ATTACHMENT A1

Markup of Salem Unit 1 Technical Specification 3/4.3.1 -Reactor Trip System Instrumentation

ATTACHMENT A1

Technical Specification 3.3.1 insert.

INSERT 1:

ACTION 10 - With the number of OPERABLE Channels one less than the Minimum Channels OPERABLE requirement, restore the inoperable channel to OPERABLE status within 6 hours or be in at least HOT STANDBY in the next 6 hours; however, one channel may be bypassed for up to 4 hours for surveillance testing per Specification 4.3.1.1, provided the other channel is OPERABLE.

٠,

4

9207240103 920716 PDR AF P PDR PDR PDR

REACTOR TRIP SYSTEM INSTRUMENTATION

FUNCI	CIONAL UNIT	TOTAL NUMBER OF CHANNELS	CHANNELS TO TRIP	MINIMUM CHANNELS OPERABLE	APPLICABLE <u>MODES</u>	ACTION
11.	Pressurizer Water LevelHigh	3	2	2	1, 2	-7# 6#
12.	Loss of Flow - Single Loop (Above P-8)	3/100p	2/loop in any oper- ating loop	2/loop in each oper- ating loop	1	-7#- 6#
13.	Loss of Flow - Two Loops (Above P-7 and below P-8)	3/100p	2/loop in two oper- ating loops	2/loop in each oper- ating loop	1	7#- 6#
14.	Steam Generator Water Level Low-Low	3/loop	2/loop in any oper- ating loops	2/loop in each oper- ating loop	1, 2	7# 64
15.	Steam/Feedwater Flow Mismatch and Low Steam Generator Water Level	2/loop-level and 2/loop- flow mismatch	<pre>1/loop-level coincident with 1/loop-flow mismatch in same loop</pre>	flow mismatch or 2/loop-		-7# -6#
16.	Undervoltage-Reactor Coolant Pumps	4-1/bus	1/2 twice	4	1	6
17.	Underfrequency-Reactor Coolant Pumps	4-1/bus	1/2 twice	4	1	6

SALEM

Т

UNIT

سر

REACTOR TRIP SYSTEM INSTRUMENTATION

FUNC	CTIONAL UNIT	TOTAL NUMBER OF CHANNELS	CHANNELS TO TRIP	MINIMUM CHANNELS <u>OPERABLE</u>	APPLICABLE	ACTIO	N
18.	-	2	2	2	1		/ -++
	Low Autostop Oil Pressure Turbine Stop Valve Closure	3 4	2 4	2 3	1	-7# - 7# -	
19.	Safety Injection Input from ESF	2	1	2	1,2	+	10
20.	Reactor Coolant Pump Breaker Position Trip (above P-7)	1/breaker	2	l/breaker per opera- ting loop	1	11	
. `							
21.	Reactor Trip Breakers	2	1	2	1, 2 3*,4*,5*	1 ###, 13	14
22.	Automatic Trip Logic	2	1	2	1, 2 3*,4*,5*	1 13	10

.

щ

,

TABLE NOTATION

- * With the reactor trip system breakers in the closed position and the control rod drive system capable of rod withdrawal.
- ** The channel(s) associated with the protective functions derived from the out of service Reactor Coolant Loop shall be placed in the tripped condition.
- # The provisions of Specification 3.0.4 are not applicable,
- ## High voltage to detector may be de-energized above P-6.
- ### If ACTION Statement 1 is entered as a result of Reactor Trip Breaker (RTB) or Reactor Trip Bypass Breakers (RTBB) maintenance testing results exceeding the following acceptance criteria, NRC reporting shall be made in accordance with Specification 6.9.1.9:
 - 1. A RTB or RTBB trip failure during any surveillance test with less than or equal to 300 grams of weight added to the breaker trip bar.
 - 2. A RTB or RTBB time response failure that results in the overall reactor trip system time response exceeding the Technical Specification limit.

ACTION STATEMENTS

- ACTION 1 With the number of channels OPERABLE one less than required by the Minimum Channels OPERABLE requirement, be in HOT STANDBY within 6 hours; however, one channel may be bypassed for up to 2 hours for surveillance testing per Specification 4.3.1.1 provided the other channel is OPERABLE.
- ACTION 2 With the number of OPERABLE channels one less than the Total Number of Channels, STARTUP and/or POWER OPERATION may proceed provided the following conditions are satisfied:
 - a. The inoperable channel is placed in the tripped condition within $\frac{1}{2}$ hour.

THE INDRERABLES

b. The Minimum Channels OPERABLE requirement is met; however, one 4 additional channel may be bypassed for up to 2 hours 4 for surveillance testing per Specification 4.3.1.1.

OF OTHER CHANNELS

- c. Either, THERMAL POWER is restricted to \leq 75% of RATED THERMAL and the Power Range, Neutron Flux trip setpoint is reduced to \leq 85% of RATED THERMAL POWER within 4 hours; or, the QUADRANT POWER TILT RATIO is monitored at least once per 12 hours.
- ACTION 3 With the number of channels OPERABLE one less than required by the Minimum Channels OPERABLE requirement and with the THERMAL POWER level:

- a. Below P-6, restore the inoperable channel to OPERABLE status prior to increasing THERMAL POWER above the P-6 Setpoint.
- b. Above P-6 but below 5% of RATED THERMAL POWER, restore the inoperable channel to OPERABLE status prior to increasing THERMAL POWER above 5% of RATED THERMAL POWER.
- c. Above 5% of RATED THERMAL POWER, POWER OPERATION may continue.
- ACTION 4 With the number of channels OPERABLE one less than required by the Minimum Channels OPERABLE requirement and with the THERMAL POWER level:
 - a. P-6, restore the inoperable channel to OPERABLE status prior to increasing THERMAL POWER above the P-6 Setpoint.
 - b. Above P-6, operation may continue.
- ACTION 5 With the number of channels OPERABLE one less than required by the Minimum Channels OPERABLE requirement, verify compliance with the SHUTDOWN MARGIN requirements of Specification 3.1.1.1 or 3.1.1.2, as applicable, within 1 hour and at least once per 12 hours thereafter.
- ACTION 6 With the number of OPERABLE channels one less than the Total Number of Channels, STARTUP and/or POWER OPERATION may proceed provided the following conditions are satisfied:
 - a. The inoperable channel is placed in the tripped condition within + hour.
 - THE INDPERABLE
 b. The Minimum(Channels OPERABLE requirement is met;
 however, one additional channel may be bypassed for up to
 If the house for surveillance testing per Specification
 - 4 2 hours for surveillance testing per Specification 4.3.1.1. OF OTHER CHANNELS
- ACTION 7 With-the-number of OPERABLE-channels-one-less than-the Total Number of Channels, STARTUP and/or POWER OPERATION-may proceed until performance of the next required CHANNEL FUNCTIONAL TEST provided the inoperable channel is placed in the tripped-condition within 1 hour.

NOT USED

ACTION 8 - NOT USED

ACTION 9 - With a channel associated with an operating loop inoperable, restore the inoperable channel to OPERABLE status within 2 hours or be in HOT STANDBY within the next 6 hours; however, one channel associated with an operating loop may be bypassed for up to 2 hours for surveillance testing per Specification 4.3.1.1.

ACTION 10 - Deleted. SEE INSERT

- ACTION 11 With less than the Minimum Number of Channels OPERABLE, operation may continue provided the inoperable channel is placed in the tripped condition within $\frac{1}{2}$ hour.
- ACTION 12 With the number of channels OPERABLE one less than required by the Minimum Channels OPERABLE requirement, restore the inoperable channel to OPERABLE status within 48 hours or be in HOT STANDBY within the next 6 hours and/or open the reactor trip breakers.
- ACTION 13 With the number of OPERABLE channels one less than the Minimum Channels OPERABLE requirement, restore the inoperable channel to OPERABLE status within 48 hours or open the reactor trip breakers within the next hour.
- ACTION 14 With one of the diverse trip features (Undervoltage or shunt trip attachment) inoperable, restore it to OPERABLE status within 48 hours or declare the breaker inoperable and be in at least HOT STANDBY within 6 hours. The breaker shall not be bypassed while one of the diverse trip features is inoperable except for the time required for performing maintenance to restore the breaker to OPERABLE status.

REACTOR TRIP SYSTEM INTERLOCKS

DESIGNATION	CONDITION AND SETPOINT	FUNCTION
P-6	With 2 of 2 Intermediate Range Neutron Flux Channels < 6x10-11 amps.	P-6 prevents or defeats the manual block of source range reactor trip.
₽-7	With 2 of 4 Power Range Neutron Flux Channels ≥ 11% of RATED THERMAL POWER or 1 of 2 Turbine impulse chamber pressure channels ≥ a pressure equivalent to 11% of RATED THERMAL POWER.	

Amendment No. 97

REACTOR TRIP SYSTEM INSTRUMENTATION SURVEILLANCE REQUIREMENTS

FUNC	TIONAL UNIT	CHANNEL <u>CHECK</u>	CALIBRATION	FUNCTIONAL SU	ES IN WHICH RVEILLANCE <u>REQUIRED</u>
1.	Manual Reactor Trip Switch	NA	NA	S/U(9)	NA
2.	Power Range, Neutron Flux	S	D(2), M(3) and Q(6)	₩ Q	1, 2
3.	Power Range, Neutron Flux, High Positive Rate	NA	R(6)	<u>₩</u> Q	1, 2
4.	Power Range, Neutron Flux, High Negative Rate	NA	R(6)	-* Q	1, 2
	Intermediate Range, Neutron Flux	S	R(6)	S/U(1)	1, 2 and *
6.	Source Range, Neutron Flux	S(7)	R(6)	Q $#$ and $S/U(1)$	2, 3, 4, 5 and $*$
7.	Overtemperature ΔT	S	R	* Q	1, 2
8.	Overpower ΔT	s	R	₩ Q	1, 2
9.	Pressurizer PressureLow	S	R	* Q	1, 2
10.	Pressurizer PressureHigh	S	R	* Q	1, 2
11.	Pressurizer Water LevelHigh	h S	R	* Q	1, 2
12.	Loss of Flow - Single Loop	S	R	* Q	1

SALEM - UNIT 1

REACTOR TRIP SYSTEM INSTRUMENTATION SURVEILLANCE REQUIREMENTS

FUNCTIONAL UNIT		CHANNEL <u>CHECK</u>	CALIBRATION	CHANNEL FUNCTIONAL TEST	MODES IN WHICH SURVEILLANCE REQUIRED
13. Loss of Flow -	Two Loops	S	R	N.A.	1
14. Steam Generator Low-Low	: Water Level	S	R	# Q	1, 2
15. Steam/Feedwate Low Steam Gener	r Flow Mismatch & rator Water Level	S	R	* Q	1, 2
16. Undervoltage - H Pumps	Reactor Coolant	N.A.	R	* Q	1
17. Underfrequency · Pumps	- Reactor Coolant	N.A.	R	* Q	1
18. Turbine Trip					
A. Low Autostop	o Oil Pressure	N.A.	N.A.	S/U(1)	1, 2
B. Turbine Stop	o Valve Closure	N.A.	N.A.	S/U(1)	1, 2
19. Safety Injection	n Input from ESF	N.A.	N.A.	M(4)(5)	1, 2
20. Reactor Coolant Position Trip	Pump Breaker	N.A.	N.A.	R	N.A.
21. Reactor Trip Bro	eaker	N.A.	N.A.	S/U(10), M(11,13), SA(12,13) and R(14)	1, 2 and *
22. Automatic Trip	Logic	N.A.	N.A.	M(5)	1, 2 and *

TABLE 4.3-1 (Continued) NOTATION

 With the reactor trip system breakers closed and the control rod drive system capable of rod withdrawal.

- 31

- (1) If not performed in previous 7 days.
- (2) Heat balance only, above 15% of RATED THERMAL POWER.
- (3) Compare incore to excore axial offset above 15% of RATED THERMAL POWER. Recalibrate if absolute difference ≥ 3 percent.
- (4) Manual SSPS functional input check every 18 months.
- (5) Each train or logic channel shall be tested at least every 62 days on a STAGGERED TEST BASIS.
- (6) Neutron detectors may be excluded from CHANNEL CALIBRATION.
- (7) Below P-6 (Block of Source Range Reactor Trip) setpoint.
- (8) Deleted
- (9) If not performed in the previous 24 hours, conduct a functional test of the Manual Reactor Trip Switches to verify the Manual Reactor Trip Switch and the independent operation of the U.V. and shunt trip wiring.
- (10) If not performed in the previous 24 hours, conduct a functional test
 of:
 - Reactor Trip Breaker independent operation of U.V. and Shunt Trip (via SSPS)
 - Reactor Trip Breaker Shunt Trip (via manual pushbutton controls)
- (11) Perform a functional test of:
 - Reactor Trip Breaker independent operation of U.V. Trip and Shunt Trip (via SSPS) and conduct response time testing of U.V. and Shunt Trip/Breakers (event recorders)
 - Reactor Trip Breaker Shunt Trip (via manual pushbutton controls)
- (12) Perform periodic maintenance on Reactor Trip Breakers and Reactor Trip Bypass Breakers semiannually as follows:
 - a. response time testing, (3 times) (visicorder) trend data
 - b. trip bar lift force measurements
 - c. UV output force measurement
 - d. dropout voltage check
 - e. servicing/lubrication/adjustments (See Table 3.3-1 Notation
 ###)
 - f. repeat testing steps (a-d) following any necessary actions at step (e)

ATTACHMENT A2

Markup of Salem Unit 1 Technical Specification 3/4.3.2 -Engineered Safety Feature Actuation System Instrumentation

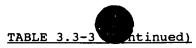
١

.

,

ENGINEERED SAFETY FEATURE ACTUATION SYSTEM INSTRUMENTATION

.


FUN	CTION	AL UNIT	TOTAL NO. <u>OF CHANNELS</u>	CHANNELS TO TRIP	MINIMUM CHANNELS <u>OPERABLE</u>	APPLICABLE <u>MODES</u>	ACTION		
1.		ETY INJECTION, TURBINE TRIP FEEDWATER ISOLATION							
	a.	Manual Initiation	2	1	2	1, 2, 3, 4	18		
	b.	Automatic Actuation Logic	2	1	2	1, 2, 3, 4	13		
	c.	Containment Pressure-High	3	2	2	1, 2, 3	- 14*-	19 *	
	d.	Pressurizer Pressure-Low	3	2	2	1, 2, 3#	-14*	i9 *	1
	e.	Differential Pressure Between Steam Lines - High				1, 2, 3##			
		Four Loops Operating	3/steam line	2/steam line any steam line	2/steam 1	line	-14* -	19 \$	1
		Three Loops Operating	3/operating steam line	1 ^{##} #/steam line, any operating steam line	2/operati steam lin		15		

FUNCTIONAL UNIT	TOTAL NO. OF CHANNELS	CHANNELS TO TRIP	MINIMUM CHANNELS APPLICABLE <u>OPERABLE MODES</u>	ACTION
f. Steam Flow in Two Steam Lines-High			1, 2, 3##	
Four Loops Operating	2/steam line	l/steam line any 2 steam lines	1/steam line	-14*- 19*
Three Loops Operating	2/operating steam line	/## 1 #/any operating steam line	1/operating steam line	15
COINCIDENT WITH EITHER				
TavgLow-Low			1, 2, 3##	
Four Loops Operating	1 Tavg/loop	2 Tavg any loops	l Tavg any 3 loops	-14 19 *
Three Loops Operating	l Tavg/opera- ting loop	1 ^{##} # Tavg in any operating loop	l Tavg in any two operating loops	15
,				

FUNC	TIONAL UNIT		TOTAL NO. <u>OF CHANNELS</u>	CHANNELS TO TRIP	MINIMUM CHANNELS <u>OPERABLE</u>	APPLICABLE MODES	ACTION
	OR, COINCIDEN	I WITH					
	Steam Lin	e Pressure-Low				1, 2, 3##	
	Four Opera	-	l pressure/ loop	l pressure any 2 loops	1 pressure any 3 loop		14* 19 *
2.	CONTAINMENT S	PRAY					
	a. Manual		2 sets of 2	1 set of 2	2 sets of 2	1, 2, 3, 4	18
	b. Automatic	Actuation Logic	2	1	2	1, 2, 3, 4	13
	c. Containme	nt PressureHigh-High	4	2	3	1, 2, 3	16
3.	CONTAINMENT I	SOLATION					
	a. Phase "A"	Isolation					
	1) Manua	1	2	1	2	1, 2, 3, 4	18
		Safety Injection atic Actuation Logic	2	1	2	1, 2, 3, 4	13

FUNCTIONAL UNIT	TOTAL NO. <u>OF CHANNELS</u>	CHANNELS TO TRIP	MINIMUM CHANNELS <u>OPERABLE</u>	APPLICABLE <u>MODES</u>	ACTION
Three Loops	l Tavg/opera- ting loop	l### Tavg in any operating loop	l Tavg in any two operating loops		15
OR, COINCIDENT WITH Steam Line Pressure-Low				1, 2, 3##	
Four Loops Operating	l pressure/ loop	l pressure/ any 2 loops	1 pressure any 3 loop		14*
Three Loops Operating	l pressure/ operating loop	1 ### pres- sure in any operating loop	l pressure any 2 oper loops		15
5. TURBINE TRIP & FEEDWATER ISOLATION					
a. Steam Generator Water level High-High	3/loop	2/loop in any opera- ting loop	2/loop in each opera- ting loop	1, 2, 3	-14** 19 *
6. SAFEGUARDS EQUIPMENT CONTROL SYSTEM (SEC)	3	2	3	1, 2, 3, 4	13
7. UNDERVOLTAGE, VITAL BUS					
a. Loss of Voltage	1/bus	2	3	1, 2, 3	14*
b. Sustained Degraded Voltage	3/bus	2/bus	3/bus	1, 2, 3	14*

.

FUNC	TION	AL UNIT	TOTAL NO. <u>OF CHANNELS</u>	CHANNELS TO TRIP	MINIMUM CHANNELS <u>OPERABLE</u>	APPLICABLE MODES	ACTION
8.	AUXI	ILIARY FEEDWATER					
	a.	Automatic Actuation Logic**	2	1	2	1, 2, 3	20
	b.	Manual Initiation	1/pump	1/pump	1/pump	1, 2, 3	22
	c.	Steam Generator Water Level Low-Low					
		i. Start Motor Driven Pumps	3/stm. gen.	2/stm. gen.	2 stm. gen.	1, 2, 3	-14* 9 *
		ii. Start Turbine Driven Pumps	3/stm. gen.	2/stm. gen.	2 stm. gen.	1, 2, 3	14* 19 *
	d.	Undervoltage - RCP Start Turbine - Driven Pump	4(1/bus)	1/2 x 2	3	1, 2	19
	e.	S.I. Start Motor-Driven Pumps	See 1 above (Al	l S.I. initia	ting function	s and requiremer	nts)
	f.	Emergency Trip of Steam Generator Feedwater Pumps Start Motor Driven Pumps	2(1/pump)	2	2(1/pump)	1	21
	g.	Station Blackout	See 6 and 7 ab	ove (SEC and	U/V Vital Bus)	

****Applies** to items c and d.

TABLE NOTATION

- # Trip function may be bypassed in this MODE below P-11.
- ## Trip function may be bypassed in this MODE below P-12.
- ### The channel(s) associated with the protective functions derived from the out of service Reactor Coolant Loop shall be placed in the tripped mode.

*The provisions of Specification 3.0.4 are not applicable.

ACTION STATEMENTS RESTORE THE INOPERABLE CHANNEL TO OPERABLE STATUS WITHIN 6 HOURS OR,

- ACTION 13 With the number of OPERABLE Channels one less than the Total Number of Channels, be in HOT STANDBY within 6 hours and in COLD SHUTDOWN within the following 30 hours; however, one channel may be bypassed for up to 2 hours for surveillance testing per Specification 4.3.2.1.15 PROVIDED THE NEXT THE OTHER CHANNEL IS OPELABLE.
- ACTION 14 With the number of OPERABLE Channels one less than the Total Number of Channels, operation may proceed until performance of the next required CHANNEL FUNCTIONAL TEST, provided the inoperable channel is placed in the tripped condition within 1 hour.
- ACTION 15 With a channel associated with an operating loop inoperable, restore the inoperable channel to OPERABLE status within 2 hours or be in HOT SHUTDOWN within the following 12 hours; however, one channel associated with an operating loop may be bypassed for up to 2 hours for surveillance testing per Specification 4.3.2.1.1.
- ACTION 16 With the number of OPERABLE Channels one less than the Total Number of Channels, operation may proceed provided the inoperable channel is placed in the bypassed condition and the Minimum Channels OPERABLE requirement is demonstrated within 6 + hour; one additional channel may be bypassed for up to 2 hours

for surveillance testing per Specification 4.3.2.1.1.

- ACTION 17 With less than the Minimum Channels OPERABLE, operations may continue provided the containment purge and exhaust valves are maintained closed.
- ACTION 18 With the number of OPERABLE Channels one less than the Total Number of Channels, restore the inoperable channel to OPERABLE status within 48 hours or be in at least HOT STANDBY within the next 6 hours and in COLD SHUTDOWN within the following 30 hours.

3/4 3-21

Amendment No. 60

		<u>She mueu y</u>
ACTION 19 -	Number of Channels, STARTUP	Channels one less than the Total and/or POWER OPERATION may ing conditions are satisfied:
	a. The inoperable channel condition within 1 hour 6	is placed in the tripped
	b. The Minimum Channels O	PERABLE requirements is met;
THE INC	perague however, one additionation to 2 hours for surveil	t channel may be bypassed for up lance testing per Specification
	4.3.2.1.1	OF OTHER CHANNELS
E	NGINEERED SAFETY FEATURES INTI	ERLOCKS
<u>DESIGNATION</u>	CONDITION AND SETPOINT	FUNCTION
P-11	With 2 of 3 pressurizer	P-11 prevents or defeats
	pressure channels \geq 1925	manual block of safety
	psig.	injection actuation on
		low pressurizer
		pressure.
P-12	With 3 of 4 Tavg channels	P-12 prevents or defeats
	\geq 545°F.	manual block of safety
		injection actuation high
		steam line flow and low
		steam line pressure.
	With 2 of 4 Tavg channels	Allows manual block of
	< 541°F.	safety injection
		actuation on high steam
		line flow and low steam
		line pressure. Causes
		steam line isolation on
		high steam flow. Affects
	RESTORE THE INOPERABLE CHAWA TO OPERABLE STATUS WITHIN (HOULS O.G.)	^{EL} steam dump blocks.
ACTION 20 -	With the number of OPERABLE	channels one less than the Total t least HOT STANDBY within ₄ 6
		HUTDOWN within the following)
		may be bypassed for up to (+ hours
	for surveillance testing; ρ_i	
		HAR CHANNEL IS OPERABLE.
ACTION 21 -	With the number of OPERABLE	
		operation may proceed provided
	that either:	
	a. The inoperable channel 72 hours, or	is restored to OPERABLE within
	expected to be out of s the inoperable channel Start Circuit of the Au	Generator Feedwater Pump is service for more than 72 hours, is jumpered so as to enable the uxiliary Feedwater Pumps upon the n Generator Feedwater Pump.
ACTION 22 -		channels relating directly with liary feedwater pumps, the ACTIONs
		Brondmant No. EC

1

of

SALEM - UNIT 1

.

Amendment No. 56


FUNCTIONAL UNIT	CHANNEL <u>CHECK</u>	CHANNEL CALIBRATION	CHANNEL FUNCTIONAL <u>TEST</u>	MODES IN WHICH SURVEILLANCE <u>REQUIRED</u>
1. SAFETY INJECTION, TURBINE TRIP AN FEEDWATER ISOLATION	ND			
a. Manual Initiation	NA	NA	R	1, 2, 3, 4
b. Automatic Actuation Logic	NA	NA	M(2)	1, 2, 3, 4
c. Containment Pressure-High	S	R	Q ** (3)	1, 2, 3
d. Pressurizer PressureLow	S	R	Q ∦ -	1, 2, 3
e. Differential Pressure Between Steam LinesHigh	n S	R	Q #	1, 2, 3
f. Steam Flow in Two Steam Line High Coincident with TavgLa Low or Steam Line Pressure-La		R	Q **	1, 2, 3
2. CONTAINMENT SPRAY				
a. Manual Initiation	NA	NA	R	1, 2, 3, 4
b. Automatic Actuation Logic	NA	NA	M(2)	1, 2, 3, 4
c. Containment PressureHigh-H	igh S	R	Q 11 (3)	1, 2, 3

SALEM - UNIT 1

3/4 3-3la

FUNC	<u>:TIOI</u>	NAL	UNIT	CHANNEL <u>CHECK</u>	CHANNEL CALIBRATION	CHANNEL FUNCTIONAL <u>TEST</u>	MODES IN WHICH SURVEILLANCE <u>REQUIRED</u>
3.	COI	NTAI	NMENT ISOLATION				
	a.	Pha	se "A" Isolation				
		1.	Manual	NA	NA	R	1, 2, 3, 4
		2.	From Safety Injection Automatic Actuation Logic	NA	NA	M(2)	1, 2, 3, 4
	b.	Pha	se "B" Isolation				
		1.	Manual	NA	NA	R	1, 2, 3, 4
		2.	Automatic Actuation Logic	NA	NA	M(2)	1, 2, 3, 4
		3.	Containment Pressure High-High	S	R	Q **(3)	1, 2, 3
	c.	Con	tainment Ventilation Isolation	ı			
		1.	Manual	NA	NA	R	1, 2, 3, 4
		2.	Automatic Actuation Logic	NA	NA	M(2)	1, 2, 3, 4
		3.	Containment Radioactivity High	Per tabl	e 4.3-3		

FUN		NAL UNIT	CHANNEL <u>CHECK</u>	CHANNEL CALIBRATION	CHANNEL FUNCTIONAL <u>TEST</u>	MODES IN WHICH SURVEILLANCE <u>REQUIRED</u>
4.	STE	AM LINE ISOLATION				
	a.	Manual	NA	NA	R	1, 2, 3
	b.	Automatic Actuation Logic	NA	NA	M(2)	1, 2, 3
	c.	Containment Pressure High-High	S	R	Q ₩(3)	1, 2, 3
·	d.	Steam Flow in Two Steam LinesHigh Coincident with TavgLow or Steam Line PressureLow	S	R	Q #	1, 2, 3
5.	TUR	BINE TRIP AND FEEDWATER ISOLATION	N			
	a.	Steam Generator Water LevelHigh-High	S	R	Q #	1, 2, 3
6.		FEGUARDS EQUIPMENT NTROL SYSTEM (SEC) LOGIC				
	a.	Inputs	NA	NA	м	1, 2, 3, 4
	b.	Logic, Timing and Outputs	NA	NA	M(1)	1, 2, 3, 4
7.	UNE	DERVOLTAGE, VITAL BUS				
	a.	Loss of Voltage	S	R	м	1, 2, 3
	b.	Sustained Degraded Voltage	S	R	м	1, 2, 3

FUNCTIONAL UNIT	CHANNEL <u>CHECK</u>	CHANNEL CALIBRATION	CHANNEL FUNCTIONAL <u>TEST</u>	MODES IN WHICH SURVEILLANCE <u>REQUIRED</u>
8. AUXILIARY FEEDWAT	ER			
a. Automatic Acto	lation Logic NA	NA	M(2)	1, 2, 3
b. Manual Initia	tion NA	NA	M(4)	1, 2, 3
c. Steam Generato LevelLow-Low		R	Q 11	1, 2, 3
d. Undervoltage	- RCP S	R	Q **(2)	1, 2
e. S.I.	See 1 al requirer	oove (All S.I. surve ments)	eillance	
f. Emergency Trij Generator Fee		NA	R	1
g. Station Black	out See 6b a	and 7 above (SEC and	d U/V Vital Bus)	

ATTACHMENT A3

Markup of Salem Unit 1 Technical Specification 3/4.3.1 and 3/4.3.2 Bases

.

INSERT 1:

New Bases Paragraph #1 (Add to the existing paragraph).

... and sufficient redundancy is maintained to permit a channel to be out of service for testing or maintenance consistent with maintaining an appropriate level of reliability of the Reactor Protection and Engineered Safety Features instrumentation and, 3) sufficient system functions capability is available from diverse parameters.

INSERT 2:

New Bases Paragraph #2 (Add to existing paragraph).

Specified surveillance intervals and surveillance and maintenance outage times have been determined in accordance with WCAP-10271, "Evaluation of Surveillance Frequencies and Out of Service Times for the Reactor Protection Instrumentation System," and Supplements to that report. Surveillance intervals and out of service times were determined based on maintaining an appropriate level of reliability of the Reactor Protection System and Engineered Safety Features instrumentation.

3/4.3 INSTRUMENTATION

BASES

3/4.3.1 and 3/4.3.2 PROTECTIVE AND ENGINEERED SAFETY FEATURES (ESF) INSTRUMENTATION

The OPERABILITY of the protective and ESF instrumentation systems and interlocks ensure that 1) the associated ESF action and/or reactor trip will be initiated when the parameter monitored by each channel or combination thereof exceeds its setpoint, 2) the specified coincidence logic is maintained, 3) sufficient redundancy is maintained to permit a channel to be out of service for testing or maintenance, and 4) sufficient system functional capability is available for protective and ESF purposes from diverse parameters.

The OPERABILITY of these systems is required to provide the overall reliability, redundance and diversity assumed available in the facility design for the protection and mitigation of accident and transient conditions. The integrated operation of each of these systems is consistent with the assumptions used in the accident analyses.

The surveillance requirements specified for these systems ensure that the overall system functional capability is maintained comparable to the original design standards. The periodic surveillance tests performed at the minimum frequencies are sufficient to demonstrate this capability.

ADD NEW /

ADD NEW

INSERT 1

The measurement of response time at the specified frequencies provides assurance that the protective and ESF action function associated with each channel is completed within the time limit assumed in the accident analyses. No credit was taken in the analyses for those channels with response times indicated as not applicable.

Response time may be demonstrated by any series of sequential, overlapping or total channel test measurements provided that such tests demonstrate the total channel response time as defined. Sensor response time verification may be demonstrated by either 1) in place, onsite or offsite test measurements or 2) utilizing replacement sensors with certified response times.

3/4.3.3 MONITORING INSTRUMENTATION

3/4.3.3.1 RADIATION MONITORING INSTRUMENTATION

The OPERABILITY of the radiation monitoring channels ensures that 1) the radiation levels are continually measured in the areas served

ATTACHMENT B1

Markup of Salem Unit 2 Technical Specification 3/4.3.1 -Reactor Trip System Instrumentation

, ,

ATTACHMENT B1

Technical Specification 3.3.1 insert.

INSERT 1:

ACTION 10 - With the number of OPERABLE Channels one less than the Minimum Channels OPERABLE requirement, restore the inoperable channel to OPERABLE status within 6 hours or be in at least HOT STANDBY in the next 6 hours; however, one channel may be bypassed for up to 4 hours for surveillance testing per Specification 4.3.1.1, provided the other channel is OPERABLE.

REACTOR TRIP SYSTEM INSTRUMENTATION

FUNC	TIONAL UNIT	TOTAL NUMBER OF CHANNELS	CHANNELS TO TRIP	MINIMUM CHANNELS <u>OPERABLE</u>	APPLICABLE MODES	ACTION	
11.	Pressurizer Water LevelHigh	3	2	2	1, 2	7#	6 #
12.	Loss of Flow - Single Loop (Above P-8)	3/100p	2/loop in any oper- ating loop	2/loop in each oper- ating loop	1	-7#-	6±
13.	Loss of Flow - Two Loops (Above P-7 and below P-8)	3/100p	2/loop in two oper- ating loops	2/loop in each oper- ating loop	1	7#	6#
14.	Steam Generator Water LevelLow-Low	3/100p	2/loop in any oper- ating loops	2/loop in each oper- ating loop	1, 2	-7#-	6#
15.	Steam/Feedwater Flow Mismatch and Low Steam Generator Water Level	2/loop-level and 2/loop-flow mismatch	<pre>l/loop-level coincident with l/loop-flow mismatch in same loop</pre>	<pre>1/loop-level and 2/loop-flow mismatch or 2/loop-level and 1/loop-flow mismatch</pre>		-7# -	6#
16.	Undervoltage-Reactor Coolant Pumps	4-1/bus	1/2 twice	4	1	6	
17.	Underfrequency-Reactor Coolant Pumps	4-1/bus	1/2 twice	4	1	6	

SALEM - UNIT 2

3/4 3-3

Amendment No. 110

REACTOR TRIP SYSTEM INSTRUMENTATION

FUNCTIONAL UNIT	TOTAL NUMBER OF CHANNELS	CHANNELS <u>TO TRIP</u>	MINIMUM CHANNELS <u>OPERABLE</u>	APPLICABLE MODES	ACTION	
18. Turbine Trip						
a. Low Autostop Oil Pressure	3	2	2	1	7#- 6#	
b. Turbine Stop Valve Closure	4	4	4	1	7# -6#	1
19. Safety Injection Input from ESF	2	1	2	1,2	+ 10	I
20. Reactor Coolant Pump Breaker Position Trip (above P-7)	1/breaker	2	l/breaker per opera- ting loop	1	11	
21. Reactor Trip Breakers	2	1	2	1, 2 3*,4*,5*	1 <i>###,</i> 14 13	
22. Automatic Trip Logic	2	1	2	1, 2 3*,4*,5*	1 /0 13	ł

,

.

TABLE NOTATION

- * With the reactor trip system breakers in the closed position and the control rod drive system capable of rod withdrawal.
- ** The channel(s) associated with the protective functions derived from the out of service Reactor Coolant Loop shall be placed in the tripped condition.
- # The provisions of Specification 3.0.4 are not applicable.
- ## High voltage to detector may be de-energized above P-6.
- ### If ACTION Statement 1 is entered as a result of Reactor Trip Breaker (RTB) or Reactor Trip Bypass Breaker (RTBB) maintenance testing results exceeding the following acceptance criteria, NRC reporting shall be made in accordance with Specification 6.9.1.9:
 - 1. A RTB or RTBB trip failure during any surveillance test with less then or equal to 300 grams of weight added to the breaker trip bar.
 - A RTB or RTBB time response failure that results in the overall reactor trip system time response exceeding the Technical Specification limit.

ACTION STATEMENTS

- ACTION 1 With the number of channels OPERABLE one less than required by the Minimum Channels OPERABLE requirement, be in HOT STANDBY within 6 hours; however, one channel may be bypassed for up to 2 hours for surveillance testing per Specification 4.3.1.1 provided the other channel is OPERABLE.
- ACTION 2 With the number of OPERABLE channels one less than the Total Number of Channels, STARTUP and/or POWER OPERATION may proceed provided the following conditions are satisfied:
 - a. The inoperable channel is placed in the tripped condition within 1 hour.

b. The Minimum Channels OPERABLE requirement is met; however, THE INOPERABLE one-additional channel may be bypassed for up to 2-hours for surveillance testing per Specification 4.3.1.1.

- OF DIALE CHANNELS
- c. Either, THERMAL POWER is restricted to \leq 75% of RATED THERMAL and the Power Range, Neutron Flux trip setpoint is reduced to \leq 85% of RATED THERMAL POWER within 4 hours; or, the QUADRANT POWER TILT RATIO is monitored at least once per 12 hours.
- d. The QUADRANT POWER TILT RATIO, as indicated by the remaining three detectors, is verified consistent with the normalized symmetric power distribution obtained by using the movable in-core detectors in the four pairs of symmetric thimble locations at least once per 12 hours when THERMAL POWER is greater than 75% of RATED THERMAL POWER.

i.

- With the number of channels OPERABLE one less than required by the Minimum Channels OPERABLE requirement and with the THERMAL POWER level:
 - a. Below the P-6 (Block of Source Range Reactor Trip) setpoint, restore the inoperable channel to OPERABLE status prior to increasing THERMAL POWER above the P-6 Setpoint.
 - b. Above the P-6 (Block of Source Reactor Trip) setpoint but below 5% of RATED THERMAL POWER, restore the inoperable channel to OPERABLE status prior to increasing THERMAL POWER above 5% of RATED THERMAL POWER.
 - c. Above 5% of RATED THERMAL POWER, POWER OPERATION may continue.
 - d. Above 10% of RATED THERMAL POWER, the provisions of Specification 3.0.3 are not applicable.
- ACTION 4 With the number of channels OPERABLE one less than required by the Minimum Channels OPERABLE requirement and with the THERMAL POWER level:
 - a. Below the P-6 (Block of Source Range Reactor Trip) setpoint, restore the inoperable channel to OPERABLE status prior to increasing THERMAL POWER above the P-6 Setpoint.
 - b. Above the P-6 (Block of Source Range Reactor Trip) setpoint, operation may continue.
- ACTION 5 With the number of channels OPERABLE one less than required by the Minimum Channels OPERABLE requirement, verify compliance with the SHUTDOWN MARGIN requirements of Specification 3.1.1.1 or 3.1.1.2, as applicable, within 1 hour and at least once per 12 hours thereafter.
- ACTION 6 With the number of OPERABLE channels one less than the Total Number of Channels, STARTUP and/or POWER OPERATION may proceed provided the following conditions are satisfied:
 - a. The inoperable channel is placed in the tripped condition within + hour.

b. The Minimum Channel OPERABLE requirement is met; THE INORELABLE however, one additional channel may be bypassed for up to 4 2 hours for surveillance testing per Specification 4.3.1.1.

ACTION 7 - With the number of OPERABLE channels one less than the Total Number of Channels, STARTUP and/or POWER OPERATION may NCT USED proceed until performance of the next required CHANNEL FUNCTIONAL TEST provided the inoperable channel is placed in the tripped condition with 1 hour. ACTION 8 - Not USED

ACTION 8 - , SALEM - UNIT 2

Amendment No. 28

1

ACTION 9 - With a channel associated with an operating loop inoperable, restore the inoperable channel to OPERABLE status within 2 hours or be in HOT STANDBY within the next 6 hours; however, one channel associated with an operating loop may be bypassed for up to 2 hours for surveillance testing per Specification 4.3.1.1.

ACTION 10 - Deleted.

- ACTION 11 With less than the Minimum Number of Channels OPERABLE, operation may continue provided the inoperable channel is placed in the tripped condition within $\frac{1}{2}$ hour.
- ACTION 12 With the number of channels OPERABLE one less than required by the Minimum Channels OPERABLE requirement, restore the inoperable channel to OPERABLE status within 48 hours or be in HOT STANDBY within the next 6 hours and/or open the reactor trip breakers.
- ACTION 13 With the number of OPERABLE channels one less than the Minimum Channels OPERABLE requirement, restore the inoperable channel to OPERABLE status within 48 hours or open the reactor trip breakers within the next hour.
- ACTION 14 With one of the diverse trip features (Undervoltage or shunt trip attachment) inoperable, restore it to OPERABLE status within 48 hours or declare the breaker inoperable and be in at least HOT STANDBY within 6 hours. The breaker shall not be bypassed while one of the diverse trip features is inoperable except for the time required for performing maintenance to restore the breaker to OPERABLE status.

REACTOR TRIP SYSTEM INTERLOCKS

DESIGNATION	CONDITION AND SETPOINT	FUNCTION
P-6	With 2 of 2 Intermediate Range Neutron Flux Channels < 6x10-11 amps.	P-6 prevents or defeats the manual block of source range reactor trip.
P-7	With 2 of 4 Power Range Neutron Flux Channels ≥ 11% of RATED THERMAL POWER or 1 of 2 Turbine impulse chamber pressure channels ≥ a pressure equivalent to 11% of RATED THERMAL POWER.	

Amendment No. 74

TABLE 4.3-1

REACTOR TRIP SYSTEM INSTRUMENTATION SURVEILLANCE REQUIREMENTS

FUNC	TIONAL UNIT	CHANNEL <u>CHECK</u>	CALIBRATION	CHANNEL FUNCTIONAL TEST	MODES IN WHICH SURVEILLANCE REQUIRED
1.	Manual Reactor Trip Switch	N.A.	N.A.	S/U(9)	N.A.
2.	Power Range, Neutron Flux	S	D(2), M(3) and Q(6)	Q **	1, 2
3.	Power Range, Neutron Flux, High Positive Rate	N.A.	R(6)	Q ¥-	1, 2
4.	Power Range, Neutron Flux, High Negative Rate	N.A.	R(6)	Q **	1, 2
5.	Intermediate Range, Neutron Flux	S	R(6)	S/U(1)	1, 2 and *
6.	Source Range, Neutron Flux	S(7)	R(6)	$Q \rightarrow M$ and $S/U(1)$	2, 3, 4, 5 and *
7.	Overtemperature ΔT	S	R	Q M	1, 2
8.	Overpower ΔT ,	S	R	Q *	1, 2
9.	Pressurizer PressureLow	S	R	Q **	1, 2
10.	Pressurizer PressureHigh	S	R	Q - M -	1, 2
11.	Pressurizer Water LevelHigh	S	R	Q 🛨	1, 2
12.	Loss of Flow - Single Loop	S	R	Q **	1

......

REACTOR TRIP SYSTEM INSTRUMENTATION SURVEILLANCE REQUIREMENTS

FUNCTIONAL UNIT	CHANNEL CHECK	CALIBRATION	CHANNEL FUNCTIONAL TEST	MODES IN WHICH SURVEILLANCE REQUIRED
13. Loss of Flow - Two Loops	S	R	N.A.	1
<pre>14. Steam Generator Water Level Low-Low</pre>	S	R	н Ф	1, 2
15. Steam/Feedwater Flow Mismatch & Low Steam Generator Water Level	S	R	* Q	1, 2
16. Undervoltage - Reactor Coolant Pumps	N.A.	R	₩- Q	1
17. Underfrequency - Reactor Coolant Pumps	N.A.	R	* Q	1
18. Turbine Trip				
a. Low Autostop Oil Pressure	N.A.	N.A.	S/U(1)	N.A.
b. Turbine Stop Valve Closure	N.A.	N.A.	S/U(1)	N.A.
19. Safety Injection Input from ESF	N.A.	N.A.	M(4)(5)	1, 2
20. Reactor Coolant Pump Breaker Position Trip	N.A.	N.A.	R	N.A.
21. Reactor Trip Breaker	N.A.	N.A.	S/U(10), M(11,13), SA(12,13) and R(14)	1, 2 and *
22. Automatic Trip Logic	N.A.	N.A.	M(5)	1, 2 and $*$

SALEM UNIT 2

3/4 3-12

Amendment No. 103

NOTATION

With the reactor trip system breakers closed and the control rod drive system capable of rod withdrawal.

- If not performed in previous $\frac{31}{7}$ days. (1) -
- Heat balance only, above 15% of RATED THERMAL POWER. (2) -
- Compare incore to excore axial offset above 15% of RATED THERMAL (3) POWER. Recalibrate if absolute difference \geq 3 percent.
- Manual SSPS functional input check every 18 months. (4) -
- Each train or logic channel shall be tested at least every 62 days (5) on a STAGGERED TEST BASIS.
- Neutron detectors may be excluded from CHANNEL CALIBRATION. (6)
- Below P-6 (Block of Source Range Reactor Trip) setpoint. (7) -
- (8) -Deleted
- If not performed in the previous 24 hours, conduct a functional test (9) of the Manual Reactor Trip Switches to verify the Manual Reactor Trip Switch and the independent operation of the U.V. and shunt trip wiring.
- If not performed in the previous 24 hours, conduct a functional test (10) of:
 - Reactor Trip Breaker independent operation of U.V. and Shunt Trip (via SSPS)
 - Reactor Trip Breaker Shunt Trip (via manual pushbutton controls)
- Perform a functional test of: (11) -
 - Reactor Trip Breaker independent operation of U.V. Trip and Shunt Trip (via SSPS) and conduct response time testing of U.V. and Shunt Trip/Breakers (event recorders)
 - Reactor Trip Breaker Shunt Trip (via manual pushbutton . controls)
- Perform periodic maintenance on Reactor Trip Breakers and Reactor (12) -Trip Bypass Breakers semiannually as follows:
 - response time testing, (3 times) (visicorder) trend data a.
 - trip bar lift force measurements b.
 - c. U.V. output force measurement
 - d. dropout voltage check

ATTACHMENT B2

Markup of Salem Unit 2 Technical Specification 3/4.3.2 -Engineered Safety Features Actuation System Instrumentation

SALEM UNIT 2

3/4

3-15

ENGINEERED SAFETY FEATURE ACTUATION SYSTEM INSTRUMENTATION

		TOTAL NO.	CHANNELS	MINIMUM CHANNELS	APPLICABLE		
FUNCTI	IONAL UNIT	OF CHANNELS	TO TRIP	OPERABLE	MODES	ACTION	
	AFETY INJECTION, TURBINE TRIP ND FEEDWATER ISOLATION						
a.	Manual Initiation	2	1	2	1, 2, 3, 4	18	
b.	Automatic Actuation Logic	2	1	2	1, 2, 3, 4	13	
c.	. Containment Pressure-High	3	2	2	1, 2, 3	-14* 19*	1
d.	Pressurizer Pressure-Low	3	2	2	1, 2, 3#	14* 19 *	
е.	. Differential Pressure Between Steam Lines - High				1, 2, 3##		
	Four Loops Operating	3/steam line	2/steam line any steam line	e 2/steam	line	-14* 19 ^{&}	1

FUNCTIONAL UNIT	TOTAL NO. <u>OF CHANNELS</u>	MINIMUM CHANNELS CHANNELS TO TRIP OPERABLE	APPLICABLE MODES	ACTION
f. Steam Flow in Two Steam Lines-High			1, 2, 3##	
Four Loops Operating	2/steam line	1/steam line 1/steam li any 2 steam lines	ne	14* 19 <i>*</i>
COINCIDENT WITH EITHER				
TavgLow-Low			1, 2, 3##	
Four Loops Operating	1 T _{av} g/loop	1 T g any 2 1 T any avg loops 3 loops		14* 19 k

SALEM UNIT 2

FUN	ICTIC	DNAL UNIT	TOTAL NO. OF CHANNELS	CHANNELS TO TRIP	MINIMUM CHANNELS <u>OPERABLE</u>	APPLICABLE MODES	ACTION
		OR, COINCIDENT WITH					
		Steam Line Pressure-Low				1, 2, 3##	
		Four Loops Operating	1 pressure/ loop	1 pressures any 2 loops	l pressure any 3 loops		14** 19 7
2.	CON	NTAINMENT SPRAY					
	a.	Manual	2 sets of 2	1 set of 2	2 sets of 2	1, 2, 3, 4	18
	b.	Automatic Actuation Logic	2	1	2	1, 2, 3, 4	13
	с.	Containment PressureHigh-High	4	2	3	1, 2, 3	16
3.	CON	NTAINMENT ISOLATION					
	a.	Phase "A" Isolation					
		1) Manual	2	1	2	1, 2, 3, 4	18
		2) From Safety Injection Automatic Actuation Logic	2	1	2	1, 2, 3, 4	13

FUN	CTIO	NAL UNIT	TOTAL NO. OF CHANNELS	CHANNELS TO TRIP	MINIMUM CHANNELS <u>OPERABLE</u>	APPLICABLE MODES	ACTION
4.	STE	AM LINE ISOLATION					
	a.	Manual	2/steam line	1/steam line	1/operating steam line	1, 2, 3	21
	b.	Automatic Actuation Logic	2***	1	2	1, 2, 3	20
	c.	Containment PressureHigh-High	4	2	3	1, 2, 3	16
	d.	Steam Flow in Two Steam LinesHi	.gh				
		Four Loops Operating	2/steam line	l/steam line any 2 steam lines	l/steam line		-14*- 19 *
		COINCIDENT WITH EITHER TLow-Low avg				1, 2, 3##	
		Four Loops Operating	1 T _{avg} /loop	l T in avg any ² loops	1 T in ayg any 3 loops		14** 19 *

*** The automatic actuation logic includes two redundant solenoid operated vent valves for each Main Steam Isolation Valve. One vent valve on any one Main Steam Isolation Valve may be isolated without affecting the function of the automatic actuation logic provided the remaining seven solenoid vent valves remain operable. The isolated MSIV vent valve shall be returned to OPERABLE status upon the first entry into MODE 5 following determination that the vent valve is inoperable. For any condition where more than one of the eight solenoid vent valves are inoperable, entry into ACTION 20 is required.

<u>FUN</u>	CTIONAL UNIT Three Loops	TOTAL NO. <u>OF CHANNELS</u> 1 Tavg/opera- ting loop	CHANNELS <u>TO TRIP</u> 1### Tavg in any operating loop	MINIMUM CHANNELS <u>OPERABLE</u> 1 Tavg in any two operating loops	APPLICABLE MODES	<u>ACTION</u> 15
	OR, COINCIDENT WITH					
	Steam Line Pressure-Low				1, 2, 3##	
	Four Loops Operating	l pressure/ loop	l pressure any 2 loops	l pressure any 3 loops		-14* 19*
	Three Loops Operating	l pressure/ operating loop	l ### pres- sure in any operating loop	l pressure in any 2 operatin loops	ıg	15
5.	TURBINE TRIP & FEEDWATER ISOLATION					
	a. Steam Generator Water level High-High	3/100p	2/loop in any opera- ting loop	2/loop in each opera- ting loop	1, 2, 3	-14* 9*
6.	SAFEGUARDS EQUIPMENT CONTROL SYSTEM	(SEC) 3	2	3	1, 2, 3, 4	13
7.	UNDERVOLTAGE, VITAL BUS					
	a. Loss of Voltage	1/bus	2	3	1, 2, 3	14*
	b. Sustained Degraded Voltage	3/bus	2/bus	3/bus	1, 2, 3	14*

SALEM UNIT

N

3/4

3-21

Amendment No. 69

FUN	CTIONAL UNIT	TOTAL NO. <u>OF CHANNELS</u>	CHANNELS <u>TO TRIP</u>	MINIMUM CHANNELS OPERABLE	APPLICABLE MODES	ACTION
8.	AUXILIARY FEEDWATER					
	a. Automatic Actuation Logic**	2	1	2	1, 2, 3	20
	b. Manual Initiation	1/pump	1/pump	1/pump	1, 2, 3	23
	c. Stm. Gen. Water Level- Low-Low					
	i. Start Motor Driven Pumps	3/stm. gen.	2/stm. gen. any stm. gen	2 stm. gen. 1.	1, 2, 3	-14* 9*
	ii. Start Turbine Driven Pumps	3/stm. gen.	2/stm. gen. any 2 stm. gen.	2 stm. gen.	1, 2, 3	- 14* 9*
	d. Undervoltage - RCP Start Turbine - Driven Pump	4-1/bus	1/2 x 2	3	1, 2	19
	e. S.I. Start Motor-Driven Pumps	See 1 above (A	ll S.I. initia	ting function	s and requirement	s)
	f. Trip of Main Feedwater Pumps Start Motor- Driven Pumps	2/pump	1/pump	1/pump	1, 2	22*
9.	Semiautomatic Transfer to Recirculation					· .
	a. RWST Level Low b. Automatic Actuation Logic	4 2	2 1	3 2	1, 2, 3 16 1, 2, 3 13	
**A	pplies to items c and d.					

This page effective prior to startup from the fifth refueling outage. Correction letter dated May 16, 1990.

TABLE 3.3-3 (Continued)

TABLE NOTATION

- # Trip function may be bypassed in this MODE below P-11 (Pressurizer Pressure Block of Safety Injection) setpoint.
- ## Trip function may be bypassed in this MODE below P-12 (Tavg Block of Safety Injection) setpoint.
- * The provisions of Specification 3.0.4 are not applicable.

ACTION STATEMENTS RESTORE THE INOPELABLE CHANNEL TO OPERABLE STATUS WITHIN & HOURS OR,

- ACTION 13 With the number of OPERABLE Channels one less than the Total Number of Channels, be in at least HOT STANDBY within 6 hours and in COLD SHUTDOWN within the following 30 hours; however, one channel may be bypassed for up to 2 hours for THE NEXT surveillance testing per Specification 4.3.2.1 provided the other channel is OPERABLE.
- ACTION 14 With the number of OPERABLE Channels one less than the Total Number of Channels, operation may proceed until performance of the next required CHANNEL FUNCTIONAL TEST, provided the inoperable channel is placed in the tripped condition within 1 hour.
- ACTION 15 With a channel associated with an operating loop inoperable, restore the inoperable channel to OPERABLE status within 2 hours or be in HOT SHUTDOWN within the following 12 hours; however, one channel associated with an operating loop may be bypassed for up to 2 hours for surveillance testing per Specification 4.3.2.1.
- ACTION 16 With the number of OPERABLE Channels one less than the Total Number of Channels, operation may proceed provided the inoperable channel is placed in the bypassed condition and the Minimum Channels OPERABLE requirement is demonstrated by CHANNEL CHECK within ‡ hour; one additional channel may be bypassed for up to 2⁴ hours⁵ for surveillance testing per Specification 4.3.2.1.
- ACTION 17 With less than the Minimum Channels OPERABLE, operation may continue provided the containment purge and exhaust valves are maintained closed.
- ACTION 18 With the number of OPERABLE Channels one less than the Total Number of Channels, restore the inoperable channel to OPERABLE status within 48 hours or be in at least HOT STANDBY within the next 6 hours and in COLD SHUTDOWN within the following 30 hours.

、	TABLE 3.3-3 (Continue	<u>ed)</u>
ACTION 19 -	With the number of OPERABLE Channe Number of Channels, STARTUP and/or proceed provided the following com	r POWER OPERATION may
	a. The inoperable channel is placed condition within $\frac{1}{6}$ hour.	aced in the tripped
THE INOPE	b. The Minimum Channels OPERABLI RAGLE however, one additional channels to 2 ⁴ hours for surveillance to 4.3.2.1.	nel may be bypassed for up
DESIGNATION	ENGINEERED SAFETY FEATURES	INTERLOCKS FUNCTION
P-11	With 2 of 3 pressurizer pressure channels ≥ 1925 psig.	P-11 prevents or defeats manual block of safety injection actuation on low pressurizer pressure.
P-12	With 3 of 4 Tavg channels ≥ 545°F.	P-12 prevents or defeats manual block of safety injection actuation high steam line flow and low steam line pressure.
)	With 2 of 4 Tavg channels < 541°F. RESTORE THE INOMALABLE CHANNEL	Allows manual block of safety injection actuation on high steam line flow and low steam line pressure. Causes steam line isolation on high steam flow. Affects
ACTION 20 -	TO OPERABLE STATUS WITHIN 6 HOURS OR, With the number of OPERABLE channel Number of Channels, be in at least and in at least HOT SHUTDOWN with however, one channel may be bypass surveillance testing provided the	t HOT STANDBY within $\sqrt[6]{6}$ hours in the following 6 hours; sed for up to $\frac{1}{2}$ hour for
ACTION 21 -	With the number of OPERABLE channed Number of Channels, restore the in OPERABLE status within 48 hours of within 6 hours and in HOT SHUTDOWN hours.	noperable channel to r be in at least HOT STANDBY
ACTION 22 -	With the number of OPERABLE channed Minimum Channels OPERABLE, operat performance of the next required of	ion may proceed until
ACTION 23 -	With the Number of OPERABLE channed the number of OPERABLE auxiliary of L.C.O. 3.7.1.2 apply.	

SALEM - UNIT 2

• • •

Amendment No. 24

.

FUN	CTIC	NAL UNIT	CHANNEL <u>CHECK</u>	CHANNEL CALIBRATION		CHANNEL UNCTIONAL TEST	SUR	S IN WHICH VEILLANCE QUIRED	
1.		ETY INJECTION, TURBINE TRIP AND DWATER ISOLATION							
	a.	Manual Initiation	N.A.	N.A.		R	1,	2, 3, 4	
	b.	Automatic Actuation Logic	N.A.	N.A.		M(2)	1,	2, 3, 4	
	c.	Containment PressureHigh	S	R	Q	₩(3)	1,	2, 3	
	d.	Pressurizer PressureLow	S	R	Q	₩	1,	2, 3	
	e.	Differential Pressure Between Steam LinesHigh	S	R	Q	H	1,	2, 3	
	f.	Steam Flow in Two Steam Lines- High Coincident with TavgLow Low or Steam Line PressureLow	-	R	Q	M	1,	2, 3	
2.	CON	TAINMENT SPRAY							
	a.	Manual Initiation	N.A.	N.A.		R	1,	2, 3, 4	
	b.	Automatic Actuation Logic	N.A.	N.A.		M(2)	1,	2, 3, 4	
	c.	Containment PressureHigh-Hig	h S	R	Q	₩ (3)	1,	2, 3	

FUN		ONAL UNIT	CHANNEL <u>CHECK</u>	CHANNEL CALIBRATION	CHANNEL FUNCTIONAL TEST	MODES IN WHICH SURVEILLANCE REQUIRED
3.	CON	NTAINMENT ISOLATION				
	a.	Phase "A" Isolation 1) Manual	N.A.	N.A.	R	1, 2, 3, 4
		2) From Safety Injection Automatic Actuation Logic	N.A.	N.A.	M(2)	1, 2, 3, 4
	b.	Phase "B" Isolation				
		1) Manual	N.A.	N.A.	R	1, 2, 3, 4
		2) Automatic Actuation Logic	N.A.	N.A.	M(2)	1, 2, 3, 4
		3) Containment Pressure High-High	S	R	Q 11(3)	1, 2, 3
	c.	Containment Ventilation Isolat:	ion			
		1) Manual	N.A.	N.A.	R	1, 2, 3, 4
		2) Automatic Actuation Logic	N.A.	N.A.	M(2)	1, 2, 3, 4
		3) Containment Radioactivity ·	Per tab	le 4.3-3		

High

<u>FUN</u>	CTIC	DNAL UNIT	CHANNEL <u>CHECK</u>	CHANNEL CALIBRATION		CHANNEL FUNCTIONAL TEST		DES IN WHIC URVEILLANCE REQUIRED	H
4.	STE	CAM LINE ISOLATION							
	a.	Manual	N.A.	N.A.		R	1,	2, 3	
	b.	Automatic Actuation Logic	N.A.	N.A.		M(2)	1,	2, 3	
	c.	Containment Pressure High-High	S	R	ଦ	-M (3)	1,	2, 3	ł
	d.	Steam Flow in Two Steam LinesHigh Coincident with TavgLow or Steam Line PressureLow	S	R	Q	-M	1,	2, 3	I
5.	TUF	RBINE TRIP AND FEEDWATER ISOLATION							
	a.	Steam Generator Water LevelHigh-High	S	R	Q	- M -	1,	2, 3	l
6.		FEGUARDS EQUIPMENT NTROL SYSTEM (SEC) LOGIC							
	a.		N.A.	N.A.		м	1,	2, 3, 4	
	b.	Logic, Timing and Outputs	N.A.	N.A.		M(1)	1,	2, 3, 4	
7.	UNE	DERVOLTAGE, VITAL BUS							
		Loss of Voltage	S	R		м	1,	2, 3	
	b.	Sustained Degraded Voltage	S	R		м	1,	2, 3	

.

FU	NCTIONAL UNIT	CHANNEL <u>CHECK</u>	CHANNEL <u>CALIBRATION</u>	CHANNEL FUNCTIONAL TEST	MODES IN WHICH SURVEILLANCE REQUIRED
8.	AUXILIARY FEEDWATER				
	a. Automatic Actuation Logic	N.A.	N.A.	M(2)	1, 2, 3
	b. Manual Initiation	N.A.	N.A.	M(5)	1, 2, 3
	c. Steam Generator Water LevelLow-Low	S	R	Q **	1, 2, 3
	d. Undervoltage - RCP	S	R	Q #	1, 2
	e. S.I.	See 1 ab requirem	ove (All S.I. sur ents)	veillance	
	f. Trip of Main Feedwater Pumps	N.A.	N.A.	S/U(4)	1, 2
9.	SEMIAUTOMATIC TRANSFER TO RECIRCULATION				
	a. RWST Low Level	S	R	Q *	1, 2, 3
	b. Automatic Initiation Logic	N.A.	N.A.	N.A.	1, 2, 3, 4

SALEM UNIT

Ν

3-36

Markup of Salem Unit 2 Technical Specification 3/4.3.1 and 3/4.3.2 Bases.

÷.,

ATTACHMENT B3

INSERT 1:

New Bases Paragraph #1 (Add to the existing paragraph).

... and sufficient redundancy is maintained to permit a channel to be out of service for testing or maintenance consistent with maintaining an appropriate level of reliability of the Reactor Protection and Engineered Safety Features instrumentation and, 3) sufficient system functions capability is available from diverse parameters.

INSERT 2:

New Bases Paragraph #2 (Add to the existing paragraph).

Specified surveillance intervals and surveillance and maintenance outage times have been determined in accordance with WCAP-10271, "Evaluation of Surveillance Frequencies and Out of Service Times for the Reactor Protection Instrumentation System," and Supplements to that report. Surveillance intervals and out of service times were determined based on maintaining an appropriate level of reliability of the Reactor Protection System and Engineered Safety Features instrumentation.

3/4.3 INSTRUMENTATION

BASES

3/4.3.1 and 3/4.3.2 PROTECTIVE AND ENGINEERED SAFETY FEATURES (ESF) INSTRUMENTATION

The OPERABILITY of the protective and ESF instrumentation systems and interlocks ensure that 1) the associated ESF action and/or reactor trip will be initiated when the parameter monitored by each channel or combination thereof exceeds its setpoint, 2) the specified coincidence logic is maintained, 3)-sufficient-redundancy is maintained to permit a channel to be out-of service for testing or maintenance, and 4) sufficient system functional capability is available for protective and ESF purposes from diverse parameters.

The OPERABILITY of these systems is required to provide the overall reliability, redundance and diversity assumed available in the facility design for the protection and mitigation of accident and transient conditions. The integrated operation of each of these systems is consistent with the assumptions used in the accident analyses.

The surveillance requirements specified for these systems ensure that the overall system functional capability is maintained comparable to the original design standards. The periodic surveillance tests performed at the minimum frequencies are sufficient to demonstrate this capability.

ADD NEW INSERT 2

ADD NEW

INSERT 1

The measurement of response time at the specified frequencies provides assurance that the protective and ESF action function associated with each channel is completed within the time limit assumed in the accident analyses. No credit was taken in the analyses for those channels with response times indicated as not applicable.

Response time may be demonstrated by any series of sequential, overlapping or total channel test measurements provided that such tests demonstrate the total channel response time as defined. Sensor response time verification may be demonstrated by either 1) in place, onsite or offsite test measurements or 2) utilizing replacement sensors with certified response times.

3/4.3.3 MONITORING INSTRUMENTATION

3/4.3.3.1 RADIATION MONITORING INSTRUMENTATION

The OPERABILITY of the radiation monitoring channels ensures that 1) the radiation levels are continually measured in the areas served by the individual channels and 2) the alarm or automatic action is initiated when the radiation level trip setpoint is exceeded.