arrays, fixed dimensions will be specified as part of the type specifications.

In some instances, arrays will be used in a single subroutine and will not need to be made available
to other subroutines. These will typically be input processing subroutines that are only called once.
 For these situations, either the fixed dimension type specifications or dynamic allocation will be
included locally in the subroutine. If the subroutine is only called once, any dynamically allocated
memory should be de-allocated before exiting the subroutine.

When specific storage blocks need to be made available globally to other subroutines, modules are
used to define the storage specifications and attributes. The use of modules in RETRAN-3D is
described in the following sections.

2.1 Module Use and Requirements

Modules are used to define scalar variables, arrays and derived data type structures that can be
accessed by multiple subprograms. They include specifications for data type and precision.
Precision specifications should use the kind specification with the appropriate parameter from the

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

 Programming Practices

 II-9 Revision 7

kind_specs module (see Section II.1.2) to define the precision. All required attributes should be
specified with the type specification. Modules should also include associated procedures, e.g.
coding used to allocated and initialize the arrays or special functions or subroutines that operate on
the information stored in the module.

When a module contains a function or subroutine that references an external subroutine or function,
an interface block must be provided for the called subprogram in the calling subprogram. Such
interface blocks could be incorporated into the calling subprogram using an include statement;
however, in RETRAN-3D it is preferred to put the interface block into a module and then add a
use statement to the calling subprogram.

By convention, modules that contain interface blocks are give filenames that begin with s_. This
allows them to be easily and quickly located in directory and other related lists. The name
following the s_ prefix can be the name of the associated subroutine, thus avoiding duplicated
object file names,

Two basic module types are used in RETRAN-3D. They are static and dynamic modules. All
variables and arrays in these modules should have the save attribute specified as part of the type
specification attributes. This will insure that values are maintained as control is transferred from
one subroutine to another.

Modules should be programmed so they contain variables that define the dimensions for arrays
that are contained within the model. For example, module volumes contains pointer arrays that
have elements for each control volume. Their rank is (1:num_vol) were num_vol is the number
of control volumes for the current problem. In RETRAN-3D, module problem_dimensions also
contains dimensions and other control variables and variable nvol(1) is also the number of control
volumes. When a subroutine requires knowledge of the number of volumes, either nvol(1) or
num_vol are equivalent. However, it may be possible to exclude use of module
problem_dimensions if other control or dimension variables are not needed. It is preferable to
use the dimension variables in a module.

Comments should be included at the beginning of a module to identify its use. They should also
indicate any subroutines or functions that are included in the module. Variables included in a
given type declaration are placed in alphabetic order to aid in locating them when reviewing the
code for use. A comment should follow each variable or array to define its use. Comments should
also be included to describe any special uses or related data. Any information that might aid a
programmer in using or modifying a module should be included as comments. Modules should be
self documented.

By convention in RETRAN-3D, filenames for module source code are prefixed with an m_. This
allows modules to be quickly identified in directory and other related lists. An exception is for
modules that contain interface blocks. As noted above, their filenames will begin with s_ prefixes.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Programming Practices

Revision 7 II-10

2.1.1 Static Modules

Static data modules are comprised solely of scalar variables and/or fixed dimension arrays. They
should be used rather than common blocks. The following code segment provides an example of
a static module used to store information for the off-rated power initialization feature. It contains
both input data and procedure results.

!===
! Specifications and data definitions for off-rated conditions initialization
! procedure
!===
 module orcip
!
 use kind_specs
!
 integer(kind=ikd), parameter :: &
 nlp = 4, & ! maximum number of loops
 npj = 10, & ! number of add primary junction specs
 nsj = 10, & ! number of add secondary jun specs per sg
 nsg = 30 ! number of sg volumes per sg (mass)
!
 real(kind=rkd), save :: &
 bialev = 0.0d0, & ! pzr level bias (ft)
 biapow = 0.0d0, & ! power bias (mw)
 biaprs = 0.0d0, & ! pzr pressure bias (psia)
 biatav = 0.0d0, & ! averge loop flow bias (deg f)
 biawrs = 0.0d0, & ! rcs flow bias (gpm)
 fulpow = 0.0d0, & ! nominal full core power (mw)
 grcs = 0.0d0, & ! rcs volumetric flow mgpm
 hrcs = 0.0d0, & ! energy balance option (0-off,1-sg pres.)
 pcpow = 0.0d0, & ! percent power (%) used for table lookup
 powip = 0.0d0, & ! system power (mw) after bias is applied
 ppower = 0.0d0, & ! pump power adjustment option
 pzrl = 0.0d0, & ! pressurizer level
 pzrp = 0.0d0, & ! pressurizer pressure
 trcs = 0.0d0, & ! rcs target average temperature
 wrcs = 0.0d0 ! rcs mass flow rate lbm/sec
 !
 real(kind=rkd), dimension(nlp), save :: &
 biamas = 0.0d0, & ! level / mass inventory bias (lbm)
 biapsg = 0.0d0, & ! sg pressure bias (psia)
 biawsg = 0.0d0, & ! sg feedwater/steam flow bias (lbm/sec)
 rlpfrc = 0.0d0, & ! loop rcs flow fraction
 sgmas = 0.0d0, & ! sg target level / mass inventory
 sgp = 0.0d0, & ! sg pressure
 sgrcr = 0.0d0, & ! sg recirculation ratio
 sgwfw = 0.0d0, & ! sg fw/steam flow
 sgwrr = 0.0d0 ! sg recirculation flow
!
 real(kind=rkd), dimension(npj), save :: &
 rapfrc = 0.0d0 ! primary mass flow rate fraction of rcs flow
!
 real(kind=ikd), dimension(nlp, nsj), parameter :: &
 rasfrc = 0.0d0 ! mass flow rate as a fraction of sg fw
!
 integer(kind=ikd), parameter :: &
 igtprs = 0, & ! gen data table number for pzr pressure
 igtpzl = 0, & ! gen data table number for pzr level
 igttav = 0, & ! gen data table num for rcs avg loop temp (deg f)
 igtwrs = 0, & ! gen data table num for rcs vol flow rate (gpm)
 ilpvol = 0, & ! core lower plenum volume number

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

 Programming Practices

 II-11 Revision 7

 ipzr = 0, & ! pressurizer volume number
 itolim = 0, & ! maximum outer iteration loops (mass/level)
 itvjun = 0, & ! turbine stop valve junction number
 nloop = 0 ! number of loops defined
!
 …
 …
 …
!
 logical(kind=lkd), parameter :: &
 iebal = .false., & ! flag - energy balance (sg pres) model used
 iordbg = .false., & ! flag - turn debug writes on to units 65 & 66
 ipcvrg = .false., & ! flag - steady state outer loop converged
 ipoutr = .false., & ! flag - outer iteration used (sg level/mass)
 iproc = .false., & ! flag - initialization procedure used
 ipwtav = .false. ! flag - wrcs & tavg procedure model used
!
 end module orcip

As shown in the example above, comments are included at the start of the module to identify its
use. Comments are also provided that describe each variable and array. When fixed dimension
arrays are used, it is good practice to use parameters to define the dimensions. This facilitates
making revisions to the dimensions if required at a later date.

Note that the scalar variables and arrays are initialized as part of the type specification statements.
This is a good programming practice and should be used.

Table II.2-1 contains a list of the static data modules used in RETRAN-3D. It also includes a
description of the information included in the module. Refer to the source code for a complete list
of variable and array definitions for each module.

2.1.2 Dynamic Modules

Most of the storage assigned to memory in RETRAN-3D uses deferred shape pointer arrays that
are allocated at execution time. The size of these arrays will be determined from the input model
prior to allocating the space. Note that functions ncards and nitems from the inp free form input
processing package (see Sections V.2.11 and V.2.12) are often used to determine required problem
size before the actual input data are processed. This allows memory to be allocated before the
input is processed.

Modules are used to define the array types, attributes, and definition (via comments). They will
also contain coding used to allocate the required memory for each array used. These dynamic
allocation subroutines are typically given names of the form allok8_xxx, where xxx is a unique
character string that identifies the associated function. The following code segment is from
module volume that defines the arrays used to store volume related information. It contains
dynamic memory allocation subroutine allok8_volumes, which allocates the dynamic memory
associated with control volumes. The code segments from module volumes illustrate a typical
dynamic module from RETRAN-3D.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Programming Practices

Revision 7 II-12

Table II.2-1

RETRAN-3D Static Data Modules

Module Name

Description

arrcom Contains control arrays and communication vectors used to transfer

information between the 3-D kinetics and thermal-hydraulics
subroutines.

edit_headers Contains textual information documenting the code version,
licensed organization, problem title and date that the problem was
run.

errdata Contains communications blocks used to pass error descriptions and
related problem results to the error log processing subroutine
errlog.

inp_cards Contains the rdata array where subroutine INP returns card data. It
also contains function idata that is used to fetch integers out of the
rdata array.

ncgasc Contains arrays used to store constants for the noncondensable gas
defined. Used by property routines gastkv and gaseos.

orcip Contains problem specific target initial conditions and related
information used by the off-rated condition initialization procedure
option for steady-state initialization.

restart_block_list Contains the derived type data declaration and subroutine
build_restart_block_list used to build a list of dynamically
allocated data blocks that will be included in restart files.

retran_configuration Contains constants and data used to initialize retran-3D.

unit Contains commonly used conversion factors. It also contains the
conversion factors used to convert RETRAN-3D output to si units.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

 Programming Practices

 II-13 Revision 7

!===
! Specifications and space allocations for volume related arrays
!
! This module also contains the following subroutines
!
! allok8_volumes
!===
!
 module volumes
!
 use kind_specs
!
 integer(kind=ikd), save :: &
 num_vol, & ! number of volumes
 siz_rvol, & ! size of array allocated for real vol pointer arrays
 siz_ivol, & ! size of array allocated for integer vol pointer arrays
 siz_lvol ! size of array allocated for logical vol pointer arrays
!
!
! All of the following real, integer and logical pointer arrays are Rank (1:num_vol)
! Space is allocated and pointers associations are made in subroutine
! allok8_volumes
!
 real(kind=rkd), target, allocatable, save :: r_vol(:)
 real(kind=rkd), pointer, save :: &
 afdai(:), & ! normal to interfacial area density ratio
 areaif(:), & ! interfacial area density (ft**2 / ft**3)
 armaso(:), & ! previous time step noncondensible mass
 armass(:), & ! noncondensible mass
 aved(:), & ! average density
 avex(:), & ! average mixture quality = gas mass / total mass
 …
 …
 …
 xvapol(:), & ! previous time step xvapor
 xvapor(:), & ! vapor mass / water mass
 zlqlev(:), & ! equivalent collapsed liquid level
 zvol(:) ! volume height
!
 integer(kind=ikd), target, allocatable, save :: i_vol(:)
 integer(kind=ikd), pointer, save :: &
 ibub(:), & ! bubble data index
 icndns(:), & ! mode 20 recondensation flag
 idxetr(:), & ! index to subfile to 2-reg enth tran model
 idxlst(:), & ! index for connection list (w shs model)
 iequat(:), & ! equation set flag - model option
 ifr(:), & ! flow regime index
 …
 …
 …
 …
!
 contains
!
!===
 subroutine allok8_volumes
!
! Subroutine to allocate space and set pointers for vol related arrays
! Note: num_vol must be defined before allok8_vol is called
!
! allok8_volumes is called from subroutine invol
!
 use kind_specs
 use restart_block_list

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Programming Practices

Revision 7 II-14

!
! Interface modules
!
 use s_r_pntr
 use s_i_pntr
 use s_l_pntr
!
 implicit none
!
 character(kind=ckd,len=8) block
 integer(kind=ikd) l, i2, status
 logical(kind=lkd) allocatd
!
 real(kind=rkd), pointer :: rdum(:) ! dummy real pointer
 integer(kind=ikd), pointer :: idum(:) ! dummy integer pointer
 logical(kind=lkd), pointer :: ldum(:) ! dummy logical pointer
!
 if (num_vol .le. 0) then
 write (6,110) num_vol
 call fail
 return
 endif
!
 if (allocated (r_vol)) return
!
!--
! Allocate space and assign pointers for real arrays. The first pass determines
! size of block to allocate and the second pass assigns the pointer arrays
!---
!
 do l = 1, 2
 allocatd = l.eq.2
 i2 = 0
!
 call r_pntr (allocatd, num_vol, i2, afdai, r_vol)
 call r_pntr (allocatd, num_vol, i2, areaif, r_vol)
 call r_pntr (allocatd, num_vol, i2, armaso, r_vol)
 call r_pntr (allocatd, num_vol, i2, armass, r_vol)
 call r_pntr (allocatd, num_vol, i2, aved, r_vol)
 call r_pntr (allocatd, num_vol, i2, avex, r_vol)
 …
 …
 …
 call r_pntr (allocatd, num_vol, i2, xvapol, r_vol)
 call r_pntr (allocatd, num_vol, i2, xvapor, r_vol)
 call r_pntr (allocatd, num_vol, i2, zlqlev, r_vol)
 call r_pntr (allocatd, num_vol, i2, zvol, r_vol)
!
! allocate space
!
 if (.not.allocatd) then
 siz_rvol = i2
!
 allocate (r_vol(siz_rvol), stat=status)
!
! check status of allocate - write error if allocate failed
!
 if (status .ne. 0) then
 block = 'real'
 write (6,100) block, siz_rvol, status
 call fail
 endif
!
! Add block to list of blocks included in restart file

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

 Programming Practices

 II-15 Revision 7

!
 rdum => r_vol
 block = 'r_vol'
!
 if (num_vol /= 1) call build_restart_block_list (block, &
 rdum, idum, ldum, siz_rvol, 1, 2)
!
! initialize real arrays to 0.0d0
!
 else
 r_vol = 0.0d0
 endif
 enddo
!
 end subroutine allok8_volumes
!
 end module volumes

The initial coding in the example volume module defines the arrays that will be allocated
dynamically. Note that the example shows arrays r_vol and i_vol, which will be used for the real
and integer volume data. Similar arrays are used for any logical arrays that might be necessary.
The following discussion is for the real array, but it would also apply to the integer and logical
arrays.

All real arrays that are needed to store volume related information, e.g. air mass – armass, average
density – aved, etc., are defined as deferred shape pointer arrays. Each pointer specification also
includes a comment string that defines the use of the array. The pointers are defined in
alphabetical order to aid in finding pointer definitions when viewing the source code.

The memory required for the r_vol array will depend on the number of volumes in the
RETRAN-3D model and the number of pointer arrays used to describe a volume. The number of
volumes is known when the memory is allocated by calling subroutine allok8_volumes with is
part of the module. The number of pointer arrays is determined by the first calls made to
subroutine r_pntr (when l=1). The number of variables could have been hard wired but it would
have to be changed anytime a new pointer array is added or deleted. With the method shown, a call
can be added with the new array name in a call to subroutine r_pntr. Likewise, an array can be
deleted by deleting the call to subroutine r_pntr. Note that corresponding changes would have to
be made to the type specifications at the top of the volumes module.

The following code illustrates the r_pntr subroutine and the operation that it performs.

 subroutine r_pntr (allocatd, nsiz, len, rpntr, rtargt)
!
! Subroutine to determine space requirements and assign array pointers for
! real arrays.
!
! len = cummulative length of target array input/output
! allocatd = locical used to assign pointer values input
! = .false. - calculate space required
! = .true. - make pointer association
! nsiz = size of pointer array input
! len = cummulative length of target array input/output
! rpntr = pointer to associate with target input/output
! rtargt = target array input

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Programming Practices

Revision 7 II-16

!
 use kind_specs
!
 implicit none
!
 integer(kind=ikd) len, nsiz, low
 logical(kind=lkd) allocatd
!
 real(kind=rkd), pointer :: rpntr(:)
 real(kind=rkd), target :: rtargt(:)
!
 low = len + 1
 len = len + nsiz
!
 if (allocatd) then
 rpntr => rtargt(low:len)
 endif
!
 end subroutine r_pntr

During the second pass through the loop (l=2 and allocatd=.true.), subroutine r_pntr associates
the individual pointer arrays with the r_vol block. The first pointer array will be associated with
the beginning of r_vol and each subsequent array will be offset by num_vols from its predecessor
in the r_pntr call sequence. Table II.2-2 illustrates the pointer associations. Note that consecutive
addresses in r_vol (and each pointer array) increase with row. Also each new array actually
resides in memory immediately after the preceding array, i.e. the individual one dimensional
arrays are mapped into r_vol, which is also a one dimensional array.

Table II.2-2

Pointer Array Associations in the Volumes Real Data Block r_vol1

afdai(1) areaif(1) armaso(1) … zlqlev(1) zvol(1)
afdai(2) areaif(2) armaso(2) … zlqlev(2) zvol(2)
afdai(3) areaif(3) armaso(3) … zlqlev(3) zvol(3)
afdai(4) areaif(4) armaso(4) … zlqlev(4) zvol(4)
afdai(5) areaif(5) armaso(5) … zlqlev(5) zvol(5)
afdai(6) areaif(6) armaso(6) … zlqlev(6) zvol(6)

… … … … … …
… … … … … …

afdai(n) areaif(n) armaso(n) … zlqlev(n) zvol(n)
 1 n = num_vol

Each of the arrays will have a rank of 1:num_vol. They are accessed as if they are fixed
dimension arrays with the same rank.

After the pointer arrays are associated and initialized, there is a call to subroutine
build_restart_block_list. This call adds the block name, pointer type, pointer, and block length
to a list that will be used to write a restart file (see Section II.3.0). For module volumes, array

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

 Programming Practices

 II-17 Revision 8

r_vol will be written to the restart file, which includes all individual pointer arrays associated with
the r_vol array. This simplifies the coding required to write (and read) the restart file, as will be
seen later. In summary, the content of any array included in a block via a call to subroutine r_pntr
will not only be assigned storage, it will also be included automatically in the
restart file.

Blocks are also assigned for integer and logical arrays in the volumes module. Similar memory
allocation is used for other component related modules, e.g., junctions, valves, pumps, etc.

In the discussion above, the pointers and dynamically allocated arrays are one-dimensional.
Several components in RETRAN-3D use two-dimensional pointer arrays. They are typically rank
(1:n,1:2) where the second dimension or subscript is used to identify that the variable is either
related to the upstream (1) or downstream (2) side of a junction, or it is related to the left surface
(1) or right surface (2) of a heat conductor. The necessary two-dimensional arrays are defined and
allocated in the appropriate module, i.e., junctions and conductors.

Allocatable array r_jun is used to define the data array for real one-dimensional junction pointer
arrays, while r2_jun is used for real two-dimensional arrays. Where subroutine r_pntr is used to
define the size of r_jun and to make pointer assignments for each of the real one-dimensional
pointer arrays associated with r_jun, subroutine r2_pntr performs the same task for real
two-dimensional pointer arrays.

Subroutine build_restart_block_list_2d (actually and entry point in subroutine
build_restart_block_list) is similar to build_restart_block_list in that it makes the necessary
entries into the restart block list.

Similar two-dimensional blocks are assigned for integer and logical arrays in the appropriate
module where the corresponding one-dimensional arrays are defined.

Table II-2.3 contains a list of the dynamic data modules used in RETRAN-3D. It also includes a
description of the information included in the module and whether a module includes
two-dimensional arrays. Refer to the source code for a complete list of variable and array
definitions for each module.

2.2 Segmented Arrays

Segmented arrays (SA) are primarily used for three-dimensional kinetics calculations. They are
dynamically allocated arrays that are logically divided into sets of data. A SA can be visualized
as a memory block with m columns and n rows. The number of columns is referred to as the set
size and a row of data is referred to as a set, which represent a data structure that is set size words
long. All data within a SA resides in memory and is readily available, but it is typically accessed
one set (row) at a time. SAs are used in the Fortran 95 version of RETRAN-3D to replace the use
of FTB PROCESS files [II.2-1], which are obsolete.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Programming Practices

Revision 8 II-18

Table II.2-3

RETRAN-3D Dynamic Data Modules

Module Name

Description

2rentr Contains information needed for the two-region enthalpy transport

option.

accumulators Contains additional information required for accumulator
volumes.

adjoint Contains information needed for three-dimensional kinetics
adjoint calculation.

auxiliary_dnb Contains information required for the auxiliary dnb model.

auxialiary_file Contains the file format information used when the auxiliary data
file (tape60) is written.

bc_file Contains information for boundary condition volumes that use
RETRAN-3D restart file to provide the BC information.

bicgs Contains information required for bi-conjugate gradient methods.

bubble_rise Contains additional information used by the bubble rise model.

channel_geometry Contains array required for channel geometry.

channel_model Contains information needed for the channel model.

conductors Contains the 1D and 2D arrays used by the heat conduction model.

control Contains the arrays used by the control system model.

core Contains the arrays used by powered heat conductors.

coupl Contains information required for coupling coefficient arrays.

decay_heat Contains arrays and flags used for the decay heat model.

dynamic_gap Contains the arrays used by the optional dynamic gap conductivity
model.

fibwr Contains the arrays and scalar variables used by the optional fibwr
leakage model.

fills Contains the arrays and scalar variables used by the fill model.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

 Programming Practices

 II-19 Revision 8

Table II.2-3 (Cont'd)

Module Name

Description

flow_split Contains the arrays and scalar variables used by the steady-state

flow split model.

gen_data-tables Contains the arrays and scalar variables used to store the general
data tables.

general_transport Contains the arrays and scalar variables used by the optional
generalized transport model.

grid_loss Contains the arrays and scalar variables used by the optional grid
loss model to store the input coefficients and control varialbles.

heat_exchangers Contains the non-conducting heat exchanger model control flags
and constants.

itrctrl Contains information required for three-dimensional kinetics
iteration control parameters.

junctions Contains the 1D and 2D arrays use to store junction geometric
descriptions and results.

kin Contains information required for three-dimensional kinetics
arrays.

lscoef Contains arrays required for linear system coefficient.

material_properties Contains tables and index arrays used to store the material
properties used by the heat conduction model.

meshs Contains information required for three-dimensional kinetics and
neutronics mesh.

minor_edit_search Contains the minor edit search list array and associated subroutines
to build the search list, locate requested minor edits in the list, and
retrieve the minor edit variable values.

minor_edit_summary Contains the arrays used to store the minor edit summary values
and the subroutine that is used to write the summary.

minor_edits Contains the arrays used to store the requested minor edits and
storage use to store minor edit values between edit dumps to the
output file.

params Contains information required for three-dimensional kinetics
parameters.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Programming Practices

Revision 8 II-20

Table II.2-3 (Cont'd)

Module Name

Description

point_kinetics Contains the arrays and scalar values used to store the point

kinetics results.

problem_dimensions Contains the arrays used to store the problem options and
dimensions.

profile_fit Contains the arrays used to store the input and default coefficients
for the profile fit option.

pumps Contains the arrays used to store the centrifugal pump
descriptions, performance curves and results.

restart Contains variables used to read and write restart files. It also
contains the subroutines that perform the read and write
procedures.

rmap Contains information required for three-dimensional kinetics
mapping arrays.

scram Contains the arrays and scalar variables used to store scram and
power versus time curves.

separator Contains the arrays and scalar variables use to store the separator
performance curves and results.

solvec Contains information required for solution vector arrays.

sparse_matrix Contains the control vectors that describe the structure of the
sparse matrix used to obtain the solution to the thermal-hydraulic
balance equations.

spec_htc Contains the arrays associated with the heat transfer option to
specify a heat transfer coefficient.

ss_conductors Contains arrays used to save heat conductor information for
steady-state initialization.

ss_junctions Contains arrays used to save junction information for steady-state
initialization.

ssvar Contains arrays required for three-dimensional kinetics
steady-state variables.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

 Programming Practices

 II-21 Revision 8

Table II.2-3 (Cont'd)

Module Name

Description

ss_volumes Contains arrays used to save volume information for steady-state

initialization.

system Contains the arrays used to save the system related solution
results.

th_pow Contains the arrays used to save the loop power levels for
steady-state initialization.

three_dim_kinetics Contains information required for feedback, power, setfix, etc.

time_dependent_volumes Contains the arrays and scalar variables used to define
time-dependent volume boundary conditions specified by tabular
input.

time_steps Contains arrays and scalar variables used by the time-step size
selection algorithms.

trips Contains the arrays and scalar variables used by the trip logic.

turbines Contains the arrays and scalar variables used by the optional
turbine model.

two_reg_neq Contains the arrays and scalar variables used by the optional
two-region nonequilibrium model.

valves Contains the arrays and scalar variables used by the optional valve
model to describe the characteristics and status of valves.

vbc Contains the arrays and control information used to write a
VIPRE-02 boundary condition file.

wallf Contains the arrays and control information used by the optional
wall friction model.

work_arrays Contains the scratch or work arrays used by various models.

xseca Contains information required for three-dimensional kinetics
cross-section arrays.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Programming Practices

Revision 8 II-22

Each SA has a unique identification number (ID). It is either 1 or 0. An ID of 1 suggests that space
is allocated for the SA. After knowing the size of each set and total number of sets, space is
allocated by calling the allocate statement. The SA ID is set to 1 and set size is saved. Structurally
each SA contains an ID, set size, and the allocated SA. Since each set is stored contiguously in the
allocated space, accessing individual sets of data requires moving through the SA by incrementing
the index by the set size. The index for the first set is 1, the index for the second set is (1 + set size)
and so on. The index for a given set is used to access all data within that set.

The following code segment illustrates the allocation and use of a SA where there are 3 variables
for each column in the neutronics mesh (not to be confused with the set size). The set size for the
example is 3*ncol.

!
! If new xsection model is used (newxec > 0), then idthvn is
! described and initialized based on reference values
!
 if (newxec > 0) then
!
! Set up idthvn with the corresponding reference values
!
 allocate(thvn(3*ncol*nrp),stat=status)
 if (status .ne. 0) then
 block = 'thvn'
 routine = 'thflat'
 call error_allok8 (block,3*ncol*nrp,routine,status,0)
 call fail
 end if
 thvn = 0.0
 idthvn = 1
 ssthvn = 3*ncol
 numthvn = nrp
!
! Get the composition type for each node
! and initialize with tmref=0, tfref & dmref from propr
!
 idxcmp = 1
 idxthn = 1
 do k = 1, npln
 jcmap = idxcmp
 jij = jcmap
 ij = jij
 do j = 1, nrow
 jt = idxthn
 do i = 1, ncol
 nftype = icomp(ij)/64
 do ipos = 1, nfuel
 if (ipropr(1,ipos) == nftype) go to 5
 end do
 write (6,9010) nftype
 call fabend
 5 continue
 thvn(jt) = 0.
 thvn(jt+1) = propr(4,ipos)
 thvn(jt+2) = propr(3,ipos)
 jt = jt + 3
 ij = ij + 1

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

 Programming Practices

 II-23 Revision 8

 end do
 idxthn = idxthn + ssthvn
 end do
 idxcmp = idxcmp + sscomp
 end do

3.0 RESTART FILE

RETRAN-3D has an optional feature that creates a restart file, which can be used to continue or
restart a previous problem that saved a restart file. Restart files can also be used to provide
boundary condition information to a subsequent problem. For example, a restart file saved for a
system analysis can be use to provide the plenum boundary conditions for a subsequent hot
channel problem that only models the plenums and a single hot channel between them.

The scheme for generating restart files is an integral part of the memory allocation scheme. As
storage blocks are allocated, attributes of the block are stored in a restart block list. This list
contains the block type (real, integer or logical), a pointer to the block, the length of the block and
the name of the block. The content of all 1-D, 2-D, and 3-D blocks comprise a restart record.
Restart records are written or read using the information in the restart block list. This significantly
minimizes the maintenance effort required to keep restart functioning correctly as changes are
made to the code.

As discussed in Section II.2.1.2, separate dynamically allocated data blocks are defined for each
data type. One block may contain data that defines model options, features, geometry, etc. that
will remain constant for the duration of the problem. This static data is not included in the
dynamic restart records. It is initialized during input processing for the restart job. Information in
these static blocks can be revised at restart time using the generalized restart option. Another
block type contains the time varying or dynamic blocks, which can be included in the restart file.
A null block contains information that is not required for either restart or other program features
such as reedit or time-dependent boundary conditions. For example, null blocks might include
scratch data arrays used by matrix solvers or arrays used to provide communication between
subroutines. Several modules contain mixed data blocks, a combination of static blocks and
dynamic blocks. For generalized restart more flexibility is given to the user to change several
junction, volume related parameters. For this purpose some modules may be divided into static
data blocks and dynamic data blocks. For example, relative roughness can be changed during
generalized restart for volumes. Therefore for volume module relative roughness is saved under
static data blocks and remaining variables are saved under dynamic data blocks. Refer to the
source code for more details on types of blocks and modules that comprises the different types of
block. Modules definition has build_restart_block_list routine and block type defines which
type of block it is associated with.

All blocks that need to be included in a restart record are added to the restart block list that is
generated as data blocks are allocated. Each restart record is written by looping through the restart
block list, which uses a derived data type to store block pointers, block type, block length, and
block name. Restart files are binary files written using unformatted (binary) reads and writes.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Programming Practices

Revision 7 II-24

Restart problems begin by proceeding through the same input processing as RETRAN-3D
problems. This allows the same coding to be used for allocating memory for both RETRAN-3D
and RESTRT problems. This also allows generalized restart to function similarly to previous code
versions. Information such as model options, tables, and trip of control system data reside in the
static memory blocks, which allows them to be revised using replacement cards as previously done
via generalized restart. Following completion of the input processing, restart data is read into the
storage blocks and the transient solution is continued.

The following sections discuss the content of RETRAN-3D restart data files as well as how they
are used for restart problems, for problems where printed edits are obtained for previous solutions,
and to provide time dependent boundary conditions.

3.1 File Content

The content of a restart file is determined by the restart file block list, which is created as dynamic
memory blocks are created during input processing. As memory blocks are allocated for various
features or options using the corresponding allok8_xxxx subroutine, a call to subroutine
build_restart_block_list will add the required information to the derived data type restart file
block list. Refer to the example shown in Section II.2.1.2 for the allok8_volumes subroutine
where the r_vol block was allocated and included in the restart file block list by the call to
subroutine built_restart_block_list. Table II-3.1 shows the information saved for each data
block included in the derived data type list (rest_list).

Blocks that are defined as static blocks are only written to the restart file header record and are not
included in the transient restart records. Only blocks that are defined to be dynamic are included
in transient records. The header record is written by looping through the restart block list and only
writing static records. Each block write is preceded by a write that contains the block name and
length. The block is then written. A similar method is used for transient restart records where only
dynamic blocks are written. The order of both static and dynamic blocks written to a restart file is
determined by their order in the restart block list. An edit of the restart block list is included in the
output file.

Section IV.2.1 describes the restart file structure and content in more detail.

The content of static data modules (see Section II.2.1.1) are not included in restart data files. They
are primarily used to provide communication between subroutines and their content is either
defined during input processing or when a subroutine uses it to communicate with another. As
such, their content does not need to be included in the restart file. If a static data block (fixed
dimensions) needs to be included in a restart file, it should be put in a dynamic module. The
problem_dimension and system modules are examples. The variables in both storage blocks are
scalar. They were typed as pointer arrays with rank 1 so they can be included in the restart file.
For this reason, they are always referenced with a subscript of 1, e.g., the number of volumes in the
problem_dimension module is nvol(1) and the normalized power in the system module is
pnorm(1).

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

 Programming Practices

 II-25 Revision 8

Table II.3-1

Restart Block List Derived Data Type

Field Name

Description

block_name A unique 12-character field defining the block name
r_restart_pntr The pointer for real blocks
i_restart_pntr The pointer for integer blocks
l_restart_pntr The pointer for logical blocks
r2_restart_pntr The pointer for 2D real blocks
i2_restart_pntr The pointer for 2D integer blocks
l2_restart_pntr The pointer for 2D logical blocks
r3_restart_pntr The pointer for 3D real blocks
i3_restart_pntr The pointer for 3D integer blocks
l3_restart_pntr The pointer for 3D logical blocks
block_size The length of the data block
pntr_type The pointer type – 1 = real

2 = integer
3 = logical
4 = 2D real
5 = 2D integer
6 = 2D logical
7 = 3D real
8 = 3D integer
9 = 3D logical

block_type The block type – 0 = block is not written to restart file
 1 = block is written to the restart file header

record (contains only static data)
 2 = block is written to the restart data records

(contains dynamic or transient data)

When a restart file is created during a problem run, a summary edit is written to the output file
(written by calling edit_restart_statistics from retran). It begins with the header record
information that documents the code version used to create the restart file, the problem title and
date that it was created. The edit also lists all of the block names, pointer types and block lengths
for the static and dynamic blocks included in the restart block list (as well as the null blocks that
are not included in the restart file.

3.2 File Use

RETRAN-3D restart files are used by program option restrt to restart or continue a previous
problem solution. They can also be used to obtain printed output edits of solution information
archived on restart files using the reedit program options. Restart files can be used to provide
boundary conditions for subsequent analyses. Pressure boundary conditions, power and power
fraction (for problem that originally ran with 1-D kinetics) can be retrieved from a restart file for

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Programming Practices

Revision 7 II-26

a previous problem solution. The following sections describe the use of restart tapes for restrt
problems and retran or restrt problems that use them to define time dependent boundary
conditions.

3.2.1 Restart Problems

For a restrt problem, an RETRAN-3D restart file created by a prior retran problem is attached
with a file name of TAPE13 to Fortran unit 13. This file is read by subroutine inrstr. It first calls
subroutine open_restart_file to open and check the file to insure that it is a RETRAN-3D restart
file. Subroutine get_static_blocks is then called to obtain the old problem dimension information
from the i_dim static block and the original problem input from the r_cards block. Subroutines
open_restart_file and get_static_blocks are included in the restart module. After obtaining the
required information from the static data blocks in the restart file, subroutine inrstr returns to
subroutine restrt (an entry point in subroutine retran). Subroutine restrt then repeatedly makes
calls to read_restart_record and write_restart_record to first move the information in the
restart record into memory, and to then write it to a new restart file (if one is to be written). This
process is repeated until the record is reached where the restart problem is to continue the transient
solution. This read-write process makes a new copy of the restart file through the record where the
restart solution resumes.

If a new restart file is not written (selected by user input), subroutine read_restart_record issues
dummy reads to skip the data blocks until the restart data record is reached. The calls to subroutine
write_restart_record will be skipped also. As with the other subroutines that read or write restart
files, subroutine read_restart_record also resides in module restart.

Once the restart problem solution begins, all subsequent data records are written by subroutine
edit, which calls subroutine write_restart_record.

3.2.2 Re-edit Problems

For a reedit problem, a RETRAN-3D restart file created by a prior retran problem is attached
with a file name of TAPE13 to Fortran unit 13. This file is read by subroutine inedte. It first calls
subroutine open_restart_file to open and check the file to insure that it is a RETRAN-3D restart
file. It then calls subroutine allok8_data_blocks to allocate the static and dynamic data blocks
included in the restart file. Subroutine allok8_data_blocks also defines the associations for the
pointer arrays that belong to each data block. Subroutines open_restart_file and
allok8_data_blocks are included in the restart module. After allocating space for all blocks in
the restart file, subroutine inedte returns to subroutine reedit. Subroutine editre is then called. It
makes repeated calls to read_restart_record to move the content of a given restart record into
memory. Restart records are read until the desired edit time point is reached at which time
subroutine edit is called to generate the requested major and minor edits, and printer plots. The
open_restart_file, allok8_data_blocks and read_restart_record subroutines are included in
module restart.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

 Programming Practices

 II-27 Revision 7

3.2.3 Time-Dependent Boundary Conditions

For a retran or restrt problem that obtains boundary conditions from a RETRAN-3D restart file
created by a prior retran problem, the restart file is attached with a file name of TAPE12 to
Fortran unit 12. This file is read by subroutine tapebc, which calls subroutine
bc_file_initialization on the first call to tapebc. , Subroutine bc_file_initialization then calls
subroutine open_restart_file to open and check the file to insure that it is a restart file. Subroutine
bc_file_initialization then allocates integer, logical and real buffers that are used to temporarily
hold the content of various static and dynamic data blocks as they are read. The sizes of these
blocks are determined in subroutine bc_file_initialization using the mxi_len, mxl_len, mxr_len,
mxi2_len, mxl2_len, and mxr2_len values that subroutine open_restart_file read from the
restart file header record. They correspond to the maximum length for the specific block type that
appears in the restart_block_list.

Subroutine bc_file_initialization reads the i_dim static block from the restart file header record.
The nvol_bc, nbub_bc, ncor_bc and nodel_bc variables are defined using the nvol(1), nbub(1),
ncor(1) and nodel(1) values read from the i_dim block into the i_buff integer read buffer array.
The appropriate values are retrieved by using the loc function to compute the index into the i_buff
array. The following example illustrates the logic used to retrieve the number of volumes nvol(1)
from the integer buffer containing the i_dim block. Note that ikd is an integer parameter that is
used to define the precision of integer variables. It resides in module kind_spec.

 iref = loc(i_dim(1))
 ioff = (loc(nvol(1)) - iref)/ikd
 nvol_bc = i_buff(ioff)

nbub_bc, ncor_bc, and nodel_bc are defined similarly.

After the necessary dimensions are retrieved from the i_dim block, pointer arrays are associated
with the appropriate buffer arrays to facilitate retrieval of the boundary condition information.
This is also accomplished using the loc function to identify the order of a particular pointer array
in its associated dynamic block. The following example illustrates the logic used to retrieve the
elapsed problem time from the real buffer containing the r_sys block. Note that rkd is a real
parameter that is used to define the precision of real variables. It resides in module kind_spec.

 i = (loc(timex(1)) - loc(r_sys))/rkd
 timex_bc => r_buff(i:i)

The normalize power is retrieved from the system block in a similar manner. Other pointer arrays
that have non-unity dimensions are also obtained using the loc function. An example for the
volume pressure follows.

 pntr_m1 = (((loc(p(1)) - loc(r_vol))/rkd) - 1)/nvol(1)
 i = 1 + pntr_m1*nvol_bc
 p_bc => r_buff(i:i+nvol_bc-1)

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Programming Practices

Revision 7 II-28

This coding maps pointer array p_bc(1:nvol_bc) into the r_vol buffer array so the required
boundary condition values can be easily retrieved. A similar mapping is done for pointer array
hw_bc(1:nvol_bc). The old volume number as obtained from the i_vol buffer array using a
similar mapping approach as are the other bubble rise and core pointer arrays identified in
Table II.3-2.

Table IV.3-2

Data Blocks Used for Boundary Condition Retrieval
from a RETRAN-3D Restart File

Block Name Type Block Use

i_dim Static The problem dimensions from the original problem. Values used
include nvol(1), nbub(1), ncor(1), nodel(1).

r_vol Dynamic This data block contains the pressure and enthalpy arrays,
p(1:nvol_bc) and hw(1:nvol_bc) that contain the boundary
condition information that may be needed, where nvol_bc=nvol(1)
from the i_dim block.

r_sys Dynamic This data block contains the elapsed problem time and normalized
power pointer arrays timex(1) and pnorm(1). timex(1) is always
needed when boundary condition information is obtained from a
restart file. The value of pnorm(1) will be used if nodel(1) is -1 or
-2.

r_bub Dynamic This block contains the mixture level and old volume number,
zm(1:nbub_bc) and ibubol(1:nbub_bc) that contain the boundary
condition information that may be needed, where
nbub_bc=nbub(1) from the i_dim block.

r_core Dynamic This block contains the core section power fractions,
qfrac(1:ncor_bc) that contain the boundary condition information
that may be needed, where ncor_bc=ncor(1) from the i_dim block.
 The boundary condition power fractions are used for nodel(1) is -2
or -3. Note that the number of core sections for the new problem
must be the same as for the problem that created the restart file
being used.

After performing the required mapping to the buffers used to read the static and dynamic restart
blocks, subroutine bc_file_initialization returns to subroutine tapebc, which then calls subroutine
get_bc_data to retrieve boundary condition data from the restart file. As each dynamic block
identified in Table II.3-2 is read, the required information is retrieved from the read buffer and
transferred to other pointer arrays allocated to save specific boundary conditions for a given time
value. Once the required dynamic data blocks have been read, all others for the current record are
skipped and get_bc_data returns to tapebc.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

 Programming Practices

 II-29 Revision 7

Two variables or arrays are used for each boundary condition value, one for the old value time and
another for the new time. If the current problem time is greater than or equal to the new time for
the boundary values, the new boundary conditions are moved to the corresponding old time values.
Subroutine tapebc then calls get_bc_data to retrieve data from the next restart record. If
necessary, the procedure is repeated until the old and new boundary condition times bound the
current problem time. Subroutine tapebc then computes the boundary condition values for the
current problem time using linear interpolation between the two bounding values.

4.0 MINOR EDIT VARIABLES

RETRAN-3D code users define minor edit variables as pairs of an alpha numeric flag and an
integer region number. These minor edit request pairs uniquely identify a specific variable for a
given component that is included in a special output edit. These edits can include printed history
of a set of minor edits(see Volume 3 Section IV.4.0), an auxiliary file containing minor edits (see
Volume 3 Section IV.4.1) that can be used by other codes, or printer plots (see Volume 3 Section
IV.2.0 - NPRPLT). Control system inputs are also defined using minor edit variables (see Volume
3 Section IV.29.5)

The following sections describe how candidate minor edits are set up, how they are located for use
during a RETRAN-3D problem and how the value of a minor edit is obtained.

4.1 Creating a List of Possible Minor Edit Variables

Two types of minor edit variable requests can be defined. One is the basic request where a minor
edit request flag is associated with a given pointer array and any of the elements within the array
can be requested. The other request is for a subregion, where a second array or subregion is
associated with an element of a primary array. An example would be the node temperatures
associated with each heat conductor. The procedures for using both of these minor edit request
types are discussed in the follow sections

4.1.1 Primary Minor Edit Request Flags

For a variable to be accessible as a minor edit, it must be included in the minor edit list, which
contains information about the variable type, its location and other attributes. The list is contained
in the me_list array, which uses a derived data type to save the required location and attributes for
each variable. Each variable that can be accessed as a minor edit is included in the list. Table
II.4-1 summarizes the derived type data structure for the list contained in the me_list array.

Each candidate minor edit is assigned a unique request flag, which is currently a four-character
alpha numeric string stored in field me_flag. The variable must be associated with a pointer array.
 Field pntr_type is an integer flag that identifies the pointer type, e.g. real, integer or logical. The
x_edit_pntr (x=r, i, l, r2, i2, or l2) for the type given by pntr_type will be defined as indicated in

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Programming Practices

Revision 7 II-30

Table II.4-1

Minor Edit Variable List Data Structure

Field Name

Type1

Description

r_edit_pntr R-rkd Pointer to first word of array for real minor edit variable

r2_edit_pntr R-rkd Pointer to first word of array for real 2-D minor edit variable

i_edit_pntr I-ikd Pointer to first word of array for integer minor edit variable

i2_edit_pntr I-ikd Pointer to first word of array for integer 2-D minor edit variable

me_offset_pntr I-ikd Pointer to index array for first element in minor edit pointer
array. Used with subregion minor edit variables.

me_nod_pntr I-ikd Pointer to number of sub-region nodes

l_edit_pntr L-lkd Pointer to first word of array for logical minor edit variable

l2_edit_pntr L-lkd Pointer to first word of array for logical 2-D minor edit variable

pntr_type I-ikd Pointer type flag -- 1 = real
 2 = integer
 3 = logical

me_blk I-ikd Block number minor edit belongs to.

me_units I-ikd Integer index identifying minor edit units in the conv array in
module unit.

me_flag C-ckd
len=8

Minor edit request flag

me_title C-ckd
len=12

Minor edit title string for the associated variable

 1C = Character, I = Integer, L = Logical, R = Real – size. Parameters on right are defined in module
 kind_specs and indicate the size.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

 Programming Practices

 II-31 Revision 7

the table above. The two other pointers will have dummy values assigned since any given variable
can only be associated with a single pointer type.

The me_blk field indicated the data block number to which the minor edit variable belongs. For
example, there will be separate blocks described for volume and junction variables. Each block
will have a description, which is contained in the block list. This list is also a derived data type
array. It is described in Table II.4-2. The list will contain a separate entry for each data block for
which a minor edit variable is defined.

Subroutine build_minor_edit_list contains the coding used to build the minor edit variable list
contained in me_list. It is contained in module minor_edit_search. The following code segment
illustrates how minor edits are added to the me_list for the data block for control volumes.

Table II.4-2

Block List Data Structure for Minor Edit Variables

Field Name

Type1

Description

me_reg_pntr I-ikd Pointer to the region number for the block.

me_reg_test I-ikd Region number test flag for the block.
 > 0 - use sequential region test 1 <= region <= me_reg_test
 = 0 - no region test
 < 0 - region must match valid me_reg_pntr

blk_hdr C-ckd
len=8

Block label string -- i.e. ‘vol 999’, ‘system’, etc.

1C = Character, I = Integer, R = Real - size. Parameters on right are defined in module kind_specs and
 indicate the size.

!
 do l = 1, 2
 allocatd = l.eq.2
 n = 0
 blk_num = 0
!
! Add volume related minor edit flags
!---
!
 reg_test = -num_vol ! use olvoln to do region test
!
 call add_blk_entry (blk_num, olvoln, reg_test, ' vol ')
!
 call add_r_me (n, p , 'pres ', 'avg. press. ', 4)
 call add_r_me (n, temp , 'temp ', ' avg. temp. ', 1)

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Programming Practices

Revision 7 II-32

 call add_r_me (n, satp , 'satp ', 'sat. press. ', 4)

 call add_r_me (n, satt , 'satt ', ' sat. temp. ', 1)
 call add_r_me (n, satvf , 'stvf ', ' sat. vf ', 6)
 call add_r_me (n, satvg , 'stvg ', ' sat. vg ', 6)
 call add_r_me (n, sathf , 'sthf ', ' sat. hf ', 7)

The do loop executes the coding twice, the first time to compute the number of entries that will be
included in me_list and the second time to make the list entries. The call to subroutine
add_blk_entry makes the entries in the block list array blk_list. This list contains the text header
information contained in field blk_hdr. It is used for minor edit variables that belong to a given
block. Three different types of region testing can be used to validate a minor edit variable region
number that is part of a minor edit request pair. Field me_reg_test describes them. In the example
code shown above, region numbers are checked against the content of the olvoln pointer array for
minor edits that belong to the volume block. Other region checks include no region check which
would be used for global values where there is no associated region, and sequential regions
checking. Sequential check requires the region number to be bounded by 1 and the number of
array elements for the block, e.g. the number of core sections.

A region definition made using a call to subroutine add_blk_entry must be made for each data
block for which candidate minor edit variables are to be included in the me_list. After the
associated add_blk_entry call, a call to subroutine add_x_me (where x=r, i, l, r2, i2, or l2
defines the pointer type) must be made for each candidate variable. The type of the called
subroutine must agree with the pointer array passed as the second argument. Argument three is the
value of me_flag, argument four in the title string me_title, and the last argument is the index for
the units as defined in module unit. The field values in the me_list for a minor edit variable are
added on the second pass through the loop.

4.1.2 Subregion Minor Edit Request Flags

A special form of a minor edit request is used for subregions, where the subregion has a pointer
array that contains a block of data that is associated with a single element of a primary array. An
example of a subregion is the temperature array that contains the internal node temperatures for a
given heat conductor. As such, there are num_cond heat conductors, but each conductor has an
array defining the internal node temperatures. Each temperature array can be a different length
depending on the nodalization specified in the input model. The following code fragment
illustrates how the node temperatures are defined as minor edit variables for heat conductors using
the subregion feature.

!
! Add heat conductor related minor edit flags
!---
!
 reg_test = -num_cond ! use olslbn for region test
!
 call add_blk_entry (blk_num, olslbn, reg_test, 'cond ')
!
! if (nslb .le. 0) then
 call add_r_me (n, se , 'se** ', 'stord energy', 10)

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

 Programming Practices

 II-33 Revision 7

 …
 …
 …
 call add_r2_me (n, xlocl , 'xlor ', 'r local qual sp. heat ', 7,2)
!
! Subregion minor edit variables
!
 call add_subreg_me (n, tp , idxtp , nnode , 't ', &
 'node temp ', 1)
!
 end if

In the code fragment above, the primary heat conductor minor edit variables are added to the
me_list in a manner similar to that discussed above for the volume variables. Subregion edit
variables for the node temperatures are added to me_list using the call to subroutine
add_subreg_me. They are defined using a minor edit request flag, me_flag, with the left most
character(s) being alpha only and the right most characters being numeric. In the example above,
the fifth argument is the base request flag, or ‘t ‘. It will allow for subregion temperature
request ranging from 1 to 999, which would correspond to user request flags of ‘t001’ and ‘t999’
(note that a region number specifying the associated conductor is required with each flag). The
flag is four characters in length so a two-character alpha field, e.g. ‘tp ‘ would allow two
characters for the subregion.

The second argument in the call to subroutine add_subreg_me in the example code fragment is
the real pointer array that contains the node temperatures that correspond to the minor edit request
flag. Argument three is an integer pointer array that contains the index into the subregion array
(tp) for a conductor. For a given conductor (identified via the region check as discussed above),
the third argument or pointer array idxtp, contains the index for the tp array that contains the first
node temperature. The fourth argument is an integer pointer that contains the number of elements
or nodes in the subregion or tp array. The last two arguments define the label me_label and units
index me_units, respectively. Currently, only real subregion arrays can be included in the me_list.
A new subroutine with type specific pointer arrays (argument two) would have to be added to
allow subregion minor edits with integer or logical data types.

4.2 Checking for Valid Minor Edit Variable Flags

Minor edit variable requests made by users are checked by first identifying if the request is for a
valid variable, e.g. one that is in the minor edit variable list me_list. Subroutine me_search is
used to perform this check. While minor edit request flags included in me_list are lower case, e.g.
se** in the above example, me_search is coded such that the search is case insensitive. As such,
either se** or SE** will be found as valid minor edit requests for conductor stored energy.
Module me_search is included in module minor_edit_search. After a valid minor edit variable
is found, the region number is checked.

For minor edits in the volume block as shown in the code fragment above, they are checked against
all valid volume numbers (input values). If a match is found, the index for the matching olvoln
will also be the index for the volume variable specified. Subroutine minor_edit_search writes

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Programming Practices

Revision 7 II-34

error messages to the output file as appropriate if an illegal minor edit variable request flag or
region number are input. When a valid request is made, minor_edit_search returns an index into
the me_list array for the variable and an offset that identifies the particular element within the
variable pointer array indicated by the region number. The offset is determined as part of the
region checking. For example, the region testing for the coding example above indicated that
pointer array olvoln is to be used for variables in the volume block. When a valid request flag is
f ound, the associated region is checked by looping through all elements of olvoln until a match is
found. Once a match is found, the index for the matching olvoln value is also the index for the
particular variable. It is the index returned by me_search as the offset for the pointer array.

The offset for a minor edit variable whose associated block uses sequential region checking is
simply the region number. For variable with no region checking, the offset is zero.

4.3 Retrieving the Value of a Minor Edit Variable

Function me_value is used to obtain the value of a minor edit variable. It is a real function,
indicating that the minor edit variable is returned as a real value. It requires that the index into the
me_list and pointer array offset be supplied. These values are saved for each minor edit variable
used as either a minor edit request or control block input. They are returned by me_search when
it is called with a valid minor edit flag and region number. The derived type data element in
me_list for the requested minor edit contains the pointer type, pointer, and other attributes for the
variable. This information is used to retrieve the value, make any data conversions that are
required to return the variable as a real data type. False logical variables are returned as 0.0d0 and
true values are returned as 1.0d0. Direct mode conversion is used for integer variables.

5.0 MAJOR EDITS

Prior to the Fortran 95 version of RETRAN-3D, major edit output files were written using indirect
addressing. This technique had its purpose at one time, but it was no longer viable and the scheme
was overly complicated and made it difficult to revise output edits. Consequently, the major edit
subroutines (subroutine edit and all other edit related subroutines that it calls) were re-written to
use direct I/O lists using variables and pointer arrays defined in data modules. For this reason,
they are now straightforward and very easy to modify.

6.0 CODE DOCUMENTATION

Documentation for the RETRAN-3D code is included in "RETRAN-3D - A Program for Transient
Thermal-Hydraulic Analysis of Complex Fluid flow Systems, Volume 1: Equations and
Numerics; Volume 2: Programmer's Manual; Volume 3: User's Manual; and Volume 4:
Assessment Manual". The Fortran source code is another important piece of the RETRAN-3D
documentation, which internally provides basic code documentation via the liberal use of
comment statements. Comments are inserted at the beginning of each subroutine or function

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

 Programming Practices

 II-35 Revision 8

defining the role each subprogram and/or entry point plays. Along with each subprogram
definition, the argument list is also defined, noting the specific definition of the arguments,
whether they are input, output, or modified internally (both input and output). All the dynamically
allocated storage arrays (see Section II.2.1) are described within the appropriate data module.

Each well-defined task required during execution of one of the RETRAN-3D code package
program modules has been coded into a single concise subprogram. Within each subprogram,
comments have been included to aid in the understanding of the various blocks of coding. All
program modules include a main or primary driver which in turn calls an input processing driver,
an initialization driver if required, and a driver which directs the execution of a problem. As an
example, execution of the retran program module is controlled by the driver subroutine RETRAN.
 Subroutine retran in turn serially delegates the responsibility of input processing to the input
processing driver inrtrn; generating initial conditions or initial values to the driver ststat; and
finally execution of the transient thermal hydraulics via the driver tran. Few, if any, calculations
are performed in the driver subroutines, above the minimum required to direct the program flow.
The simplicity of the drivers, coupled with comments describing such redirection in program flow,
provides a very useful and necessary level of documentation, very similar to a general flow chart.

Section III contains a description of the program options and shows the calling structure of the
RETRAN-3D program.

7.0 ERROR MESSAGE HANDLING

Error messaging in RETRAN-3D is handled by use of subroutine errlog. It writes error messages
and associated information to the output file and a separate errlog file (see Section IV.2.10 for
additional details). All errors are assigned unique error numbers and supplemental documentation
provides discussion of the error and what a user can do to correct the error. Input processing errors,
memory allocation, and errors encountered during the transient solution are handled using the
errlog subroutine.

The intent of using this method for handling error conditions and writing the associated error
messages is to provide users with error messages that are clear and concise and provide direction
for correcting the error. Since a useful error description may be longer than a few lines and in
some cases the corrective action may have multiple solutions depending on conditions
encountered, they are contained in Appendix C of the User’s Manual – Volume 3.

Information is passed to subroutine errlog by setting the necessary information in the ERRDATA
communication module prior to calling errlog. Subroutine errlog will use the necessary
information to write a concise and useful error message for the code user. The character
descriptions for the error generally contain most of the error description. Other character
information describes the subroutine and/or module where the error occurred.

By using subroutine errlog to write all error messages a standard look and feel for the error
messages can be attained. Most error messages can be processed by simply writing the error

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Programming Practices

Revision 8 II-36

description character variables. When additional information is needed to enhance the content of
the error message, the necessary write statements and formats can be added to subroutine errlog
for the particular error. Subroutine fail is also called for any call to errlog. This will terminate the
problem with an error after processing all or most of the remaining input data.

The data typing and description for the content of the ERRDATA module is shown below. It
contains character strings that are used to pass subroutine names and other descriptive information
to errlog as well as integer and real arrays used to pass values that help describe the error
conditions that lead to the error.

 integer(kind=ikd) , parameter :: &
 lenvec = 50 , & ! dimension of the integer and real
 communication vectors
 lentbl = 500 ! dimension of the vector use to pass the polate
 table to errlog
!
 real(kind=rkd) :: &
 vect(lenvec), & ! real communication vector
 pol8(lentbl) ! vector used to pass failed polate table to
 errlog
!
 integer(kind=ikd) :: &
 card_num, & ! card number
 err_count = 0, & ! cumulative error count
 err_num, & ! current error number
 locvec(lenvec) ! integer communication vector
!
 character(50) :: & ! Transient error processing string
 err_des1, & ! string describing the error condition (1st
 part)
 err_des2 ! string describing the error condition (2nd
 part)
!
 character(100) :: & ! Input error processing string
 err_des3, & ! string describing the error condition (1st
 part)
 err_des4 ! string describing the error condition (2nd
 part)
!
 character(16) :: &
 component ! component name
!
 character(18) :: &
 decknam, & ! subroutine name
 modulenam ! module name

Any new information that may be required by errlog should be defined in this module.

When adding error messages to RETRAN-3D, errlog should be used to write the error message
and associated information. Additionally, Appendix C of the User's Manual - Volume 3, should
also be revised to contain a description of the error and the appropriate corrective action.
Remember the target audience is the code user, not a code developer. Information may be
included with the message that would be useful for a code developer, but the primary focus should
be on the user.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

 Programming Practices

 II-37 Revision 8

Character variables are used to define strings that errlog will write in the output file and errlog file.
They are defined in the calling subroutine before calling errlog. Other character information,
integer or real values may also be passed to errlog for inclusion in an error-specific error message.

When adding new errors, the programmer may identify an existing category or define a new one,
consistent with the existing use. A new error number will also be assigned.

Error information stored in module ERRDATA variables is processed by subroutine errlog. This
subroutine parses the error number as necessary to obtain the error category and two-digit error
number and decides the appropriate error type, i.e., input processing error, memory allocation
error, or run-time error. The appropriate header information is edited with the error type, then
error number specific information is edited.

The following sections contain directions for specific input processing errors, memory allocation
errors, and errors encountered during the transient solution.

7.1 Input Processing Errors

Input processing errors are detected as the input is read and processed, prior to executing the
transient solution. Each error is assigned a unique four- or five-digit error number. They are
divided into categories based on the associated input card number specified in Volume 3, User’s
Manual. For example, the error categories are 50 and 80 for volumes and junctions, respectively.
Each error category allows up to 99 separate errors, so volume related input processing error
numbers can range from 5001 to 5099.

The general categories for input processing errors follows.

Error Number Type of Error

Problem Control
1000 - 1099 Problem Description Input

 1500 - 1599 Initial Power
 1800 - 1899 Noncondensable
 2000 - 2099 Minor Edits
 3000 - 3099 Time-Steps
 4000 - 4099 Trips

 Volume

5000 - 5099 Volumes Input
 6000 - 6099 Bubble Rise Model
 6100 - 6199 Profile Fit Model

7000 - 7099 Time-Dependent Volume Input

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Programming Practices

Revision 8 II-38

Error Number Type of Error

 Junction
 8000 - 8099 Junctions Input

63000 - 63099 Junction Enthalpy Model
 8200 - 8299 Two-Region Enthalpy Transport

 Components
 9000 - 9099 Centrifugal Pumps

11000 - 11099 Valves
12000 - 12099 Generalized Data Tables
13000 - 13099 Fills

 Kinetics

14000 - 14099 Point Kinetics Model
14100 - 14199 Scram Data
14200 - 14299 Density Reactivity Input
14400 - 14499 Moderator Heating
14600 - 14699 Decay Heat

 Heat Conductor

15100 - 15199 Heat Conduction Driver
15000 - 15099 Heat Conductors
16000 - 16099 Core Conductors
17000 - 17099 Heat Conductor Geometry
18000 - 18099 Material Property
21000 - 21099 Nonconducting Heat Exchangers
22500 - 22599 Dynamic Gap Conductance

Steady-State Initialization

23000 - 23099 Volume Initial Conditions
23100 - 23199 Junction Initial Condition
23200 - 23299 Steady-State Initialization
23600 - 23699 Off-Rated Power Initialization

 1-D Kinetics

30000 - 30099 Space-Time Kinetics
31000 - 31099 Cross-Section Data

Iterative Solver

38000 - 38099 Purdue Numerics (T-H)

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

 Programming Practices

 II-39 Revision 8

Error Number Type of Error

 Auxiliary Models/Components

45200 - 45299 General Transport
50000 - 50099 Turbines
60000 - 60099 Separator
61000 - 61099 Two-Region Nonequilibrium
62000 - 62099 Accumulator Input
63000 - 63099 Method of Characteristics

 3-D Kinetics

67000 - 67099 3-D Kinetics Input
67100 - 67199 Channel to Assembly Mapping
67200 - 67299 Channel Data
67300 - 67399 Cross Flow Data
67400 - 67499 Control Rod
67500 - 67599 Bypass
67600 - 67699 Boron Injection

 Control System

70000 - 70099 Control Input and Blocks

 Miscellaneous

80000 - 80099 DNBR
 90000 - 90099 3-D Kinetics, CDI File, Cross Section

When multiple error conditions can be detected in a subroutine, the common information is
generally defined once at the beginning of the subroutine. It is then available for use any time an
error message may be written by calling subroutine errlog. A coding fragment that illustrates this
application is shown below.

!
! Setup common input processing parameters in case input errors
! are encountered
!
 component = 'VOLUME '
 decknam = 'INVOL '

The follow coding fragments illustrates the additional set up required prior to calling subroutine
errlog to write the error.

!
! Check to see if obsolete card numbers (05000x) were used for
! laminar friction model input - if so, write error message.
!
 istrt = 050001
 iend = 050009
 incr = 1
 nold = ncards(istrt,iend,incr,inp_tbl)

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Programming Practices

Revision 8 II-40

 if (nold > 0) then
 err_num = 5015
 card_num = 50001
 err_des3 = 'LAMINAR WALL FRICTION MODEL COEFFICIENTS WERE INPUT
 USING OBSOLETE 05000X CARDS.'
 err_des4 = ‘USE 2332XX CARDS INSTEAD.’
!
 call errlog
 end if
!

Second coding fragment example.

!
 err_num = 5027
 card_num = 0
 write (err_des3, "('TIME DEPENDENT VOLUME TABLE '1i5,' SPECIFIED FOR
 VOLUMES'1i6,' AND '1i6,'.')" iread(i), olvoln(i),
 olvoln(j)
 err_des4 = 'A UNIQUE IREAD MUST BE USED FOR EACH TIME DEPENDENT VOLUME.'
!
 call errlog

Both error messages set up in the coding fragments above will be written as illustrated in the
coding fragment from subroutine errlog.

! input processing errors
!
 write(17,10000) err_num, component, decknam, card_num
 write(6,10000) err_num, component, decknam, card_num
!
 itype = err_num/100
 num = err_num - 100*itype
!
! Volume input processing errors
!
 if (itype .eq. 50) then
 if (num>=1 .and. num<=20) then
 write(17,10001) err_des3, err_des4
 write(6,10001) err_des3, err_des4
 else if ………………………………
 ! special case error messages here
 end if
 end if

7.2 Memory Allocation Errors

Most memory allocation occurs during input processing. When errors associated with memory
allocation occur, subroutine errlog is used to write the associated error messages. Memory
allocation errors are assign numbers 100, 101, and 102.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

 Programming Practices

 II-41 Revision 8

The following coding fragments illustrate how the error messages would be set up for two
different error conditions that might be encountered when memory is allocated.

!
! Check to insure memory request is positive
!
 if (num_idc <= 0) then
 err_num = 101
 component = 'CONTROL SYSTEM'
 decknam = 'ALLOK8_CSUB'
 modulenam = ‘CONTROL_SYSTEM’
 err_des3 = 'ERROR ALLOCATING SPACE FOR CONTROL SYSTEM ARRAYS. SUM
 OF NUMBER OF '
 write (err_des4, "(‘CONTROL BLOCK INDEXES = '1i6,', MUST BE >
 0.')" num_adc
!
 call errlog
!
 return
 endif

Second example.

!
 allocate (i_cidx(siz_icidx), stat=status)
!
! Check status of allocate - write error if allocate failed
!
 if (status .ne. 0) then
 err_num = 100
 component = 'CONTROL_SYSTEM'
 decknam = 'ALLOK8_CSUB'
 modulenam = 'CONTROL_SYSTEM'
 write (char1,’(i6)’) siz_icsub
 write (char2,’(i6)’) status
 err_des3 = 'ERROR ALLOCATING SPACE FOR INTEGER CONTROL SYSTEM
 INDEXING ARRAYS.'
 err_des4 = 'LENGTH REQUESTED = '//char191:6)//' STATUS FLAG RETURNED
 FROM ALLOCATE = '//char2
!
 call errlog
 endif

7.3 Transient Solution Errors

Transient solution or run-time errors are assigned unique three-digit error numbers. They are
divided into eight general categories as follows.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Programming Practices

Revision 8 II-42

Error Numbers Type of Error

101 - 199 Numerical Solution
201 - 299 Equation of State (Pressure Solution)
301 - 399 Model Limitation
401 - 499 Heat Transfer
501 - 599 Bubble Rise/Separator Volume/Pressurizer
601 - 699 I/O Handling
701 - 799 Kinetics
801 - 899 Utility Routine or Problem Control

Up to 99 errors can be defined for each category. For more information refer to Appendix C of the
User’s Manual – Volume 3.

The following code fragment illustrates the use of subroutine errlog to write a simple error
message from the transient solution. It identifies a path that should not be encountered unless there
is a programming error. Note that the volume number is passed to subroutine errlog via variable
locvec(1).

!
! Code error
!
 else
 component = 'VOLUME '
 locvec(1) = olvoln(i)
 err_num = 104
 decknam = 'PRESUR '
 err_des1 = 'ILLEGAL PRESURE SEARCH PATH - THIS IS PROBABLY '
 err_des2 = 'DUE TO A CODE ERROR'
!
 call errlog
 go to 100
 end if

Error processing for the transient solution is complicated by the fact that the iterative time-step
advancement scheme often mitigates errors that are encountered. For example, recovery from a
pressure search failure typically occurs by reducing the time-step size and resolving the time step.
When the reset eliminates the error, the error message should not be written, but the information
related to the failure should be available if the error is not resolved by reducing the time-step size.
The following example illustrates how the pertinent information is stored into ERRDATA
variables so it will be available for later use. Note that subroutine errlog is not called in the coding
that saves error condition information for later use if needed.

!
! Check for error condition during pressure search
!
 if (.not.(nogo(1))) then
!
! Error already detected - do nothing more
!
 if (hw(i) .eq. -one) then

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

 Programming Practices

 II-43 Revision 8

 call fail
 else if ((hw(i)<=zero) .or. (hw(i)>2000.0D0) .or. (p(i)<plow) .or.
 (p(i) > phigh)) then
!
 err_num = 221
 err_des1 = 'PRESSURE SEARCH CONVERGED TO A PRESSURE OR '
 err_des2 = 'ENTHALPY BEYOND RANGE OF WATER PROPERTIES '
 component = 'VOLUME '
 locvec(1) = i
 end if
 end if

In the event that the iterative solution does not resolve the error, subroutine errlog will be called
to print the error message.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Programming Practices

Revision 8 II-44

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

 III-1 Revision 8

III

RETRAN PROGRAM FLOW

There are three program options in the RETRAN-3D computer program. Program option
RETRAN is used to initialize and execute a transient thermal-hydraulics calculation, while the
RESTRT option is used to continue calculations from data saved on a RETRAN-3D restart file.
REEDIT is a utility option that produces printed edits and printer plots of data archived on a
RETRAN restart file. RETRAN, RESTRT, and REEDIT optionally allow for the generation of a
user-specified output data file that can be used to interface with other codes. This section is
designed to provide an overview of the program flow in each of these three modes of exe-
cution. Subroutine call charts are provided to aid the program flow discussion, although they do
not necessarily represent the order in which subroutines are called. The call charts show all major
subroutine calls (with the exception of FORTRAN library, and operating system subroutine calls).
Some subroutines shown are conditionally called, consistent with the program options exercised.

The main program RMAIN is the driver for the RETRAN code package (see Figure III.1-1). It
calls subroutines SET_CONFIGURATION, GETPAR, and RET_INPUT.
SET_CONFIGURATION initializes solution constants and dimensions, some of which can be
overriden by entries in the RETRAN.cfg configuration file. GETPAR processes parameters that
are provided at execution time, e.g., a flag to disable screen writes. Subroutine RET_INPUT
initializes the INP free form input processing package by calling subroutine INP. It also reads the
problem dimension data card to determine the type of problem that is being run (restart, initial run
or reedit). This information is returned to RMAIN which selects the appropriate driver subroutine
for one of the three program options, which are described in the following sections.

1.0 INITIAL RUNS

Subroutine RETRAN is called from the main program RMAIN as illustrated by Figure III.1-1 for
the RETRAN program module. RETRAN directs the program flow to the major computational
blocks. Subroutine INRTRN is called first from RETRAN which in turn calls INTRAN.
INTRAN calls the input subroutines that read, check, and edit input data (see Figure III.1-2).

When the multi-dimensional kinetics option is used, subroutine GEOM3D is called from INTRAN
to process the appropriate input data. It then calls subroutine ARRINP to perform most of the
input and related cross section processing. Figure III.1-3 shows the subroutines called from
ARRINP.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

RETRAN Program Flow

Revision 9 III-2

RMAIN

GETPAR

INPUT

RETRAN

REEDIT (Fig. III.3-1)

RESTRT

INP

TIMSET

INP2

INRTRN

LOGIC (Fig. III.1-11)

PRNPLT

SCRAT

STATIC (Fig. III.1-4)
STSTAT (Fig. III.1-5)

TRAN (Fig. III.1-6)
TRPSUM

IMPSTP

INTRAN (Fig. III.1-2)
SMALLR

PLOTPR ROUND

INRSTR INTRAN
(Fig. III.1-2)

SCRAT

STATIC (Fig. III.1-4)

TRAN (Fig. III.1-6)

TRPSUM

PRNPLT PLOTPR ROUND

READ_RESTART_RECORD

WRITE_RESTART_RECORD

CHECK_RESTART_TRIPS

EDIT_RESTART_STATISTICS

ME_SUM_EDIT

PRZSTR_EXPAND

LOGIC (Fig. III.1-2)

GENNEW

WRITE_RESTART_HEADER

SET_CONFIGURATION

Figure III.1-1. Subroutine Calls from Main Program RMAIN

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

RETRAN Program Flow

 III-3 Revision 9

INTRAN

CONMAT
CHAIN
CHAIN2

EDITST

GASI

GEOM3D ARRINP
(Fig. III.1-3)

ICJUN

ICVOL

GASEOS
HORN
WATHUM
WAT1
WAT2
WAT3
STPH4AINACC

INAREA

INBUBL

INCKV

INCHAN INCDIA

INCNST

INCNT1

INDNB

INEDIT

INFILL

INFIT

INHEAT

INCHDT
ICORE
INGAP
INGEOM
INMPRO
INSLAB
IN2RET

INGAS

INHTXQ

INJUN IMIXCK

INMOC

INNEQ

INORIP

INPUMP

INPOWR

PMPDTA

INRKEN
INSCRM
MODQF

SETUP

INSCRM
RKENP

INANS
INREAC INMODH

CCC
DEFINE
INQXI
INXSEC

INANS
INMODH
RKENP CCC

INSEP SEPCOV
SEPCUN

INSOLV SPNODE

INSTGN

INTRIP

INTSTP

INTURB TURBO
INTVDP
EMAX
WAT5

VHP HORN
ECALC

INTV
GASEOS
HORN
WAT0
WAT2
WAT3
WATHUM

INVOL

IPMCK

LOOPS

WATI

ME_SEARCH
VBCFIL
INCNT2
BUILD_PLOT_VAR_LISTINFIBWR
BUILD_MINOR_EDIT_LIST

INGMRS

INGTRN

INSUBNODE

VESSEL

Figure III.1-2. Subroutine Calls from INTRAN

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

RETRAN Program Flow

Revision 7 III-4

PRGINP

CONS02

CONS06

WRTINP

ROFFCK
NNMAPS

THMAPS

RMAP
RDSTRT

YZROD

SETUPA

THFLAT

CTKTRM

SETFLX

MSHTRM

GETXEC

ARRINP DRIVE1

Figure III.1-3. Subroutine Calls from ARRINP

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

RETRAN Program Flow

 III-5 Revision 9

After the input is processed, STATIC is called from RETRAN if the one-dimensional kinetics
option is used. STATIC is the driver for one-dimensional kinetics steady-state initialization (see
Figure III.1-4). STATIC and subroutines called by STATIC initialize fluxes, the power profile,
and the precursor densities. The call to STATIC is bypassed if the one-dimensional kinetics
option is not used.

When the stratified pressurizer model is used RETRAN calls PRZSTR_EXPAND to setup the
pressurizer and subnodes for steady state. It either expands or contracts the pressurizer volume by
merging or extracting subnodes to the pressurizer.

The next subroutine called by RETRAN is STSTAT. STSTAT is the driver for the
thermal-hydraulics steady-state initialization (see Figure III.1-5). Initial estimates for control
volume state properties and heat source and sink terms are obtained via a call to INITLZ from
STSTAT. After returning from INITLZ, an iteration loop in STSTAT calls subroutines PRSORK,
JUNPRP, ADVFLO, BUBINT, HAVG or XANDH, STATPH, PRESUR, POSTW, ENERGY,
JHOFF, and DERIVS. When the change in initial values for the field equations, constitutive
models, and component models from one iteration to the next meets some predefined convergence
criteria, STSTAT exits the iteration loop and calls JVEDIT which edits the results of the
steady-state solution. Other models are then initialized; the control system by CONTRL, point
kinetics by KINITL, the DNB model by DNBM, the one-dimensional space time kinetics model
by QX1I, and the iterative numerics option by SAVIMP. When the pressurizer stratification
model is used, steady state calls PRZSTR_SETTRAN to setup the pressurizer and subnodes for the
transient. It adjusts them according to mixture level and liquid region quality.

TRAN (see Figure III.1-6), the driver for transient calculations, is called by RETRAN. The flow
of calculations within TRAN is described in the following discussion. After the converged
solution is obtained, and if the pressurizer stratification model is used, TRAN calls
PRXSTR_EXPORCONT to expand or contract the pressurizer by merging or removing subnodes.
A new time step is selected by TSTP. All trips are strobed to activate coincidence and indirect
trips by subroutine TRIP, and the control system blocks are activated by a call to CONTRL.

Subroutine JUNPRP is called to update the junction properties used in the convective terms of the
balance equations and subroutine ADVFLO is called to evaluate the terms used to solve the
mixture momentum equation. Figure III.1-7 shows the subroutines called from JUNPRP and
ADVFLO

The mass transfer rates for the vapor continuity equations are obtained from MDOT. Subroutine
SLIP evaluates the terms used to solve the dynamic slip (velocity difference) or algebraic slip
equations. Subroutine DERIVS computes the terms needed to solve the volume balance equations.
The GENOPT and GENMTx routines are called to set up and solve the coupled set of overall
balance equations. The GENMT3 path is used for the three- and four-equation solution options
while GENMT4 is used for the five-equation and noncondensable gas flow modeling options.

Subroutine PRESUR (see Figure III.1-9) is then called to obtain new volume state properties given
the new volume energy and mass values from the balance equation solution. The fluid
thermodynamic and transport properly subroutines used by RETRAN are illustrated in Figure
III.1-10. Note that WAT10 is an entry point to subroutine WAT9 and WAT12 is an entry point to
subroutine WAT11.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

RETRAN Program Flow

Revision 8 III-6

POWRT

ANS_DECAY

RKEN

CCC

CCC

RNDO

DEL1
BOUND
DELPK
DELRC

BOUND
BOUND

PRECUR

PREGO REPR

GOGO

CXGEN
RODMOV
XSEC
XSECCR

DEL1
BOUND
DELPK
DELRC

BOUND
BOUND

PHIMOD

ROMBI EF

STEPIT
ROMBI

REPR

EF

TESTER

RESHAP
PREVUS

REPR

STEPIT
ROMBI

REPR

EF

SPACTM

CRIT

CXGENI
RODMOV

XSEC

DEL1
BOUND
DELPK
DELRC

BOUND
BOUND

NORML

POSE

PXSEC
REPR
RODMOV
XSEC

RESHAP

STATIC

PREVUS

REPR

SHAPER REPR

Figure III.1-4. Subroutine Calls from POWRT, SPACTM, and STATIC

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

RETRAN Program Flow

 III-7 Revision 9

ADVFLO(Fig. III.1-7)
BUBINC

BUBIN1
PARTP
STATPH

BUBB BUBDER
EXPIN2
JUNH (Fig. III.1-7)
SEPCOV
SEPCUN
SSSEP WAT2
WILSON

BUBINT

CARDBC (Fig. III.1-9)

 DELAY
POL2

DNBM (Fig. III.1-8)
ENERGY (Fig. III.1-8)
GENTRN

HAVG
DELHP
GAUSEL
ZFLOWH
(See Below)

WAT2
WAT15
GASEOS
JUNH (Fig. III.1-7)

INSLV2 SPNODE

INITLZ

CHKV
DERIVS
ENERGY (Fig. III.1-8)
EQSETS
EXPIN2
FILL

GASEOS
HORN
WATERFLXWG

HAVG
DELPH
GAUSEL
ZFLOWH
(See Below)

WAT2
WAT15
GASEOS
JUNH
(Fig. III.1-7)HEADC

HTXQ
JUNPRP (Fig. III.1-7)
MASBAL
POSTW
POWRT (Fig. III.1-4)
QFRACC
SLIP (Fig. III.1-8)
SSORIP
TRIP
VOLPRP (Fig. III.1-9)
XNCALC GAUSEL

JHOFF
JUNPRP (Fig. III.1-7)
JVEDIT
KINITL POLATE

SCRM

MCSOLV
TMOC
ZHMOC
ZMOC

MDOT (Fig. III.1-7)
MODHD
POSTW

PRSORK (Fig. III.1-7)

QX1I REP
RETWRT
SAVIMP
SLIP (Fig. III.1-8)
SPLITS FLOFLG
STATPH (Fig. III.1-9)
SSORIP GAUSEL
STMGEN TKANDC

TAPEBC CHEK
TRIP
VOLPRP (Fig. III.1-9)

XANDH
PRESOL
NEWSOL
SOLVE0
SOLVE4
XANOPT
XANEXP

GAUSEL

INITIDS

EXCORE
LS
NORM2

MSCORE

MLINKV

RIMVEC
SETGAU
BACKSB

ZFLOWH

BUBDER
EXPIN2
WAT2
WAT5

STSTAT

CONTROL

PRZSTR_SETTRAN

PRZSTR_DERIVS
ACCUM_DERIVS

PRZSTR_EXPAND

PSPEC

DERIVS PRZSTR_DERIVS
ACCUM_DERIVS

Figure III.1-5. Subroutine Calls from STSTAT and ZFLOWH

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

RETRAN Program Flow

Revision 9 III-8

ADVFLO (Fig. III.1-7)

CONTRL DELAY
POL2

DNBM (Fig. III.1-8)

EDIT

EDTBUB
EDTCHN
EDTCND
EDTCOR
EDTDNB
EDTFLU
EDTHIX
EDTKIN0
EDTPMP
EDTPRZ
EDTSLP
EDTSTK
PLTAPE

ENERGY (Fig. III.1-8)
ETSCON

EXPIN1
WILSON
BUBB BUBDER
BUBNEP

FLXWG

GENMT3

SOLVE0
PRESOL
NEWSOL (Fig. III.1-5)
SOLVE3 GAUSEL

GENMT4

PRESOL
NEWSOL (Fig. III.1-5)
PRZGN4
SOLVE0
SOLVE4 GAUSEL

GENOPT
STATEW
STATUM
WAT17GENTRN

IMPSTP JUNH (Fig. III.1-7)
RESET

INSLV2 SPNODE
JUNPRP (Fig. III.1-7)

MCSOLV
TMOC
ZHMOC
ZMOC

MDOT (Fig.III.1-7)

POSTW
POWRT (Fig. III.1-4)
PRESUR (Fig. III.1-9)

PRZDER
BUBNEP
SEPCOV
SEPCUN

RETWRT
QX1DLY
REACTY
CALRHOSAVIMP

SLIP (Fig. III.1-8)

TAPEBC CHEK
TEDIT
TRIP

TSTP TRIPDT
TUSIN
UPDATE JUNH (Fig. III.1-7)

RESET FLXWG
POSTWVBCFIL

VOLINT
BUBSTK
EXPIN2
TRNSPTZTEDIT

TRAN

IMPSTP

ME_SUM_STOR

PRZSTR_EXPORCONT

SOLVE0

TSTAT

DERIVS PRZSTR_DERIVS
ACCUM_DERIVS

Figure III.1-6. Subroutine Calls from TRAN

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

RETRAN Program Flow

 III-9 Revision 7

FILL
GASEOS
HORN
WATER

IMPSTP JUNH (See Below)
RESET

JUNH

BUBB BUBDER
BUBNEP
CCFPRP BUBB BUBDER
ENTRAN ENTRAN2
FIVEQH
MC5EQH
TRNSPT

STPM
SBW
TTFM
VISCON (Fig. III.1-10)

POL2

WATER

JUNPRP

CHOKEM HORN

CHKV

FILL
GASEOS
HORN
WATER

FRICTN

HEADC

IMPSTP JUNH (See JUNPRP Above)
RESET

MIXFLO HORN
WATER

PUMPS PUMP POLATE

ADVFLO

MDOT
MDOTIF

MDOTWF

FLOWMP

IFAHTC

VCRIT

CUBDET

IFAREA

IFHTC

FENT

PRSORK FLODEF
CONMT2

SCRAT1

CHAIN3

CHAIN4

Figure III.1-7. Subroutine Calls from JUNPRP, ADVFLO, MDOT,

and PRSORK

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

RETRAN Program Flow

Revision 7 III-10

HTXQ
QFRACC

SLABHT

COND

CORQ
TAVE
TEMP0
TKANDC

CONDHT
DEFORM
LOCFLO
LOCFLX
MH2OR
PCHF

MWR
HORN

SINITL

CONDHT
CORQ
DEFORM
LOCFLO
LOCFLX
PCHF
TAVE
TEMZ
TKANDC

HORN

ENERGY

GAPHTC GTHCON

HTRC

EXPHC
EXPOO
NTERP EXPHC

QDOT9
QDOT01
QDOT02
QDOT03
QDOT04
QDOT05 WAT3

VISCON
(Fig. III.1-10)QDOT06

QDOT07
QDOT08
QDOT09
QDOT10
QDOT13
QDOT14 VISCON
QDOT15 WAT5
QDOT16 WAT3
QDOT17
QDOT18
QDOT19
QDOT20 QDOT02
QDOT21 WAT5
QDOT22 WAT5
QDOT23 WAT1
QDOT25
QDOT28 WAT5
QDOT31
WAT2

TURBOT
ECALC
INTVDP
WAT5

VHP

SLIP

DYNFRM

JSVEL

ANULAR SBW
BUBBLY SBW
CCFDER
CCFPRP BUBB BUBDER
CUBDET
DISPER SBW
DRIFTV
EPRIDV

HORZTL
SFR
STRATI
WATER

SBW

BASIC
COFUNC
FRESCO
C3FUNC

C3FUNC
COFUNC
ITERAT
MARCH2

POLY

WATER

FCOLDW
FGRSPM
FITHT SIMQ
WAT2
WAT5
NONUHF
QDNBW3
QDNBBW
QDNBJL
QDNBMA
QDNBBA
QDNBBO

GAPHTC
HTRC (See Below)

GTHCON

VISCON

DNMB

Figure III.1-8. Subroutine Calls from ENERGY, SLIP, and DNBM

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

RETRAN Program Flow

 III-11 Revision 9

Figure III.1-9. Subroutine Calls from PRESUR, VOLPRP, STATAC, STAPH,
STPH4A, and CARDBC

CARDBC (See to the right)

IMPSTP JUNH (Fig. III.1-7)
RESET

PRZEMT

PRZR

WATER
WAT8
WAT7
WAT2

STATPH (See to the right)
RESET

SEPEMT
SEPCOV
SEPCUN
WATER

STATAC (See to the right)

STATEW

GASEOS
WATER
WAT0
WAT2
WAT7
WAT1

STATUM

HORN
STATEW
WAT2
WAT10
WAT11
WATER

SURTEN
SVOID
VISCON (Fig. III.1-10)

PRESUR

CARDBC (See to the right)
EXPIN2
PRZINT WAT2

SSSEP WAT2
WATER

STATAC (See to the right)
WAT2

WATER
STATNE WAT12

STATPH (See to the right)
SURTEN
SVOID
TRNSPT
VISCON

VOLPRP

STATAC
ACCPRS
WAT0
WAT2

HORN

STATPH

GASEOS
STPH4A
PARTP
WAT1
WAT2
WAT3
WAT5
WAT15
WATER

STPH4A

GASEOS
HORN
PARTP
WAT2
WAT15
WATER

CARDBC

HORN
WAT0
WAT2
WAT3
WATHUM

VESSEL
PRZSTR_INACT_P

WATER_PACK

PRZSTR_INACT_P

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

RETRAN Program Flow

Revision 7 III-12

PARTP
GASEOS

WAT15

VISCON

GASTKV

THCON

VISC

WAT0
HORN

WATER

WAT1

WAT0

WAT2

WATER

WAT2
HORN

WATER

WAT3
HORN

WATER

WAT5
HORN

WATER

WAT7
HORN

WATER

WAT8

HORN

WAT17

WAT9

WATER

WAT9
WAT10

HORN

WATER

WAT11
WAT12

HORN

WATER

WAT15

HORN

WAT0

WATER

WAT17

GASEOS

HORN

PARTP

WAT1

WAT2

WAT7

WAT15
WATER

WATHUM

GASEOS

PARTP

STATPH

STPH4A

WAT1

WAT2

WAT3
WAT15

ENTRAN2
CPCOND

TEMPSG

Figure III.1-10. Fluid Property Routine Calls

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

RETRAN Program Flow

 III-13 Revision 9

The new power level is computed in subroutines called from POWRT (see Figure III.1-4). The
subroutines called by POWRT depend on the power calculation option used, i.e., tabular power
versus time, point kinetics, or one-dimensional kinetics. If the multi-dimensional kinetics option
is selected instead of one noted above, subroutine POWRT is not used. Instead, subroutine
LOGIC is used. It is illustrated in Figure III.1-11.

Subroutine ENERGY and subroutines called by ENERGY determine the heat transfer rates to or
from fluid volumes by heat conduction, nonconducting heat exchangers, or turbines (see
Figure III.1-8). If the turbine model option is used, the turbine speed is integrated in subroutine
TUSIN. The auxiliary DNB calculation is performed by subroutine DNBM (see Figure III.1-8).

Function TRIP is called to test for the end of problem. Subroutine EDIT is called if it is time to do
a major or minor edit. An EDIT option allows the user to write minor edit variables to an auxiliary
file (FORTRAN Unit 60) in user-specified format. If a restart file is requested, it is also written
from EDIT by making calls to WRITE_RESTART_HEADER, WRITE_RESTART_RECORD,
and WRITE_RESTART_TRAILER. EDIT is at the end of the loop at which TRAN transfers back
to TSTP to select another time step. Subroutines ZTEDIT and ETSCON are part of the timing
package but are not an integral part of the calculations.

At the end of the transient calculations (caused by end trip signal or an error detected), control
returns to subroutine RETRAN. Subroutine RETRAN then calls TRPSUM which edits the trip
status history of the calculation; then calls PRNPLT which generates printer plots of the minor edit
variables if the option is requested.

Control is returned to RMAIN which terminates execution.

2.0 RESTART RUNS

Restarting is defined as continuing a calculation at some point in time from solution results of a
previous RETRAN calculation archived on a data file. It is performed by program module
RESTRT. Data archived on a RETRAN data file falls into two categories. First, all variables that
cannot be computed at restart time and second, all variables that may be required for editing and
plotting. All other information that can be recomputed at restart time or variables that do not
change (such as geometric information) are obtained by processing the input from the original
problem input data.

After calling INPUT, RMAIN calls RESTRT (see Figure III.1-1), which is an entry point in
subroutine RETRAN.

RESTRT first calls INRSTR. INRSTR calls CHEK which opens the RETRAN data file from
which the calculation is to be restarted and opens another data file for archiving data from the new
calculation.

Subroutine INDATA is then called to copy header label, problem description data, and input data
from the original data file to the new data file. INDATA also stores the original input data in main
memory.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

RETRAN Program Flow

Revision 9 III-14

BORON3

DRIVE2

CALHRO FBRHO
ADJOIN

GENNEW
AMIXN
LOAD_IT
XSNEW

GEOMETRY TRIRAD

INITPURD

INPUTD

PARCSS

CMFDCOEF
ILUFAC2D
NONNET
OUTERSS
SSOR
SETLS
XSECTION

RDSRCH

SHLOK

SHROK

STSTAT (Fig. III.1-5)

~

LOGIC

BORON 3
AXB

THXCHNG
GENNEW

CMFDCOEF

SETLS

AXB

LOAD_IT
XSNEW
AMIXN

NRMFLX MSHMID

PRXSCT

TRNZXY

VIPWRT

TRAN (Fig. III.1-6)

LOAD_XX

Figure III.1-11. Subroutine Calls from LOGIC

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

RETRAN Program Flow

 III-15 Revision 9

DRIVE3

GENNEW
AMIXN
LOAD-IT
XSNEW

PARCSTR

CMFDCOEF
ILUFAC2D
NONNET
OUTER
PRECURS
SETTFSD
SETLS
XSECTION

SHLOK

TRNZXY
TRAN (Fig. III.1-6)
TRNXYZ

SHROK

~

INITTRAN

PRXSCT

XISPTR
PRECTR

RADPWR

REFLUX

RODMV3

YZROD

LOGIC

BORON3

FEDCAL

FQCOPY

FEDINL

FEDEXT

RODMV3

YZROD

VIPWRT

KINEDT EDITD4
EDITD1

EDITD9

TRAN (Fig. III.1-6)

EDITD1

EDITD4

EDITD7

EDITD9

EDITD11

PRESS
XISPSS

EDITD12
EDITD13

EDITD10

Figure III.1-11. Subroutine Calls from LOGIC (Cont'd)

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

RETRAN Program Flow

Revision 9 III-16

INRSTR then calls subroutine INTRAN. INTRAN and subroutines called by INTRAN process
and store the original input data as if it were an initial run.

Subroutine STATIC is then called by RESTRT to initialize the one-dimensional kinetics.
STATIC computes the one-dimensional kinetics quantities not stored on data file and is called
only if the one-dimensional kinetics option is used. Subroutine LOGIC is called by RESTART to
initialize the three-dimensional kinetics option.

The next subroutine called is READ_RESTART-RECORD, which reads the content of a record
into allocated memory blocks. If a new restart file is being written, Subroutine
WRITE_RESTART_RECORD is called. This process writes a duplicate restart file and is
repeated until the restart record corresponding to the restart time has been read. If a restart file is
not created, the calls to READ_RESTART_RECORD skip through the record rather than reading
it into memory and no calls are made to WRITE_RESTART_RECORD. Repeated calls are made
until the restart point is reached, when the restart record is reached, its data is read into allocated
memory.

The program flow proceeds from this point as an initial run, with subroutine TRAN called from
RESTRT (see Section III.1 for TRAN description). TRPSUM is called which edits the trip status
history and PRNPLT is called to do the optional minor edit variable printer plots at the end of the
calculation.

Control is then returned to RMAIN which terminates the execution.

3.0 REEDIT RUNS

The REEDIT program module is used to obtain printed edits (major edits and minor edits) and
printer plots of RETRAN problem solutions archived in data files. An option allows the user to
write minor edit variables to an auxiliary file (FORTRAN Unit 60) in user-specified format.

Subroutine RET_INPUT is called from RMAIN which initializes the package and reads the
problem dimension card to determine the problem type. REEDIT is then called by
RMAIN. REEDIT directs the calling of the major computational blocks (see
Figure III.3-1). REEDIT first calls INEDTE which is the driver for processing the input and
mounting the data file. INEDTE reads and checks the minimal input data supplied for reediting
and calls OPEN-RESTART_FILE which mounts and checks the header label of the data file.
Subroutine READ_RESTART_RECORD is then called sequentially to find the user-specified
data record at which editing is to begin. When the desired record is reached, it moves the data from
the restart file allocated memory.

EDITRE is called to direct the retrieval and editing of data from the restart data file. The
subroutine calls from EDITRE are done within a loop. Subroutine READ_RESTART_RECORD
is called within the loop to position the restart file to the desired data record, It then moves the data
record from the restart file to allocated memory. EDIT then performs the printed edit
requests. This loop continues until all the data records requested have been edited. Subroutine
PRNPLT performs printer plots of the minor edit variables.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

RETRAN Program Flow

 III-17 Revision 9

EDITRE EDIT
VBCFIL

EDIT_1D_KINETICS
EDIT_BUBBLE_RISE
EDIT_CHANNEL
EDIT_CONDUCTORS
EDIT_CORE
EDIT_DNB
EDIT_FIVE_EQ
EDIT_HTX
EDIT_PT_KINETICS
EDIT_PUMPS
EDIT_PRESSURIZER
EDIT_SLIP

INEDTE INP2REEDIT

INTRAN

READ_RESTART_RECORD

READ_STATIC_BLOCKS
OPEN_RESTART_FILE

SMALLR

WRITE_RESTART_HEADER
WRITE_RESTART_RECORD
WRITE_RESTART_TRAILER
WRITE_PLOT_HEADER
WRITE_PLOT_RECORD

EDIT_RESTART_STATISTICS

Figure III.3-1. Subroutine Calls from REEDIT

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

RETRAN Program Flow

Revision 9 III-18

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

 IV-1 Revision 8

IV

RETRAN INPUT/OUTPUT

The RETRAN-3D computer code uses external files to provide the input model description,
supply boundary condition information, to store intermediate results and to archive solution results.
Some of these files are program option dependent and are necessary only when a particular
program option is used.

The following sections describe all of the files that are used and the particular program option they
are used in.

1.0 UNIT DESCRIPTION

The RETRAN-3D computer code only uses standard binary and formatted Fortran reads and
writes. A number of temporary and permanent data files are written and read using standard
Fortran I/O statements. These data files are associated with logical Fortran unit numbers defined
in Table IV.1-1. The Fortran unit number, logical file name, the purpose the unit serves, and
subroutine that opens the unit are also given. A logical file name of "default" indicates that the file
is a scratch file that will be opened with the default file name for the operating platform.

2.0 DATA FILE DESCRIPTION AND USE

The RETRAN-3D program uses external data files that may consist of program input data, data
files written by the program, or data files that provide temporary storage during program
execution. This section describes the data files used by RETRAN-3D.

2.1 Restart Data File

A RETRAN-3D restart data file contains the information necessary to continue the problem
calculation with the restrt option, to provide boundary conditions to a subsequent calculation
using either the retran or restrt options, or to obtain printed edits or printer plots for a problem
solution with the reedit option. This data file is used by the RETRAN-3D problem modules restrt,
reedit and the time-dependent volume boundary condition calculation in retran and restrt.

RETRAN-3D data files are binary and will generally be disk files, but they may also reside on
other read/write storage media supported by the platform being used. Restart files are composed
of three types of records; a header record which is the first record on all restart data files, data

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

RETRAN Input/Output

Revision 9 IV-2

Table IV.1-1

File Unit Description

FORTRAN Logical Open
Unit No. File Name Subroutine Purpose

 5 INPUT rmain Input data for inp free form input

processing

 6 OUTPUT rmain Standard print output

 8 REMARKS remark Remark log file

 3 TAPE3 trip & trpsum Temporary storage for trip action

history – retran or restrt

 12 TAPE12 tapebc Time dependent boundary

condition data from restart file –
retran or restrt

 13 TAPE13 inrstr Restart data file to provide

starting conditions – restrt

 14 TAPE14 restrt & edit Restart data file

 17 ERR_LOG errlog Error file

20 Default edit Store printer plot data

25 R3D_PLOT write_plot_header Results for plotting

30 retran.cfg set_configuration Read RETRAN-3D configuration

file parameters

 40 TAPE40 inxsec Input 1-D kinetics cross section

 60 TAPE60 edit Auxiliary user defined output

 68 TAPE68 geom3d 3-D kinetics binary cross-section

(BXF) file

 78 TAPE78 inchan 3-D kinetics core data interface

(CDI) file

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

RETRAN Input/Output

 IV-3 Revision 9

records containing transient problem solution results, and a trailer record written as the terminal
record for a RETRAN-3D restart data file. These records are actually logical records since
multiple writes may be used to write each logical record. A restart data file is defined as a
continuum of solution results from time zero to problem end time so it will include one header
record, multiple data records and one trailer label.

2.1.1 Header Record Description

RETRAN-3D restart data file header record consists of problem identification and description data
as shown in Table IV.2-1. It also contains the problem dimension specifications included in the
problem_dimension module and the original problem input data included in the inp_cards
module. The corresponding block names are i_dim and r_cards respectively. They are included
in the static restart block list discussed in Section II.3 and will be included in the restart record
header at a minimum. Other static blocks may also be included but currently are not used for
restart.

The horizontal lines in Table IV.2-1 indicate physical record boundaries within the logical header
record, which is written by subroutine write_restart_header, which resides in the restart data
module.

The information contained in the header record is used;

C to verify that the desired restart data file has been requested,

C to provide original problem detail for program options that use the restart file, and

C to insure that the archived data is consistent with the requested usage.

Header information is also used to set up pointer associations used to retrieve data from a restart
file that used to define boundary conditions, and to provide restrt with a physical description of
the system being modeled through the original input data.

2.1.2 Data Record Description

Restart file data records contain all of the time-dependent data necessary to continue a problem
solution through use of program option restrt. They also contain all information required to
obtain edits of archived solution results through use of program option reedit.

Table IV.2-2 lists the content of each restart data record where each record corresponds to a point
in time for the problem solution. The horizontal lines in Table IV.2-1 indicate physical record
boundaries within the logical data record, which is written by subroutine write_restart_record. It
resides in the restart data module.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

RETRAN Input/Output

Revision 9 IV-4

Table IV.2-1

Header Record Description

Word Data Type1 Description of Contents

header_label C-ckd,len=32 Textual information specifying that the file is a

‘RETRAN-3D data tape header label’.

licensed_org C-ckd,len=32 Licensed Organization – Textual information identifying

the licensed organization.

version_header C-ckd,len=80 Textual information documenting the version of

RETRAN-3D used to create the restart file.

problem_title C-ckd,len=80 The content of the problem title card plus the date the

problem was run that created the restart file.

mxi_len I-ikd The length of the largest integer data block in the restart

file (includes static and dynamic blocks).

mxi2_len I-ikd The length of the largest integer 2D data block in the

restart file (includes static and dynamic blocks).

mxl_len L-ikd The length of the largest logical data block in the restart

file (includes static and dynamic blocks).

mxl2_len L-ikd The length of the largest logical 2D a block in the restart

file (includes static and dynamic blocks).

mxr_len I-ikd The length of the largest real data block in the restart file

(includes static and dynamic blocks).

mxr2len I-ikd The length of the largest real 2D data block in the restart

file (includes static and dynamic blocks).

________________ Repeat the following for each static block in the restart block list

block_name C-ckd,len=8 The name of the static block written to the header record.

Block names begin with r_, i_ or l_ to indicate if they are
real, integer or logical data blocks, respectively. Block
names beginning with r2_, i2_,or l2 indicate if the blocks
are real, integer, or logical 2D blocks, respectively.

len_blk I-ikd Length of the block

Appropriate Data Block as Given by the block name (based on 1st character only)
r_pntr R-rkd Real data block
i_pntr I-ikd Integer data block
l_pntr L-lkd Logical data block
r_2pntr R-rkd Real 2D data block
i_2pntr I-ikd Integer 2D data block
l_2pntr L-lkd Logical 2D data block

1C = Character, I = Integer, L = Logical, R = Real – Parameters on right are defined in module kind_specs

and indicate the size.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

RETRAN Input/Output

 IV-5 Revision 9

Table IV.2-2

Data Record Description

Word Data Type1 Description of Contents

data_record C-ckd,len=8 Textual string containing ‘data_rec’

record_number I-ikd The restart record number.

________________ Repeat the following for each dynamic block in the restart block list

block_name C-ckd,len=12 The name of the dynamic block written as part of the

restart data record. Block names begin with r_, i_ ,1_,
r2_, i2_, or l2_ to indicate if they are real, integer or
logical data blocks, respectively.

len_blk I-ikd Length of the block

Appropriate Data Block as given by the block name (based on character preceding "_")
r_pntr R-rkd Real data block
i_pntr I-ikd Integer data block
l_pntr L-lkd Logical data block
r_2pntr R-rkd Real 2D data block
i_2pntr I-ikd Integer 2D data block
l_2pntr L-lkd Logical 2D data block

1C = Character, I = Integer, R = Real – The integer portion indicates the size

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

RETRAN Input/Output

Revision 9 IV-6

The information contained in data records is used;

C to define the complete problem state at the point in time where a restart problem begins,

C to provide boundary condition information for a subsequent problem, or

C to provide solution results for the reedit program option.

If the data record structure is changed, RETRAN-3D restart data files generated with previous
code versions will not be compatible with the restrt or reedit options in the modified code
version.

2.1.3 Data File Generation

RETRAN-3D restart files are generated by subroutine edit for both the retran and the restrt
program options once the transient solution begins. Subroutine edit writes the header record at the
beginning of new restart files by making a call to subroutine write_restart_header. Data records
are written at user specified intervals by making a call to subroutine write_restart_record. When
the problem terminates normally, a trailer label is written to the restart file by making a call to
write_trailer_label. These calls are made in subroutine EDIT and the three subroutines that
perform the writes are included in module restart.

2.1.4 Data File Usage

RETRAN-3D restart data files provide the data interface between the retran program and the
restrt and reedit options. Use of a RETRAN-3D restart data file by all program options is
facilitated through use of a set of application specific restart data file processing subroutines. A
summary of these data processing subroutines and their functions is given in
Table IV.2-3. Additional detail on their use is given in Section II.3.1.

The three program options use RETRAN-3D data tapes for various purposes. Consequently,
several different Fortran unit numbers are used by the program modules. A summary of the
Fortran unit numbers and the corresponding restart data file requirements for the three program
options is given in Table IV.2-4.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

RETRAN Input/Output

 IV-7 Revision 9

Table IV.2-3

Data Tape Processing Subroutine Descriptions

Subroutine Description

restart module The following subroutines are included in the restart module.

open_restart_file Used to open a file and to ensure that the requested file is a

RETRAN-3D restart file and that the first 16 characters of the original
and current problem titles match.

get_static_blocks Used by program module restrt to retrieve the original problem

dimensions and input data from the header record of a RETRAN-3D
restart file.

read_restart_record Used to read a given data record into memory. Dynamic data block in

the restart record are read into the corresponding data block in memory.
Also has an option to skip the data blocks rather than reading them.

write_header_record Used to write the header record to a new restart file.

write_restart_record Used to write a new restart record to a restart file.

write_trailer_label Used to write a trailer label on a restart file at the end of a problem

solution.

bc_file module The following subroutines are included in the bc_file module.

bc_file_initialization Used to read the original problem dimension information from the

header record of a restart file previously opened using a call to
open_restart_file. This subroutine maps the pointer arrays for the
boundary condition quantities to the appropriate integer, logical or real
buffer used to read the data blocks.

get_bc_data Used to read data record from a restart file and then extract the required

boundary condition data.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

RETRAN Input/Output

Revision 9 IV-8

Table IV.2-4

RETRAN Data Tape FORTRAN Unit Number Cross Reference(1)

Program Unit
Module Number Description

retran 2 A temporary date file used to store the input data deck in the

inp free form input internal table format.

 3 A temporary data file used to store the history of trip actuations
that are edited at the end of a problem.

 12 Read a previously generated RETRAN-3D restart file to obtain

time-dependent boundary conditions for a volume(s) and/or to
supply the power history. (READ Only)

 14 Unit used to write a RETRAN-3D restart file when requested

by input data. (WRITE Only)

 17 File used to accumulate error messages and related diagnostic

information.

 20 Temporary file used to store minor edit data used to generate

printer plots.

40 1-D kinetics cross section data file. (READ Only)

 60 Optional user-specified file containing the list of requested

minor edit variables. The file can be binary or formatted
according to the user's specifications. (WRITE only)

 68 3-D kinetics binary cross-section data file (BXF). (READ

only)

78 Three-dimensional kinetics ASCII Core Data Interface (CDI)
file. (READ only)

restrt 12 Same as for retran program module above.

 13 Read a previously generated RETRAN-3D restart file. The

restart file contains the information required to restart a
RETRAN-3D problem. (READ Only)

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

RETRAN Input/Output

 IV-9 Revision 9

Table IV.2-4 (Cont'd)

Program Unit
Module Number Description

 14 Restart file read on unit 13 is copied to unit 14 up to (but not

including) the data record containing the requested restart
information. From the restart point on, data records are written
as requested through input data. (WRITE Only)

 17 Same as for retran program module above.

 40 Same as for retran program module above.

 60 Same as for retran program module above.

reedit 13 RETRAN-3D restart file containing information for which

printed edits and/or printer plots are created. (READ Only)

20 Temporary file used to store minor edit data that is used to
generate printer plots.

 60 Same as for retran program module above.

(1) Logical file names are given in Tables IV.1-1 and IV.1-2.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

RETRAN Input/Output

Revision 9 IV-10

2.2 One-Dimensional Space-Time Kinetics Data File

The one-dimensional space-time kinetics data file must be supplied when NODEL = 2 (on data
card 01000Y) is specified in the input model. The file is read from Fortran unit 40 and must be
specified using the appropriate job control language. The data file must be in character mode with
each record written with a Fortran-formatted write or equivalent. Thus, a record contains the
information transmitted with each such write command. The expected formats and descriptions
of the file structure are presented in the following sections.

2.2.1 Multiple Control State Control Rod Model

The multiple control state control rod model used by RETRAN-3D contains four types of
information:

C nuclear parameter data for the one-dimensional kinetics equation,

C the control rod fraction data for the control rod model,

C one-dimensional neutron flux and power values corresponding to the nuclear parameter

data and, as an option,

C nuclear parameter upper and lower limit values.

The nuclear parameter data records must contain the initial values and coefficients needed to
calculate the following variables as a function of the feedback quantities and control rod
position:[IV.2-1]

 ß = delayed neutron fraction (dimensionless),

 Ea = absorption cross section (1/cm),

 B2 = buckling (1/cm2),

 D = diffusion coefficient,

 Es = down scatter or removal cross section,

 6Ef = Kappa*Fission cross section,

 LEf = Nu*Fission cross section, and

 V = neutron speed.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

RETRAN Input/Output

 IV-11 Revision 9

The control fraction data following the nuclear parameter data records are a one-dimensional
representation of the rod distribution used to generate the cross- section set normalized as a
fraction between minimum (0.0) and maximum (1.0) control.

The nuclear parameter and control fraction data must be included on the space-time kinetics data
file. The third set of data consisting of point values for the group fluxes and one-dimensional
averaged data from a multi-dimensional nodal code may be replaced with blank records. The
fourth set of data is present on the file only if ILIM = 1 (Word 13 on the space-time kinetics data
card 30000Y).

2.2.2 Cross-Section Data Record Structure

Data records in the cross-section file are organized by control state with the first set assumed to be
the base or initial case. If present, control states having less control than the base case are included
next in order of decreasing control and then any states having more control than the base case are
used only in rod withdrawal sequences and may be omitted if rod insertion is the only allowed
motion. The first record in the data file specifies the number of control states in each category
(having less control and more control than the base case). Also included in the first record are the
number of neutronic regions for which cross sections are defined and the number of mesh points at
which group fluxes are defined. If the number of mesh points is zero, then a blank record must be
included instead for each group flux.

Within each control state, the data are ordered progressively by cross-section type, group number,
and region number. The record structure for the cross-section data is given in Table IV.2-5. for the
base case. Data Records 4 through 17 are repeated for each energy group for Region 1. For the
last, i.e., thermal group, the removal cross-section records are omitted. The sequence of records
beginning at Record 2 is then repeated for each neutronic region.

If the order of the coefficients N1, N2, and N3 is zero, the next record containing the coefficients
should not be supplied. In this case, the value of the cross section will be set to zero in the code.

If the values for a cross section in a controlled state are identical to those for the base case, the
values of N1, N2, and N3 may be set to zero. Data from the corresponding base case cross section
will be copied into the controlled state. The coefficients for the controlled state should not be
supplied.

2.2.3 Control Fraction Data Record Structure

A control fraction must be supplied for each neutronic region in a control state. The control
fraction represents the normalized control rod density as a function of position (region number)
from the bottom of the core excluding reflectors. The record must be written with a
FORTRAN-formatted WRITE or equivalent using 30E16.7 format. This record is a continuation
of the cross-section data file and should immediately follow the coefficient data without an end of
file separator.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

RETRAN Input/Output

Revision 9 IV-12

Table IV.2-5

Cross-Section Data Record Structure
Multiple Control State Model

RECORD 1: Dimensional data for cross-section records.

 N1 - number of rod insertion control states
 N2 - number of rod withdrawal control states
 N3 - 0 (reserved)
 N4 - number of neutronic regions in cross-section set
 N5 - number of mesh points in neutron flux data (5I8 format)

RECORD 2: Order of independent variables for ß coefficients for Region 1.

 N1 - moderator density variable
 N2 - fuel temperature variable
 N3 - moderator temperature variable (3I8 format)

RECORD 3: ß coefficients for Region 1 (30E16.7 format). Number of coefficients in list =

N1*N2*N3.

RECORD 4: Order of independent variables for Ea coefficients for Group 1, Region 1. Zeros

mean next record missing - assume all coefficients are zero.

 N1 - moderator density variable
 N2 - fuel temperature variable
 N3 - moderator temperature variable (3I8 format)

RECORD 5: Ea coefficients for Group 1, Region 1 (30E16.7 format). Number of coefficients =

N1*N2*N3.

RECORD 6: Order of variables for B2 coefficients for Group 1, Region 1 (3I8 format) N1, N2,

and N3.

RECORD 7: B2 coefficients for Group 1, Region 1 (30E16.7 format). Number of coefficients =

N1*N2*N3.

RECORD 8: Order of variables for D coefficients for Group 1, Region 1 (3I8 format) N1, N2,

and N3.

RECORD 9: D coefficients for Group 1, Region 1 (30E16.7 format). Number of coefficients =

N1*N2*N3.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

RETRAN Input/Output

 IV-13 Revision 9

Table IV.2-5 (Cont'd)

RECORD 10: Order of variables for Es coefficients for Group 1, Region 1 (3I8 format) N1, N2,

and N3 (Group 1 only).

RECORD 11: Es coefficients for Group 1, Region 1 (30E16.7 format) (Group 1 only). Number

of coefficients = N1*N2*N3.

NOTE: For the thermal group, i.e., last group, Records 10 and 11 are omitted.

RECORD 12: Order of variables for 6Ef coefficients for Group 1, Region 1 (3I8 format) N1, N2,

and N3.

RECORD 13: 63f coefficients for Group 1, Region 1 (30E16.7 format). Number of coefficients

= N1*N2*N3.

RECORD 14: Order of variables for LEf coefficients for Group 1, Region 1 (3I8 format) N1, N2,

and N3.

RECORD 15: LEf coefficients for Group 1, Region 1 (30E16.7 format). Number of coefficients

= N1*N2*N3.

RECORD 16: Order of variables for V coefficients for Group 1, Region 1 (3I8 format) N1, N2,

and N3.

RECORD 17: V coefficients for Group 1, Region 1 (30E16.7 format). Number of coefficients =

N1*N2*N3.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

RETRAN Input/Output

Revision 9 IV-14

2.2.4 Neutron Flux and Nodal Code Data Record Structure

Neutron fluxes may be supplied with the base case cross-section data to be used as an initial
estimate for the static one-dimensional solution in RETRAN-3D. If present, the number of mesh
points must match the RETRAN-3D one-dimensional geometry specification. Group 1 flux
values are given first for all points, then Group 2 values. Records are written with a
FORTRAN-formulated WRITE or equivalent using a 30E16.7 format.

If group fluxes are not present in the file, a single blank record must be included for each
group. Blank records should be included in place of fluxes for all controlled states.

Additional records (if present) allows averaged one-dimensional data from the upstream nodal
code (such as SIMULATE-E) to be passed on to RETRAN-3D. These data are used for
comparison with similar data from RETRAN-3D. There are four additional records (a value for
each region), containing averaged axial density, averaged power, GROUP1 and GROUP2 fluxes.
Comparisons are currently edited only for the base case. If the nodal code data are not available,
four blank records immediately following the fine mesh fluxes should be included in the
cross-section data file. In this case no comparisons with nodal data can be made, but the
RETRAN-3D averaged data will be printed.

If the fine mesh fluxes are not present in the file, RETRAN assumes that there are no nodal data
supplied. A total of six blank records should be inserted to provide the correct spacing for the
missing records. The first two blank records are for the missing GROUP1 and GROUP2 fine mesh
fluxes discussed above. The remaining four blank records are for the course mesh (nodal) values
of density, power, GROUP1, and GROUP2 course mesh fluxes.

2.2.5 Cross-Section Limit Values

Upper and lower limits for each neutronic parameter can be supplied on the cross- section data
file. The limits are optional and are requested by setting the variable ILIM = 1 (Word 13 on Card
30000Y of the RETRAN input deck). If this option is used, an upper and lower limit must be
supplied for each neutronic parameter for each region and energy group. The cross-section limit
data are a continuation of the cross-section data file following the data for all control states. The
order in which the limits are supplied is described in Table IV.2-6.

2.3 Three-Dimensional Space-Time Kinetics Data Files

The multidimensional kinetics option requires two auxiliary files to support the model. One is an
ASCII file that contains geometries and core layout information used by the upstream physics
codes, and the other file contains the cross-section and physics data required by the
multidimensional kinetics model. These two files are described in this section.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

RETRAN Input/Output

 IV-15 Revision 9

Table IV.2-6

Cross-Section Limit Data Format
Multiple Control State Model

RECORD N+K: Maximum value of ß for Region K. Minimum value of ß for Region K.

 Format: (2E16.7)

RECORD N+K+1: Maximum and minimum values in Region K, Group 1 for Ea, B2, D, Es, 63f,

LEf, V.

 Format: (14E16.7)

RECORD N+K+2: Maximum and minimum values in Region K, Group 2 for Ea, B2, D, 6Ef,

LEf, V.

 Format: (12E16.7)

 .
 .
 .
where N represents the total number of records used to describe the nuclear parameters.

Repeat for K=1 to number of regions.

2.3.1 The CDI File

The ability to design and implement multidimensional kinetics models is highly dependent upon
the coupling of complex computer codes that process neutronics cross sections and core geometric
data. The amount of information is extensive and a manual or non-automated method of
processing the input lends itself to transcription errors or modeling inconsistencies. In
RETRAN-3D, the channel model provides tighter coupling with upstream physics codes to
provide easier, less redundant input methods and reduce sources for input error. The channel
model is described in Section 28.0 of the User's Manual. The data file to support the channel
model is described here.

A key feature of the channel model is an ASCII data file that links the neutronic and thermal-
hydraulic specifications from the CORETRAN[N.2-1] model to the channel model input routines
in RETRAN-3D. It is referred to as the CORETRAN Data Interface (CDI) file and is created by
CORETRAN or an alternate method if CORETRAN is not the upstream core simulator code.
Figure IV.2-1 shows the data flow for the channel model.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

RETRAN Input/Output

Revision 9 IV-16

Engineering
Data

User
Input

Lattice
Physics

CORETRANEngineering Code
Pre-Processor

CDI
File

Channel
Model
Input

XSEC
FileRETRAN-3D

Figure IV.2-1. RETRAN-3D Channel Model Data Flow

The CDI file (FORTRAN Unit 78) augments the RETRAN-3D channel model. It is an ASCII file
containing character, integer, and floating point data that characterize the core model in terms of
geometry, boundary conditions, and thermal-hydraulic definition. The two aspects of the CDI file
are the physics data and the thermal-hydraulic data. The CDI file contains all of the assembly
layout and geometric information required for RETRAN-3D to internally generate volume,
junction, and conductor input for the core region in a specified layout. The CDI file contains
heated lengths, flow areas, wetted perimeters, conductor volumes, and loss coefficients. By
making assumptions about channel connections to the upper and lower plenums, the axial number
of axial nodes, and user-defined core-wide options such enthalpy transport, two-phase flow model
as examples, the new routine GEOM3D generates all necessary volume and junction data internal
to the code.

Table IV.2-7 lists the structure of the CDI file. It is comprised of a number of distinct blocks that
define the multidimensional kinetics and thermal-hydraulics models, flowed by records containing
the block related data. The block header (bold text under block heading) is a text field that
precedes the information that comprises the block.

2.3.2 The Three-Dimensional Kinetics Cross-Section File

The primary source for RETRAN-3D cross sections is the CORETRAN code.[IV.2-1] Recent
versions of CORETRAN have implemented a new cross-section formalism in order to address
reaction types and spectrum issues of interest to fuel management groups. In general, the lattice
information (from CPM-3[IV.2-3] or CASMO[IV.2-4] calculations) is processed by CORETRAN
and at given state points (i.e., point in the burn cycle) a RETRAN-3D cross-section file is written

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

RETRAN Input/Output

 IV-17 Revision 9

Table IV.2-7

CDI File Structure and Content

Block Format Content

TITLE 16A4 Title Field

DIMN A4 Dimension Block Header

 10(1X,I5) W1-I ID Number of columns in the assembly

mesh

 W2-I JD Number of rows in the assembly

mesh

 W3-I KD Number of planes in the assembly

mesh

 W4-I ISYM Symmetry flag for core expansion
 0 = solved as given
 1 = quarter core to half core with

reflection
 2 = quarter core to half core with

rotation
 3 = half core to full core with

reflection
 4 = half core to full core with

rotation
 5 = quarter core to full core with

reflection
 6 = quarter core to full core with

rotation

 W5-I NOFT Number of assembly types

 W6-I NCOMP Number of fuel composition types

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

RETRAN Input/Output

Revision 9 IV-18

Table IV.2-7 (Cont'd)

Block Format Content

 W7-I ICORE Core type
 1 = PWR with top inserted RCC

rods
 2 = BWR with bottom inserted

cruciform rods
 3 = PWR with top inserted

cruciform rods
 4 = BWR with bottom inserted

homogenized rods

 W8-I NDNEUT Number of delayed neutron groups

 W9-I NGPS Number of control rod groups

 W10-I IXBCL Left X-direction boundary

condition
 0 = zero flux at cell edge
 1 = zero current at cell edge
 2 = no return flux at cell edge

 W11-I IXBCR Right X-direction boundary

condition

 W12-I IYBCL Left Y-direction boundary

condition

 W13-I IYBCR Right Y-direction boundary

condition

 W14-I IZBCL Left Z-direction boundary

condition

 W15-I IZBCR Right Z-direction boundary

condition

 W16-I IXSYM Centerline (X = 0.0) assembly

specification
 0, if the assembly at X = 0.0 is a full

assembly
 1, if the assembly at X = 0.0 is a half

assembly

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

RETRAN Input/Output

 IV-19 Revision 9

Table IV.2-7 (Cont'd)

Block Format Content

 W17-I IYSYM Centerline (Y = 0.0) assembly

specification
 0, if the assembly at Y = 0.0 is a full

assembly
 1, if the assembly at Y = 0.0 is a half

assembly

PARM A4 Parameter Block Header

 10(1X,I5) W1-I NLEAKS Leakage approximation to use

during eigenvalue calculation
 1 = truncated leakage

approximation
 2 = BALUNS implicit leakage

treatment
 3 = Gauss-Seidel explicit

treatment (default)

 W2-I NLEAKT Leakage approximation to use

during transient calculation
 1 = truncated leakage

approximation
 2 = implicit before flux iterations
 3 = explicit before flux iterations

(default)
 4 = implicit before flux iterations

plus one update after
NCNCRT-iterations

 5 = explicit before flux iterations
plus one update after
NCNCRT-iterations

 6 = implicit before flux iterations
and after every other inner
iteration pass

 7 = explicit before flux iterations
and after every other inner
iteration pass

 W3-I NOTERS Maximum outer iterations per

reactor iteration (5)

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

RETRAN Input/Output

Revision 9 IV-20

Table IV.2-7 (Cont'd)

Block Format Content

 W4-I MAXOUT Maximum fission source outer

iterations for eigenvalue calculation
(200)

 W5-I MAXRIT Maximum nonlinear iterations (50)

 W6-I NCNCRS Number of inner iterations per outer

in eigenvalue calculation (4)

 W7-I NCNCRT Number of inner iterations per outer

in transient calculation (2)

 W8-I N1CHEB First outer iteration to apply

Chebyshev acceleration (5)

 W9-I N2CHEB Initial order of Chebyshev

polynomial (3)

 W10-I N3CHEB Maximum order of Chebyshev

polynomial (10)

 W11-I NED1 Input editing (No/Yes ~ 0/1) (1)

 W12-I NED2 Rod position editing
 (No/Every edit internal/Every time

step ~ 0/1/2) (1)

 W13-I NED3 Average radial and axial power

distribution editing
 (No/Every edit interval/Every time

step ~ 0/1/2) (1)

 W14-I NED4 Flux distribution editing
 (No/Every edit interval/Every time

step ~ 0/1/2) (0)

 W15-I NED5 Feedback variable editing
 (No/Every edit interval/Every time

step ~ 0/1/2) (0)

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

RETRAN Input/Output

 IV-21 Revision 9

Table IV.2-7 (Cont'd)

Block Format Content

 W16-I NED6 All T/H variable editing
 (No/Every edit interval/Every time

step ~ 0/1/2) (0)

 W17-I NED7 Precursor concentration or XISP

number of density editing
 (No/Every edit interval/Every time

step ~ 0/1/2) (0)

 W18-I NED8 Nodal cross section and

K-infinitives
 (No/Every edit interval/Every time

step ~ 0/1/2) (0)

 W19-I NED9 Nodal relative power distribution
 (No/Every edit interval/Every time

step ~ 0/1/2) (0)

 W20-I NED11 3-D nodal ADFs
 (No/Every edit interval/Every time

step ~ 0/1/2) (0)

 W21-I NED14 Auxiliary editing
 (No/Every edit interval/Every time

step ~ 0/1/2) (0)

 W22-I ISPECK Truncated leakage treatment for

nodes in radial zero flux boundary
corners. This helps to achieve a
positive flux at reactor edge.

 < 0, skip
 > 0, activate (default)

 W23-I NFEDEX Feedback variable extrapolation

option
 0 = no extrapolation (default)
 1 = linear
 2 = geometry
 3 = quadratic

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

RETRAN Input/Output

Revision 9 IV-22

Table IV.2-7 (Cont'd)

Block Format Content

 W24-I NADJNT Option to calculate the adjoint flux

(No/Yes ~ 0/1) (0)

 W25-I IXTRP Option to allow extrapolation on

moderator density when calculating
nodal cross section

 (No/Yes ~ 0/1)

PAR1 A4 Parameter Block 1 Header

 10(1X,1P,E12.5) W1-R EIGUES Initial guess for eigenvalues (1.0)

 W2-R POWRIN Total problem power (MWth) at

initial condition (1.0)

 W3-R THETAF Flux equation time-differencing
parameter (1.0)

 W4-R THETAP Precursor equation

time-differencing parameter (0.5)

 W5-R CONEIG Eigenvalue convergence criterion
based on consecutive change
(1.0E-5)

 W6-R CONDEG Eigenvalue derivative test criterion

(1.0E-5)

 W7-R CONSRS Pointwise convergence criterion for
S.S. fission source distribution
(1.0E-3)

 W8-R CONSRT Pointwise convergence criterion for

transient neutronics calculation
(1.0E-3)

 W9-R CONPOW Pointwise convergence criterion for

reactor iteration for the
thermal-hydraulic calculations.
CONPOW > CONSRT is required.
(0.01)

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

RETRAN Input/Output

 IV-23 Revision 9

Table IV.2-7 (Cont'd)

Block Format Content

 W10-R ACCSIG Input value to use for sigma-bar in

Chebyshev acceleration. If not
supplied the code will estimate
adaptively as often as necessary.

 W11~W16 Nonstandard value for the "al-ratio"

at the ends of axes. The "al-ratio" is
the ration of the transverse leakage
in the node adjacent to the outside
boundary over the transverse
leakage in the last interior node.

 W11-R ALRXL At the left end of X-axis (+1.0 for

IXBCL = 1; -1.0 for IXBCL = 0)

 W12-R ALRXR At the right end of X-axis (+1.0 for

IXBCR = 1; -1.0 for IXBCR = 0)

 W13-R ALRYL At the left end of Y-axis (+1.0 for

IYBCL = 1; -1.0 for IYBCL = 0)

 W14-R ALRYR At the right end of Y-axis (+1.0 for

IYBCR = 1; -1.0 for IYBCR = 0)

 W15-R ALRZL At the left end of Z-axis (+1.0 for

IZBCL = 1; -1.0 for IZBCL = 0)

 W16-R ALRZR At the right end of Z-axis (+1.0 for

IZBCR = 1; -1.0 for IZBCR = 0)

 W17-R CONDIF Convergence criterion in watts/cc

for the reactor iteration scheme. An
input value of 0.0 will turn off this
option. (0.5)

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

RETRAN Input/Output

Revision 9 IV-24

Table IV.2-7 (Cont'd)

Block Format Content

PAR2 A4 Parameter Block 2 Header

 10(1X,I5) W1-I NCOL Number of nodes in X-direction in

neutronics mesh

 W2-I NROW Number of nodes in Y-direction in

neutronics mesh

 W3-I NPLN Number of nodes in Z-direction in

neutronics mesh

 W4-I IDIAG Diagonal symmetry indicator for

the X-Y plane
 (0 = not symmetric;
 1 = symmetric)

 W5-I IFADF Flag for the existence of assembly

discontinuity factors
 (0 = no; 1 = yes)

 W6-I IFROD Flag for the existence of control

rods (0 = no; 1 = yes)

LIMT A4 Limit Block Header

 10(1X,I5) W1-I NXLIM1 Minimum power producing node in

X-direction (> 1)

 W2-I NXLIM2 Maximum power producing node in

X-direction (< NCOL)

 W3-I NYLIM1 Minimum power producing node in

Y-direction (> 1)

 W4-I NYLIM2 Maximum power producing node in

Y-direction (< NROW)

 W5-I NZLIM1 Minimum power producing node in

Z-direction (> 1)

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

RETRAN Input/Output

 IV-25 Revision 9

Table IV.2-7 (Cont'd)

Block Format Content

 W6-I NZLIM2 Maximum power producing node in

Z-direction (< NPLN)

 W7-I KQCORE Denotes quarter, half, or full core

problem.
 0 = quarter core
 1 = half core, full X-dimension
 2 = half core, full Y-dimension
 3 = full core

RODL A4 Rod Layout Block Header

 2(1X,I5) W1-I NGPS Number of control rod groups

 W2-I LL Length of control rod group data in

this block (including all contents)

 10(1X,I5) W1-I NRODGP(1) Number of control rods in group 1
 . . .
 . . .
 . . .
 WNGPS-I NRODGP(NGPS) Number of control rods in group
 NUPS (cm)

 10(1X,1P,E12.5) W1-R TIPGP(1) Tip position of the control rods in

group 1 (cm)
 . . .
 . . .
 . . .
 W(NGPS)-R TIPGP(NGPS) Tip position or control rods in

group NUPS (cm)

 Tip position is measured from bottom of neutronics mesh.

 10(1X,I5) W1-I X(1,k) X-coordinate of the first control rod

in group k

 W2-I Y(1,k) Y-coordinate of the first control rod

in group k

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

RETRAN Input/Output

Revision 9 IV-26

Table IV.2-7 (Cont'd)

Block Format Content

 W3-I X(2,k) X-coordinate of the second control

rod in group k

 W4-I Y(2,k) Y-coordinate of the second control

rod in group k
 . . .

 . . .
 . . .

 W(2*NRODGP(k))-I Y-coordinate of the last control rod
in group k (k = 1 to NGPS)

XMSH A4 X Mesh Block Header

 10(1X,1P,E12.5) W1-R XMSH(1) Size of the first neutronics mesh in

X-direction (cm)
 . . .
 . . .
 . . .
 W(NCOL)-R XMSH(NCOL) Size of the last neutronics mesh in

X-direction (cm)

YMSH A4 Y Mesh Block Header

 10(1X,1P,E12.5) W1-R YMSH(1) Size of the first neutronics mesh in

Y-direction (cm)
 . . .

 . . .
 . . .
 W(NROW)-R YMSH(NROW) Size of the last neutronics mesh in

Y-direction (cm)

ZMSH A4 Z Mesh Block Header

 10(1X,1P,E12.5) W1-R ZMSH(1) Size of the first neutronics mesh in

Z-direction (cm)
 . . .
 . . .
 . . .
 W(NPLN)-R ZMSH(NPLN) Size of the last neutronics mesh in

Z-direction (cm)

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

RETRAN Input/Output

 IV-27 Revision 9

Table IV.2-7 (Cont'd)

Block Format Content

CTCM A4 CORETRAN Channel Layout Block Header

 50(1X,I5) W1-I CTCM(1,j)
 . . CORETRAN channel layout. Each
 . . powered assembly has a unique
 . . channel number. Non-powered
 W(ID)-I CTCM(ID, j) assemblies are defined so that their

channel number is 0. ID is the
number of columns.

 Repeated for the JD rows (j = 1,JD)

The following are thermal-hydraulic geometry data groups

Problem Dimension Data The data are written as one item per record.

 (/////,2X,20A4,/ TH Problem Title
 /,2X,I5, W1-I NCHANV Number of Active (heated)

Channels
 /,2X,I5, W1-I NBYP Number of Bypass Channels

(currently limited to 0 or 1)
 /,2X,I5, W1-I NZHEAT Number of Heated Axial Planes
 /,2X,I5, W1-I NNODEI Number of Unheated Inlet Planes
 /,2X,I5, W1-I NNODEO Number of Unheated Outlet Planes
 /,2X,I5, W1-I NGEOMV Number of Volume/Conductor

Geometries
 /,2X,I5, W1-I NGEOMJ Number of Junction Geometries
 /,2X,I5, W1-I NFUELV Number of Fuel Geometries
 /,2X,I5, W1-I NMATV Number of Material Properties

(reserved for future use)
 /,2X,I5, W1-I NFIBWR Number of FIBWR Leakage

Definitions
 /,2X,I5, W1-I NWTUBE Number of Water Tube Geometries
 /,2X,I5, W1-I NSETLS Number of Grid Loss Coefficient

Sets
 /,2X,F11.6,//) W1-R DXHEAT Total heated length of the core (ft)

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

RETRAN Input/Output

Revision 9 IV-28

Table IV.2-7 (Cont'd)

Block Format Content

Axial Node Lengths The data are written in groups of six per record. Number of nodes is equal to
total number of axial planes (NP = NZHEAT + NNODEI + NNODEO). The first node is written
in I7 format, the other nodes are I5.

 (I7 W1-I NN(1) Node Number
 F10.6 W2-R FLCH(1) Node 1 Heated Length (ft)
 I5 W3-I NN(2) Node Number
 F10.6 W4-R FLCH(2) Node 2 Heated Length (ft)
 .
 .
 I5 W(2NP-1)-I NN(NP) Node Number
 F10.6) W(2NP)-R FLCH(NP) Node NP Heated Length (ft)

 (///) (Skip)

Channel Summary Data Each record represents a thermal-hydraulic channel. Total number of
records is equal to total number of channels represented (NC = NCHANV + NBYP). If a bypass
channel is included, it is assumed to be the last channel. Each index defines the specific geometry
block to use for each channel.

 (6(4X,I3),3X,3E15.6) W1-I NCHN Channel Number
 W2-I IDVOLG Volume/Conductor Geometry

Index
 W3-I IDJUNG Junction Geometry Index
 W4-I IDFUEL Fuel Geometry Index
 W5-I IDWATT Water Tube Geometry Index
 W6-I IDLLCK FIBWR Lateral Leakage Path

Definition Index
 W7-R WJUN Channel Flow, channel inlet flow

normalized to total core flow (used
for steady state initial guess)

 W8-R WLCK Bundle-to-Bypass Leakage Flow,
normalized to channel inlet flow
(used for steady state initial guess)

 W9-R WWAT Water Tube Flow, normalized to
channel inlet flow (used for steady
state initial guess)

 .
 .
 .
 Repeat this sequence for NC channels of data.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

RETRAN Input/Output

 IV-29 Revision 9

Table IV.2-7 (Cont'd)

Block Format Content

Volume/Conductor Geometry This data represents the volume and conductor geometry. There
is one set for each volume/conductor geometry type up to NGEOMV sets as specified in the
problem dimension data. Each set contains data for every axial plane from 1 to NP (NP =
NNODEV + NNODEI + NNODEO).

 (/,26X,I2,////) W1-I INDEXV Volume Geometry Index

 (I7,5E15.6) W1-I LEVEL Level Number
 W2-R FAREA Flow Area (ft2)
 W3-R WETPE Wetted Perimeter (ft)
 W4-R HETPE Heated Perimeter (ft)
 W5-R CDVOL Conductor Volume (ft3)
 W6-R WROUGH Surface Roughness
 .
 .
 Repeat for NP axial levels

This group is repeated for NGEOMV sets.

Junction Geometry This data represents the junction (or cell boundary) geometry. There is one
set for each junction geometry type up to NGEOMJ sets as specified in the problem dimension
data. Each set contains data for every axial junction level from 1 to NJ (NJ = NNODEV +
NNODEI + NNODEO + 1).

 (/,28X,I2,////) W1-I INDEXJ Junction Geometry Index

 (I7,4E15.6) W1-I LEVEL Level Number
 W2-R FAREA Flow Area (ft2)
 W3-R WETPE Wetted Perimeter (ft)
 W4-R FWLOSS Forward Loss Coefficient
 W5-R BWLOSS Reverse Loss Coefficient (0.0

defaults to forward loss coefficient)
 . (Negative forward coefficients are
 . used to activate the grid loss
 Repeat for NJ axial levels model. INT (ABS (FWLOSS))

defines the grid loss coefficient set
to use.)

This group is repeated for NGEOMJ sets.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

RETRAN Input/Output

Revision 9 IV-30

Table IV.2-7 (Cont'd)

Block Format Content

Fuel Pin Geometry This data provides the geometric data for NFUELV geometries.

 (////,2I7,2E15.6,///) W1-I Fuel Geometry Number
 W2-I Number of Material Regions. Typically three regions

are used to represent fuel, gap, and cladding.
 W3-R Radius to Left Surface (0.0 for solid fuel)
 W4-R Gap Conductance (reserved for future use)
 Multiple region descriptions can be used to define the

fuel or cladding regions. This is useful if different
noding or material properties are needed.

The following data are used to provide geometric and power information for the material regions
(i.e., fuel, gap, and cladding) for the RETRAN-3D conduction solution.

 (3(4X,I3),2E15.6) W1-I Gap Indicator (0 - no, 1- yes)
 W2-I Material Property table index (material properties are

defined in the base RETRAN-3D input)
 W3-I Number of regions for conduction solution (typically

6-fuel, 1-gap, and 2-cladding)
 W4-R Region Width (ft)
 W5-R Region Power fraction, where 1.0 indicates 100% of

the pin power is generated in this region. If multiple
regions are defined for the fuel region, the power
frictions must sum to 1.0.

 .
 .
 Repeat until all regions are described.

This group is repeated for NFUELV sets.

FIBWR Leakage Data This data set is required if FIBWR leakage paths are being modeled
(NFIBWR > 0 in problem dimensions data). There are four sub-groups of data.

 FIBWR Dimension Data. FIBWR dimensions and constants.

 (//,2X,I5, W1-I NPBND Number of Lateral

Bundle-to-Bypass Leakage Paths
(maximum of 9)

 /,2X,I5, W1-I NPCOM Number of Leakage Paths across
the Core Support Plate

 /,2X,F11.5, W1-R FCROD Control Rod Drive Coolant Flow
Rate (lbm/hr)

 /,2X,F11.5) W1-R RHOREF Reference Coolant Density
(lbm/ft3)

 (///) (Skip)

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

RETRAN Input/Output

 IV-31 Revision 9

Table IV.2-7 (Cont'd)

Block Format Content

 FIBWR Coefficients for Bundle-to-Bypass Paths. One set for each leakage path

 (I7,1P,6E15.6) W1-I IPATH Path Number
 W2-R C1B Coefficient C1
 W3-R C2B Coefficient C2
 W4-R C3B Coefficient C3
 W5-R C4B Coefficient C4
 W6-R BPPER Multiplication Factor (number

paths of this type)
 W7-R BELEV Path Elevation (referenced to the

bottom of channel)

 Repeat until NPBND sets are defined.

 (//) (Skip)

 FIBWR Coefficients for Core Support Plate Paths. One set for each leakage path

 (I7,1P,5E15.6) W1-I IPATH Path Number
 W2-R C1C Coefficient C1
 W3-R C2C Coefficient C2
 W4-R C3C Coefficient C3
 W5-R C4C Coefficient C4
 W6-R CPPER Multiplication Factor (number of

paths of this type)

 Repeat until NPCOM sets are defined.

 (///) (Skip)

Lateral Leakage Path Channel Assignment. This table defines the lateral
(bundle-to-bypass) leakage paths that are used for a channel type. Each record defines a
definition that can be referenced from the channel summary data block

 (I8,5X,I3,4X,9I5) W1-I Index Number (referenced by IDLLCK in channel

summary data)
 W2-I Number of Lateral Leakage Path for this definition
 W3-I Lateral Leakage Path 1 (0-do not use, 1-use)
 W4-I Lateral Leakage Path 2 (0-do not use, 1-use)
 . .
 . .
 . .
 W11-I Lateral Leakage Path 9 (0-do not use, 1-use)

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

RETRAN Input/Output

Revision 9 IV-32

Table IV.2-7 (Cont'd)

Block Format Content

Water Tube Geometry Data This data defines the volume and junction geometry for each water
tube type. There is data representing the water tube channel, the inlet junction, and the outlet
junction. Each set is repeated for the Number of Water Tube Geometries, NWTUBE, specified in
the problem dimensions data.

 (/,28X,I3,////) W1-I IWAT Water Tube Geometry Type

 (2E15.6, W1-R WTAREA Water Tube Flow Area (ft2)
 W2-R WTWTPE Water Tube Wetted Perimeter (ft)

 /,4E15.6, W1-R FAREAI Inlet Flow Area (ft2)
 W2-R WETPEI Inlet Wetted Perimeter (ft)
 W3-R FLOSSI Inlet Loss Coefficient
 W4-R ELEVNI Inlet Elevation (ft) (referenced to

bottom of channel)

 /,4E15.6) W1-R FAREAO Outlet Flow Area (ft2)
 W2-R WETPEO Outlet Wetted Perimeter (ft)
 W3-R FLOSSO Outlet Loss Coefficient
 W4-R ELEVNO Outlet Elevation (ft) (referenced to

bottom of channel)

This group is repeated for NWTUBE geometry types.

 (//) Skip

Grid Loss Model Data The data defines the coefficients for the grid loss model. NSETLS sets of
coefficients must be provided in the CDI file.

 (4X,I3, W1-I LSET Coefficient set number |LSET|
 > 0, Use Eq. IV.31-1 in Volume 3
 < 0, Use Eq. IV.31-2 in Volume 3

 1P,4E15.6) W2-R COEFA Coefficient A
 W3-R COEFB Coefficient B
 W4-R COEFC Coefficient C
 W5-R COEFD Coefficient D

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

RETRAN Input/Output

 IV-33 Revision 9

that contains instantaneous cross dependancies. That is, the cross-section dependancies for that
are instantaneous. No intermediate processing codes are needed.

The RETRAN-3D cross-section file (FORTRAN Unit 68) is written at the end of a CORTRAN
"burn" calculation. The RETRAN-3D model is identical in format and in functionality with the
one used by CORETRAN, but the historical dependancies have been removed. That is, the
RETRAN-3D model only contains the "instantaneous" dependancies, such as fuel temperature,
moderator density, control fraction, or boron concentration. This reduces the size of the file as
well as the cross-section calculation time for the transient analysis cases.

The cross-section functionality that forms the basis for the CORETRAN model is given by the
following expression:

 3 = 3 (EXP, TFH, DMH, CTH, BPH, ..., TF, DM, CT, B, ...) (IV.2-1)

The group given by W1 through W5 is repeated for NSETLS coefficient sets.

where the independent variables can be either historic or instantaneous as defined in Table IV.2-8.
As a way of accounting for the contribution of each individual physical effect, the cross-section
functionality is expressed by the following general sum of components:

 3 = 3base (EXP, DMH) + 3ai)3i (EXP, TFH, DMH, CTH, BPH, ..., TF, DM, CT, B, ...)
 = 3base (EXP, DMH) + a1)3 (EXP, DMH, CTH) + a2)3 (EXP, DMH, BPH)
 + aj)3 (EXP, DMH, TF) + al)3 (EXP, DMH, DM)
 + am)3 (EXP, DMH, CT) + an)3 (EXP, DMH, B) + ... (IV.2-2)

where ai ,)3i represent the several models involved: control rod history contribution, burnable
poison history contribution, and Doppler contribution. The advantage of this cross-section
treatment is that it can be easily extended to include other phenomenon that users may request to
model such as the interaction between the Doppler and moderator density effects.

During a burn calculation for a given depletion point CORETRAN will prepare a table of the
contributions of each effect as shown in the table below. Each cross-section set (S or DS) contains
information about: (a) two-group cross sections , (b) kinetics parameters, (c) assembly
discontinuity factors (ADF), and (d) lattice pin power distributions.

The cross-section file for RETRAN-3D includes the core dimensions; core fuel loading
information; nodal atom densities of Xenon, Iodine, Samarium, and Promethium; and a
three-dimensional nodal cross-section database. The fuel loading and depletion data must be
obtained from a multidimensional core simulation code such as CORETRAN[IV.2-1] or
SIMULATE-3,[IV.2-5] and the nodal cross-section database must be generated based on the
cross-section data from lattice analysis codes such as CPM-3[IV.2-3] or CASMO-4.[IV.2-4] It
contains two energy groups for diffusion theory constants and kinetics data.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

RETRAN Input/Output

Revision 9 IV-34

Table IV.2-8

Cross-Section Model Independent Variables

 Type Variable Description

 Historic EXP Exposure
 TFH Fuel temperature history
 DMH Moderator density history
 CTH Control rod history
 BPH Burnable poison history

 Instantaneous TF Instantaneous fuel temperature
 DM Instantaneous moderator density
 CT Actual control state
 B Soluble boron concentration

The cross-section file used by the multidimensional kinetics option is binary. Example
FORTRAN statements that show how the file is written follow.

 WRITE(21) BXFTTL
 WRITE(21) NFUEL, NDEPL, NBRNCH, NXSEC, NINDP, NREC, NSTICK,
 & NCOL, NROW, NPLN, LAXMX, IDIM10, IDIM11
 WRITE(21) ((PROPR(I,J),I=1,10),J=1,NFUEL)
 WRITE(21) ((IPROPR(I,J),I=1,10),J=1,NFUEL)
 WRITE(21) ((DIMNS(I,J),I=1,NINDP),J=1,NFUEL)
 WRITE(21) (((COORD(I,J,K),I=1,NDEPL),J=1,NINDP),K=1,NFUEL)
 WRITE(21) (((ICOMP(1,I,J,K),I=1,NCOL),J=1,NROW),K=1,NPLN)
 WRITE(21) ((IAMAP(1,I,J),I=1,NCOL),J=1,NROW)
 WRITE(21) ((IQMAP(1,I,J),I=1,NCOL),J=1,NROW)
 WRITE(21) ((IASMAP(1,I,J),I=1,NCOL),J=1,NROW)
 WRITE(21) (AXMX(L),L=1,LAXMX)
 WRITE(21) ((((TABLE(I,J,K,L),I=1,NXSEC),J=1,NREC),K=1,NSTICK),L=1,NPLN)
 IF(IDIM10 .EQ. 2) THEN
 WRITE(21) ((IASMAP(1,I,J),I=1,NCOL),J=1,NROW)
 WRITE(21) ((IASMAP(1,I,J),I=1,NCOL),J=1,NROW)
 ENDIF
 IF(NINDP .LT. 0) THEN
 DO L = 1, NPLN
 DO K = 1, NSTICK
 DO J = 1, NROW
 WRITE(21)(TABLE(I,J,K,L),I=1,NXSEC)
 ENDDO
 ENDDO
 ENDDO
 ELSE
 WRITE(21) ((((TABLE(I,J,K,L),I=1,NXSEC),J=1,NREC),K=1,NSTICK),L=1,NPLN)
 ENDIF
 WRITE(21) ((((AXISP(L,I,J,K),L=1,4),I=1,NCOL),J=1,NROW),K=1,NPLN)

As shown above, the cross-section file is written as a binary file. Subroutine DRIVE1 reads the
title and dimensions and reserves the required memory space in FTB. Subroutine GETXSEC is
used to read the rest of the file. Table IV.2-9 describes the content of the file.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

RETRAN Input/Output

 IV-35 Revision 9

Table IV.2-9

Multidimensional Kinetics Cross-Section File Structure

Title

BXFTTL Title and CORETRAN version and creation date (128 Bytes).

Variables

NFUEL Number of fuel composition types.
NDEPL Number of depletion steps.
NBRNCH Number of branch points for an independent variable.
NXSEC Number of variables in a set of nodal cross-section data.
NINDP Number of independent variables.
NREC Total number of branch records for a composition type.
NSTICK Number of distinct assembly types.
NCOL Number of columns in problem geometry.
NROW Number of rows in problem geometry.
NPLN Number of axial planes in problem geometry.
LAXMX Length of the AXMX array
IDIM10 Flag for assembly radial nodalization (1:1 node/assembly; 2:2x2 nodes/assembly)
IDIM11 Indicator of quadrant dependency for 2x2 nodes/assembly

Note: NINDP < 0 is used as a flag to indicate the new BXF format: |NINDP| is used in
RETRAN-3D. If NINDP < 0 then the table array is written as multiple records as shown on Page
IV-38.

Arrays

PROPR(I,J) FUEL LOADING INFORMATION
 I=1 FLOAD Initial Fuel Loading (KgU/cm)
 I=2 PRESS System Pressure (psia)
 I=3 DMREF Reference Moderator Density or Void Fraction
 I=4 TFREF Reference Fuel Temperature
 I=5 BORREF Reference Soluble Boron Concentration
 I=6 PBPREF Reference Burnable Poison
 I=7 TCOLD Cold Condition
 I=8 Reserved for future use
 I=9 Reserved for future use
 I=10 Reserved for future use

 J=1 to NFUEL

Note: Only I=1, 3, 4, and 5 are used by the current RETRAN-3D cross-section model.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

RETRAN Input/Output

Revision 9 IV-36

Table IV.2-9 (Cont'd)

FLOAD = -1000.0 is used as a flag to indicate data converted from an ARROTTA style
cross-section file (TAPE67).

IPROPR(I,J) FUEL LOADING INFORMATION
 I=1 NFTYP Fuel Composition Type
 I=2 LTYPE 0 if BWR, 1 if PWR Fuel
 I=3 IREF 0 if Fuel, 1 if Reflector
 I=4 NROWS Number of rows of fuel pins in lattice geometry
 I=5 ISYMM 1 if all the pins are represented, 2 if half (lower left half), 4 if

quarter (SE quadrant), 8 if eighth (lower left diagonal of SE
quadrant)

I=6 NTOTAL Total set size for lattice data file
I=7 NREV Not used
I=8 IQUAD Quadrant dependencies for 2x2 FA/node
I=9 NXP1 Not used
I=10 Reserved for future use

 J=1 to NFUEL

Note: 7, 9, and 10 are not used by the current RETRAN-3D cross-section model.

DIMNS(I,J) Number of branches in the table for the i-th independent variable and the

j-th composition type.
 I=1 to NINDP
 J=1 to NFUEL

COORD(I,J,K) The i-th branch point value of the j-th independent variable for the k-th

composition type.
 I=1 to NBRANCH
 J=1 to NINDP
 K=1 to NFUEL

ICOMP(I,J,K) Integer value containing the composition type correspondence for each neutronics

node.
 I=1 to NCOL
 J=1 to NROW
 K=1 to NPLN

IAMAP(I,J) Assembly Discontinuity Factor Orientation.
 I=1 to NCOL
 J=1 to NROW

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

RETRAN Input/Output

 IV-37 Revision 9

Table IV.2-9 (Cont'd)

IQMAP(I,J) Index pointing to the location (i,j) in the 2-D assembly map. (The

maximum magnitude of IDQMAP(I,J) is NSTICK).
 I=1 to NCOL
 J=1 to NROW

IASMAP(I,J) Integer value containing the assembly type. Here the assemblies are

distinguished based on the axial fuel compositions only.
 I=1 to NCOL
 J=1 to NROW

AXMX(LAXMX) Array containing axial mixing information. AXMX consists of NOFT

blocks (NOFT: Number of assembly types - according to IASMAP).
 Entries in each block:
 1 Assenbly type
 2*K The absolute value of which is the composition type number for the

K-th axial node
 >0, Mixing with the node above
 <0, Mixing with the node below
 2*K+1 Mixing factor for the K-th axial node

ISMAP1(I,J) Quadrant Position if 2x2 nodes/assembly (IDIM10=2).
 I=1 to NCOL
 J=1 to NROW

ISMAP2(I,J) Quadrant ADF Direction Position if 2x2 nodes/assembly (IDIM10=2).
 I=1 to NCOL
 J=1 to NROW

TABLE(I,J,K,L) Nodal cross-section and kinetics data in the table.
 I=1 to NXSEC
 J=1 to NREC
 K=1 to NSTICK
 L=1 to NPLN

NXSEC Number of variables in a set of nodal cross-section data.

AXISP(L) Array of nodal XISP (Xenon, Iodine, Samarium, Promethium)

concentrations.
 L=1 to LNXISP

LNXISP Length of AXISP array (4 x NCOL x NROW x NPLN).

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

RETRAN Input/Output

Revision 9 IV-38

Currently 53 different data types (or variables) are included in the TABLE array (the I index).
Table IV.2-10 provides a description of these data types.

2.4 Optional Output Data Files

Users have the option of creating several output data files. They include the auxiliary data file and
the VIPRE-01 boundary condition (VBC) file. They are discussed separately below.

2.4.1 Auxiliary Data File

The RETRAN, RESTRT, and REEDIT program modules provide users with the option to write
the minor edit parameters to an auxiliary file. Each record in the auxiliary file will consist of the
parameters requested as minor edits (time is not automatically included and must be requested)
and are written in the order requested. The file will contain only the records written during the
current job, so files generated during restart problems will begin at the restart time.

The auxiliary data file is written to FORTRAN Unit 60 and can be either a formatted or binary file.
Users supply the format as input data when the formatted option is used. For both formatted and
binary files, the record format is variable length.

2.4.2 VIPRE-01 Boundary Conditions (VBC) Data File

The VBC file generated by RETRAN-3D contains data to provide transient boundary conditions
for a subsequent VIPRE-01 calculation. The file structure includes a header section followed by
data records representing each discrete time. The record frequency is controlled by variable
TVBC on the time-step data cards, 03XXX0. The contents of the VBC file is partially controlled
by the input provided on VIPRE-01 boundary conditions card, 026000Y. The user specifies the
volume, junction, and control blocks for which data is to be written. Pressure and enthalpy is
written for each volume, flow and flowing enthalpy for each junction, and control block output for
each control block specified. The VBC also contains the RETRAN-3D code version and
installation date, the problem title, and the time and date of the run that created the VBC file. Data
records also include the transient time, normalized power, and direct moderator heating fraction.
Core section elevations, power fractions, and core heat conductor heat fluxes are automatically
included in the file.

The file structure includes a header section followed by a data record for each discrete time. The
format of the VBC file is defined in Table IV.2-11 and a sample VBC file is shown in Table
IV.2-12. Note that the data record section of sample VBC file (Table IV.2-12) is shown as four
separate blocks, although, the file uses a single line for each data record.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

RETRAN Input/Output

 IV-39 Revision 9

Table IV.2-10

Multidimensional Cross-Section File TABLE Array Data Types

 Index I Data Type Description

 01 Fast diffusion coefficient

02 Fast macroscopic absorption x-section
 03 Fast macroscopic removal x-section
 04 Fast macroscopic nu*fission x-section
 05 Fast macroscopic kappa*fission x-section
 06 Thermal diffusion coefficient
 07 Thermal macroscopic absorption x-section
 08 Thermal macroscopic nu*fission x-section
 09 Thermal macroscopic kappa*fission x-section
 10 Fast nu
 11 Thermal nu
 12 Xenon fast microscopic absorption x-section
 13 Xenon thermal microscopic absorption x-section
 14 Xenon decay constant
 15 Xenon fission yield
 16 Iodine fast microscopic absorption x-section
 17 Iodine thermal microscopic absorption x-section
 18 Iodine decay constant
 19 Iodine fission yield
 20 Samarium fast microscopic absorption x-section
 21 Samarium thermal microscopic absorption x-section
 22 Samarium decay constant
 23 Samarium fission yield
 24 Promethium fast microscopic absorption x-section
 25 Promethium thermal microscopic absorption x-section
 26 Promethium decay constant
 27 Promethium fission yield
 28 Inverse fast-group velocity
 29 Inverse thermal-group velocity
 30 Precursor group 1 neutron fraction
 31 Precursor group 1 decay constant
 32 Precursor group 2 neutron fraction
 33 Precursor group 2 decay constant
 34 Precursor group 3 neutron fraction
 35 Precursor group 3 decay constant
 36 Precursor group 4 neutron fraction
 37 Precursor group 4 decay constant
 38 Precursor group 5 neutron fraction

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

RETRAN Input/Output

Revision 9 IV-40

Table IV.2-10 (Cont'd)

 Index I Data Type Description

 39 Precursor group 5 decay constant
 40 Precursor group 6 neutron fraction
 41 Precursor group 6 decay constant
 42 East-side fast ADF
 43 East-side thermal ADF
 44 South-side fast ADF
 45 South-side thermal ADF
 46 West-side fast ADF
 47 West-side thermal ADF
 48 North-side fast ADF
 49 North-side thermal ADF
 50 Top-side fast ADF
 51 Top-side thermal ADF
 52 Bottom-side fast ADF
 53 Bottom-side thermal ADF

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

RETRAN Input/Output

 IV-41 Revision 9

Table IV.2-11

VBC File Format

 Line # Description Format

Header Section

 1 RETRAN Title A80

 2 Date/Time/Version A8, 2X, A8, 2X, A32

 3 Number of Volumes Included (NVOLBC) I14

 4 Volume Number(s) NVOLBC * I14

 5 Number of Junctions Included (NJUNBC) I14

 6 Junction Number(s) NJUNBC * I14

 7 Number of Control Blocks Included (NOUTBC) I14

 8 Control Block Identifier(s) NOUTBC * I14

 9 Number of Core Sections (NCORE) I14
 In RETRAN-3D Problem

 10 Core Section Number(s) NCORE * I14

 11 Comment Line (elevations) NA

 12 Core Section Elevation(s) NCORE * E14.6

 13 Comment Line (record headings) NA

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

RETRAN Input/Output

Revision 9 IV-42

Table IV.2-11 (Cont’d)

 Heading Description Units

Data Record Section (one line per record, format = E14.6)

 TIMX RETRAN-3D Transient Time (sec)

 PNRM Normalized Core Power (-)

 DMHF Direct Moderator Heating Fraction (-)

 PRES Volume Pressure (psia)
 HW** Volume Specific Enthalpy (Btu/lbm)
 …
 … (PRES and HW** repeated for NVOL volumes)

 Note: The junction and control block entries shown below may be absent if

NJUNBC or NOUTBC are zero.

 WP** Junction Mass Flow Rate (lbm/sec)
 HFLO Junction Flowing Enthalpy (Btu/lbm)
 …
 … (WP** and HFLO repeated for NJUN junctions)

 COUT Control Block Output (-)
 … (COUT repeated for NOUT control blocks)

 QFRA Core Section Power Factor (-)
 … (QFRA repeated for NCORE Core Sections)

 PHIR Core Section Heat Flux (Btu/hr-ft2)
 … (PHIR repeated for NCORE Core Sections)

Total words per record = 3 + 2 * (NVOLBC + NJUNBC + NCORE) + NOUTBC

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

RETRAN Input/Output

 IV-43 Revision 9

Table IV.2-12

Sample VBC File

UNCONTROLLED ROD WITHDRAWAL -- RETRAN SAMPLE PROBLEM
30/10/03 07:37:58 RETRAN-3D/MOD003.1 28/08/01 EPRI
 2 VOLUMES(S)
 1 12
 2 JUNCTION(S)
 13 12
 3 CONTROL BLOCK(S)
 -10 3 -19
 3 CORE SECTION(S)
 1 2 3
 CORE SETION ELEVATIONS
 2.000000E+00 6.000000E+00 1.000000E+01
 TIMX 0 PNRM 0 DMHF 0 PRES 1 HW** 1
 0.000000E+00 1.000000E+00 1.214575E-02 2.241659E+03 6.228420E+02
 5.000000E-02 1.003753E+00 1.214575E-02 2.241661E+03 6.228420E+02
 1.000000E-01 1.007793E+00 1.214574E-02 2.241666E+03 6.228420E+02
 2.000000E-01 1.016144E+00 1.214569E-02 2.241695E+03 6.228423E+02
 3.000000E-01 1.024901E+00 1.214562E-02 2.241767E+03 6.228433E+02
 4.000000E-01 1.033928E+00 1.214542E-02 2.241878E+03 6.228454E+02
 5.000000E-01 1.043269E+00 1.214509E-02 2.242025E+03 6.228491E+02
 1.000000E+00 1.094458E+00 1.214123E-02 2.243182E+03 6.229154E+02
 1.500000E+00 1.152870E+00 1.213358E-02 2.245726E+03 6.231325E+02
 2.000000E+00 1.218422E+00 1.212245E-02 2.250533E+03 6.235799E+02
 2.500000E+00 1.194409E+00 1.210824E-02 2.257881E+03 6.243081E+02
 3.000000E+00 8.100428E-01 1.210418E-02 2.263136E+03 6.251982E+02

 PRES 12 HW** 12 WP** 13 HFLO 13 WP** 12
 2.273441E+03 5.473849E+02 2.733800E+04 5.473849E+02 8.560000E+02
 2.273443E+03 5.473849E+02 2.733794E+04 5.473849E+02 8.559999E+02
 2.273448E+03 5.473850E+02 2.733782E+04 5.473849E+02 8.560004E+02
 2.273477E+03 5.473851E+02 2.733737E+04 5.473850E+02 8.560035E+02
 2.273550E+03 5.473853E+02 2.733670E+04 5.473852E+02 8.560109E+02
 2.273661E+03 5.473858E+02 2.733595E+04 5.473855E+02 8.560249E+02
 2.273809E+03 5.473863E+02 2.733515E+04 5.473860E+02 8.560452E+02
 2.274974E+03 5.473908E+02 2.733049E+04 5.473902E+02 8.562013E+02
 2.277527E+03 5.474007E+02 2.732296E+04 5.473993E+02 8.563933E+02
 2.282345E+03 5.474194E+02 2.731441E+04 5.474170E+02 8.566802E+02
 2.289707E+03 5.474479E+02 2.730854E+04 5.474448E+02 8.570225E+02
 2.294948E+03 5.474689E+02 2.733498E+04 5.474683E+02 8.567491E+02

 HFLO 12 COUT -10 COUT 3 COUT -19 QFRA 1
 5.473849E+02 0.000000E+00 2.220000E+03 7.886000E-04 2.820000E-01
 5.473849E+02 3.985206E-05 2.220002E+03 7.886000E-04 2.820000E-01
 5.473849E+02 1.292729E-04 2.220005E+03 7.886000E-04 2.820000E-01
 5.473850E+02 4.440807E-04 2.220011E+03 7.886000E-04 2.820000E-01
 5.473852E+02 9.744696E-04 2.220022E+03 7.886000E-04 2.820000E-01
 5.473855E+02 1.591250E-03 2.220045E+03 7.886000E-04 2.820000E-01
 5.473860E+02 2.389306E-03 2.220089E+03 7.886000E-04 2.820000E-01
 5.473902E+02 1.166860E-02 2.220959E+03 7.886000E-04 2.820000E-01
 5.473993E+02 3.524597E-02 2.223322E+03 7.886000E-04 2.820000E-01
 5.474170E+02 6.972424E-02 2.227753E+03 7.886000E-04 2.820000E-01
 5.474448E+02 1.092893E-01 2.234943E+03 7.886000E-04 2.820000E-01
 5.474683E+02 1.150211E-01 2.243655E+03 7.886000E-04 2.820000E-01

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

RETRAN Input/Output

Revision 9 IV-44

Table IV.2-12 (Cont’d)

 QFRA 2 QFRA 3 PHIR 1 PHIR 2 PHIR 3
 4.360000E-01 2.820000E-01 1.509185E+05 2.330990E+05 1.506133E+05
 4.360000E-01 2.820000E-01 1.509198E+05 2.331018E+05 1.506148E+05
 4.360000E-01 2.820000E-01 1.509272E+05 2.331166E+05 1.506224E+05
 4.360000E-01 2.820000E-01 1.509689E+05 2.331968E+05 1.506639E+05
 4.360000E-01 2.820000E-01 1.510531E+05 2.333517E+05 1.507472E+05
 4.360000E-01 2.820000E-01 1.511713E+05 2.335689E+05 1.508601E+05
 4.360000E-01 2.820000E-01 1.513239E+05 2.338456E+05 1.510035E+05
 4.360000E-01 2.820000E-01 1.525678E+05 2.360376E+05 1.521403E+05
 4.360000E-01 2.820000E-01 1.545804E+05 2.395140E+05 1.539795E+05
 4.360000E-01 2.820000E-01 1.573591E+05 2.442662E+05 1.565474E+05
 4.360000E-01 2.820000E-01 1.605313E+05 2.495943E+05 1.594745E+05
 4.360000E-01 2.820000E-01 1.586427E+05 2.454178E+05 1.576621E+05

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

RETRAN Input/Output

 IV-45 Revision 9

2.5 Temporary Files

Temporary files are used to store input data and intermediate results that are accumulated and
processed at some later stage of the job. Only formatted and unformatted Fortran I/O methods are
used for the temporary files. The temporary files are discussed below.

2.5.1 Trip Summary File

A temporary file is written during RETRAN-3D execution to store the trip actuation history. It is
written to Fortran Unit 3 using a fixed record length binary write. Information describing each trip
actuation event is written to Unit 3 and upon completion of the job, the file is rewound and the
history is edited on the standard output file.

2.5.2 Printer Plot Data Summary File

A variable record length binary file is used for intermediate data storage required for the printer
plot option. When printer plots are requested during a run, the minor edit parameters are written to
Fortran unit 20 each minor edit time interval. The file is rewound at problem completion and the
printer plots are then generated from the summary file.

2.6 Input Data File

Input data used to describe the RETRAN-3D problems is supplied in 80-column card image form.
The data cards are processed by the INP free form input package (see Section V) which reads them
from Fortran Unit 5. No I/O references to Fortran unit 5 can be made except those from INP.

2.7 Output Print File

Hardcopy output of RETRAN-3D solution results is written to Fortran Unit 6. This output is
formatted with standard FORTRAN printer carriage control characters and has a 132-character
record length.

2.8 Plot Data File

RETRAN-3D has an option that will allow a data file to be created for subsequent use by other
applications to create X-Y plots or other graphical representations of problem solutions. T he plot
file is similar to the auxiliary file (with header) in that it contains problem-specific documentation
of the run date and time, problem name, and code version. It also contains the minor edit
descriptions and units that can be used for default plot labels and minor edit request flag and region
number pairs that can be used to locate the data for a given minor edit. Following the header

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

RETRAN Input/Output

Revision 9 IV-46

information, separate records are written for each time point for which a minor edit is written. The
record contains the values for each plot variable.

Two optional built-in lists of minor edit variables are available for determining the content of a
plot file. They are the short and long forms and are comprised of fixed lists of minor edits that are
identified in Table IV.4-13. The short built-in list of minor edit variables consists of only
important minor edit variables, e.g., volumes, junctions, system parameters. The long built-in list
contains additional parameters that may be required for detailed analysis using the plot file
information. Other minor edit variables can be added to the short or long list built-in minor edit
variables using the optional plot file supplemental variable list (data card 027XXX in Section
IV-4.1.3 of Volume 3) to specify additional minor edit variables to be included.

Table IV.2-13

RETRAN-3D Plot File Built-in Minor Edit Lists

Built-in List Minor Edits

Short (1) TIMX, PNRM, POWR, PRES, TEMP, HW**, AVEX, VOIV,

LIQL, WP**, GPM*, HP**, HFLO, SLPR, SPED, MIXL, PHIL,
PHIR, WQCL, WQCR, IHTL, IHTR, TAVG, PERD, REAC, RC**,
RW**, RV**, RF**, RD**, PPOW, DPOW, RO**, RDRE, DPRE,
VDRE, RHOA, CTRA, DOPA, MODA, DENA, BORA, XISA,
RESA, NELT, NELX, NEVT, NEVX, COUT, TRIP

Long (2) TIMX, TIMM, TIMH, PNRM, POWR, DCAY, PRPT, DTAV,

NSTP, NTTS, CPUS, QLOS, PTHR, DTOL, PRES, TEMP, SATT,
HW**, AVEX, FMAS, AVED, WQ**, VOIV, GASH, LIQH,
STVF, STVG, STHF, STHG, WVBR, NVOI, LIQV, VL**, VS**,
LIQL, CONV, MDOT, TEML, MDDT, WP**, GPM*, XP**,
HP**, AVDJ, HFLO, VOIJ, WLJ*, VGJ*, VLJ*, SLPR, DELF,
SPVJ, PJUN, AJNT, VLSJ, SPED, PMPW, VBUB, MIXL, BUBM,
MIXQ, SE**, PHIL, PHIR, WQCL, WQCR, IHTL, IHTR, TL**,
TR**, FCHL, FCHR, HTCL, HTCR, GR**, CORQ, TAVG,
MODQ, QFRA, FENT, PERD, REAC, RC**, RW**, RV**, RF**,
RD**, PPOW, DPOW, RO**, RDRE, DPRE, VDRE, A1**, A2**,
RHOA, CTRA, DOPA, MODA, DENA, BORA, XISA, RESA,
NELH, NELT, NELX, NEVH, NEVT, NEVX, COUT, TRIP

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

RETRAN Input/Output

 IV-47 Revision 9

In addition to the minor edit variables included in the RETRAN-3D plot file as described above,
user-specified minor edits requested on the 0200XX data are also included in the plot file. Only
minor edit variables that are not already included in the plot file are added as supplements to the
plot file content.

The structure of the plot file header records and data records are shown in Table IV.2-14.
Records 1 through 8 comprise the header, which provides the descriptive information needed to
identify plot variables and the associated data. It also contains descriptive text fields.

Table IV.2-14

RETRAN-3D Plot File Structure`

Record Variable Type Format Length Description

1 plot_file_hdr C-32 A32 1 RETRAN-3D Plot File
2 problem_title C-80 A80 1 Problem Title
3 run_date C-8 A8 1 Date Problem was Run

 waltim C-8 A8 1 Time of Day Problem was
Run

 version C-32 A32 1 Code Version

 plt_si I-4 I8 1 SI Units Flag - =0 For Engr.,
=1 for SI

 num_plot_vars I-4 I8 1 Number of Plot Variables in
Each Record

4 flg_reg C-8 20A8 num_plot_vars Merged Minor Edit Flag and
Region (4 char each)

5 blk_title C-8 20A8 num_plot_vars Minor Edit Block Title
6 desc C-12 20A12 num_plot_vars Variable Description
7 units C-8 20A8 num_plot_vars Units String
8 units_id C-4 20I8 num_plot_vars Units ID

9-n plot_var R-4 20E12.5 num_plot_vars Plot Variable Values

The plot file will contain records of plot variable results at various times during the simulation.
The intervals at which data records are written are determined by the minor edit intervals given on
the time-step control data cards (see User’s Manual, Volume 3, Section IV.5.0).

The plot file name is R3D_PLOT. It can be either an ASCII or binary file. ASCII files can be
examined using a text exiting program, but binary files cannot be easily examined. The size of a
plot file is affected by the number of volumes, junctions, and optional components as well as the
number of nodes. Binary plot files will be approximately one third the size of the corresponding
ASCII file. Since plot files may be large, using binary plot files will save a significant amount of
space. An ASCII plot file can be three to five times larger than the associated output file.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

RETRAN Input/Output

Revision 9 IV-48

By default, no plot file is written. If a plot file is desired, one can be requested and its type (binary
or ASCII) can be defined through the auxiliary file description data card (025000).

Subroutine build_plot_var_list is called from subroutine inedit to build the list of plot variables
that will be included in the plot file. The plot file header records are written by subroutine
write_plot_header and the time-dependent plot records are written by subroutine
write_plot_record. Both subroutines are called by subroutine edit. Subroutines
build_plot_var_list, write_plot_header, and write_plot_record are contained in module
R3D_plot_file, which is found in source file m_R3D_plot_file.f90.

A simple search of the flg_reg record (after it has been read into memory) for a merged minor edit
flag and region (eight character word – four characters for flag and four for the region), will
identify the index into the plot_var array for the given minor edit. Time points are in subsequent
records. Appendix E discusses the use of a utility program get_R3D_plot_vars, which can be used
to extract data for selected plot variables from a RETRAN-3D plot file.

2.9 Remark Log

Entries are made to a remark log at various stages of input processing and steady-state
initialization. Each entry (record) includes the wall time and a character message. The log is
written to file REMARKS on Fortran unit 8 and has a record length of 90 characters.

2.10 Error Log

Error messages for most error conditions encountered during a RETRAN-3D solution are written
to file ERR_LOG on Fortran unit 17. It is a text file containing time, date, time-step number, and
time-step size information for the time when the error occurred. It also contains code version
information along with textual information describing the error condition. Some diagnostic
information may also be included.

2.11 RETRAN-3D Configuration File

In some instances it is necessary to define the length of work arrays where the length is not known
before the fact or to define text strings or other data. Typically these lengths or data would be
hardwired and a code modification and re-installation would be required to change any of them.
For example, licensed organizations would have to recompile the code to change the organization
name to their organization for it to be included in the documentation header (PC distributions are
the exception since the licensed organization is included in the license file and is retrieved as part
of the license validation). A new feature is included in RETRAN-3D that allows these types of
information to be defined as default values, which can be overridden by providing new values in a
RETRAN-3D configuration file.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

RETRAN Input/Output

 IV-49 Revision 10

Use of a RETRAN-3D configuration file is optional. If one is provided it must be named
retran.cfg (must be lower case on Linux platforms) and must reside in the same directory as the
RETRAN-3D input file. Table IV.2-15 lists the variables that can be changed using the
configuration file. The default values are used if a configuration file is not provided.

A configuration file is a text file with a maximum record length of 132 characters, which is read
from Fortran Unit 30. Records within the file are comprised of two fields, one is a keyword used to
identify the content of the record and the other is the associated field value. The variable name in
Table IV.2-14 is used as the keyword and the redefined value is the other. Both the keyword and
value are bounded by square brackets. An example record might look like

 [inp_data] [1000] ! change length of vector used to read inp data

A configuration file may contain one record or many keyword records. They can be in any order.
If a keyword is supplied more than once, the final instance will be the one used.

The RETRAN-3D configuration file provides the ability to activate steady-state and transient
solution matrix debug edits. This feature typically will be used by programmers and for debugging.
For steady state, XANDH debugs can be turned on and off by supplying 'xandh_istart' and
'xandh_iend' values. For transient solution matrix debugs, the user has more flexibility. Various
parts of the matrix can be printed as required. 'genmt_ntcoeb' and 'genmt_ntba' specifies the actual
time-step number at which coefficient matrix and right-hand side solution matrix are printed. To
turn off all debugs, set 'genmt_ntlast' to the actual time-step number at which debugs will stop
printing and the code will also stop running.

The configuration file can be used to activate writing of a plot file by changing the value of
plot_type. It also determines if the file will be written as a binary or ASCII file.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

RETRAN Input/Output

Revision 9 IV-50

Table IV.2-15

RETRAN-3D Configuration File Variables

Variable Data Type Definition Default
inp_data I-ikd Length of the r_data real(kind=8)

vector used by the inp routines
(e.g. inp2) to return data as it is
read.

500

genmt_ntcoef I-ikd Time-step number at which
transient solution matrix
coefficients will be printed by
genmt3 or genmt4

1000000

genmt_ntba I-ikd Time-step number at which
transient solution matrix
right-side will be printed by
genmt3 or genmt4

1000000

genmt_ntlast I-ikd Time-step number at which
genmt3 or genmt4 debugs will
stop printing and stop the current
run.

1000000

len_rblk I-ikd Length of vector used by restart
routines, used during restart run.

50

organization C-ckd,len=32 Name of the organization
licensed to use RETRAN-3D

' ** Unlicensed Trial
Version ** '

rstrt_blks I-ikd Maximum number of blocks
saved in restart block list.

200

xandh_istart I-ikd Steady-state iteration number at
which XANDH matrix debugs
will begin priniting

10000

xandh_iend I-ikd Steady-state iteration number at
which XANDH matrix debugs
will stop printing

10000

 1C = Character, I = Integer, L = Logical, R = Real – Parameters on right are defined in module
 kind_specs and indicate the size.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

 V-1 Revision 7

V

inp FREE FORM INPUT

The inp subroutines constitute a convenient free form data input package for use with Fortran
programs. The inp package is based on a similar subroutine package in the INEL Environmental
library.[V.1-1] To the user, the package offers: free form input; card numbers to identify data
cards; automatic removal of cards containing duplicate card numbers; arbitrary ordering of input
cards except for duplicate, continuation, and terminator cards; arbitrary use of comment cards and
comments on data cards; ease of preparing cases in which only moderate changes are made from
case to case; and a listing of the card data. For the programmer, the package is a convenient
method for implementing a highly user-oriented data input scheme and includes: extensive
checking of the data mode (integer, floating point, or alphanumeric) and number of data items;
automatic expansion of sequential and overlay type of input data; deletion of superfluous cards;
checking whether extraneous input has been entered; and the ability to detect errors during input
checking.

1.0 USER ASPECTS OF inp PACKAGE

This section describes the inp package as seen by the program user. It discusses the use of card
numbers, field delimiters, and deck separators.

1.1 Data Deck Organization

The data deck contains input for one or more problem sets. No relationship is assumed between
problem sets. Each problem set consists of one or more cases in which the input data for cases
other than the first consist of the data from the previous case plus modification cards entered for
the present case. Input data for cases are separated by slash cards; the final case is terminated by a
period card instead of a slash card. The period card also serves as the separator between problem
sets. A slash card has a (/) as the first nonblank character on a card; a period card has a (.) as the
first nonblank character. Comments may follow the slash and period on slash and period cards.

A list containing a card sequence number and the card image of each card is printed at the
beginning of printed output for each case. The card sequence number starts at one for each
case. The first line of the list contains "Listing of input data for case n", where n is the case
number.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

inp Free Form Input

Revision 7 V-2

1.2 Title Card

A title card is designated by an equal sign (=) as the first nonblank character on a card. The
remainder of the card can have any alphanumeric characters. The information on the title card and
the current date are printed at the top of every page following the input data listing. One title card
should be entered for each case. If more than one title card is entered in a case, the contents of the
last title card are used for the page heading. The heading contains only the date if no title card is
entered for a case.

1.3 Comment Cards

An asterisk (*) or a dollar sign ($) appearing as the first nonblank character identifies the card as a
comment card. Any information may be entered on the remainder of the card. Blank cards are
treated as comment cards. There is no processing of comment cards other than listing them in the
card list.

1.4 Data Cards

All cards other than title cards, comment cards, slash cards, or period cards are considered data
cards. The data cards contain a varying number of fields which may be decimal integer, decimal
floating point, alphanumeric, octal, or hex. The rules for specifying fields are as follows.

Blanks preceding and following fields are ignored. A decimal field is started by either a digit (0
through 9), a sign (+ or -), or a decimal point (.). A comma or a blank (with one exception noted
below) terminates the decimal field. The decimal field has a number part and, optionally, an
exponent part. A decimal field without a decimal point or an exponent is a decimal integer
field. A field with either a decimal point or an exponent or both is a decimal floating point field. A
decimal floating point field without a decimal point is assumed to have a decimal point
immediately in front of the first digit. The exponent denotes the power of ten to be applied to the
number part of the field. The exponent part is a sign, an E or D, or an E or D and a sign followed
by a number giving the power of ten. Rules for decimal floating point numbers are identical to
those for entering data in Fortran E or F formatted fields except that no blanks (one exception) are
allowed between characters. Formatted floating point data written by Fortran programs can be
read. To permit this, a blank following an E or D denoting an exponent is treated as a plus
sign. Acceptable ways of entering floating point numbers are illustrated by the following seven
fields all containing the quantity 12.45,

 12.45
 +12.45
 1245+2
 1.245+1
 1.245E1
 1.245E+1
 1.245E 1

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

inp Free Form Input

 V-3 Revision 7

When entering a zero for either an integer or floating point quantity, it can be written in either
form. Thus, a floating point zero can be entered simply as 0 without a decimal point. A field
starting with a nonblank character other than a digit, sign, comma, period or decimal point, asterisk,
dollar sign, or slash is considered a default alphanumeric field. The field is terminated by a
comma or the end of the card. All characters except commas can be imbedded in the
field. Imbedded blanks are considered part of the alphanumeric field and do not terminate the
field. Blanks extending from the last nonblank character of an alphanumeric field to the end of the
card are not considered part of the field. An alphanumeric field can also be delimited by enclosing
the field within apostrophes (') or quotes ("). Either is acceptable but they must be used in pairs. A
blank or comma must follow the terminating delimiter. Subroutine cvi is used by the inp package
to process free format data on cards as discussed in Section V.3.1.

Data on a card may be continued on a continuation card by entering a plus sign as the first
nonblank character on the continuation card. A field starting on a card must be completed on that
card and may not continue to the next card. The plus sign indicating the continuation card is not
considered part of the first data field on the continuation card and may be placed alone or adjacent
to the first data field. Continuation cards themselves may be continued. In subsequent processing,
data on continuation cards are treated as if the data were all entered on one card.

Comment information may follow the data fields on any data card (including cards that are
continued) by preceding the comments with an asterisk or dollar sign. A default alphanumeric
field preceding a comment must be terminated by a comma or the comment information is
considered part of the alphanumeric field.
When card format errors are detected, lines containing a $ located under the character causing the
error and a comment giving the card column of the error are printed. A field containing an error is
converted as an alphanumeric field of $$$$$$$. An error flag is set and input processing continues,
but the job can be aborted at the end of input processing. Usually another error is produced by a
routine attempting to process the erroneous data.

The first field on a data card is treated as a card number which must be a positive decimal integer
number. If the first field has an error or is not a positive decimal integer, the card number is
replaced by the current card sequence number, an error statement is printed, and the error flag is
set. Data on the card is not used and the card will be identified by the card sequence number if the
list of unused data cards is printed. Continuation cards do not have card numbers since they are
considered an extension of the first card. After each card number and the accompanying data are
converted, the card number is compared to previously entered card numbers. If a matching card
number is found, the data entered on the previous card is replaced by the data of the current
card. If the card being processed contains only a card number, the card number and the data
entered on the previous card are deleted. If a card causes replacement or deletion of data, a
statement is printed indicating that the card is a replacement card.

The list of card numbers and associated data used in a case can be passed to the next case. Cards
entered for the next case are added to the passed list or act as replacement cards depending on the
card number. The resulting input to cases following the first case is the same as if all previous
slash cards were removed from the input to the problem set.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

inp Free Form Input

Revision 7 V-4

2.0 PROGRAMMING USE OF THE inp PACKAGE

The inp package contains a collection of subroutines or entry points which can be used by a
programmer to implement free form input processing in an application. One call is issued to
subroutine inp for each case in order to read and convert the data for the case, to replace or remove
duplicate cards, and to form a sorted table of card numbers cross referenced to a list. The list
contains data words obtained from the cards and mode words generated during input
conversion. Because of the sorted table, the order of cards in the data deck is not important.

The link subroutine accesses the table and can locate one card at a time. Subroutine moder is used
to check the appropriate mode of the data against a specified list, also one card at a time. The inp2
subroutine is used to check data and to move data from the list to a specified array by using calls to
link and moder. It can be used to process data from a single card or from a set of cards numbered
within a specified range and to check for minimum and maximum numbers of items and
appropriate mode. The inp4 subroutine executes repeated calls to inp2 and modifies the call
parameters to inp2 by specified amounts. Function inp8 can be used to determine whether there
are cards in the list that have not been referenced by link and, thus, also inp2. The function inp9
deletes cards from the table and list which have been referenced by link and inp2. The function
inp10 deletes selected cards from the table and list.

The following sections describe programming requirements for using the inp package. In the
following descriptions, calling parameters are named for their integer or floating point format; that
is, integer quantities have I, J, K, L, M, or N as their first character and names beginning with any
other character are floating point quantities. Symbols appearing in the calling sequences are
unique and when the same symbol appears in two or more calling sequences, the symbol has the
same definition in each appearance. The symbol is usually completely described only in its first
appearance, but the definitions are summarized in the Array and Variable Summaries
(Section V.4.2 and V.4.3). Calling parameters that are marked with an asterisk both convey
information to the subroutine and return information from the subroutine and, thus, the parameter
can have a different value on exit than it had on entry. The error messages referenced in the
descriptions are listed in the Error Message Summary, Section V.4.4. Programming errors such as
improper calling parameters cause an abnormal termination.

Input data cards can have a mixture of integer, floating point, and alphanumeric data and the inp
subroutine converts and stores all data into the list as 64-bit words. Consecutive integers on an
input card will reside in consecutive 64-bit words. Since integers only occupy 32-bits, 32-bits of
padding is associated with each. This padding is accomplished by use of two-dimensional integer
arrays. The inp2 subroutine, after checking the data against a specified list for the correct mode,
moves the data to a specified output array if the move flag is set. Accessing data from this array
containing mixed integer and floating point data is easily accomplished by equivalencing integer
and floating point names to the array containing the mixed data. The integer array is dimensioned
(2,n).

In RETRAN-3D, the inp_tbl array is used to store the inp package card data list and the rdata
array is used to return card data from inp package subroutines. Both arrays are allocated in
subroutine ret_input via a call to subroutine allok8_inp_card_arrays. The length of array rdata

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

inp Free Form Input

 V-5 Revision 7

is defined by the inp_data variable, which can be revised using the retran.cfg file (see Section
IV.2.10) without making a source code revision. As noted above, all card data whether real,
integer or character is returned to the calling subroutine via the rdata array. Real data can be
accessed directly. For example, following a call to subroutine inp2 to located the card data for a
given control volume, the real data is obtained as illustrated in the following code segment

 p(i5) = rdata(3)
 temp(i5) = rdata(4)
 hum(i5) = rdata(5)
 v(i5) = rdata(6)
 zvol(i5) = rdata(7)
 flowl(i5) = rdata(8)
 flowa(i5) = rdata(9)
 diamv(i5) = rdata(10)
 elev(i5) = rdata(11)
 ew(i5) = rdata(12)

The integer data for the volume is accessed as shown in the following code segment.

 ibub(i5) = idata(1)
 iread(i5) = idata(2)

Note that idata() is not an integer array, but rather an integer function that returns the 32-bit integer
that is stored in a given element of array rdata. In the example above, idata(1) returns the 32-bit
integer that is stored in rdata(1).

As a warning, programmers should not apply generic functions to rdata (or inp_tbl) elements
directly, e.g. don’t use abs (rdata(i)). Use them after the data element has been moved into a
RETRAN-3D data or pointer element. If the abs function is applied to an integer element stored in
rdata, the actual value of the integer can be changed instead of simply changing the sign (this
depends on the whether the platform uses big or little endian architecture).

Character data included on an inp data card is also returned to the application using the real rdata
array. A character string less than or equal to 8 characters in length is returned in one rdata
element. Strings longer than 8 characters are returned in consecutive rdata elements. The number
of elements required to return a string is given by num elem = (len + 7)/8 where len is the number
of characters in the string.

The inp package was originally designed and implemented when the Fortran language used either
integer of real variables to store character data. As such, the data type sets the number of
characters that can be stored in a given word (typically 4 for integers and 8 for 8-byte real
variables). For this reason, subroutine inp uses the inp_tbl real array to store character strings in
the card list and the rdata real array to return character strings. For this reason, character data
returned by the inp package may be stored in real variables for latter use and in some instances
they are converted and stored as character data to avoid data type conflicts. The following code
segment illustrates converting a character string returned in the rdata array to a 4-character
variable flag.

 write (flag,'(a4)') rdata(k)

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

inp Free Form Input

Revision 7 V-6

2.1 call inp (xl1, nl1, title*, ncase*, ndata*, isw*)

One call to inp reads all the input cards for the next case. That is, each call to inp reads cards from
the current position on Fortran Unit 5 until either a slash card or a period card is read or the end of
the data set is encountered.

The quantity ncase is incremented by one. ncase should be set to zero before the first call to
inp. If a period card terminates the case, the sign of ncase is set to minus. The calling program
can test the sign of ncase to determine whether this case is the last case of problem set or another
case follows. If ncase is negative indicating the end of a problem set, ncase should be reset to zero
before calling inp for the first case of the next problem set.

As input cards are read, they are printed without modification. Before printing the first card, the
first heading line is printed at the top of a page and followed by "Listing of input data for case n",
where n is ncase after it has been incremented by one. Subsequent pages of the input data listing
have only the first heading line at the top of an output page. As title cards are read, the title
information with the equal sign removed overlays the title storage array title, which was initialized
to blanks. title should be at least 12 real 64-bit words. The title printing noted above is performed
if isw 0 upon entry to inp. If isw = 0, no printing is performed.

The real array xl1 is a nl1 words in length and is used to store the list containing card data and the
card number table plus two control words. The control words are stored in xl1(1) and xl1(2); the
list is stored starting at xl1(3) and extends upward in the array; the table is stored starting at
xl1(nl1) and extends downward in the array. The space between the list and table is used for
temporary working space. Data card information is converted to binary form through calls to the
cvi subroutine. Binary information from a data card that is not a continuation card is stored
beginning at the middle of the temporary work space. The binary information and mode indicators
for continuation cards are stored following the information and mode indicators for the proceeding
card. As each individual data card is processed, there must be 40 words between the end of the list
or the last converted binary quantity and the beginning of the mode indicators. This space is
necessary to prevent the binary quantities from over storing the mode indicators and the mode
indicators from over storing the table; 40 words are necessary since that is the largest number of
quantities that can be entered on an 80-column card. After the data card and any continuation
cards have been converted the binary data and mode indicators are stored as if the data were
entered on one card and subsequent processing can proceed as if only one card was entered. Three
table entries are then constructed for each card. They consist of the card number or a zero if the
card number is illegal, a pointer to the table location where the binary information is stored, and
the number of words on the card excluding the card number. The entry for the number of words is
also used as a card use indicator. Card numbers are initially positive, but are set negative when the
card is processed by a call to subroutine link. If there are data other than the card number on the
card, the binary information is moved downward one word eliminating the card number from the
list, and the corresponding mode indicators returned from subroutine cvi are converted to two-bit
indicators and stored in a packed form, 32 indicators per word, following the binary information
(done in subroutine inp). The table words, three for each card, constitute the table and the list is
made up of the converted binary information and the mode indicators.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

inp Free Form Input

 V-7 Revision 7

As data cards are processed, new card numbers are compared against the card numbers stored in
the table. If a duplicate is found, the table word containing the card number is replaced by the new
table word. Space occupied by the replaced list data is retrieved by shifting the data downward
over the replaced data when the number of words on the replaced card and the new card are
different or simply by over storing the replaced list data with the new list data when the number of
words is the same. Table pointers are updated when list data are moved. When a replacement card
contains only a card number, the card acts as a deletion card; the table word is deleted and the list
space is retrieved by shifting the list over the deleted data. A message "This card is a replacement
card", is printed to the right of any card that replaces or deletes a data card. A card containing only
a card number that is not a duplicate card number has no effect on the table and list and no message
is printed.

A normal return from the inp subroutine is made if a period or slash card is read or an end of data
set is encountered after at least one input card was read. Before a normal return, the table is sorted
by card number and is moved adjacent to the list and the number of words in the list is stored in
xl1(1) and the number of words in the table is stored in xl1(2). Upon normal exit, the absolute
value of ndata is set equal to the number of words needed in xl1 to hold the control words, list, and
table. The sign of ndata is set minus if no data cards (cards other than title, comments, slash, or
period cards) are entered for a case, and in normal usage this indicates that no input data were
entered and that a succeeding case may have been input identical to the preceding case.

On entry to inp, ndata indicates whether the array xl1 contains data from a previous case. If
ndata is equal to or less than zero, xl1 contains no data from a previous case and the table and list
are assumed empty. If ndata is greater than zero, xl1 is assumed to contain data from a previous
problem in the same format as that upon exit from inp. That is, xl1(1) contains a control word
containing the number of words in the list and xl1(2) contains the number of words in the table and
these control words are followed by the list and table. The table is moved to the end of xl1 and the
card use indicators in the table are cleared by replacing the card number entry with its absolute
value. The input cards for the current case are then processed as described above.

The parameter isw controls the list edit and indicates the return status. If isw is zero when inp is
called, the card list edit is suppressed. The card list edit is provided if isw is nonzero. If isw is zero
on return, a normal return was made and no errors were detected during the processing of the input
cards. If isw is one, the end of data set was encountered when trying to read the first data card of a
case and inp returned immediately. This is the normal exit path if ncase is not zero. If isw is two,
a normal return was made, but card format errors were detected and the list of input cards contains
one or more of Error Messages 3 through 6. The usual practice in this case is to continue checking
the input data for additional errors, but execution is terminated after input checking is
completed. If isw is three, the array xl1 is not large enough to process the input data as indicated
by Error Message 1 or 2 and inp returned immediately.

2.2 call inp2 (xl1, xl2, l3)

The array xl1 contains the list and table data generated by subroutine inp. The array xl2 is the
array into which the data specified in the call is to be moved. The array l3 contains specifications
as follows:

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

inp Free Form Input

Revision 7 V-8

 l3(1) ic1, first card number.
 l3(2) +ic2, last card number. ic1 and ic2 specify the set of card numbers of the

data that are to be moved into xl2. IF ic2 is zero, only the card with card
number ic1 is specified. If ic2 is nonzero, cards with card number c,
ic1 < c < |ic2|, are requested. Not all the cards in the range of c need be
present. If ic2 is positive, the card numbers that are present within the range
must be sequential and are processed in sequential order beginning with
ic1. If card number ic1, ic1+1, ic1+2 . . ., ic1+a are present where ic1+a is
the last sequential card number, a card with number cx, ic1+a + 2 < cx < ic2,
is an error and causes Error Message 8 to be printed. If ic2 is negative, the
cards need not be sequential and are processed in increasing order.

 l3(3) min, the minimum number of items to be processed. Error Message 9 is
printed if fewer items are processed.

 l3(4) max, the maximum number of items to be processed; ignored if zero. Error
Message 10 is printed if more items are processed.

 l3(5) nj, the number of words to skip between items in xl2; usually zero.

 l3(6) +j*. j, if positive, is the starting location in xl2; input item n is stored in

xl2(j+(nj+1)*(n-1)). If j is negative, no data is moved, but all checking is
performed.

 l3(7) An array defining the integer, floating point, or alphanumeric format
 . expected on the cards. Format information is defined in moder
 l3(n) description. Errors cause Error Messages 7, 11, or 12 to be printed.

Subroutine link is used to locate each card and subroutine moder is used to check the format.

On exit from inp2, l3(6) or j is set to nmove, the number of items moved, if no errors were found
and j was positive on entry. l3(6) or j can be zero indicating no cards with the specified card
numbers are present if l3(3) or min is set to zero. If any card requested contained a card format
error (as detected by inp) or if any of the tests specified in the l3 array failed, l3(6) or j is set to -1
on exit. If j was negative on entry, l3(6) or j is set to -nmove on exit if no errors were found. Only
the first error in the specified set of cards is found and Error Messages 13 and 14 can be printed by
inp2 in addition to those noted in the definition of l3.

2.3 call inp4 (ic1, ±ic2, min, max, nj, j*, ic3, ntimes, newj, xl1, xl2, l5)

Subroutine inp4 makes ntimes calls to inp2. An abnormal termination occurs if ntimes is zero or
negative. For the first call to subroutine inp2, ic1, ic2, min, max, nj, and j are as described for
inp2 and l5 is the format array for checking the mode of the data. For the following calls, ic1 and
ic2 are increased by ic3, and j, if positive, is increased by newj. j is changed upon exit as in the
inp2 description. ic1 and ic2 on exit have the same value as on entry. Maximum size of the l5
array is 40.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

inp Free Form Input

 V-9 Revision 7

2.4 call inp5 (ic1, ±ic2, ic3, ±n1, ±nmin, ±nmax, ±nstore, ntimes, newj,
 j*, xl1, xl2, l5, xl6, nl6)

The subroutine inp5 is similar to inp4 in that it makes ntimes calls on inp2, but is more powerful
in that it accepts self-expanding data of the sequential or overlay type. The basic Unit of input data
is a vector, S, of |n1| components where N1 is defined as an input argument. If N1 is positive, the
data is of sequential form where (Sk,nk), k = 1, . . . K means that the vector Sk is to be repeated
nk-nk-1 times, i.e., expanded into vectors nk-1 + 1 through nk. The variable k is the number of
vectors on the data cards with no = |nmin|, nk > nk-1, and nk < |nmax|.

The expanded vectors, Si, form a two-dimensional array with elements, sR,i (the Rth component of Si),
where 1 < R < |n1|, |nmin| + 1 < i < |nmax|. This array can be stored into xl2 in two different
modes where one mode is the transpose of the other mode. If nstore is positive, sR,i is stored in
xl2(j+(R-1) + nstore*(i-1)) and nstore should be greater than or equal to |n1|. If nstore is negative,
sR,i is stored in xl2(j+(i-1) + |nstore|*(R-1)) and the proper size of nstore depends on nmin and
nmax. This is equivalent to having a two-dimensional array defined as: dimension SS(nstore,n)
and equivalence (xl2(j), SS(1,1)). If nstore is positive, sR,i is stored in SS(L, I), and if nstore is
negative, sR,i is stored in SS(I, L).
As an example, let

 n1 = 2
 nmin = 0
 nmax = 10
 nstore = 2
 ntimes = 1
 newj = 0

and let the vectors Sk be given by

 S1 = (1.0, 10.0), S2 = (2.0, 20.0), S3 = (3.0, 30.0) ,

and nk be given as n1 = 2, n2 = 4, n3 = 10. These data on a card could appear as follows:

 xxxxxx 1.0,10.0,2 2.0,20.0,4 3.0,30.0,10

where xxxxxx is the card number. The expanded data would be stored in core as a
two-dimensional matrix SS(K, I) and would appear as:

 1.0 1.0 2.0 2.0 3.0 3.0 3.0 3.0 3.0 3.0
 10.0 10.0 20.0 20.0 30.0 30.0 30.0 30.0 30.0 30.0 .

Now, let

 n1 = 2
 nmin = 0
 nmax = 10
 nstore = -2
 ntimes = 1
 newj = 0

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

inp Free Form Input

Revision 7 V-10

and use the same data as above. Since NSTORE is negative the expanded matrix is stored as the
transpose, i.e., SS(I, K) and would appear in core as

 1.0 10.0
 1.0 10.0
 2.0 20.0
 2.0 20.0
 3.0 30.0
 3.0 30.0
 3.0 30.0
 3.0 30.0
 3.0 30.0
 3.0 30.0

If n1 is negative, the data is of the overlay form (mk,Sk, nk), k = 1, . . .K where Sk is overlaid on an
initial set of vectors beginning at the mk

th vector and extending through the nk
th vector, with mk < nk,

min mk > nmin, and max nk < |nmax|. For either type there results a sequence of expanded input
data of the form Si, io < i < |nmax|, where certain of the Si may be missing in case of overlay
expansion. Here io = |nmin| + 1 or |nmin| for sequential and overlay types, respectively. For
overlay data, a positive nmin requires that the lower limit be included while a negative nmin can
be used for negative indexing. For both types a positive nmax is used to require that the upper
limit be included while a negative nmax only specifies an upper bound. The initial vectors being
overlaid may be null since the complete matrix can be overlaid initially.

As an example of the overlay feature, let

 n1 = -2
 nmin = 1
 nmax = 10
 nstore = 2
 ntimes = 1
 newj = 0

and let the vectors Sk be given by

 S1 = (1.0, -1.0), S2 = (2.0, -2.0), S3 = (3.0, -3.0) .

Assume a data card is given by

 xxxxxx 1,1.0,-1.0,10 4,2.0,-2.0,8 5,3.0,-3.0,7 .

The first set overlays all ten vectors in SS (K, I) which then appears as

 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 .

The second set of data on the card overlay vectors four through eight with the new vector S2. The
matrix SS (K, I) is now given as

 1.0 1.0. 1.0 2.0 2.0 2.0 2.0 2.0 1.0 1.0
 -1.0 -1.0 -1.0 -2.0 -2.0 -2.0 -2.0 -2.0 -1.0 -1.0 .

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

inp Free Form Input

 V-11 Revision 7

The third set of data overlays vectors five through seven in SS(K,I) which then becomes

 1.0 1.0 1.0 2.0 3.0 3.0 3.0 2.0 1.0 1.0
 -1.0 -1.0 -1.0 -2.0 -3.0 -3.0 -3.0 -2.0 -1.0 -1.0 .

If inp5 was called as in the third example but with nstore = -10, the result would be the transpose
of the last matrix above. Note that the value of nstore and N1 must be consistent with the matrix
ordering.

ic1, ic2, ic3, ntimes, j, newj, and l5 are handled as in inp4. J on exit contains not the amount of
expanded data, but the amount of data on the cards. The array XL6 of length NL6 is used for
temporary storage and must be large enough to hold the unexpanded input data for one card set
ic1 < c < ic2. Additional error checks are made because of the form of the input, and Error
Messages 15 through 20 can be printed. Subroutine inp6 is called for error processing. If the
parameters n1, nstore, or ntimes are less than or equal to zero, an abnormal termination occurs.

2.5 call inp6 (ic1, ic2, n1, icard, item, xl1)

Subroutine inp6 is called from subroutine inp5 when item item on a set of cards ic1 < c < ic2 is
found to me in error. On exit, icard is the card number and item is the number of the field on the
card containing the error. n1 is the number of items to find on the set of cards identified above.

2.6 call inp7 (icard, item)

Subroutine inp7 simply prints Error Message 22 stating that item item on card icard is in
error. This subroutine can be used to print error information obtained from inp6. This subroutine
is not called by other inp package routines.

2.7 call link (ic, ix, n3, n4, xl1)

Subroutine link searches the table and list array, xl1, for Card |ic|. The subroutine exits with ix
equal to the card number in the table next larger than |ic| unless such a card does not exist and then
ix equals -1. On exit, if n4 equals 0, Card |ic| is not in the table; if n4 < 0, a format error was
detected by inp on Card |ic|; and if n4>0, there are n4 data fields (excluding the card number) on
Card |ic| and the data are stored sequentially beginning at xl1(n3). The use flag is set on the table
entry for |ic| if it is found and ic > 0, i.e., the use flag is not set for negative values of ic. link issues
no error messages.

2.8 call moder (xl1, l3, n3, n4, n5, n6)

Subroutine moder checks n4 items of data stored sequentially beginning at XL1(n3) for
appropriate format. The format specification begins at l3(7). The specification starting at 7 is

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

inp Free Form Input

Revision 7 V-12

consistent with the format specification for inp2. The format entries are -1 for alphanumeric, 0 for
integer, and 1 for floating point. Cyclic repetition for two or more entries can be condensed by
prefixing the repeated format by ±N, where the magnitude is the number of items repeated, and the
sign is positive if the cycle is to be reset for each entry, and the sign is negative if it is to pick up at
the stopping point of the previous entry. To allow starting within the format specification, n6 is
the number of items previously checked with the current format. On exit, n5 = 0 if no errors were
found; 0 < n5 < 10000 if item n5 should have been an integer but was not; n5 < 0 if item -n5
should have been a floating point number, but was not; and n5 > 10000 if item n5 - 10000 should
have been alphanumeric, but was not. A decimal zero is considered either integer or floating point
as required to satisfy mode tests. moder issues no error message.

2.9 function inp8 (nprint, xl1)

Function inp8 returns the number of cards that have not been processed by link. This is done by
counting the number of table entries in xl1 that have positive values for the card number. If
nprint is 1, the card numbers of the unprocessed cards are listed under Error Message 21, while if
nprint is 0, no output is printed.

2.10 function inp9 (xl1) and function inp10 (xl1, ic1, ic2)

Functions inp9 and inp10 delete table entries and associated data and mode information from the
array xl1. inp9 deletes the cards that have been referenced at least once by link; that is, table
entries with the use bit set on. Function inp10 deletes all cards, ic1 < c < ic2. When cards are
deleted, all holes created by deletion are squeezed out, the table entries are adjusted accordingly,
and the control word is updated. Both functions return the new length of the table, list, and control
word. When all cards have been deleted, the length required in the xl1 array is two, the length
required for the control words.

When a card is deleted, a hole in the table and list is created, and the remaining tables and data
must be moved to regain the storage made available. In order to move the remaining table and list
only once and not use storage outside the array xl1, the holes are marked with a bit pattern that has
all bits set except the highest. After all cards are deleted, holes are located by testing for the special
bit pattern. Thus, the bit pattern used for marking holes must not be allowed as a data item. The
bit pattern corresponds to a floating point number that should never be used. Subroutine inp
checks for this bit pattern as input data is processed. If the bit pattern is found, a warning message
is written and the lowest bit is set to zero.

2.11 function ncards (start, end, incr, cards)

Function ncards uses subroutine link to search the inp card table located in real array cards for
unique card numbers that are within the range of card numbers given by start and end, where both
are integer values. On exit, ncards returns the number of unique card numbers found.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

inp Free Form Input

 V-13 Revision 7

incr is an integer that can be used to eliminate a portion of the card number from the search by
applying the following

 cardno = incr*(cardno/incr) for incr > 0

to card numbers located in the table. Function ncards only counts unique occurrences of cardno.
incr should be 1, 10, 100, etc.

Whereas calls to most inpx subroutines result in the card use flag being set when a card is found
and processed , the use flags are not set when cards are processed by function ncards.

As an example use of function ncards, consider that the application program that uses the inp card
data series given by 05XXXY, where XXX is a unique component number and Y is a sequence
number that allows use of several cards to define the input for a given component XXX, e.g.,
different values of Y. If the programmer wants to determine the number or unique components
defined in such an input deck, function ncards can be used by setting the following values,

 start = 050010
 end = 059999
 incr = 10

With this input, function ncards will only count the first occurrence of a cardno . If the card deck
included the following cards

 050031 ‘data follows'
 050032 ‘data follows'
 051000 ‘data follows'
 051501 ‘data follows'
 051503 ‘data follows'

function ncards will return a value of 3 for cardnos 050030, 051000, and 051500. If incr is
defined as 0 in the example, function ncards will return a value of 5 since it will count each of the
05XXXY cards in the card deck.

2.12 function nitems (start, end, cards)

Function nitems is part of the inp free form input processing package. It uses subroutine link to
search through real array cards within the range of card numbers given by start and end where
both are integer values, and counts number of data items on those cards. On exit, nitems returns
total number of data items.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

inp Free Form Input

Revision 7 V-14

3.0 LOW LEVEL inp SUBROUTINES

The subroutines described in the following sections are not called directly by users, but rather
perform specific functions for the other inp subroutines.

3.1 call cvi (char, binary, cond, num, ipos)

This subroutine converts a data card from character format to the appropriate binary form. The
arguments are defined by

 char Character array containing card to be converted in A80 format

 binary Array containing num converted items

 cond Array containing code for converted items
 0 a zero result (integer or floating)
 1 integer conversion
 2 floating conversion
 3 character conversion

 num Number of converted items

 ipos 0 means no error
 >0 indicates column position of error

3.2 call conv (a, xnum, type, lstart, lend, err)

Subroutine conv converts numeric data in character format to integer or floating point format. a is
a character array containing the character data to be converted. xnum contains the converted
floating point or integer number on output. type is a real variable which is set by conv to 0 if
xnum is an integer or floating point 0, 1 if xnum is integer, or 2 if xnum is floating
point. a(lstart) is the element of a where the numeric data begins. a(lend) is the element of A
where the numeric data ends. lend is set by the subroutine conv. err is a logical error flag. true
implies that conv detected an error, while false implies it did not.

3.3 call holstr (a, l1, wrk, cond, nwrds, err)

Subroutine holstr converts Hollerith data read from a card to binary form. A is a character array
containing the string to be converted. l1, on input, points to the beginning of the Hollerith string,
on output it points to the end of the string. wrk is the real array that the Hollerith data is read into,
the format A8 is used. cond is the array containing the code for converted items. For every eight
characters read in the Hollerith string, one entry in cond will be set to three. NWRDS is the
number of words in the wrk array that the Hollerith string occupies. err is a logical flag. If no
errors are detected, err is set to false, otherwise it is set to true.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

inp Free Form Input

 V-15 Revision 7

4.0 inp SUMMARY

The following sections contain a summary of the inp package subroutine and function calls, a
summary of parameters, a list of error messages, and structures of control words, table words, and
mode words.

4.1 Summary of inp Package Calls

call inp (xl1, nl1, title*, ncase*, ndata*, isw*)
call inp2 (xl1, xl2, xl3)
 with l3(1) = ic1, l3(2) = ±ic2, l3(3) = min, l3(4) = max, l3(5) = nj,
 l3(6) = j*, l3(7) and on equivalent to l5(1) and on.
call inp4 (ic1, ±ic2, min, max, nj, j*, ic3, ntimes, newj, xl1, xl2, l5)
call inp5 (ic1, ±ic2, ic3, ±n1, ±nmax, ±nstore, ntimes, newj, j*, xl1, xl2,
 l5, xl6, nl6)
call link (ic, ix, n3, n4, xl1)
call moder (xl1, l3, n3, n4, n5, n6)
call inp6 (ic1, ic2, n2, icard, item, xl1)
call inp7 (icard, item)
function inp8 (nprint, xl1)
function inp9 (xl1)
function inp10 (xl1, ic1, ic2)
function ncards (start, end, incr, cards)
function nitems (start, end, cards)
call cvi (bcd, bin, icond, num, nch)
call conv (a, xnum, type, lstart, lend, err)
call holstr (a, l1, wrk, cond, nwrds, err)

4.2 Array Summary

 l3 Array used for specifications to inp2.

 l5 Equivalence to l3(7). Array used to define appropriate mode of data fields

on card or set of cards excluding the card numbers. An entry of -1 is for
alphanumeric fields, an entry of 0 is for integer fields, and an entry of 1 is
for floating point fields. If a format repeats beyond a point, prefix the
repeated format in l5 by ±N, N > 2, where N is the number of items
repeated. Use N positive to reset the repeat cycle at the beginning of each
card, or use N negative to allow the cycle to overlap cards. Within a cycle,
all elements must be 0 or ±1, and only one cycle is allowed. Size of l5 array
is 40. Array for inp2 starting at l3(7) is not limited.

 xl1 Array containing control word, converted data from cards, mode indicators,

and table entries.

 xl2 Array into which data is to be moved.

 xl6 Array for temporary storage used in inp5.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

inp Free Form Input

Revision 7 V-16

4.3 Variable Summary

 bcd Array containing card to be converted in A80 format.

 bin Array containing num converted items.
 ic Card number desired.

 icond Array containing code for converted items
 0 a zero result (integer or floating point)
 1 integer conversion
 2 floating conversion
 3 hex conversion
 4 octal conversion
 -(character count) Hollerith conversion. Uses (|icond| + 7)/8 words in bin

 ic1, ±ic2 Define card numbers of a set, ic1 < c < |ic2|. If ic2 is zero, only one card,

ic1, is requested. If ic2 > 0, card numbers must be sequential, c = ic1,
ic1 + 1, . . ., ic1 + a < ic2, and if ic1 + a is the last card in sequence, the next
larger card cx must not be in the range ic1 + a + 2 < c < ic2. If ic2 is
negative, cards need not be sequential and are taken in increasing order. As
used for inp10, all cards c, ic1 < c < ic2 are deleted.

 ic3 Added to ic1 and ic2 to define next set for use in inp4 and inp5.

 icard Number of card containing error item n2.

 inp8 Result of function call is the number of cards in table not processed by link,

inp2, inp4, or inp5.

 item Item number on card of item n2 on set of cards in error.

 itms List of items to pack (unpack).

 ix Card number in table next larger than ic. If no such card is present ix is

returned as -1.

 j On entry, if j is positive, store data beginning at xl2(j); if j is negative, do

not move data into xl2 but check data. On exit, j is set to -1 if an error was
found; if positive on entry and no errors were found, it is set to +nmove; if
negative on entry and no errors were found, it is set to -nmove.

 max Maximum number of data items in a set of cards.

 min Minimum number of data items in a set of cards.

 ±n1 n1 = number of elements in the input vector S; data is sequential type if n1

is positive and overlay type if n1 is negative.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

inp Free Form Input

 V-17 Revision 7

 n2 The number of the data field in error in call to inp6.

 n3 On return from link, xl1(n3) contains first data word if card is present.

 n4 Number of data words on Card ic located by link if n4 is positive; if n4 is

zero, Card ic is not in table; if n4 is negative, format error was found on
Card ic.

 n5 On exit from moder, n5 = 0 if format correct; 0 < n5 <10000 if item n5

should have been integer but was not; n5 < 0 if item -n5 should have been
floating point, but was not; and n5 > 10000 if item n5-10000 should have
been alphanumeric but was not.

 n6 On entry to moder, the number of previously checked items. This is used

to located proper starting position in l5.

 ncase On entry, previous case number which should be non-negative and zero if

the first case. On exit, it is the current case number, which is negative if the
last case of a problem set.

 nch 0 means no error
 >0 gives column position of error.

 ndata On entry, ndata > 0 calls for adding data to the previous list and table in xl1,

and ndata < 0 indicates no previous list and table is present and the new
data is complete in itself.

 newj Added to j for subsequent set in inp4 and inp5.

 nj Number of words to skip in xl2 between items. inp2 stores data item n in

xl2 (j + (nj+1)*(N-1)). Usually nj is zero.

 nl1 Size of xl1 on entry to inp.

 nl6 Size of XL6; must be large enough to hold data from one set in call to inp5.

 ±nmax Upper limit for sequential and overlay data; if nmax is positive limit must

be included.

 ±nmin If sequential type, nmin = no; if overlay type, min mk > nmin, with nmin

positive requiring that the lower limit be included.

 noitms Number of items to pack (unpack).

 nprint If 1, list unprocessed card number, if zero, do not list them.

 ±nstore Used to control storage of data in inp5. See inp5 description (Section

2.2.4)

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

inp Free Form Input

Revision 7 V-18

 ntimes Number of sets of card to process in call to inp4 and inp5.

 num Number of converted items.

 word Packed table information.

4.4 Error Message Summary

All error comments are preceded by eight asterisks to facilitate recognition of error comments in
the midst of regular program output and are presented in Table V.2-1. The lower case letters
represent call parameters or symbols used in the subroutine descriptions and actual values are
substituted in the output.

4.5 Control Word Structure

The control words stored in xl1(1) and xl1(2) consist of two integer words. Integer Word 1, stored
in xl1(1), is the length of the list containing the binary data and mode indicators; Integer Word 2,
stored in xl1(2), contains the length of the table. Note that the xl1 array is real and must be
equivalenced to a properly padded integer to retrieve or store the integer contents.

4.6 Table Entries

Three integer words are used to describe each card in the table. Word 1 is the card number, Word
2 is the index in xl1 of the first data word associated with this table entry, and Word 3 is the
number of words on the card, excluding the card number. Word 3 also functions as a card use
indicator, the value in Word 3 is set negative when the card is used. Each of these integer words
occupies one array entry in the xl1 array.

Card numbers are limited to 536,870,911 (229-1) and card numbers greater than this cause Error
Message 6 to be printed.

4.7 Mode Indicator Word Structure

For each card (continuation cards are considered as part of the first card), the mode indicator words
are stored immediately following the last data word. The mode indicators are 0 for an integer or
floating point zero, 1 for a nonzero integer, 2 for a nonzero floating point quantity, and 3 for an
alphanumeric quantity.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

inp Free Form Input

 V-19 Revision 7

Table V.2-1

inp User Error Summary

Error
Number Description

 1 Insufficient storage allocation for previous data, processing terminated.
 2 Insufficient storage for data, processing terminated.
 3 $ (placed under column in error) $ points to card error at col. i
 4 End of file encountered before end(.) card.
 5 Continuation card indicated, but no previous data card. Treated as new data

card.
 6 Unrecognizable card number
 7 Word n5 on card ic should be in alphanumeric format
 8 Card c+a+1 missing in sequence
 9 Too few numbers on cards ic1 through ic2
 10 Too many numbers on cards ic1 through ic2
 11 Word n5 on card ic should be in integer format
 12 Word n5 on card ic should be in floating point format
 13 Cards ic1 through ic2 missing
 14 Illegal format on card ic
 15 m numbers on card ic1 through ic2 are not a multiple of nl
 16 Item m on card ic is less than minimum allowed of nmin
 17 Item m on card ic exceeds maximum allowed for nmax
 18 Error in limits of the set beginning at item m on card ic
 19 Lower limit of nmin not included on cards ic1 through ic2
 20 Upper limit of nmax not included on cards ic1 through ic2
 21 The following cards were not used
 22 Item item on card card in error

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

inp Free Form Input

Revision 7 V-20

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

 VI-1 Revision 10

VI

MAINTENANCE AND INSTALLATION

RETRAN-3D is operational on Personal Computers, PCs, running Windows or on Linux
workstations. The HP, IBM, and Sun UNIX workstations are no longer formally supported for
RETRAN-3D. However, the existing installation procedures for these platforms are still included
in the transmittal. Two different formats are used for transmitting the RETRAN-3D computer
program, one that only contains executable code and other files required for the Windows
installation. The second transmittal format contains the source code and procedures required to
install the program from the source code on Linux platforms. This source code transmittal also
includes the Windows installation. These transmittal packages will be referred to as

 the Windows transmittal, and

 the Linux source code transmittal.

Both transmittal packages will include the following:

 instructions and procedures to install RETRAN-3D (either prebuilt executable versions or,

versions installed from source code),

 instructions and procedures to execute RETRAN-3D,

 the RETRAN-3D sample problem input files,

 the RETRAN-3D sample problem output listings, and

 baseline date used to validate the code installation using the COMPARE program (see

Appendix A), and

 support programs used to validate the code and provide cross section conversion.

Source transmittal packages will also include the RETRAN-3D source code.

The Linux source format transmittal is for the most part generic. An executable program and
sample problem output files and compare standard data files are the only platform-specific
information included with the transmittal. Operating system and hardware requirements are
included in the computer code abstract that is provided with distribution packages. The procedures
for installing the code are written with options for the supported platforms. They provide an
excellent starting point for installations on other new platforms.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Maintenance and Installation

The Linux source code transmittal can be used to install the code on most Linux and Windows
platforms using a Fortran 95 compiler and related linker.

The RETRAN-30 engineering contractor that performs maintenance and development activities
for RETRAN-30 uses a version control program to track code modifications. Code users do not
need to use the same code maintenance procedures and source code version control program as the
engineering contractor. A user organization can either use the transmitted source code with any
version control program of their choice, or they can use the source directly.

When source code is included in a RETRAN-3D transmittal, the engineering contractor will
extracted it from the source code archive using their version control program. The resulting
source will contain all code needed to install RETRAN-3D using a Fortran 95 compiler and
associated tools. Care has been taken to utilize standard Fortran 95 programming to facilitate
transporting the code to new platforms not formally supported.

There are no database or third party software requirements to install RETRAN-3D.

Section 1.0 describes the code installation using the Linux source code transmittal format, while
Section 2.0 describes the Windows installation format. Both sections describe the procedures used
to test the installation.

1.0 LINUX SOURCE CODE TRANSMITTAL

The Linux source code transmittal includes installation instructions and various output files for
supported platforms. It also includes an executable file and necessary support programs for testing
and executing some program options, e.g., 3-D kinetics. The transmittal CD-ROM is written using
a format compatible with Windows machines. When a transmittal CD-ROM is inserted into a
Windows machine, an autorun procedure is initiated. It will request the user to review and accept
the license agreement and then displays a selection window (shown below) that allows the
intallation target platform to be selected.

Revision 10

RETRAN·30 • InstallShield Waard

Platt- Selection

•,t.lrndor;. 1~ Platforms

Desa1>tion
lnstel RETRAN-30 on a
\llindows F'Wfonn

nslalShteld ----------------

< Back D Next >) I Cancel I

Vl-2

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Maintenance and Installation

 VI-3 Revision 10

After a selection is made, the platform-specific InstallShield unload procedure will be executed. It
will request the user to select the location where the files are to be unloaded. If these files are not
directly accessible to the target platform via a file sharing mechanism, they will need to be moved
or copied to the target platform using ftp, ssh, or equivalent utility program. Additional
installation instructions will be included on the transmittal in the readme.txt file.

The install.sh script will build the platform-specific executable file from source code. If a source
code installation is not desired, the executable unloaded from the transmittal can be used. It should
be tested using the procedures described in Section VI.1.2

1.1 Linux Source Code Installation

The discussion of the installation procedures for the RETRAN-3D code are based on the
assumption that the RETRAN-3D source program and the installation procedures have been
copied from the transmittal media to disk using the appropriate InstallShield unload procedure
described above. These files will be used to create a RETRAN-3D executable program module.

Installation of RETRAN-3D on a Linux platform requires approximately 120 Mbytes of free disk
space; unloading the CD-ROM requires approximately 75 Mbytes of disk space, building the code
requires 25 Mbytes, and running the sample problems an additional 20 Mbytes.

The minimum RAM configuration for executing RETRAN-3D is 128Kbytes, but a minimum of
512Kb is recommended. For large multidimensional kinetics problems, even more RAM (1 to 2
Mbytes) may improve run times since smaller memory configurations may lead to disk swapping,
which can increase run times. Minimal swapping should occur if the recommended RAM is
available or exceeded. Output file created by RETRAN-3D can be quite large. For this reason it is
recommended that users have at least 2GB of free disk space and much more when multiple
production analyses are being performed.

The installation and testing procedures for RETRAN-3D on Linux platforms utilizes several
Bourne shell scripts. The primary installation script is named install.sh. It changes the attributes
of the script files and installation directories to read/write/execute. The install.sh script then asks
for an organization name, up to 32-characters in length, to be entered. This name is used to modify
the default organization name in subroutine set_configuration, which is contained in module
retran_configuration (file m_retran_configuration.f90). The organization field is included in
the page header written to the standard print file and identifies the licensed company or
organization name. The default definition is ' ** Unlicensed Trial Version ** '. If the default
organization name is not revised in the source code, it can be overridden when RETRAN-3D is
executed by supplying the organization name in the retran.cfg file (see Section IV.2.11).
Platform-specific executables for the compare2 and bxftool programs are unloaded by the
InstallShield unload procedure. If these executables are not copied or are removed prior to running
the install.sh script, new executables will be created by compiling the associated source code.

Finally, the install.sh script executes the bld script to compile the source code and link the
resulting object files to create an executable file. The bld script is shown in Table VI.1-1. It
requires three input parameters, one of which defines the target platform, e.g., AIX, HPUX,

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Maintenance and Installation

Revision 10 VI-4

Table VI.1-1

Linux Installation and Maintenance Script: bld

#===
bld -- shell script
#===

This script file is used to build an executable file for various
platforms. It defaults to the Fortran 95 compiler for the specified
platform. If the -f parameter is provided, the Fortran 77 compiler
(or equivalent) will be used. Fortran 77 source files must have a .f
suffix, while Fortran 95 files must have a .f90 suffix.

When the -B option is used, a full build is performed using the source
files listed in file compile_list. File compile_list also determines
compile dependencies.

When the -B parameter is not provided, an update is made using all
source files in the source directory are compiled. The resulting
object files replace any corresponding object files in the object
file directory which contains object files from a previous build.
They are linked to create a new executable. This feature is used
to debug or patch a previous build.

#===

DEFINE FILE SPECS

exec=progx
lognam=bld.log
PLATFORM=DUMMY
fext=f90
incdir=.
moddir=.
objdir=.
srcdir=.
build=0
nolink=0

if [$# = 0]
 then
 echo " "
 echo " bld **** ERROR **** no arguments specified "
 echo " "
 echo " The bld script is use to perform either a complete build or an "
 echo " update of a program that was built previously. A complete build "
 echo " uses the compile_list to provide the path and order that "
 echo " subroutines will be compiled. The path will be relative to "
 echo " either the current directory or the one specified using the -S "
 echo " option flag. Update jobs compile any source routines in the "
 echo " current or source directory and links with the object code in the "
 echo " the current or -O directory. "
 echo " "
 echo " -B = complete build (otherwise update) "

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Maintenance and Installation

 VI-5 Revision 8

Table VI.1-1 (Cont'd)

 echo " -c = compile only (no link) "
 echo " -f = use f77 compiler - otherwise use f95 "
 echo " -I name = include/module directory name (read) "
 echo " -M name = module directory name (write) "
 echo " -O name = object directory name (write/read) "
 echo " -P name = platform name "
 echo " = AIX "
 echo " = HPUX "
 echo " = SOLARIS "
 echo " = Linux-Ifort (32-bit) "
 echo " = Linux-Ifort64 (64-bit) "
 echo " = Linux-gnu "
 echo " = Linux-g95 "
 echo " -S name = source directory name "
 echo " -x name = name of new executable "
 echo " "
 exit 1

else
 timdat=`date`
 echo " "
 echo " Running bld shell script "$timdat

 set -- `getopt I:M:O:P:S:x:cBf $*`

 if [$? != 0]
 then
 exit 99
 fi

 while [$1 != --]
 do
 case $1 in
 -B)
 build=1
 shift
 ;;
 -c)
 nolink=1
 shift
 ;;
 -f)
 fext=f
 shift
 ;;
 -I)
 incdir=$2
 shift; shift
 ;;
 -M)
 moddir=$2
 shift; shift
 ;;
 -O)

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Maintenance and Installation

Revision 8 VI-6

Table VI.1-1 (Cont'd)

 objdir=$2
 shift; shift
 ;;
 -P)
 PLATFORM=$2
 shift; shift
 ;;
 -S)
 srcdir=$2
 shift; shift
 ;;
 -x)
 exec=$2
 shift; shift
 ;;
 esac
 done
 shift
fi

rm -f $lognam

 echo " Build executable: "$exec" for "$PLATFORM" platform "
 echo " Build executable: "$exec" for "$PLATFORM" platform "$timdat
>> $lognam

if [$build = 0]
 then
 echo " Update using local source files in directory $srcdir/ and object files
in directory $objdir/"
 echo " Update using local source files in directory $srcdir/ and object files
in directory $objdir/" >> $lognam
else
 echo " Full build using source files specified in file compile_list"
 echo " Full build using source files specified in file compile_list" >> $lognam
fi

SET UP FOR SPECIFIC PLATFORM

if [$PLATFORM = "AIX"]
 then

 if [$fext = "f90"]
 then
 Fort="f90 -C -qsave -I$incdir -M$moddir -bmaxdata:0x80000000 "
 FF=' -c -qmaxmem=10000 '
 else
 Fort="f77 -O -I$incdir -M$moddir -bmaxdata:0x80000000"
 FF=' -c -qmaxmem=3800 -qqcount '
 fi

elif [$PLATFORM = "HPUX"]

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Maintenance and Installation

 VI-7 Revision 8

Table VI.1-1 (Cont'd)

 then

+save also zeros uninitialized data

 if [$fext = "f90"]
 then
 Fort="f90 +O2 +save -I$incdir -M$moddir +check=all +fltconst_strict "
 FF='-c '
 else
 Fort="f90 +O2 +save -I$incdir -M$moddir "
 FF='-c '
 fi

elif [$PLATFORM = "SOLARIS"]
 then

-C performs run and compile time bounds checking
save seems to be the default - cann't option to turn on

 if [$fext = "f90"]
 then
 Fort="f90 -C -O -I$incdir -M$moddir "
 FF='-c '
 else
 Fort="f90 -f77 -ftrap=%none -O -I$incdir -M$moddir "
 FF='-c '
 fi

elif [$PLATFORM = "Linux-Ifort"]
 then
 if [$fext = "f90"]
 then
 Fort="ifort -save -zero -I $incdir -module $moddir -check bounds -threads
-traceback -O "
 FF='-c'
 else
 Fort="ifort -save -zero -I $incdir -module $moddir -threads -traceback
-O "
 FF='-c '
 fi

elif [$PLATFORM = "Linux-Ifort64"]
 then
 if [$fext = "f90"]
 then
 Fort="ifort64 -save -zero -I $incdir -module $moddir -check bounds
-threads -traceback -O "
 FF='-c'
 else
 Fort="ifort64 -save -zero -I $incdir -module $moddir -threads -traceback
-O "
 FF='-c '
 fi

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Maintenance and Installation

Revision 8 VI-8

Table VI.1-1 (Cont'd)

elif [$PLATFORM = "Linux-gnu"]
 then
 if [$fext = "f90"]
 then
 Fort="f95 -fno-automatic -fbounds-check -I$incdir -J$moddir -O "
 FF='-c'
 else
 Fort="f77 -fno-automatic -I$incdir -J$moddir -O "
 FF='-c '
 fi

elif [$PLATFORM = "Linux-g95"]
 then
 if [$fext = "f90"]
 then
 Fort="g95 -fstatic -fbounds-check -fzero -i4 -I$incdir -fmod=$moddir -O
-fsloppy-char -ftrace=full "
 FF='-c'
 else
 Fort="f77 -fstatic -I$incdir -fzero -i4 -fmod=$moddir -O "
 FF='-c '
 fi
else
 echo " "
 echo " **** ERROR **** invalid platform specified: "$PLATFORM
 echo " "
 exit 12
fi

 echo " Compile options used : "$Fort$FF" " >> $lognam
 echo " Source file directory : "$srcdir"/" >> $lognam
 echo " Include file directory: "$incdir"/" >> $lognam
 echo " Module file directory : "$moddir"/" >> $lognam
 echo " Object file directory : "$objdir"/" >> $lognam
 echo " " >> $lognam

COMPILE SOURCE

Note: compile_list is created using Visual Studio build log
It is ordered to account for module dependencies

echo " Compile source"
ecode=0

if build = 1 do a complete build from source

if [$objdir != .]
 then

 if [! -d $objdir]
 then
 mkdir $objdir
 fi

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Maintenance and Installation

 VI-9 Revision 8

Table VI.1-1 (Cont'd)

fi

if [$moddir != .]
 then

 if [! -d $moddir]
 then
 mkdir $moddir
 fi
fi

if [$build = 1]
 then
 if [-s "compile_list"]
 then
 rm -f $objdir/*.o
 rm -f $moddir/*.mod

 for rtn in `cat compile_list`
 do
 echo " Compiling subroutine: "$srcdir/$rtn
 echo " Compiling subroutine: "$srcdir/$rtn 1>>$lognam

 $Fort $FF $srcdir/$rtn 1>>$lognam 2>>$lognam
 if [$? -ne 0]
 then
 ecode=1
 fi
 done
 else
 echo " "
 echo " **** ERROR **** file compile_list not in install directory "
 echo " "
 exit 12
 fi

if build /= 1 do a build using fortran source files and object code in
current directory

else
 for rtn in `ls -1 *.$fext`
 do
 echo " Compiling subroutine: "./$rtn
 echo " Compiling subroutine: "./$rtn 1>>$lognam

 $Fort $FF ./$rtn 1>>$lognam 2>>$lognam
 if [$? -ne 0]
 then
 ecode=1
 fi
 done
fi

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Maintenance and Installation

Revision 8 VI-10

Table VI.1-1 (Cont'd)

if [$objdir != .]
 then
 mv -f *.o $objdir
fi

if [$ecode = 1]
 then

 echo " **** ERROR **** FORTRAN Compilation failed "
 echo " **** ERROR **** FORTRAN Compilation failed " >> $lognam
 exit 5
fi

GENERATE EXECUTABLE

timdat=`date`

if [$nolink = 0]
 then

 echo " Link step"

 echo " Link options used: "$Fort" -o "$exec" "$objdir"/*.o" >> $lognam
 $Fort -o $exec $objdir/*.o 1>>$lognam 2>>$lognam
 if [$? != 0]
 then
 echo " **** ERROR **** Link failed "
 exit 9
 fi
 #
 echo " Normal end of build "$timdat
 echo " Normal end of build "$timdat >> $lognam

 else
 echo " Normal end of compile only "$timdat
 echo " Normal end of compile only "$timdat >> $lognam

fi

exit 0

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Maintenance and Installation

 VI-11 Revision 10

SOLARIS, Linux-Ifort or Linux-Ifort64. The platform flag is used to define the compiler-specific
name and option flags.

Three parameters are required when running the bld script to build a RETRAN-3D executable file,
they are –P, –B, and –x. The –P parameter is used to identify the platform the build is being run on
(also the platform an executable is being created for) and requires that a valid platform identifier be
supplied with the parameter. If bld is entered without any parameters, an error is triggered and the
available options are written to the console without further action. This allows the script to be
self-documenting. The text identifiers for UNIX platforms not formally supported include AIX,
HPUX, or SOLARIS (must be upper case). Several different compiler options are available for
use on Linux platforms. They are Linux-Ifort and Linux-Ifort64 for the Intel 14.0.2 Fortran
compiler [V.1-4] for 32-bit and 64-bit applications, respectively, and Linux-gnu or Linux-g95 for
the GNU or G95 Fortran compliers.[V.1-5, V.1-6] The Intel complier is used to prepare the Linux
executable included with the code distribution. The gnu and G95 options are provided as a starting
point for those who may wish to use these compilers, but they have not been fully tested with
RETRAN-3D.

The -B parameter specifies that a file named compile_list will be used to define the order in which
subroutines are compiled. The compilation order is significant because of the use of modules,
which define constants and data definitions used during compilation of other modules and
subroutines that refer to them. The required compilation order is determined using Microsoft
Visual Studio (VS) on a Windows PC where the code is formally maintained by the maintenance
contractor. VS analyzes the source code and determines the order subroutines must be compiled to
satisfy the associated dependencies. During a full VS project build, a build log is created that
contains the order that subroutines are compiled. This log file is used to create the compile_list
file that is used by the bld script to define files that are compiled and the order they are compiled.
Table VI.1-2 is a fragment of the compile_list file that illustrates its content and format. A
complete and current compile_list will be included on the transmittal media.

The third parameter used with the bld script during a full build is –x. It is used to provide the name
of the executable file that will be created. The name of the executable is supplied following the –x
parameter. The executable file will be created in the current directory and the object files will also
be created in the current or installation directory. An example command line for building a
RETRAN-3D executable on a Linux platform using the Intel 14.0.2 Fortran compiler follows.

bld –P Linux-Intel –B –x r3dm4p6x

An optional parameter –O, can be used to specify the name of the directory where the object files
will be placed. This will place all of the object files in this directory rather than the installation
directory. The executable will still be created in the installation directory.

An optional parameter -S, can be used to specify the path name of the directory where the source
code files reside if they are not in the installation directory. This is used in conjunction with the
compile_list file which may contain path information, either relative or absolute. If the
compile_list file entries contain relative path information, it will be combined with the path name
given with the -S parameter. If the absolute path is given in the compile_list file, the optional -S
parameter should not be used.

The –f parameter is not used with RETRAN-3D because it invokes the Fortran 77 or equivalent
compiler options. This option is used with other programs that require use of the Fortran 77
compiler. An option is also available to define the INCLUDE directory, -I. This option is also
used with other code versions since the Fortran 95 version of RETRAN-3D does not use
INCLUDE files. A similar option is available for module (.mod) files created by the compiler. By
default they will reside in the installation directory. The -M parameter can be used to identify
where the module files will be located.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Maintenance and Installation

Revision 7 VI-12

Table VI.1-2

Example Subroutine Compilation Order File: compile_list

./modules/m_kind_specs.f90
./source/dummies_1d3d.f90
./source/nitems.f90
./source/inp7.f90
./source/getpar.f90
./source/ncards.f90
./source/date8.f90
./interfaces/s_isygn.f90
./modules/m_retran_configuration.f90
./interfaces/s_rken.f90
./interfaces/s_condht.f90
./source/inp_spec.f90
./modules/s_l_pntr.f90
./modules/m_ncgasc.f90
./interfaces/s_ghem.f90
./interfaces/s_locf.f90
./modules/m_arrcom.f90
./interfaces/s_zmoc.f90
./interfaces/s_poly.f90
./interfaces/s_chkv.f90
./modules/s_i_pntr.f90
./modules/m_minor_edits.f90
./interfaces/s_thcon.f90
./interfaces/s_delhp.f90
./interfaces/s_inp8.f90
./interfaces/s_water.f90
./interfaces/s_nitems.f90
./interfaces/s_c3func.f90
./modules/m_minor_edit_search.f90
./modules/m_edit_headers.f90
.
.
.
./source/qdot05.f90
./source/pspec.f90
./source/nterp.f90
./source/me_sum_e.f90
./source/locflx.f90
./source/inp2.f90
./source/ingeom.f90
./source/inckv.f90
./source/ghem.f90
./source/flowmp.f90
./source/expin2.f90
./source/edit_steady_state.f90
./source/delpin.f90
./source/contrl.f90
./source/cardbc.f90

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Maintenance and Installation

 VI-13 Revision 10

Depending on the speed of the machine being used for the installation, the wall time required to
install RETRAN-3D can range from several minutes to 20 minutes. The build log file named
bld.log is created during the installation process and will contain the Linux standard out and error
results for the compile and link steps of the installation. It can be viewed during installation to
determine the progress. The log file will include the completion status of the various installation
steps.

After an executable has been created, the installation should be tested by performing the testing
described in the following section.

1.2 Linux Platform Testing

One of the most important aspects of installing RETRAN-3D is testing the installed code to insure
that the results generated for a series of test cases agree with those for a baseline installation. This
is facilitated by use of the COMPARE2 program discussed in Appendix A. It compares a selected
set of output for each sample problem, with baseline data. Baseline data may be included on the
transmittal for each supported platform, or for a single reference platform. The COMPARE2
program creates a report that contains all occurrences where the results from the new installation
differ from the baseline standard. User supplied tolerances to the COMPARE2 program determine
when differences are reported.

The installation script installs the COMPARE2 program. It is run separately following the
installation, by running a checkin.sh script. This step is discussed in the following sections.

Once an executable file is either installed using the bld script or copied from the transmittal media
as part of the unload process as described above, it can be used to run RETRAN-3D. A script file,
run.sh, is shown in Table VI.1-3. It is used to execute RETRAN-3D and is copied to the root
installation directory by the unload script. It is used to execute RETRAN-3D and perform the
necessary file set up prior to executing RETRAN-3D and upon completion of the run. Running the
run script without any arguments will produce a list of the possible options. The -x switch defines
the executable file to use. Alternately, the variable exec can be set within the run script to the
desired executable file. As transmitted, run will use the RETRAN-3D executable included on the
transmittal (retran3d.x), unless an executable is generated by the bld script (r3dm004p7).

The run.sh script can be used to execute RETRAN-3D at this point in the installation. However, it
is suggested that the installation first be tested using the checkin script shown in Table VI.1-4. It
runs the standard sample problems, which are set up to create auxiliary files (TAPE60) containing
the minor edit output. These files for the sample problem set are then copied to a single file,
TSTDTA, that is then compared against the STDDTA baseline file. The checkin.sh script is used
to run the sample problem set, create the TSTDTA file, and run the COMPARE2 program. The
checkin.sh script by default, assumes that all sample problem are to be executed including the
three-dimensional kinetics sample problems. If just the non-multidimensional kinetics problems
are to be run, the variable r3dkin in the checkin.sh script should be set to "no".

The checkin.sh script is executed by entering

 ./checkin.sh

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Maintenance and Installation

Revision 10 VI-14

Table VI.1-3

Linux Execution Script: run.sh

#! /bin/sh

HP
dbgr=gdb

SUN, IBM
dbgr=dbx

dbgr=
rdeck=
tape12=
tp12ed=
tape13=
tp13ed=
xsecin=
xseced=
inpext=
debug=
opts=
nsm=
RTAPE=
XTAPE=
dattim=
xstat=
rm -f _headr

if [$# = 0]
 then
 echo " "
 echo " **** ERROR **** no arguments specified"
 echo " "
 echo " -x name = executable name"
 echo " -r name = retran input"
 echo " -X name = 1D X-section file (TAPE40)"
 echo " -3 name = 3D X-section file (TAPE68)"
 echo " -B name = old RETRAN data file (TAPE12)"
 echo " -R name = old RETRAN restart file (TAPE13)"
 echo " -C name = old CDI file (TAPE78)"
 echo " -ns = no screen messages"
 echo " -d = run debugger"
 echo " "
 exit 1

elif [$# = 1]
 then
 rdeck=$1
else

set -- `getopt x:r:B:C:R:3:X:n:d $*`

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Maintenance and Installation

 VI-15 Revision 7

Table VI.1-3 (Cont’d)

 if [$? != 0]
 then
 exit 99
 fi

 while ["Q$1" != "Q--"]
 do
 case $1 in
 -x)
 exec=$2
 shift; shift
 ;;
 -r)
 rdeck=$2
 shift; shift
 ;;
 -B)
 tape12=$2
 tp12ed="with TAPE12: "$2
 shift; shift
 ;;
 -R)
 tape13=$2
 tp13ed="with TAPE13: "$2
 RTAPE="TAPE13"
 shift; shift
 ;;
 -X)
 xsecin=$2
 xseced="with TAPE40: "$2
 XTAPE="TAPE40"
 shift; shift
 ;;
 -3)
 xsecin=$2
 xseced="with TAPE68: "$2
 XTAPE="TAPE68"
 shift; shift
 ;;
 -C)
 cdiin=$2
 cdied="with CDI file : "$2
 CTAPE="TAPE78"
 shift; shift
 ;;
 -n)
 opts=$opts" -ns"
 nsm="no"
 shift; shift
 ;;
 -d)
 debug="yes"
 shift
 ;;

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Maintenance and Installation

Revision 7 VI-16

Table VI.1-3 (Cont’d)

 *)
 echo " Bad Option on Command Line"
 exit 99
 ;;
 esac
 done
shift
fi

RUN EXECUTABLE

execc=`type $exec|awk '{print $3}'`
if [-x "$execc"]
 then
 if [-n "$xsecin"]
 then
 if [-s "$xsecin"]
 then
 rm -f $XTAPE
 ln -s $xsecin $XTAPE
 else
 echo " **** ERROR **** Specified "$XTAPE" does not exist :"$xsecin
 exit 40
 fi
 fi
 if [-n "$cdiin"]
 then
 if [-s "$cdiin"]
 then
 rm -f $CTAPE
 ln -s $cdiin $CTAPE
 else
 echo " **** ERROR **** Specified "$CTAPE" does not exist :"$cdiin
 exit 41
 fi
 fi
 if [-n "$tcsin"]
 then
 if [-s "$tcsin"]
 then
 rm -f $HTAPE
 ln -s $tcsin $HTAPE
 else
 echo " **** ERROR **** Specified "$HTAPE" does not exist :"$tcsin
 exit 42
 fi
 fi
 if [-n "$tape12"]
 then
 if [-s "$tape12"]
 then
 rm -f TAPE12
 ln -s $tape12 TAPE12

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Maintenance and Installation

 VI-17 Revision 7

Table VI.1-3 (Cont’d)

 else
 echo " **** ERROR **** Specified TAPE12 does not exist :"$xsecin
 exit 12
 fi
 fi
 if [-n "$tape13"]
 then
 if [-s "$tape13"]
 then
 rm -f $RTAPE
 ln -s $tape13 $RTAPE
 else
 echo " **** ERROR **** Specified "$RTAPE" does not exist :"$tape13
 exit 13
 fi
 fi
 if [-n "$rdeck" -a -s "$rdeck"]
 then
 rm -f INPUT
 cp $rdeck INPUT
 outfil=OUTPUT
 else
 echo " **** ERROR **** Specified input deck does not exist :"$rdeck
 exit 11
 fi

header information

 echo " OS: "`uname` > _headr 2>/dev/null
 echo " User Name: "`whoami` >> _headr 2>/dev/null
 dattim=`date "+%m/%d/%y %H:%M %p"`
 echo " Start time: "$dattim >> _headr 2>/dev/null

 echo "" >> _headr 2>/dev/null
 echo " Input File Information:" >> _headr 2>/dev/null
 echo " Input File: "$rdeck >> _headr 2>/dev/null
 if [! -z "$xseced"];then echo " "$xseced >> _headr 2>/dev/null ;fi
 if [! -z "$cdied"];then echo " "$cdied >> _headr 2>/dev/null ;fi
 if [! -z "$tcsed"];then echo " "$tcsed >> _headr 2>/dev/null ;fi
 if [! -z "$tp13ed"];then echo " "$tp13ed >> _headr 2>/dev/null ;fi
 if [! -z "$tp12ed"];then echo " "$tp12ed >> _headr 2>/dev/null ;fi
 echo "" >> _headr 2>/dev/null
 echo " Command: "$execc" "$opts >> _headr 2>/dev/null
 echo "" >> _headr 2>/dev/null
 echo " Program Name: "`basename $execc`" ("`dirname $execc`")" >> _headr
2>/dev/null
 echo " Program Stats: "`ls -l $execc` >> _headr 2>/dev/null

 if [-z "$nsm"]
 then
 echo " Running "$execc" "$opts" with INPUT: "$rdeck

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Maintenance and Installation

Revision 7 VI-18

Table VI.1-3 (Cont’d)

 if [! -z "$xseced"];then echo " "$xseced ;fi
 if [! -z "$cdied"];then echo " "$cdied ;fi
 if [! -z "$tcsed"];then echo " "$tcsed ;fi
 if [! -z "$tp13ed"];then echo " "$tp13ed ;fi
 if [! -z "$tp12ed"];then echo " "$tp12ed ;fi
 echo " "
 fi

 rm -f ftn* fort* ERR_LOG
 if [! -z "$debug"]
 then
 $dbgr $exec $opts
 xstat=$?
 else
 $exec $opts
 xstat=$?
 fi

continue header information

 dattim=`date "+%m/%d/%y %H:%M %p"`
 echo "" >> _headr 2>/dev/null
 echo " Execution ended: "$dattim >> _headr 2>/dev/null
 echo "" >> _headr 2>/dev/null
 echo " Exit status: "$xstat >> _headr 2>/dev/null
 echo "" >> _headr 2>/dev/null
 echo " Output File Information:" >> _headr 2>/dev/null

 rm -f INPUT TAPE2 TAPE3 TAPE20
 bdeck=`basename $rdeck`
 if [-s "$outfil"]
 then
mv $outfil $bdeck.out
 echo " Output File: "$bdeck.out >> _headr 2>/dev/null
if [-s "REMARKS"]
then
cat REMARKS >> $bdeck.out
rm REMARKS
fi
 fi
 if [-s "ERR_LOG"]
 then
 mv ERR_LOG $bdeck.ERR_LOG
 echo " Error Log: "$bdeck.ERR_LOG >> _headr 2>/dev/null
 fi
 if [-s "TAPE14"]
 then
 mv TAPE14 $bdeck.tape14
 echo " Restart File: "$bdeck.tape14 >> _headr 2>/dev/null
 fi
 if [-s "TAPE60"]
 then

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Maintenance and Installation

 VI-19 Revision 7

Table VI.1-3 (Cont’d)

 mv TAPE60 $bdeck.tape60
 echo " TAPE60 File: "$bdeck.tape60 >> _headr 2>/dev/null
 fi
 if [-s "VBCFIL"]
 then
 mv VBCFIL $bdeck.vbc
 echo " VBC File: "$bdeck.vbc >> _headr 2>/dev/null
 fi
 if [-s "TAPE41"]
 then
 mv TAPE41 $bdeck.tape41
 fi
 if [-s "TAPE42"]
 then
 mv TAPE42 $bdeck.tape42
 fi
 if [-s "TAPE43"]
 then
 mv TAPE43 $bdeck.tape43
 fi
 if [-s "R3D_PLOT"]
 then
 mv R3D_PLOT $bdeck.plt
 echo " PLOT File: "$bdeck.plt >> _headr 2>/dev/null
 fi
 if [-s "fort.2"]
 then
 rm -f fort.2
 fi
 if [-s "fort.3"]
 then
 rm -f fort.3
 fi
 if [-s "ftn02"]
 then
 rm -f ftn02
 fi

finish header information

 echo "" >> _headr 2>/dev/null
 cat _headr $outfil REMARKS > $bdeck.out 2>/dev/null
 rm -f _headr $outfil REMARKS

else
 echo " **** ERROR **** Specified exec file not found :"$exec
 exit 20
fi

exit 0

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Maintenance and Installation

Revision 10 VI-20

Table VI.1-4

Linux Installation Verification Script: checkin.sh

#!/bin/sh

Script to execute all 16 sample problems.
After running the sample problems, the TAPE60 files are concatenated
to file TSTDTA which is then used as input to the COMPAR program.

Select the executable file

xxx=retran3d.x

if [-x "r3m004p3x"]
 then
 xxx=r3m004p3x
fi

if [$# = 1]
 then
 xxxc=`type $1|awk '{print $3}'`
 if [-x "$xxxc"]
 then
 xxx=$1
 else
 echo " **** ERROR **** Specified exec file not found :"$1
 exit
 fi
fi

Run sample problems

./run -r sample/sp1 -x $xxx
./run -r sample/accum -x $xxx
./run -r sample/sp5 -x $xxx
./run -r sample/tlta -x $xxx
./run -r sample/ttwob -x $xxx
./run -r sample/ucrw -x $xxx
./run -r sample/fl2d -x $xxx
./run -r sample/turb -x $xxx
./run -r sample/ttqx1 -X sample/ttqx1.t40 -x $xxx
./run -r sample/atws -x $xxx
./run -r sample/pipe -x $xxx
./run -r sample/wovrs -x $xxx
./run -r sample/lrhr -x $xxx

./xfgen.sh A sample/pwr
./run -r sample/pwr -3 pwr.bxf -C sample/pwr.cdi -x $xxx -m 5M
./xfgen.sh A sample/slb
./run -r sample/slb -3 slb.bxf -C sample/slb.cdi -x $xxx -m 5M
./xfgen.sh A sample/bwr
./run -r sample/bwr -3 bwr.bxf -C sample/bwr.cdi -x $xxx -m 5M
mv *.bxf sample

Concatenate the tape60 files to file TSTDTA

cat sp1.tape60 > compare/TSTDTA
cat accum.tape60 >> compare/TSTDTA
cat sp5.tape60 >> compare/TSTDTA
cat tlta.tape60 >> compare/TSTDTA

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Maintenance and Installation

 VI-21 Revision 7

Table VI.1-4 (Cont’d)

cat ttwob.tape60 >> compare/TSTDTA
cat ucrw.tape60 >> compare/TSTDTA
cat fl2d.tape60 >> compare/TSTDTA
cat turb.tape60 >> compare/TSTDTA
cat ttqx1.tape60 >> compare/TSTDTA
cat atws.tape60 >> compare/TSTDTA
cat pipe.tape60 >> compare/TSTDTA
cat wovrs.tape60 >> compare/TSTDTA
cat lrhr.tape60 >> compare/TSTDTA
cat pwr.tape60 >> compare/TSTDTA
cat slb.tape60 >> compare/TSTDTA
cat bwr.tape60 >> compare/TSTDTA

Run COMPARE program

cd compare
rm -f INDTA REPORT
cp R3D.TXT INDTA
./compare

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Maintenance and Installation

Revision 10 VI-22

After first running the sample problems, the checkin.sh script verifies the installation by
comparing results to those supplied in the ./compare/ directory by executing the COMPARE2
program. A summary of these comparisons is written to the REPORT file in the ./compare/
directory. A text editor can be used to examine the REPORT file to determine if the installation
was successful. The REPORT file should indicate that there are 0 differences. The cause of any
differences should be determined.

When the multidimensional kinetics sample problems are run by checkin.sh, cross-section files
are required to execute RETRAN-3D. They must be in binary form, but they are provided in
ASCII form on the transmittal media and therefore, must be converted to binary form using
BXFTOOL as discussed in Appendix B. This will be done by checkin.sh if it is executed. If the
multidimensional kinetics sample problems are executed using the run.sh script prior to running
checkin.sh, BXFTOOL will have to be run separately (using the xfgen.sh script) to convert each
of the three cross-section files to binary format.

1.2.1 COMPARE2 and BXFTOOL Installation

The InstallShield unload procedure will generally copy the platform-specific executables for the
BXFTOOL and COMPARE2 programs into the appropriate directories in which case this section
can be skipped. However, in the event that RETRAN-3D is being installed on a new unsupported
platform or if the supplied executables fail to execute properly, it may be necessary to install them
from source.

The source code for these programs is copied to disk by the InstallShield unload procedure. They
can be installed by using the Fortran 95 compiler by entering the following commands from the
keyboard (starting from the installation directory);

 cd compare
 f95 -c compare_data.f90
 f95 -c report.f90 compare2.f90
 f95 -0 compare2 *.0
 cd ../bxftool
 f95 bxftool.f -o bxftool
 cd ..

After successfully compiling bxftool.f and compar.f, the checkin.sh script can be used to test the
executable. Note that BXFTOOL is used to convert the cross-section files included on the
transmittal media to a form used by the multidimensional kinetics option (see Appendix B).

1.3 Installing on Other Platforms

The Linux transmittal will provide a starting point for installing RETRAN-3D on a platform that is
not formally supported. It may be necessary to use the Linux InstallShield unload procedures or to
do the unload process manually.

The installation instructions given in the previous sections should provide a good starting point for
platforms that are not specifically supported. The general organization of installation steps should
follow those given in Table VI.1-1, where the appropriate compiler name and option flags are

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Maintenance and Installation

 VI-23 Revision 7

substituted for the target platform. The run.sh and checkin.sh scripts given in Tables VI.1-3 and
VI.1-4, respectively, will provide a starting point for the new platform.

The sample problem input decks reside in a separate sample problem directory (sample) and the
corresponding sample problem output files are located in the platform specific output directory
(output) on the transmittal media.

The BXFTOOL and COMPARE programs will have to be installed as instruction in the previous
section. The baseline data (STDDTA) and input data (INDTA) used by compare will have to be
copied from the transmittal media.

It is recommended to install the code without optimization initially. Once the code is installed and
satisfactory comparisons of the sample problem output with the COMPARE baseline data have
been made, the code can be recompiled using higher levels of optimization.

2.0 WINDOWS TRANSMITTAL

RETRAN-3D for Windows platforms is only provided in executable form. Disk space
requirements are 50 Mbytes, which provides adequate disk space to install and test the code
installation.

The minimum RAM configuration for executing RETRAN-3D is 1Mbyte, but a minimum of
2Mbytes is recommended. For large multidimensional kinetics problems, even more RAM may
improve run times since smaller memory configurations may lead to disk swapping, which can
increase run times. Minimal swapping should occur if the recommended RAM is available or
exceeded. Output file created by RETRAN-3D can be quite large. For this reason it is
recommended that users have at least 2GB of free disk space and much more when multiple
production analyses are being performed.

2.1 Windows Installation

The RETRAN-3D installation media contains a typical Windows installation package that will
copy all of the needed files to the appropriate locations on your computer system. The
RETRAN-3D installation package will also set up the logic that allows you to remove the
application (and all of its supporting files) from your computer system, should you choose to do so.

1. Insert the installation media (CD-ROM) in the appropriate drive of your computer system. If

the setup does not start automatically, from the Start menu select Run, then type in the name
or browse for the setup program that resides on your CD-Rom drive
(<Drive>:\Platform\Windows\Install\Setup.exe).

2. After the installation has begun, a Welcome window will appear on the screen (as shown

below) introducing the installation process. Select the Next> button at the bottom of that
window to continue the installation process.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Maintenance and Installation

If, at any point, you decide to stop the
installation of the RETRAN-30
software, select the Cancel button on
any of the following windows. If you
cancel the installation, no files from
the installation will be left on your
computer, nor will your computer be
changed.

3. The Software License Agreement
for the RETRAN-30 application will
be displayed on the screen (shown
below). If, after reading this
agreement, you accept the terms of
this agreement and wish to continue
the installation, select the Yes button
on that window to continue with the
installation process. If you select the
No button on this window, the
installation process will be halted, and
the RETRAN-30 software will not be
installed on your computer. Note that
installation of the RETRAN-30
software implies acceptance of this
agreement.

4. The Platform Selection window will
appear (as shown to the right). This
allows the installation target platform
to be selected. Click the Next> button
to continue.

Revision 10

RETRAN-30 • lnstallShield Wizard

Software License Agreement

Welcome to the lnstaUShield Vizard IOJ
RETRAN-30 MOD004.7.1

This program wit iistall/copy RETRAN·3D files to your
computer.

Please read the folowilg Software License Ageement. Press the
PAGE DOWN key to see the reit of the~

Copyright 2014 Electric Power Research lmtilute. Inc.

EPRI rese!Ve$ all rights in the Plogram as deivered. The Program or 1111' portion thereol a
may not be reproduced in any form whatsoever eiccept as provided~ ticense without the
~consent ol EPRI. A icense under EPRl's rights in the Program may be available
dieclly from EPRI.

The embociments ol lhis Plogram and ~rting materials may be C1dered hem:

Elecbic Power Software Center (EPSCJ

~::=e~T=~~r~:~~im~ I Pml

RETRAN-30 • lnstallShield Wizard

Please sell!Ct the plalform ,!IOI> woUd ike to install.

nsta11Sh1eld --------

Vl-24

< Back !I Yes J I No

Oeses1ltion
Copy RETRAN·3D fies for use on
e Linux Platform

< Baclt II Next > I I Cancel

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Maintenance and Installation

5. The Choose Destination Location window will appear (as shown to the right). This window
allows you to specify the location on your computer's hard disk for the RETRAN-3D software
and its supporting files. The default location is \Program Files\RETRAN-3D on the
computer hard disk where Windows is installed. If this default is satisfactory, simply select the
Next> button to continue the installation process. You can use the Browse ... button to select an
alternative location for the software, followed by the Next> button to continue.

Choose Destination Location

Setup will imtal RE T RAN·3D in the following folde!.

To install to this folder, crick Next To install to a different folder, click Browse and select
another folder.

Destination Folder

C:\RETRAN·3DM4P7P1

nstallShield ---------------

Browse. ..

I < Back ll Next):] I Cancel I

5. The installation process will then begin copying the needed files to your computer's hard disk
and setting up the supporting files for the RETRAN-3D application. A progress meter (as
shown below) will be updated throughout this installation step.

Setup Stalus

RETRAN·3D is configumg your new sollw¥e inslalation.

lnstafing Copying prO!Jam lies ...

C:\RETRAN·3DM4P7P1\lelran3d.exe

lnstallShield ---------------------

Vl-25 Revision 10

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Maintenance and Installation

6. A license for the RETRAN-3D executable is required. It
will generally be included with software transmittal.
Insert the license media, then select the location of the
license file as shown to the right. If necessary you can
remove the installation CD-ROM and insert the license
media at this point.

If you do not have a license for RETRAN-3D, contact
Computer Simulation & Analysis, Inc. (CSA) at
1-208-529-1700 or email: csai@csai.com. The
installation will continue without a license file,
but the RETRAN-3D executables will not

Question

Selecl Locnlton £i

Please lnSett RETRAN-30 lcense media

Path:

Desl<top
lil 0 My Documents
El MyC~er

l±l ~ 3'1> Floppy (A:)
l±l - localOisk(C:)
l±l 1'1 041119_1118(0:)
~ dataftles on 'Wserver' (M:)

l±l • Applications on 'Wserver' (N:)

l±l - • Voll on 'Csal' (R:)

function. Once a license file is obtained it must
be copied to the destination location selected in
step 4 above, the default location is \Program
Files\RETRAN-3D on the computer hard disk
where Windows is installed.

,ft RETRAN-30 is licensed software. It will not function without a license.
V To obtain a license, ca ll:

Computer Simulation & Analysis, Inc. (CSA) at 1-208-529-1700
or email: csai@csai.com

Continue without a license?

Yes j I No

7. At the completion ofRETRAN-3D installation, you will be shown the Wizard Complete
window below. Select the appropriate box to view the README file and the RETRAN-3D
User Manual. Select the Finish button to complete this installation.

RETRAN-30 • InstallShield Wiza~d

lnstallShield Wizard Complete

The lnslallShield W"IUlld has successfuly instaled
RETRAN-30. Cick Fl'lish to exi the wizard

~View the README lie.

~View RETRAN·30 Usei Manual

r <Back Cancel

8. The RETRAN-3D application is now installed on your computer system and ready to use. You
should remove the installation CD-ROM and the license media and store them in a safe place,
in case you should need to reinstall the RETRAN-3D application.

Revision 10 Vl-26

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Maintenance and Installation

9. RETRAN-3D must be started from a command prompt window (DOS Prompt). A shortcut has
been created for you on your Windows Start menu, as shown below. When started from the
shortcut, the environment is automatically setup to run RETRAN-3D correctly. If

Now Office Oocunonl

j

ca Accesacriet
ts Adobe Acrobll 4.0

• @! Miao=ft Rel111ence

• IJ ln1emetEicib111
lit Miao=ft EllCel

• 151 Microoaft \l/crd

I\ MS-OOSPl....,i
•i9;1 ~Eidor111
~Engi._qCodoPI~ · ~~--:-~~~~

• RETRAN·30 COllllllhd Pl....,i t:il I ~ I I ~
-- - ---- - - ----- --

RETRAN-3D is started from a standard command prompt window, the environment must be
manually setup. This process is described in detail in the README.TXT file. If
RETRAN-3D was not installed in the default location, the starting location for the
RETRAN-3D command prompt will need to be modified.

RETRAN-3D is not a Windows application; it is a console application run from a command
prompt window by entering the appropriate command string from the keyboard. A procedure
file, run.bat, shown in Table Vl.2-1, is used to execute RETRAN-3D problems. This
procedure file is installed with the RETRAN-3D executable(s). It provides the capability to
specify the required input data files and optionally define the executable file. If run is entered
in the command prompt window without any parameters, the procedure will list the input
parameters that can be specified. RETRAN-3D will not be executed. If the executable file is
defined using the default definition of the exec environment variable in the run.bat procedure
file, the -r [rdeck] parameter is the only required parameter; otherwise, the executable file
name must also be specified using the-x [exec] parameter. The -m [memsize] parameter can
be used to adjust the size of the memory allocation, which is problem dependent. Other
parameters may be required, depending on the code options specified in the input file.

To execute the spl sample problem, enter run-r .\sample\spl from the keyboard. The output
file will have the name of the input file with a .out extension, e.g., sp 1.out. The output file can
then be examined using a text editor.

10. RETRAN-3D is a licensed product. During installation, a license file is requested for the
installed RETRAN-3D product. RETRAN-3D will not function without a license. If a license

Vl-27 Revision 10

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Maintenance and Installation

Revision 7 VI-28

Table VI.2-1

Windows Execution Procedure: run.bat

@echo off
rem
rem RETRAN-3D run procedure (Command line version)
rem
rem
rem Calling sequence
rem
rem run -x exec -r rdeck -X xsecin -3 xsecin -B tape12 -R tape13 -C tape78
rem
rem where all parameters are optional except -r (and rdeck).
rem Note that parameters are case sensitive.
rem
rem
rem ===
if "%1" == "/?" goto help
if "%1" == "-h" goto help
if "%1" == "--help" goto help

rem
rem
rem Set environment variables
rem
 set exec=
 set exepth=
 set exenam=
 set exetim=
 set exesiz=
 set bdeck=
 set rdeck=
 set tape12=
 set tp12ed=
 set tape13=
 set tp13ed=
 set xsecin=
 set xseced=
 set tape78=
 set tp78ed=
 set CTAPE=
 set XTAPE=
 set opts=
 set nsm=
rem
 if not %1*==* goto parse
rem
rem ===
rem
rem Error processing
rem
:error
rem
 echo **
 echo **** ERROR **** argument errors detected

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Maintenance and Installation

 VI-29 Revision 7

Table VI.2-1 (Cont'd)

:help
 echo *
 echo * calling sequence
 echo *
 echo * run -x exec -r rdeck -X xsecin -3 xsecin
 echo * -B tape12 -R tape13 -C tape78
 echo *
 echo * where all paramters are optional except -r (and rdeck)
 echo *
 echo * (parameters are order independent but are case sensitive)
 echo *
 echo * -x exec = executable name
 echo * -r rdeck = retran input
 echo * -X xsecin = 1D X-section file (TAPE40)
 echo * -3 xsecin = 3D X-section file (TAPE68)
 echo * -B tape12 = old RETRAN data file (TAPE12)
 echo * -R tape13 = old RETRAN restart file (TAPE13)
 echo * -C tape78 = CDI file (TAPE78)
 echo * -m memsize = pool memory argument
 echo * -ns = no screen argument
 echo * -N runnum = run number argument
 echo **
 exit /b
rem
rem exec file does not exist
rem
:err_exec
 echo *
 echo * Error **** RETRAN-3D executable file %exec% does not exist
 echo *
 goto exit
rem
rem RETRAN-3D input file does not exist
rem
:err_rdeck
 echo *
 echo * Error **** RETRAN-3D input file %rdeck% does not exist
 echo *
 goto exit
rem
rem Cross section file does not exist
rem
:err_xsec
 echo *
 echo * Error **** %XTAPE% cross section file %xsecin% does not exist
 echo *
 goto exit
rem
rem Input data file does not exist
rem
:err_tape12
 echo *
 echo * Error **** TAPE12 data file %tape12% does not exist
 echo *

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Maintenance and Installation

Revision 7 VI-30

Table VI.2-1 (Cont'd)

 goto exit
rem
rem Restart data file does not exist
rem
:err_tape13
 echo *
 echo * Error **** TAPE13 data file %tape13% does not exist
 echo *
 goto exit
rem
rem CDI file does not exist
rem
:err_tape78
 echo *
 echo * Error **** TAPE78 data file %tape78% does not exist
 echo *
 goto exit
rem
rem Invalid parameter
rem
:err_opt
 echo *
 echo * Error **** invalid parameter, %1 not valid option
 echo *
 goto exit
rem
rem ===
rem
:parse
 if %1*==* goto process
 if %1==-x goto x
 if %1==-r goto r
 if %1==-X goto ux
 if %1==-3 goto 3
 if %1==-B goto ub
 if %1==-R goto ur
 if %1==-C goto uc
 if %1==-m goto um
 if %1==-ns goto uns
 if %1==-N goto un
 if not %1*==* goto err_opt

rem
rem Set executable file name
rem
:x
 if %2*==* goto error
 del /q _tmp789 2>nul
 set fff=%2
 set fff=%fff:.exe=%
 set exec=%fff%.exe
 if exist %exec% goto xx
 echo %fff%.exe >_tmp789 2>nul
 for /F "usebackq" %%a in (_tmp789) do set exec=%%~$PATH:a

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Maintenance and Installation

 VI-31 Revision 7

Table VI.2-1 (Cont'd)

 del /q _tmp789 2>nul
 if %exec%*==* goto err_exec
:xx
 echo %exec% >_tmp789 2>nul
 for /F "usebackq" %%a in (_tmp789) do set exepth=%%~dpa
 for /F "usebackq" %%a in (_tmp789) do set exenam=%%~nxa
 for /F "usebackq" %%a in (_tmp789) do set exesiz=%%~za
 for /F "usebackq" %%a in (_tmp789) do set exetim=%%~ta
 del /q _tmp789 2>nul

 shift
 shift
 goto parse
rem
rem Set RETRAN-3D input deck
rem
:r
 if %2*==* goto error
 set bdeck=%~nx2
 set rdeck=%2
 set inpext=
 if exist %rdeck%%inpext% goto r2
 set inpext=.inp
 if exist %rdeck%%inpext% goto r2
 goto err_rdeck
rem
:r2
 shift
 shift
 if %rdeck% == INPUT goto parse
 if exist input del input > nul
 if exist output del output > nul
 if exist remarks del remarks > nul
 if exist TAPE2 del TAPE2 > nul
 if exist tape3 del TAPE3 > nul
 if exist tape14 del tape14 > nul
 if exist tape41 del tape41 > nul
 if exist tape42 del tape42 > nul
 if exist tape60 del tape60 > nul
 if exist ERR_LOG del ERR_LOG > nul
 if exist VBCFIL del VBCFIL > nul
 if exist R3D_PLOT del R3D_PLOT > nul
 copy %rdeck%%inpext% INPUT > nul
 goto parse
rem
rem Set 1D cross section file
rem
:ux
 if %2*==* goto error
 set xsecin=%2
 set xseced=with TAPE40:
 set XTAPE=TAPE40
 if not exist %xsecin% goto err_xsec
 if not %xsecin%==TAPE40 copy %xsecin% TAPE40 > nul

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Maintenance and Installation

Revision 7 VI-32

Table VI.2-1 (Cont'd)

 shift
 shift
 goto parse
rem
rem Set 3D cross section file
rem
:3
 if %2*==* goto error
 set xsecin=%2
 set xseced=with TAPE68:
 set XTAPE=TAPE68
 if not exist %xsecin% goto err_xsec
 if not %xsecin%==TAPE68 copy %xsecin% TAPE68 > nul
 shift
 shift
 goto parse
rem
rem Set input retran data file
rem
:ub
 if %2*==* goto error
 set tape12=%2
 set tp12ed=with TAPE12:
 if not exist %tape12% goto err_tape12
 if not %tape12%==TAPE12 copy %tape12% TAPE12 > nul
 shift
 shift
 goto parse
rem
rem Set restart data file
rem
:ur
 if %2*==* goto error
 set tape13=%2
 set tp13ed=with TAPE13:
 if not exist %tape13% goto err_tape13
 if not %tape13%==TAPE13 copy %tape13% TAPE13 > nul
 shift
 shift
 goto parse
rem
rem Set CDI file
rem
:uc
 if %2*==* goto error
 set tape78=%2
 set tp78ed=with TAPE78:
 set CTAPE=TAPE78
 if not exist %tape78% goto err_tape78
 if not %tape78%==%CTAPE% copy %tape78% TAPE78 > nul
 shift
 shift
 goto parse
rem

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Maintenance and Installation

 VI-33 Revision 7

Table VI.2-1 (Cont'd)

:um
 if %2*==* goto error
 set mem=%2
 set mem=%mem:k=000%
 set mem=%mem:K=000%
 set mem=%mem:m=000000%
 set mem=%mem:M=000000%
 set opts=%opts% -m %mem%
 shift
 shift
 goto parse
rem
:uns
 set opts=%opts% -ns
 set nsm=No
 shift
 goto parse
rem
:un
 if %2*==* goto error
 set opts=%2
 shift
 shift
 goto parse
rem
rem ===
rem
rem Start processing according to options supplied
rem
:process
rem
rem
 if %rdeck%*==* goto err_rdeck

rem
rem header information
rem
 echo OS: PC >HEADR 2>nul
 echo User Name: %USERNAME% >>HEADR 2>nul
 for /F "usebackq tokens=1,*" %%a in (`date /T`) do set dattim=%%b
 for /F "usebackq tokens=*" %%a in (`time /T`) do set dattim=%dattim% %%a
 echo Start time: %dattim% >>HEADR 2>nul
 echo. >> HEADR 2>nul
 echo Input File Information: >>HEADR 2>nul
 echo Input File: %rdeck%%inpext% >>HEADR 2>nul
 if not %xsecin%*==* echo %xseced% %xsecin% >>HEADR 2>nul
 if not %tape12%*==* echo %tp12ed% %tape12% >>HEADR 2>nul
 if not %tape13%*==* echo %tp13ed% %tape13% >>HEADR 2>nul
 if not %tape78%*==* echo %tp78ed% %tape78% >>HEADR 2>nul
 echo. >> HEADR 2>nul
 echo Command: %exec% %opts% >> HEADR 2>nul
 echo. >> HEADR 2>nul
 echo Program Name: %exenam% (%exepth%) >> HEADR 2>nul
 echo Program Size: %exesiz% >> HEADR 2>nul

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Maintenance and Installation

Revision 7 VI-34

Table VI.2-1 (Cont'd)

 echo Program Date: %exetim% >> HEADR 2>nul

rem
rem Execute RETRAN-3D
rem
 if not %nsm%*==* goto go_exec
 echo .
 echo . Running RETRAN-3D executable %exec% %opts%
 echo . with INPUT: %rdeck%%inpext%
 if not %xsecin%*==* echo . %xseced% %xsecin%
 if not %tape12%*==* echo . %tp12ed% %tape12%
 if not %tape13%*==* echo . %tp13ed% %tape13%
 if not %tape78%*==* echo . %tp78ed% %tape78%
 echo .

:go_exec

 %exec% %opts%
 set xstat=%errorlevel%

rem
rem continue header information
rem
 for /F "usebackq tokens=1,*" %%a in (`date /T`) do set dattim=%%b
 for /F "usebackq tokens=*" %%a in (`time /T`) do set dattim=%dattim% %%a
 echo. >> HEADR 2>nul
 echo Execution ended: %dattim% >> HEADR 2>nul
 echo. >> HEADR 2>nul
 echo Exit status: %xstat% >> HEADR 2>nul
 echo. >> HEADR 2>nul

rem
rem cleanup files
rem
 if %rdeck%==INPUT goto exit
 if %rdeck%==input goto exit
rem
 if exist %bdeck%.tape14 del %bdeck%.tape14
 if exist %bdeck%.tape41 del %bdeck%.tape41
 if exist %bdeck%.tape42 del %bdeck%.tape42
 if exist %bdeck%.tape43 del %bdeck%.tape43
 if exist %bdeck%.tape60 del %bdeck%.tape60
 if exist %bdeck%.ERR_LOG del %bdeck%.ERR_LOG
 if exist %bdeck%.vbc del %bdeck%.vbc
 if exist %bdeck%.plt del %bdeck%.plt
rem
rem
 if exist TAPE14 move TAPE14 %bdeck%.tape14 > nul
 if exist TAPE41 move TAPE41 %bdeck%.tape41 > nul
 if exist TAPE42 move TAPE42 %bdeck%.tape42 > nul
 if exist TAPE42 move TAPE43 %bdeck%.tape43 > nul
 if exist TAPE60 move TAPE60 %bdeck%.tape60 > nul
 if exist ERR_LOG move ERR_LOG %bdeck%.ERR_LOG > nul
 if exist VBCFIL move VBCFIL %bdeck%.vbc > nul

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Maintenance and Installation

 VI-35 Revision 7

Table VI.2-1 (Cont'd)

 if exist R3D_PLOT move R3D_PLOT %bdeck%.plt > nul
 if not %xsecin%*==%XTAPE%* del %XTAPE% > nul
 if not %tape78%*==%CTAPE%* del %CTAPE% > nul

rem
rem finish header information
rem
 echo Output File Information: >>HEADR 2>nul
 echo Output File: %bdeck%.out >>HEADR 2>nul
 if exist %bdeck%.tape60 echo TAPE60 file: %bdeck%.tape60 >> HEADR 2>nul
 if exist %bdeck%.tape14 echo Restart file: %bdeck%.tape14 >> HEADR 2>nul
 if exist %bdeck%.ERR_LOG echo Error Log: %bdeck%.ERR_LOG >> HEADR
2>nul
 if exist %bdeck%.vbc echo VBC file: %bdeck%.vbc >> HEADR
2>nul
 if exist %bdeck%.plt echo PLOT file: %bdeck%.plt >> HEADR 2>nul
 echo. >> HEADR 2>nul
rem
rem
 copy HEADR+OUTPUT+REMARKS %bdeck%.out > nul
 del INPUT > nul
 del OUTPUT > nul
 del REMARKS > nul
 del HEADR > nul

rem
rem Exit path
rem
:exit
 if exist TAPE2 del TAPE2 >nul
 if exist TAPE3 del TAPE3 >nul
 if exist TAPE20 del TAPE20 >nul
 if exist fort.2 del fort.2 >nul
 if exist fort.3 del fort.3 >nul

rem
rem UnSet environment variables
rem
 set exec=
 set exepth=
 set exenam=
 set exetim=
 set exesiz=
 set bdeck=
 set rdeck=
 set tape12=
 set tp12ed=
 set tape13=
 set tp13ed=
 set xsecin=
 set xseced=
 set tape78=
 set tp78ed=
 set CTAPE=

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Maintenance and Installation

Revision 7 VI-36

Table VI.2-1 (Cont'd)

 set XTAPE=
 set opts=
 set nsm=
 set xstat=
 set dattim=
 set fff=

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Maintenance and Installation

file was not installed in Step 6, RETRAN-3D will fail with a message that "This software is not
licensed" followed by instructions for obtaining the license authorization. If these messages
are encountered, refer to Step 6 for instructions on installing a license file after the initial
installation. Once a valid license file is installed in the proper directory, RETRAN-30 will
execute.

In most cases the RETRAN-3D executable is software bound only. This means that if the
license file exists the code will execute. In some cases, the code is both software and hardware
bound (i.e., each computer the code is installed on requires licensing). For these cases, the first
time RETRAN-30 is executed, you will be required to contact Computer Simulation &
Analysis, Inc. (CSA) to obtain an authorization key (or Event ID). RETRAN-30 can be
executed using the run.bat procedure discussed in Step 10 (requires an input file) or by typing
the executable file name (with or without the .exe extension). If the executable file name is
used, the execution step may fail due to the lack of an input file. However, this should not
affect the license authorization process. If the run.bat procedure is used, the RETRAN-3D will
be run using the specified input deck upon completion of the license authorization. To initiate
the license authorization process, you will need to furnish CSA with the Code Entry and
Computer ID given by RETRAN-30 when executed, as shown below.

You may exit RETRAN-3D by entering an X. The authorization keys can be entered now or at
a later time by executing RETRAN-3D again. If entered at a later time, the Code Entry value
provided to CSA to obtain the license authorization key(s) must be re-entered. Each time
RETRAN-3D is executed, a new Code Entry value is generated.

11. After obtaining the authorization keys from CSA, execute RETRAN-3D. Enter an A to input
the keys. As shown below, the user must enter the Code Entry value (as given previously) and
the Event ID. The Computer ID will not change when executed from the
same computer. This specific Event ID does not require Event Data, when prompted press the
<Enter> key. The specific version ofRETRAN-3D will now execute as expected on the
current machine. In the future, PC hardware changes may alter the Computer ID and would
require repeating the licensing process.

Vl-37 Revision 10

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Maintenance and Installation

12. The installation is verified by running the checkin.bat procedure. It is shown in Table Vl.2-2.
First, it runs the standard sample problems which create auxiliary file ouput (TAPE60). These
files are then concatenated to a single file, TSTDTA, which is then compared to the baseline
data in STDDTA. Table Vl.2-1 shows the run.bat procedure that is used to execute the code. It
is used once for each sample problem executed from the checkin.bat procedure. Before
running the checkin.bat procedure by entering

checkin

from the keyboard, make the necessary changes to the checkin.bat procedure to ensure that the
newly installed executable is tested.

An alternate approach would be to enter

checkin [executable-path/name]

where the parameter gives the path and name of the executable to test. The checkin.bat
procedure runs the sample problems located in the .\sample\ directory.

After running the sample problems, the checkin.bat procedure verifies the installation by
comparing results to the supplied results in the .\compare\ directory. A summary of these
comparisons is written to the REPORT file in the .\compare\ directory. After checkin.bat has
completed running the sample problems, use a text editor to examine the REPORT file to
determine if the installation was successful. All sample problems should show 0 differences in
the REPORT file. Any reported differences should be investigated to determine the cause.

3.0 LINUX CODE MAINTENANCE

It may be necessary to revise the RETRAN-3D source code to correct an error or add a new feature.
If this is the case, the appropriate source code subroutine(s) can be revised using a text editor and a
new executable created using the Fortran 95 compiler and linker. The bid installation script Table
VI. I-I can also be used to build an updated program executable file. This is

Revision 10 Vl-38

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Maintenance and Installation

 VI-39 Revision 7

Table VI.2-2

Windows Installation Verification Procedure: checkin.bat

@echo off
rem
rem Script to execute all 16 sample problems. After running the sample
rem problems, the TAPE60 files are concatenated to file TSTDTA which is
rem then used as input to the COMPAR program.
rem
rem
rem Select executable file
rem
if exist retran3d.exe set xxx=..\retran3d.exe
if exist r3m004p5.exe set xxx=..\r3m004p5.exe
if not %1*==* set xxx=..\%1.exe

rem
rem
rem Run sample problems
rem
cd sample
if not exist %xxx% goto err_exec
call ..\run -x %xxx% -r sp1
call ..\run -x %xxx% -r accum
call ..\run -x %xxx% -r sp5
call ..\run -x %xxx% -r tlta
call ..\run -x %xxx% -r ttwob
call ..\run -x %xxx% -r ucrw
call ..\run -x %xxx% -r fl2d
call ..\run -x %xxx% -r turb
call ..\run -x %xxx% -r ttqx1 -X ttqx1.t40
call ..\run -x %xxx% -r atws
call ..\run -x %xxx% -r pipe
call ..\run -x %xxx% -r wovrs
call ..\run -x %xxx% -r lrhr
call ..\xfgen A pwr
call ..\run -x %xxx% -r pwr -3 pwr.bxf -C pwr.cdi
call ..\xfgen A slb
call ..\run -x %xxx% -r slb -3 slb.bxf -C slb.cdi
call ..\xfgen A bwr
call ..\run -x %xxx% -r bwr -3 bwr.bxf -C bwr.cdi

rem
rem Concatenate the TAPE60 files to file TSTDTA
rem
type sp1.tape60 > ..\compare\TSTDTA
type accum.tape60 >> ..\compare\TSTDTA
type sp5.tape60 >> ..\compare\TSTDTA
type tlta.tape60 >> ..\compare\TSTDTA
type ttwob.tape60 >> ..\compare\TSTDTA
type ucrw.tape60 >> ..\compare\TSTDTA
type fl2d.tape60 >> ..\compare\TSTDTA
type turb.tape60 >> ..\compare\TSTDTA
type ttqx1.tape60 >> ..\compare\TSTDTA

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Maintenance and Installation

Revision 7 VI-40

Table VI.2-2 (Cont’d)

type atws.tape60 >> ..\compare\TSTDTA
type pipe.tape60 >> ..\compare\TSTDTA
type wovrs.tape60 >> ..\compare\TSTDTA
type lrhr.tape60 >> ..\compare\TSTDTA
type pwr.tape60 >> ..\compare\TSTDTA
type slb.tape60 >> ..\compare\TSTDTA
type bwr.tape60 >> ..\compare\TSTDTA

rem
rem Run compare program
rem
cd ..\compare
if exist INDTA del INDTA > nul
if exist REPORT del REPORT > nul
copy R3D.TXT INDTA >nul
.\compare2.exe
goto exit

rem
rem exec file does not exist
rem
:err_exec
 echo *
 echo * Error **** RETRAN-3D executable file %xxx% does not exist
 echo *

:exit
cd ..

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Maintenance and Installation

 VI-41 Revision 7

accomplished by placing the revised subroutine source code in the directory where the original
build was done (the directory where the executable file was created). The bld script should be run
by omitting the –B parameter (use with the initial installation). This causes the compile_list file to
be ignored and any source files in the directory where bld is executed will be compiled and
included in the new executable file.

When doing an update or partial build, the object files from the original installation must either
reside in the installation directory or the object file directory specified using the –O parameter.
The object files for the revised subroutines will replace the files from the original installation and a
new executable will be created. This method is much faster than re-building the code from scratch
using the steps given for the code installation.

4.0 TECHNICAL SUPPORT

Technical support related to the installation and use of RETRAN-3D and issues related to potential
code errors is provided by the RETRAN maintenance contractor. This effort is funded by annual
contributions to the maintenance group by member organizations. Support for nonmembers is
limited to error reporting.

For questions relating to membership in the RETRAN Maintenance Group, contact Computer
Simulation & Analysis, Inc. (CSA), the RETRAN maintenance contractor. To obtain support,
contact

 Mr. Garry C. Gose
 Telephone: (208) 529-1700, Ext. 22
 E-Mail: gcg@csai.com

 or

Mr. Mark P. Paulsen
Telephone: (208) 529-1700, Ext. 16
E-mail: paulsen@csai.com

Computer Simulation & Analysis, Inc.
855 N. Capital Ave. Suite 1
P. O. Box 51596
Idaho Falls, ID 83405
Telephone: (208) 529-1700
Fax: (208) 529-1723

Office hours are nominally 8:00 A.M. to 5:00 P.M. Mountain Time. Additional RETRAN support
information is available on the CSA web site at www.csai.com. It includes trouble reports that
have been filed, including their status and possible workarounds; online facilities for submitting
trouble reports and related supporting information (input and output files); a searchable RETRAN
bibliography; links to current RETRAN items of interest, i.e., meeting information for

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Maintenance and Installation

Revision 7 VI-42

International RETRAN Meetings and RETRAN User Group Meetings; and RETRAN Newsletters
containing articles covering current RETRAN issues, unique applications of RETRAN, and
modeling tips.

The RETRAN Maintenance Group does not support formal training in the use of RETRAN-3D as
part of the funded maintenance activity. However, CSA provides a range of training programs
including both basic and advanced courses and on-site training that can be tailored to meet the
specific needs of an organization. CSA staff members have been involved in the development and
maintenance of the RETRAN series of computer codes, have performed a variety of RETRAN
analyses, and have provided training and consulting assistance to code users for a number of years.
This application and consulting experience combined with the knowledge of the code and
interaction of the models in RETRAN-3D offers a unique learning opportunity for both new and
experienced code users. Contact one of the CSA staff members listed above to discuss your
training needs.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

 VII-1 Revision 7

VII

REFERENCES

II.2-1 Paulsen, M. P., et al., "RETRAN-3D - A Program for Transient Thermal-Hydraulic

Analysis of Complex Fluid Flow Systems", Programmer's Manual, EPRI
NP-7550(A), Volume 2, Revision 6.3, July 2007.

IV.2-1 Dias, A. F., et al., "CORETRAN-01 - A Three-Dimensional Program for Reactor

Core Physics and Thermal-Hydraulics Analysis", Theory and Numerical Analysis,
EPRI WO-3574, October 1997.

IV.2-2 Dias, A. F., et al., “CORETRAN-01 - A Three-Dimensional Program for Reactor

Core Physics and Thermal-Hydraulics Analysis”, User’s Manual, EPRI WO-3574,
October 1997.

IV.2-3 Jones, D. B., et al, “CPM-3 - A Core Physics Module for the Analysis of Nuclear

Fuel Assemblies Using Arbitrary Geometry Modeling”, User’s Manual, EPRI
RP-3418, October 1997.

IV.2-4 Edenius, M., et al., “CASMO-4 - A Fuel Assembly Burnup Program”, User’s

Manual, Studsvik/SOA-95/1, Revision 0, September 1995.

IV.2-5 “SIMULATE-3 - Advanced Three-Dimensional Two-Group Reactor Analysis

Code”, User’s Manual, Studsvik/SOA-95/15, Revision 0, October 1995.

VI.1-1 HP Fortran 90 Programmer's Reference, HP Part Number: B3908-90002, October

1998.

VI.1-2 XL Fortran for AIX: Language Reference, Version 8.1.1, SC09-4947-01, Second

Edition, June 2003.

VI.1-3 SUN Fortran User' Guide, Forte Developer 7, May 2002.

VI.1-4 GNU Fortran, http://gcc.gnu.org/fortran/, August 2009.

VI.1-5 The G95 Project, http://g95.org, August 2009.

VI.1-6 Intel Professional Edition Compilers, http://software,intel.com/en-us/intel-

compliers/, August 2009.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

References

Revision 7 VII-2

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

 A-1 Revision 7

APPENDIX A

THE COMPARE2 PROGRAM

The COMPARE2 computer program provides a method for comparing results from a new
RETRAN-3D installation and those for a standard or baseline set of results. The baseline results
are created using a RETRAN-3D version that was previously deemed to have been installed
correctly. The purpose of the program is to provide a means for the RETRAN-3D installer to
determine if a new RETRAN-3D installation has been made successfully. COMPARE2 uses
RETRAN-3D auxiliary files to provide the information to be compared against a baseline dataset.
The auxiliary file contains a table of minor edit variable results, generated by a RETRAN-3D run.
The minor edit variables have been chosen to capture important features or trends in each sample
problem calculation. A companion shell script or batch file (checkin.sh or checkin.bat) runs the
appropriate sample problems and then concatenates the individual problem auxiliary files
(TAPE60) into a single file (TSTDTA), which is then compared against the baseline data
(STDDTA).

The compare program, COMPARE2 is written Fortran 95 and is transmitted with the
RETRAN-3D code transmittal packages. COMPARE2 requires three input files. The first file,
STDDTA, contains the baseline data that are generated by the standard version of RETRAN-3D.
This standard file contains data for all of the sample problems. STDDTA is transmitted with the
RETRAN-3D package and should not be altered. The second file, TSTDTA, contains the
concatenated auxiliary file (TAPE60) results for all sample problems for the RETRAN-3D version
to be compared. COMPARE2 assumes that the problem order in TSTDTA is the same as in
STDDTA. The third file, INDTA, allows the user to specify which of the set of sample problems
are to be compared, to flag the desired output format, and to include user-defined title information.

COMPARE2 consists of four functions or procedures. A functional description of the modules of
the program is provided in the following sections.

PREPROCESSING

This process defines or characterizes the comparison task to be performed. COMPARE2 assumes
that the content of the standard data (STDDTA) and test data (TSTDTA) files is order dependent.
While data from all sample problems is not required, the data must be presented in the correct
order. The STDDTA file defines the order of the sample problems; it follows the order in which
the sample problems are presented in the RETRAN-3D User's Manual – Volume 3, Section VIII.
The STDDTA file also defines which minor edits are to be compared for each sample problem.
The sample decks included in the RETRAN-3D transmittal will produce auxiliary (TAPE60) data
files compatible with STDDTA. The appropriate ‘checkin’ script or batch file combines the newly
created auxiliary files into a standard data file, STDDTA.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Appendix A

Revision 7 A-2

INPUT REQUIREMENTS FOR PREPROCESSING

The user must supply an input data file, INDTA. The minimum data supplied will be two lines.
The first line will contain a title for the comparison data. The title must be 80 characters or less and
set off by single quotes. The second line contains one of the three following words; 'FULL',
'SHORT', or 'DEBUG'. Line two specifies the desired amount of detail for the comparison report.
Optionally, a third and fourth line can be added. Line three contains two floating point values,
PTOL and SMALL. PTOL specifies the tightness for comparison and SMALL defines the
significance limit. By default PTOL and SMALL are 1.0D-3 and 1.0D-6, respectively. If only
some of the sample problems are to be compared, line four specifies by number which problems
are desired. As an example, if line four consists of:

 1 5 9

only three problems are to be processed; Sample Problem One, Turbine Trip Without Bypass with
Point Kinetics, and Turbine Trip Without Bypass with Space-Time Kinetics (SP1, TTWOB, and
TTQX1, respectively). These should be the only results contained in file TSTDTA for comparison
with the standard. No card or a blank card indicates the default case of all problems.

FILE READING

The READER process reads TSTDTA for NPROB sample cases. NPROB defaults to all. In
general, all parameters to be compared are read into arrays STD or TST. The arrays are
three-dimensional containing NPROBxNCARxNRECORD values. That is, the arrays contain
ALL of the information to be compared. Note that NRECORD is determined by the number of
data records found in STDDTA. If the TST array in any given problem has NRECORD that is
different, an error condition is present.

If a reading error occurs or record lengths are not consistent with that expected (as discussed above,
the STD arrays are predetermined), then appropriate diagnostic information is printed and the case
is terminated. The information should indicate which problem, and which record, caused the error
condition. As discussed above in the preprocessing section, it is assumed
that the user has stored the information in TSTDTA in the correct order.

OUTPUT PARAMETER COMPARISONS

The comparison or tolerance test routine will have two levels of error testing. The first will be a
simple percentage or ratio test. This will be a test in which, for all values, the error will be defined
as:

 STD(I,J,K) - TST(I,J,K) / STD(I,J,K)

Currently, if the difference is greater than PTOL (by default 0.1%) then a warning message will be
printed. This tolerance was determined during the testing phase. If the value of the parameter is
less than SMALL (by default 1.0E-06), then a ratio test will not be made because the parameter is

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Appendix A

 A-3 Revision 7

considered to be insignificant. This is consistent with the type of minor edit parameters that have
been selected for each of the sample problems.

REPORTING RESULTS

The results of the comparisons are edited for the user to evaluate. The amount of information is
controlled by the user. In general, the report includes the title information provided by the user and
summarizes, by sample problem, where differences occur.

DATA STRUCTURES

The structure of the data is given below. There will be two three-dimensional arrays:

 STD (NPROB,NPARAM,NREC)

and

 TST (NPROB,NPARAM,NREC)

where

 NPROB = Sample Problem Index (range: 1 to # of sample problems),
 NPARAM = Parameter Index (range: 1 to # of minor edits per problem), and
 NREC = Record Index (range: 1 to # of data record per problem).

STD is the array containing the baseline data values read from the STDDTA file. Array TST
contains data values for comparison read from TSTDTA. If only some of the samples are being
compared, TST will be a subset of STD.

HOW TO USE THE COMPARE2 PROGRAM

COMPARE2 is easy to implement any platform. The user can compile COMPARE2 using
standard Fortran 90 with no special options. A typical installation process is illustrated below

f95 compare_data.f90 compare2.f90 report.f90 –o compare2

where the Fortran 95 compiler command is f95. This may vary from platform to platform and will
also depend to the particular compiler uses. The order that the source files are compiled is
important. File compare_data.f90 must be complied first since it is a data module. The compiler
will create a compare_data.mod file that will be required for compilation of the two other files.

COMPARE2 requires three input files, STDDTA, TSTDTA, and INDTA. STDDTA will be
included on the RETRAN-3D transmittal media. A shell script called 'checkin' will also be
supplied with the transmittal. It will also concatenate the RETRAN-3D auxiliary files (TAPE60s)

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Appendix A

Revision 7 A-4

for all sample problems to create the TSTDTA file. A sample copy of INDTA will be supplied and
the user need only modify the title line.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

 B-1 Revision 10

APPENDIX B

THE BXFTOOL PROGRAM

The RETRAN-3D cross-section file format is binary and this can lead to portability problems
between different platforms such as Linux and Windows. The cross-section files on the
RETRAN-3D transmittal are therefore converted to ASCII format to help mitigate the portability
problem. The computer program BXFTOOL is used to perform the RETRAN-3D cross-section
file (BXF file) conversion task.

There are two forms of the binary cross-section file, a long form that can contain many zeros and a
more compact shorter form. Only the long form was used with RETRAN-3D MOD004.1 and
earlier versions. RETRAN-3D MOD004.2 supports both the long and short forms. BXFTOOL
can be used to convert a long form binary cross-section file to a short form binary file.

BXFTOOL can read a RETRAN-3D binary cross-section file and convert it to a fixed ASCII
format. It can optionally read either an ASCII or long form binary file and convert it to binary.
Another option directs BXFTOOL to read and interpret cross-section array sizes and other
descriptive integer values from the cross-section file and write the information to the standard
output file as a diagnostic tool.

BXFTOOL is executed during the RETRAN-3D installation procedure. As part of this installation,
a Linux shell script "xfgen.sh" (or Windows batch file "xfgen.bat") is used to convert ASCII
format cross sections from the RETRAN-3D transmittal CD to binary format.

HOW TO USE BXFTOOL

BXFTOOL is written in Fortran 77 and can be installed using either a Fortran 77 or 95 compiler.
The names for the various compilers vary from platform to platform and compiler vendor. An
example command to compile and install BXFTOOL would be

f77 –o bxftool BXFTOOL.F

which creates an executable file named bxftool.

Input Requirements

BXFTOOL reads a single integer flag, ICASE, from standard input (FORTRAN Unit 5) and its
numerical value directs processing of the cross-section files.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Appendix B

Revision 10 B-2

The possibilities are:

 ICASE = 0 BXFTOOL reads a binary format cross-section file and writes detailed

information about the structure of the file to standard output.

 ICASE = 1 BXFTOOL reads a binary format cross-section file and writes one in ASCII

format.

 ICASE = 2 BXFTOOL reads an ASCII format cross-section file and writes a binary

cross-section file (short form).

 ICASE = 3 BXFTOOL reads a long form binary cross-section file and writes a new

short form file.

Output Files

If ICASE = 0, BXFTOOL reads from an unformatted binary cross-section file, "bxfile" on
FORTRAN Unit 7, and writes description information to FORTRAN Unit 6.

If ICASE = 1, BXFTOOL reads from an unformatted binary cross-section file, "old.bxf" on
FORTRAN Unit 7, and writes a formatted ASCII file "new.axf" on FORTRAN Unit 9.

If ICASE = 2, BXFTOOL reads from a formatted ASCII file, "old.axf"' on FORTRAN Unit 9, and
writes a unformatted binary cross-section file, "new.bxf" to FORTRAN Unit 7.

If ICASE = 3, BXFTOOL reads from an unformatted binary cross-section file (long form),
"old.bxf" on FORTRAN Unit 7 and writes a new unformatted binary cross-section file (short
form), "new.bxf" on FORTRAN Unit 9.

Script xfgen.sh or Windows xfgen.bat Batch File

All RETRAN-3D multidimensional cross-section files on the RETRAN-3D transmittal CD are in
ASCII format and must be converted to binary. On Windows machines, xxx.bat files are used
instead of the xxx.sh script files used on Linux.

The RETRAN-3D "checkin.sh" script will invoke the "xfgen.sh" script with a flag to convert the
cross-section files to binary format, before a given three-dimensional kinetics sample problem is
executed.

Any existing temporary files in the execution directory named "new.axf", "new.bxf", "old.axf" or
"old.bxf" are deleted. xfgen.sh then moves the ASCII cross-section file for a given sample
problem to a temporary ASCII file, "old.axf". It then directs BXFTOOL to read the temporary
ASCII or binary cross-section file, converting it to temporary binary file, "new.bxf ".

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

 C-1 Revision 10

APPENDIX C

CODE MODIFICATION SUMMARY

This Appendix contains a summary of code modifications that have been made to RETRAN-3D
since MOD003.0 was review by the NRC. It is intended to provide users with an overview of
each modification and identify those that are new models that have not been reviewed and may
require validation and NRC review before they are used in licensing submittals. Modifications
made to create all code versions between MOD003.1 and MOD004.7.1 are included.

RETRAN-3D MOD003.0 was reviewed by the NRC staff and a Safety Evaluation Report
subsequently issued. During the review process, a number of code modifications were suggested
by the staff. These modifications along with error corrections that were made during the review
period were incorporated into the code by adding these revisions to MOD003.0. The new code
version was identified as MOD003.1. The corresponding documentation was designated as
Revision 5 of EPRI NP-7450(A) "RETRAN-3D - A Program for Transient Thermal-Hydraulic
Analysis of Complex Fluid Flow Systems", Volumes 1-4. It also contained the SER and related
review requests for additional information and the associated responses.

Since the release of MOD003.1, subsequent versions of RETRAN-3D have been created and
released. Each of these versions included modifications that added new features as well as those
that corrected problems reported in trouble reports. Table C-1 summarizes the modifications to
the three source code libraries comprising RETRAN-3D that were included in the released
versions of RETRAN-3D. The name of each library is also included. Each code version
identified was created by adding the corresponding modifications identified in Table C-1 to the
previous code version.

Version numbers are used to uniquely identify different code revision levels that are released to
the RETRAN-3D user community. The first nonzero digit indicates the major revision, while
the digit following the decimal point indicates subsequent minor revisions. The major revision
digit is incremented when new models are added to a previously reviewed code version. For
example, the change in version number from MOD003.1 to MOD004.1 indicates that there were
new models added that have not been reviewed by the NRC. Normally the new version would
have been MOD004.0 rather than MOD004.1 and in fact there was a MOD004.0 code version
created, but it was not released. It was an intermediate version that provided the basis for
development of MOD004.1 which was subsequently released.

A summary of each code modification is given in either Table C-2 or C-3, depending on whether
the modification was due to a new feature or error correction. Modifications related to new
features or enhancements are summarized in Table C-2 and those associated with error
corrections are summarized in Table C-3. The modifications are also arranged by numerical
order for each code version.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Appendix C

Revision 10 C-2

Table C-1

Source Code Modifications Included In New Code Versions

 SLIB77 Source Code Library Modifications/Library
RETRAN 3-D Kinetics Environmental

Code Version Library Library Library

MOD003.1 mod_142 through armd_020 through enmd_004 through

mod_178 armd_037 enmd_005
(R3M003P1.PPL) (CSA007.PPL) (ENVMD08.PPL)

MOD004.1 mod_179 through armd_038 through enmd_006 through

mod_254 armd_047 enmd_010
(R3M004P1.PPL) (3DKIN009.PPL) (ENVMD10.PPL)

MOD004.2 mod_255 through armd_048 through

mod_280 armd_049
(R3M004P2.PPL) (3DKIN010.PPL) (ENVMD10.PPL)

MOD004.3 mod_281 through enmd_011 through

mod_303 enmd_014
(R3M004P3.PPL) (3DKIN010.PPL) (ENVMD11.PPL)

MOD004.4 mod_304 through armd_050 enmd_015 through

mod_351 enmd_017
Fortran 77 version of MOD004.4 no longer uses SLIB 77.

The Fortran 95 version is no longer maintained using SLIB77. A single source code archive is
maintained using a version control program.

MOD004.4f95 All modifications armd_050 All through enmd_017
 through mod_351

MOD004.5f95 mod_352 through mod_354

MOD004.6f95 mod_355 through mod_410

MOD004.7f95 mod_411 through mod_481

MOD004.7.1 mod_482 through mod_497

Some of the new features summarized in Table C-2 require input data either to activate or
deactivate the feature. When the code developers considered the new feature to be the best
modeling approach, it was made the default option; but, an option is generally available to obtain
a backward compatible way to run the new code version. A more detailed description of the
input options can be found in Section IV of the RETRAN-3D User's Manual.

The description field also indicates if the new feature is a new model that has not been reviewed,
if it is a user convenience, an input or output feature, compiler- or platform-specific revision, and
so on. New models that have not been reviewed by the NRC include the "New Model - Not
Reviewed" identifier. This will allow users to determine when use of a new feature may require
additional NRC review.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

 Appendix C

 C-3 Revision 7

Table C-2

Modifications Implementing New Features

Version/Feature Modification Description

MOD003.1
Generalize mod_148 The user-specified laminar wall friction model input was
Laminar generalized to allow up to nine sets of correlation
Friction coefficients on Card 05000X (X represents the correlation
Model number).

Reviewed model not changed. Input is supplied on Card
05000X (X represents the correlation number).

Clean Up mod_175 This modification replaces the use of volume variables
Condensation AWGV and AWLV used in Subroutines QDOT32,
Heat Transfer QDOT33, and AWGV and AWLV used in Subroutines
Calculation QDOT32, QDOT33, and QDOT34 used to weight the

noncondensable and liquid heat transfer coefficient
components with phase mass fraction. No input.

FTB Memory mod_176 If the SLIB switch R3DKIN is set, which activates the
Allocation for multidimensional kinetics option, LPOOL is set to
3D Kinetics 22,000,000 otherwise the pool is set to 750,000 words.

Minimizes the need to update the code to obtain more
space for three-dimensional kinetics. Does not affect any
model results. No input.

Fix Edit Formats mod_177 Fix edits: either extraneous debug messages or formats not

big enough to handle all options in the new code version.
Also, fix edit options not working as advertised (such as
SMALLR or NED14). Revised input/output. No input.

Cross-Section armd_023 Read the DM extrapolation flag IXTRP from CDI file and
Extrapolation on pass it to the cross-section calculation subroutine.
Moderator
Density Use previously unused extrapolation flag from CDI file.

Insures consistency with upstream core code. No other
input.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Appendix C

Revision 7 C-4

 Table C-2 (Cont'd)

Version/Feature Modification Description

3D Kinetics armd_024 This modification removed the limitation on the available
Boundary boundary conditions. The "no return flux" boundary
Conditions condition (IBC=2) is allowed if the PARCS numerical

solution is used.

Provides input path to allow user to request previously
inaccessible boundary condition that was supported by the
solution method. This feature is activated using IPURDU
on the 670020 data card.

3D Kinetics armd_036 LINEID (size of FTB array for three-dimensional kinetics)
Executable Size was increased to 22,000,000 words. The PNM solution

method uses fixed dimension arrays which were reduced
somewhat to allow for a more reasonable executable size.

Minimizes the need to update the code to obtain more
space for three-dimensional kinetics. Does not affect any
model results. No input associated with revision.

3D Kinetics armd_037 Removed unused edit routines left over from old code
Cleanup versions and old models that are no longer relevant in

current code.

Does not change results of active code. No input
associated with revision.

Source Code enmd_005 Revise the SLIB77 switching logic to select options for
Cleanup various platforms easier to understand. Provide support

features for COMPAQ FORTRAN and F2C.

Extend use of code to new compiler. No affect on
executable code.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

 Appendix C

 C-5 Revision 7

 Table C-2 (Cont'd)

Version/Feature Modification Description

MOD004.1
BWR Fuel mod_196 1. Provides capability to compute flows for active core
Models and bypass channels.

New input option to an existing model. Results
from new input agree with previous results.
Previous code version could compute flow splits,
but only given core pressure drop. Code can now
compute slow splits given upper plenum pressure
and total core flow, which is input on 232XXX
junction initial condition specification data cards.

2. Allows FIBWR style calculation of core support

plate and lateral leakage flow paths.

New model - not reviewed. Only affects results of
previous code versions when the model is explicitly
activated through input.

Junctions are flagged as FIBWR leakage junctions
by setting IPUMP on the 08XXXY Junction Data
Cards (not used by default). FIBWR leakage model
coefficient data cards, 6351XX and 6353XX, are
also required when model is used.

3. Allows modeling of advanced fuel designs utilizing

part length rods and water rods.

Water rods and part length rods are modeled using
standard RETRAN-3D volumes, junctions, heat
conductors, and core sections. The flow split logic
will compute the steady-state water rod flows, while
the normal flow solution computes the flows for the
transient solution scheme.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Appendix C

Revision 7 C-6

 Table C-2 (Cont'd)

Version/Feature Modification Description

BWR Fuel Part length and water rod geometry must be input
Model (Cont'd) using the channel model for three-dimensional

kinetics (new input option) or via volume
(05XXXY), junction (08XXXY), heat conductor
(15XXXY), and core section (16XXX0) data cards.

4. Accounts for Reynolds number dependent grid

losses.

New model - not reviewed. Only affects results of
previous code versions when the model is explicitly
activated through input.

Model allows vendor grid loss models to be used
directly rather that specifying through the control
system. This simplifies models and reduces the
possibilities for errors and allows for consistency
with upstream vendor codes. Pressure drops are
typically compared to vendor results.

The grid loss model option is activated at specific
junctions by appropriately setting JCALCI on the
08XXXY Junction Data Cards (not used by
default). Grid loss model coefficient data cards
2330XX cards are required when model is used.

Choking Model mod_202 Use stagnation properties to evaluate functions.
Improvements This revision makes the choking implementation consistent

with the underlying theory for the various choking models
available. Choking models are typically tuned by judicious
choice of the contraction coefficient, which may need
revision.

All choking models now use stagnation properties by
default. Options are available on 08XXXY junction data to
approximate RETRAN-02 MOD005.2 and RETRAN-3D
MOD003.1 choking formulations.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

 Appendix C

 C-7 Revision 7

 Table C-2 (Cont'd)

Version/Feature Modification Description

Choking Model mod_221 Replace isentropic HEM curve fits with table and
Improvements interpolation.
(Cont'd)

Table is more accurate and was used to generate curve fits
used previously. No input and no way to run old curve fits.

Automatic Bypass mod_204 Used with channel model and three-dimensional kinetics.
Heating Model User convenience. New input simplifies use of existing

model and reduces possibility of error.

QBMDCH on 67000Y model option data cards and
IBYPCH on 672XXX channel data cards must be supplied
to activate option.

Control System mod_205 Added super summer block - sum multiple inputs.
Improvements User convenience that reproduces results of multiple

cascaded summer blocks but with much less input, which
can reduce to possibility for errors.

New super block request must be supplied on 704XXX or
704XXXX cards to activate.

mod_207 Increase number of input and control blocks. New user

convenience that allows use of more control input and
output blocks. Results from new input card series are the
same as the old card series.

New 703XXXX control input and/or 704XXXX control
block description data cards must be supplied. No affect on
compute results. New input for existing control system
models.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Appendix C

Revision 7 C-8

 Table C-2 (Cont'd)

Version/Feature Modification Description

Control System mod_245 Added super min and max blocks - multiple input
Improvements maximum and minimum blocks. User convenience that
(Cont'd) reproduces results of multiple cascaded maximum or

minimum blocks but with much less input, which can
reduce the possibility for errors.

New super block request must be supplied on 704XXX or
704XXXX cards to activate.

Variable Junction mod_206 Allow for a variable junction inertia using a control block.
Inertial User convenience that allows a user to specify a time

varying inertia via the control system.

INERTA < 0 must be specified on the junction description
data card, 08XXXY, where it points to the control block
that defines the inertial for the junction.

Option to Include mod_218 Previously condensation heat transfer was only available
Condensation with the combined (IHTMAP=1) heat transfer map. An
Heat Transfer option to make condensation heat transfer available with
with Forced the forced convection map.
Convection Map

User option to allow use of existing condensation
correlations with the forced convection map.

This option is activated by setting IHTMAP=2 on the
01000Y data cards (long of short form).

Option to Force mod_219 Allows specification of a Dittus-Boelter single-phase heat
Single-Phase transfer coefficient for use with a given heat conductor.
Heat Transfer

User option to force single-phase heat transfer. Use
requires justification for specific application.

This option is activated by appropriately defining IMCL or
IMCR on the 15XXXY conductor description data card.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

 Appendix C

 C-9 Revision 7

 Table C-2 (Cont'd)

Version/Feature Modification Description

Option to Use a mod_220 Allows a multiplier to be applied to the slip velocity
Multiplier with the computed using the Chexal-Lellouche drift flux correlation.
Chexal-Lellouche May be used to obtain a target mass inventory in a steam
Algebraic Slip generator secondary.

User option to force single-phase heat transfer. Use
requires justification for specific application.

The slip multiplier SLPMUL must be specified the each
08XXXY junction description data card for which the
multiplier is to be applied. Default is 1.0.

Option to Use a mod_231 This is the same model that is available in the RETRAN-02
Multiplier on computer program. This is equivalent to the model
Thermal available in RETRAN-02 and is activated by supplying a
Conductivity value for MULT on the 17XXYY conductor geometry

description data cards.

FTB Dynamic mod_235 Use F90 feature to dynamically allocate memory at run
Memory time using a user defined memory size.
Allocation

Removes need to recompile the code to change the size of
fixed arrays and need for a separated three-dimensional
kinetics version. Simplifies use and has no affect on
results.

This option is always used. A default memory size is used
when a -m isize specification is not supplied as a
RETRAN-3D execution parameter.

A Run Time mod_236 Run time option to turn screen message writes off.
Option to Disable User feature.
Screen Messages

Option activated by providing a -ns execution parameter.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Appendix C

Revision 7 C-10

 Table C-2 (Cont'd)

Version/Feature Modification Description

BWR Separator mod_237 A new model option for an additional pressure drop term in
Centrifugal steam-water separators.
Δp Term

New model - not reviewed. Only affects results of
previous code versions when the model is explicitly
activated through input.

The optional centrifugal pressure drop model parameters
must be defined on the 60XXXY separator description data
cards (model inactive by default).

Revised Stagnation mod_238 Removed the hydrostatic head from the stagnation pressure
Pressure Major edit for junctions. Now contains velocity head terms only.
Edit Term to be
Velocity Head User convenience. Aids users in interpretation of results.

Not an option - always done.

Simplified Problem mod_241 A new option that reduces the information supplied on the
Dimension Input problem dimension input. The code computes the problem

dimensions from the input file.

User convenience.

Only 1 to 12 parameters are now required on new 01000Y
problem description data (user convenience). The old long
form input is also supported.

NEMTAB Table mod_243 Option to allow use of NEMTAB table based
Based Cross option cross-sections with the three-dimensional kinetics
Section model.

User convenience. Eliminates need to convert NEMTAB
cross-section tables to standard bxf format.

Activated using IPURDU flag on Card 670020 and then
supplying NEMTAB cross-section file.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

 Appendix C

 C-11 Revision 7

 Table C-2 (Cont'd)

Version/Feature Modification Description

Automated mod_248 Option to automate the transfer of boundary conditions
RETRAN-3D to from RETRAN-3D to VIPRE-01.
VIPRE Interface

User convenience for VIPRE-01 users.

A boundary condition file for use with VIPRE-01 will be
generated if a 02600Y data card is supplied.

U-Tube Steam mod_249 Auto initialization at off normal initial conditions using
Generator user-supplied target values for key primary and secondary
Initialization parameters.

This option is a user convenience where manual iteration
using steady-state initialization is now replaced by an
automated outer iteration to converge on target parameters.
It does not change the base steady-state solution method,
which is used by the outer iteration.

The optional off rated condition initialization feature
automates what can be done manually to obtain steady-
state initial conditions. It requires input on 2360XY,
2370XY, 2380XY, and 2390XY data cards to activate the
new initialization scheme.

Improved Error mod_250 Provide more information on cause of error and time of
Message occurrence. Remove redundant and misleading error
Information messages. Provide a trouble shooting guide to aid users in

resolving the error.

User convenience - helps interpret and respond to error
conditions.

Always active - no associated input.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Appendix C

Revision 7 C-12

 Table C-2 (Cont'd)

Version/Feature Modification Description

Contractual mod_253 Adds copyright information to RETRAN-3D source
Requirement library.

Comments only - added to source code. No affect on
results.

3D Kinetics armd_042 This change allows the ¼ and 1/2 assemblies on reflective
Input boundaries to be described as full assemblies in the CDI

file

User convenience.

User Convenience armd_044 Modified the RETRAN-3D and FTB source code to use

dynamic memory allocation.

Removes need to recompile the code to change size of
fixed arrays and need for a separated three-dimensional
kinetics version. Simplifies use and has no affect on
results.

Memory size supplied as -m isize on execution command
line.

User Convenience armd_046 The screen write activation was removed form the three-

dimensional kinetics source code library an implemented as
an execution time option.

User feature.

Option to deactivate screen messages input as -ns on
execution command line.

Contractual armd_047 Added the EPRI Copyright Notice to source code.
Requirement

Comments only - added to source code. No affect on
results.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

 Appendix C

 C-13 Revision 7

 Table C-2 (Cont'd)

Version/Feature Modification Description

User Convenience - enmd_006 Subroutine NCARDS was written to count the number
Short Form of cards in an INP free form input deck that lie within a
Problem specified range. Subroutine LINK was modified so it can
Description be called with a flag that will optionally set the use flags

for cards found.

No affect on computed results.

User Convenience enmd_008 The FTB initialization was revised in subroutine INITAL

to use an allocatable array to define the FTB storage array
size.

Removes need to recompile the code to change size of
fixed arrays and need for a separated three-dimensional
kinetics version. Simplifies use and has no affect on
results.

Users can change the memory allocation by supplying the -
m isize execution parameter. Has no affect on computed
results.

User Convenience enmd_009 Modify the RETRAN-3D source code so that screen

messages are a run-time option rather than a source code
option set at compile time. Remove unnecessary
compiler/operating system dependent coding options and
any associated SLIB77 switches.

User convenience.

Users can deactivate screen messages by supplying -ns on
the execution command line. Has no affect on computed
results.

Contractual enmd_010 Added the EPRI Copyright Notice to source code.
Requirement

Comments only - added to source code. No affect on
results.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Appendix C

Revision 7 C-14

 Table C-2 (Cont'd)

Version/Feature Modification Description

MOD004.2
Junction Input mod_265 Added an option to automatically overlap volumes
Processing for connected to bubble rise volumes and make junctions
Junctions exiting the bubble rise volume vertical junctions.
Connected to
Bubble Rise New input option to automatically use existing features and
Volumes common modeling practice for overlapping bubble rise

volumes.

Activated using JVERTL=3 on 08XXXY cards.

New Enthalpy mod_269 Added an option to the enthalpy transport model to
Transport Options determine if the junction enthalpy is realistic. If it is out
Designed to Avoid of range or unreasonable, a donor or volume averaged
Code Failures enthalpy is used.

New input option to automatically activate common
modeling practice that previously required use of restart to
deactivate enthalpy transport in problematic junctions.

1. New option is used by default. Deactivate using

IENTRN=1 on 080000 card.

2. New selective deactivation option activated using
ISELCT>0 on 080000 card. Requires 08000X card
input.

New Option to mod_276 Added an option to allow use of either the Blasius or
Ensure Consistency Moody form models for turbulent wall friction.
with Auxiliary
Calculations User convenience that allows accepted vendor turbulent

friction models to be used directly rather than
approximating their results by tuning input l/d. Simplifies
model use and reduces possibilities for errors and allows
for consistency with upstream vendor codes. Pressure
drops are typically compared to vendor results.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

 Appendix C

 C-15 Revision 7

 Table C-2 (Cont'd)

Version/Feature Modification Description

Activated using IFRIC=XXYY on 05XXXY cards or
IFRICH=XXYY on 672XXX cards.

Note: The laminar friction model coefficients previously
input on 05000X cards are now input on 2332XX cards as a
result of this modification.

Option to armd_049 Added an option to the three-dimensional kinetics model
Reduce Memory cross-section model to use less memory.
Requirements
fpr 3-D Kinetics User convenience.

Automatically activated when new reduced size cross-
section file (described in Volume 2, Section IV.2.3) is read.
Older style cross-section files can still be used.

MOD004.3
New Time-Step mod_287 Added time-step control logic based on rate of change in
Control Algorithms normalized power for point kinetics, one-dimensional and

three-dimensional kinetics, and pressure.

User convenience but also improves accuracy of the
solution. The new algorithms provide control where users
had to manually control previously by limiting the
maximum allowed time-step size.

These new algorithms are used by default but can be
disabled by overriding the default algorithm multiplier via
input on 03XXX1 data. When deactivated the time-step
control algorithms will be the same as previous code
versions.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Appendix C

Revision 7 C-16

 Table C-2 (Cont'd)

Version/Feature Modification Description

Extend Vapor mod_291 Extended vapor properties for pressures from 0.1 to 0 psia.
Properties Below This included saturation enthalpy, specific volume and
0.1 psia for temperature.
Noncondensable
Gas Flow Model Extension of existing properties - not reviewed. Only
Use affects analyses with vapor pressures below 0.1 psia.

No input - always active for pressures < 0.1 psia

Optional Minor mod_296 Fuel enthalpy calculation and edit option added for
and Major Edit cores/channels.
for Fuel Enthalpy

New optional output fuel edit. Does not affect any other
calculations.

Activated by supplying fuel density on 119XXYY data
cards.

New Output Edit mod_297 Minor edit summary edited at the end of run for maximum
Summary for and minimum values for minor edit variables along with
Minor Edit. time of occurrence.
Variables

User convenience.

No input.

Optional Two- mod_299 Two-region enthalpy transport model implemented
Region Enthalpy to accurately account for heat transfer and enthalpy
Transport Model transport in a steam generator that is drying out. Removes

limitation of current enthalpy transport model.

New model - not reviewed.

Activate the two-region model using a 008001 card.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

 Appendix C

 C-17 Revision 7

 Table C-2 (Cont'd)

Version/Feature Modification Description

Change Warning enmd_012 When input data is encountered beyond Column 80,
Message to a the condition is now treated as an error whereas it was
Fatal Error previously a warning.

User convenience - aids in detecting input errors.

No input - always active.

Migration to enmd_013 Revised the interval timing to use the Fortran 95
FORTRAN 95 intrinsic function cpu_time.
Compilers

Facilitates migration to Fortran 95 compilers.

No input - always active.

Extended Input enmd_014 Free form INP processing function added to count number
Processing to of data items on range of cards.
Simplify User
Input User convenience.

No input - transparent input processing aid.

MOD004.4
Enhanced mod_314 Add edits for void fraction and power to H20 for liquid and
Pressurizer Major vapor regions for PRZR volumes.
Edit
 User convenience.

No input - transparent input processing aid.

Enhanced Trip mod_318 Added trip to initiate an end problem on user action.
Feature

 User convenience.

Requires user input to set up the trip. Also requires user to
activate the end-problem trip by copying a STOPRUN file
to the working directory

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Appendix C

Revision 8 C-18

 Table C-2 (Cont'd)

Version/Feature Modification Description

Pressurizer mod_331 Added a steady state initialization feature for a pressurizer
Initialization with with initial spray flow.
Spray Flow

 User convenience.

Requires additional input to activate the feature. Does not
affect the balance or constitutive models used for the
pressurizer. Computed initial conditions can be tested by
running a null transient.

Steam Only mod_335 Added a choking option for vapor only flow.
Choking Option

New model - not reviewed. Only affects results of
previous code versions when the model is explicitly
activated through input.

The optional vapor only choking feature is requested using
the X field for JCHOKE on the 08XXXY junction
description data cards (model inactive by default).

SPERT Benchmark mod_339 Added a cross section model input option to allow SPERT
Cross Section test cases to be run a code change.
Model Option

The model was used during the NRC review. The coding
required to read the cross sections supplied by the NRC
was originally added to the code so the SPERT cases could
be run.

This cross section model is now available as an input
option by appropriately providing the 6th word (IPURDU)
on card number 670020. This modification requires use of
armd_050 to the 3-D kinetics source code (new cross
section model).

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

 Appendix C

 C-19 Revision 7

 Table C-2 (Cont'd)

Version/Feature Modification Description

Constant Block mod_342 If a constant block is found, the initial condition is set to
Initialization the gain; or COUT = CGAIN.

User convenience. This will eliminate some initial
conditions specification errors or constant blocks.
This change is not optional and is always used.

Point Kinetics mod_346 Added an option to allow an initial subcritical reactivity to
Subcritical to be specified.
Initialization Option

Actinide Decay Added an option to apply the decay heat multiplier to the
Heat Multiplier Option actinides.

New models - not reviewed.

An initial subcritical reactivity must be specified using
RHOIN (new input variable) on the 140000 point kinetics
data card. Otherwise, the initial reactivity defaults to the
historical value of 0.0.

By default, the actinide decay heat contribution is not
multiplied by KMUL. To include KMUL in the actinide
decay heat, a new actinide option must be requested using
IACT=2 (new option) on the 146000 decay heat data card.

Heat Transfer mod_347 An option was added to apply a user specified multiplier to
Coefficient a selected heat transfer correlation(s).
Multiplier Option

New model - not reviewed.

Heat transfer coefficient multipliers are only used when
requested by using the optional heat transfer coefficient
multiplier data cards 15000x.

New Grid Loss mod_348 Added a new grid loss two-phase multiplier option.
Two-Phase
Multiplier Option

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Appendix C

Revision 7 C-20

 Table C-2 (Cont'd)

Version/Feature Modification Description

New models - not reviewed. The new grid loss two-phase
multiplier option is commonly used in vendor and other
two-phase thermal-hydraulics analysis codes. Its use may
be necessary to insure consistency with other codes in a
given methodology or analysis package.

The new grid loss two-phase multiplier (Romie) is only
used if requested by using the new LSET=3 option on the
grid loss model data cards 2330XX.

New Wall Friction Added a new wall friction two-phase multiplier option.
Two-Phase
Multiplier Option

New models - not reviewed. The new wall friction two-
phase multiplier option is commonly used in vendor and
other two-phase thermal-hydraulics analysis codes. Its use
may be necessary to insure consistency with other codes in
a given methodology or analysis package.

The new grid loss two-phase multiplier (Romie) is only
used if requested by using the new LSET=3 option on the
grid loss model data cards 2330XX.

The new wall friction two-phase multiplier (Martinelli-
Nelson) is only used if requested by using the new
JTPMJ=4 option on the junction data cards 08XXXY.

SPERT Benchmark armd_050 Added code required to read cross section model input used
Cross Section during the NRC review. Originally, the coding was added
Model Option to the code so the SPERT cases could be run. This
 modification must be used with RETRAN-3D modification
 mod_339.

FTB Revision enmd_016 Revised LOCF to treat LOC results as an unsigned integer.
for Linux This increases the maximum size that can be used for an

FTB index.

MOD004.4f95 Includes all modifications associated with enhancements

that were included in MOD004.4. Appendix D describes
the conversion and validation processes used for
MOD004.4f95.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

 Appendix C

 C-21 Revision 8

 Table C-2 (Cont'd)

Version/Feature Modification Description

MOD004.5f95
New minor edit mod_352 Added new minor edits for time in minutes and hours, flow
variables and an in gallons/minute and liquid velocity. An option was also
optional plot file added to write a new output file for use with plotting

packages.

 User convenience.

The new minor edit request flag input is listed in the User’s
Manual – Volume 3 Section IV.4.0 for data card 0200YY.

The input to activate the optional plot file is given the
User’s Manual – Volume 3 Section IV.4.4.

MOD004.6f95
Licensing mod_366 Revised the interface with license validations software used
enforcement for with Windows distributions. The revision allows use of a
Windows new model for uniquely identifying individual computers.
distributions. It also uses updated software that supports 32- and 64-bit

installations.

User convenience.

The licensing feature is only used with Windows
distributions and has no effect on computed results.

Add restart mod_373 Previous versions of RETRAN-3D did not support restart
capability for for 3-D kinetics. This modification implemented changes
3-D kinetics required to allow models using 3-D kinetics to be restarted.

User convenience

Adding restart does not affect the results for RETRAN-3D
problems with or without use of 3-D kinetics. Restarts that
re-solve part of the solution domain are essentially identical
to the original solution

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Appendix C

Revision 8 C-22

Table C-2 (Cont'd)

Version/Feature Modification Description

Add replacement mod_380 When the long form of the problem description data card
cards needed to is used, coding was added to write the replacement
convert to the short cards needed to convert to the short form. The replacement
form of the problem cards are written to the output file after the long form
description data to input in written to the output file.
the output file
 User convenience

The short form input will reproduce the results obtained
using the original long form input. The short form input
simplifies use of the code and should eliminate some user
errors.

Limt the flow mod_387 When the flow reversal time-step control algorithm
reversal time-step computes a time-step size less than the minimum, an
to the minimum error condition is set, which generally leads to a time-step
time-step size failure. The code was revised to use the maximum of the

computed size and the minimum value.

User convenience

Allowing the code to use the minimum time-step size value
allows the code to continue with a difficult calculation.

Improved the error mod_388 The error messages written during input processing were
messages written revised and written to both the output and error log files.
during input Errors are individually identified and descriptions are
processing included in Appendix C of the User’s Manual. User

recommendations are also provided for each error to
provide users guidance on how to resolve the error.

User convenience

Extended the list mod_396 A selection of additional minor edit variables were
of plot variables included as plot variables that are automatically written
 to the RETRAN-3D plot file (R3D_PLOT) .

User convenience

Revised coding mod_407 The syntax used in a number of subroutines violated
syntax the strict enforcement by UNIX compilers.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

 Appendix C

 C-23 Revision 9

Table C-2 (Cont'd)

Version/Feature Modification Description

MOD004.7f95
Plot file extension mod_445 Added the time dependent junction area (AJNT) to the
 plot file content.

User Convenience.

3-D Kinetics mod_446 Revised the 3-D kinetics model so it can be use by other

codes such as VIPRE-01.

User Convenience.
for other codes – no effect on RETRAN-3D

Plot file mod_455 Revisions were made so the R3D_PLOT feature is
Enhancement activated through input rather than the configuration file.

Options were also added to use a full list of plot variables,
a short list of variables or a user-defined list. Either form
can also be expanded via user-supplied additions to the plot
variable list.

User Convenience.

Pressurizer mod_456 Added the ability to subnodalize a pressurizer to account
Thermal for thermal stratification.
Stratification Option

New model - not reviewed.

The pressurizer thermal stratification model has not been
reviewed but the components that comprise the model
have, i.e., the two-region nonequilibrium model, the
temperature transport delay time model, the heat conductor
stack model, and the heat conduction model have been
reviewed. Volume 4 contains validation results for the
stratification model. The stratification model must be
specifically requested using 610XXX two-region
nonequilibrium data cards.

The vapor region and a small liquid region are still
modeled using the two-region nonequilibrium model. The
liquid subnodes are individual volume that can use the
temperature transport delay time model. Any two-phase
subnodes are moved into the two-region node as soon as
two-phase conditions appear. These volumes that are
absorbed into the two-region node are disabled until they

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Appendix C

Revision 9 C-24

Table C-2 (Cont'd)

Version/Feature Modification Description

refill with subcooled liquid. As a pressurizer drains or
flashes, the two-region node can occupy the full pressurizer
domain. As the pressurizer refills with subcooled liquid,
subnodes are re-form.

Steady-state mod_457 Revised all error messages associate with steady-state
Initialization initialization so they are more descriptive and provide
Error Messages information to aid the user in correcting the error. Each

error has a unique error message and corrective action that
can be found in Appendix C of the User’s Manual –
Volume 3.

User Convenience

Momentum Flux mod_460 The original momentum flux model often leads to code
Model failures when two-phase flow conditions exist. The

momentum or flow equation solution can produce
anomalous flows, driven by the excessive momentum flux
pressure changes that cause the volume mass and energy
inventories to deplete.

The cause of the problem was due to the fact that the
volume mass is in the denominator of the momentum flux
calculation. This provides a positive feed-back effect on the
flow reversal as the mass goes to zero. This causes the
flows to accelerate and further deplete the mass, eventually
causing the code to fail with a negative mass or extremely
low pressure.

 A new formulation for the momentum cell boundary

momentum flux values (average at center of volume) is
obtained by averaging the junction momentum flux terms
for the junctions entering and leaving the volume. It
replaces the old model. The resulting steady-state
momentum flux values are similar to those of the old
model; however, the undesirable effects of the old model
are eliminated for two-phase conditions where the mass in
a volume is being depleted.

 The positive feedback problem observed in the original

model was classified as a model limitation because there is
no error in the implementation of the documented model.
The problem is related to the undesirable effect the model

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

 Appendix C

 C-25 Revision 9

Table C-2 (Cont'd)

Version/Feature Modification Description

formulation has on the numerical solution for the stated
conditions. The revised (improved) model does not
significantly affect the results, except for cases that no
longer fail when the mass inventory in a volume depletes.

 Improvement to an existing model.

Water Packing mod_461 A new time-step control algorithm was added to the
Time-step Control iterative time-step control option that mitigates the

anomalous pressure and flow spikes associated with water
packing. It also eliminates pressure equation of state
failures resulting from pressure spikes that exceed 6000
psia.

By default, the water packing mitigation time-step control
algorithm is active. It can be disabled using constants
provided on the iterative time-step control constants data
cards 03XXX2.

User Convenience -- Improved Solution

Pressurizer mod_473 Added a default interregion heat transfer model for the
Inter-region Heat pressurizer. The default uses the maximum of a free
Model Option convection correlation and a turbulent model when spray

flow is active. The pressurizer input was also modified to
set a default rainout velocity and default multipliers for
heat transfer coefficients. The multiplier on heat transfer
coefficient will allow accounting for uncertainties.

 The McAdams free convection correlation was used. It is

used for similar applications in codes such as RELAP5 and
CONTEMPT-LT. The Murphy turbulent model for inter-
region heat transfer was in the code previously reviewed by
the NRC. Its combination with the free convection
correlation in the new implementation will account for
proper heat transfer conditions when spray flow is active or
inactive.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Appendix C

Revision 10 C-26

Table C-2 (Cont'd)

Version/Feature Modification Description

Free convection inter-region heat transfer coefficient -
not reviewed.

 All of the pressurizer data comparisons in Section III.12.0

of the Applications Manual - Volume 4 use the new free
convection heat transfer correlation for the inter-region
heat transfer model. It is the recommended model and is
also the default option. The analyses also use
recommended constants, which are also the default values.

Automatic mod_477 Added logic to automatically renodalize control volumes,
Subnodalization junctions and heat conductors. The feature and be used for
 simple pipe volumes, specifically pressurizer volumes that
 use the stratification model.

 User Convenience

 This new option automatically subdivides pipe volumes

into N new volumes, associated junctions and heat
conductors if associated with the base volume.

Accumulator mod_479 The accumulator model solves a gas region energy
Model equation and a new pressure search. The model accounts
 for the effect of heat transfer from the vessel wall and
 liquid region to the gas region,

New model - not reviewed.

 The accumulator model has not been reviewed. It must be
intentionally activated by using an accumulator data card
620XXX to define the liquid level and vessel wall
thickness and volumetric heat capacity,

MOD004.7.1 This code version was distributed as a replacement for

MOD004.7 so the default interregion heat transfer is the
same as for MOD004.6 and earlier versions. A new input
format will be required to use the new best-estimate
interregion heat transfer, thus requiring a conscious change
to the input by the user.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

 Appendix C

 C-27 Revision 10

Table C-2 (Cont'd)

Version/Feature Modification Description

Restore Backward mod_491 Two-Region Nonequilibrium Model Input Compatibility

This input was revised so the 610XXX input was identical
to that used by MOD004.6 and prior versions. This
prevents use of the pressurizer stratification and new best-
estimate interregion heat transfer model unless specifically
requested via new input data. Use of the pressurizer
stratification model (mod_456) and/or the new interregion
heat transfer model requires use of the 611XXX data card
series. If a 611XXX card is used, the default interregion
heat transfer will be based on the new free convection
model added by mod_473.

 New models added in MOD004.7 - not reviewed.

 The stratified pressurizer model must be intentionally

activated by using a 611XXX data card. Likewise, the
best-estimate interregion heat transfer model must be
intentionally activated using a 611XXX data card.

 Accumulator Model Input
 This was also revised so the 620XXX input data was as

nearly the same as MOD004.6 as possible given that the
previous polytropic expansion model is no longer available.
This was done to provide backward compatibility with
MOD004.6 and prior versions. Use of a control system to
define the expansion coefficient is no longer allowed and
expansion coefficient values for isentropic and isothermal
expansions are the only values permitted. The polytropic
expansion model coefficients are used to define the
parameters for the new two-region solution so as to
reproduce the expansion model requested.

 The input for the new two-region accumulator model added

by modification mod_479 was moved from the 620XXX
data to the 621XXX data.

 New model added in MOD004.7 - not reviewed.

 Neither the previous nor the current accumulator models

have been reviewed. The model must be intentionally
activated by using either a 620XXX or 621XXX data card.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Appendix C

Revision 10 C-28

Table C-3

Modifications Implementing Error Corrections

Code Version/ Trouble
Modification Report
No. No. Description of Change

MOD003.1
mod_142 197 Corrected index error In INCHAN and INGEOM that

affect retrieval of geometry information from CDI file.

mod_143 199 Coding was added to RETWRT to calculate POWER using

the updated PNORM.

mod_144 209 The logic in subroutines CORQ, INMODH, and MODQF

was modified to allow input on 145xxx cards to read when
the three-dimensional kinetics model is used.

mod_145 210 This modification moves the line that saves DTC for the

STF block within the ID loop, so all STF blocks will be
correctly handled.

mod_146 225 Subroutine INTV had an incorrect test on the number of

control block entries for card 07XXYY (if no NCG control
block was entered, input processing failed). The incorrect
test was fixed.

mod_147 213 In INCHAN the heated diameter was calculated after the

area was expanded but the heated perimeter had not. The
calculation was changed to use the expanded heated
perimeter which is stored as the surface area per foot
(ARCH).

mod_149 220 The original logic which skipped reading 6300XX cards for

the MOC option for three-dimensional core channels was
revised so the 6300XX cards are read.

mod_150 221 Remove the tests in subroutines MDOT and MDOTWF

which prevent calculation of wall heat addition in the post-
CHF regime with the five-equation solution.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

 Appendix C

 C-29 Revision 10

 Table C-3 (Cont'd)

Code Version/ Trouble
Modification Report
No. No. Description of Change

mod_151 204 This update corrects several errors found in the implicit

pressurizer model.

mod_152 228 The correction is to RESERV Filid 38 with a length equal

to the max of Filid 5, Filid 6, and Filid 43, in EDITST, call
TAPEBC and then delete the file.

mod_153 229 The problem was corrected by replacing the test for

"IREAD .GT. 0" with "IREAD .NE. 0" in subroutine
ADVFLO.

mod_154 198 The junction angle was removed and two new optional

angles were added to the junction data card.

mod_155 230 This update causes the steady-state equation for DELTAV

to be used all the time. This equation has a minimum value
for DELTAV of 1.E-6, so the divide by zero error
described above can never occur.

mod_156 231 The effective inlet density for the volume upstream of the

tdv is computed using a flow weighting.

mod_157 232 Function C3FUNC was modified by replacing "XREF = -

REF" with "XREF = ABS(REF)". This fixes the problem
and does not change the solution for normal countercurrent
or cocurrent down flow.

mod_158 174 The problem was traced to the section of coding in

XANDH , which adds h(j) linearization for negative fill
junctions was found to be in error and was corrected.

mod_159 222 Several errors in subroutine GENTRN were corrected.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Appendix C

Revision 10 C-30

 Table C-3 (Cont'd)

Code Version/ Trouble
Modification Report
No. No. Description of Change

mod_160 233 Logic in INSLAB was added to calculate the number of

user defined conductors (the number of 15XXXY cards
supplied in input). Also, a check was added to insure that 9
or fewer conductor stacks were supplied (per the User's
Manual).

mod_161 234 This modification extends the acceptable range for Z

(assuming IMCL = 1YZ) from 2 to 5 to cover values for
the Catton-Swanson correlation.

mod_162 165 The option to use the dynamic gap conductance model with

205 multi-dimensional kinetics option was added to the code (it
had been inadvertently omitted).

mod_163 224 The momentum flux terms are revised when multiple

junctions are located at the exit or inlet of a volume.

mod_164 236 The input processing was modified to detect if NBORON

(W2-I on Card 670021) is used to set initial boron PPM or
select the critical boron search option prior to processing
the generalized transport option.

mod_165 235 Several errors in the flow propagation and pressure initial

condition specification were corrected.

mod_166 211 Logic was added to subroutine INVOL to test for a bubble

rise set (IBUB > 0) if the volume is IX1 for a mixture
level trip (|IDSIG| = 5).

mod_167 223 Logic was added to subroutine ICVOL so that when the

initial calculation of FMAS and GASM are made from the
specified conditions, LIQM, LIQL and LIQV are also
defined.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

 Appendix C

 C-31 Revision 10

 Table C-3 (Cont'd)

Code Version/ Trouble
Modification Report
No. No. Description of Change

mod_168 239 Subroutine ENTRAN was modified so that if the calculated

junction quality (XJUN) is 0 or 1, the "not slip" flag
(NTSLIP) is set and a jump from the iterative loop.

mod_169 022 When the searched pressure exceeds PCRIT, resetting it to

a value lower but close to PCRIT allows the search can go
on and converge. This modification was made.

mod_170 237 The tests for net steam flow in the vapor region of a bubble

rise volume indicating a possible negative separation
velocity or a negative partial bubble density are trapped
and reported as an error only if they occur on the very last
steady-state iterate.

mod_171 --- Modification not included.

mod_172 241 Logic is added to subroutine JSVEL for negative fill

junctions to use a forward difference solution.

mod_173 243 The derivative of the centrifugal pump head with respect to

the diagonal junction flow is added to the FSUBK variable
and the correct junction weighting term was included.

mod_174 244 The logic in subroutine JSVEL for the Chexal-Lellouche

algebraic slip model was revised to use the horizontal form
of the model when IFRJ > 10.

mod_178 245 The revision uses the forced convection heat transfer

results (obtained prior to calling the condensation model)
rather than terminating the problem when the condensation
correlation fails to converge.

armd_020 --- Not included.

armd_021 --- Not included.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Appendix C

Revision 10 C-32

 Table C-3 (Cont'd)

Code Version/ Trouble
Modification Report
No. No. Description of Change

armd_022 206 The trouble is fixed by starting the guessed adjoint

eigenvalue from steady-state eigenvalue, instead of starting
from 1.0.

armd_025 214 Logic to support the various NFREEZ options was in place

but the variable LFEED overrides the options and forces an
"ALL or NOTHING" condition. Removing the reference to
LFEED, all NFREEZ options become available.

armd_026 215 The modified code divides the sum of the power densities

by the number of powered axial planes to get an average.

armd_027 217 All sets in IDAFLX are processed (PROCES) and then the

call to TRNCAT is replaced with FTBCLS then IDAFLX
has the correct number of sets when EDITD9 is called.

armd_028 218 Added XISP isotope number densities to BXF file a

CORETRAN modification). Added revision to allow
RETRAN user to select number densities from BXF file
(default), equlibrium XISP or zero XISP.

armd_029 219 Cod modified to assume default of 0 rather than use CDI

values. User has the ability to set all NED flags on card
670010.

armd_030 227 The historic rodded fraction is set to zero. This effectively

eliminates the adjustment from historic rod cross sections,
so only the instantaneous contribution is considered.

armd_031 236 The input processing was modified to detect if NBORON

(W2-I on Card 670021) is used to set initial boron PPM or
select the critical boron search option prior to processing
the generalized transport option.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

 Appendix C

 C-33 Revision 10

 Table C-3 (Cont'd)

Code Version/ Trouble
Modification Report
No. No. Description of Change

armd_032 195 The code was modified to detect ESHIFT and CETAK for

some possible unreasonable ranges that could lead to
failure of neutronics calculation. More checking was added
to avoid other unreasonable values.

armd_033 238 The code was changed to pass unit 14 to TRAN. This

allows TRAN to write the restart file to the correct unit.
Also, the arguments passed to TRAN from DRIVE2 were
in the wrong order.

armd_034 164 Corrections were made to avoid divided-by-zero and

negative index errors.

armd_035 242 This update moves a write statement back where it

originally was prior to a previous update. Other changes
remove local variables that are never used.

enmd_04 216 Subroutine INP was modified to scan the input for TABs

and replace them with blanks. If data, not comments, are
beyond column 80 a warning is issued.

MOD004.1
mod_179 246 Fix control block CP2 floating point error.

mod_180 250 FTB file definition moved up one line.

mod_181 251 Correct VSLPV calculation for volumes with multiple

junctions.

mod_182 252 Correct ICVOL to edit the correct transport volume mesh

data.

mod_183 256 Fix flag which activates noncondensable gas logic in

EPRIDV.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Appendix C

Revision 10 C-34

 Table C-3 (Cont'd)

Code Version/ Trouble
Modification Report
No. No. Description of Change

mod_184 247 Fix error in scratch space reservation for flow splits case.

mod_185 257 Correct logic in SSSEP that overrides local energy balance

when P is input for a two-region nonequilibrium volume.

mod_186 255 Count the number of entries on the material property data

cards to calculate how much memory to reserve.

mod_188 202 Correct enthalpy error when mixture level passes through

junction; correct five-equation model errors when critical
pressure is reached.

mod_189 261 Correct the error for enthalpy transport with flow splits.

mod_190 203 Correct the logic when single phase exists in two-region

nonequilibrium model.

mod_191 262 Add derivatives of slip velocity with respect to p, x, and w

for ISFAG = 2. Revised relaxation scheme for steady-state
slip velocity.

mod_192 264 Correct errors in NC state routine and NC condensation

nonconvergence.

mod_193 265 Smoothing logic in the mass transfer model changes the

transfer term from steady-state to transient.

mod_194 266 Several equilibrium thermodynamic initial condition

options were not included for five-equation volumes.

mod_197 269 Added test to ensure that countercurrent properties are not

use to compute cocurrent slip velocity.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

 Appendix C

 C-35 Revision 10

 Table C-3 (Cont'd)

Code Version/ Trouble
Modification Report
No. No. Description of Change

mod_198 270 The call to ENTHAL was replace with a Newton-Raphson

iteration to solve for enthalpy.

mod_199 271 Test for flow split option before defining do loop indices.

mod_200 263 The branch junction model added in MOD003.1 was

revised to use the single junction form for separators.

mod_201 274 Correct logic to trap negative relative volume.

mod_208 277 Remove KMUL from Actinides (consistent with Theory

Manual).

mod_210 278 Modified to use "to" volume enthalpy for junction enthalpy

when flow is zero. Fixed a restart error. Another
modification turns the transport delay model off when a
junction flow is two-phase.

mod_211 280 Bypasses the liquid volume convergence test for single-

phase volumes.

mod_212 281 Revised to use consistent time level values for the wall

temperatures and replaced the iterative solution with a
linear approximation.

mod_213 282 Revised the limiting void fractions, add logic to neglect

countercurrent flow for low void fractions, and added a cut
off to neglect slip for void fractions > 0.999 when the
Chexal-Lellouche model is used.

mod_214 283 Use the donor volume density for a TDV momentum flux.

mod_215 284 Add option to initialize same as RETRAN-02.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Appendix C

Revision 10 C-36

 Table C-3 (Cont'd)

Code Version/ Trouble
Modification Report
No. No. Description of Change

mod_216 285 Limit the junction area such that (0 <= ajunt <= ajun).

mod_217 286 Apply density ratio to torque difference.

mod_222 273 Reset pump stop/reverse flag trip.

mod_223 276 Replace intrinsic SIGN with function SYGN.

mod_224 287 Revise scratch space reservation.

mod_225 290 Removed definition of phase=2 in common path.

mod_226 291 Delete extra call to TRNSPT.

mod_227 292 Add values in INVOL for correct interpretation by ICVOL

for P>0, T=0, H=-1, ZM=ZVOL, Separated Volumes.

mod_228 293 Revise zero flow test for volumes to use (wjsum1+wjsum2)

rather than volume average flow.

mod_229 294 Revise Bernoulli term in momentum equation to include

cosine of angle.

mod_230 295 Added logic to define the boundary temperature to local

conditions value for specified HTC.

mod_232 296 Removed a fix-up path that uses a hardwired value of the

critical specific volume.

mod_233 299 Revise local conditions model for setting bulk fluid

temperature for nonequilibrium volume.

mod_234 300 Correct consistency check for Chun and Seban conductor

stack.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

 Appendix C

 C-37 Revision 10

 Table C-3 (Cont'd)

Code Version/ Trouble
Modification Report
No. No. Description of Change

mod_239 302 Correct an error in input checking logic. Also, cleaned up

some complicated branching logic.

mod_240 305 Eliminate logic that over indexes array during three-

dimensional kinetics input processing.

mod_242 306 Correct slip calculation for negative fills

mod_244 307 Correct index problem in the low power SG initialization

model.

mod_246 308 Remove unnecessary error condition from bubble rise

velocity calculation

mod_247 309 Correct enthalpy error on 0th iteration for a low the low

power SG.

mod_251 304 Removed junction area change term from the inertial flow

estimate used with the choking model.

mod_252 301 Smooth positive slip velocity to zero for low void.

mod_254 297 Add logic to limit velocity used in stagnation pressure and

enthalpy.

armd_038 249 The default values for the PNM numerics floating point

control parameters were defined as double precision values
to eliminate erroneous initial values on the Win95/NT
platform.

armd_039 258 The subroutines that contain the IFXISP flag need to be

revised so the XISP options match user's manual. The
modification includes correcting the logic, revising the
error message, and resetting the default option in case the
input IFXISP is out of range.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Appendix C

Revision 10 C-38

 Table C-3 (Cont'd)

Code Version/ Trouble
Modification Report
No. No. Description of Change

armd_040 170 The variables KAPPA and OMEGAM were modified to

254 include a dependency on core nodes as well as groups.
Common FKIN (COMDECK KIN), and subroutines
PRECURS, and SETTFSP were modified.

armd_041 259 Subroutine INCDIA that initializes the 670040 card was

revised by giving correct default values to the card options.

armd_043 276 This modification replaces references to the intrinsic

functions SIGN and ISIGN with the functions SYGN and
ISYGN, which provide f77 compatible handling of signed
zeros.

enmd_007 276 Functions SYGN and ISYGN were added to the

environmental library to replace the intrinsic functions
SIGN and ISIGN to obtain f77 compatible handling of a
signed zero.

MOD004.2
mod_255 310 Added logic to skip loop used to identify junctions exiting

a bubble rise volume when bubble set isn't used by a
volume.

mod_256 311 Revised the beginning card number for each of the card

sequences used to determine a dimension.

mod_257 315 The linear form of the inertial flow solution that is used to

determine if choking occurs was modified to use a
quadratic form.

mod_258 048 Modified use of an energy equation convective term

derivative for low void fraction and positive slip during
steady state. Skipped bulk mass transfer evaluation for
subcooled liquid and superheated liquid.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

 Appendix C

 C-39 Revision 10

 Table C-3 (Cont'd)

Code Version/ Trouble
Modification Report
No. No. Description of Change

mod_259 316 Revised an output format statement.

mod_260 317 The internal time-step control logic uses the maximum

power change to control the logic path followed. The
power change was being evaluated at the end of the 1st
stage of the Runge-Kutta solution. It was moved after the
solution was completed.

mod_261 319 Coding in subroutine INVOL to increment MTDV for

every IREAD<0 was removed. Logic was added to
subroutine SETDIM to determine the number of tdv BCs
from tape by scanning the volume input data.

mod_262 320 The coding was revised to eliminate the use of the

undefined variables.

mod_263 322 Certain values used for thermal conductivity multiplier

cause code to fail on PC.

mod_264 324 In the Lellouche subcooled boiling model used with the

five-equation model, a flashing model is activated when the
liquid superheats. The derivatives used for this condition
were incorrect and caused the solution to fail to converge.
The derivatives were corrected and new derivatives were
added.

mod_266 327 Corrected an error that gave an infinite loop when a bad

enthalpy is input for a pressurizer volume.

mod_267 330 Option to perturb one-dimensional cross-sections did not

correctly reset the perturbations for inner loops.

Also enabled option to perturb cross-section and continue.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Appendix C

Revision 10 C-40

 Table C-3 (Cont'd)

Code Version/ Trouble
Modification Report
No. No. Description of Change

mod_268 325 Add logic to trap TDV input errors and provide informative

error messages. Eliminate unexplained FTB errors.

mod_270 332 Added capability for more than 3 regions in fuel geometry.

Revised input processing to use region number and
material identifiers from CDI file.

mod_271 339 An error message was added to the ERRLOG file when a

surface temperature less than zero is computed in QDOT28
and QDOT25.

mod_272 334 Subroutine JSVEL was modified to eliminate logic that

limited the dVs/dt derivative. When activated, the logic
also erroneously redefined the slip velocity.

mod_273 336 Subroutine JSVEL was modified to correct logic that

smoothed the slip velocity toward zero at low void.

mod_274 337 The grid loss coefficient was multiplied by the ratio of the

mixture and liquid densities.

mod_275 340 Output formats for several routines were revised.

mod_277 342 The normalized area is allowed to be >1, consistent with

the table option and RETRAN-02.

mod_278 343 A test for two-phase conditions above and below that

bypassed the countercurrent flow initiation logic was
eliminated.

mod_279 344 Coding was revised to allow the debug edit option to be

used.

mod_280 345 A faulty convergence test indicated that the pressure EOS

was not converged when in fact it was.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

 Appendix C

 C-41 Revision 10

 Table C-3 (Cont'd)

Code Version/ Trouble
Modification Report
No. No. Description of Change

armd_048 320 The coding was revised to eliminate the use of an

undefined variable.

MOD004.3
mod_281 347 Subroutine INDATA was modified to correct logic that

redefines the value of NUMRCS.

mod_282 348 Subroutine SLIP was modified to correct the error and

allow for better code flow in the subroutine.

mod_283 350 Logic was added to the flow estimate solution in subroutine

ADVFLO to trap degenerate cases, e.g., no friction, and
then calculate the appropriate inertial flow estimate.

mod_284 351 Logic was added to subroutine ENTRAN to correct an

error in the enthalpy transport deactivation option.

mod_285 352 GAPCDI was renamed IGAPCD to maintain the variable as

an integer type.

mod_286 272 Derivatives modified/added for CX term, junction

enthalpy, and convection term and nonequilibrium volume
energy equation.

mod_288 353 Corrected search logic for TDV volumes from tape.

mod_289 354 Initialize variable BUFR in subroutine INMOC to 0.d0 to

make it re-entrant.

mod_290 356 Added new function DTSPDP to compute partial of TSUP

wrt pressure.

mod_292 346 Pressure search for volume with air, liquid and very low

amount of vapor is added. It requires use of
mod_290,mod_291 to work.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Appendix C

Revision 10 C-42

 Table C-3 (Cont'd)

Code Version/ Trouble
Modification Report
No. No. Description of Change

mod_293 200 Equation-of-state solution modified. Fluid properties and

derivatives after convergence changed.

mod_294 358 Corrected a number of derivative terms and revised the slug

to annular-mist transition to use a linear void interpolation
of the log10 of the bounding interfacial area * HTC values.
Revised the numerical solution to solve for mixture quality
and noncondensable quality.

mod_295 359 Corrected steady-state edit of input values of bubble

velocity and gradient.

mod_298 361 Number of iterations that compute pressure or loss

coefficients are limited to square of number of junctions.

mod_300 362 Warning message for discontinuity in enthalpy function at

850 psia removed (no discontinuity exists in current
saturation enthalpies).

mod_301 363 Mixture temperature changed from vapor temperature to

quality weighted average of liquid and vapor temperature.

mod_302 364 Mixture level is changed corresponding to volume height

for bubble rise volume when volume height and mixture
level are input equal.

mod_303 365 Logic was added to edit (major) the FIBWR related

junction path flags when the FIBWR model is used without
the channel model.

enmd_011 349 The modification changes the type of variable FTBRCL

from real to integer.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

 Appendix C

 C-43 Revision 10

 Table C-3 (Cont'd)

Code Version/ Trouble
Modification Report
No. No. Description of Change

MOD004.4
mod_304 366 Revised the logic used to call subroutine CCFPRP.

mod_305 367 Defined variable SPVAP when the vapor phase donor

volume is a bubble rise volume.

mod_306 368 Revised code to limit the magnitude of the argument to the

exp function.

mod_307 369 Fixed incorrect logic test for heat conductors associated

with a steam generator.

mod_308 370 Revised minor edit summary to include values between edit

times.

mod_309 371 Fixed error where use of 15xxx0 cards (invalid) leads to a

misleading error.

mod_310 372 Corrected error where code hangs-up when a RESTART

job uses a Super Summer block.

mod_311 373 Corrected error where bubble velocity remains constant

after time zero when controlled by control system.

mod_312 374 Corrected error where the accumulator liquid mass minor

edit is always zero.

mod_313 379 Corrected error for implicit two-region noneq. model where

a volume is initially liquid, doesn't develop two regions
when volume goes two-phase.

mod_315 378 Added logic to skip the section of code that turns off

enthalpy transport if already deactivated.

mod_316 377 Added logic to correct LIQV and LIQL edits for an

accumulator. Also corrected error where subroutine
STATEW was called from GENOPT rather than STATAC.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Appendix C

Revision 10 C-44

 Table C-3 (Cont'd)

Code Version/ Trouble
Modification Report
No. No. Description of Change

mod_317 380 Added logic to skip Thom if void fraction >= 0.8. Also
 382 added logic to prevent condensation if vapor is subcooled

(pressurizer model).

mod_319 381 Corrections to implicit two-region nonequilibrium model

for rainout and wall condensation.

mod_320 383 Corrections for the heat transfer mode printout in the major

edit for specified HTC.

mod_321 385 Logic was added to disable countercurrent flow if the

junction is located below both mid-points in the connecting
volumes.

mod_322 386 During the first iteration some of the pressures may not be

known so logic was added to subroutine FILL to skip the
portion of code that returns an error if the pressure for a
negative fill is out of range.

mod_323 387 Logic was added to subroutine INJUN to test if the junction

is a fill junction before writing the warning message.

mod_324 389 Added a call to subroutine BOY_FLAGS added in

enmd_015.

mod_325 388 Moved the error check for energy flow reversal in steam

generators and feedwater heaters from SINITL to STSTAT.

mod_326 390 The pressurizer liquid region quality (NELX) is calculated

based on bubble mass and liquid mass. This logic is
removed and NELX is forced to be zero during steady state
initialization.

mod_327 384 Tests on the liquid region energy and vapor region energy

(normalized to the total energy in the volume) for
establishing a two region volume in subroutine WAT.8
were modified to account for the affect of the time-step
size.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

 Appendix C

 C-45 Revision 10

 Table C-3 (Cont'd)

Code Version/ Trouble
Modification Report
No. No. Description of Change

mod_328 391 Logic was added to skip calculation of the two-phase

partial derivates for volumes initialized with a pressure
greater than or equal to the critical pressure.

mod_329 393 Logic used to select the coefficients for evaluating the

Wilson bubble velocity was revised to be independent of
bubble velocity.

mod_330 392 The data initialization for variables ONE and ZERO were

deleted since they reside in the UNITS include file, which
is already initialized.

mod_332 395 Changed the beginning card number used to locate heat

conductors.

mod_333 376 Subroutine INSTGN is modified so that when index for

junction sequence list IDXJNR is updated, a new index to
the volume solution order file is used.

mod_334 394 Correct storage for super summer blocks.

mod_336 396 Corrected compiler errors for IBM.

mod_337 397 Corrected the spelling of derivative DASADA in

subroutine argument list.

mod_338 398 A line of inadvertently deleted code (mod_305) was

reinserted.

mod_340 399 Reported problem was due to nonconverged solution.

Subroutine TSTP.F was modified to account for the limit
on the normalized power change time-step control
algorithm for the 1D and 3D kinetics options, eliminating
unnecessary time-step size reductions.

mod_341 401 A check was added so that if file 75 is not reserved then

swapping between file 75 and file 40 is not performed.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Appendix C

Revision 10 C-46

 Table C-3 (Cont'd)

Code Version/ Trouble
Modification Report
No. No. Description of Change

mod_343 402 The index for saturated liquid enthalpy was changed from I

to L.

mod_344 404 Subroutine INJUN was modified to issue an error message

if the automatic overlap option (JVERT = 3) is requested
for a fill junction.

mod_345 403 The variable ‘DT’ is passed from subroutine PRZR to

WAT8.

mod_349 400 Subroutine DEFORM.f was generalized to use the fuel

pellet geometric description for each axial node and to also
allow multiple regions in the fuel pellet. An error was
corrected in subroutine GAPHTC.f for the ratio of mean
fuel surface roughness to wavelength equation.

mod_350 405 An error that set the time derivative of the vapor continuity

eqn. to zero was corrected.

mod_351 403 Logic was added to subroutine HTRC to prevent use of a

condensing heat transfer correlation if the wall heat flux is
positive.

enmd_015 389 Added new subroutine BOY_FLAGS to dynamically detect
the Little or Big Endian processor type and set appropriate
flags.

enmd_017 392 The data initialization for variables NN, which is in

common, was changed such that a local variable IZ is used
to initialize NN (IZ initialized via data statement).

MOD004.4f95 Includes all modifications related to error corrections that

were included in MOD004.4. Appendix D describes the
conversion process and validation for MOD004.4f95.

 This code version was not formally released.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

 Appendix C

 C-47 Revision 10

 Table C-3 (Cont'd)

Code Version/ Trouble
Modification Report
No. No. Description of Change

MOD004.5f95
mod_353 407 A test was also added to set an error return code indicating

that the surface temperature is essentially equal to the
saturation temperature (condensation not appropriate),
which results in a convection regime being used . Errors in
two derivatives used when smoothing between
condensation and convection were corrected.

mod_354 408 A new variable, c0dv, was added to module m_junctions.

This insures that c0old (occasionally used to compute c0
when a weighted solution is used) is reset to the correct
value when a time step is reset.

MOD004.6f95
mod_355 409 The first element of the rdata array was not initialized to

zero before call to inp2 from incnst. Coding was added to
initialize the array element to 0.

mod_356 411 The space_time field in the me_list derived data type was

not initialized for problems not using the 1-D kinetics
model. Coding was added to m_minor_edit_search to
initialize the field.

mod_357 412 Coding was revised to update the value of vliq that is a

minor edit variable.

mod_358 416 Interface module s_water was modified to define the type

of function dtspdp as kind=8.

mod_359 413 The length of a character variable used to identify dynamic

restart blocks used to provide time dependent boundary
conditions (form restart file), was revised to be 12
characters. This is the length used to define the block
names on the restart file.

mod_360 414 The memory allocation for the Purdue thermal-hydraulics

solution was increased in module m_sparse_mapping.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Appendix C

Revision 10 C-48

 Table C-3 (Cont'd)

Code Version/ Trouble
Modification Report
No. No. Description of Change

mod_361 415 An option in the 3-D kinetics model was inadvertently

omitted during the Fortran 95 conversion. It was added.

mod_362 410 A warning message was added when the 3-D kinetics

model computes a negative flux. The message
recommends that the NEMCY input parameter be revised
to improve solution convergence.

mod_363 417 Subroutine ‘contrl’ was modified to add a check to insure

that the BOXX has been allocated before it is reset when
iterative solution is not converged.

mod_364 418 During steady state, for ISFLAG=3, the junction

orientation multiplier was added to the liquid and gas
velocity calculations.

mod_365 419 Revised code to allocate space for a minimum of one

volume, irrespective of NCFLOW value.

mod_367 420 The calculation of derivative DVDPHG was modified is

module water.

mod_368 341 An error was corrected in the power normalization for the

decay heat model solution used for the 1-D and 3-D
kinetics options. The code was also revised to use same
decay heat model solution for point kinetics.

mod_369 422 Revisions made in mod_326 were undone. New coding

was added to correct the original problem.

mod_370 423 The transition quality used when the heat transfer mode

switches between Collier and Siddique in the presence of
noncondensables was changed.

mod_371 421 An equation in the gap contact conductance evaluation was

revised to match the documentation.

mod_372 375 Logic was revised that is used to activate and deactivate

bubble rise volumes in a stack as per the mixture level.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

 Appendix C

 C-49 Revision 10

 Table C-3 (Cont'd)

Code Version/ Trouble
Modification Report
No. No. Description of Change

mod_374 427 Dummy arguments NXPT and NYPT in subroutine edtd10

were incorrectly specified as 2-D arrays. The code was
revised to treat them as 1-D arrays.

mod_375 428 Coding inadvertently deleted in BICG during Fortran 95

conversion was restored. Boron transport mapping to
neutronics mesh was corrected. Several editing errors
corrected.

mod_376 429 The allocation for the old control rod mapping array was

modified

mod_377 425 Subroutine ENTRAN was modified to use state derivatives

already available from the state solution rather than
recalculating them (incorrectly).

mod_378 355 Modified the 5-eqn air-water pressure search for steam

flow. Also modified and mass transfer derivative for inter-
phase heat transfer.

mod_379 430 The array size of RHSI was increased in subroutines insolv

and inslv2. The calculation for determining THETA in the
critical velocity calculation was also modified to prevent an
out-of-bounds index from being calculated.

mod_381 431 Correct short form problem dimension processing so
printer plots work.

mod_382 432 Added a lower limit of 1.e-6 to the mass flux used to

evaluate CHF.

mod_383 433 Corrected the argument list for calls to bubint & bubinc in

ststat. Corrected error logic and message in bubint.

mod_384 434 Skipped all of the logic that checks trips supplied with a

RESTRT input deck when no trips are provided in restart
deck.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Appendix C

Revision 10 C-50

 Table C-3 (Cont'd)

Code Version/ Trouble
Modification Report
No. No. Description of Change

mod_385 435 Added logic to skip writing the trip summary edit when no

trips were generated during a run.

mod_386 436 For the IPURDU flag, any value in the units place is treated
as if it were input as 1.

mod_389 438 The slip multiplier is incorrect when it is defined using a

control block. The coding was corrected by referencing the
COUT variable for the block used.

mod_390 437 The friction loss between the volume and junction included
 439 a sign of the flow. Since the donor volume was use the

sign of the flow was removed. Comments changed in stpm
and an invalid index was corrected in xncalc.

mod_391 444 When steady-state initialization computes FJUNR, it was

stored in FJUNF for the next junction. Logic was updated
to correctly store FJUNR.

mod_392 445 Corrected a restart failure when the long form problem

control and description is used in the original problem.
Added generalized transport model concentrations and
nonconducting heat exchanger power to the restart file
dynamic blocks.

 mod_393 441 An averaging relaxation method is added to the iterative

solution for the liquid volume change (part of the pressure
search) in the explicit pressurizer solution.

mod_394 443 The void fraction limit for transition from slug to the

annular flow regime changed to 0.75.

mod_395 446 The index of a pointer into the reactivity tables is corrected

for the region wise reactivity tables.

mod_397 447 Subroutines called with argument lists that are longer than

the called subroutine dummy argument list were revised to
match the list for the called subroutine.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

 Appendix C

 C-51 Revision 10

 Table C-3 (Cont'd)

Code Version/ Trouble
Modification Report
No. No. Description of Change

mod_398 442 The void fraction limit for transition from slug to the

 annular flow regime changed to 0.75. The entrainment
 correlation solution was also revised to improve
 convergence.

mod_399 440 Subroutines called with argument lists that are longer than

the called subroutine dummy argument list were revised to
match the list for the called subroutine.

mod_400 448 Trip summary was corrected to use correct control system

indexes.

mod_401 449 The flow reversal time step size changed.

mod_402 450 The index used to print the conductor stack information

was changed.

mod_403 451 Minor edits that used the trip number for the region were

removed. The array containing the trip ID numbers used
for creating the plot file was changed.

mod_404 452 Local arrays changed to dynamical allocation.

mod_405 453 Logic was added to prevent an infinite loop if a restart file

is run without saving a new restart file.

mod_406 454 An error was corrected where the timing edits for a restart

run were being printed out in the wrong time intervals.

mod_408 456 Changes were made to a couple of error messages and a

flag was added to determine if the errors are input or run-
time errors.

mod_409 458 Corrects an error involving reset trips in subroutine tedit.

mod_410 457 DNBR was added to the minor edit search. An error was

correct in subroutine dnbm where incorrect dnbr and
quality values were being calculated.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Appendix C

Revision 10 C-52

Table C-3 (Cont'd)

Code Version/ Trouble
Modification Report
No. No. Description of Change

MOD004.7f95
mod_411 459 Corrects an error where both the forward and reverse loss

coefficients are computed (same value) when the junction
initial condition specification data card 232XXX is use to
identify junctions where the loss coefficients are to be
computed.

 Logic was also enhanced to detect when a request is made

to compute a loss coefficient with zero flow, which is not a
valid request.

mod_412 460 Corrected an error in the low power steam generator

initialization feature that occurs when a volume is a
boundary for several heat conductors.

 Also corrected a restart problem that indicated that the

2350XY data cards were not use during restart.

mod _413 461 The restart file structure was revised to allow certain

variables to be redefined at restart time using generalized
restart.

mod_414 462 The accumulator model minor edit feature was revised to

use the control volume number as the region number for
accumulator minor edit variables.

mod_415 463 A sign error was corrected in the slip energy convection

term for the explicit two-region nonequilibrium volume
that resulted in the vessel upper head cooling rather than
going two phase.

mod_416 465 An error was corrected where the interval between edits

was incorrect for restart problems.

mod_417 464 Modifications to subroutine invol that were tested as part of

mod_388 were inadvertently omitted from the version
control system. They were added by this modification.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

 Appendix C

 C-53 Revision 10

Table C-3 (Cont'd)

Code Version/ Trouble
Modification Report
No. No. Description of Change

mod_418 466 Corrected an error in the ISFLAG=5 slip option that

resulted in a code failure due to an index that is out of
bounds.

mod_419 467 Corrected an error indicating that the executable has

stopped working, where the error was in the memory
allocation for the 3-D kinetics XISP model.

mod_420 468 A memory allocation error in the 3-D kinetics model was

corrected.

mod_421 469 Modified the low power steam generator initialization

feature to recognize closed valves in tube volumes used to
model break junctions for steam generator tube rupture
models.

mod_422 471 Revised the minor edit summary output formats to account

for large component numbers (i4 >> i7).

mod_423 473 Corrected problems encountered during restart.

mod_424 470 Corrected a problem where the enthalpy transport model

does not converge during steady-state initialization.

mod_425 474 Corrected an error in the frequency at which edits are

written.

mod_426 472 An error that occurred when attempting to compute

saturation properties for a volume filled with dry air was
corrected.

mod_427 476 A correction was made to restart for the two-region

nonequilibrium model to allow model constants to be
changed during generalized restart.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Appendix C

Revision 10 C-54

Table C-3 (Cont'd)

Code Version/ Trouble
Modification Report
No. No. Description of Change

mod_428 477 An interpolation heat transfer mode was added to smooth

the transition from the Schrock-Grossman correlation to the
Dougall-Rohsenow correlation for qualities greater than
0.95. This eliminates an oscillation that appeared
previously.

mod_429 480 An error was corrected for 3-D kinetics system problems

where the conductor geometry cards were not processed,
resulting in and error.

mod_430 478 The number of iterations allowed for the iterative solution

of the Chun-Seban condensation correlation was increased,
resolving a convergence problem in the pressurizer
environmental heat loss.

mod_431 481 The logic used to write the error message was revised to

correct the error.

mod_432 479 The error was corrected, allowing multiple boundary

conditions to be obtained from a previous restart file.

mod_433 462 The logic for processing heat conductor stacks was revised

for 3-D kinetics models using the CDI file to define core
stacks and input for other stacks.

mod_434 483 An error was corrected that resulted in steady-state not

failing when a negative loss coefficient was calculated.

mod_435 484 An error that resulted in calculated loss coefficient (those

specified on the 08XXXY and 672XXX cards) not
appearing in the initial condition summary table.

mod_436 486 The plot file option was modified to allow for larger

component numbers. Control block flags COUT and
CBLK were also changed to CU and CB for large control
block numbers.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

 Appendix C

 C-55 Revision 10

Table C-3 (Cont'd)

Code Version/ Trouble
Modification Report
No. No. Description of Change

mod_437 487 Replaced a block copy with a do loop to eliminate a stack

over flow for problems with large input decks.

mod_438 475 Eliminated an error message generated by the subroutine

that times the execution of other subroutines that results
from a processor that is so fast that it executes the
subroutine and returns before the clock is updated.

mod_439 485 Added the capability to include temperature transport delay

time mesh enthalpies as minor edit variables.

mod_440 488 Corrected several error messages that had in core write

errors the resulted in a fatal runtime error when
encountered.

mod_441 489 The pressurizer model was corrected so the vapor region

will reappear as soon as the liquid region flashes after
filling.

mod_442 497 The error message processing for some memory allocation

errors and input errors were revised to eliminate possible
errors in the error processing.

mod_443 495 An error was corrected in the enthalpy transport

deactivation option that resulted in enthalpy transport not
being deactivated even though requested.

mod_444 491 Revisions were made to the equations of state used to

initialize separated volumes containing noncondensible
gas, eliminating the reported error.

mod_447 490 Corrected an edit frequency problem when the requested

edit frequency is not an integer multiple of the maximum
time-step size.

mod_448 492 Corrected an edit frequency problem that occurs for long

duration transients (>20,000 sec.).

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Appendix C

Revision 10 C-56

Table C-3 (Cont'd)

Code Version/ Trouble
Modification Report
No. No. Description of Change

mod_449 493 The implicit pressurizer model was revised to correct a

situation where the wrong volume number was used for the
vessel wall boundary condition evaluation.

mod_450 498 An error correction resolved the problem that indicated

incorrect trip was provided even though none was provided
in the restart deck.

mod_451 499 An error that inadvertently cause printer plots to be active

even though not requested was fixed.

mod_452 501 Revisions were made to the code to eliminate warning

messages, e.g., unused variables and passing the wrong
type variable through the argument list, that were generated
when the warning message feature was turned on in Visual
Studio.

mod_453 496 A warning message from the generalized transport model

was revised to be more informative. The activation limit
was also changed so the message will be encountered less
frequently.

mod_454 500 Corrected minor edit input processing so it writes an

informative error message when 3-D kinetics minor edit
requests are made for none 3-D cases rather than
terminating with no message.

mod_458 504 Corrected an error in the iterative time-step control that

skipped updating volume properties when a time-step is
reset and resolved with a smaller time-step size.

mod_459 503 Corrected an output error of the variable (minor edit flag)

used as input to the super summer control block.

mod_462 506 Corrected an error message that identified the wrong

volume as being the cause of the error condition.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

 Appendix C

 C-57 Revision 10

Table C-3 (Cont'd)

Code Version/ Trouble
Modification Report
No. No. Description of Change

mod_463 507 Added logic to prevent using a negative pressure in the

evaluation of the Chexal-Lellouche drift flux correlation.
Prevents NaN from propagation through the matrix solution
for mass, energy, flow, and slip velocity.

mod_464 509 Improved the implementation of JVERTL=3 smoothing to
 510 prevent geometry inconsistencies that result in steady-state

not converging.

mod_465 512 Modified the free convection boiling curve so heat transfer

coefficients less than 5.0 are allowed.

mod_466 519 Corrected syntax errors that are encountered with the IBM

Fortran complier.

mod_467 533 Corrected a limitation in the pressurizer stratification

model where is was assumed that subnodes would only
have one inlet and one exit junction. Some models use
dummy junctions to model pressure tapes. Also added
approximate thermodynamic conditions use in minor edits
for inactive subnodes.

mod_468 527 Corrected input processing errors for the slip multiplier,
 529 SLPMUL, and junction inertia, INERTA, from a control

block.

mod_469 523 Corrected calculation of GPM* minor edit so it is available

at time zero for control blocks.

mod_470 528 Corrected restart so DLY blocks work correctly for restart

runs.

mod_471 522 Corrected an error in input processing that could result in

inadvertently setting IHQCOR > 0.

mod_472 532 Revised the explicit pressurizer solution so dp/dM and

dp/dU are calculated directly from known water properties
rather than using the HEM pressure search which can fail
to converge (causing a fatal error).

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Appendix C

Revision 10 C-58

Table C-3 (Cont'd)

Code Version/ Trouble
Modification Report
No. No. Description of Change

mod_473 534 The modification implemented a model enhancement as

noted in Table C-2, but it also defined the spray plus vapor
condensed on spray flow used in the Murphy turbulent heat
transfer model used by the implicit form of the pressurizer
model.

An incorrect time-step size multiplier on the spray junction
flow and the related condensation flow for the explicit
pressurizer model was removed.

mod_474 517 Added logic to convert minor edit variables in the minor

edit summary from British to SI units when the SI output
option is requested.

mod_475 521 Corrected errors in the logic for the volume and junction

input error processing to edit the correct trip numbers.

mod_476 536 Revised code used to define the flow in GPM (minor edit)

for fill junctions

mod_478 538 Added logic to trap input for generalized data tables and fill

tables that are too large for the RDATA array used to read
them.

mod_480 542 Corrected an error when recalculation conductor elevations

for the multinode pressurizer model.

mod_481 Added minor corrections for AIX compiler syntax and run-

time errors.

 540 Corrected a restart error associated with mod_456

(pressurizer stratification model) where the flow length was
moved from the static block to the dynamic block (tr_540)
because it can change during the transient for the
stratification model.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

 Appendix C

 C-59 Revision 10

 Table C-3 (Cont'd)

Code Version/ Trouble
Modification Report
No. No. Description of Change

 541 Corrected a restart error associated with mod_479

(accumulator model) where the gas internal energy was not
saved on the restart file. The wall and surface heat transfer
coefficient multipliers CWALL and CSURF were left in
the static block so they can be changed during generalized
restart while all other accumulator variables were moved to
a dynamic block.

MOD004.7.1 This code version was distributed as a replacement for

MOD004.7 so the default interregion heat transfer is the
same as for MOD004.6 and earlier versions. A new input
format will be required to use the new best-estimate
interregion heat transfer, thus requiring a conscious change
to the input by the user.

mod_482 548 A compiler-dependent syntax that resulted in a compilation

error when using the Intel Composer 13.1 compiler (release
used Ver. 11.1), was revised.

mod_483 544 Logic for flow regimes -1 and -6 (countercurrent flow

predicted but one phase is not available) was revised and
several related errors were corrected.

mod_484 545 The algorithm used to determine the space allocated for the

input card deck was revised for very small input decks with
only 3 data cards and no comment cards.

mod_485 550 The interfacial area was not initialized for options using a

constant heat transfer coefficient and a heat transfer
coefficient from a control system. The area initialization
was moved so it is defined properly for all heat transfer
options.

mod_486 553 Added logic needed to save the control system index in

ingeom and then added logic to use it in tkandc. Also
corrected polate error logic.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Appendix C

Revision 10 C-60

 Table C-3 (Cont'd)

Code Version/ Trouble
Modification Report
No. No. Description of Change

mod_487 551 The mixed stream density was used for the drive junction

rather than that for the drive junction. Flow sign terms
were also added to the momentum terms to deactivate the
jet pump mixing model when the drive flow reverses.

mod_488 554 Revised the logic for defining the heat transfer mode flag

index.

mod_489 539 Skipped the logic for redefining the volume mass for
 546 two-phase conditions when the volume is single
 509 phase. Fixed input edit and added new error checks.

Removed the zmorig and zvorig logic. Created a steady-
state warning message to signal a changed enthalpy.

mod_490 552 Corrected the error number and revised the descriptive

error information included in the error message.

mod_492 543 Revised the logic to read a user-specified heat transfer

coefficient defined on a control block.

mod_493 547 Revised logic to zero out the prop array for each volume.

Determined heat capacity from local quality for the local
conditions model.

mod_494 555 Revised the logic to allow return to power and
 556 eliminate very small time step.

mod_495 549 Revised logic for calculating the volume average
 558 flow. Also added error messages and percent area change

for conductor data actually being used.

mod_496 557 Removed extraneous input reflections from the restart

output. Also fixed free form input Error 225 to correctly
list unused cards.

mod_497 559 Corrected compatibility error on accumulator input.

Removed unused variables.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

 D-1 Revision 7

APPENDIX D

FORTRAN 95 CONVERSION AND TESTING SUMMARY

The first Fortran 95 release of RETRAN-3D was intended to be MOD004.4f95. The Fortran 95
conversion and testing processes for MOD004.4f95 are discussed herein. As part of the testing
for this version, two errors in the base MOD004.4 code were discovered. While the errors
existed in the base code, all test cases ran to completion. Very slight difference in calculated
results and time-step selection resulted in the errors causing the MOD004.4f95 to terminate for
several of the validation cases. The errors had been observed previously for MOD004.4, but
slight changes in time-step size or restarting the problem prior to the failure resulted in the
problem running to completion. As such, they were difficult to consistently reproduce.

The identified errors were reported as Trouble Reports 407 and 408. Modifications correcting
the errors were developed and tested for MOD004.4f95. Another modification that added
several commonly needed minor edit variables and an option to generate a plot data file was
developed. These modifications are discussed in Appendix C. They were added to
MOD004.4f95 using CSA’s code maintenance and development procedures to create
MOD004.5f95, which was released to the RETRAN user community.

The first complete Fortran 95 version of RETRAN-3D was MOD004.4f95. It is functionally
equivalent to its predecessor Fortran 66/77 code version MOD004.4. This Appendix discusses
the processes used to convert the source code and create the base Fortran 95 code version and the
implementation of the code modifications that both corrected errors and added code
enhancements comprising the migration from MOD004.3 to MOD004.4. It also summarizes the
verification and validation effort that demonstrates MOD004.4f95 is functionally equivalent to
MOD004.4 (Fortran 66/77 version).

RETRAN-3D MOD004.3 was released to the user community in July 2007. It is a mixture of
Fortran 66 and 77 code that uses a few Fortran 95 features. Source code for this version
provided the base for the Fortran 95 conversion effort.

D.1 Source Code

As released, MOD004.3 was comprised of three separate SLIB77 portable source code libraries
[1], one for the RETRAN thermal hydraulics, one for the environmental library and another for
the three-dimensional kinetics. To begin the conversion effort, the source code for each of the
three portable libraries was extracted and placed in separate directories. Minor changes were
then made so the source could be maintained using a version control program, rather than
SLIB77 whose use was often confusing and frustrating for new users.

The SLIB77 potable libraries contain *CALL [comdeck_name] directives that refer to common
blocks of code that are inserted by SLIB77 as the source is extracted for use by a compiler. The

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Appendix D

Revision 7 D-2

Fortran INCLUDE feature is similar in purpose to the *CALL, but can be inserted directly into
the source code; thus eliminating the need to use SLIB77 to create source code for use by the
compiler (SLIB77 has other uses). The source code was extracted using an option that left the
*CALL directive in the source rather than inserting the content of the comdeck (common code).
A script was written to replace the *CALL directives in the extracted source code with
equivalent INCLUDE directives (include “comdeck_name.h”). Each SLIB77 comdeck was also
extracted as a separate INCLUDE file with the name of the original comdeck and a “.h”
extension. Figure D.1-1 illustrates this process used to eliminate the need to use SLIB77. The
Fortran 77 source code was demonstrated to produce an executable that gave results identical to
an executable using the source created by SLIB77.

The MOD004.3 source code is now maintained using the QVCS version control software [2] and
is used for all current and future maintenance and development activities. Installation and testing
of the QVCS source code confirmed that the results for the 16 standard sample problems were
identical to those from the release form of MOD004.3.

D.2 Fortran 95 Conversion Process

The Fortran 95 conversion effort and ongoing maintenance and development were performed as
parallel activities. Code modifications were developed to resolve reported problems and to also
implement code enhancements. The conversion proceeded simultaneously, with both efforts
using the source controlled by QVCS.

The conversion effort was divided into four separate phases as described below.

• Phase 1 – Feasibility Study and Prototyping,
• Phase 2 – Conversion of the Base RETRAN-3D Code,
• Phase 3 – Conversion of the One-Dimensional Kinetics Option, and
• Phase 4 – Conversion of the Three-Dimensional Kinetics Option.

For the purpose of discussion, preliminary work done as Phase 1 will be treated as part of
Phase 2.

Phase 2 of the conversion effort started with the MOD004.3 source code for the RETRAN-3D
source and the environmental library. Many of the environment library subroutines were
removed because they are no longer used. For example, all subroutines associated with the FTB
dynamic memory allocation feature were removed since they were replaced by Fortran 95
supported features. All bit masking, shifting, and Calcomp plotting features were also removed.
Environmental library routines that were retained were included in the RETRAN-3D source code.

The plusFORT package of conversion programs developed by Polyhedron Software,[3] was used
in the RETRAN-3D code modernization effort because of its capabilities, particularly the SPAG
program, which was be used to convert the Fortran 77 source code to Fortran 95. The SPAG
conversion process

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Appendix D

 D-3 Revision 7

SLIB77

T ext Processing Script

RET RAN-3D
(F77)

Environmental
Library (F77)

3-D Kinetics
(F77)

Source

Include

Source

Include

Source

Include

Fortran 95
Compiler/Linker

RET RAN-3D
MOD004.3
Executable

RET RAN-3D
Program
Library

Environmental
Program
Library

3-D Kinetics
Program
Library

Version Control
MOD004.3 Source

MOD004.3 SLIB77 Program Libraries

Figure D.1-1. Base Fortran 77 Source Code Preparation

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Appendix D

Revision 7 D-4

• converted the fixed format Fortran 77 source code to free format source – up to 132
characters per line,

• converted the upper case coding to lower case, with the exception of text strings in
FORMAT statements,

• converted Fortran 77 comments to Fortran 95 comments,
• converted Fortran 77 continuations to Fortran 95 continuations,
• indented the bodies of DO-loops and IF-blocks,
• replaced CONTINUE statements terminating a single DO loop with an END DO

statement,
• restructured “spaghetti” code by replacing obsolete constructs with structured constructs,

relocating or replicating code as necessary,
• eliminated most labels,
• revised type specifications to Fortran 95 syntax,
• inserted IMPLICIT NONE statements and generated explicit type statements for all

variables and arrays used in a subroutine or function,
• converted common blocks to MODULES,
• eliminated obsolete constructs (assigned go to, computed go to, etc.), and
• eliminated unused code and variables.

Following generation of the translated source code by the SPAG program, additional revision(s)
were made using script files and/or manual revisions. SPAG and the script files automated much
of the conversion, which was more efficient than doing the work manually and also less prone to
introducing errors.

During the Phase 2 conversion effort dummy subroutines were used to satisfy the external
references for the one- kinetics and three-dimensional kinetics options. This disabled these
options for the Phase 2 effort.

Much of the modification required to create the dynamically allocated data modules was
automated using existing variable definitions found in subroutine RMAIN as comments; data
type declarations found in the COMDECKS or INCLUDE files and a subroutine template. Some
manual revisions were required to complete the data modules. Output editing and restart features
were implemented using new methods, requiring a complete rewrite of the affected code.
Additional details of the conversion effort are found in the code modernization design report.[4]

Testing for the Phase 2 conversion consisted of running the twelve of the sixteen standard
sample problems, those that do not use the one-dimensional or three-dimensional kinetics
options. Results for these sample problems were compared with those obtained using
MOD004.3. They were found to be essentially identical.

Conversion of the one- and three-dimensional kinetics options was performed as Phase 3 and 4
tasks, respectively. The conversion efforts for these tasks were similar to those discussed for the
RETRAN-3D source code as shown in Figure D.2-1. Phase 3 was begun following the
successful testing for the Phase 2. Upon its completion, the TTQX1 sample problem and several
other one-dimensional kinetics test cases were run on the converted code and MOD004.3. Again,
the results were essentially identical.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Appendix D

 D-5 Revision 7

RET RAN-3D Environmental
Library 3-D Kinetics

Source

Include

Source

Include

Source

Include

SPAG Source T ranslat ion Program

T ext Processing Script
(Some Manual Revisions)

RMAIN

T ext Processing
Script

Init ial Data
Modules

RET RAN-3D
Source

3-D Kinetics
Source

1-D Kinetics
Source

Manual Revisions

Dummy 1-D
and 3-D
Kinetics

Fortran 95 Source

Fortran 95
Compiler/Linker

RET RAN-3D
Executable

RET RAN-3D
Executable

Phase 2
T esting

Manual Revisions

Fortran 95 Source
with 1-D Kinetics

Fortran 95 Source
with 3-D Kinetics

MOD004.3f95

Fortran 95
Compiler/Linker

Fortran 95
Compiler/Linker

RET RAN-3D
MOD004.3f95

Executable
Phase 3
T esting

Phase 4
T esting

Module
T emplate

MOD004.3 Source Code

Figure D.2-1. Fortran 95 Source Code Conversion

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Appendix D

Revision 7 D-6

Three-dimensional kinetics in MOD004.3 is comprised of two different solution options, the
original ARROTTA option and the Purdue Numerical Method (PNM). A survey of
RETRAN-3D users found that all who were using the three-dimensional kinetics option were
using the PNM option. Consequently, it was the only option included in the Phase 4 conversion
effort. The ARROTTA option was not converted at this time and is not available in the Fortran
95 code version. The Phase 4 conversion was performed following successful testing of the
Phase 3 conversion. Upon completion of the Phase 4 conversion, the three three-dimensional
kinetics sample problems and several other three-dimensional kinetics test cases were run on the
converted code and MOD004.3. Again the results from the two code versions were essentially
identical.

During the Phase 2, 3 and 4 conversion efforts, parallel efforts were ongoing to develop error
corrections and code enhancements for MOD004.3. These modifications were prepared, tested,
and validated in accordance with QA procedures. Each modification was then converted to
Fortran 95 using SPAG and/or manually and added to the Fortran 95 code as illustrated in
Figure D.2-2. Testing and validation for the Fortran 95 path was performed using the same QA
procedures used for the Fortran 77 code path. The results for the validation test cases for the
Fortran 95 and 77 code versions were then compared. The results were essentially identical.
This conversion/testing process was repeated for each modification.

Upon completion of the conversion and testing for each modification, new code versions were
created for both Fortran versions. The Fortran 77 code version was designated as MOD004.4
and the Fortran 95 code was designated as MOD004.4f95. The Fortran 95 code is functionally
equivalent to the Fortran 77 code, only the implementation language has changed.

D.3 MOD004.4f95 Validation Process and Results

The Fortran 77 version of MOD004.4 satisfies all QA requirements for release to the user
community; however, its intended purpose was to provide a means of validating the
MOD004.4f95 code version. Figure D.3-1 illustrates the integral testing for the new code
versions using a suite of test cases comprised of the 16 standard sample problems, 13 separate
effects cases and 35 additional systems analysis cases, for a total of 64 validation cases. Many of
the separate effects and system effects validation test cases were for analyses included in the
Applications Manual – Volume 4. Others came from system models provided with error reports
or models being used by RETRAN-3D users.

Each test case was run on both MOD004.4 and MOD004.4f95 and auxiliary files containing the
minor edit variable histories were created. The minor edit variables included for the 16 standard
sample problems were selected to represent the important parameters for the particular
simulation. The minor edits included in the decks for the other cases were used as is.

Data Analysis Tools
The auxiliary files were then compared using the COMPARE2 program and an Excel autoplot
macro. The MOD004.4 results are the standard or baseline data and the MOD004.4f95 results
are the test data. The COMPARE2 program identifies when individual time point values in the
test results (MOD004.4f95) differ from the standard results (MOD004.4) by a specified tolerance
(0.001 or 0.1%). The number of differences reported provides an indication of whether or not

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Appendix D

 D-7 Revision 7

RETRAN-3D

F95 Conversion
(See Figure D.2-1)

Create Modifications
 - Error Corrections
 - Enhancements

Add Individual
Modifications Add Modifications

Convert
Modifications

to
F95

3D Kinetics

Environmental
Library

Test Individual
Modifications

Compare
Results

Test Individual
Modifications

MOD004.3 Source Code

MOD004.4f95 MOD004.4

Figure D.2-2. Creating the MOD004.4f95 Code Version

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Appendix D

Revision 7 D-8

Verification and Validation Sample Cases
 - 16 Standard Sample Problems
 - 13 Separate Effects
 - 35 System Effects

Run MOD004.4f95 Run MOD004.4

Automated
Comparison
COMPARE2

Graphical
Comparison

Excel Autoplot

Summary
Report

Repeat for all Cases

Auxiliary File
Minor Edit
Histories

Run Individual Cases

Auxiliary File
Minor Edit
Histories

Figure D.3-1 Code Verification and Validation

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Appendix D

 D-9 Revision 7

the results are equivalent (0 difference indicates they are essentially equal). When differences
are reported, the two results may be equivalent for practical purposes even though they are not
numerically identical. To help make this determination, the Excel auto plot macro is used to
generate overlay plots for each minor edit. This allows visual qualitative evaluation of the
difference between the results for each minor edit variable.

Another custom Excel macro was used to analyze the difference between the two curves on each
plot. It quantitatively evaluates the differences between the standard and test results on a point by
point basis. If the normalized differences are less than a tolerance of 0.001, they are considered
to be equivalent. The macro creates a new worksheet containing plots of the differences and the
upper and lower tolerance bands. It and also computes the standard deviation of the test case
results from those for the standard results. This is done for each variable. The standard
deviations (SD) are then used to determine if the results are equivalent even though they are out
or tolerance.

The computed SDs are based on the normalized standard and test data for each minor edit
variable. Two different SDs are computed; the first only uses data points that are outside the
tolerance limits or out of tolerance (OT). As such, the points within tolerance do not reduce the
magnitude of the out of tolerance OT SDs. The second form of the SD is the normal form that
uses all data points. If the two different SDs have significantly values, this indicates that the
only part of the solution is out of tolerance. On the other hand, when both are similar in
magnitude, this indicates that there is no segment (or region) that is significantly out of tolerance.

The maximum SDs and OT SDs will be for the minor edit variable with the largest value (for any
given test case). The average SDs and OT SDs will be the average of the SD and OT SD for all
minor edits for the given test case. When the maximum values differ significantly from the
average values, this indicates that one or a few of the minor edits variables had differences that
contributed to the larger SDs.

A maximum SD, below which results can be accepted without further review is needed. A
review of the SDs indicated that 0.1 would be a reasonable cutoff. To justify this value,
maximum SDs in the vicinity of 0.1 were evaluated by examining the quantitative and qualitative
results for two validation cases where the maximum SD is near but larger than the tentative
cutoff. The two cases are the lrhr standard sample problem and the Cofrentes MSIV Closure
case.

The maximum SD for the lrhr standard sample problem validation case is for the Junction 10
flow and is 0.3399. The corresponding OT SD is 0.3607. Since both are about equal in
magnitude, differences are expected for most of the duration of the simulation. This is
confirmed by the results shown in Figure D.3-2 where there is a slight shift in time. For practical
purposes, the results are equivalent. In spite of these differences, the MOD004.4f95 predicted
flow is very similar to the MOD004.4 results. Given that the SD is three times the cutoff value,
this indicates that a value of 0.1 is acceptable.

The next largest SD for the Lrhr case is 0.0273 and the corresponding OT SD is 0.0578. They
are for the void fraction in Volume 15 as illustrated by Figure D.3-3, where there is no
significant difference between the two curves shown. The SD for these results is about 1/3 of the
cutoff limit.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Appendix D

Revision 7 D-10

REDUCED INVENTORY SYSTEM MODEL - RETRAN-3D SAMPLE PROBLEM
26/08/09 16:29:59 RETRAN-3D/MOD004.4 8/05/09 EPRI

-7000

-6000

-5000

-4000

-3000

-2000

-1000

0

1000

2000

0 5 10 15 20 25 30

SYSTEM ELAPSED TIME (SEC)

 F

LO
W

 (
LB

/S
E

C
)

MOD4.4: JUN 10
MOD4.4f95:JUN 10

Figure D.3-2. Example SD of 0.3399 and OT SD of 0.3607

REDUCED INVENTORY SYSTEM MODEL - RETRAN-3D SAMPLE PROBLEM
26/08/09 16:29:59 RETRAN-3D/MOD004.4 8/05/09 EPRI

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 5 10 15 20 25 30

SYSTEM ELAPSED TIME (SEC)

V
O

ID
 F

R
A

C
TN

MOD4.4: VOL 15
MOD4.4f95:VOL 15

Figure D.3-3. Example SD of 0.0273 and OT SD of 0.0578

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Appendix D

 D-11 Revision 7

The maximum SD for the Cofrentes MSIV ATWS case is for the flow through Junction 460 and
is 0.5522. The corresponding OT SD is 0.9369. The results used to obtain these SDs are shown
in Figure D.3-4. The fact that the SD is smaller than the OT SD indicates that the observed
differences occur over a limited region of time and not for the full duration of the simulation.
For practical purposes, the results are comparable, even though the SD is five times larger than
the tentative cutoff of 0.1.

Figure D.3-5 illustrates the minor edit variable with the next largest SD for the MSIV closure
case. The SD is 0.0033 and the corresponding OT SD is 0.0118. As the figure illustrates, there
is no perceptible difference between the two curves.

Based on the results shown for the Lrhr and Cofrentes MSIV closure validation cases, a cutoff of
0.1 appears to be acceptable. A detailed evaluation of the comparisons is not necessary for cases
with a maximum SD less than or equal to 0.1.

D.3.1 Validation Analyses

Table D.3-1 lists the statistics for the 64 test cases used to validate RETRAN-3D MOD004.4f95.
It includes the maximum and average values are for the OT SD and SD. This provides a better
measure of how much the results differ from the standard results. Visual comparisons of the
overlay plots for the various test cases have shown that SDs less than 0.1 indicate that for
practical purposes the standard and test case results are equivalent. Each MOD004.4f95
validation case with a maximum SD greater than 0.1, is identified below. For these cases, the
maximum SDs in Table D.3-1 are bold.

D.3.2 Lrhr Sample Problem

Given the results shown in Figures D.3-2 and D.3-3, the associated discussion and the fact that
the average SD for the Lrhr validation case is 0.0419, the MOD004.5f95 results are equivalent to
MOD004.4 and it is an acceptable replacement for MOD004.3.

D.3.3 Cofrentes MSIV Closure

Given the results shown in Figures D.3-4 and D.3.5, the associated discussion and the fact that
the average SD for the Cofrentes MSIV closure is 0.0441, the MOD004.5f95 results are
equivalent to MOD004.4 and it is an acceptable replacement for MOD004.3.

D.3.4 LOFT SB1

This case has several flows in which the SD is above 0.1. The highest SD of 1763.3 occurs in
the flow through Junction 6. The flow rate through Junction 4 also has a high SD of 11.0392.
Figure D.3-6 illustrates the oscillating natural circulation flow for Junction 6 and Figure D.3-7

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Appendix D

Revision 7 D-12

CIERRE DE MSIV'S SLIP = 1 PRE55
01/10/09 13:21:01 RETRAN-3D/MOD004.4 8/05/09 EPRI

-60

-50

-40

-30

-20

-10

0

10

0 5 10 15

SYSTEM ELAPSED TIME (SEC)

 F

LO
W

 (
LB

/S
E

C
) MOD4.4: JUN 460

MOD4.4f95:JUN 460

Figure D.3-4. Example SD of 0.5522 and OT SD of 0.9369

CIERRE DE MSIV'S SLIP = 1 PRE55
01/10/09 13:21:01 RETRAN-3D/MOD004.4 8/05/09 EPRI

0

500

1000

1500

2000

2500

3000

3500

0 5 10 15

SYSTEM ELAPSED TIME (SEC)

 F

LO
W

 (
LB

/S
EC

)

MOD4.4: JUN 400
MOD4.4f95:JUN 400

Figure D.3-5. Example SD of 0.0033 and OT SD of 0.0118

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Appendix D

 D-13 Revision 7

Table D.3-1

Statistics for RETRAN-3D MOD004.4f95 Test Cases

 Average Maximum
OT OT

Problem
Name

Standard
Deviation

Standard
Deviation

Standard
Deviation

Standard
Deviation

Standard
Sample

Problems
sp1 0.0293 0.0168 0.1292 0.0775

Accum 0.0004 0.0001 0.0004 0.0002
sp5 0 0 0 0
Tlta 0 0 0 0

Ttwob 0.0067 0.0026 0.0172 0.0117
Ucrw 0.0008 0 0.0008 0.0001
fl2d 0 0 0 0
Turb 0 0 0 0
Atws 0.0030 0 0.0030 0
Pipe 0 0 0 0
Wovr 0.0010 0.0007 0.0016 0.0013
Lrhr 0.0619 0.0419 0.3607 0.3399
ttqx1 0.0058 0.0023 0.0154 0.0110
Pwr 0.0029 0 0.0040 0.0002
Slb 0.0007 0.0004 0.0012 0.0012
Bwr 0.0027 0 0.0075 0.0001

Separate
Effects
Tests

Conduction
Anal. 0 0 0 0
CSNI 0.0091 0 .0091 0.0001

Decay Heat 0 0 0 0
Fauske Crit.

Flow 0 0 0 0
Ferrell
McGee 0 0 0 0

LOFT L1-3
Accum. 0 0 0 0

NCG Press.
Drop 0 0 0 0

ORNL
THTF 0.0023 0.0008 0.0054 0.0021

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Appendix D

Revision 7 D-14

Table D.3-1 (Cont'd)

Average Maximum

Problem
Name

OT
Standard
Deviation

Standard
Deviation

OT
Standard
Deviation

Standard
Deviation

Purdue
Thrmsyphn 0 0 0 0
Round tube 0 0 0 0

Schrock
Grossman 0 0 0 0
System

Analysis
Tests

Almazar TT 0.0104 0.0002 0.0538 0.0050
ANO-2 TT 0.0016 0 0.0035 0

Hot Channel
Fuel Model 0.0223 0.0004 0.4713 0.0178

Calvert
Cliffs SLB 0.0046 0 0.0096 0.0013
Calloway

BE 0 0 0 0
CE SLB 0.0037 0 0.0121 0.0001

Cofrentes
FW Failure

0.0053 0.0007 0.0335 0.0146

Cofrentes
HPCS inf. 0 0 0 0
Cofrentes

MSIV Close. 0.0889 0.0441 0.9369 0.5522
Cofrentes
MSIVC
ATWS 0.0066 0.0009 0.0292 0.0041

Cofrentes
3D Kin
Scram 0.0131 0.0078 0.0388 0.0236

Comanche
Peak LR 0.0067 0.0012 0.0323 0.0143

SG
Superheat 0.0173 0.0035 0.3412 0.0750
INER Hot

Bundle 0 0 0 0
KOPEC 0.0012 0 0.0012 0.0011

KORI LLR 0.0145 0.0006 0.1428 0.0083
KORI

Locked Rot 0 0 0 0

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Appendix D

 D-15 Revision 7

Table D.3-1 (Cont'd)

Average Maximum

Problem
Name

OT
Standard
Deviation

Standard
Deviation

OT
Standard
Deviation

Standard
Deviation

KORI LOP 0.0141 0.0007 0.1522 0.0101
LOFT SB1 51.0883 48.0799 1787.8943 1763.3260
LOFT SB2 0.0051 0.0037 0.0499 0.0453

Omega
Blowdown 0.1105 0.1036 1.1495 1.0797

Oyster
Creek FWC

Malfcn. 0.0090 0.0006 0.0560 0.0082
PB Core
Stability 0 0 0 0

Peach
Bottom TT 0.0025 0 0.0045 0.0006

PECO PBTT 0.0042 0.0008 0.0194 0.0094
PI SGTR 0.0088 0.0015 0.1535 0.0855

River Bend
2 RCP Trip 0.0041 0.0001 0.0088 0.0005
SPERT 81 0.0009 0.0006 0.0020 0.0017
St. Lucie
MSLB 0.0571 0.0100 06076 0.2086

Susquehanna
FWCF 0.0557 0.0025 0.4341 0.0270

Susquehanna
FWHF 0.0036 0 0.0073 0.0002

TMI LOFW 0.0027 0 0.0051 0.0008
Trojan LOF

ATWS 0.0026 0 0.0066 0.0001
WCNOC

Fire
Scenario 3 0.1615 0.0473 6.8289 4.4345

Yonggwang
1 TT 0.0025 0 0.0042 0

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Appendix D

Revision 7 D-16

LOFT SBLOCA EXPERIMENT LP-SB-1 - HOT LEG BREAK (DYNAMIC SLIP)
01/10/09 14:01:25 RETRAN-3D/MOD004.4 8/05/09 EPRI

-150

-100

-50

0

50

100

150

200

250

0 200 400 600 800 1000 1200 1400 1600

SYSTEM ELAPSED TIME (SEC)

 F

LO
W

 (
LB

/S
E

C
)

MOD4.4: JUN 6
MOD4.4f95:JUN 6

Figure D.3-6. Junction 6 Flow

LOFT SBLOCA EXPERIMENT LP-SB-1 - HOT LEG BREAK (DYNAMIC SLIP)
01/10/09 14:01:25 RETRAN-3D/MOD004.4 8/05/09 EPRI

-150

-100

-50

0

50

100

150

0 200 400 600 800 1000 1200 1400 1600

SYSTEM ELAPSED TIME (SEC)

 F

LO
W

 (
LB

/S
E

C
)

MOD4.4: JUN 4
MOD4.4f95:JUN 4

Figure D.3-7. Flow through Junction 4

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Appendix D

 D-17 Revision 7

shows the oscillating behavior for Junction 4. The high frequency oscillations are typical for
natural circulation flows. As seen in the figures, the results are very similar even though the
oscillations are slightly out of phase and the magnitudes differ slightly. The out of phase
oscillations cause the SD to be extremely large, even though the overall behavior is similar.

Figure D.3-8 shows the behavior of the temperature in Volume 10. The two predictions are
nearly indistinguishable, which agrees with the SD of 1.0e-5. For practical purposes, the results
are equivalent and the MOD004.5f95 results are equivalent to MOD004.4 and it is an acceptable
replacement for MOD004.3.

LOFT SBLOCA EXPERIMENT LP-SB-1 - HOT LEG BREAK (DYNAMIC SLIP)
01/10/09 14:01:25 RETRAN-3D/MOD004.4 8/05/09 EPRI

500

510

520

530

540

550

560

570

580

590

0 200 400 600 800 1000 1200 1400 1600

SYSTEM ELAPSED TIME (SEC)

 A
V

G
. T

E
M

P
.

(D

E
G

 F
)

MOD4.4: VOL 10
MOD4.4f95:VOL 10

Figure D.3-8. Volume 10 Temperature

D.3.5 Omega Blowdown

The only minor edit variable that has an SD greater than 0.1 is the flow through Junction 1,
which is 1.0797 and the corresponding OT SD is 1.1497. Figure D.3-9 shows high frequency
oscillations as the flow approaches zero. As noted previously, when such oscillations occur and
are even slightly out of phase, the SD becomes large because the individual data point errors are
large. Figure D.3-10 shows the behavior of the pressure in Volume 34 where the SD is 0.0005.
For practical purposes the results are equivalent and the MOD004.5f95 results are equivalent to
MOD004.4 and it is an acceptable replacement for MOD004.3.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Appendix D

Revision 7 D-18

OMEGA Blowdown Test Nr. 9
09/09/09 10:04:08 RETRAN-3D/MOD004.4 8/05/09 EPRI

-10

-5

0

5

10

15

20

25

30

0 5 10 15 20 25 30 35 40

SYSTEM ELAPSED TIME (SEC)

 F

LO
W

 (
LB

/S
E

C
)

MOD4.4: JUN 1
MOD4.4f95:JUN 1

Figure D.3-9. Junction 1 Flow

OMEGA Blowdown Test Nr. 9
09/09/09 10:04:08 RETRAN-3D/MOD004.4 8/05/09 EPRI

0

500

1000

1500

2000

2500

0 5 10 15 20 25 30 35 40

SYSTEM ELAPSED TIME (SEC)

A
V

G
. P

R
E

S
S

.

 (P
S

IA
)

MOD4.4: VOL 34
MOD4.4f95:VOL 34

Figure D.3-10. Volume 34 Pressure

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Appendix D

 D-19 Revision 7

D.3.6 St. Lucie MSLB

For this case, the heat fluxes through a few of the conductors have SDs above 0.1. The highest
occurs in Conductor 407 with a value of 0.2086. Figure D.3-11 shows that most of these
differences occur after 65 seconds when the steam generator (SG) heat transfer should be due to
condensation given the wall temperature and secondary-side volume conditions. Upon
examination of the oscillations, it is observed that both MOD004.4 and MOD004.4f95 results
oscillate, more so for MOD004.4. A detailed review of the results found that the oscillations
occur when the heat transfer modes switch from condensation (larger negative heat flux) to
forced convection. The conditions in both are such that they should remain in condensation heat
transfer.

Trouble Report TR_408 identified an error in Mode 22 condensation heat transfer that was
corrected by modification mod_354, which was included in the MOD004.5f95 code version.
Figure D.3-12 shows the results of Figure D.3-11 with the MOD004.5f95 results included. The
MOD004.5f95 results show that the heat transfer correctly remains in the higher negative heat
flux condensation mode (22) rather than switching between forced convection and condensation.

The average SD for all the MSLB results is 0.0100. Give the MOD004.4f95 statistics, which are
quite good, the results are equivalent to MOD004.4 and it is an acceptable replacement for
MOD004.3.

Main Steam Line Break
16/10/09 14:22:05 RETRAN-3D/MOD004.3 7/09/07 EPRI

-9735.97

264.03

10264.03

20264.03

30264.03

40264.03

50264.03

0 10 20 30 40 50 60 70 80

SYSTEM ELAPSED TIME (SEC)

R
 H

EA
T

FL
U

X

 B
/H

R
-F

2

MOD4.4:COND 407
MOD4.4f95:COND 407

Figure D.3-11. SG Wall Heat Flux

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Appendix D

Revision 7 D-20

Main Steam Line Break
16/10/09 14:22:05 RETRAN-3D/MOD004.3 7/09/07 EPRI

-9735.97

264.03

10264.03

20264.03

30264.03

40264.03

50264.03

0 10 20 30 40 50 60 70 80

SYSTEM ELAPSED TIME (SEC)

R
 H

EA
T

FL
U

X

 B
/H

R
-F

2

MOD4.4:COND 407
MOD4.4f95:COND 407
MOD4.5f95:COND 407

Figure D.3-12. Improved SG Wall Heat Flux

D.3.7 WCNOC Fire Scenario 3

Most all of the SDs in this case are very small except for the flow through Junction 363. It has a
SD of 4.4345. If scaled to show the initial flow, the differences are not discernable.
Figure D.3-13 has been scaled to show the differences, which are quite small and occur as the
flow approaches zero, near the end of the transient when the two solutions become out of phase.
These differences are negligible for practical purposes. The average SD for all minor edit
variables is two orders of magnitude smaller than the maximum value, indicating that the results
for the two code versions are equivalent for this simulation. As such, MOD004.4f95 is an
acceptable replacement for MOD004.3.

D.4 Documentation

The documentation included with the RETRAN-3D MOD004.4f95 (and subsequent)
transmittal(s) was prepared in accordance with QA procedures. Revisions to Volume 1 – Theory
and Numerics, Volume 3 – User’s Manual and Volume 4 – Assessment Manual were made to
correct errors and add discussion for new features or results. Volume 2 – Programmer’s Manual
was rewritten to describe the code’s implementation using Fortran 95 and to include new
maintenance and installation instructions.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Appendix D

 D-21 Revision 7

Wolf Creek - Scenario 3
02/10/09 09:25:32 RETRAN-3D/MOD004.4 8/05/09 EPRI

-50

-40

-30

-20

-10

0

10

20

30

40

50

0 500 1000 1500 2000 2500 3000 3500 4000

 SYSTEM ELAPSED TIME (SEC)

 F

LO
W

 (
LB

/S
E

C
)

MOD4.4: JUN 363
MOD4.4f95:JUN 363

Figure D.3-13. Junction 363 Flow

The documents are released as Revisions 7.0. They are based on the MS Word master
documents that were converted from the Word Perfect master documents previously used. The
documents were converted by Zandar Corporation using their Tag Write conversions
software.[5]

Products of the conversion effort were the converted MS Word documents and log files that
recorded changes and identified possible problem areas. Both the logs and converted documents
were reviewed page by page to ensure that the new master documents are accurate
representations of the old master documents. Manual corrections were made as needed for
accuracy and editorial purposes.

D.5 References

1. Paulsen, M. P., et al., "RETRAN-3D – A Program for Transient Thermal-Hydraulic

Analysis of Complex Fluid Flow Systems", Volume 2 – Programmer’s Manual, EPRI
NP-7450(A), Revision 6.3, July 2007.

2. Quma Version Control System – Users Manual, Quma Software, Inc., 2005,

http://www.qumasoft.com.

3. plusFORT Reference Manual, Revision E, Polyhedron Software Limited, 2002,

http://www.polyhedron.com.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Appendix D

Revision 7 D-22

4. Software Design Document for RETRAN-3D Code Modernization, RETRAN User
Group, CSA, Inc., RVUG-R3D-SDD-004, Revision 0, September 2007.

5. TagWrite, Zandar Corporation, http://www.tagwrite.com.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

 E-1 Revision 8

APPENDIX E

THE get_R3D_plot_vars UTILITY PROGRAM

RETRAN-3D will optionally create a data file that contains solution results for a predetermined
set of RETRAN-3D variables (see Programmer’s Manual - Volume 2 – Sections IV.2-8 and
IV.2-11). This data can then be used by other applications to create X-Y plots or other graphical
representations of problem solutions. A utility program, get_R3D_plot_vars has been written to
allow data for selected plot variables (minor edit variables) to be extracted from the plot file and
written to a new file according to a user-defined format.

E.1 RETRAN-3D Plot File

The plot file is similar to the auxiliary file (with header) in that it contains problem-specific
documentation of the run date and time, problem name, and code version. It also contains the
minor edit descriptions and units that can be used for default plot labels and minor edit request
flag and region number pairs that can be used to locate the data for a given minor edit.
Following the header information, separate records are written for each time point for which a
minor edit is written. The record contains the values for each plot variable.

A subset of all minor edit variables comprise the plot variables included in the plot file. They are
identified in the User’s Manual, Volume 3, Section IV-4.0, as the italicized minor edit variables.
Plot variables for all valid regions for the current problem, e.g., volumes, junctions, etc. are
included in the plot file. These minor edit variables are supplemented by user-specified minor
edit pairs that are unique, i.e., if a requested minor edit is in the default or fixed list of minor
edits, it is not duplicated in the plot file; however, if it is not in the predefined list, it is added, but
only for the given region. Since the plot file can be very large, it contains single precision data.

The structure and content of the RETRAN-3D plot file is discussed in the Programmer’s Manual
- Volume 2 - Section IV-2.8.

E.2 get_R3D_plot_vars Plot Data Extraction Utility

A utility program, get_R3D_plot_vars, has been written to allow information to be retrieved
from a RETRAN-3D plot file. This utility reads a R3D_PLOT file and extracts time-dependent
data for a list of plot variables. The data is written to file PLOT_VAR according to a user-
defined format (Fortran). An option is available to create a PLOT_VAR file with the header
information similar to the RETRAN-3D auxiliary file (TAPE60). This allows
get_R3D_plot_vars to be used to create an auxiliary file that can be used in the same manner as
auxiliary files created directly by RETRAN-3D. An example is to use the PLOT_VAR file to
generate EXCEL plots using existing applications or procedures that are based on using an

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Appendix E

Revision 8 E-2

auxiliary file to provide the data to be plotted. Input options also allow the PLOT_VAR file to
be created as either an ASCII or binary file (ASCII will be most common).

For a description of the header information that may be included in the PLOT_VAR file, refer to
Section IV.4.1 of the User’s Manual – Volume 3.

The get_R3D_plot_vars program also provides a template that can be used in other applications
for extracting plot file data.

E.3 How to Use get_R3D_plot_vars

The get_R3D_plot_vars utility program is written in Fortran 90 and can be installed using a
Fortran 90 compiler. The names for the various compilers vary from platform to platform and
compiler vendor. Modules kind_specs and read_R3D_plot_file, and program
get_R3D_plot_vars reside in the get_R3D_plot_vars utility subdirectory of the RETRAN-3D
source and will be found in files named kind_specs.f90, m_read_R3D_plot_file.f90, and
get_R3D_plot_vars.f90. They must be copied into a directory where the program
get_R3D_plot_vars will be installed.

In order to satisfy module dependencies, file m_kind_specs.f90 should be compiled first, file
m_read_R3D_plot_file.f90 second, and finally get_R3D_plot_vars.f90. An example compile
statement follows

f90 -o get_R3D_plot_vars.x m_kind_specs.f90 m_read_R3D_plot_file.f90
get_R3D_plot_vars.f90 #no wrap

It would create an executable file named get_R3D_plot_vars.x.

E.4 Input Requirements

The get_R3D_plot_vars utility program requires two input files, the RETRAN-3D plot file
which must be named R3D_PLOT. The second input file VAR_LIST contains a list of plot
variables to be extracted from the R3D_PLOT file. Results for each minor edit variable will be
extracted and written to a new file named PLOT_VARS. All time points in the R3D_PLOT file
will be included in the PLOT_VARS output file.

The VAR_LIST file contains the three record types.

Format Variable Description

3i4 num_vars number of plot variables to be extracted from the

R3D_PLOT file and written to file PLOT_VARS
 plt_type plot file type (R3D_PLOT)

= 1 - ASCII
= 2 - binary

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Appendix E

 E-3 Revision 8

Format Variable Description

 plt_ihdr format and header information for file PLOT_VARS
 = 0 - ASCII file with no header
 = 1 - ASCII file with header
 = 2 - Binary file with no header
 = 3 - Binary file with header

 a80 fmt Fortran format used to write the plot variable values to file
VAR_LIST. For example, a format string of
‘(1p,10e13.5)’ will give an output file with a maximum of
10 13-character data items in each record. Multiple records
would be required and if num_vars is greater than 10, with
the concluding record containing mod(num_vars,10) data
items. Note: Longer records (50 to 100 data items) are
more efficient if a large number of variables are being
written.

15(a4,i5,1x) var_flg plot variable request pairs (the variable flag must be upper

case)
 var_reg region number
 (num_vars pairs must be provided - up to 15 pairs can be

specified in one record - multiple records may be required)

File PLOT_VARS will contain the plot variables in the order specified in file VAR_LIST. One
record will be written for each record (time) in the R3D_PLOT file.

The plot file, R3D_PLOT, can be either binary or ASCII. Binary files are approximately one-
third the size of the equivalent ASCII file. The file type is specified in the RETRAN.cfg file
discussed in the RETRAN-3D Programmer's Manual - Volume 2 - Section IV.2-11.

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

Appendix E

Revision 8 E-4

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

PROPRIETARY INFORMATION - WITHHOLD UNDER 10 CFR 2.390

__

__

	Bookshelf
	Abstract
	Acknowledgment
	Contents
	I. Introduction
	II. Programming Practices
	1.0 Programming Language
	1.1 Programming Guidelines
	1.2 Source Code Maintenance
	1.3 Obsolete Code Constructs

	2.0 Dynamic Memory Allocation
	2.1 Module Use and Requirements
	2.2 Segmented Arrays

	3.0 RESTART File
	3.1 File Content
	3.2 File Use

	4.0 MINOR EDIT VARIABLES
	4.1 Creating a List of Possible Minor Edit Variables
	4.2 Checking for Valid Minor Edit Variable Flags
	4.3 Retrieving the Value of a Minor Edit Variables

	5.0 MAJOR EDITS
	6.0 CODE DOCUMENTATION
	7.0 ERROR MESSAGE HANDLING
	7.1 Input Processing Errors
	7.2 Memory Allocation Errors
	7.3 Transient Solution Errors

	III. RETRAN Program Flow
	1.0 Initial Runs
	2.0 Restart Runs
	3.0 REEDIT RUNS

	IV. RETRAN Input/Output
	1.0 Unit Description
	2.0 Data File Description and Use
	2.1 Restart Data File
	2.2 One-Dimensional Space-Time Kinetics Data File
	2.3 Three-Dimensional Space-Time Kinetics Data Files
	2.4 Optional Output Data Files
	2.5 Temporary Files
	2.6 Input Data File
	2.7 Output Print File
	2.8 Plot Data File
	2.9 Remark Log
	2.10 Error Log
	2.11 RETRAN-3D Configuration File

	V. inp Free Form Input
	1.0 USER ASPECTS OF inp PACKAGE
	1.1 Data Deck Organization
	1.2 Title Card
	1.3 Comment Cards
	1.4 Data Cards

	2.0 PROGRAMMING USE OF THE inp PACKAGE
	2.1 call inp (xl1, nl1, title*, ncase*, ndata*, isw*)
	2.2 call inp2 (xl1, xl2, l3)
	2.3 call inp4 (ic1, ±ic2, min, max, nj, j*, ic3, ntimes, newj, xl1, xl2, l5)
	2.4 call inp5 (ic1, ±ic2, ic3, ±n1, ±nmin, ±nmax, ±nstore, ntimes, newj,j*, xl1, xl2, l5, xl6, nl6)
	2.5 call inp6 (ic1, ic2, n1, icard, item, xl1)
	2.6 call inp7 (icard, item)
	2.7 call link (ic, ix, n3, n4, xl1)
	2.8 call moder (xl1, l3, n3, n4, n5, n6)
	2.9 function inp8 (nprint, xl1)
	2.10 function inp9 (xl1) and function inp10 (xl1, ic1, ic2)
	2.11 function ncards (start, end, incr, cards)
	2.12 function nitems (start, end, cards)

	3.0 LOW LEVEL inp SUBROUTINES
	3.1 call cvi (char, binary, cond, num, ipos)
	3.2 call conv (a, xnum, type, lstart, lend, err)
	3.3 call holstr (a, l1, wrk, cond, nwrds, err)

	4.0 inp SUMMARY
	4.1 Summary of inp Package Calls
	4.2 Array Summary
	4.3 Variable Summary
	4.4 Error Message Summary
	4.5 Control Word Structure
	4.6 Table Entries
	4.7 Mode Indicator Word Structure

	VI. Maintenance and Installation
	1.0 UNIX/LINUX SOURCE CODE TRANSMITTAL
	1.1 UNIX/Linux Source Code Installation
	1.2 UNIX/Linux Platform Testing
	1.3 Installing on Other Platforms

	2.0 WINDOWS TRANSMITTAL
	2.1 Windows Installation

	3.0 UNIX/LINUX CODE MAINTENANCE
	4.0 TECHNICAL SUPPORT

	VII. References
	Appendix A - The COMPARE2 Program
	Appendix B - The BXFTOOL Program
	Appendix C - Code Modification Summary
	Appendix D - Fortran 95 Conversion and Testing Summary
	Appendix E - The get_r3d_plot_vars Utility Program

	Illustrations
	III.1-1. Subroutine Calls from Main Program RMAIN
	III.1-2. Subroutine Calls from INTRAN
	III.1-3. Subroutine Calls from ARRINP
	III.1-4. Subroutine Calls from POWRT, SPACTM, and STATIC
	III.1-5. Subroutine Calls from STSTAT and ZFLOWH
	III.1-6. Subroutine Calls from TRAN
	III.1-7. Subroutine Calls from JUNPRP, ADVFLO, MDOT, and PRSORK
	III.1-8. Subroutine Calls from ENERGY, SLIP, and DNBM
	III.1-9. Subroutine Calls from PRESUR, VOLPRP, STATAC, STAPH, STPH4A, and CARDBC
	III.1-10. Fluid Property Routine Calls
	III.1-11. Subroutine Calls from LOGIC
	III.3-1. Subroutine Calls from REEDIT
	IV.2-1. RETRAN-3D Channel Model Data Flow

	Tables
	II.2-1. RETRAN-3D Static Data Modules
	II.2-2. Pointer Array Associations in the Volumes Real Data Block r_vol1
	II.2-3. RETRAN-3D Dynamic Data Modules
	II.3-1 Restart Block List Derived Data Type
	II.3-2 Data Blocks Used For Boundary Condition Retrieval from a RETRAN-3D Restart File
	II.4-1 Minor Edit Variable List Data Structure
	II.4-2 Block List Data Structure for Minor Edit Variables
	IV.1-1. File Unit Description
	IV.2-1. Header Record Description
	IV.2-2. Data Record Description
	IV.2-3. Data Tape Processing Subroutine Descriptions
	IV.2-4. RETRAN Data Tape FORTRAN Unit Number Cross Reference
	IV.2-5. Cross-Section Data Record Structure Multiple Control State Model
	IV.2-6. Cross-Section Limit Data Format Multiple Control State Model
	IV.2-7. CDI File Structure and Content
	IV.2-8. Cross-Section Model Independent Variables
	IV.2-9. Multidemsional Kinetics Cross-Section File Structure
	IV.2-10. Multidimensional Cross-Section File TABLE Array Data Types
	IV.2-11. VBC File Format
	IV.2-12. Sample VBC File
	IV.2-13. RETRAN-3D Plot File Structure
	IV.2-14. RETRAN-3D Plot File Structure
	IV.2-15. RETRAN-3D Configuration File Variables
	V.2-1. inp User Error Summary
	VI.1-1. UNIX/Linux Installation and Maintenance Script: bld
	VI.1-2. Example Subroutine Compilation Order File: compile_list
	VI.1-3. UNIX Execution Script: run.sh
	VI.1-4. UNIX/Linux Installation Verification Script: checkin.sh
	VI.2-1. Windows Execution Procedure: run.bat
	VI.2-2. Windows Installation Verification Procedure: checkin.bat

