Justin T. Wheat Nuclear Licensing Manager

1. 20 - A

Southern Nuclear Operating Company, Inc. 40 Inverness Center Parkway Post Office Box 1295 Birmingham, AL 35242

Tel 205.992.5998 Fax 205.992.7601

AUG 2 2 2016

Docket Nos.: 50-424 50-425 10 CFR 50.54(q) NL-16-1409

U. S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington, D.C. 20555-0001

Southern Nuclear Operating Company Vogtle Electric Generating Plant Units 1 and 2; <u>Report of Changes to Emergency Plan</u>

Ladies and Gentlemen:

In accordance with 10 CFR 50.54(q)(5) and 10 CFR 72.44(f), Southern Nuclear Operating Company (SNC) hereby submits descriptions of changes to plant emergency plans and a summary of the analysis demonstrating that the changes did not reduce the effectiveness of the plans. The plans, as changed, continue to meet the requirements in 10 CFR 50 Appendix E and the planning standards of 10 CFR 50.47(b).

Description of Changes and Summary of Analysis

Effective July 26, 2016, Vogtle Electric Generating Plant (Vogtle) implemented changes to the emergency preparedness procedure NMP-EP-110-GL03, "VEGP EALs – ICs, Threshold Values and Basis" and changes to the Vogtle Emergency Plan (Version 67). Several changes resulted from a Vogtle engineering analysis of setpoints for Emergency Operating Procedures (EOPs) and Abnormal Operating Procedures (AOPs). This analysis refined the setpoints to improve the accuracy of the values. Specifically, EAL values were changed to align with tolerance improvements described in EOP and AOP setpoint documents. In addition, a requirement for the TSC Director to have Self Contained Breathing Apparatus (SCBA) training was eliminated because the requirement was not related to any emergency planning commitment. Finally, conforming changes were made due to errors found in implementation procedures that were not in alignment with the approved NEI 99-01 Rev. 4 EAL scheme.

Following the guidance in NRC R.G. 1.219, SNC concluded that the changes to EAL values reflected the design documents and that the meaning and intent of the basis of the approved EAL was unchanged. All of the changes were evaluated in accordance with 10 CFR 50.54(q)(3); and it was determined that these changes did not reduce the effectiveness of the Vogtle Emergency Plan and the revised procedure and Vogtle Emergency Plan continue to meet the requirements in 10 CFR 50 Appendix E and the planning standards of 10 CFR 50.47(b).

AX45 NRR

U.S. Nuclear Regulatory Commission NL-16-1409 Page 2

This letter contains no NRC commitments. If you have any questions, please contact Ken McElroy at (205) 992-7369.

Respectfully submitted,

Justin T. Wheat Nuclear Licensing Manager

jtw/efb/lac

فأسرو المجرية

cc: Southern Nuclear Operating Company

Mr. S. E. Kuczynski, Chairman, President & CEO Mr. D. G. Bost, Executive Vice President & Chief Nuclear Officer Mr. B. K. Taber, Vice President – Vogtle Unit 1 & 2 Mr. M. D. Meier, Vice President – Regulatory Affairs Mr. R. L. Mansfield – Director, Emergency Preparedness Mr. G. W. Gunn, Regulatory Affairs Manager – Vogtle 1 & 2 RType: Vogtle=CVC7000

U. S. Nuclear Regulatory Commission Ms. C. Haney, Regional Administrator Mr. R. E. Martin, NRR Senior Project Manager – Vogtle Ms. N. R. Childs, Resident Inspector - Vogtle

State of Georgia

Mr. J. H. Turner, Director - Environmental Protection Division

VOGTLE ELECTRIC GENERATING PLANT UNIT 1 AND UNIT 2 EMERGENCY PLAN Revision 67 June 2016 Revision Insertion Instructions

Please replace the affected pages in your copy of the Plan with the corresponding Revision 67 pages. Pages included in this package are:

Title Page

List of Effective Pages page x, xi, xii, xiii, xiv, and xv

Section D pages D-13, D-60, D-61, D-62, D-110, and D-115

Section O Table O-2 sheet 1

Discard these instructions after use and sign and return Transmittal Acknowledgment to address indicated.

VOGTLE ELECTRIC GENERATING PLANT

UNIT 1 AND UNIT 2

EMERGENCY PLAN

LIST OF EFFECTIVE PAGES WITH REVISIONS

PAGE

<u>REV.</u>

Table of Contents (i)	51
is the of concents (1)	42
	43
	57
	21
V	46
Vl	27
vii	63
viii	38
ix	63
x	63
xi	67
xii	67
xiii	67
xiv	67
xv	67
xvi	60
xvii	60
xviii	E O
Preface vix	39
VV	11
Figure i	
Figure i	J 27
Figure II Riguro iii	2.7
Figure III Rigumo ivi	14
Figure IV	23
Figure v	NONE
Figure Vi	12
A-1	56
A-2	30
A-3	23
A-4	30
A-5	30
A-6	30
A-7	23
A-8	18
A-9	61
A-10	61
A-11	35
A-12	35
A-13	31
A-14	23
A-15	35
A-16	61
A-17	56
A-18	23
A-19	35
A-20	22 3.8
A-21	24
Table $A-1$ (1 of 2)	27
Table A-1 (2 of 2)	14
Figure $A-1$	
	55

LIST OF	' EFFECTIVE	PAGES WITH	REVISIONS

PAGE	<u>REV.</u>
Figure A-2 Figure A-3	, 22 2
Figure A-4	35
Figure A-5	35
Figure A-6 Figure A-7	35
B-1	61
B-2	61
B-3	57
B-4 B-5	57
B-6	37
B-7	61
B-8	38
B-9	56
B-10 Table B-1 (1 of 2)	19
Table B-1 $(1 \text{ of } 2)$	60
Table B-2 (1 of 2)	60
Table B-2 (2 of 2)	43
Figure B-1	50
Figure B-3	43
C-1	61
C-2	61
C-3	61
C-4 C-5	61 61
Table C-1 (1 of 2)	2
Table C-1 (2 of 2)	28
Table C-2	56
	48 56
D-7	48
D-8 .	48
D-9	48
D-10 D-11	48 48
D-12	48
D-13	67
D-14 to D-16	57
D-17	62 57
D-18 D-19 to D-21	57
D-22	62
D-23 to D-25	62
D-26 to D-28	57
D-30	62 57
D-31	62
D-32	57
D-33	48

.

LIST OF EFFECTIVE PAGES WITH REVISIONS

	Ţ	PAGE		<u>REV.</u>
D-34				56
D-35				56
D-36				48
D-37				48
D-38				48
D-39				48
D-40				48
$D-4\perp$			1	48
D-42				48
D = 43 D = 44				48
D - 45				40 62
D-46	to	D-49		48
D-50				62
D-51				48
D-52				62
D-53				48
D-54				62
D-55	to	D-56		48
D-57	to	D-58		60
D-59				48
D-60				67
D-61				67
D-62				67
D = 63				62 53
D = 64				48
D-66				62
D-67				62
D-68	to	D-71		48
D-72				56
D-73				48
D-74	to	D-75		55
D-76	to	D-83		48
D-84	to	D-85		55
D-86	to	D-89		48
D-90	to	D-92		55
D-93	_			48
D-938 D 04	1 + 0	דם ת		6U 4 9
D-94 D_98	LU	J-97		40 62
90-90 D-99				48
D-100	ר			48
D-101	Ĺ			48
D-102	2			48
D-103	3			48
D-104	1			48
D-105	5			48
D-106	5			48
D-107	7			48
D-108	3			48
D-105	1			48

xii

LIST OF EFFECTIVE PAGES WITH REVISIONS

<u>PAGE</u>

<u>REV.</u>

F-3 30 $F-4$ 28 $F-5$ 57 $F-6$ 60 $F-7$ 43	F-330 $F-4$ 28 $F-5$ 57 $F-6$ 60 $F-7$ 43Table F-160 $G-1$ 24 $G-2$ 41 $G-3$ 60 $G-4$ 60 $H-1$ 51	F-330 $F-4$ 28 $F-5$ 57 $F-6$ 60 $F-7$ 43Table $F-1$ 60 $G-1$ 24 $G-2$ 41 $G-3$ 60 $G-4$ 60 $H-1$ 51 $H-2$ 23 $H-3$ 57 $H-4$ 30 $H-5$ 61 $H-6$ 38 $H-7$ 38 $H-8$ 57 $H-9$ 65 $H-10$ 35 $H-12$ 56 $H-13$ 65 $H-14$ 38	D-110 D-111 D-112 D-113 D-114 D-115 D-116 E-1 E-2 E-3 E-4 Table E-1 (1 of 2) Table E-1 (2 of 2) Table E-2 (1 of 2) Table E-2 (2 of 2) Figure E-1 Figure E-2 (1 of 3) - DELETED Figure E-2 (1 of 2) Figure E-2 (2 of 2) F-1 F-2	67 48 48 48 67 48 61 60 56 35 25 33 43 21 35 56 43
	Table F-1 60 G-1 24 G-2 41 G-3 60 G-4 60 H-1 51	Table F-1 60 G-124G-241G-3 60 G-4 60 H-1 51 H-2 23 H-3 57 H-4 30 H-5 61 H-6 38 H-7 38 H-8 57 H-9 65 H-10 35 H-11 35 H-12 56 H-13 65 H-14 38	F-3 F-4 F-5 F-6 F-7	30 28 57 60 43
H-2 23 H-3 57 H-4 30 H-5 61 H-6 38 H-7 38 H-8 57		141	H-9 H-10 H-11 H-12 H-13 H-14	65 35 35 56 65 38

xiii

LIST OF EFFECTIVE PAGES WITH REVISIONS

PAGE

<u>REV.</u>

Figure H-2 I-1 I-2 I-3 I-4 I-5 I-6 I-7 I-8 I-9 I-10 J-1 J-2 J-3	57 56 34 65 38 65 38 57 21 39 61
J-4 J-5 J-6 Table J-1 Table J-2 Table J-3 Table J-4 Table J-5 (1 of 2) Table J-5 (2 of 2) Figure J-1 Figure J-2 K-1 K-2	38 63 11 22 63 63 61 39 41 63 63 57
K-2 K-3 K-4 Table K-1 Table K-2(DELETED) L-1 L-2 L-3 L-4 M-1 M-2 M-3 M-4	21 57 23 23 60 56 19 37 19 60 60
Figure M-1 N-1 N-2 N-3 N-4 N-5 N-6 N-7 O-1 O-2 Table O-1 (1 of 3)	60 61 61 61 61 61 61 61 50 57

LIST OF EFFECTIVE PAGES WITH REVISIONS

PAGE

<u>REV.</u>

Table O-1 Table O-2 Table O-2 P-1 P-2 P-3 Figure P-1 Appendix 1 1-1 1-2 1-3 1-4 1-5 Appendix 2 2-1 2-2 Appendix 3 3-1 3-2 3-3 3-4 3-5 3-6 3-7 3-8 3-9 3-10 Figure 3-1 Appendix 4 4-1 4-2 4-3 4-4 4-5 4-6	(2 c (3 c (1 c (2 c)	of 3) of 3) of 2) of 2)						5797622120999962 6 2601956211888870095000
4 - 7								60
Appendix 5	-	_		-	_			0
Department Site	of	Energ	3X -	Sava	nnah	River	04/12	/99
Memorandum Appendix 6 6-1 6-2 6-3	of	Agree	ement	: (4	page	s)		5 59 61 61 61

challenges as YELLOW, ORANGE, and RED paths. If the core exit thermocouples exceed 1200 degrees F or 700 degrees F with low reactor vessel water level, a RED path condition exists. The ERG considers a RED path as "... an extreme challenge to a plant function necessary for the protection of the public ..." This is almost identical to the present NRC NUREG-0654 description of a site area emergency "... actual or likely failures of plant functions needed for the protection of the public ..." It reasonably follows that if any CSF enters a RED path, a site area emergency exists. A general emergency could be considered to exist if core cooling CSF is in a RED path and the EOP function restoration procedures have not been successful in restoring core cooling.

Although the majority of the EALs provide very specific thresholds, the Emergency Director must remain alert to events or conditions that lead to the conclusion that exceeding the EAL threshold is imminent. If, in the judgment of the Emergency Director, an imminent situation is at hand, the classification should be made as if the thresholds has been exceeded. While this is particularly prudent at the higher emergency classes (as the early classification may provide for more effective implementation of protective measures), it is nonetheless applicable to all emergency classes.

Multiple Events and Emergency Class Upgrading

The SNC Classification procedures are written to classify events based on meeting the Initiating Condition (IC) and a Threshold Value (TV) for an EAL considering each Unit independently. Two IC Matrices are used, one for Hot ICs and one for Cold ICs. The temperature criteria of the Cold Shutdown Mode determines if the unit should use the Hot or Cold Matrix.

The IC Matrices are human factored to read from top to bottom General Emergency to Notification of Unusual Event within a category or subcategory to eliminate the higher classifications before reaching a lower classification. This arrangement lessens the possibility of underclassifying a condition.

During events, the ICs and TVs are monitored and if conditions meet another higher EAL, that higher emergency classification is declared and appropriate notifications made. Notifications are made on a site basis. If both units are in concurrent classifications, the highest classification would be used for the notification and the other unit classification noted on the notification form.

There are six EALs which specifically state that if the condition cannot be mitigated and is imminent, the Emergency

D-13

Vogtle Fission Product Barrier Evaluation

General Emergency	Site Area Emergency	Alert	Unusual Event						
FG1	FS1	FA1	FU1						
Loss of ANY Two Barriers AND Loss	Loss or Potential Loss of ANY	ANY Loss or ANY Potential Loss of ANY Loss or ANY Potential							
or Potential Loss of Third Barrier	I wo Barriers	EITHER Fuel Clad OR RCS	Containment						
Int	Fuercia	Potent	ialloss						
1. Critical Safety Function Status		1. Critical Safety Function Status							
Core-Cooling RED		Core Cooling-ORANGE							
		OR Heat Sink-RED							
2. Primary Coolant Activity Level		2. Primary Coolant Activity Level							
Indications of RCS Coolant Activity gree	ater than 300 µCi/gm Dose	Not Applicable							
Equivalent I-131		2. Care Fuit Thermosourule Boodin							
Core Exit TCs greater than 1200°F	2	Core Exit TCs greater than 700°F	lgs						
4. Reactor Vessel Water Level		4. Reactor Vessel Water Level							
Not Applicable		RVLIS LEVEL less than 63%							
5. Containment Radiation Monitoring	1 = 0.06 > 2.6E + 5.mB/br	5. Containment Radiation Monitoring							
6. Other Indications		6. Other Indications							
Not applicable		Not applicable							
7. Emergency Director Judgment	Parriania last. Casaidan	7. Emergency Director Judgment	ad Darrian in notantially last. Consider						
conditions not addressed and inability	to determine the status of the Fuel	conditions not addressed and inabilit	to determine the status of the Fuel						
Clad Barrier		Clad Barrier.							
	RCS	Barrier							
Los		Potent	tial Loss						
Not Applicable		RCS Integrity-RED							
		OR							
2 PCS Look Patr		Heat Sink-RED							
RCS subcooling less than 22°F (less th	an 22° F Adverse} due to an RCS	Non-isolable RCS leak (including SG	tube Leakage) greater than 120 gpm						
leak greater than Charging / RHR capa	icity								
3. SG Tube Rupture		3. SG Tube Rupture							
4. Containment Radiation Monitoring	3	4. Containment Radiation Monitoring							
CTMT Rad Monitor RE-005 OR 006 ≥	3.7E+2 mR/hr	Not Applicable							
5. Other Indications		5. Other Indications	following						
Not applicable		Containment sump	Tonowing.						
		Reactor Coolant Drain Tank (RCDT)							
C. Emana Disector Indemont		Waste Holdup Tank (WHT)							
Judgment by the ED that the RCS Bar	ier is lost. Consider conditions not	Judgment by the ED that the RCS Ba	arrier is potentially lost. Consider						
addressed and inability to determine th	e status of the RCS Barrier	conditions not addressed and inabilit	ty to determine the status of the RCS						
	Containe	Barrier.							
Los	Containin	Potent	tial Loss						
1. Critical Safety Function Status		1. Critical Safety Function Status							
Not Applicable		Containment-RED							
2. Containment Pressure Rapid unexplained CTMT pressure low	vering following initial pressure rise	2. Containment Pressure CTMT pressure greater than 52 psic							
OR	5	OR							
Intersystem LOCA indicated by CTMT	pressure or sump level response	CTMT hydrogen concentration great	er than 6%						
not consistent with a loss of prinary of	secondary coolant	CTMT pressure greater than 21.5 ps	ig						
		AND							
		Four CTMT fan coolers	erable equipment.						
		AND							
2 Core Fult The		One train of CTMT spray	-						
3. Core Exit Thermocouple Reading Not applicable		3. Core Exit Thermocouple Readin CORE COOLING CSF - RED for gree	ater than 15min						
		OR							
		CORE COOLING CSF - ORANGE fo	or greater than 15min						
		RVLIS LEVEL less than 63%							
4. SG Secondary Side Release with I	Primary to Secondary Leakage	4. SG Secondary Side Release with	P-to-S Leakage						
RUPTURED S/G is also FAULTED out	side of containment	Not applicable							
Primary-to-Secondary leakrate greater	than 10 gpm with nonisolable								
steam release from affected S/G to the	environment								
5. CNMT Isolation Valves Status After CTMT isolation valve(s) OR damper(s)	r CNMT Isolation	5. CNMT Isolation Valves Status After Not Applicable	er CNMT Isolation						
direct pathway to the environment after	containment isolation is required		and the second						
6. Significant Radioactive Inventory in C	ontainment	6. Significant Radioactive Inventor	y in Containment						
7 Other Indications		7 Other Indications	< 1.3E+/ IIIR/III						
Pathway to the environment exists base	ed on VALID	Not applicable							
RE-2562C Alarm									
RE-12444C									
OR									
RE-12442C Alarms		8 Emergency Director Judgment							
Judgment by the ED that the CTMT Ba	rrier is lost. Consider conditions	Judgment by the ED that the CTMT I	Barrier is potentially lost. Consider						
not addressed and inability to determine	e the status of the CTMT Barrier	conditions not addressed and inabilit	y to determine the status of the CTMT						

REV 67 6/16

1

1

FUEL CLAD BARRIER Threshold Values:

The Fuel Clad Barrier is the zircalloy or stainless steel tubes that contain the fuel pellets.

1. Critical Safety Function Status

NOTE Heat Sink CSF should not be considered –RED if total AFW flow is less than 535 gpm due to operator action.

RED path indicates an extreme challenge to the safety function. ORANGE path indicates a severe challenge to the safety function.

Core Cooling - ORANGE indicates subcooling has been lost and that some clad damage may occur. Heat Sink - RED indicates the ultimate heat sink function is under extreme challenge and thus these two items indicate potential loss of the Fuel Clad Barrier.

Core Cooling - RED indicates significant superheating and core uncovery and is considered to indicate loss of the Fuel Clad Barrier.

2. Primary Coolant Activity Level

Assessment by the NUMARC EAL Task Force indicates that this amount of coolant activity is well above that expected for iodine spikes and corresponds to less than 5% fuel clad damage. This amount of radioactivity indicates significant clad damage and thus the Fuel Clad Barrier is considered lost.

There is no equivalent "Potential Loss" Threshold Value for this item.

3. Core Exit Thermocouple Readings

Core Exit Thermocouple Readings are included in addition to the Critical Safety Functions to include conditions when the CSFs may not be in use (initiation after SI is blocked).

The "Loss" Threshold Value of 1200 degrees F corresponds to significant superheating of the coolant. This value corresponds to the temperature reading that indicates core cooling - RED in Fuel Clad Barrier Threshold Value #1.

The "Potential Loss" Threshold Value of 700 degrees F corresponds to loss of subcooling. This value corresponds to the temperature reading that indicates core cooling - ORANGE in Fuel Clad Barrier Threshold Value #1.

4. Reactor Vessel Water Level

There is no "Loss" Threshold Value corresponding to this item because it is better covered by the other Fuel Clad Barrier "Loss" Threshold Values.

The 63% RVLIS value for the "Potential Loss" Threshold Value corresponds to the top of the active fuel. The "Potential Loss" Threshold Value is defined by the Core Cooling - ORANGE path.

5. Containment Radiation Monitoring

The $\geq 2.6E+5$ mR/hr reading is a value which indicates the release of reactor coolant, with elevated activity indicative of fuel damage, into the containment. The reading is calculated assuming the instantaneous release and dispersal of the reactor coolant noble gas and iodine inventory associated with a concentration of 300 µCi/gm dose equivalent I-131 into the containment atmosphere. Reactor coolant concentrations of this magnitude are several times larger than the maximum concentrations (including iodine spiking) allowed within technical specifications and are therefore indicative of fuel damage. This value is higher than that specified for RCS barrier Loss Threshold Value #4. Thus, this Threshold Value indicates a loss of both the fuel clad barrier and a loss of RCS barrier.

There is no "Potential Loss" Threshold Value associated with this item.

7. Emergency Director Judgment

This Threshold Value addresses any other factors that are to be used by the Emergency Director in determining whether the Fuel Clad barrier is lost or potentially lost. In addition, the inability to monitor the barrier is incorporated in this Threshold Value as a factor in Emergency Director judgment that the barrier may be considered lost or potentially lost. (See also IC SG1, "Prolonged Loss of All Offsite Power and Prolonged Loss of All Onsite AC Power", for additional information.)

RCS BARRIER Threshold Values:

The RCS Barrier includes the RCS primary side and its connections up to and including the pressurizer safety and relief valves, and other connections up to and including the primary isolation valves.

1. Critical Safety Function Status

NOTE

Heat Sink CSF should not be considered –RED if total AFW flow is less than 535 gpm due to operator action.

This Threshold Value uses the Critical Safety Function Status Tree (CSFST) monitoring and functional restoration procedures. An RCS Integrity RED path indicates an extreme challenge to the safety function derived from appropriate instrument readings, and these CSFs indicate a potential loss of RCS barrier.

There is no "Loss" Threshold Value associated with this item.

SYSTEM MALFUNCTION

Initiating Condition -- SITE AREA EMERGENCY

Complete Loss of Heat Removal Capability.

Operating Mode Applicability:

Power Operation Startup Hot Standby Hot Shutdown

Threshold Value:

NOTE

Heat Sink CSF should not be considered –RED if total AFW flow is less than 535 gpm due to operator action.

1. Complete Loss of Heat Removal Capability as indicated by:

a. Core Cooling CSF - ORANGE

<u>AND</u>

b. Heat Sink CSF - RED

Basis:

This Threshold Value addresses complete loss of functions, including ultimate heat sink (NSCW), required for hot shutdown with the reactor at pressure and temperature. Reactivity control is addressed in other Threshold Values.

Under these conditions, there is an actual major failure of a system intended for protection of the public. Thus, declaration of a Site Area Emergency is warranted. Escalation to General Emergency would be via Abnormal Rad Levels / Radiological Effluent, Emergency Director Judgment, or Fission Product Barrier Degradation ICs.

SS4

SYSTEM MALFUNCTION

Failure of the Reactor Protection System to Complete an Automatic Trip and Manual Trip was NOT Successful <u>AND</u> there is Indication of an Extreme Challenge to the Ability to Cool the Core.

Operating Mode Applicability:

Power Operation Startup

Threshold Value:

NOTE

Heat Sink CSF should not be considered – RED if total AFW flow is less than 535 gpm due to operator action.

1. Indications exist that a reactor protection system setpoint was exceeded and automatic trip did not occur, and a manual trip did not result in the reactor being made subcritical.

AND

Core Cooling CSF - RED

Heat Sink CSF - RED

Basis:

Automatic and manual trip are not considered successful if action away from the reactor control console is required to trip the reactor.

The Reactor should be considered subcritical when reactor power level has been reduced to less than 5% power and SUR is negative.

Under the conditions of this IC and its associated Threshold Values, the efforts to bring the reactor subcritical have been unsuccessful and, as a result, the reactor is producing more heat than the maximum decay heat load for which the safety systems were designed. Although there are capabilities away from the reactor control console, such as emergency boration, the continuing temperature rise indicates that these capabilities are not effective. This situation could be a precursor for a core melt sequence. This Threshold Value equates to a Subcriticality RED condition.

The extreme challenge to the ability to cool the core is intended to mean that the core exit temperatures are at or approaching 1200 degrees F or that the reactor vessel water level is below the top of active fuel. This Threshold Value equates to a Core Cooling RED condition.

SG2

TABLE O-2 (Sheet 1 of 2)

Training Requirements For VEGP ERO Personnel	CORE DAMAGE ASSESSMENT	OFFSITE COMMUNICATIONS	EMERGENCY PLAN OVERVIEW	FIRST AID	MANAGEMENT OF RADIOLOGICAL EMERGENCIES	OFFSITE DOSE ASSESSMENT	POST-ACCIDENT SAMPLING	REPAIR AND CORRECTIVE ACTIONS	FIELD MONITORING TEAM	RAD EMERGENCY TEAM IN-PLANT	SECURITY	MEDICAL SUPPORT OF RADIOLOGICAL EMERGENCY	SCBA
Emergency Director			х		x				l		_		
EOF Management	- T	rainin	g pro	vided a	s des	cribe	d in A	Append:	ix 7				
EOF Staff	- T	rainir	ng pro	ovided a	as des	cribe	d in A	Append	ix 7				
		L	1		_	1	1	I	L	L	L	l	1
Dose Analyst			x			x							
Security Coordinators			x								x		
TSC Manager	4		x		x								
TSC Support Coordinator			x										
Engineering Supervisor	x		x										
Maintenance Supervisor			x					x					
Operations Supervisor			x		x								
Radiation Protection Supervisor			x			x				x		x	
Chemistry Supervisor			x.		1		x						
TSC Engineering Staff	_		x										
OSC Manager			x		x			x					
Communicators		x	x										
Clerks			x										
Teams	1									1			
In-Plant Monitoring	1	•	x							x			x
Damage Control/Assessment			x					x					x
Repair And Modification			x					x					x
Search And Rescue			x	X(a)									x
Fire Brigade			х										x
First Aid			x	x									x