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Background 

NRC has recently questioned the validity of using regression analysis to demonstrate that baseline-
period wind patterns are representative of the long term at any given monitoring site. In a meeting with 
AUC LLC (NRC 2014), NRC staff commented, “Based on the information submitted, the NRC staff 
cannot determine that the regression analysis is the appropriate analysis to demonstrate 
representativeness. The NRC staff finds that other statistical approaches should be considered or 
discuss why they are not applicable, such as: 1) testing summary statistics, such as the mean from 
the short and long term data; and 2) testing the statistics for similarity or validity of the data by using a 
statistical method such as the Student’s T-test, Chi Square test for distribution, Kolmogorov-Smirnov 
test for distribution, etc., as appropriate.”  

This report explores the merits of alternative tests for comparing short and long-term, hourly wind and 
atmospheric stability data. It provides examples of 2-year and long-term hourly data from Antelope 
Coal Company (ACC) and the NWS stations at Gillette and Casper. These three sites have been 
used as long-term references for several ISR license applications in eastern Wyoming. 

Objectives 

The fundamental measures of atmospheric dispersion potential are wind speed and wind direction, 
with a third measure being provided by atmospheric stability. The stability class can be derived from 
wind speed and variability in wind direction, using the σθ method. The goal of demonstrating 
similarities between baseline-period and long-term wind conditions is to enable the use of on-site, 
baseline meteorological data for modeling and monitoring of pollutant dispersion. In particular, the 
MILDOS model accepts a joint frequency distribution that combines 6 wind speed classes, 16 wind 
directions, and 6 atmospheric stability classes. The wind speed and direction category frequencies 
are illustrated graphically in a typical wind rose (Figure 1). To validate modeling with baseline-period 
data, we must show that baseline period and long-term frequency distributions are statistically similar. 
NRC allows this demonstration to be made at sites in the general vicinity of an ISR project, where 
long-term data are available. Figure 1 compares long and short-term wind roses for the ACC site. 

Figure 1 – ACC Long-Term and Short-Term Wind Roses 
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Beyond this visual demonstration of temporal uniformity, a useful statistical test should accomplish the 
following: 

1. Quantify the goodness of fit between short and long-term sets of categorical wind speed, wind 
direction or stability class data  

2. Avoid false positives (concluding that closely matched frequency distributions are statistically 
different) 

3. Avoid false negatives (concluding that dissimilar frequency distributions are not statistically 
different) 

4. Exhibit low sensitivity to sample size (total number of observations), in this case driven by the 
period of record 

5. Exhibit low sensitivity to data classification (number of categories), in this case driven by the 
frequency distributions relevant to modeling 

To accomplish these objectives, several prospective methods are considered: 

1. Summary statistics 
2. Chi-square (߯ଶ) test 
3. Student’s t-test 
4. Kolmogorov-Smirnov (K-S) test 
5. Linear correlation/regression analysis 

Period of Record  

The choice of the long-term period of record has often been restricted by the availability of hourly wind 
data in electronic form. There are 27 years of continuous data for ACC (IML 2014), 17 years for 
Casper (NCDC 2014) and 15 years for Gillette (NCDC 2014). This generic analysis assumes a two-
year baseline period (2012-2013) and honors the requirement for sample independence by using non-
overlapping short and long-term data sets. This leaves 25 years for the long-term period of record for 
ACC, 15 years for Casper and 13 years for Gillette.  

A publication by the U.S. Air Force Climatology Center suggests a tradeoff between too few and too 
many years of data to establish long-term climate characteristics. “As the POR expands, maintaining 
homogeneity of the data becomes more difficult. Climatological statistics obtained from too long a 
period may not be representative of contemporary conditions” (Coffin 1996). The authors cite 
Panofsky and Brier, who claim that a mean based on 15 years of data gives the best estimate for next 
year's mean and is therefore preferable to climatic normals based on more than 15 years. They also 
cite the findings of Rubinstein, Kuznetsova, and Shvec, who claim that estimates of the mean wind 
speed can be calculated with a sufficient degree of accuracy on the basis of 20 to 25 years' worth of 
data. These recommendations appear to be generally compatible with the long-term data sets 
described above for ACC, Casper and Gillette. 

Evaluation of Summary Statistics  

The best way to make a preliminary study of a series of meteorological observations is to form a 
frequency distribution (Brooks 1978). The frequency distributions discussed above constitute 
summary statistics, categorized so as to correspond directly to the MILDOS model. The distributions 
of categorical data are more useful than population means or standard deviations. The mean annual 
wind speed can be calculated from hourly data, but it is already implied by the wind speed frequency 
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distribution (time-weighted average of central speeds in each class). The latter offers insight into both 
the central value and the temporal allocation of wind speeds. Similar wind speed frequency 
distributions will always yield similar average wind speeds (for example, the 25-year average wind 
speed at ACC is 11.0 mph, while the 2-year average wind speed at ACC is 11.4 mph). Average wind 
directions or stability classes have no statistical meaning, since stability classes are categorized non-
numerically and wind directions are vector quantities. Dominant wind directions or stability classes, 
made apparent by frequency distributions, are more useful. 

While wind speeds often approximate a Weibull distribution, the distributions of wind directions and 
stability classes are inherently asymmetric and generally multi-modal – characteristics best 
demonstrated by frequency distributions. Figure 2 illustrates this for wind directions at the ACC site, 
making apparent the similarity between 2-year and 25-year monitoring data. 

Figure 2 – Antelope Short and Long-Term Wind Directions 

 

Evaluation of the Chi-Square (࣑૛) Test  

The ߯ଶ test is used to evaluate the null hypothesis that two frequency distributions are similar. Brooks 
and Carruthers (Brooks 1978) state that any two observed distributions may be compared with the 
chi-square test without reference to the theoretical forms of the distributions. They further state that a 
useful application of the test in meteorology is testing the similarity of frequency distributions of two or 
more sets of observations.  

The ߯ଶ test comes with some constraints, however. Relative frequency distributions do not lend 
themselves directly to the ߯ଶ test, which generally requires a minimum of 5 expected occurrences in 
each data category. NRC guidance reduces this requirement to 2 (NRC 2011), but relative 
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frequencies are by definition less than or equal to 1. Even if the category frequencies are converted to 
percentages, some categories still fall below the 2% occurrence rate. A possible remedy is to use the 
number of hours observed in each wind category rather than the relative frequencies. But short and 
long-term data sets contain vastly different total hours (i.e., sample sizes), violating another condition 
of the ߯ଶ test. This difficulty can be surmounted by converting relative frequencies to equivalent 
annual hours. Long-term values can be regarded as the expected counts, and short-term (baseline 
period) values as the observed counts. Table 1 shows the resulting analysis of wind speeds at the 
Antelope mine. The calculated ߯ଶ value is much larger than the 95% confidence statistic for 6 degrees 
of freedom, leading to a strong rejection of the null hypothesis (H0). The tentative conclusion: the short 
and long-term wind speed distributions are significantly different (with a confidence close to 100%). It 
is worth noting that the greatest contribution to the ߯ଶ value comes from the calm category, even 
though it comprises less than 1% of the annual observations.  

Table 1 – ࣑૛ Test for Annual Wind Speed  

   

Table 2 shows a similar test for 25-year vs. 2-year wind directions at Antelope, with the same result.  

Table 2 – ࣑૛ Test for Annual Wind Direction 

 

mph 25‐Yr WS  2‐Yr WS (ST‐LT)
2
/LT Chi‐Square

0 ‐ 3 1063 931 17 71

4 ‐ 7 2127 1993 8 χ
2
0.95(6) = 12.59

8 ‐ 12 2374 2462 3 Reject Ho

13 ‐ 18 1778 1902 9 p‐value = 0.000

19 ‐ 24 807 871 5 Min Count = 86

> 24 524 563 3

Calm 86 38 27

Wind Speeds ‐ ACC Annual Hours

Sector ACC 25Yr WD ACC 2Yr WD (ST‐LT)
2
/LT Chi‐Square

N 566 596 1.63 180

NNE 258 224 4.37 χ
2
0.95(16) = 26.30

NE 149 139 0.65 Reject Ho

ENE 211 201 0.48 p‐value = 0.000

E 426 387 3.54 Min Count = 86

ESE 543 564 0.83

SE 448 452 0.02

SSE 354 378 1.59

S 279 302 1.94

SSW 263 234 3.24

SW 586 376 75.11

WSW 1,187 1,292 9.27

W 1,218 1,430 36.62

WNW 719 664 4.20

NW 729 677 3.68

NNW 738 805 6.25

Calm 86 38 26.56

Wind Directions ‐ ACC Annual Hours
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The outcome of the ߯ଶ test for the ACC site seems to contradict the visual evidence in Figure 1 and 
Figure 2. Such counterintuitive results are an artifact of sample size; the choice of annual hours was 
arbitrary. Multiplying the wind direction frequencies by 250 (the minimum multiplier that yields long-
term counts of 2 or more) instead of 8,760, produces a different test outcome, shown in Table 3 for 
wind direction and speed distributions at all three reference sites. The Antelope, Gillette and Casper 
data all show low ߯ଶ values relative to the test statistic at 95% confidence (insufficient evidence to 
reject H0). For this embodiment of the test, we cannot justify a conclusion that short and long-term 
wind speed and direction distributions are statistically different. 

That a sample size of 250 leads to a different test outcome than a sample size of 8,760 reveals a 
weakness of the ߯ଶ test. When differences are practically insignificant but statistically significant, it is 
due to a very large sample size. In a smaller sample the differences would not be enough to be 
statistically significant. Dealing with a large number of observations, Hessen, Dolan, and Wicherts 
noted that ߯ଶ values are inflated by large total sample sizes rendering the test results “of little use” 
under these circumstances (Hessen 2006). A statistical text (Sharpe 2012) warns: “Beware large 
samples! With a sufficiently large sample size, a chi-square test can always reject the null 
hypothesis.” 

With the right scaling factor to reduce sample size, it may appear that the ߯ଶ test still has merit in 
demonstrating long-term representativeness of wind frequency distributions. Table 4 shows the test of 
direction frequencies scaled by 250 does differentiate between wind direction distributions from the 
same site and those from different sites (a p-value greater than 0.05 does not warrant rejection of H0 

at 95% confidence). But scaling by 250 fails to differentiate wind speed distributions when comparing 
Casper and Gillette. Moreover, this technique places the outcome of the ߯ଶ test at the mercy of an 
arbitrary choice of scaling factor. Depending on this choice, the same data sets can lead either to 
rejection or non-rejection of the null hypothesis. 

A less arbitrary adaptation of the ߯ଶ test involves the use of the phi coefficient of association to 
neutralize the test’s sensitivity to sample size. To evaluate the degree to which two distributions differ, 
the ߯ଶ statistic can be converted to the phi coefficient: 

∅ ൌ ඨቆ
߯ଶ

ܰ
ቇ 

An analysis of categorized cloud cover by the U.S. Air Force employed this technique, and 
established a critical phi coefficient of 0.20. “Values [of phi] close to zero indicate the distributions are 
nearly identical, while those approaching either 1 or -1 are significantly distinct. In most of the cases, 
the phi coefficient was less than or equal to 0.20, implying a large degree of similarity in the two 
distributions” (Lowther 1991). Table 5 shows low phi coefficients for the ACC long-term/short-term ߯ଶ 
tests (0.09 for wind speeds and 0.14 for wind directions). It also illustrates the typically high phi 
coefficients obtained from applying the ߯ଶ tests to inter-site comparisons (0.97 for ACC/Gil wind 
speed distributions). While the phi coefficients in Table 5 cannot prove conclusively that the short-term 
and long-term wind measurements are statistically equivalent, neither can the ߯ଶ test itself, as applied 
in Table 3. Brooks and Carruthers state that “߯ଶ is a guide to significance not an exact measure of it” 
(Brooks 1978, p. 160).
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Table 3 – ࣑૛ Test for Wind Direction and Speed Frequencies Multiplied by 250 

 

 

 

ACC 25Yr WD ACC 2Yr WD (ST‐LT)
2
/LT Chi‐Square Gil 13Yr WD Gil 2Yr WD (ST‐LT)

2
/LT Chi‐Square Csp 15Yr WD Csp 2Yr WD (ST‐LT)

2
/LT Chi‐Square

16.15 17.01 0.044 7.14 16.13 16.28 0.001 2.87 11.19 10.31 0.074 5.81

7.36 6.40 0.143 χ
2
0.95(16) = 26.30 7.76 8.66 0.095 χ

2
0.95(16) = 26.30 16.46 12.48 1.267 χ

2
0.95(16) = 26.30

4.25 3.97 0.020 Can't reject Ho 4.92 5.17 0.013 Can't reject Ho 12.58 9.23 1.213 Can't reject Ho

6.03 5.74 0.014 p‐value = 0.995 3.42 4.36 0.204 p‐value = 1.000 10.30 8.13 0.577 p‐value = 0.995

12.15 11.04 0.111 Min Count = 2 4.76 5.09 0.020 Min Count = 3 14.71 12.20 0.514 Min Count = 2

15.50 16.10 0.023 4.63 3.58 0.309 5.19 4.25 0.209

12.80 12.89 0.001 9.02 6.82 0.708 2.43 2.02 0.081

10.11 10.79 0.043 18.52 16.77 0.184 1.95 1.82 0.010

7.95 8.61 0.051 30.86 28.76 0.154 5.02 5.70 0.080

7.52 6.69 0.104 11.53 12.29 0.047 24.89 25.23 0.005

16.71 10.73 3.340 20.46 18.82 0.143 49.84 56.10 0.699

33.88 36.87 0.243 12.86 11.61 0.136 32.20 35.16 0.250

34.77 40.80 0.891 19.70 19.48 0.002 20.70 21.66 0.042

20.53 18.96 0.130 14.98 14.19 0.045 10.30 9.68 0.039

20.81 19.33 0.113 23.18 25.77 0.260 8.39 8.34 0.000

21.05 22.99 0.163 22.46 25.82 0.437 8.16 8.15 0.000

2.45 1.09 1.709 24.80 26.55 0.115 15.70 19.53 0.752

ACC 25Yr WS ACC 2Yr WS (ST‐LT)
2
/LT Chi‐Square Gil 13Yr WS Gil 2Yr WS (ST‐LT)

2
/LT Chi‐Square Csp 15Yr WS Csp 2Yr WS (ST‐LT)

2
/LT Chi‐Square

30.35 26.56 0.541 3.04 13.07 13.77 0.036 6.00 12.83 14.30 0.152 7.10

60.70 56.89 0.256 χ
2
0.95(6) = 12.59 53.62 46.06 1.242 χ

2
0.95(6) = 12.59 60.49 50.37 2.033 χ

2
0.95(6) = 12.59

67.76 70.26 0.089 Can't reject Ho 73.83 64.74 1.276 Can't reject Ho 70.18 61.73 1.157 Can't reject Ho

50.74 54.27 0.229 p‐value = 0.916 59.04 63.95 0.377 p‐value = 0.280 55.29 58.30 0.155 p‐value = 0.225

23.03 24.87 0.136 Min Count = 2 17.00 20.38 0.562 Min Count = 9 21.77 24.83 0.378 Min Count = 13

14.97 16.07 0.076 8.64 14.55 2.397 13.74 20.94 2.472

2.45 1.09 1.709 24.80 26.55 0.115 15.70 19.53 0.752

Wind Directions ‐ Casper LT/ST Freq  Scaled UpWind Directions ‐ Antelope LT/ST Freq Scaled Up Wind Directions ‐ Gillette LT/ST Freq  Scaled Up

Wind Speeds ‐ Antelope LT/ST Freq Scaled Up Wind Speeds ‐ Gillette LT/ST Freq  Scaled Up Wind Speeds ‐ Casper LT/ST Freq  Scaled Up
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Table 4 – ࣑૛Temporal and Spatial Correlation Summary 

 

Table 5 – ࣑૛ Tests with Phi Coefficients  

 
 
Short and long-term atmospheric stability class distributions, comprising six categories, can be 
analyzed in the same fashion. The histogram in Figure 3 shows the Antelope stability class 
distributions to be quite similar between the 2-year and 25-year periods. The ߯ଶ test can be applied to 
these distributions by first converting them to annual hours. The test results in Table 6 initially reject 
the hypothesis that the short and long-term stability class distributions are not statistically different. 
The low phi coefficient of 0.11, however, adjusts for the large sample size of 8,760 and suggests a 
large degree of similarity between short and long-term stability class distributions. 

 

Site p‐value Paired Sites p‐value

ACC LT/ST 0.916 ACC‐Csp 0.000

Csp LT/ST 0.225 ACC‐Gil 0.000

Gil LT/ST 0.280 Csp‐Gil 0.150

Site p‐value Paired Sites p‐value

ACC LT/ST 0.995 ACC‐Csp 0.000

Csp LT/ST 0.995 ACC‐Gil 0.000

Gil LT/ST 1.000 Csp‐Gil 0.000

Chi‐Square Test Discriminating Power: Scaled Wind 

Speed Distributions (freq x 250)

Chi‐Square Test Discriminating Power: Scaled Wind 

Direction Distributions (freq x 250)

mph 25‐Yr WS  2‐Yr WS (ST‐LT)
2
/LT Chi‐Square Sector ACC 25Yr WD ACC 2Yr WD (ST‐LT)

2
/LT Chi‐Square

0 ‐ 3 1063 931 17 71 N 566 596 1.63 180

4 ‐ 7 2127 1993 8 χ
2
0.95(6) = 12.59 NNE 258 224 4.37 χ

2
0.95(16) = 26.30

8 ‐ 12 2374 2462 3 Reject Ho NE 149 139 0.65 Reject Ho

13 ‐ 18 1778 1902 9 p‐value = 0.000 ENE 211 201 0.48 p‐value = 0.000

19 ‐ 24 807 871 5 Min Count = 86 E 426 387 3.54 Min Count = 86

> 24 524 563 3 Phi‐value = 0.09 ESE 543 564 0.83 Phi‐value = 0.14

Calm 86 38 27 SE 448 452 0.02

SSE 354 378 1.59

S 279 302 1.94

mph ACC 25‐Yr WS  Gil 13‐Yr WS (ACC‐Gil)
2
/ACC Chi‐Square SSW 263 234 3.24

0 ‐ 3 1053 461 332 8284 SW 586 376 75.11

4 ‐ 7 2116 1841 36 χ
2
0.95(6) = 12.59 WSW 1,187 1,292 9.27

8 ‐ 12 2381 2542 11 Reject Ho W 1,218 1,430 36.62

13 ‐ 18 1788 2093 52 p‐value = 0.000 WNW 719 664 4.20

19 ‐ 24 812 612 49 Min Count = 82 NW 729 677 3.68

> 24 528 332 72 Phi‐value = 0.97 NNW 738 805 6.25

Calm 82 878 7732 Calm 86 38 26.56

Wind Speeds ‐ ACC Annual Hours Wind Directions ‐ ACC Annual Hours

Wind Speeds ‐ ACC vs Gil Annual Hours
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Figure 3 – Antelope Short and Long-Term Stability Class Distributions 

 

 
Table 6 – ࣑૛ Test for Antelope Stability Class Distributions 

 

Evaluation of the Student’s T-Test  

The Student’s t-test can be used to assess similarity between two sets of data, with the assumption 
that they both approximate normal distributions. The assumption of normality does not apply to wind 
and atmospheric stability parameters, but the t-test is fairly robust to this assumption. A more serious 
limitation is that all frequency distributions have a mean of 1/n, where n is the number of categories. A 
two-sample Student’s t-test will therefore show no statistical difference between any two wind speed 
frequency distributions, since they have the same mean of 1/7. Likewise, the t-test will fail to 
differentiate between any two wind direction distributions (same mean of 1/17), or any two stability 
class distributions (same mean of 1/6). The paired t-test offers no improvement, since the mean 
difference between paired frequencies will always be zero. 

This limitation can be lifted by defining a distribution of ratios between short and long-term 
frequencies. Two similar distributions should yield frequency ratios with a mean near 1, which can be 
tested using a one-sample t-test. As expected, the results in Table 7 indicate that a mean of 1 falls 
within the 95% confidence interval for wind direction frequency ratios at ACC. However, the same 
conclusion is wrongly inferred for the ratio of ACC-to-Casper frequencies (Table 8), and for all other 

0%

10%

20%

30%

40%

50%

60%

70%

A B C D E F

Fr
e
q
u
e
n
cy

Atmospheric Stability Class

Antelope Mine Stability Class Comparison
(Sigma Theta Method)

2YR
Frequency

25YR
Frequency

Class 2YR 25YR (ST‐LT)
2
/LT Chi‐Square

A 527 547 0.78 107.90

B 391 327 10.55 χ
2
0.95(5) = 11.07
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E 755 998 77.76 Min Count = 391

F 950 935 0.25 Phi‐value = 0.11
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inter-site comparisons. Very dissimilar frequency distributions will yield ratios with sufficiently large 
standard deviations to widen the confidence interval and thereby accommodate a mean substantially 
different than 1.  

 
Table 7 – One-Sample T-Test for Antelope Short/Long-Term Wind Direction Ratio 

 
Test of mu = 1 vs not = 1 
 
 
Variable      N     Mean    StDev  SE Mean        95% CI           T      P 
AntRatio_WD  17  1.10918  0.32712  0.07934  (0.94099, 1.27737)  1.38  0.188 

 

Table 8 – One-Sample T-Test for Antelope/Casper Wind Direction Ratio 
 
Test of mu = 1 vs not = 1 
 
 
Variable     N     Mean    StDev  SE Mean        95% CI           T      P 
ACRatio_WD  17  1.72114  1.56156  0.37873  (0.91826, 2.52402)  1.90  0.075 

 

Class-wise T-test Applied to Wind Frequency Data 

The two-sample T-test can yield meaningful results when applied separately to each wind speed and 
wind direction category. Here we are interested in the variation among annual frequencies observed 
over time for a given category, rather than how the frequencies are distributed over all categories for 
an aggregated time period. This scenario requires 7 t-tests for wind speeds (6 speed classes plus a 
“calm” class) and 17 t-tests for wind direction (16 directions plus “calm”). A demonstration of 
representativeness between frequency distributions will be made if each of the 24 tests fails to reject 
the null hypothesis that the short and long-term data populations are different. The first sample in 
each test consists of annual frequencies for a given category over a long period (e.g., 25 years would 
yield 25 frequencies). The second sample consists of annual frequencies for the same category over 
a shorter period (e.g., 2 years). 

Assume that for a given wind speed or direction category (for example, southerly wind direction):  

N1 = the number of years in the long-term data set 

N2 = the number of years in the short-term or baseline data set 

തܺଵ= the mean annual frequency in the long-term data set 

തܺଶ= the mean annual frequency in the short-term data set 

ଵܵ= the standard deviation of the frequencies in the long-term data set 

ܵଶ= the standard deviation of the frequencies in the short-term data set 

ܵ௉= the pooled standard deviation from short and long-term frequencies 

Then the T-statistic for the category of interest is given by: 
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మ

ேభ	ା	ேమିଶ
 

The quantity N1 + N2 – 2 represents the degrees of freedom between the two samples. To ensure 
sample independence, we might compare a two-year period with the previous 25-year period. The 
degrees of freedom would then be 25. The critical value T(0.95,25) = 2.06, which represents the 95% 
confidence level in a two-tailed t-test, that the two populations are different. Any t-statistic between      
-2.06 and +2.06 (or p-value > 0.05) signifies that insufficient evidence exists, at the 95% confidence 
level, to justify a conclusion that the two populations are different. 

Table 9 presents the results of individual t-tests performed on wind speed categories at ACC, using a 
pooled standard deviation. The long-term wind data span 25 years, from 1987 through 2011. The 
baseline period spans 2 years, 2012 and 2013. The p-values for each wind speed class are much 
greater than 0.05, indicating insufficient evidence to conclude a difference between the short-term and 
long-term wind speed data. 

Table 9 – 25-Yr vs. 2-Yr Relative Wind Speed Frequencies and t-test Results 

 

Table 10 presents the results of individual t-tests performed on wind direction categories for the same 
periods at ACC, using a pooled standard deviation. Again, the p-values for each wind direction class 
are much greater than 0.05, indicating insufficient evidence to conclude a difference between the 
short-term and long-term wind direction data.  

The use of a pooled standard deviation assumes the unknown variances of the two populations are 
equal. This would appear reasonable given that wind data at any given location are influenced by 
fundamental climatological and topographical conditions that do not change appreciably from year to 
year. Histograms of the yearly frequencies in each wind speed and direction category confirm that 
these data are approximately normally distributed. Nonetheless, the assumption of equal variances 
can be supported or refuted by an F-Test or Levene’s test performed for each two-sample t-test. This 
step is particularly relevant given that the short-term data set in this case contains only two wind 
frequencies. The F-test assumes normally distributed data, while Levene’s test relaxes this 
assumption. For conservatism, Levene’s test is employed to validate the assumption of equal 
variances in both sets of t-tests. If the p-value for Levene’s test is less than 0.05, we conclude that the 
variances are unequal and repeat the t-test based on unequal variance. If the p-value is greater than 
0.05, we preserve the t-test results based on the pooled estimate of the standard deviation, Sp. 

 

Speed 

(mph)

25YR 

Mean

25YR 

Stdev

2YR 

Mean

2YR 

Stdev

Stdev‐

Pooled

T‐

Statistic P‐Value

0 ‐ 3 0.1210 0.0173 0.1062 0.0005 0.0170 1.18 0.248

4 ‐ 7 0.2418 0.0331 0.2275 0.0088 0.0325 0.60 0.555

8 ‐ 12 0.2706 0.0183 0.2810 0.0119 0.0181 ‐0.79 0.439

13 ‐ 18 0.2038 0.0205 0.2171 0.0101 0.0202 ‐0.90 0.379

19 ‐ 24 0.0929 0.0161 0.0995 0.0016 0.0158 ‐0.57 0.577

> 24 0.0601 0.0154 0.0643 0.0094 0.0152 ‐0.37 0.713

Calm 0.0099 0.0118 0.0043 0.0003 0.0116 0.65 0.523
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Table 10 – 25-Yr vs. 2-Yr Relative Wind Direction Frequencies and t-test Results 

 

Table 11 lists the p-values from Levene’s test applied to the short and long-term wind speed 
frequencies for each class. Since all of the p-values are greater than 0.05, the test confirms the 
assumption of equal variances among relative frequencies for each wind speed, and thereby validates 
the t-test results in Table 9. 

Table 11 – Levine’sTest for Equal Variance Among Wind Speed Frequencies 

Wind Speed (mph) Levene’s p-value 

0 - 3 0.135 

4 - 7 0.800 

8 - 12 0.570 

13 - 18 0.324 

19 - 24 0.246 

> 24 0.433 

Calm 0.455 
 

Table 12 lists the p-values from Levene’s test applied to wind direction frequencies. Since all p-values 
are greater than 0.05, the test confirms the assumption of equal variances among relative frequencies 
for each wind direction, and thereby validates the t-test results in Table 10.  

  

Wind 

Direction

25YR 

Mean

25YR 

Stdev

2YR 

Mean

2YR 

Stdev

Stdev‐

Pooled

T‐

Statistic P‐Value

N 0.0643 0.0187 0.0681 0.0086 0.0184 ‐0.28 0.781

NNE 0.0292 0.0114 0.0256 0.0056 0.0113 0.43 0.670

NE 0.0169 0.0047 0.0159 0.0034 0.0046 0.29 0.777

ENE 0.0239 0.0097 0.0230 0.0032 0.0095 0.13 0.899

E 0.0484 0.0189 0.0442 0.0034 0.0186 0.31 0.758

ESE 0.0620 0.0117 0.0644 0.0029 0.0115 ‐0.28 0.782

SE 0.0507 0.0120 0.0515 0.0071 0.0118 ‐0.10 0.923

SSE 0.0399 0.0116 0.0431 0.0036 0.0114 ‐0.38 0.705

S 0.0314 0.0108 0.0345 0.0019 0.0106 ‐0.39 0.701

SSW 0.0299 0.0092 0.0267 0.0031 0.0091 0.48 0.637

SW 0.0677 0.0313 0.0429 0.0177 0.0309 1.09 0.286

WSW 0.1364 0.0235 0.1475 0.0301 0.0238 ‐0.64 0.530

W 0.1392 0.0246 0.1632 0.0078 0.0242 ‐1.35 0.190

WNW 0.0823 0.0115 0.0758 0.0099 0.0114 0.77 0.446

NW 0.0836 0.0164 0.0773 0.01 0.0162 0.53 0.604

NNW 0.0844 0.0116 0.0919 0.0042 0.0114 ‐0.90 0.378

Calm 0.0099 0.0118 0.0043 0.0003 0.0116 0.65 0.523
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Table 12 – Levine’sTest for Equal Variance Among Wind Direction Frequencies 

Wind Direction Levene’s p-value 

N 0.326 

NNE 0.634 

NE 0.819 

ENE 0.546 

E 0.204 

ESE 0.340 

SE 0.442 

SSE 0.071 

S 0.085 

SSW 0.233 

SW 0.547 

WSW 0.708 

W 0.380 

WNW 0.875 

NW 0.499 

NNW 0.268 

Calm 0.455 
 

Notably, the south (S) and south-southeast (SSE) directions exhibit marginally low p-values in Table 
12. The t-test can be repeated for these directions, assuming unequal variances. The resulting p-
values are 0.420 and 0.262. As expected, these are lower than the p-values of 0.705 and 0.701 
shown in Table 10 (which assumed equal variances). However, they are still substantially greater than 
the critical p-value of 0.05. Thus, in those two cases where the assumption of equal variances may be 
in doubt, we find the assumption is not needed. The t-test has demonstrated, for all wind directions, a 
lack of significant difference between short and long-term frequencies. 

Since the t-test failed to show a statistically significant difference between short and long-term wind 
speed and direction frequencies, we conclude that the two-year baseline period is representative of 
the previous 25-years at ACC.  

Support for the class-wise t-test performed on wind frequency distributions can be found in the 
literature of meteorological statistics. Brooks and Carruthers (Brooks 1978, p. 66) offer an example 
that seeks to determine whether the frequency of occurrence of gale-force winds over a 3-year period 
is the same as the frequency of gale-force winds over a previous 9-year period. A two-sample t-test is 
used to demonstrate a significant difference between the two frequencies. This approach is equivalent 
to the above analysis, except that Brooks and Carruthers applied it to only one wind speed category. 

The class-wise t-test will reject the null hypothesis of similarity between wind data from different sites. 
For example, the t-test leads to the conclusion that wind speeds and wind directions are not similarly 
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distributed between the ACC and Gillette sites. Table 13 shows that only 3 of the 7 wind speed 
classes do not exhibit a statistical difference between the two sites (p-values > 0.05). 

Table 13 – Inter-site t-test Results for Wind Speed 

 

Likewise, Table 14 shows that only 6 of the 17 wind direction classes do not exhibit a statistical 
difference between the two sites (p-values > 0.05). 

Table 14 – Inter-site t-test Results for Wind Direction 

Speed 

(mph)

ACC 25YR 

Mean

ACC 25YR 

Stdev

Gil 2YR 

Mean

Gil 2YR 

Stdev

Stdev‐

Pooled

T‐

Statistic P‐Value

0 ‐ 3 0.1210 0.0173 0.0551 0.0015 0.0170 5.29 0.000

4 ‐ 7 0.2418 0.0331 0.1842 0.0039 0.0325 2.41 0.023

8 ‐ 12 0.2706 0.0183 0.2590 0.0004 0.0179 0.88 0.387

13 ‐ 18 0.2038 0.0205 0.2559 0.0126 0.0203 ‐3.50 0.002

19 ‐ 24 0.0929 0.0161 0.0816 0.0054 0.0159 0.97 0.340

> 24 0.0601 0.0154 0.0581 0.0047 0.0151 0.18 0.860

Calm 0.0099 0.0118 0.1061 0.0074 0.0117 ‐11.22 0.000

Antelope 25YR Comparison to Gillette 2YR

Wind 

Direction

ACC 25YR 

Mean

ACC 25YR 

Stdev

Gil 2YR 

Mean

Gil 2YR 

Stdev

Stdev‐

Pooled

T‐

Statistic P‐Value

N 0.0643 0.0187 0.0651 0.00171 0.0183 ‐0.07 0.948

NNE 0.0292 0.0114 0.0347 0.00224 0.0112 ‐0.67 0.509

NE 0.0169 0.0047 0.0207 0.00216 0.0046 ‐1.13 0.270

ENE 0.0239 0.0097 0.0174 0.00385 0.0095 0.92 0.365

E 0.0484 0.0189 0.0203 0.00322 0.0186 2.06 0.050

ESE 0.0620 0.0117 0.0143 0.00103 0.0115 5.65 0.000

SE 0.0507 0.0120 0.0273 0.00046 0.0117 2.72 0.012

SSE 0.0399 0.0116 0.0671 0.00591 0.0114 ‐3.24 0.003

S 0.0314 0.0108 0.1152 0.01599 0.0111 ‐10.29 0.000

SSW 0.0299 0.0092 0.0493 0.00954 0.0092 ‐2.85 0.009

SW 0.0677 0.0313 0.0755 0.02027 0.0309 ‐0.35 0.733

WSW 0.1364 0.0235 0.0464 0.00286 0.0230 5.32 0.000

W 0.1392 0.0246 0.0779 0.00627 0.0242 3.46 0.002

WNW 0.0823 0.0115 0.0567 0.00454 0.0113 3.09 0.005

NW 0.0836 0.0164 0.1029 0.01573 0.0164 ‐1.60 0.121

NNW 0.0844 0.0116 0.1032 0.00811 0.0115 ‐2.22 0.036

Calm 0.0099 0.0118 0.1061 0.00741 0.0117 ‐11.22 0.000

Antelope 25YR Comparison to Gillette 2YR
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Evaluation of the Kolmogorov-Smirnov Test 

The Kolmogorov-Smirnov (K-S) test is a nonparametric test for the equality of continuous, one-
dimensional probability distributions that can be used to compare two samples. The Kolmogorov–
Smirnov (K-S) statistic quantifies a distance between the cumulative distribution functions (CDF’s) of 
two samples. It is most effectively applied to continuous data, but will generally accommodate 
arbitrarily classified data (such as wind directions and stability classes) and ordinal data (such as wind 
speed frequencies). In exchange for this broad applicability, it sacrifices statistical efficiency. For the 
meteorological data considered in this report, the K-S test errs on the side of inferring similarity even 
where little exists. 

The CDF’s for Antelope wind direction are shown in Figure 4. The K-S statistic is expressed here as 
the maximum |LTk – STk| where LTk and STk are the cumulative long-term and short-term frequencies 
through class “k.” The K-S statistic is seen in Figure 4 as the greatest vertical difference between 
adjacent blue and red bars, in this case 0.026 (the SW direction). This test statistic is compared to the 
critical value for a sample size of 17 and a confidence level of 95%. The critical K-S value in this 
instance is 0.318, as found in a standard statistical table (NRC 2011). Because the K-S statistic is less 
than the critical value, we conclude that the short and long-term wind direction frequencies come from 
a common distribution. In other words, one is representative of the other. 

Figure 4 – Antelope Short and Long-Term Cumulative Wind Direction Frequencies 

 

The question arises whether the K-S test will discriminate between similar and dissimilar wind 
distributions. Repeating the K-S test for Antelope and Gillette wind direction distributions, we obtain 
the same outcome. Figure 5 shows substantial differences between the CFD’s, yet the K-S statistic of 
0.109 (WNW direction) is still well under the critical value of 0.318.  
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Figure 5 – Antelope and Gillette Long-Term Cumlative Wind Direction Frequencies 

 

The bottom half of Table 15 confirms the poor efficiency of the K-S test for wind speed and direction 
comparisons. In all cases, the comparisons show no statistically significant difference. The inability of 
the K-S test to distinguish between clearly dissimilar wind patterns eliminates this method as a viable 
alternative. 

 
Table 15 – Comparative K-S Test Results 

Site (s) Parameter K-S Statistic Critical K-S Value Inference 

Antelope LT/ST Wind Speed 0.030 0.318 Similar Distributions 
Antelope LT/ST Wind Direction 0.026 0.483 Similar Distributions 
Casper LT/ST Wind Speed 0.068 0.318 Similar Distributions 
Casper LT/ST Wind Direction 0.047 0.483 Similar Distributions 
Gillette LT/ST Wind Speed 0.064 0.318 Similar Distributions 
Gillette LT/ST Wind Direction 0.026 0.483 Similar Distributions 
Ant LT/Csp LT Wind Speed 0.071 0.318 Similar Distributions 
Ant LT/Csp LT Wind Direction 0.149 0.483 Similar Distributions 
Ant LT/Gil LT Wind Speed 0.097 0.318 Similar Distributions 
Ant LT/Gil LT Wind Direction 0.109 0.483 Similar Distributions 
Csp LT/Gil LT Wind Speed 0.036 0.318 Similar Distributions 
Csp LT/Gil LT Wind Direction 0.175 0.483 Similar Distributions 
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Evaluation of Linear Correlation and Linear Regression 

The following discussion combines linear correlation and regression since they yield closely related 
statistics. Under the assumptions applied to wind frequency distributions the Pearson’s correlation 
coefficient R is equal, or very nearly equal to the square root of the linear regression coefficient of 
determination R2. While linear regression has not been commonly employed to demonstrate the 
degree of similarity between two meteorological frequency distributions, linear correlation coefficients 
have (Coffin 1996). Using either approach to assess a linear association between two relative 
frequency distributions is indicated, since their component frequencies each sum to 1. If two such 
distributions are similar, they will necessarily be linearly associated and the scatterplot of their 
frequencies will cluster around the identity line. 

We do not seek a causal relationship between long-term and short-term frequencies, as linear 
regression is often misconstrued to do. Brooks and Carruthers point out that a correlation coefficient is 
merely a mathematical expression of the “correspondence” between two series of numbers, whose 
relationship may be indirect and tied to a third variable (Brooks 1978, p. 226). This applies particularly 
to wind distributions, the short and long-term measurements of which only approximate the true 
distributions. The long-term variable (X) might be thought of as “independent” and the short-term 
variable (Y) as “dependent.” This is consistent with assigning the dependent variable to the unknown 
or most uncertain of the two (Brooks 1978). But because both variables are measurements with 
nonparametric distributions of roughly equal variances, reversing this assignment will also work. 
Chapter 19 of NU-REG 1475 (US NRC 2011) states that with linear correlation neither variable is 
necessarily dependent or independent. For the cases analyzed in the context of this report, the 
distinction becomes mostly arbitrary. The choice affects the R2 values very slightly due to the nature 
of a least-squares fit (switching the short and long-term variables altered the R2 values by less than 
0.01 in all cases). 

If a zero intercept is enforced, the slope of the regression line approaches unity as the linear 
relationship approaches equality (i.e., Y = X). The coefficient of determination R2 (or the correlation 
coefficient R) reflects the strength of the linear relationship. The p-value in the regression analysis 
reflects the statistical significance of this conclusion. 

Accordingly, several refinements to the regression analyses in previous submittals to NRC should be 
noted: 

1. Adopting the convention of assigning long-term frequencies to the independent variable 
2. Using non-overlapping short-term and long-term periods to enforce strict sample 

independence 
3. Forcing the regression line to pass through the origin (zero intercept) in recognition of the fact 

that two relative frequency data sets that each sum to 1 cannot exhibit a systematic bias 

Figure 6 illustrates the linear association between joint wind speed and direction frequencies at 
Casper, representing a 2-year baseline period (1/1/2012 - 12/31/2013) and a 15-year long-term period 
(1997-2011). The hourly data for each distribution fall into one of 97 categories. In this two-way 
classification, the product of the 6 speed classes and 16 direction sectors, plus a calm category 
equals 97. The graph illustrates the degree to which the 2-year joint frequencies match the 15-year 
frequencies. In this case, the right-most point on the graph happens to correspond to the calm 
category, which occurred 6.3% of the time during the 15-year period (X), and 7.8% of the time during 
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the past 2 years (Y). The other points represent the remaining 96 categories. The R2 value of 0.94 
confirms a strong linear relationship, and the slope of 1.04 indicates substantial equivalence between 
short and long-term frequencies. A p-value of zero leaves little doubt that this relationship is 
significant. Linear correlation and regression analysis weight each pair of frequencies in proportion to 
their magnitude. Unlike the ߯ଶ test, which can weight very small frequencies disproportionately, with 
linear regression large relative differences between frequencies in seldom-occurring wind categories 
do not distort the overall strength of association. 

Figure 6 – Casper Short and Long-Term Joint Frequency Distributions 

 

The statistical significance of the correlation coefficient R can be found using a t-test.  

ݐ ൌ
ܴ

ටሺ1 െ ܴଶሻ
ܰ െ 2

 

The t-test performed on joint wind frequency data in Figure 6 yields a p-value of 0.000, indicating 
extremely high confidence in the correlation coefficient R. 

There is ample precedent for using linear regression to demonstrate statistical equivalence between 
two separate measurements of the same fundamental variable. For example, EPA specifies linear 
regression to demonstrate that non-certified monitors adequately measure ambient air quality. 
According to Part 58 of 40 CFR, Appendix G, particulate matter measurements from non-Federal 
Reference Method (FRM) monitors may be used for the purpose of reporting the Air Quality Index if a 
linear relationship between these measurements and reference method measurements can be 
established by statistical linear regression. In its data quality objectives (EPA 2002) EPA determined 
that the statistical parameter of interest is the R2 parameter which measures the square of the 
correlation coefficient between measured and modeled FRM PM2.5 data. Figure 7 presents such a 
demonstration by Met One in its application for federal designation of its BAM-1020 air particulate 
monitor. EPA subsequently granted the designation. 
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Figure 7 – BAM-1020 Regression Fit to FEM Monitor (Gobeli 2008) 

 
 
The nature of the two variables in the EPA example is similar to the NRC long-term 
representativeness requirement. There is no causal relationship between independent and dependent 
variables. Both PM2.5 monitors provide approximate measurements of a third variable, which is the 
true (and unknown) ambient concentration. There is a higher confidence in the FRM measurements; 
therefore they are assigned to the independent variable and the candidate monitor measurements are 
compared to them to demonstrate equivalency. For the meteorological application, baseline and long-
term meteorological measurements approximate the true (and unknown) distributions of wind speed, 
wind direction, joint frequency, and atmospheric stability class. The shorter baseline period invites 
more uncertainty than the longer period, so we validate baseline frequencies by demonstrating a 
strong linear relationship with long-term frequencies. 

The MILDOS model accepts meteorological inputs in the form of joint wind speed, wind direction and 
stability class frequency distributions, also known as STAR distributions.  An important subset of the 
STAR distribution is the two-way wind classification, which categorizes hourly wind data by both 
speed and direction. Hypothesis testing is generally unworkable in comparing joint wind speed and 
direction frequencies because the wind data are partitioned into too many categories. Brooks and 
Carruthers offer a general rule, that the number of categories in hypothesis testing should not exceed 
5*log10(N), where N is the sample size (Brooks 1978). For a one-year sample of hourly averages (N = 
8,760) the maximum number of categories would be 20. This limit is consistent with 7 wind speed 
classes or 17 wind directions, but not with 97 joint frequency categories. Thus, hypothesis testing 
methods such as the ߯ଶ test and the t-test are limited to one-way classified wind data. 

Among the statistical methods considered, joint wind speed and direction distributions are only 
amenable to linear regression or correlation (see Figure 6). Analyzing these distributions can 
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strengthen the case for long-term representativeness of baseline wind data. The joint analysis offers 
the most rigorous comparison between short and long-term wind frequency distributions, because a 
conclusion of representativeness demands not only that wind direction frequencies be similarly 
distributed, but that they also be similarly distributed within each wind speed class. In this sense, 
linear regression analysis of short and long-term joint wind distributions is the best quantitative 
measure of the similarity between the associated wind roses.  

To summarize, linear regression analysis is deemed appropriate to demonstrate long-term 
representativeness of wind and stability class frequency data, for the following reasons: 

1. The scatterplot and fitted line provide visual confirmation of a linear correlation between short 
and long-term wind category frequencies. R2 gives the strength of a linear relationship, and the 
p-value gives the degree of confidence in the result. 

2. Inherent to every relative frequency distribution is the requirement that all of the individual 
frequencies must sum to 1; therefore, demonstrating a strong linear association also 
demonstrates equivalence. 

3. Linear regression can be applied to joint wind speed and direction frequencies, which 
correspond more closely than wind speed or wind direction frequencies by themselves, to the 
wind data format used by MILDOS. 

4. Linear regression isolates the sources of variation among category frequencies. When 
multiplied by 100, R2 signifies the percent of variation from a mean frequency that is common 
to both short and long-term distributions. In Figure 6, for example, 94% of the variation among 
2-year joint frequencies can be predicted based on measured long-term frequencies, while 
only 6% is attributed to random, year-to-year fluctuations and/or measurement error.  

5. Linear regression distinguishes well between generally weak spatial correlation and generally 
strong temporal correlation. 

The last of these reasons can be demonstrated by summarizing the results of regression analyses 
performed on wind direction and joint wind speed and direction frequencies at all three reference sites 
(Table 16). The “LT/ST” designation signifies a comparison of long-term/short-term data at a given 
site. All comparisons between two sites were made using long-term data. 

Table 16 – Linear Regression Temporal and Spatial Correlation Summary 

 
 
An R2 greater than 0.9 indicates strong correlation; an R2 less than 0.5 indicates weak correlation, if 
any. Table 16 shows that short and long-term joint frequencies correlate very strongly at each of the 
three locations, but very weakly between locations. Thus, regression analysis discriminates between 
similar and dissimilar wind roses (see Figure 8). 

Site R
2

Paired Sites R
2

Site R
2

Paired Sites R
2

ACC LT/ST 0.960 ACC‐Csp 0.078 ACC LT/ST 0.933 ACC‐Csp 0.142

Csp LT/ST 0.980 ACC‐Gil 0.034 Csp LT/ST 0.962 ACC‐Gil 0.165

Gil LT/ST 0.974 Csp‐Gil 0.005 Gil LT/ST 0.973 Csp‐Gil 0.278

Discriminating Power of Linear Regression: 

Wind Direction Distributions 

Discriminating Power of Linear Regression: 

Joint Wind Speed and Direction Distributions 
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Figure 8 – Long Term Wind Roses for Antelope, Casper and Gillette 
 

 

 

Linear correlation produces Pearson’s correlation coefficient R, based on the assumption of normally 
distributed data. This assumption can be relaxed by ranking the data and computing Spearman’s 
correlation coefficient, a method commonly applied to nonparametric data. Analyzing 25-year and 2-
year wind frequency distributions at ACC, we obtain Spearman’s R = 0.986 for wind speed and 0.983 
for wind direction. Hence, the assumption of normality does not introduce appreciable error in the 
linear correlation analysis. 

Conclusion 
In fulfillment of NRC guidelines, the combination of linear correlation and hypothesis testing provides 
a comprehensive demonstration of long-term representativeness. For the ACC, Casper and Gillette 
sites, the most recent two years of hourly wind data are statistically no different than the previously 
recorded long-term data at each site. This conclusion is corroborated by three tests, which have been 
jointly applied by others to analyze seasonally classified cloud cover (Lowther 1991, pp. 32-33): 

1. ߯ଶ test, with the phi coefficient to adjust for large sample size  
2. The Student’s t-test 
3. Linear correlation coefficient  

Not only do these methods demonstrate temporal uniformity in wind patterns at any of the three sites, 
but they confirm statistically significant differences in wind patterns between these sites.  

Brooks and Carruthers (Brooks 1978) stated, “All statistical tests must be interpreted in the light of 
common sense.” We should not discount the role of graphical comparisons such as wind roses, 
histograms, and scatter plots with fitted regression lines, in validating statistical test outcomes. In the 
final analysis, graphical illustrations may be the most useful of these (Gardiner 1979). Figures 9 and 
10 below leave little doubt that wind speed and direction patterns in eastern Wyoming do not vary 
nearly as much from year to year as they do from place to place.   
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Figure 9 –Long-Term and Short-Term (Baseline) Wind Roses 

 

Figure 10 – Temporal and Spatial Wind Direction Frequency Comparisons 
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