International
Agreement Report

NUREG/IA-0471

Fuel Rod Behavior and Uncertainty
Analysis by FRAPTRAN/TRACE/DAKOTA

Code in Maanshan LBLOCA

Prepared by:

Chunkuan Shih, Jung-Hua Yang, Jong-Rong Wang, Shao-Wen Chen, Show-Chyuan Chiang*, Tzu-Yao Yu*

Institute of Nuclear Engineering and Science, National Tsing Hua University; Nuclear and New Energy

Education and Research Foundation
101 Section 2, Kuang Fu Rd., HsinChu, Taiwan

*Department of Nuclear Safety, Taiwan Power Company
242, Section 3, Roosevelt Rd., Zhongzheng District, Taipei, Taiwan

K. Tien, NRC Project Manager

Division of Systems Analysis

Office of Nuclear Regulatory Research
U.S. Nuclear Regulatory Commission
Washington, DC 20555-0001

Manuscript Completed: March 2016
Date Published: August 2016

Prepared as part of
The Agreement on Research Participation and Technical Exchange
Under the Thermal-Hydraulic Code Applications and Maintenance Program (CAMP)

Published by
U.S. Nuclear Regulatory Commission



AVAILABILITY OF REFERENCE MATERIALS
IN NRC PUBLICATIONS

NRC Reference Material

As of November 1999, you may electronically access
NUREG-series publications and other NRC records at
NRC'’s Library at www.nrc.gov/reading-rm.html. Publicly
released records include, to name a few, NUREG-series
publications; Federal Register notices; applicant,
licensee, and vendor documents and correspondence;
NRC correspondence and internal memoranda; bulletins
and information notices; inspection and investigative
reports; licensee event reports; and Commission papers
and their attachments.

NRC publications in the NUREG series, NRC regulations,
and Title 10, “Energy,” in the Code of Federal Regulations
may also be purchased from one of these two sources.

1. The Superintendent of Documents
U.S. Government Publishing Office
Mail Stop IDCC
Washington, DC 20402-0001
Internet: bookstore.gpo.gov
Telephone: (202) 512-1800
Fax: (202) 512-2104 .

2. The National Technical Information Service
5301 Shawnee Rd., Alexandria, VA 22312-0002
www.ntis.gov
1-800-553-6847 or, locally, (703) 605-6000

A single copy of each NRC draft report for comment is
available free, to the extent of supply, upon written
request as follows:

Address: U.S. Nuclear Regulatory Commission
Office of Administration
Publications Branch
Washington, DC 20555-0001
E-mail: distribution.resource @nrc.gov
Facsimile: (301) 415-2289

Some publications in the NUREG series that are posted
at NRC's Web site address www.nrc.gov/reading-rm/
doc-collections/nuregs are updated periodically and may
differ from the last printed version. Although references to
material found on a Web site bear the date the material
was accessed, the material available on the date cited
may subsequently be removed from the site.

Non-NRC Reference Material

Documents available from public and special technical
libraries include all open literature items, such as books,
journal articles, transactions, Federal Register notices,
Federal and State legislation, and congressional reports.
Such documents as theses, dissertations, foreign reports
and translations, and non-NRC conference proceedings
may be purchased from their sponsoring organization.

Copies of industry codes and standards used in a
substantive manner in the NRC regulatory process are
maintained at—

The NRC Technical Library

Two White Flint North

11545 Rockville Pike

Rockville, MD 20852-2738

These standards are available in the library for reference
use by the public. Codes and standards are usually
copyrighted and may be purchased from the originating
organization or, if they are American National Standards,
from—

American National Standards Institute

11 West 42nd Street

New York, NY 10036-8002

www.ansi.org

(212) 642-4900

Legally binding regulatory requirements are stated only in
laws; NRC regulations; licenses, including technical speci-
fications; or orders, not in NUREG-series publications. The
views expressed in contractor prepared publications in this
series are not necessarily those of the NRC.

The NUREG series comprises (1) technical and adminis-
trative reports and books prepared by the staff (NUREG-
XXXX) or agency contractors (NUREG/CR-XXXX), (2)
proceedings of conferences (NUREG/CP-XXXX), (3) reports
resulting from international agreements (NUREG/IA-XXXX),
(4) brochures (NUREG/BR—XXXX), and (5) compilations of
legal decisions and orders of the Commission and Atomic
and Safety Licensing Boards and of Directors’ decisions
under Section 2.206 of NRC’s regulations (NUREG-0750).

DISCLAIMER: This report was prepared under an interna-
tional cooperative agreement for the exchange of technical
information. Neither the U.S. Government nor any agency
thereof, nor any employee, makes any warranty, expressed
or implied, or assumes any legal liability or responsibility
for any third party’s use, or the results of such use, of any
information, apparatus, product or process disclosed in this
publication, or represents that its use by such third party
would not infringe privately owned rights.




International
Agreement Report

NUREG/IA-0471

Fuel Rod Behavior and Uncertainty
Analysis by FRAPTRAN/TRACE/DAKOTA

Code in Maanshan LBLOCA

Prepared by:

Chunkuan Shih, Jung-Hua Yang, Jong-Rong Wang, Shao-Wen Chen, Show-Chyuan Chiang*, Tzu-Yao Yu*

Institute of Nuclear Engineering and Science, National Tsing Hua University; Nuclear and New Energy

Education and Research Foundation
101 Section 2, Kuang Fu Rd., HsinChu, Taiwan

*Department of Nuclear Safety, Taiwan Power Company
242, Section 3, Roosevelt Rd., Zhongzheng District, Taipei, Taiwan

K. Tien, NRC Project Manager

Division of Systems Analysis

Office of Nuclear Regulatory Research
U.S. Nuclear Regulatory Commission
Washington, DC 20555-0001

Manuscript Completed: March 2016
Date Published: August 2016

Prepared as part of
The Agreement on Research Participation and Technical Exchange
Under the Thermal-Hydraulic Code Applications and Maintenance Program (CAMP)

Published by
U.S. Nuclear Regulatory Commission






ABSTRACT

In this study, the FRAPTRAN and TRACE code were used to evaluate the fuel rod transient
behavior during a postulated LBLOCA in Maanshan (3-loops PWR) Nuclear Power Plant(NPP).
There were three main steps in this research. The first step was the LBLOCA analysis for
Maanshan NPP by TRACE code. The analysis results were benchmarked and compared with
Maanshan FSAR data. In second step, the geometry data of the fuel rod and the results from
TRACE analysis (e.g. fuel rod power, coolant pressure, heat transfer coefficient) were input into
FRAPTRAN to analyze the reliability of fuel rod. Then, it used FRAPTRAN to calculate the
response of a single fuel rod transient behavior during LBLOCA. FRAPTRAN can obtain the
detail mechanical property of fuel rod (e.g. cladding temperature, hoop stress/strain, gap
pressure, and oxide thickness of cladding). After all, uncertainty analysis was considered in this
study. The several parameters of fuel rod, such as fabrication and boundary conditions, were
quantized and sampled by the DAKOTA uncertainty code.






FOREWORD

The US NRC (United States Nuclear Regulatory Commission) is developing an advanced
thermal hydraulic code named TRACE for nuclear power plant safety analysis. The development
of TRACE is based on TRAC, integrating RELAP5 and other programs. NRC has determined
that in the future, TRACE will be the main code used in thermal hydraulic safety analysis, and no
further development of other thermal hydraulic codes such as RELAP5 and TRAC will be
continued. A graphic user interface program, SNAP (Symbolic Nuclear Analysis Program) which
processes inputs and outputs for TRACE is also under development. One of the features of
TRACE is its capacity to model the reactor vessel with 3-D geometry. It can support a more
accurate and detailed safety analysis of nuclear power plants. TRACE has a greater simulation
capability than the other old codes, especially for events like LOCA.

Taiwan and the United States have signed an agreement on CAMP (Code Applications and
Maintenance Program) which includes the development and maintenance of TRACE. To meet
this responsibility, the TRACE model of Maanshan NPP has been built. In this report, the TRACE
and FRAPTRAN code were used to evaluate the fuel rod transient behavior during a postulated
LBLOCA in Maanshan Nuclear Power Plant.
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EXECUTIVE SUMMARY

An agreement in 2004 which includes the development and maintenance of TRACE has been
signed between Taiwan and USA on CAMP. INER is the organization in Taiwan responsible for
applying TRACE to thermal hydraulic safety analysis in order to provide users’ experiences and
development suggestions. To fulfill this responsibility, the TRACE model of Maanshan NPP is
developed by INER.

According to the user manual, TRACE is the product of a long term effort to combine the
capabilities of the NRC’s four main systems codes (TRAC-P, TRAC-B, RELAP5 and RAMONA)
into one modernized computational tool. NRC has ensured that TRACE will be the main code
used in thermal hydraulic safety analysis in the future without further development of other
thermal hydraulic codes, such as RELAPS and TRAC. Besides, the 3-D geometry model of
reactor vessel, which is one of the representative features of TRACE, can support a more
accurate and detailed safety analysis of NPPs. On the whole TRACE provides greater simulation
capability than the previous codes, especially for events like LOCA.

Fuel Rod Analysis Program Transient (FRAPTRAN) is a FORTRAN language computer code
which was developed by Pacific Northwest National Laboratory, PNNL. The main purpose of this
code is to calculate the response of a single fuel rod transient behavior in Light Water Reactors
(LWR) during operational transients or hypothetical accidents, such as Reactivity Accidents (RIA)
or LOCA, up to burnup level of 62 GWd/MTU. FRAPTRAN calculates the fuel and cladding
temperatures, cladding strain and stress, and plenum gas pressure at different time for given
power and coolant conditions.

The Maanshan NPP operated by Taiwan Power Company (TPC) is the only Westinghouse-PWR
in Taiwan. The rated core thermal power is 2775 MW. The reactor coolant system has three
loops, each of which includes a reactor coolant pump and a steam generator. The pressurizer is
connected to the hot-leg piping in loop 2. The main components of Maanshan TRACE model
include the pressure vessel, pressurizer, steam generators, steam piping in the secondary side
(including four sets of steam dump and vent valves), the steam dump system, accumulators, and
safety injection of emergency core cooling system (ECCS). The pressure vessel is divided into
12 levels in the axial direction, two rings in the radial direction (internal and external rings) and
six equal azimuthally sectors in the “0” direction. The control rod conduit connects the 12th and
7th layers of the vessel from end to end. The fuel region is between the third and sixth layers,
and heat conductors are added onto these structures to simulate the reactor core.

In this study, the FRAPTRAN and TRACE code were used to evaluate the fuel rod transient
behavior during a postulated LBLOCA in Maanshan (3-loops PWR) nuclear power plant. There
were three main steps in this research. The first step was the LBLOCA analysis for Maanshan
NPP by TRACE code. The analysis results were benchmarked and compared with Maanshan
FSAR data. In second step, it used FRAPTRAN to calculate the response of a single fuel rod
transient behavior during LBLOCA. After all, uncertainty analysis was considered in this study.
The several parameters of fuel rod, such as fabrication and boundary conditions, were quantized
and sampled by the DAKOTA uncertainty code.

In summary, thermal-hydraulic analytical results indicate that the Maanshan TRACE model
predicts the behaviors of important plant parameters in consistent trends with the FSAR data. In
FRAPTRAN analysis, the hoop stress was about 18 MPa for the fuel rod simulation, which are all
within the safety operation range. Based on the calculation results of plenum pressure and the
gap thickness, there was no cladding ballooning or failure in the present case. The cladding
temperatures and the fuel centerline temperatures were all below the criteria requirement.
Considering uncertainty analysis, the uncertainty band is formed by the 59 calculations. The
minimum and maximum PCT are 842K and 892K respectively. The uncertainty analysis shows
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that the PCTs were all below the criteria requirement. The maximum hoop stress was about 37
MPa and the maximum hoop strain was 0.006 for the fuel rod simulation, which are all within the
safety operation range.
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1. INTRODUCTION

The Maanshan Nuclear Power Plant (NPP) operated by Taiwan Power Company (TPC) has two
Westinghouse PWR units. The rated core thermal power of each unit is 2775 MW. The reactor
coolant system has three loops, each of which includes a reactor coolant pump and a steam
generator. The pressurizer is connected to the hot-leg piping in loop 2. The main components of
Maanshan TRACE model include the pressure vessel, pressurizer, steam generators, steam
piping in the secondary side (including four sets of steam dump and vent valves), the steam
dump system, accumulators, and safety injection of Emergency Core Cooling System (ECCS).

Loss of Coolant Accident (LOCA) is one of the important Design Basis Accidents (DBAs) in light
water reactors, and the Large Break LOCA (LBLOCA) is the most serious one. The LBLOCA is a
double-ended guillotine break of the largest primary system piping and is the limiting condition for
ECCS requirements. In this study, a LBLOCA was defined as a rupture in Maanshan NPP
cold-leg with a total cross sectional area. The break was set in loop 1, which is the one out of two
loops that doesn’t have a pressurizer. Referring to 10CFR50.46([1], the current LOCA criteria are
briefly listed below:

1) The peak clad temperature shall not exceed 1477.6 K;

2) The maximum thickness of the cladding oxidation shall not exceed 17% of the clad thickness;
3) The maximum hydrogen generation by cladding oxidation is no more than 1% of the total
amount;

4) The maintenance of cooling geometry;

5) The maintenance of long term cooling.

Nowadays, it is becoming a trend to evaluate the NPP safety involving several disciplines, such
as thermal hydraulic, thermal mechanics, and reactor physics[2, 3]. In this paper, the previous
results of LBLOCA studied with TRACE were used as the input boundary conditions for
FRAPTRAN. By using this fuel rod analysis program, the fuel behaviors during LBLOCA
transients in Maanshan NPP can be learned more comprehensively.

1-1






2. METHODOLOGY

2.1 Method

In this study, the FRAPTRAN and TRACE code were used to evaluate the fuel rod transient
behavior during a postulated LBLOCA in Maanshan NPP. In addition, the uncertainty analysis by
DAKOTA code was also discussed in the fuel properties. Figure 1 shows the flowchart of
combining FRAPTRAN and TRACE codes. First, the Maanshan TRACE model was developed
to analyze the LBLOCA. The analysis results were benchmarked and compared with Maanshan
FSAR data. The input file of FRAPTRAN mainly composes of three parts to define the transient
problems: 1. Fuel rod geometry; 2. Power history; 3. Coolant boundary conditions. The geometry
data of the fuel rod and the results from TRACE analysis (e.g. fuel rod power, coolant pressure,
heat transfer coefficient) were inputted into FRAPTRAN to analyze the reliability of fuel rod.
FRAPTRAN can obtain the detail mechanical property of fuel rod (e.g. cladding temperature,
hoop stress/strain, gap pressure, and oxide thickness of cladding). In order to do uncertainty
analysis, it must to identify and select the important parameters in the specific transient.
DAKOTA code[4] is used to generate random variable and to evaluate response data generated
by FRAPTRAN/SNAP. The sampling method in DAKOTA could choose the Monte-Carlo or Latin
Hypercube method. Because the required minimum number of FRAPTRAN runs is dependent of
the values of confidence level and probability, Wilks’ formula[5] was employed to determinate the
minimum number of runs. Since the value of Peak Cladding Temperature (PCT) is the safety
criterion to ensure the integrity of fuel assemblies for LOCAs, the minimum number of 59 was
used to generate the maximum bound of PCT which achieve 95/95 criterion. All FRAPTRAN
runs were defined and executed through SNAP job streams[6-7]. The data interactions and
communications between FRAPTRAN and DAKOTA were controlled by SNAP.
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Figure 1 The Flowchart of Combining TRACE /FRAPTRAN/DAKOTA Codes
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2.2 Analysis Tools

TRACE (TRAC/RELAP Advanced Computational Engine) is an advanced and best-estimate
reactor systems code for analyzing thermal hydraulic behaviors in light water reactors[8]. TRACE
consolidates the capabilities of the four codes, TRAC-P, TRAC-B, RELAP 5 and RAMONA, into
one modernized code. One of the most important features of TRACE is its capability to model the
reactor vessel with 3-D geometry. It can support a more accurate and detailed safety analysis of
nuclear power plants. TRACE has a greater simulation capability for LOCA.

Fuel Rod Analysis Program Transient (FRAPTRAN)[9-10] is a FORTRAN language computer

code which was developed by Pacific Northwest National Laboratory, PNNL. The main purpose
of this code is to calculate the response of a single fuel rod transient performance in Light Water
Reactors (LWR) during operational transients or hypothetical accidents, such as Reactivity
Accidents (RIA) or LOCA, up to burnup level of 62 GWd/MTU. FRAPTRAN is also a companion
code to the FRAPCON-3 which was developed to calculate steady-state high burnup level
response of a single fuel rod. FRAPTRAN calculates the fuel and cladding temperatures,
cladding strain and stress, and plenum gas pressure at different time for given power and coolant
conditions.

FRACAS-I model in FRAPTRAN is used to calculate the mechanical responses of the fuel rod
and cladding. The failure models in FRAPTRAN apply to LOCA events where either a
deformation due to gas overpressure or the relatively high cladding temperature (>700 K). After
the cladding effective plastic strain is calculated by FRACAS-I, this value is compared with the
instability strain given by MATPRO. If the cladding effective plastic strain is greater than the
instability strain, the ballooning model, BALONZ2, is used to calculate the localized, non-uniform
strain of cladding. The BALON2 model has two criteria to predict failure in the ballooning node:
one is when the cladding hoop stress exceeds an empirical limit; the other is when predicted
cladding permanent hoop strain exceeds the FRAPTRAN strain limit.

In uncertainty analysis, the DAKOTA (Design Analysis Kit for Optimization and Terascale
Application) code is developed by the Sandia National Laboratories. DAKOTA is described as a
multilevel parallel object-oriented framework for design optimization, parameter estimation,
uncertainty quantification, and sensitivity analysis.

SNAP is a graphical user interface program that provides users an easy way for FRAPTRAN to

input the parameters, execute and create the output result file automatically in the route that
users indicate right after the end of the calculation.
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3. TRACE ANALYSIS RESULTS

There were three main steps in this research. The first step was the LBLOCA analysis for
Maanshan NPP by TRACE code. The analysis results were benchmarked and compared with
Maanshan FSAR data. In second step, it used FRAPTRAN to calculate the response of a single
fuel rod transient behaviour during LBLOCA. After all, uncertainty analysis was considered in this
study.

3.1 Maanshan TRACE Model

Figure 2 shows the TRACE model of Maanshan NPP. It is a three-loop model, and each loop has
a feedwater control system. The main structure of this model includes the pressure vessel,
pressurizer, steam generators, steam piping at the secondary side, the steam dump system,
accumulators, and safety injection of ECCS. The pressure vessels are cylindrical, and its
divisions are as shown in Figure 2 . It is divided into 12 levels in the axial direction, two rings in
the radial direction (internal and external rings) and six equal azimuthal sectors in the “©”
direction. The control rod conduit connects the 12th and 7th layers of the vessel from end to end.
The fuel region is between the third and sixth layers, and heat conductors were added onto these
structures to simulate the reactor core.
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3.2 LBLOCA Analysis Results

Figure 3 plots the power curve that calculated from TRACE in the case of LBLOCA, and then
compares with the FSAR data. In TRACE, the core power can be calculated using the built-in
point kinetics model, and the power calculated includes decay heat. It displays that the power
curve of TRACE is almost the same as those of FSAR data. Figure 4 compares the pressures of
the vessel and suggests that the pressure calculated by TRACE approximately follows the trend
of the FSAR data. Figure 5 compares the break mass flow rate of cold-leg pipe. It reveals that
break mass flow rate predicted by TRACE agrees closely with the results of the FSAR data.
Figure 6 shows the comparisons of accumulator mass flow rate of intact loops between TRACE
model and FSAR data. Figure 7 compares the core inlet flow rate, revealing that the flow rate
calculated by TRACE is in agreement with the FSAR data except for the period between 6 and
18 sec. It reveals that the flow rate calculated by TRACE is slightly lower between 6 and 18 sec.
Figure 8 plots the results for core outlet flow rate. The difference results of core outlet flow before
6 sec are consideration of the nature flow in TRACE. Analytical results indicate that the
Maanshan TRACE model predicts the behaviours of important plant parameters in consistent
trends with the FSAR data.
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4. FRAPTRAN ANALYSIS RESULTS

4.1 FRAPTRAN Parameter Description

The fuel rod design parameters were determined according to the fuel rod that Maanshan NPP is
using at present. A new rod was assumed, and the rod design parameters are listed in Table 1.
(This assumption may be not conservative, it will consider the burn-up of the fuel rod in the future
study.) Figure 9 illustrates the schematic of fuel rod in FRAPTRAN. The axial fuel length from
bottom to top was divided into 12 nodes from bottom to top and the fuel radial direction was
divided into 17 nodes, including 15 nodes in the pellet and 2 nodes in the cladding.

The vessel structure model of Maanshan NPP in TRACE is shown in Figure 10. The vessel was
divided into 2 rings in the radial direction, 6 parts in the azimuthal direction and 12 levels along
the axial direction from bottom to top. Six heat structures were set at the 3-6 levels which located
separately in the 6 different azimuthal zones of the ring 1 as heat sources in the vessel. Thus, the
results from these 6 heat structures offered the essential data and heat transfer coefficient for
input file. In what follows, the transient results of the fuel rods from these different zones (referred
as T01-T06) will be discussed.

According to the setting in TRACE, the reactor scramed at 0.5 s while the reactor pressure
reached 12.8 MPa. The Figure 11 and Figure 12 show the power and boundary condition
settings of FRAPTRAN which are offered by TRACE results during the accident.

In Figure 11, we can read from power history that the power drops sharply after scram during the
accident and the axial power ratio distribution is similar to a consine shape.

“Heat” option was chosen as the boundary condition setting in FRAPTRAN. The option requires
coolant pressure, temperature and heat transfer coefficient which varied with time to describe the
boundary condition during accident. The coolant temperature which is shown in Figure 12 drops
gradually and then maintains at the saturation temperature 40 MPaG respectively, which is
below the 10.342 MPaG limit.
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Table 1 Fuel Rod Design Parameters

Fuel rod parameters Values
Fuel active length 3.6576 m
Fuel rod OD 9.14 x10°m
Cladding type ZIRLO
Cladding thickness 0.5715x 103 m
Filling gas He, 1.551 MPa
Plenum
spring
-
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Figure 9 The Schematic of Fuel Rod Geometry In FRAPTRAN
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4.2 Analysis Results

Figure 13 shows the simulation results of gap width between the fuel pellet and cladding under
the open gap situation without pellet cladding interaction mechanisms. The plenum pressure
variation at TO1 zone is shown in Figure 14. The gas gap pressures at different nodes are not
shown in this figure since the results at different elevations are all the same. The plenum
pressure drops from 4.31 MPa to 2.2 MPa in the end of the transient, and it appears that there is
no failure of the fuel rod. According to the above results of the gap width and the gas gap
pressure variations, one can conclude that the ballooning phenomenon may not occur in this
case. Furthermore, the hoop stress simulation results of TO3 zone are shown in Figure 15. The
hoop stress results of different nodes are nearly the same, and the hoop stress in each zone
(TO1-TO6) appears about 18 MPa, which is well below the limitation of material properties.
Therefore, it is ensured that the load to the cladding is still within the safety range.

As mentioned in the introduction section, the safety criteria of 10CFR50.46 for a LOCA scenario
in a nuclear reactor, the ECCS must be designed and activated so that PCT should not exceed
1477.6 K (2200°F). In what follows, the results of fuel centerline temperature and the cladding
temperature during LBLOCA are discussed.

Figure 16 shows the fuel centerline temperatures of nodes 1, 4, 7, 10, 12. The fuel centerline
temperature is around 10 K higher than the outside cladding temperature. It's obvious that the
peak cladding temperatures and the fuel centerline temperature were all below the criteria
requirement. According to the safety criteria, the oxide thickness should be less than 17% of the
total the cladding thickness, which is 0.57531 mm in this case. The simulation results of the oxide
thickness were 0.006 mm for the present case. Even considering the variation of the cladding
thickness during transient, the Effective Cladding Reacted (ECR) is only about 1%.

The cladding temperature results in node 1, 4, 7, 10, 11 at TO1 to TO6 zones are shown in Figure
17. According to the present FRAPTRAN simulations for the fuel rods at six zones in the vessel,
the highest temperature spots of the fuel rod were found at node 4 (1.067 m) in TO1, T04, T0O5
and TO6 zones and node 7 (1.981 m) in TO2 and T03 zones. The peak cladding temperature of
the six zones is around 800 K and then drop down to around 400 K at the end of the transient. In
addition, it is found that all of the results show the similar trends and orders of response values to
those in literature (Ref. 8, 9), which suggests that important physical phenomenon was properly
simulated in the present case. The present results well meet the safety criteria required for
cladding temperature (<1477.6 K).

According to the safety criteria, the oxide thickness should be less than 17% of the total the
cladding thickness, which is 0.57531 mm in this case. The simulation results of the oxide
thickness in six zones were all the same as 0.006 mm for the present case. Even considering the
variation of the cladding thickness during transient, the ECR (effective cladding reacted) is only
about 1%. The value is still within the safety operation requirement as mentioned above. Note
that the zero-burnup rod was considered in this study, and the resultant cladding temperature did
not reach high enough temperature for violent metal-water reactions.
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4.3 SNAP Animation

SNAP program provides the function of the animation presentation for FRAPTRAN. In the
animation model, the performance of the fuel rod during transient can be presented in axial cross
sectional view with the temperatures at different nodes in axial and radial directions in each time
step as well as making X-Y plots of any parameters of interests. The radius of each radial node
can be calculated and displayed, so that one can see noticeable changes when ballooning
phenomenon occurs.

Figure 18 illustrates the animation results at time of 100 s, 300 s, 500 s (from left to right) for TO1
zone. The histories of fuel centerline temperatures are also shown below each fuel rod. It should
be mentioned that node 4 shows the highest temperature at 100 s. The variations of temperature
also indicate obviously that the cooling process started from the fuel top first at 300 s, and then
from the bottom at 500s during LBLOCA.
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5. UNCERTAINTY ANALYSIS

In uncertainty analysis, the several parameters of fuel rod, such as fabrication and boundary
conditions, were quantized and sampled by the DAKOTA uncertainty code. Table 2 lists the 5
importance parameters (i.e., Empty reactor time, flooding start time, Gap thickness, Fill gas temp,
and pellet diameter) taken into account in this uncertainty analysis, which are defined as the
SNAP user-defined numeric variables and linked with uncertainty configuration to generate input
files. By coupling with DAKOTA, the important parameters with uncertainties were generated
randomly based on specified PDFs. In particular, the statistical theory predicts that 59
calculations are required to simultaneously bound the 95th percentile of one parameters with a
95-percent confidence level.

Figure 19 displays the 59 cladding temperatures as a function of time. The uncertainty band is
formed by the 59 calculations. The minimum and maximum PCT are 842K and 892K respectively.
The uncertainty analysis shows that the PCT were all below the criteria requirement. Figure 20
and Figure 21 show the hoop strain and stress simulation results. The maximum hoop strain and
hoop stress are 0.006 and 37 MPa, which are all well below the limitation of material properties.
Therefore, it is ensured that the load to the cladding is still within the safety range.
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Table 2 The 5 Importance Parameters in Uncertainty Analysis

Reactor conditions

Empty reactor time 13.292 -1 +1 uniform
(s)

Flooding start time (s) 164.27 -5 +5 uniform
Rod design

Gap thickness(m) 7.5E-5 -2% +2% uniform

Fill gas temp (K) 300 -2% +2% uniform
Fuel pellet

pellet diameter (m) 0.00784 -2% +2% uniform
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6. CONCLUSIONS

In this paper, the TRACE/FRAPTRAN code under SNAP program was used to analyze the
behaviour of the fuel rod during LBLOCA transient at Maanshan NPP. Important results can be
summarized as below:

1

2.

. In first task, the thermal-hydraulic analytical results indicate that the Maanshan TRACE model

predicts the behaviors of important plant parameters in consistent trends with the FSAR data.
The FRAPTRAN code and TRACE results have been successfully combined to analyze the
fuel rod transient behaviors in the LBLOCA scenario.

. In FRAPTRAN analysis, the plenum pressure drops from 4.31 MPa to 2.2 MPa in the end of

the transient, and it appears that there is no failure of the fuel rod.

. The hoop stress results of different nodes are nearly the same, and the hoop stress appears

about 18 MPa, which is well below the limitation of material properties. Therefore, it is ensured
that the load to the cladding is still within the safety range.

. The oxide thickness calculation is less than 17% of the total the cladding thickness. Based on

the calculation results of plenum pressure and the gap thickness, there was no cladding
ballooning or failure in the present case.

. According to the present FRAPTRAN simulations for the fuel rods arranged in six zones in the

vessel, the highest (centerline) temperature spots of the fuel rods were found at node 4 of T01,
T04, TO5 and T0O6 zones and node 7 of TO2 and TO3 zones. The peak cladding temperatures
of each zone were found at the same nodes with that of the centerline temperatures. The
cladding temperatures and the fuel centerline temperatures were all below the criteria
requirement.

. Considering uncertainty analysis, the uncertainty band is formed by the 59 calculations. The

minimum and maximum PCT are 842K and 892K respectively. The uncertainty analysis
shows that the PCTs were all below the criteria requirement. The maximum hoop stress was
about 37 MPa and the maximum hoop strain was 0.006 for the fuel rod simulation, which are
all within the safety operation range.

. The animation function in SNAP program provides a clear and easy way to monitor the fuel

performance during transient. One can identify if cladding ballooning occurs through color
change in different areas and radius change in radial direction.

In conclusion, the present study confirms that this analysis method, the FRAPTRAN code
combined with TRACE results, is an appropriate approach to predict the fuel integrity under
LBLOCA with operational ECCS.
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