

Delivering the Nuclear Promise: Key Engineering Initiatives

NRC Headquarters Rockville, MD October 13, 2016

Agenda

•	Introductions and Overview	10 min
•	 ENG-003: Standard Design Process Objective of the SDP Process Overview Implementation 	35 min
•	Questions	10 min
•	ENG-001: Critical Component Reduction	15 min
•	Questions	10 min
•	Stakeholder Interaction	10 min
•	Wrap up and Adjourn	

Delivering the Nuclear Promise

3 Strategic Focus Areas

Standard Design Process

Purpose of SDP

- Implement a standard plant modification process to promote efficient use of resources and streamlined engineering changes
 - Simplified design process common to all stations
 - Industry-wide training applicability
 - Standardized process software
 - Facilitate sharing of information between stations

SDP Team Structure

• Executive Oversight Committee

- SNC Sponsored
- Engineering VPs (6)
- Steering Committee
 - All domestic utilities represented
 - INPO
 - NEI
 - Engineering Vendor Representative

Dominion	STARS
Duke	SCANA
Entergy	SNC
Exelon	ΤVΑ
FENOC	USA
NextEra	

SDP Overview

- SDP Procedure IP-ENG-001
 - Includes organizational expectations & behaviors
 - Supporting Resource Manual Examples, FAQs
 - Industry owned procedure with industry oversight & governance
- Standard engineer training and qualification
- Industry standard performance metric
- Software capable of interface with site platforms

Regulatory Adherence

- Adherence to Regulatory Requirements
 - Development phase maintained focus on regulatory requirements
 - Design Control is maintained where required
- Commitment Management
 - Pilot Plants reviewed commitments during change management plan implementation
 - Efficiency Bulletin will contain required action to review commitments
 - Commitments managed in Utility interface procedures

SDP Procedure Methodology

- Cafeteria Approach to Design Changes
 - Design Authority establishes documentation and support necessary to support the change
 - Endorses a graded approach to design changes
- Moves Lower Complexity Changes to Lower Complexity Processes
 - Design Equivalent
 - Commercial

SDP Procedure Structure

• Procedure

- Includes cross-functional organizational expectations and behaviors as facilitators for successful implementation
- Supporting Resource Manual includes examples, process/job aids, Frequently Asked Questions

Utility Interface with SDP

- Provides interface roadmap to utility specific processes
- Integrates IP-ENG-001 into Utility Specific Programs
 - Endorses IP-ENG-001, SDP Procedure
 - Includes site specific interfaces and cross-references
 - Ensures utility procedure change processes are used to manage future changes
 - Ensures compliance with utility QA requirements and commitments

SDP Schedule

- SDP Procedure & lesson materials issued to Pilot Plants for Implementation – August 2016
- Pilots McGuire, Surry, Sequoyah, Vogtle, NextEra
 - September 2016 through February 2017
 - Validating Procedure, Training, Change Management Plans
 - Monitor Effectiveness in Monthly Conference Calls
- February 2017 Roll up comments and issue procedure to industry
 - Industry to implement by July 2017
- July 2018 Software implemented

Sustained Oversight

- Design Oversight Working Group Industry Owned
 - Executive Oversight Committee Industry Engineering VPs
 - Monitoring for effectiveness Metrics
 - Procedure revision control
 - Industry lessons learned
 - Training and Knowledge Transfer

QUESTIONS?

Critical Component Reduction

Objective

- Reduce the number of plant components classified as "Critical" in the preventive maintenance program; and
- Focus maintenance resources on those components most important to plant safety and reliability.

Issue

- Current AP-913 definition of "Critical" is conservative in that it includes some conditions that are undesirable, but are not unacceptable:
 - 5% up to \leq 20% Power reductions
 - Entry into an unplanned shutdown LCO < 72 hour
 - Half Scram/Trip
 - ESFAS Actuation
 - Loss of redundant HSS/Risk Significant component
- Result: Number of components classified as "Critical" has become excessive in relation to their importance.

New AP-913 (Revision 5) Definition

Critical Components:

- Reactor scram/trip (single point vulnerability)
- Significant power transient of > 20 percent plant transient [operational loss event (OLE)]
- MSPI monitored component failure
- Any single failure that causes a complete loss of any of the following critical safety functions:
 - Core, reactor coolant system or spent fuel pool heat removal
 - Containment isolation, temperature, pressure
 - Reactivity control
 - Vital AC electrical power
- A single equipment failure that results in the loss of a Maintenance Rule high-safety-significant or risk-significant function.

Implementation

- Implementation of AP-913, Revision 5 ongoing industrywide through mid-2017
- Companion guidance on preventive maintenance program enhancements to be issued late 2016 for implementation through late 2018.
- Change management guidance and implementation oversight by INPO and Engineering VPs.

QUESTIONS?