

July 27, 2016 10 CFR 50.55a L-2016-141

U. S. Nuclear Regulatory Commission Attn: Document Control Desk Washington, DC 20555-0001

Re: Turkey Point Units 3 and 4 Docket Nos. 50-250 and 50-251 Fifth Ten-Year Inservice Inspection (ISI) Interval Relief Request No. 4 – Response to Request for Additional Information

References: 1) NRC Email from Audrey Klett (NRC) to Mitch Guth (FPL), Subject: "Request for Additional Information - Turkey Point 3 & 4 - 5th 10-Year ISI RR#4 (CACs MF7277 & MF7278)" dated June 27, 2016, ML16180A024.

By letter L-2016-006 dated January 14, 2006 (Agencywide Documents Access and Management System (ADAMS) Accession No. ML16033A355), Florida Power & Light Company submitted Relief Request (RR) No. 4, which requested the approval of a Risk Informed Inservice Inspection (RI-ISI) program for use during the fifth ten-year Inservice Inspection (ISI) interval at Turkey Point Nuclear Unit Nos. 3 and 4. The program is a risk-informed Inservice Inspection Program (RI-ISI) for Class 1 and 2 piping based on Electric Power Research Institute (EPRI) Topical Report (TR) 112657 Revision B-A, "Revised Risk-Informed Inservice Evaluation Procedure," dated June 2012.

The U.S. Nuclear Regulatory Commission's (NRC's) Component Performance, NDE, and Testing Branch (EPNB) and PRA Licensing Branch (APLA) staff reviewed the application and identified areas where it needs additional information to support its review. Reference 1 provided the request for additional information. The FPL response to the request for additional information (RAI) is attached.

Please contact Mr. Mitch Guth, Licensing Manager, at 305-246-6698 if you have any questions or require any additional information about this submission.

Sincerely,

Thomas Summers Site Vice President Turkey Point Nuclear Plant

Attachment Enclosures

cc: Regional Administrator, USNRC Region II Senior Resident Inspector, USNRC, Turkey Point Nuclear Plant

Florida Power & Light Company

AD41

L-2016-141 Attachment

Florida Power & Light Company

Turkey Point Units 3 and 4

Inservice Inspection Program (ISI) Fifth Ten-Year Interval

Relief Request No. 4

Responses to NRC

Request for Additional Information (RAI) Questions

RAI-EPNB-1

EPRI TR 112657 Revision B-A (Section 3.6.4.2) and Section 3.5 of the submittal dated January 14, 2016, both state that 25% of high risk elements and 10% of medium risk elements will be selected for examination. Table 3.5 of the submittal dated January 14, 2016, appears to indicate that the elements selected for examination are well below these percentages. The NRC staff requests FPL to explain this discrepancy.

FPL Response to RAI-EPNB-1:

There was a clerical error made when transferring the information from Table 3.4 to Table 3.5. When Table 3.5 was assembled, the weld totals from the "With" column in Table 3.4 were mistakenly transferred into Table 3.5 instead of the values from the "Without" column. The "Total" column for each Risk Category in Table 3.5 should have reflected the number of welds excluding Flow Accelerated Corrosion (FAC) as identified in the "Without" column for each Risk Category in Table 3.5 should have reflected the number of welds excluding Flow Accelerated Corrosion (FAC) as identified in the "Without" column for each Risk Category in Table 3.4.

FAC is covered under a separate augmented examination program. During the re-validation of the numbers shown in Tables 3.4 and 3.5, an additional clerical error was identified in Table 3.4. In Table 3.4 for Unit 3, in the WDS system, the number of welds in the "Without" column in Risk Category 6 has been changed from "0" to "5" and the number of welds in the "Without" column in Risk Category 7, has been changed from "19" to "14".

The overall number of welds remains the same, the changes have no impact on the riskinformed application and there is no effect on Tables 3.6.1, 5.1.1 and 5.2.1 which already included the correct information.

Enclosure 1 provides the updated Tables 3.4 and 3.5. Based on these corrected numbers, Table 3.5 properly shows that Turkey Point is examining 39% (Unit 3) and 52% (Unit 4) of their High Risk welds and 15% (Unit 3) and 14% (Unit 4) of their Medium Risk welds. These percentages exceed the 25% and 10% values stipulated in EPRI TR-112657 for High and Medium Risk welds, respectively.

RAI-EPNB-2

The NRC staff noted there appears to be discrepancies between the numbers shown in Table 3.5 and the other tables in the submittal dated January 14, 2016. For example, for Unit 3, Table 3.5 shows there are 164 "High Risk" (Categories 1, 2 and 3) elements and 572 "Medium Risk" (Categories 4 and 5) elements these do not match numbers shown in Tables 5.1.1 and 5.2.1. Similar discrepancies were noted for Unit 4 in Tables 3.5, 5.2.1 and 5.2.2. The NRC staff requests FPL to explain the differences or supply corrected Tables.

FPL Response to RAI-EPNB-2:

There was a clerical error made when transferring information from Table 3.4 to Table 3.5. When Table 3.5 was assembled, the weld totals from the "With" column in Table 3.4 were mistakenly transferred into Table 3.5 instead of the values from the "Without" column. The "Total" column for each Risk Category in Table 3.5 should have reflected the number of welds <u>excluding</u> Flow Accelerated Corrosion (FAC) as identified in the "Without" column for each Risk Category in Table 3.4. FAC is covered under a separate augmented examination program.

Enclosure 1 provides the updated Tables 3.4 and 3.5.

RAI-EPNB-3

EPRI TR 112657 Revision B-A (Section 3.6.4.2) and Section 3.5 of the submittal dated January 14, 2016, both state that if the percentage of Class 1 piping locations selected for examination falls substantially below 10%, then the basis for the low percentage shall be investigated. The submittal states the percentage of Class 1 welds selected per the RI-ISI process was 6.8% (54 of 789 welds) in Unit 3 and 6.9% (57 of 825 welds) in Unit 4. The licensee stated the 6.8% and 6.9% were not an extreme departure from 10%. However, the NRC staff notes that these percentages result in a greater than 30% reduction in the number of Class 1 welds to be examined: 54 versus 79 for Unit 3, and 57 versus 83 for Unit 4. The EPRI TR explains how the number of Class 1 welds can drop below 10% because of a high number of Class 1 segments being assigned to low risk categories. The NRC staff was unable to determine if this is the case with the licensee's submittal with the tables provided because of the mixing of Class 1 & 2 segments in the tables. The NRC staff requests FPL to provide further justification for the low percentage of Class 1 welds selected.

FPL Response to RAI-EPNB-3:

FPL provides further justification for the low percentage of Class 1 welds selected by documenting the breakdown shown below of the number of Class 1 piping welds listed by risk categories. (Note that the risk category breakdown is more accurately established based on the number of welds rather than the number of segments.) This breakdown can be extracted from Tables 5.1.1 (Unit 3) and 5.1.2 (Unit 4). The results shown in the table below are based upon considering only those welds in Class 1 Code Examination Categories B-F and B-J. During revalidation of the numbers in Tables 5.1.1, 5.1.2, 5.2.1 and 5.2.2, two additional clerical errors were identified in Table 5.1.1. The B-J "Low Risk" total welds should be 513 welds instead of 512 welds and the total "Sur only" should be 89 welds instead of 87 welds. The correct number of B-J welds were identified within <u>each system</u> and in the total combined population count for B-F and B-J welds were correct. The overall number of welds remains the same, the changes have no impact on the risk-informed application.

RISK	UN	IT 3	UNIT 4				
CATEGORY	NO. OF WELDS	NO. OF WELDS SELECTED	NO. OF WELDS	NO. OF WELDS SELECTED			
High	31	12	23	12			
Medium	240	41	258	44			
Low	518	1	544	1			
TOTAL	789*	54	825*	57			

* The total weld count includes both socket and non-socket welds.

As shown in the table above, the majority of Class 1 welds fall into the Low Risk Category. The reason for this departure is because the Turkey Point Core Damage Frequency (CDF) is much lower than most plants as described in Section 3.5 of Turkey Point Relief Request No. 4.

Enclosure 1 provides the updated Table 5.1.1.

RAI-EPNB-4

Of the welds <u>not selected</u> for future examinations in the RI-ISI program or FPL's augmented inspection programs, have previous examinations of any of these welds identified service induced degradation? If so, then what was the degradation mechanism, and what was done to mitigate the degradation?

FPL Response to RAI-EPNB-4:

During the Risk Informed Element Selection process, no welds identified with service induced degradation were eliminated from selection.

RAI-EPNB-5

Have any of the welds selected for examination in the RI-ISI been previously examined and resulted in limited examination coverage (i.e. less than 90%)? If so, the NRC staff requests FPL to explain why other welds have not been selected to minimize the number of examinations with limited exam coverage.

FPL Response to RAI-EPNB-5:

During the RI-ISI Element Selection meeting, welds were preferentially selected to avoid known limited coverage issues, whenever possible. However, in some instances the RI-ISI selection process limited which welds could be selected due to the existence of a postulated degradation mechanism in only a few welds. As a result, there were a few isolated instances where this option was not achievable.

RAI-APLA-1

In its submittal dated January 14, 2016, the licensee provided a list of Facts and Observations (F&Os) including DA-D5-01, and DA-D6 in Table 3, "Turkey Point PRA Model – SRs Not Met," with their associated supporting requirements (SRs) that do not meet the American Society of Mechanical Engineers (ASME)/American Nuclear Society (ANS) probabilistic risk assessment standard (ASME/ANS RA-Sa-2009) Capability Categories (CCs). Table 2-2 of EPRI TR 1021467-A, "Nondestructive Evaluation: Probabilistic Risk Assessment Technical Adequacy Guidance for Risk-Informed In-Service Inspection Programs," assigns CC-I to SRs DA-D6 and DA-D5 for RI-ISI applications using the EPRI traditional RI-ISI approach. The NRC staff requests FPL to explain whether the F&Os associated with SRs DA-D5 and DA-D6 have been dispositioned and whether those SRs meet CC-I following the F&Os disposition. If those F&Os have not been dispositioned, then the NRC staff requests FPL to justify why not meeting CC-I (for those SRs) will not impact the RI-ISI application.

FPL Response to RAI-APLA-1:

The F&Os associated with SRs DA-D5 and DA-D6 have been dispositioned and changes have been made to ensure compliance with CC-II.

- DA-D5-01 was addressed in the CCF update for Revision 11 of the PTN PRA model. The CCF alpha factors were updated and the CAFTA CCF tool was used. The use of the CAFTA CCF tool resolved this F&O.
- DA-D6-01 was addressed in the data update PTN-BFJR-02-026, Rev. 2. No plant-specific CCFs were found.

Enclosure 2 provides the updated tables.

L-2016-141 Enclosure 1 Page 1 of 3

.

• .

.

,

						-	Table	3.4							
. <u> </u>	<u></u>		Numbe	er of E	lements I	by Risl	< Catego	ry With	and Wit	thout li	mpact of	FAC			
				High Ri	sk Region				Medium R	isk Regi	on		Low Risl	k Regior	1
Unit	System ⁽¹⁾	Cate	egory 1	Cate	gory 2	Cate	gory 3	/ 3 Category 4		Cate	egory 5	Cate	egory 6	Category 7	
		With	Without	With	Without	With	Without	With	Without	With	Without	With	Without	With	Without
	RCS	0	0	8	8	0	0	50	50 ·	0	0	45	45	118	118
	CVCS	0	0	0	0	0 ·	0	0	0	37	37	189	189	64	64
	SIS	0	0	7	7	0	0	157	157	0	0	191	191	173	173
	RHR	0	0	16	16	0	0	66	66	0	0	`9	9	285	285
	SGBD	0	0	0	0	32	0	0	0	58	0	0	32	0	58
3	FWS	0	0	0	0	39	0	0	0	77	5	0	43	0	68
	MS	0	0	0	0	45	0	0	0	83	0	0	45	0	83
	AFW	0	0	0	0	17	0	0	0	44	5	0	20	0	36
	CSS	0	0	0	0	0	0	0	0	0	0	0	0	117	117
	WDS	0	0	0	0	0	0	0	0	0	0	5	5	14	14
	Total	0	0	31	31	133	0	273	273	299	47	439	579	771	1016
		High Risk Region							Medium R	isk Regi	on	Low Risk Region			
Unit	System ⁽¹⁾	Category 1			Category 2 Category 3		egory 3	Category 4		Category 5		Category 6		Category 7	
		With	Without	With	Without	With	Without	With	Without	With	Without	With	Without	With	Without
	RCS	0	0	10	10	0	0	51	51	0	0	47	47	119	119
	CVCS	0	0	0	0	0	0	0	0	39	39	211	211	49	49
	SIS	0	0	3	3	0	0	172	172	0	0	209	209	131	131
	RHR	0	0	<i>,</i> 10	10	0	0	70	70	0	0	20	20	333	333
	SGBD	0	0	0	0	25	0	0	0	55	0	0	25	0	55
4	FWS	0	0	0	0	25	0	0	0	69	4	0	30	0	60
	MS	0	0	0	0	42	0	0	0	80	0	0	42	0	80
	AFW	0	0	0	0	15	0	0~	0	42	3	0	19	0	35
	CSS	0	0	0	0	0	0	0	0	0	0	0	0	92	92
	WDS	0	0	0	0	0	[°] O	0	0	0	0	6	6	15	15
	Total	0	0	23	23	107	0	293	293	285	46	493	609	739	969

.

Note:

.

.

~

1. Systems are described in Table 3.1.

.

.

,

、

							Table	ə 3.5							
	N	lumbe	r of Elen	nents	Selected	for In	spection	by Ri	sk Categ	ory E>	ccluding	Impac	t of FAC		
				High R	isk Region				Medium R	isk Regi	on		Low Ris	k Regior	1
Unit	System ⁽¹⁾	Cate	egory 1	Cat	egory 2	Cat	egory 3	Cat	egory 4	Cate	egory 5	Category 6		Category 7	
		Total	Selected	Total	Selected	Total	Selected	Total	Selected	Total	Selected	Total	Selected	Total	Selected
	RCS	0	0	8	5	0	0	50	5	0	0	45	0	118	0
	CVCS	0	0	<u> </u>	0	0	0	0	0	37	9	189	1	64	0
	SIS	0	0	7	2	0	0	157 .	17	0 '	0	191	0	173	0
	RHR	0	0	16	5	0	0	66	15 ·	0	· 0	9	0	285	0
	SGBD	0	0	0	0	0	0	0	0	0	0	32	0	58	0
3	FWS	0.	0	0	0	0	0	0	0	5	1	43	0	68	0
	MS	0	0	0	0	0	· 0	0	0	0	0	45	0	83	0
	AFW	0	0	0	0	0	0	0	0	5	1	20	0	36	0
	CSS	0	0	0	0	0	0	0	0	0	0	0	0	,117	0
	WDS	0	0	0	0	0	0	0	0	0	0	5	0	14	0
	Total	0	0	31	12	0	0	273	37	47	11	579	1	1016	0
		High Risk Region							Medium R	isk Regi	on	Low Risk Region			
Unit	System ⁽¹⁾	Category 1		Cat	ategory 2 Catego		egory 3	Category 4		Category 5		Category 6		Category 7	
		Total	Selected	Total	Selected	Total	Selected	Total	Selected	, Total	Selected	Total	Selected	Total	Selected
	RCS	· 0	0	10	7	0	0	51	6	0	.0	47	0	119	0
	CVCS	0	0	0	0	0	0	0	0	39	5	211	1	49	0
	SIS	0	0	3	1	0	0	172	18	0	0	209	0	131	. 0
	RHR	0	0	10	4	0	0	70	18	0	0	20	0	333	0
	SGBD	0	0	0	0	0	0	0	0	0	0	<u>2</u> 5	0	55	0
4	FWS	0	0	0	0	0	0	0	0	4	1	30	0	60	0
	MS	0	0	0	0	.0	0	0	0	0	0	42	0	80	0
	AFW	0	0	0	0	0	0	0	0	3	1	19	0	35	0
	CSS	0	0	0	0	0	0	0	0	0	0	0	0	92	0
	WDS	0	0	0	0	0	0	0	0	0	0	6	0	15	0
	Total	0	0	23	12	. 0	0	293	42	46	7	609	1	969	0

Note: Systems are described in Table 3.1.

•

-

L-2016-141 Enclosure 1 Page 3 of 3

		``````````````````````````````````````	Betv				on Loc		Selection		parison 7 by Ris		<u>n</u>			
		High Risk Region							ium Risk	Region		1	Lo	w Risk Re	egion	
System ⁽¹⁾	Code		Section	on XI ⁽²⁾	EPRI T	R-112657		Secti	on XI ⁽²⁾	EPRI TI	R-112657		Secti	on XI ⁽²⁾	EPRI	TR-112657
	Category	Weld Count	Vol/ Sur	Sur Only	RI-ISI	Other ⁽³⁾	Weld Count	Vol/ Sur	Sur Only	RI-ISI	Other ⁽³⁾	Weld Count	Vol/ Sur	Sur Only	RI-ISI	Other ⁽³⁾
AFW	C-F-2	0	0	0	0	0	5	0	0	<u> </u>	0	56	0	0	0	0
CSS	C-F-3 ⁽⁴⁾	0	0	0	0	0	0	0	0	0	0	117	0	0	0	0
CVCS	B-J	0	0	0	0	0	37	0	6	9	0	253	0	48	1	0
FWS	C-F-2, C-F-4 ⁽⁴⁾	0	0	0	0	0	5	1	0	1	0	111	9	1	0	0
MS	C-F-2, C-F-4 ⁽⁴⁾	0	0	0	0	0	0	0	0	0	0	128	8	2	0	0
RCS	B-F, B-J	8	5	1	5	0	50	29	2	5	0	163	32	17	0	0
RHR	B-J, C-F-1, C-F-3 ⁽⁴⁾	16	4	1	5	0	66	20	0	15	0	294	27	0	0	0
SGBD	C-F-2	0	0	0	0	0	0	0	0	0	0	90	9	0	0	0
SIS	B-J, C-F-1, C-F-3 ⁽⁴⁾	7	0	3	2	0	157	0	25	17	0	364	15	24	0	0
WDS	B-J	0	0	0	0	0	0	0	0	0	0	19	0	6	0	0
	B-F	1	1 ·	0	1	0	12	12	0	0	0	5	5	0	0	0
	B-J	30	8	5	11	0	228	37	28	41	0	513	28	89	1	0
Totals by	C-F-1	0	0	0	0	0	70	0	5	5	0	380	41	6	0	0
Code Category	C-F-2	0	0	0	0	0	10	1	0	2	0	371	26	3	0	0
Jalegoly	C-F-3 (4)	0	0	0	0	0	0	0	0.	0	0	312	0	0	0	0
	C-F-4 (4)	0	0	0	0	0	0	0	0	0	0	14	0	0	0	0

#### Notes:

- 1. Systems are described in Table 3.1.
- 2. Since a Risk-Informed program for Class 1 welds was implemented during the third period of the third interval, piping weld examinations performed prior to the third period of the third interval per the 1989 Edition of ASME Code Section XI were used for comparison purposes for Class 1 welds. However, since the Risk-Informed program implemented during the fourth interval was for Class 1 welds only, piping weld examinations performed during the fourth interval per the 1998 Edition with Addenda through 2000 of ASME Code Section XI were used for comparison purposes for Class 2 welds.
- 3. The column labeled "Other" is generally used to identify augmented inspection program locations credited per Section 3.6.5 of EPRI TR-112657. The EPRI methodology allows augmented inspection program locations to be credited if the inspection locations selected strictly for RI-ISI purposes produce less than a 10% sampling of the overall Class 1 weld population. The Turkey Point RI-ISI application did not rely on augmented inspection program locations beyond those selected by the RI-ISI process. The "Other" column has been retained in this table solely for uniformity purposes with the other RI-ISI application template submittals.
- 4. Code Categories C-F-3 and C-F-4 consist of Code Examination Category C-F-1 and C-F-2 welds respectively that were previously excluded from examination per Table IWC-2500-1 due to being welds in "thin wall piping". For the RI-ISI application, this exclusion does not exist.

## L-2016-141 Enclosure 2 Page 1 of 2

F&0	SR	AIISSIIA	Basis for Significance	Possible Resolution	Initial Comment	Disposition
DA-D5-	DA-	For several CCF groups,	The missing CCF	Two alternatives. The	Could not find	This was addressed in
01	D5	a "global common	contribution from	missing CCF terms	guidance regarding	the CCF update for
		cause event" (as	the 5-of-6 term	could be added to the	adding $\alpha 5$ to $\alpha 6$ to	Revision 11 of the PTN
1		described at the end of	(or the 2-of-4 and	CAFTA fault trees and	approximate the	PRA model. The CCF
		Section 4.2 of PTN-	3-of-4) should not	CCF basic events	5/6 combinations	alpha factors were
		BFJR-2008-012, Rev. 0)	be significant	calculated for the new	in INEL-94/0064,	updated and the CAFTA
		is used. While this is a	since the 6-of-6	terms. A simpler	but it makes sense.	CCF tool was used. The
		reasonable	term (or 4-of-4	alternative is to revise	Does the reviewer	use of the CAFTA CCF
		simplification, the	term) is included	the calculation of the	have a specific	tool resolved this F&O.
		global common cause	and should	$\alpha$ 6 term to include the	reference	
		event needs to account	dominate the CCF	missing $\alpha$ 5 value.	(document and	
		for the common cause	contribution.	Thus, α6' = α5 + α6.	page number) for	
		combinations that are		This overestimates the	this?	
	1	not included explicitly.		a5 contribution, since		
		However, for several 6-		it is applied to the		
		component groups		case where all 6		
		(AFW AOVs FTO, AFW		components fail, but		
		CVs FTO, AFW MOVs		this should be a small		
		FTO), the 5-of-6 term		and conservative		
		was not included and		approximation.		
		the 6-of-6 term was not		(Similar correction for		
		adjusted. A similar issue		the 4-component		
		appears to be present		group, $\alpha 4' = \alpha 2 + \alpha 3 + \alpha 4$		
		for SG SVs FTO (4-		α4).		
		component group),				
		where only the 4-of-4				
		term is included (the 2-				
		of-4 and 3-of-4 terms				
		are missing and the 4-				
		of-4 term was not				
		adjusted).				

## Updated F&O DA-D5-01 and DA-06-01

*

## L-2016-141 Enclosure 2 Page 2 of 2

F&0	SR	Issue	Basis for Significance	Possible Resolution	Initial Comment	Disposition
DA-D6-	DA-	The CCF notebook did	The SR includes a	Review plant-specific	This needs to be	Addressed in data
01	D6	not include a review of	check to assure	component failure	done to meet the	update PTN-BFJR-02-
		plant failure data for	the CCF	events from the most	Standard, but I	026, Rev. 2. No plant-
		common cause events.	parameters are	recent data update to	don't expect to find	specific CCFs were
			consistent with	identify any common	any plant-specific	found.
			available plant-	cause failures. If CCFs	CCFs.	
			specific	are identified, verify		
			experience.	that the CCF is		
				modeled for the		
				specific component		
				and failure mode. If		
				this data indicates a		×
				significantly larger		
				fraction of failures are		
				CCFs than the generic		
				CCF parameters would		
				predict, plant-specific		
				CCF parameters		
				should be calculated.		
				If the data is limited		
				(one or two failures in		
				a specific component		
				group), this would not		
				be sufficient evidence		
				to justify plant-specific		
				CCF parameters.		

1.1