

200 Exelon Way Kennett Square, PA 19348

www.exeloncorp.com

10 CFR 50.90

October 6, 2016

U.S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington, DC 20555-0001

> Braidwood Station, Units 1 and 2 Renewed Facility Operating License Nos. NPF-72 and NPF-77 NRC Docket Nos. STN 50-456 and 50-457

> Byron Station, Units 1 and 2 Renewed Facility Operating License Nos. NPF-37 and NPF-66 NRC Docket Nos. STN 50-454 and 50-455

Calvert Cliffs Nuclear Power Plant, Units 1 and 2 Renewed Facility Operating License Nos. DPR-53 and DPR-69 NRC Docket Nos. 50-317 and 50-318

Clinton Power Station, Unit 1 Facility Operating License No. NPF-62 NRC Docket No. 50-461

Dresden Nuclear Power Station, Units 2 and 3 Renewed Facility Operating License Nos. DPR-19 and DPR-25 <u>NRC Docket Nos. 50-237 and 50-249</u>

LaSalle County Station, Units 1 and 2 Facility Operating License Nos. NPF-11 and NPF-18 NRC Docket Nos. 50-373 and 50-374

Nine Mile Point Nuclear Station, Units 1 and 2 Renewed Facility Operating License Nos. DPR-63 and NPF-69 NRC Docket Nos. 50-220 and 50-410

Peach Bottom Atomic Power Station, Units 2 and 3 Renewed Facility Operating License Nos. DPR-44 and DPR-56 <u>NRC Docket Nos. 50-277 and 50-278</u>

Quad Cities Nuclear Power Station, Units 1 and 2 Renewed Facility Operating License Nos. DPR-29 and DPR-30 NRC Docket Nos. 50-254 and 50-265

R.E. Ginna Nuclear Power Plant Renewed Facility Operating License No. DPR-18 <u>NRC Docket No. 50-244</u>

> Three Mile Island Nuclear Station, Unit 1 Renewed Facility Operating License No. DPR-50 NRC Docket No. 50-289

SUBJECT: License Amendment Request – Supplement Application to Revise Technical Specifications to Adopt TSTF-545, Revision 3, "TS Inservice Testing Program Removal & Clarify SR Usage Rule Application to Section 5.5 Testing"

REFERENCES:

- Letter from James Barstow (Exelon Generation Company, LLC) to U.S. Nuclear Regulatory Commission, "Application to Revise Technical Specifications to Adopt TSTF-545, Revision 3, "TS Inservice Testing Program Removal & Clarify SR Usage Rule Application to Section 5.5 Testing"," dated July 26, 2016.
- Letter from Blake Purnell, U.S. Nuclear Regulatory Commission, to Bryan Hanson, Exelon Generation Company, LLC, "Braidwood Station, Units 1 and 2; Byron Station, Unit Nos. 1 and 2; Calvert Cliffs Nuclear Power Plant, Units 1 and 2; Clinton Power Station, Unit No. 1; Dresden Nuclear Power Station, Units 2 and 3; LaSalle County Station, Units 1 and 2; Nine Mile Point Nuclear Station, Units 1 and 2; Peach Bottom Atomic Power Station, Units 2 and 3; Quad Cities Nuclear Power Station, Units 1 and 2; R.E. Ginna Nuclear Power Plant; and Three Mile Island Nuclear Station, Unit 1 – License Amendment Request to Revise Technical Specification Requirements for Inservice Testing Program (CAC NOS. MF8238-MF8256)," dated September 20, 2016.

In the Reference 1 letter, Exelon Generation Company, LLC (Exelon), requested changes to the Technical Specifications (TS) for Braidwood Station, Units 1 and 2; Byron Station, Units 1 and 2; Calvert Cliffs Nuclear Power Plant, Units 1 and 2; Clinton Power Station, Unit 1; Dresden Nuclear Power Station, Units 2 and 3; LaSalle County Station, Units 1 and 2; Nine Mile Point Nuclear Station, Units 1 and 2; Peach Bottom Atomic Power Station, Units 2 and 3; Quad Cities Nuclear Power Station, Units 1 and 2; R.E. Ginna Nuclear Power Plant; and Three Mile Island Nuclear Station, Unit 1.

The proposed change in Reference 1 revised TS Section 5.5, or equivalent, "Inservice Testing Program." A new defined term, "INSERVICE TESTING PROGRAM," was added to the TS Definitions section. This proposed change was submitted to be consistent with TSTF-545, Revision 3, "TS Inservice Testing Program Removal & Clarify SR Usage Rule Application to Section 5.5 Testing," with a variation to revise TS 5.5, or equivalent, reference, shown as "The INSERVICE TESTING PROGRAM is the licensee program that fulfills the requirements of 10 CFR 50.55a(f). The provisions of SR 3.0.2 and SR 3.0.3 are only applicable to those SRs that reference usage of the INSERVICE TESTING PROGRAM."

In the Reference 2 letter, the NRC reviewed the license amendment request and requested supplemental information necessary to enable the staff to make an independent assessment regarding the applicability of the proposed license amendment. The additional requests were discussed during a conference call with the NRC on September 20, 2016.

As a result, this letter supplements the original license amendment request to revise the scope of changes requested as discussed above. All other proposed changes in the Reference 1 submittal are hereby withdrawn.

This supplement contains no regulatory commitments.

Attachment 1 provides the revised evaluation of the proposed changes. Attachment 2 provides a copy of the revised marked up TS pages that reflect the proposed changes. Attachment 3 provides a copy of the revised marked up TS Bases pages that reflect the proposed changes, for information only.

In accordance with 10 CFR 50.91, "Notice for public comment; State consultation," paragraph (b), a copy of this supplement is being provided to the designated State Officials.

If you have any questions or require additional information, please contact Laura Lynch at 610-718-3404.

I declare under penalty of perjury that the foregoing is true and correct. Executed on the 6th day of October 2016.

Respectfully,

James Mr.

James Barstow Director - Licensing & Regulatory Affairs Exelon Generation Company, LLC

Attachments: (1)

Description and Assessment of Technical Specifications Changes
 Proposed Technical Specification Changes (Mark-Up) for Braidwood

- Station, Units 1 and 2
- (2b) Proposed Technical Specification Changes (Mark-Up) for Byron Station, Units 1 and 2
- (2c) Proposed Technical Specification Changes (Mark-Up) for Calvert Cliffs Nuclear Power Plant, Units 1 and 2
- (2d) Proposed Technical Specification Changes (Mark-Up) for Clinton Power Station, Unit 1
- (2e) Proposed Technical Specification Changes (Mark-Up) for Dresden Nuclear Power Station, Units 2 and 3
- (2f) Proposed Technical Specification Changes (Mark-Up) for LaSalle County Station, Units 1 and 2

Attachments (Cont'd)

- (2g) Proposed Technical Specification Changes (Mark-Up) for Nine Mile Point Nuclear Station, Units 1 and 2
- (2h) Proposed Technical Specification Changes (Mark-Up) for Peach Bottom Atomic Power Station, Units 2 and 3
- (2i) Proposed Technical Specification Changes (Mark-Up) for Quad Cities Nuclear Power Station, Units 1 and 2
- (2j) Proposed Technical Specification Changes (Mark-Up) for R.E. Ginna Nuclear Power Plant
- (2k) Proposed Technical Specification Changes (Mark-Up) for Three Mile Island Nuclear Station, Unit 1
- (3a) Revised Technical Specification Bases Changes (Information Only) for Braidwood Station, Units 1 and 2
- (3b) Revised Technical Specification Bases Changes (Information Only) for Byron Station, Units 1 and 2
- (3c) Revised Technical Specification Bases Changes (Information Only) for Calvert Cliffs Nuclear Power Plant, Units 1 and 2
- (3d) Revised Technical Specification Bases Changes (Information Only) for Clinton Power Station, Unit 1
- (3e) Revised Technical Specification Bases Changes (Information Only) for Dresden Nuclear Power Station, Units 2 and 3
- (3f) Revised Technical Specification Bases Changes (Information Only) for LaSalle County Station, Units 1 and 2
- (3g) Revised Technical Specification Bases Changes (Information Only) for Nine Mile Point Nuclear Station, Units 1 and 2
- (3h) Revised Technical Specification Bases Changes (Information Only) for Peach Bottom Atomic Power Station, Units 2 and 3
- (3i) Revised Technical Specification Bases Changes (Information Only) for Quad Cities Nuclear Power Station, Units 1 and 2
- (3j) Revised Technical Specification Bases Changes (Information Only) for R.E. Ginna Nuclear Power Plant
- (3k) Revised Technical Specification Bases Changes (Information Only) for Three Mile Island Nuclear Station, Unit 1

Regional Administrator - NRC Region I CC: **Regional Administrator - NRC Region III** NRC Senior Resident Inspector - Braidwood Station NRC Senior Resident Inspector - Byron Station NRC Senior Resident Inspector - Calvert Cliffs Nuclear Power Plant NRC Senior Resident Inspector - Clinton Power Station NRC Senior Resident Inspector - Dresden Nuclear Power Station NRC Senior Resident Inspector - LaSalle County Station NRC Senior Resident Inspector - Nine Mile Point Nuclear Station NRC Senior Resident Inspector - Peach Bottom Atomic Power Station NRC Senior Resident Inspector - Quad Cities Nuclear Power Station NRC Senior Resident Inspector - R.E. Ginna Nuclear Power Plant NRC Senior Resident Inspector - Three Mile Island Nuclear Station S. T. Gray, State of Maryland A. L. Peterson, NYSERDA Illinois Emergency Management Agency - Division of Nuclear Safety R. R. Janati - Bureau of Radiation Protection, Commonwealth of Pennsylvania

- Subject: Application to Revise Technical Specifications to Adopt TSTF-545, Revision 3, "TS Inservice Testing Program Removal & Clarify SR Usage Rule Application to Section 5.5 Testing"
- 1.0 SUMMARY DESCRIPTION
- 2.0 ASSESSMENT
 - 2.1 Applicability of Published Safety Evaluation
 - 2.2 Variations
- 3.0 REGULATORY EVALUATION
 - 3.1 No Significant Hazards Consideration
- 4.0 ENVIRONMENTAL CONSIDERATION
- 5.0 REFERENCES

1.0 SUMMARY DESCRIPTION

In the Reference 1 letter, Exelon Generation Company, LLC (EGC), requested changes to the Technical Specifications (TS) for for Braidwood Station, Units 1 and 2; Byron Station, Units 1 and 2; Calvert Cliffs Nuclear Power Plant, Units 1 and 2; Clinton Power Station, Unit 1; Dresden Nuclear Power Station, Units 2 and 3; LaSalle County Station, Units 1 and 2; Nine Mile Point Nuclear Station, Units 1 and 2; Peach Bottom Atomic Power Station, Units 2 and 3; Quad Cities Nuclear Power Station, Units 1 and 2; R.E. Ginna Nuclear Power Plant; and Three Mile Island Nuclear Station, Unit 1.

The proposed change in Reference 1 revised TS Section 5.5, or equivalent, "Inservice Testing Program." A new defined term, "INSERVICE TESTING PROGRAM," is added to the TS Definitions section. This proposed change was submitted to be consistent with TSTF-545, Revision 3, "TS Inservice Testing Program Removal & Clarify SR Usage Rule Application to Section 5.5 Testing," with a variation to revise TS 5.5, or equivalent, reference, now shown as "The INSERVICE TESTING PROGRAM is the licensee program that fulfills the requirements of 10 CFR 50.55a(f). The provisions of SR 3.0.2 and SR 3.0.3 are only applicable to those SRs that reference usage of the INSERVICE TESTING PROGRAM."

In the Reference 2 letter, the NRC reviewed the license amendment request and requested supplemental information necessary to enable the staff to make an independent assessment regarding the applicability of the proposed license amendment. The additional requests were discussed during a conference call with the NRC on September 20, 2016.

As a result, this letter supplements the original license amendment request to revise the scope of changes requested as discussed above. All other proposed changes in the Reference 1 submittal are hereby withdrawn.

The proposed change eliminates the TS, Section 5.5, "Inservice Testing (IST) Program," to remove requirements duplicated in American Society of Mechanical Engineers (ASME) Code for Operations and Maintenance of Nuclear Power Plants (OM Code), Case OMN-20, "Inservice Test Frequency." A new defined term, "INSERVICE TESTING PROGRAM," is added to the TS Definitions section. The proposed change to the TS is consistent with TSTF-545, Revision 3, "TS Inservice Testing Program Removal & Clarify SR Usage Rule Application to Section 5.5 Testing."

2.0 ASSESSMENT

2.1 Applicability of Published Safety Evaluation

EGC has reviewed the model Safety Evaluation (SE) referred to in the Federal Register Notice of Availability dated March 28, 2016. This review included a review of the NRC staff's evaluation, as well as the information provided in TSTF-545. EGC concluded that the justifications presented in TSTF-545, and the model safety evaluation prepared by the NRC staff are applicable to Braidwood Station, Units 1 and 2; Byron Station, Units 1 and 2; Calvert Cliffs Nuclear Power Plant, Units 1 and 2; Clinton Power Station, Unit 1; Dresden Nuclear

Power Station, Units 2 and 3; LaSalle County Station, Units 1 and 2; Nine Mile Point Nuclear Station, Units 1 and 2; Peach Bottom Atomic Power Station, Units 2 and 3; Quad Cities Nuclear Power Station, Units 1 and 2; R.E. Ginna Nuclear Power Plant; and Three Mile Island Nuclear Station, Unit 1, and justify this amendment for the incorporation of the changes to each plant's TS.

Braidwood Station, Units 1 and 2 were issued a construction permit on December 31, 1975 and the provisions of 10 CFR 50.55a(f)(3) are applicable.

Byron Station, Units 1 and 2 were issued a construction permit on December 31, 1975 and the provisions of 10 CFR 50.55a(f)(3) are applicable.

Calvert Cliffs Nuclear Power Plant, Units 1 and 2 were issued a construction permit on July 7, 1969 and the provisions of 10 CFR 50.55a(f)(1) are applicable.

Clinton Power Station, Unit 1 was issued a construction permit on February 24, 1976 and the provisions of 10 CFR 50.55a(f)(3) are applicable.

Dresden Nuclear Power Station, Unit 2 was issued a construction permit on January 10, 1966 and Unit 3 was issued a construction permit on October 14, 1966. The provisions of 10 CFR 50.55a(f)(1) are applicable.

LaSalle County Station, Units 1 and 2 were issued a construction permit on September 10, 1973 and the provisions of 10 CFR 50.55a(f)(2) are applicable.

Nine Mile Point Nuclear Station, Unit 1 was issued a construction permit on April 12, 1965 and the provisions of 10 CFR 50.55a(f)(1) are applicable. Nine Mile Point Nuclear Station, Unit 2 was issued a construction permit on June 24, 1974 and the provisions of 10 CFR 50.55a(f)(2) are applicable.

Peach Bottom Atomic Power Station, Units 2 and 3 were issued a construction permit on January 31, 1968 and the provisions of 10 CFR 50.55a(f)(1) are applicable.

Quad Cities Nuclear Power Station, Units 1 and 2 were issued a construction permit on February 15, 1967 and the provisions of 10 CFR 50.55a(f)(1) are applicable.

R.E. Ginna Nuclear Power Plant was issued a construction permit on April 25, 1966 and the provisions of 10 CFR 50.55a(f)(1) are applicable.

Three Mile Island Nuclear Station, Unit 1 was issued a construction permit on May 18, 1968 and the provisions of 10 CFR 50.55a(f)(1) are applicable.

2.2 Variations

The following items identify variations. These variations do not affect the applicability of TSTF-545 or the associated model SE.

 a) For Braidwood Station, Units 1 and 2; Byron Station, Units 1 and 2; Calvert Cliffs Nuclear Power Plant, Units 1 and 2; Clinton Power Station, Unit 1; Dresden Nuclear Power Station, Units 2 and 3; LaSalle County Station, Units 1 and 2; Nine Mile Point Nuclear Station, Units 1 and 2; Peach Bottom Atomic Power Station, Units 2 and 3; Quad Cities Nuclear Power Station, Units 1 and 2; R.E. Ginna Nuclear Power Plant; and Three Mile Island Nuclear Station, Unit 1, TSTF-545 deletes the IST program TS 5.5, or

equivalent, and re-numbers all subsequent TS programs. This also impacts several TS Bases references. EGC proposes to retain TS 5.5, or equivalent, reference, now shown as "DELETED." This will not change the subsequent TS program numbers. The program numbers, including the Inservice Testing Program, are referenced in a multitude of station procedures. By maintaining the current program numbering and references, excessive administrative burden to update station procedure references is avoided. Based on this approach, several TSTF-545 TS Bases markup pages associated with the TSTF-545 program numbering are not included in Attachment 3 of this application.

- b) In some cases, the TS Surveillance Requirement (SR) numbering does not match the numbering included in the TSTF-545 markup pages; however, EGC verified the SRs are equivalent.
- c) Nine Mile Point Unit 1 (NMP-1) TS are custom TS and utilize different numbering and titles than the Standard Technical Specifications on which TSTF-545 was based. The Administrative Section of the NMP-1 TS is contained in Section 6.0, instead of Section 5.5. NMP-1's SRs currently refer to the IST Program as, "Additional surveillances shall be performed as required by Specification 6.5.4." This reference is being proposed to be revised, meeting the intent of TSTF-545. Further, because NMP-1 is custom TS, they do not contain many of the SRs listed within NUREG-1433, "Standard Technical Specifications General Electric Plants (BWR/4)" or NUREG-1434, "Standard Technical Specifications General Electric Plants (BWR/6)"; therefore, many of the markups included within the TSTF are not applicable to NMP-1 TS.
- d) Three Mile Island Nuclear Station, Unit 1 (TMI-1) TS are custom TS and utilize different numbering and titles than the Standard Technical Specifications on which TSTF-545 was based. The IST Program is currently identified in TMI-1 TS 4.2, Reactor Coolant System Inservice and Testing. Reference to this program within TS 4.2 is being revised, and a definition of the INSERVICE TESTING PROGRAM is being added to Section 1.0, meeting the intent of TSTF-545. Further, because TMI-1 has custom TS, they do not contain many of the SRs listed within NUREG-1430; therefore, many of the markups included within the TSTF are not applicable to TMI-1 TS.

The differences described above are administrative and do not affect the applicability of TSTF-545.

3.0 REGULATORY ANALYSIS

3.1 No Significant Hazards Consideration

Exelon Generation Company, LLC (EGC) requests adoption of the Technical Specification (TS) changes described in TSTF-545, "TS Inservice Testing Program Removal & Clarify SR Usage Rule Application to Section 5.5 Testing," which is an approved change to the TS for Braidwood Station, Units 1 and 2; Byron Station, Units 1 and 2; Calvert Cliffs Nuclear Power Plant, Units 1 and 2; Clinton Power Station, Unit 1; Dresden Nuclear Power Station, Units 2 and 3; LaSalle County Station, Units 1 and 2; Nine Mile Point Nuclear Station, Units 1 and 2; Peach Bottom Atomic Power Station, Units 2 and 3; Quad Cities Nuclear Power Station, Units 1 and 2; R.E. Ginna Nuclear Power Plant; and Three Mile Island Nuclear Station, Unit 1. The proposed change revises the TS Chapter 5, or equivalent, "Administrative Controls," Section 5.5, or

equivalent, "Programs and Manuals," to delete the "Inservice Testing (IST) Program" specification. Requirements in the IST Program that are duplicative of requirements in the American Society of Mechanical Engineers (ASME) Operation and Maintenance (OM) Code, as clarified by Code Case OMN-20, "Inservice Test Frequency," are deleted. Other requirements in Section 5.5, or equivalent, are eliminated because the Nuclear Regulatory Commission (NRC) has determined that their appearance in the TS is contrary to regulations. A new defined term, "INSERVICE TESTING PROGRAM," is added, which references the requirements of Title 10 of the Code of Federal Regulations (10 CFR), Part 50, paragraph 50.55a(f). EGC has evaluated whether or not a significant hazards consideration is involved with the proposed amendment by focusing on the three standards set forth in 10 CFR 50.92, "Issuance of amendment," as discussed below:

1. Does the proposed amendment involve a significant increase in the probability or consequences of an accident previously evaluated?

Response: No.

The proposed change revises TS Chapter 5, or equivalent, "Administrative Controls," Section 5.5, or equivalent, "Programs and Manuals," by deleting the "Inservice Testing Program" specification. Most requirements in the Inservice Testing Program are removed, as they are duplicative of requirements in the ASME OM Code, as clarified by Code Case OMN-20, "Inservice Test Frequency." The remaining requirements in the Section 5.5, or equivalent, IST Program are eliminated because the NRC has determined that their inclusion in the TS is contrary to regulations. A new defined term, "INSERVICE TESTING PROGRAM," is added to the TS, which references the requirements of 10 CFR 50.55a(f).

Performance of inservice testing is not an initiator to any accident previously evaluated. As a result, the probability of occurrence of an accident is not significantly affected by the proposed change. Inservice test frequencies under Code Case OMN-20 are equivalent to the current testing period allowed by the TS with the exception that testing frequencies greater than two (2) years may be extended by up to six (6) months to facilitate test scheduling and consideration of plant operating conditions that may not be suitable for performance of the required testing. The testing frequency extension will not affect the ability of the components to mitigate any accident previously evaluated as the components are required to be operable during the testing period extension. Performance of inservice tests utilizing the allowances in OMN-20 will not significantly affect the reliability of the tested components. As a result, the availability of the affected components, as well as their ability to mitigate the consequences of accidents previously evaluated, is not affected.

Therefore, the proposed change does not involve a significant increase in the probability or consequences of an accident previously evaluated.

2. Does the proposed amendment create the possibility of a new or different kind of accident from any accident previously evaluated?

Response: No.

The proposed change does not alter the design or configuration of the plant. The proposed change does not involve a physical alteration of the plant; no new or different kind of equipment will be installed. The proposed change does not alter the types of inservice testing performed.

In most cases, the frequency of inservice testing is unchanged. However, the frequency of testing would not result in a new or different kind of accident from any previously evaluated since the testing methods are not altered.

Therefore, the proposed change does not create the possibility of a new or different kind of accident from any previously evaluated.

Does the proposed amendment involve a significant reduction in a margin of safety?
 Response: No.

The proposed change eliminates some requirements from the TS in lieu of requirements in the ASME Code, as modified by use of Code Case OMN-20. Compliance with the ASME Code is required by 10 CFR 50.55a. The proposed change also allows inservice tests with frequencies greater than 2 years to be extended by 6 months to facilitate test scheduling and consideration of plant operating conditions that may not be suitable for performance of the required testing. The testing frequency extension will not affect the ability of the components to respond to an accident as the components are required to be operable during the testing period extension. The proposed change will eliminate the existing TS SR 3.0.3, or equivalent, allowance to defer performance of missed inservice tests up to the duration of the specified testing frequency, and instead will require an assessment of the missed test on equipment operability. This assessment will consider the effect on a margin of safety (i.e., equipment operability). Should the component be inoperable, the TS provide actions to ensure that the margin of safety is protected. The proposed change also eliminates a statement that nothing in the ASME Code should be construed to supersede the requirements of any TS. The NRC has determined that statement to be incorrect. However, elimination of the statement will have no effect on plant operation or safety.

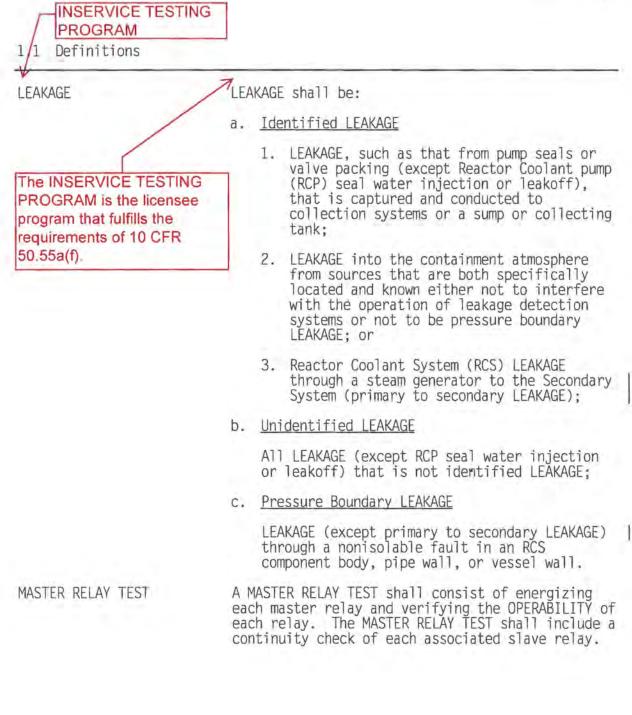
Therefore, the proposed change does not involve a significant reduction in a margin of safety. Based on the above, EGC concludes that the proposed change presents no significant hazards consideration under the standards set forth in 10 CFR 50.92(c), and, accordingly, a finding of "no significant hazards consideration" is justified.

4.0 ENVIRONMENTAL CONSIDERATION

The proposed change would change a requirement with respect to installation or use of a facility component located within the restricted area, as defined in 10 CFR 20, or would change an inspection or surveillance requirement. However, the proposed change does not involve (i) a significant hazards consideration, (ii) a significant change in the types or significant increase in the amounts of any effluents that may be released offsite, or (iii) a significant increase in individual or cumulative occupational radiation exposure. Accordingly, the proposed change meets the eligibility criterion for categorical exclusion set forth in 10 CFR 51.22(c)(9). Therefore, pursuant to 10 CFR 51.22(b), no environmental impact statement or environmental assessment need be prepared in connection with the proposed change.

5.0 REFERENCES

- 1. Letter from James Barstow (Exelon Generation Company, LLC) to U.S. Nuclear Regulatory Commission, "Application to Revise Technical Specifications to Adopt TSTF-545, Revision 3, "TS Inservice Testing Program Removal & Clarify SR Usage Rule Application to Section 5.5 Testing"," dated July 26, 2016.
- 2. Letter from Blake Purnell, U.S. Nuclear Regulatory Commission, to Bryan Hanson, Exelon Generation Company, LLC, "Braidwood Station, Units 1 and 2; Byron Station, Unit Nos. 1 and 2; Calvert Cliffs Nuclear Power Plant, Units 1 and 2; Clinton Power Station, Unit No. 1; Dresden Nuclear Power Station, Units 2 and 3; Lasalle County Station, Units 1 and 2; Nine Mile Point Nuclear Station, Units 1 and 2; Peach Bottom Atomic Power Station, Units 2 and 3; Quad Cities Nuclear Power Station, Units 1 and 2; R. E. Ginna Nuclear Power Plant; and Three Mile Island Nuclear Station, Unit 1 – License Amendment Request to Revise Technical Specification Requirements for Inservice Testing Program (CAC NOS. MF8238-MF8256)," dated September 20, 2016.


Attachment 2a Proposed Technical Specification Changes (Mark-Up)

Braidwood Station, Units 1 and 2 Renewed Facility Operating License Nos. NPF-72 and NPF-77

REVISED TECHNICAL SPECIFICATION PAGES

1.1-4
3.4.10-2
3.4.14-3
3.5.2-4
3.6.3-6
3.6.6-3
3.7.1-2
3.7.2-3
3.7.5-2
5.5-6

Definitions 1.1

SURVEILLANCE REQUIREMENTS

		SURVEILLANCE	FREQUENCY
SR	3.4.10.1	Verify each pressurizer safety va OPERABLE in accordance with the I Testing Program. Following testi settings shall be within ± 1%.	lve is nservice ng, lift In accordance with the Inservice Testing Program
	INSER PROGE		INSERVICE TESTING PROGRAM

.

	SURVEILLANCE	FREQUENCY
SR 3.4.14	1NOTES 1. Only required to be performed in MODES 1 and 2.	
	 RCS PIVs actuated during the performance of this Surveillance are not required to be tested more than once if a repetitive testing loop cannot be avoided. 	
	3. Not required to be performed for RH8701A and B and RH8702A and B on the Frequency required following valve actuation or flow through the valve.	
	Verify leakage from each RCS PIV is equivalent to ≤ 0.5 gpm per nominal inch of valve size up to a maximum of 5 gpm at an RCS pressure ≥ 2215 psig and ≤ 2255 psig.	In accordance with the Inservice Testing Program, and in accordance with the Surveillance Frequency Control Program
		AND
		Prior to entering MODE 2 whenever the unit has been in MODE 5 for ≥ 7 days, if leakage testing has not been performed once within the previous 9 months
		AND
		AND

SURVEILLANCE REQUIREMENTS (continued)

		FREQUENCY		
SR	3.5.2.3	Verify ECCS locatio accumulation are su water.	ns susceptible to gas fficiently filled with	In accordance with the Surveillance Frequency Control Program
SR	3.5.2.4	Verify each ECCS pump's developed head at the test flow point is greater than or equal to the required developed head. INSERVICE TESTING PROGRAM		In accordance with the Inservice Testing Program
SR	3.5.2.5	Verify each ECCS automatic valve in the flow path that is not locked, sealed, or otherwise secured in position, actuates to the correct position on an actual or simulated actuation signal.		In accordance with the Surveillance Frequency Control Program
SR	3.5.2.6	Verify each ECCS pu on an actual or sim	In accordance with the Surveillance Frequency Control Program	
SR	3.5.2.7		CS throttle valve listed n stop is in the correct	In accordance with the Surveillance Frequency
		Valve Number	Valve Function	Control Program
		SI8810 A,B,C,D	Centrifugal Charging System	
		SI8816 A,B,C,D	SI System (Hot Leg)	
		SI8822 A,B,C,D	SI System (Cold Leg)	
SR	3.5.2.8	train containment s restricted by debri	nspection, each ECCS ump suction inlet is not s and the suction inlet dence of structural l corrosion.	In accordance with the Surveillance Frequency Control Program

SURVEILLANCE REQUIREMENTS (continued)

		FREQUENCY	
SR	3.6.3.4	NOTE- Valves and blind flanges in high radiation areas may be verified by use of administrative means. Verify each containment isolation manual valve, remote manual valve, and blind flange that is located inside containment and not locked, sealed, or otherwise secured and required to be closed during accident conditions is closed, except for containment isolation valves that are open under administrative controls.	Prior to entering MODE 4 from MODE 5 if not performed within the previous 92 days
SR	3.6.3.5	Verify the isolation time of each automatic containment isolation valve is within limits.	In accordance with the Inservice Testing Program
SR	3.6.3.6	Perform leakage rate testing for 8 inch containment purge valves with resilient seals.	In accordance with the Surveillance Frequency Control Program
SR	3.6.3.7	Perform leakage rate testing for 48 inch containment purge valves with resilient seals.	In accordance with the Surveillance Frequency Control Program
SR	3.6.3.8	Verify each automatic containment isolation valve that is not locked, sealed or otherwise secured in position, actuates to the isolation position on an actual or simulated actuation signal.	In accordance with the Surveillance Frequency Control Program

Containment Spray and Cooling Systems 3.6.6

		SURVEILLANCE	FREQUENCY
SR	3.6.6.4	Verify each containment spray pump's developed head at the flow test point is greater than or equal to the required developed head. INSERVICE TESTING PROGRAM	In accordance with the Inservice Testing Program
SR	3.6.6.5	Verify each automatic containment spray valve in the flow path that is not locked, sealed, or otherwise secured in position, actuates to the correct position on an actual or simulated actuation signal.	In accordance with the Surveillance Frequency Control Program
SR	3.6.6.6	Verify each containment spray pump starts automatically on an actual or simulated actuation signal.	In accordance with the Surveillance Frequency Control Program
SR	3.6.6.7	Verify each containment cooling train starts automatically on an actual or simulated actuation signal.	In accordance with the Surveillance Frequency Control Program
SR	3.6.6.8	Verify each spray nozzle is unobstructed.	Following maintenance that could result in nozzle blockage <u>OR</u> Following fluid flow through the nozzles
SR	3.6.6.9	Verify containment spray locations susceptible to gas accumulation are sufficiently filled with water.	In accordance with the Surveillance Frequency Control Program

BRAIDWOOD - UNITS 1 & 2

ACTIONS (continued)

	CONDITION		REQUIRED ACTION	COMPLETION TIME
в.	Required Action and associated Completion	ed Action and B.1 Be in MODE 3		6 hours
	Time not met.	AND		100
	OR	B.2	Be in MODE 4.	12 hours
	One or more steam generators with ≥ 4 MSSVs inoperable.			

	SURVEILLANCE	FREQUENCY
SR 3.7.1.1	Only required to be performed in MODES 1 and 2.	
	Verify each required MSSV lift setpoint per Table 3.7.1-2 in accordance with the Inservice Testing Program. Following testing, lift setting shall be within $\pm 1\%$.	In accordance with the Inservice Testing Program

SURVEILLANCE REQUIREMENTS

		SURVEILLANCE	FREQUENCY
SR	3.7.2.1	NOTE- Only required to be performed in MODES 1 and 2. Verify closure time of each MSIV is ≤ 5 seconds. INSERVICE TESTING PROGRAM	In accordance with the >Inservice Testing Program
SR	3,7.2.2	NOTE- Only required to be performed in MODES 1 and 2. Verify each actuator train actuates the MSIV to the isolation position on an actual or simulated actuation signal.	In accordance with the Surveillance Frequency Control Program

٠

		SURVEILLANCE	FREQUENCY
SR	3.7.5.1	Verify each AF manual, power operated, and automatic valve in each water flow path, that is not locked, sealed, or otherwise secured in position, is in the correct position.	In accordance with the Surveillance Frequency Control Program
SR	3.7.5.2	Verify day tank contains ≥ 420 gal of fuel oil.	In accordance with the Surveillance Frequency Control Program
SR	3.7.5.3	Operate the diesel driven AF pump for ≥ 15 minutes. INSERVICE TESTING PROGRAM	In accordance with the Surveillance Frequency Control Program
SR	3.7.5.4	Verify the developed head of each AF pump at the flow test point is greater than or equal to the required developed head.	In accordance with the Inservice Testing Program
SR	3.7.5.5	Verify each AF automatic valve that is not locked, sealed, or otherwise secured in position, actuates to the correct position on an actual or simulated actuation signal.	In accordance with the Surveillance Frequency Control Program
SR	3.7.5.6	Verify each AF pump starts automatically on an actual or simulated actuation signal.	In accordance with the Surveillance Frequency Control Program

5.5 Programs and Manuals

1.	This program provides contr Class 1, 2, and 3 component following:	ols for inservice testing of ASME Code s. The program shall include the
DELETED	a. Testing frequencies a Operation and Mainten Code) and applicable	pplicable to the ASME Code for ance of Nuclear Power Plants (ASME OM Addenda as follows:
	ASME OM Code and applicable Addenda	
	terminology for inservice testing activities	Required Frequencies for performing inservice testing activities
	Weekly Monthly Quarterly or every	At least once per 7 days At least once per 31 days
	3 months Semiannually or	At least once per 92 days
	every 6 months Every 9 months	At least once per 184 days At least once per 276 days
	Yearly or annually Biennially or every	At least once per 366 days
	2 years	At least once per 731 days;
	required Frequencies Frequencies specified	3.0.2 are applicable to the above and to other normal and accelerated as 2 years or less in the Inservice erforming inservice testing activities;
	c. The provisions of SR testing activities; a	3.0.3 are applicable to inservice nd
	d. Nothing in the ASME O the requirements of a	M Code shall be construed to supersede ny Technical Specification.

Attachment 2b Proposed Technical Specification Changes (Mark-Up)

Byron Station, Units 1 and 2 Renewed Facility Operating License Nos. NPF-37 and NPF-66

REVISED TECHNICAL SPECIFICATION PAGES

1.1-4 3.4.10-2 3.4.14-3 3.5.2-4 3.6.3-6 3.6.6-3 3.7.1-2 3.7.2-3 3.7.5-2 5.5-6

Definitions 1.1

INSERVICE TESTING PROGRAM

1.1 Definitions

LEAKAGE

LEAKAGE shall be:

a. Identified LEAKAGE

The INSERVICE TESTING PROGRAM is the licensee program that fulfills the requirements of 10 CFR 50.55a(f). LEAKAGE, such as that from pump seals or valve packing (except Reactor Coolant pump (RCP) seal water injection or leakoff), that is captured and conducted to collection systems or a sump or collecting tank;

- LEAKAGE into the containment atmosphere from sources that are both specifically located and known either not to interfere with the operation of leakage detection systems or not to be pressure boundary LEAKAGE; or
- Reactor Coolant System (RCS) LEAKAGE through a Steam Generator to the Secondary System (primary to secondary LEAKAGE);
- b. Unidentified LEAKAGE

All LEAKAGE (except RCP seal water injection or leakoff) that is not identified LEAKAGE;

c. Pressure Boundary LEAKAGE

LEAKAGE (except primary to secondary LEAKAGE) | through a nonisolable fault in an RCS component body, pipe wall, or vessel wall.

A MASTER RELAY TEST shall consist of energizing each master relay and verifying the OPERABILITY of each relay. The MASTER RELAY TEST shall include a continuity check of each associated slave relay.

MASTER RELAY TEST

		SURVEILLANCE	FREQUENCY
SR	3.4.10.1	Verify each pressurizer safety value OPERABLE in accordance with the Insertent Testing Program. Following testing, settings shall be within ± 1 %.	is rvice lift Iift In accordance with the Inservice Inservice Inservice Inservice
	INSER PROGI	11	NSERVICE TESTING

Constantine -	SURVEILLANCE	FREQUENCY
SR 3.4.14.1	 Only required to be performed in MODES 1 and 2. RCS PIVs actuated during the performance of this Surveillance are not required to be tested more than 	
	once if a repetitive testing loop cannot be avoided. 3. Not required to be performed for RH8701A and B and RH8702A and B on the Frequency required following valve actuation or flow through the valve.	
	Verify leakage from each RCS PIV is equivalent to ≤ 0.5 gpm per nominal inch of valve size up to a maximum of 5 gpm at an RCS pressure ≥ 2215 psig and ≤ 2255 psig INSERVICE TESTING PROGRAM	In accordance with the Inservice Testing Program, and in accordance with the Surveillance Frequency Control Program
		AND
		Prior to entering MODE 2 whenever the unit has been in MODE 5 for ≥ 7 days, if leakage testing has not been performed once within the previous 9 months
		AND
		(continued

SURVEILLANCE REQUIREMENTS (continued)

		SURVEILLANC		FREQUENCY
SR	3.5.2.3	Verify ECCS location accumulation are suf water.	In accordance with the Surveillance Frequency Control Program	
SR	3.5.2.4	Verify each ECCS pun the test flow point equal to the require INSERVICE TE	In accordance with the /Inservice Testing Program	
SR	3.5.2.5	Verify each ECCS aut flow path that is no otherwise secured ir the correct position simulated actuation	In accordance with the Surveillance Frequency Control Program	
SR	3.5.2.6	Verify each ECCS pur on an actual or simu	In accordance with the Surveillance Frequency Control Program	
SR	3.5.2.7		CS throttle valve listed i stop is in the correct	In accordance with the Surveillance Frequency
		Valve Number	Valve Function	Control Program
		SI8810 A,B,C,D	Centrifugal Charging System	
		SI8816 A,B,C,D	SI System (Hot Leg)	
		SI8822 A,B,C,D	SI System (Cold Leg)	
SR	3.5.2.8	train containment su		In accordance with the Surveillance Frequency Control Program

SURVEILLANCE REQUIREMENTS (continued)

		SURVEILLANCE	FREQUENCY
SR	3.6.3.4	Valves and blind flanges in high radiation areas may be verified by use of administrative means. Verify each containment isolation manual valve, remote manual valve, and blind flange that is located inside containment and not locked, sealed, or otherwise secured and required to be closed during accident conditions is closed, except for containment isolation valves that are open under administrative controls.	Prior to entering MODE 4 from MODE 5 if not performed within the previous 92 days
SR	3.6.3.5	Verify the isolation time of each automatic containment isolation valve is within limits.	In accordance with the Inservice Testing Program
SR	3.6.3.6	Perform leakage rate testing for 8 inch containment purge valves with resilient seals.	In accordance with the Surveillance Frequency Control Program
SR	3.6.3.7	Perform leakage rate testing for 48 inch containment purge valves with resilient seals.	In accordance with the Surveillance Frequency Control Program
SR	3.6.3.8	Verify each automatic containment isolation valve that is not locked, sealed or otherwise secured in position, actuates to the isolation position on an actual or simulated actuation signal.	In accordance with the Surveillance Frequency Control Program

Containment Spray and Cooling Systems 3.6.6

SURVEILLANCE REQUIREMENTS (continued)

	SURVEILLANCE	FREQUENCY
.6.6.3	Verify each containment cooling train cooling water flow rate is ≥ 2660 gpm to each cooler. INSERVICE TESTING PROGRAM	In accordance with the Surveillance Frequency Control Program
.6.6.4	Verify each containment spray pump's developed head at the flow test point is greater than or equal to the required developed head.	In accordance with the Inservice Testing Program
.6.6.5	Verify each automatic containment spray valve in the flow path that is not locked, sealed, or otherwise secured in position, actuates to the correct position on an actual or simulated actuation signal.	In accordance with the Surveillance Frequency Control Program
.6.6.6	Verify each containment spray pump starts automatically on an actual or simulated actuation signal.	In accordance with the Surveillance Frequency Control Program
.6.6.7	Verify each containment cooling train starts automatically on an actual or simulated actuation signal.	In accordance with the Surveillance Frequency Control Program
.6.6.8	Verify each spray nozzle is unobstructed.	Following maintenance that could result in nozzle blockage
		OR
		Following fluid flow through the nozzles
	6.6.4 6.6.5 .6.6.6	 6.6.3 Verify each containment cooling train cooling water flow rate is ≥ 2660 gpm to each cooler. INSERVICE TESTING PROGRAM 6.6.4 Verify each containment spray pump's developed head at the flow test point is greater than or equal to the required developed head. 6.6.5 Verify each automatic containment spray valve in the flow path that is not locked, sealed, or otherwise secured in position, actuates to the correct position on an actual or simulated actuation signal. 6.6.6 Verify each containment spray pump starts automatically on an actual or simulated actuat or simulated actuation signal. 6.6.7 Verify each containment cooling train starts automatically on an actual or simulated actual or simulated actuation signal.

BYRON - UNITS 1 & 2

Amendment No. 189

1

ACTIONS (continued)

Β.	Required Action and associated Completion Time not met.	B.1	Be in MODE 3.	6 hours
	Time not met.	AND		
	OR	B.2	Be in MODE 4.	12 hours
	One or more steam generators with ≥ 4 MSSVs inoperable.			

		SURVEILLANCE	FREQUENCY
SR	3.7.1.1	Only required to be performed in MODES 1 and 2.	
		Verify each required MSSV lift setpoint per Table 3.7.1-2 in accordance with the Inservice Testing Program. Following testing, lift setting shall be within $\pm 1\%$.	In accordance with the Inservice Testing Program
		INSERVICE TESTING PROGRAM	

MSIVs 3.7.2

		SURVEILLANCE	FREQUENCY
SR	3.7.2.1	NOTE- Only required to be performed in MODES 1 and 2. Verify closure time of each MSIV is ≤ 5 seconds. INSERVICE TESTING PROGRAM	In accordance with the Inservice Testing Program
SR	3.7.2.2	NOTE	In accordance with the Surveillance Frequency Control Program

		SURVEILLANCE	FREQUENCY
SR	3.7.5.1	Verify each AF manual, power operated, and automatic valve in each water flow path, that is not locked, sealed, or otherwise secured in position, is in the correct position.	In accordance with the Surveillance Frequency Control Program
SR	3.7.5.2	Verify day tank contains ≥ 420 gal of fuel oil.	In accordance with the Surveillance Frequency Control Program
SR	3.7.5.3	Operate the diesel driven AF pump for ≥ 15 minutes.	In accordance with the Surveillance Frequency Control Program
SR	3.7.5.4	Verify the developed head of each AF pump at the flow test point is greater than or equal to the required developed head.	In accordance with the Inservice Testing Program
SR	3.7.5.5	Verify each AF automatic valve that is not locked, sealed, or otherwise secured in position, actuates to the correct position on an actual or simulated actuation signal.	In accordance with the Surveillance Frequency Control Program
SR	3.7.5.6	Verify each AF pump starts automatically on an actual or simulated actuation signal.	In accordance with the Surveillance Frequency Control Program

5.5 Programs and Manuals

5.5.8	This	s 1, 2, and 3 components.	for inservice testing of ASME Code The program shall include the
	1011 a.	owing: Testing frequencies appl:	icable to the ASME Code for e of Nuclear Power Plants (ASME OM
DELE	TED	Code) and applicable Adde	enda as follows:
		ASME OM Code and applicable Addenda	
		terminology for inservice testing activities	Required Frequencies for performing inservice testing activities
		Weekly Monthly	At least once per 7 days At least once per 31 days
		Quarterly or every 3 months	At least once per 92 days
		Semiannually or every 6 months Every 9 months	At least once per 184 days
		Yearly or annually Biennially or every	At least once per 276 days At least once per 366 days
		2 years	At least once per 731 days;
b. The provisions of SR 3.0.2 are applicable required Frequencies and to other normal Frequencies specified as 2 years or less Testing Program for performing inservice		to other normal and accelerated 2 years or less in the Inservice	
	с.	The provisions of SR 3.0 testing activities; and	.3 are applicable to inservice
	d.	Nothing in the ASME OM Co the requirements of any	ode shall be construed to supersede

Attachment 2c Proposed Technical Specification Changes (Mark-Up)

Calvert Cliffs Nuclear Power Plant, Units 1 and 2 Renewed Facility Operating License Nos. DPR-53 and DPR-69

REVISED TECHNICAL SPECIFICATION PAGES

 $\begin{array}{c} 1.1-3\\ 3.4.10-2\\ 3.5.2-2\\ 3.6.3-6\\ 3.6.6-3\\ 3.7.1-2\\ 3.7.2-2\\ 3.7.3-4\\ 3.7.15-1\\ 5.5-6\\ 5.5-7\end{array}$

Definitions 1.1

1.1 Definitions

Air Concentration and Dose Conversion Factors for Inhalation, Submersion, and Ingestion."

 \overline{E} -AVERAGE DISINTEGRATION \overline{E} shall be the average (weighted in proportion to ENERGY \overline{E} shall be the average (weighted in proportion to the concentration of each radionuclide in the reactor coolant at the time of sampling) of the sum of the average beta and gamma energies per disintegration (in MeV) for isotopes, other than iodines, with half lives > 15 minutes, making up at least 95% of the total non-iodine activity in the coolant.

The ESF RESPONSE TIME shall be that time interval ENGINEERED SAFETY FEATURE (ESF) RESPONSE TIME from when the monitored parameter exceeds its ESF actuation setpoint at the channel sensor until the ESF equipment is capable of performing its safety function (i.e., the valves travel to their required positions, pump discharge pressures reach their required values, etc.). Times shall include diesel generator starting and sequence loading delays, where applicable. The response time may be measured by means of any series of sequential, The INSERVICE overlapping, or total steps so that the entire **TESTING PROGRAM is** response time is measured. In lieu of the licensee program that measurement, response time may be verified for fulfills the requirements of selected components provided that the components 10 CFR 50.55a(f). and methodology for verification have been previously reviewed and approved by the NRC.

INSERVICE TESTING PROGRAM

LEAKAGE

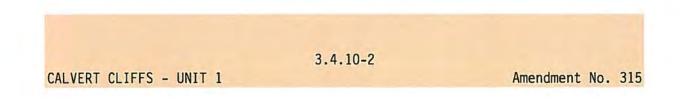
The maximum allowable containment leakage rate, L_a , shall be 0.16% of containment air weight per day at the calculated peak containment pressure (P_a) .

LEAKAGE shall be:

- a. Identified LEAKAGE
 - LEAKAGE, such as that from pump seals or valve packing (except reactor coolant

CALVERT CLIFFS - UNIT 1 CALVERT CLIFFS - UNIT 2 1.1-3

Amendment No. 281 Amendment No. 258


Pressurizer Safety Valves 3.4.10

ACTIONS (continued)

CONDITION			REQUIRED ACTION	COMPLETION TIME
Β.	Required Action and associated Completion Time not met.	B.1 <u>AND</u>	Be in MODE 3.	6 hours
	<u>OR</u> Two pressurizer safety valves inoperable.	B.2	Reduce all RCS cold leg temperatures to ≤ 365°F (Unit 1), ≤ 301°F (Unit 2).	12 hours

SURVEILLANCE REQUIREMENTS

	FREQUENCY		
OPE Tes	chin limits as specif	with the Inservice ift settings shall be ied below:	In accordance with the Inservice Testing Program
<u>Valve</u>	As Found Lift Setting (psia)	As Left Lift Setting (psia)	
	\geq 2475 and \leq 2575 \geq 2475 and \leq 2600	\geq 2475 and \leq 2525 \geq 2500 and \leq 2550	TESTING PROGRAM

Pressurizer Safety Valves 3.4.10

ACTIONS (continued)

CONDITION			REQUIRED ACTION	COMPLETION TIME
в.	Required Action and associated Completion Time not met.	B.1 <u>AND</u>	Be in MODE 3.	6 hours
	<u>OR</u> Two pressurizer safety valves inoperable.	B.2	Reduce all RCS cold leg temperatures to ≤ 365°F (Unit 1), ≤ 301°F (Unit 2).	12 hours

SURVEILLANCE REQUIREMENTS

	SURVEILLANCE		FREQUENCY
OPE Tes	hin limits as specif	with the <u>Inservice</u> ift settings shall be ied below:	In accordance with the Inservice Testing Program
<u>Valve</u>	As Found Lift Setting (psia)	As Left Lift Setting (psia)	INSERVICE
RC-200	\geq 2475 and \leq 2550 \geq 2514 and \leq 2616	\geq 2475 and \leq 2525 \geq 2540 and \leq 2590	PROGRAM

3.4.10-2 CALVERT CLIFFS - UNIT 2 Amendment No. 201

_	SURVEILLANCE	FREQUENCY
SR 3.5.2.1	Verify the following values are in the listed position with power to the value operator removed. <u>Value Number Position Function</u> <u>MOV-659 Open Mini-flow Isolation</u> <u>MOV-660 Open Mini-flow Isolation</u> CV-306 Open Low Pressure Safety Injection Flow Control	In accordance with the Surveillance Frequency Control Program
SR 3.5.2.2	Not required to be met for system vent flow paths opened under administrative control. Verify each ECCS manual, power-operated, and automatic valve in the flow path, that is not locked, sealed, or otherwise secured in position, is in the correct position.	In accordance with the Surveillance Frequency Control Program
SR 3.5.2.3	Verify each high pressure safety injection - and low pressure safety injection pump's developed head at the test flow point is greater than or equal to the required developed head.	In accordance with the Inservice Festing Program
SR 3.5.2.4	Deleted	INSERVICE TESTING PROGRAM

CALVERT CLIFFS - UNIT 1 CALVERT CLIFFS - UNIT 2

SURVEILLANCE REQUIREMENTS (continued)

dia dia dia	SURVEILLANCE	FREQUENCY
SR 3.6.3.3	Valves and blind flanges in high radiation areas may be verified by use of administrative means. Verify each containment isolation manual valve and blind flange that is located inside containment and not locked, sealed, or otherwise secured and required to be closed during accident conditions is closed, except for containment isolation valves that	Prior to entering MODE 4 from MODE 5 if not performed within the previous
SR 3.6.3.4	are open under administrative controls. Verify the isolation time of each automatic power-operated containment isolation valve is within limits.	92 days In accordance with the Inservice Testing Program
SR 3.6.3.5	Verify each automatic containment isolation valve that is not locked, sealed, or otherwise secured in position, actuates to the isolation position on an actual or simulated actuation signal.	In accordance with the Surveillance Frequency Control Program

CALVERT CLIFFS - UNIT 1 CALVERT CLIFFS - UNIT 2

1	SURVEILLANCE	FREQUENCY
SR 3.6.6.1	Not required to be met for system vent flow paths opened under administrative control. Verify each containment spray manual, power- operated, and automatic valve in the flow path that is not locked, sealed, or otherwise secured in position is in the correct position.	In accordance with the Surveillance Frequency Control Program
SR 3.6.6.2	Operate each containment cooling train fan unit for ≥ 15 minutes.	In accordance with the Surveillance Frequency Control Program
SR 3.6.6.3 ERVICE TESTIN OGRAM	Verify each containment cooling train cooling water flow rate is ≥ 2000 gpm to each fan cooler.	In accordance with the Surveillance Frequency Control Program
SR 3.6.6.4	Verify each containment spray pump's developed head at the flow test point is greater than or equal to the required developed head.	In accordance with the >Inservice Testing Program
SR 3.6.6.5	Verify each automatic containment spray valve in the flow path that is not locked, sealed, or otherwise secured in position, actuates to the correct position on an actual or simulated actuation signal.	In accordance with the Surveillance Frequency Control Program

CALVERT CLIFFS - UNIT 2

ACTIONS (continued)

CONDITION		REQUIRED ACTION		COMPLETION TIME
Β.	Required Action and associated Completion Time not met.	B.1 <u>AND</u>	Be in MODE 3.	6 hours
	<u>OR</u>	B.2	Be in MODE 4.	12 hours
	One or more steam generators with less than five MSSVs OPERABLE.			

SURVEILLANCE REQUIREMENTS

	SURVEILLANCE	FREQUENCY
SR 3.7.1.1	Only required to be performed in MODES 1 and 2.	
	Verify each required MSSV lift setpoint per Table 3.7.1-2 in accordance with the Inservice Testing Program. Following testing, lift settings shall be within \pm 1%.	In accordance with the Inservice Testing Program
INSERVIO TESTING PROGRA	TESTING	

CALVERT CLIFFS - UNIT 1 CALVERT CLIFFS - UNIT 2 ACTIONS (continued)

	CONDITION		REQUIRED ACTION	COMPLETION TIME
D.	Required Action and associated Completion	D.1	Be in MODE 3.	6 hours
	Time of Condition C not met.	AND		
		D.2	Be in MODE 4.	12 hours

SURVEILLANCE REQUIREMENTS

	FREQUENCY	
SR 3.7.2.1	Verify closure time of each MSIV is within limits.	In accordance with the Inservice Testing Program
	INSERVIC TESTING PROGRA	

CALVERT CLIFFS - UNIT 1 CALVERT CLIFFS - UNIT 2

	SURVEILLANCE	FREQUENCY
SR 3.7.3.1	Verify each AFW manual, power-operated, and automatic valve in each water flow path and in both steam supply flow paths to the steam turbine-driven pumps, that is not locked, sealed, or otherwise secured in position, is in the correct position.	In accordance with the Surveillance Frequency Control Program
SR 3.7.3.2	Cycle each testable, remote-operated valve that is not in its operating position. INSERVICE TESTING PROGRAM	In accordance with the Inservice Testing Program
SR 3.7.3.3	Not required to be performed for the turbine-driven AFW pump until 24 hours after reaching 800 psig in the steam generators. Verify the developed head of each AFW pump at the flow test point is greater than or equal to the required developed head.	In accordance with the Inservice Testing Program
SR 3.7.3.4	Not required to be performed for the turbine-driven AFW pump until 24 hours after reaching 800 psig in the steam generators.	
	Verify each AFW automatic valve that is not locked, sealed, or otherwise secured in position, actuates to the correct position on an actual or simulated actuation signal.	In accordance with the Surveillance Frequency Control Program

CALVERT CLIFFS - UNIT 1 CALVERT CLIFFS - UNIT 2 3.7.3-4

3.7 PLANT SYSTEMS

3.7.15 Main Feedwater Isolation Valves (MFIVs)

LCO 3.7.15 Two MFIVs shall be OPERABLE.

APPLICABILITY: MODES 1, 2, and 3.

ACTIONS

Separate Condition entry is allowed for each valve.

CONDITION		REQUIRED ACTION		COMPLETION TIME	
Α.	One or more MFIVs inoperable.	A.1	Restore MFIV to OPERABLE status.	72 hours	
В.	Required Action and associated Completion Time not met.	B.1 <u>AND</u>	Be in MODE 3.	6 hours	
		B.2	Be in MODE 4.	12 hours	

SURVEILLANCE F		ILLANCE	FREQUENCY
SR 3.7.15.1		osure time of each MFIV is t th the <mark>Inservice Testing</mark>	in In accordance with the Inservice Testing Program
_	INSERVICE PROGRAM	TESTING	
CALVERT CLIFF		3.7.15-1	Amendment No. 22 Amendment No. 20

5.5 Programs and Manuals

5.5.6 <u>Concrete Containment Tendon Surveillance Program</u>

This program provides controls for monitoring any tendon degradation in pre-stressed concrete containments, including effectiveness of its corrosion protection medium, to ensure containment structural integrity. The program shall include baseline measurements prior to initial operation. The Tendon Surveillance Program, inspection frequencies, and acceptance criteria shall be in accordance with Section XI, Subsection IWL of the ASME Boiler and Pressure Vessel Code and applicable addenda as required by 10 CFR 50.55a, as amended by relief granted in accordance with 10 CFR 50.55a(a)(3).

The provisions of SR 3.0.3 are applicable to the Tendon Surveillance Program inspection frequencies.

5.5.7 <u>Reactor Coolant Pump Flywheel Inspection Program</u>

This program shall provide for the inspection of each reactor coolant pump flywheel per the recommendations of regulatory position c.4.b of Regulatory Guide 1.14, Revision 1, August 1975.

5.5.8 Inservice Testing Program DELETED

This program provides controls for inservice testing of ASME Code Class 1, 2, and 3 components. The program shall include the following:

CALVERT CLIFFS - UNIT 1 CALVERT CLIFFS - UNIT 2

Amendment No. 269 Amendment No. 245 a. Testing frequencies applicable to the ASME Code for Operation and Maintenance of Nuclear Power Plants (ASME OM Code) and applicable Addenda as follows:

ASME OM Code and applicable Addenda terminology for inservice testing activities	Required Frequencies for performing inservice testing activities
Weekly	At least once per 7 days
Monthly	At least once per 31 days
Quarterly or every	
3 months	At least once per 92 days
Semiannually or	
every 6 months	At least once per 184 days
Every 9 months	At least once per 276 days
Yearly or annually	At least once per 366 days
Biennially or every	
2 years	At least once per 731 days

- b. The provisions of SR 3.0.2 are applicable to the above required Frequencies and to other normal and accelerated Frequencies specified as 2 years or less in the Inservice Testing Program for performing inservice testing activities;
- c. The provisions of SR 3.0.3 are applicable to inservice testing activities; and
- d. Nothing in the ASME OM Code shall be construed to supersede the requirements of any Technical Specification.

5.5.9 <u>Steam Generator (SG) Program</u>

A Steam Generator Program shall be established and implemented to ensure that SG tube integrity is maintained. In addition, the Steam Generator Program shall include the following:

CALVERT CLIFFS - UNIT	1	5.5-7	Amendment	No.	308
CALVERT CLIFFS - UNIT	2		Amendment	No.	286

Attachment 2d Proposed Technical Specification Changes (Mark-Up)

Clinton Power Station, Unit 1 Facility Operating License No. NPF-62

REVISED TECHNICAL SPECIFICATION PAGES

1.0-3 3.1-22 3.4-11 3.4-16 3.5-4 3.5-9 3.6-18 3.6-25 3.6-33 3.6-65 5.0-11

Definitions 1.1

1.1 Definitions (continued)

EMERGENCY CORE COOLING	The ECCS RESPONSE TIME shall be that time interval
SYSTEM (ECCS) RESPONSE TIME	from when the monitored parameter exceeds its ECCS initiation setpoint at the channel sensor until the ECCS equipment is capable of performing its safety function (i.e., the valves travel to their required positions, pump discharge pressures reach their required values, etc.). Times shall include diesel generator starting and sequence loading delays, where applicable. The response time may be measured by means of any series of sequential, overlapping, or total steps so that the entire response time is measured.
END OF CYCLE RECIRCULATION PUMP TRIP (EOC-RPT) SYSTEM RESPONSE TIME	The EOC-RPT SYSTEM RESPONSE TIME shall be that time interval from initial movement of the associated turbine stop valve or turbine control valve to complete suppression of the electric arc between the fully open contacts of the recirculation pump circuit breaker. The response time may be measured by means of any series of sequential, overlapping, or total steps so that the entire response time is measured.
ISOLATION SYSTEM RESPONSE TIME	The ISOLATION SYSTEM RESPONSE TIME shall be that time interval from when the monitored parameter exceeds its isolation initiation setpoint at the channel sensor until the isolation valves travel to their required positions. The response time may be measured by means of any series of sequential, overlapping, or total steps so that the entire response time is measured.
INSERVICE TESTING PROGRAM	I
	(continued)
	The INSERVICE TESTING PROGRAM is the licensee program that fulfills the requirements of 10 CFR
	50.55a(f).

		FREQUENCY	
SR	3.1.7.7	Verify each pump develops a flow rate ≥ 41.2 gpm at a discharge pressure ≥ 1220 psig. INSERVICE TESTING PROGRAM	In accordance with the Inservice Testing Program
SR	3.1.7.8	Verify flow through one SLC subsystem from pump into reactor pressure vessel.	In accordance with the Surveillance Frequency Control Program
SR	3.1.7.9	Verify all piping between storage tank and pump suction is unblocked.	In accordance with the Surveillance Frequency Control Program <u>AND</u> Once within 24 hours after pump suction piping temperature is restored to ≥ 70°F

		SURVEILLANCE	FREQUENCY
SR	3.4.4.1	Verify the safety function lift setpoints of the required S/RVs are as follows: Number of Setpoint S/RVs (psig) 7 1165 ± 34.9 5 1180 ± 35.4 4 1190 ± 35.7 Following testing, lift settings shall be within ± 1%.	In accordance with the Inservice Testing Program INSERVICE TESTING PROGRAM
SR	3.4.4.2	Valve actuation may be excluded. Verify each required relief function S/RV actuates on an actual or simulated automatic initiation signal.	In accordance with the Surveillance Frequency Control Program
SR	3.4.4.3	Not required to be performed until 12 hours after reactor steam pressure and flow are adequate to perform the test. Verify each required S/RV actuator strokes when manually actuated.	In accordance with the Surveillance Frequency Control Program

	SURVEILLANCE	FREQUENCY	
SR 3.4.6.1	Not required to be performed in MODE 3. Verify equivalent leakage of each RCS PIV is ≤ 0.5 gpm per nominal inch of valve size up to a maximum of 5 gpm, at an RCS pressure ≥ 1000 psig and ≤ 1025 psig.	In accordance with <u>Inservice</u> Testing Program]
	INSERVICE TESTIN PROGRAM	IG	

CLINTON

		St	JRVEILLANCE		FREQUENCY
SR	3,5,1,1	In accordance with the Surveillance Frequency Control Program			
SR	3.5.1.2	 Low pressubsyst during heat repressur removal MODE 3, realign Not req flow pa control Verify eac manual, po in the flo sealed, or is in the 	In accordance with the Surveillance Frequency Control Program		
SR	3.5.1.3	Verify ADS accumulator supply pressure is ≥ 140 psig.			In accordance with the Surveillance Frequency Control Program
SR	3,5.1.4	specified	th ECCS pump deve flow rate with t al pressure.	lops the he specified pump	In accordance with the Inservice Mesting Program
		SYSTEM	FLOW RATE	PUMP DIFFERENTIAL 	
		LPCS	≥ 5010 gpm		
		LPCI	≥ 5050 gpm	≥ 113 psid	

	FREQUENCY			
SR 3.5.2.	specified		pump develops the the specified pump	In accordance with the Inservice Testing Program
	SYSTEM	FLOW RATE	PUMP DIFFERENTIAL 	
	LPCS	≥ 5010 gpm	≥ 290 psid	PROGRAM
	LPCI		≥ 113 psid	
	HPCS	≥ 5010 gpm	≥ 363 psid	
SR 3.5.2.		njection/spray ma	y be excluded.	
	subsystem	ach required ECCS m actuates on an d automatic initi		In Accordance with the Surveillance Frequency Control Program

PCIVs 3.6.1.3

SURVEILLANCE REQUIREMENTS (continued)

		SURVEILLANCE	FREQUENCY
SR	3.6.1.3.4	Verify the isolation time of each power operated and each automatic PCIV, except MSIVs, is within limits.	In accordance with the Inservice Testing Program
SR	3.6.1.3.5	Only required to be met in MODES 1, 2, and 3. Perform leakage rate testing for each primary containment purge valve with resilient seals.	INSERVICE TESTING PROGRAM Once within 92 days after opening the valve AND In accordance with the Primary Containment Leakage Rate Testing Program
SR	3.6.1.3.6	Verify the isolation time of each MSIV is ≥ 3 seconds and ≤ 5 seconds. INSERVICE TESTING PROGRAM	In accordance with the Inservice Testing Program
SR	3.6.1.3.7	Verify each automatic PCIV actuates to the isolation position on an actual or simulated isolation signal.	In accordance with the Surveillance Frequency Control program

		SURVEILLANCE	FREQUENCY
SR	3.6.1.7.1	 RHR containment spray subsystems may be considered OPERABLE during alignment and operation for decay heat removal when below the RHR cut in permissive pressure in MODE 3 if capable of being manually realigned and not otherwise inoperable. 	
		 Not required to be met for system vent flow paths opened under administrative control. 	
		Verify each RHR containment spray subsystem manual, power operated, and automatic valve in the flow path that is not locked, sealed, or otherwise secured in position is in the correct position.	In accordance with the Surveillance Frequency Control Program
SR	3.6.1.7.2	Verify each RHR pump develops a flow rate of ≥ 3800 gpm on recirculation flow through the associated heat exchanger to the suppression pool. INSERVICE TESTING PROGRAM	In accordance with the Inservice Pesting Program
SR	3.6.1.7.3	Verify each RHR containment spray subsystem automatic valve in the flow path actuates to its correct position on an actual or simulated automatic initiation signal.	In accordance with the Surveillance Frequency Control Program
SR	3.6.1.7.4	Verify each spray nozzle is unobstructed.	Following activities that could result in nozzle blockage
SR	3.6.1,7.5	Verify RHR containment spray subsystem locations susceptible to gas accumulation are sufficiently filled with water.	In accordance with the Surveillance Frequency Control Program

SURVEILLANCE			FREQUENCY
SR	3.6.2.3.1	Verify each RHR suppression pool cooling subsystem manual, power operated, and automatic valve in the flow path that is not locked, sealed, or otherwise secured in position is in the correct position or can be aligned to the correct position.	In accordance with the Surveillance Frequency Control Program
SR	3.6.2.3.2	Verify each RHR pump develops a flow rate ≥ 4550 gpm through the associated heat exchanger to the suppression pool.	In accordance with the Inservice Testing Program
SR	3.6.2.3.3	Verify RHR suppression pool cooling subsystem locations susceptible to gas accumulation are sufficiently filled with water.	In accordance with the Surveillance Frequency Control Program

CLINTON

SURVEILLANCE REQUIREMENTS (continued)

		SURVEILLANCE	FREQUENCY
SR	3,6.5,3,3	 NOTES— 1. Valves and blind flanges in high radiation areas may be verified by use of administrative means. 2. Not required to be met for drywell isolation valves that are open under administrative controls. Verify each required drywell isolation manual valve and blind flange that is required to be closed during accident conditions is closed. 	Prior to entering MODE 2 or 3 from MODE 4, if not performed in the previous 92 days
SR	3.6.5.3.4	Verify the isolation time of each required power operated and each required automatic drywell isolation valve is within limits.	In accordance with the Inservice Testing Program
SR	3.6.5.3.5	Verify each required automatic drywell isolation valve actuates to the isolation position on an actual or simulated isolation signal.	In accordance with the Surveillance Frequency Control Program

5.5 Programs and Manuals (continued)

5.5.5 Component Cyclic or Transient Limit

This program provides controls to track the cyclic and transient occurrences identified on USAR Table 3.9-1(b) to ensure that the reactor vessel is maintained within the design limits.

5.5.6

Inservice Testing Program

This program provides controls for inservice testing of ASME Code Class 1, 2, and 3 components. The program shall include the following:

DELETED Code

Testing frequencies applicable to the ASME Code for Operations and Maintenance of Nuclear Power Plants (ASME OM Code) and applicable Addenda as follows:

ASME OM Code and applicable Addenda terminology for inservice testing activities

Weekly Monthly Quarterly or every 3 months Semiannually or every 6 months

Every 9 months

2 years

Yearly or annually

Biennially or every

Required frequencies for performing inservice testing activities

At least once per 7 days At least once per 31 days

At least once per 92 days

At least once per 184 days At least once per 276 days At least once per 366 days

At least once per 731 days:

b. The provisions of SR 3.0.2 are applicable to the above required frequencies and to other normal and accelerated frequencies specified as 2 years or less in the Inservice Testing Program for performing inservice testing activities;

c The provisions of SR 3 0 3 are applicable to inservice testing activities; and

d. Nothing in the ASME OM Code shall be construed to supersede the requirements of any Technical Specification.

(continued)

Attachment 2e Proposed Technical Specification Changes (Mark-Up)

Dresden Nuclear Power Station, Units 2 and 3 Renewed Facility Operating License Nos. DPR-19 and DPR-25

REVISED TECHNICAL SPECIFICATION PAGES

 $\begin{array}{c} 1.1-3\\ 3.1.7-3\\ 3.4.3-2\\ 3.5.1-4\\ 3.5.1-5\\ 3.5.2-4\\ 3.6.1.3-8\\ 3.6.2.3-2\\ 5.5-4\\ 5.5-5\end{array}$

Definitions 1.1

1.1 Definitions

Guidance Report 11, "Limiting Values of DOSE EQUIVALENT I-131 (continued) Radionuclide Intake and Air Concentration and Dose Conversion Factors for Inhalation, Submersion, and Ingestion." 1989. TEAKAGE shall be: FAKAGE Identified LEAKAGE INSERVICE TESTING 1. LEAKAGE into the drywell, such as that from PROGRAM pump seals or valve packing, that is captured and conducted to a sump or collecting tank; or The INSERVICE **TESTING PROGRAM is** 2. LEAKAGE into the drywell atmosphere from sources that are both specifically located the licensee program that and known either not to interfere with the fulfills the requirements of operation of leakage detection systems or 10 CFR 50.55a(f). not to be pressure boundary LEAKAGE; b. Unidentified LEAKAGE All LEAKAGE into the drywell that is not identified LEAKAGE: c. Total LEAKAGE Sum of the identified and unidentified LEAKAGE; and d. Pressure Boundary LEAKAGE LEAKAGE through a nonisolable fault in a Reactor Coolant System (RCS) component body, pipe wall, or vessel wall.

(continued)

		SURVEILLANCE	FREQUENCY
SR	3.1.7.5	Verify the concentration of sodium pentaborate in solution is within the limits of Figure 3.1.7-1.	In accordance with the Surveillance Frequency Control Program
			AND
			Once within 24 hours after water or sodium pentaborate is added to solution
			AND
			Once within 24 hours after solution temperature is restored within the limits of Figure 3.1.7-2
SR.	3.1.7.6	Verify each SLC subsystem manual value in the flow path that is not locked, sealed, or otherwise secured in position is in the correct position, or can be aligned to the correct position.	In accordance with the Surveillance Frequency Control Program
SR	3.1.7.7	Verify each pump develops a flow rate ≥ 40 gpm at a discharge pressure ≥ 1275 psig. INSERVICE TESTING PROGRAM	In accordance with the Inservice Testing Program
SR	3.1.7.8	Verify flow through one SLC subsystem from pump into reactor pressure vessel.	In accordance with the Surveillance Frequency Control Program

Amendment No. 237/230

	_	FREQUENCY		
SR 3.4.3.1		Verify the safety function 1 of the safety valves are as		In accordance with the Inservice
			etpoint (<u>psig)</u>	Testing Program
		2 12 2 12	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	INSERVICE TESTI PROGRAM
		Following testing, lift sett within \pm 1%.	ings shall be	
SR	3.4.3.2	Verify each relief valve act when manually actuated.	uator strokes	In accordance with the Surveillance Frequency Control Program
SR	3.4.3.3	Valve actuation may be exclu		
		Verify each relief valve act actual or simulated automati signal.		In accordance with the Surveillance Frequency Control Program

	_		SURVEILLANCE		1.2	FREQUENCY
SR	3.5.1.1	subsyst	for each ECC em, locations ation are suf	suscepti	ble to gas	In accordance with the Surveillance Frequency Control Program
SR	3.5.1.2	Not req paths of Verify manual, in the sealed,	pened under a each ECCS injo	et for sy dministra ection/sp ed, and a at is not secured	stem vent flow tive control. ray subsystem utomatic valve locked,	In accordance with the Surveillance Frequency Control Program
SR	3.5.1.3	LPCI sw	correct break ing bus. RVICE TESTII			In accordance with the Surveillance Frequency Control Program
SR	3.5.1.4	valve c full tr	each recircul ycles through avel or is de position.	one comp	lete cycle of	In accordance with the Inservice Testing Program
SR 3.5.1.5 Verify the following ECCS pumps develop the specified flow rate against a test line pressure corresponding to the specified reactor pressure. TEST LINE PRESSURE NO. CORRESPONDING OF TO A REACTOR				In accordance with the Inservice Testing Program INSERVICE TESTING PROGRAM		
		<u>SYSTEM</u> Core Spray LPCI	<u>FLOW RATE</u> ≥ 4500 gpm ≥ 9000 gpm		PRESSURE OF ≥ 90 psig ≥ 20 psig	Internet

Dresden 2 and 3

Amendment No. 244/237

		SURVEILLANCE	FREQUENCY
SR	3.5.1.6	Not required to be performed until 12 hours after reactor steam pressure and flow are adequate to perform the test. Verify, with reactor pressure ≤ 1005 and ≥ 920 psig, the HPCI pump can develop a flow rate ≥ 5000 gpm against a system head corresponding to reactor pressure.	INSERVICE TESTING PROGRAM In accordance with the Inservice Testing Program
SR	3.5.1.7	Not required to be performed until 12 hours after reactor steam pressure and flow are adequate to perform the test. ••••••••••••••••••••••••••••••••••••	In accordance with the Surveillance Frequency Control Program
SR	3.5.1.8	Vessel injection/spray may be excluded. Verify each ECCS injection/spray subsystem actuates on an actual or simulated automatic initiation signal.	In accordance with the Surveillance Frequency Control Program

(continued)

		SURVE	ILLANCE	1	_	FREQUENCY
SR	3.5.2.4	Verify each r specified flo pressure corr reactor press	w rate ag esponding	ainst a		In accordance with the Inservice Testing Program
		SYSTEM FLOW	RATE		PRESSURE CORRESPONDING TO A REACTOR PRESSURE OF	
		CS ≥ 450 LPCI ≥ 450		1 1	≥ 90 psig ≥ 20 psig	
SR 3.5.2.5 Ves		Vessel inject	ion/spray			
		Verify each required ECCS injection/spray subsystem actuates on an actual or simulated automatic initiation signal.			In accordance with the Surveillance Frequency Control Program	

PCIVs 3.6.1.3

SURVEILLANCE REQUIREMENTS

		SURVEILLANCE	FREQUENCY
SR 3.6	.1.3.4	Verify continuity of the traversing incore probe (TIP) shear isolation valve explosive charge.	In accordance with the Surveillance Frequency Control Program
SR 3.6	.1.3.5	Verify the isolation time of each power operated, automatic PCIV, except for MSIVs, is within limits. INSERVICE TESTING PROGRAM	In accordance with the Inservice Testing Program
SR 3.6	.1.3.6	Verify the isolation time of each MSIV is ≥ 3 seconds and ≤ 5 seconds. INSERVICE TESTING PROGRAM	In accordance with the Inscrvice Testing Program
SR 3.6	i.1.3.7	Verify each automatic PCIV actuates to the isolation position on an actual or simulated isolation signal.	In accordance with the Surveillance Frequency Control Program
SR 3.6	5.1.3.8	Verify a representative sample of reactor instrumentation line EFCVs actuate to the isolation position on an actual or simulated instrument line break signal.	In accordance with the Surveillance Frequency Control Program
SR 3.6	5.1.3.9	Remove and test the explosive squib from each shear isolation valve of the TIP System.	In accordance with the Surveillance Frequency Control Program

Suppression Pool Cooling 3.6.2.3

SURVEILLANCE REQUIREMENTS

		SURVEILLANCE	FREQUENCY
SR	3.6.2.3.1	Verify each suppression pool cooling subsystem manual and power operated valve in the flow path that is not locked, sealed, or otherwise secured in position, is in the correct position or can be aligned to the correct position.	In accordance with the Surveillance Frequency Control Program
SR	3.6.2.3.2	flow rate \geq 5000 gpm through the	In accordance with the Inservice Testing Program
SR	3.6.2.3.3	Verify suppression pool cooling subsystem locations susceptible to gas accumulation are sufficiently filled with water.	In accordance with the Surveillance Frequency Control Program

5.5 Programs and Manuals

5.5.4 Radioactive Effluent Controls Program (continued)	5.5.4	Ra Ra	dioactive Efflu	ent Controls	Program	(continued)
---	-------	-------	-----------------	--------------	---------	-------------

- For noble gases: a dose rate ≤ 500 mrems/yr to the whole body and a dose rate ≤ 3000 mrems/yr to the skin, and
- For iodine-131, iodine-133, tritium, and all radionuclides in particulate form with half-lives greater than 8 days: a dose rate ≤ 1500 mrems/yr to any organ;
- h. Limitations on the annual and quarterly air doses resulting from noble gases released in gaseous effluents from each unit to areas beyond the site boundary, conforming to 10 CFR 50, Appendix I;
- i. Limitations on the annual and quarterly doses to a member of the public from iodine-131, iodine-133, tritium, and all radionuclides in particulate form with half lives > 8 days in gaseous effluents released from each unit to areas beyond the site boundary, conforming to 10 CFR 50, Appendix I; and
 - j. Limitations on the annual dose or dose commitment to any member of the public, beyond the site boundary, due to releases of radioactivity and to radiation from uranium fuel cycle sources, conforming to 40 CFR 190.

The provisions of SR 3.0.2 and SR 3.0.3 are applicable to the Radioactive Effluents Control Program Surveillance Frequencies.

5.5.5 Component Cyclic or Transient Limit

This program provides controls to track the UFSAR Section 3.9, cyclic and transient occurrences to ensure that components are maintained within the design limits.

5.5.6 This program provides controls for inservice testing of ASME Code Class 1, 2, and 3 pumps and valves. a. Testing Frequencies applicable to the ASME Code for Operation and Maintenance of Nuclear Power Plants (ASME OM Code) and applicable Addenda are as follows:

(continued)

5.5.6		Inservice Testing Program	(continued)	
		ASME OM Code and		1
		applicable Addenda		
		terminology for	Required Frequencies	
		inservice testing	for performing inservice	
		activities_	testing activities	
		Weekly	At least once per 7 days	
		Monthly	At least once per 31 days	
		Quarterly or every		
		3 months	At least once per 92 days	
		Semiannually or		
		every 6 months	At least once per 184 days	
		Every 9 months	At least once per 276 days	
		Yearly or annually Biennially or every	At least once per 366 days	
		2 years	At least once per 731 days	
		Every 48 months	At least once per 1461 days	
	b.	The provisions of SR 3 0 2	are applicable to the above	
	5.		other normal and accelerated	1
			years or less in the Inservice	
			ing inservice testing activities;	
	с.	The provisions of SR 3.0.3	are applicable to inservice	
		testing activities; and		
	d.	Nothing in the ASME OM Code	shall be construed to supersede	1
		the requirements of any TS.		1
5.5.7	Vent	tilation Filter Testing Progr	am (VFTP)	
	Feat	ture (ESF) filter ventilation	uired testing of Engineered Safety systems. Tests described in	

Feature (ESF) filter ventilation systems. Tests described in Specification 5.5.7.a and 5.5.7.b shall be performed once per 24 months; after each complete or partial replacement of the HEPA filter bank or charcoal adsorber bank; after any structural maintenance on the HEPA filter bank or charcoal adsorber bank housing; and, following painting, fire, or chemical release in any ventilation zone communicating with the subsystem while it is in operation that could adversely affect the filter bank or charcoal adsorber capability.

(continued)

Dresden 2 and 3

5.5-5

Amendment No. 229/222

Attachment 2f Proposed Technical Specification Changes (Mark-Up)

LaSalle County Station, Units 1 and 2 Facility Operating License Nos. NPF-11 and NPF-18

REVISED TECHNICAL SPECIFICATION PAGES

 $\begin{array}{c} 1.1-4\\ 3.1.7-3\\ 3.4.4-2\\ 3.4.6-3\\ 3.5.1-5\\ 3.5.2-3\\ 3.6.1.3-7\\ 3.6.1.3-8\\ 3.6.2.3-2\\ 3.6.2.3-2\\ 3.6.2.4-2\\ 5.5-5\\ 5.5-6\end{array}$

Definitions

1.1

PROGRAM

INSERVICE

TESTING

1.1 Definitions (continued)

ISOLATION SYSTEM RESPONSE TIME

The INSERVICE TESTING PROGRAM is the licensee program that fulfills the requirements of 10 CFR 50.55a(f).

LEAKAGE

The ISOLATION SYSTEM RESPONSE TIME shall be that time interval from when the monitored parameter exceeds its isolation initiation setpoint at the channel sensor until the isolation valves travel to their required positions. The response time may be measured by means of any series of sequential, overlapping, or total steps so that the entire response time is measured. In lieu of measurement, response time may be verified for selected components provided that the components and method for verification have been previously reviewed and approved by the NRC.

LEAKAGE shall be:

- a. Identified LEAKAGE
 - 1. LEAKAGE into the drywell such as that from pump seals or valve packing, that is captured and conducted to a sump or collecting tank: or
 - 2. LEAKAGE into the drywell atmosphere from sources that are both specifically located and known either not to interfere with the operation of leakage detection systems or not to be pressure boundary LEAKAGE;

b. Unidentified LEAKAGE

All LEAKAGE into the drywell that is not identified LEAKAGE;

c. Total LEAKAGE

Sum of the identified and unidentified LEAKAGE; and

d. Pressure Boundary LEAKAGE

LEAKAGE through a nonisolable fault in a Reactor Coolant System (RCS) component body. pipe wall, or vessel wall.

(continued)

	SURVEILLANCE	FREQUENCY
SR 3.1.7.5	Verify the concentration of sodium pentaborate in solution is within the limits of Figure 3.1.7-1.	In accordance with the Surveillance Frequency Control Program
		AND
		Once within 24 hours after water or sodium pentaborate is added to solution
		AND
		Once within 24 hours after solution temperature is restored within the limits of Figure 3.1.7-2
SR 3.1.7.6	Verify each SLC subsystem manual, power operated, and automatic valve in the flow path that is not locked, sealed, or otherwise secured in position is in the correct position, or can be aligned to the correct position.	In accordance with the Surveillance Frequency Control Program
SR 3.1.7.7	Verify each pump develops a flow rate ≥ 41.2 gpm at a discharge pressure ≥ 1220 psig.	In accordance with the Inservice Testing Program

S/RVs 3.4.4

	SURVEILLAN	ICE	FREQUENCY
SR 3.4.4.	Less than or equal may be changed to Verify the safety	NOTE to two required S/RVs a lower setpoint group. function lift setpoints RVs are as follows: Setpoint	In accordance with the Inservice Testing Program
	<u>S/RVs</u> 2 3 2 4 2	<u>(psig)</u> 1205 ± 36.1 1195 ± 35.8 1185 ± 35.5 1175 ± 35.2 1150 ± 34.5 lift settings shall be	INSERVICE TESTING PROGRAM

	SURVEILLANCE	FREQUENCY
SR 3.4.6.1	NOTE- Only required to be performed in MODES 1 and 2. Verify equivalent leakage of each RCS PIV is \leq 0.5 gpm per nominal inch of valve size up to a maximum of 5 gpm, at an RCS pressure \geq 950 psig and \leq 1050 psig.	In accordance with the Inservice Testing Program
	INSERVICE TESTING PROGRAM	

ECCS-Operating 3.5.1

١

INSERVICE TESTING PROGRAM

		FREQUENCY	
SR 3.5.1.5		Verify each ECCS pump develops the specified flow rate against the specified test line pressure.	In accordance with the Inservice Testing Program
		TEST LINE SYSTEM FLOW RATE PRESSURE	reating rrogram
		LPCS ≥ 6350 gpm ≥ 290 psig LPCI ≥ 7200 gpm ≥ 130 psig HPCS (Unit 1) ≥ 6250 gpm ≥ 370 psig HPCS (Unit 2) ≥ 6200 gpm ≥ 330 psig	
SR	3.5.1.6	Vessel injection/spray may be excluded.	
		Verify each ECCS injection/spray subsystem actuates on an actual or simulated automatic initiation signal.	In accordance with the Surveillance Frequency Control Program
SR	3.5.1.7	Valve actuation may be excluded.	
		Verify the ADS actuates on an actual or simulated automatic initiation signal.	In accordance with the Surveillance Frequency Control Program
SR	3.5.1.8	Valve actuation may be excluded.	
		Verify each required ADS valve actuator strokes when manually actuated.	In accordance with the Surveillance Frequency Control Program

LaSalle 1 and 2

Amendment No. 214/200

		SURVE	ILLANCE		FREQUENCY
SR	3,5.2.1		y subsystem,	ow pressure ECCS the suppression t 7 in.	In accordance with the Surveillance Frequency Control Program
SR	3.5.2.2		ystem, the su	gh Pressure Core ppression pool n.	In accordance with the Surveillance Frequency Control Program
SR	3.5.2.3	spray subsyste	m, locations	CCS injection/ susceptible to gas ly filled with	In accordance with the Surveillance Frequency Control Program
SR	3.5.2.4	paths opened u Verify each re subsystem manu automatic valv	o be met for nder administ quired ECCS i al, power ope e in the flow aled, or othe	system vent flow rative control. njection/spray rated, and path, that is rwise secured in	In accordance with the Surveillance Frequency Control Program
SR	3.5.2.5		rate against	ump develops the the specified	In accordance with the Inservice Testing Program
		<u>SYSTEM</u> LPCS LPCI HPCS (Unit 1) HPCS (Unit 2)	≥ 6250 gpm	≥ 130 psig ≥ 370 psig	INSERVICE TESTING PROGRAM

(continued)

LaSalle 1 and 2

Amendment No. 214/200

PCIVs 3.6.1.3

	SURVEILLANCE	FREQUENCY
SR 3.6.1.3.3	 Valves and blind flanges in high radiation areas may be verified by use of administrative means. 	
	 Not required to be met for PCIVs that are open under administrative controls. 	
	Verify each primary containment isolation manual valve and blind flange that is located inside primary containment and not locked, sealed, or otherwise secured and is required to be closed during accident conditions is closed.	Prior to entering MODE 2 or 3 from MODE 4 if primary containment was de-inerted while in MODE 4, if not performed within the previous 92 days
SR 3.6.1.3.4	Verify continuity of the traversing incore probe (TIP) shear isolation valve explosive charge.	In accordance with the Surveillance Frequency Control Program
SR 3.6.1.3.5	Verify the isolation time of each power operated, automatic PCIV, except MSIVs, is within limits.	In accordance with the Inservice Testing Program

INSERVICE TESTING PROGRAM -

		FREQUENCY	
SR	3.6.1.3.6	Verify the isolation time of each MSIV is ≥ 3 seconds and ≤ 5 seconds.	In accordance with the Inservice Testing Program
SR	3.6.1.3.7	Verify each automatic PCIV actuates to the isolation position on an actual or simulated isolation signal.	In accordance with the Surveillance Frequency Control Program
SR	3.6.1.3.8	Verify each reactor instrumentation line EFCV actuates to the isolation position on an actual or simulated instrument line break signal.	In accordance with the Surveillance Frequency Control Program
SR	3.6.1.3.9	Remove and test the explosive squib from each shear isolation valve of the TIP System.	In accordance with the Surveillance Frequency Control Program
SR	3.6.1.3.10	Verify leakage rate through any one main steam line is ≤ 200 scfh and through all four main steam lines is ≤ 400 scfh when tested at ≥ 25.0 psig.	In accordance with the Primary Containment Leakage Rate Testing Program
SR	3,6,1,3.11	Verify combined leakage rate through hydrostatically tested lines that penetrate the primary containment is within limits.	In accordance with the Primary Containment Leakage Rate Testing Program

LaSalle 1 and 2

		SURVEILLANCE	FREQUENCY
SR	3.6.2.3.1	Verify each RHR suppression pool cooling subsystem manual and power operated valve in the flow path that is not locked, sealed, or otherwise secured in position, is in the correct position or can be aligned to the correct position.	In accordance with the Surveillance Frequency Control Program
SR	3.6.2.3.2	Verify each required RHR pump develops a flow rate ≥ 7200 gpm through the associated heat exchanger while operating in the suppression pool cooling mode.	In accordance with the <mark>Inservice</mark> Testing Program
SR	3.6.2.3.3	Verify RHR suppression pool cooling subsystem locations susceptible to gas accumulation are sufficiently filled with water.	In accordance with the Surveillance Frequency Control Program

RHR Suppression Pool Spray 3.6.2.4

		SURVEILLANCE	FREQUENCY
SR	3.6.2.4.1	Verify each RHR suppression pool spray subsystem manual and power operated valve in the flow path that is not locked, sealed, or otherwise secured in position, is in the correct position or can be aligned to the correct position.	In accordance with the Surveillance Frequency Control Program
SR	3.6.2.4.2	Verify each required RHR pump develops a flow rate ≥ 450 gpm through the spray sparger while operating in the suppression pool spray mode.	In accordance with the Inservice Testing Program
SR	3,6.2.4.3	Verify RHR suppression pool spray subsystem locations susceptible to gas accumulation are sufficiently filled with water.	In accordance with the Surveillance Frequency Control Program

5.5 Programs and Manuals

5.5.6 Inservice Inspection Program for Post Tensioning Tendons

This program provides controls for monitoring any tendon degradation in pre-stressed concrete containments, including effectiveness of its corrosion protection medium, to ensure containment structural integrity. The program shall include baseline measurements prior to initial operations. The Tendon Surveillance Program, inspection frequencies, and acceptance criteria shall be in accordance with Section XI, Subsection IWL of the ASME Boiler and Pressure Vessel Code and applicable addenda as required by 10 CFR 50.55a as amended by relief granted in accordance with 10 CFR 50.55a(a)(3).

The provisions of SR 3.0.3 are applicable to the Tendon Surveillance Program inspection frequencies.

5.5.7 <u>Inservice Testing Program</u>

This program provides controls for inservice testing of ASME Code Class 1, 2, and 3 pumps and valves.

a. Testing Frequencies applicable to the ASME Code for Operation and Maintenance of Nuclear Power Plants (ASME OM Code) and applicable Addenda are as follows:

DELETED

ASME OM Code and applicable Addenda terminology for inservice testing activities

Weekly Monthly Quarterly or every 3 months Semiannually or every 6 months Every 9 months Yearly or annually Biennially or every 2 years Every 48 months Required Frequencies for performing inservice testing activities

At least once per 7 days At least once per 31 days

At least once per 92 days

At least once per 184 days At least once per 276 days At least once per 366 days

At least once per 731 days At least once per 1461 days

(continued)

LaSalle 1 and 2

Amendment No. 185/172

5.5 Programs and Manuals

5.5.7 Inservice Testing Program (continued)

- b. The provisions of SR 3.0.2 are applicable to the above required Frequencies and to other normal and accelerated Frequencies specified as 2 years or less in the Inservice Testing Program for performing inservice testing activities:
- c. The provisions of SR 3.0.3 are applicable to inservice testing activities; and
- d. Nothing in the ASME OM Code shall be construed to supersede the requirements of any TS.

5.5.8 <u>Ventilation Filter Testing Program (VFTP)</u>

The VFTP shall establish the required testing of Engineered Safety Feature (ESF) filter ventilation systems. Tests described in Specification 5.5.8.a and 5.5.8.b shall be performed once per 24 months; after each complete or partial replacement of the HEPA filter bank or charcoal adsorber bank; after any structural maintenance on the HEPA filter bank or charcoal adsorber bank housing; and, following painting, fire, or chemical release in any ventilation zone communicating with the subsystem while it is in operation that could adversely affect the filter bank or charcoal adsorber capability,

Tests described in Specification 5.5.8.c shall be performed once per 24 months; after 720 hours of system operation; after any structural maintenance on the charcoal adsorber bank housing; and, following painting, fire, or chemical release in any ventilation zone communicating with the subsystem while it is in operation that could adversely affect the charcoal adsorber capability.

Tests described in Specification 5.5.8.d and 5.5.8.e shall be performed once per 24 months.

The provisions of SR 3.0.2 and SR 3.0.3 are applicable to the VFTP test frequencies.

a. Demonstrate for each of the ESF systems that an inplace test of the high efficiency particulate air (HEPA) filters shows a penetration and system bypass < 0.05% when tested in accordance with ANSI/ASME N510-1989 at the system flowrate specified below:

(continued)

LaSalle 1 and 2

Attachment 2g Proposed Technical Specification Changes (Mark-Up)

Nine Mile Point Nuclear Station, Unit 1 Renewed Facility Operating License No. DPR-63

REVISED TECHNICAL SPECIFICATION PAGES

8 108 353

Nine Mile Point Nuclear Station, Unit 2 Renewed Facility Operating License No. NPF-69

REVISED TECHNICAL SPECIFICATION PAGES

1.1-3 3.1.7-3 3.4.4-1 3.4.6-3 3.5.1-5 3.5.2-4 3.6.1.3-11 3.6.1.3-12 3.6.2.3-2 3.6.2.4-2 5.5-4 5.5-5

- 1.28 (Deleted)
- 1.29 (Deleted)
- 1.30 Reactor Coolant Leakage
 - a. Identified Leakage
 - (1) Leakage into closed systems, such as pump seal or valve packing leaks that are captured, flow metered and conducted to a sump or collecting tank, or
 - (2) Leakage into the primary containment atmosphere from sources that are both specifically located and known not to be from a through-wall crack in the piping within the reactor coolant pressure boundary.
 - b. Unidentified Leakage

All other leakage of reactor coolant into the primary containment area.

1.31 Core Operating Limits Report

The CORE OPERATING LIMITS REPORT is the unit-specific document that provides core operating limits for the current operating reload cycle. These cycle-specific core operating limits shall be determined for each reload cycle in accordance with Specification 6.6.5. Plant operation within these operating limits is addressed in individual specifications.

1.32 Shutdown Margin (SDM)

SDM shall be the amount of reactivity by which the reactor is subcritical or would be subcritical throughout the operating cycle assuming that:

- a. The reactor is xenon free,
- b. The moderator temperature is ≥ 68° F, corresponding to the most reactive state, and
- c. All control rods are fully inserted except for the single control rod of highest reactivity worth, which is assumed to be fully withdrawn. With control rods not capable of being fully inserted, the reactivity worth of these control rods must be accounted for in the determination of SDM.

1.33 INSERVICE TESTING PROGRAM

The INSERVICE TESTING PROGRAM is the licensee program that fulfills the requirements of 10 CFR 50.55a(f).

AMENDMENT NO. 142, 143, 168

LIMITING CONDITION FOR OPERATION

3.2.7 REACTOR COOLANT SYSTEM ISOLATION VALVES

Applicability:

Applies to the operating status of the system of isolation valves on lines connected to the reactor coolant system.

Objective:

To assure the capability of the reactor coolant system isolation valves to minimize reactor coolant loss in the event of a rupture of a line connected to the nuclear steam supply system, and to minimize potential leakage paths from the primary containment in the event of a lossof-coolant accident.

Specification:

- a. Whenever fuel is in the reactor vessel and the reactor coolant temperature is greater than 212°F, all reactor coolant system isolation valves on lines connected to the reactor coolant system shall be operable except as specified in Specification 3.2.7.b below.
- b. In the event any isolation valve becomes inoperable whenever fuel is in the reactor vessel and the reactor coolant temperature is greater than 212°F, the system shall be considered operable provided that within 4 hours at least one valve in each line having an inoperable valve is in the mode corresponding to the isolated condition, except as noted in Specification 3.1.1.e.

SURVEILLANCE REQUIREMENT

4.2.7 REACTOR COOLANT SYSTEM ISOLATION VALVES

Applicability:

Applies to the periodic testing requirement for the reactor coolant system isolation valves.

Objective:

To assure the capability of the reactor coolant system isolation valves to minimize reactor coolant loss in the event of a rupture of a line connected to the nuclear steam supply system, and to limit potential leakage paths from the primary containment in the event of a loss-of-coolant accident.

Specification:

The reactor coolant system isolation valves surveillance shall be performed as indicated below.

- In accordance with the Surveillance Frequency Control Program the operable automatically initiated power-operated isolation valves shall be tested for automatic initiation and closure times.
- Additional surveillances shall be performed as required by Specification 6.5.4.

the INSERVICE TESTING PROGRAM

- Limitations on the annual and quarterly doses to a member of the public from iodine-131, iodine-133, tritium, and all radionuclides in particulate form with half lives >8 days in gaseous effluents released from each unit to areas beyond the site boundary, conforming to 10 CFR 50, Appendix I;
- j. Limitations on the annual dose or dose commitment to any member of the public, beyond the site boundary, due to releases of radioactivity and to radiation from uranium fuel cycle sources, conforming to 40 CFR 190; and
- k. Limitations on venting and purging of the primary containment through the Emergency Ventilation System to maintain releases as low as reasonably achievable.

The provisions of Surveillance Requirements 4.0.2 and 4.0.3 are applicable to the Radioactive Effluent Controls Program surveillance frequencies.

6.5.4 Inservice Testing Program

a.

DELETED

This program provides controls for inservice testing of Quality Group A, B, and C pumps and valves.

Inservice testing of Quality Group A, B, and C pumps and valves shall be performed in accordance with requirements for American Society of Mechanical Engineers (ASME) Code Class 1, 2, and 3 components specified in the applicable Edition and Addenda of the ASME Code for Operation and Maintenance of Nuclear Power Plants (ASME OM Code), subject to the applicable provisions of 10CFR50.55a;

- b. The provisions of Specification 4.0.2 are applicable to the normal and accelerated testing frequencies specified as 2 years or less in the Inservice Testing Program for performing inservice testing activities;
- c. The provisions of Specification 4.0.3 are applicable to inservice testing activities; and
- d. Nothing in the ASME OM Code shall be construed to supersede the requirements of any Technical Specification.

6.5.5 Explosive Gas and Storage Tank Radioactivity Monitoring Program

This program provides controls for potentially explosive gas mixtures contained in the Main Condenser Offgas Treatment System and the quantity of radioactivity contained in unprotected outdoor liquid storage tanks.

Definitions 1.1

11

1.1 Definitions (continued)

EMERGENCY CORE COOLING SYSTEM (ECCS) RESPONSE TIME	The ECCS RESPONSE TIME shall be that time interval from when the monitored parameter exceeds its ECCS initiation setpoint at the channel sensor until the ECCS equipment is capable of performing its safety function (i.e., the valves travel to their required positions, pump discharge pressures reach their required values, etc.). Times shall include diesel generator starting and sequence loading delays, where applicable. The response time may be measured by means of any series of sequential, overlapping, or total steps so that the entire response time is measured.
END OF CYCLE RECIRCULATION PUMP TRIP (EOC-RPT) SYSTEM RESPONSE TIME	The EOC-RPT SYSTEM RESPONSE TIME shall be that time interval from initial movement of the associated turbine stop valves or turbine control valves to complete suppression of the electric arc between the fully open contacts of the recirculation pump circuit breaker. The response
PROGRAM	time may be measured by means of any series of sequential, overlapping, or total steps so that the entire response time is measured.
ISOLATION SYSTEM RESPONSE TIME	The ISOLATION SYSTEM RESPONSE TIME shall be that time interval from when the monitored parameter exceeds its isolation initiation setpoint at the
The INSERVICE TESTING	channel sensor until the isolation valves travel
PROGRAM is the licensee program	to their required positions. The response time may be measured by means of any series of
that fulfills the requirements of 10	sequential, overlapping, or total steps so that
CFR 50.55a(f).	the entire response time is measured.
LEAKAGE	LEAKAGE shall be:
	a. Identified LEAKAGE
	 LEAKAGE into the drywell such as that from pump seals or valve packing, that is captured and conducted to a sump or collecting tank; or
	(continued)

	SURVEILLANCE	FREQUENCY
SR 3.1.7.7	Verify each pump develops a flow rate ≥ 41.2 gpm at a discharge pressure ≥ 1335 psig.	In accordance with the Inservice Testing Program
SR 3.1.7.8	Verify flow through one SLC subsystem from pump into reactor pressure vessel.	In accordance with the Surveillance Frequency Control Program
SR 3.1.7.9	Verify all heat traced piping between storage tank and pump suction valve is unblocked.	In accordance with the Surveillance Frequency Control Program <u>AND</u> Once within 24 hours after piping temperature is restored to \geq 70°F
SR 3.1.7.10	Verify sodium pentaborate enrichment is ≥ 92 atom percent B-10.	Prior to addition to SLC tank

3.4 REACTOR COOLANT SYSTEM (RCS)

3.4.4 Safety/Relief Valves (S/RVs)

LCO 3.4.4 The safety function of 16 S/RVs shall be OPERABLE,

APPLICABILITY: MODES 1, 2, and 3.

ACTIONS

CONDITION			REQUIRED ACTION	COMPLETION TIME
A.	One or more required S/RVs inoperable.	A.1	Be in MODE 3.	12 hours
	en tre noperation	AND		
		A.2	Be in MODE 4.	36 hours

	SURVEILLAN	ICE	FREQUENCY
SR 3.4.4.1	Verify the safety functi of the required S/RVs		In accordance with the
	Number of S/RVs	Setpoint (psig)	
	2	1165 psig ± 35.0 1175 psig ± 35.0	TESTING
	4	1185 psig ± 36.0	PROGRAM
	4	1195 psig ± 36.0	
	4	1205 psig ± 36.0	
	Following testing, lift s within $\pm 1\%$.	ettings shall be	

	SURVEILLANCE	FREQUENCY
SR 3.4.6.1	Only required to be performed in MODES 1 and 2.	
	Verify equivalent leakage of each RCS PIV is ≤ 0.5 gpm per nominal inch of valve size up to a maximum of 5 gpm, at an RCS pressure ≥ 1000 psig and ≤ 1040 psig.	In accordance with the Inservice Testing Program

	FREQUENCY			
SR 3.5.1.4	Verify each ECCS pump develops the specified flow rate with the specified developed head.TOTAL SYSTEMFLOW RATEDEVELOPED HEADLPCS ≥ 6350 gpm ≥ 284 psid		In accordance with the Inservice Testing Program INSERVICE TESTING PROGRAM	
	LPCS A, B LPCI C HPCS	≥ 7450 gpm ≥ 7450 gpm ≥ 6350 gpm	≥ 127 psid ≥ 140 psid ≥ 327 psid	
SR 3.5.1.5		ion/spray may b		
	Verify each ECCS injection/spray subsystem actuates on an actual or simulated automatic initiation signal.		In accordance with the Surveillance Frequency Control Program	
SR 3.5.1.6	Valve actuat	NOTE ion may be excl	luded.	
		OS actuates on a tomatic initiatio		In accordance with the Surveillance Frequency Control Program
SR 3.5.1.7	after reactor	to be performe steam pressure perform the tes	d until 12 hours and flow are	
		equired ADS va n manually actu		In accordance with the Surveillance Frequency Control Program

	SU	IRVEILLANCE		FREQUENCY
SR 3.5.2.5	specified flo	Verify each required ECCS pump develops the specified flow rate with the specified developed head.		In accordance with the Inservice
	SYSTEM	FLOW RATE	TOTAL <u>DEVELOPED HEAD</u>	Testing Program
	LPCS LPCI A, B	≥ 6350 gpm ≥ 7450 gpm	≥ 284 psid ≥ 127 psid	TESTING PROGRAM
	LPCI C HPCS	≥ 7450 gpm ≥ 6350 gpm	≥ 140 psid ≥ 327 psid	
SR 3.5.2.6		NOTE tion/spray may be		
	subsystem a	required ECCS inj actuates on an act utomatic initiation	ual or	In accordance with the Surveillance Frequency Control Program
SR 3.5.2.7	Instrumenta	tion response time be the design inst ne.	e may be	
		CCS RESPONSE ay subsystem is w	TIME for each ECCS vithin limits.	In accordance with the Surveillance Frequency Control Program

PCIVs 3.6.1.3

	SURVEILLANCE	FREQUENCY	
SR 3.6.1.3,3	 Valves and blind flanges in high radiation areas may be verified by use of administrative means. Not required to be met for PCIVs that are open under administrative controls. Verify each primary containment isolation 	 Prior to	
	manual valve and blind flange that is located inside primary containment and not locked, sealed, or otherwise secured and is required to be closed during accident conditions is closed.	entering MODE 2 or 3 from MODE 4, if primary containment was de-inerted while in MODE 4, if not performed within the previous 92 days	
SR 3.6.1.3.4	Verify continuity of the traversing incore probe (TIP) shear isolation valve explosive charge.	In accordance with the Surveillance Frequency Control Program	
SR 3.6.1.3.5	Verify the isolation time of each power operated, automatic PCIV, except MSIVs, is within limits.	In accordance with the Inservice Testing Program	
	INSERVICE TESTING PROGRAM	(continued	

PCIVs 3.6.1.3

SURVEILLANCE REQUIREMENTS (continued)

	SURVEILLANCE	FREQUENCY
SR 3.6.1.3.6	Perform leakage rate testing for each primary containment purge valve with resilient seals.	In accordance with the Surveillance Frequency Control Program <u>AND</u> Once within 92 days after opening the valve
SR 3.6.1.3.7	Verify the isolation time of each MSIV is ≥ 3 seconds and ≤ 5 seconds.	In accordance with the Inservice
	INSERVICE TESTING PROGRAM	Testing Program
SR 3.6.1.3.8	Verify each automatic PCIV actuates to the isolation position on an actual or simulated isolation signal.	In accordance with the Surveillance Frequency Control Program
SR 3.6.1.3.9	Verify a representative sample of reactor instrumentation line EFCVs actuates to the isolation position on an actual or simulated instrument line break signal.	In accordance with the Surveillance Frequency Control Program
SR 3.6.1.3.10	Remove and test the explosive squib from each shear isolation valve of the TIP System.	In accordance with the Surveillance Frequency Control Program
SR 3.6.1.3.11	 Verify the leakage rate for the secondary containment bypass leakage when pressurized to ≥ 40 psig is: a. Bypass (Drywell): ≤ 8.74 SCFH; and b. Bypass (Suppression Chamber): ≤ 1.67 SCFH; and c. Bypass (Drywell with delays): ≤ 28.17 SCFH 	In accordance with 10 CFR 50 Appendix J Testing Program Plan
NMP2		(contin) dment 91, 96, 152 ,

	SURVEILLANCE	FREQUENCY
SR 3.6.2.3.1	Verify each RHR suppression pool cooling subsystem manual and power operated valve in the flow path that is not locked, sealed, or otherwise secured in position, is in the correct position or can be aligned to the correct position.	In accordance with the Surveillance Frequency Control Program INSERVIC TESTING PROGRAM
SR 3.6.2.3.2	Verify each required RHR pump develops a flow rate \geq 7450 gpm through the associated heat exchanger while operating in the suppression pool cooling mode.	In accordance with the Inservice Testing Program
SR 3.6.2.3.3	Verify RHR suppression pool cooling subsystem locations susceptible to gas accumulation are sufficiently filled with water.	In accordance with the Surveillance Frequency Control Program

	SURVEILLANCE	FREQUENCY
SR 3.6.2.4.1	Verify each RHR suppression pool spray subsystem manual and power operated valve in the flow path that is not locked, sealed, or otherwise secured in position, is in the correct position or can be aligned to the correct position.	In accordance with the Surveillance Frequency Control Program
SR 3.6.2.4.2	Verify each required RHR pump develops a flow rate \ge 450 gpm while operating in the suppression pool spray mode.	In accordance with the Inservice
	INSERVICE TESTING PROGRAM	Testing Program
SR 3.6.2.4.3	Verify RHR suppression pool spray subsystem locations susceptible to gas accumulation are sufficiently filled with water.	In accordance with the Surveillance Frequency Control Program

5.5 Programs and Manuals

5.5.4	Radioactive Effluent Controls Program (continued)	
	1. For noble gases: a dose rate \leq 500 mrems/yr to the who body and a dose rate \leq 3000 mrems/yr to the skin, and	e
	 For iodine-131, iodine-133, tritium, and all radionuclides in particulate form with half lives greater than 8 days: a dose rate ≤ 1500 mrems/yr to any organ; 	
	 Limitations on the annual and quarterly air doses resulting from noble gases released in gaseous effluents from each unit to areas beyond the site boundary, conforming to 10 CFR 50, Appendix I; 	
	 Limitations on the annual and quarterly doses to a member of the public from iodine-131, iodine-133, tritium, and all radionuclides in particulate form with half lives > 8 days in gaseous effluents released from each unit to areas beyond the site boundary, conforming to 10 CFR 50, Appendix I; 	
	j. Limitations on the annual dose or dose commitment to any member of the public, beyond the site boundary, due to releases of radioactivity and to radiation from uranium fuel cycle sources, conforming to 40 CFR 190; and	
	 Limitations on venting and purging of the primary containment through the Standby Gas Treatment System to maintain releases as low as reasonably achievable. 	
	The provisions of SR 3.0.2 and SR 3.0.3 are applicable to the Radioactive Effluent Controls Program surveillance frequencies.	
5.5.5	Component Cyclic or Transient Limit	
DELETED	This program provides controls to track the USAR, Table 3.9B-1 Note 5, cyclic and transient occurrences to ensure that components are maintained within the design limits.	
5.5.6	Inservice Testing Program	
	This program provides controls for inservice testing of ASME Code Class 1, 2, and 3 pumps and valves.	
-		(continued)

Amendment 91

5.5 Programs and Manuals

5.5.6	Inse	ervice Testing Program (continued)	ued)			
	a. Testing Frequencies applicable to the ASME Code for Operation and					
		Maintenance of Nuclear Pow				
		Addenda are as follows:				
		ASME OM Code and				
		applicable Addenda				
		terminology for	Required Frequen	cies		
		inservice testing	for performing inse	ervice		
		activities	testing activities			
		Weekly	At least once per	7 days		
		Monthly	At least once per	31 days		
		Quarterly or every				
		3 months	At least once per	92 days		
		Semiannually or				
		every 6 months	At least once per	184 days		
		Every 9 months	At least once per	276 days		
		Yearly or annually	At least once per	366 days		
		Biennially or every				
		2 years	At least once per	731 days		
		Frequencies and to other no specified as 2 years or less i performing inservice testing	n the Inservice Testing Pro			
	6.	The provisions of SR 3.0.3 a testing activities; and	re applicable to inservice			
	d.	Nothing in the ASME OM Co requirements of any TS.	ode shall be construed to su	upersede the		
5.7	Ven	tilation Filter Testing Program	(VFTP)			
	The VFTP shall establish the required testing of Engineered Safety Feature (ESF) filter ventilation systems.					
		Tests described in Specification 5.5.7.a and 5.5.7.b shall be				
	repl	formed once per 24 months; af lacement of the HEPA filter bar	k or charcoal adsorber bar			
		r any structural maintenance o				
		rcoal adsorber bank housing; a				
		nting, fire, or chemical release i				
	com	nmunicating with the subsystem	n while it is in operation.			

(continued)

Attachment 2h Proposed Technical Specification Changes (Mark-Up)

Peach Bottom Atomic Power Station, Units 2 and 3 Renewed Facility Operating License Nos. DPR-44 and DPR-56

REVISED TECHNICAL SPECIFICATION PAGES

1.1-3 3.1-23 3.4-9 3.5-5 3.6-15 3.6-28 3.6-39 5.0-11

Definitions 1.1

1.1 Definitions (continued)

END OF CYCLE The EOC-RPT SYSTEM RESPONSE TIME shall be that RECIRCULATION PUMP TRIP time interval from initial signal generation by the associated turbine stop valve limit switch or (EOC-RPT) SYSTEM RESPONSE TIME from when the turbine control valve hydraulic oil control oil pressure drops below the pressure switch setpoint to complete suppression of the electric arc between the fully open contacts of the recirculation pump circuit breaker. The INSERVICE response time may be measured by means of any TESTING series of sequential, overlapping, or total steps PROGRAM so that the entire response time is measured. 5 The INSERVICE TESTING PROGRAM LEAKAGE LEAKAGE shall be: is the licensee program that fulfills the a. Identified LEArequirements of 10 CFR 50.55a(f). 1. LEAKAGE into the drywell, such as that from pump seals or valve packing, that is captured and conducted to a sump or collecting tank; or 2. LEAKAGE into the drywell atmosphere from sources that are both specifically located and known either not to interfere with the operation of leakage detection systems or not to be pressure boundary LEAKAGE: b. Unidentified LEAKAGE All LEAKAGE into the drywell that is not identified LEAKAGE: c. Total LEAKAGE Sum of the identified and unidentified LEAKAGE; d. Pressure Boundary LEAKAGE LEAKAGE through a nonisolable fault in a Reactor Coolant System (RCS) component body, pipe wall, or vessel wall. LINEAR HEAT GENERATION The LHGR shall be the heat generation rate per RATE (LHGR) unit length of fuel rod. It is the integral of the heat flux over the heat transfer area associated with the unit length. (continued) PBAPS UNIT 2 1.1-3 Amendment No. 225

	1	SURVEILLANCE	FREQUENCY
SR	3.1.7.7	Deleted	
SR	3.1.7.8	Verify each pump develops a flow rate ≥ 49.1 gpm at a discharge pressure ≥ 1275 psig. INSERVICE TESTING PROGRAM	In accordance with the Inservice Testing Program
SR	3.1.7.9	Verify flow through one SLC subsystem from pump into reactor pressure vessel.	In accordance with the Surveillance Frequency Control Program.
SR	3.1.7.10	Verify sodium pentaborate enrichment is ≥ 92.0 atom percent B-10.	Prior to addition to SLC tank

		SURVEILL	ANCE	FREQUENCY
SR	3.4.3.1		y function lift setpoints SRVs and SVs are as	In accordance with the Inservice Testing Pogram
		Number of <u>SRVs</u> 4 4 3 Number of	Setpoint (psig) 1135 ± 34.1 1145 ± 34.4 1155 ± 34.7 Setpoint	INSERVICE TESTING PROGRAM
		<u>SVs</u> 3 Following testing within ± 1%.	<u>(psig)</u> 1260 ± 37.8 g, lift settings shall be	
SR	3.4.3.2	Verify each requ when manually ac depressurization		In accordance with the Surveillance Frequency Control Program.

SURVEILLANCE REQUIREMENTS (continued)

			SURVEILLANCE			FREQUENCY
SR	3.5.1.5	valve c full tr	each recircula ycles through avel or is de- position.	one comp	plete cycle of	In accordance with the Inservice Pesting Program.
SR	3.5.1.6	supply alterna inboard	automatic trar from the norma te source for injection val lation pump di	each LPC	e to the CI subsystem each	In accordance with the Surveillance Frequency Control Program.
SR	3.5.1.7	For the core spray pumps, SR 3.5.1.7 may be met using equivalent values for flow rate and test pressure determined using pump curves.				INSERVICE TESTING PROGRAM
		Verify the following ECCS pumps develop the specified flow rate against a system head corresponding to the specified reactor pressure, SYSTEM HEAD NO. CORRESPONDING OF TO A REACTOR SYSTEM FLOW RATE PUMPS PRESSURE OF			In accordance with the Surveillance Frequency Control Program.	
		Core Spray LPCI	≥ 3,125 gpm ≥ 8,600 gpm	1	≥ 105 psig ≥ 20 psig	

(continued)

PCIVs 3.6.1.3

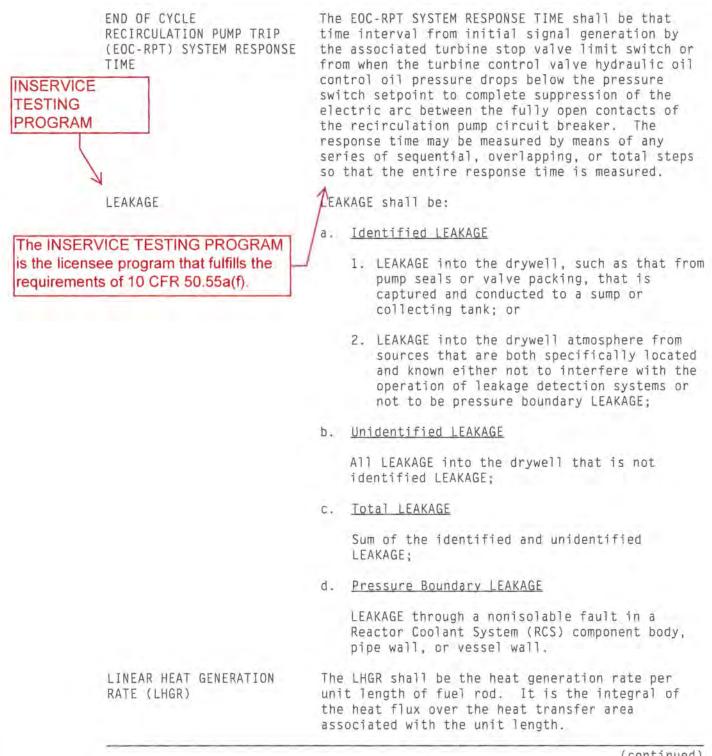
		SURVEILLANCE		FREQUENCY
SR	3.6.1.3.8 Verify the isolation time of each automatic power operated PCIV, except for MSIVs, is within limits. INSERVICE TESTING PROGRAM			In accordance with the Inservice Testing Program
SR	3.6.1.3.9	Verify the isolation time of e ≥ 3 seconds and ≤ 5 seconds. INSERVICE TESTING PROGRAM		In accordance with the Inservice Testing Program
SR	3.6.1.3.10	Verify each automatic PCIV actuates to the isolation position on an actual or simulated isolation signal.		In accordance with the Surveillance Frequency Control Program.
SR	3.6.1.3.11	Verify a representative sample instrumentation line EFCVs act the isolation position on a si instrument line break signal.	uates to	In accordance with the Surveillance Frequency Control Program.
SR	3.6.1.3.12	Remove and test the explosive each shear isolation valve of System.	In accordance with the Surveillance Frequency Control Program.	
SR	3.6.1.3.13	Verify the CAD System supplies to the SGIG System upon loss o normal air supply.		In accordance with the Surveillance Frequency Control Program.

RHR Suppression Pool Cooling 3.6.2.3

INSERVICE TESTING PROGRAM

	_	SURVEILLANCE	FREQUENCY
SR	3.6.2.3.1	Verify each RHR suppression pool cooling subsystem manual, power operated, and automatic valve in the flow path that is not locked, sealed, or otherwise secured in position is in the correct position or can be aligned to the correct position.	In accordance with the Surveillance Frequency Control Program.
SR	3.6.2.3.2	Verify each required RHR pump develops a flow rate ≥ 8,600 gpm through the associated heat exchanger while operating in the suppression pool cooling mode.	In accordance with the Inservice Testing Program
SR	3.6.2.3.3	Verify manual transfer capability of power supply for the RHR motor-operated flow control valve and the RHR cross-tie motor-operated valve from the normal source to the alternate source.	In accordance with the Surveillance Frequency Control Program.
SR	3.6.2.3.4	HPSW system related components are excluded. Verify RHR suppression pool cooling subsystem locations susceptible to gas accumulation are sufficiently filled with water.	In accordance with the Surveillance Frequency Control Program.

SURVEILLANCE			FREQUENCY	
SR	3.6.4.2.1	 Valves and blind flanges in high radiation areas may be verified by use of administrative means. Not required to be met for SCIVs that are open under administrative 		
		controls.	h	
		Verify each secondary containment isolation manual valve and blind flange that is not locked, sealed, or otherwise secured and is required to be closed during accident conditions is closed.	In accordance with the Surveillance Frequency Control Program.	
SR	3.6.4.2.2	Verify the isolation time of each power operated automatic SCIV is within limits. INSERVICE TESTING PROGRAM	In accordance with the Finservice Testing Program	
SR	3.6.4.2.3	Verify each automatic SCIV actuates to the isolation position on an actual or simulated actuation signal.	In accordance with the Surveillance Frequency Control Program.	


5.5.6	Inservice Testing Program DELETED					
	This program provides controls for inservice testing of ASME Code Class 1, 2, and 3 components. The program shall include the					
	following:					
		licable to the ASME Code for Operation car Power Plants (ASME OM Code) and as follows:				
	ASME OM Code and					
	applicable Addenda					
	terminology for	Required Frequencies				
	inservice testing	for performing inservice				
	activities	testing activities				
	Weekly	At least once per 7 days				
	Monthly	At least once per 31 days				
	Quarterly or every 3 months	At least once per 92 days				
	Semiannually or	ne reast once per se augs				
	every 6 months	At least once per 184 days				
	Every 9 months	At least once per 276 days				
	Yearly or annually	At least once per 366 days				
	Biennially or every					
	2 years	At least once per 732 days				
	b. The provisions of SR 3.0.2 are applicable to the above					
	required Frequencies and to other normal and accelerated					
		s 2 years or less in the Inservice				
	Testing Program for peri	forming inservice testing activities;				
	c. The provisions of SR 3.(testing activities; and	0.3 are applicable to inservice				
	d. Nothing in the ASME OM (the requirements of any	Code shall be construed to supersede TS.				
.5.7	Ventilation Filter Testing Pr	<u>rogram (VFTP)</u>				
	The VFTP shall establish the required testing of Engineered Safety Feature (ESF) filter ventilation systems.					
	Tests described in Specifications 5.5.7.a, 5.5.7.b, and 5.5.7.c shall be performed:					
		(continued)				

PBAPS UNIT 2

Amendment No. 268

Definitions 1.1

1.1 Definitions (continued)

(continued)

Amendment No. 229

SURVEILLANCE REQUIREMENTS (continued)

	_ 10	SURVEILLANCE	FREQUENCY
SR	3.1.7.7	Deleted	
SR	3.1.7.8	Verify each pump develops a flow rate ≥ 49.1 gpm at a discharge pressure ≥ 1275 psig. INSERVICE TESTING PROGRAM	In accordance with the JInservice Testing Program
SR	3.1.7.9	Verify flow through one SLC subsystem from pump into reactor pressure vessel.	In accordance with the Surveillance Frequency Control Program.
SR	3.1.7.10	Verify sodium pentaborate enrichment is ≥ 92.0 atom percent B-10.	Prior to addition to SLC tank

UNVI	LILLANCE N	EQUIREMENTS		
_		SURVEILL	ANCE	FREQUENCY
SR	3.4.3.1		y function lift setpoints SRVs and SVs are as	s In accordance with the Inservice Testing Program
		Number of 	Setpoint (psig)	
		4 4 3	1135 ± 34.1 1145 ± 34.4 1155 ± 34.7	
		Number of	Setpoint (psig)	
		3	1260 ± 37.8	
		Following testing within \pm 1%.	g, lift settings shall be	e
SR	3.4.3.2	Verify each required SRV actuator strokes when manually actuated in the depressurization mode.		s In accordance with the Surveillance Frequency Control Program.

1

SURVEILLANCE REQUIREMENTS (continued)

		SURVEILLANCE		FREQUENCY
SR	3.5.1.5	Verify each recirculatio valve cycles through one full travel or is de-ene closed position.	complete cycle of	In accordance with the Inservice Ceseting Program.
SR	3.5.1.6	Verify automatic transfe supply from the normal s alternate source for eac inboard injection valve recirculation pump disch	In accordance with the Surveillance Frequency Control Program.	
SR	3.5.1.7	For the core spray pumps met using equivalent val and test pressure determ curves. Verify the following ECC specified flow rate agai corresponding to the spe	s, SR 3.5.1.7 may be ues for flow rate nined using pump S pumps develop the nst a system head	INSERVICE TESTING PROGRAM
		COLLESDONGING LO LLE SDE	ciffed feactor	AURUON LANCO
		pressure. N O	SYSTEM HEAD O. CORRESPONDING F TO A REACTOR UMPS PRESSURE OF	Surveillance Frequency Control Program.

(continued)

PCIVs 3.6.1.3

SURVEILLANCE REQUIREMENTS (continued)

		SURVEILLANCE	FREQUENCY
SR	3.6.1.3.8	Verify the isolation time of each automatic power operated PCIV, except for MSIVs, is within limits.	In accordance with the Inservice Testing Program
SR	3.6.1.3.9	Verify the isolation time of each MSIV is \geq 3 seconds and \leq 5 seconds.	In accordance with the Inservice
		INSERVICE TESTING PROGRAM	Testing Program
SR	3.6.1.3.10	Verify each automatic PCIV actuates to the isolation position on an actual or simulated isolation signal.	In accordance with the Surveillance Frequency Control Program.
SR	3.6.1.3.11	Verify a representative sample of reactor instrumentation line EFCVs actuates to the isolation position on a simulated instrument line break signal.	In accordance with the Surveillance Frequency Control Program.
SR	3.6.1.3.12	Remove and test the explosive squib from each shear isolation valve of the TIP System.	In accordance with the Surveillance Frequency Control Program.
SR	3.6.1.3.13	Verify the CAD System supplies nitrogen to the SGIG System upon loss of the normal air supply.	In accordance with the Surveillance Frequency Control Program.

RHR Suppression Pool Cooling 3.6.2.3

INSERVICE TESTING PROGRAM

_		FREQUENCY	
SR	3.6.2.3.1	Verify each RHR suppression pool cooling subsystem manual, power operated, and automatic valve in the flow path that is not locked, sealed, or otherwise secured in position is in the correct position or can be aligned to the correct position.	In accordance with the Surveillance Frequency Control Program.
SR	3.6.2.3.2	Verify each required RHR pump develops a flow rate ≥ 8,600 gpm through the associated heat exchanger while operating in the suppression pool cooling mode.	In accordance with the Inservice Testing Program
SR	3.6.2.3.3	Verify manual transfer capability of power supply for the RHR motor-operated flow control valve and the RHR cross-tie motor-operated valve from the normal source to the alternate source.	In accordance with the Surveillance Frequency Control Program.
SR	3.6.2.3.4	NOTE	In accordance with the Surveillance Frequency Control Program.

		FREQUENCY	
SR	3.6.4.2.1	NOTES	
		 Not required to be met for SCIVs that are open under administrative controls. 	
		Verify each secondary containment isolation manual valve and blind flange that is not locked, sealed, or otherwise secured and is required to be closed during accident conditions is closed.	In accordance with the Surveillance Frequency Control Program.
SR	3.6.4.2.2	Verify the isolation time of each power operated automatic SCIV is within limits.	In accordance with the Finservice Testing Program
SR	3.6.4.2.3	Verify each automatic SCIV actuates to the isolation position on an actual or simulated actuation signal.	In accordance with the Surveillance Frequency ControT Program.

This program provides controls for inservice testing of ASME Code Class 1, 2, and 3 components. The program shall include the following:					
	and the second				
	s applicable to the ASME Code for Operatio Nuclear Power Plants (ASME OM Code) and are as follows:				
ASME OM Code and					
applicable Addenda					
terminology for	Required Frequencies				
inservice testing	for performing inservice				
activities	testing activities				
Weekly	At least once per 7 days				
Monthly	At least once per 31 days				
Quarterly or every					
3 months	At least once per 92 days				
Semiannually or					
every 6 months	At least once per 184 days				
Every 9 months	At least once per 276 days				
Yearly or annually					
Biennially or ever					
2 years	At least once per 732 days				
	SR 3.0.2 are applicable to the above es and to other normal and accelerated				
Frequencies specif	ied as 2 years or less in the Inservice				
Testing Program fo	r performing inservice testing activities;				
c. The provisions of	SR 3.0.3 are applicable to inservice				
testing activities	; and				
d. Nothing in the ASM	E OM Code shall be construed to supersede				

5.5.7 <u>Ventilation Filter Testing Program (VFTP)</u>

The VFTP shall establish the required testing of Engineered Safety Feature (ESF) filter ventilation systems.

Tests described in Specifications 5.5.7.a, 5.5.7.b, and 5.5.7.c shall be performed:

(continued)

Amendment No. 272

Attachment 2i Proposed Technical Specification Changes (Mark-Up)

Quad Cities Nuclear Power Station, Units 1 and 2 Renewed Facility Operating License Nos. DPR-29 and DPR-30

REVISED TECHNICAL SPECIFICATION PAGES

 $\begin{array}{c} 1.1-3\\ 3.1.7-3\\ 3.4.3-2\\ 3.5.1-4\\ 3.5.1-5\\ 3.5.2-4\\ 3.6.1.3-7\\ 3.6.2.3-2\\ 5.5-4\\ 5.5-5\end{array}$

Definitions 1.1

1.1 Definitions

DOSE EQUIVALENT I-131 (continued)

The INSERVICE TESTING PROGRAM is the licensee program that fulfills the requirements of 10 CFR 50.55a(f). Guidance Report 11, "Limiting Values of Radionuclide Intake and Air Concentration and Dose Conversion Factors for Inhalation, Submersion, and Ingestion," 1989.

EAKAGE shall be:

a. Identified LEAKAGE

- LEAKAGE into the drywell, such as that from pump seals or valve packing, that is captured and conducted to a sump or collecting tank; or
- LEAKAGE into the drywell atmosphere from sources that are both specifically located and known either not to interfere with the operation of leakage detection systems or not to be pressure boundary LEAKAGE;

b. Unidentified LEAKAGE

All LEAKAGE into the drywell that is not identified LEAKAGE:

c. <u>Total LEAKAGE</u>

Sum of the identified and unidentified LEAKAGE; and

d. Pressure Boundary LEAKAGE

LEAKAGE through a nonisolable fault in a Reactor Coolant System (RCS) component body, pipe wall, or vessel wall.

(continued)

SLC System 3.1.7

SURVEILLANCE REQUIREMENTS

		SURVEILLANCE	FREQUENCY
SR	3.1.7.5	Verify the concentration of sodium pentaborate in solution is within the limits of Figure 3.1.7-1.	In accordance with the Surveillance Frequency Control Program
			AND
			Once within 24 hours after water or sodium pentaborate is added to solution
			AND
			Once within 24 hours after solution temperature is restored withir the limits of Figure 3.1.7-2
SR	3.1.7.6	Verify each SLC subsystem manual valve in the flow path that is not locked, sealed, or otherwise secured in position is in the correct position, or can be aligned to the correct position.	In accordance with the Surveillance Frequency Control Program
SR	3.1.7.7	Verify each pump develops a flow rate ≥ 40 gpm at a discharge pressure ≥ 1275 psig.	In accordance with the Inservice
	INSERV	ICE TESTING PROGRAM	Testing Program
SR	3.1.7.8	Verify flow through one SLC subsystem from pump into reactor pressure vessel.	In accordance with the Surveillance Frequency Control Program

Quad Cities 1 and 2

Safety and Relief Valves 3.4.3

		SURVEILLANCE	FREQUENCY
SR	3.4.3.1	Verify the safety function li of the safety valves are as f	
			point (Testing Program
		2 124 2 125	± 34.1 ± 37.2 ± 37.5 ± 37.8
		Following testing, lift setti within \pm 1%.	igs shall be
SR	3.4.3.2	Verify each relief valve actu when manually actuated.	otor strokes In accordance with the Surveillance Frequency Control Program
SR	3.4.3.3	Valve actuation may be exclud	
		Verify each relief valve actu actual or simulated automatic signal.	initiation with the

SURVEILLANCE	FREQUENCY
Verify, for each ECCS injection/spray subsystem, locations susceptible to gas accumulation are sufficiently filled with water.	In accordance with the Surveillance Frequency Control Program
 Low pressure coolant injection (LPCI) subsystems may be considered OPERABLE during alignment and operation for decay heat removal with reactor steam dome pressure less than the Residual Heat Removal (RHR) cut-in permissive pressure in MODE 3, if capable of being manually realigned and not otherwise inoperable. 	
 Not required to be met for system vent flow paths opened under administrative control. 	
Verify each ECCS injection/spray subsystem manual, power operated, and automatic valve in the flow path, that is not locked, sealed, or otherwise secured in position, is in the correct position.	In accordance with the Surveillance Frequency Control Program
Verify correct breaker alignment to the LPCI swing bus.	In accordance with the Surveillance Frequency Control Program
Verify each recirculation pump discharge valve cycles through one complete cycle of full travel or is de-energized in the closed position.	In accordance with the Inservice Testing Program
	Verify, for each ECCS injection/spray subsystem, locations susceptible to gas accumulation are sufficiently filled with water. I. Low pressure coolant injection (LPCI) subsystems may be considered OPERABLE during alignment and operation for decay heat removal with reactor steam dome pressure less than the Residual Heat Removal (RHR) cut-in permissive pressure in MODE 3, if capable of being manually realigned and not otherwise inoperable. 2. Not required to be met for system vent flow paths opened under administrative control. Verify each ECCS injection/spray subsystem manual, power operated, and automatic valve in the flow path, that is not locked, sealed, or otherwise secured in position, is in the correct position. Verify correct breaker alignment to the LPCI swing bus. Verify each recirculation pump discharge valve cycles through one complete cycle of full travel or is de-energized in the

			SURVEILLANCE			FREQUENCY
SR	3,5,1.5	3.5.1.5 Verify the following ECCS pumps develop the specified flow rate against a test line pressure corresponding to the specified reactor pressure.		In accordance with the Inservice Festing Program		
		SYSTEM	FLOW RATE	NO. OF <u>PUMPS</u>	TEST LINE PRESSURE CORRESPONDING TO A REACTOR <u>PRESSURE OF</u>	INSERVICE TESTING PROGRAM
		Core Spray LPCI	≥ 4500 gpm ≥ 9000 gpm		≥ 90 psig ≥ 20 psig	
SR	3.5.1.6 Not required to be performed until 12 after reactor steam pressure and flow are adequate to perform the test.		until 12 hours and flow	INSERVICE TESTING		
		≥ 920 p flow ra	with reactor osig, the HPCI ate ≥ 5000 gpm oonding to rea	pump ca against	n develop a a system head	In accordance with the Inservice Testing Program
SR	3.5.1.7	Not required to be performed until 12 hours after reactor steam pressure and flow are adequate to perform the test.				
		the HPC ≥ 5000	, with reactor CI pump can de gpm against a ponding to rea	velop a system	head	In accordance with the Surveillance Frequency Control Program

(continued)

	SURVEILLANCE	FREQUENCY
SR 3.5.2.	specified flow rate agains pressure corresponding to reactor pressure. NO SYSTEM FLOW RATE PUM	t a test line the specified TEST LINE PRESSURE CORRESPONDING TO A REACTOR PS PRESSURE OF ≥ 90 psig
SR 3.5.2.	Versel injection/spray ma Verify each required ECCS subsystem actuates on an simulated automatic initi	injection/spray In accordance ctual or with the

		SURVEILLANCE	FREQUENCY
SR	3.6.1.3.4	Verify continuity of the traversing incore probe (TIP) shear isolation valve explosive charge.	In accordance with the Surveillance Frequency Control Program
SR	3,6,1.3.5	Verify the isolation time of each power operated, automatic PCIV, except for MSIVs, is within limits. INSERVICE TESTING PROGRAM	In accordance with the Inservice Testing Program
SR	3.6.1.3.6	Verify the isolation time of each MSIV is ≥ 3 seconds and ≤ 5 seconds. INSERVICE TESTING PROGRAM	In accordance with the Inservice Testing Program
SR	3.6.1.3.7	Verify each automatic PCIV actuates to the isolation position on an actual or simulated isolation signal.	In accordance with the Surveillance Frequency Control Program
SR	3.6.1.3.8	Verify a representative sample of reactor instrumentation line EFCVs actuate to the isolation position on an actual or simulated instrument line break signal.	In accordance with the Surveillance Frequency Control Program
SR	3.6.1.3.9	Remove and test the explosive squib from each shear isolation valve of the TIP System.	In accordance with the Surveillance Frequency Control Program

(continued)

		SURVEILLANCE	FREQUENCY
SR	3.6.2.3.1	Verify each RHR suppression pool cooling subsystem manual and power operated valve in the flow path that is not locked, sealed, or otherwise secured in position, is in the correct position or can be aligned to the correct position.	In accordance with the Surveillance Frequency Control Program
SR	3.6.2.3.2	Verify each required RHR pump develops a flow rate ≥ 5000 gpm through the associated heat exchanger while operating in the suppression pool cooling mode. RVICE TESTING PROGRAM	In accordance with the Inscrvice Testing Program
SR	3.6.2.3.3	Verify RHR suppression pool cooling	In accordance
21	5,0,2,3,3	subsystem locations susceptible to gas accumulation are sufficiently filled with water.	with the Surveillance Frequency Control Program

5.5 Programs and Manuals

5.5.4	Radioactive Effluent Controls Program (continued)
	 For noble gases: a dose rate ≤ 500 mrems/yr to the whole body and a dose rate ≤ 3000 mrems/yr to the skin, and
	 For iodine-131, iodine-133, tritium, and all radionuclides in particulate form with half-lives greater than 8 days: a dose rate ≤ 1500 mrems/yr to any organ;
	h. Limitations on the annual and quarterly air doses resulting from noble gases released in gaseous effluents from each unit to areas beyond the site boundary, conforming to 10 CFR 50, Appendix I;

- i. Limitations on the annual and quarterly doses to a member of the public from iodine-131, iodine-133, tritium, and all radionuclides in particulate form with half lives > 8 days in gaseous effluents released from each unit to areas beyond the site boundary, conforming to 10 CFR 50, Appendix I; and
- j. Limitations on the annual dose or dose commitment to any member of the public, beyond the site boundary, due to releases of radioactivity and to radiation from uranium fuel cycle sources, conforming to 40 CFR 190.

The provisions of SR 3.0.2 and SR 3.0.3 are applicable to the Radioactive Effluents Control Program Surveillance Frequencies.

5.5.5 <u>Component Cyclic or Transient Limit</u>

This program provides controls to track the UFSAR Section 3.9, cyclic and transient occurrences to ensure that components are maintained within the design limits.

5.5.6 Inservice Testing Program

DELETED This program provides controls for inservice testing of ASME Code Class 1, 2, and 3 pumps and valves.

> a. Testing Frequencies applicable to the ASME Code for Operation and Maintenance of Nuclear Power Plants (ASME OM Code) and applicable Addenda are as follows:

> > (continued)

Quad Cities 1 and 2

5.5 Programs and Manuals

5.5.6	Inservice Testing Prog	ram (continued)
	ASME OM Code and	1
	applicable Addenda	
	terminology for	Required Frequencies
	inservice testing	for performing inservice
	activities	testing activities
	Weekly	At least once per 7 days
	Monthly	At least once per 31 days
	Quarterly or every	
	3 months	At least once per 92 days
	Semiannually or	
	every 6 months	At least once per 184 days
	Every 9 months	At least once per 276 days
	Yearly or annually	At least once per 366 days
	Biennially or every	and the second second second second
	2 years	At least once per 731 days
	Every 48 months	At least once per 1461 days
	required Frequencies an Frequencies specified a	0.2 are applicable to the above d to other normal and accelerated s 2 years or less in the Inservice forming inservice testing activities;
	c. The provisions of SR 3. testing activities; and	0.3 are applicable to inservice
	d. Nothing in the ASME OM the requirements of any	Code shall be construed to supersede TS.
5.5.7	Ventilation Filter Testing P	rogram (VFTP)
	Feature (ESF) filter ventila Specification 5.5.7.a and 5. 24 months; after each comple filter bank or charcoal adso maintenance on the HEPA filt housing; and, following pain ventilation zone communicati	required testing of Engineered Safety tion systems. Tests described in 5.7.b shall be performed once per te or partial replacement of the HEPA rber bank; after any structural er bank or charcoal adsorber bank ting, fire, or chemical release in any ng with the subsystem while it is in ly affect the filter bank or charcoal

(continued)

Quad Cities 1 and 2

adsorber capability.

5.5-5 Amendment No. 241/236

Attachment 2j Proposed Technical Specification Changes (Mark-Up)

R.E. Ginna Nuclear Power Plant Renewed Facility Operating License No. DPR-18

REVISED TECHNICAL SPECIFICATION PAGES

1.1-2
3.4.10-2
3.5.2-3
3.6.3-6
3.6.6-2
3.7.1-2
3.7.2-2
3.7.3-2
3.7.5-3
3.7.7-2
5.5-4

CHANNEL OPERATIONAL TEST (COT)	A COT shall be the injection of a simulated or actual signal into the channel as close to the sensor as practicable to verify the OPERABILITY of required alarm, interlock, display, and trip functions. The COT shall include adjustments, as necessary, of the required alarm, interlock, and trip setpoints so that the setpoints are within the required range and accuracy.
CORE ALTERATIONS	CORE ALTERATIONS shall be the movement of any fuel, sources, or reactivity control components, within the reactor vessel with the vessel head removed and fuel in the vessel. Suspension of CORE ALTERATIONS shall not preclude completion of movement of a component to a safe position.
CORE OPERATING LIMITS REPORT (COLR)	The COLR is the plant specific document that provides cycle specific parameter limits for the current reload cycle. These cycle specific parameter limits shall be determined for each reload cycle in accordance with Specification 5.6.5. Plant operation within these limits is addressed in individual Specifications.
DOSE EQUIVALENT I-131	DOSE EQUIVALENT I-131 shall be that concentration of I-131 (microcuries/gram) that alone would produce the same thyroid dose as the quantity and isotopic mixture of I-131, I-132, I-133, I-134, and I-135 actually present. The thyroid dose conversion factors used for this calculation shall be those listed in ICRP 30, Supplement to Part 1, pages 192-212, table entitled, "Committed Dose Equivalent in Target Organs or Tissues per Intake of Unit Activity."
E - AVERAGE DISINTEGRATION ENERGY	E shall be the average (weighted in proportion to the concentration of each radionuclide in the reactor coolant at the time of sampling) of the sum of the average beta and gamma energies (in MeV) per disintegration for non-iodine isotopes, with half lives > 15 minutes, making up at least 95% of the total non-iodine activity in the coolant.
INSERVICE TESTING PROGRAM	The INSERVICE TESTING PROGRAM is the licensee program that fulfills the requirements of 10 CFR 50.55a(f).

_	SURVEILLANCE	FREQUENCY
SR 3.4.10.1	- NOTE - Required to be performed within 36 hours of entering MODE 4 from MODE 5 with all RCS cold leg temperatures greater than the LTOP enable temperature specified in the PTLR for the purpose of setting the pressurizer safety valves under ambient (hot) conditions only provided a preliminary cold setting was made prior to heatup.	
	Verify each pressurizer safety value is OPERABLE in accordance with the preservice Testing Program. Following testing, lift settings shall be within \pm 1%.	In accordance with the Inservice Testing Program

	SURVEILLANCE	FREQUENCY
SR 3.5.2.3	ble, for each In accordance sition. with the Surveillance Frequency Control Program	
SR 3.5.2.4	Verify each ECCS pump's developed head at point is greater than or equal to the required head. INSERVICE TESTING PRO	developed with the
SR 3.5.2.5	Verify each ECCS automatic valve in the flow not locked, sealed, or otherwise secured in p actuates to the correct position on an actual o actuation signal.	osition Superillance
SR 3.5.2.6	Verify each ECCS pump starts automatically or simulated actuation signal.	on an actual with the Surveillance Frequency Control Program
SR 3.5.2.7	Verify, by visual inspection, each RHR contain suction inlet is not restricted by debris and th containment sump screen shows no evidence structural distress or abnormal corrosion.	e Supreillance
SR 3.5.2.8	Verify ECCS locations susceptible to gas accu sufficiently filled with water.	In accordance

	FREQUENCY		
SR 3.6.3.1	Verify each mini-purge valve is closed, except when the penetration flowpath(s) are permitted to be open under administrative control.	In accordance with the Surveillance Frequency Control Program	
SR 3.6.3.2	 NOTE - 1. Isolation boundaries in high radiation areas may be verified by use of administrative controls. 2. Not applicable to containment isolation boundaries which receive an automatic 		
	containment isolation signal. Verify each containment isolation boundary that is located outside containment and not locked, sealed, or otherwise secured in the required position is performing its containment isolation accident function except for containment isolation boundaries that are open under administrative controls.	In accordance with the Surveillance Frequency Control Program	
SR 3.6.3.3	 NOTE - 1. Isolation boundaries in high radiation areas may be verified by use of administrative means. 2. Not applicable to containment isolation boundaries which receive an automatic containment isolation signal. 		
	Verify each containment isolation boundary that is located inside containment and not locked, sealed, or otherwise secured in the required position is performing its containment isolation accident function, except for containment isolation boundaries that are open under administrative controls.	Prior to entering MODE 4 from MODE 5 if not performed within the previous 92 days	
SR 3.6.3.4	8.6.3.4 Verify the isolation time of each automatic containment isolation valve is within limits.		
SR 3.6.3.5 Perform required leakage rate testing of containment mini-purge valves with resilient seals in accordance with the Containment Leakage Rate Testing Program.		In accordance with the Containment Leakage Rate Program.	

	CONDITION		REQUIRED ACTION	COMPLETION TIME
F.	Two CS trains inoperable.	F.1	Enter LCO 3.0.3.	Immediately
	Three or more CRFC units inoperable.			

	FREQUENCY	
SR 3.6.6.1	Perform SR 3.5.2.1 and SR 3.5.2.3 for valves 896A and 896B.	In accordance with applicable SRs.
SR 3.6.6.2	Not required to be met for system vent flow paths opened under administrative control. Verify each CS manual, power operated, and automatic valve in the flow path that is not locked, sealed, or otherwise secured in position is in the correct position.	In accordance with the Surveillance Frequency Control Program
SR 3.6.6.3 Verify each NaOH System manual, power operated, and automatic valve in the flow path that is not locked, sealed or otherwise secured in position is in the		In accordance with the Surveillance Frequency Control Program
SR 3,6.6.4	In accordance with the Surveillance Frequency Control Program	
SR 3.6.6.5	In accordance with the Surveillance Frequency Control Program	
SR 3.6.6.6 Verify each CS pump's developed head at the flow test point is greater than or equal to the required developed head.		In accordance with the Inservice Testing Program
SR 3.6.6.7	In accordance with the Surveillance Frequency Control Program	
SR 3.6.6.8	Verify NaOH System tank NaOH solution concentration is \ge 30% and \le 35% by weight.	In accordance with the Surveillance Frequency Control Program

	-	SURVEILLAN	CE	FREQUENCY
SR 3.7.1.1	Only requ			
	accordance	e with the lase	point specified below in rvice Testing Program . Ings shall be within ± 1%.	In accordance with the Inservice Testing Program
	VALVE NUMBER		LIFT SETTING	
	<u>SG A</u>	SG B	(poic +10/ 20/)	SERVICE STING PROGRAM
	3509	3508	1140	
	3511	3510	1140	
	3515	3512	1140	
	3513	3514	1085	

	FREQUENCY	
SR 3.7.2.1	Verify closure time of each MSIV is ≤ 5 seconds under no flow and no load conditions. INSERVICE TESTING PROGRAM	In accordance with the Inservice Testing Program
SR 3.7.2.2	Verify each main steam non-return check valve can close.	In accordance with the Inservice
SR 3.7.2.3	Verify each MSIV can close on an actual or simulated actuation signal.	In accordance with the Surveillance Frequency Control Program

MFIVs, MFRVs, and Associated Bypass Valves 3.7.3

		CONDITION		REQUIRED ACTION	COMPLETION TIME
r I	E.	Required Action and associated Completion Time not met.	E.1 <u>AND</u>	Be in MODE 3.	6 hours
1			E.2	Be in MODE 4.	12 hours

SURVEILLANCE REQUIREMENTS

L

	SURVEILLANCE	FREQUENCY
SR 3.7.3.1	Verify the closure time of each MFIV is ≤ 30 seconds on an actual or simulated actuation signal. INSERVICE TESTING PROGRAM	In accordance with the Inservice Testing Program
SR 3.7.3.2	Verify the closure time of each MFRV and associated bypass valve is ≤ 10 seconds on an actual or simulated actuation signal.	In accordance with the Inservice Testing Program
	10 Cab 12	RVICE FING PROGRAM

	SURVEILLANCE	FREQUENCY
SR 3.7.5.1	Verify each AFW and SAFW manual, power operated, and automatic valve in each water flow path, and in both steam supply flow paths to the turbine driven pump, that is not locked, sealed, or otherwise secured in position, is in the correct position.	In accordance with the Surveillance Frequency Control Program
SR 3.7.5.2	- NOTE - Required to be met prior to entering MODE 1 for the TDAFW pump.	INSERVICE TESTING PROGR
RVICE ING PROGRA	Verify the developed head of each AFW pump at the flow test point is greater than or equal to the required developed head.	In accordance with the Inservice Testing Program
SR 3.7.5.3	Verify the developed head of each SAFW pump at the flow test point is greater than or equal to the required developed head.	In accordance with the Inservice Testing Program
SR 3.7.5.4	Perform a complete cycle of each AFW and SAFW motor operated suction valve from the Service Water System, each AFW and SAFW discharge motor operated isolation valve, and each SAFW cross-tie motor operated valve.	In accordance with the locervice Testing Program INSERVICE TESTING PROGRA
SR 3.7.5.5	Verify each AFW automatic valve that is not locked, sealed, or otherwise secured in position, actuates to the correct position on an actual or simulated actuation signal.	In accordance with the Surveillance Frequency Control Program
SR 3.7.5.6	- NOTE - Required to be met prior to entering MODE 1 for the TDAFW pump.	
	Verify each AFW pump starts automatically on an actual or simulated actuation signal.	In accordance with the Surveillance Frequency Control Program
SR 3.7,5.7	Verify each SAFW train can be actuated and controlled from the control room.	In accordance with the Surveillance Frequency Control Program

CONDITION		REQUIRED ACTION	COMPLETION TIME
	D.2	Be in MODE 3.	6 hours
	AND		
	D.3	Be in MODE 4.	12 hours

	SURVEILLANCE	FREQUENCY
SR 3.7.7.1	- NOTE - Isolation of CCW flow to individual components does not render the CCW loop header inoperable. Verify each CCW manual and power operated valve in the CCW train and heat exchanger flow path and loop header that is not locked, sealed, or otherwise secured in position, is in the correct position.	In accordance with the Surveillance Frequency Control Program
SR 3.7.7.2	Perform a complete cycle of each motor operated isolation valve to the residual heat removal heat exchangers.	In accordance with the Inservice Testing Program

INSERVICE TESTING PROGRAM DELETED

Inservice Testing Program

This program provides controls for inservice testing of ASME Code Class 1, 2, and 3 components including applicable supports. The program shall include the following:

a. Testing frequencies applicable to the ASME Code for Operation and Maintenance of Nuclear Power Plants (ASME OM Code) and applicable Addenda as follows:

ASME OM Code and applicable Addenda terminology for inservice testing activities	Required Frequencies for performing inservice testing activities
Weekly	At least once per 7 days
Monthly	At least once per 31 days
Quarterly or every 3 months	At least once per 92 days
Semiannually or every 6 months	At least once per 184 days
Every 9 months	At least once per 276 days
Yearly or annually	At least once per 366 days
Biennially or every 2 years	At least once per 731 days

- The provisions of SR 3.0.2 are applicable to the above required Frequencies and to other normal and accelerated Frequencies specified as 2 years or less in the Inservice Testing program for performing inservice testing activities;
- c. The provisions of SR 3.0.3 are applicable to inservice testing activities; and
- d. Nothing in the ASME OM Code shall be construed to supersede the requirements of any Technical Specification.

I

Attachment 2k Proposed Technical Specification Changes (Mark-Up)

Three Mile Island Nuclear Station, Unit 1 Renewed Facility Operating License No. DPR-50

REVISED TECHNICAL SPECIFICATION PAGES

1-8 4-8 4-11 4-52

1.24 CORE OPERATING LIMITS REPORT

The CORE OPERATING LIMITS REPORT is a TMI-1 specific document that provides core operating limits for the current operating reload cycle. These cycle-specific core operating limits shall be determined for each reload cycle in accordance with Specification 6.9.5. Plant operation within these operating limits is addressed in individual specifications.

1.25 FREQUENCY NOTATION

The FREQUENCY NOTATION specified for the performance of Surveillance Requirements shall correspond to the intervals defined in Table 1.2. All Surveillance Requirements shall be performed within the specified time interval with a maximum allowable extension not to exceed 25% of the surveillance interval. The 25% extension applies to all frequency intervals with the exception of "F." No extension is allowed for intervals designated "F."

TABLE 1.2

FREQUENCY NOTATION

NOTAT	ION	FREQUENCY
S		Shiftly (once per 12 hours)
D		Daily (once per 24 hours)
W		Weekly (once per 7 days)
M		Monthly (once per 31 days)
		Quarterly (once per 92 days)
Q S//	A .	Semi-Annually (once per 184 days)
R		Refueling Interval (once per 24 months)
	5/U	Prior to each reactor startup, if not done during the previous 7 days
P S	5/A	Within six (6) months prior to each reactor startup
P		Completed prior to each release
N/	A (NA)	Not applicable
E		Once per 18 months
F		Not to exceed 24 months

1.26 DOSE EQUIVALENT Xe-133

Dose Equivalent Xe-133 shall be that concentration of Xe-133 (microcuries per gram) that alone would produce the same acute dose to the whole body as the combined activities of noble gas nuclides Kr-85m, Kr-85, Kr-87, Kr-88, Xe-131m, Xe-133m, Xe-133, Xe-135m, Xe-135, and Xe-138 actually present. If a specific noble gas nuclide is not detected, it should be assumed to be present at the minimum detectable activity. The determination of DOSE EQUIVALENT Xe-133 shall be performed using effective dose conversion factors for air submersion listed in Table III.1 of EPA Federal Guidance Report No. 12.

1-8

Amendment No. 72, 137, 155, 173, 175, 199, 272 1.27 INSERVICE TESTING PROGRAM The INSERVICE TESTING PROGRAM is the licensee program that fulfills the requirements of 10 CFR 50.55a(f).

TABLE 4.1-2

MINIMUM EQUIPMENT TEST FREQUENCY

	ltem	Test	Frequency	1
1.	Control Rods	Rod drop times of all full length rods	Note 1 TESTING PROGRAM	10
2.	Control Rod Movement	Movement of each rod	Note 1, when reactor is critical	1
3.	Pressurizer Safety Valves	Setpoint	In accordance with the K Inservice Testing Program	
4.	Main Steam Safety Valves	Setpoint	In accordance with the Inservice Testing Program	
5.	Refueling System Interlocks	Functional	Start of each refueling period	1
6.	(Deleted)	-	- PROGRAM	
7.	Reactor Coolant System Leakage	Evaluate	Note 1, when reactor coolant system temperature is greater than 525 degrees F (Not applicable to primary-to-secondary leakage.)	ſ
8.	(Deleted)	4	-	
9.	Spent Fuel Cooling System	Functional	Each refueling period prior to fuel handling	
10	Intake Pump House Floor (Elevation 262 ft. 6 in.)	 (a) Silt Accumulation - Visual inspection of Intake Pump House Floor 	Note 1	T
		(b) Silt Accumulation Measurement of Pump House Flow	Note 1	ţ
11	. Pressurizer Block Valve (RC-V2)	Functional*	Note 1	1
12	Primary to Secondary Leakage	Evaluate	Note 1 (Note: Not required to be performed until 12 hours after establishment of steady state operation.)	l
	Leakage		establishment of steady stat	

* Function shall be demonstrated by operating the valve through one complete cycle of full travel.

Note 1: Surveillance Frequencies are specified in the Surveillance Frequency Control Program unless otherwise noted in the table.

4-8

Amendment No. 55, 68, 78, 149, 175, 198, 211, 246, 261, 274

4.2 REACTOR COOLANT SYSTEM INSERVICE AND TESTING

Applicability

This technical specification applies to the inservice inspection (ISI) and inservice testing (IST) of the reactor coolant system pressure boundary and portions of other safety oriented system pressure boundaries.

Objective

The objective of the ISI and IST programs is to provide assurance of the continuing integrity of the reactor coolant system while at the same time minimizing radiation exposure to personnel in the performance of inservice inspections and tests.

Specification

- 4.2.1 ISI of ASME Code Class 1, Class 2, and Class 3 components shall be performed in accordance with Section XI of the ASME Boiler and Pressure Vessel Code and applicable Addenda as required by 10 CFR 50, Section 50.55a, except where specific written relief has been granted by the NRC.
- 4.2.2 IST of ASME Code Class 1, Class 2 and Class 3 pumps and valves shall be performed in accordance with the ASME Code for Operation and Maintenance of Nuclear Power Plants (ASME OM Code) and applicable Addenda as required by 10 CFR 50, Section 50.55a, except where specific written relief has been granted by the NRC.
- 4.2.3 (Deleted)
- 4.2.4 The accessible portions of one reactor coolant pump motor flywheel assembly will be ultrasonically inspected within the first ISI period, two reactor coolant pump motor flywheel assemblies within the first two ISI periods and all four by the end of the 10 year inspection interval. However, the U.T. procedure is developmental and will be used only to the extend that it is shown to be meaningful. The extent of coverage will be limited to those areas of the flywheel which are accessible without motor disassembly, i.e., can be reached through the access ports. Also, if radiation levels at the lower access ports are prohibitive, only the upper access ports will be used.

Amendment No. 15, 29, 54, 60, 71, 118, 172, 266

4.9 DECAY HEAT REMOVAL (DHR) CAPABILITY - PERIODIC TESTING

Applicability

Applies to the periodic testing of systems or components which function to remove decay heat.

Objective

To verify that systems/components required for DHR are capable of performing their design function.

Specification

-INSERVICE TESTING PROGRAM

- 4.9.1 Reactor Coolant System (RCS) Temperature greater than 250 degrees F.
- 4.9.1.1 Verify each Emergency Feedwater (EFW) Pump is tested in accordance with the requirements and acceptance criteria of the inservice Test Program.
 - Note: This surveillance is not required to be performed for the turbine-driven EFW Pump (EF-P-1) until 24 hours after exceeding 750 psig.

4.9.1.2 DELETED

- 4.9.1.3 At the frequency specified in the Surveillance Frequency Control Pogram, each EFW System flowpath valve from both Condensate Storage Tanks (CSTs) to the OTSGs via the motor-driven pumps and the turbine-driven pump shall be verified to be in the required status.
- 4.9.1.4 At the frequency specified in the Surveillance Frequency Control Program:
 - Verify that each EFW Pump starts automatically upon receipt of an EFW test signal.
 - b) Verify that each EFW control valve responds upon receipt of an EFW test signal.
 - c) Verify that each EFW control valve responds in manual control from the control room and remote shutdown panel.
- 4.9.1.5 Prior to STARTUP, following a REFUELING SHUTDOWN or a COLD SHUTDOWN greater than 30 days, conduct a test to demonstrate that the motor driven EFW Pumps can pump water from the CSTs to the Steam Generators.

4-52

Attachment 3a Revised Technical Specification Bases Changes (Information Only)

Braidwood Station, Units 1 and 2 Renewed Facility Operating License Nos. NPF-72 and NPF-77

REVISED TECHNICAL SPECIFICATION BASES PAGES

B 3.0-13 B 3.4.10-4 B 3.4.12-15 B 3.5.2-11 B 3.5.2-12 B 3.6.3-17 B 3.6.6-10 B 3.7.1-3 B 3.7.1-6 B 3.7.2-8

SR 3.0.1 SR 3.0.1 establishes the requirement that SRs must be meduring the MODES or other specified conditions in the Applicability for which the requirements of the LCO applunless otherwise specified in the individual SRs. This Specification is to ensure that Surveillances are perfor to verify the OPERABILITY of systems and components, and that variables are within specified limits. Failure to a Surveillance within the specified Frequency, in accord with SR 3.0.2, constitutes a failure to be OPERABLE when the associated SRs have been met. Nothing in this	B 3.0 SURVEILLANCE REQUIREMENT (SR) APPLICABILITY Chapter 5 only when invoked by a Chapter 5 Specification.		
during the MODES or other specified conditions in the Applicability for which the requirements of the LCO appl unless otherwise specified in the individual SRs. This Specification is to ensure that Surveillances are perfor to verify the OPERABILITY of systems and components, and that variables are within specified limits. Failure to a Surveillance within the specified Frequency, in accord with SR 3.0.2, constitutes a failure to meet an LCO. Systems and components are assumed to be OPERABLE when the associated SRs have been met. Nothing in this	SRs	SR 3.0.1 through SR 3.0.5 establish the general requirements applicable to all Specifications and apply at all times, unless otherwise stated.	
associated SRs have been met. Nothing in this	SR 3.0.1	Applicability for which the requirements of the LCO apply, unless otherwise specified in the individual SRs. This Specification is to ensure that Surveillances are performed to verify the OPERABILITY of systems and components, and that variables are within specified limits. Failure to meet a Surveillance within the specified Frequency, in accordance	
systems or components are OPERABLE when:		Specification, however, is to be construed as implying that	

- a. The systems or components are known to be inoperable, although still meeting the SRs; or
- b. The requirements of the Surveillance(s) are known not to be met between required Surveillance performances.

Surveillances do not have to be performed when the unit is in a MODE or other specified condition for which the requirements of the associated LCO are not applicable, unless otherwise specified. The SRs associated with an Exception LCO are only applicable when the Exception LCO is used as an allowable exception to the requirements of a Specification.

Unplanned events may satisfy the requirements (including applicable acceptance criteria) for a given SR. In this case, the unplanned event may be credited as fulfilling the performance of the SR. This allowance includes those SRs whose performance is normally precluded in a given MODE or other specified condition.

ACTIONS

A.1

With one pressurizer safety valve inoperable, restoration must take place within 15 minutes. The Completion Time of 15 minutes reflects the importance of maintaining the RCS Overpressure Protection System. An inoperable safety valve coincident with an RCS overpressure event could challenge the integrity of the pressure boundary.

B.1 and B.2

If Required Action A.1 and its associated Completion Time are not met or if two or more pressurizer safety valves are inoperable, the unit must be brought to a MODE in which the requirement does not apply. To achieve this status, the unit must be brought to at least MODE 3 within 6 hours and to MODE 4 within 12 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging plant systems. In MODE 4, overpressure protection is provided by the LTOP System. The change from MODE 1, 2, or 3 to MODE 4 reduces the RCS energy (core power and pressure), lowers the potential for large pressurizer insurges, and thereby removes the need for overpressure protection by three pressurizer safety valves.

SURVEILLANCE REQUIREMENTS

SR 3.4.10.1

INSERVICE TESTING PROGRAM

SRs are specified in the **Enservice Testing Program**. Pressurizer safety valves are to be tested in accordance with the requirements of the ASME Code (Ref. 4), which provides the activities and Frequencies necessary to satisfy the SRs. No additional requirements are specified.

The pressurizer safety valve setpoint is $\pm 2\%$ of a nominal 2460 psig for OPERABILITY; however, the valves are reset to $\pm 1\%$ during the Surveillance to allow for drift.

SURVEILLANCE REQUIREMENTS (continued)

SR 3.4.12.4

The RCS vent of \geq 2.0 square inches is proven OPERABLE by verifying its open condition.

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

The passive vent arrangement must only be open to be OPERABLE. This Surveillance is required to be performed if the vent is being used to satisfy the pressure relief requirements of LCO 3.4.12.d.4.

SR 3.4.12.5

Each required RHR suction relief valve shall be demonstrated OPERABLE by verifying its RHR suction isolation valves are open. This Surveillance is only required to be performed if the RHR suction relief valve is being used to satisfy this LCO.

The RHR suction isolation valves, RH8701A and RH8701B for relief valve RH8708A, and RH8702A and RH8702B for relief valve RH8708B, are verified to be opened. The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

The ASME Code (Ref. 7) test per Inservice Testing Program verifies OPERABILITY by proving proper relief valve mechanical motion and by measuring and, if required, adjusting the lift setpoint.

INSERVICE TESTING PROGRAM

SURVEILLANCE REQUIREMENTS (continued)

the maximum potential accumulated gas void volume has been evaluated and determined to not challenge system OPERABILITY. The accuracy of the method used for monitoring the susceptible locations and trending of the results should be sufficient to assure system OPERABILITY during the Surveillance interval.

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program. The Surveillance Frequency may vary by location susceptible to gas accumulation.

SR 3.5.2.4

Periodic surveillance testing of ECCS pumps to detect gross degradation caused by impeller structural damage or other hydraulic component problems is required by the ASME Code. This type of testing may be accomplished by measuring the pump developed head at only one point of the pump characteristic curve. This verifies both that the measured performance is within an acceptable tolerance of the original pump baseline performance and that the performance at the test flow is greater than or equal to the performance assumed in the plant safety analysis. SRs are specified in the Inservice Testing Program of the ASME Code. The ASME Code provides the activities and Frequencies necessary to satisfy the requirements.

> This SR is specified in the INSERVICE TESTING PROGRAM

SURVEILLANCE REQUIREMENTS (continued)

SR 3.5.2.5

This Surveillance demonstrates that each automatic ECCS valve actuates to the required position on an actual or simulated SI signal (a coincident RWST Level Low-Low signal is required to open the containment sump isolation valves). This Surveillance is not required for valves that are locked, sealed, or otherwise secured in the required position under administrative controls. This Surveillance may be performed on-line during RH system maintenance work windows when the RH pump suction piping is drained; thus, reducing overall RH system unavailability. If there is not an on-line RH system maintenance work window that requires the RH pump suction piping to be drained, this Surveillance must be conducted during refueling outages (Ref. 9). The Surveillance Frequency is controlled under the Surveillance Frequency Control Program. The actuation logic is tested as part of ESF Actuation System testing, and equipment performance is monitored as part of the Inservice Testing Program.

SR 3.5.2.6

INSERVICE TESTING PROGRAM

PROGRAM

This Surveillance demonstrates that each ECCS pump starts on receipt of an actual or simulated SI signal. The Surveillance Frequency is controlled under the Surveillance Frequency Control Program. The actuation logic is tested as part of ESF Actuation System testing, and equipment performance is monitored as part of the Inservice Testing Program.

SR 3.5.2.7

Realignment of valves in the flow path on an SI signal is necessary for proper ECCS performance. These valves have mechanical stops to allow proper positioning for restricted flow to a ruptured cold leg, ensuring that the other cold legs receive at least the required minimum flow. The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

SR 3.5.2.8

Periodic inspections of the containment sump suction inlet ensure that it is unrestricted and stays in proper operating condition. The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

SURVEILLANCE REQUIREMENTS (continued)

SR 3.6.3.4

This SR requires verification that each containment isolation manual valve, remote manual valve, and blind flange located inside containment and not locked, sealed, or otherwise secured and required to be closed during accident conditions is closed. The SR helps to ensure that post accident leakage of radioactive fluids or gases outside of the containment boundary is within design limits. For containment isolation valves inside containment, the Frequency of "prior to entering MODE 4 from MODE 5 if not performed within the previous 92 days" is appropriate since these containment isolation valves are operated under administrative controls and the probability of their misalignment is low. The SR specifies that containment isolation valves that are open under administrative controls are not required to meet the SR during the time they are open. This SR does not apply to valves that are locked, sealed, or otherwise secured in the closed position, since these were verified to be in the correct position upon locking, sealing, or securing.

This Note allows valves and blind flanges located in high radiation areas to be verified closed by use of administrative means. Allowing verification by administrative means is considered acceptable, since access to these areas is typically restricted during MODES 1, 2, 3, and 4, for ALARA reasons. Therefore, the probability of misalignment of these containment isolation valves, once they have been verified to be in their proper position, is small.

SR 3.6.3.5

Verifying that the isolation time of each automatic containment isolation valve is within limits is required to demonstrate OPERABILITY. The isolation time test ensures the valve will isolate in a time period less than or equal to that assumed in the safety analyses. The 48 inch purge valves are not qualified for automatic closure from their open position under DBA conditions due to their large size and are, thus, maintained sealed closed in MODES 1, 2, 3, and 4. The safety analyses assume that the 48 inch purge valves are closed at event initiation. The isolation time and Frequency of this SR are in accordance with the Inservice Testing Program

INSERVICE TESTING PROGRAM

SURVEILLANCE REQUIREMENTS (continued)

SR 3.6.6.2

Operating each containment cooling train fan unit (in slow speed) for \geq 15 minutes ensures that all trains are OPERABLE and that all associated controls are functioning properly. It also ensures that blockage, fan or motor failure, or excessive vibration can be detected for corrective action. The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

SR 3.6.6.3

This SR requires verifying that an SX flow rate greater than or equal to the design flow rate assumed in the safety analyses (i.e., 2660 gpm) to each containment cooling unit (RCFC) will be achieved with the primary containment refrigeration units in their specified safety configuration described in UFSAR Section 9.4.8 (Ref.2). The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

SR 3.6.6.4

Verifying each containment spray pump's developed head at the flow test point is greater than or equal to the required developed head ensures that spray pump performance has not degraded during the cycle. Flow and differential pressure are normal tests of centrifugal pump performance required by the ASME Code (Ref. 8). Since the containment spray pumps cannot be tested with flow through the spray headers, they are tested on recirculation flow. This test confirms one point on the pump design curve and is indicative of overall performance. Such inservice tests confirm component OPERABILITY, trend performance, and detect incipient failures by abnormal performance. The Frequency of the SR is in accordance with the Inservice Testing Program.

INSERVICE TESTING PROGRAM

BRAIDWOOD - UNITS 1 & 2 B 3.6.6 - 10

this

APPLICABLE SAFETY ANALYSES (continued)

overpressurization may be determined by system transient analyses or conservatively arrived at by a simple heat balance calculation. Plant specific sensitivity studies demonstrate that in some circumstances it is necessary to limit the primary side heat generation that can be achieved during an AOO by reducing the setpoint of the Power Range Neutron Flux-High reactor trip function. For example, with one or more MSSVs on one or more steam generators inoperable, during an RCS heatup event (e.g., turbine trip) when the Moderator Temperature Coefficient (MTC) is positive, the reactor power may increase above the initial value. An uncontrolled RCCA bank withdrawal at power event occurring from a partial power level may result in an increase in reactor power that exceeds the combined steam flow capacity of the turbine and the remaining OPERABLE MSSVs. Thus, for any number of inoperable MSSVs on one or more steam generators it is necessary to prevent a power increase by lowering the Power Range Neutron Flux-High reactor trip setpoint to an appropriate value.

The MSSVs are assumed to have two active and one passive failure modes. The active failure modes are spurious opening, and failure to reclose once opened. The passive failure mode is failure to open upon demand.

The MSSVs satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii).

The accident analysis requires that five MSSVs per steam generator be OPERABLE to provide overpressure protection for design basis transients. The LCO requires that five MSSVs per steam generator be OPERABLE in compliance with Reference 2, and the DBA analysis.

The OPERABILITY of the MSSVs is defined as the ability to open upon demand within the setpoint tolerances, to relieve steam generator overpressure, and reseat when pressure has been reduced. The OPERABILITY of the MSSVs is determined by periodic surveillance testing in accordance with the Inservice Testing Program.

This LCO provides assurance that the MSSVs will perform their designed safety functions to mitigate the consequences of accidents that could result in a challenge to the RCPB or Main Steam System integrity.

INSERVICE TESTING PROGRAM

BRAIDWOOD - UNITS 1 & 2

LCO

ACTIONS (continued)

is bounded by the calculated value. The MSSV setpoint tolerance assumption used in the plant specific analyses is bounded by the setpoint tolerance specified in Table 3.7.1-2.

Required Action A.2 is modified by a Note, indicating that the Power Range Neutron Flux-High reactor trip setpoint reduction is only required in Mode 1. In Modes 2 and 3 the rector protection system trips specified in LCO 3.3.1, "Reactor Trip System Instrumentation," provide sufficient protection.

The allowed Completion Times are reasonable based on operating experience to accomplish the Required Actions in an orderly manner without challenging plant systems.

B.1 and B.2

If the MSSVs cannot be restored to OPERABLE status or the Required Actions cannot be completed within the associated Completion Time, or if one or more steam generators have ≥ 4 inoperable MSSVs, the unit must be placed in a MODE in which the LCO does not apply. To achieve this status, the unit must be placed in at least MODE 3 within 6 hours, and in MODE 4 within 12 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging unit systems.

SURVEILLANCE REQUIREMENTS	<u>SR 3.7.1.1</u>
	This SR verifies the OPERABILITY of the MSSVs by the verification of each MSSV lift setpoint in accordance with the Inservice Testing Program. The ASME Code (Ref. 5) requires that safety and relief valve tests be performed in accordance with ANSI/ASME OM-1-1987 (Ref. 6). According to Reference 6, the following tests are required.
	a. Visual examination;
	b. Seat tightness determination;
	c. Setpoint pressure determination (lift setting);
	d. Compliance with owner's seat tightness criteria; and

e. Verification of the balancing device integrity on balanced valves.

SURVEILLANCE REQUIREMENTS	<u>SR 3.7.2.1</u>				
NSERVICE TESTING	This SR verifies that MSIV closure time is \leq 5 seconds on an actual or simulated actuation signal (from each actuator train). The MSIV closure time is assumed in the accident and containment analyses. This Surveillance is normally performed upon returning the unit to operation following a retueling outage. Based on ASME Code (Ref. 5), the MSIVs are not closure time tested at power.				
	The Frequency is in accordance with the Inservice Testing Program. This test is conducted in MODE 3 with the unit at operating temperature and pressure. This SR is modified by a Note. This Note allows entry into and operation in MODE 3 prior to performing the SR. This allows a delay of testing until MODE 3, to establish conditions consistent with those under which the acceptance criterion was generated.				
	<u>SR 3.7.2.2</u>				
	This SR verifies that each actuator train can close its respective MSIV on an actual or simulated actuation signal. This Surveillance is normally performed upon returning the unit to operation following a refueling outage. The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.				
	This SR is modified by a Note. This Note allows entry into and operation in MODE 3 prior to performing the SR. This allows a delay of testing until MODE 3, to establish conditions consistent with those under which the acceptance criterion was generated.				
REFERENCES	1. UFSAR, Section 10.3.				
	2. UFSAR, Section 15.1.5.				
	3. UFSAR, Section 6.2.				
	4. 10 CFR 50.67.				
	5. ASME Code for Operation and Maintenance of Nuclear Power.				

Attachment 3b Revised Technical Specification Bases Changes (Information Only)

Byron Station, Units 1 and 2 Renewed Facility Operating License Nos. NPF-37 and NPF-66

REVISED TECHNICAL SPECIFICATION BASES PAGES

B 3.0 SURVEI BASES	LLANCE REQUIREMENT (SR) APPLICABILITY Chapter 5 only when invoked by a Chapter 5 Specification.
SRs	SR 3.0.1 through SR 3.0.5 establish the general requirements applicable to all Specifications and apply at all times, unless otherwise stated.
SR 3.0,1	SR 3.0.1 establishes the requirement that SRs must be met during the MODES or other specified conditions in the Applicability for which the requirements of the LCO apply, unless otherwise specified in the individual SRs. This Specification is to ensure that Surveillances are performed to verify the OPERABILITY of systems and components, and that variables are within specified limits. Failure to meet a Surveillance within the specified Frequency, in accordance with SR 3.0.2, constitutes a failure to meet an LCO.
	Systems and components are assumed to be OPERABLE when the associated SRs have been met. Nothing in this Specification, however, is to be construed as implying that systems or components are OPERABLE when:
	a. The systems or components are known to be inoperable, although still meeting the SRs; or
	b. The requirements of the Surveillance(s) are known not to be met between required Surveillance performances.
	Surveillances do not have to be performed when the unit is in a MODE or other specified condition for which the requirements of the associated LCO are not applicable, unless otherwise specified. The SRs associated with an Exception LCO are only applicable when the Exception LCO is used as an allowable exception to the requirements of a Specification.
	Unplanned events may satisfy the requirements (including applicable acceptance criteria) for a given SR. In this case, the unplanned event may be credited as fulfilling the performance of the SR. This allowance includes those SRs whose performance is normally precluded in a given MODE or other specified condition.

ACTIONS

<u>A.1</u>

With one pressurizer safety valve inoperable, restoration must take place within 15 minutes. The Completion Time of 15 minutes reflects the importance of maintaining the RCS Overpressure Protection System. An inoperable safety valve coincident with an RCS overpressure event could challenge the integrity of the pressure boundary.

B.1 and B.2

If Required Action A.1 and its associated Completion Time are not met or if two or more pressurizer safety valves are inoperable, the unit must be brought to a MODE in which the requirement does not apply. To achieve this status, the unit must be brought to at least MODE 3 within 6 hours and to MODE 4 within 12 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging plant systems. In MODE 4, overpressure protection is provided by the LTOP System. The change from MODE 1, 2, or 3 to MODE 4 reduces the RCS energy (core power and pressure), lowers the potential for large pressurizer insurges, and thereby removes the need for overpressure protection by three pressurizer safety valves.

SURVEILLANCE REQUIREMENTS

SR 3.4.10.1

INSERVICE TESTING PROGRAM

SRs are specified in the finservice Testing Program. Pressurizer safety valves are to be tested in accordance with the requirements of the ASME Code (Ref. 4), which provides the activities and Frequencies necessary to satisfy the SRs. No additional requirements are specified.

The pressurizer safety valve setpoint is $\pm 2\%$ of a nominal 2460 psig for OPERABILITY; however, the valves are reset to $\pm 1\%$ during the Surveillance to allow for drift.

SURVEILLANCE REQUIREMENTS (continued)

SR 3.4.12.4

The RCS vent of \geq 2.0 square inches is proven OPERABLE by verifying its open condition either:

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

The passive vent arrangement must only be open to be OPERABLE. This Surveillance is required to be performed if the vent is being used to satisfy the pressure relief requirements of LCO 3.4.12.d.4.

SR 3.4.12.5

Each required RHR suction relief valve shall be demonstrated OPERABLE by verifying its RHR suction isolation valves are open. This Surveillance is only required to be performed if the RHR suction relief valve is being used to satisfy this LCO.

The RHR suction isolation valves, RH8701A and RH8701B for relief valve RH8708A, and RH8702A and RH8702B for relief valve RH8708B, are verified to be opened. The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

The ASME Code (Ref. 7) test per <u>Inservice Testing Program</u> verifies OPERABILITY by proving proper relief valve mechanical motion and by measuring and, if required, adjusting the lift setpoint.

INSERVICE TESTING PROGRAM

BYRON - UNITS 1 & 2

B 3.4.12 - 15

Revision 75

SURVEILLANCE REQUIREMENTS (continued)

the maximum potential accumulated gas void volume has been evaluated and determined to not challenge system OPERABILITY. The accuracy of the method used for monitoring the susceptible locations and trending of the results should be sufficient to assure system OPERABILITY during the Surveillance interval.

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program. The Surveillance Frequency may vary by location susceptible to gas accumulation.

SR 3.5.2.4

Periodic surveillance testing of ECCS pumps to detect gross degradation caused by impeller structural damage or other hydraulic component problems is required by the ASME Code. This type of testing may be accomplished by measuring the pump developed head at only one point of the pump characteristic curve. This verifies both that the measured performance is within an acceptable tolerance of the original pump baseline performance and that the performance at the test flow is greater than or equal to the performance assumed in the plant safety analysis. SRs are specified in the Inservice Testing Program of the ASME Code. The ASME Code provides the activities and Frequencies necessary to satisfy the requirements. This SR is specified in

SR 3.5.2.5

TESTING PROGRAM This Surveillance demonstrates that each automatic ECCS valve actuates to the required position on an actual or simulated SI signal (a coincident RWST Level Low-Low signal is required to open the containment sump isolation valves). This Surveillance is not required for valves that are locked, sealed, or otherwise secured in the required position under administrative controls. This Surveillance may be performed on-line during RH system maintenance work windows when the RH pump suction piping is drained; thus, reducing overall RH system unavailability. If there is not an on-line RH system maintenance work window that requires

the INSERVICE

SURVEILLANCE REQUIREMENTS (continued)

the RH pump suction piping to be drained, this Surveillance must be conducted during refueling outages (Ref. 9). The Surveillance Frequency is controlled under the Surveillance Frequency Control Program. The actuation logic is tested as part of ESF Actuation System testing, and equipment performance is monitored as part of the Inservice Testing Program.

SR 3.5.2.6

INSERVICE TESTING PROGRAM

PROGRAM

This Surveillance demonstrates that each ECCS pump starts on receipt of an actual or simulated SI signal. The Surveillance Frequency is controlled under the Surveillance Frequency Control Program. The actuation logic is tested as part of ESF Actuation System testing, and equipment performance is monitored as part of the <u>Inservice Testing</u> <u>Program.</u>

SR 3.5.2.7

Realignment of valves in the flow path on an SI signal is necessary for proper ECCS performance. These valves have mechanical stops to allow proper positioning for restricted flow to a ruptured cold leg, ensuring that the other cold legs receive at least the required minimum flow. The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

SR 3.5.2.8

Periodic inspections of the containment sump suction inlet ensure that it is unrestricted and stays in proper operating condition. The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

BYRON - UNITS 1 & 2

SURVEILLANCE REQUIREMENTS (continued)

SR 3.6.3.4

This SR requires verification that each containment isolation manual valve, remote manual valve, and blind flange located inside containment and not locked, sealed, or otherwise secured and required to be closed during accident conditions is closed. The SR helps to ensure that post accident leakage of radioactive fluids or gases outside of the containment boundary is within design limits. For containment isolation valves inside containment, the Frequency of "prior to entering MODE 4 from MODE 5 if not performed within the previous 92 days" is appropriate since these containment isolation valves are operated under administrative controls and the probability of their misalignment is low. The SR specifies that containment isolation valves that are open under administrative controls are not required to meet the SR during the time they are open. This SR does not apply to valves that are locked, sealed, or otherwise secured in the closed position, since these were verified to be in the correct position upon locking, sealing, or securing.

This Note allows valves and blind flanges located in high radiation areas to be verified closed by use of administrative means. Allowing verification by administrative means is considered acceptable, since access to these areas is typically restricted during MODES 1, 2, 3, and 4, for ALARA reasons. Therefore, the probability of misalignment of these containment isolation valves, once they have been verified to be in their proper position, is small.

SR 3.6.3.5

Verifying that the isolation time of each automatic containment isolation valve is within limits is required to demonstrate OPERABILITY. The isolation time test ensures the valve will isolate in a time period less than or equal to that assumed in the safety analyses. The 48 inch purge valves are not qualified for automatic closure from their open position under DBA conditions due to their large size and are, thus, maintained sealed closed in MODES 1, 2, 3, and 4. The safety analyses assume that the 48 inch purge valves are closed at event initiation. The isolation time and Frequency of this SR are in accordance with the Inservice Testing Program.

INSERVICE TESTING PROGRAM

BYRON - UNITS 1 & 2

Revision 78

SURVEILLANCE REQUIREMENTS (continued)

<u>SR 3.6.6.2</u>

Operating each containment cooling train fan unit (in slow speed) for ≥ 15 minutes ensures that all trains are OPERABLE and that all associated controls are functioning properly. It also ensures that blockage, fan or motor failure, or excessive vibration can be detected for corrective action. The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

SR 3.6.6.3

This SR requires verifying that an SX flow rate greater than or equal to the design flow rate assumed in the safety analyses (i.e., 2660 gpm) to each containment cooling unit (RCFC) will be achieved with the primary containment refrigeration units in their specified safety configuration described in UFSAR Section 9.4.8 (Ref. 2). The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

SR 3.6.6.4

Verifying each containment spray pump's developed head at the flow test point is greater than or equal to the required developed head ensures that spray pump performance has not degraded during the cycle. Flow and differential pressure are normal tests of centrifugal pump performance required by the ASME (Inservice Testing) Code of Record. Since the containment spray pumps cannot be tested with flow through the spray headers, they are tested on recirculation flow. This test confirms one point on the pump design curve and is indicative of overall performance. Such inservice tests confirm component OPERABILITY, trend performance, and detect incipient failures by abnormal performance. The Frequency of the SR is in accordance with the Inservice Testing Program.

this

INSERVICE TESTING PROGRAM

APPLICABLE SAFETY ANALYSES (continued)

overpressurization may be determined by system transient analyses or conservatively arrived at by a simple heat balance calculation. Plant specific sensitivity studies demonstrate that in some circumstances it is necessary to limit the primary side heat generation that can be achieved during an AOO by reducing the setpoint of the Power Range Neutron Flux-High reactor trip function. For example, with one or more MSSVs on one or more steam generators inoperable, during an RCS heatup event (e.g, turbine trip) when the Moderator Temperature Coefficient (MTC) is positive, the reactor power may increase above the initial value. An uncontrolled RCCA bank withdrawal at power event occurring from a partial power level may result in an increase in reactor power that exceeds that combined steam flow capacity of the turbine and the remaining OPERABLE MSSVs. Thus, for any number of inoperable MSSVs on one or more steam generators it is necessary to prevent a power increase by lowering the Power Range Neutron Flux-High reactor trip setpoint to an appropriate value.

The MSSVs are assumed to have two active and one passive failure modes. The active failure modes are spurious opening, and failure to reclose once opened. The passive failure mode is failure to open upon demand.

The MSSVs satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii).

LCO

PROGRAM

The accident analysis requires five MSSVs per steam generator be OPERABLE to provide overpressure protection for design basis transients. The LCO requires that five MSSVs per steam generator be OPERABLE in compliance with Reference 2, and the DBA analysis.

The OPERABILITY of the MSSVs is defined as the ability to open upon demand within the setpoint tolerances, to relieve INSERVICE TESTING steam generator overpressure, and reseat when pressure has been reduced. The OPERABILITY of the MSSVs is determined by periodic surveillance testing in accordance with the Inservice Testing Program.

> This LCO provides assurance that the MSSVs will perform their designed safety functions to mitigate the consequences of accidents that could result in a challenge to the RCPB or Main Steam System integrity.

ACTIONS (continued)

analyses. The Nuclear Instrumentation System trip channel uncertainty assumption used in the plant specific analyses is bounded by the calculated value. The MSSV setpoint tolerance assumption used in the plant specific analyses is bounded by the setpoint tolerance specified in Table 3.7.1-2.

Required Action A.2 is modified by a Note, indicating that the Power Range Neutron Flux-High reactor trip setpoint reduction is only required in Mode 1. In Modes 2 and 3 the reactor protection system trips specified in LCO 3.3.1, "Reactor Trip System Instrumentation," provide sufficient protection.

The allowed Completion Times are reasonable based on operating experience to accomplish the Required Actions in an orderly manner without challenging plant systems.

B.1 and B.2

If the MSSVs cannot be restored to OPERABLE status or the Required Actions cannot be completed within the associated Completion Time, or if one or more steam generators have ≥ 4 inoperable MSSVs, the unit must be placed in a MODE in which the LCO does not apply. To achieve this status, the unit must be placed in at least MODE 3 within 6 hours, and in MODE 4 within 12 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging unit systems.

SURVEILLANCE REQUIREMENTS	<u>SR 3.7.1.1</u>
REQUIREMENTS	This SR verifies the OPERABILITY of the MSSVs by the
INSERVICE TESTING PROGRAM	verification of each MSSV lift setpoint in accordance with the Inservice Testing Program. The ASME Code (Ref. 5) requires that safety and relief valve tests be performed in accordance with ANSI/ASME OM-1-1987 (Ref. 6). According to Reference 6, the following tests are required:
	a. Visual examination;
	b. Seat tightness determination;
	c. Setpoint pressure determination (lift setting);

B	A	S	F	S

SURVEILLANCE REQUIREMENTS	<u>SR 3.7.2.1</u>				
INSERVICE TESTING PROGRAM	This SR verifies that MSIV closure time is ≤ 5 seconds on an actual or simulated actuation signal (from each actuator train). The MSIV closure time is assumed in the accident and containment analyses. This Surveillance is normally performed upon returning the unit to operation following a refueling outage. Based on ASME Code (Ref. 5), the MSIVs are not closure time tested at power.				
	The Frequency is in accordance with the Inservice Testing Program. This test is conducted in MODE 3 with the unit at operating temperature and pressure. This SR is modified by a Note. This Note allows entry into and operation in MODE 3 prior to performing the SR. This allows a delay of testing until MODE 3, to establish conditions consistent with those under which the acceptance criterion was generated.				
	<u>SR 3.7.2.2</u>				
	This SR verifies that each actuator train can close its respective MSIV on an actual or simulated actuation signal. This Surveillance is normally performed upon returning the unit to operation following a refueling outage. The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.				
	This SR is modified by a Note. This Note allows entry into and operation in MODE 3 prior to performing the SR. This allows a delay of testing until MODE 3, to establish conditions consistent with those under which the acceptance criterion was generated.				
REFERENCES	1. UFSAR, Section 10.3.				
	2. UFSAR, Section 15.1.5.				
	3. UFSAR, Section 6.2.				
	4. 10 CFR 50.67.				
	5. ASME Code for Operation and Maintenance of Nuclear Power Plants.				

Attachment 3c Revised Technical Specification Bases Changes (Information Only)

Calvert Cliffs Nuclear Power Plant, Units 1 and 2 Renewed Facility Operating License Nos. DPR-53 and DPR-69

REVISED TECHNICAL SPECIFICATION BASES PAGES

B 3.0-18 B 3.3.10-16 B 3.4.10-4 B 3.5.2-7 B 3.5.2-8 B 3.6.3-10 B 3.6.6-8 B 3.7.1-2 B 3.7.1-4 B 3.7.2-5 B 3.7.3-7 B 3.7.15-3

SR Applicability B 3.0

B 3.0 SURVEILLANCE REQUIREMENT (SR) APPLICABILITY

	~	
Dr		

SRs	Surveillance Requirement 3.0.1 through SR 3.0.4 establish the general requirements applicable to all Specifications and apply at all times, unless otherwise stated
SR 3.0.1 SR 3.0.2 and SR 3.0.3 apply in Chapter 5 only when invoked by a Chapter 5 specification.	Surveillance Requirement 3.0.1 establishes that SRs must be met during the MODEs or other specified conditions in the Applicability for which the requirements of the LCO apply, unless otherwise specified in the individual SRs. This Specification is to ensure that Surveillances are performed to verify the OPERABILITY of systems and components, and that variables are within specified limits. Failure to meet a SR within the specified Frequency, in accordance with SR 3.0.2, constitutes a failure to meet an LCO. Surveillances may be performed by means of any series of sequential, overlapping, or total steps provided the entire Surveillance is performed within the specified Frequency. Additionally, the definitions related to instrument testing (e.g., CHANNEL CALIBRATION) specify that these tests are performed by means of any series of sequential, overlapping or total steps.
	Systems and components are assumed to be OPERABLE when the associated SRs have been met. Nothing in this Specification, however, is to be construed as implying that systems or components are OPERABLE when:
	 The systems or components are known to be inoperable, although still meeting the SRs; or
	b. The requirements of the Surveillance(s) are known to be not met between required Surveillance performances.
	Surveillances do not have to be performed when the unit is in a MODE or other specified condition for which the requirements of the associated LCO are not applicable, unless otherwise specified. The SRs associated with a STE are only applicable when the STE is used as an allowable exception to the requirements of a Specification.
	Unplanned events may satisfy the requirements (including applicable acceptance criteria) for a given SR. In this case, the unplanned event may be credited as fulfilling the performance of the SR. This allowance includes those SRs

the INSERVICE TESTING PROGRAM. BASES the valve is exercised to the isolation position as required by Technical Specification 5.5.8. Inservice Testing Program. The position switch is the sensor for the CIV position indication channels. A Note allows exclusion of neutron detectors, CETs, and reactor vessel level (HJTC) from the CHANNEL CALIBRATION. The Surveillance Frequency is controlled under the Surveillance Frequency Control Program. 1. Letter from Mr. R. E. Denton (BGE) to NRC Document REFERENCES Control Desk, dated June 6, 1995, "License Amendment Request: Extension of Instrument Surveillance Intervals" 2. Letter from Mr. J. A. Tiernan (BGE) to NRC Document Control Desk, dated August 9, 1988, "Regulatory Guide 1.97 Review Update" Regulatory Guide 1.97, "Instrumentation for Light-3. Water-Cooled Nuclear Power Plants To Assess Plant and Environs Conditions During and Following an Accident (Errata Published July 1981), December 1975 NUREG-0737, Supplement 1, Requirements for Emergency 4. Response Capabilities (Generic Letter 82-33), December 17, 1982 5. UFSAR, Chapter 7, "Instrumentation and Control"

	pressurizer insurges, and thereby removes the need for overpressure protection by two pressurizer safety valves.
SURVEILLANCE REQUIREMENTS	<u>SR 3.4.10.1</u> Surveillance Requirements are specified in the <u>Inservice</u> <u>Testing Program.</u> Pressurizer safety valves are to be tested in accordance with the requirements of Reference 1, which provides the activities and the Frequency necessary to satisfy the SRs. No additional requirements are specified. The pressurizer safety valves' setpoints are 2500 psia (+ 3%, - 1%) and 2525 psia (+3%, -2%) for OPER/BILITY; however, the valves are reset to \pm 1% during the surveillance test to allow for drift.
REFERENCES	 ASME Code for Operation and Maintenance of Nuclear Power Plants

INSERVICE TESTING PROGRAM.

BASES	Pressurizer Safety Valves B 3.4.10
SURVEILLANCE REQUIREMENTS	<u>SR 3.4.10.1</u> Surveillance Requirements are specified in the <u>Inservice</u> <u>Testing Program.</u> Pressurizer safety valves are to be tested in accordance with the requirements of Reference 1, which provides the activities and the Frequency necessary to satisfy the SRs. No additional requirements are specified. The pressurizer safety valves' setpoints are 2500 psia (+ 2%, - 1%) and 2565 psia (\pm 2%) for OPERABILITY; however, the valves are reset to \pm 1% during the surveillance test to allow for drift.
REFERENCES	 ASME Code for Operation and Maintenance of Nuclear Power Plants

B 3.4.10-4

analysis. The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

SR 3.5.2.2

Verifying the correct alignment for manual, power-operated, and automatic valves in the ECCS flow paths provides assurance that the proper flow paths will exist for ECCS operation. This SR does not apply to valves that are locked, sealed, or otherwise secured in position, since these valves were verified to be in the correct position prior to locking, sealing, or securing. A valve that receives an actuation signal is allowed to be in a non-accident position provided the valve automatically repositions within the proper stroke time. This SR does not require any testing or valve manipulation. Rather, it involves verification that those valves capable of being mispositioned are in the correct position.

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

The Surveillance is modified by a Note which exempts system vent flow paths opened under administrative control. The administrative control should be proceduralized and include stationing a dedicated individual at the system vent flow path who is in continuous communication with the operators in the control room. This individual will have a method to rapidly close the system vent flow path if directed.

SR 3.5.2.3

Periodic surveillance testing of the HPSI and LPSI pumps to detect gross degradation caused by impeller structural damage or other hydraulic component problems is required by the American Society of Mechanical Engineers Code. This type of testing may be accomplished by measuring the pump developed head at only one point of the pump characteristic curve. This verifies both that the measured performance is within an acceptable tolerance of the original pump baseline performance and that the performance at the test flow is greater than or equal to the performance assumed in the unit safety analysis. Surveillance Requirements are specified in the Inservice Testing Program, which encompasses American

CALVERT CLIFFS - UNITS 1 & 2 B

INSERVICE

PROGRAM

TESTING

Society of Mechanical Engineers Code. American Society of Mechanical Engineers Code provides the activities and Frequencies necessary to satisfy the requirements.

SR 3.5.2.4

The Surveillance Requirement was deleted in Amendment Nos. 260/237.

SR 3.5.2.5, SR 3.5.2.6, and SR 3.5.2.7

These SRs demonstrate that each automatic ECCS valve actuates to the required position on an actual, or simulated SIAS, and on a recirculation actuation signal; that each ECCS pump starts on receipt of an actual or simulated SIAS; and that the LPSI pumps stop on receipt of an actual or simulated recirculation actuation signal. This Surveillance is not required for valves that are locked, sealed, or otherwise secured in the required position under administrative controls. In order to assure the results of the low temperature overpressure protection analysis remain bounding, whenever flow testing into the RCS is required at RCS temperatures \leq 365°F (Unit 1), \leq 301°F (Unit 2), the HPSI pump shall recirculate RCS water (suction from the RWT isolated) or the requirements of LCO 3.4.12, shall be satisfied. The Surveillance Frequency is controlled under the Surveillance Frequency Control Program. The actuation logic is tested as part of the Engineered Safety Feature Actuation System testing, and equipment performance is monitored as part of the Inservice Testing Program.

INSERVICE TESTING PROGRAM

SR 3.5.2.8

Periodic inspection of the containment sump ensures that it is unrestricted and stays in proper operating condition. The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

SR 3.5.2.9

Verifying that the SDC System open-permissive interlock is OPERABLE ensures that the SDC suction isolation valves are prevented from being remotely opened when RCS pressure, is at or above, the SDC System design suction pressure of 350 psia. The suction piping of the LPSI pumps, is the SDC does not apply to valves that are locked, sealed, or otherwise secured in the closed position, since these were verified to be in the correct position upon locking, sealing, or securing.

The Note allows valves and blind flanges located in high radiation areas to be verified closed by use of administrative means. Allowing verification by administrative means is considered acceptable, since access to these areas is typically restricted during MODEs 1, 2, and 3 for ALARA reasons. Therefore, the probability of misalignment of these containment isolation valves, once they have been verified to be in their proper position, is small.

SR 3.6.3.4

INSERVICE TESTING PROGRAM Verifying that the isolation time of each automatic power operated containment isolation valve is within limits is required to demonstrate OPERABILITY. The isolation time test, ensures the valve will isolate in a time period less than or equal to that assumed in the safety analysis. The isolation time and Frequency of this SR are in accordance with the Inservice Testing Program. The isolation time limits are contained in Reference 2.

SR 3.6.3.5

Automatic containment isolation valves close on an isolation signal [containment isolation signal Channels A or B, or safety injection actuation signal (SIAS) Channels A or B] to prevent leakage of radioactive material from the Containment Structure following a DBA. This SR ensures each automatic containment isolation valve will actuate to its isolation position on a containment isolation actuation signal. This surveillance test is not required for valves that are locked, sealed, or otherwise secured in the required position under administrative controls. The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

REFERENCES 1. UFSAR, Chapter 5, "Structures", Figure 5-10 2. UFSAR, Chapter 5, "Structures", Table 5-3

SR 3.6.6.3

Verifying a service water flow rate of \geq 2000 gpm to each cooling unit when the full flow service water outlet valves are fully open provides assurance that the design flow rate assumed in the safety analyses will be achieved (Reference 1, Chapter 7). The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

SR 3.6.6.4

Verifying that each containment spray pump's developed head at the flow test point is greater than or equal to the required developed head ensures that spray pump performance has not degraded during the cycle. Flow and differential pressure are normal tests of centrifugal pump performance required by Reference 3. Since the containment spray pumps cannot be tested with flow through the spray headers, they are tested on recirculation flow. This test confirms one point on the pump design curve and is indicative of overall performance. Such inservice inspections confirm component OPERABILITY, trend performance, and detect incipient failures by indicating abnormal performance. The Frequency of this SR is in accordance with the Inservice Testing Program.

INSERVICE TESTING PROGRAM

SR 3.6.6.5 and SR 3.6.6.6

These SRs verify that each automatic containment spray valve actuates to its correct position and that each containment spray pump starts upon receipt of an actual or simulated actuation signal (i.e., the appropriate Engineered Safety Feature Actuation System signal). This SR is not required for valves that are locked, sealed, or otherwise secured in the required position under administrative controls. The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

The surveillance test of containment sump isolation valves is also required by SR 3.5.2.5. A single surveillance test may be used to satisfy both requirements.

BASES

generators, RCS pressure reaches peak pressure. The peak pressure is < 110% of the design pressure of 2500 psia, but high enough to actuate the pressurizer safety valves.

Although the Power Level-High Trip is not credited in the loss of load safety analysis, reducing the Power Level-High Trip setpoint ensures the Thermal Power limit supported by the safety analysis is met.

The MSSVs satisfy 10 CFR 50.36(c)(2)(ii), Criterion 3.

LCO This LCO requires all MSSVs to be OPERABLE in compliance with Reference 2, Section III, Article NC-7000, Class 2 Components, even though this is not a requirement of the Design Basis Accident (DBA) analysis. This is because operation with less than the full number of MSSVs requires limitations on allowable THERMAL POWER (to meet Reference 2, Section III, Article NC-7000, Class 2 Components requirements), and adjustment to the Reactor Protective System trip setpoints to meet the transient analysis limits. These limitations are according to those shown in Table 3.7.1-1, Required Action A.2, and Required Action A.3 in the accompanying LCO.

> The OPERABILITY of the MSSVs is defined as the ability to open within the setpoint tolerances, relieve steam generator overpressure, and reseat when pressure has been reduced. The OPERABILITY of the MSSVs is determined by periodic surveillance testing in accordance with the Inservice Testing Program. An MSSV is considered inoperable if it fails to open upon demand.

The lift settings, according to Table 3.7.1-2 in the accompanying LCO, correspond to ambient conditions of the valve at nominal operating temperature and pressure.

A Note is added to Table 3.7.1-2, stating that lift settings for a given steam line are also acceptable, if any two valves lift between 935 and 1005 psig, any two other valves lift between 935 and 1035 psig, and the four remaining valves lift between 935 and 1050 psig. Thus, the MSSVs still perform that design basis function properly.

INSERVICE

PROGRAM

TESTING

Revision 58

inoperability, the time required to perform the power reduction, operating experience in resetting all channels of a protective function, and on the low probability of the occurrence of a transient that could result in steam generator overpressure during this period.

B.1 and B.2

If the MSSVs cannot be restored to OPERABLE status in the associated Completion Time, or if one or more steam generators have less than five MSSVs OPERABLE, the unit must be placed in a MODE in which the LCO does not apply. To achieve this status, the unit must be placed in at least MODE 3 within 6 hours, and in MODE 4 within 12 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging unit systems.

SURVEILLANCE REQUIREMENTS

SR 3.7.1.1

INSERVICE TESTING PROGRAM This Surveillance Requirement (SR) verifies the OPERABILITY of the MSSVs by the verification of each MSSV lift setpoints in accordance with the>Inservice Testing Program. The safety and relief valve tests are to be performed in accordance with Reference 3. According to Reference 3, the following tests are required for MSSVs:

- a. Visual examination;
- b. Seat tightness determination;
- c. Setpoint pressure determination (lift setting);
- d. Compliance with owner's seat tightness criteria; and
- e. Verification of the balancing device integrity on balanced valves.

The ANSI/American Society of Mechanical Engineers (ASME) Standard requires that all valves be tested every five years, and a minimum of 20% of the valves be tested every 24 months. The ASME Code specifies the activities, as found lift acceptance range, and frequencies necessary to satisfy the requirements. Table 3.7.1-2 defines the lift setting range for each MSSV for OPERABILITY; however, the

14.0

	MODE 2 conditions in an orderly manner and without challenging unit systems.
SURVEILLANCE REQUIREMENTS	<u>SR 3.7.2.1</u>
	This SR verifies that the closure time of each MSIV is < 5.2 seconds. The MSIV closure time is assumed in the
	accident and containment analyses.
INSERVICE TESTING PROGRAM	The Frequency for this SR is in accordance with the >Inservice Testing Program. The MSIVs are tested during each refueling outage in accordance with Reference 2, and sometimes during other cold shutdown periods. The Frequency demonstrates the valve closure time at least once per refueling cycle. Operating experience has shown that these components usually pass the SR when performed. Therefore, the Frequency is acceptable from a reliability standpoint.
REFERENCES	1. UFSAR
	 ASME Code for Operation and Maintenance of Nuclear Power Plants

....

conditions may require entry into LCO 3.0.3, the ACTIONS required by LCO 3.0.3 do not have to be completed because they could force the unit into a less safe condition.

SURVEILLANCE REQUIREMENTS

BASES

SR 3.7.3.1

Verifying the correct alignment for manual, power-operated, and automatic valves in the AFW water and steam supply flow paths, provides assurance that the proper flow paths exist for AFW operation. This SR does not apply to valves that are locked, sealed, or otherwise secured in position, since these valves are verified to be in the correct position prior to locking, sealing, or securing. This SR also does not apply to valves that cannot be inadvertently misaligned, such as check valves. This SR does not require any testing or valve manipulations; rather, it involves verification that those valves capable of potentially being mispositioned are in the correct position.

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

SR 3.7.3.2

Cycling each testable, remote-operated valve that is not in its operating position, provides assurance that the valves will perform as required. Operating position is the position that the valve is in during normal plant operation. This is accomplished by cycling each valve at least one cycle. This SR ensures that valves required to function during certain scenarios, will be capable of being properly positioned. The Frequency is based on engineering judgment that when cycled in accordance with the Inservice Testing Program, these valves can be placed in the desired position when required.

SR 3.7.3.3

Verifying that each AFW pump's developed head at the flow test point is greater than or equal to the required developed head (\geq 2800 ft for the steam-driven pump and \geq 3100 ft for the motor-driven pump), ensures that AFW pump performance has not degraded during the cycle. Flow and differential head are normal tests of pump performance

CALVERT CLIFFS - UNIT 1

INSERVICE

TESTING

PROGRAM

required by LCO 3.0.3 do not have to be completed because they could force the unit into a less safe condition.

SURVEILLANCE REQUIREMENTS

INSERVICE

PROGRAM

TESTING

SR 3.7.3.1

Verifying the correct alignment for manual, power-operated, and automatic valves in the AFW water and steam supply flow paths, provides assurance that the proper flow paths exist for AFW operation. This SR does not apply to valves that are locked, sealed, or otherwise secured in position, since these valves are verified to be in the correct position prior to locking, sealing, or securing. This SR also does not apply to valves that cannot be inadvertently misaligned, such as check valves. This SR does not require any testing or valve manipulations; rather, it involves verification that those valves capable of potentially being mispositioned are in the correct position.

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

SR 3.7.3.2

Cycling each testable, remote-operated valve that is not in its operating position, provides assurance that the valves will perform as required. Operating position is the position that the valve is in during normal plant operation. This is accomplished by cycling each valve at least one cycle. This SR ensures that valves required to function during certain scenarios, will be capable of being properly positioned. The Frequency is based on engineering judgment that when cycled in accordance with the Inservice Testing Program, these valves can be placed in the desired position when required.

SR 3.7.3.3

Verifying that each AFW pump's developed head at the flow test point is greater than or equal to the required developed head (≥ 2800 ft for the steam-driven pump and ≥ 3100 ft for the motor-driven pump), ensures that AFW pump performance has not degraded during the cycle. Flow and differential head are normal tests of pump performance required by Reference 2. Because it is undesirable to

CALVERT CLIFFS - UNIT 2

DAJES	
ACTIONS	The ACTIONS table is modified by a Note indicating that separate Condition entry is allowed for each valve.
	<u>A.1</u>
	With one MFIV inoperable, action must be taken to restore the valve to OPERABLE status within 72 hours.
	The 72 hour Completion Time takes into account the isolation capability afforded by the MFW regulating valves, and tripping of the MFW pumps, and the low probability of an event occurring during this time period that would require isolation of the MFW flow paths.
	B.1 and B.2
	If the MFIVs cannot be restored to OPERABLE status in the associated Completion Time, the unit must be placed in a MODE in which the LCO does not apply. To achieve this status, the unit must be placed in at least MODE 3 within 6 hours, and in MODE 4 within 12 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging unit systems.
SURVEILLANCE REQUIREMENTS	<u>SR 3.7.15.1</u>
	This SR ensures the closure time for each MFIV is ≤ 65 seconds by manual isolation. The MFIV closure time is assumed in the accident and containment analyses.
	The Frequency is in accordance with the <u>Inservice Testing</u> Program. The MFIVs are tested during each refueling outage in accordance with Reference 2, and sometimes during other cold shutdown periods. The Frequency demonstrates the valve closure time at least once per refueling cycle. Operating experience has shown that these components usually pass the surveillance test when performed.
	INSERVICE

Attachment 3d Revised Technical Specification Bases Changes (Information Only)

Clinton Power Station, Unit 1 Facility Operating License No. NPF-62

REVISED TECHNICAL SPECIFICATION BASES PAGES

B 3.0-10 B 3.1-42 B 3.4-20 B 3.4-32 B 3.5-11 B 3.6-25 B 3.6-26 B 3.6-42 B 3.6-58b B 3.6-120

LLANCE REQUIREMENT (SR) APPLICABILITY SR 3.0.2 and SR 3.0.3 apply in Chapter 5 only when invoked by a Chapter 5 Specification.
SR 3.0.1 through SR 3.0.4 establish the general requirements applicable to all Specifications and apply at all times, unless otherwise stated.
SR 3.0.1 establishes the requirement that SRs must be met during the MODES or other specified conditions in the Applicability for which the requirements of the LCO apply, unless otherwise specified in the individual SRs. This Specification is to ensure that Surveillances are performed to verify the OPERABILITY of systems and components, and that variables are within specified limits. Failure to meet a Surveillance within the specified Frequency, in accordance with SR 3.0.2, constitutes a failure to meet an LCO. Systems and components are assumed to be OPERABLE when the associated SRs have been met. Nothing in this Specification, however, is to be construed as implying that systems or components are OPERABLE when: a. The systems or components are known to be inoperable,
although still meeting the SRs; or b. The requirements of the Surveillance(s) are known to be not met between required Surveillance performances.
Surveillances do not have to be performed when the unit is in a MODE or other specified condition for which the requirements of the associated LCO are not applicable, unless otherwise specified. The SRs associated with a Special Operations LCO are only applicable when the Special Operations LCO is used as an allowable exception to the requirements of a Specification.
Surveillances, including Surveillances invoked by Required Actions, do not have to be performed on inoperable equipment because the ACTIONS define the remedial measures that apply. Surveillances have to be met and performed in accordance with SR 3.0.2, prior to returning equipment to OPERABLE status.

SURVEILLANCE REQUIREMENTS (continued)

SR 3.1.7.5

This Surveillance requires an examination of the sodium pentaborate solution by using chemical analysis to ensure the proper concentration of boron exists in the storage tank. SR 3.1.7.5 must be performed anytime boron or water is added to the storage tank solution to establish that the boron solution concentration is within the specified limits. This Surveillance must be performed anytime the solution temperature is restored to $\geq 70^{\circ}$ F, to ensure no significant boron precipitation occurred. The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

With regard to boron concentration values obtained pursuant to this SR, as read from plant indication instrumentation, the specified limit is considered to be a nominal value and therefore does not require compensation for instrument indication uncertainties (Ref. 6).

SR 3.1.7.7

Demonstrating each SLC System pump develops a flow rate \geq 41.2 gpm at a discharge pressure \geq 1220 psig ensures that pump performance has not degraded during the fuel cycle. This minimum pump flow rate requirement ensures that, when combined with the sodium pentaborate solution concentration requirements, the rate of negative reactivity insertion from the SLC System will adequately compensate for the positive reactivity effects encountered during power reduction, cooldown of the moderator, and xenon decay. This test confirms one point on the pump design curve, and is indicative of overall performance. Such inservice inspections confirm component OPERABILITY, trend performance, and detect incipient failures by indicating abnormal performance. The Frequency of this Surveillance is in accordance with the Inservice Testing Program.

Values obtained for flow rate and discharge pressure pursuant to this SR, as read from plant indication instrumentation, are considered to be nominal values and therefore do not require compensation for instrument indication uncertainties (Ref. 7).

(continued)

INSERVICE TESTING PROGRAM

ACTIONS	A.1 and A.2 (continued)
	12 hours and to MODE 4 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems.
SURVEILLANCE REQUIREMENTS	<u>SR 3.4.4.1</u>
INSERVICE TESTING PROGRAM	This Surveillance demonstrates that the required S/RVs will open at the pressures assumed in the safety analysis of Reference 4. The demonstration of the S/RV safety function lift settings must be performed during shutdown, since this is a bench test, and in accordance with the Inservice Testing Program. The lift setting pressure shall correspond to ambient conditions of the valves at nominal operating temperatures and pressures. The S/RV setpoint is ± 3 for OPERABILITY; however, the valves are reset to ± 1% during the Surveillance to allow for drift.
	The Frequency was selected because this Surveillance must be performed during shutdown conditions and is based on the time between refuelings.
	With regard to pressure values obtained pursuant to this SR, as read from plant indication instrumentation, the specified limit is considered to be a nominal value and therefore does not require compensation for instrument indication uncertainties (Ref. 5).
	SR 3.4.4.2
	The required relief function S/RVs are required to actuate automatically upon receipt of specific initiation signals. A system functional test is performed to verify the mechanical portions (i.e., solenoids) of the automatic relief function operate as designed when initiated either by an actual or simulated initiation signal. The LOGIC SYSTEM FUNCTIONAL TEST in SR 3.3.6.5.4 overlaps this SR to provide complete testing of the safety function.
	(continued)

в 3.4-20

Revision No. 4-6

BASES (continued)

SURVEILLANCE REQUIREMENTS

SR 3.4.6.1

Performance of leakage testing on each RCS PIV is required to verify that leakage is below the specified limit and to identify each leaking valve. The leakage limit of 0.5 gpm per inch of nominal valve diameter up to 5 gpm maximum applies to each valve. Leakage testing requires a stable pressure condition. For the two PIVs in series, the leakage requirement applies to each valve individually and not to the combined leakage across both valves. If the PIVs are not individually leakage tested, one valve may have failed completely and not be detected if the other valve in series meets the leakage requirement. In this situation, the protection provided by redundant valves would be lost.

The Frequency required by the Inservice Testing Program is within the ASME Code Frequency requirement and is based on the need to perform this surveillance under the conditions that apply during an outage and the potential for an unplanned transient if the surveillance were performed with the reactor at power.

Therefore, this SR is modified by a Note that states the leakage Surveillance is not required to be performed in MODE 3. Entry into MODE 3 is permitted for leakage testing at high differential pressures with stable conditions not possible in the lower MODES.

With regard to leakage values obtained pursuant to this SR, as read from plant indication instrumentation, the specified limit is considered to be a nominal value and therefore does not require compensation for instrument indication uncertainties (Ref. 9).

(continued)

INSERVICE TESTING PROGRAM

SURVEILLANCE REQUIREMENTS (continued)

SR 3.5.1.3

Verification that ADS accumulator supply pressure is ≥ 140 psig assures adequate air pressure for reliable ADS operation. The accumulator on each ADS valve provides pneumatic pressure for valve actuation. The designed pneumatic supply pressure requirements for the accumulator are such that, following a failure of the pneumatic supply to the accumulator, at least two valve actuations can occur with the drywell at 70° of design pressure (Ref. 15). The ECCS safety analysis assumes only one actuation to achieve the depressurization required for operation of the low pressure ECCS. This minimum required pressure of 140 psig is provided by the Instrument Air System. The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

With regard to ADS accumulator supply pressure values obtained pursuant to this SR, as read from plant indication instrumentation, the specified limit is not considered to be a nominal value with respect to instrument uncertainties. This requires additional margin to be added to the limit to compensate for instrument uncertainties, for implementation in the associated plant procedures (Ref. 17).

SR 3.5.1.4

The performance requirements of the ECCS pumps are determined through application of the 10 CFR 50, Appendix K, criteria (Ref. 8). This periodic Surveillance is performed (in accordance with the ASME Code requirements for the ECCS pumps) to verify that the ECCS pumps will develop the flow rates required by the respective analyses. The ECCS pump flow rates ensure that adequate core cooling is provided to satisfy the acceptance criteria of 10 CFR 50.46 (Ref. 10).

The pump flow rates are verified with a pump differential pressure that is sufficient to overcome the RPV pressure expected during a LOCA. The pump outlet pressure is adequate to overcome the elevation head pressure between the pump suction and the vessel discharge, the piping friction losses, and RPV pressure present during LOCAs. These values may be established during pre-operational testing. The Frequency for this Surveillance is in accordance with the Inservice Testing Program requirements.

(continued)

INSERVICE TESTING PROGRAM

SR 3.6.1.3.4 (continued) INSERVICE TESTING PROGRAM

SURVEILLANCE REQUIREMENTS

in a time period less than or equal to that assumed in the safety analysis. The isolation time and Frequency of this SR are in accordance with the suservice Testing Program.

With regard to isolation time values obtained pursuant to this SR, as read from plant indication instrumentation, the specified limit is considered to be a nominal value and therefore does not require compensation for instrument indication uncertainties (Ref. 8).

SR 3.6.1.3.5

For primary containment purge values with resilient seals, additional leakage rate testing beyond the test requirements of the Primary Containment Leakage Rate Testing Program is required to ensure OPERABILITY. The acceptance criterion for this test is $\leq 0.02 L_a$ for each penetration when pressurized to Pa, 9.0 psig. Since cycling these values may introduce additional seal degradation (beyond that which occurs to a value that has not been opened), this SR must be performed within 92 days after opening the value. However, operating experience has demonstrated that if a value with a resilient seal is not stroked during an operating cycle, significant increased leakage through the value is not observed. Based on this observation, a normal Frequency in accordance with the Primary Containment Leakage Rate Testing Program was established.

The SR is modified by a Note stating that the primary containment purge valves are only required to meet leakage rate testing requirements in MODES 1, 2, and 3. If a LOCA inside primary containment occurs in these MODES, purge valve leakage must be minimized to ensure offsite radiological release is within limits. At other times when the purge valves are required to be capable of closing (e.g., during handling of recently irradiated fuel), pressurization concerns are not present and the purge valves are not required to meet any specific leakage criteria.

With regard to leakage rate values obtained pursuant to this SR, as read from plant indication instrumentation, the specified limit is considered to be a nominal value and therefore does not require compensation for instrument indication uncertainties (Ref. 9).

Dose associated with leakage through the primary containment purge lines is considered to be in addition to that controlled as part of the primary containment leakage rate limit, L_a, and the 0.08 L_a limit for the other secondary containment bypass leakage paths.

(continued)

CLINTON

Revision No. 10-5

SURVEILLANCE REQUIREMENTS (continued) SR 3.6.1.3.6

Verifying that the full closure isolation time of each MSIV is within the specified limits is required to demonstrate OPERABILITY. The full closure isolation time test ensures that the MSIV will isolate in a time period that does not exceed the times assumed in the DBA analyses. The Frequency of this SR is in accordance with the Inservice Testing

Program. INSERVICE TESTING PROGRAM

With regard to isolation time values obtained pursuant to this SR, as read from plant indication instrumentation, the specified limit is considered to be a nominal value and therefore does not require compensation for instrument indication uncertainties (Ref. 10).

SR 3.6.1.3.7

Automatic PCIVs close on a primary containment isolation signal to prevent leakage of radioactive material from primary containment following a DBA. This SR ensures that each automatic PCIV will actuate to its isolation position on a primary containment isolation signal. The LOGIC SYSTEM FUNCTIONAL TEST in SR 3.3.6.1.6 overlaps this SR to provide complete testing of the safety function. The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

SR 3.6.1.3.8

This SR ensures that the leakage rate of secondary containment bypass leakage paths is less than the specified leakage rate. This provides assurance that the assumptions in the radiological evaluations of References 1, 2, and 3 are met. The leakage rate of each bypass leakage path is assumed to be the maximum pathway leakage (leakage through the worse of the two isolation valves) unless the penetration is isolated by use of one closed and de-activated automatic valve, closed manual valve, or blind flange. In this case, the leakage rate of the isolated bypass leakage path is assumed to be the actual pathway

BASES (continued)

SURVEILLANCE REQUIREMENTS

SR 3.6.1.7.1

Verifying the correct alignment for manual, power operated, and automatic values in the RHR containment spray mode flow path provides assurance that the proper flow paths will exist for system operation. This SR does not apply to values that are locked, sealed, or otherwise secured in position, since these were verified to be in the correct position prior to locking, sealing, or securing. This SR does not require any testing or value manipulation; rather, it involves verification that those values capable of being mispositioned are in the correct position. This SR does not apply to values that cannot be inadvertently misaligned, such as check values.

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

Two Notes have been added to this SR. The first Note allows RHR containment spray subsystems to be considered OPERABLE during alignment to and operation in the RHR shutdown cooling mode when below the RHR cut in permissive pressure in MODE 3, if capable of being manually realigned and not otherwise inoperable. At these low pressures and decay heat levels (the reactor is shut down in MODE 3), a reduced complement of subsystems should provide the required containment pressure mitigation function thereby allowing operation of an RHR shutdown cooling loop when necessary. The second Note exempts system vent flow paths opened under administrative control. The administrative control should be proceduralized and include stationing a dedicated individual at the system vent flow path who is in continuous communication with the operators in the control room. This individual will have a method to rapidly close the system vent flow path if directed.

SR 3.6.1.7.2

Verifying each RHR pump develops a flow rate ≥ 3800 gpm while operating in the suppression pool cooling mode with flow through the associated heat exchanger ensures that pump performance has not degraded below the required flow rate during the cycle. It is tested in the pool cooling mode to demonstrate pump OPERABILITY without spraying down equipment in primary containment. Although this SR is satisfied by running the pump in the suppression pool cooling mode, the test procedures that satisfy this SR include appropriate acceptance criteria to account for the higher pressure requirements resulting from aligning the RHR System in the containment spray mode. The Frequency of this SR is in accordance with the Inservice Testing Program.

(continued)

INSERVICE TESTING PROGRAM

CLINTON

Revision No. 17-1

SURVEILLANCE REQUIREMENTS (continued)

SR 3.6.2.3.2

Verifying each RHR pump develops a flow rate ≥ 4550 gpm, with flow through the associated heat exchanger to the suppression pool, ensures that pump performance has not degraded during the cycle. Flow is a normal test of centrifugal pump performance required by ASME (Ref. 3). This test confirms one point on the pump design curve, and the results are indicative of overall performance. Such inservice inspections confirm component OPERABILITY, trend performance, and detect incipient failures by indicating abnormal performance. The Frequency of this SR is in accordance with the Inservice Testing Program.

With regard to RHR pump flow rate values obtained pursuant to this SR, as read from plant indication instrumentation, the specified limit is considered to be a nominal value with respect to instrument uncertainties. This requires additional margin to be added to the limit to compensate for instrument uncertainties for implementation in the associated plant procedures. (Ref. 5).

SR 3.6.2.3.3

INSERVICE TESTING PROGRAM

RHR Suppression Pool Cooling System piping and components have the potential to develop voids and pockets of entrained gases. Preventing and managing gas intrusion and accumulation is necessary for proper operation of the RHR suppression pool cooling subsystems and may also prevent water hammer and pump cavitation.

Selection of RHR Suppression Pool Cooling System locations susceptible to gas accumulation is based on a review of system design information, including piping and instrumentation drawings, isometric drawings, plan and elevation drawings, and calculations. The design review is supplemented by system walk downs to validate the system high points and to confirm the location and orientation of important components that can become sources of gas or could otherwise cause gas to be trapped or difficult to remove during system maintenance or restoration. Susceptible locations depend on plant and system configuration, such as stand-by versus operating conditions.

The RHR Suppression Pool Cooling System is OPERABLE when it is sufficiently filled with water. Acceptance criteria are established for the volume of accumulated gas at susceptible locations. If accumulated gas is discovered that exceeds the acceptance criteria for the susceptible location (or the volume of accumulated gas at one or more susceptible locations exceeds an acceptance criteria for gas volume at the suction or discharge of a pump), the Surveillance is not met. If it is determined by subsequent evaluation that the RHR Suppression Pool Cooling System is not rendered inoperable by the accumulated gas (i.e., the system is sufficiently filled with water), the Surveillance may be

(continued)

CLINTON

Revision No. 17-1

SURVEILLANCE REQUIREMENTS (continued)

SR 3.6.5.3.3

This SR requires verification that each drywell isolation manual valve and blind flange that is required to be closed during accident conditions is closed. The SR helps to ensure that drywell bypass leakage is maintained to a minimum. Due to the location of these devices, the Frequency specified as "prior to entering MODE 2 or 3 from MODE 4, if not performed in the previous 92 days," is appropriate because of the inaccessibility of the devices and because these devices are operated under administrative controls and the probability of their misalignment is low.

Two Notes are added to this SR. The first Note allows valves and blind flanges located in high radiation areas to be verified by use of administrative controls. Allowing verification by administrative controls is considered acceptable since access to these areas is typically restricted during MODES 1, 2, and 3. Therefore, the probability of misalignment of these devices, once they have been verified to be in their proper position, is low. A second Note is included to clarify that the drywell isolation valves that are open under administrative controls are not required to meet the SR during the time that the devices are open.

SR 3.6.5.3.4

INSERVICE TESTING PROGRAM

Verifying that the isolation time of each power operated and each automatic drywell isolation valve is within limits is required to demonstrate OPERABILITY. The isolation time test ensures the valve will isolate in a time period less than or equal to that assumed in the safety analysis. The isolation time and Frequency of this SR are in accordance with the enservice Testing Program.

With regard to isolation time values obtained pursuant to this SR, as read from plant indication instrumentation, the specified limit is considered to be a nominal value and therefore does not require compensation for instrument indication uncertainties (Ref. 3).

Attachment 3e Revised Technical Specification Bases Changes (Information Only)

Dresden Nuclear Power Station, Units 2 and 3 Renewed Facility Operating License Nos. DPR-19 and DPR-25

REVISED TECHNICAL SPECIFICATION BASES PAGES

B 3.0-13 B 3.1.7-6 B 3.4.3-6 B 3.5.1-15 B 3.5.1-16 B 3.6.1.3-12 B 3.6.1.3-13 B 3.6.2.3-5

BASES	SR 3.0.2 and SR 3.0.3 apply in Chapter 5 only when invoked by a Chapter 5 Specification.
SRs	SR 3.0.1 through SR 3.0.4 establish the general requirements applicable to all Specifications in Sections 3.1 through 3.10 and apply at all times, unless otherwise stated.
SR 3.0.1	SR 3.0.1 establishes the requirement that SRs must be met during the MODES or other specified conditions in the Applicability for which the requirements of the LCO apply, unless otherwise specified in the individual SRs. This Specification is to ensure that Surveillances are performed to verify the OPERABILITY of systems and components, and that variables are within specified limits. Failure to meet a Surveillance within the specified Frequency, in accordance with SR 3.0.2, constitutes a failure to meet an LCO.
	Systems and components are assumed to be OPERABLE when the associated SRs have been met. Nothing in this Specification, however, is to be construed as implying that systems or components are OPERABLE when: a. The systems or components are known to be inoperable,
	although still meeting the SRs; or b. The requirements of the Surveillance(s) are known to be not met between required Surveillance performances.
	Surveillances do not have to be performed when the unit is in a MODE or other specified condition for which the requirements of the associated LCO are not applicable, unless otherwise specified. The SRs associated with a Special Operations LCO are only applicable when the Special Operations LCO is used as an allowable exception to the requirements of a Specification.
	Unplanned events may satisfy the requirements (including applicable acceptance criteria) for a given SR. In this case, the unplanned event may be credited as fulfilling the performance of the SR.
	Surveillances, including Surveillances invoked by Required Actions, do not have to be performed on inoperable equipment

(continued)

Dresden 2 and 3

Revision 21

SLC System B 3.1.7

BASES

SURVEILLANCE REQUIREMENTS (continued) pump performance has not degraded during the fuel cycle. This minimum pump flow rate requirement ensures that, when combined with the sodium pentaborate solution concentration requirements, the rate of negative reactivity insertion from the SLC System will adequately compensate for the positive reactivity effects encountered during power reduction, cooldown of the moderator, and xenon decay. This test confirms one point on the pump design curve and is indicative of overall performance. Such inservice tests confirm component OPERABILITY, and detect incipient failures by indicating abnormal performance. The Frequency of this Surveillance is in accordance with the Inservice Testing Program.

INSERVICE TESTING PROGRAM

SR 3.1.7.8 and SR 3.1.7.9

These Surveillances ensure that there is a functioning flow path from the boron solution storage tank to the RPV, including the firing of an explosive valve. The replacement charge for the explosive valve shall be from the same manufactured batch as the one fired or from another batch that has been certified by having one of that batch successfully fired. The Surveillance may be performed in separate steps to prevent injecting boron into the RPV. An acceptable method for verifying flow from the pump to the RPV is to pump demineralized water from a test tank through one SLC subsystem and into the RPV. The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

Demonstrating that all heat traced piping between the boron solution storage tank and the suction inlet to the injection pumps is unblocked ensures that there is a functioning flow path for injecting the sodium pentaborate solution. An

BASES (continued)

SURVEILLANCE REQUIREMENTS INSERVICE TESTING PROGRAM

This Surveillance requires that the safety valves, including the S/RV, will open at the pressures assumed in the safety analysis of Reference 1. The demonstration of the safety valve and S/RV safety lift settings must be performed during shutdown, since this is a bench test, to be done in accordance with the Inservice Testing Program. The lift setting pressure shall correspond to ambient conditions of the valves at nominal operating temperatures and pressures. The safety valve and S/RV setpoints are \pm 3% for OPERABILITY; however, the valves are reset to \pm 1% during the Surveillance to allow for drift.

SR 3.4.3.2

SR 3.4.3.1

The actuator of each of the Electromatic relief valves (ERVs) and the dual function safety/relief valves (S/RVs) is stroked to verify that the pilot valve strokes when manually actuated. For the S/RVs, the actuator test is performed by energizing a solenoid that pneumatically actuates a plunger located within the main valve body. The plunger is connected to the second stage disc. When steam pressure actuates the plunger during plant operation, this allows pressure to be vented from the top of the main valve piston, allowing reactor pressure to lift the main valve piston. which opens the main valve disc. The test will verify movement of the plunger in accordance with vendor recommendations. However, since this test is performed prior to establishing the reactor pressure needed to overcome main valve closure forces, the main valve disc will not stroke during the test.

For the ERVs, the actuator test is performed with the pilot valve actuator mounted in its normal position. This will allow testing of the manual actuation electrical circuitry, solenoid actuator, pilot operating lever, and pilot plunger. This test will verify pilot valve movement. However, since this test is performed prior to establishing the reactor pressure needed to overcome main valve closure spring force, the main valve will not stroke during the test.

This SR, together with the valve testing performed as required by the ASME Code for pressure relieving devices (ASME OM Code - 1998 through 2000 Addenda), verify the capability of each relief valve to perform its function.

(continued)

Dresden 2 and 3

ECCS-Operating B 3.5.1

INSERVICE TESTING PROGRAM

SURVEILLANCE REQUIREMENTS SR 3.5.1.4 (continued)

The Frequency of this SR is in accordance with the Inservice Testing Program. If any recirculation pump discharge valve is inoperable and in the open position, both LPCI subsystems must be declared inoperable.

SR 3.5.1.5. SR 3.5.1.6, and SR 3.5.1.7

The performance requirements of the low pressure ECCS pumps are determined through application of the 10 CFR 50. Appendix K criteria (Ref. 7) and are bounded by the requirements of SR 3.5.1.5. This periodic Surveillance is performed (in accordance with the ASME Code, requirements for the ECCS pumps) to verify that the ECCS pumps will develop the flow rates required by the respective analyses. The low pressure ECCS pump flow rates ensure that adequate core cooling is provided to satisfy the acceptance criteria of Reference 9. The pump flow rates are verified against a test line pressure or system head equivalent to the RPV pressure expected during a LOCA. The total system pump outlet pressure is adequate to overcome the elevation head pressure between the pump suction and the vessel discharge. the piping friction losses, and RPV pressure present during a LOCA. These values have been established analytically.

The flow tests for the HPCI System are performed at two different pressure ranges such that system capability to provide rated flow against a system head corresponding to reactor pressure is tested at both the higher and lower operating ranges of the system. The required system head should overcome the RPV pressure and associated discharge line losses. Adequate reactor steam pressure must be available to perform these tests. Additionally, adequate steam flow must be passing through the main turbine or turbine bypass valves to continue to control reactor pressure when the HPCI System diverts steam flow. Therefore, sufficient time is allowed after adequate pressure and flow are achieved to perform these tests. Reactor steam pressure must be ≥ 920 psig to perform SR 3.5.1.6 and \geq 150 psig to perform SR 3.5.1.7. Adequate steam flow is represented by at least 2 turbine bypass (continued)

Dresden 2 and 3

Revision 51

SURVEILLANCE REQUIREMENTS

<u>SR 3.5.1.5. SR 3.5.1.6. and SR 3.5.1.7</u> (continued)

valves open, or total steam flow $\geq 10^{5}$ lb/hr. Reactor startup is allowed prior to performing the low pressure Surveillance test because the reactor pressure is low and the time allowed to satisfactorily perform the Surveillance test is short. The reactor pressure is allowed to be increased to normal operating pressure since it is assumed that the low pressure test has been satisfactorily completed and there is no indication or reason to believe that HPCI is inoperable.

Therefore, SR 3.5.1.6 and SR 3.5.1.7 are modified by Notes that state the Surveillances are not required to be performed until 12 hours after the reactor steam pressure and flow are adequate to perform the test. The 12 hours allowed for performing the flow test after the required pressure and flow are reached is sufficient to achieve stable conditions for testing and provides reasonable time to complete the SRs.

The Frequency for SR 3.5.1.5 and SR 3.5.1.6 is in accordance with the **Enservice Testing Program** requirements. The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

INSERVICE TESTING PROGRAM

SR 3.5.1.8

The ECCS subsystems are required to actuate automatically to perform their design functions. This Surveillance verifies that, with a required system initiation signal (actual or simulated), the automatic initiation logic of HPCI, CS, and LPCI will cause the systems or subsystems to operate as designed, including actuation of the system throughout its emergency operating sequence, automatic pump startup and actuation of all automatic valves to their required positions. This SR also ensures that the HPCI System will automatically restart on an RPV low-low water level signal (continued) SURVEILLANCE REQUIREMENTS

<u>SR 3.6.1.3.3</u> (continued)

Two Notes have been added to this SR. The first Note allows valves and blind flanges located in high radiation areas to be verified by use of administrative controls. Allowing verification by administrative controls is considered acceptable since the primary containment is inerted and access to these areas is typically restricted during MODES 1, 2, and 3 for ALARA reasons. Therefore, the probability of misalignment of these PCIVs, once they have been verified to be in their proper position, is low. A second Note has been included to clarify that PCIVs that are open under administrative controls are not required to meet the SR during the time that the PCIVs are open. These controls consist of stationing a dedicated operator at the controls of the valve, who is in continuous communication with the control room. In this way the penetration can be rapidly isolated when a need for primary containment isolation is indicated.

SR 3.6.1.3.4

The traversing incore probe (TIP) shear isolation valves are actuated by explosive charges. Surveillance of explosive charge continuity provides assurance that TIP valves will actuate when required. Other administrative controls, such as those that limit the shelf life of the explosive charges, must be followed. The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

SR 3.6.1.3.5

Verifying the isolation time of each power operated, automatic PCIV is within limits is required to demonstrate OPERABILITY. MSIVs may be excluded from this SR since MSIV full closure isolation time is demonstrated by SR 3.6.1.3.6. The isolation time test ensures that each valve will isolate in a time period less than or equal to that assumed in the safety analyses. The Frequency of this SR is in accordance with the requirements of the Inservice Testing Program.

INSERVICE TESTING PROGRAM

SURVEILLANCE REQUIREMENTS (continued)

SR 3.6.1.3.6

Verifying that the isolation time of each MSIV is within the specified limits is required to demonstrate OPERABILITY. The isolation time test ensures that the MSIV will isolate in a time period that does not exceed the times assumed in the DBA and transient analyses. This ensures that the calculated radiological consequences of these events remain within 10 CFR 50.67 limits. The Frequency of this SR is in accordance with the requirements of the Inservice Testing Program.

INSERVICE TESTING PROGRAM

SR 3.6.1.3.7

Automatic PCIVs close on a primary containment isolation signal to prevent leakage of radioactive material from primary containment following a DBA. This SR ensures that each automatic PCIV will actuate to its isolation position on a primary containment isolation signal. The LOGIC SYSTEM FUNCTIONAL TEST in LCO 3.3.6.1, "Primary Containment Isolation Instrumentation," overlaps this SR to provide complete testing of the safety function. The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

SR 3.6.1.3.8

This SR requires a demonstration that a representative sample of reactor instrumentation line excess flow check valves (EFCVs) are OPERABLE by verifying that the valves actuate to the isolation position on an actual or simulated instrument line break condition. This test is performed by blowing down the instrument line during an inservice leak or hydrostatic test and verifying a distinctive "click" when the poppet valve seats or a quick reduction in flow.

(continued)

Dresden 2 and 3

SURVEILLANCE REQUIREMENTS (continued) SR 3.6.2.3.2

Verifying that each required LPCI pump develops a flow rate ≥ 5000 gpm while operating in the suppression pool cooling mode with flow through the associated heat exchanger ensures that the primary containment peak pressure and temperature can be maintained below the design limits during a DBA (Ref. 1). The flow is a normal test of centrifugal pump performance required by ASME Code (Ref. 3). This test confirms one point on the pump design curve, and the results are indicative of overall performance. Such inservice tests confirm component OPERABILITY, and detect incipient failures by indicating abnormal performance. The Frequency of this SR is in accordance with the Inservice Testing Program.

INSERVICE TESTING PROGRAM

SR 3.6.2.3.3

Suppression Pool Cooling System piping and components have the potential to develop voids and pockets of entrained gases. Preventing and managing gas intrusion and accumulation is necessary for proper operation of the suppression pool cooling subsystems and may also prevent water hammer and pump cavitation.

Selection of Suppression Pool Cooling System locations susceptible to gas accumulation is based on a review of system design information, including piping and instrumentation drawings, isometric drawings, plan and elevation drawings, and calculations. The design review is supplemented by system walk downs to validate the system high points and to confirm the location and orientation of important components that can become sources of gas or could otherwise cause gas to be trapped or difficult to remove during system maintenance or restoration. Susceptible locations depend on plant and system configuration, such as stand-by versus operating conditions.

The Suppression Pool Cooling System is OPERABLE when it is sufficiently filled with water. Acceptance criteria are established for the volume of accumulated gas at susceptible locations. If accumulated gas is discovered that exceeds the acceptance criteria for the susceptible location (or the volume of accumulated gas at one or more susceptible locations exceeds an acceptance criteria for gas volume at the suction or discharge of a pump), the Surveillance is not met. If it is determined by subsequent evaluation that

(continued)

Dresden 2 and 3

Revision 61

Attachment 3f Revised Technical Specification Bases Changes (Information Only)

LaSalle County Station, Units 1 and 2 Facility Operating License Nos. NPF 11 and NPF 18

REVISED TECHNICAL SPECIFICATION BASES PAGES

B 3.0-12 B 3.1.7-6 B 3.4.4-4 B 3.4.6-5 B 3.5.1-13 B 3.6.1.3-13 B 3.6.2.3-4 B 3.6.2.4-4

SR Applicability B 3.0

BASES	SR 3.0.2 and SR 3.0.3 apply in Chapter 5 only when invoked by a Chapter 5 specification.
SRs	SR 3.0.1 through SR 3.0.5 establish the general requirements applicable to all Specifications in Sections 3.1 through 3.10 and apply at all times, unless otherwise stated.
SR 3.0.1	SR 3.0.1 establishes the requirement that SRs must be met during the MODES or other specified conditions in the Applicability for which the requirements of the LCO apply, unless otherwise specified in the individual SRs. This Specification is to ensure that Surveillances are performed to verify the OPERABILITY of systems and components, and that variables are within specified limits. Failure to meet a Surveillance within the specified Frequency, in accordance with SR 3.0.2, constitutes a failure to meet an LCO.
	Systems and components are assumed to be OPERABLE when the associated SRs have been met. Nothing in this Specification, however, is to be construed as implying that systems or components are OPERABLE when:
	 The systems or components are known to be inoperable, although still meeting the SRs; or
	b. The requirements of the Surveillance(s) are known to be not met between required Surveillance performances.
	Surveillances do not have to be performed when the unit is in a MODE or other specified condition for which the requirements of the associated LCO are not applicable, unless otherwise specified. The SRs associated with a Special Operations LCO are only applicable when the Special Operations LCO is used as an allowable exception to the requirements of a Specification.
	Unplanned events may satisfy the requirements (including applicable acceptance criteria) for a given SR. In this case, the unplanned event may be credited as fulfilling the performance of the SR.
	(continued)

SR	2	1	7	-7
SR		C. B	. / .	1

REQUIREMENTS (continued)

INSERVICE

TESTING

PROGRAM

SURVEILLANCE

Demonstrating each SLC System pump develops a flow rate ≥ 41.2 gpm at a discharge pressure ≥ 1220 psig ensures that pump performance has not degraded during the fuel cycle. This minimum pump flow rate requirement ensures that, when combined with the sodium pentaborate solution concentration requirements, the rate of negative reactivity insertion from the SLC System will adequately compensate for the positive reactivity effects encountered during power reduction, cooldown of the moderator, and xenon decay. This test confirms one point on the pump design curve, and is indicative of overall performance. Such inservice tests confirm component OPERABILITY and detect incipient failures by indicating abnormal performance. The Frequency of this Surveillance is in accordance with the Inservice Testing Program.

SR 3.1.7.8 and SR 3.1.7.9

These Surveillances ensure that there is a functioning flow path from the boron solution storage tank to the RPV, including the firing of an explosive valve. The replacement charge for the explosive valve shall be from the same manufactured batch as the one fired or from another batch that has been certified by having one of that batch successfully fired. The Surveillance may be performed in separate steps to prevent injecting boron into the RPV. An acceptable method for verifying flow from the pump to the RPV is to pump demineralized water from a test tank through one SLC subsystem and into the RPV. The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

ACTIONS	<u>A.1 and A.2</u> (continued) a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 12 hours and to MODE 4 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems.		
SURVEILLANCE REQUIREMENTS	SR 3.4.4.1 INSERVICE TESTING PROGRAM		
	This Surveillance demonstrates that the required S/RVs will open at the pressures assumed in the safety analysis of Reference 2. The demonstration of the S/RV safety function lift settings must be performed during shutdown, since this is a bench test, and in accordance with the Inservice Testing Program. The lift setting pressure shall correspond to ambient conditions of the valves at nominal operating temperatures and pressures. The S/RV setpoint is \pm 3% for OPERABILITY; however, the valves are reset to \pm 1% during the Surveillance to allow for drift. Additionally, during the performance of this Surveillance, the S/RV will be manually actuated by providing air to the valve actuator to verify the performance of the valve. A Note is provided to allow up to two of the required 12 S/RVs to be physically		
INSERVICE TESTING PROGRAM	replaced with S/RVs with lower setpoints. This provides operational flexibility which maintains the assumptions in the overpressure protection analysis.		
	The Frequency is specified in the Inservice Testing Program which requires the valves be subjected to a bench test during refueling outages. The Frequency is acceptable based on industry standards and operating history.		
REFERENCES	1. ASME, Boiler and Pressure Vessel Code, Section III.		
	2. UFSAR, Section 5.2.2.1.3.		
	3. UFSAR, Chapter 15.		
	4. ASME Code for Operation and Maintenance of Nuclear		

SURVEILLANCE REQUIREMENTS	<u>SR 3.4.6.1</u> (continued)
INSERVICE	per inch of nominal valve diameter up to 5 gpm maximum applies to each valve. Leakage testing requires a stable pressure condition. As stated in the LCO section of the Bases, the test pressure may be at a lower pressure than the maximum pressure differential (at the maximum pressure of 1050 psig) provided the observed leakage rate is adjusted in accordance with Reference 4. For the two PIVs tested in series, the leakage requirement applies to each valve individually and not to the combined leakage across both valves (i.e., the leakage acceptance criteria is the criteria for one valve to account for the condition where all of the leakage is through one valve). If the PIVs are not individually leakage tested, one valve may have failed completely and not be detected if the other valve in series meets the leakage requirement. In this situation, the protection provided by redundant valves would be lost.
PROGRAM	The Frequency required by the Inservice Testing Program is within the ASME OM Code Frequency requirement and is based on the need to perform this Surveillance under the conditions that apply during an outage and the potential for an unplanned transient if the Surveillance were performed with the reactor at power.
	This SR is modified by a Note that states the leakage Surveillance is only required to be performed in MODES 1 and 2. Entry into MODE 3 is permitted for leakage testing at high differential pressures with stable conditions not possible in the lower MODES.
REFERENCES	1. 10 CFR 50.2.
	2. 10 CFR 50.55a(c).
	3. 10 CFR 50, Appendix A, GDC 55.
	 ASME Code for Operation and Maintenance of Nuclear Power Plants (OM Code).
	 NUREG-0677, "The Probability of Intersystem LOCA: Impact Due to Leak Testing and Operational Changes," May 1980.
	(continued)

SURVEILLANCE

INSERVICE

TESTING

PROGRAM

SR 3.5.1.5 (continued)

flow rates required by the respective analyses. The ECCS pump flow rates ensure that adequate core cooling is provided to satisfy the acceptance criteria of 10 CFR 50.46 (Ref. 10).

The pump flow rates are verified against a test line pressure that was determined during preoperational testing to be equivalent to the RPV pressure expected during a LOCA. Under these conditions, the total system pump outlet pressure is adequate to overcome the elevation head pressure between the pump suction and the vessel discharge, the piping friction losses, and RPV pressure present during LOCAS. The Frequency for this Surveillance is in accordance with the Inservice Testing Program requirements.

SR 3.5.1.6

The ECCS subsystems are required to actuate automatically to perform their design functions. This Surveillance verifies that, with a required system initiation signal (actual or simulated), the automatic initiation logic of HPCS, LPCS, and LPCI will cause the systems or subsystems to operate as designed, including actuation of the system throughout its emergency operating sequence, automatic pump startup, and actuation of all automatic valves to their required position. This Surveillance also ensures that the HPCS System injection valve will automatically reopen on an RPV low water level (Level 2) signal received subsequent to an RPV high water level (Level 8) injection valve closure signal. The LOGIC SYSTEM FUNCTIONAL TEST performed in LCO 3.3.5.1 overlaps this Surveillance to provide complete testing of the assumed safety function.

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

This SR is modified by a Note that excludes vessel injection/spray during the Surveillance. Since all active components are testable and full flow can be demonstrated by recirculation through the test line, coolant injection into the RPV is not required during the Surveillance.

(continued)

LaSalle 1 and 2

Revision 60

SURVEILLANCE REQUIREMENTS	<u>SR 3.6.1.3.5</u>
(continued)	Verifying the isolation time of each power operated, automatic PCIV is within limits is required to demonstrate OPERABILITY. MSIVs may be excluded from this SR since MSIV full closure isolation time is demonstrated by SR 3.6.1.3.6. The isolation time test ensures that each valve will isolate in a time period less than or equal to that assumed in the
INSERVICE TESTING PROGRAM	safety analysis. The Frequency of this SR is in accordance with the Inservice Testing Program.
	<u>SR 3.6.1.3.6</u>
	Verifying that the full closure isolation time of each MSIV is within the specified limits is required to demonstrate OPERABILITY. The full closure isolation time test ensures that the MSIV will isolate in a time period that does not

The Frequency of this SR is in accordance with the Inservice Testing Program.

INSERVICE TESTING PROGRAM

SR 3.6.1.3.7

Automatic PCIVs close on a primary containment isolation signal to prevent leakage of radioactive material from primary containment following a DBA. This SR ensures that each automatic PCIV will actuate to its isolation position on a primary containment isolation signal. The LOGIC SYSTEM FUNCTIONAL TEST in LCO 3.3.6.1, "Primary Containment Isolation Instrumentation," overlaps this SR to provide complete testing of the safety function. The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

exceed the times assumed in the DBA and transient analyses.

(continued)

LaSalle 1 and 2

RHR Suppression Pool Cooling B 3.6.2.3

BASES (continued)

SURVEILLANCE REQUIREMENTS

SR 3.6.2.3.1

Verifying the correct alignment for manual and power operated valves in the RHR suppression pool cooling mode flow path provides assurance that the proper flow path exists for system operation. This SR does not apply to valves that are locked, sealed, or otherwise secured in position since these valves were verified to be in the correct position prior to being locked, sealed, or secured. A valve is also allowed to be in the nonaccident position, provided it can be aligned to the accident position within the time assumed in the accident analysis. This is acceptable, since the RHR suppression pool cooling mode is manually initiated. This SR does not require any testing or valve manipulation; rather, it involves verification that those valves capable of being mispositioned are in the correct position. This SR does not apply to valves that cannot be inadvertently misaligned, such as check valves.

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

SR 3.6.2.3.2

Verifying each required RHR pump develops a flow rate ≥ 7200 gpm, while operating in the suppression pool cooling mode with flow through the associated heat exchanger, ensures that peak suppression pool temperature can be maintained below the design limits during a DBA (Ref. 1). The flow verification is also a normal test of centrifugal pump performance required by ASME OM Code (Ref. 2). This test confirms one point on the pump design curve, and the results are indicative of overall performance. Such inservice tests confirm component OPERABILITY and detect incipient failures by indicating abnormal performance. The Frequency of this SR is in accordance with the Inservice Testing Program.

INSERVICE TESTING PROGRAM

SR 3.6.2.3.3

RHR Suppression Pool Cooling System piping and components have the potential to develop voids and pockets of entrained gases. Preventing and managing gas intrusion and accumulation is necessary for proper operation of the RHR suppression pool cooling subsystems and may also prevent water hammer and pump cavitation.

(continued)

LaSalle 1 and 2

SURVEILLANCE REQUIREMENTS	<u>SR 3.6.2.4.1</u> (continued)
REQUIREMENTS	correct position. This SR does not apply to valves that cannot be inadvertently misaligned, such as check valves.
	The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.
	SR 3.6.2.4.2
	Verifying each required RHR pump develops a flow rate ≥ 450 gpm through the spray sparger while operating in the suppression pool spray mode helps ensure that the primary containment pressure can be maintained below the design limits during a DBA (Ref. 1). The normal test of
INSERVICE TESTING PROGRAM	centrifugal pump performance required by the ASME DM Code (Ref. 2) is covered by the requirements of LCD 3.6.2.3, "RHR Suppression Pool Cooling." The Frequency of this SR is in accordance with the Inservice Testing Program.

SR 3.6.2.4.3

RHR Suppression Pool Spray System piping and components have the potential to develop voids and pockets of entrained gases. Preventing and managing gas intrusion and accumulation is necessary for proper operation of the RHR suppression pool spray subsystems and may also prevent water hammer and pump cavitation.

Selection of RHR Suppression Pool Spray System locations susceptible to gas accumulation is based on a review of system design information, including piping and instrumentation drawings, isometric drawings, plan and elevation drawings, and calculations. The design review is supplemented by system walk downs to validate the system high points and to confirm the location and orientation of important components that can become sources of gas or could otherwise cause gas to be trapped or difficult to remove during system maintenance or restoration. Susceptible locations depend on plant and system configuration, such as stand-by versus operating conditions.

The RHR Suppression Pool Spray System is OPERABLE when it is sufficiently filled with water. Acceptance criteria are established for the volume of accumulated gas at susceptible

Attachment 3g Revised Technical Specification Bases Changes (Information Only)

Nine Mile Point Nuclear Station, Unit 1 Renewed Facility Operating License No. DPR-63

REVISED TECHNICAL SPECIFICATION BASES PAGES

27e 61 117b

Nine Mile Point Nuclear Station, Unit 2 Renewed Facility Operating License No. NPF-69

REVISED TECHNICAL SPECIFICATION BASES PAGES

B 3.0-16 B 3.1.7-6 B 3.4.4-3 B 3.4.6-5 B 3.5.1-12 B 3.6.1.3-15 B 3.6.2.3-4 B 3.6.2.4-4 B 3.6.4.2-6

SR 4.0.2 and 4.0.3 apply in Chapter 6 only when invoked by a Chapter 6 specification. BASES FOR 3.0 LIMITING CONDITION FOR OPERATION AND 4.0 SURVEILLANCE REQUIREMENT APPLICABILITY

Specifications 4.0.1 through 4.0.3 establish general requirements applicable to all specifications in Sections 4.1 through 4.7 and apply at all times, unless otherwise stated.

4.0.1 Specification 4.0.1 establishes the requirement that SRs must be met during the applicable reactor operating or other specified conditions for which the requirements of the LCO apply, unless otherwise specified in the individual SRs. This specification is to ensure that surveillances are performed to verify the operability of systems and components, and that variables are within specified limits. Failure to meet a surveillance within the specified frequency, in accordance with Specification 4.0.2, constitutes a failure to meet an LCO. Surveillances may be performed by means of any series of sequential, overlapping, or total steps provided the entire surveillance is performed within the specified frequency.

Systems and components are assumed to be operable when the associated SRs have been met. Nothing in this specification, however, is to be construed as implying that systems or components are operable when either:

- a. The systems or components are known to be inoperable, although still meeting the SRs; or
- b. The requirements of the surveillance(s) are known to be not met between required surveillance performances.

Surveillances do not have to be performed when the unit is in a reactor operating or other specified condition for which the requirements of the associated LCO are not applicable, unless otherwise specified. The SRs associated with a special test exception LCO are only applicable when the special test exception LCO is used as an allowable exception to the requirements of a specification.

Unplanned events may satisfy the requirements (including applicable acceptance criteria) for a given SR. In this case, the unplanned event may be credited as fulfilling the performance of the SR. This allowance includes those SRs whose performance is normally precluded in a given reactor operating or other specified condition.

Surveillances, including surveillances invoked by LCO actions, do not have to be performed on inoperable equipment because the applicable individual specifications define the remedial measures that apply. Surveillances have to be met and performed in accordance with Specification 4.0.2, prior to returning equipment to operable status.

Upon completion of maintenance, appropriate post maintenance testing is required to declare equipment operable. This includes ensuring applicable surveillances are not failed and their most recent performance is in accordance with Specification 4.0.2. Post maintenance testing may not be possible in the current reactor operating or other specified conditions in the LCO due to the necessary unit parameters not having been established. In these situations, the equipment may be considered operable provided

Revision 2 (A173), 7 (A182), 17, 32 (A207)

Pressure Blowdown

In the event of a small line break, substantial coolant loss could occur from the reactor vessel while it was still at relatively high pressures. A pressure blowdown system is provided which in conjunction with the core spray system will prevent significant fuel damage for all sized line breaks (Appendix E-11.2.0)*.

Operation of three solenoid-actuated pressure relief valves is sufficient to depressurize the primary system to 110 psig which will permit full flow of the core spray system within required time limits (Appendix E-11.2)*. Requiring all six of the relief valves to be operable, therefore, provides twice the minimum number required.

INSERVICE TESTING PROGRAM

In the event of a small line break, considerable time is available for the operator to permit core spray operation by manually depressurizing the vessel using the solenoid-actuated valves. However, to ensure that the depressurization will be accomplished, automatic features are provided. The relief valves shall be capable of automatic initiation from simultaneous low-low-low water level (6 feet, 3 inches below minimum normal water level at Elevation 302'-9", -10 inches indicator scale) and high containment pressure (3.5 psig). The system response to small breaks requiring depressurization is discussed in Section VII-A.3.3* and the time available to take operator action is summarized in Table VII-1*. Additional information is included in the answers to Questions III-1 and III-5 of the First Supplement.

The actuator for each solenoid-actuated relief valve is stroked to verify that the actuator is functioning properly. This surveillance, together with the testing performed in accordance with the Inservice Testing (IST) Program, verifies the capability of each relief valve to perform its function. The surveillance can be performed using either one of the following two methods:

1. The first method involves stroking the actuator for each solenoid-actuated relief valve when reactor pressure is not present. The actuator test is performed with the actuator mounted in its normal position in the drywell. The test checks the manual actuation electrical circuitry and the solenoid actuator. The pilot valve operating lever and pilot valve stem will be secured in the open position during this test to prevent damage to the pilot valve assembly which could result from dry-stroking with no backpressure. Thus, the main valve will not stroke during the actuator test. The IST Program contains the specific test requirements for the relief valves and associated sub-components. The combination of these tests and other inspections and maintenance activities provides a complete check such that full functionality of the valves is demonstrated, as follows:

<u>Solenoid Actuator</u> – Maintenance is performed on the solenoid actuators and their associated cutout switches and operating coils during each refueling outage. The inspections and maintenance activities performed ensure that the solenoid plunger output force is adequate to overcome the pilot spring force.

*FSAR

BASES FOR 3.2.7.1 AND 4.2.7.1 REACTOR COOLANT SYSTEM PRESSURE ISOLATION VALVE (PIV) LEAKAGE

Valves used for isolation must meet the same leakage requirements as the PIVs and must be on the RCPB or the high pressure portion of the system.

If leakage cannot be reduced or the system isolated, the plant must be brought to an operating condition in which the Specification does not apply. To achieve this status, an orderly shutdown must be initiated within one hour and the plant be brought to the cold shutdown condition within 10 hours. This action may reduce the leakage and also reduces the potential for a LOCA outside the containment.

Performance of leakage testing on each primary coolant system PIV is required to verify that leakage is below the specified limit and to identify each leaking valve. The leakage limit of 0.5 gpm per inch of nominal valve size up to 5 gpm maximum applies to each valve. Leakage testing requires a stable pressure condition. For two PIVs in series, the leakage requirement applies to each valve individually and not to the combined leakage across both valves. If the PIVs are not individually leakage tested, one valve may have failed completely and not be detected if the other valve in series meets the leakage requirement. In this situation, the protection provided by redundant valves would be lost.

Reference 4 permits leakage testing at a lower pressure differential than between the specified maximum RCS pressure and the normal pressure of the connected system during RCS operation (the maximum pressure differential). The observed rate may be adjusted to the maximum pressure differential by assuming leakage is directly proportional to the pressure differential to the one-half power.

The 24-month Frequency required by the Inservice Testing Program is based on the ASME OM Code Frequency. Specification 4.2.7.1 is modified by a Note that states the leakage Surveillance is not required to be performed in the hot shutdown condition. Entry into this condition is permitted for leakage testing at high differential pressures with stable conditions which is not possible in the cold shutdown or refueling conditions.

References:

INSERVICE TESTING PROGRAM

- 1, 10 CFR 50.2.
- 2. 10 CFR 50.55a(c).
- 3. UFSAR, Section V-D.2.3.
- 4. ASME Code for Operation and Maintenance of Nuclear Power Plants.
- Letter from T. A. Ippolito (NRC) to D. P. Dise (NMPC) dated April 20, 1981, "Order for Modification of License Concerning Primary Coolant System Pressure isolation Valves," included attached Technical Evaluation Report TER-C5257-237, Rev. 1, dated March 20, 1981.
- NEDC-31339, "BWR Owners Group assessment of Emergency Core Cooling System Pressurization in Boiling Water Reactors," November 1986.

Revision 30 (A206)

B 3.0 SURVEILLANCE REQUIREMENT (SR) APPLICABILITY SR 3.0.2 and SR 3.0.3 apply in Chapter 5 only when BASES invoked by a Chapter 5 Specification. SR 3.0.1 through SR 3.0.4 establish the general requirements applicable SRs to all Specifications in Sections 3.1 through 3.10 and apply at all times. unless otherwise stated. SR 3.0.1 SR 3.0.1 establishes the requirement that SRs must be met during the MODES or other specified conditions in the Applicability for which the requirements of the LCO apply, unless otherwise specified in the individual SRs. This Specification is to ensure that Surveillances are performed to verify the OPERABILITY of systems and components, and that variables are within specified limits. Failure to meet a Surveillance within the specified Frequency, in accordance with SR 3.0.2, constitutes a failure to meet an LCO. Surveillances may be performed by means of any series of sequential, overlapping, or total steps provided the entire Surveillance is performed within the specified Frequency. Additionally, the definitions related to instrument testing (e.g., CHANNEL CALIBRATION) specify that these tests are performed by means of any series of sequential, overlapping, or total steps. Systems and components are assumed to be OPERABLE when the associated SRs have been met. Nothing in this Specification, however, is to be construed as implying that systems or components are OPERABLE when: The systems or components are known to be inoperable, a. although still meeting the SRs; or b. The requirements of the Surveillance(s) are known to be not met between required Surveillance performances. Surveillances do not have to be performed when the unit is in a MODE or other specified condition for which the requirements of the associated LCO are not applicable, unless otherwise specified. The SRs associated with a Special Operations LCO are only applicable when the Special Operations LCO is used as an allowable exception to the requirements of a Specification. Unplanned events may satisfy the requirements (including applicable acceptance criteria) for a given SR. In this case, the unplanned event may be credited as fulfilling the performance of the SR.

(continued)

Revision 0, 8, 9 (A109), 21 (A118), 33 (A135)

SURVEILLANCE REQUIREMENTS

SR 3.1.7.7 (continued)

combined with the sodium pentaborate solution concentration requirements, the rate of negative reactivity insertion from the SLC System will adequately compensate for the positive reactivity effects encountered during power reduction, cooldown of the moderator, and xenon decay. This test confirms one point on the pump design curve, and is indicative of overall performance. Such inservice tests confirm component OPERABILITY and detect incipient failures by indicating abnormal performance. The Frequency of this Surveillance is in accordance with the Inservice Testing Program.

INSERVICE TESTING PROGRAM

SR 3.1.7.8 and SR 3.1.7.9

These Surveillances ensure that there is a functioning flow path from the boron solution storage tank to the RPV, including the firing of an explosive valve. The replacement charge for the explosive valve shall be from the same manufactured batch as the one fired or from another batch that has been certified by having one of that batch successfully fired. The Surveillance may be performed in separate steps to prevent injecting boron into the RPV. An acceptable method for verifying flow from the pump to the RPV is to pump demineralized water from a test tank through one SLC subsystem and into the RPV. The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

Demonstrating that all heat traced piping between the boron solution storage tank and the suction valve to the injection pumps is unblocked ensures that there is a functioning flow path for injecting the sodium pentaborate solution. An acceptable method for verifying that the suction piping up to the suction valve is unblocked is to pump from the storage tank to the test tank. Upon completion of this verification, the pump suction piping between the pump

In MODE 4, decay heat is low enough for the RHR System to provide adequate cooling, and reactor pressure is low enough that the overpressure limit is unlikely to be approached by assumed operational transients or accidents. In MODE 5, the reactor vessel head is unbolted or removed and the reactor is at atmospheric pressure. The S/RV function is not needed during these conditions. ACTIONS A.1 and A.2 With less than the minimum number of required S/RVs OPERABLE, a transient may result in the violation of the ASME Code limit on reactor pressure. If one or more required S/RVs are inoperable, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 12 hours and to MODE 4 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems. SURVEILLANCE REQUIREMENTS SR 3.4.4.1 This Surveillance demonstrates that the required S/RVs will open at the pressures assumed in the safety analysis of References 2 and 3. The demonstration of the S/RV safety function lift settings must be performed during shutdown, since this is a bench test, and in accordance with the Intervice Testing Program. The lift setting pressure shall correspond to ambient conditions of the valves at nominal	APPLICABILITY	In MODES 1, 2, and 3, the specified number of S/RVs must be OPERABLE since there may be considerable energy in the reactor core and the limiting design basis transients are assumed to occur. The S/RVs may be required to provide pressure relief to limit peak reactor pressure.		
With less than the minimum number of required S/RVs OPERABLE, a transient may result in the violation of the ASME Code limit on reactor pressure. If one or more required S/RVs are inoperable, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 12 hours and to MODE 4 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems. SURVEILLANCE REQUIREMENTS INSERVICE TESTING PROGRAM Since this is a bench test, and in accordance with the Inservice Testing Program. The lift setting pressure shall		provide adequate cooling, and reactor pressure is low enough that the overpressure limit is unlikely to be approached by assumed operational transients or accidents. In MODE 5, the reactor vessel head is unbolted or removed and the reactor is at atmospheric pressure. The S/RV function is not needed		
OPERABLE, a transient may result in the violation of the ASME Code limit on reactor pressure. If one or more required S/RVs are inoperable, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 12 hours and to MODE 4 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems. SURVEILLANCE REQUIREMENTS SR 3.4.4.1 This Surveillance demonstrates that the required S/RVs will open at the pressures assumed in the safety analysis of References 2 and 3. The demonstration of the S/RV safety function lift settings must be performed during shutdown, since this is a bench test, and in accordance with the Inservice Testing Program. The lift setting pressure shall	ACTIONS	A.1 and A.2		
REQUIREMENTS INSERVICE TESTING PROGRAM This Surveillance demonstrates that the required S/RVs will open at the pressures assumed in the safety analysis of References 2 and 3. The demonstration of the S/RV safety function lift settings must be performed during shutdown, since this is a bench test, and in accordance with the Inservice Testing Program. The lift setting pressure shall		OPERABLE, a transient may result in the violation of the ASME Code limit on reactor pressure. If one or more required S/RVs are inoperable, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 12 hours and to MODE 4 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without		
INSERVICE TESTING PROGRAM This Surveillance demonstrates that the required S/RVs will open at the pressures assumed in the safety analysis of References 2 and 3. The demonstration of the S/RV safety function lift settings must be performed during shutdown, since this is a bench test, and in accordance with the Inservice Testing Program. The lift setting pressure shall	The second se	<u>SR 3.4.4.1</u>		
TESTING PROGRAM References 2 and 3. The demonstration of the S/RV safety function lift settings must be performed during shutdown, since this is a bench test, and in accordance with the Inservice Testing Program. The lift setting pressure shall				
since this is a bench test, and in accordance with the Inservice Testing Program. The lift setting pressure shall	TESTING	References 2 and 3. The demonstration of the S/RV safety		
Inservice Testing Program. The lift setting pressure shall	PROGRAM			
correspond to ambient conditions of the valves at nominal				
이 가지 못했다. 정도 가지는 것 것 것 않는 것 것 나라는 것 것 것 않았다. 동안은 것 같은 것 않았는 것 않은 것 것 않는 것 것 않는 것 같았다. 것은 것 같았다. 것 같았다. 것 같았다. 것		correspond to ambient conditions of the valves at nominal		
operating temperatures and pressures. The S/RV setpoint is approximately ± 3% for OPERABILITY; however, the valves are reset to ± 1% during the Surveillance to allow for drift.		approximately ± 3% for OPERABILITY; however, the valves are		
(contin		(continue		

SURVEILLANCE	<u>SR 3.4.6.1</u> (continued)			
REQUIREMENTS pressure condition. As stated in the LCO Section of the Bases, the test pressure may be at a lower pressure that maximum pressure differential (at the RCS maximum pr of 1040 psig) provided the observed leakage rate is adju in accordance with Reference 4. For the two PIVs in set the leakage requirement applies to each valve individual and not to the combined leakage across both valves. If PIVs are not individually leakage tested, one valve may failed completely and not be detected if the other valve in series meets the leakage requirement. In this situation, the protection provided by redundant valves would be low The Frequency required by the Inservice Testing Program within the ASME OM Code Frequency requirement and is based on the need to perform this Surveillance under conditions that apply during an outage and the potential an unplanned transient if the Surveillance were performed with the reactor at power.				
	Therefore, this SR is modified by a Note that states the leakage Surveillance is only required to be performed in MODES 1 and 2. Entry into MODE 3 is permitted for leakage testing at high differential pressures with stable conditions not possible in the lower MODES.			
REFERENCES	1. 10 CFR 50.2.			
	2. 10 CFR 50.55a(c).			
	3. 10 CFR 50, Appendix A, GDC 55.			
	 ASME Code for Operation and Maintenance of Nuclear Power Plants. 			
	 NUREG-0677, "The Probability of Intersystem LOCA: Impact due to Leak Testing and Operational Changes," May 1980. 			
	6. Technical Requirements Manual.			
	7. 10 CFR 50.36(c)(2)(ii).			
	 NEDC-31339, "BWR Owners Group Assessment of Emergency Core Cooling System Pressurization in Boiling Water Reactors," November 1986. 			

Ĭ

INSERVICE TESTING

PROGRAM

BASES

SURVEILLANCE REQUIREMENTS (continued)

SR 3.5.1.4

The performance requirements of the ECCS pumps are determined through application of the 10 CFR 50, Appendix K, criteria (Ref. 8). This periodic Surveillance is performed (in accordance with the ASME OM Code requirements for the ECCS pumps) to verify that the ECCS pumps will develop the flow rates required by the respective analyses. The ECCS pump flow rates ensure that adequate core cooling is provided to satisfy the acceptance criteria of 10 CFR 50.46 (Ref. 10).

The pump flow rates are verified against a system head that is equivalent to the RPV pressure expected during a LOCA. The total developed head is adequate to overcome the elevation head pressure between the pump suction and the vessel discharge, the piping friction losses, and RPV pressure present during LOCAs. These values may be established during pre-operational testing. A 92 day Frequency for this Surveillance is in accordance with the Inservice Testing Program requirements.

SR 3.5.1.5

The ECCS subsystems are required to actuate automatically to perform their design functions. This Surveillance verifies that, with a required system initiation signal (actual or simulated), the automatic initiation logic of HPCS, LPCS, and LPCI will cause the systems or subsystems to operate as designed, i.e., actuation of the system throughout its emergency operating sequence, which includes automatic pump startup and actuation of all automatic valves (including the LPCI flow diversion valves closed on a Reactor Vessel Water Level - Low, Level 3 or a Drywell Pressure - High (Boundary Isolation) signal) to their required positions. This Surveillance also ensures that the HPCS System will automatically restart (i.e., injection valve re-open) on an RPV low water level (Level 2) signal received subsequent to an RPV high water level (Level 8) signal and that the suction is automatically transferred from the CST to the suppression pool. The LOGIC SYSTEM FUNCTIONAL TEST performed in LCO 3.3.5.1 overlaps this Surveillance to provide complete testing of the assumed safety function.

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

(continued)

SURVEILLANCE REQUIREMENTS SR 3.6.1.3.3 (continued)

Two Notes are added to this SR. The first Note allows valves and blind flanges located in high radiation areas to be verified by use of administrative controls. Allowing verification by administrative controls is considered acceptable since the primary containment is inerted and access to these areas is typically restricted during MODES 1, 2, and 3 for ALARA and personnel safety. Therefore, the probability of misalignment of these PCIVs, once they have been verified to be in their proper position. is low. A second Note is included to clarify that PCIVs that are open under administrative controls are not required to meet the SR during the time that the PCIVs are open. These controls consist of stationing a dedicated operator at the controls of the valve, who is in continuous communication with the control room. In this way, the penetration can be rapidly isolated when a need for primary containment isolation is indicated,

SR 3.6.1.3.4

The traversing incore probe (TIP) shear isolation valves are actuated by explosive charges. Surveillance of explosive charge continuity provides assurance that TIP valves will actuate when required. Other administrative controls, such as those that limit the shelf life and operating life, as applicable, of the explosive charges, must be followed. The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

SR 3.6.1.3.5

Verifying the isolation time of each power operated, automatic PCIV is within limits is required to demonstrate OPERABILITY. MSIVs may be excluded from this SR since MSIV full closure isolation time is demonstrated by SR 3.6.1.3.7. The isolation time test ensures that each valve will isolate in a time period less than or equal to that assumed in the safety analysis. The Frequency of this SR is in accordance with the Inservice Testing Program.

(continued)

INSERVICE TESTING PROGRAM

Revision 0, 44 (A152)

SURVEILLANCE REQUIREMENTS

SR 3.6.2.3.1 (continued)

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

SR 3.6.2.3.2

Verifying each required RHR pump develops a flow rate ≥ 7450 gpm, while operating in the suppression pool cooling mode with flow through the associated heat exchanger, ensures that the primary containment peak pressure and temperature can be maintained below the design limits during a DBA (Ref. 1). The flow is also a normal test of centrifugal pump performance required by the ASME OM Code (Ref. 3). This test confirms one point on the pump design curve, and the results are indicative of overall performance. Such inservice tests confirm component OPERABILITY and detect incipient failures by indicating abnormal performance. The Frequency of this SR is in accordance with the Inservice Testing Program.

SR 3.6.2.3.3

RHR Suppression Pool Cooling System piping and components have the potential to develop voids and pockets of entrained gases. Preventing and managing gas intrusion and accumulation is necessary for proper operation of the RHR Suppression Pool Cooling subsystems and may also prevent water hammer and pump cavitation.

Selection of RHR Suppression Pool Cooling System locations susceptible to gas accumulation is based on a review of system design information, including piping and instrumentation drawings, isometric drawings, plant and elevation drawings, and calculations. The design review is supplemented by system walk downs to validate the system high points and to confirm the location and orientation of important components that can become sources of gas or could otherwise cause gas to be trapped or difficult to remove during system maintenance or restoration. Susceptible locations depend on plant and system configuration, such as stand-by versus operating conditions.

(continued)

INSERVICE TESTING PROGRAM

NMP2

SURVEILLANCE REQUIREMENTS

SR 3.6.2.4.1 (continued)

acceptable since the RHR suppression pool cooling mode is manually initiated. This SR does not require any testing or valve manipulation; rather, it involves verification that those valves capable of being mispositioned are in the correct position. This SR does not apply to valves that cannot be inadvertently misaligned, such as check valves.

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

SR 3.6.2.4.2

Verifying each required RHR pump develops a flow rate \geq 450 gpm while operating in the suppression pool spray mode helps ensure that the primary containment pressure can be maintained below the design limits during a DBA (Ref. 1). The normal test of centrifugal pump performance required by the ASME OM Code (Ref. 3) is covered by the requirements of LCO 3.6.2.3, "RHR Suppression Pool Cooling." The Frequency of this SR is in accordance with the Inservice Testing Program.

SR 3.6.2.4.3

RHR Suppression Pool Spray System piping and components have the potential to develop voids and pockets of entrained gases. Preventing and managing gas intrusion and accumulation is necessary for proper operation of the RHR Suppression Pool Spray subsystems and may also prevent water hammer and pump cavitation.

Selection of RHR Suppression Pool Spray System locations susceptible to gas accumulation is based on a review of system design information, including piping and instrumentation drawings, isometric drawings, plant and elevation drawings, and calculations. The design review is supplemented by system walk downs to validate the system high points and to confirm the location and orientation of important components that can become sources of gas or could otherwise cause gas to be trapped or difficult to remove during system maintenance or restoration. Susceptible locations depend on plant and system configuration, such as stand-by versus operating conditions.

(continued)

INSERVICE TESTING PROGRAM

SURVEILLANCE REQUIREMENTS

SR 3.6.4.2.1 (continued)

Two Notes have been added to this SR. The first Note applies to valves and blind flanges located in high radiation areas and allows them to be verified by use of administrative controls. Allowing verification by administrative controls is considered acceptable, since access to these areas is typically restricted during MODES 1, 2, and 3 for ALARA reasons. Therefore, the probability of misalignment of these SCIVs, once they have been verified to be in the proper position, is low.

A second Note has been included to clarify that SCIVs that are open under administrative controls are not required to meet the SR during the time the SCIVs are open. These controls consist of stationing a dedicated operator at the controls of the valve, who is in continuous communication with the control room. In this way, the penetration can be rapidly isolated when a need for secondary containment isolation is indicated.

SR 3.6.4.2.2

Verifying the isolation time of each power operated, automatic SCIV is within limits is required to demonstrate OPERABILITY. The isolation time is in accordance with the Inservice Testing Program and ensures that the SCIV will isolate in a time period less than or equal to that assumed in the safety analyses. The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

SR 3.6.4.2.3

Verifying that each automatic SCIV closes on a secondary containment isolation signal is required to prevent leakage of radioactive material from secondary containment following a DBA or other accidents. This SR ensures that each automatic SCIV will actuate to the isolation position on a secondary containment isolation signal. The LOGIC SYSTEM FUNCTIONAL TEST in LCO 3.3.6.2, "Secondary Containment

(continued)

Revision 0. 44 (A152)

B 3.0 SURVEILLANCE REQUIREMENT (SR) APPLICABILITY

BASES	SR 3.0.2 and SR 3.0.3 apply in Chapter 5 only when invoked by a Chapter 5 Specification.
SRs	SR 3.0.1 through SR 3.0.4 establish the general requirements applicable to all Specifications in Sections 3.1 through 3.10 and apply at all times, unless otherwise stated.
SR 3.0.1	 SR 3.0.1 establishes the requirement that SRs must be met during the MODES or other specified conditions in the Applicability for which the requirements of the LCO apply, unless otherwise specified in the individual SRs. This Specification is to ensure that Surveillances are performed to verify the OPERABILITY of systems and components, and that variables are within specified limits. Failure to meet a Surveillance within the specified Frequency, in accordance with SR 3.0.2, constitutes a failure to meet an LCO. Systems and components are assumed to be OPERABLE when the associated SRs have been met. Nothing in this Specification, however, is to be construed as implying that systems or components are OPERABLE when: a. The systems or components are known to be inoperable, although still meeting the SRs; or b. The requirements of the Surveillance(s) are known to be not met between required Surveillance performances. Surveillances do not have to be performed when the unit is in a MODE or other specified condition for which the requirements of the associated LCO are not applicable, unless otherwise specified. The SRs associated with a Special Operations LCO are only applicable when the Special
	Operations LCO is used as an allowable exception to the requirements of a Specification. Surveillances, including Surveillances invoked by Required Actions, do not have to be performed on inoperable equipment because the ACTIONS define the remedial measures that apply. Surveillances have to be met and performed in accordance with SR 3.0.2, prior to returning equipment to OPERABLE status.
	(continued)

SURVEILLANCE <u>SR 3.1.7.8</u> (continued) REQUIREMENTS

> solution concentration requirements, the rate of negative reactivity insertion from the SLC System will adequately compensate for the positive reactivity effects encountered during power reduction, cooldown of the moderator, and xenon decay. The rate of negative reactivity insertion is increased by using highly enriched boron in the SLC System solution that increases the rate of Boron-10 injection and functions to shutdown the reactor core faster. This limits the heat generated that is transferred to the suppression pool during an ATWS event. Limiting the heat transferred to the suppression pool maintains the pool below design limits, which ensures adequate NPSH is available for the ECCS pumps without credit for containment accident pressure. This test confirms one point on the pump design curve and is indicative of overall performance. Such inservice inspections confirm component OPERABILITY, trend performance, and detect incipient failures by indicating abnormal performance. The Frequency of this Surveillance is in accordance with the Inservice Testing Program.

> > INSERVICE TESTING PROGRAM

SR 3.1.7.9

This Surveillance ensures that there is a functioning flow path from the boron solution storage tank to the RPV, including the firing of an explosive valve. The replacement charge for the explosive valve shall be from the same manufactured batch as the one fired or from another batch that has been certified by having one of that batch successfully fired. The Surveillance may be performed in separate steps to prevent injecting boron into the RPV. An acceptable method for verifying flow from the pump to the RPV is to pump demineralized water from a test tank through one SLC subsystem and into the RPV. The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

(continued)

BASES (continued)

APPLICABILITY In MODES 1, 2, and 3, all required SRVs and SVs must be OPERABLE, since considerable energy may be in the reactor core and the limiting design basis transients are assumed to occur in these MODES. The SRVs and SVs may be required to provide pressure relief to discharge energy from the core until such time that the Residual Heat Removal (RHR) System is capable of dissipating the core heat.

> In MODE 4, decay heat is low enough for the RHR System to provide adequate cooling, and reactor pressure is low enough that the overpressure limit is unlikely to be approached by assumed operational transients or accidents. In MODE 5, the reactor vessel head is unbolted or removed and the reactor is at atmospheric pressure. The SRV and SV function is not needed during these conditions.

ACTIONS

A.1 and A.2

With less than the minimum number of required SRVs or SVs OPERABLE, a transient may result in the violation of the ASME Code limit on reactor pressure. If the safety function of one or more required SRVs or SVs is inoperable, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to MODE 3 within 12 hours and to MODE 4 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach required plant conditions from full power conditions in an orderly manner and without challenging plant systems.

SURVEILLANCE REQUIREMENTS

SR 3.4.3.1

INSERVICE TESTING

This Surveillance requires that the required SRVs and SVs will open at the pressures assumed in the safety analyses of References 1 and 2. The demonstration of the SRV and SV safety lift settings must be performed during shutdown. since this is a bench test, to be done in accordance with the Inservice Testing Program. The lift setting pressure shall correspond to ambient conditions of the valves at nominal operating temperatures and pressures and be verified with insulation installed simulating the in-plant condition. The SRV and SV setpoint is $\pm 3\%$ for OPERABILITY. Prior to placing new or refurbished valves into service, the valve openings setpoints must be adjusted to be within $\pm 1\%$ of their nominal setting.

(continued)

PBAPS UNIT 2

SURVEILLANCE REQUIREMENTS (continued) SR 3.5.1.5

Cycling the recirculation pump discharge valves through one complete cycle of full travel demonstrates that the valves are mechanically OPERABLE and will close when required. Upon initiation of an automatic LPCI subsystem injection signal, these valves are required to be closed to ensure full LPCI subsystem flow injection in the reactor via the recirculation jet pumps. De-energizing the valve in the closed position will also ensure the proper flow path for the LPCI subsystem. Acceptable methods of de-energizing the valve include de-energizing breaker control power, racking out the breaker or removing the breaker.

If the valve is inoperable and in the open position, the associated LPCI subsystem must be declared inoperable. The Frequency of this SR is in accordance with the Inservice Testing Program.

SR 3.5.1.6

Verification of the automatic transfer between the normal and the alternate power source (4 kV emergency bus) for each LPCI subsystem inboard injection valve and each recirculation pump discharge valve demonstrates that AC electrical power will be available to operate these valves following loss of power to one of the 4 kV emergency buses. The ability to provide power to the inboard injection valve and the recirculation pump discharge valve from either 4 kV emergency bus associated with the LPCI subsystem ensures that the single failure of an DG will not result in the

(continued)

INSERVICE TESTING

PROGRAM

SURVEILLANCE SR 3.6.1.3.7 (continued) REQUIREMENTS

position, since these valves were verified to be in the correct position prior to locking or securing. This SR does not require any testing or valve manipulation; rather, it involves verification that those valves capable of being mispositioned are in the correct position. This SR does not apply to valves that cannot be inadvertently misaligned, such as check valves. The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

SR 3.6.1.3.8

Verifying the isolation time of each power operated automatic PCIV is within limits is required to demonstrate OPERABILITY. MSIVs may be excluded from this SR since MSIV full closure isolation time is demonstrated by SR 3.6.1.3.9. INSERVICE TESTING The isolation time test ensures that the valve will isolate in a time period less than or equal to that assumed in the safety analyses. The isolation time is in accordance with Reference 2 or the requirements of the Inservice Testing Program which ever is more conservative. The Frequency of this SR is in accordance with the requirements of the Inservice Testing Program.

SR 3.6.1.3.9

INSERVICE TESTING PROGRAM

PROGRAM

Verifying that the isolation time of each MSIV is within the specified limits is required to demonstrate OPERABILITY. The isolation time test ensures that the MSIV will isolate in time period that does not exceed the times assumed in the DBA analyses. This ensures that the calculated radiological consequences of these events remain within 10 CFR 50.67 limits as modified in Regulatory Guide 1.183. Table 6. The Frequency of this SR is in accordance with the requirements of the Inservice Testing Program.

SR 3.6.1.3.10

Automatic PCIVs close on a primary containment isolation signal to prevent leakage of radioactive material from primary containment following a DBA. This SR ensures that each automatic PCIV will actuate to its isolation position on a primary containment isolation signal. The LOGIC SYSTEM

(continued)

PBAPS UNIT 2

BASES (continued)

SURVEILLANCE REQUIREMENTS

SR 3.6.2.3.1

Verifying the correct alignment for manual, power operated. and automatic valves in the RHR suppression pool cooling mode flow path provides assurance that the proper flow path exists for system operation. This SR does not apply to valves that are locked, sealed, or otherwise secured in position since these valves were verified to be in the correct position prior to locking, sealing, or securing. A valve is also allowed to be in the nonaccident position provided it can be aligned to the accident position within the time assumed in the accident analysis. This is acceptable since the RHR suppression pool cooling mode is manually initiated. This SR does not require any testing or valve manipulation; rather, it involves verification that those valves capable of being mispositioned are in the correct position. This SR does not apply to valves that cannot be inadvertently misaligned, such as check valves.

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

SR 3.6.2.3.2

Verifying that each required RHR pump develops a flow rate ≥ 8,600 gpm while operating in the suppression pool cooling mode with flow through the associated heat exchanger ensures that pump performance has not degraded during the cycle. Flow is a normal test of centrifugal pump performance required by ASME Code (Ref. 3). This test confirms one point on the pump design curve, and the results are indicative of overall performance. Such inservice inspections confirm component OPERABILITY, trend performance, and detect incipient failures by indicating abnormal performance. The Frequency of this SR is in accordance with the Inservice Testing Program.

SR 3.6.2.3.3

Verification of manual transfer between the normal and alternate power source (4kV emergency bus) for each RHR motor-operated flow control valve and each RHR cross-tie motor-operated valve demonstrates that AC power will be available to operate the required valves following loss of power to any single 4kV emergency bus. The ability to

(continued)

INSERVICE

TESTING PROGRAM

SURVEILLANCE REQUIREMENTS <u>SR 3.6.4.2.1</u> (continued)

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program. This SR does not apply to valves that are locked, sealed, or otherwise secured in the closed position, since these were verified to be in the correct position upon locking, sealing, or securing.

Two Notes have been added to this SR. The first Note applies to valves and blind flanges located in high radiation areas and allows them to be verified by use of administrative controls. Allowing verification by administrative controls is considered acceptable, since access to these areas is typically restricted during MODES 1, 2, and 3 for ALARA reasons. Therefore, the probability of misalignment of these SCIVs, once they have been verified to be in the proper position, is low.

A second Note has been included to clarify that SCIVs that are open under administrative controls are not required to meet the SR during the time the SCIVs are open.

SR 3.6.4.2.2

Verifying that the isolation time of each power operated automatic SCIV is within limits is required to demonstrate OPERABILITY. The isolation time test ensures that the SCIV will isolate in a time period less than or equal to that assumed in the safety analyses. The Frequency of this SR is in accordance with the Inservice Testing Program.

INSERVICE TESTING PROGRAM

3.6.4.2.3

Verifying that each automatic SCIV closes on a secondary containment isolation signal is required to prevent leakage of radioactive material from secondary containment following a DBA or other accidents. This SR ensures that each automatic SCIV will actuate to the isolation position on a secondary containment isolation signal. The LOGIC SYSTEM FUNCTIONAL TEST in LCO 3.3.6.2, "Secondary Containment Isolation Instrumentation," overlaps this SR to provide complete testing of the safety function. The Surveillance Frequency is controlled under the Surveillance Frequency Control Program. Attachment 3h Revised Technical Specification Bases Changes (Information Only)

Peach Bottom Atomic Power Station, Units 2 and 3 Renewed Facility Operating License Nos. DPR 44 and DPR 56

REVISED TECHNICAL SPECIFICATION BASES PAGES

B 3.0-10 B 3.1-46 B 3.4-17 B 3.5-12 B 3.6-27 B 3.6-59 B 3.6-83 B 3.0 SURVEILLANCE REQUIREMENT (SR) APPLICABILITY

	GR 3.0.2 and SR 3.0.3 apply in Chapter 5 only when invoked by a Chapter 5 Specification.		
SRs	SR 3.0.1 through SR 3.0.4 establish the general requirements applicable to all Specifications in Sections 3.1 through 3.10 and apply at all times, unless otherwise stated.		
SR 3.0.1	SR 3.0.1 establishes the requirement that SRs must be met during the MODES or other specified conditions in the Applicability for which the requirements of the LCO apply, unless otherwise specified in the individual SRs. This Specification is to ensure that Surveillances are performed to verify the OPERABILITY of systems and components, and that variables are within specified limits. Failure to meet a Surveillance within the specified Frequency, in accordance with SR 3.0.2, constitutes a failure to meet an LCO.		
	Systems and components are assumed to be OPERABLE when the associated SRs have been met. Nothing in this Specification, however, is to be construed as implying that systems or components are OPERABLE when:		
	a. The systems or components are known to be inoperable, although still meeting the SRs; or		
	b. The requirements of the Surveillance(s) are known to be not met between required Surveillance performances.		
	Surveillances do not have to be performed when the unit is in a MDDE or other specified condition for which the requirements of the associated LCO are not applicable, unless otherwise specified. The SRs associated with a Special Operations LCO are only applicable when the Special Operations LCO is used as an allowable exception to the requirements of a Specification.		
	Surveillances, including Surveillances invoked by Required Actions, do not have to be performed on inoperable equipment because the ACTIONS define the remedial measures that apply Surveillances have to be met and performed in accordance with SR 3.0.2, prior to returning equipment to OPERABLE status.		

INSERVICE TESTING

PROGRAM

SURVEILLANCE <u>SR 3.1.7.8</u> (continued) REQUIREMENTS

solution concentration requirements, the rate of negative reactivity insertion from the SLC System will adequately compensate for the positive reactivity effects encountered during power reduction, cooldown of the moderator, and xenon decay. The rate of negative reactivity insertion is increased by using highly enriched boron in the SLC System solution that increases the rate of Boron-10 injection and functions to shutdown the reactor core faster. This limits the heat generated that is transferred to the suppression pool during an ATWS event. Limiting the heat transferred to the suppression pool maintains the pool below design limits. which ensures adequate NPSH is available for the ECCS pumps without credit for containment accident pressure. This test confirms one point on the pump design curve and is indicative of overall performance. Such inservice inspections confirm component OPERABILITY, trend performance, and detect incipient failures by indicating abnormal performance. The Frequency of this Surveillance is in accordance with the Inservice Testing Program.

SR 3.1.7.9

This Surveillance ensures that there is a functioning flow path from the boron solution storage tank to the RPV, including the firing of an explosive valve. The replacement charge for the explosive valve shall be from the same manufactured batch as the one fired or from another batch that has been certified by having one of that batch successfully fired. The Surveillance may be performed in separate steps to prevent injecting boron into the RPV. An acceptable method for verifying flow from the pump to the RPV is to pump demineralized water from a test tank through one SLC subsystem and into the RPV. The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

(continued)

PBAPS UNIT 3

BASES (continued)

APPLICABILITY In MODES 1, 2, and 3, all required SRVs and SVs must be OPERABLE, since considerable energy may be in the reactor core and the limiting design basis transients are assumed to occur in these MODES. The SRVs and SVs may be required to provide pressure relief to discharge energy from the core until such time that the Residual Heat Removal (RHR) System is capable of dissipating the core heat.

> In MODE 4, decay heat is low enough for the RHR System to provide adequate cooling, and reactor pressure is low enough that the overpressure limit is unlikely to be approached by assumed operational transients or accidents. In MODE 5, the reactor vessel head is unbolted or removed and the reactor is at atmospheric pressure. The SRV and SV function is not needed during these conditions.

ACTIONS A.1 and A.2

With less than the minimum number of required SRVs or SVs OPERABLE, a transient may result in the violation of the ASME Code limit on reactor pressure. If the safety function of one or more required SRVs or SVs is inoperable, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to MODE 3 within 12 hours and to MODE 4 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach required plant conditions from full power conditions in an orderly manner and without challenging plant systems.

SURVEILLANCE REQUIREMENTS SR 3.4.3.1

INSERVICE TESTING PROGRAM

This Surveillance requires that the required SRVs and SVs will open at the pressures assumed in the safety analyses of References 1 and 2. The demonstration of the SRV and SV safety lift settings must be performed during shutdown, since this is a bench test, to be done in accordance with the Inservice Testing Program. The lift setting pressure shall correspond to ambient conditions of the valves at nominal operating temperatures and pressures and be verified with insulation installed simulating the in-plant condition. The SRV and SV setpoint is $\pm 3\%$ for OPERABILITY. Prior to placing new or refurbished valves into service, the valve openings setpoints must be adjusted to be within $\pm 1\%$ of their nominal setting.

(continued)

PBAPS UNIT 3

SURVEILLANCE REQUIREMENTS

(continued)

SR 3.5.1.5

Cycling the recirculation pump discharge valves through one complete cycle of full travel demonstrates that the valves are mechanically OPERABLE and will close when required. Upon initiation of an automatic LPCI subsystem injection signal, these valves are required to be closed to ensure full LPCI subsystem flow injection in the reactor via the recirculation jet pumps. De-energizing the valve in the closed position will also ensure the proper flow path for the LPCI subsystem. Acceptable methods of de-energizing the valve include de-energizing breaker control power, racking out the breaker or removing the breaker.

If the valve is inoperable and in the open position, the associated LPCI subsystem must be declared inoperable. The Frequency of this SR is in accordance with the Inservice Testing Program.

INSERVICE TESTING PROGRAM

SR 3.5.1.6

Verification of the automatic transfer between the normal and the alternate power source (4 kV emergency bus) for each LPCI subsystem inboard injection valve and each recirculation pump discharge valve demonstrates that AC electrical power will be available to operate these valves following loss of power to one of the 4 kV emergency buses. The ability to provide power to the inboard injection valve and the recirculation pump discharge valve from either 4 kV emergency bus associated with the LPCI subsystem ensures that the single failure of an DG will not result in the

(continued)

SURVEILLANCE REQUIREMENTS

<u>SR 3.6.1.3.7</u> (continued)

position, since these valves were verified to be in the correct position prior to locking or securing. This SR does not require any testing or valve manipulation; rather, it involves verification that those valves capable of being mispositioned are in the correct position. This SR does not apply to valves that cannot be inadvertently misaligned, such as check valves. The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

SR 3.6.1.3.8

Verifying the isolation time of each power operated automatic PCIV is within limits is required to demonstrate OPERABILITY. MSIVs may be excluded from this SR since MSIV full closure isolation time is demonstrated by SR 3.6.1.3.9. The isolation time test ensures that the valve will isolate in a time period less than or equal to that assumed in the safety analyses. The isolation time is in accordance with Reference 2 or the requirements of the Inservice Testing Program which ever is more conservative. The Frequency of this SR is in accordance with the requirements of the Inservice Testing Program

SR 3.6.1.3.9 INSERVICE TESTING PROGRAM

Verifying that the isolation time of each MSIV is within the specified limits is required to demonstrate OPERABILITY. The isolation time test ensures that the MSIV will isolate in a time period that does not exceed the times assumed in the DBA analyses. This ensures that the calculated radiological consequences of these events remain within 10 CFR 50.67 limits as modified in Regulatory Guide 1.183. Table 6. The Frequency of this SR is in accordance with the requirements of the <u>Inservice Testing Program</u>.

SR 3.6.1.3.10

INSERVICE TESTING PROGRAM

Automatic PCIVs close on a primary containment isolation signal to prevent leakage of radioactive material from primary containment following a DBA. This SR ensures that each automatic PCIV will actuate to its isolation position on a primary containment isolation signal. The LOGIC SYSTEM

(continued)

PBAPS UNIT 3

B 3.6-27

BASES (continued)

SURVEILLANCE REQUIREMENTS

SR 3.6.2.3.1

Verifying the correct alignment for manual, power operated, and automatic valves in the RHR suppression pool cooling mode flow path provides assurance that the proper flow path exists for system operation. This SR does not apply to valves that are locked, sealed, or otherwise secured in position since these valves were verified to be in the correct position prior to locking, sealing, or securing. A valve is also allowed to be in the nonaccident position provided it can be aligned to the accident position within the time assumed in the accident analysis. This is acceptable since the RHR suppression pool cooling mode is manually initiated. This SR does not require any testing or valve manipulation; rather, it involves verification that those valves capable of being mispositioned are in the correct position. This SR does not apply to valves that cannot be inadvertently misaligned, such as check valves.

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

SR 3.6.2.3.2

Verifying that each required RHR pump develops a flow rate ≥ 8,600 gpm while operating in the suppression pool cooling mode with flow through the associated heat exchanger ensures that pump performance has not degraded during the cycle. Flow is a normal test of centrifugal pump performance required by ASME Code (Ref. 3). This test confirms one point on the pump design curve, and the results are indicative of overall performance. Such inservice inspections confirm component OPERABILITY, trend performance, and detect incipient failures by indicating abnormal performance. The Frequency of this SR is in accordance with the Inservice Testing Program.

SR 3.6.2.3.3

INSERVICE TESTING PROGRAM

Verification of manual transfer between the normal and alternate power source (4kV emergency bus) for each RHR motor-operated flow control valve and each RHR cross-tie motor-operated valve demonstrates that AC power will be available to operate the required valves following loss of power to any single 4kV emergency bus. The ability to

(continued)

PBAPS UNIT 3

REQUIREMENTS

SURVEILLANCE <u>SR 3.6.4.2.1</u> (continued)

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program. This SR does not apply to valves that are locked, sealed, or otherwise secured in the closed position, since these were verified to be in the correct position upon locking, sealing, or securing.

Two Notes have been added to this SR. The first Note applies to valves and blind flanges located in high radiation areas and allows them to be verified by use of administrative controls. Allowing verification by administrative controls is considered acceptable, since access to these areas is typically restricted during MODES 1, 2, and 3 for ALARA reasons. Therefore, the probability of misalignment of these SCIVs, once they have been verified to be in the proper position, is low.

A second Note has been included to clarify that SCIVs that are open under administrative controls are not required to meet the SR during the time the SCIVs are open.

SR 3.6.4.2.2

Verifying that the isolation time of each power operated automatic SCIV is within limits is required to demonstrate OPERABILITY. The isolation time test ensures that the SCIV will isolate in a time period less than or equal to that assumed in the safety analyses. The Frequency of this SR is in accordance with the Inservice Testing Program.

SR 3.6.4.2.3 INSERVICE TESTING PROGRAM

Verifying that each automatic SCIV closes on a secondary containment isolation signal is required to prevent leakage of radioactive material from secondary containment following a DBA or other accidents. This SR ensures that each automatic SCIV will actuate to the isolation position on a secondary containment isolation signal. The LOGIC SYSTEM FUNCTIONAL TEST in LCO 3.3.6.2, "Secondary Containment Isolation Instrumentation," overlaps this SR to provide complete testing of the safety function. The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

(continued)

PBAPS UNIT 3

8 3.6-83

Attachment 3i Revised Technical Specification Bases Changes (Information Only)

Quad Cities Nuclear Power Station, Units 1 and 2 Renewed Facility Operating License Nos. DPR 29 and DPR 30

REVISED TECHNICAL SPECIFICATION BASES PAGES

B 3.0-13 B 3.1.7-6 B 3.4.3-6 B 3.5.1-15 B 3.5.1-16 B 3.6.1.3-13 B 3.6.2.3-5

SR Applicability B 3.0

BASES	SR 3.0.2 and SR 3.0.3 apply in Chapter 5 only when invoked by a Chapter 5 Specification.			
SRs	SR 3.0.1 through SR 3.0.4 establish the general requirements applicable to all Specifications in Sections 3.1 through 3.10 and apply at all times, unless otherwise stated.			

B 3.0 SURVEILLANCE REQUIREMENT (SR) APPLICABILITY

SR 3.0.1 SR 3.0.1 establishes the requirement that SRs must be met during the MODES or other specified conditions in the Applicability for which the requirements of the LCO apply, unless otherwise specified in the individual SRs. This Specification is to ensure that Surveillances are performed to verify the OPERABILITY of systems and components, and that variables are within specified limits. Failure to meet a Surveillance within the specified Frequency, in accordance with SR 3.0.2, constitutes a failure to meet an LCO.

> Systems and components are assumed to be OPERABLE when the associated SRs have been met. Nothing in this Specification, however, is to be construed as implying that systems or components are OPERABLE when:

- а. The systems or components are known to be inoperable, although still meeting the SRs; or
- b. The requirements of the Surveillance(s) are known to be not met between required Surveillance performances.

Surveillances do not have to be performed when the unit is in a MODE or other specified condition for which the requirements of the associated LCO are not applicable, unless otherwise specified. The SRs associated with a Special Operations LCO are only applicable when the Special Operations LCO is used as an allowable exception to the requirements of a Specification.

Unplanned events may satisfy the requirements (including applicable acceptance criteria) for a given SR. In this case, the unplanned event may be credited as fulfilling the performance of the SR.

(continued)

SURVEILLANCE REQUIREMENTS (continued) SR 3.1.7.7

Demonstrating that each SLC System pump develops a flow rate \geq 40 gpm at a discharge pressure \geq 1275 psig ensures that pump performance has not degraded during the fuel cycle. This minimum pump flow rate requirement ensures that, when combined with the sodium pentaborate solution concentration requirements, the rate of negative reactivity insertion from the SLC System will adequately compensate for the positive reactivity effects encountered during power reduction, cooldown of the moderator, and xenon decay. This test confirms one point on the pump design curve and is indicative of overall performance. Such inservice tests confirm component OPERABILITY, and detect incipient failures by indicating abnormal performance. The Frequency of this Surveillance is in accordance with the Inservice Testing Program. INSERVICE TESTING

SR 3.1.7.8 and SR 3.1.7.9

These Surveillances ensure that there is a functioning flow path from the boron solution storage tank to the RPV, including the firing of an explosive valve. The replacement charge for the explosive valve shall be from the same manufactured batch as the one fired or from another batch that has been certified by having one of that batch successfully fired. The Surveillance may be performed in separate steps to prevent injecting boron into the RPV. An acceptable method for verifying flow from the pump to the RPV is to pump demineralized water from a test tank through one SLC subsystem and into the RPV. The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

(continued)

PROGRAM

Quad Cities 1 and 2

BASES (continued)

SURVEILLANCE REQUIREMENTS

SR 3.4.3.1

This Surveillance requires that the safety valves, including the S/RV, will open at the pressures assumed in the safety analysis of Reference 1. The demonstration of the safety valve and S/RV safety lift settings must be performed during shutdown, since this is a bench test, to be done in accordance with the Inservice Testing Program. The lift setting pressure shall correspond to ambient conditions of the valves at nominal operating temperatures and pressures. The safety valve and S/RV setpoints are \pm 3% for OPERABILITY; however, the valves are reset to \pm 1% during the Surveillance to allow for drift.

INSERVICE TESTING PROGRAM

SR 3.4.3.2

The actuator of each of the Electromatic relief valves (ERVs) and the dual function safety/relief valves (S/RVs) is stroked to verify that the pilot valve strokes when manually actuated. For the S/RVs, the actuator test is performed by energizing a solenoid that pneumatically actuates a plunger located within the main valve body. The plunger is connected to the second stage disc. When steam pressure actuates the plunger during plant operation, this allows pressure to be vented from the top of the main valve piston. allowing reactor pressure to lift the main valve piston, which opens the main valve disc. The test will verify movement of the plunger in accordance with vendor recommendations. However, since this test is performed prior to establishing the reactor pressure needed to overcome main valve closure forces, the main valve disc will not stroke during the test.

For the ERVs, the actuator test is performed with the pilot valve actuator mounted in its normal position. This will allow testing of the manual actuation electrical circuitry, solenoid actuator, pilot operating lever, and pilot plunger. This test will verify pilot valve movement. However, since this test is performed prior to establishing the reactor pressure needed to overcome main valve closure spring force, the main valve will not stroke during the test.

(continued)

Quad Cities 1 and 2

B	A	5	E	5	
~	1.1	~	-	~	

SURVEILLANCE REQUIREMENTS	<u>SR 3.5.1.4</u> (continued)
INSERVICE	closed position will also ensure the proper flow path for the LPCI subsystem. Acceptable methods of de-energizing the valve include de-energizing breaker control power, racking out the breaker or removing the breaker.
TESTING PROGRAM	The Frequency of this SR is in accordance with the Inservice Testing Program. If any recirculation pump discharge valve is inoperable and in the open position, both LPCI subsystems must be declared inoperable.

SR 3.5.1.5, SR 3.5.1.6, and SR 3.5.1.7

The performance requirements of the low pressure ECCS pumps are determined through application of the 10 CFR 50, Appendix K criteria (Ref. 7). This periodic Surveillance is performed (in accordance with the ASME Code (Ref. 12) requirements for the ECCS pumps) to verify that the ECCS pumps will develop the flow rates required by the respective analyses. The low pressure ECCS pump flow rates ensure that adequate core cooling is provided to satisfy the acceptance criteria of Reference 9. The pump flow rates are verified against a test line pressure or system head equivalent to the RPV pressure expected during a LOCA. The total system pump outlet pressure is adequate to overcome the elevation head pressure between the pump suction and the vessel discharge, the piping friction losses, and RPV pressure present during a LOCA. These values have been established analytically.

The flow tests for the HPCI System are performed at two different pressure ranges such that system capability to provide rated flow against a system head corresponding to reactor pressure is tested at both the higher and lower operating ranges of the system. The required system head

(continued)

Quad Cities 1 and 2

B 3.5.1-15

Revision 50

SURVEILLANCE REQUIREMENTS SR 3.5.1.5, SR 3.5.1.6, and SR 3.5.1.7 (continued)

should overcome the RPV pressure and associated discharge line losses. Adequate reactor steam pressure must be available to perform these tests. Additionally, adequate steam flow must be passing through the main turbine or turbine bypass valves to continue to control reactor pressure when the HPCI System diverts steam flow. Therefore, sufficient time is allowed after adequate pressure and flow are achieved to perform these tests. Reactor steam pressure must be \geq 920 psig to perform SR 3.5.1.6 and ≥ 150 psig to perform SR 3.5.1.7. Adequate steam flow is represented by at least 2 turbine bypass valves open, or total steam flow ≥ 10⁶ lb/hr. Reactor startup is allowed prior to performing the low pressure Surveillance test because the reactor pressure is low and the time allowed to satisfactorily perform the Surveillance test is short. The reactor pressure is allowed to be increased to normal operating pressure since it is assumed that the low pressure test has been satisfactorily completed and there is no indication or reason to believe that HPCI is inoperable.

Therefore, SR 3.5.1.6 and SR 3.5.1.7 are modified by Notes that state the Surveillances are not required to be performed until 12 hours after the reactor steam pressure and flow are adequate to perform the test. The 12 hours allowed for performing the flow test after the required pressure and flow are reached is sufficient to achieve stable conditions for testing and provides reasonable time to complete the SRs.

The Frequency for SR 3.5.1.5 and SR 3.5.1.6 is in accordance with the Inservice Testing Program requirements. The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

SR 3.5.1.8

The ECCS subsystems are required to actuate automatically to perform their design functions. This Surveillance verifies that, with a required system initiation signal (actual or simulated), the automatic initiation logic of HPCI, CS, and

(continued)

Quad Cities 1 and 2

INSERVICE

PROGRAM

TESTING

SURVEILLANCE

REQUIREMENTS

(continued)

SR 3.6.1.3.5

Verifying the isolation time of each power operated, automatic PCIV is within limits is required to demonstrate OPERABILITY. MSIVs may be excluded from this SR since MSIV full closure isolation time is demonstrated by SR 3.6.1.3.6. The isolation time test ensures that each valve will isolate in a time period less than or equal to that assumed in the safety analyses. The Frequency of this SR is in accordance with the requirements of the <u>Inservice Testing Program</u>.

SR 3.6.1.3.6

INSERVICE TESTING PROGRAM

Verifying that the isolation time of each MSIV is within the specified limits is required to demonstrate OPERABILITY. The isolation time test ensures that the MSIV will isolate in a time period that does not exceed the times assumed in the DBA and transient analyses. This ensures that the calculated radiological consequences of these events remain within 10 CFR 50.67 limits. The Frequency of this SR is in accordance with the requirements of the Inservice Testing Program.

SR 3.6.1.3.7

INSERVICE TESTING PROGRAM

Automatic PCIVs close on a primary containment isolation signal to prevent leakage of radioactive material from primary containment following a DBA. This SR ensures that each automatic PCIV will actuate to its isolation position on a primary containment isolation signal. The LOGIC SYSTEM FUNCTIONAL TEST in LCO 3.3.6.1, "Primary Containment Isolation Instrumentation," overlaps this SR to provide complete testing of the safety function. The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

(continued)

Quad Cities 1 and 2

SURVEILLANCE REQUIREMENTS (continued)

SR 3.6.2.3.2

Verifying that each required RHR pump develops a flow rate ≥ 5000 gpm while operating in the suppression pool cooling mode with flow through the associated heat exchanger ensures that the primary containment peak pressure and temperature can be maintained below the design limits during a DBA (Ref. 1). The flow is a normal test of centrifugal pump performance required by ASME Code (Ref. 3). This test confirms one point on the pump design curve, and the results are indicative of overall performance. Such inservice tests confirm component OPERABILITY, and detect incipient failures by indicating abnormal performance. The Frequency of this SR is in accordance with the Inservice Testing Program.

INSERVICE TESTING PROGRAM

SR 3.6.2.3.3

RHR Suppression Pool Cooling System piping and components have the potential to develop voids and pockets of entrained gases. Preventing and managing gas intrusion and accumulation is necessary for proper operation of the RHR suppression pool cooling subsystems and may also prevent water hammer and pump cavitation.

Selection of RHR Suppression Pool Cooling System locations susceptible to gas accumulation is based on a review of system design information, including piping and instrumentation drawings, isometric drawings, plan and elevation drawings, and calculations. The design review is supplemented by system walk downs to validate the system high points and to confirm the location and orientation of important components that can become sources of gas or could otherwise cause gas to be trapped or difficult to remove during system maintenance or restoration. Susceptible locations depend on plant and system configuration, such as stand-by versus operating conditions.

The RHR Suppression Pool Cooling System is OPERABLE when it is sufficiently filled with water. Acceptance criteria are established for the volume of accumulated gas at susceptible locations. If accumulated gas is discovered that exceeds the acceptance criteria for the susceptible location (or the volume of accumulated gas at one or more susceptible locations exceeds an acceptance criteria for gas volume at the suction or discharge of a pump), the Surveillance is not

(continued)

Quad Cities 1 and 2

B 3.6.2.3-5

Revision 50

Attachment 3j Revised Technical Specification Bases Changes (Information Only)

R.E. Ginna Nuclear Power Plant Renewed Facility Operating License No. DPR-18

REVISED TECHNICAL SPECIFICATION BASES PAGES

B 3.0-12 B 3.4.10-4 B 3.5.2-12 B 3.6.3-13 B 3.6.6-10 B 3.7.1-2 B 3.7.2-1 B 3.7.2-5 B 3.7.3-5 B 3.7.3-6 B 3.7.5-8 B 3.7.5-9 B 3.7.7-3 B 3.7.7-6

B 3.0	LIMITING CONDITION FOR OPERATION (LCO) AND SURVEILLANCE
	REQUIREMENT (SR) APPLICABILITY

B 3.0	Surveillance Requirement (SR) Applicability
BASES	SR 3.0.2 and SR 3.0.3 apply in Chapter 5 only when invoked by a Chapter 5 Specification.
SRs	SR 3.0.1 through SR 3.0.4 establish the general requirements applicable to all Specifications and apply at all times unless otherwise stated

SR 3.0.1 SR 3.0.1 establishes the requirement that SRs must be met during the MODES or other specified conditions in the Applicability for which the requirements of the LCO apply, unless otherwise specified in the individual SRs. This Specification is to ensure that Surveillances are performed to verify the OPERABILITY of systems and components, and that variables are within specified limits. Failure to meet a Surveillance within the specified Frequency, in accordance with SR 3.0.2, constitutes a failure to meet an LCO.

Systems and components are assumed to be OPERABLE when the associated SRs have been met. Nothing in this Specification, however, is to be construed as implying that systems or components are OPERABLE when:

- a. The systems or components are known to be inoperable, although still meeting the SRs; or
- b. The requirements of the Surveillance(s) are known not to be met between required Surveillance performances.

Surveillances do not have to be performed when the plant is in a MODE or other specified condition for which the requirements of the associated LCO are not applicable, unless otherwise specified. The SRs associated with a test exception are only applicable when the Test Exception LCO is used as an allowable exception to the requirements of a Specification.

Surveillances, including Surveillances invoked by Required Actions, do not have to be performed on inoperable equipment because the ACTIONS define the remedial measures that apply. Surveillances have to be met and performed in accordance with SR 3.0.2, prior to returning equipment to OPERABLE status.

B.1 and B.2

If the Required Action of A.1 cannot be met within the required Completion Time or if both pressurizer safety valves are inoperable, the plant must be brought to a MODE in which the requirement does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 6 hours and to MODE 4 with either RCS cold leg temperature less than or equal to the LTOP enable temperature specified in the PTLR within 12 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems. With any RCS cold leg temperature at or below the LTOP enable temperature specified in the PTLR, overpressure protection is provided by the LTOP System. The change from MODE 1, 2, or 3 to MODE 4 reduces the RCS energy (core power and pressure), lowers the potential for large pressurizer insurges, and thereby removes the need for overpressure protection by both pressurizer safety valves.

SURVEILLANCE REQUIREMENTS

INSERVICE TESTING PROGRAM

SR 3.4.10.1

SRs are specified in the Inservice Testing Program. Pressurizer safety valves are to be tested in accordance with the requirements of the ASME Code (Ref. 7), which provides the activities and Frequencies necessary to satisfy the SRs. No additional requirements are specified.

The pressurizer safety valve setpoint is + 2.3%, - 3% for OPERABILITY; however, the valves are reset to \pm 1% during the surveillance to allow for drift.

This SR is modified by a Note that allows entry into MODES 3 and 4 without having performed the SR for the purpose of setting the pressurizer safety valves under ambient (hot) conditions. This permits testing and examination of the safety valves at high pressure and temperature near their normal operating range, but only after the valves have had a preliminary cold setting. The cold setting gives assurance that the valves are OPERABLE near their design condition until completion of the surveillance. The Surveillance is modified by a Note which exempts system vent flow paths opened under administrative control. The administrative control should be proceduralized and include stationing a dedicated individual at the system vent flow path who is in continuous communication with the operators in the control room. This individual will have a method to rapidly close the system vent flow path if directed.

SR 3.5.2.3

Verification that AC or DC power is removed, as appropriate, for each valve specified in SR 3.5.2.1 ensures that an active failure could not result in an undetected misposition of a valve which affects both trains of ECCS. If this were to occur, no ECCS injection or recirculation would be available. The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

SR 3.5.2.4

Periodic surveillance testing of ECCS pumps to detect gross degradation caused by impeller structural damage or other hydraulic component problems is required by the ASME Code. This type of testing may be accomplished by measuring the pump developed head at a single point of the pump characteristic curve. This verifies both that the measured performance is within an acceptable tolerance of the original pump baseline performance and that the performance at the test flow is greater than or equal to the performance assumed in the plant safety analysis. SRs are specified in the Inservice Testing Program, which encompasses the ASME Code. The ASME Code provides the activities and Frequencies necessary to satisfy the requirements.

SR 3.5.2.5

These Surveillances demonstrate that each automatic ECCS valve actuates to the required position on an actual or simulated SI signal and that each ECCS pump starts on receipt of an actual or simulated SI signal. This surveillance is not required for valves that are locked, sealed, or otherwise secured in the required position under administrative controls. The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

INSERVICE TESTING PROGRAM probability of their misalignment is low and Frequency of "prior to entering MODE 4 from MODE 5 if not performed within the previous 92 days" is appropriate. The SR specifies that isolation boundaries that are open under administrative controls are not required to meet the SR during the time they are open.

The SR is modified by two notes. The first Note applies to containment isolation boundaries located in high radiation areas and allows these boundaries to be verified closed by use of administrative means. Allowing verification by administrative means (e.g., procedure control) is considered acceptable, since access to these areas is typically restricted during MODES 1, 2, 3, and 4 for ALARA reasons. Therefore, the probability of misalignment of these isolation boundaries, once they have been verified to be in the proper position, is small. The Second Note states that this SR is not applicable to containment isolation boundaries which receive an automatic signal since the signal provides assurance the valve will be closed following an accident.

SR 3.6.3.4

Verifying that the isolation time of each automatic containment isolation valve is within limits is required to demonstrate OPERABILITY. The isolation time test ensures the valve will isolate in a time period less than or equal to that assumed in the safety analyses. The isolation time and Frequency of this SR are in accordance with the Inservice Testing

Program. SR 3.6.3.5

INSERVICE TESTING PROGRAM

For containment mini-purge valves with resilient seals, additional leakage rate testing beyond the test requirements of 10 CFR 50, Appendix J, Option B, is required to ensure OPERABILITY. Operating experience has demonstrated that this type of seal has the potential to degrade in a shorter time period than do other seal types. Based on this observation and the importance of maintaining this penetration leak tight (due to the direct path between containment and the outside environment), a leakage acceptance criteria of $\leq 0.05 L_a$ when tested at $\geq P_a$ is specified for each mini-purge isolation valve with resilient seals in the Containment Leakage Rate Testing Program. The Frequency of testing is also specified in the Containment Leakage Rate Program.

OPERABILITY, trends performance, and detects incipient failures by abnormal performance. The Frequency of the SR is in accordance with the lesenvice Testing Program.

	INSERVICE
SR 3.6.6.7	TESTING PROGRAM

To provide effective iodine removal, the containment spray must be an alkaline solution. Since the RWST contents are normally acidic, the spray additive tank must provide a sufficient volume of spray additive to adjust pH for all water that is injected. This SR is performed to verify the availability of sufficient NaOH solution in the spray additive tank. The Surveillance Frequency is controlled under the Surveillance Frequency Control Program. Tank level is also indicated and alarmed in the control room, so that there is high confidence that a substantial change in level would be detected.

SR 3.6.6.8

This SR provides verification of the NaOH concentration in the spray additive tank and is sufficient to ensure that the spray solution being injected into containment is at the correct pH level. The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

SR 3.6.6.9

This SR verifies that the required CRFC unit testing is performed in accordance with the VFTP. The VFTP includes testing HEPA filter performance. The minimum required flow rate through each of the four CRFC units is 33,000 cubic feet per minute at accident conditions (or 38,500 cubic feet per minute at normal operating conditions). Specific test frequencies and additional information are discussed in detail in the VFTP. However, the maximum surveillance interval for refueling outage tests is based on 24 month refueling cycles and not 18 month cycles as defined by Regulatory Guide 1.52 (Ref. 13).

SR 3.6.6.10

These SRs require verification that each automatic CS valve in the flowpath (860A and 860D) actuates to its correct position and that each CS pump starts upon receipt of an actual or simulated actuation of a containment High pressure signal. This surveillance is not required for valves that are locked, sealed, or otherwise secured in the required position under administrative controls. The Surveillance Frequency is controlled under the Surveillance Frequency Control Program. The MSSVs are assumed to have two active and one passive failure modes. The active failure modes are spurious opening (as an initiating event only), and failure to reclose once opened. The passive failure mode is failure to open upon demand which is not considered in the accident analyses.

The MSSVs satisfy Criterion 3 of the NRC Policy Statement.

LCO The accident analysis requires four MSSVs per steam generator to provide overpressure protection for design basis transients occurring at 1817 MWt. The OPERABILITY of the MSSVs is defined as the ability to open within the setpoint tolerances, relieve SG overpressure, and reseat when pressure has been reduced. The OPERABILITY of the MSSVs is determined by periodic surveillance testing in accordance with the Inservice Testing Program.

The lift settings, according to SR 3.7.1.1 in the accompanying LCO, correspond to ambient conditions of the valve at nominal operating temperature and pressure.

This LCO provides assurance that the MSSVs will perform their designed safety functions to mitigate the consequences of accidents that could result in a challenge to the RCPB or secondary system.

APPLICABILITY

In MODES 1, 2, and 3, four MSSVs per SG are required to be OPERABLE to ensure that the RCS remains within its pressure safety limit and that the secondary system, from the SGs to the main steam isolation valves, is limited to $\leq 110\%$ of design pressure for all DBAs.

In MODES 4 and 5, there are no credible transients requiring the MSSVs. The SGs are not normally used for heat removal in MODES 5 and 6, and thus cannot be overpressurized; there is no requirement for the MSSVs to be OPERABLE in these MODES.

SURVEILLANCE REQUIREMENTS	SR 3.7.1.1 This SR verifies the OPERABILITY of the MSSVs by the verification of	
INSERVICE TESTING PROGRAM	each MSSV lift setpoint in accordance with the Inservice Testing Program. The ASME Code (Ref. 3), requires that safety and relief valve tests be performed in accordance with Appendix I of ASME OM Code- 1998 (Ref. 4). According to Reference 4, the following tests are required	
	a. Visual examination;	
	b. Seat tightness determination;	
	c. Setpoint pressure determination (lift setting);	
	d. Compliance with owner's seat tightness criteria; and	
	e. Verification of the balancing device integrity on balanced valves.	
	The ASME Standard requires that all valves be tested every 5 years, and a minimum of 20% of the valves be tested every 24 months. The ASME Code specifies the activities and frequencies necessary to satisfy the requirements. This SR allows a +1% and -3% setpoint tolerance for OPERABILITY; however, the valves are reset to \pm 1% during the Surveillance to allow for drift.	
	This SR is modified by a Note that allows entry into and operation in MODE 3 prior to performing the SR. The MSSVs may be either bench tested or tested in situ at hot conditions using an assist device to simulat lift pressure. If the MSSVs are not tested at hot conditions, the lift settin pressure shall be corrected to ambient conditions of the valve at operating temperature and pressure.	
REFERENCES	1. UFSAR, Section 10.3.2.4.	
	2. UFSAR, Section 15.2.	
	 ASME Code for Operation and Maintenance of Nuclear Power Plants. 	
	4. Appendix 1 of ASME OM Code-1998.	

D.1 and D.2

If the MSIVs and/or non-return check valve cannot be restored to OPERABLE status or the associated MSIV is not closed within the associated Completion Time, the plant must be placed in a MODE in which the LCO does not apply. To achieve this status, the plant must be placed at least in MODE 3 within 6 hours, and in MODE 4 within 12 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from MODE 2 conditions in an orderly manner without challenging plant systems.

<u>E.1</u>

If one or more valves in the flow path from each SG are inoperable, the plant is in a condition outside of the accident analyses; therefore, LCO 3.0.3 must be entered immediately. This Condition must be entered when any combination of MSIVs and non-return check valves are inoperable such that at least one valve is inoperable in each of the two main steam flow paths.

<u>SR 3.7.2.1</u>
This SR verifies that MSIV closure time is \leq 5 seconds under no flow and no load conditions. The MSIVs are swing-disk check values that are held open by their air operators against spring pressure. Once the MSIVs begin to close during hot conditions, the steam flow will assist the value closure such that testing under no flow and no load conditions is conservative. The 5 second closure time is consistent with the expected response time for instrumentation associated with the MSIV and the accident analysis assumptions.
As the MSIVs are not tested at power, they are exempt from the ASME Code (Ref. 5), requirements during operation in MODE 1, 2, or 3. The Frequency is in accordance with the Inservice Testing Program.
<u>SR 3.7.2.2</u>
This SR verifies that each main steam non-return check valve can close. As the non-return check valves are not tested at power, they are exempt from the ASME Code (Ref. 5), requirements during operation in MODE 1, 2, or 3. The Frequency is in accordance with the Inservice Testing Program.

INSERVICE TESTING PROGRAM

I

<u>D.1</u>

With two inoperable valves in the same flow path, there may be no redundant system to operate automatically and perform the required safety function. Although the containment can be isolated with the failure of two valves in parallel in the same flow path, the double failure can be an indication of a common mode failure in the valves of this flow path, and as such, is treated the same as a loss of the isolation capability of this flow path. Under these conditions, affected valves in each flow path must be restored to OPERABLE status, or the affected flow path isolated within 8 hours. This action returns the system to the condition where at least one valve in each flow path is performing the required safety function. The 8 hour Completion Time is reasonable, based on operating experience, to complete the actions required to close the MFIV or MFRV, or otherwise isolate the affected flow path.

E.1 and E.2

If a Required Action and associated completion time is not met, the plant must be placed in a MODE in which the LCO does not apply. To achieve this status, the plant must be placed in at least MODE 3 within 6 hours, and in MODE 4 within 12 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems.

SURVEILLANCE REQUIREMENTS

Ð

SR 3.7.3.1

This SR verifies that the closure time of each MFIV is \leq 30 seconds from the full open position on an actual or simulated actuation signal. The valve closure times are assumed in the accident and containment analyses. This Surveillance is normally performed upon returning the plant to operation following a refueling outage. These valves should not be tested at power since even a partial stroke exercise increases the risk of a valve closure with the plant generating power. As these valves are not tested at power, they are exempt from the ASME Code (Ref. 4) requirements during operation in MODES 1, 2, and 3.

The Frequency for this SR is in accordance with the Inservice Testing Program.

INSERVICE TESTING PROGRAM

SR 3.7.3.2

This SR verifies that the closure time of each MFRV and associated bypass valve is \leq 10 seconds from the full open position on an actual or simulated actuation signal. The valve closure times are assumed in the

accident and containment analyses. This Surveillance is normally performed upon returning the plant to operation following a refueling outage. These valves should not be tested at power since even a partial stroke exercise increases the risk of a valve closure with the plant generating power. As these valves are not tested at power, they are exempt from the ASME Code (Ref. 4), requirements during operation in MODES 1, 2, and 3.

INSERVICE TESTING PROGRAM	The Frequency for this SR is in accordance with the Inservice Testing Program	4
REFERENCES	1. UFSAR, Section 10.4.5.3.	
	2. UFSAR, Section 15.1.5.	
	3. UFSAR, Section 15.1.6.	
	4. ASME Code for Operation and Maintenance of Nuclear Power Plants.	

I

plant should not be perturbed by any action, including a power change, that might result in a trip. The seriousness of this condition requires that action be started immediately to restore one MDAFW, TDAFW, or SAFW train to OPERABLE status. For the purposes of this Required Action, only one TDAFW train flow path and the pump must be restored to exit this Condition.

Required Action H.1 is modified by a Note indicating that all required MODE changes or power reductions are suspended until one MDAFW, TDAFW, or SAFW train is restored to OPERABLE status. In this case, LCO 3.0.3 is not applicable because it could force the plant into a less safe condition.

SURVEILLANCE REQUIREMENTS

SR 3.7.5.1

Verifying the correct alignment for manual, power operated, and automatic valves in the AFW and SAFW System water and steam supply flow paths provides assurance that the proper flow paths will exist for AFW operation. This SR does not apply to valves that are locked, sealed, or otherwise secured in position, since they are verified to be in the correct position prior to locking, sealing, or securing. This SR also does not apply to valves that cannot be inadvertently misaligned, such as check valves. This Surveillance does not require any testing or valve manipulation; rather, it involves verification, through a system walkdown, that those valves capable of being mispositioned are in the correct position.

The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

SR 3.7.5.2

Periodically comparing the reference differential pressure and flow of each AFW pump in accordance with the inservice testing requirements of the ASME Code (Ref. 4) detects trends that might be indicative of an incipient failure. The Frequency of this surveillance is specified in the Inservice Testing Program, which encompasses the ASME Code. The ASME Code provides the activities and Frequencies necessary to satisfy this requirement.

This SR is modified by a Note indicating that the SR is only required to be met prior to entering MODE 1 for the TDAFW pump since suitable test conditions have not been established. This deferral is required because there is insufficient steam pressure to perform the test.

SR 3.7.5.3

Periodically comparing the reference differential pressure and flow of each SAFW pump in accordance with the inservice testing requirements of the ASME Code (Ref. 4) detects trends that might be indicative of an incipient failure. Because it is undesirable to introduce SW into the SGs while they are operating, this testing is performed using the test condensate tank. The Frequency of this surveillance is specified in the Inservice Testing Program, which encompasses the ASME Code. The ASME Code provides the activities and Frequencies necessary to satisfy this requirement.

SR 3.7.5.4

INSERVICE

PROGRAM

INSERVICE

PROGRAM

TESTING

TESTING

This SR verifies that each AFW and SAFW motor operated suction valve from the SW System (4013, 4027, 4028, 9629A, and 9629B), each AFW and SAFW discharge motor operated valve (4007, 4008, 9701A, 9701B, 9704A, 9704B, and 9746), and each SAFW cross-tie motor operated valve (9703A and 9703B) can be operated when required. The Frequency of this Surveillance is specified in the Inservice Test Program and is consistent with the ASME Code (Ref. 4). The TDAFW discharge motor operated valve (3996) is maintained open and not required to be closed for the DBA's and transients described within the Applicable Safety Analyses section. Therefore, testing of the TDAFW discharge motor operating valve is not required.

SR 3.7.5.5

This SR verifies that AFW can be delivered to the appropriate SG in the event of any accident or transient that generates an actuation signal, by demonstrating that each automatic valve in the flow path actuates to its correct position on an actual or simulated actuation signal. This Surveillance is not required for valves that are locked, sealed, or otherwise secured in the required position under administrative controls. The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

SR 3.7.5.6

This SR verifies that the AFW pumps will start in the event of any accident or transient that generates an actuation signal by demonstrating that each AFW pump starts automatically on an actual or simulated actuation signal. The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

LCO	In the event of a DBA, one CCW train, one heat exchanger, and the loop header is required to provide the minimum heat removal capability assumed in the safety analysis for the systems to which it supplies cooling water (see Figure B 3.7.7-1). To ensure this requirement is met, two trains of CCW, two heat exchangers, and the loop header must be OPERABLE. At least one CCW train will operate assuming the worst case single active failure occurs coincident with a loss of offsite power.
INSERVICE TESTING PROGRAM	A CCW train is considered OPERABLE when the pump is OPERABLE and capable of providing cooling water to the loop header. The automatic start logic associated with low CCW system pressure is not required for this LCO. In addition, if a CCW pump fails an Inservice Testing Program surveillance (e.g., pump developed head) the pump is only declared inoperable when the flowrate to required components is below that required to provide the heat removal capability assumed in the accident analyses.
	The CCW loop header is considered OPERABLE when the associated piping, valves, surge tank, and the instrumentation and controls required to provide cooling water to the following safety related components are available and capable of performing their safety related function:
	a. Two RHR heat exchangers;
	b. Two RHR pump mechanical seal coolers and bearing water jackets;
	c. Three safety injection pump mechanical seal coolers; and
	d. Two containment spray pump mechanical seal coolers.
	The CCW loop header temperature must also be \leq 120°F prior to the CCW cooling water reaching the first isolation valve supplying these components.
	The CCW loop header begins at the common piping at the discharge of the CCW heat exchangers and continues up to the first isolation valve for each of the above components. The CCW loop header then continues from the last isolation valve on the discharge of each of the above components to the common piping at the suction of the CCW pumps.
	The portion of CCW piping, valves, instrumentation and controls between the isolation valves to components a through d above is addressed by the following LCOs:
	a. LCO 3.4.6, "RCS Loops - MODE 4,"

b. LCO 3.4.7, "RCS Loops - MODE 5, Loops Filled,"

SURVEILLANCE REQUIREMENTS SR 3.7.7.1

Verifying the correct alignment for manual and power operated valves in the CCW flow path provides assurance that the proper flow paths exist for CCW operation. This SR does not apply to valves that are locked, sealed, or otherwise secured in position, since these valves are verified to be in the correct position prior to locking, sealing, or securing. This SR also does not apply to valves that cannot be inadvertently misaligned, such as check valves. This Surveillance does not require any testing or valve manipulation; rather, it involves verification, through a system walkdown, that those valves capable of being mispositioned are in the correct position.

The Surveillance Frequency Control Program is controlled under the Surveillance Frequency Control Program.

This SR is modified by a Note indicating that the isolation of the CCW flow to individual components may render those components inoperable but does not affect the OPERABILITY of the CCW loop header.

SR 3.7.7.2

This SR verifies that the two motor operated isolation valves to the RHR heat exchangers (738A and 738B) can be operated when required since the valves are normally maintained closed. The Frequency of this Surveillance is specified in the Inservice Test Program and is consistent with the ASME Code (Ref. 2).

INSERVICE TESTING PROGRAM

REFERENCES 1. UFSAR, Section 9.2.2,

 ASME Code for Operation and Maintenance of Nuclear Power Plants.

Bases

The limitation on power operation with one idle RC pump in each loop has been imposed since the ECCS cooling performance has not been calculated in accordance with the Final Acceptance Criteria requirements specifically for this mode of reactor operation. A time period of 24 hours is allowed for operation with one idle RC pump in each loop to effect repairs of the idle pump(s) and to return the reactor to an acceptable combination of operating RC pumps. The 24 hours for this mode of operation is acceptable since this mode is expected to have considerable margin for the peak cladding temperature limit and since the likelihood of a LOCA within the 24-hour period is considered very remote.

A reactor coolant pump or decay heat removal pump is required to be in operation before the boron concentration is reduced by dilution with makeup water. Either pump will provide mixing which will prevent sudden positive reactivity changes caused by dilute coolant reaching the reactor. One decay heat removal pump will circulate the equivalent of the reactor coolant system volume in one-half hour or less.

The decay heat removal system suction piping is designed for 300°F and 370 psig; thus, the system can remove decay heat when the reactor coolant system is below this temperature (References 1, 2, and 3).

Management of gas voids is important to DHR System OPERABILITY.

Both steam generators must have tube integrity before heatup of the Reactor Coolant System to insure system integrity against leakage under normal and transient conditions. Only one steam generator is required for decay heat removal purposes. Refer to Section 3.1.6.3 for allowable primary-to-secondary leakage. Refer to Section 4.19 for Bases for Steam Generator tube integrity.

One pressurizer code safety valve is capable of preventing overpressurization when the reactor is not critical since its relieving capacity is greater than that required by the sum of the available heat sources which are pump energy, pressurizer heaters, and reactor decay heat. Both pressurizer code safety valves are required to be in service prior to criticality to conform to the system design relief capabilities. The code safety valves prevent overpressure for a rod withdrawal or feedwater line break accidents (Reference 4). The pressurizer code safety valve lift set point shall be set at 2500 psig ±1% allowance for error. Surveillance requirements are specified in the Inservice Testing Program. Pressurizer code safety valve setpoint drift of up to 3% is acceptable in accordance with the assumptions of the TMI-1 safety analysis (Reference 5).

INSERVICE TESTING

PROGRAM

References

- (1) UFSAR, Tables 9.5-1 and 9.5-2
- (2) UFSAR, Sections 4.2.5.1 and 9.5 "Decay Heat Removal"
- (3) UFSAR, Section 4.2.5.4 "Secondary System"
- (4) UFSAR, Section 4.3.10.4 "System Minimum Operational Components"
- (5) UFSAR, Section 4.3.7 "Overpressure Protection"

3-2

Amendment No. 47 (12/22/78), 157, 222, 261, 266, 285

Attachment 3k Revised Technical Specification Bases Changes (Information Only)

Three Mile Island Nuclear Station, Unit 1 Renewed Facility Operating License No. DPR-50

REVISED TECHNICAL SPECIFICATION BASES PAGES

3-2 3-24

3.3 EMERGENCY CORE COOLING, REACTOR BUILDING EMERGENCY COOLING AND REACTOR BUILDING SPRAY SYSTEMS (Contd.)

Bases (Cont'd.)

formation of precipitates that may migrate to the emergency sump and minimizes post-LOCA hydrogen generation. Trisodium phosphate dodecahydrate is used because of the high humidity that may be present in the Reactor Building during normal operation. This form is less likely to absorb large amounts of water from the atmosphere.

All TSP baskets are located outside of the secondary shield wall in the Reactor Building basement (EI. 281'-0"). Therefore, the baskets are protected from the effects of credible internal missiles inside the shield wall. The designated TSP basket locations ensure that the baskets are not impacted by the effect of potential LOCA jet impingement forces and pipe whip.

Maintaining MUT pressure and level within the limits of Fig. 3.3-1 ensures that MUT gas will not be drawn into the pumps for any design basis accident. Preventing gas entrainment of the pumps is not dependent upon operator actions after the event occurs. the INSERVICE The plant operating limits (alarms and procedures) will include margins to account for instrument error.

TESTING PROGRAM and

The post-accident reactor building emergency cooling may be accomplished by three emergency cooling units, by two spray systems, or by a combination of one emergency cooling unit and one spray system. The specified requirements assure that the required post-accident components are available.

The iodine removal function of the reactor building spray system requires one spray pump and TSP in baskets located in the Reactor Building Basement.

The spray system utilities common suction lines with the decay heat removal system. If a single train of equipment is removed from either system, the other train must be assured to be operable in each system.

When the reactor is critical, maintenance is allowed per Specification 3.3.2 and 3.3.3 provided requirements in Specification 3.3.4 are met which assure operability of the duplicate components. Maintenance as described here includes preventative and corrective type activities. The specified maintenance times are a maximum. Operability of the specified components shall be based on the satisfactory completion of surveillance and inservice testing and inspection required by Technical Specification 4.2 and 4.5.

The allowable maintenance period of up to 72 hours may be utilized if the operability of equipment redundant to that removed from service is verified based on the results of surveillance and inservice testing and inspection required by Technical Specification 4.2 and 4.5.

In the event that the need for emergency core cooling should bccur, operation of one makeup pump, one decay heat removal pump, and both core flood tanks will protect the core. In the event of a reactor coolant system rupture their operation will limit the peak clad temperature to less than 2,200°F and the metal-water reaction to that representing less than 1 percent of the clad.

Two nuclear service river water pumps and two nuclear service closed cycle cooling pumps are required for normal operation. The normal operating requirements are greater than the emergency requirements following a loss-of-coolant.

REFERENCES

the INSERVICE TESTING **PROGRAM** and

- (1)UFSAR, Section 6.1- "Emergency Core Cooling System"
- (2)UFSAR, Section 14.2.2.3 - "Large Break LOCA"

3-24

Amendment No. 80, 149, 157, 165, 178, 227, 263, ECR TM 09-00160