

Turkey Point Plant Comprehensive Post-Uprate

Comprehensive Post-Uprate Monitoring Report

Units 3 & 4 Uprate Project

March 31, 2016

TABLE OF CONTENTS

<u>Sec</u>	<u>tion</u>		<u>Page</u>
ES	EXECU	JTIVE SUMMARY	ES-1
1	INTRO	DDUCTION	
	1.1	Brief Overview of Automated Monitoring Network	1-1
		1.1.1 Groundwater	
		1.1.2 Surface Water	
		1.1.3 Meteorological	1-3
	1.2	Quarterly Water Quality Sampling	
	1.3	Ecological Monitoring	
	1.4	Hydrogeologic Assessment	
		1.4.1 Post-Uprate Hydrogeological Observations and Ext	
		CCS Water	1-5
		1.4.2 CCS Water and Salt Budget	
	1.5	Interceptor Ditch Operation	
	1.6	Data Quality Objectives and Acceptance Criteria	1-6
2	AUTON	MATED DATA COLLECTION	2-1
	2.1	Groundwater Quality	
		2.1.1 Instrumentation and Data Collection Methods	
		2.1.2 Results and Discussion	2-1
	2.2	Surface Water Quality	2-6
		2.2.1 Instrumentation and Data Collection Methods	2-6
		2.2.2 Results and Discussion	2-7
	2.3	Water Levels	
		2.3.1 Instrumentation and Data Collection Methods	2-13
		2.3.2 Results and Discussion	
	2.4	Meteorological Data	2-18
		2.4.1 Instrumentation and Data Collection Methods	
		2.4.2 Results and Discussion	2-19

Sec	<u>ction</u>		<u>Page</u>
3	QUAR	TERLY GROUNDWATER AND SURFACE WATER	
	SAMPI	LING	3-1
	3.1	Groundwater Quality	
		3.1.1 Sample Collection and Analysis	
		3.1.2 Results and Discussion	
	3.2	Surface Water Quality	
		3.2.1 Sample Collection and Analysis	
		3.2.2 Results and Discussion	
	3.3	Rainfall Sample Results	
		3.3.1 Sample Collection and Analysis	
		3.3.2 Results and Discussion	
	3.4	Evaporation Pans	3-18
		3.4.1 Sample Collection and Analysis	
		3.4.2 Results and Discussion	
4	ECOLO	OGICAL MONITORING	4-1
	4.1	Marsh, Mangroves, and Tree Islands	4-1
		4.1.1 Methods and Materials	4-2
		4.1.2 Results and Discussion	4-3
	4.2	Biscayne Bay	4-11
		4.2.1 Methods and Materials	
		4.2.2 Results and Discussion	4-14
5	HYDR	OGEOLOGICAL ASSESSMENT	5-1
	5.1	Biscayne Aquifer and Groundwater Responses	5-1
	5.2	Extent of CCS Water and Rate of Migration	5-2
	5.3	Water and Salt Balance Model	5-5
		5.3.1 Model Summary	5-6
		5.3.2 Model Calibration	
		5.3.3 Model Results and Discussion	5-8
6	INTER	RCEPTOR DITCH OPERATION	6-1
	6.1	Introduction	
	6.2	Operational or Structural Changes	
	6.3	Meteorological Conditions	6-2
	6.4	Water Quality and Water Level Results and Discussion	6-3
		6.4.1 Groundwater Levels	6-3
		6.4.2 Vertical Groundwater Temperature Profiles	6-4
		6.4.3 Vertical Groundwater Chloride Profiles	6-4

<u>Sec</u>	<u>tion</u>		<u>Page</u>
		6.4.4 Interceptor Ditch Operation and Transect Surface Levels	6-5
7		ARY AND INTERPRETATIONS	
	7.1	Groundwater	
	7.2	Surface Water	
	7.3		7-5
	7.4		
	7.5	Ecological	7-6
8	REFER	RENCES	8-1

<u>Section</u> <u>Page</u>

APPENDICES

- A Station Locations
- **B** Automated Station Probe Calibration Logs
- C Automated Water Quality and Water Level Qualifications
- D Non-Qualified Automated Water Quality and Stage Data Time Series Graphs
- **E U.S. Geologic Survey Induction Logs**
- F Plant Outages and Operational Data
- **G** Field Sampling Logs for Groundwater and Surface Water
- H Data Usability Summaries for Groundwater, Surface Water, Porewater, Evaporation Pan, and Rainfall Laboratory Results
- I Level IV Laboratory Results
- J Analytical Data Analysis
- **K** Ecological Calculations
- L Scientific and Common Names of Organisms Observed during Monitoring
- M Turkey Point Interceptor Ditch Monitoring Data

LIST OF TABLES

<u>Tabl</u>	<u>Fable</u>	
1.1-1	Summary of Annual Post Uprate Monitoring Efforts	1_10
1.1-2	Well Construction Summary	
1.2-1	Analytical Changes in Post-Uprate Monitoring	
2.1-1	Statistical Summary of Automated Groundwater Specific Conductance	
	(µS/cm)	
2.1-2	Statistical Summary of Automated Groundwater Temperature (°C)	
2.1-3 2.2-1	Statistical Summary of Automated Groundwater Salinity (PSS-78) Probe Types/Automated Measurements at Surface Water Stations for Post-	
2.2-2	Uprate Monitoring Period Statistical Summary of Automated Surface Water Specific Conductance	
	(µS/cm)	
2.2-3	Statistical Summary of Automated Surface Water Temperature (°C)	
2.2-4 2.4-1	Statistical Summary of Automated Surface Water Salinity (PSS-78)	2-27
	Station at TPM-1	2-28
2.4-2	Rainfall Recorded at the Meteorological Station TPM-1	2-29
2.4-3	Post-Uprate Monthly Rainfall Totals at TPM-1 (based on daily rainfall totals).	2-48
2.4-4	Monthly Rainfall in and around the CCS (in inches)	2-49
3.0-1	Groundwater and Surface Water Sampling Locations and Events	3-21
3.0-2	Analytes Measured in Groundwater, Surface Water, and the Cooling Canal System	3-22
3.1-1	Summary of Groundwater Analytical Results from the June 2013 Sampling Event	3-23
3.1-2	Summary of Groundwater Analytical Results from the September 2013	
3.1-3	Sampling Event	
0.4.4	Sampling Event	3-31
3.1-4	Summary of Groundwater Analytical Results from the March 2014 Sampling Event	3-35
3.1-5	Summary of Groundwater Analytical Results from the June 2014 Sampling	
	Event	3-39

<u>Table</u>	<u>e</u>	<u>Page</u>
3.1-6	Summary of Groundwater Analytical Results from the September 2014 Sampling Event	3-43
3.1-7	Summary of Groundwater Analytical Results from the December 2014 Sampling Event	3-47
3.1-8	Summary of Groundwater Analytical Results from the March 2015 Sampling Event	3-51
3.1-9	Summary of Groundwater Analytical Results from the June 2013 Historical Well Sampling Event	
3.1-10	Summary of Groundwater Analytical Results from the September 2013 Historical Well Sampling Event	3-56
3.1-11	Summary of Groundwater Analytical Results from the December 2013 Historical Well Sampling Event	3-57
3.1-12	Summary of Groundwater Analytical Results from the March 2014 Historical Well Sampling Event	3-58
3.1-13	Summary of Groundwater Analytical Results from the June 2014 Historical Well Sampling Event	3-59
3.1-14	Summary of Groundwater Analytical Results from the September 2014 Historical Well Sampling Event	3-60
3.1-15	Summary of Groundwater Analytical Results from the December 2014 Historical Well Sampling Event	3-61
3.1-16	Summary of Groundwater Analytical Results from the March 2015 Historical Well Sampling Event	
3.1-17	Average (± Standard Deviation) of Pre-Uprate and Post-Uprate Ion Concentrations in Groundwater	3-63
3.1.18	Range of Ion Concentrations in Groundwater for the Pre- and Post-Uprate Periods	3-64
3.2-1		3-65
3.2-2	Summary of Surface Water Analytical Results from the September 2013	3-68
3.2-3	Summary of Surface Water Analytical Results from the December 2013 Sampling Event	
3.2-4	Summary of Surface Water Analytical Results from the March 2014 Sampling Event	
3.2-5	Summary of Surface Water Analytical Results from the June 2014 Sampling Event	
3.2-6	Summary of Surface Water Analytical Results from the September 2014 Sampling Event	

<u>Table</u>	<u>e</u>	<u>Page</u>
3.2-7	,	0.00
3.2-8	Sampling Event Summary of Surface Water Analytical Results from the March 2015 Sampling	3-83
3.2-0	Event	
3.2-9	Range of Post-Uprate Ion Concentrations in Surface Water	
	Average (± Standard Deviation) of Pre-Uprate and Post-Uprate Ion	0 00
0.2 10	Concentrations in Surface Water	3-90
3.3-1	Summary of Rainfall Sample Collected and Data Received	
3.3-2	Rainfall Tritium Data	
3.4-1	Summary of Evaporation Pan Collected and Data Recieved	3-96
3.4-2	Evaporation Pan Tritium Results (pCi/L ± 1 sigma)	
4.1-1	Data and Samples Collected from August 2013 through May 2015	4-25
4.1-2	Plot Location, Community Description, Dominant Vegetation in Subplots in 2013-2015	4-26
4.1-3	Species and Individuals Counted in Subplots for Shannon-Wiener Index of	4-20
4.1-5	Diversity Calculations in November 2013 and November 2014	4-28
4.1-4	Pre-Uprate and Post-Uprate Shannon-Wiener Index Calculated Values for	20
	Plots and Transects	4-30
4.1-5	Average Sawgrass Coverage per Plot and Transect for Post-Uprate Period	
	with Pre-Uprate Average	4-31
4.1-6	Average Sawgrass Height per Plot and Transect for Post-Uprate Period with	
	Pre-Uprate Range	4-32
4.1-7	Live and Total Sawgrass Biomass Equations for Post-Uprate Events	4-34
4.1-8	Average Sawgrass Live Biomass per Plot and Transect for Post-Uprate	
	Events with Pre-Uprate Range	4-35
4.1-9	Average Sawgrass Total Biomass per Plot and Transect for Post-Uprate	
	Events with Pre-Uprate Range	
	Annual Net Primary Productivity for the Pre- and Post-Uprate Periods	4-39
4.1-11	Sawgrass Leaf Sclerophylly per Plot and Transect for Post-Uprate Period	
	with Pre-Uprate Range.	4-40
4.1-12	Average Leaf Carbon for Sawgrass per Plot and Transect during the Post-	
	Uprate Period with Pre-Uprate Range	4-41
4.1-13	Average Leaf Total Nitrogen for Sawgrass per Plot and Transect during the	
	Post-Uprate Period with Pre-Uprate Range.	4-42
4.1-14	Average Leaf Total Phosphorus for Sawgrass per Plot and Transect during	
4 4 4-	the Post-Uprate Period with Pre-Uprate Range.	
4.1-15	Average Leaf Carbon Isotopes for Sawgrass per Plot and Transect during the	
4 4 4 4 4 4 4	Post-Uprate Period with Pre-Uprate Range.	4-44
4.1-16	Average Leaf Nitrogen Isotopes for Sawgrass per Plot and Transect during	, ,-
	the Post-Uprate Period with Pre-Uprate Range	4-45

<u>Table</u>	<u>e</u>	<u>Page</u>
4.1-17	Sawgrass Leaf C:N Molar Ratio per Plot and Transect in the Post-Uprate Period	4-46
4.1-18	Sawgrass Leaf N:P Molar Ratio per Plot and Transect in the Post-Uprate Period	4-47
4.1-19	Average Specific Conductance (µS/cm) of Porewater at Each Site for Each Post-Uprate Quarter with Pre-Uprate Range	4-48
4.1-20	Average Temperature (°C) of Porewater at Each Site for Each Post-Uprate Quarter with Pre-Uprate Range	
/ 1₋21	Marsh and Mangrove Analytical Porewater August 2013	
	Marsh and Mangrove Analytical Porewater November 2013	
	Marsh and Mangrove Analytical Porewater February 2014	
	Marsh and Mangrove Analytical Porewater May 2014	
	Marsh and Mangrove Analytical Porewater August 2014	
	Marsh and Mangrove Analytical Porewater November 2014	
	Marsh and Mangrove Analytical Porewater February 2015	
	Marsh and Mangrove Analytical Porewater May 2015	
	Percent Cover of Red Mangroves per Plot and Transect for Post-Uprate	
20	Period with Pre-Uprate Average	4-72
4.1-30	Average Red Mangrove Height per Plot and Transect for Post-Uprate Period	
4 4 04	with Pre-Uprate Range.	4-73
4.1-31	Average Red Mangrove Biomass per Plot and Transect for Post-Uprate Period with Pre-Uprate Range	4-74
4.1-32	Red Mangrove Sclerophylly per Plot and Transect for Post-Uprate Period with	
	Pre-Uprate Range	4-75
4.1-33	Average Leaf Carbon for Red Mangrove per Plot and Transect during the Post-Uprate Period with Pre-Uprate Range.	4-76
4.1-34	Average Leaf Total Nitrogen for Red Mangrove per Plot and Transect during	
	the Post-Uprate Period with Pre-Uprate Range.	4-77
4.1-35	Average Leaf Total Phosphorus for Red Mangrove per Plot and Transect	
	during the Post-Uprate Period with Pre-Uprate Range	4-78
4.1-36	Average Leaf Carbon Isotopes for Red Mangrove per Plot and Transect	
	during the Post-Uprate Period with Pre-Uprate Range	4-79
4.1-37	Average Leaf Nitrogen Isotopes for Red Mangrove per Plot and Transect	
	during the Post-Uprate Period with Pre-Uprate Range	4-80
4.1-38	Red Mangrove Leaf C:N Molar Ratio per Plot and Transect in the Post-Uprate Period	
4.1-39	Red Mangrove Leaf N:P Molar Ratio per Plot and Transect in the Post-Uprate	
00	Period	
4.2-1	Latitude and Longitude of Biscayne Bay, Card Sound, and Barnes Sound	· 52
	Fcological Sampling Points	4-83

<u>Table</u>	<u>e</u>	<u>Page</u>
4.2-2	Categories of Submerged Aquatic Vegetation Scored Using Braun-Blanquet Cover Abundance Index Method at Each Ecological Sampling Point	4-84
4.2-3	Water Depth (m), Standard Error (SE), and Minimum and Maximum Depth by Transect and Sampling Area, Fall 2013 and Spring 2014	4-85
4.2-4	Number of Points Within Each study Area (n=16) Containing Each of Eight Substrate Types For All Fall and Spring Pre-and Post-Uprate Monitoring Events	4-86
4.2-5	Light Readings (µmols/m²/sec) Taken Simultaneously in Air and Water at Each of Three Depths at One Point Along Each Transect During All Fall and Spring Pre- and Post-Uprate Monitoring Events.	4-88
4.2-6	Mean Surface and Bottom Water Column Temperature (°C), ± One Standard Error (SE), by Transect, Season and Study Area for All Pre- and Post-Uprate Monitoring Events	4-91
4.2-7	Mean Surface and Bottom Water Column Specific Conductance (μs/cm), ± One Standard Error (SE), by Transect, Season and Study Area for All Preand Post-Uprate Monitoring Events.	4-93
4.2-8	Mean Surface and Bottom Water Column Salinity (PSU), ± One Standard Error (SE), by Transect, Season and Study Area for All Pre- and Post-Uprate Monitoring Events.	4-95
4.2-9	Mean Surface and Bottom Water Column DO (mg/L), ± One Standard Error (SE), by Transect, Season and Study Area for All Pre- and Post-Uprate Monitoring Events	4-97
4.2-10	Mean Surface and Bottom Water Column pH, ± One Standard Error (SE), by Transect, Season and Study Area for All Pre- and Post-Uprate Monitoring Events	4-99
4.2-11	Mean Surface and Bottom Water Column Turbidity (NTU), ± One Standard Error (SE), by Transect, Season and Study Area for All Pre- and Post-Uprate Monitoring Events	
4.2-12	Mean Surface and Bottom Water Column ORP (mV), ± One Standard Error (SE), by Transect, Season and Study Area for All Pre- and Post-Uprate Monitoring Events	
4.2-13	Mean Porewater Temperatures (°C), ± One Standard Error (SE), by Transect, Season and Study Area for All Pre- and Post-Uprate Monitoring Events	,
4.2-14	Comparisons of Mean Porewater and Water Column Temperatures (°C), by Transect, Season and Study Area for All Pre- and Post-Uprate Monitoring	
4.2-15	Events	4-106
		4 400

<u>Table</u>	<u>e</u>	<u>Page</u>
4.2-16	Porewater Nutrient Concentrations by Transect, Season and Study Area for All Pre- and Post-Uprate Monitoring Events	Δ-111
4.2-17	Percentage of Quadrats Along Each Transect (n=32) Contaning Halodule wrightii (HW) and/or Thalassia testudinum (TT) by Study Area (n=64) and	
	Season for All Pre- and Post-Uprate Monitoring Events	4-119
4.2-18	Percentage (%) of Sampling Points Within Each Study Area (n=16) Having Specific Bottom Conditions during Each of Four Post-Uprate Monitoring	
4 0 40	Events	4-120
4.2-19	Mean Braun-Blaunquet Coverage Abundance ¹ (BBCA) Scores, ± One Standard Error (SE), for Total Macrophytes, Total Seagrass, and Total Macroalgae, by Transect, Season, and Study Area for All Pre- and Post-	
	Uprate Monitoring Events	4-122
4.2-20	Comparison of Seagrass Leaf Nutrient Concentrations During Fall Pre- and Post-Uprate Monitoring	4-125
5.3-1	Calibration Parameters	
5.3-2	Calculated Fluid Flows from Water Budget Components	
5.3-3	Calculated Mass Flows from Salt Budget Components	
5.3-4	Calculated Fluid Flows from Water Budget Components	
5.3-5	Calculated Mass Flows from Salt Budget Components	
5.3.6	Calculated Fluid Flows from Water Budget Components for (Pre-Uprate)	
5.3.7	Calculated Mass Flows from Salt Budget Components (Pre-Uprate)	
6.4-1	Range in Surface Water Head Differences	6-8
6.4-2	Hours and Volumes of ID Pump Operation per Month	
6.4-3	Pumping Summary	
A-1	Sample Station Locations/Coordinates	A-1
A-2	Florida Power & Light Turkey Point Plant Monitoring Well Construction Details	s A-2
C-1	Automated Data Qualifiers	C-7
F-1	June 2013 through May 2015 Outage Summary Report (PTF-01)	
F-2	June 2013 through May 2015 Summary Report (PTF-02)	
F-3	June 2013 through May 2015 Summary Report (PTN-03)	
F-4	June 2013 through May 2015 Summary Report (PTN-04)	
F-5	Plant Operational Data	F-3
J-1	Groundwater Outliers	
J-2	Groundwater Outliers (historical wells)	
J-3	Surface Water Outliers	
J-4	Marsh Porewatger Outliers	J-6

<u>l able</u>	<u>e</u> <u>Page</u>
J-5	Mangrove Porewater Outliers
L-1 L-2	Terrestrial Plant Taxa Observed During the Monitoring EffortM-1 Scientific and Common Names of Organisms Occurring in Submerged Aquatic
	Vegetation QuadratsM-2
M-1	Water Levels Levee-31, Canal 32, Interceptor Ditch – June 2014
M-2	Water Levels Levee-31, Canal 32, Interceptor Ditch – July 2014
M-3	Water Levels Levee-31, Canal 32, Interceptor Ditch – August 2014
M-4	Water Levels, Salinity Measurements and Pumping Events – Levee-31, Canal 32,
	Interceptor Ditch – September 2014
M-5	Water Levels, Salinity Measurements and Pumping Events Levee-31, Canal 32, Interceptor Ditch – October 2014
M-6	Water Levels, Salinity Measurements and Pumping Events Levee-31, Canal 32,
M-7	Interceptor Ditch – November 2014M-9 Water Levels, Salinity Measurements and Pumping Events Levee-31, Canal 32,
	Interceptor Ditch – December 2014M-12
M-8	Water Levels, Salinity Measurements and Pumping Events Levee-31, Canal 32, Interceptor Ditch – January 2015M-13
M-9	Water Levels, Salinity Measurements and Pumping Events Levee-31, Canal 32,
IVI-9	Interceptor Ditch – February 2015M-14
M-10	Water Levels, Salinity Measurements and Pumping Events Levee-31, Canal 32,
101 10	Interceptor Ditch - March 2015M-16
M-11	Water Levels, Salinity Measurements and Pumping Events Levee-31, Canal 32,
	Interceptor Ditch – April 2015M-19
M-12	Water Levels, Salinity Measurements and Pumping Events Levee-31, Canal 32,
	Interceptor Ditch – May 2015M-22

LIST OF FIGURES

<u>Figu</u>	<u>re</u>	<u>Page</u>
1.1-1	Locations of Groundwater Monitoring Stations	1-23
1.1-2	Locations of Surface Water Monitoring Stations	1-24
1.1-3	Locations of Meteorological Station, Rainfall Gauges, Rainfall Collectors, and	
	Evaporation Pans	1-25
1.3-1	Ecological Transect Locations.	1-26
2.1-1	Automated Groundwater Stations	2-50
2.1-2	TPGW-1 Specific Conductance and Temperature	2-51
2.1-3	TPGW-2 Specific Conductance and Temperature	
2.1-4	TPGW-3 Specific Conductance and Temperature	2-53
2.1-5	TPGW-4 Specific Conductance and Temperature	2-54
2.1-6	TPGW-5 Specific Conductance and Temperature	2-55
2.1-7	TPGW-6 Specific Conductance and Temperature	2-56
2.1-8	TPGW-7 Specific Conductance and Temperature	2-57
2.1-9	TPGW-8 Specific Conductance and Temperature	2-58
2.1-10	TPGW-9 Specific Conductance and Temperature	2-59
2.1-11	TPGW-10 Specific Conductance and Temperature	2-60
2.1-12	TPGW-11 Specific Conductance and Temperature	2-61
2.1-13	TPGW-12 Specific Conductance and Temperature	2-62
2.1-14	TPGW-13 Specific Conductance and Temperature	2-63
2.1-15	TPGW-14 Specific Conductance and Temperature	2-64
2.1-16	Average and Standard Deviation of Specific Conductance Values (µS/cm) for	
	Groundwater Stations Pre- and Post-Uprate	2-65
2.1-17	Average and Standard Deviation of Temperature (°C) for Groundwater	
	Stations Pre- and Post-Uprate	2-66
2.1-18	Average and Standard Deviation of Salinity (PSS-78) for Groundwater	
	Stations Pre- and Post-Uprate	2-67
2.1-19	Comparison of Specific Conductance and Temperature in Biscayne Bay	
	Shallow and Deep Wells TPGW-10, TPGW-11, and TPGW-14	2-68

2.1-20	Comparison of Specific Conductance and Temperature across the Landscape in Shallow and Deep Wells TPGW-14, TPGW-3, TPGW-13,	0.00
2.1-21	TPGW-5, and TPGW-7 Comparison of Specific Conductance and Temperature across the Landscape in Shallow and Deep Wells TPGW-11, TPGW-13, TPGW-2,	2-69
2 4 22	TPGW-4, and TPGW-9 Comparison of Specific Conductance and Temperature across the	2-70
2.1-22	Landscape in Shallow and Deep Wells TPGW-11, TPGW-13, TPGW-1, and TPGW-6	2-71
2.1-23	Comparison of Specific Conductance and Temperature across the Landscape in Shallow and Deep Wells TPGW-10, TPGW-12, TPGW-13, and TPGW-6	
2.1-24	Comparison of Specific Conductance and Temperature across the Landscape in Shallow and Deep Wells Close to the CCS - TPGW-1, TPGW-2, TPGW-3, TPGW-10, TPGW-11, TPGW-12, TPGW 13, and	
0 1 05	TPGW-14	2-73
2.1-25	Comparison of Specific Conductance and Temperature in Biscayne Bay Surface Water and Biscayne Bay Shallow and Deep Wells TPGW-10 and	0.74
2 2 4	TPGW-14	
2.2-1 2.2-2	Automated Surface Water Stations	
2.2-2	TPBBSW-3 Specific Conductance and Temperature	
2.2-3	TPBBSW-4 Specific Conductance and Temperature	
2.2-4	TPBBSW-10 Specific Conductance and Temperature	
2.2-6	TPBBSW-14 Specific Conductance and Temperature	
2.2-7	TPSWC-1 Specific Conductance and Temperature	
2.2-8	TPSWC-2 Specific Conductance and Temperature	
2.2-9	TPSWC-3 Specific Conductance and Temperature	
	TPSWC-4 Specific Conductance and Temperature	
	TPSWC-5 Specific Conductance and Temperature	
	TPSWCCS-1 Specific Conductance and Temperature	
	TPSWCCS-2 Specific Conductance and Temperature	
	TPSWCCS-3 Specific Conductance and Temperature	
	TPSWCCS-4 Specific Conductance and Temperature	
	TPSWCCS-5 Specific Conductance and Temperature	
	TPSWCCS-6 Specific Conductance and Temperature	
	TPSWCCS-7 Specific Conductance and Temperature	
	TPSWID-1 Specific Conductance and Temperature	
	TPSWID-2 Specific Conductance and Temperature	
	TPSWID-3 Specific Conductance and Temperature	
	Average and Standard Deviation of Specific Conductance (µS/cm) for	
	Surface Water Stations Pre- and Post-Unrate	2-96

2.2-23	Average and Standard Deviation of Temperature (°C) for Surface Water	
	Stations Pre- and Post-Uprate	2-97
2.2-24	Average and Standard Deviation of Salinity (PSS-78) for Surface Water	
	Stations Pre- and Post-Uprate	2-98
2.2-25	Comparison of Specific Conductance in Biscayne Bay Surface Water	
	Stations	2-99
2.2-26	Comparison of Specific Conductance in CCS and Biscayne Bay Surface	
	Water Stations	2-100
2.2-27	Comparison of CCS and Biscayne Specific Conductance for Pre- and Post-	
	Uprate	2-101
2.2-28	Effect of CCS Freshening Effort and Rainfall on CCS Specific Conductance	
	Values (September 25-October 15, 2015)	2-102
2.2-29	Comparison of Specific Conductance and Temperature in L-31E Canal for	
	Top and Bottom Locations	2-103
2.2-30	Comparison of Specific Conductance and Temperature in Interceptor Ditch	
	Stations for Top and Bottom Locations	2-104
2.2-31	Comparison of Specific Conductance and Temperature at the Bottom of	
	Interceptor Ditch Operation Transect A Stations	2-105
2.2-32	Comparison of Specific Conductance and Temperature at the Bottom of	
	Interceptor Ditch Operation Transect C Stations	2-106
2.2-33	Comparison of Specific Conductance and Temperature at the Bottom of	
	Interceptor Ditch Operation Transect E Stations	2-107
2.2-34	Comparison Pre- and Post-Uprate CCS Surface Water Temperatures	2-108
2.2-35	CCS and Biscayne Bay Surface Water Temperatures (24-Hour Averages)	
	and Ambient Air Temperature (Maximum and Minimum Values) Time Series	
	Plots	2-109
2.2-36	Differences among Ambient Air, CCS, and Biscayne Bay Water	
	Temperatures	2-110
2.3-1	TPGW-1 Water Elevations	2-111
2.3-2	TPGW-2 Water Elevations	2-111
2.3-3	TPGW-3 Water Elevations	2-112
2.3-4	TPGW-4 Water Elevations	2-112
2.3-5	TPGW-5 Water Elevations	2-113
2.3-6	TPGW-6 Water Elevations	2-113
2.3-7	TPGW-7 Water Elevations	2-114
2.3-8	TPGW-8 Water Elevations	2-114
2.3-9	TPGW-9 Water Elevations	2-115
2.3-10	TPGW-10 Water Elevations	2-115
2.3-11	TPGW-11 Water Elevations	2-116
2.3-12	TPGW-12 Water Elevations	2-116
2.3-13	TPGW-13 Water Elevations	2-117
2.3-14	TPGW-14 Water Elevations	2-117

2.3-15	Comparison of Time Series Groundwater Water Elevations at TPGW-13	
	Between Pre-and Post-Uprate	2-118
2.3-16	Comparison of Time Series Groundwater Water Elevations across the	
	Landscape at TPGW-14, TPGW-13, TPGW-5, and TPGW-7	2-119
2.3-17	Comparison of Time Series Groundwater Water Elevations across the	
	Landscape at TPGW-14, TPGW-9, and TPGW-4	2-120
2.3-18	Comparison of Time Series Groundwater Water Elevations across the	
	Landscape at TPGW-3, TPGW-13, and TPGW-12	2-121
2.3-19	Comparison of Time Series Groundwater Water Elevations across the	
	Landscape at TPGW-10, TPGW-11, TPGW-13, and TPGW-14	2.122
2.3-20	Comparison of Time Series Groundwater Water Elevations at TPGW-13 and	
	TPSWCCS-2	2-123
2.3-21	Comparison of Daily Average Time Series Groundwater Water Elevations in	
	Biscayne Bay Well TPGW-11 and Biscayne Bay Surface Water Station	
	TPBBSW-3	
	TPBBSW-10 Water Elevations	
	TPBBSW-3 Water Elevations	
	TPBBSW-14 Water Elevations	
	TPSWC-1 Water Elevations	
	TPSWC-2 Water Elevations	
	TPSWC-3 Water Elevations	
	TPSWC-4 Water Elevations	
	TPSWC-5 Water Elevations	
	TPSWCCS-1 Water Elevations	
	TPSWCCS-2 Water Elevations	
	TPSWCCS-3 Water Elevations	
	TPSWCCS-4 Water Elevations	
	TPSWCCS-5 Water Elevations	
	TPSWCCS-6 Water Elevations	
	TPSWCCS-7 Water Elevations	
	TPSWID-1 Water Elevations	
	TPSWID-2 Water Elevations	
	TPSWID-3 Water Elevations	2-133
2.3-40	Comparison of Time Series Surface Water Elevations in CCS Surface Water	
	Stations	2-134
2.3-41	Effect of Pumping and Rainfall on CCS Water Levels During Temporary	
	Freshening (September 25, 2014 – October 15, 2014)	
2.4-1	Locations of Rainfall Gauges in and around the CCS	
2.4-2	Rainfall and Temperature at TPM-1	
2.4-3	Relative Humidity and Barometric Pressure at TPM-1	
2.4-4	Photosynthetically Active Radiation (PAR) for TPM-1	2-139
2.4-5	Annual Comparison of Rainfall Totals for Different Locations In and Around	
	the CCS (June 2010 – May 2015)	2-140

2.4-6	Wind Rose Plots Indicating Wind Speed and Direction for the Pre- (Left) and Post-Uprate (Right) Periods.	.2-141
2.4-7	Wind Speed (Class) Frequency Distribution for the Pre- (Top) and Post-	
	Uprate (Bottom) Periods	.2-142
3.1-1	Typical Groundwater Field Sampling Setup	3-98
3.1-2	Range (Pre-Uprate) and Results (Post-Uprate) of Quarterly Groundwater	
	Samples for Chloride (mg/L)	3-99
3.1-3	Range (Pre-Uprate) and Results (Post Uprate) of Quarterly Groundwater	
	1	.3-100
3.1-4	Range (Pre-Uprate) and Results (Post-Uprate) of Quarterly Groundwater	
	Samples for Specific Conductance (µS/cm)	.3-101
3.1-5	Range (Pre-Uprate) and Results (Post-Uprate) of Quarterly Groundwater	
	\(\frac{1}{2}\)	.3-102
3.1-6	Locations of Aquifer Cross Sections for Groundwater Chloride and Tritium	
	Concentrations	.3-103
3.1-7	Cross Section A-A' Showing Quarterly Groundwater Chloride Concentrations	
	from June 2013 through March 2015 and Pre-Uprate Ranges	.3-104
3.1-8	Cross Section B-B' Showing Quarterly Groundwater Chloride Concentrations	
	from June 2013 through March 2015 and Pre-Uprate Ranges	.3-105
3.1-9	Cross Section C-C' Showing Quarterly Groundwater Chloride Concentrations	
	from June 2013 through March 2015 and Pre-Uprate Ranges	.3-106
3.1-10	Cross Section A-A' Showing Quarterly Groundwater Tritium Concentrations	
	from June 2013 through June 2014 and Pre-Uprate Ranges	.3-107
3.1-11	Cross Section B-B' Showing Quarterly Groundwater Tritium Concentrations	
	from June 2013 through June 2014 and Pre-Uprate Ranges	.3-108
3.1-12	Cross Section C-C' Showing Quarterly Groundwater Tritium Concentrations	
	from June 2013 through June 2014 and Pre-Uprate Ranges	.3-109
3.1-13	Post-Uprate Tri-Linear Diagram of Average Groundwater Ionic	
	Concentrations.	.3-110
3.1-14	Range (Pre-Uprate) and Results (Post-Uprate) of Semi-Annual Groundwater	
	Total Nitrogen Values from the Shallow (S) and Deep (D) Wells	.3-111
3.1-15	Range (Pre-Uprate) and Results (Post-Uprate) of Semi-Annual Groundwater	
	Total Phosphorus Values from the Shallow (S) and Deep (P) Wells	.3-112
3.2-1	Range (Pre-Uprate) and Results (Post-Uprate) of Quarterly Surface Water	
	Samples for Chloride (mg/L)	.3-113
3.2-2	Range (Pre-Uprate) and Results (Post-Uprate) of Quarterly Surface Water	
	Samples for Sodium (mg/L)	.3-114
3.2-3	Range (Pre-Uprate) and Results (Post-Uprate) of Quarterly Surface Water	
	Samples for Specific Conductance (µS/cm)	.3-115
3.2-4	Range (Pre-Uprate) and Results (Post-Uprate) of Quarterly Surface Water	
	Values for Tritium (pCi/L)	.3-116

3.2-5	Post-Uprate Tri-Linear Diagram of Average Surface Water Ionic	
	Concentrations	3-117
3.2-6	Range (Pre-Uprate) and Results (Post-Uprate) of Semi-Annual Surface	
	Water Samples for Total Nitrogen	3-118
3.2-7.	Range (Pre-Uprate) and Results (Post-Uprate) of Semi-Annual Surface	
	Water Samples for Total Phosphorus	3-119
3.4-1	Evaporation Pan Tritium Data from March 2011 to September 2014	3-120
4.1-1	Post-Uprate Porewater Sodium (mg/L) Results with Pre-Uprate Ranges	4-128
4.1-2	Post-Uprate Porewater Chloride (mg/L) Results with Pre-Uprate Ranges	4-129
4.1-3	Post-Uprate Semi-Annual Porewater Total Nitrogen (mg/L) Results with Pre-	
	Uprate Ranges	4-130
4.1-4	Post-Uprate Semi-Annual Porewater Total Phosphorus (mg/L) Results with	
	Pre-Uprate Ranges	4-131
4.1-5	Post-Uprate Porewater Tritium (pCi/L) Results with Pre-Uprate Ranges	4-132
4.2-1	Post-Uprate Ecological Transect Locations	4-133
5.2-1	Locations of Specific Conductance and Tritium Cross Sections	5-136
5.2-2	Specific Conductance Cross Section A-A', Historic and Current Concentration	
	Isopleths	5-137
5.2-3	Specific Conductance Cross Section B-B', Historic and Current Concentration	
	Isopleths	5-138
5.2-4	Shallow Well Pre-Uprate (Top) and Post-Uprate (Bottom) Average Specific	
	Conductance Isopleths	. 5-139
5.2-5	Post-Uprate Tritium Isopleth/Cross Section A-A' with Chloride Concentrations	
	and Historic G-III Boundary	5-140
5.2-6	Post-Uprate Tritium Isopleth/Cross Section B-B' with Chloride Concentrations	
	and Historic G-III Boundary	5-141
5.2-7	Pre-Uprate (Top) and Post-Uprate (Bottom) Average Tritium Isopleths for	
	Shallow, Medium, and Deep Wells	
5.3-1	Flow (A) into and (B) out of the CCS, Shown in Cross-Section	5-143
5.3-2	Modeled versus Measured Net Monthly Flows of Water for the CCS over the	
	57-Month Period	5-144
5.3-3	Modeled versus Measured Net Monthly Flows of Salt Mass for the CCS over	
	the 57-Month Period	5-145
5.3-4	Modeled versus Measured Water Elevations (NAVD 88) in the CCS over the	
	57-Month Period; Used to Validate the Conceptual Model and Calibrate the	
	Water Balance Model to Temporal Trends in Water Elevation	5-146
5.3-5	Modeled versus Measured Salinity in the CCS over the 57-Month Period;	
	Used to Validate the Conceptual Model and Calibrate the Water Balance	
	Model to Temporal Trends in Salinity	5-147
6.1-1	Historic ID Monitoring Wells and Transects	6-16
6.3-1	Comparison of ID Monitoring Period to Average Monthly Historic Rainfall	
J.J-1	Companson of 12 Monitoring 1 choose Average Monthly Historic Ivalillali	0-17

6.4-1	Historical Min and Max, and Quarterly L-3, L-5, G-21, G-28, and G-35	
	Groundwater Levels	6-18
6.4-2	L-3 Vertical Temperature Profile June 2014 through March 2015	6-19
6.4-3	L-5 Vertical Temperature Profile June 2014 through March 2015	6-20
6.4-4	G-21 Vertical Temperature Profile June 2014 through March 2015	6-21
6.4-5	G-28 Vertical Temperature Profile June 2014 through March 2015	6-22
6.4-6	G-35 Vertical Temperature Profile June 2014 through March 2015	6-23
6.4-7	L-3 Vertical Chloride Profile June 2014 through March 2015	6-24
6.4-8	L-5 Vertical Chloride Profile June 2014 through March 2015	6-25
6.4-9	G-21 Vertical Chloride Profile June 2014 through March 2015	6-26
6.4-10	G-28 Vertical Chloride Profile June 2014 through March 2015	6-27
6.4-11	G-35 Vertical Chloride Profile June 2014 through March 2015	6-28
6.4-12	Transect A Water Levels (June 2014 through May 2015)	6-29
6.4-13	Transect B Water Levels (June 2014 through May 2015)	6-30
6.4-14	Transect C Water Levels (June 2014 through May 2015)	6-31
6.4-15	Transect D Water Levels (June 2014 through May 2015)	6-32
6.4-16	Transect E Water Levels (June 2014 through May 2015)	6-33
6.4-17	Differences in Freshwater Head Equivalent/Density Corrected Water Levels	
	Between L-31 and C-32, and L-31 and ID (based on actual water depths and	
	bottom densities) – Transect A	6-34
6.4-18	Differences in Freshwater Head Equivalent/Density Corrected Water Levels	
	Between L-31 and C-32, and L-31 and ID (based on actual water depths and	
	bottom densities) – Transect C	6-35
6.4-19	Differences in Freshwater Head Equivalent/Density Corrected Water Levels	
	Between L-31 and C-32, and L-31 and ID (based on actual water depths and	
	bottom densities) – Transect E	6-36
6.4-20	Interceptor Ditch Pump Operation and Rainfall	6-37
6.4-21	Density vs. Elevation Wells L-3 and G-21 during September 2014	
	SamplingEvent	6-38
6.4-22	Pressure vs. Elevation Wells L-3 and G-21 during September 2014 Sampling	
	Event	6-39
6.4-23	Pressure Gradient Difference between Well L-3 and Well G-21 during	
	September 2014 Sampling Event	6-40
6.4-24	Pressure Gradient Difference between Well L-3 and Well G-21 during March	
	2015 Sampling Event	6-41
6.4-25	Pressure Gradient Difference between Well L-5 and Well G-28 during	
	September 2014 Sampling Event	6-42
6.4-26	Pressure Gradient Difference between Well L-5 and Well G-28 during March	
	2015 Sampling Event	6-43
A-1	TPGW-1	A-6
A-2	TPGW-2	
A-3	TPGW-3	

A-4	TPGW-4	A-7
A-5	TPGW-5	A-8
A-6	TPGW-6	A-8
A-7	TPGW-7	A-9
A-8	TPGW-8	A-9
A-9	TPGW-9	. A-10
A-10	TPGW-10	. A-10
A-11	TPGW-11	. A-11
A-12	TPGW-12	. A-11
A-13	TPGW-13	. A-12
A-14	TPGW-14	. A-12
A-15	TPSWC-1	. A-13
A-16	TPSWC-2	. A-13
A-17	TPWSC-3	. A-14
A-18	TPSWC-4	
A-19	TPSWC-5	
A-20	TPSWC-6	
A-21	TPSWCCS-1	
A-22	TPSWCCS-2	
A-23	TPSWCCS-3	. A-17
A-24	TPSWCCS-4	
A-25	TPSWCCS-5	
A-26	TPSWCCS-6	. A-18
A-27	TPSWCCS-7	
A-28	TPSWID-1	
A-29	TPSWID-2	. A-20
A-30	TPSWID-3	. A-20
A-31	TPBBSW-1, TPBBSW-2, TPBBSW-4, and TPBBSW-5 pad with sensor placed	
	on Bottom of Biscayne Bay	. A-21
D.1-1	TPGW-1 Water Quality	D-1
D.1-2	TPGW-2 Water Quality	D-2
D.1-3	TPGW-3 Water Quality	D-3
D.1-4	TPGW-4 Water Quality	D-4
D.1-5	TPGW-5 Water Quality	D-5
D.1-6	TPGW-6 Water Quality	D-6
D.1-7	TPGW-7 Water Quality	D-7
D.1-8	TPGW-8 Water Quality	D-8
D.1-9	TPGW-9 Water Quality	D-9
D.1-10	TPGW-10 Water Quality	.D-10
D.1-11	TPGW-11 Water Quality	. D-11
D.1-12	TPGW-12 Water Quality	.D-12
D.1-13	TPGW-13 Water Quality	.D-13

D.1-14	TPGW-14 Water Quality	D-14
D.1-15	TPBBSW-3 Water Quality	D-15
D.1-16	TPBBSW-4 Water Quality	D-16
D.1-17	TPBBSW-5 Water Quality	D-17
D.1-18	TPBBSW-10 Water Quality	D-18
D.1-19	TPBBSW-14 Water Quality	D-19
D.1-20	TPSWC-1 Water Quality	D-20
D.1-21	TPSWC-2 Water Quality	D-21
D.1-22	TPSWC-3 Water Quality	D-22
	TPSWC-4 Water Quality	
D.1-24	TPSWC-5 Water Quality	D-24
D.1-25	TPSWCCS-1 Water Quality	D-25
D.1-26	TPSWCCS-2 Water Quality	D-26
D.1-27	TPSWCCS-3 Water Quality	D-27
	TPSWCCS-4 Water Quality	
	TPSWCCS-5 Water Quality	
D.1-30	TPSWCCS-6 Water Quality	D-30
D.1-31	TPSWCCS-7 Water Quality	D-31
D.1-32	TPSWID-1 Water Quality	D-32
D.1-33	TPSWID-2 Water Quality	D-33
D.1-34	TPSWID-3 Water Quality	D-34
D.2-1	TPGW-1 Water Elevations	D-35
D.2-2	TPGW-2 Water Elevations	D-36
D.2-3	TPGW-3 Water Elevations	D-37
D.2-4	TPGW-4 Water Elevations	D-38
D.2-5	TPGW-5 Water Elevations.	D-39
D.2-6	TPGW-6 Water Elevations	D-40
D.2-7	TPGW-7 Water Elevations	D-41
D.2-8	TPGW-8 Water Elevations	D-42
D.2-9	TPGW-9 Water Elevations	D-43
D.2-10	TPGW-10 Water Elevations	D-44
D.2-11	TPGW-11 Water Elevations	D-45
D.2-12	TPGW-12 Water Elevations	D-46
D.2-13	TPGW-13 Water Elevations	D-47
D.2-14	TPGW-14 Water Elevations	D-48
D.2-15	TPBBSW-3 Water Elevations	D-49
	TPBBSW-10 Water Elevations	
	TPBBSW-14 Water Elevations	
	TPSWC-1 Non-Qualified Water Elevations	
	TPSWC-2 Non-Qualified Water Elevations	
	TPSWC-3 Non-Qualified Water Elevations	
D.2-21	TPSWC-4 Non-Qualified Water Elevations	D-55
D.2-22	TPSWC-5 Non-Qualified Water Elevations	D-56

Acronyms and Abbreviations

D.2-23 TPSWCCS-1 Non-Qualified Water Elevations	D-57
D.2-24 TPSWCCS-2 Non-Qualified Water Elevations	D-58
D.2-25 TPSWCCS-3 Non-Qualified Water Elevations	D-59
D.2-26 TPSWCCS-4 Non-Qualified Water Elevations	D-60
D.2-27 TPSWCCS-5 Non-Qualified Water Elevations	D-61
D.2-28 TPSWCCS-6 Non-Qualified Water Elevations	D-62
D.2-29 TPSWCCS-7 Non-Qualified Water Elevations	D-63
D.2-30 TPSWID-1 Non-Qualified Water Elevations	D-64
D.2-31 TPSWID-2 Non-Qualified Water Elevations	D-65
D.2-32 TPSWID-3 Non-Qualified Water Elevations	D-66

ACRONYMS AND ABBREVIATIONS

% percent

? questionable data

 \geq greater than or equal to

°C degrees Celsius

μg/L micrograms per liter

μm micrometer

μmho/cm micromhos per centimeter

μmols/m²/sec micromole per square meter per second

μS/cm microSiemens per centimeter

% parts per mille

1x1 1-meter by 1-meter (subplot)
20x20 20-meter by 20-meter (plot)
5x5 5-meter by 5-meter (subplot)

ADaPT Automated Data Processing Tool
ADVM Acoustic Doppler velocity meter

Agencies South Florida Water Management District, the Florida

Department of Environmental Protection, and Miami-Dade

County Department of Environmental Resources

Management

ANPP aboveground net primary productivity

ANOVA analysis of variance

Annual Monitoring Report Florida Power & Light Company Turkey Point Plant

Annual Monitoring Report for the Units 3 and 4 Uprate

Project

AO Administrative Order

AT100 Aqua TROLL[®] 100 (probe) AT200 Aqua TROLL[®] 200 (probe)

B bottom
Ba barium

BAS Biscayne Aquifer/Surficial Aquifer System

BBCA Braun-Blanquet Cover Abundance

BBSW Biscayne Bay Surface Water

BDL below detection limit
BNP Biscayne National Park

BRL Brooks Rand Labs

C carbon

Ca/Mg calcium/magnesium ratio

CaCO₃ calcium carbonate cc cubic centimeter

CCS cooling canal system

CCV continuing calibration verification cdb culm diameter at the plant base

 cm $\operatorname{centimeter}(s)$ CO_2 $\operatorname{carbon\ dioxide}$

CRM certified reference material CWP circulating water pump

D deep

DERM (Miami-Dade County) Department of Environmental

Resources Management

df degrees of freedom

dbh diameter at breast height
DIC dissolved inorganic carbon

DO dissolved oxygen

DQO data quality objective

DUS Data Usability Summary

E Estimated automated value

E & E Ecology and Environment, Inc.

EB equipment blank

EDMS Electronic Data Management System

e.g. for example

EPA (United States) Environmental Protection Agency

f/s foot/feet per second

F.A.C. Florida Administrative Code

FAS Floridan Aquifer system

FCEB field cleaned equipment blank

FD field duplicate

FDEP Florida Department of Environmental Protection
FDOA Florida Department of Health-Bureau of Radiation

Control

Fe Iron

FPL Florida Power & Light Company

FPL database Florida Power and Light, Electronic Data Management

System database

ft foot/feet

ft/d foot/feet per day

ft³/s cubic feet/feet per second

G-III Class 3 groundwater

gal gallon

g/cm³ grams per cubic centimeter

g/m² grams per square meter

GIS geographic information system

g/L grams per liter

gpm gallon(s) per minute

GPS global positioning system

GW groundwater

³H tritium

HCl hydrochloric acid

i.e. that is

IC initial calibration

ICV initial calibration verification

ID interceptor ditch

J estimated analytical value

K potassium

km kilometer

km/hr kilometer(s) per hour

lb pound

LCS laboratory control sample

Li Lithium

LNWR Loxahatchee National Wildlife Refuge

LT500 Level TROLL® 500 (probe)

m meter(s)

M Intermediate

MDL method detection limit
mgd million gallons per day
mg/kg milligrams per kilogram
mg/L milligram(s) per liter

mL milliliter(s)

Monitoring Plan Groundwater, Surface Water, and Ecological Monitoring

Plan for the Florida Power & Light Company Turkey Point

Nuclear Power Plant (2009)

mph miles per hour

m/s meters per second

MS matrix spike
MS Microsoft

MSD matrix spike duplicates

mS/cm milliSiemens per centimeter
μS/cm microSiemens per centimeter

mV millivolt(s)

MW megawatt(s)

NA Not Applicable

Na/Cl sodium/chloride ratio

NAVD 88 North American Vertical Datum of 1988

ND Not Detected NE Northeast

NELAC National Environmental Laboratory Accreditation

Conference

NELAP National Environmental Laboratory Accreditation Program

NEXRAD next generation weather radar

NH₃ Ammonia

NIST National Institute of Standards and Technology

NO_x nitrate-nitrite

NRC Nuclear Regulatory Commission
NTU nephelometric turbidity unit(s)

NW Northwest

OP orthophosphate

ORP oxidation reduction potential

PAR photosynthetically active radiation

pCi/L picocuries per liter
PDS post-digestion spike

PERA (Miami-Dade County) Permitting, Environment and

Regulatory Affairs (formerly DERM; now RER)

ppt parts per thousand

PQL practical quantitation limits

PSS-78 Practical Salinity Scale of 1978

PSU practical salinity unit(s)

PushPoint Sampler PushPoint Sampler PPX36 (M.H.E. Products, East Tawas,

Michigan)

QA quality assurance

QAPP Quality Assurance Project Plan

QC quality control

RER (Miami-Dade County) Department of Regulatory and

Economic Resources (formerly PERA)

RPD relative percent difference

S shallow (well)

SAV submerged aquatic vegetation

S.C. specific conductance

SD serial dilution

SDG sample delivery group

SE southeast

SFWMD South Florida Water Management District

SG specific gravity

SOP standard operating procedure

Std Dev Standard Deviation

SW surface water; *also* southwest

SWI Shannon-Wiener Index (of Diversity)

T top

TDS total dissolved solids

TestAmerica Laboratories, Inc.

TKN total Kjeldahl nitrogen

TN total nitrogen

TP total phosphorus

TPGW Turkey Point groundwater

TPM-1 Turkey Point Meteorological Station

TPRF Turkey Point rain fall

TPSWC Turkey Point Surface Water Canal

TPSWCCS Turkey Point Surface Water Cooling Canal System

TPSWID Turkey Point Surface Water Interceptor Ditch

Turkey Point Florida Power & Light Company Turkey Point Power

Plant

U non-detected analytical result

USGS United States Geological Survey

W_L water level (feet NAVD 88)

EXECUTIVE SUMMARY

Florida Power & Light Company (FPL) has prepared this Annual Post-Uprate Monitoring Report pursuant to Conditions of Certification IX and X of its Power Plant Site Certification for the FPL Turkey Point Units 3 and 4 Nuclear Power Plant and Unit 5 Combined Cycle Plant (PA 03-45A2). In 2009, a Monitoring Plan was developed with input from the Florida Department of Environmental Protection (FDEP), the South Florida Water Management District (SFWMD), Miami-Dade County's Department of Regulatory and Economic Resources (RER) (collectively, the Agencies), and FPL. A minimum of two years of monitoring was required prior to the completion of the Uprate. The Monitoring Plan requires the collection of groundwater, surface water, meteorological, flow, and ecological data in and around the plant to assess Pre-Uprate and Post-Uprate conditions and to compare data between the two time frames. In instances where changes occurred between Pre- and Post-Uprate monitoring periods, such changes cannot be presumed to be solely attributable to the uprate of Units 3 and 4. Other factors such as weather patterns, water quality changes related to algae and turbidity, plant outages, and canal sedimentation all influence the hydrology and water quality within and potentially surrounding the cooling canal system (CCS). Comprehensive review of all the data is necessary to fully understand trends and variations in the data record.

Monitoring was initiated in June 2010 and the majority of automated stations were in place by August 2010. This monitoring has been continuous and has extended through May 2015. Based on the timing of the uprate at Units 3 and 4, data collected prior to February 26, 2012, are part of the Pre-Uprate period, while data collected between February 26, 2012, and May 27, 2013, are referred to as part of the Interim Operating period. Data collected after May 27, 2013, are referred to as part of the Post-Uprate period.

FPL prepared a Comprehensive Pre-Uprate Report (FPL 2012a), which provided details on Pre-Uprate conditions. FPL subsequently prepared an Annual Post-Uprate Monitoring Report (2014a), which documented findings from June 2013 through May 2014 and identified any notable changes as they related to the Uprate. A Comprehensive Post-Uprate report is required after at least two years of Post-Uprate data collection. This report provides a comprehensive summary of the Post-Uprate findings from June 2013 to May 2015 and, where applicable, comparisons are made between the Post-Uprate and Pre-Uprate periods.

During the Post-Uprate, automated water quality and water level data were recorded at 1-hour intervals at 14 well clusters (42 wells) and 20 surface water stations; meteorological data were collected at one automated meteorological station. Water samples were collected quarterly at 47 groundwater wells and 18 surface water stations. To continue assessing the contributions of tritium via rainfall and vapor exchange, water samples were collected from seven rainfall collectors and five evaporation pans located at varying distances from the CCS. Ecological monitoring was conducted semi-annually in Biscayne Bay and quarterly in the marsh and mangrove areas. Data quality objectives (DQOs) identified in the Quality Assurance Project

Plan (QAPP) (precision, accuracy, timeliness, availability, reliability, etc.) have consistently been met, and any exceptions are discussed within this report. As required by the Monitoring Plan, components of water and salt inflow and outflow from the CCS were calculated on a daily basis. The water and salt budgets help explain the hydrologic dynamics within the CCS and may be used to assess the effect of climatic or operational changes on the CCS water levels and salinities.

After review of the Comprehensive Pre-Uprate Report (FPL 2012a), the Agencies agreed to a reduction in sites and parameters (SFWMD 2013a). Tables 3.0-1 and 3.0-2 provide a summary of the Post-Uprate sampling locations and analyses. Samples continued to be collected and analyzed for sodium, chloride, and tritium every quarter, and ions and nutrients were measured twice a year during the semi-annual events for both groundwater and surface water (Tables 3.0-1 and 3.0-2). Total dissolved solids (TDS) in groundwater and silica in surface water continued to be collected in the Post-Uprate semi-annual events.

While there have been a few changes in the monitoring/data during the Post-Uprate period, most, if not all, are unrelated to the actual Uprate. The most significant finding is the increase in temperature and specific conductance in the CCS. The Post-Uprate temperatures near the plant discharge into the CCS and near the plant intake were 4.5 degrees Celsius (°C) and 3.2°C warmer, respectively, than the Pre-Uprate period. While Pre- and Post-Uprate averages may not be directly comparable because they do not cover the same number of months, the Post-Uprate water temperatures were consistently warmer. The increase in CCS surface water temperatures during the Post-Uprate period cannot be explained by the Uprate since the total heat rejection rate to the CCS from Turkey Point Units 1, 2, 3, and 4, operating at full capacity prior to the Uprate monitoring period, would have been higher than the Post-Uprate heat rejection rate to the CCS for Units 1, 3, and 4 operating at full capacity. Unit 2 was dedicated to operate in a synchronous condenser mode (i.e., not producing steam heat) in the beginning of 2011, thereby requiring no heat rejection from the CCS. FPL's observations have concluded that the temporal increase in average CCS temperature in 2014 (during the Post-Uprate Monitoring period) was the result of a series of events that degraded CCS water quality and negatively affected the heat exchange capacity of the CCS, including the following: lower than average precipitation into the CCS during 2011 through early 2014; reduced circulation within the CCS; periods of degraded water quality in the CCS during 2012 and 2013 (increased salinity, turbidity, and algal concentration); and decreased CCS heat exchange efficiency from historical levels in 2013 and 2014, likely due to significant blockages and increased sediment levels principally in the northern segments of the CCS.

With an increase in CCS surface water temperatures, the rate of evaporation had increased, causing specific conductance and salinity to rise during the Post-Uprate monitoring period. Specific conductance values exceeded 120,000 microSiemens per centimeter (μ S/cm) by the end of May 2014. This equates to salinity greater than 90 (PSS-78 [Practical Salinity Scale of 1978]). The specific conductance and salinity levels were significantly reduced by a three-week freshening effort in the fall of 2014 (pumping L-31E Canal water into the CCS) combined with some significant rainfall events; however, the values rebounded during an extremely dry winter and spring and, by April 2015, specific conductance values had exceeded 120,000 μ S/cm. The

average specific conductance in the CCS was more than 30% higher than the average specific conductance value during the Pre-Uprate period, and the maximum CCS Post-Uprate value is more than 40% higher than the maximum CCS Pre-Uprate value. FPL continued to implement freshening and canal thermal exchange improvement actions through 2015, including the addition of fresher water from on-site wells and the L-31E Canal, along with improvements to the flow distribution within the CCS (sediment removal and throttle adjustments). These actions significantly reduced salinity in the CCS to mid-30 (PSS-78 Scale) ranges, improved heat exchange efficiency, and stabilized water quality within the CCS.

As previously reported by FPL (2014a), groundwater data collected below Biscayne Bay indicate a presence of CCS water not previously detected in the uprate monitoring period in the area fronting the northern half of the CCS at depth (more than 100 feet below Bay bottom). While water quality at these depths has historically been equal to seawater (i.e., TPGW-10D), minor increases in specific conductance, chloride, sodium, and tritium were first observed in the Interim Operating period and are attributed to the lower pumpage rates at the plant during the Uprate outages. The outages resulted in higher-than-normal CCS water levels along the eastern portion of the CCS during a 16-month period from 2012 to 2013. There were no increases in salinity trends or tritium observed in the shallow monitoring wells in Biscayne Bay or in porewater samples collected in the Bay during the Interim or Post-Uprate period, which indicates there is no upward movement of the CCS into shallow groundwater intervals or into the Bay and, thus, no groundwater effect on the Bay.

Groundwater samples west of the CCS still indicate the presence of hypersaline CCS water at depth. Farther west of the CCS (out approximately 3 miles), there remains influence of CCS water in decreasing salinity concentrations at depth. Two of the three wells (TPGW-8 and TPGW-9) farthest from the CCS show no indication of CCS water. These wells are located approximately 6 miles to the west and are fresh at all depths; the third well (TPGW-7), located approximately 4.5 miles west of the CCS, was fresh at all depths during the Pre-Uprate period, but is now slightly brackish at the deep interval. However, the most recent tritium data collected through March 2015 indicate CCS water is not present at that location. This change does not appear to be related to the Uprate, but may be a function of regional water withdrawals, water management practices, the long-term operation of the CCS, lag effects of droughts, and sea level rise.

A shallow, fresh water lens still exists throughout the Model Lands west of the CCS and is supported by the induction logging conducted for this project and the continuous specific conductance profiling done in several historical wells for the interceptor ditch (ID) monitoring. This lens is approximately 10 to 20 feet deep west of the ID canal and thickens towards the west. The persistence of fresh groundwater immediately west of the hypersaline waters in the CCS is an indication that the ID operations have been successful in preventing westward saline migration from the CCS in the upper portion of the aquifer.

There continues to be no discernable effects of the CCS on Biscayne Bay surface water quality at monitoring stations located out in the Bay. For most surface water stations around the CCS, there was no readily apparent change in the influence of CCS water via the groundwater pathway

during the Post-Uprate period, as compared to the Pre-Uprate data. There were two locations in the surface water canal stations immediately adjacent to the south end of the CCS (TPSWC-4, located in the S-20 Canal, and TPSWC-5, located in the Card Sound Canal) where there appeared to be some CCS water present/influence during the Pre- and Post-Uprate monitoring periods. Regardless, water quality and tritium data collected during the Pre- and Post-Uprate monitoring period at TPBBSW-4, located at the mouth of the S-20 Canal and Card Sound Canal in Biscayne Bay, did not show evidence of CCS water. This indicates influence immediately adjacent to the CCS but minimal, if any, influence in Biscayne Bay.

There were increases in specific conductance in the L-31E Canal during the Post-Uprate dry season, similar to observations during the Pre-Uprate period. However, several of the L-31E Canal stations exhibited their highest specific conductance values during the Pre-Uprate period. There does not appear to be a meaningful correlation between specific conductance and tritium; changes in specific conductance are not accompanied by similar and consistent responses in tritium. Tritium values in the L-31E Canal are within values that may be associated with atmospheric influences, so the presence of CCS water, if any, is not discernable.

The data support the conclusion that the CCS does not have any ecological impact on the surrounding areas, and there is no evidence of CCS water in the surrounding marsh and mangroves areas from a groundwater pathway. Ecological findings in the Pre- and Post-Uprate periods for Biscayne Bay and the marsh and mangrove areas surrounding Turkey Point are generally similar, and any differences appear to be predominantly a function of site-specific conditions (i.e., low nutrients, lack of substrate for seagrass) and seasonal and meteorological effects.

1. INTRODUCTION

Florida Power & Light Company (FPL) submits this Comprehensive Post-Uprate Monitoring Report, dated March 2016, for the Units 3 and 4 Uprate Project. This monitoring report has been prepared in accordance with the FPL Turkey Point Power Plant (Turkey Point) Groundwater, Surface Water, and Ecological Monitoring Plan, referred to herein as the Monitoring Plan (South Florida Water Management District [SFWMD] 2009a) and modifications (SFWMD 2013a, b, c). The Monitoring Plan requires the collection of groundwater, surface water, meteorological, and ecological data in and around the plant to establish Pre-Uprate and Post-Uprate conditions and determine the horizontal and vertical effects and extent of the cooling canal system (CCS) water. For further details, refer to the Monitoring Plan and the Fifth Supplemental Agreement (SFWMD 2009a, 2009b).

The purpose of this Comprehensive Post-Uprate Monitoring Report is to summarize the Post-Uprate monitoring efforts through May 31, 2015, to present and summarize the data, and to discuss results. This report also incorporates information presented in the February 2015 FPL semi-annual data delivery (FPL 2015a), and the Annual Post-Uprate Monitoring Report (FPL 2014a) and associated addendum (FPL 2015b). Information from the Comprehensive Pre-Uprate Report (FPL 2012a) is also included, where applicable, for comparisons with the Post-Uprate period. Data collected prior to February 26, 2012, are part of the Pre-Uprate period, while data collected between February 26, 2012, and May 27, 2013, are part of the Interim Operating period. Data collected after May 27, 2013, are part of the Post-Uprate period.

Table 1.1-1 summarizes the Post-Uprate monitoring conducted through May 2015. Data were collected in accordance with the FPL Quality Assurance Project Plan (QAPP) (FPL 2011b; FPL 2013b) and consistently met the data quality objectives (DQOs) in the QAPP. Any notable modifications to field protocols not incorporated in the 2013 revision of the QAPP are discussed in the December 2013 field audit (FPL 2014b).

1.1 Brief Overview of Automated Monitoring Network

FPL has installed an extensive automated monitoring network to collect groundwater, surface water, meteorological, and hydrologic data over a broad area surrounding Turkey Point. A brief overview of each component of the monitoring network is provided below, and further discussion regarding the monitoring results is included in Section 2 of this report. Time-series graphs for the entire monitoring period (Pre-Uprate, Interim Operating period, and Post-Uprate) are incorporated in Section 2 to allow review of trends and any differences between the Pre- and Post-Uprate periods.

1.1.1 Groundwater

From February through June 2010, FPL installed 42 wells in 14 well clusters (Turkey Point groundwater [TPGW-1 to TPGW-14]) at and around Turkey Point (Figure 1.1-1). Coordinates of each station are provided in Appendix A. The locations were determined based on site conditions and extensive coordination among FPL and Florida Department of Environmental Protection (FDEP), SFWMD, and Miami-Dade County's Department of Regulatory and Economic Resources (RER) (collectively, the Agencies). The placement of station locations in Biscayne Bay was also coordinated with Biscayne National Park (BNP).

Three separate wells were installed at each location: a shallow well (S); an intermediate depth well (M); and a deep well (D). The borehole for the deep well was drilled first, and down-hole geophysical methods were used to help determine high flow zones and other subsurface characteristics. Based on a collaborative effort among FPL, JLA Geoscience, Inc., and the SFWMD, screen depths were established, with screen lengths varying from 2 to 5 feet (ft) based on site conditions. Table 1.1-2 provides a brief summary of the well construction information, and further details are provided in the JLA Geosciences, Inc. (2010) Geology and Hydrogeology report.

Following well completion, the top of each well casing was surveyed and infrastructure (probes, telemetry, solar panels, and other elements) was installed to facilitate the automated collection of groundwater quality and stage data at 15-minute intervals. The measured water quality parameters are actual conductance and temperature. Specific conductance, salinity, density, and total dissolved solids (TDS) are calculated by the instrumentation based on the measured parameters. Groundwater data are remotely transmitted via telemetry, typically each day, and are uploaded to FPL's Electronic Data Management System (EDMS).

Data collection methods at these groundwater stations have remained unchanged from the Pre-Uprate to Post-Uprate monitoring period, other than adjusting the stations to record data at 1hour intervals instead of 15-minute intervals in consultation with the Agencies. This change was implemented system-wide from February through April of 2013.

1.1.2 Surface Water

Per the Monitoring Plan and as shown on Figure 1.1-2, automated surface water stations were installed at the following locations:

- Seven stations in the CCS:
- Five stations in adjacent canals;
- Three stations in the Interceptor Ditch (ID); and
- Five stations in Biscayne Bay.

In addition, a non-automated station was set up at the Card Sound Road Canal (Turkey Point surface water canal [TPSWC]-6).

The locations of the monitoring stations were jointly determined with the Agencies and provide broad coverage of the key water bodies in the project area. Two additional automated-only stations (Turkey Point Biscayne Bay surface water [TPBBSW-10 and TPBBSW-14]) were added in February 2011 to record conditions in Biscayne Bay; these stations are co-located with TPGW-10 and TPGW-14.

Following submittal of the Comprehensive Pre-Uprate Report and at FPL's request, the SFWMD provided a letter to FPL on June 3, 2013 (SFWMD 2013a), allowing several modifications that included the following:

- Discontinuation of monitoring at TPBBSW-1 and TPBBSW-2; and
- Discontinuation of monitoring at the bottom of stations of the Turkey Point surface water Cooling Canal System at TPSWCCS-4, TPSWCCS-5, and both the top and bottom stations at TPSWCCS-6.

The automated surface water stations record the same water quality data parameters as the groundwater stations. Stage data are recorded at all Post-Uprate monitoring locations, except stations TPBBSW-4 and TPBBSW-5 in Biscayne Bay, which do not have the infrastructure to support stage recorders or a telemetry system; data at these Biscayne Bay locations are retrieved manually at approximately six-week intervals and uploaded to the FPL EDMS. Data from the other stations are typically transmitted via telemetry daily onto a secure server system and are automatically uploaded into the EDMS. Similar to the automated groundwater stations, the frequency of data recorded was changed prior to the start of the Post-Uprate period from 15-minute to hourly intervals.

1.1.3 Meteorological

One meteorological station that includes instrumentation to measure solar radiation, wind speed, wind direction, air temperature, relative humidity, and rainfall was installed near the center of the CCS (Turkey Point meteorological station [TPM-1]). Data were collected at 15-minute intervals from the inception (July 2010) to April 2013, when the frequency was changed to hourly intervals to be consistent with the other automated stations. Data from the meteorological station are automatically uploaded daily into the EDMS as well.

While TPM-1 measures rainfall, data from the SFWMD Next Generation Radar (NEXRAD) is typically used for most analysis. FPL and the SFWMD previously determined that the NEXRAD data provided better information for the water budget analysis. The NEXRAD data (daily rainfall totals over selected areas) is provided by the SFWMD to FPL bi-annually.

To help assess the contributions of tritium via rainfall and vapor exchange, seven rainfall collectors were installed around the CCS and five evaporation pans were installed at various locations. The monitoring at these stations has remained the same since they were installed during the Pre-Uprate monitoring period. Figure 1.1-3 shows the locations of the abovementioned stations.

1.2 Quarterly Water Quality Sampling

The monitoring network for groundwater and surface water supports the collection of water samples for laboratory analysis. During the Post-Uprate monitoring period, samples were collected from the 42 new groundwater wells and the 21 surface water stations noted in Section 1.1.2, above. Samples were also collected from two depths at five existing historical wells (L-3, L-5, G-21, G-28, and G-35) as part of FPL's routine sampling for the ID operation. The samples were analyzed for a variety of laboratory and field parameters (Table 1.2-1), depending on the locations and whether the effort was a quarterly or semi-annual event. Table 1.2-1 also shows changes in laboratory and field parameters during the various monitoring periods, as described below.

Following review of the Comprehensive Pre-Uprate Report, the SFWMD (2013a), in consultation with the Agencies, agreed to reduce some of the monitoring requirements as follows:

- Elimination of Biscayne Bay surface water quality monitoring stations TPBBSW-1 and TPBBSW-2 and associated sampling;
- Elimination of TPSWCCS-4 and TPSWCCS-5 bottom stations;
- Elimination of both the top and bottom stations for water quality parameters at TPSWCCS-6; and
- Reduction of the number of parameters to be analyzed (Table 1.2-1).

All other monitoring requirements remained the same. In June 2014, FPL opted to resume the collection of water quality parameters at the top station at TPSWCCS-6.

Results of the Post-Uprate monitoring conducted in June 2013, September 2013, December 2013, March 2014, June 2014, September 2014, December 2014, and March 2015 are included in Section 3 of this report. Analytical results prior to June 2013 can be found in the semi-annual data deliverables (FPL 2013a) and the Comprehensive Pre-Uprate Report (FPL 2012a).

1.3 Ecological Monitoring

The Monitoring Plan and QAPP outline an ecological monitoring program in the wetlands and Biscayne Bay around the CCS that includes marsh vegetation, mangroves, tree islands, submerged aquatic vegetation, and benthic fauna. Figure 1.3-1 shows the sampling locations and Table 1.1-1 includes the ecological parameters measured during Post-Uprate monitoring. Based on information in the Comprehensive Pre-Uprate Report and per FPL's request, the SFWMD approved several reductions in the ecological monitoring for the Post-Uprate monitoring period (SFWMD 2013b). These reductions, in consultation with the Agencies, were initiated for the Post-Uprate monitoring and include the following:

- Reduction in frequency of vegetation sampling in the saline wetlands (mangroves) from semi-annual to annual, with sampling to be conducted at the end of wet/growing season (November);
- Reduction of porewater sampling in mangroves and tree islands from quarterly to semiannually;
- Reduction of parameters to be analyzed in porewater, which initially included a broad suite of physical parameters, cations, anions, tracer suite constituents, and nutrients. The Post-Uprate monitoring includes physical parameters (specific conductance and temperature) and chemical parameters (nutrients, tritium, sodium, and chloride);
- Elimination of faunal sampling during the Post-Uprate monitoring period; and
- Reduction of submerged aquatic vegetation (SAV) and semi-annual porewater sampling from five transects to two at each of the four existing Bay sites (to be collected at 'a' and 'b' transects).

During the Post-Uprate monitoring period, plant community characteristics (composition, cover, canopy, height, productivity), leaf characteristics, nutrient content in the leaves, and porewater quality were assessed in 12 transects in marsh and mangrove areas around the CCS (Figure 1.3-1). Two (one each in the marsh and mangrove) of these transects are in reference areas. This monitoring is conducted quarterly to annually, depending on the parameter.

In Biscayne Bay, during the Post-Uprate monitoring period, SAV, coral and sponge community composition and cover, nutrient content in seagrass leaves and sediment, light attenuation, and porewater quality were assessed in eight transects that paralleled the shoreline (Figure 1.3-1). This monitoring is conducted twice per year.

This report presents the results of the marsh and mangrove monitoring conducted in August 2013, November 2013, February 2014, May 2014, August 2014, November 2014, February 2015, and May 2015 and Biscayne Bay monitoring conducted in September 2013, April 2014, September 2014, and April 2015. Where appropriate, comparisons with Pre-Uprate findings are included.

Results prior to June 2013 can be found in the semi-annual data deliverables (FPL 2013a) and the Comprehensive Pre-Uprate Report (FPL 2012a). Details on the transect plot setups, sampling methods, and materials can also be found in the Comprehensive Pre-Uprate Report (FPL 2012a).

1.4 Hydrogeologic Assessment

1.4.1 Post-Uprate Hydrogeological Observations and Extent of CCS Water

With the aid of data collected as part of the well installation efforts, automated data and analytical results, the United States Geological Survey (USGS) induction logs, and other supporting documentation, FPL conducted an initial assessment of the hydrogeologic conditions in the area surrounding Turkey Point and the CCS in the Comprehensive Pre-Uprate Report (FPL 2012a). Additional information is provided in this Post-Uprate Report.

1-5

1.4.2 CCS Water and Salt Budget

FPL has worked closely with the Agencies to develop an acceptable methodology for the CCS water and salt budgets. This methodology was presented in the Comprehensive Pre-Uprate Report (FPL 2012a), and that same methodology has been used to assess the Post-Uprate water and salt budget. Estimated monthly water budgets and salt loads from June 2013 through May 2015 are included in Section 5.

1.5 Interceptor Ditch Operation

The ID is located immediately west of the CCS and is designed to prevent seasonal inland movement of saltwater from the CCS into the historically fresh/upper portion of the Biscayne aquifer. Shallow saline groundwater is intercepted by the ID and pumped back to the CCS during the dry season or other times when the natural gradients are low and the potential for saltwater intrusion exists. Details of the ID operation are found in the 1983 Agreement (the Agreement) between the SFWMD and FPL. On October 14, 2009, the Agreement was modified to expand the monitoring program as part of the Turkey Point Units 3 and 4 Uprate Project, and well G-35 was added as part of the historical monitoring network. FPL submitted a revised operations plan to the SFWMD in 2011 that considered the effects of water density; FPL began following that plan in December 2011. Subsequent refinements were made in 2012 (minor change in pumping triggers), and FPL has been following the updated version since December 2012.

FPL has been collecting groundwater data west of the CCS and recording ID pumping as part of the ID operation since 1972. Results have been included in reports that were submitted on a quarterly and an annual basis to the SFWMD. With SFWMD's concurrence, these results are now integrated into the Annual Uprate Reports and include findings from the previous year (June-May). ID operation information/results for June 2014 through May 2015 are provided in Section 6 of this report.

1.6 Data Quality Objectives and Acceptance Criteria

DQOs, along with acceptance criteria, are identified in the project QAPP (FPL 2013b). The DQOs include the following:

- Precision;
- Accuracy;
- Analytical Sensitivity;
- Completeness;
- Representativeness;
- Comparability;
- Availability;
- Reliability:

- Maintainability; and
- Timeliness

Quality guidelines that reflect quantifiable goals have been established for some of the DQOs. DQOs have consistently been met, and any exceptions are discussed within this report. A summary of performance in meeting the DQOs is described below.

Precision

Precision is a measure of mutual agreement (reproducibility) between duplicate or co-located measurements of the same analyte. The closer the numerical values of the measurements are to each other, the more precise the measurement.

To assess precision of the automated probes being used to collect time-series water quality and water level data, field measurements are taken during sampling events and/or during cleaning and calibration events to compare the results with the automated probe. Temperature readings on the automated probe are checked against the reading of a National Institute of Standards and Technology (NIST)-certified thermometer during cleaning and calibration events. During sampling events, specific conductance values are recorded with a second probe and compared with the automated values for informational purposes. Any major discrepancies between the automated probe and the second probe are reviewed; however, the values are sometimes different due to differences in sample collection location (the second probe readings for specific conductance are in the flow-through cell, the automated readings are in the well).

For verification of water level precision of the automated probes, water level measurements are recorded with a water level indicator at different times during cleaning and calibration and are compared with the probe reading. Water levels are recorded on the water level indicator and probe before pulling the probes for cleaning and after replacement of the probes following cleaning. This helps verify that the automated water level probes have recorded data with good precision prior to cleaning and confirms that the reference levels are set correctly after cleaning. If the difference between the verification water level reading (before the probe is pulled for cleaning) is greater than 0.1 ft from the automated probe reading, the data are qualified as estimated (E) back to the previous cleaning and calibration event or, at minimum, back to an interim point where there is an unexplained shift in the data. The precision continues to improve over time; however, the biggest challenge has been associated with the surface water stations in Biscayne Bay and the CCS. Occasionally, wave action at these surface water body locations affect the water-level indicator readings, making verification of the automated reading difficult. Only a limited amount of water level data (<1%) is qualified as questionable due to verification failures. However, as the probes have aged, there has been a slight increase in qualifying water level data due to verification readings. FPL is systematically conducting factory calibrations and replacing the older probes, where appropriate, to address this issue.

The precision of laboratory samples is established by the evaluation of field and laboratory duplicate samples. If the relative percent difference (RPD) between the sample and the duplicate result differ by more than 20%, the results for that analyte in both samples are qualified as

questionable (?). While a small percentage of sample data has been qualified due to high duplicate RPDs, overall, the analytical results are comparable to duplicate samples for those samples using the same method. These precision results indicate the sampling and analytical procedures are consistently performed and repeatable. Details are provided in the Data Usability Summary (DUS) reports issued for each event.

The precision for ecological samples is determined by a 5% check on all field vegetation measurements. In the marsh and mangrove, plots are randomly selected each event to be remeasured to determine precision. Individuals conducting the first set of measurements on the plot are not allowed to re-measure the same plants. Biscayne Bay SAV plots are reassessed by a second diver following behind the first person to conduct an independent Braun-Blanquet assessment. Scientists involved in the SAV measurements also participate in the annual inter-Agency calibration exercise (previous exercises were conducted with the USGS, SFWMD, and RER in May 2014 and May 2015 as part of the Post-Uprate period) as an additional level of precision determination.

Accuracy

Accuracy is the measure of bias in a measurement system. The closer the value of a measurement is to the true value, the more accurate the measurement.

The instrumentation for all the automated station instruments and field equipment meets the requirements for accuracy per the QAPP. All stations were surveyed with vertical control established to second order closure (accuracy within hundredths of a foot), with the exception of three groundwater cluster stations located in Biscayne Bay due to their distance from shore. The top of the groundwater wells and surface water stilling wells at these Biscayne Bay stations were surveyed with global positioning system (GPS) instruments to an accuracy of 0.1 ft.

To assess accuracy of the automated stations being used to collect time-series water quality data, each of the 71 probes is checked against standards of known specific conductance values (verification) and then recalibrated, as necessary, during each cleaning and calibration event. Approximately 98% of the probes for the entire monitoring effort have passed the verification check conducted during cleaning and calibration by being within 5% of the known standards. When values differ by more than 5% and less than 30%, the probe data are qualified as estimated. When values differ by more than 30%, the data are qualified as questionable. In both cases, data are qualified back to the previous cleaning and calibration event or, at a minimum, back to an interim point where there is an unexplained shift in the data. Specific data have been qualified as questionable (?) for this reason in only a few instances; these data are not used in any analyses.

Similarly, probe temperature readings are compared with a highly accurate NIST-certified thermometer during each cleaning and calibration event. If a temperature verification measurement on the NIST thermometer is more than 0.5 degree Celsius (°C) different than the automated probe reading, the data are qualified as questionable. Rarely have the water quality data been qualified for not meeting a field instrument temperature verification reading.

Accuracy of the analytical results is evaluated using percent recoveries of analytes added (termed "spiked") to samples (matrix spikes [MSs]) or reagents (laboratory control samples [LCSs]) and carried through the extraction and analysis procedure. Laboratory-established acceptance criteria (within method requirements) are used for LCS and MS percent recoveries. LCS percent recoveries have consistently passed acceptance criteria for all analyses, indicating the laboratories' extraction and analytical procedures and materials have met method requirements.

The comprehensive review of the analytical data performed by the SFWMD in February 2013 (SFWMD 2013d) noted issues with the matrix spiking procedures. As a result, a Corrective Action Plan (CAP) was proposed by the laboratory that included a modified calibration and spiking regime and modified batching procedures (i.e., analyzing similar salinity samples together). Since the CAP's implementation in June 2013, the calibrations ranges and spiking concentrations have been tailored to the anticipated concentration of the samples, resulting in more accurate and usable MS data. In addition to the laboratory corrective actions addressing MS/matrix spike duplicates (MSDs), the data validation procedure was also modified in the June 2013 QAPP revision (FPL 2013b). Prior to the 2013 QAPP revision, MS qualification was limited to the parent or native sample. The revision requires qualification of similar salinity samples run in the same batch. While the matrix spiking regime has resulted in many fewer failures, the validation modification has resulted in qualifying additional samples. The net difference of the number of MS/MSD qualified data is essentially the same, although the data are more accurate and usable.

Accuracy is conveyed in an analytical result through the use of significant figures. The laboratory traditionally reports all analytical results with two significant figures (e.g., 32,000 milligrams per liter [mg/L]). In this case, the result is understood to be \pm 1,000 mg/L. As a result of the June 2013 changes to the Monitoring Plan, the laboratory now reports a third digit to aid in Post-Uprate analysis of the data (e.g., 32,200 mg/L). However, this third digit is not considered significant. This third digit can be misconstrued as indicating a false level of accuracy of, from the example above, \pm 100. Therefore, the actual level of accuracy needs to be considered when using the three-digit analytical results.

In addition to recoveries, accuracy is evaluated using technical comparison checks, including cation and anion charge balance; cations, anions, and TDS compared with the specific conductance; total ammonia less than total Kjeldahl nitrogen (TKN); and orthophosphate (OP) less than total phosphorus (TP). Many cation and anion results, particularly in the high salinity samples, have been qualified as estimated (J) due to ion charge and conductance comparisons. Comparison of TDS/specific conductance and ammonia/TKN were generally acceptable over the course of the project.

Regarding the phosphorous results, in the initial monitoring events, the OP results were frequently reported above the TP results; this is not possible, as OP is a subset of TP. Since the background correction method modification in March 2011, the OP and TP comparisons have been mostly within the criteria, although the lab continues to have intermittent issues with the project matrices and the low concentrations of the target analytes. There are multiple reasons

why quality criteria were not met, which leads to difficulty in isolating a particular source of the issues. There were cases where the samples were diluted (to compensate for the complex matrix), which resulted in elevated method detection limits (MDLs) when reported as not-detected and many of the errors involved results that were either at or near the MDL.

Following laboratory audits in early 2012, the standard operating procedure (SOP) for TP was modified to account for saline interference seen in some samples. The method and instrumentation employed can only partially separate TP from a saline baseline shift. The laboratory determined the automated integration performed was quantifying the elevated saline baseline rather that the TP peak. The method modification with the new integration technique occurred prior to the September 2012 semiannual event. The TP results for saline samples since the modification have been markedly lower, in general. Therefore, the TP results prior to this modification should be considered biased high, with more uncertainty associated with the saline sample results. The modifications to the OP and TP methods noted above resulted in an increase in accuracy of the results. The consistency of acceptable matrix spike recoveries, an indicator of accuracy, for these methods has improved significantly following the modifications.

Similarly, the accuracy of fluoride and sulfide results has also been in improved as a result of method modifications. These modifications are discussed in more detail in the following Analytical Sensitivity section as achieving the project-required MDL was the main reason for the modification. Prior to the modifications, results for these analytes were often reported as not detected, but at a detection limit above the project requirement. With the modifications, results for fluoride and sulfide have been consistently meeting project requirements with detections in the range not seen prior to the modifications. Therefore, the accuracy and usability of these data has greatly improved.

Accuracy can also be evaluated using field blanks, which can indicate bias in the associated analytical results. Field blank results over the course of the project and for the majority of analytes, have confirmed proper sampling and handling techniques. However, beginning in late 2013, some nitrogen analytes (i.e., ammonia, TKN) were being detected in some field blanks. Many of the associated sample results have been qualified as estimated (J) due to these detections. After a review of sampling and analytical procedures, and following discussions with the laboratory, it was determined the system used to generate the deionized water provided by the laboratory for use in the field blanks was not providing adequate water quality. Countermeasures were implemented to address the issue and, starting in the May 2015 event, the laboratory has verified deionized water quality via analyses conducted for all project analytes. The laboratory periodically provides a complete analyte report to ensure the quality of the deionized water used for the project.

To further evaluate laboratory accuracy, FPL requested that TestAmerica Laboratories, Inc. (TestAmerica) analyze certified reference material (CRM) samples for nutrients in saline waters. In June 2012, the laboratory analyzed CRMs for ammonia, TP, OP, nitrate/nitrite, and TKN and reported acceptable recoveries for the nutrients tested using the methods and procedures employed on the project. To comply with the June 2013 QAPP revision (FPL 2013b), the laboratory has continued analyzing CRMs on an annual basis, with the first report submitted in

November 2014; recoveries for chloride, sodium, ammonia, TP, OP, nitrate/nitrite, and TKN were within acceptability limits.

Along with the data validation procedures described above, the TestAmerica laboratory has been periodically audited over the course of the project to ensure continued data quality. In general, the laboratory has performed well in the audits by following all method and QAPP requirements. For instances where issues were noted, the laboratory has incorporated corrective actions, some of which are detailed above, that have resulted in improved data quality over the course of the project. The most recent laboratory audit, performed by FPL in March 2015, confirmed the laboratory continues to follow all method and QAPP requirements to provide accurate and usable data.

Analytical Sensitivity

For data validation, qualification, and reporting purposes, analytical sensitivity is expressed by MDLs. An MDL is set so that the minimum concentration of an analyte reported is within 99% confidence that the analyte is greater than zero.

Project-required MDLs are listed in Table 3.2-1 of the QAPP (FPL 2013b). The MDLs are based on applicable criteria, MDLs listed in the Automated Data Processing Tool (ADaPT), Florida Administrative Code (F.A.C.) 62-4.246(3), and stated laboratory capabilities. While the majority of analytical detection limits have met the QAPP requirements, a few have been difficult to achieve due to the saline nature of the samples. This is particularly an issue with the trace metals, some nutrients (i.e., ammonia, nitrate/nitrite), and a few other analytes. The laboratory has had to dilute the saline samples to keep instruments from being overloaded with the major ionic constituents (i.e., chloride, sodium), which is not an uncommon situation. This has resulted in some data reported as "not detected" (U) but with detection limits above the QAPP requirements. In addition, these dilutions increase the uncertainty, or error, associated with a result.

To address this issue and achieve the required MDLs, TestAmerica has made several changes to protocols/methods over the course of the project. The analytical methods for fluoride and sulfide have been changed to achieve the required MDLs. Starting in September 2013, the fluoride method was changed to SM 4500 F C (previously United States Environmental Protection Agency [EPA] Method 300). The sulfide method change to EPA Method 376.2 (previously SM 4500 S) was delayed due to laboratory issues until September 2014. Since the method change, the MDLs for non-detected results have consistently been below QAPP requirements, resulting in more usable data. The MDL for total ammonia, which was intended to be modified as well, was not updated in the June 2013 QAPP due to an oversight. Future revisions of the QAPP should include this modification. As noted in the previous section, the laboratory has started batching samples and tailoring calibration ranges, within method requirements, to fit project samples and reduce the frequency of dilutions needed.

Completeness

Completeness is expressed as the percentage of valid or usable measurement to planned measurements. The higher the percentage, the more complete the measurement process. The number of planned measurements is based on when the infrastructure is in place and functional. Per the QAPP, the completeness goal for automated water quality measurements and the meteorological data is 90%. The completeness goal for the analytical data is 95%. As described below, the completeness goals have been met. In addition, water quality samples and ecological data also have a high degree of completeness, as described further below.

The automated water quality data are 94% complete for the entire monitoring period from June 2010 (or when stations came online) through May 2015. The percent completeness is higher in the Post-Uprate monitoring period compared to the Comprehensive Pre-Uprate Report (FPL 2012a), which had 89% completion from June 2010 through June 2012. However, more recent increases in log resets or electronic failures have resulted in the loss of some data. There continue to be issues with specific conductance oscillations resulting in unusable data related to probe or cable malfunctions or radio frequency wave interferences, but to a lesser extent than previously reported. A small percentage of specific conductance or temperature data have also been qualified for short periods of time as unusable due to factors such as: the overtopping of wells from seasonally high tide events (TPGW-3 and TPGW-12) and excessive rain events (TPGW-7); data recorded during a cleaning and calibration or sampling event, and likely affected by those activities; clogging of stilling well; sensors blocked by sediment or other obstructions; probe malfunction; and, to a lesser extent, calibration failure. FPL will be replacing all of the automated probes in the first half of 2016 and will be installing new risers and stilling wells, which are anticipated to reduce questionable or lost data.

Meteorological data at TPM-1 are more than 90% complete for the entire monitoring period. The meteorological station was out of service during only a few events. The anemometer failed on April 30, 2013, and the entire unit, which contained all the sensors, except for photosynthetically active radiation (PAR), was returned to the factory on June 11, 2013. The anemometer was repaired, and the meteorological station was operational approximately two weeks later. Based on ongoing concerns by FPL about potential underreporting of the rain sensor, the entire unit was sent to the factory for replacement of the rain sensor; the unit was out from July 30, 2014, through August 8, 2014. Lastly, in late October 2014, the battery failed for several days and data were lost. As discussed in more detail below, the hourly data reported by TPM-1 from April 9, 2013, through the Post-Uprate period do not properly reflect rainfall conditions, and the hourly data are unusable. However, daily rainfall totals from TPM-1 are good and should be used, instead.

All planned groundwater and surface water stations were sampled during the Post-Uprate monitoring period from June 2013 through May 2015. All planned porewater stations were sampled over the same period, with the exception of two stations (F3-4 and F6-4) in the May 2014 event due to a lack of porewater. No analytical data have been qualified as unusable during the Post-Uprate period, with the exception of one OP data point from the March 2014 surface

water sampling. This results in a completion rate of almost 100% (more than 99% for the entire monitoring period), which is consistent with the completion rate during the Pre-Uprate period.

All the planned ecological measurements have been made. Field data and samples are checked before leaving the field so no field measurements are missing and no analytical data have been qualified as unusable during the Post-Uprate period. This results in a completion rate of 100% in meeting the project objectives (more than 99% for the entire monitoring period).

Representativeness

Representativeness is a qualitative parameter that expresses the degree to which data accurately and precisely represent the environmental condition. The sampling locations and techniques, as outlined in the Monitoring Plan and the QAPP, provide data that are representative of conditions in the CCS and the surrounding environment.

Groundwater wells are placed in discrete high-flow zones and are spatially distributed to reflect changes in groundwater levels and quality across the landscape. Automated data are collected at 15-minute to 1-hour intervals, an adequate duration to reflect temporal changes in water levels, water quality, and various meteorological parameters.

In February 2015, FPL purged a majority of the wells. Following purging, changes in water levels were observed in several well clusters (most notably in the deep and intermediate depth wells at TPGW-2, TPGW-3, TPGW-6, TPGW-10 (deep only), and TPGW-12). FPL suspects that there was some stratification in the upper portion of the well casing that does not fully reflect the current water density in the formation. This stratification can impact water level readings. Depending upon the density of the water and extent of stratification, water level readings could be higher or lower; however, the hourly and seasonal patterns of an individual well are not affected. Further discussion is provided in Section 2.

During quarterly sampling events, specific conductance is recorded when samples are pumped. These values are later compared to data from the automated probes for each location. There have been a few instances in which the sampling and automated values have differed by 30% or greater. In some cases, such as with surface water sites, probes are typically inside stilling wells, and samples are taken from outside of the stilling wells. These differences in readings may be attributable to a reduction in water exchange between open water and the stilling well. This reduction in water exchange could be caused by biological fouling. If this is the case, the sample taken outside the well would be more representative of the environment than the water within the stilling well. New stilling wells are being installed for all surface water stations in 2016. These new stilling wells will have larger openings to enhance water circulation.

As mentioned above, FPL had concerns about the potential under-reporting of the rainfall sensor at TPM-1. FPL replaced the sensor in July/August 2014, but the rainfall values still seemed low. Rainfall was subsequently measured over a short-term period at a location adjacent to TPM-1 and the results were compared. The findings revealed reasonably close comparisons between the replaced sensor and the rainfall gauge, but there were some differences. Upon further

investigation and reviewing the reporting code of the meteorological station, FPL found that the sensor reporting had not been properly set by YSI in April 2013, which resulted in underreporting the hourly results. Rainfall was being measured correctly, but only reporting the last 15 minutes of each hour. This coding also affects lull wind speed, wind speed during gusts, average wind speed, and hail hits, since they are only being recorded at the last 15 minutes of each hour (basically a measurement each hour, but includes only data averaged over 15 minutes and not over the hour). Hourly rainfall data and hail hits are not representative of hourly totals and are not included in this report. In lieu of hourly rainfall data, FPL is including the daily totals from TPM-1, which were correctly measured and are representative of rainfall at that location. Wind lull and gust and average and maximum wind speed are not dependent on cumulative hourly totals and, thus, the measurements, even if just for 15 minutes each hour instead of the full hour, are still usable and representative of field conditions.

Comparability

Comparability is a qualitative parameter expressing the confidence with which one set of data can be compared to another. Nearly all the data, unless qualified as "?" or unusable for other reasons, are comparable. Methods of data collection and analysis have primarily remained consistent over the entire monitoring effort, including the Post-Uprate monitoring period. Some refinements in data collection have helped improve efficiency or verify precision. Below is a discussion of the impact of these data collection refinements on data comparability. Since the Pre-and Post-Uprate data will be compared in some instances, comparability of data between both time periods is important.

The most notable analytical data that may not be directly comparable are some of the nutrient results. As noted in the "Accuracy" section above, the method of analysis for OP was modified to address sample background, beginning with the collection of data in the March 2011 sampling event; OP data collected prior to March 2011 using the original method are not directly comparable to data collected during and after the March 2011 event. The data prior to the March 2011 event are believed to be biased high due to background fluorescence levels interfering with the analysis.

The most recent data that may not be directly comparable are the fluoride and sulfide results. As noted in the "Analytical Sensitivity" section above, the original analytical methods were changed to alternative methods in the September 2013 and September 2014 sampling events, respectively. The high concentration of other cations in some samples had been causing the laboratory to dilute samples that would result in non-detect results with MDLs elevated above the QAPP-required MDL. The alternative methods have resulted in lower detection limits and little interference from other sample components. The data prior to the September 2013 event are believed to be usable and not biased either way; however, the elevated MDLs limit the usefulness of the data in some cases.

Nitrate/nitrite samples collected in March 2012, and in subsequent events, were filtered in the field. Previously, the samples were distilled in the laboratory and not filtered in the field. It is expected that the results are similar. Rarely does one find insoluble forms unless they are large

particulates that would not be analyzed in any case; large particulates would have to be removed, as they would interfere with the analysis. This was further demonstrated by the March 2012 RER split samples. The samples were analyzed as filtered and unfiltered for ammonia and nitrate/nitrite, with essentially identical results. Therefore, the ammonia and nitrate/nitrite results from both method variations are considered comparable.

The frequency of automated reporting in the groundwater and surface water stations was reduced from 15-minute intervals in the Pre-Uprate monitoring period to 1-hour intervals in the Post-Uprate monitoring period. This change in frequency does not impact the comparability of data from the two periods, since both time intervals adequately capture site conditions.

Availability

Availability is the percentage of time that a system or function is available for service, according to established criteria and the probability that the system is operating satisfactorily at any point in time, excluding times when the system is under repair. This DQO primarily applies to the automated systems.

The stations that report automated water level and water quality still collectively have a high degree of availability. These systems operate around the clock, the probes have been reliable, and spare probes and cables are usually on-hand to fix a problem station. Other than the issue with the rain sensor's reporting, the meteorological station has been reliable, with limited downtime; thus the station has a high degree of available data on solar radiation, wind speed and direction, air temperature, relative humidity, and daily rainfall.

Reliability

Reliability is the probability of a system performing a specified function without failure for a specified period of time. A "failure" occurs when a measurement or control action does not comply with established accuracy, completeness, or timeliness standards. This DQO primarily applies to the automated systems.

Collectively, the stations that report automated water level and water quality are still reliable in the context of data usability. The associated probes that measure and record the data meet the accuracy requirements and exhibit high percent completeness. As previously indicated, some stations have recurring issues with oscillating specific conductance data; however, only a small percentage of the data are qualified "?". Reporting of the automated data from the stations on telemetry has typically been on a daily basis. However, a handful of stations still have signal issues, and the data have not been consistently reported within 24 hours. Even though the data may not have been electronically transmitted within 24 hour of collection, in most instances, the data are available (stored internally on the probe) and are eventually uploaded to the EDMS when a phone connection is made or when the data are manually downloaded. The quality guideline for reliability, as stated in the QAPP, is difficult to judge since it reflects a mean time between failures of 18 to 24 months, depending on the system. While there have been "failures" in less than 18 months, the majority of the data are usable and the Agencies are not making any decisions based on the raw data that are being transmitted via telemetry.

The meteorological station at TPM-1 has been reliable, with only a few outages and limited loss of data. The integrated meteorological unit has been out of service for factory repairs on just two occasions over the entire monitoring period: once to repair a malfunctioning anemometer and another time to replace the rainfall sensor. These repairs resulted in the loss of about three weeks of data. As previously discussed, FPL recently discovered that the sensor was correctly measuring rainfall, but only reporting the last 15 minutes of each hour due to a coding error. This error was fixed on June 17, 2015.

Maintainability

Maintainability is the ease with which a component or equipment can be modified to correct faults. The quality guideline per the QAPP for completion of repairs to components or equipment is seven days for 95% of all incidents, with the exception of remote stations accessible only by boat or airboat. However, given the size of the system, the remote locations of some stations, and the occasional need for extended troubleshooting efforts, strict compliance with the guideline is still not always possible or even appropriate. The automated groundwater and surface water stations (inshore) are easier to maintain than some of the other systems. Note that some of the oscillation and daily reporting issues have required, and continue to require, extensive troubleshooting.

On an approximate weekly basis, FPL checks for any automated groundwater and surface water stations that are on telemetry but are not reporting. Often, the lack of reporting is related to low signal strength or loss of modem connection the previous day, and not to an equipment malfunction. Typically, the data are still available, as data are stored on the probe; these data are uploaded when the system eventually reports. On a regular basis, FPL looks at time series plots of the data to see if there are any unusual data trends or oscillations requiring troubleshooting and repair efforts.

Timeliness

Timeliness is the promptness of reporting a measurement after it is made, reporting deficiencies, submitting reports or other project documentation, addressing corrective actions, and reporting deviations within the timeframes specified in the QAPP or within the Monitoring Plan or the Agreement.

Per the QAPP, the analytical data have been consistently provided to the Agencies within 48 hours following FPL's receipt of the data from the laboratory. While much of the data from the primary laboratory is in ADaPT format, such data have not undergone a full quality assurance (QA)/quality control (QC) review at the time it is first submitted to the Agencies. Since the samples are analyzed by various laboratories, the results are received at different times, with tritium sample analyses taking the longest to obtain. Once sample results are obtained for a sampling event, a full QA/QC check of the data is conducted, and FPL generates DUS reports. The data are further assessed during the preparation of semi-annual and annual reports; occasionally, suspect results are found and subsequently qualified.

The automated systems report values at 1-hour intervals and, for those systems on telemetry, upload the results daily. As previously discussed, low signal strength or other issues have prevented various telemetry units from consistently reporting every day. While the raw data can be viewed by the Agencies in FPL's electronic database, the data are not official until FPL has conducted a full QA/QC review. If additional errors are noted in the data following the QA/QC process, the results are updated in the database or DUS report, as applicable, and are included in an errata or the subsequent annual report.

Reports have been submitted to the Agencies per the timeframes outlined in the QAPP or in accordance with revised schedules agreed to by the Agencies. Once there is concurrence that corrective actions from field and laboratory audits are needed, corrective action is typically implemented immediately or by the next sampling event.

TABLES

Table 1.1-1. Summary of Annual Post-Uprate Monitoring Efforts

	Month Control of the											
Monitoring Effort	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May
Automated Data Collection	Continuous	Continuous	Continuous	Continuous	Continuous	Continuous	Continuous	Continuous	Continuous	Continuous	Continuous	Continuous
Groundwater and Surface Water Sampling (Uprate Stations)	Field parameters, TDS (GW only), sodium, chloride and tritium			Field parameters, TDS (GW only), anions, cations, silica (SW only), tritium and nutrients ¹			Field parameters, TDS (GW only), sodium, chloride, and tritium			Field parameters, TDS (GW only), anions, cations, silica (SW only), tritium and nutrients ¹		
Historic Groundwater Well Sampling (G and L series wells)	Field parameters, TDS (GW only), sodium, chloride and tritium			Field parameters, TDS (GW only), anions, cations, silica (SW only), tritium and nutrients ¹			Field parameters, TDS (GW only), sodium, chloride, and tritium			Field parameters, TDS (GW only), anions, cations, silica (SW only), tritium and nutrients ¹		
			Marsh measurements			Marsh and mangrove measurements			Marsh measurements			Marsh measurements
Ecological Marsh and Mangrove Monitoring			Marsh pore water (field parameters, sodium, chloride, and tritium)			Marsh and mangrove pore water (field parameters, sodium, chloride, tritium, and nutrients)			Marsh pore water (field parameters, sodium, chloride and tritium)			Marsh and mangrove pore water (field parameters, sodium, chloride, tritium, and nutrients)
						Marsh and mangrove vegetation (nutrients)						Marsh Vegetation (nutrients)
				Seagrass measurements		(======================================					Seagrass measurements	
Ecological Biscayne Bay Monitoring				Porewater (field parameters, sodium, chloride, tritium, and nutrients)							Porewater (field parameters, sodium, chloride, tritium, and nutrients)	
				Vegetation (nutrients)								
Meteorological Station Rainfall Collector	Continuous Tritium	Continuous	Continuous	Continuous Tritium	Continuous	Continuous	Continuous Tritium	Continuous	Continuous	Continuous Tritium	Continuous	Continuous
Sampling Evaporation Pan Sampling	Tritium	Tritium	Tritium	Tritium	Tritium	Tritium	Tritium	Tritium	Tritium	Tritium	Tritium	Tritium

Notes:

Automated data collection includes groundwater and surface water quality and stage.

¹Nutrients sampled at all surface water stations, but in groundwater at selected well clusters.

Table 1.1-2. Well Construction Summary

Monitoring Well	Top of Casing Elevation (ft NAVD 88)	Depth to Top of Screen from TOC (ft)	Depth to Bottom of Screen from TOC (ft)	Screen Length (ft)	Top of Screen Elevation (ft NAVD 88)	Bottom of Screen Elevation (ft NAVD 88)	Elevation Screen Midpoint (ft NAVD 88)
TPGW-1S	3.82	32.0	34.0	2	-28.18	-30.18	-29.18
TPGW-1M	3.92	52.1	54.1	2	-48.18	-50.18	-49.18
TPGW-1D	4.20	85.3	89.3	4	-81.10	-85.10	-83.10
TPGW-2S	1.36	24.7	28.7	4	-23.34	-27.34	-25.34
TPGW-2M	1.18	50.5	52.5	2	-49.32	-51.32	-50.32
TPGW-2D	1.14	85.5	87.5	2	-84.36	-86.36	-85.36
TPGW-3S	1.44	27.1	31.1	4	-25.66	-29.66	-27.66
TPGW-3M	1.22	54.7	58.7	4	-53.48	-57.48	-55.48
TPGW-3D	1.10	86.6	88.6	2	-85.50	-87.50	-86.5
TPGW-4S	2.24	23.2	25.2	2	-20.96	-22.96	-21.96
TPGW-4M	1.82	38.1	43.1	5	-36.28	-41.28	-38.78
TPGW-4D	1.92	61.6	65.6	4	-59.68	-63.68	-61.68
TPGW-5S	5.35	28.6	32.6	4	-23.25	-27.25	-25.25
TPGW-5M	5.07	49.3	54.3	5	-44.23	-49.23	-46.73
TPGW-5D	5.22	67.0	72.0	5	-61.78	-66.78	-64.28
TPGW-6S	1.56	22.3	24.3	2	-20.74	-22.74	-21.74
TPGW-6M	1.52	48.7	52.7	4	-47.18	-51.18	-49.18
TPGW-6D	1.59	81.9	85.9	4	-80.31	-84.31	-82.31
TPGW-7S	1.36	21.8	25.8	4	-20.44	-24.44	-22.44
TPGW-7M	1.25	47.7	51.7	4	-46.45	-50.45	-48.45
TPGW-7D	1.19	79.7	83.7	4	-78.51	-82.51	-80.51
TPGW-8S	1.98	16.8	20.8	4	-14.82	-18.82	-16.82
TPGW-8M	2.12	34.9	36.9	2	-32.78	-34.78	-33.78
TPGW-8D	2.01	49.2	53.2	4	-47.19	-51.19	-49.19
TPGW-9S	3.63	14.9	18.9	4	-11.27	-15.27	-13.27

Table 1.1-2. Well Construction Summary

Monitoring Well	Top of Casing Elevation (ft NAVD 88)	Depth to Top of Screen from TOC (ft)	Depth to Bottom of Screen from TOC (ft)	Screen Length (ft)	Top of Screen Elevation (ft NAVD 88)	Bottom of Screen Elevation (ft NAVD 88)	Elevation Screen Midpoint (ft NAVD 88)
TPGW-9M	3.53	34.3	36.3	2	-30.77	-32.77	-31.77
TPGW-9D	3.52	47.9	49.9	2	-44.38	-46.38	-45.38
TPGW-10S*	8.3	36.4	38.4	2	-28.10	-30.10	-29.10
TPGW-10M*	8.3	60.4	64.4	4	-52.10	-56.10	-54.10
TPGW-10D*	8.3	126.5	130.5	4	-118.20	-122.20	-120.10
TPGW-11S*	8.7	39.4	43.4	4	-30.70	-34.70	-32.70
TPGW-11M*	8.7	90.4	94.4	4	-81.70	-85.70	-83.70
TPGW-11D*	8.7	122.4	126.4	4	-113.70	-117.70	-115.70
TPGW-12S	0.52	21.6	23.6	2	-21.08	-23.08	-22.08
TPGW-12M	0.73	55.8	59.8	4	-55.07	-59.07	-57.07
TPGW-12D	0.76	89.8	93.8	4	-89.04	-93.04	-91.04
TPGW-13S	2.19	29.8	33.8	4	-27.61	-31.61	-29.61
TPGW-13M	2.13	56.7	60.7	4	-54.57	-58.57	-56.57
TPGW-13D	2.18	84.9	88.9	4	-82.72	-86.72	-84.72
TPGW-14S*	8.8	32.5	36.5	4	-23.70	-27.70	-25.70
TPGW-14M*	8.8	56.3	60.3	4	-47.50	-51.50	-49.50
TPGW-14D*	8.6	102.2	106.2	4	-93.60	-97.60	-95.60

Note:

Key: D = Deep. NAVD 88 = North American Vertical Datum of 1988.

ft = Feet.S = Shallow.

M = Intermediate. TOC = Top of casing.

^{*} Offshore wells surveyed using GPS are only accurate to 0.1 foot.

Table 1.2-1. Analytical Changes in Post-Uprate Monitoring

<u>-</u>	erim Operating Period 10-May 2013)	Post-Uprate (June 2013 onwards)			
Quarterly Event Analytes	Semi-Annual Analytes	Quarterly Event Analytes	Semi-Annual Analytes		
Barium, Iron	Barium, Iron [Arsenic, Beryllium, Cadmium, Copper, Lead, Manganese, Molybdenum, Nickel, Selenium, Thallium, Vanadium, Zinc] ¹ , Silica ²	-	Silica ²		
-	Mercury	-	-		
-	Hexavalent Chromium	-	-		
Calcium, Magnesium, Potassium, Sodium, Boron, Strontium	Calcium, Magnesium, Potassium, Sodium, Boron, Strontium	Sodium only	Calcium, Magnesium, Potassium, Sodium, Boron, Strontium		
Bromide, Chloride, Fluoride, Sulfate	Bromide, Chloride, Fluoride, Sulfate	Chloride only	Bromide, Chloride, Fluoride, Sulfate		
Sulfide	Sulfide	-	Sulfide		
Alkalinity/Bicarbonate	Alkalinity/Bicarbonate	-	Alkalinity/Bicarbonate		
TDS (groundwater only)	TDS (groundwater only)	TDS (groundwater only)	TDS (groundwater only)		
-	DIC	-	-		
-	TKN ³	-	TKN ³		
-	Nitrate/Nitrite ³	-	Nitrate/Nitrite ³		
-	Total Phosphorous ³	-	Total Phosphorous ³		
-	Ortho-Phosphate ³	-	Ortho-Phosphate ³		
-	Total Ammonia ³	-	Total Ammonia ³		
-	Gross Alpha ²	-	-		
-	Ammonium ^{3,4}	-	Ammonium ^{3,4}		

Table 1.2-1. Analytical Changes in Post-Uprate Monitoring

•	terim Operating Period 110-May 2013)	Post-Uprate (June 2013 onwards)			
Quarterly Event Analytes	Semi-Annual Analytes	Quarterly Event Analytes	Semi-Annual Analytes		
-	Un-Ionized Ammonia ^{3,4}	-	Un-Ionized Ammonia ^{3,4}		
-	Total Nitrogen ^{3,4}	-	Total Nitrogen ^{3,4}		
$\delta^2 H$	$\delta^2 H$	-	-		
$\delta^{18}{ m O}$	δ^{18} O	-	-		
δ^{13} C	δ^{13} C	-	-		
⁸⁷ Sr/ ⁸⁶ Sr	⁸⁷ Sr/ ⁸⁶ Sr	-	-		
δ^3 H	δ^3 H	δ^3 H	δ^3 H		

Quarterly events occur in June and December; Semi-Annual events occur in March and September.

Key: $\delta^{13}C = Carbon isotope$. $\delta^{18}O = Carbon isotope.$ $\delta^{18}O = Oxygen isotope.$ $\delta^{2}H = Hydrogen Isotope.$ $\delta^{3}H = Tritium.$

 87 Sr/ 86 Sr = Strontium isotope DIC = Dissolved Inorganic Carbon.
TDS = Total Dissolved Solids. TKN = Total Kjeldahl Nitrogen.

Parameters not sampled.

Trace elements (besides Ba and Fe) were analyzed semi-annually at TPGW-1, 2, 3, 10, 13, and 14 by Method 200.7 prior to September 2012, then by 1640 for September 2012 and March 2013.

Silica and Gross Alpha analyzed in the Cooling Canal (TPSWCCS) samples only. Gross alpha sampled only for 1 year (2010-2011).

³ Nutrients sampled semi-annually at TPGW-1, 2, 3, 10, 13, 14 and all Surface Water (SW) stations. One time only sampling for June 2013 quarterly event in clusters TPGW-4, 5, 6, 7, 8, and 9.

Total Nitrogen = TKN + Nitrate/Nitrite; Ammonium, and Un-ionized Ammonia are calculated using total ammonia values.

FIGURES

Figure 1.1-1. Locations of Groundwater Monitoring Stations.

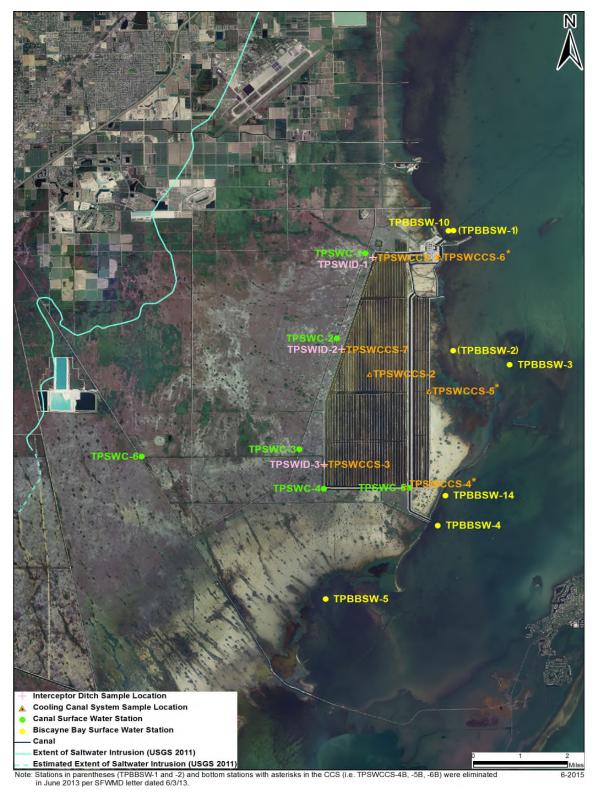


Figure 1.1-2. Locations of Surface Water Monitoring Stations.

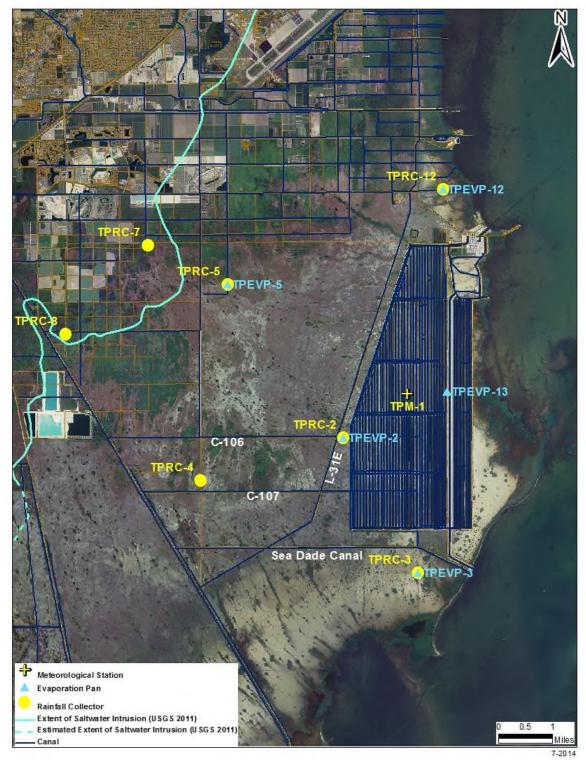


Figure 1.1-3. Locations of the Meteorological Station, Rainfall Gauges, Rainfall Collectors, and Evaporation Pans.

Figure 1.3-1. Ecological Transect Locations.

2. AUTOMATED DATA COLLECTION

2.1 Groundwater Quality

2.1.1 Instrumentation and Data Collection Methods

Automated groundwater monitoring stations were installed at 14 well clusters in a total of 42 wells (three wells per cluster) from February to August 2010. In each well, two probes manufactured by In-Situ, Inc. (an Aqua TROLL® 100 [AT100] and a Level TROLL® 500 [LT500]) were deployed primarily between June and September 2010 and set to record water quality parameters and water levels, respectively. Readings were initially set to record data at 15-minute intervals but, in consultation with the Agencies, were changed in early 2013 to 1-hour intervals. The probes were connected by cable to a telemetry unit, and the data at each of these sites are transmitted remotely by cellular phone service to a central database once per day. The telemetry units are powered with 12-volt batteries that are recharged by solar panels. Figure 2.1-1 shows automated groundwater stations with telemetry.

From June 2013 through May 2015, in most cases, the automated station data were recorded and stored in the instrument; however, due to intermittent connectivity to the network, the data were not always transmitted to the FPL database on a daily basis. If the system does not reconnect after these connectivity failures, FPL has to download and manually patch in the data. When connection failures occur, data are typically downloaded from probes during the cleaning and calibration events. In some cases, data were lost due to probe electronic resets or component failures, which are increasing as the probes age.

To ensure system operability, FPL returned probes for factory recalibration, instrument checks, and diagnostics several years ago and is, again, systematically sending the probes to be rechecked at the factory. In addition, probes that continually malfunction are being replaced along with those that fail factory diagnostic checks and calibration. The potential for probe failure increases with age, and a number of the probes have been in use for nearly five years. New probes are scheduled to be installed at all stations in the first half of 2016.

2.1.2 Results and Discussion

All raw data are made available to the Agencies upon receipt by FPL and are subsequently reviewed for accuracy. Depending on the results, some of the data are qualified using the qualification codes outlined in the QAPP (FPL 2013b). While the number of measurements reviewed is substantially less now that the data are being recorded at hourly intervals instead of 15-minute intervals (three times reduction in data), the validation and qualification of data continue to be a substantial undertaking. For example, each groundwater well generates 144 data points each day. For the 42 wells, this results in 6,048 data points generated by the groundwater

stations daily, or approximately 2.2 million data points annually. Both the surface and the groundwater stations currently generate in excess of approximately 3 million data points per year. Data validation and qualification of the automated data is a lengthy, multi-step process. See the Comprehensive Pre-Uprate Report (FPL 2012a) and the QAPP (FPL 2013b) for a detailed description.

Appendix B shows the water quality field verification/calibration logs for the Post-Uprate monitoring period. Only a small percentage of the groundwater quality data has been qualified as questionable ("?"). The reasons for using the "?" qualifier include: erroneous data caused by overtopping of certain wells during seasonally high tide events (TPGW-3 and TPGW-12) and excessive rain events (TPGW-2, TPGW-6, and TPGW-7); data recorded during a cleaning/calibration or sampling event and likely affected by those activities; probe malfunction; or, to a lesser extent, probe failure.

Figures 2.1-2 through 2.1-15 are time-series graphs of specific conductance and temperature at each well. The graphs depict validated data and exclude data that have been qualified as questionable. Appendix C shows which data were qualified, while Appendix D shows time-series graphs of the two parameters, but with all reported data, including estimated ("E") and questionable ("?") (i.e., eliminated) data. The time-series graphs show data from the beginning of station reporting in 2010 (various dates depending on station startup) through May 2015. This includes the Pre-Uprate, Interim Operating (shaded in grey on figures), and the Post-Uprate monitoring periods. This entire time-series display allows for a comparison between Pre- and Post-Uprate monitoring periods. FPL has included the raw time-series data in separate Excel files with this report to facilitate closer review of the time-series results by the Agencies and to allow the adjustment of graphic scales presented herein and/or focus on a specific time interval.

Tables 2.1-1, 2.1-2, and 2.1-3 show statistical summaries for time-series automated specific conductance, temperature, and salinity data, respectively. The tables include monthly average values for each monitoring well (specific conductance and salinity) and the minimum, maximum, average, and standard deviation for the Post-Uprate monitoring period (data from June 2013 through May 2015); these summaries were calculated where at least 21 days of data were available for that month. The salinity values are presented, since readers often relate more directly to salinity than to specific conductance. The standard deviation for a few salinity and temperature values is shown as zero, but that is a function of rounding/significant digits. Figures 2.1-16, 2.1-17, and 2.1-18 show the average value and standard deviation for specific conductance, temperature, and salinity, respectively, to facilitate a spatial visualization of the average automated groundwater results for the Post-Uprate period. For general comparisons, the Pre-Uprate averages and standard deviations (June 2010 through February 2012) are also shown on these figures. There may be minor differences between the Pre-Uprate values presented in this report and the Pre-Uprate values in earlier reports (FPL 2012a, 2014a), based on differences in the months that comprise each time period used to calculate the averages and standard deviations. These calculations have been included in separate Excel files along with this report.

Although Tables 2.1-1 through 2.1-3 and Figures 2.1-16 through 2.1-18 are informative, care should be used in drawing definitive conclusions when comparing these two data sets (Pre-

Uprate and Post-Uprate) because the Post-Uprate period covers a longer time span and includes an unequal number of months and seasons compared with the Pre-Uprate period. That said, the groundwater quality parameters are less subject to meteorological and seasonal changes compared with surface water quality parameters, thus reducing some time-dependent variability when comparing Pre- and Post-Uprate average groundwater values for most of the groundwater stations.

Overall, the qualified groundwater specific conductance data, as shown by the time-series plots and low standard deviations, indicated generally consistent readings for the vast majority of wells throughout the entire monitoring period (June 2010 to May 2015). The salinity results track the specific conductance results because salinity is calculated based on specific conductance and temperature. Nearly all of the specific conductance time-series plots exhibit very little change over time. As reported in the previous Annual Post-Uprate Monitoring Report (FPL 2014a), groundwater wells TPGW-1S, TPGW-7D, TPGW-10D, and TPGW-11D were the notable exceptions and are discussed further below. TPGW-2S, TPGW-8S, and TPGW-12S also exhibited some changes, as discussed below.

Specific conductance values at TPGW-1S ranged from approximately 39,000 microSiemens per centimeter (μ S/cm) to 60,000 μ S/cm in the Post-Uprate period (47,000 μ S/cm to 64,000 μ S/cm in the Pre-Uprate period). While not seen in most of the other wells, some of this variability may be seasonally driven (Figure 2.1-2), as higher specific conductance values were reported at the end of the dry season and lower specific conductance values were reported at the end of the wet season during the Interim and the Post-Uprate operating periods. Overall, specific conductance at TPGW-1S was lower in the Post-Uprate monitoring period than the Pre-Uprate period, but this may be just a function of the difference in time periods between the two monitoring periods.

At TPGW-7D, specific conductance was consistently around 600 μ S/cm during the Pre-Uprate and Interim Operating periods, but the values increased during the Post-Uprate monitoring period (Figure 2.1-8). At the end of May 2015, specific conductance in the deep well was approximately 6,500 μ S/cm, which was approximately 1,200 μ S/cm higher than in May 2014. Annual induction logs by the USGS (Appendix E) show a notable increase in bulk conductivity at depth in this well. It is not clear if the increase in specific conductance at TPGW-7D is the result of the lag effects of the 2011 drought or some other factor. No changes in specific conductance were noted in the shallow and intermediate depth wells at this location. Further discussion of this topic is in Section 5. There were no notable changes in tritium concentrations through March 2015; an increase would have potentially indicated CCS water entering into the well (see Section 3). Per the Comprehensive Pre-Uprate Report (FPL 2012a), tritium is being used as a tracer of CCS water. While a tritium value of 22.6 picocuries per liter (pCi/L) was recorded in March 2015 (second highest value for that station), it was lower than a value reported in September 2011, when the well was fresh.

Biscayne Bay deep well TPGW-10D and, to a lesser extent, TPGW-11D, showed steady increases in specific conductance values beginning in the Interim Operating period and continuing through May 2015 in the Post-Uprate monitoring period (Figures 2.1-11 and 2.1-12). At TPGW-10D, the specific conductance value during the Pre-Uprate period was consistently

around 55,000 μ S/cm (average 55,119 μ S/cm and standard deviation of 560 μ S/cm), but by the summer of 2014, the specific conductance values had gradually risen above 68,000 μ S/cm; these values have since leveled off (Post-Uprate average of average 66,757 μ S/cm). At TPGW-11D, the specific conductance value during the Pre-Uprate period was consistently around 58,000 μ S/cm (average of 58,010 μ S/cm and standard deviation of 577 μ S/cm), but by the summer 2014, the specific conductance values had gradually risen above 63,000 μ S/cm and have since leveled off (Post-Uprate average of average 62,331 μ S/cm). The increases in specific conductance beginning in the Interim Operating period and continuing into the Post-Uprate period for both wells appear to be influenced by the CCS. This conclusion is supported by corresponding increases in tritium through March 2015. Tritium in both TPGW-10D and TPGW-11D seems to have leveled off somewhat in the last three or four quarters of monitoring. Further discussion of these wells is provided in Sections 3 and 5 of this report.

There has also been an increase in the specific conductance in TPGW-12S between the Pre- and Post-Uprate. The average specific conductance was 44,966 μ S/cm during the Post-Uprate compared to 41,281 μ S/cm in the Pre-Uprate, an approximately 9% increase. However, this trend was not observed in either the accompanying automated temperature data or quarterly tritium values from this site. In actuality, tritium values are declining, with the lowest value recorded in March 2015. The specific conductance values observed indicate that the water may be originating from the surrounding saline scrub mangrove forests or Biscayne Bay, but does not appear to be highly influenced by the CCS, based on the tritium data.

While the specific conductance values for several of the above-mentioned wells have notably increased, the average specific conductance in most groundwater wells between Pre-and Post-Uprate periods are similar (typically within 5%), with almost 40% of the wells being slightly lower in the Post-Uprate period. Several of the wells have specific conductance values that have dropped more than 5%. For example, TPGW-2S showed a little more variability in specific conductance during the Interim and Post-Uprate operating periods, with values being a little lower than the Pre-Uprate period. The average specific conductance in the Pre-Uprate and Post-Uprate periods at TPGW-2S were 73,321 μ S/cm and 67,646 μ S/cm, respectively, which reflects nearly an 8% drop. Specific conductance at TPGW-8S also has been gradually declining, with values exceeding 3,500 μ S/cm in October 2010 and, as of May 2015, values approaching 1,500 μ S/cm. The change in average values between the Pre-Uprate (2,878 μ S/cm) and Post-Uprate period (1,887 μ S/cm) at TPGW-8S represent a 35% drop in specific conductance. As discussed in Section 3 (and earlier reports [FPL 2012a]), the specific conductance in TPGW-8 appears to be influenced by calcium, not marine water.

Similar to previous observations, specific conductance in the wells closest to the CCS and Biscayne Bay were higher than in the wells located farther away. Outer well clusters TPGW-7 (excluding TPGW-7D), TPGW-8, and TPGW-9 have groundwater that can be characterized as fresh and do not appear to be affected by saltwater intrusion. Monitoring wells TPGW-1M, TPGW-1D, TPGW-2S, TPGW-2M, TPGW-2D, TPGW-3S, TPGW-3M, TPGW-3D, TPGW-12M, TPGW-12D, TPGW-13S, TPGW-13M, and TPGW-13D still consistently show higher salinity water, with specific conductance values typically in excess of 60,000 µS/cm during the entire monitoring period. The specific conductance values in well cluster TPGW-13 were the

highest, with average values in the Post-Uprate period near $80,000 \,\mu\text{S/cm}$. This is consistent with the Pre-Uprate monitoring period, although the Pre-Uprate averages were collectively about 2.5% higher than the Post-Uprate averages.

The majority of the wells that appear to be influenced by marine water consistently had higher specific conductance values with depth, although the intermediate and deep zones often had similar values. Well cluster TPGW-13 (located in the CCS) remains one of the exceptions, where the average specific conductance values over the monitoring period were slightly higher in the shallow zone, but the values between all zones were within 10% of each other. This is not unexpected at TPGW-13, given the overlying hypersaline conditions in the CCS.

The time-series graph for TPGW-13S (Figure 2.1-14) shows several jumps or drops in specific conductance values, changes that are directly associated with cleaning/calibration events in late 2014 and early 2015. Most of these relatively small jumps and drops are associated with inherent instrument tolerances as a result of probe calibration (e.g., from October 8 through December 10, 2014) rather than actual specific conductance changes. Specific conductance values that are within 5% of a known calibration standard are deemed acceptable per the QAPP, and values greater than 5% but less than 30% are deemed as estimated values. There was a more gradual 5% rise in specific conductance over several weeks after a cleaning calibration event in mid-April 2015, but it is too early to tell if that rise is associated with the cleaning and calibration of the probe or represents a real change. While the specific conductance in TPGW-13 is anticipated to ultimately rise in response to the increase in CCS specific conductance, that response had yet to be clearly observed by the end of the reporting period.

As seen in the Pre-Uprate monitoring period, groundwater temperatures in the intermediate and, particularly, in the deep zones, still exhibited little to no change over the monitoring period, and many appear flat-lined on the time-series plots. The temperatures in the shallow zone wells typically varied up to 1°C and reflected minor seasonal influences; groundwater temperatures were typically higher near the end/beginning of the year and decreased to their lowest levels when air temperatures were warmer, which is the opposite of what would be expected if there was an immediate response in groundwater temperature to air temperature. This trend may reflect a lag in the response of the shallow groundwater (20 to 40 ft below ground surface) to winter and summer air and surface water temperatures.

The highest groundwater temperatures still occurred in well cluster TPGW-13, with minimum values at or above 29°C. While the temperature at this well cluster is influenced by the CCS, the increasingly warming CCS surface waters noted in Section 2.2 do not appear to have resulted in a corresponding increase in groundwater temperature. A gradual downward trend in temperature in the intermediate and deep well, which has been recorded since the beginning of monitoring in 2010, continues (Figure 2.1-14). The shallow well at TPGW-13 did show a seasonal increase in temperature, reaching 30.4°C in March 2015, but that is similar to the temperature recorded in March 2011 (30.5°C) and March 2012 (30.3°C). During the two-year Post-Uprate monitoring period, the average temperature in TPGW-13S was 29.7°C (30.0°C in the Pre-Uprate monitoring period). By comparison, the average groundwater temperatures during the Post-Uprate monitoring period in TPGW-10S (Biscayne Bay well), TPGW-1S (near CCS), and TPGW-9S

(westernmost well) were 26.2°C, 25.7°C, and 24.6°C, respectively. In the Pre-Uprate monitoring period, the average groundwater temperatures were similar, with values of 26.1°C, 25.6°C, and 24.7°C at TPGW-10S, TPGW-1S, and TPGW-9S, respectively.

While TPGW-13 still exhibits the highest groundwater temperature, wells TPGW-2D and TPGW-2M continue to have the next-highest temperatures. Well cluster TPGW-2 did not follow the same general groundwater temperature trends exhibited by the other well clusters, indicating an external influence. Since groundwater in TPGW-2M and TPGW-2D are warmer than other sources, such as Biscayne Bay groundwater or freshwater groundwater, it appears that the CCS may be influencing the groundwater temperatures in those wells. Similar to the findings for TPGW-13, the groundwater temperatures at TPGW-2M and TPGW-2D have gradually declined since the beginning of monitoring. TPGW-2S temperatures fluctuate, but more erratically than all the other wells, with values ranging from 25.6°C to 27.5°C over five years of monitoring, but a lower range of 1.1°C during the Post-Uprate period.

To assess differences between wells over time, Figures 2.1-19 through 2.1-25 show comparisons of specific conductance and temperature in shallow- and deep-interval wells. Figure 2.1-19 shows that, of the wells in Biscayne Bay, TPGW-14 has the highest specific conductance values and the highest temperatures at depth. Figures 2.1-20 through 2.1-23 show changes across the landscape, and include wells in Biscayne Bay and in the CCS and wells farther inland. The figures illustrate how much higher the specific conductance and the temperatures are in the CCS well cluster TPGW-13 than in the other wells. The figures also show how the specific conductance and the temperature values generally decrease in wells with distance from the coast. Figure 2.1-24 shows plots of wells in or near the CCS. Figure 2.1-25 compares Biscayne Bay surface water specific conductance values and temperatures with the same parameters from Biscayne Bay groundwater for Uprate stations. The plots show how much less the groundwater specific conductance values and temperatures fluctuate compared with surface water values, indicating the buffering effects that groundwater has compared to surface water. The observed general trends between the Pre- and the Post-Uprate monitoring periods, based on Figures 2.1-19 and 2.1-25, are similar.

2.2 SURFACE WATER QUALITY

2.2.1 Instrumentation and Data Collection Methods

As determined jointly with the Agencies, automated surface water quality stations were established throughout the Turkey Point landscape. Currently, all stations record water quality and stage data, with the exception of Biscayne Bay stations TPBBSW-4 and TPBBSW-5, which record only water quality parameters. As previously stated, water quality parameter stations TPBBSW-1 and TPBBSW-2 have been eliminated for the Post-Uprate monitoring period and are not discussed any further. While a number of the sites that record surface water data have two probes (top and bottom), some have only one probe, depending on surface water depth and other considerations. When two probes are used at one location, one probe is placed near the surface and typically measures water quality parameters and pressure/water level (In-situ, Inc., Aqua TROLL® AT200 [AT200]), while the second probe is placed 1 ft from the bottom and measures

water quality parameters (AT100) only. When only one probe is deployed at a location, with the exception of the Biscayne Bay stations, it is generally an AT200 placed approximately1 ft from the bottom. Table 2.2-1 summarizes the probes currently used at each surface water station and the parameters measured.

Similar to the groundwater sites, most of the probes are connected to a telemetry system that typically uploads once a day for most sites (Figure 2.2-1). Currently, 28 surface water probes (AT100s and AT200s) are deployed throughout the monitoring area, generating more than 1 million data points each year.

For logistical reasons, two of the current automated surface water quality sites in Biscayne Bay (TPBBSW-4 and TPBBSW-5) are not connected to a telemetry system. Per the QAPP Plan (FPL 2013b), these probes are set up similar to the BNP salinity monitoring network stations (Biscayne National Park 2007), which are equipped with probes that record specific conductance and temperature just above the sediment surface. Rather than installing platforms or pilings, the probes are attached to a cement paver/pad and are placed at pre-determined locations on the bottom of the Bay. The probes are changed out approximately every six to eight weeks and returned to the field office where they are cleaned and calibrated, and the data are manually uploaded into the FPL EDMS.

2.2.2 Results and Discussion

The automated surface water data are qualified and validated in the same manner as the automated groundwater data. Appendix B shows the water quality field verification/calibration logs. Figures 2.2-2 to 2.2-21 show time-series graphs of specific conductance and temperature at each surface water station. These graphs depict validated data and exclude data that have been qualified as questionable. Appendix C shows what data were qualified, while Appendix D shows time-series graphs of the three parameters, but with all reported data. The time-series graphs show data from the beginning of station reporting in 2010 (various dates depending on station startup) through May 2015. This shows the Pre-Uprate, Interim Operating (shaded in grey on figures), and Post-Uprate monitoring periods. This entire time-series display allows Preand Post-Uprate monitoring periods to be compared. Note that the salinity results for all surface water stations track the specific conductance results because salinity is calculated based on specific conductance and temperature. Thus, most of the discussion focuses on specific conductance and temperature. Similar to the groundwater data, FPL has included the raw timeseries data in separate Excel files along with this report to facilitate closer review of the timeseries results by the Agencies and allow the adjustment of graphic scales to focus on a specific time interval.

Tables 2.2-2 through 2.2-4 show statistical summaries of the time-series data for specific conductance, temperature, and salinity, respectively. The tables include monthly average values for each monitoring station and the minimum, maximum, average, and standard deviations for the Post-Uprate monitoring period (data from June 2013 through May 2015). The salinity values are presented, since readers often relate more directly to salinity than to specific conductance. Figures 2.2-22 through 2.2-24 show the average value and standard deviation for specific

conductance, temperature, and salinity, respectively, for the Post-Uprate period to facilitate a spatial visualization of the average automated surface water data results. For general comparisons, these figures also include the average and standard deviation for the Pre-Uprate monitoring period from June 2010 to February 2012. As previously discussed in Section 2.1, care should be used when comparing the information in these tables and figures and when drawing conclusions about the Pre- and Post-Uprate periods. This is particularly true for the surface water stations, which are more directly affected than groundwater stations by local meteorological conditions and surface water discharges, which vary from month to month. Statistical data have been included in separate Excel files along with this report.

Compared with the groundwater time-series graphs, the surface water time-series graphs show greater variability in the data, most of which is related to seasonal and meteorological conditions. For example, in Biscayne Bay, the highest specific conductance values occur near the end of the dry season, and the lowest values are near the end of the wet season, with minimum and maximum values during the Post-Uprate monitoring period ranging from 22,315 μ S/cm to 69,581 μ S/cm. The single highest value was recorded at BBSW-5, which is a "background" station in Card Sound. Station BBSW-4, which is slightly deeper than the other Post-Uprate Biscayne Bay stations, had the highest average specific conductance (52,585 μ S/cm) in the Post-Uprate period. Station BBSW-10, which is affected more by freshwater canal discharges to the north of Turkey Point, had the lowest average specific conductance (47,807 μ S/cm) in the Post-Uprate period.

The average Post-Uprate specific conductance of all the Biscayne Bay stations combined was $50,658~\mu\text{S/cm}$. This equates to an average salinity of 33.8 on the practical salinity units (PSS-78) scale. There were some times in the Post-Uprate period where specific conductance values were lower than those in the Pre-Uprate period. For example, the average specific conductance value in May 2015 was approximately 10% lower than values recorded in May 2011 when comparing all the Bay sites monitored over the five years. Three of the five Biscayne Bay stations' specific conductance maximum values were also reported in the Pre-Uprate period. While there are monthly and seasonal variations from year to year, there was not a notable difference in overall specific conductance values in Biscayne Bay (other than possibly BBSW-14) between Pre- and Post-Uprate. This is consistent with water quality analytical results discussed in Section 3.

Figure 2.2-25 compares surface water specific conductance values at Biscayne Bay stations. Station TPBBSW-10B (measured near the surface) continues to have the greatest variability, as it is affected the most by surface water discharges from canals north of the area. TPBBSW-14 has at times exhibited fresher water compared with the Biscayne Bay surface water stations, but the specific conductance was similar to the adjacent Biscayne Bay stations during the Post-Uprate monitoring. Figure 2.2-26 compares Biscayne Bay specific conductance values with CCS specific conductance values.

The most significant finding for surface water in the Post-Uprate period is the increase in specific conductance in the CCS compared with the Pre-Uprate and Interim Operating periods. The average specific conductance for the Post-Uprate monitoring period for all CCS stations combined was 100,508 µS/cm. This average excludes those stations that were permanently or

temporarily decommissioned near the start of the Post-Uprate monitoring period (TPSWCCS-4B, TPSWCCS-6T, and TPSWCCS-6B). During the Pre-Uprate period, the average specific conductance value for similar Post-Uprate sites combined was 76,733 µS/cm. While the specific conductance has notably increased in the CCS in comparison with the Pre-Uprate period, the specific conductance in Biscayne Bay is not too dissimilar in the Pre- and the Post-Uprate periods (Figure 2.2-27). Figure 2.2-27 shows specific conductance in the CCS and Biscayne Bay for equivalent time periods (January through May) during part of the dry season in 2011 (Pre-Uprate period), 2014 (Post-Uprate period), and 2015 (Post-Uprate period).

The rise of specific conductance in the CCS during the Post-Uprate period was abated to some extent due to a short-term freshening effort conducted from September 25 through October 15, 2014 by FPL with approval from the SFWMD and Miami-Dade County. Water deemed available by the SFWMD from the L-31E Canal system was pumped from the L-31E (north) Canal under SW 344th Street into the L-31E (south) Canal and then pumped into the CCS. Flows ranged from 13 million gallons per day (mgd) to a maximum of 105.6 mgd, for a total volume of 914 million gallons of freshwater pumped (FPL 2014 c, d, e, f). FPL also pumped 3 to 4 mgd of Floridan Aquifer water into the CCS during this same time period. As a result of this freshening effort, coupled with rain events over the nearly three-week period, the average specific conductance values dropped by 27% at TPSWCCS-1 and by 17% at TPSWCCS-6. On October 24, 2014, a rainfall event measuring around 4 inches dropped the CCS specific conductance values approximately 10% over just a few days. Figure 2.2-28 shows the effectiveness of the freshening and the more immediate effect of heavy rainfall events on lowering specific conductance levels in the CCS.

In the L-31E Canal stations (TPSWC-1, TPSWC-2, and TPSWC-3), the specific conductance values were reflective of "predominantly freshwater" the majority of the time based on FDEP criteria; however, slightly more saline to brackish conditions, particularly at the bottom of the canal, were noted during several periods, most notably during the dry season. This is the same throughout the entire monitoring period (Pre-Uprate, Interim, or Post-Uprate periods). Figure 2.2-29 compares time-series specific conductance and temperature values for the different surface water stations in the L-31E Canal. The highest specific conductance levels are consistently recorded at TPSWC-3, followed by TPSWC-2. During the dry season in 2014 and 2015, specific conductance at TPSWC-1 and TPSWC-3 were not as high as the levels recorded near the end of the very dry season in 2011, during the Pre-Uprate period, when maximum specific conductance values were 3,158 μ S/cm (TPSWC-1B) and 22,776 μ S/cm (TPSWC-3B). In the dry season of 2014, however, TPSWC-2 exhibited values in excess of those recorded in June 2011, with 2014 levels exceeding 10,000 μ S/cm.

Figures 2.2-7 through 2.2-9 show some departure between the surface water values and bottom specific conductance values at these stations. However, some of the bottom data (most notably at TPSWC-2B and TPSWC-3B), over the past year in particular, may be suspect since the quarterly field sampling results show much lower specific conductance values than the automated values. The automated readings are recorded inside a stilling well, and quarterly field samples are collected outside of the stilling well. While the automated probes pass calibration, the difference between the quarterly results and the automated results could be due to

plugging/less exchange in the stilling well. The automated data have not been qualified as unusable or estimated, but FPL may revisit this once the stilling wells are replaced and subsequent trends are established.

During the temporary freshening effort from September 25, 2014 through October 15, 2014, and using the top stations, the specific conductance values at TPSWC-1, TPSWC-2, and TPSWC-3 increased by at least 25% to 30%, but all values were still below FDEP's fresh surface water standard of 1,275 μ S/cm. Most of this increase was caused by an increase in specific conductance of the source water from L-31E north, which reached more than 1,400 μ S/cm on October 10, 2014, and remained at more than 900 μ S/cm by the end of pumping on October 15, 2014 (FPL 2014c, d, e, f).

As discussed in the Comprehensive Pre-Uprate Report (FPL 2012a), tritium concentrations were reviewed to help determine if the source of the water with the higher specific conductance in June 2011 was from the CCS or regional influences from Biscayne Bay. There was no commensurate increase in tritium concentrations in any of the L-31E stations in the June 2011 data, which might indicate regional Biscayne Bay influences instead of a CCS influence. The data for TPSWC-1 through TPSWC-3 was examined concurrently with tritium results through March 2015. While there is a trend of higher tritium values in the dry season compared with the wet season, there is no clear correlation between tritium and specific conductance (see Section 3 for more details). For example, the highest tritium values were observed in March 2012, when the rise in specific conductance was the lowest of any dry season during the entire monitoring period. In December 2010, when specific conductance values were low, the tritium concentrations were higher than most of the other dry season values. It is also of interest that both TPSWC-1 (which has the lowest specific conductance values) followed by TPSWC-2, have higher tritium concentrations than TPSWC-3 the majority of the time. If the higher specific conductance water was coming from the CCS via a groundwater pathway, it is not unreasonable to expect that the tritium concentration would be correspondingly higher at those locations with higher specific conductance water; this, however, is not what was observed. While it cannot be conclusively determined there is no influence of the CCS on the L-31E via a groundwater pathway, there is compelling evidence that the tritium concentrations measured in L-31E are via atmospheric deposition. The tritium concentrations are in line with those found in the nearby evaporation pan located at TPGW-2 (see Section 3.4).

At tidal or formerly tidal canal stations TPSWC-4 and TPSWC-5, the specific conductance values were more variable than the L-31E stations. TPSWC-4 is affected by releases from the S-20 structure and can transition quickly from saline to fresh or brackish conditions. On January 23, 2014, FPL installed a fixed weir downstream of TPSWC-4 and the site is no longer as tidally influenced. Towards the end of the dry season in 2014 (April/May 2014), the specific conductance at this station increased rapidly from around 20,000 µS/cm to values similar to those reported in Biscayne Bay during that period. Since May 2014, the specific conductance increased in June to values slightly in excess of those measured in Biscayne Bay, but subsequently dropped below Biscayne Bay values for the rest of the period.

TPSWC-5 reflects marine conditions and, during the Post-Uprate period, seemed to more closely follow specific conductance of nearby Biscayne Bay stations; however, on occasion (most notably in the wet season), values at the bottom are higher than those found in Biscayne Bay. This phenomenon was most pronounced in the Pre-Uprate and Interim Operating periods. The water at TPSWC-5 is more than 20 ft deep and is located at the end of this dead-end canal. The deep water depths and restrictions in flushing may contribute to the observed specific conductance values at this station.

The ID specific conductance values are affected by pumping of the ID, which is conducted mostly in the dry season to maintain a seaward gradient between the L-31E Canal and the ID. During non-pumping periods, the water in the ID is fresh to brackish, but during periods of heavy pumping, the water becomes saline in the pumped segments. Specific conductance values in the ID are always below the values in the CCS and reflect a mixing of CCS water, freshwater, and Biscayne Bay water. Specific conductance values in the Post-Uprate dry seasons were lower than the values in the Pre-Uprate dry season in 2011 and 2012. Figure 2.2-30 compares the timeseries specific conductance and temperature values for the different surface water stations in the ID. Figures 2.2-31 through 2.2-33 compare time-series specific conductance and temperature values for the ID, the L-31E, and the CCS at ID operation transect A stations (TPSWID-1, TPSWC-1, and TPSWCCS-1), transect C stations (TPSWID-2, TPSWC-2, and TPSWCCS-7), and transect E stations (TPSWID-3, TPSWC-3, and TPSWCCS-3), respectively. The figures show that CCS specific conductance values are highest in the CCS and lowest in the L-31E Canal. The figures also show the temperature differences between the water bodies as the CCS cools from transect A to transect C. Discussion of the ID operation is included Section 6 of this report.

Water temperatures at all stations are greatly affected by meteorological conditions and reflect seasonal trends, as expected. In Biscayne Bay, the average monthly water temperature in August 2014 was 31.7°C (based on the combined average of the Biscayne Bay Post-Uprate monitoring stations). In January 2015, the average monthly Biscayne Bay water temperature was 22.6°C. Pre-and Post-Uprate water temperatures in Biscayne Bay are similar.

Similar to other surface water bodies, the range in temperature varies monthly, and CCS surface water temperatures are warmer in the summer months and cooler in the winter months. For example, the average temperature in the CCS (based on the combined average of all the currently active CCS Uprate monitoring stations) was 38.5°C in August 2014 and 29.9°C in January 2015. Water temperatures in the CCS are always higher than air temperatures and the other surface water station temperatures. Within the CCS, the water temperature varies based on location. CCS water is pumped from the intake side of the plant and routed through condensers to cool the power units. As the water passes through the condensers, it is heated and eventually discharged on the west side of the plant back into the CCS. The water cools as it is routed through the CCS. At TPSWCCS-1B (near plant discharge into CCS) and TPSWCCS-6 (on return canal to plant intake), the average Post-Uprate temperatures were 39.0°C and 30.5°C, respectively. Over the course of the Post-Uprate period, this equates to an average 8.5°C change between TPSWCCS-1 and TPSWCCS-6. In April 2015, these temperatures were 40.8°C (TPSWCCS-1B) and 32.1°C (TPSWCCS-6T). In comparison, the average Pre-Uprate temperatures at TPSWCCS-1B and

TPSWCCS-6T are much cooler, with 34.4°C and 27.2°C, respectively (a 7.2°C change) over the entire Pre-Uprate period, and 35.6°C and 28.9°C, respectively, for April 2011. Note that the average temperatures for the entire Pre- and Post-Uprate periods do not have the same number of months per season and, thus, the results can be affected by the number of summer and winter months being included in the average. To reduce some of the bias, Figure 2.2-34 compares the CCS water temperatures and air temperatures at TPSWCCS-1 and TPSWCCS-6 for the same seasonal time intervals. The results show that, while the CCS water temperatures are influenced by air temperature, the increase in CCS water temperatures during the Post-Uprate period do not correspond with commensurately higher air temperatures. The increase in CCS surface water temperatures during the Post-Uprate period cannot be explained by the Uprate because the total heat rejection rate to the CCS from Turkey Point Units 1, 2, 3, and 4, operating at full capacity prior to the Uprate, would have been higher than the Post-Uprate heat rejection rate to the CCS for Units 1, 3, and 4, operating at full capacity. Unit 2 has been dedicated to operate in a synchronous condenser mode (i.e., not producing steam heat). Appendix F provides information on plant outages and operations.

There are no temperature effects on Biscayne Bay from the warmer CCS waters; however, if there was an effect, it would most likely be evident during the cooler months. Figure 2.2-35 shows the water temperatures from December 2014 through May 2015 for representative Biscayne Bay stations used for the Uprate monitoring. A similar period from December 2013 through May 2104 was evaluated in the previous Post-Uprate Annual Report (FPL 2014a). Surface water temperatures from a SFWMD Biscayne Bay monitoring station several miles north of the site (BBCW-10) are included on Figure 2.2-35. Similar to the Pre-Uprate period and the December 2013 through May 2014 Post-Uprate period, the Turkey Point Biscayne Bay monitoring stations during the Post-Uprate period track very closely with both the SFWMD station and the maximum air temperatures recorded at meteorological station TPM-1. The figure also shows how much higher the CCS water temperatures are compared with the air temperatures and the Biscayne Bay water temperatures.

Figure 2.2-36 shows the information presented on Figure 2.2-35 in a different manner to enable a review of the differences in temperatures between the CCS and the Biscayne Bay stations and between the Biscayne Bay stations and air temperatures. For the comparison, the maximum air temperature is used since the Biscayne Bay stations more closely follow the upper range of the daily air temperature. The figure shows that TPSWCCS-1 is consistently between 10°C and 15°C warmer than Biscayne Bay, while Bay water temperatures are almost always slightly cooler than the maximum air temperatures. Air temperatures both drop and recover more quickly, and to a greater degree, than water temperatures. Thus, those cases where the Biscayne Bay temperatures are warmer than the maximum air temperatures often reflect the effects of a quicker drop in air temperature in response to meteorological conditions. More importantly, however, differences between the northern "background" SFWMD surface water station (BBCW-10) and the ambient air temperatures follow the same pattern and are of a similar magnitude as FPL Biscayne Bay station TPBBSW-3. In summary, these results suggest that air temperatures are driving water temperatures in Biscayne Bay and do not indicate any readily evident CCS water temperature effects in Biscayne Bay.

Water temperatures in the L-31E Canal (Figure 2.2-29) vary among stations, but are collectively, on average, within 0.1°C of the average of the Biscayne Bay temperatures for the Post-Uprate period. There is some temperature stratification in L-31E Canal, in part due to the canal depths and typically limited flow. The near-surface water temperatures are almost always warmer than the bottom temperatures, and the surface temperature exhibits more daily variability in response to air temperature changes. In the Post-Uprate period, the lowest average bottom temperature was 25.6°C at TPSWC-1, and the highest average surface temperature was 27.1°C at TPSWC-3. Similar to Biscayne Bay, the L-31E stations are slightly warmer in the Post-Uprate period compared with the Pre-Uprate period.

The water temperatures in the two tidal canal stations (TPSWC-4 and TPSWC-5) were also affected by air temperatures, but TPSWC-4 was also affected by discharges from S-20. Generally, the surface water temperatures at TPSWC-4 and TPSWC-5 were slightly higher than, or similar to, the bottom-water temperatures. The phenomenon reported in the Pre-Uprate period (FPL 2012a), where the bottom temperature at TPSWC-5 was notably higher than the surface temperature on several occasions for several months at a time, was not observed in the Post-Uprate period. At TPSWC-4, the average Post-Uprate temperature is approximately 1°C to 2°C warmer than the any Biscayne Bay station or L-31E Canal station. Station TPSWC-5 is also warmer than the Biscayne Bay and L-31E stations, but to a lesser extent. This is similar to what was observed during the Pre-Uprate period; however, the temperature differences between the other stations were not as high. Given the higher temperatures and immediate proximity to the CCS, these stations may be influenced by the warmer CCS temperatures.

Water temperatures at the ID stations are, on average, warmer than the L-31E stations and Biscayne Bay stations, with TPSWID-1B having the highest average non-CCS water temperature in the Post-Uprate period of 28.3°C. While the ID stations are most affected by air temperature, they are also affected by the CCS. The time-series plots (Figure 2.2-19 through 2.2-21) show that there were periods when the bottom-water temperatures in the ID rose (i.e., December 2011) along with an increase in specific conductance in the ID. This is in response to pumping and the influence of the CCS. However, this trend is not always observed. The findings between the Pre- and Post-Uprate period are similar. The presence of cooler and generally lower water temperature was observed at the bottom of station TPSWID-2 during the wet seasons. This potentially reflects a greater groundwater influence at that time of year for this location.

2.3 WATER LEVELS

2.3.1 Instrumentation and Data Collection Methods

Water levels provide insight into groundwater hydrology and groundwater and surface water interactions; levels are collected at all groundwater and most surface water stations for the Uprate Project monitoring effort. Currently, only two water quality stations in Biscayne Bay do not have stage recorders.

Water pressure is currently measured at 1-hour intervals, and water levels are calculated from the pressure data. The results are typically transmitted on a regular basis via telemetry. LT500 and

AT200 probes are used to record water pressure/levels. Further details on the probes, water level calculations, cleaning and calibration, and level setting procedures are discussed in the Comprehensive Pre-Uprate Report (FPL 2012a).

2.3.2 Results and Discussion

2.3.2.1 Groundwater

Data validation and qualification of the automated water level data is a multi-step process and details can be found in the Comprehensive Pre-Uprate Report (FPL 2012a) and the QAPP (FPL 2013b). A small percentage of the automated water level data was qualified as questionable during the Post-Uprate period, and most qualifications involved associated probes that did not pass field verification checks. When the probes are cleaned, the water level is checked with a water level indicator prior to pulling the probe and after the probe is reinstalled. The water level readings from the water level indicator are compared with the automated probe readings. The probes and automated readings are generally within 0.03 ft. If the difference between the verification water level reading (before the probe is pulled for cleaning) is greater than 0.1 ft from the automated probe reading, the data are qualified as estimated back to the previous cleaning and calibration event or, at minimum, back to an interim point where there is an unexplained shift in the data. Values that are off by more than 0.2 ft are qualified as questionable back to the previous cleaning and calibration event or, at minimum, back to an interim point where there is an unexplained shift in the data. As the probes age, more drift appears to occur. FPL is systematically sending the probes to the factory for recalibration and system checks. Any probes that do not pass these checks are disposed and new probes are purchased. Some data also are occasionally qualified as questionable when the water levels exceed the top of casing (i.e., overtopping of wells TPGW-3 and TPGW-12 during seasonally high tide events and TPGW-2, TPGW-6 and TPGW-7 following very heavy rain/flooding events). Nevertheless, the stage data are more than 90% complete and meet the QAPP completeness goal.

The accuracy of the land-based station survey is better than 0.1 ft and is typically within hundredths of a foot. Well locations in the Bay may have a lower level of accuracy because those stations could only be surveyed with GPS units. Thus, the survey accuracy limits should be considered when interpreting the results to hundredths of a foot or, in the case of the Biscayne Bay wells, to several tenths of a foot.

Figures 2.3-1 through 2.3-14 are time-series graphs of water elevations at all automated groundwater stations. These graphs are based on refined validated data and exclude data that were qualified as questionable or were recorded during a cleaning/calibration event. Appendix C shows what data were qualified, while Appendix D shows time-series graphs with all reported data. The time-series graphs show data from the beginning of station reporting in 2010 (various dates depending on station startup) through May 2015. The graphs show the Pre-Uprate monitoring period, Interim Operating period (gray shaded area on figures), and Post-Uprate monitoring period. This entire time-series display allows Pre- and Post-Uprate monitoring periods to be compared. To facilitate closer review of the time-series results by the Agencies and

to allow the adjustment of graphic scales presented herein and/or focus on a specific time interval, FPL has included the raw time-series data in separate MS Excel files with this report.

In February 2015, FPL purged the majority of the wells and recorded drops in water levels, most notably in the deep and intermediate wells at TPGW-2, TPGW-3, TPGW-6 and TPGW-12 and the deep well in TPGW-10. There was also a smaller change in water levels in TPGW-13 shallow and deep wells. While not completely confirmed, what is suspected to have caused this drop in water levels is the purging of the wells, which removed less dense water that had accumulated in the well casing and was overlying the formation water. This less dense water was from formation water of lower specific conductance than being measured currently or fresher water that overtopped or leaked into the well either during high tides or heavy rain. Since the water level is a function of the pressure in the aguifer at the screened interval and the density of the overlying water, a change in density can affect the height of the water column. This is one of the challenges of measuring water levels when different water densities come into play. This is even more challenging when a well is screened at a narrow discrete interval because the water in the casing can only evacuate through that narrow screen at depth and not at overlying parts of the aguifer. Water levels for deep and intermediate wells at TPGW-2, TPGW-3, and TPGW-12 and the deep well at TPGW-10 have been adjusted and qualified as calculated and estimated values. No correction has been applied to the shallow and deep wells at TPGW-13 since it is not clear how much of the data is affected. A "!" qualifier may ultimately be applied to some of the data indicating that the values, while accurate, may not be fully reflective of the pressure in the aquifer. Before this qualifier is used, however, more data needs to be collected. While the issue cannot be completely eliminated, FPL will be converting wells clusters TPGW-2, TPGW-3, TPGW-12, and TPGW-13 from flush-mounted wells to stick-up wells. Flush-mounted wells at TPGW-6 are located within a few feet of a paved road, and stick-up wells are not viable. FPL will continue efforts to waterproof these wells to the greatest extent possible, but water will still enter the wells. FPL will also purge all wells once a year, and wells that historically exhibit density changes of more than 5% will be purged several times a year.

Findings regarding groundwater levels presented in the Comprehensive Pre-Uprate Report (FPL 2012a) and last year's Post-Uprate Report (FPL 2014a) are still valid. These findings include:

- Water levels change very quickly in response to rainfall events. This is most evident in stations not significantly influenced by tides (TPGW-1, TPGW-2, TPGW-4 through TPGW-9, and TPGW-13). Typically, where there is a spike in water levels on the timeseries graphs, there is a corresponding rainfall event.
- At each well cluster, fluctuations in stage for all three depth intervals track closely, indicating good hydrologic connection between intervals.
- Water levels at stations in or immediately adjacent to Biscayne Bay (TPGW-3, TPGW-10, TPGW-11, TPGW-12, and TPGW-14) exhibited tidal influence at all three depths (Figures 2.3-3, 2.3-10, 2.3-11, 2.3-12, and 2.3-14). The amplitude of the tidal changes decreases across the landscape from north to south. Thus, TPGW-10 has a larger range of water levels than TPGW-14.
- The stations that are freshest and located farthest from the coast (TPGW-7, TPGW-8, and TPGW-9) exhibit fewer water level differences among the shallow, intermediate, and

- deep wells (Figures 2.3-7, 2.3-8, and 2.3-9, respectively). The differences in water levels among the shallow, intermediate, and deep wells at other locations are influenced by the density differences in the formation water.
- Wells located between the westernmost wells and the CCS, such as TPGW-4 and TPGW-5, have brackish water in the intermediate and deep zones overlain by much fresher water in the shallow zone. The shallow zone water elevations in these wells are always higher than the deep zone (Figures 2.3-4 and 2.3-5).

Two other observations made for the Post-Uprate period are as follows:

- While nearly all the wells clearly had their lowest recorded groundwater levels at the end of a very dry period in May/June 2011, TPGW-13 had the lowest water level readings of a single well in April/May 2014 during the Post-Uprate period.
- The water levels in the three wells at TPGW-13 were typically lower in the Post-Uprate period compared with the Pre-Uprate period (Figure 2-3.15).

To provide insight into the differences in groundwater water levels over the landscape, time-series plots from selected stations are illustrated on Figures 2.3-16 to 2.3-19. Each figure represents a transect of well clusters. Many of these figures are self-explanatory and support the discussion above. All the time-series data that are reported reflect actual measured water levels and have not been converted to freshwater head equivalents.

To provide some initial insight into the groundwater and surface water interactions, Figures 2.3-20 and 2.3-21 illustrate the differences between surface water levels and groundwater levels in the CCS and Biscayne Bay. Figure 2.3-20 shows a time-series plot of surface water stage at TPSWCCS-2 and TPGW-13S. The results indicate that groundwater elevations at TPGW-13S are higher more often than at the corresponding surface water station in the CCS (TPSWCCS-2). Over the entire time period, a trend of the CCS water levels being higher than the groundwater at TPGW-13S during the dry season or near the end of the dry season is apparent. The most significant departure in elevations occurred in March and April 2015 when the well was purged. This drop in water levels could be linked to a change in water density in the well column before and after purging (i.e., stratified water in the well-casing prior to purging and uniform hypersaline water after purging). However, the source of any fresher water that may have entered the well to cause stratification is unclear. This well is not over-topped during flooding, and the density of the water in the formation at this location has changed only slightly over the monitoring period. It is possible that a small amount of water could leak into the well cover during heavy rainfall, but that has not been observed in the field. Also of interest is that after a heavy rainfall in late April 2015, the groundwater and surface water levels converged again, either by coincidence or a return to pre-purging conditions.

Figure 2.3-21 shows daily average surface water levels in TPBBSW-3 and TPGW-11, which are in Biscayne Bay. The daily average eliminates the hourly tidal fluctuations and facilitates a visual comparison among these stations. The plot illustrates that the groundwater levels in the Bay stations are directly influenced by surface water stage.

2.3.2.2 Surface Water

Figures 2.3-22 through 2.3-39 are time-series graphs of all surface water stations where data from automated stage recorders are available. These graphs are based on validated data and exclude data that are qualified as questionable. Appendix C shows what data were qualified, while Appendix D shows time-series graphs of the three parameters, but with all reported data. The time-series graphs show data from the beginning of station reporting in 2010 (various dates depending on station startup) through May 2015. This shows the Pre-Uprate, Interim Operating (gray shaded area on figures), and the Post-Uprate monitoring periods. This entire time-series display allows Pre- and Post-Uprate monitoring periods to be compared. All the time-series graphs are based on actual levels and do not reflect freshwater head equivalents. In order to facilitate closer review of the time-series results by the Agencies and allow the adjustment of graphic scales presented herein and/or focus on a specific time interval, FPL has included the raw time-series data in separate Excel files with this report.

The precision and accuracy of the surface water levels, particularly those associated with stations affected by wave activity, may be slightly lower than for groundwater stations. While wave activity is dampened in stilling wells, some oscillation occurs and that can affect the ability to consistently get precise verification readings with a water level indicator. Some data end up being qualified as estimated if a verification reading is off by more than 0.1 ft when it may not need to be qualified. The setting of the reference levels are affected by waves, which can cause inaccurate readings.

Findings regarding surface water levels presented in the Comprehensive Pre-Uprate Report (FPL 2012a) and last year's Post-Uprate report (FPL 2014a) are still valid. These findings include the following:

- Diurnal water level variations were observed at all tidally influenced stations, including those located in Biscayne Bay (north to south: TPBBSW-10, TPBBSW-3, and TPBBSW-14) and tidal canal stations (TPSWC-4 [until January 23, 2014 when a weir was constructed downstream] and TPSWC-5). The tidal range declines across the landscape from north to south. At TPBBSW-10, tide ranges during spring tide and neap tides can be more than 2.0 ft and less than 0.5 ft, respectively.
- The effect of rainfall is masked in most tidal stations; however, its effect is evident at TPSWC-4 because this station is downstream of S-20 discharges. Rainfall effects are also evident on all onshore surface water stations where water level increases have been observed following significant rainfall events in the L-31E Canal, CCS, and ID.
- Water levels in the CCS vary spatially, depending upon whether the station is located on the plant discharge or intake side of the canal. Water levels on the plant discharge side have lower ranges in variability (less than 1 ft at TPSWCCS-1) than stations on the intake side (up to approximately 2 ft at TPSWCCS-6 [4 ft during Pre-Uprate]). Water levels on the discharge side of the CCS are also typically at least 1 ft higher than those on the CCS plant intake side (Figure 2.3-40). Following heavy rain events, during the rainy season, and during outages, the difference in water levels between TPSWCCS-1 and TPSWCCS-6 is less than at other times of the year.

• Water levels in the CCS and L-31E Canal exhibit little response to tidal influences in Biscayne Bay surface water. This suggests the hydrogeologic connection with Biscayne Bay is limited or not as direct as may have been expected, such as for the CCS.

Another observation made in the Post-Uprate period was related to the response of the CCS to the addition of water sources (pumped and rainfall) during the interim freshening effort (September 25, 2014 through October 15, 2014). Figure 2.3-41 shows a gradual rise in water level during pumping along with rapid increases associated with rain events. On September 25, 2014, prior to pumping, the water elevation at TPSWCCS-1 was -0.19 ft North American Vertical datum of 1988 (NAVD 88). On October 14, 2014, the next to last day of pumping, the water level was 0.041 ft—an increase of 0.23 ft. On the last day of pumping, there was a modest rainfall of more than 2 inches which, along with pumping, increased the water elevation by almost 0.2 ft that day. After pumping ceased, there was another rainfall exceeding 4 inches, and the water elevation jumped from 0.131 ft NAVD 88 to 0.527 NAVD 88 by the end of the day—a jump of almost 0.4 ft.

Lastly, water elevations in the CCS at TPSWCCS-1 were, on-average, lower during the Post-Uprate period (-0.20 ft NAVD 88) than during the Pre-Uprate period (-0.002 ft NAVD 88). Conversely, at TPSWCCS-6, the water elevations were, on-average, higher during the Post-Uprate period (-1.04 ft NAVD 88) than during the Pre-Uprate period (-1.37 ft NAVD 88). In other words, on-average, there was less of a rise in water level on the discharge side of the plant into the CCS and less of a drawdown on the intake side of the plant during the Post-Uprate period.

2.4 METEOROLOGICAL DATA

One of the most important meteorological parameters is the amount of precipitation in the CCS and surrounding areas. Rainfall timing, duration, and amounts provide some insight into the area's hydrology and the CCS water budget. Additionally, meteorological data, such as barometric pressure, wind speed, and light levels (i.e., PAR) are useful in determining water losses and gains in the CCS and in establishing a water budget.

A meteorological station (TPM-1) was set up in the middle of the CCS, co-located with TPGW-13 and TPSWCCS-2. Four additional rainfall gauges were initially set up in the vicinity of the plant to determine the spatial and temporal variability in rainfall onshore and offshore near the Turkey Point Plant, but those gauges have been eliminated in favor of the SFWMD NEXRAD rainfall data that are used for the water budget.

Additional rainfall data were also obtained from the on-site Turkey Point meteorological stations by the FPL Land Utilization Building (LU) and one south of the CCS (SD), as well as Homestead Air Force Base, SFWMD's S-20 gauge, and the NEXRAD data provided by the SFWMD. All of these stations represent rainfall at the locations specified (Figure 2.4-1), with the exception of the NEXRAD data, which is an integrated measure of rainfall in radar cells that encompass the CCS.

2.4.1 Instrumentation and Data Collection Methods

Meteorological station TPM-1 consists of a weather transmitter (WXT520, Vaisala, Inc., Helsinki, Finland) and a quantum sensor (190SA, LI-COR, Inc., Lincoln, Nebraska) attached to a datalogger (CR1000, Campbell Scientific, Ltd., Logan, Utah) and telemetry system, mounted 15 ft above the ground surface; the range of parameters measured is listed in Table 2.4-1. Technical specifications on the instrumentation are provided in Appendix I of the QAPP (FPL 2013b).

Monitoring at TPM-1 has been nearly continuous since the station was activated on July 26, 2010. There have been only a few occasions that any components of the station were not operating. The first occasion was when the anemometer was out from April 30 through June 11, 2013, and the entire system was sent to the factory for repairs (June 11, 2013 through June 26, 2013). Because of concerns that the rainfall sensor was not working correctly, the entire unit was sent back to the factory for testing from July 30, 2014 to August 8, 2014.

The station was originally set to report data at 15-minute intervals, but was changed to report data at hourly intervals starting on April 9, 2013. Data are uploaded via telemetry to the FPL database on a daily basis. Rainfall data from LU-South, Homestead Air Force Base, and S-20 are also on hourly intervals, while the NEXRAD data provided by the SFWMD are on monthly increments.

2.4.2 Results and Discussion

Rainfall (based on daily readings) and temperature (Figure 2.4-2), relative humidity, barometric pressure (Figure 2.4-3), and PAR (Figure 2.4-4) for TPM-1 are shown for the entire period for comparative purposes.

As discussed last year in the Post-Uprate Annual Report (FPL 2014a), the amount of rainfall observed at TPM-1 during the Post-Uprate period was significantly lower than at the surrounding stations, which led FPL to question whether the rainfall sensor at this station was underreporting. In late July 2014, FPL had the rain sensor replaced; however, subsequently reported rainfall totals still remained low compared with surrounding stations. Upon further assessment, FPL found that the reporting code programmed into the instrument by the equipment vendor had not fully incorporated the changes needed to report data at 1-hour intervals. The result of this coding error was that the rainfall was being properly measured, but the hourly results were only being reported for the last 15 minutes of each hour. Since the rainfall totals are cumulative over the hour, this resulted in under-reporting the hourly measurements. FPL had previously summed the hourly measurements to determine daily and monthly rainfall totals. However, based on further discussions with the vendor, it appears that daily totals were reported correctly; the daily rainfall totals back to April 9, 2013, have been retrieved and the rainfall information has been updated and corrected.

Tables 2.4-2 and 2.4-3 show rainfall information (daily and monthly values respectively) from meteorological station TPM-1. During the two-year Post-Uprate period, there were 23 days (or about 4% of the time) when the daily rainfall totals exceeded one inch (Table 2.4-3). The highest

rainfall in the Post-Uprate period was in July 2013, when 10.62 inches of monthly rainfall were recorded at TPM-1 (Table 2.4-3). Based on the daily rainfall values, a total of 49.7 and 42.3 inches of rain were measured and recorded at TPM-1 from June 2013 through May 2014 and June 2014 and May 2015, respectively. These rainfall amounts are much higher than previously reported (FPL 2014a), although they may actually may be slightly low since the rain gauge was out of service for part of June 2013 and part of August 2014 (about three weeks total).

These updated rainfall totals were compared with data recorded at nearby stations (LU-South, S-20 Gauge, and Homestead Air Force Base) and NEXRAD data over the CCS since August 2010 (Table 2.4-4). The results show some differences between stations, as may be expected over this large of an area. Figure 2.4-5 summarizes this information for the various stations and compares the rainfall data for the Pre- and Post-Uprate period.

Air temperatures (approximately 16 ft above ground) in the middle of the CCS at TPM-1 ranged from 2.8°C to 33.9°C for the period of record (Figure 2.4-2). The minimum temperature was observed on December 14, 2010, during the morning hours of a cold front passing through the area. The warmest temperature was observed on July 29, 2014 (July through September are usually the warmest of the year with a monthly average higher than 28°C). The average air temperature from July 2013 through May 2015 was 25.5°C, which is similar to the average air temperature reported from the Pre-Uprate period (average of 25.6°C).

Relative humidity at TPM-1 was an average of 73% from July 2013 through May 2015. This is similar to the Pre-Uprate period where the relative humidity was 72% (Figure 2.4-3). Humidity was generally highest after a rainfall and lowest after the passage of a cold front in the winter and early spring months.

The prevailing wind directions from July 2013 through May 2015 were from the east and east-southeast (i.e., predominantly onshore), which is similar to the Pre-Uprate period (Figure 2.4-6). Average wind speed for this period, at approximately 16 feet above the ground, was 8.9 miles per hour (mph). The lull wind speeds averaged 4.3 mph, but several instances of strong wind gusts were observed, some in excess of 45 mph. Most of the wind was between 7 to 11 knots (8.1 to 12.7 mph; 41% of records), followed by 4 to 7 knots (4.6 to 8.1 mph; 30% of records) for the Post-Uprate duration; this was similar to the Pre-Uprate observations (7 to 11 knots: 44%; 4 to 7 knots: 26%) (Figure 2.4-7).

TABLES

Table 2.1-1. Statistical Summary of Automated Groundwater Specific Conductance (µS/cm).

	2013 Avg Monthly Value										2014	Avg Mo	onthly V	alue						2015 Av	g Month	ly Value	•	Po	ost-Upra	te Avera	ige	
Well	Jun	Jul	Aua	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Mav	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Mav	Min	Max	Avq	Std Dev
TPGW-1S	58971	54288	46582	40260	41060	48528	51298	51568			51056	52005				39997	42018	44176	46285	45857	47210	50281	50073	56280	39352	60685	48409	5525
TPGW-1M	71887	71961	71864	71762	71828	71397	71235	71477	71503	71332	71108	71250	71804	71651			71777	71306	70915	70481	1,120		69922	70055	69176	73123	71360	635
TPGW-1D	71396	71326	71279	71252	71102	70457	70430	70630	70702	70628	70024	70467	71351	71356	70837	70847	71401	71592	71040	70480	70310	70243	69975	69860	69666	71867	70806	543
TPGW-2S	68408	67317	66043	67014	67748	67767	67682	67390	67403	67550	68212	69203	67618	64469	63298	64417	67627	69597	69726	66960	68090	68860	72787	68079	59193	76575	67646	2140
TPGW-2M	75344	74854	74787	75345	75261	74745	74864	74341	74163	74268	74612	74901				74417	73905	74417	75159	75038	75409	75655	76097	76157	73376	76557	74926	625
TPGW-2D	76417	75732	74835	75444	75995	75484	75574	75514	75429	75301	74739	74795	75123	74444	74816	74961	74852	74836			75948	75545	76440	76933	72701	77288	75423	717
TPGW-3S	64058	63567	64082	65116	65315	63875	62868	61476	60304	61449	60074	61994	61420	61145	61543	61447	61818	61963	60781	59990	60771	60951	60057	59554	54694	65637	61944	1819
TPGW-3M	68387	68073	68120	68582	68484	67767	67692	67506	67325	67233	67671	67334	66828	67520	67852		67440	67939	66858	66278	66328	66443	66639	66736	65912	69883	67452	722
TPGW-3D	69585	69109	69211	69652	69694	69167	69149	68783	68605	68729	68769	68636	68090	68003	68392	68434		69044	68174	67703	67650	67287	67534		66215	72418	68630	711
TPGW-4S	1538	1559			1854	2006	1859	1746	1966	2654	3135	3516	3963	1983		2018	1967	1967			3015	4013	5242	2634	1251	6899	2516	1029
TPGW-4M	38751	38773				38501	38511	38583	38577	39192	39809	39428	38803	38822	38606	38714	38803	38822	38639	38615	38791	38868			38145	39885	38813	363
TPGW-4D	43230	43358	42977	42357	42636	42899	42882	42999	43017	42878	42513	42285	42368	42598	42558	42537	42822	42969	42664	42540	42203	42007	41744	42076	41577	43504	42637	411
TPGW-5S	942	943	922	1003	905	885	863	837	797	790	791	818	842	791				678	728	691	784	758	713	693	620	1173	819	120
TPGW-5M	32821	32868	32936	32696	32683	32664	32629	32510	32475	32550	32267	32084	32033	32065				31428	31560	32042	32217	32015	31675	31472	30782	33004	32270	464
TPGW-5D	34344	34199	34312	34613	34487	34394	34170	34258	34360	34643	34595	34577	34503	34365				33723	34004	34753	34613	34593	34909	35068	33113	35519	34435	359
TPGW-6S	1082	1104	1150	1210	1207	1177	1183	1204	1215	1195	1171	1185	1158	1137	1203	1259	1273	1287	1285	1254	1253	1231	1328	1315	991	1384	1210	65
TPGW-6M	22535	22518	22534	22512	22641	22535	22623	22808	22846	22749	22607	22524	22607	22798	22651	22543	22662	22551	22453	22467	22351	22397	22316	22308	22096	22943	22565	151
TPGW-6D	23288	23315	23311	23307	23343	23610	23589	23467	23458	23453	23461	23527	23516	23474	23276	23299	23397	23438	23268	23206	23453	23628	23659	23720	22819	23777	23432	148
TPGW-7S	529	530	525	526					545	555	563	557	550	549	536	541	536	528	540	543	538	537	554	559	498	573	541	12
TPGW-7M	618	637	614	589	589	581	614	615	598	592	602	592	592	609	602	580	599	623	590	586	560	562	539	546	520	670	594	26
TPGW-7D	595	596	812	912	1140	1402	1653		3191	3517	3959	4195	4404	4562	4808	5071	5082	5491	5823	6070	6197	6304	6415	6514	526	6551	3760	2081
TPGW-8S	2039	1845	1984	1971	2221	2073	1930	2105	1992	2067	2049	1957	1829	1809	1742	1663	1612	1736	1730	1840			1634	1503	1347	2302	1887	193
TPGW-8M	634		644	656	652	624	624	634	636	632	620	615	609	612	649	649	643	642	644	645	657	666	633	618	606	671	636	17
TPGW-8D	649	638	667	682	683	670	662	665	660	656	656		690	679	671	674	678	682	639	646	651	671	645	641	226	706	664	26
TPGW-9S	597	592	584	583	597	601	601	613	612	613	615	603	589	593	601	602	603	614	608	603	599	599	597	591	567	625	600	11
TPGW-9M	604	618	630	638	635	600	595	554	538	558	583	588	582	596	646	651	640	639	617	608	615	623	598	610	516	654	607	31
TPGW-9D	631	638	638	70015	632	617	617	70115	617	619		625	616	654	699	670	684	679	636	615	628	651	652	642	592	791	640	27
TPGW-10S	52468	52958	53057	52817	52791	52809	52974	53146	52965	52672	52505	53801	53253	52828	53254	53157	52771	51789	51519	53260	53509	53127	53208	52597	51040	54584	52878	589
TPGW-10M	55058	55001	55101	55093	55171	54797	55256	55624	55513	55409	55361	55926	55308	55004	55545	55308	55274	54494	53901	56402	56336	55419	54712	54621	53683	57788	55225	632
TPGW-10D	64717	65063	65204	65172	65295	65731	66325	66623	66422	66346	66294	66057	66740	67304	68445	68267	68001	67694	67587	68281	68562	67815	67594	67612	63546	68908	66757	1210
TPGW-11S	55416	55320	55584	55271	55072	54937	55347	55638	56541	55330	54574	55794	55565	55402	55113	55186	55266	54219	53652			54885	55101	55300	53534	56686	55190	652
TPGW-11M	56638	56598	57632	57124	56703	57008	57255	57411	57768	58371	58758	57234	56981	56875	57959	57402	56555	56273	56079			57580	57413	57053	55715	59098	57200	696
TPGW-11D	61371	61345	61175	61229	61300	61863	62163	62349	63257	62606	62228	62440	62687	62839	62529	62544	62536	62816	63011			62869	63055	63270	60938	63556	62331	683
TPGW-12S	64210	64766	<i>(5110</i>	C4005	64204	(1450	(1100	43745	43966	44278	44950	45847	45498	45369	44964	45147	(0721	60042	50006	50.627			46353	47253	38893	51568	44966	1111
TPGW-12M						61452	61123																				61322	
TPGW-12D							92061										64524					92550					64650	
TPGW-13S						70752												80238	84346	83233	82982	82559						
TPGW-13M				/8816	18139	18152												70997	90612	91065	90495	79346					78331	
TPGW-13D		81290		57510	57202	57052																			77542			844
TPGW-14S			57687																			57402					57100	645
TPGW-14M		63035		62090	61900	61857		02075														62101			60175			610
TPGW-14D	/3390	/30/3	73701	/3963	13922	73389	73238		/4058	/3024	/3221	/3/6/	/31/3	12266	12881	/2015	/2161	12362	/2/80	12835	12881	73491	/3450	13324	/1/89	14531	13236	576

Avg = Average. Min = Minimum.

Max = Maximum.

Std Dev = Standard Deviation.

Table 2.1-2. Statistical Summary of Automated Groundwater Temperature (°C)

Table 2.1-2	- Otatio	Alloui O		g Month		Ol Gall	awator	Tompor	atai o (<u> </u>		201	14 Avg Mo	nthly Va	lua .						2015 Av	g Monthi	v Value		P	ost-Unra	te Averag	ne.
Well	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Min	Max		Std Dev
TPGW-1S	25.7	25.6	25.5	25.5	25.5	25.6	25.7	25.7	25.7	25.8	25.8	25.8	Jun	Jui	Aug	25.6	25.6	25.7	25.8	25.8	25.8	25.8	25.8	25.9	25.5	25.9	25.7	0.1
TPGW-1M	25.9	25.9	25.9	25.8	25.8	25.8	25.8	25.7	25.8	25.8	25.9	25.9	25.9	25.9		23.0	25.8	25.9	25.9	25.9	25.9	25.9	25.9	25.9	25.8	25.9	25.7	0.1
TPGW-1M	25.9	25.9	25.9	25.9	25.9	25.9	25.9	25.8	25.9	25.8	25.9	25.9	25.9	25.9	25.9	25.9	25.9	25.9	25.9	25.9	25.9	25.9	25.9	25.8	25.8	25.9	25.9	0.0
TPGW-2S	26.0	25.8	25.7	25.8	25.8	25.9	26.0	26.0	26.1	26.1	26.1	26.4	26.5	26.1	26.0	26.0	25.9	26.3	26.7	26.6	26.5	26.5	26.6	26.4	25.7	26.9	26.2	0.0
TPGW-2M	26.9	26.8	26.7	26.7	26.6	26.6	26.6	26.6	26.6	26.6	26.6	26.6	20.5	20.1	20.0	26.6	26.6	26.6	26.7	26.8	26.8	26.9	26.9	27.0	26.6	27.0	26.7	0.3
TPGW-2D	27.1	27.1	27.1	27.1	27.1	27.0	27.0	27.0	27.0	27.0	27.0	27.0	27.0	27.0	26.9	26.9	26.9	26.9	26.9	26.9	27.0	27.0	27.0	27.0	26.9	27.1	27.0	0.1
TPGW-3S	25.7	25.7	25.7	25.8	25.9	25.9	26.0	26.1	26.1	26.0	25.9	25.8	25.7	25.7	25.8	25.9	26.0	26.1	26.2	26.2	26.0	25.9	25.8	25.7	25.6	26.2	25.9	0.2
TPGW-3M	25.9	25.9	25.9	25.9	25.9	25.9	25.9	25.9	25.8	25.8	25.8	25.8	25.8	25.8	25.8	25.8	25.8	25.8	25.8	25.8	25.8	25.8	25.8	25.8	25.8	25.9	25.8	0.0
TPGW-3D	25.7	25.7	25.7	25.7	25.7	25.7	25.7	25.7	25.7	25.7	25.7	25.7	25.7	25.7	25.7	25.7	25.7	25.7	25.7	25.7	25.7	25.7	25.7	25.7	25.6	25.7	25.7	0.0
TPGW-4S	24.9	24.8	23.7	23.7	25.0	25.1	25.2	25.3	25.2	25.1	25.0	25.0	24.8	24.7	23.7	24.9	25.0	25.1	23.7	23.7	25.3	25.3	25.2	25.0	24.6	25.3	25.0	0.2
TPGW-4M	24.8	24.8			24.7	24.7	24.7	24.7	24.7	24.7	24.7	24.7	24.7	24.7	24.7	24.6	24.6	24.6	24.6	24.6	24.7	24.7			24.6	24.8	24.7	0.0
TPGW-4D	24.5	24.5	24.5	24.5	24.5	24.5	24.5	24.5	24.5	24.5	24.5	24.5	24.5	24.5	24.5	24.5	24.5	24.5	24.5	24.5	24.5	24.5	24.5	24.5	24.5	24.5	24.5	0.0
TPGW-5S	23.6	23.5	23.5	23.5	23.5	23.6	23.7	23.7	23.8	23.7	23.6	23.6	23.6	23.5				23.6	23.7	23.7	23.7	23.5	23.5	23.5	23.4	23.8	23.6	0.1
TPGW-5M	23.7	23.6	23.6	23.6	23.6	23.6	23.6	23.6	23.6	23.6	23.7	23.7	23.6	23.6				23.6	23.6	23.6	23.6	23.6	23.6	23.6	23.6	23.7	23.6	0.0
TPGW-5D	23.7	23.7	23.7	23.7	23.7	23.7	23.7	23.7	23.7	23.7	23.7	23.7	23.7	23.7				23.7	23.7	23.7	23.7	23.7	23.7	23.7	23.7	23.7	23.7	0.0
TPGW-6S	23.1	23.1	23.2	23.3	23.4	23.5	23.5	23.5	23.5	23.5	23.5	23.5	23.4	23.3	23.3	23.4	23.4	23.5	23.5	23.6	23.5	23.5	23.5	23.5	23.1	23.6	23.4	0.1
TPGW-6M	23.6	23.6	23.5	23.5	23.5	23.5	23.5	23.5	23.5	23.5	23.5	23.5	23.5	23.5	23.5	23.5	23.5	23.5	23.5	23.4	23.4	23.4	23.5	23.5	23.4	23.6	23.5	0.0
TPGW-6D	23.5	23.5	23.5	23.5	23.5	23.5	23.5	23.5	23.5	23.5	23.5	23.5	23.5	23.5	23.5	23.5	23.5	23.5	23.5	23.5	23.5	23.5	23.5	23.5	23.5	23.6	23.5	0.0
TPGW-7S	23.7	23.7	23.7	23.7					23.9	23.9	23.8	23.8	23.8	23.8	23.8	23.8	23.9	23.9	23.9	24.0	24.0	23.9	23.8	23.7	23.7	24.0	23.8	0.1
TPGW-7M	23.8	23.8	23.8	23.8	23.8	23.8	23.7	23.7	23.7	23.8	23.8	23.8	23.8	23.8	23.8	23.8	23.8	23.8	23.8	23.8	23.8	23.9	23.9	23.9	23.7	24.0	23.8	0.0
TPGW-7D	23.8	23.8	23.8	23.8	23.8	23.8	23.8		23.8	23.8	23.8	23.8	23.8	23.8	23.8	23.8	23.8	23.8	23.8	23.8	23.8	23.8	23.8	23.8	23.8	23.8	23.8	0.0
TPGW-8S	23.6	23.5	23.6	23.7	23.8	23.9	23.9	23.9	23.8	23.6	23.5	23.5	23.6	23.6	23.6	23.7	23.9	24.0	24.1	24.0			23.5	23.5	23.5	24.1	23.7	0.2
TPGW-8M	23.7		23.6	23.6	23.6	23.6	23.6	23.6	23.6	23.6	23.6	23.7	23.7	23.7	23.7	23.7	23.7	23.7	23.7	23.7	23.7	23.7	23.7	23.7	23.6	23.7	23.7	0.0
TPGW-8D	23.7	23.7	23.7	23.7	23.7	23.7	23.7	23.7	23.7	23.7	23.7		23.7	23.7	23.7	23.7	23.7	23.7	23.7	23.7	23.7	23.7	23.7	23.7	23.6	23.9	23.7	0.0
TPGW-9S	24.4	24.4	24.5	24.7	24.9	25.0	25.0	24.9	24.8	24.5	24.3	24.3	24.4	24.3	24.2	24.6	24.8	25.0	25.1	24.9	24.6	24.3	24.3	24.3	24.1	25.1	24.6	0.3
TPGW-9M	23.9	23.8	23.8	23.8	23.8	23.8	23.8	23.9	23.9	23.9	23.9	23.8	23.8	23.8	23.8	23.8	23.8	23.8	23.9	23.9	23.9	23.9	23.8	23.8	23.7	23.9	23.8	0.0
TPGW-9D	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	23.9	24.0	23.9	23.9	23.9	23.9	24.0	24.0	24.0	23.9	23.9	23.9	24.0	24.0	0.0
TPGW-10S	25.8	25.9	25.9	26.0	26.2	26.3	26.4	26.4	26.4	26.3	26.2	26.1	26.1	26.1	26.1	26.2	26.3	26.5	26.5	26.5	26.5	26.2	26.0	26.0	25.8	26.6	26.2	0.2
TPGW-10M	25.9	25.9	25.9	25.9	25.9	25.9	25.9	25.9	25.9	25.9	25.9	25.9	25.9	25.9	25.9	25.9	25.9	25.9	25.9	25.9	26.0	26.0	26.0	26.0	25.9	26.1	25.9	0.0
TPGW-10D	25.6	25.6	25.6	25.6	25.6	25.6	25.6	25.6	25.6	25.6	25.6	25.6	25.6	25.6	25.6	25.6	25.6	25.6	25.6	25.6	25.6	25.6	25.6	25.6	25.6	25.7	25.6	0.0
TPGW-11S	25.2	25.2	25.2	25.3	25.4	25.5	25.6	25.6	25.5	25.4	25.4	25.4	25.4	25.4	25.5	25.5	25.6	25.7	25.8			25.4	25.3	25.4	25.1	25.9	25.5	0.2
TPGW-11M	25.3	25.3	25.3	25.3	25.3	25.3	25.3	25.3	25.3	25.3	25.3	25.3	25.3	25.3	25.3	25.3	25.3	25.3	25.3			25.3	25.3	25.3	25.3	25.3	25.3	0.0
TPGW-11D	25.3	25.3	25.3	25.3	25.3	25.3	25.3	25.3	25.3	25.3	25.3	25.3	25.3	25.2	25.3	25.3	25.2	25.2	25.2			25.2	25.2	25.2	25.2	25.3	25.3	0.0
TPGW-12S	25.9	25.8	25.8	25.9			26.0	26.1	26.1	26.1	26.0	25.9	25.9	25.9	25.9								25.9	25.9	25.8	26.1	25.9	0.1
TPGW-12M	26.0	26.0	26.0	26.0	26.0	26.0	26.0	26.0	26.0	26.0	26.0	25.9	25.9	26.0	26.0	26.0	26.0	25.9	25.9	25.9			25.9	25.9	25.9	26.0	26.0	0.0
TPGW-12D	26.0	26.0	26.0	26.0	26.0			26.0	26.0	26.0	26.0	26.0	26.0	26.0	26.0	26.0	26.0	26.0	26.0	26.0			26.0	26.0	26.0	26.1	26.0	0.0
TPGW-13S	29.5	29.4	29.3	29.3	29.3	29.3	29.4	29.4	29.5	29.5	29.5	29.6	29.8	29.7	29.6	29.6	29.7	29.9	30.3	30.3	30.4	30.4	30.4	30.3	29.3	30.5	29.7	0.4
TPGW-13M	29.4	29.3	29.3	29.3	29.3	29.2	29.2	29.2	29.2	29.2	29.2	29.2	29.2	29.2	29.2	29.2	29.2	29.2				29.3	29.3	29.3	29.2	29.4	29.2	0.1
TPGW-13D	29.1	29.1	29.1				29.1	29.1	29.0	29.0	29.0	29.0	29.0	29.0	29.0	29.0	29.0	29.0	29.0	29.0	29.1	29.1	29.1	29.1	29.0	29.1	29.1	0.0
TPGW-14S	25.8	25.9	26.0	26.0	26.2	26.3	26.4	26.4	26.4	26.3	26.2	26.0	26.0	26.1	26.1	26.2	26.4	26.6	26.6	26.6	26.5	26.4	26.3	26.2	25.7	26.7	26.2	0.2
TPGW-14M	26.2	26.2	26.2	26.2	26.2	26.2	26.2	26.2	26.2	26.2	26.2	26.2	26.2	26.2	26.2	26.2	26.2	26.2	26.2	26.2	26.3	26.3	26.3	26.3	26.2	26.3	26.2	0.0
TPGW-14D	26.3	26.3	26.4	26.4	26.3	26.3	26.3		26.4	26.4	26.4	26.4	26.4	26.3	26.3	26.3	26.3	26.3	26.3	26.3	26.3	26.3	26.3	26.3	26.3	26.4	26.3	0.0

Kev:

Avg = Average. Min = Minimum. Max = Maximum. Std Dev = Standard Deviation.

Table 2.1-3. Statistical Summary of Automated Groundwater Salinity (PSS-78)

Table 2.1-3	2.1-3. Statistical Summary of Automated Groundwi						uwater	Janinty	(1 33-1	0)		20	14 Avg Mo	onthly Val	lue						2015 Av	g Monthl	y Value		P	ost-Upra	te Averag	ge
Well	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Min	Max	Avg	Std Dev
TPGW-1S	40.1	36.5	30.8	26.1	26.7	32.2	34.3	34.5			34.1	34.8		2 11	8	25.9	27.4	29.0	30.5	30.2	31.2	33.5	33.3	38.0	25.5	41.4	32.1	4.1
TPGW-1M	50.3	50.3	50.3	50.2	50.2	49.9	49.7	49.9	50.0	49.8	49.6	49.8	50.2	50.1			50.2	49.8	49.5	49.1			48.7	48.8	48.1	51.3	49.8	0.5
TPGW-1D	49.9	49.8	49.8	49.8	49.6	49.1	49.1	49.3	49.3	49.3	48.8	49.1	49.8	49.8			50.1	50.0	49.6	49.1	49.0	49.0	48.7	48.6	48.5	50.3	49.4	0.5
TPGW-2S	47.5	46.6	45.6	46.4	47.0	47.0	46.9	46.7	46.7	46.8	47.3	48.1	46.9	44.4	43.5	44.3	46.9	48.5	48.6	46.4	47.3	47.9	51.0	47.2	40.3	54.1	46.9	1.7
TPGW-2M	53.1	52.7	52.7	53.1	53.0	52.6	52.7	52.3	52.1	52.2	52.5	52.7				52.4	51.9	52.4	53.0	52.9	53.2	53.4	53.7	53.8	51.5	54.1	52.8	0.5
TPGW-2D	54.0	53.4	52.7	53.2	53.7	53.2	53.3	53.3	53.2	53.1	52.6	52.7	52.9	52.4	52.7	52.8	52.7	52.7			53.6	53.3	54.0	54.4	51.0	54.7	53.2	0.6
TPGW-3S	44.0	43.7	44.1	44.9	45.0	43.9	43.1	42.0	41.1	42.0	41.0	42.4	42.0	41.8	42.1	42.0	42.3	42.4	41.5	40.9	41.5	41.6	40.9	40.5	36.8	45.3	42.4	1.4
TPGW-3M	47.5	47.2	47.3	47.6	47.5	47.0	46.9	46.8	46.6	46.6	46.9	46.6	46.2	46.8	47.0		46.7	47.1	46.3	45.8	45.8	45.9	46.1	46.2	45.5	48.7	46.7	0.6
TPGW-3D	48.4	48.0	48.1	48.5	48.5	48.1	48.1	47.8	47.6	47.7	47.8	47.7	47.2	47.2	47.5	47.5		48.0	47.3	46.9	46.9	46.6	46.8		45.7	50.7	47.7	0.6
TPGW-4S	0.8	0.8			1.0	1.0	1.0	0.9	1.0	1.4	1.7	1.9	2.1	1.0		1.0	1.0	1.0			1.6	2.2	2.9	1.4	0.6	3.8	1.3	0.6
TPGW-4M	25.0	25.0				24.8	24.9	24.9	24.9	25.3	25.8	25.5	25.1	25.1	24.9	25.0	25.1	25.1	24.9	24.9	25.1	25.1			24.6	25.8	25.1	0.3
TPGW-4D	28.3	28.4	28.1	27.6	27.8	28.0	28.0	28.1	28.1	28.0	27.7	27.6	27.6	27.8	27.8	27.8	28.0	28.1	27.8	27.8	27.5	27.4	27.2	27.4	27.1	28.5	27.8	0.3
TPGW-5S	0.5	0.5	0.5	0.5	0.5	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4				0.3	0.4	0.3	0.4	0.4	0.4	0.3	0.3	0.6	0.4	0.1
TPGW-5M	20.8	20.8	20.9	20.7	20.7	20.7	20.7	20.6	20.6	20.6	20.4	20.3	20.3	20.3				19.8	19.9	20.3	20.4	20.2	20.0	19.9	19.4	20.9	20.4	0.3
TPGW-5D	21.9	21.8	21.9	22.1	22.0	21.9	21.8	21.8	21.9	22.1	22.1	22.0	22.0	21.9				21.4	21.6	22.2	22.1	22.1	22.3	22.4	21.0	22.7	21.9	0.3
TPGW-6S	0.5	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.7	0.7	0.5	0.7	0.6	0.0
TPGW-6M	13.8	13.8	13.8	13.8	13.8	13.8	13.8	14.0	14.0	13.9	13.8	13.8	13.8	14.0	13.9	13.8	13.9	13.8	13.7	13.7	13.7	13.7	13.6	13.6	13.5	14.0	13.8	0.1
TPGW-6D	14.3	14.3	14.3	14.3	14.3	14.5	14.5	14.4	14.4	14.4	14.4	14.4	14.4	14.4	14.3	14.3	14.4	14.4	14.3	14.2	14.4	14.5	14.5	14.6	14.0	14.6	14.4	0.1
TPGW-7S	0.3	0.3	0.3	0.3					0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.2	0.3	0.3	0.0
TPGW-7M	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.0
TPGW-7D	0.3	0.3	0.4	0.5	0.6	0.7	0.8		1.7	1.9	2.1	2.3	2.4	2.5	2.6	2.8	2.8	3.0	3.2	3.3	3.4	3.5	3.5	3.6	0.3	3.6	2.0	1.2
TPGW-8S	1.1	0.9	1.0	1.0	1.2	1.1	1.0	1.1	1.0	1.1	1.1	1.0	0.9	0.9	0.9	0.8	0.8	0.9	0.9	0.9			0.8	0.8	0.7	1.2	1.0	0.1
TPGW-8M	0.3		0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.0
TPGW-8D	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3		0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.1	0.3	0.3	0.0
TPGW-9S	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.0
TPGW-9M	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.0
TPGW-9D	0.3	0.3	0.3	25.4	0.3	0.3	0.3	25.7	0.3	0.3	25.2	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.4	0.3	0.0
TPGW-10S	35.1	35.5	35.6	35.4	35.4	35.4	35.5	35.7	35.5	35.3	35.2	36.2	35.7	35.4	35.7	35.7	35.4	34.6	34.4	35.8	35.9	35.6	35.7	35.2	34.1	36.7	35.5	0.4
TPGW-10M	37.1	37.1	37.1	37.1	37.2	36.9	37.3	37.5	37.4	37.4	37.3	37.8	37.3	37.1	37.5	37.3	37.3	36.7	36.2	38.1	38.1	37.4	36.8	36.8	36.1	39.2	37.2	0.5
TPGW-10D	44.6	44.8	44.9	44.9	45.0	45.4	45.8	46.1	45.9	45.8	45.8	45.6	46.2	46.6	47.5	47.4	47.2	46.9	46.8	47.4	47.6	47.0	46.8	46.8	43.6	47.9	46.2	1.0
TPGW-11S	37.4	37.3	37.5	37.2	37.1	37.0	37.3	37.5	38.2	37.3	36.7	37.6	37.5	37.3	37.1	37.2	37.3	36.5	36.0			37.0	37.1	37.3	35.9	38.3	37.2	0.5
TPGW-11M TPGW-11D	38.3 41.9	38.3 41.9	39.0 41.8	38.7 41.8	38.3 41.9	38.6 42.3	38.8 42.5	38.9 42.7	39.2 43.4	39.6 42.9	39.9 42.6	38.7 42.8	38.6 43.0	38.5 43.1	39.3 42.8	38.9 42.8	38.2 42.8	38.0 43.1	37.9 43.2			39.0 43.1	38.9 43.2	38.6 43.4	37.6 41.6	40.2	38.7 42.7	0.5
TPGW-11D	41.9	41.9	41.0	41.0	41.9	42.3	42.3	28.7	28.8	29.1	29.5	30.2	29.9	29.9	29.6	29.7	42.0	43.1	43.2			43.1	30.6	31.2	25.2	34.5	29.6	0.3
TPGW-12M	44.2	44.6	44.9	44.7	44.2	42.0	41.8	42.2	42.2	41.9	41.0	39.3	40.5	42.7	42.8	42.0	41.5	40.9	40.0	40.6			38.9	40.0	38.0	45.2	41.9	1.8
TPGW-12M	44.6	44.5	44.9	44.7	44.2	72.0	71.0	44.5	44.3	44.4	44.4	44.2	44.3	44.4	44.5	44.5	44.4	44.4	44.3	44.3			45.7	46.1	43.4	46.9	44.5	0.5
TPGW-12D	60.1	60.3	60.3	60.5	60.5		59.5	59.0	58.8	58.6	58.5	58.6	59.8	59.1	58.2	58.4	60.7	62.3	60.7	59.8	59.6	59.2	60.7	62.6	57.9	63.4	59.8	1.2
TPGW-13M	56.3	56.6	56.4	56.1	56.0	56.0	56.0	55.8	55.7	55.4	55.1	55.2	55.3	55.3	55.4	55.4	56.1	02.3	00.7	33.0	39.0	54.7	55.3	55.7	54.0	58.9	55.7	0.5
TPGW-13M	57.7	58.1	58.0	50.1	30.0	30.0	57.8	57.0	56.8	56.5	56.3	56.2	56.1	56.1	56.3	56.5	56.8	56.9	57.6	57.9	57.4	56.5	56.5	56.4	55.0	59.1	56.9	0.3
TPGW-14S	39.0	39.4	39.1	39.0	38.8	38.6	38.8	38.9	39.0	39.1	39.1	38.4	38.4	38.4	38.8	38.6	38.2	37.7	37.4	38.6	38.9	38.9	38.7	38.2	37.3	39.5	38.7	0.7
TPGW-14M	43.2	43.3	43.0	42.5	42.4	42.3	42.7	42.5	42.5	42.6	42.7	42.2	42.0	42.1	42.5	42.1	42.1	42.0	41.8	42.3	42.1	42.5	41.9	41.6	41.0	44.1	42.4	0.5
TPGW-14M	51.7	51.7	51.8	52.0	51.9	51.5	51.4	72.3	52.1	51.7	51.4	51.8	51.3	50.6	51.1	50.9	50.5	50.8	51.0	51.1	51.1	51.6	51.6	51.5	50.2	52.4	51.4	0.5
11 6 11-141)	J1./	51.7	51.0	52.0	51.7	51.5	51.4		J2.1	J1./	J1.4	51.0	51.5	50.0	J1.1	50.7	50.5	50.0	51.0	J1.1	J1.1	51.0	51.0	51.5	50.2	J4.4	J1.4	0.5

Key:

Avg = Average. Min = Minimum. Max = Maximum. Std Dev = Standard Deviation.

Table 2.2-1. Probe Types/Automated Measurements at Surface Water Stations for Post-Uprate Monitoring Period

Surface Water Site	Probe	Parameters Measured
TPSWC-1T	AT200	Water Quality, Stage
TPSWC-1B	AT100	Water Quality
TPSWC-2T	AT200	Water Quality, Stage
TPSWC-2B	AT100	Water Quality
TPSWC-3T	AT200	Water Quality, Stage
TPSWC-3B	AT100	Water Quality
TPSWC-4T	AT200	Water Quality, Stage
TPSWC-4B	AT100	Water Quality
TPSWC-5T	AT200	Water Quality, Stage
TPSWC-5B	AT100	Water Quality
TPSWID-1T	AT200	Water Quality, Stage
TPSWID-1B	AT100	Water Quality
TPSWID-2T	AT200	Water Quality, Stage
TPSWID-2B	AT100	Water Quality
TPSWID-3T	AT200	Water Quality, Stage
TPSWID-3B	AT100	Water Quality
TPSWCCS-1B	AT200	Water Quality, Stage
TPSWCCS-2B	AT200	Water Quality, Stage
TPSWCCS-3B	AT200	Water Quality, Stage
TPSWCCS-4T	AT200	Water Quality, Stage
TPSWCCS-5T	AT200	Water Quality, Stage
TPSWCCS-6T	AT200	Water Quality, Stage
TPSWCCS-7B	AT200	Water Quality, Stage
TPBBSW-3B	AT200	Water Quality, Stage
TPBBSW-4B	AT100	Water Quality
TPBBSW-5B	AT100	Water Quality
TPBBSW-10B	AT200	Water Quality, Stage
TPBBSW-14B	AT200	Water Quality, Stage

Note:

Pre-Uprate station probes TPBBSW-1B, TPBBSW-2B, TPSWCCS-4B, TPSWCCS-5B, and TPSWCCS-6B are not shown since they were eliminated for the Post-Uprate monitoring.

Key:

AT - Aqua TROLL[®].

T – Top.

B – Bottom.

Table 2.2-2. Statistical Summary of Automated Surface Water Specific Conductance (µS/cm)

	2013 Avg Monthly Value											2014	4 Avg M	onthly V	alue						2015 Av	g Month	ıly Value	<u> </u>	Po	ost-Upra	ite Avera	age
Well	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Min	Max	Avg	Std Dev
TPBBSW-3B	53150	51154	51982	48521	43861	43577	45257	44408	50470	53640	57614	58836	58773	57969	58299	56089	50107	43592	44106	46843	48143	53640	56257	54537	35166	60557	51289	5749
TPBBSW-4B			50868	51220	50044	47911	47979	48985	50050	51881	56384	58224	58369	57437	56582	55273	52447	47696	47725	50430	51810	54204	56883	53650	39614	59751	52585	3737
TPBBSW-5B	48304		45880	48113	48211	46820	45653	47433	48232	49206	53290	57686	59279	55986	53299	54154	60906	48153	47072	49238	50636	53419	56144	53167	40553	69581	51237	4744
TPBBSW-10B	51363	48222	48609	41957	36042	38377	37433	40049	44732	49396	56455	61453	59112	56159	56046	55774	45137	39416	39915	42954	45351			53282	22315	63296	47802	8583
TPBBSW-14B	48640	48092	45786	46241	47742	42631	45778	44621	48657	52212	55969	58905	58396	56921	55759	54835	51838	44047	43497	47380	49249	52896	55378	53562	37975	60196	50324	5106
TPSWC-1T	388	445	650	527	483	673	703	676	691	850	1118	1619	1848	909	513	553	685	581	854	860	990	1200	1575	1449	333	2180	860	411
TPSWC-1B	764	711	809	787	733	895	647	916	954	971	1121	1407	1338	1262	1080	743	914	1386	1367	1140	1061	1137		1187	561	1649	1017	260
TPSWC-2T	592	586	511	571	579	862	689	683	783	978	1740	6555	6991	1090	548	633	831	708	947	869	875	1539	2613	1562	393	10952	1424	1871
TPSWC-2B	952	840	715	933	1002	1237	1150	790	807	1044	1986	8828	9597	5300	2040	1896	2146	1571	2579	2494	2528	2869	3079	3239	444	11585	2475	2393
TPSWC-3T	594	630	498	588	749	1378	713	809	1061	1605	3247	6963	6905	1075	582	682	823	777	1297	978	1315	2556	3611	1291	377	9977	1693	1908
TPSWC-3B	3361	2299	2028	2124	3047	3728	3885	3031	3115	3082	5149	17445	16601	14592	9794	7487	6700	6267	6101	5143	6731	7068	6671	7356	1335	18295	6417	4343
TPSWC-4T	39424	32492	31131	35865			26788	26092	18401	17734	26948	58883	51753	28946	26123	40151	36725	38085	43252	38569	46874	48692	50495	43260	15508	62425	36802	12006
TPSWC-4B	43774	34951	35021	39177	31219	42239	30746	29103	16739	17706	28219	59245	53099	30507	28133	42138	39090	41154	44696	40482			50943	45061	6351	66755	37753	12169
TPSWC-5T	51015	48124	48105	50335	48906	46429	47597	48816	49975	52166	55285	58462	58720	56192				48671	48739	49965			56735	54878	40486	59596	51432	4046
TPSWC-5B	54610	53293	55156	50645	48431	46400	45080	48703	49367	51551	54597	56934	57399	56887	56499	55332	53963	50216	47836	50128			57292	55472	42690	59354	52452	3846
TPSWCCS-1B	78187	83032	83049	85815	89202	93389	93156	97288	102182	108457	117225	118451	120496	115994	114265	115976	96098	92939	98370	103132	106393	109912	117576	109492	72545	123461	101815	13077
TPSWCCS-2B	77366	81440	82142	85770	88842	92632	91941	96670	101899	109417	117333	119002	122000	116846	114785	117230	101861	93368	99875	104722	108573	111664	120231	110666	71802	125724	102482	13797
TPSWCCS-3B	76447	80998	80340	82861	84994	90438	90513	89712	91944	100496	109999	117386	119943	114327	114306	118025	107249	94204	100117	104309	107733	110696	122206	111664	71469	127386	100629	14256
TPSWCCS-4T	76883	80806	79428	83627	89089	93915	91611	95228	100060	95094	116521	118056	117105	109978	113674	120466	102971	95845	102471	107163	109760	111424	119257	106424	66629	126549	101290	14001
TPSWCCS-5T	74402	79098	77156	82986	86102	90271	87738	87113	88185	96678	99844	111813	119237	115621	111720	114018	100904	92370	93625	98182	103873	108728	112429	104386	72146	124712	97155	13550
TPSWCCS-6T													119783	114192	113440	115366	101260	93041	98373	103144	107659	111899	119194		72007	124791	106844	11696
TPSWCCS-7B	78082	82279	83288	85972	89183	93681	93820	96763	101357	106114		111010	107030	110412	115989	115391	96791	93490	99655	104626	105308	108419	118410		43516	126064	99678	12181
TPSWID-1T	3580	4030	3427	3384	3256	3840	3453	3809	4152	7587	7206	8389	9464	7788	5421	5234	4753	8375	8933	7942	7827	9794	13699	12069	2763	19621	6523	3023
TPSWID-1B	12153	9139	3805	5289	5828	4019	3821	5493	7917	16152	14297	19343	22346	16079	9945	7855	7880	15674	13948	10625	17159	20920			1847	24856	11499	6038
TPSWID-2T	3382	3811	2473	3113	2901	3267	2958	3665	3590	3435	3867	4787	5019	5666	4812	4230	4153	6489		4485	4403	5506	10588	6539	2069	14460	4490	1855
TPSWID-2B	13807	10562	7621	6227	4799	3460	3684	4009	5605	5875	5992	8166	10427	10668	9314	7518	8029	16037	8831	6909	6156	13064	32372	18066	2824	47259	9473	6672
TPSWID-3T	3413	3254	2454	2476	4120	6690	2964	3198	3199	3250	3575	6112	5223	4242	4239	3991	5477	9749	8861	4547					2309	14922	4531	2204
TPSWID-3B	3408	3263	2497	2621	5103	8375	3353	3243	3230	3285	4073	18249	8657	4637	5534	6159	14713	30625	10616	4994	13767	20227	38357	9839	2253	46547	9474	10052

Avg = Average. Max = Maximum. Min = Minimum. Std Dev = Standard Deviation.

Table 2.2-3. Statistical Summary of Automated Surface Water Temperature (°C)

			2013 Av	g Month	ly Value							201	4 Avg Mo	onthly V	alue						2015 Av	g Month	ly Value		F	Post-Rat	e Averag	ge
Well	Jun	July	Aug	Sept	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Min	Max	Avg	Std Dev
TPBBSW-3B	29.6	29.1	30.0	29.5	27.6	24.8	24.0	20.5	24.7	24.2	26.2	27.5	29.6	31.0	31.6	29.5	27.4	23.0	22.2	22.3	20.3	25.8	27.8	27.8	12.0	34.0	26.5	3.7
TPBBSW-4B			30.0	29.5	27.9	24.8	24.0	20.9	24.8	24.6	26.3	27.5	29.6	31.0	31.6	29.6	27.7	23.2	22.1	22.8	20.3	26.1	27.8	27.7	16.4	33.3	26.4	3.4
TPBBSW-5B	30.0		30.4	29.9	28.1	25.1	24.3	21.3	25.0	24.8	26.6	27.8	29.9	31.5	31.9	29.8	27.9	23.6	22.3	22.8	20.6	26.2	28.0	28.1	15.9	34.5	26.8	3.5
TPBBSW-10B	29.8	29.6	30.2	29.9	27.9	24.6	24.0	20.4	24.9	24.3	26.3	27.5	29.5	30.9	31.7	29.6	27.7	23.0	22.6	22.5	20.3			27.9	14.4	34.5	26.6	3.7
TPBBSW-14B	29.7	29.4	30.1	29.6	27.9	24.8	24.0	20.9	24.9	24.6	26.4	27.5	29.7	31.1	31.6	29.6	27.7	23.3	22.2	22.8	20.4	26.2	27.9	27.8	15.6	33.5	26.7	3.5
TPSWC-1T	29.5	29.3	29.9	28.9	27.6	25.1	24.1	21.4	24.8	25.4	27.4	28.8	29.3	29.8	30.5	28.6	26.9	23.4	22.2	22.9	21.3	26.6	28.7	28.1	18.0	33.1	26.7	3.1
TPSWC-1B	27.0	27.7	28.9	27.9	27.0	24.9	23.6	21.0	22.7	24.6	26.0	27.6	27.6	28.2	29.2	27.9	26.6	23.3	21.8	22.5	20.7	24.6		26.2	19.1	29.7	25.6	2.6
TPSWC-2T	29.7	29.8	30.0	29.1	27.8	25.0	24.2	21.4	25.0	25.2	27.3	28.9	30.0	30.8	31.5	29.2	27.4	23.3	22.1	22.8	21.0	26.5	28.5	28.4	17.3	34.4	26.9	3.4
TPSWC-2B	28.4	28.6	29.2	28.4	27.3	24.8	23.5	20.7	23.6	24.7	26.8	29.9	30.1	29.6	30.3	28.5	26.7	22.7	21.0	22.5	20.3	25.7	27.8	26.6	18.2	31.9	26.3	3.2
TPSWC-3T	30.3	30.1	30.5	29.7	28.2	25.1	24.1	21.4	24.8	25.4	27.4	28.5	30.3	30.8	31.7	29.6	27.7	23.6	22.1	23.1	21.3	26.7	28.6	28.5	17.8	34.3	27.1	3.4
TPSWC-3B	29.7	29.7	29.9	29.1	27.5	24.8	23.5	20.5	23.3	25.0	27.5	29.8	31.2	30.1	30.9	28.9	27.2	22.9	21.9	22.5	21.0	26.4	28.4	27.1	18.2	33.1	26.6	3.5
TPSWC-4T	27.9	28.6	28.7	29.8			26.0	22.8	25.4	25.6	27.9	29.3	30.8	32.1	30.6	33.2	31.1	25.9	24.2	24.9	21.8	27.6	29.6	32.1	17.4	36.0	28.0	3.4
TPSWC-4B	27.8	28.6	28.7	30.1	29.2	26.2	25.9	22.8	25.5	25.8	27.9	29.3	31.1	32.1	30.7	32.6	30.6	25.7	24.0	25.2			29.6	31.5	17.6	36.4	28.1	3.2
TPSWC-5T	30.0	29.8	30.5	30.0	28.6	25.3	24.6	21.6	25.1	25.4	26.8	28.3	30.4	31.4	32.3		28.3	23.9	22.7	23.5			29.0	28.9	18.8	34.2	27.4	3.4
TPSWC-5B	27.8	30.0	30.6	30.2	28.8	25.8	24.7	21.6	24.1	25.1	26.1	27.9	29.9	31.6	32.1	30.5	28.9	25.1	22.6	23.6			28.6	28.7	19.2	33.3	27.3	3.2
TPSWCCS-1B	41.7	41.1	42.0	41.6	40.7	37.5	36.5	34.3	39.5	37.7	37.7	40.0	42.9	42.8	42.7	41.0	36.7	35.3	35.2	36.3	34.5	38.8	40.8	37.8	26.5	46.3	39.0	3.4
TPSWCCS-2B	35.3	35.4	36.5	36.5	34.4	31.2	31.4	29.3	33.5	31.2	32.2	35.0	37.8	38.6	39.0	37.1	33.0	30.3	30.3	30.5	28.9	33.2	35.3	32.2	21.4	45.0	33.7	3.9
TPSWCCS-3B	34.6	34.6	35.5	35.1	33.0	29.8	29.9	27.8	32.1	30.9	32.8	33.8	36.6	37.8	37.8	36.1	32.9	29.0	28.3	28.8	26.8	31.8	34.4	32.1	19.8	41.8	32.6	3.8
TPSWCCS-4T	33.1	33.0	33.9	33.7	31.6	28.4	28.5	26.2	30.4	29.2	30.8	32.4	35.0	36.2	36.8	34.9	31.5	27.6	27.5	27.4	26.1	30.5	32.9	31.8	17.4	40.8	31.2	3.8
TPSWCCS-5T	33.0	32.9	33.9	33.6	31.5	28.3	28.4	26.0	30.2	29.1	30.8	32.3	34.8	36.1	36.6	34.6	31.2	27.4	27.2	27.2	25.8	30.2	32.6	31.6	17.8	40.1	31.0	3.7
TPSWCCS-6T	32.5	32.3	33.3	33.1	31.0	27.9	27.7	25.4	29.5	28.5	30.1	31.8	34.3	35.5	36.1	34.2	30.8	26.8	26.5	26.6	25.0	29.6	32.1		18.6	38.8	30.5	3.7
TPSWCCS-7B	37.8	37.5	38.5	38.4	36.7	33.3	33.2	31.4	35.7			36.0	39.0	40.2	40.3	38.3	34.5	32.4	32.0	32.5	30.9	35.1	37.0	34.9	22.9	45.7	35.7	3.7
TPSWID-1T	30.4	30.2	31.1	29.8	28.3	25.5	24.8	22.8	25.8	26.0	27.7	28.6	29.6	31.3	31.8	30.0	28.0	25.1	23.0	23.7	22.4	27.0	28.8	28.5	17.8	34.4	27.5	3.1
TPSWID-1B	30.3	29.9	30.8	30.1	28.8	25.2	24.4	23.0	25.9	27.7	28.2	29.4	30.0	32.6	32.5	30.6	29.0	27.7	24.3	24.4	25.9	29.3	29.9	29.8	20.2	34.2	28.3	2.9
TPSWID-2T	29.6	29.6	30.2	29.6	28.5	25.8	25.2	23.4	25.8	25.7	27.2	28.5	29.3	29.9	31.0	29.6	28.0	25.0	23.2	24.1	22.8	26.7	27.8	28.4	20.5	32.9	27.3	2.6
TPSWID-2B	27.6	27.4	27.4	27.6	27.8	25.6	25.1	23.1	25.6	26.2	27.1	28.0	27.8	27.3	27.2	28.1	27.7	27.1	23.0	24.3	22.8	26.5	26.6	27.8	20.4	28.9	26.5	1.7
TPSWID-3T	29.4	29.3	30.1	29.5	28.6	25.8	24.8	23.1	25.6	25.6	27.0	28.3	29.6	30.2	31.2	29.6	28.3	24.7	23.0	23.7	22.0	26.8	28.7	28.6	18.3	33.3	27.3	2.8
TPSWID-3B	28.6	28.5	29.1	28.6	28.4	25.8	24.5	22.7	25.2	25.2	26.4	28.2	29.1	28.6	28.3	29.5	27.8	27.3	22.6	23.3	23.0	26.6	27.5	28.2	20.5	31.7	26.8	2.4

Avg = Average. Max = Maximum. Min =

Min = Minimum.

Std Dev = Standard Deviation.

Table 2.2-4. Statistical Summary of Automated Surface Water Salinity (PSS-78).

	2013 Avg Monthly Value								(1.00.1	•		201	4 Avg M	onthly V	alue						2015 Av	g Month	ly Value		Р	ost-Upra	ate Avera	ige
Well	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Min	Max	Avg	Std Dev
TPBBSW-3B	35.7	34.2	34.9	32.3	28.8	28.5	29.7	29.0	33.6	36.0	39.1	40.0	40.0	39.4	39.7	38.0	33.4	28.5	28.8	30.8	31.7	36.0	38.1	36.7	22.5	41.4	34.3	4.4
TPBBSW-4B			34.0	34.3	33.4	31.7	31.7	32.4	33.3	34.7	38.1	39.6	39.7	39.0	38.4	37.3	35.2	31.5	31.5	33.5	34.4	36.5	38.5	36.1	25.6	40.8	35.2	2.9
TPBBSW-5B	32.1		30.3	31.9	32.0	30.9	30.0	31.2	31.9	32.7	35.8	39.2	40.4	37.9	35.9	36.5	41.7	31.8	31.0	32.6	33.6	35.9	38.0	35.7	26.4	48.5	34.2	3.6
TPBBSW-10B	34.4	32.1		27.4	23.2	24.8	24.1	25.9	29.4	32.8	38.2	42.1	40.3	38.0	38.0	37.8	29.8	25.5	25.8	28.0	29.7			35.8	13.6	43.6	31.8	6.4
TPBBSW-14B	32.3	31.9	30.2	30.6	31.6	27.8	30.1	29.2	32.3	34.9	37.8	40.1	39.7	38.6	37.7	37.0	34.7	28.8	28.4	31.2	32.5	35.5	37.4	36.0	24.4	41.1	33.6	3.9
TPSWC-1T	0.2	0.2	0.3	0.3	0.2	0.3	0.3	0.3	0.3	0.4	0.6	0.8	0.9	0.5	0.2	0.3	0.3	0.3	0.4	0.4	0.5	0.6	0.8	0.7	0.2	1.1	0.4	0.2
TPSWC-1B	0.4	0.4	0.4	0.4	0.4	0.4	0.3	0.5	0.5	0.5	0.6	0.7	0.7	0.6	0.5	0.4	0.5	0.7	0.7	0.6	0.5	0.6		0.6	0.3	0.8	0.5	0.1
TPSWC-2T	0.3	0.3	0.2	0.3	0.3	0.4	0.3	0.3	0.4	0.5	0.9	3.7	3.9	0.5	0.3	0.3	0.4	0.3	0.5	0.4	0.4	0.8	1.4	0.8	0.2	6.3	0.7	1.1
TPSWC-2B	0.5	0.4	0.4	0.5	0.5	0.6	0.6	0.4	0.4	0.5	1.0	5.0	5.5	2.9	1.1	1.0	1.1	0.8	1.3	1.3	1.3	1.5	1.6	1.7	0.2	6.7	1.3	1.4
TPSWC-3T	0.3	0.3	0.2	0.3	0.4	0.7	0.4	0.4	0.5	0.8	1.7	3.9	3.9	0.5	0.3	0.3	0.4	0.4	0.7	0.5	0.7	1.3	1.9	0.7	0.2	5.7	0.9	1.1
TPSWC-3B	1.8	1.2	1.0	1.1	1.6	2.0	2.1	1.6	1.6	1.6	2.8	10.4	9.9	8.6	5.6	4.2	3.7	3.5	3.4	2.8	3.7	3.9	3.7	4.1	0.7	11.0	3.6	2.6
TPSWC-4T	25.6	20.7	19.7	23.1			16.7	16.2	11.1	10.6	17.1	40.1	34.7	18.3	16.5	26.1	23.7	24.6	28.3	24.9	30.9	32.3	33.7	28.4	9.2	42.9	23.9	8.5
TPSWC-4B	28.8	22.4	22.5	25.4	20.0	27.6	19.4	18.3	10.0	10.6	18.0	40.4	35.7	19.4	17.9	27.6	25.3	26.8	29.3	26.3			34.1	29.7	3.5	46.2	24.6	8.6
TPSWC-5T	34.1	32.0	32.0	33.6	32.5	30.6	31.5	32.3	33.2	34.9	37.3	39.8	40.0	38.1				32.2	32.3	33.2			38.5	37.0	26.2	40.7	34.4	3.1
TPSWC-5B	36.8	35.8	37.3	33.8	32.2	30.6	29.6	32.2	32.8	34.4	36.8	38.6	39.0	38.6	38.3	37.4	36.3	33.4	31.6	33.3			38.9	37.5	27.8	40.4	35.2	2.9
TPSWCCS-1B	55.8	59.8	59.9	62.2	65.1	68.7	68.5	72.0	76.6	82.2	90.4	91.7	93.7	89.4	87.8	89.4	71.1	68.3	73.0	77.3	80.2	83.6	90.9	83.2	51.1	96.6	76.5	11.8
TPSWCCS-2B	55.0	58.4	59.0	62.1	64.7	67.8	67.3	71.3	76.1	82.8	90.3	92.0	95.0	90.1	88.2	90.4	76.2	68.4	74.2	78.5	81.9	85.0	93.2	84.1	50.4	98.5	76.9	12.4
TPSWCCS-3B	54.3	58.0	57.5	59.6	61.4	65.9	66.0	65.2	67.3	74.8	83.5	90.4	93.0	87.7	87.7	91.1	81.0	69.1	74.3	78.0	81.0	84.1	95.1	85.0	50.2	100.1	75.2	12.8
TPSWCCS-4T	54.6	57.8	56.7	60.2	64.8	68.8	66.9	69.8	74.3	70.1	89.4	91.0	90.2	83.6	87.1	93.4	77.1	70.4	76.3	80.5	82.7	84.6	92.2	80.2	46.3	99.3	75.7	12.5
TPSWCCS-5T	52.5	56.4	54.8	59.7	62.3	65.7	63.5	62.8	64.0	71.4	74.3	85.1	92.2	88.9	85.2	87.3	75.2	67.4	68.5	72.5	77.4	82.2	85.8	78.3	50.7	97.6	72.1	12.0
TPSWCCS-6T													92.7	87.5	86.8	88.5	75.5	67.9	72.6	76.8	80.7	85.0	92.1		50.5	97.5	80.6	10.5
TPSWCCS-7B	55.7	59.2	60.0	62.3	65.0	68.8	69.0	71.5	75.7	80.0		84.7	81.0	84.1	89.3	88.8	71.7	68.6	74.1	78.5	79.1	82.1	91.6	83.8	28.6	99.0	74.4	10.9
TPSWID-1T	1.9	2.2	1.8	1.8	1.7	2.1	1.8	2.0	2.2	4.3	4.0	4.7	5.4	4.4	3.0	2.9	2.6	4.7	5.1	4.5	4.4	5.6	8.0	7.0	1.4	11.9	3.6	1.8
TPSWID-1B	7.1	5.2	2.0	2.9	3.2	2.2	2.0	3.0	4.4	9.6	8.4	11.7	13.7	9.6	5.7	4.4	4.4	9.3	8.2	6.1	10.3	12.7	15.7	12.1	0.9	17.3	7.2	4.2
TPSWID-2T	1.8	2.0	1.3	1.6	1.5	1.7	1.6	2.0	1.9	1.8	2.1	2.6	2.7	3.1	2.6	2.3	2.2	3.6		2.4	2.4	3.0	6.1	3.6	1.1	8.5	2.4	1.1
TPSWID-2B	8.1	6.1	4.3	3.4	2.6	1.8	2.0	2.2	3.1	3.2	3.3	4.6	6.0	6.1	5.3	4.2	4.5	9.6	5.0	3.8	3.4	7.7	20.7	11.0	1.5	31.3	5.5	4.3
TPSWID-3T	1.8	1.7	1.3	1.3	2.2	3.7	1.6	1.7	1.7	1.7	1.9	3.4	2.9	2.3	2.3	2.1	3.0	5.6	5.0	2.5					1.2	8.8	2.5	1.3
TPSWID-3B	1.8	1.7	1.3	1.4	2.8	4.7	1.8	1.7	1.7	1.7	2.2	11.1	5.0	2.5	3.0	3.4	8.9	19.4	6.1	2.7	8.2	12.3	24.8	5.7	1.2	30.7	5.6	6.5

Avg = Average. Max = Maximum.

Min = Minimum.

Std Dev = Standard Deviation.

Table 2.4-1. Parameters Collected at Hourly Intervals Reported by the Meteorological Station at TPM-1.

Parameter	Units	Accuracy	Resolution
Rainfall – Amount	inches	Better than 5%, weather dependent	0.001
Relative Humidity	%	± 3	0.1
Temperature	°Celsius	± 0.3	± 0.1
Barometric Pressure	mmHg	0.5	0.5
Wind Speed- Average	mph	1 ft/sec	0.3 ft/sec
Wind Speed- Gusts and Lull	mph	1 ft/sec	0.3 ft/sec
Wind Direction	degrees	± 3	1
Light Level	μmol m ⁻² s ⁻¹	$5-10 \mu\text{A}/100 \mu\text{mol m}^{-2}\text{s}^{-1}$	NA
Hail	Hits	1	1

ft/sec = Feet per second. mmHg = Millimeters of mercury. mph = Miles per hour. NA = Not applicable. μ mol m⁻² s⁻¹ = Micromoles per meter square per second.

Table 2.4-2. Rainfall Recorded at the Meteorological Station TPM-1.

Month	Date	Year	Rain (in)
7	27	2010	0.001
7	30	2010	0.001
8	3	2010	0.341
8	5	2010	0.13
8	8	2010	0.984
8	9	2010	3.075
8	10	2010	1.215
8	11	2010	0.001
8	15	2010	0.007
8	16	2010	0.214
8	17	2010	0.007
8	20	2010	0.16
8	21	2010	0.06
8	22	2010	0.217
8	23	2010	0.375
8	24	2010	0.02
8	26	2010	0.019
8	27	2010	0.351
8	28	2010	0.213
8	29	2010	0.084
8	30	2010	1.46
8	31	2010	0.014
9	1	2010	0.098
9	3	2010	0.479
9	4	2010	0.002
9	5	2010	0.168
9	6	2010	1.569
9	7	2010	0.114
9	8	2010	1.38
9	9	2010	0.005
9	10	2010	0.002
9	14	2010	0.004
9	15	2010	0.006
9	16	2010	0.119
9	17	2010	0.117
9	18	2010	0.041
9	19	2010	0.036
9	22	2010	0.016

Month	Date	Year	Rain (in)
9	23	2010	1.354
9	24	2010	0.019
9	25	2010	0.017
9	26	2010	0.112
9	27	2010	0.113
9	28	2010	0.363
9	29	2010	7.344
9	30	2010	0.008
10	6	2010	0.004
10	12	2010	0.57
10	13	2010	0.198
10	14	2010	0.063
10	17	2010	0.003
10	23	2010	0.303
10	24	2010	0.027
10	25	2010	0.088
10	26	2010	0.001
10	27	2010	0.14
10	28	2010	0.022
10	29	2010	0.898
10	31	2010	0.006
11	1	2010	0.053
11	3	2010	4.358
11	4	2010	0.854
11	5	2010	0.005
11	11	2010	0.002
11	12	2010	0.001
11	18	2010	0.079
11	22	2010	0.019
11	23	2010	0.021
11	24	2010	0.102
11	27	2010	0.008
11	29	2010	0.001
12	1	2010	0.008
12	5	2010	0.005
12	9	2010	0.075
12	12	2010	0.045
12	18	2010	0.221

Month	Date	Year	Rain (in)
12	26	2010	0.182
1	3	2011	0.002
1	6	2011	0.061
1	8	2011	0.002
1	17	2011	2.829
1	19	2011	0.028
1	21	2011	0.005
1	24	2011	0.016
1	26	2011	0.584
2	11	2011	0.063
	12	2011	0.131
2 2	14	2011	0.001
	17	2011	0.034
2 2 2	24	2011	0.001
2	25	2011	0.006
3	2	2011	0.155
3	4	2011	0.004
3	5	2011	0.152
3	10	2011	0.329
3	18	2011	0.002
3	19	2011	0.002
3	20	2011	0.001
3	21	2011	0.111
3	22	2011	0.037
3	28	2011	0.55
3	29	2011	0.3
4	1	2011	0.449
4	5	2011	0.138
4	7	2011	0.001
4	13	2011	1.184
4	17	2011	0.069
4	25	2011	0.001
4	29	2011	0.001
4	30	2011	0.005
5	1	2011	0.01
5	3	2011	0.001
5	6	2011	0.151
5	7	2011	0.001
5	8	2011	0.019

Month	Date	Year	Rain (in)
5	10	2011	0.001
5	11	2011	0.037
5	12	2011	0.018
5	13	2011	0.074
5	14	2011	0.022
5	15	2011	0.298
5	16	2011	0.009
5	17	2011	0.024
5	18	2011	0.858
5	19	2011	0.02
5	20	2011	0.004
5	21	2011	0.005
5	22	2011	0.006
5	23	2011	0.001
5	24	2011	0.003
5	25	2011	0.001
5	26	2011	0.045
5	27	2011	0.073
5	28	2011	0.131
5	29	2011	0.124
5	30	2011	0.266
5	31	2011	0.201
6	1	2011	0.008
6	2	2011	0.141
6	3	2011	0.007
6	5	2011	0.001
6	6	2011	0.019
6	16	2011	0.055
6	17	2011	0.055
6	18	2011	0.085
6	19	2011	0.003
6	20	2011	0.164
6	21	2011	0.082
6	22	2011	0.012
6	23	2011	0.001
6	24	2011	0.006
6	25	2011	0.102
6	26	2011	0.055
6	27	2011	0.100

Month	Date	Year	Rain (in)
6	28	2011	0.028
6	29	2011	0.605
6	30	2011	0.050
7	1	2011	0.064
7	2	2011	0.530
7	3	2011	0.048
7	4	2011	0.004
7	5	2011	0.330
7	6	2011	1.520
7	7	2011	3.874
7	8	2011	0.001
7	9	2011	0.008
7	10	2011	0.001
7	11	2011	0.394
7	12	2011	0.003
7	13	2011	0.380
7	15	2011	0.002
7	16	2011	0.002
7	17	2011	0.248
7	18	2011	1.343
7	19	2011	0.905
7	20	2011	0.140
7	21	2011	0.308
7	22	2011	0.047
7	23	2011	0.003
7	24	2011	0.103
7	25	2011	0.015
7	26	2011	0.001
7	27	2011	0.038
7	28	2011	0.146
7	29	2011	0.183
8	1	2011	0.003
8	2	2011	0.026
8	3	2011	0.255
8	5	2011	0.001
8	6	2011	1.472
8	7	2011	0.627
8	8	2011	0.968
8	9	2011	0.009

Month	Date	Year	Rain (in)
8	10	2011	0.028
8	11	2011	0.058
8	12	2011	0.070
8	13	2011	0.080
8	14	2011	0.599
8	15	2011	0.550
8	16	2011	0.116
8	17	2011	0.001
8	18	2011	0.033
8	19	2011	0.452
8	20	2011	0.098
8	21	2011	0.010
8	22	2011	0.170
8	23	2011	0.004
8	24	2011	0.007
8	25	2011	0.301
8	26	2011	0.301
8	27	2011	0.224
8	29	2011	0.684
8	30	2011	2.080
9	1	2011	0.017
9	2	2011	1.758
9	3	2011	0.003
9	8	2011	0.206
9	9	2011	0.022
9	10	2011	0.001
9	12	2011	0.359
9	13	2011	0.339
9	14	2011	0.006
9	16	2011	0.003
9	18	2011	0.057
9	19	2011	0.199
9	20	2011	0.004
9	21	2011	0.127
9	22	2011	1.472
9	23	2011	0.684
9	25	2011	1.182
9	26	2011	0.148
9	27	2011	0.196

Month	Date	Year	Rain (in)
9	29	2011	0.006
9	30	2011	0.144
10	6	2011	0.008
10	7	2011	0.460
10	8	2011	6.333
10	9	2011	0.073
10	10	2011	0.016
10	11	2011	0.010
10	12	2011	0.010
10	13	2011	0.019
10	15	2011	1.053
10	16	2011	1.633
10	17	2011	0.382
10	18	2011	0.350
10	19	2011	1.330
10	22	2011	0.002
10	23	2011	0.003
10	28	2011	0.619
10	29	2011	0.139
10	30	2011	0.007
11	1	2011	0.021
11	2	2011	0.010
11	4	2011	0.004
11	5	2011	0.117
11	6	2011	0.032
11	7	2011	0.004
11	8	2011	0.002
11	9	2011	0.006
11	13	2011	0.003
11	15	2011	0.001
11	17	2011	0.014
11	18	2011	0.052
11	19	2011	0.013
11	20	2011	0.037
11	24	2011	0.005
11	29	2011	0.001
12	1	2011	0.001
12	2	2011	0.003
12	4	2011	0.035

Month	Date	Year	Rain (in)
12	5	2011	0.043
12	7	2011	0.043
12	9	2011	0.061
12	10	2011	0.164
12	12	2011	0.001
12	13	2011	0.164
12	14	2011	0.013
12	16	2011	0.001
12	17	2011	0.007
12	18	2011	0.016
12	21	2011	0.003
12	22	2011	0.002
12	23	2011	0.001
12	27	2011	0.001
12	31	2011	0.001
1	2	2012	0.001
1	4	2012	0.022
1	5	2012	0.001
1	7	2012	0.004
1	10	2012	0.005
1	11	2012	0.009
1	12	2012	0.067
1	13	2012	0.283
1	14	2012	0.001
1	17	2012	0.006
1	18	2012	0.012
1	19	2012	0.013
1	21	2012	0.005
1	22	2012	0.001
1	23	2012	0.004
1	25	2012	0.001
1	26	2012	0.001
1	28	2012	0.017
1	29	2012	0.996
1	30	2012	0.004
2	1	2012	0.001
2	2	2012	0.009
2	3	2012	0.003
2	4	2012	0.001

Month	Date	Year	Rain (in)
2	5	2012	0.140
2	6	2012	1.861
2	7	2012	0.443
2	9	2012	1.007
2	10	2012	1.789
2 2	11	2012	0.475
2	13	2012	0.003
2	15	2012	0.002
2	20	2012	0.001
2	22	2012	0.003
2 2 2	24	2012	0.001
2	25	2012	0.168
2 2	26	2012	0.001
2	28	2012	0.017
2	29	2012	0.012
3	1	2012	0.003
3	3	2012	0.005
3	4	2012	0.167
3	5	2012	0.007
3	7	2012	0.088
3	8	2012	0.078
3	9	2012	0.002
3	10	2012	0.005
3	11	2012	0.069
3	12	2012	0.074
3	14	2012	0.026
3	15	2012	0.120
3	16	2012	0.009
3	17	2012	0.001
3	18	2012	0.004
3	19	2012	0.212
3	21	2012	0.003
3	22	2012	0.001
3	23	2012	0.003
3	25	2012	0.002
3	26	2012	0.002
3	27	2012	0.087
3	28	2012	0.001
3	30	2012	0.012

Month	Date	Year	Rain (in)
3	31	2012	0.002
4	1	2012	0.008
4	2	2012	0.002
4	5	2012	0.734
4	6	2012	0.002
4	7	2012	0.004
4	9	2012	0.001
4	10	2012	0.003
4	13	2012	0.001
4	14	2012	2.235
4	15	2012	0.004
4	16	2012	0.015
4	17	2012	0.026
4	18	2012	0.002
4	19	2012	0.003
4	21	2012	3.482
4	22	2012	0.405
4	23	2012	0.002
4	24	2012	0.015
4	25	2012	0.012
4	26	2012	0.004
4	27	2012	0.009
4	28	2012	1.185
4	29	2012	1.889
4	30	2012	2.444
5	1	2012	0.004
5	4	2012	0.003
5	6	2012	0.010
5	7	2012	0.012
5	8	2012	0.425
5	10	2012	0.003
5	11	2012	0.013
5	12	2012	0.005
5	13	2012	0.003
5	15	2012	0.005
5	16	2012	0.081
5	17	2012	2.308
5	18	2012	0.119
5	19	2012	0.611

Month	Date	Year	Rain (in)
5	20	2012	0.688
	21	2012	0.007
5	22	2012	0.904
5	23	2012	0.186
5	24	2012	2.896
5	25	2012	0.045
5	26	2012	0.026
5	27	2012	0.052
5 5 5	28	2012	0.104
	29	2012	0.171
5	30	2012	0.138
5	31	2012	0.594
6	1	2012	1.298
6	2	2012	0.209
6	3	2012	0.182
6	4	2012	0.264
6	5	2012	0.167
6	6	2012	0.096
6	7	2012	0.226
6	8	2012	0.161
6	9	2012	0.28
6	10	2012	0.164
6	11	2012	0.083
6	12	2012	0.097
6	13	2012	0.079
6	14	2012	0.315
6	15	2012	0.28
6	16	2012	0.051
6	17	2012	0.001
6	18	2012	0.004
6	19	2012	0.066
6	20	2012	2.167
6	21	2012	0.785
6	22	2012	0.573
6	23	2012	1.035
6	24	2012	0.006
6	25	2012	0.001
6	26	2012	0.001
6	27	2012	0.022

Month	Date	Year	Rain (in)
6	28	2012	0.174
6	29	2012	0.113
6	30	2012	0.001
7	1	2012	0.001
7	2	2012	0.001
7	3	2012	0.014
7	4	2012	0.035
7	5	2012	0.036
7	6	2012	0.009
7	7	2012	0.012
7	8	2012	0.004
7	9	2012	1.412
7	10	2012	0.536
7	11	2012	1.090
7	12	2012	0.061
7	13	2012	0.002
7	14	2012	0.040
7	15	2012	0.090
7	16	2012	1.652
7	17	2012	1.248
7	18	2012	0.018
7	19	2012	0.007
7	20	2012	0.948
7	21	2012	0.387
7	22	2012	0.992
7	23	2012	0.021
7	24	2012	0.001
7	25	2012	0.003
7	26	2012	0.003
7	27	2012	0.002
7	30	2012	0.114
8	2	2012	0.001
8	3	2012	0.005
8	4	2012	0.008
8	5	2012	0.626
8	6	2012	1.278
8	7	2012	0.005
8	8	2012	0.001
8	9	2012	0.019

Month	Date	Year	Rain (in)
8	10	2012	1.437
8	11	2012	0.394
8	13	2012	0.019
8	14	2012	0.028
8	15	2012	0.019
8	16	2012	0.001
8	17	2012	0.007
8	18	2012	0.634
8	19	2012	0.002
8	20	2012	0.004
8	21	2012	0.035
8	22	2012	0.023
8	23	2012	0.005
8	24	2012	0.192
8	25	2012	1.780
8	26	2012	3.690
8	27	2012	2.053
8	28	2012	0.090
8	29	2012	0.099
8	30	2012	0.015
8	31	2012	0.061
9	2	2012	0.004
9	3	2012	0.058
9	4	2012	0.006
9	5	2012	0.006
9	6	2012	0.006
9	7	2012	0.017
9	8	2012	0.003
9	10	2012	0.001
9	11	2012	0.167
9	12	2012	0.041
9	13	2012	1.287
9	15	2012	0.017
9	16	2012	0.502
9	18	2012	0.259
9	19	2012	1.414
9	20	2012	0.492
9	21	2012	0.198
9	22	2012	0.737

Month	Date	Year	Rain (in)
9	23	2012	1.634
9	24	2012	0.020
9	25	2012	0.007
9	26	2012	0.032
9	27	2012	0.011
9	28	2012	0.019
9	29	2012	0.026
9	30	2012	0.012
10	1	2012	0.345
10	2	2012	0.295
10	3	2012	0.008
10	4	2012	0.003
10	5	2012	0.005
10	6	2012	0.001
10	7	2012	0.004
10	8	2012	0.139
10	9	2012	0.006
10	10	2012	0.568
10	12	2012	0.005
10	13	2012	0.022
10	14	2012	0.037
10	15	2012	0.002
10	16	2012	0.617
10	17	2012	0.041
10	18	2012	0.010
10	19	2012	0.453
10	20	2012	0.009
10	21	2012	0.001
10	22	2012	0.001
10	23	2012	0.012
10	24	2012	0.358
10	25	2012	1.810
10	26	2012	0.110
10	27	2012	0.006
10	29	2012	0.002
11	1	2012	0.001
11	4	2012	0.002
11	5	2012	0.004
11	11	2012	0.010

Month	Date	Year	Rain (in)
11	12	2012	0.018
11	13	2012	0.001
11	14	2012	0.018
11	16	2012	0.122
11	17	2012	0.091
11	18	2012	0.024
11	19	2012	0.004
11	21	2012	0.002
11	23	2012	0.001
11	27	2012	0.007
11	28	2012	0.168
11	29	2012	0.506
11	30	2012	0.345
12	1	2012	0.007
12	2	2012	0.003
12	3	2012	0.001
12	4	2012	0.005
12	5	2012	0.024
12	6	2012	0.003
12	7	2012	0.326
12	8	2012	0.173
12	9	2012	0.006
12	10	2012	0.003
12	11	2012	0.012
12	12	2012	0.015
12	15	2012	0.026
12	16	2012	0.002
12	18	2012	0.011
12	19	2012	0.002
12	20	2012	0.003
12	21	2012	0.003
12	24	2012	0.001
12	25	2012	0.005
12	26	2012	0.002
12	28	2012	0.002
12	29	2012	0.002
12	30	2012	0.003
1	2	2013	0.049
1	3	2013	0.009

Month	Date	Year	Rain (in)
1	4	2013	0.003
1	5	2013	0.003
1	7	2013	0.002
1	8	2013	0.033
1	10	2013	0.004
1	13	2013	0.004
1	16	2013	0.012
1	17	2013	0.134
1	19	2013	0.017
1	20	2013	0.008
1	21	2013	0.004
1	22	2013	0.001
1	23	2013	0.010
1	26	2013	0.012
1	29	2013	0.002
1	30	2013	0.004
1	31	2013	0.003
2	3	2013	0.004
2	4	2013	0.003
	6	2013	0.012
2 2	8	2013	0.003
2	9	2013	0.002
2 2 2	10	2013	0.013
2	12	2013	0.072
2	13	2013	0.006
2	14	2013	0.079
2	15	2013	0.748
2	16	2013	0.175
2	17	2013	0.001
2	19	2013	0.001
2	20	2013	0.009
2 2	21	2013	0.006
2	22	2013	0.005
2	24	2013	0.002
2	27	2013	0.012
2	28	2013	0.078
3	1	2013	0.045
3	2	2013	0.006
3	3	2013	0.005

Month	Date	Year	Rain (in)
3	4	2013	0.003
3	5	2013	0.003
3	6	2013	0.005
3	7	2013	0.002
3	8	2013	0.005
3	11	2013	0.001
	12	2013	0.003
3 3	18	2013	0.015
3	19	2013	0.376
3	20	2013	0.028
3	21	2013	0.004
3	22	2013	0.036
3	23	2013	0.008
3	24	2013	0.011
3	25	2013	0.635
3	26	2013	0.003
3	27	2013	0.014
3	28	2013	0.016
3	29	2013	0.033
3	30	2013	0.004
4	1	2013	0.391
4	3	2013	0.003
4	4	2013	0.002
4	5	2013	1.740
4	7	2013	0.004
4	10	2013	0.002
4	11	2013	0.006
4	12	2013	0.015
4	13	2013	0.005
4	14	2013	0.338
4	15	2013	0.004
4	16	2013	0.313
4	17	2013	0.005
4	18	2013	1.451
4	19	2013	0.004
4	20	2013	0.053
4	21	2013	0.699
4	22	2013	0.000
4	23	2013	0.182

Month	Date	Year	Rain (in)
4	24	2013	0.061
4	25	2013	0.000
4	26	2013	0.001
4	27	2013	0.008
4	28	2013	0.037
4	29	2013	0.011
4	30	2013	0.034
5	1	2013	0.352
5	2	2013	0.035
5	3	2013	1.094
5	4	2013	0.560
5	5	2013	0.003
5	6	2013	0.003
5	7	2013	0.012
5	8	2013	0.011
5	9	2013	0.013
5	10	2013	0.012
5	11	2013	0.065
5	12	2013	0.019
5	13	2013	0.013
5	14	2013	0.114
5	15	2013	0.001
5	16	2013	0.000
5	17	2013	0.004
5	18	2013	1.011
5	19	2013	0.005
5	20	2013	0.073
5	21	2013	0.184
5	22	2013	0.247
5	23	2013	4.09
5	24	2013	0.01
5	25	2013	0.01
5	26	2013	0.00
5	27	2013	0.01
5	28	2013	0.08
5	29	2013	0.35
5	30	2013	2.83
5	31	2013	1.32
6	1	2013	0.00

Month	Date	Year	Rain (in)
6	2	2013	0.00
6	3	2013	0.10
6	4	2013	0.07
6	5	2013	0.53
6	6	2013	0.01
6	7	2013	1.35
6	8	2013	0.39
6	9	2013	0.04
6	10	2013	0.17
6	11	2013	0.47
6	12	2013	0.00
6	13	2013	0.00
6	14	2013	0.00
6	15	2013	0.00
6	16	2013	0.00
6	17	2013	0.00
6	18	2013	0.00
6	19	2013	0.00
6	20	2013	0.00
6	21	2013	0.00
6	22	2013	0.00
6	23	2013	0.00
6	24	2013	0.00
6	25	2013	0.00
6	26	2013	0.00
6	27	2013	0.00
6	28	2013	0.09
6	29	2013	0.00
6	30	2013	0.01
7	1	2013	0.01
7	2	2013	0.05
7	3	2013	0.34
7	4	2013	0.15
7	5	2013	0.87
7	6	2013	1.21
7	7	2013	0.04
7	8	2013	0.00
7	9	2013	0.00
7	10	2013	0.02

Month	Date	Year	Rain (in)
7	11	2013	0.19
7	12	2013	0.12
7	13	2013	0.15
7	14	2013	0.42
7	15	2013	0.09
7	16	2013	0.18
7	17	2013	0.34
7	18	2013	3.12
7	19	2013	0.61
7	20	2013	0.55
7	21	2013	0.00
7	22	2013	0.00
7	23	2013	0.00
7	24	2013	0.00
7	25	2013	0.03
7	26	2013	0.00
7	27	2013	0.01
7	28	2013	0.02
7	29	2013	0.00
7	30	2013	2.11
7	31	2013	0.01
8	1	2013	0.01
8	2	2013	0.00
8	3	2013	0.31
8	4	2013	0.44
8	5	2013	0.00
8	6	2013	0.06
8	7	2013	1.71
8	8	2013	0.00
8	9	2013	0.01
8	10	2013	0.18
8	11	2013	0.01
8	12	2013	0.00
8	13	2013	0.01
8	14	2013	0.00
8	15	2013	0.27
8	16	2013	0.84
8	17	2013	0.01
8	18	2013	0.03

Month	Date	Year	Rain (in)
8	19	2013	0.01
8	20	2013	0.69
8	21	2013	0.13
8	22	2013	0.09
8	23	2013	0.07
8	24	2013	0.13
8	25	2013	0.101
8	26	2013	0.001
8	27	2013	0.075
8	28	2013	0.056
8	29	2013	1.148
8	30	2013	0.002
8	31	2013	0.012
9	1	2013	0.033
9	2	2013	0.007
9	3	2013	0.144
9	4	2013	0.003
9	5	2013	0.407
9	6	2013	0.012
9	7	2013	0.002
9	8	2013	0.962
9	9	2013	0.006
9	10	2013	0.014
9	11	2013	0.028
9	12	2013	0.102
9	13	2013	0.302
9	14	2013	0.004
9	15	2013	0.016
9	16	2013	0.368
9	17	2013	1.100
9	18	2013	0.173
9	19	2013	0.002
9	20	2013	0.404
9	21	2013	0.554
9	22	2013	0.006
9	23	2013	0.015
9	24	2013	1.796
9	25	2013	0.015
9	26	2013	0.013

Month	Date	Year	Rain (in)
9	27	2013	0.006
9	28	2013	0.000
9	29	2013	0.338
9	30	2013	0.108
10	1	2013	0.001
10	2	2013	0.411
10	3	2013	0.002
10	4	2013	0.018
10	5	2013	0.011
10	6	2013	0.001
10	7	2013	0.005
10	8	2013	0.007
10	9	2013	0.673
10	10	2013	0.007
10	11	2013	0.015
10	12	2013	0.020
10	13	2013	0.008
10	14	2013	0.004
10	15	2013	0.008
10	16	2013	0.007
10	17	2013	0.008
10	18	2013	0.010
10	19	2013	0.007
10	20	2013	0.500
10	21	2013	0.000
10	22	2013	0.005
10	23	2013	0.017
10	24	2013	0.526
10	25	2013	1.062
10	26	2013	0.000
10	27	2013	0.004
10	28	2013	0.001
10	29	2013	0.005
10	30	2013	0.018
10	31	2013	0.001
11	1	2013	0.018
11	2	2013	0.016
11	3	2013	0.000
11	4	2013	0.001

Month	Date	Year	Rain (in)
11	5	2013	0.488
11	6	2013	0.024
11	7	2013	0.000
11	8	2013	0.000
11	9	2013	0.000
11	10	2013	0.403
11	11	2013	0.411
11	12	2013	0.001
11	13	2013	0.000
11	14	2013	0.664
11	15	2013	0.000
11	16	2013	0.002
11	17	2013	0.006
11	18	2013	0.001
11	19	2013	0.002
11	20	2013	0.829
11	21	2013	0.000
11	22	2013	0.061
11	23	2013	0.934
11	24	2013	0.000
11	25	2013	1.169
11	26	2013	0.087
11	27	2013	0.045
11	28	2013	2.282
11	29	2013	0.000
11	30	2013	0.000
12	1	2013	0.846
12	2	2013	0.002
12	3	2013	0.001
12	4	2013	0.009
12	5	2013	0.009
12	6	2013	0.002
12	7	2013	0.000
12	8	2013	0.006
12	9	2013	0.079
12	10	2013	0.001
12	11	2013	0.001
12	12	2013	0.000
12	13	2013	0.000

Month	Date	Year	Rain (in)
12	14	2013	0.016
12	15	2013	0.000
12	16	2013	
			0.078
12	17	2013	0.078
12	18	2013	0.002
12	19	2013	0.001
12	20	2013	0.000
12	21	2013	0.002
12	22	2013	0.000
12	23	2013	0.000
12	24	2013	0.000
12	25	2013	0.004
12	26	2013	0.308
12	27	2013	1.432
12	28	2013	0.011
12	29	2013	0.001
12	30	2013	0.040
12	31	2013	0.000
1	1	2014	0.006
1	2	2014	0.001
1	3	2014	0.010
1	4	2014	0.000
1	5	2014	0.028
1	6	2014	0.274
1	7	2014	0.497
1	8	2014	0.039
1	9	2014	0.272
1	10	2014	0.102
1	11	2014	0.000
1	12	2014	0.000
1	13	2014	0.007
1	14	2014	0.000
1	15	2014	0.001
1	16	2014	0.072
1	17	2014	0.000
1	18	2014	0.002
1	19	2014	0.000
1	20	2014	0.000
1	21	2014	0.000

Month	Date	Year	Rain (in)
1	22	2014	0.176
1	23	2014	0.000
1	24	2014	0.000
1	25	2014	0.000
1	26	2014	0.011
1	27	2014	0.000
1	28	2014	0.000
1	29	2014	0.000
1	30	2014	0.250
1	31	2014	0.703
2	1	2014	0.000
2 2	2	2014	0.000
2	3	2014	0.000
2	4	2014	0.001
2	5	2014	0.000
2	6	2014	0.000
2	7	2014	0.000
2	8	2014	0.003
2	9	2014	0.094
2	10	2014	0.001
2	11	2014	0.000
2	12	2014	0.000
2 2 2	13	2014	0.996
2	14	2014	0.076
2	15	2014	0.001
2	16	2014	0.001
2	17	2014	0.000
2	18	2014	0.000
2	19	2014	0.002
2	20	2014	0.000
2	21	2014	0.001
2	22	2014	0.000
2	23	2014	0.014
2	24	2014	0.001
2	25	2014	0.000
2	26	2014	0.000
2	27	2014	0.000
2	28	2014	0.418
3	1	2014	0.104

Month	Date	Year	Rain (in)
3	2	2014	0.000
3	3	2014	0.002
3	4	2014	0.000
3	5	2014	0.001
3	6	2014	0.060
3	7	2014	0.451
3	8	2014	0.000
3	9	2014	0.000
3	10	2014	0.001
3	11	2014	0.000
3	12	2014	0.001
3	13	2014	0.000
3	14	2014	0.001
3	15	2014	0.002
3	16	2014	0.006
3	17	2014	0.000
3	18	2014	0.003
3	19	2014	0.373
3	20	2014	0.002
3	21	2014	0.009
3	22	2014	0.003
3	23	2014	0.117
3	24	2014	0.009
3	25	2014	0.036
3	26	2014	0.602
3	27	2014	0.003
3	28	2014	0.000
3	29	2014	0.002
3	30	2014	0.295
3	31	2014	0.017
4	1	2014	0.002
4	2	2014	0.002
4	3	2014	0.002
4	4	2014	0.002
4	5	2014	0.002
4	6	2014	0.003
4	7	2014	0.000
4	8	2014	0.256
4	9	2014	0.112

Month	Date	Year	Rain (in)
4	10	2014	0.000
4	11	2014	0.004
4	12	2014	0.001
4	13	2014	0.002
4	14	2014	0.002
4	15	2014	0.000
4	16	2014	0.001
4	17	2014	0.003
4	18	2014	0.179
4	19	2014	0.011
4	20	2014	0.011
4	21	2014	0.008
4	22	2014	0.005
4	23	2014	0.013
4	24	2014	0.008
4	25	2014	0.010
4	26	2014	0.028
4	27	2014	0.025
4	28	2014	0.027
4	29	2014	0.022
4	30	2014	0.019
5	1	2014	0.008
5	2	2014	0.013
5	3	2014	0.008
5	4	2014	0.384
5	5	2014	0.081
5	6	2014	0.043
5	7	2014	0.025
5	8	2014	0.008
5	9	2014	0.003
5	10	2014	0.004
5	11	2014	0.000
5	12	2014	0.003
5	13	2014	0.028
5	14	2014	0.032
5	15	2014	0.530
5	16	2014	0.657
5	17	2014	0.018
5	18	2014	0.005

Month	Date	Year	Rain (in)
5	19	2014	0.002
5	20	2014	0.002
5	21	2014	0.002
5	22	2014	0.003
5	23	2014	0.003
5	24	2014	0.000
5	25	2014	0.000
5	26	2014	0.000
5	27	2014	0.000
5	28	2014	0.026
5	29	2014	0.000
5	30	2014	0.004
5	31	2014	0.000
6	1	2014	0.000
6	2	2014	0.066
6	3	2014	0.457
6	4	2014	0.009
6	5	2014	0.002
6	6	2014	0.002
6	7	2014	0.000
6	8	2014	0.325
6	9	2014	0.106
6	10	2014	0.041
6	11	2014	0.083
6	12	2014	0.035
6	13	2014	0.535
6	14	2014	0.036
6	15	2014	0.120
6	16	2014	0.007
6	17	2014	0.007
6	18	2014	0.068
6	19	2014	0.044
6	20	2014	1.090
6	21	2014	0.232
6	22	2014	0.488
6	23	2014	0.255
6	24	2014	0.065
6	25	2014	0.045
6	26	2014	0.030

Month	Date	Year	Rain (in)
6	27	2014	0.000
6	28	2014	0.000
6	29	2014	0.000
6	30	2014	0.229
7	1	2014	1.622
7	2	2014	0.000
7	3	2014	0.000
7	4	2014	0.001
7	5	2014	0.003
7	6	2014	0.001
7	7	2014	0.000
7 7 7	8	2014	0.796
	9	2014	0.001
7	10	2014	0.567
7	11	2014	0.051
7	12	2014	0.028
7	13	2014	0.134
7	14	2014	0.170
7	15	2014	0.192
7	16	2014	0.297
7	17	2014	0.002
7	18	2014	0.000
7	19	2014	1.270
7	20	2014	0.003
7	21	2014	0.000
7	22	2014	0.038
7	23	2014	1.101
7	24	2014	0.002
7	25	2014	0.110
7	26	2014	0.038
7	27	2014	0.000
7	28	2014	0.000
7	29	2014	0.000
7	30	2014	0.000
7	31	2014	0.003
8	1	2014	0.000
8	2	2014	0.000
8	3	2014	0.000
8	4	2014	0.000

Month	Date	Year	Rain (in)
8	5	2014	0.000
8	6	2014	0.000
8	7	2014	0.000
8	8	2014	0.000
8	9	2014	0.000
8	10	2014	0.005
8	11	2014	0.001
8	12	2014	0.000
8	13	2014	0.008
8	14	2014	0.002
8	15	2014	0.501
8	16	2014	0.000
8	17	2014	0.002
8	18	2014	0.001
8	19	2014	0.000
8	20	2014	0.000
8	21	2014	0.003
8	22	2014	0.001
8	23	2014	0.001
8	24	2014	0.027
8	25	2014	0.000
8	26	2014	0.415
8	27	2014	0.019
8	28	2014	0.000
8	29	2014	0.968
8	30	2014	0.003
8	31	2014	0.032
9	1	2014	0.019
9	2	2014	0.092
9	3	2014	0.039
9	4	2014	0.009
9	5	2014	0.001
9	6	2014	0.000
9	7	2014	0.049
9	8	2014	0.209
9	9	2014	0.180
9	10	2014	0.008
9	11	2014	1.103
9	12	2014	0.378

Month	Date	Year	Rain (in)
9	13	2014	0.229
9	14	2014	0.629
9	15	2014	0.000
9	16	2014	0.011
9	17	2014	0.006
9	18	2014	0.143
9	19	2014	0.075
9	20	2014	0.447
9	21	2014	0.002
9	22	2014	0.038
9	23	2014	0.075
9	24	2014	0.806
9	25	2014	0.065
9	26	2014	0.042
9	27	2014	0.412
9	28	2014	0.123
9	29	2014	0.402
9	30	2014	0.060
10	1	2014	0.107
10	2	2014	0.078
10	3	2014	0.572
10	4	2014	0.021
10	5	2014	0.031
10	6	2014	0.004
10	7	2014	0.002
10	8	2014	0.031
10	9	2014	0.003
10	10	2014	0.032
10	11	2014	0.009
10	12	2014	0.032
10	13	2014	0.001
10	14	2014	0.010
10	15	2014	0.014
10	16	2014	0.904
10	17	2014	0.000
10	18	2014	0.009
10	19	2014	0.003
10	29	2014	0.243
10	30	2014	0.000

Month	Date	Year	Rain (in)
10	31	2014	0.000
11	1	2014	0.001
11	2	2014	0.000
11	3	2014	0.000
11	4	2014	0.000
11	5	2014	0.000
11	6	2014	0.004
11	7	2014	0.068
11	8	2014	0.000
11	9	2014	0.000
11	10	2014	0.150
11	11	2014	0.142
11	12	2014	0.000
11	13	2014	0.046
11	14	2014	0.000
11	15	2014	0.001
11	16	2014	0.000
11	17	2014	0.000
11	18	2014	0.033
11	19	2014	0.000
11	20	2014	0.011
11	21	2014	0.000
11	22	2014	0.188
11	23	2014	0.045
11	24	2014	0.002
11	25	2014	0.000
11	26	2014	0.000
11	27	2014	0.000
11	28	2014	0.000
11	29	2014	0.000
11	30	2014	0.000
12	1	2014	0.000
12	2	2014	0.001
12	3	2014	0.001
12	4	2014	0.298
12	5	2014	0.005
12	6	2014	0.001
12	7	2014	0.000
12	8	2014	0.000

Month	Date	Year	Rain (in)
12	9	2014	0.000
12	10	2014	0.000
12	11	2014	0.000
12	12	2014	0.000
12	13	2014	0.000
12	14	2014	0.000
12	15	2014	0.000
12	16	2014	0.000
12	17	2014	0.000
12	18	2014	0.000
12	19	2014	0.000
12	20	2014	0.000
12	21	2014	0.000
12	22	2014	0.000
12	23	2014	0.000
12	24	2014	0.000
12	25	2014	0.201
12	26	2014	2.037
12	27	2014	0.000
12	28	2014	0.000
12	29	2014	0.000
12	30	2014	0.022
12	31	2014	0.000
1	1	2015	0.001
1	2	2015	0.000
1	3	2015	0.002
1	4	2015	0.000
1	5	2015	0.000
1	6	2015	0.198
1	7	2015	0.000
1	8	2015	0.000
1	9	2015	0.000
1	10	2015	0.007
1	11	2015	0.000
1	12	2015	0.001
1	13	2015	0.027
1	14	2015	1.702
1	15	2015	0.000
1	16	2015	0.000

Month	Date	Year	Rain (in)
1	17	2015	0.000
1	18	2015	0.017
1	19	2015	0.000
1	20	2015	0.000
1	21	2015	0.002
1	22	2015	0.090
1	23	2015	0.000
1	24	2015	0.000
1	25	2015	0.013
1	26	2015	0.000
1	27	2015	0.046
1	28	2015	0.000
1	29	2015	0.002
1	30	2015	0.000
1	31	2015	0.000
2	1	2015	0.001
2	2	2015	0.000
2	3	2015	0.015
2	4	2015	0.072
2	5	2015	0.029
2	6	2015	0.352
2	7	2015	0.004
2	8	2015	0.000
2	9	2015	0.000
2 2	10	2015	0.254
2	11	2015	0.002
2	12	2015	0.000
2	13	2015	0.000
2	14	2015	0.000
2	15	2015	0.000
2 2	16	2015	0.000
2 2	17	2015	0.000
	18	2015	0.011
2	19	2015	1.306
2	20	2015	0.000
2	21	2015	0.000
2	22	2015	0.010
2	23	2015	0.123
2	24	2015	0.002

Month	Date	Year	Rain (in)
2	25	2015	0.000
2 2 2	26	2015	0.000
2	27	2015	0.000
	28	2015	0.000
3	1	2015	0.265
2 3 3	2	2015	0.000
3	3	2015	0.000
3	4	2015	0.000
3	5	2015	0.000
3	6	2015	0.000
3 3	7	2015	0.000
3	8	2015	0.575
3	9	2015	0.074
3	10	2015	0.065
3	11	2015	0.001
3	12	2015	0.000
3	13	2015	0.407
3 3	14	2015	0.000
3	15	2015	0.000
3	16	2015	0.010
3	17	2015	0.000
3	18	2015	1.630
3	19	2015	0.000
3	20	2015	0.003
3	21	2015	0.000
	22	2015	0.001
3	23	2015	0.000
3	24	2015	0.001
3	25	2015	0.096
3	26	2015	0.000
3	27	2015	0.005
3	28	2015	0.986
3	29	2015	0.000
3	30	2015	0.000
3	31	2015	0.001
4	1	2015	0.000
4	2	2015	0.001
4	3	2015	0.002
4	4	2015	0.002

Month	Date	Year	Rain (in)
4	5	2015	0.000
4	6	2015	0.001
4	7	2015	0.000
4	8	2015	0.000
4	9	2015	0.000
4	10	2015	0.002
4	11	2015	0.000
4	12	2015	0.000
4	13	2015	0.000
4	14	2015	0.009
4	15	2015	0.012
4	16	2015	0.002
4	17	2015	0.000
4	18	2015	0.002
4	19	2015	0.001
4	20	2015	0.000
4	21	2015	0.000
4	22	2015	0.514
4	23	2015	0.044
4	24	2015	0.088
4	25	2015	0.121
4	26	2015	0.002
4	27	2015	0.017
4	28	2015	0.079
4	29	2015	0.372
4	30	2015	6.684
5	1	2015	0.006
5	2	2015	0.015
5	3	2015	0.020
5 5	4	2015	0.003
5	5	2015	0.023
5 5	6	2015	1.095
5	7	2015	0.030
5	8	2015	0.028
5	9	2015	0.052
5	10	2015	0.025
5	11	2015	0.005
5	12	2015	0.006
5	13	2015	0.002

Month	Date	Year	Rain (in)
5	14	2015	0.027
5	15	2015	0.090
5	16	2015	0.000
5	17	2015	0.046
5	18	2015	0.016
5	19	2015	0.011
5	20	2015	0.032
5	21	2015	0.039
5	22	2015	0.120

Month	Date	Year	Rain (in)
5	23	2015	0.069
5	24	2015	0.183
5	25	2015	0.006
5	26	2015	0.002
5	27	2015	0.001
5	28	2015	0.003
5	29	2015	0.000
5	30	2015	0.000
5	31	2015	0.150

Table 2.4-3. Post-Uprate Monthly Rainfall Totals TPM-1 (based on daily rainfall totals).

Post-Uprate										
	4	June 2014 - May 2015								
Month	# of Rain Days ¹ Inches)		# of Rain Days Greater than 1 Inch ¹	Month	# of Rain Days ²	Amount (inches) ²	# of Rain Days Greater than 1 Inch ²			
13-Jun	10	3.23	1	14-Jun	25	4.38	1			
13-Jul	18	10.62	3	14-Jul	22	6.43	3			
13-Aug	15	6.39	2	14-Aug	16	1.99	0			
13-Sep	16	6.94	2	14-Sep	28	5.65	1			
13-Oct	11	3.36	1	14-Oct	19	2.11	0			
13-Nov	11	7.44	2	14-Nov	12	0.69	0			
13-Dec	13	2.93	1	14-Dec	8	2.57	1			
14-Jan	12	2.45	0	15-Jan	13	2.11	1			
14-Feb	7	1.61	0	15-Feb	13	2.18	1			
14-Mar	17	2.10	0	15-Mar	15	4.12	1			
14-Apr	19	0.76	0	15-Apr	19	7.96	1			
14-May	19	1.89	0	15-May	28	2.11	1			
TOTALS	168	49.73	12	TOTALS	218	42.28	11			

Notes:

 $^{^{\}rm 1}$ Rainfall data was missing from 6/11/2013 through 6/26/2013 as a result of the unit repair.

 $^{^2}$ Rainfall data was missing from 7/30/2014 through 8/8/2014 as a result of the unit repair.

Table 2.4-4. Monthly Rainfall in and around the CCS (in inches).

				S-20	Homestead		7.				S-20	Homestead	
	NEXRAD ¹	TDM_1 ^{2,3}	LU-South	Gauge	Air Force	LU		NEXRAD ¹	TDM_1 ^{2,3}	LU-South	Gauge	Air Force	LU
Month	(inches)	(inches)	(inches)	(inches)	(inches)	(inches)	Month	(inches)	(inches)	(inches)	(inches)	(inches)	(inches)
Aug-10	NA	8.95	NA	8.76	6.94	NA	Jan-13	0.18	0.31	0.52	0.41	0.26	0.52
Sep-10	13.15	13.49	NA	15.70	11.67	NA	Feb-13	0.85	1.23	1.42	1.15	0.96	1.42
Oct-10	2.40	2.32	NA	2.77	2.62	NA	Mar-13	0.93	1.26	1.06	1.25	2.16	1.06
Nov-10	4.39	5.50	6.12	3.11	3.37	6.12	Apr-13	3.89	5.37	4.84	6.38	5.92	4.84
Dec-10	0.69	0.54	1.00	0.72	0.47	1.00	May-13	8.59	12.52	7.68	14.54	15.60	7.68
Jan-11	3.32	3.53	2.81	4.57	4.03	2.81	Jun-13	3.15	3.23	4.05	5.06	6.63	4.69
Feb-11	0.10	0.24	0.11	0.08	0.12	0.11	Jul-13	8.31	10.62	8.61	8.60	10.27	7.80
Mar-11	1.24	1.64	1.13	1.19	1.23	1.13	Aug-13	4.47	6.39	6.40	3.07	1.88	5.64
Apr-11	1.65	1.85	0.06	0.92	1.09	0.06	Sep-13	4.41	6.94	5.74	4.68	6.31	6.56
May-11	1.13	2.40	0.37	1.23	1.12	0.37	Oct-13	1.28	3.36	2.47	1.32	1.09	2.28
Jun-11	1.35	2.93	0.42	2.17	2.67	0.42	Nov-13	5.42	7.44	5.71	4.81	3.67	5.28
Jul-11	7.68	10.64	8.47	5.87	5.59	8.47	Dec-13	0.78	2.93	2.58	2.97	2.50	2.54
Aug-11	6.52	9.24	6.32	3.04	9.55	6.32	Jan-14	1.47	2.45	1.87	3.00	3.28	2.16
Sep-11	6.19	6.93	4.95	8.6	4.66	4.95	Feb-14	1.67	1.61	1.82	2.58	2.25	1.82
Oct-11	8.84	13.25	14.5	7.78	12.27	14.50	Mar-14	1.18	2.10	1.42	1.75	1.65	1.66
Nov-11	0.23	0.32	0.61	1.12	0.74	0.61	Apr-14	0.40	0.76	0.99	0.31	0.35	0.29
Dec-11	0.33	0.56	1.32	0.43	0.28	1.32	May-14	1.30	1.89	1.75	2.00	1.90	1.34
Jan-12	0.45	1.45	0.92	0.30	0.06	0.92	Jun-14	4.42	4.38	7.14	5.85	9.63	4.42
Feb-12	5.60	5.94	5.42	5.82	6.37	5.42	Jul-14	11.39	6.43	10.76	6.40	6.94	11.39
Mar-12	0.45	0.98	1.25	2.18	2.57	1.25	Aug-14	3.17	1.99	4.24	3.60	2.95	3.17
Apr-12	8.45	12.49	11.69	7.07	10.64	11.69	Sep-14	5.21	5.65	5.89	4.00	6.19	5.21
May-12	7.26	9.41	4.39	9.90	9.85	4.39	Oct-14	8.89	2.11	8.33	6.96	4.63	8.89
Jun-12	5.21	8.90	NA	6	10.73	NA	Nov-14	0.68	0.69	0.68	2.75	2.05	0.89
Jul-12	5.14	8.74	9.35	13.17	11.38	9.35	Dec-14	1.72	2.57	3.04	1.68	2.83	1.72
Aug-12	6.94	12.53	9.21	9.27	15.86	9.21	Jan-15	1.68	2.11	1.77	2.18	1.31	1.68
Sep-12	5.00	6.98	8.95	12.18	9.43	8.95	Feb-15	1.57	2.18	1.85	1.59	1.87	1.57
Oct-12	2.44	4.87	3.63	4.44	5.88	3.63	Mar-15	1.09	4.12	1.79	1.41	1.79	1.09
Nov-12	0.27	1.32	0.69	0.81	1.65	0.69	Apr-15	4.80	7.96	8.88	4.09	4.09	4.80
Dec-12	0.32	0.64	0.46	0.55	0.63	0.46	May-15	0.62	2.11	1.79	0.67	0.35	0.62

Notes:

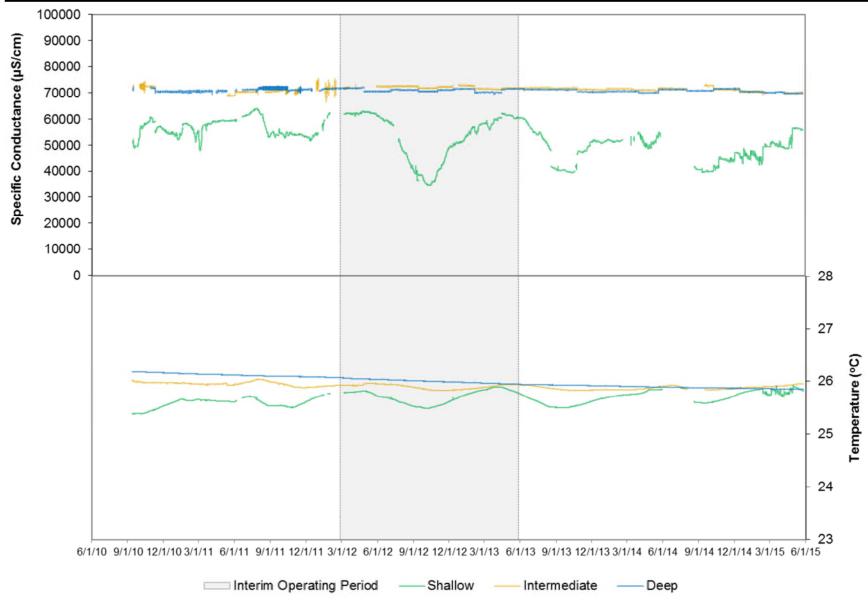
¹ NEXRAD data, averaged over the whole CCS, provided by SFWMD.

² Rainfall meter was only recording the last 15-minutes of data for each hour of 4/9/2013 15:00 through 6/17/2015 13:00, so rainfall data are underreported for this period.

³ Data were missing from 6/11/2013 - 6/26/2013, and from 7/30/14 - 8/8/14 as a result of unit repair.

FIGURES

Land-based station.


Typical control panel and telemetry system.

Typical automated probe and cable.

Biscayne Bay groundwater station.

Figure 2.1-1. Automated Groundwater Stations.

2-51

Figure 2.1-2. TPGW-1 Specific Conductance and Temperature.

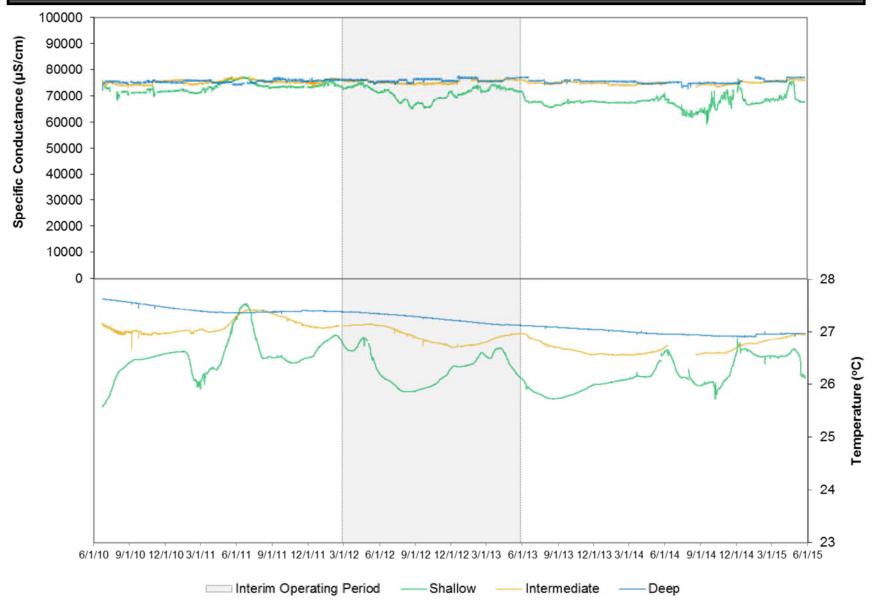


Figure 2.1-3. TPGW-2 Specific Conductance and Temperature.

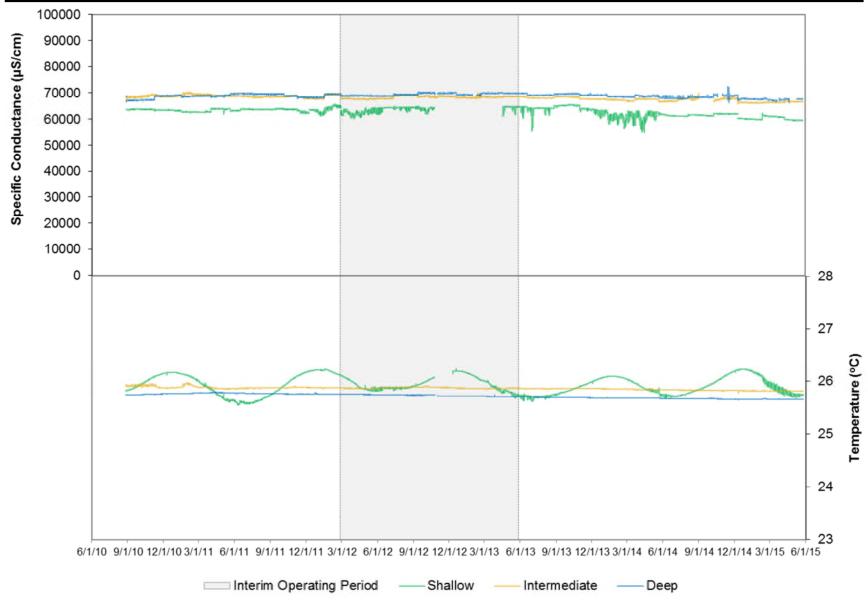


Figure 2.1-4. TPGW-3 Specific Conductance and Temperature.

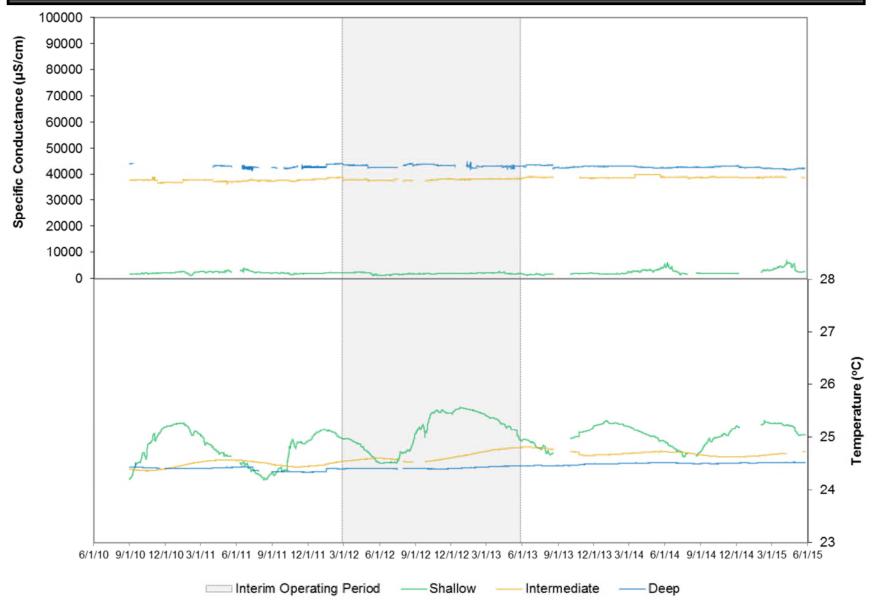


Figure 2.1-5. TPGW-4 Specific Conductance and Temperature.

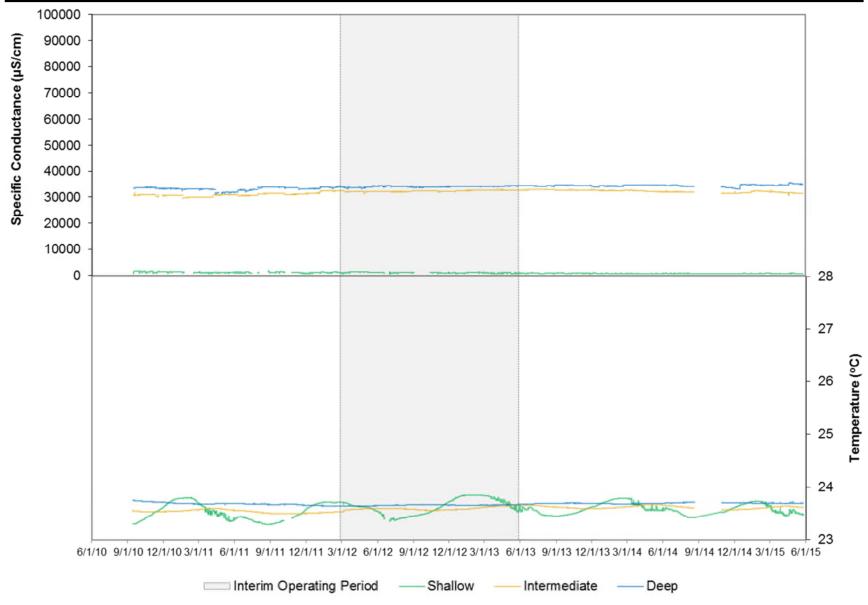


Figure 2.1-6. TPGW-5 Specific Conductance and Temperature.

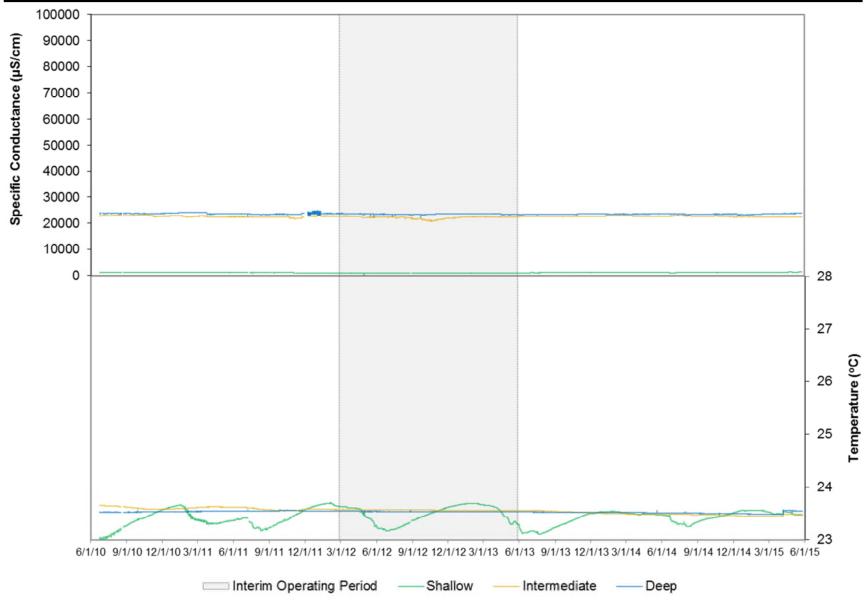


Figure 2.1-7. TPGW-6 Specific Conductance and Temperature.

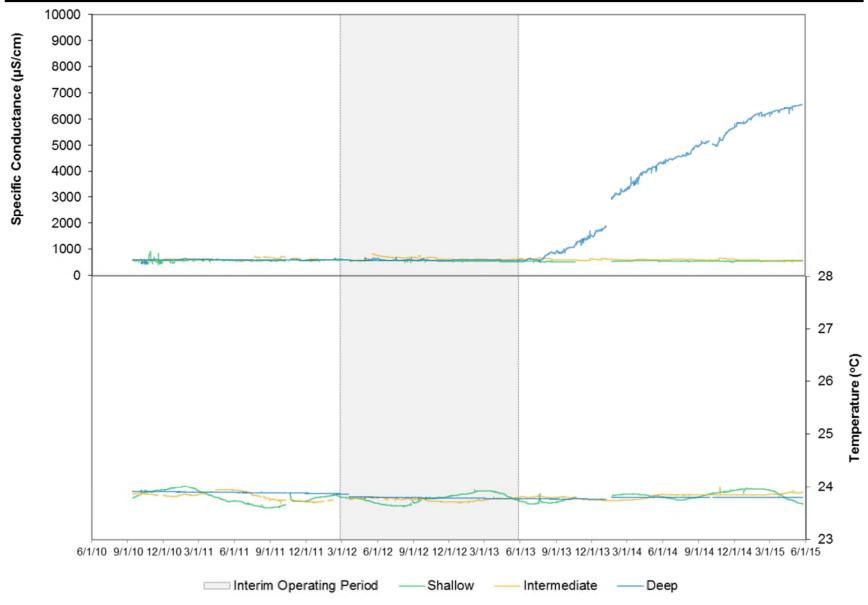


Figure 2.1-8. TPGW-7 Specific Conductance and Temperature.

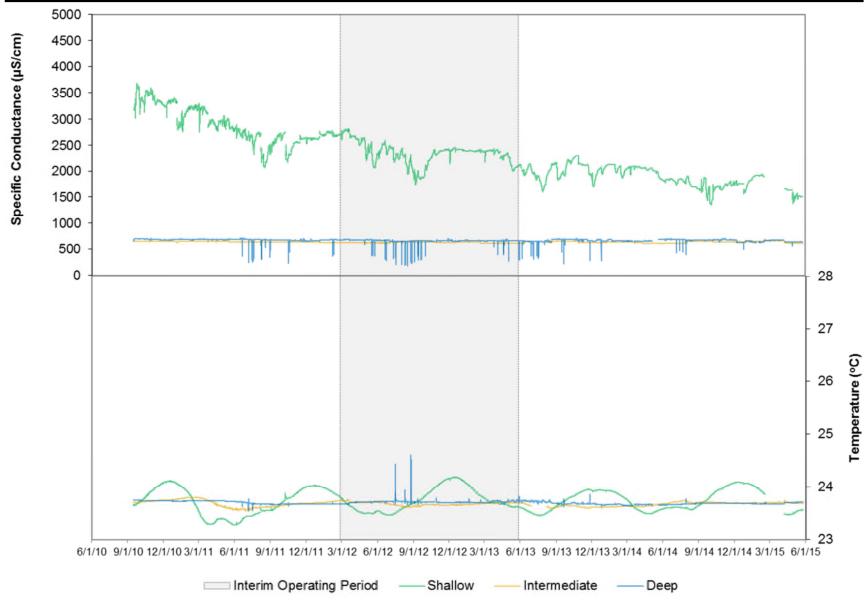


Figure 2.1-9. TPGW-8 Specific Conductance and Temperature.

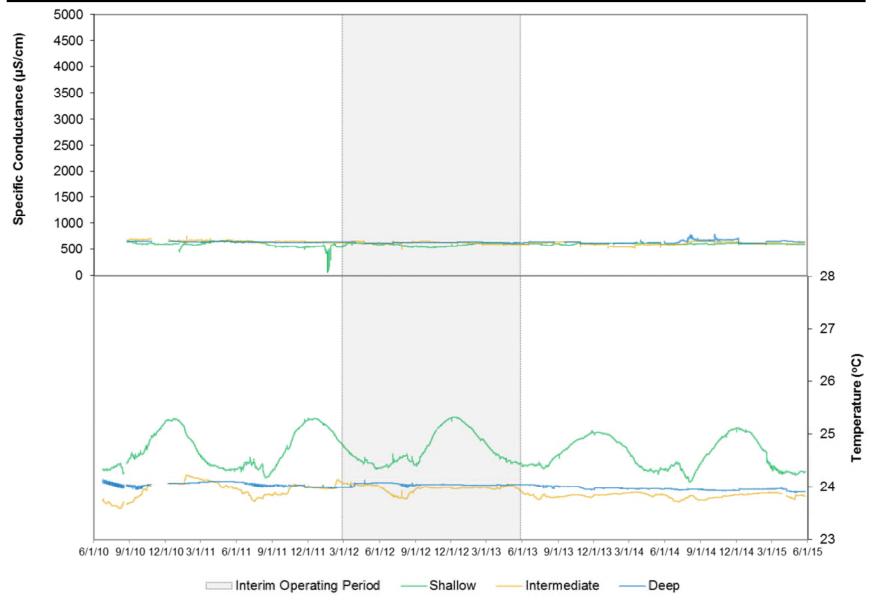


Figure 2.1-10. TPGW-9 Specific Conductance and Temperature.

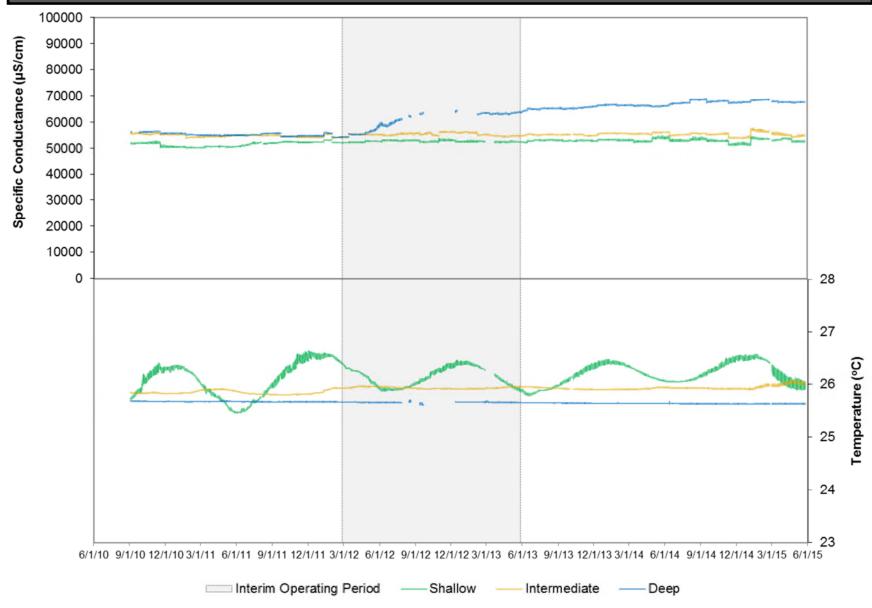


Figure 2.1-11. TPGW-10 Specific Conductance and Temperature.

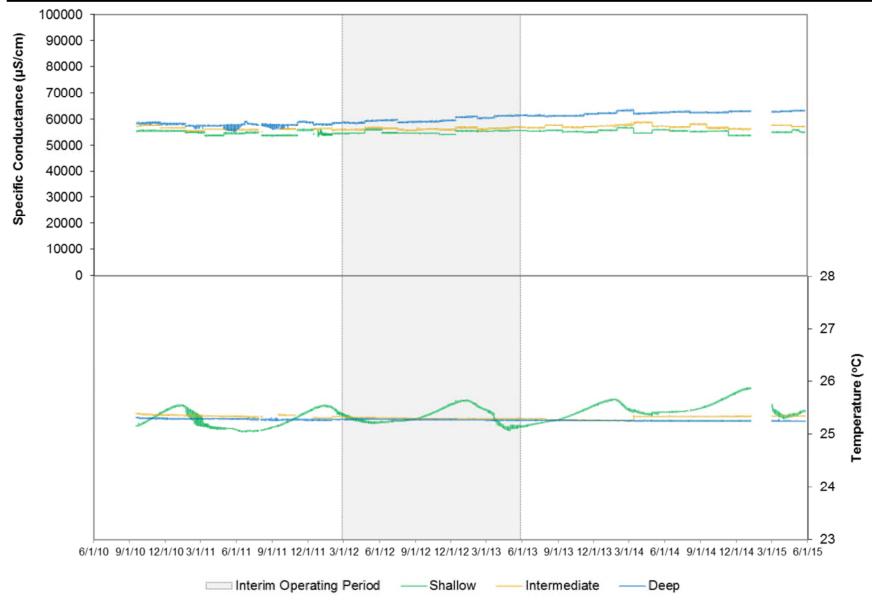


Figure 2.1-12. TPGW-11 Specific Conductance and Temperature.

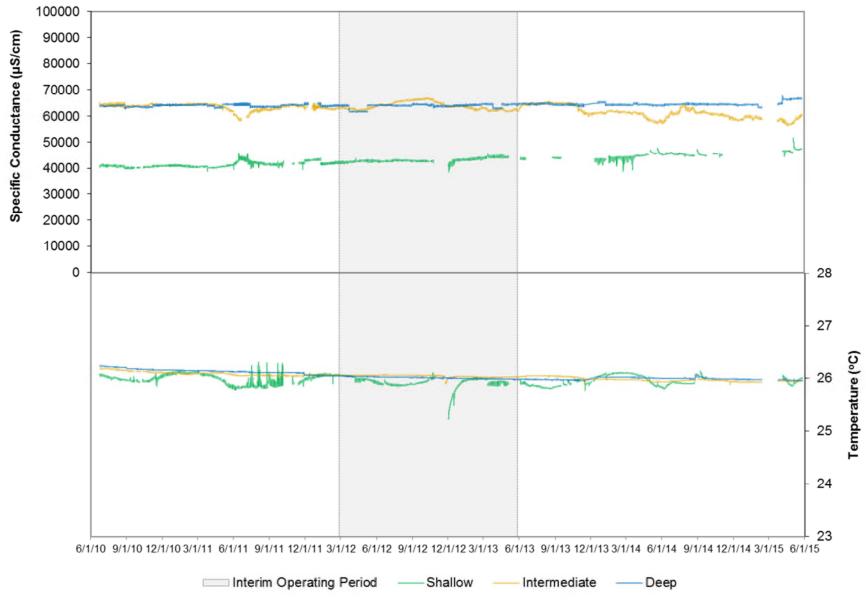


Figure 2.1-13. TPGW-12 Specific Conductance and Temperature.

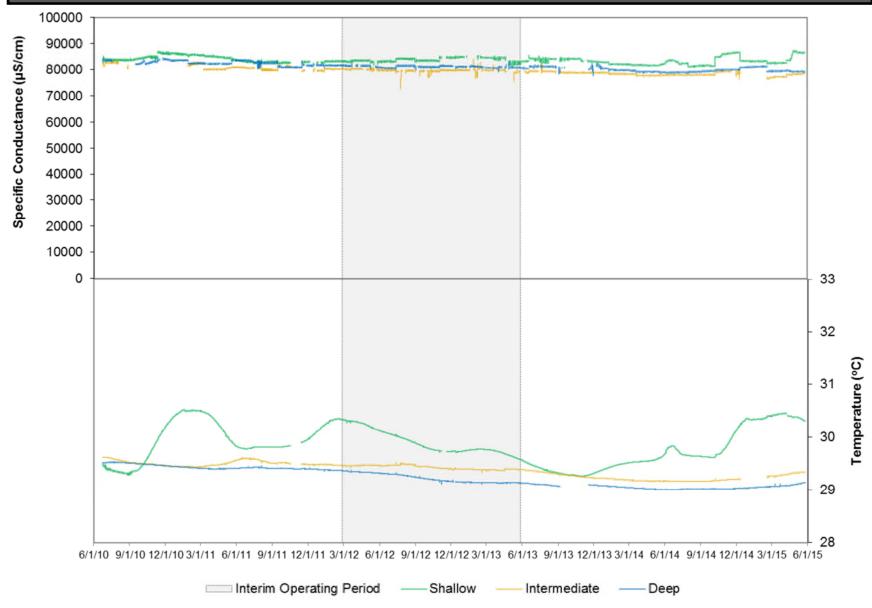


Figure 2.1-14. TPGW-13 Specific Conductance and Temperature.

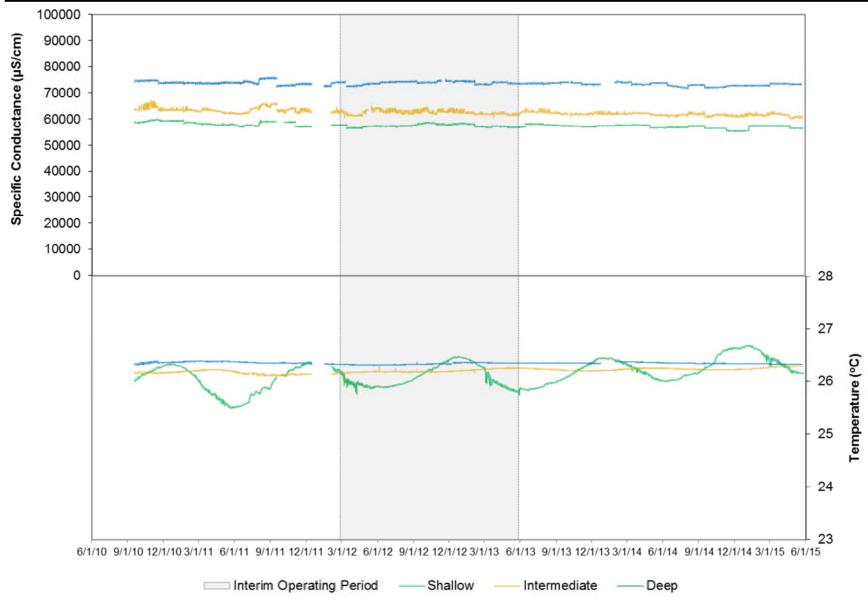


Figure 2.1-15. TPGW-14 Specific Conductance and Temperature.

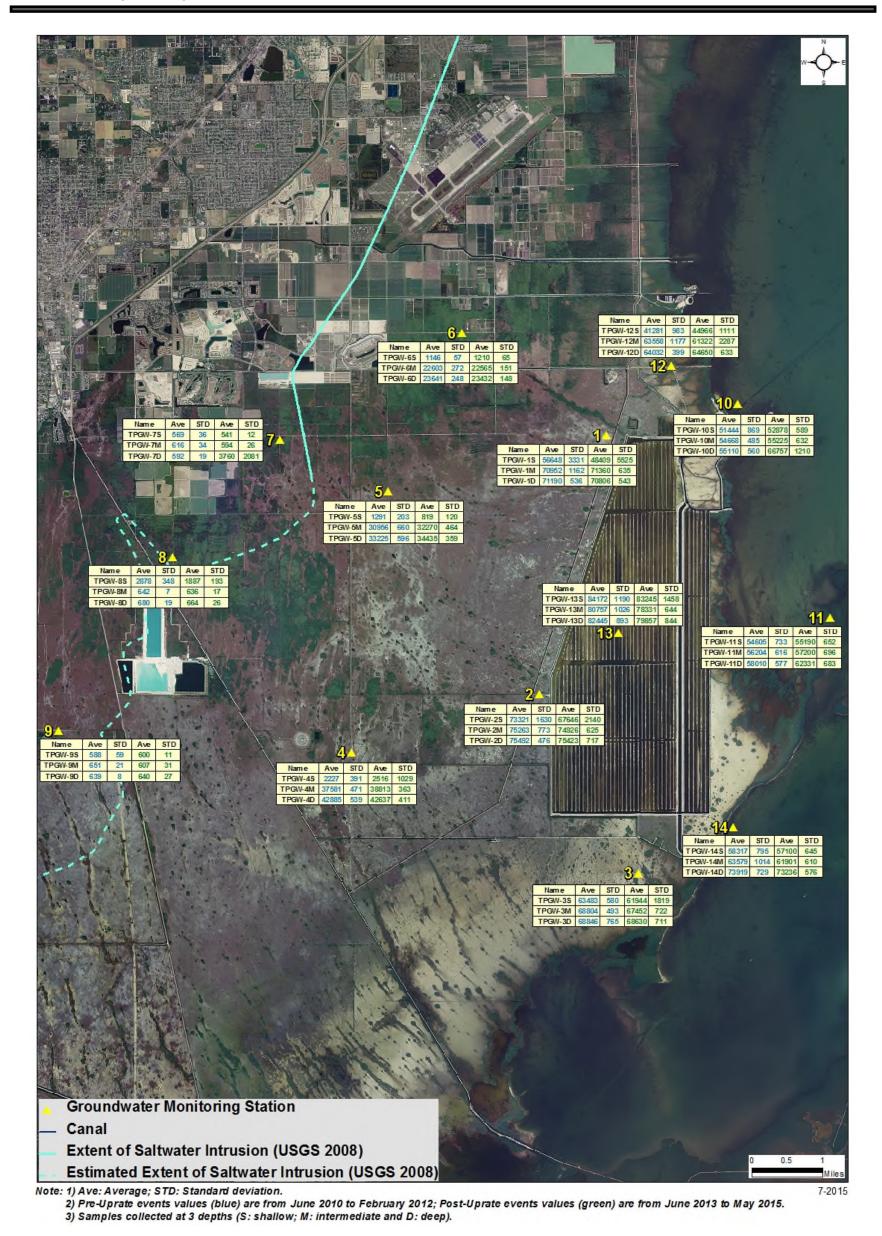


Figure 2.1-16. Average and Standard Deviation of Specific Conductance Values (µS/cm) for Groundwater Stations Pre- and Post-Uprate.

3) Samples collected at 3 depths (S: shallow; M: intermediate and D: deep).

Figure 2.1-17. Average and Standard Deviation of Temperature (°C) for Groundwater Stations Pre- and Post-Uprate.

Figure 2.1-18. Average and Standard Deviation of Salinity (PSS-78) for Groundwater Stations Pre- and Post-Uprate.

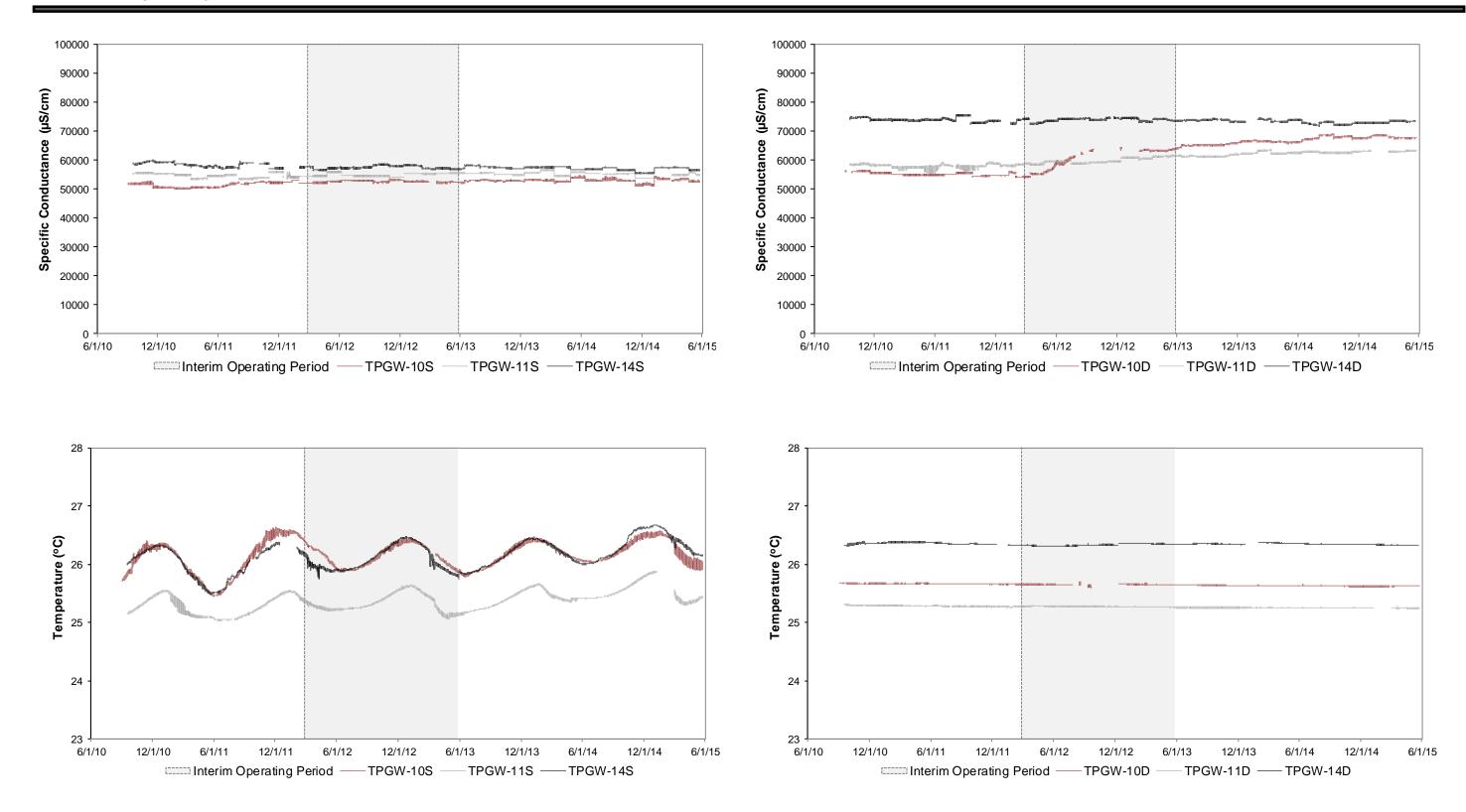


Figure 2.1-19. Comparison of Specific Conductance and Temperature in Biscayne Bay Shallow and Deep Wells TPGW-10, TPGW-11, and TPGW-14.

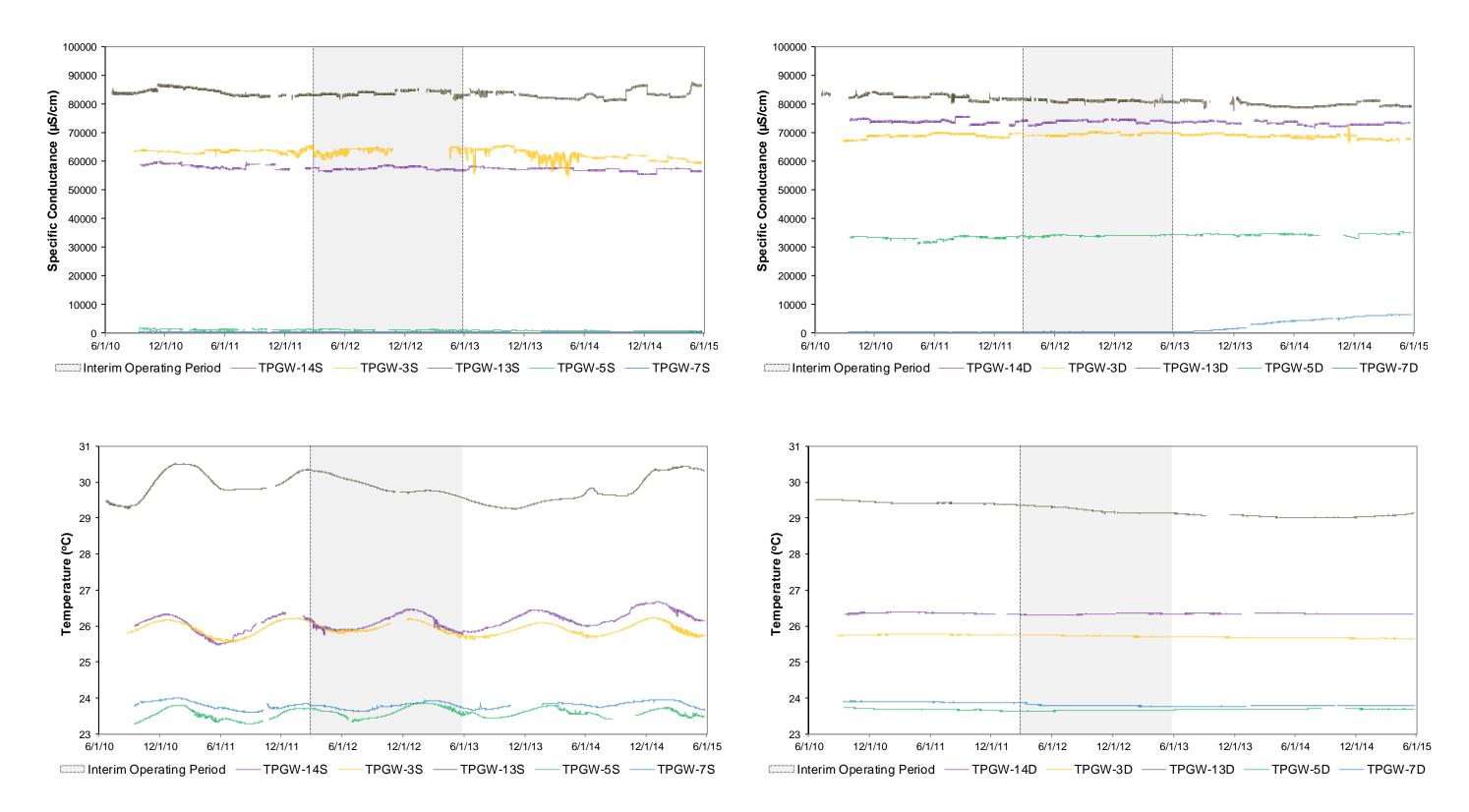


Figure 2.1-20. Comparison of Specific Conductance and Temperature across the Landscape in Shallow and Deep Wells TPGW-14, TPGW-3, TPGW-13, TPGW-5, and TPGW 7.

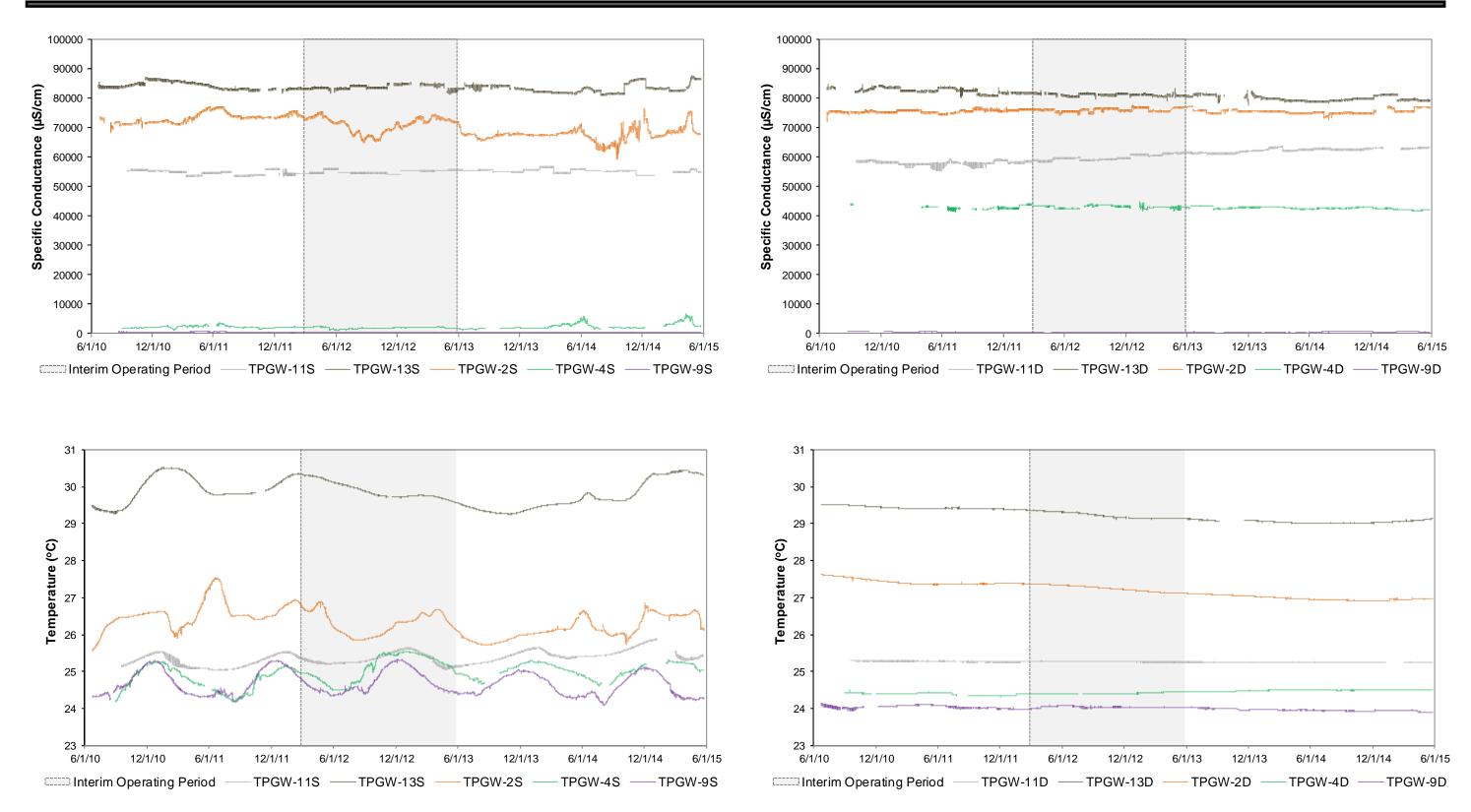


Figure 2.1-21. Comparison of Specific Conductance and Temperature across the Landscape in Shallow and Deep Wells TPGW-11, TPGW-13, TPGW-2, TPGW-4, and TPGW-9.

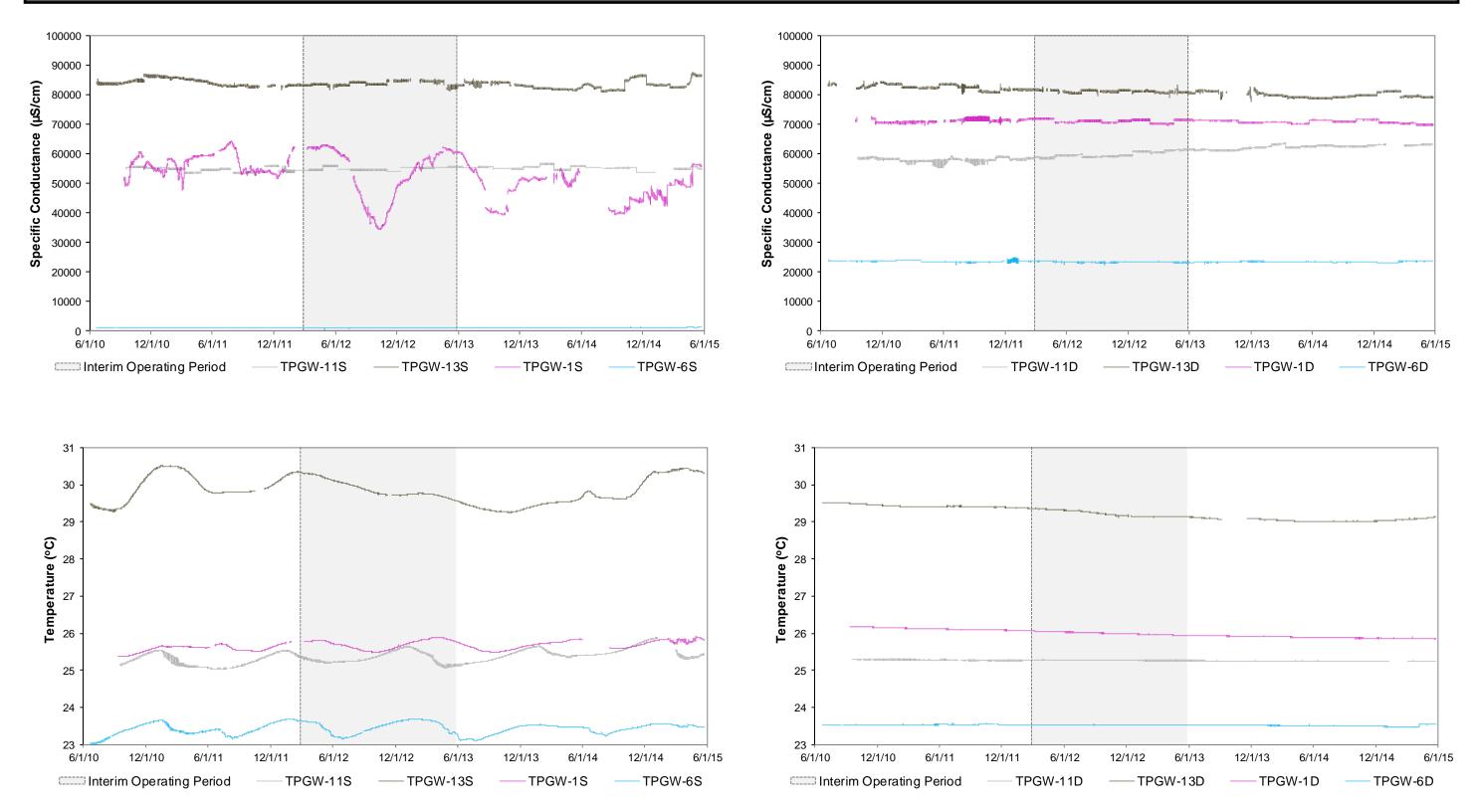


Figure 2.1-22. Comparison of Specific Conductance and Temperature across the Landscape in Shallow and Deep Wells TPGW-11, TPGW-13, TPGW-1, and TPGW-6.

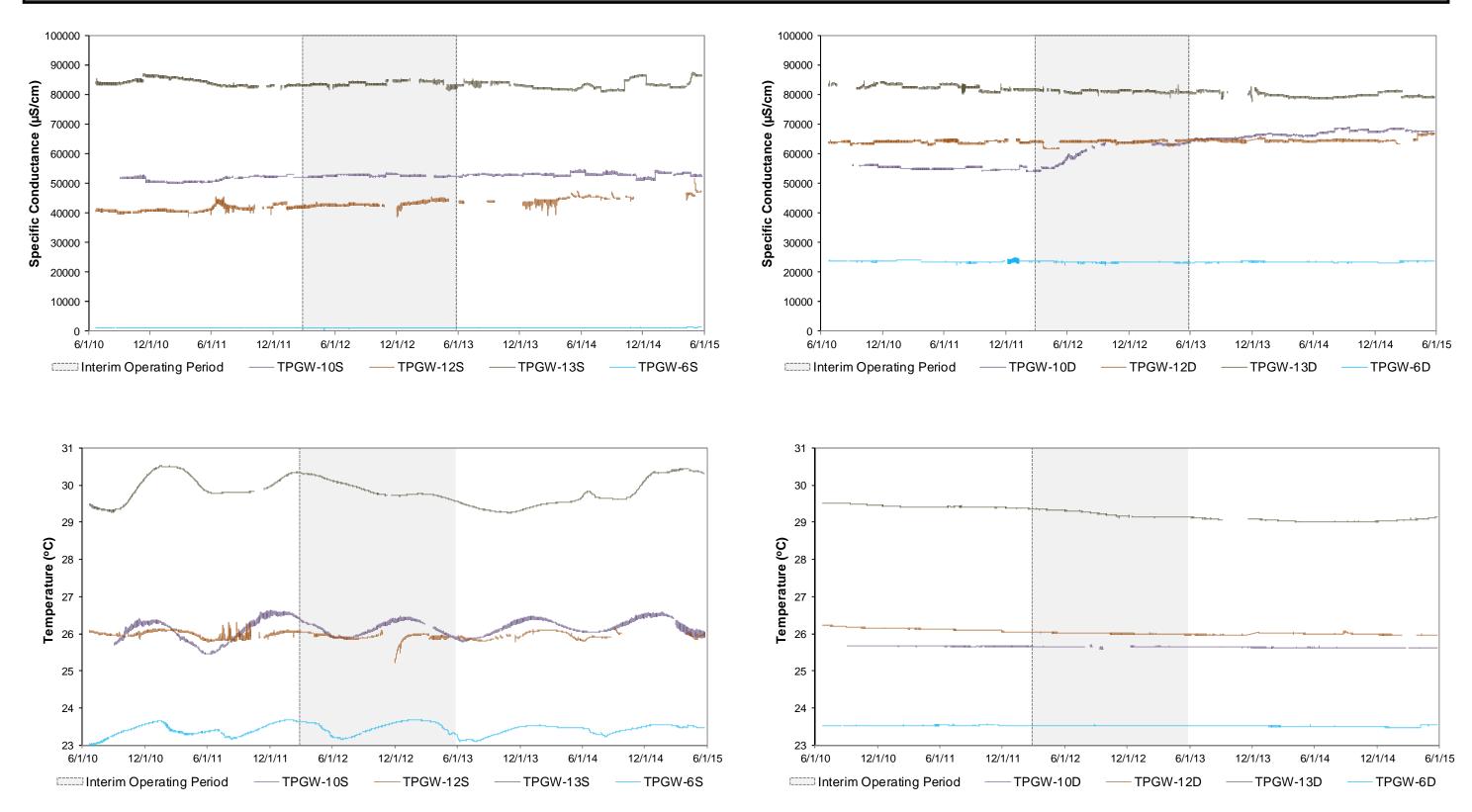


Figure 2.1-23. Comparison of Specific Conductance and Temperature across the Landscape in Shallow and Deep Wells TPGW-10, TPGW-12, TPGW-13, and TPGW-6.

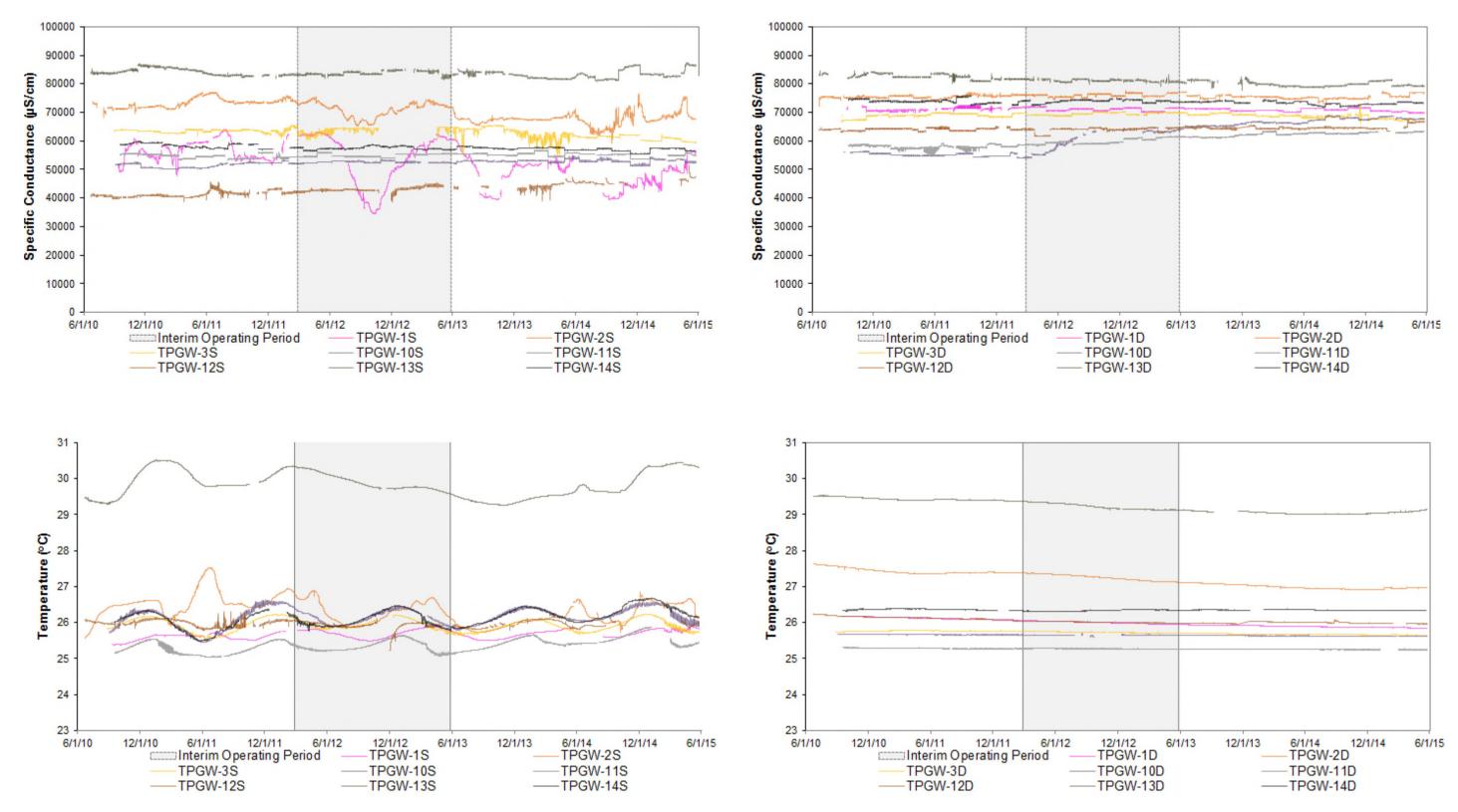


Figure 2.1-24. Comparison of Specific Conductance and Temperature across the Landscape in Shallow and Deep Wells Close to the CCS - TPGW-1, TPGW-2, TPGW-3, TPGW 10, TPGW-11, TPGW-12, TPGW-13, and TPGW-14.

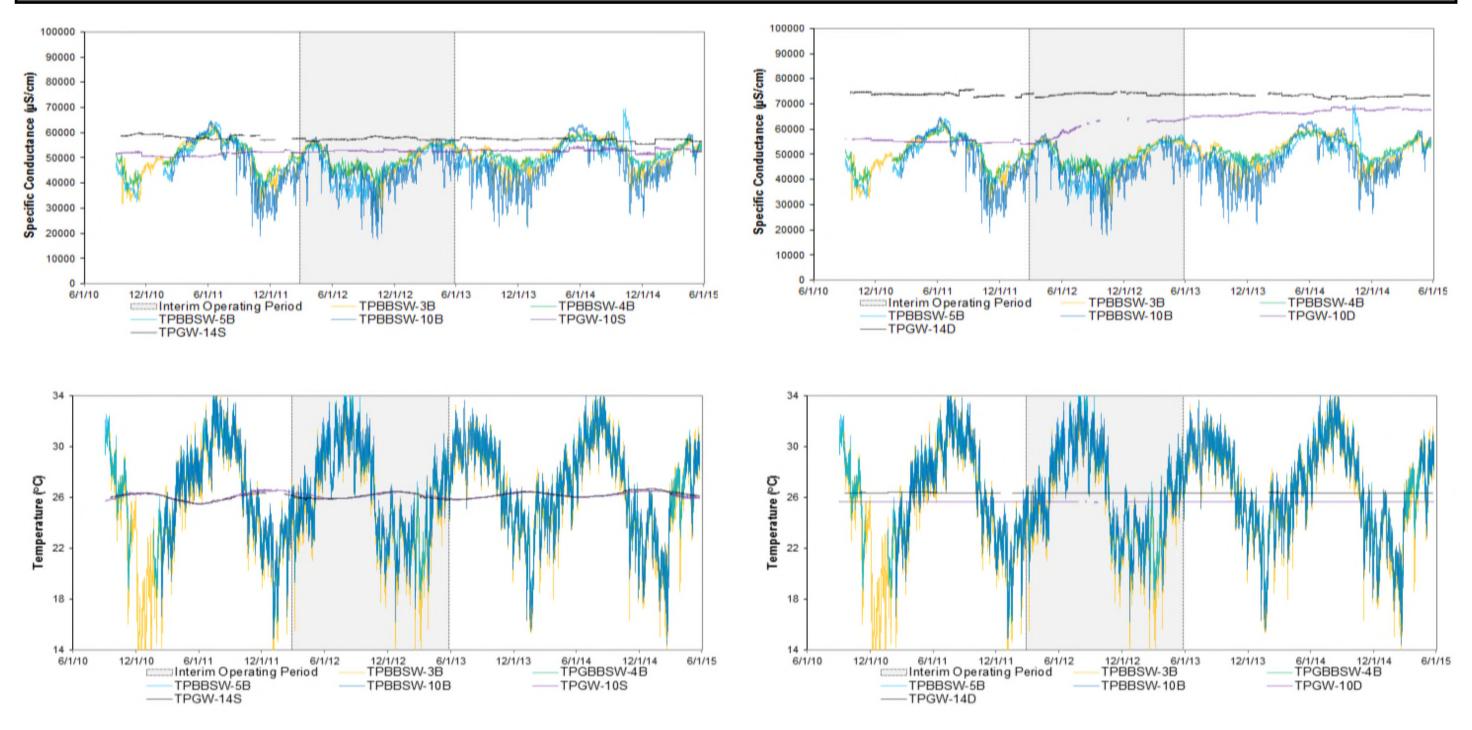
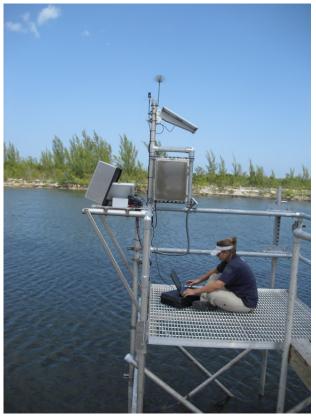



Figure 2.1-25. Comparison of Specific Conductance and Temperature in Biscayne Bay Surface Water and Biscayne Bay Shallow and Deep Wells TPGW-10 and TPGW-14.

Typical automated station in the CCS.

Close-up photo of automated station panel.

Top view of probes in stilling well.

Biscayne Bay non-telemetry setup.

Figure 2.2-1. Automated Surface Water Stations.

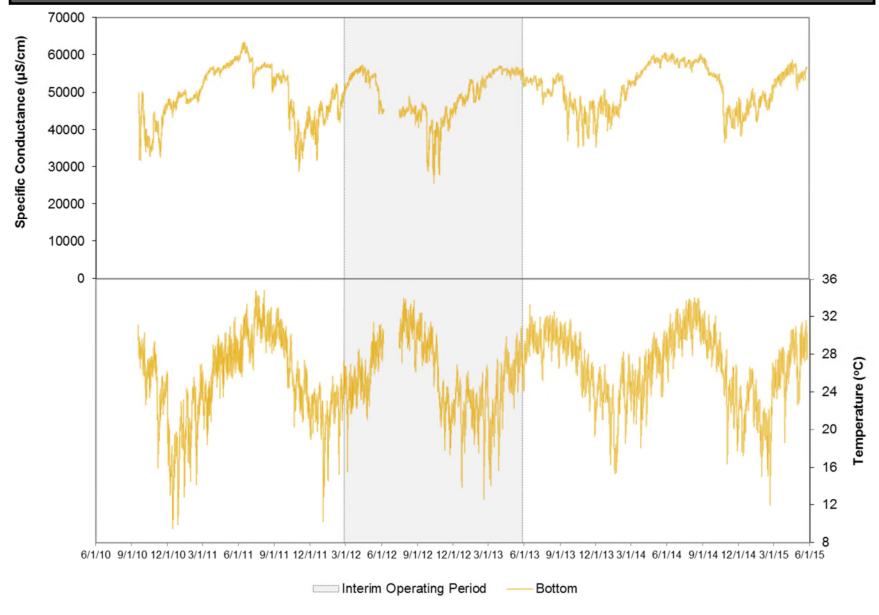


Figure 2.2-2. TPBBSW-3 Specific Conductance and Temperature.

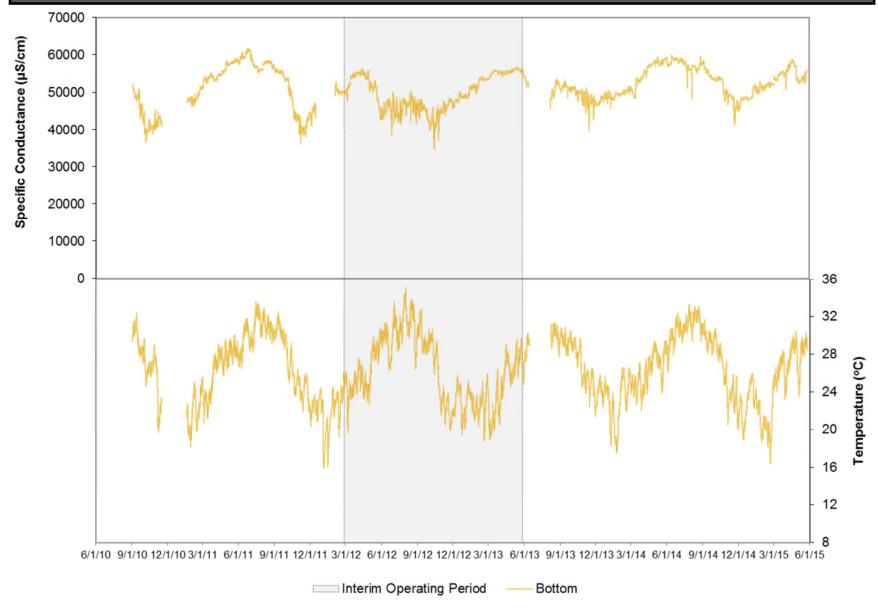


Figure 2.2-3. TPBBSW-4 Specific Conductance and Temperature.

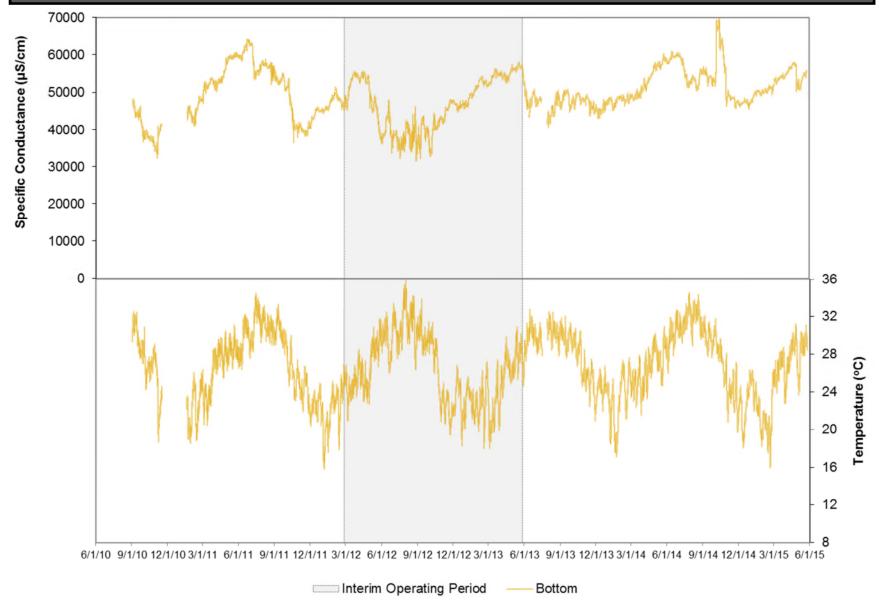


Figure 2.2-4. TPBBSW-5 Specific Conductance and Temperature.

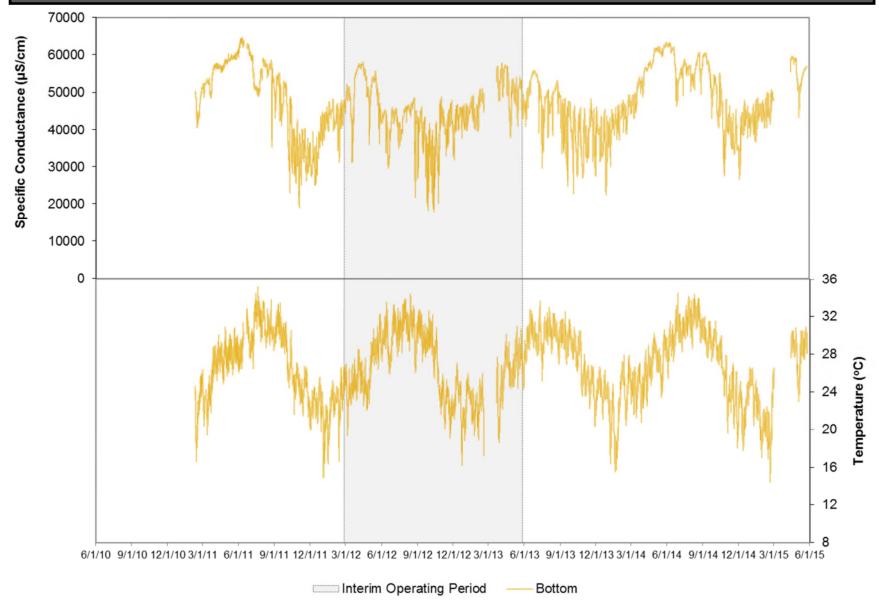


Figure 2.2-5. TPBBSW-10 Specific Conductance and Temperature.

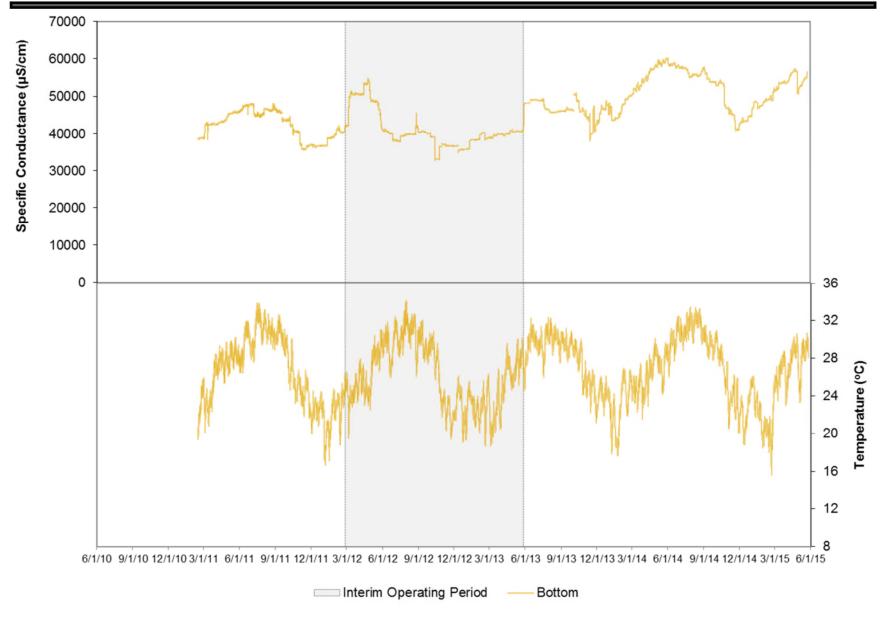


Figure 2.2-6. TPBBSW-14 Specific Conductance and Temperature.

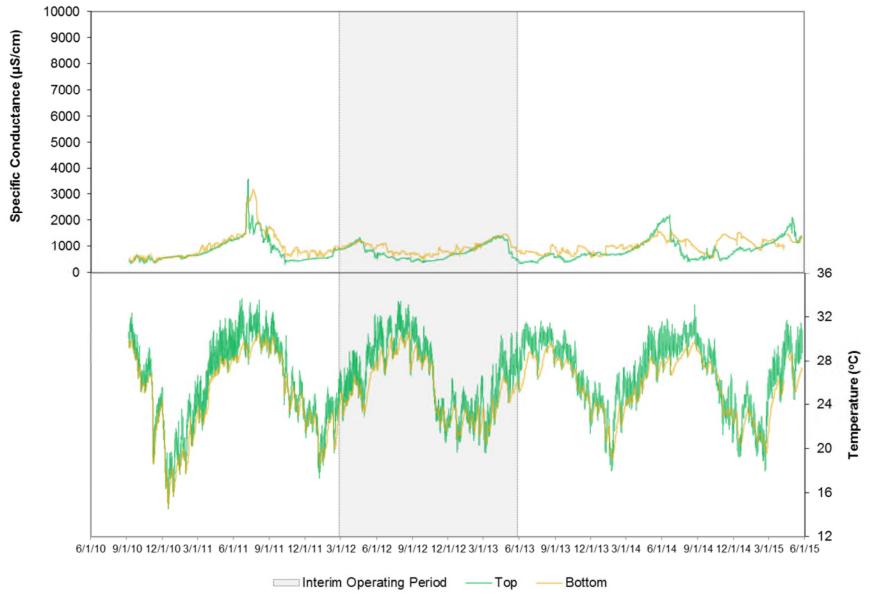


Figure 2.2-7. TPSWC-1 Specific Conductance and Temperature.

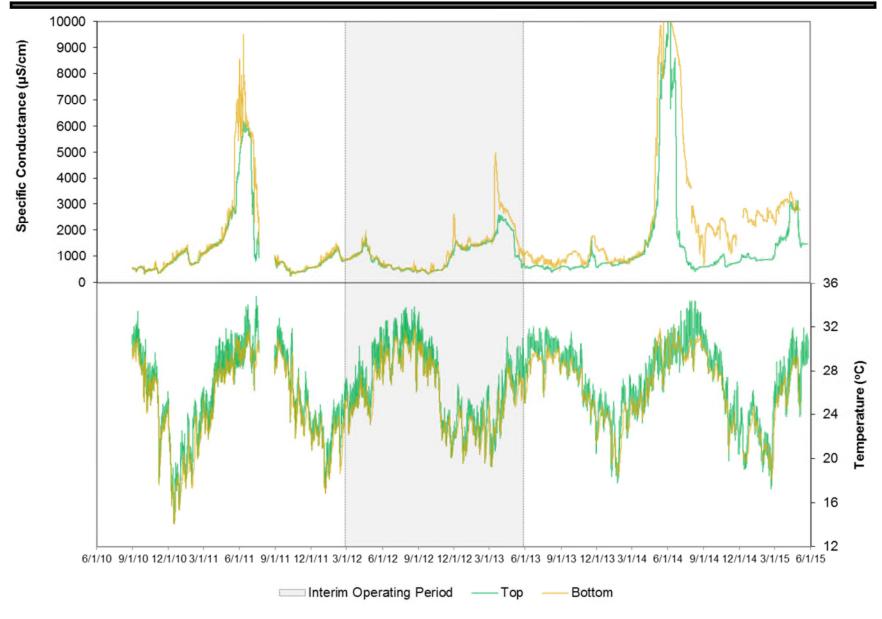


Figure 2.2-8. TPSWC-2 Specific Conductance and Temperature.

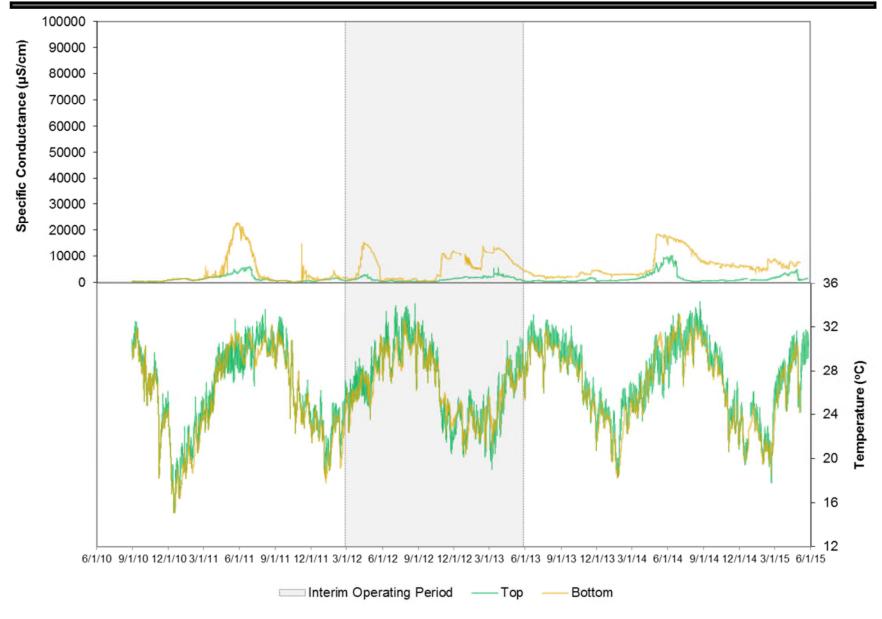


Figure 2.2-9. TPSWC-3 Specific Conductance and Temperature.

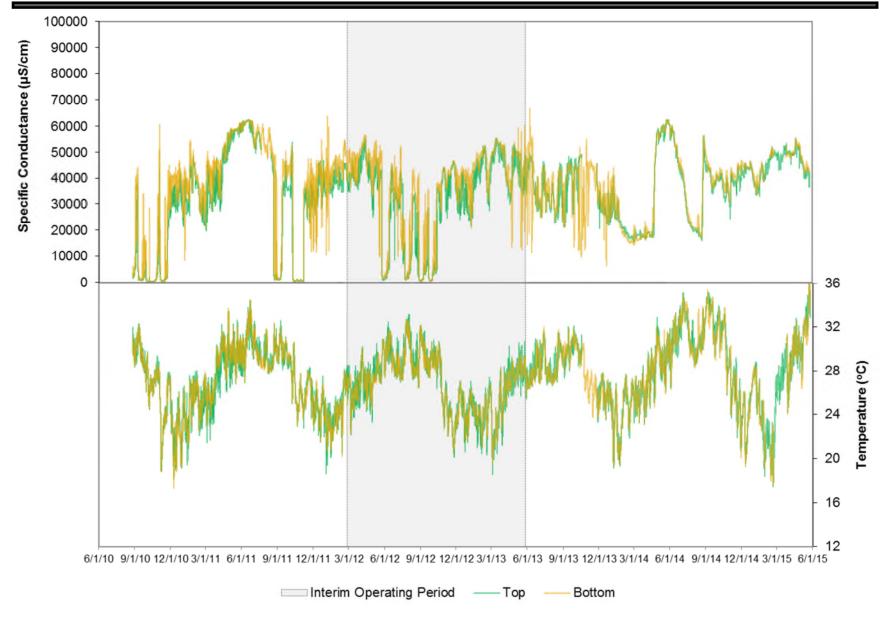


Figure 2.2-10. TPSWC-4 Specific Conductance and Temperature.

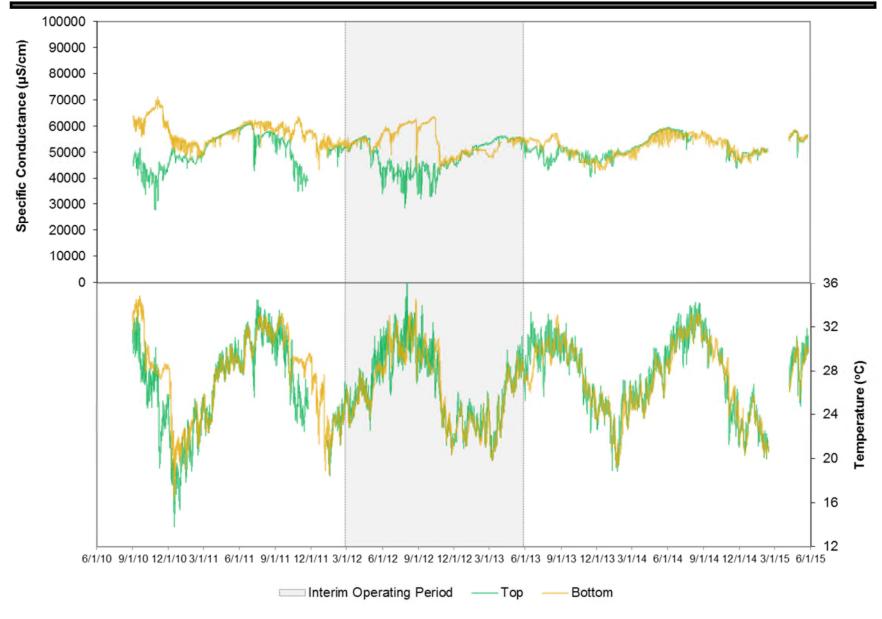


Figure 2.2-11. TPSWC-5 Specific Conductance and Temperature.

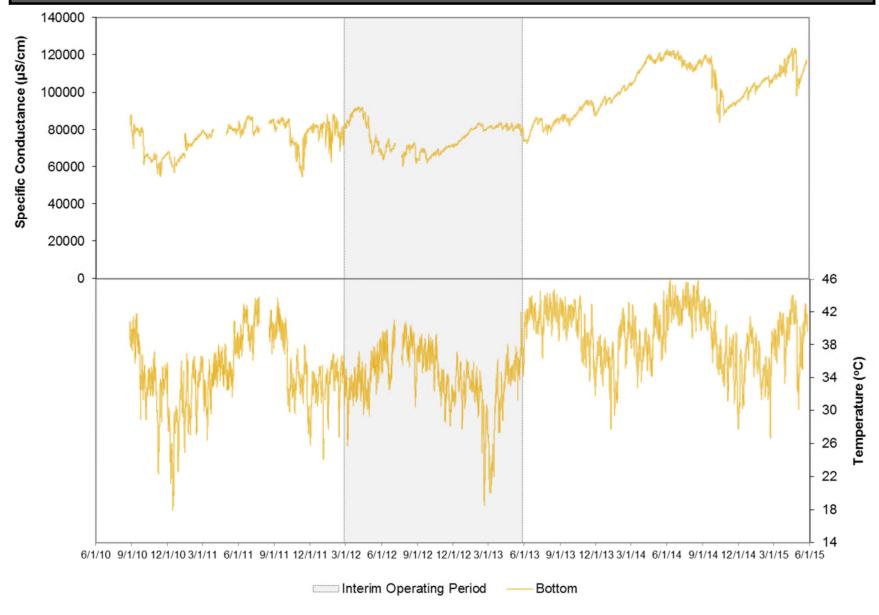


Figure 2.2-12. TPSWCCS-1 Specific Conductance and Temperature.

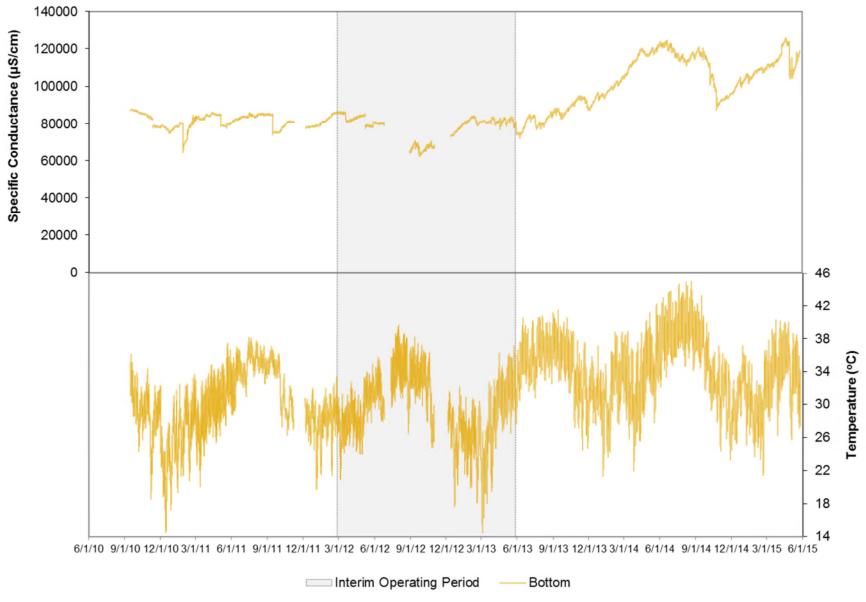


Figure 2.2-13. TPSWCCS-2 Specific Conductance and Temperature.

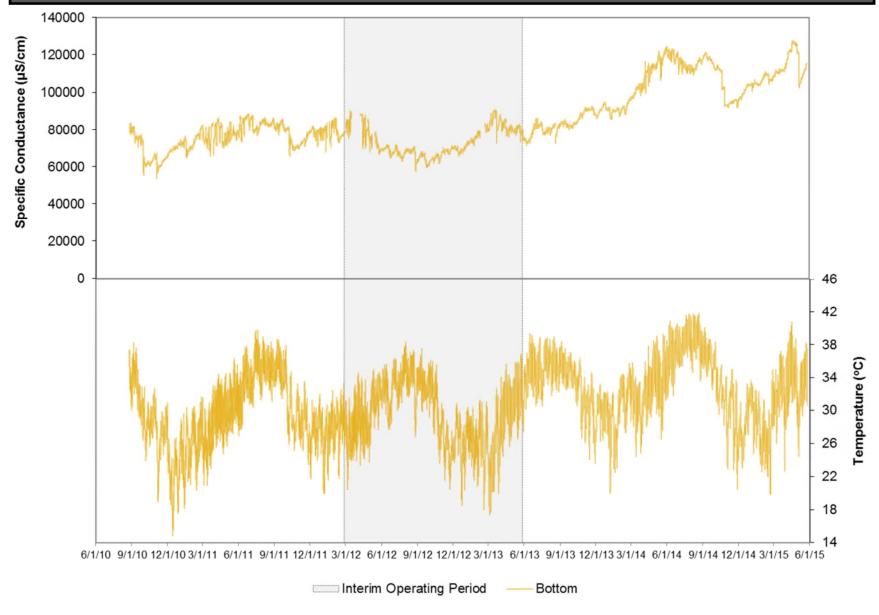


Figure 2.2-14. TPSWCCS-3 Specific Conductance and Temperature.

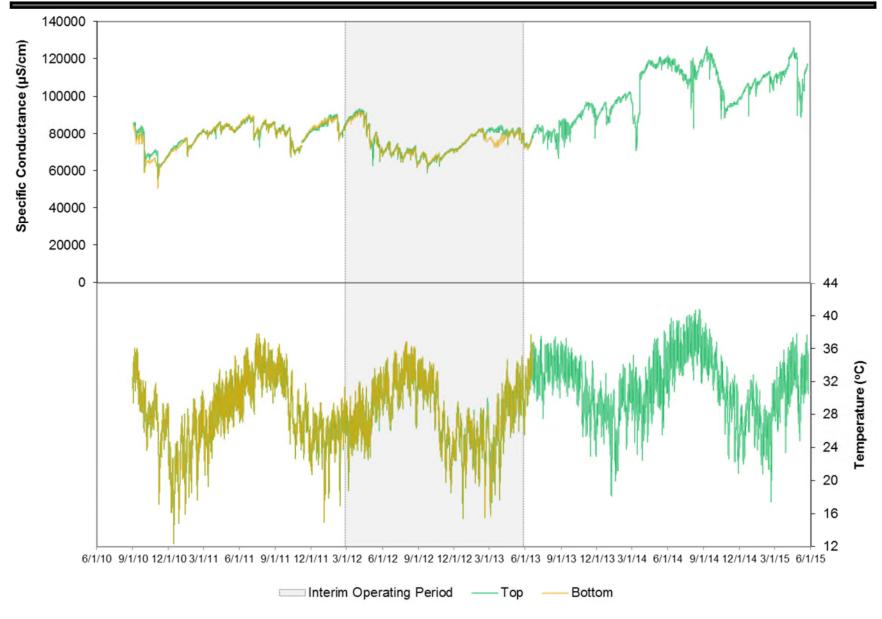


Figure 2.2-15. TPSWCCS-4 Specific Conductance and Temperature.

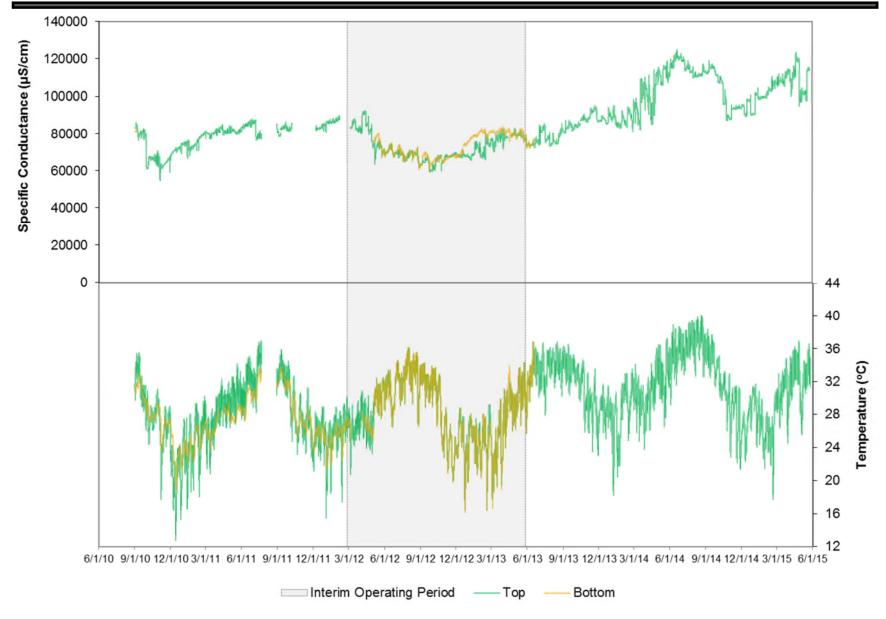


Figure 2.2-16. TPSWCCS-5 Specific Conductance and Temperature.

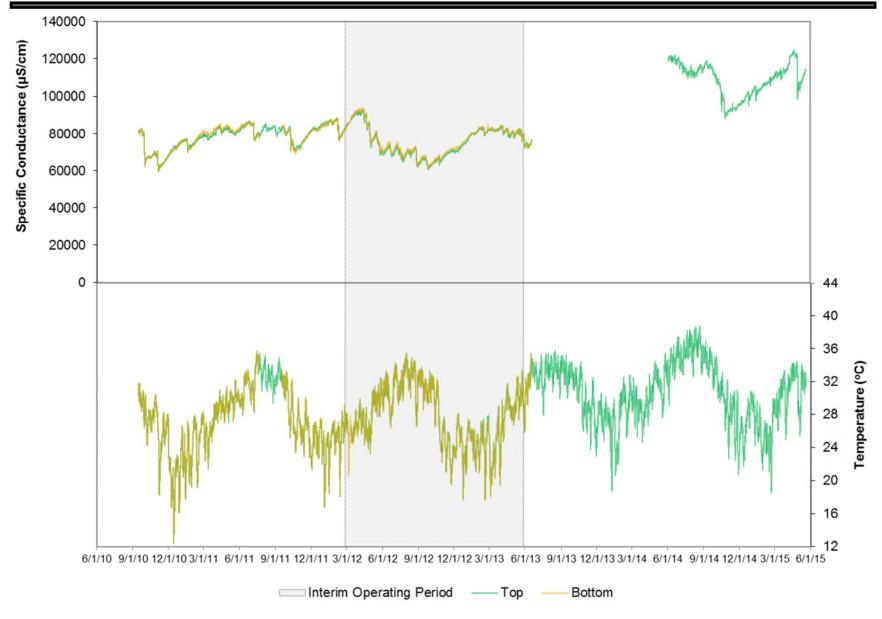


Figure 2.2-17. TPSWCCS-6 Specific Conductance and Temperature.

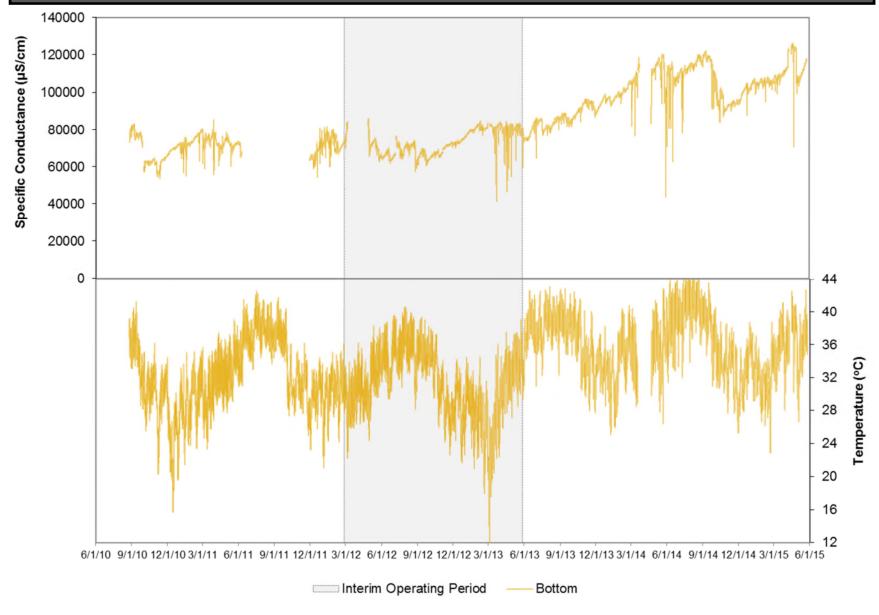


Figure 2.2-18. TPSWCCS-7 Specific Conductance and Temperature.

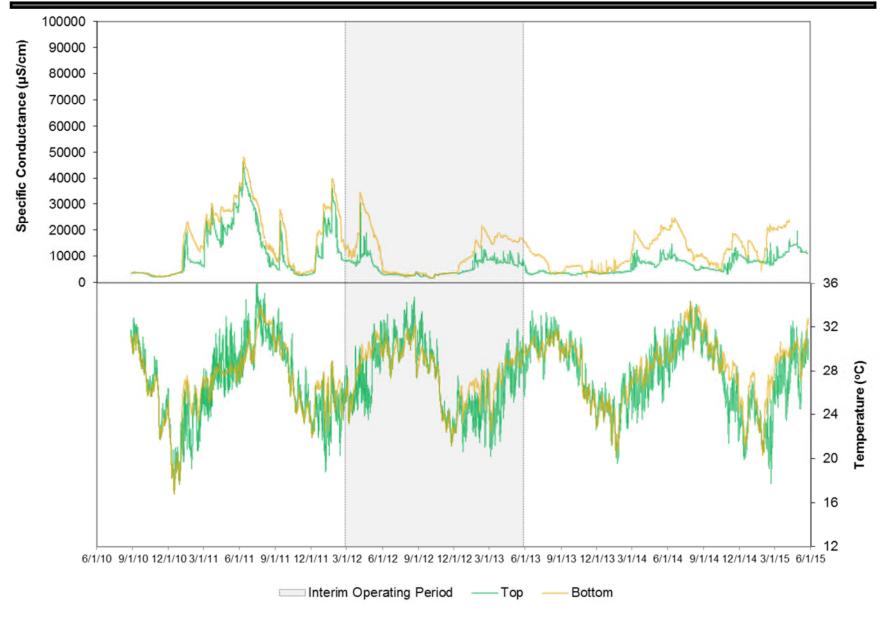


Figure 2.2-19. TPSWID-1 Specific Conductance and Temperature.

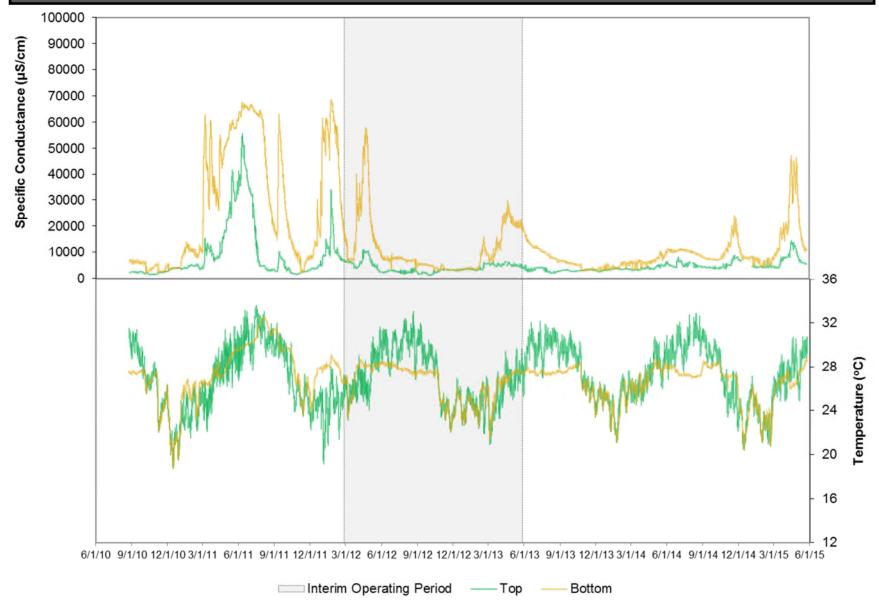
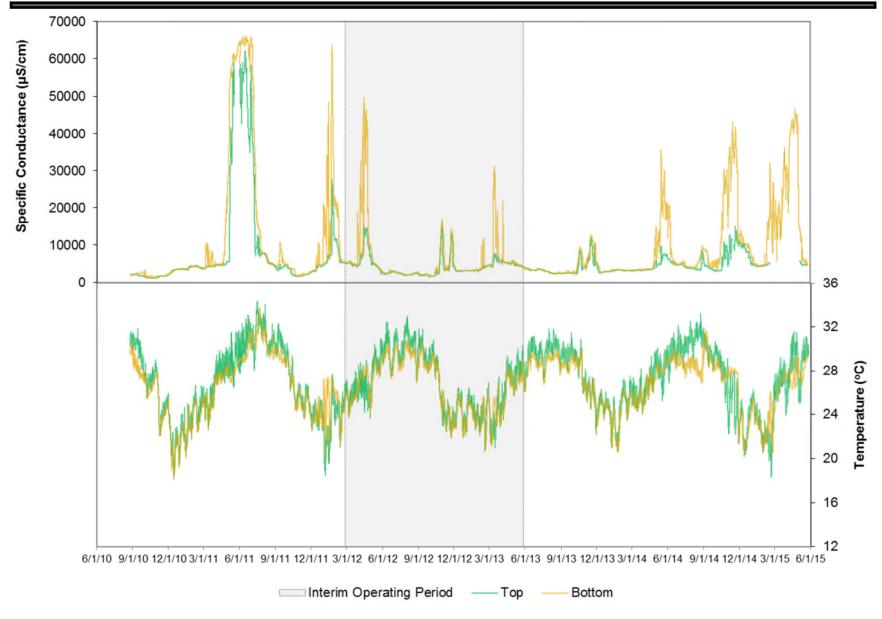
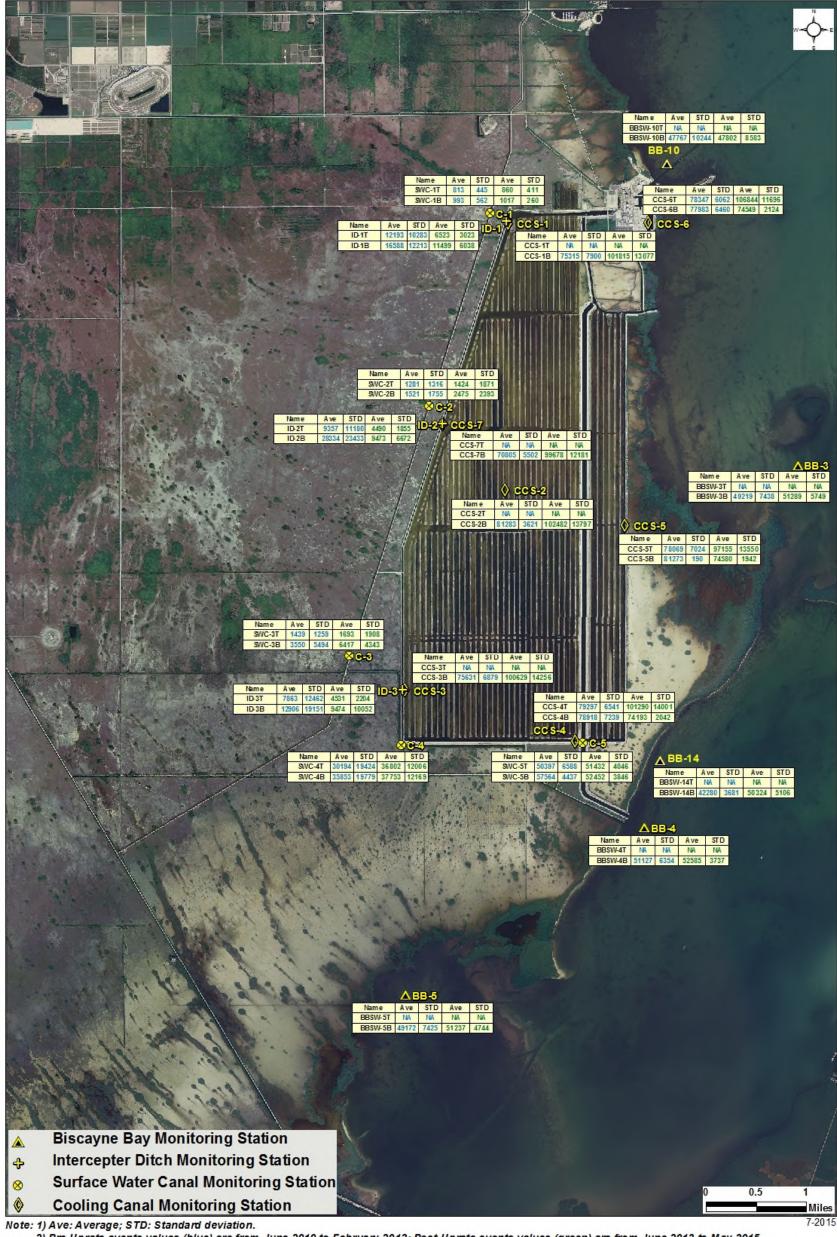
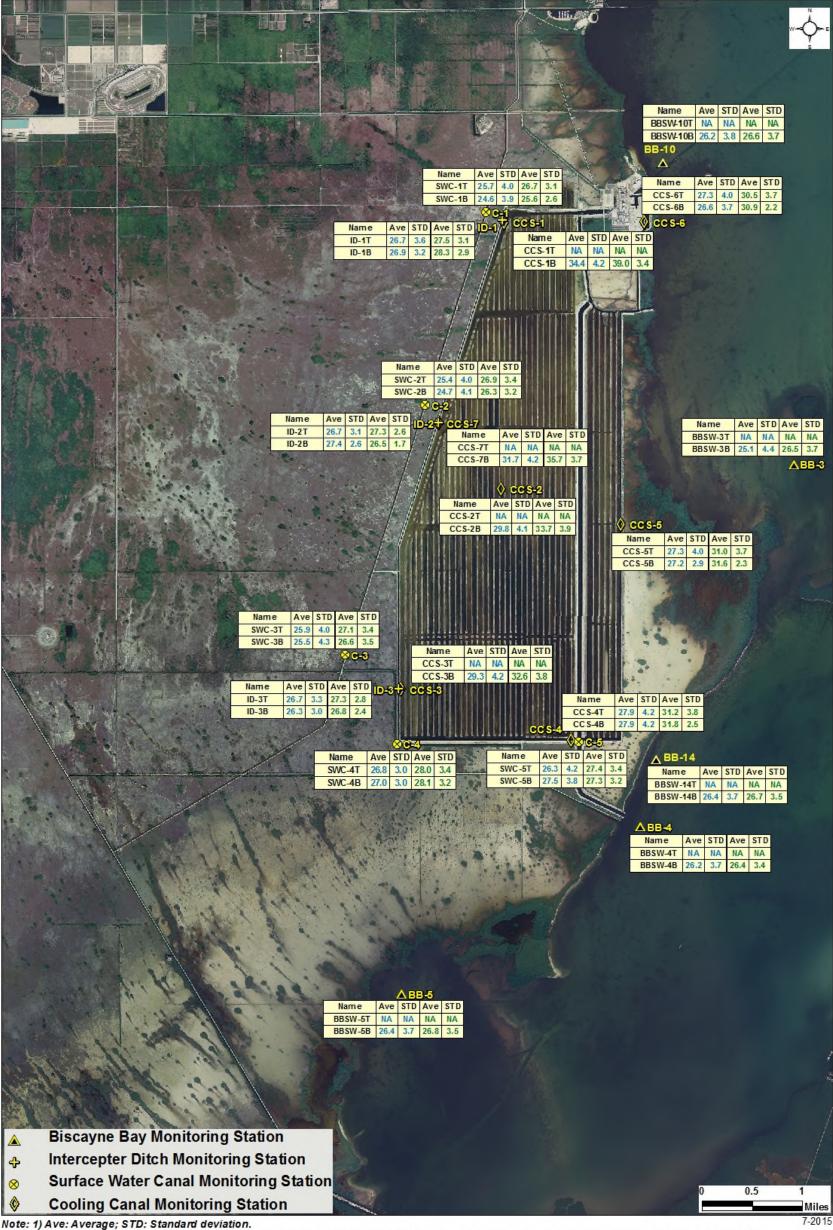


Figure 2.2-20. TPSWID-2 Specific Conductance and Temperature.


Figure 2.2-21. TPSWID-3 Specific Conductance and Temperature.

2) Pre-Uprate events values (blue) are from June 2010 to February 2012; Post-Uprate events values (green) are from June 2013 to May 2015.
3) Samples collected at 2 depths (T: Top; B: Bottom).

Average and Standard Deviation of Specific Conductance Values (µS/cm) for Surface Water Stations

Figure 2.2-22 Average and Standard Deviation of Specific Conductance Values (μS/cm) for Surface Water Stations Pre- and Post-Rate

Note: 1) Ave: Average; STD: Standard deviation.

2) Pre-Uprate events values (blue) are from June 2010 to February 2012; Post-Uprate events values (green) are from June 2013 to May 2015. 3) Samples collected at 2 depths (T: Top; B: Bottom).

Average and Standard Deviation of Temperature Values (°C) for Surface Water Stations

Figure 2.2-23. Average and Standard Deviation of Temperature (°C) for Surface Water Stations Pre- and Post-Uprate.

Note: 1) Ave: Average; STD: Standard deviation.

2) Pre-Uprate events values (blue) are from June 2010 to February 2012; Post-Uprate events values (green) are from June 2013 to May 2015.

3) Samples collected at 2 depths (T: Top; B: Bottom).

Average and Standard Deviation of Salinity Values (PSS-78) for Surface Water Stations

Figure 2.2-24. Average and Standard Deviation of Salinity (PSS-78) for Surface Water Stations Pre- and Post-Uprate.

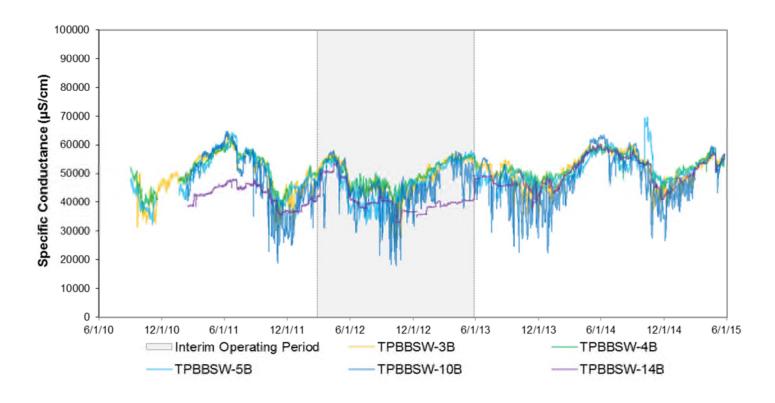


Figure 2.2-25. Comparison of Specific Conductance in Biscayne Bay Surface Water Stations.

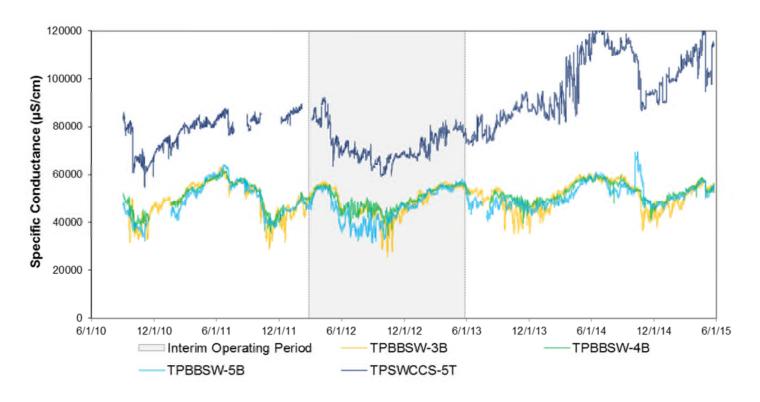


Figure 2.2-26. Comparison of Specific Conductance in CCS and Biscayne Bay Surface Water Stations.

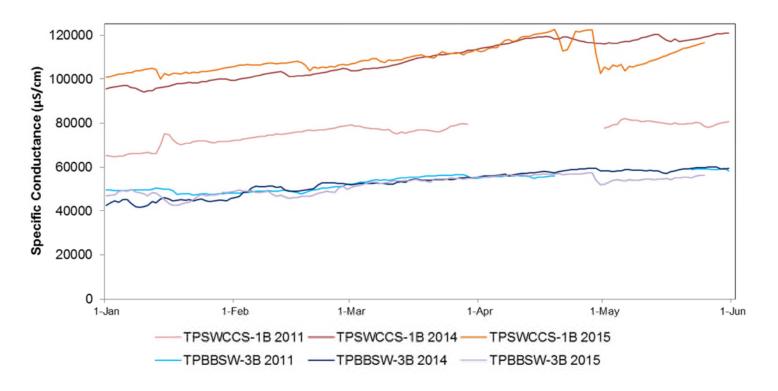


Figure 2.2-27. Comparison of CCS and Biscayne Bay Specific Conductance Pre- and Post-Uprate.

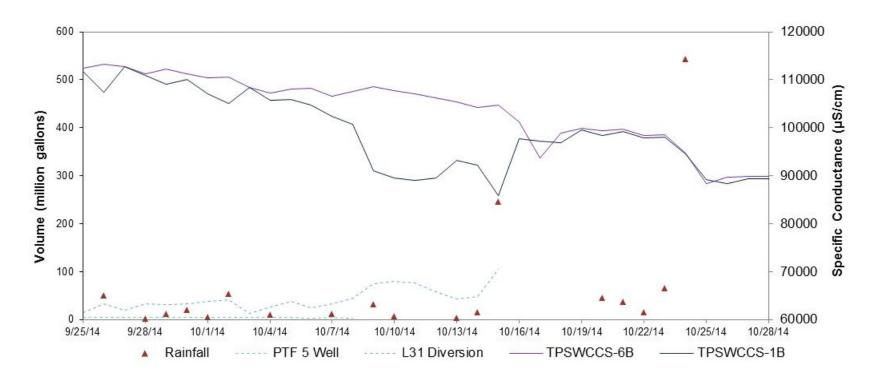


Figure 2.2-28. Effect of CCS Freshening Effort and Rainfall on CCS Specific Conductance Values (September 25-October 15, 2015).

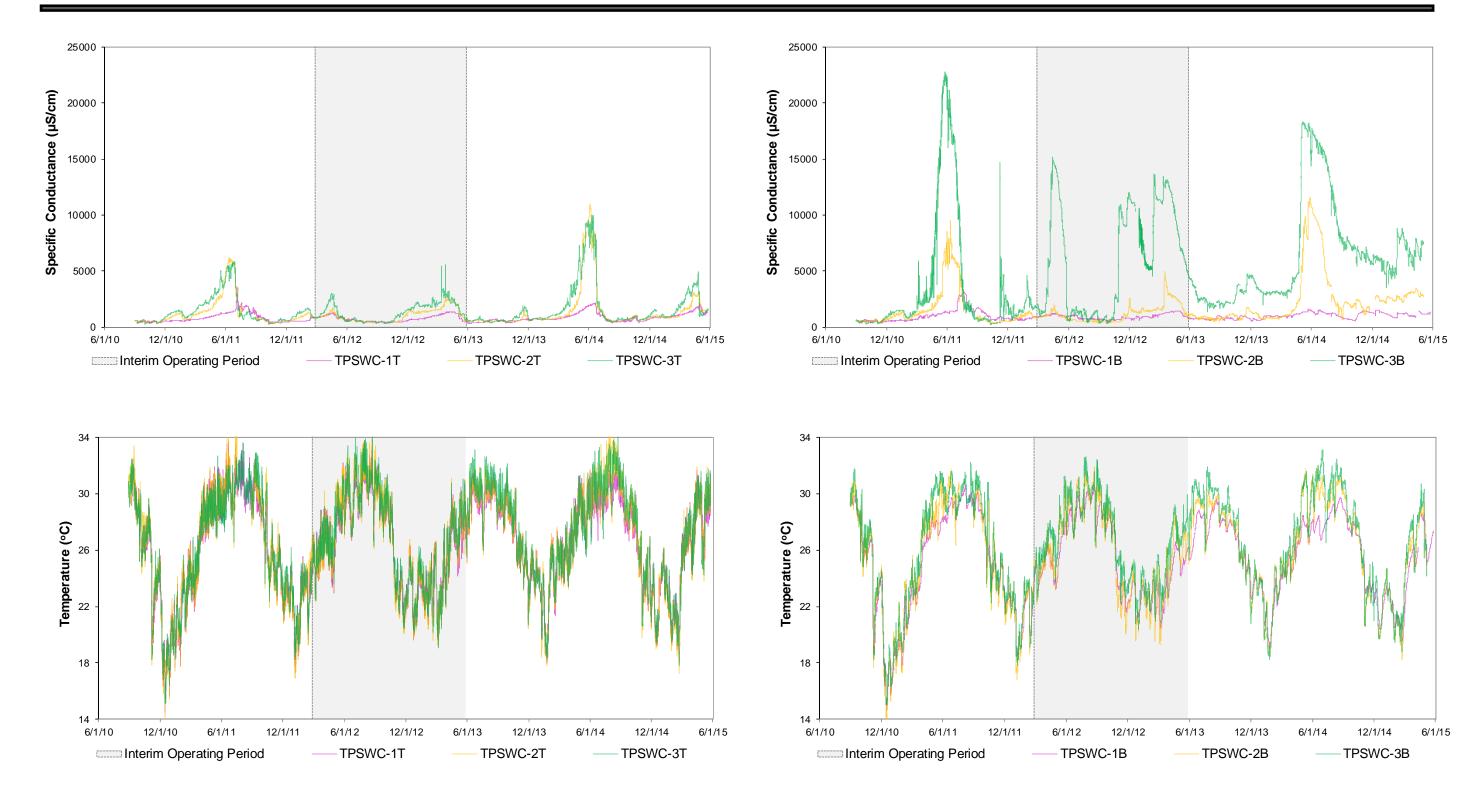


Figure 2.2-29. Comparison of Specific Conductance and Temperature in L-31E Canal for Top and Bottom Locations.

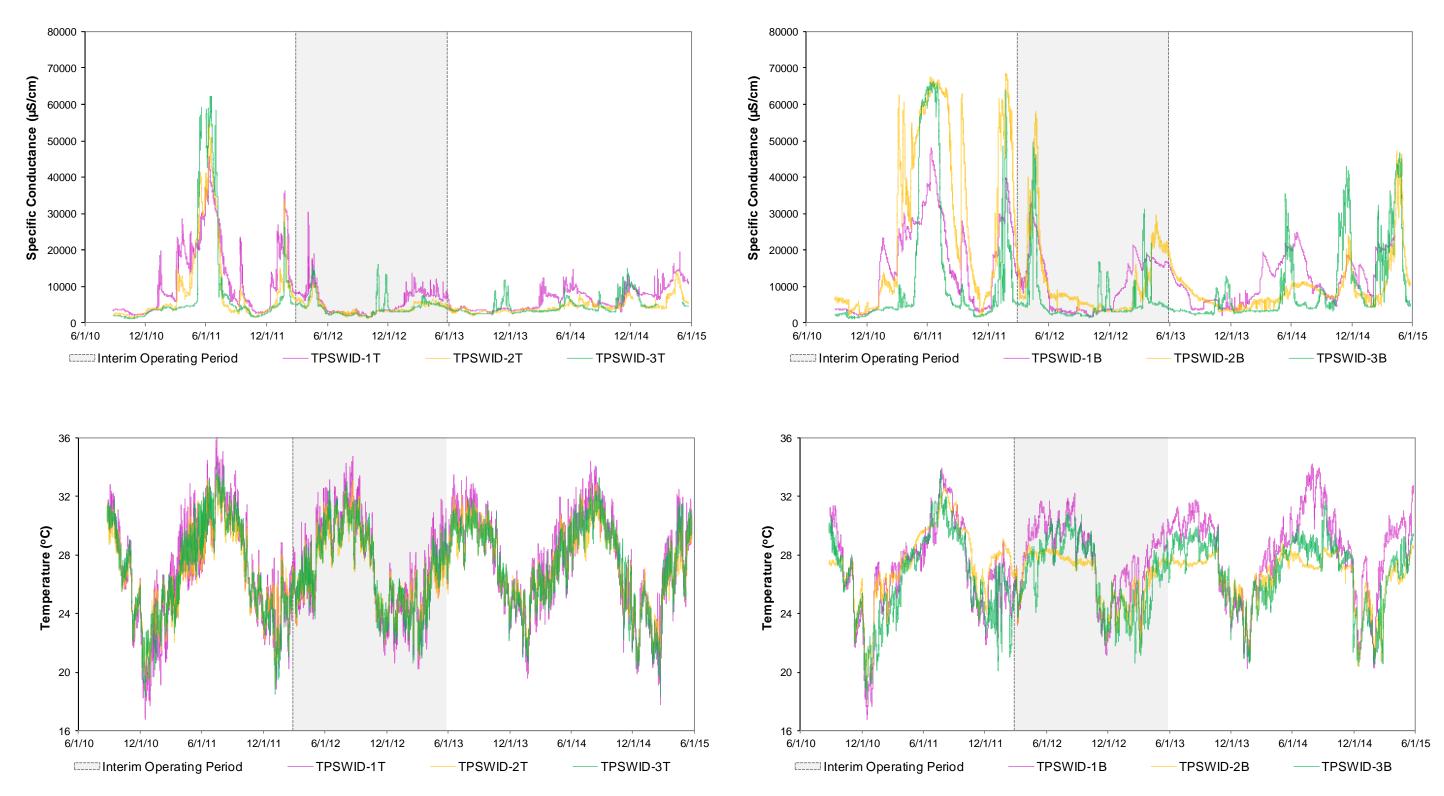


Figure 2.2-30. Comparison of Specific Conductance and Temperature in Interceptor Ditch Stations for Top and Bottom Locations.



Figure 2.2-31. Comparison of Specific Conductance and Temperature at the Bottom of Interceptor Ditch Operation Transect A Stations.

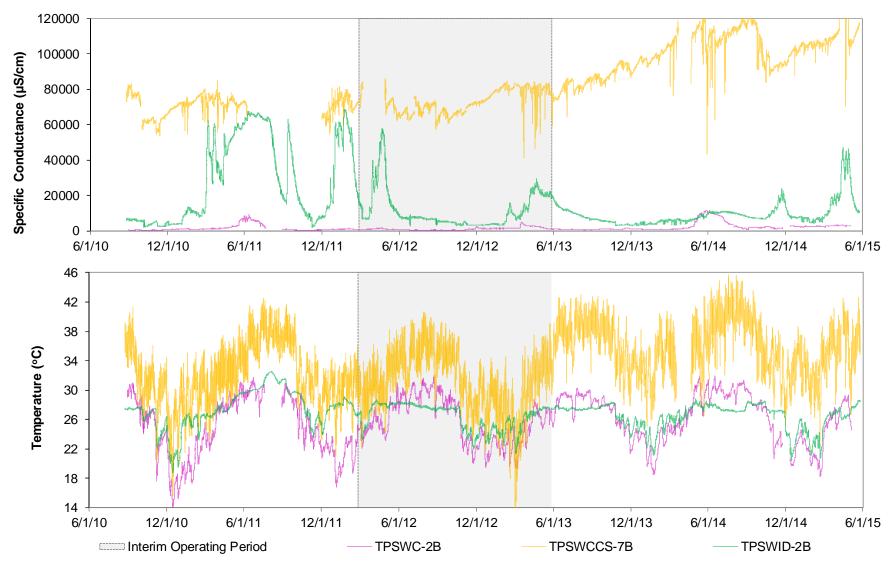


Figure 2.2-32. Comparison of Specific Conductance and Temperature at the Bottom of Interceptor Ditch Operation Transect C Stations.

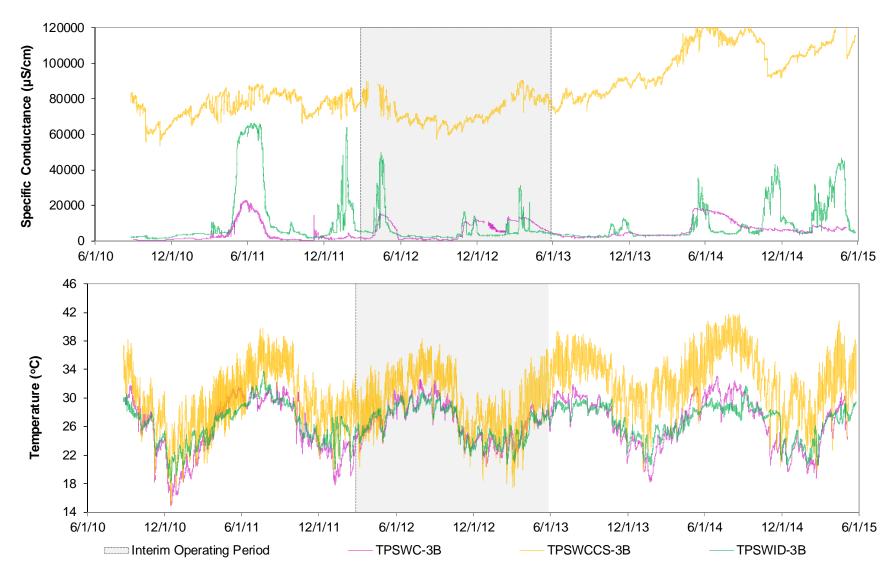


Figure 2.2.33 Comparison of Specific Conductance and Temperature at the Bottom of Interceptor Ditch Operation Transect E Stations.

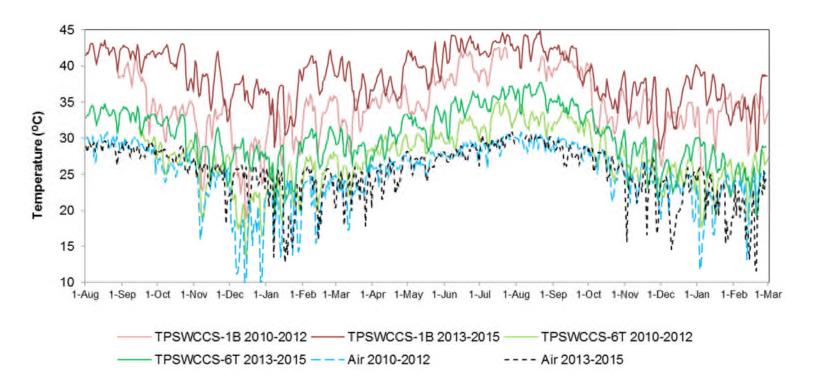


Figure 2.2-34. Comparison of Pre- and Post-Uprate CCS Surface Water Temperatures.

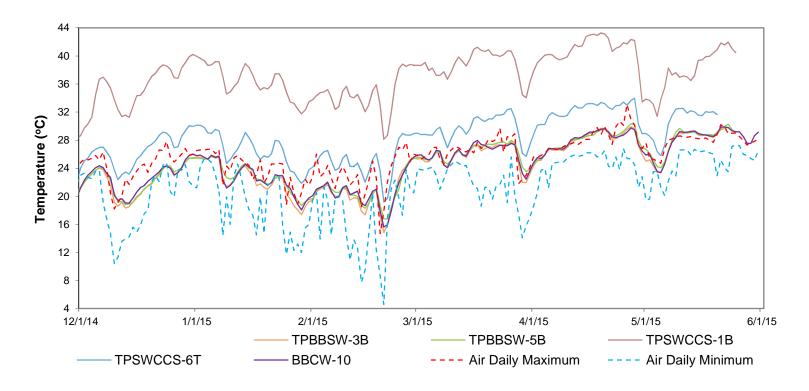


Figure 2.2-35. Biscayne Bay Surface Water Temperatures (24- Hour Averages) and Ambient Air Temperature (Maximum and Minimum Values) Time Series Plots.

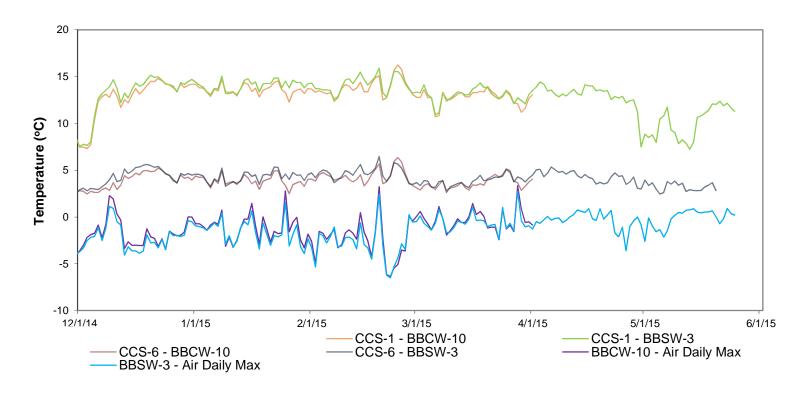


Figure 2.2-36. Differences among Ambient Air, CCS, and Biscayne Bay Water Temperatures.

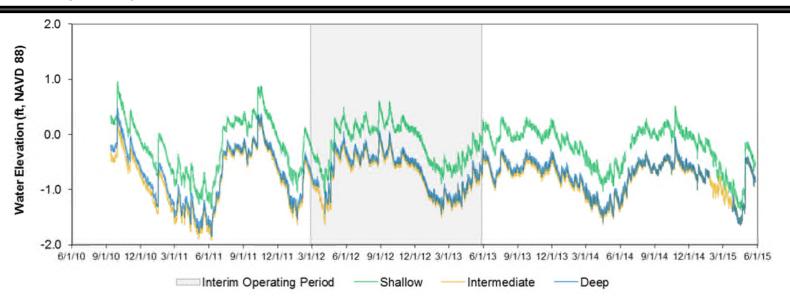


Figure 2.3-1. TPGW-1 Water Elevations.

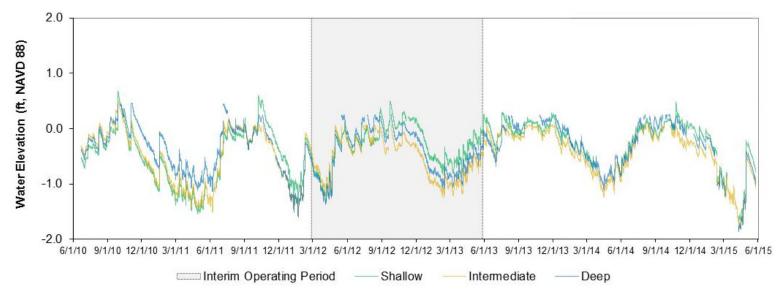


Figure 2.3-2. TPGW-2 Water Elevations.

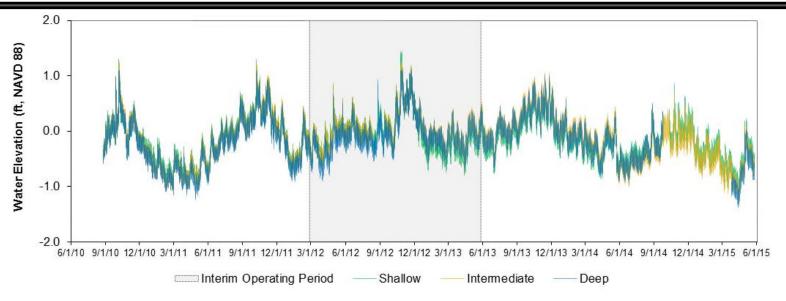


Figure 2.3-3. TPGW-3 Water Elevations.

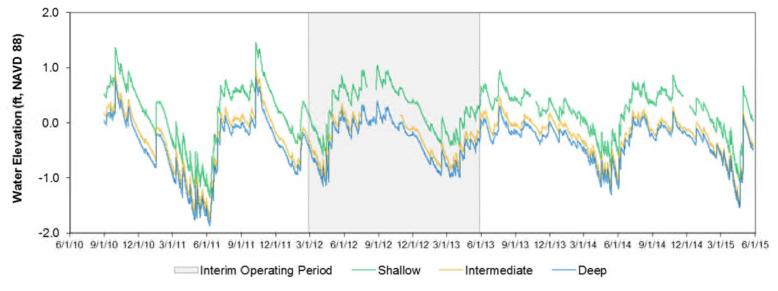


Figure 2.3-4. TPGW-4 Water Elevations.

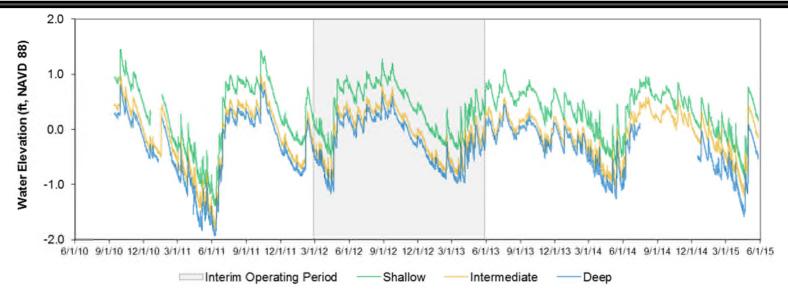


Figure 2.3-5. TPGW-5 Water Elevations.

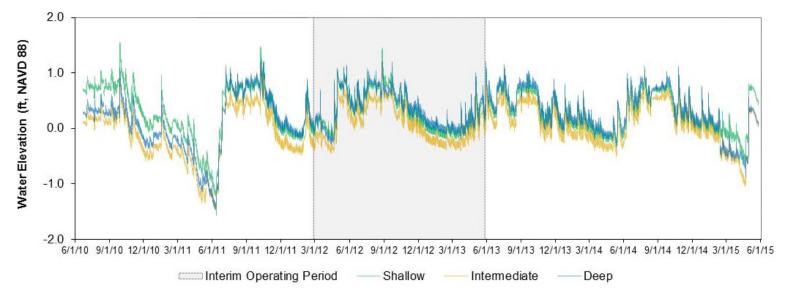


Figure 2.3-6. TPGW-6 Water Elevations.

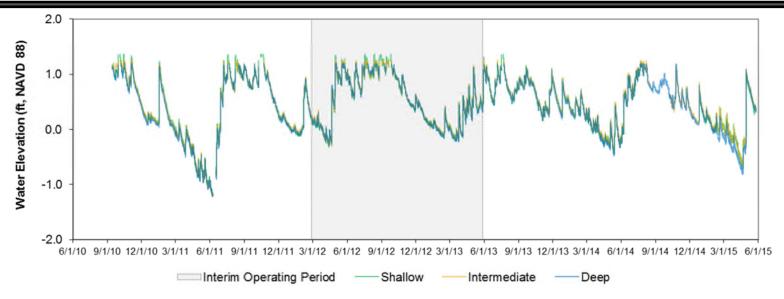


Figure 2.3-7. TPGW-7 Water Elevations.

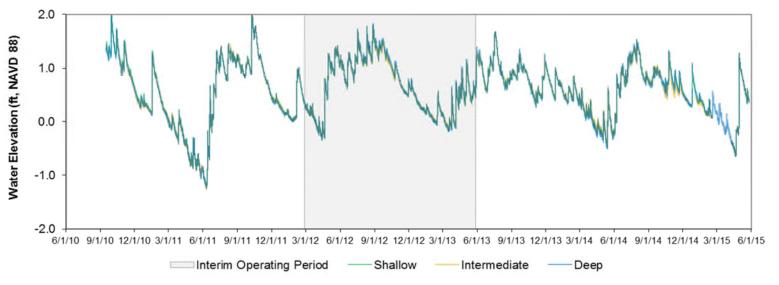


Figure 2.3-8. TPGW-8 Water Elevations.

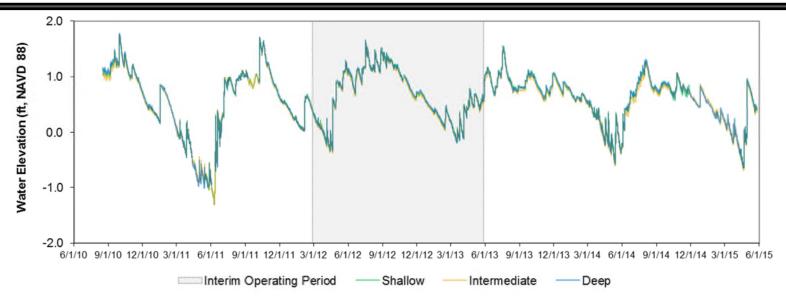


Figure 2.3-9. TPGW-9 Water Elevations.

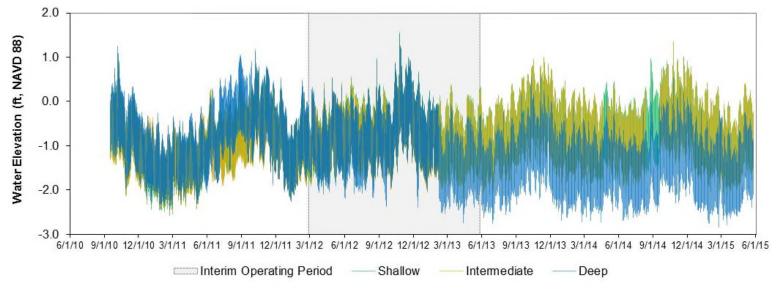


Figure 2.3-10. TPGW-10 Water Elevations.

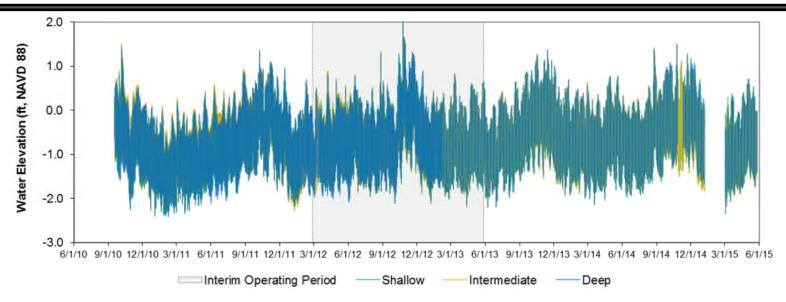


Figure 2.3-11. TPGW-11 Water Elevations.

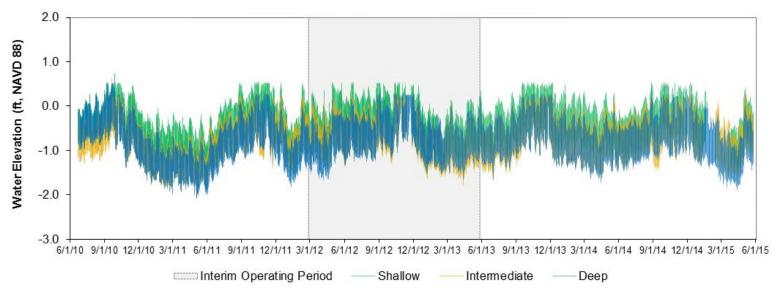


Figure 2.3-12. TPGW-12 Water Elevations.

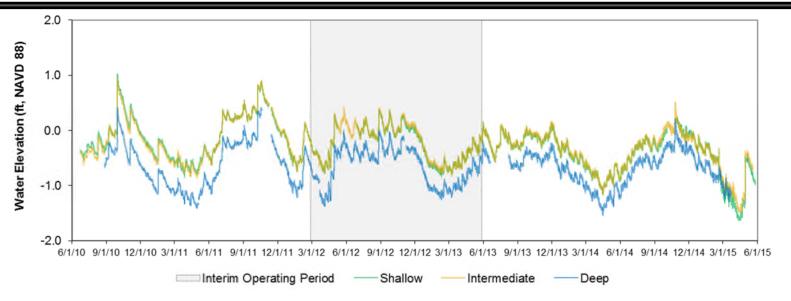


Figure 2.3-13. TPGW-13 Water Elevations.

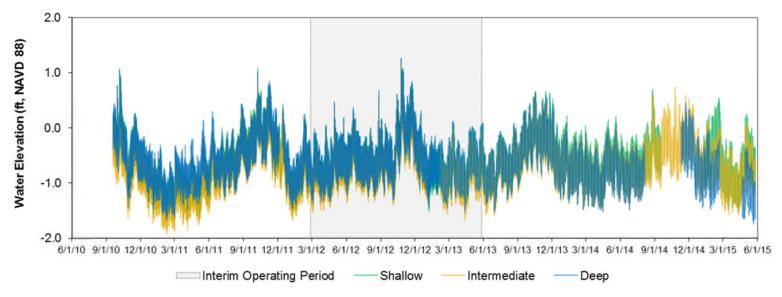


Figure 2.3-14. TPGW-14 Water Elevations.

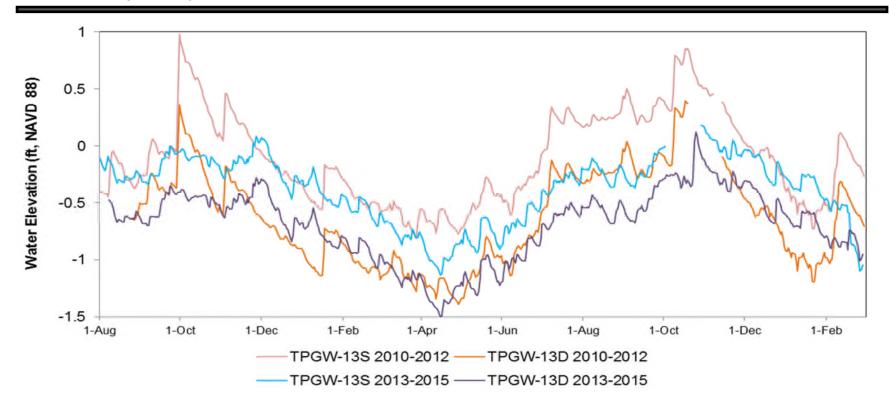


Figure 2.3-15. Comparison of Time Series Groundwater Water Elevations at TPGW-13 Between Pre- and Post-Uprate.

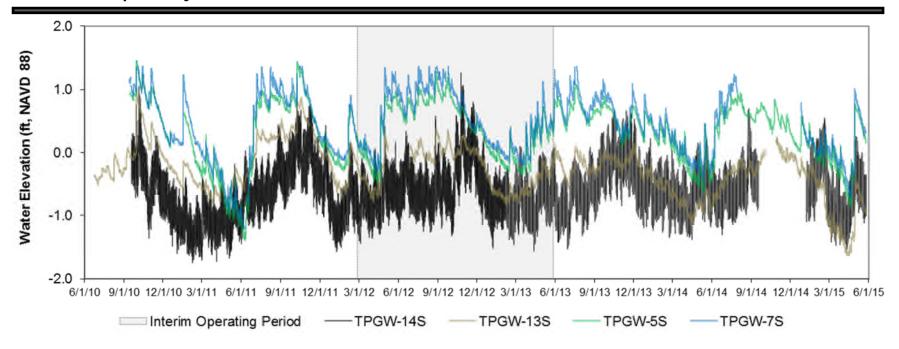


Figure 2.3-16. Comparison of Time Series Groundwater Water Elevations across the Landscape at TPGW-14, TPGW-13, TPGW-5 and TPGW-7.

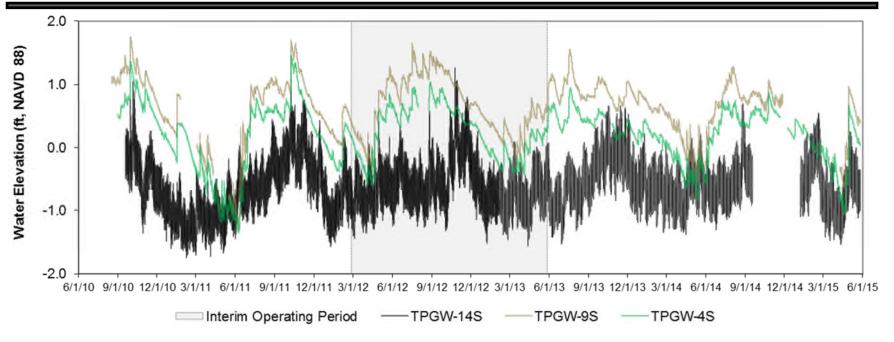


Figure 2.3-17. Comparison of Time Series Groundwater Water Elevations across the Landscape at TPGW-14, TPGW-9, and TPGW-4.

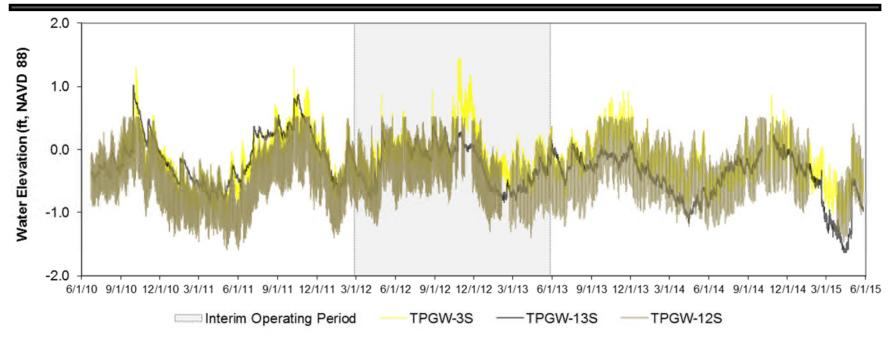


Figure 2.3-18. Comparison of Time Series Groundwater Water Elevations across the Landscape at TPGW-3, TPGW-13, and TPGW-12.

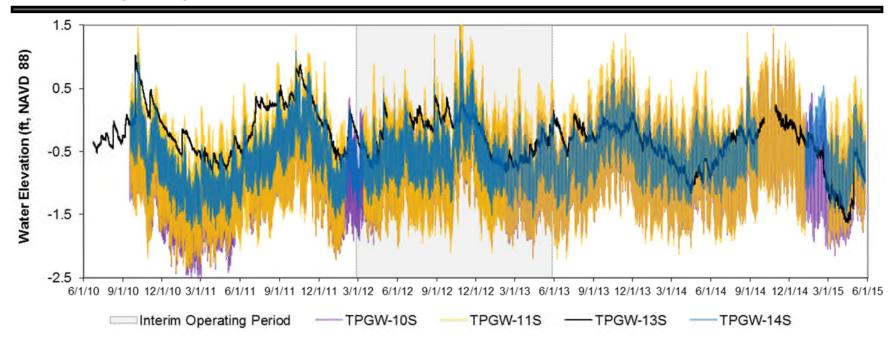


Figure 2.3-19. Comparison of Time Series Groundwater Water Elevations across the Landscape at TPGW-10, TPGW-11, TPGW-13, and TPGW-14.

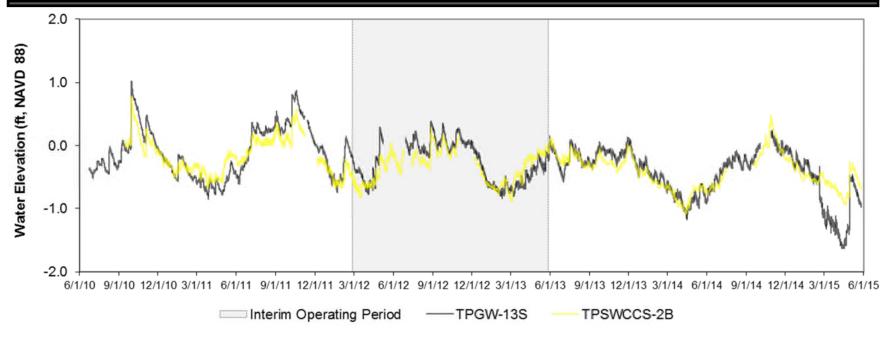


Figure 2.3-20. Comparison of Time Series Groundwater Water Elevations at TPGW-13 and TPSWCCS-2.

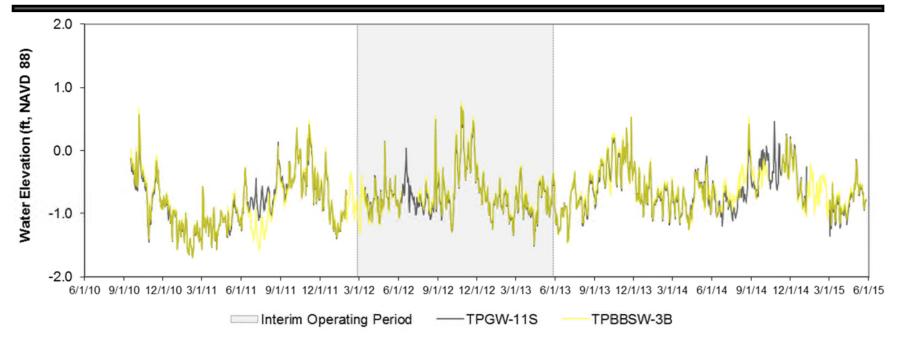


Figure 2.3-21. Comparison of Daily Average Time Series Groundwater Water Elevations in Biscayne Bay Well TPGW-11 and Biscayne Bay Surface Water Station TPBBSW-3.

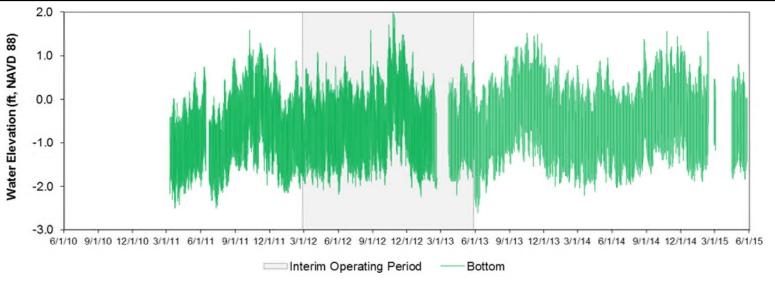


Figure 2.3-22. TPBBSW-10 Water Elevations.

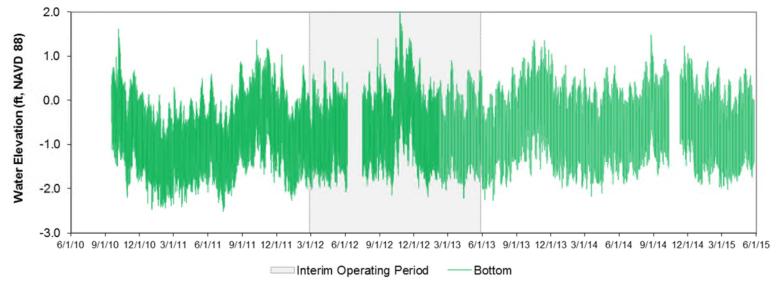


Figure 2.3-23. TPBBSW-3 Water Elevations.

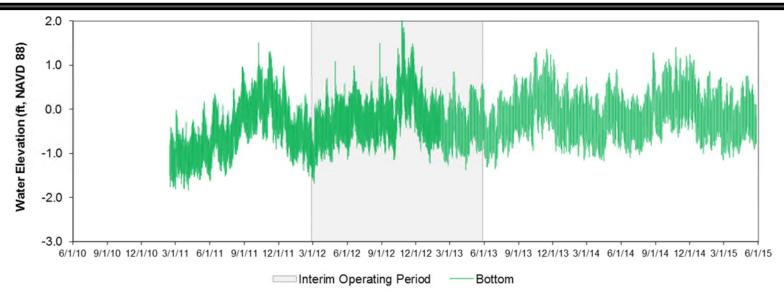


Figure 2.3-24. TPBBSW-14 Water Elevations.

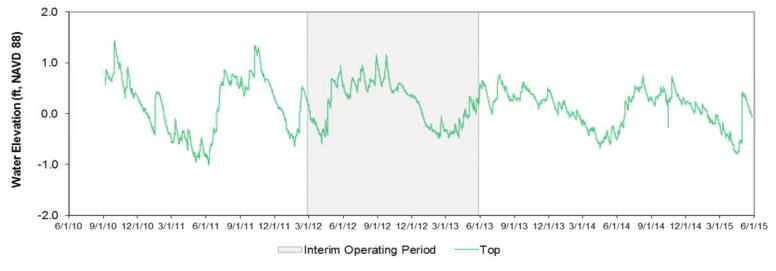


Figure 2.3-25. TPSWC-1 Water Elevations.

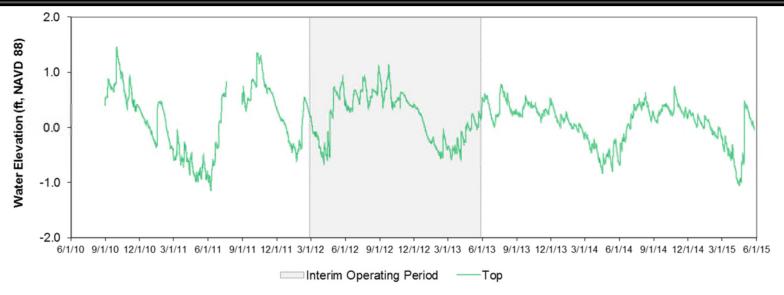


Figure 2.3-26. TPSWC-2 Water Elevations.

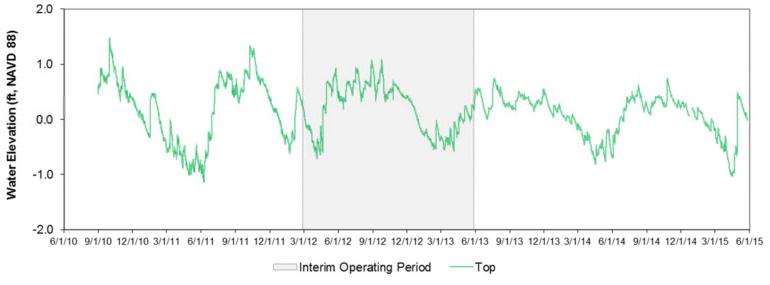


Figure 2.3-27. TPSWC-3 Water Elevations.

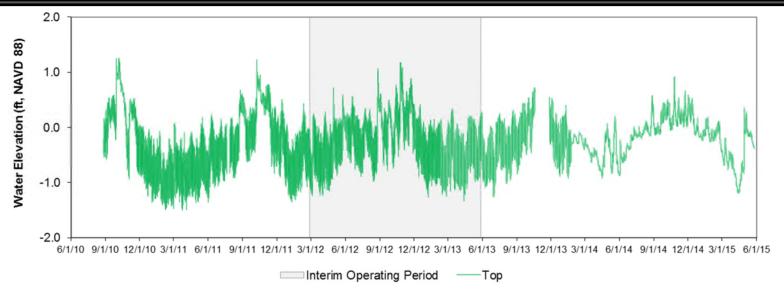


Figure 2.3-28. TPSWC-4 Water Elevations.

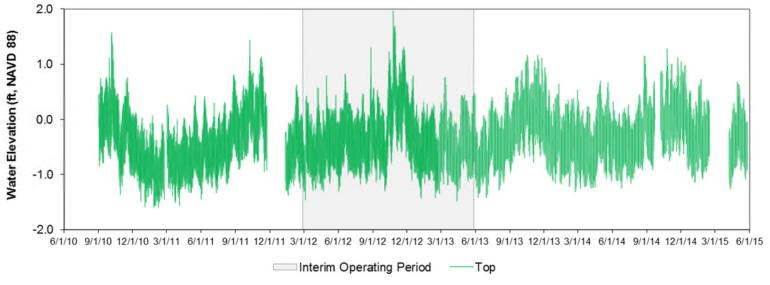


Figure 2.3-29. TPSWC-5 Water Elevations.

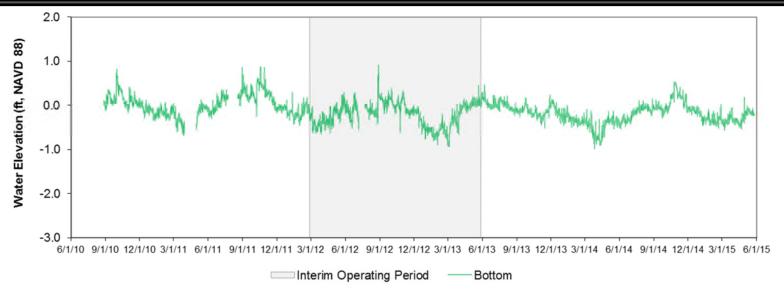


Figure 2.3-30. TPSWCCS-1 Water Elevations.

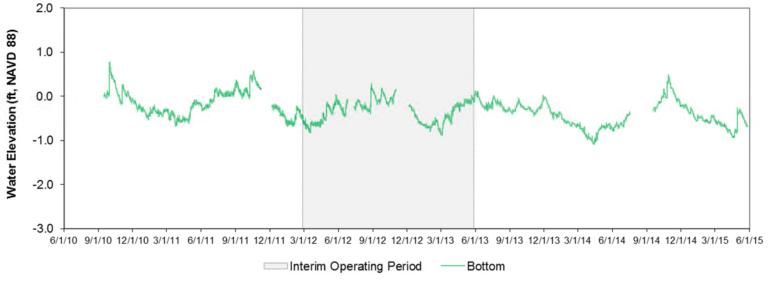


Figure 2.3-31. TPSWCCS-2 Water Elevations.

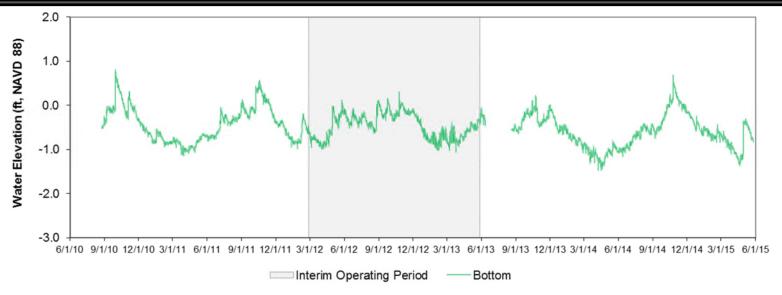


Figure 2.3-32. TPSWCCS-3 Water Elevations.

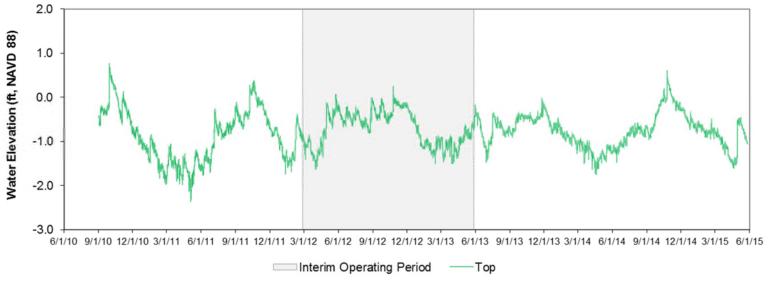


Figure 2.3-33. TPSWCCS-4 Water Elevations.

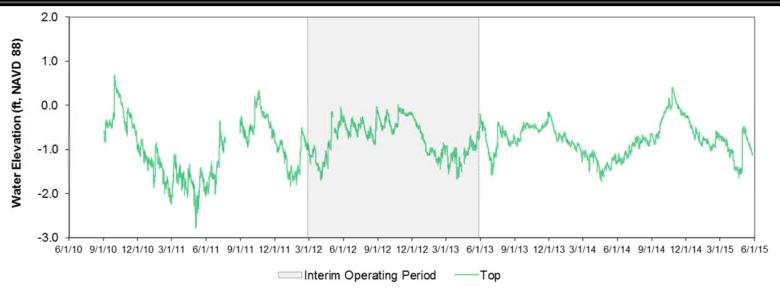


Figure 2.3-34. TPSWCCS-5 Water Elevations.

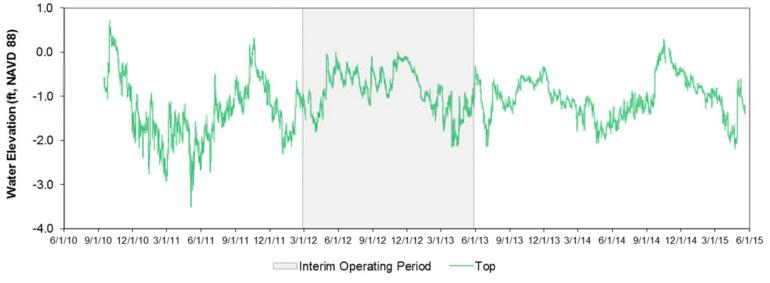


Figure 2.3-35. TPSWCCS-6 Water Elevations.

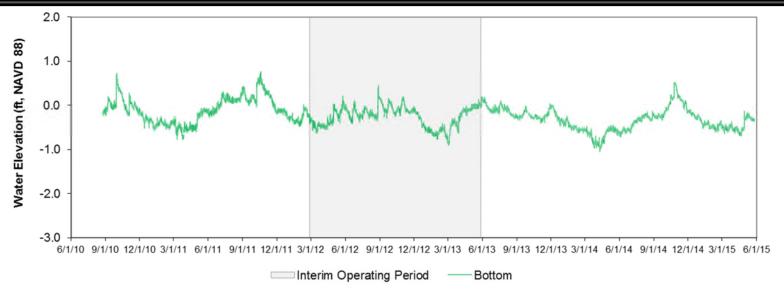


Figure 2.3-36. TPSWCCS-7 Water Elevations.

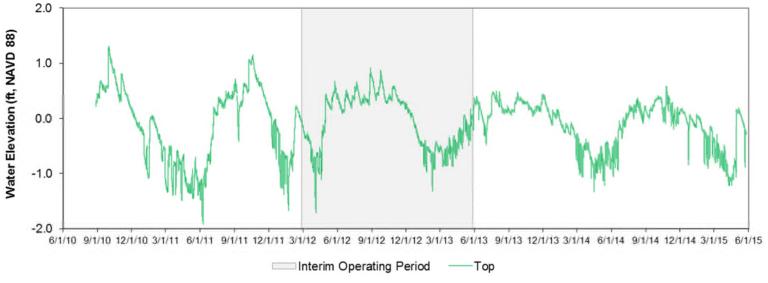


Figure 2.3-37. TPSWID-1 Water Elevations.

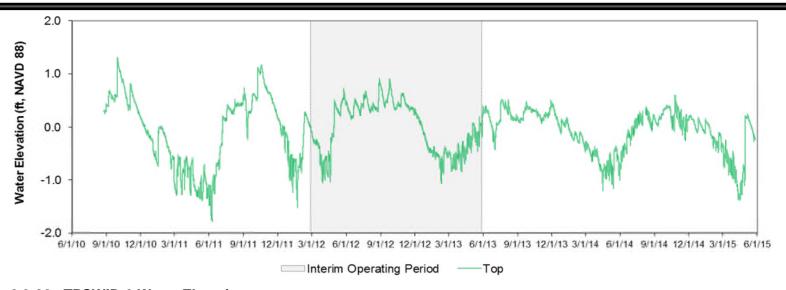


Figure 2.3-38. TPSWID-2 Water Elevations.

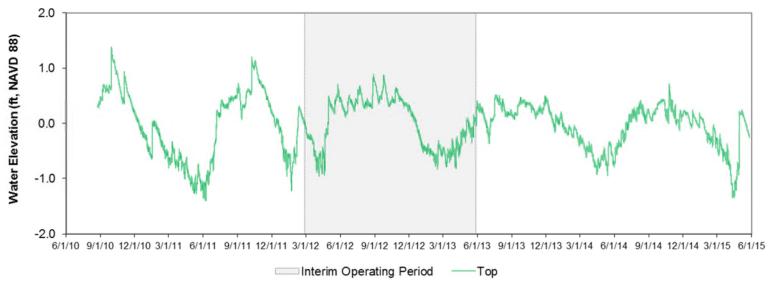


Figure 2.3-39. TPSWID-3 Water Elevations.

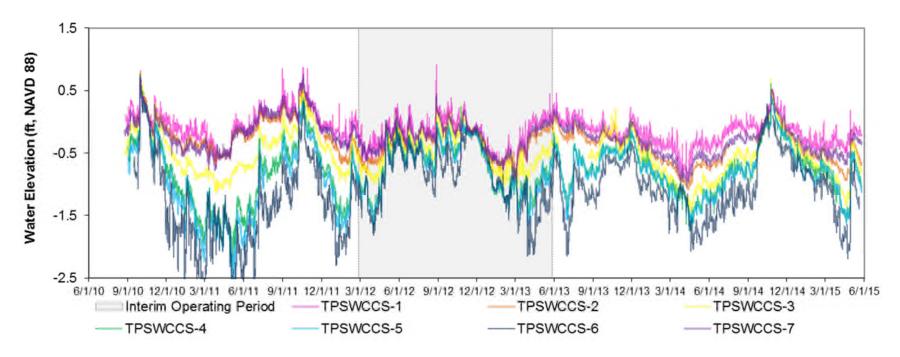


Figure 2.3-40. Comparison of Time Series Surface Water Elevations in CCS Surface Water Stations.

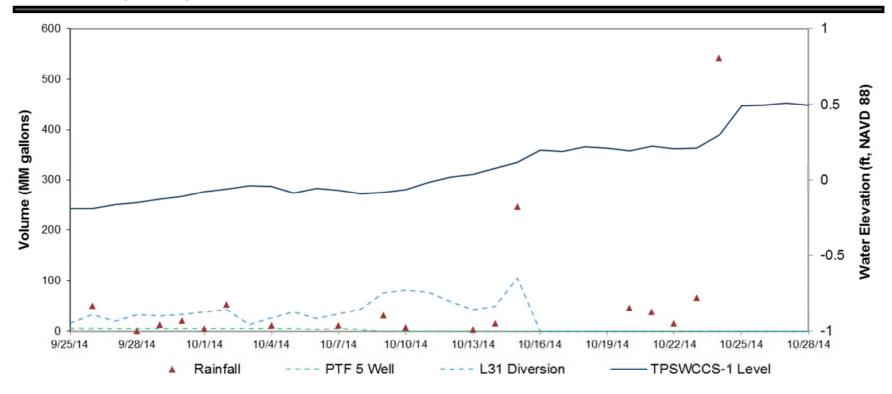


Figure 2.3-41. Effect of Pumping and Rainfall on CCS Water Levels During Temporary Freshening (September 25, 2014 – October 15, 2014).

Figure 2.4-1. Locations of Rainfall Gauges in and around the CCS.

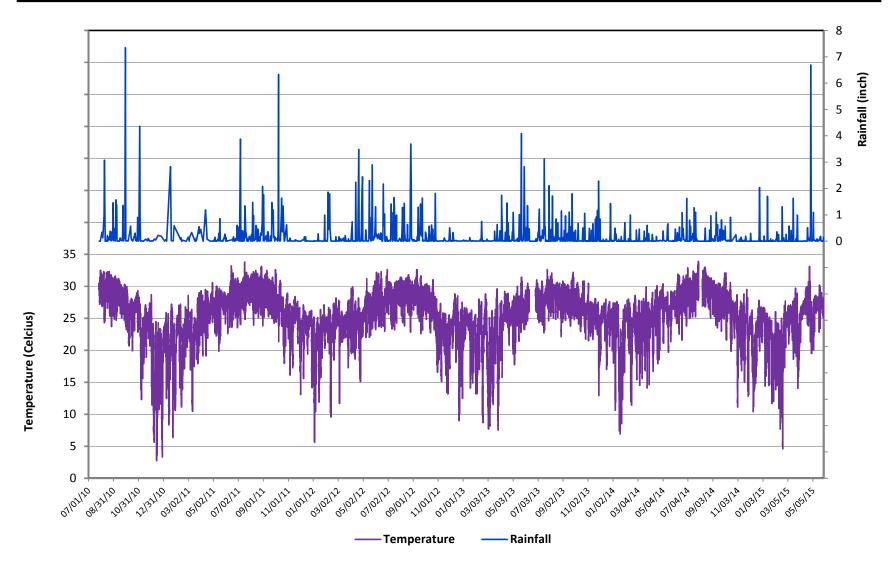


Figure 2.4-2. Rainfall and Temperature at TPM-1.

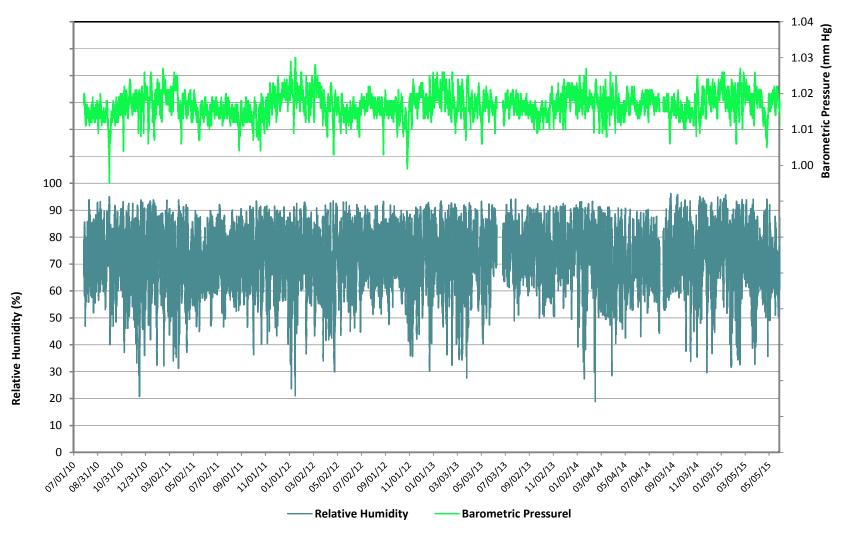


Figure 2.4-3. Relative Humidity and Barometric Pressure at TPM-1.

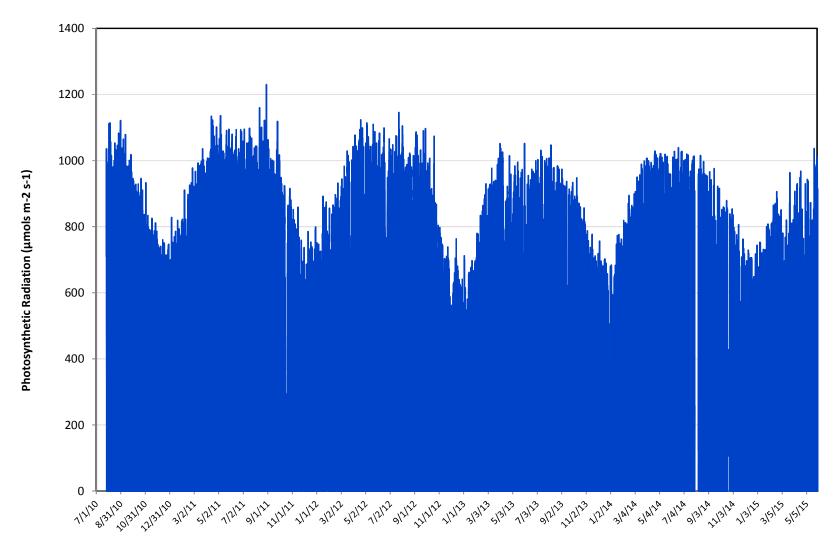


Figure 2.4-4. Photosynthetically Active Radiation (PAR) for TPM-1.

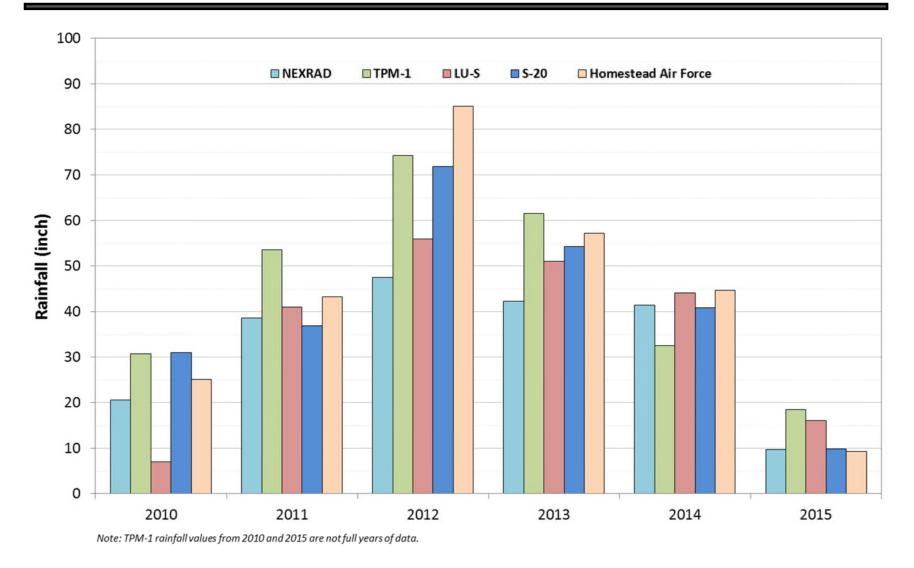


Figure 2.4-5. Annual Comparison of Rainfall Totals for Different Locations In and Around the CCS (June 2010 – May 2015).

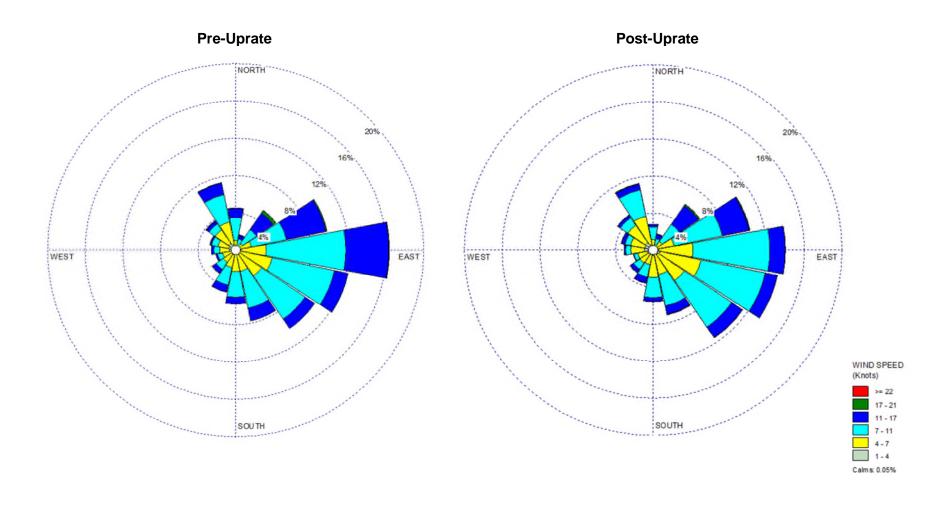


Figure 2.4-6. Wind Rose Plots Indicating Wind Speed and Direction for the Pre- (Left) and Post-Uprate (Right) Periods.

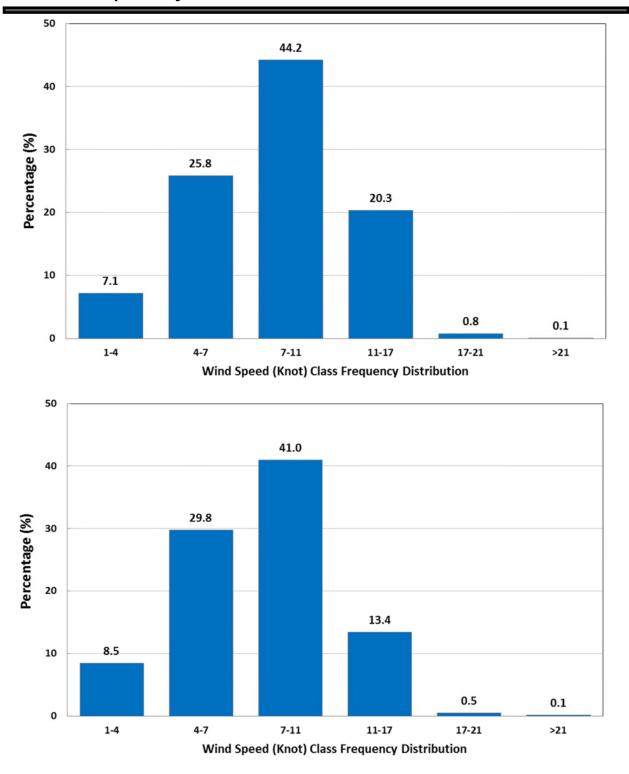


Figure 2.4-7. Wind Speed (Class) Frequency Distribution for the Pre- (Top) and Post-Uprate (Bottom) Periods.

3. QUARTERLY GROUNDWATER AND SURFACE WATER SAMPLING RESULTS

The Monitoring Plan (SFWMD 2009a) and QAPP (FPL 2013b) for this project outline the locations and analytes for the groundwater and surface water sampling and the analyses for quarterly and semi-annual events. With a few exceptions at the start of Uprate Monitoring, samples were collected quarterly at all locations from June 2010 through March 2015 and were analyzed for the parameters as required for the Uprate monitoring. Collection methods and laboratory procedures remain as outlined in the Comprehensive Pre-Uprate Report (FPL 2012a) and as detailed in the project QAPP (FPL 2011b, 2013b), with a few minor exceptions, as detailed below.

After review of the Comprehensive Pre-Uprate Report (FPL 2012a), the Agencies agreed to a reduction in sites and parameters (SFWMD 2013a). Tables 3.0-1 and 3.0-2 provide a summary of the Post-Uprate sampling locations and analyses. The reduction in sampling included eliminating stations TPBBSW-1 and -2, TPSWCCS-4B, -5B, -6B, and -6T, reducing the frequency of analysis of certain parameters, and eliminating sampling for metals and most tracer constituents. Samples continued to be collected and analyzed for sodium, chloride, and tritium every quarter, and ions and nutrients were measured twice a year during the semi-annual events for both groundwater and surface water (Tables 3.0-1 and 3.0-2). TDS in groundwater and silica in surface water continued to be collected in the Post-Uprate semi-annual events.

Much of the discussion during the certification of the Uprate project was related to the potential effects of hypersaline marine water from the CCS because of the temperature and salinity changes predicted from the Uprate. This continues to be of interest in the Post-Uprate, with a more specific focus on chloride, sodium, specific conductance, and tritium. It is important to note that under this Monitoring Plan, tritium is being measured only as a chemical tracer in order to determine the potential movement of CCS water. At the levels being measured, the tritium is not a public health concern. Tritium is also being routinely monitored in the CCS by the Florida Department of Health, Bureau of Radiation Control (FDOH-BRC).

Saltwater intrusion has been documented in south Miami-Dade County since the early 1900s and was noted as far as approximately 8 to 10 miles inland of the coast in the vicinity of Turkey Point by the 1950s (Klein 1957). The challenge in this southern part of the county is understanding the factors that affect the inland extent and orientation of the freshwater/saltwater interface and the current source of saltwater. A number of constituents were analyzed as part of the Pre-Uprate monitoring to better understand the geochemistry of the water from different sources and to determine whether the water from the CCS could be fingerprinted. Of all the analytes examined

(barium, iron, dissolved inorganic carbon, strontium stable isotopes (87 Sr/ 86 Sr), carbon (13 C), oxygen (87 O), hydrogen (87 O) stable isotopes and tritium), none were determined to be sufficient in tracing CCS saline water from the marine-based groundwater, with the exception of tritium, which is helpful but has some limitations. Tritium is present in the CCS at concentrations well below drinking water standards, but higher than the surrounding environment. However, at lower concentrations, the source and pathway of the tritium is masked since there are also atmospheric influences. Tritium concentrations also decay over time. Further discussion of the sampling results for the Post-Uprate period is provided below. Where appropriate and meaningful, Post-Uprate and Pre-Uprate results are compared.

3.1 GROUNDWATER QUALITY

3.1.1 Sample Collection and Analysis

Similar to the Pre-Uprate, quarterly events continued to be conducted in June and December of each year while semi-annual events occurred in March and September. Groundwater collection methods—peristaltic pump with dedicated sample collection tubing in each well (Figure 3.1-1)—were similar to the Pre-Uprate and followed the protocols outlined in the QAPP. Groundwater sampling logs from the June 2013 to March 2015 sampling events are provided in Appendix G of this report; sampling logs generated prior to June 2013 are available in previous Uprate monitoring reports (FPL 2012a, 2014a).

3.1.2 Results and Discussion

Tables 3.1-1 through 3.1-8 provide a summary of the groundwater analytical results from the June 2013 through March 2015 sampling events. Results for the sampling events from the historical monitoring wells L-3, L-5, G-21, G-28, and G-35 during the same time period are provided in Tables 3.1-9 through 3.1-16. DUS reports for all events are provided in Appendix H, and the detailed Level IV laboratory reports from TestAmerica are included in Appendix I. As chloride, sodium, specific conductance, and tritium are of particular interest, the discussion below addresses these parameters separately, followed by a discussion of other major cations, anions, and nutrients. Results were evaluated for temporal differences between the Pre- and Post-Uprate and spatial differences between sites and across depth.

While the results between Pre-Uprate and Post-Uprate can be compared, there are some differences due to differing time periods and laboratory precision that need to be considered when interpreting the results. The Post-Uprate period includes eight quarters of groundwater data collected over two wet seasons and two dry seasons. The Pre-Uprate period includes seven quarters of groundwater data with one less event in the dry season. As discussed in Section 2.1, the groundwater water quality is less influenced by daily and short-term seasonal meteorological conditions compared with surface water, which reduces some temporal variability. In addition, the laboratory reported analytical results to two significant digits in the Pre-Uprate period but changed to reporting three digits in the Post-Uprate period to aid in the analysis of the data (see Section 1.6 for more detail). However, this third digit is not considered significant and can be

misconstrued as indicating a false level of accuracy. For example, a result of 11,400 mg/L in the Post-Uprate is actually 11,000 mg/L because the data are accurate only to two digits

3.1.2.1 Chloride, Sodium, Specific Conductance, and Tritium

Temporal Differences

The analytical concentrations at most wells remained relatively consistent for the entire sampling period during the Post-Uprate period compared with the Pre-Uprate period, with the exception of three terrestrial locations (TPGW-7D, TPGW-12S, and TPGW-G-21-58) and five Biscayne Bay locations (TPGW-10M, TPGW-10D, TPGW-11D, TPGW-14M, and TPGW-14D). Figures 3.1-2 to 3.1-5 show Post-Uprate trends for chloride, sodium, specific conductance, and tritium through March 2015. Pre-Uprate ranges and averages are also graphically shown for general comparisons.

Increases in chloride, sodium, and specific conductance were first noted in TPGW-7D starting in September 2013; chloride concentrations throughout the Pre-Uprate and Interim Operating period had been below 45 mg/L chloride, but these values increased steadily to 1,960 mg/L by March 2015. This increase was observed only at depth, not in the shallow or medium wells. The cause of the increase in chloride at TPGW-7D is still unknown; the tritium values remain below or close to 20 pCi/L levels and continue to be monitored. This change does not appear to be related to the Uprate, but may be a function of regional water withdrawals/management practices, the long-term operation of the CCS, lag effects of droughts, and sea level rise.

At TPGW-12S and TPGW-G-21-58, a similar but relatively smaller magnitude increase in chloride, sodium, and specific conductance was observed in these wells during the Post-Uprate period compared with the Pre-Uprate monitoring period. At TPGW-12S, although this increase was observed in analytical values, the tritium values were lower in the Post-Uprate period. Consequently, it is unlikely that the increase in salinity at this site is an increased contribution from the CCS. At TPGW-G-21-58, there was higher chloride, sodium, specific conductance and tritium in the Post-Uprate compared to the Pre-Uprate. Closer examination showed that this data had been increasing throughout the monitoring period and did not appear to be limited to just the Post-Uprate. Therefore, the observations at TPGW-7D, TPGW-12S, and TPGW-G-21-58 likely reflect the broader landscape-scale seasonal dynamics and regional water management processes that extend beyond the plant operations, but should continue to be monitored closely.

During the Post-Uprate and starting from the Interim Operating period, a temporary increase in chloride, sodium, specific conductance, and tritium values was observed at some depths in two offshore stations, TPGW-10 and TPGW-14. At TPGW-10M, chloride values were consistent for most of the Post-Uprate compared with the Pre-Uprate and Interim Operating periods; the only exception was in December 2013, when there was a 14% increase (25,600 mg/L) from the September 2013 values (22,400 mg/L). March 2014 and all subsequent values for the last year of the Post-Uprate period were, however, within range of the Pre-Uprate chloride concentrations at this site. The tritium values in this well showed an increase during the three quarters starting in the Interim Operating period (i.e., December 2012 to June 2013), but subsequently have

returned to Pre-Uprate levels; however, the automated time-series specific conductance data for TPGW-10M shows no notable changes. Depending on the parameter at TPGW-14M and -14D, increases in chloride, sodium, specific conductance, and tritium were observed starting in December 2012 and lasted for one to three quarters; however, by March 2014, values had declined back to, or were below, Pre-Uprate levels.

The patterns of change observed at TPGW-10D were slightly different than at TPGW-10M. At this site, Post-Uprate values (range: 25,200 to 29,000 mg/L) were higher than the Pre-Uprate values (range: 21,000 to 23,000 mg/L). The values began to consistently increase in the Interim Operating period and reached a peak of 29,000 mg/L in June 2013. The values dropped by March 2015, but are still higher than those measured in the Pre-Uprate period. The automated time-series data discussed in Section 2 shows a clear and consistent increase in specific conductance in this well beginning in the Interim Operating period. A similar pattern to that observed in Post-Uprate chloride values at TPGW-10D was also observed at TPGW-11D, but to a lesser extent (Pre-Uprate: 20,000 to 24,000 mg/L; Post-Uprate: 23,400 to 25,700 mg/L). Tritium in both TPGW-10D and TPGW-11D seems to have leveled off somewhat in the last three of four quarters of monitoring.

While there is some variability in the results from one quarter to the next, the differences are generally limited and appear to reflect the variances in the aquifer and not increasing trends. As discussed above, the most notable exceptions are TPGW-7D, TPGW-10D, TPGW-11D, and TPGW-12S, which have shown an upward trend in concentrations that started during the Interim Operating period but do not appear to have been derived from the June 2013 to May 2015 Post-Uprate operations.

Spatial Differences

Well depth and/or location are factors in analytical results, which typically show higher levels of chlorides/saltwater at depth and the highest levels in wells at or close to the CCS and Biscayne Bay. Figures 3.1-6 through 3.1-9 show cross-sections of the aquifer, selected wells at the three depth intervals, and associated chloride concentrations from June 2013 through March 2015. Figures 3.1-10 through 3.1-12 show the same cross-sections with tritium concentrations from June 2013 through March 2015. For comparison, the ranges of Pre-Uprate values are shown. Except for a few wells, the analytical results of Post-Uprate samples for tritium and chloride are in the same range as Pre-Uprate samples for tritium and chloride as well as sodium.

The upper 10 to 20 ft of the aquifer is much fresher west of the ID, and this freshwater zone generally increases in depth towards Tallahassee Road. None of the Uprate monitoring wells were screened less than 20 ft below ground surface, but this pattern is observed from the quarterly profiling of the older historic wells (see Section 6), most of which are screened just below the ground surface with the only exception being TPGW-G-28, which is screened to 16.6 ft below the top of casing. Annual induction logging by the USGS (Appendix E) shows this fresher water lens. Monitoring wells TPGW-4S (-21.0 ft NAVD 88), TPGW-5S (-23.2 ft NAVD 88) and TPGW-6S (-20.7 ft NAVD 88) typically have chloride values less than 500 mg/L, while outer perimeter wells TPGW-7S (-20.4 ft NAVD 88), TPGW-7M (-20.4 ft NAVD 88), TPGW-8

all depths (down to -47.2 ft NAVD 88), and TPGW-9 all depths (down to -44.4 ft NAVD 88) have chloride values less than the drinking water standard of 250 mg/L.

Well clusters immediately to the west of the CCS (TPGW-1, TPGW-2, L-3, and L-5) had chloride levels in the intermediate and deep wells that were generally between 27,000 and 34,000 mg/L. Farther to the west, shallow wells located near the northern half of Tallahassee Road (TPGW-5S, TPGW-6S, and G-21-18) had chloride levels consistently less than 250 mg/L (only one value above 250 mg/L), while the intermediate and deep wells ranged from 4,600 to 12,000 mg/L. Historical wells G-28 and TPGW-4, which are located along the southern half of Tallahassee Road, were more saline in the shallow zone than wells to the north. The chloride concentration in those wells ranged from 420 to 3,300 mg/L. Since the earthen plug was put across the Card Sound Road Canal in the spring of 2014, it appears that the chloride concentrations at TPGW-G-28 have declined. This plug serves as a barrier to saltwater intrusion migrating inland during the dry season. The magnitude of sodium and chloride decrease was more prominent at 18 feet than at 58 feet, although both depths are trending lower.

The highest chloride concentrations were observed at TPGW-13. Chloride concentrations in the CCS wells (TPGW-13S, TPGW-13M, and TPGW-13D) ranged from 26,000 to 38,000 mg/L (average \pm standard deviation = 34,476 \pm 2,750 mg/L) during the Pre-Uprate period from June 2010 through December 2011; in the Post-Uprate, values ranged from 30,700 to 39,800 mg/L (average \pm standard deviation = 34,004 \pm 2,282 mg/L) (Table 3.1-17). Similarly, the trends in sodium and specific conductance mirrored the patterns observed for chloride. The lowest chloride concentrations were observed at TPGW-9 (10 to 30 mg/L) where the range across all depths did not deviate more than 20 mg/L over the entire five years across all three depths.

For most of the stations, chloride concentrations were generally lowest in the shallow well compared with the medium and deep wells. One exception to that pattern was observed in TPGW-13. Similar to the Pre-Uprate, the highest concentrations of chloride were consistently found in the shallow well during the Post-Uprate (Tables 3.1-1 to 3.1-8). Values in TPGW-13S were 3% to 11% higher than at either the medium (TPGW-13M) or deep (TPGW-13D) wells in the Pre-Uprate, and this pattern remained consistent (i.e., 4% to 12% higher at TPGW-13S relative to the other two depths) for the Post-Uprate. TPGW-13M and -13D values were either similar or varied only by a few percent between seasons, and there did not appear to be a significant difference among seasons in the groundwater chloride below the CCS. This general pattern was also observed in sodium and tritium data, although the specific conductance patterns indicated that TPGW-13M tended to have the lowest value among all three wells; this slight difference may be due to the higher analytical data resolution as compared to the field specific conductance readings.

For both the Pre-Uprate and Post-Uprate time periods, Biscayne Bay wells all had lower chloride concentrations than those in TPGW-13. Chloride, sodium, and specific conductance concentrations in the shallow wells (TPGW-10S, -11S, and -14S) overlapped with the ranges observed for Biscayne Bay surface water stations. Tritium levels of TPGW-10S and TPGW-11S were similar to surface water Biscayne Bay levels, with the exception of September 2013 (31 \pm 6 pCi/L) at TPGW-10S and September 2014 (61 \pm 7 pCi/L) at TPGW-11S. Tritium levels at

TPGW-14S were higher than those measured in other wells, although the chloride, sodium, and specific conductance were similar to Biscayne Bay marine waters. Tritium values at TPGW-14S during the Post-Uprate (99 to 174 pCi/L) were nonetheless lower than Pre-Uprate (159 to 247 pCi/L), although the chloride and sodium values remained constant.

In nearly all instances, high specific conductance groundwater values (more than 1,275 μ S/cm) in the study area are attributable to marine water and high chlorides. The SFWMD and FPL have historically used specific conductance to calculate chloride. In the case of TPGW-8, which shows a high pH over the monitoring period (> 11), the specific conductance in the shallow zone ranged from 2,051 to 2,570 μ S/cm, but the chloride values are much less than theoretically calculated if the water were from a marine-fresh mixture. The specific conductance at this location appears to be influenced by calcium (discussed below). However, the intermediate and deep zones at TPGW-8 do not exhibit such a pattern and have a pH around 7 and specific conductance values below 1,275 μ S/cm.

3.1.2.2 Ions

Ionic (calcium, magnesium, potassium, sodium, boron, strontium, bromide, chloride, fluoride, and sulfate) concentrations at the TPGW sites appeared to correspond with specific conductance values in most of the wells. For most of the stations, there were no appreciable differences in the Pre- to Post-Uprate range in values, with the exception of the sites previously noted above. The patterns and trends of ions were similar to the trends observed for specific conductance, and the range of values observed remained consistent for most of the sites during this monitoring period.

Table 3.1-18 shows the range of values for all the ions for the entire Pre- and Post-Uprate monitoring period combined. Groundwater stations are grouped based on whether the groundwater would be characterized as predominantly marine or predominantly fresh, and the results from TPGW-13 are noted separately for comparison purposes (see Table 3.2-10 for the range of ions in surface water).

Although the overall ionic concentrations between the Pre-Uprate and the Post-Uprate periods are consistent, average cationic abundance in the groundwater differed between wells, depending on whether the water was predominantly marine or predominantly fresh (Table 3.1-17). The freshwater wells are predominantly influenced by the limestone bedrock, while the marine and hypersaline wells are influenced by Biscayne Bay. In the freshwater wells, the relative abundance of cations was Na> Ca > Mg> K > Sr > B, while in the marine and hypersaline wells, the order of abundance was Na> Mg > Ca > K > Sr > B. The anionic abundance (i.e., $Cl > SO_4^{2-} > Br > F$), however, did not differ among the water sources.

Several ions have been problematic during chromatogram analyses because of their low concentrations compared to the other peaks. For example, fluoride has been one of the most problematic ions in meeting project MDLs due to interference by the chloride peak. A second analyte of issue is sulfide—the majority of values for most locations have been reported as non-detect at the elevated detection limit. Starting in September 2013, the fluoride method was changed to SM 4500 F C (previously EPA Method 300). The sulfide method change to EPA

Method 376.2 (previously SM 4500 S) was delayed due to laboratory issues until September 2014. Since the method change, the MDLs for non-detected results have consistently been below QAPP requirements, resulting in more usable data. The analysis for some of the nutrient constituents (e.g., orthophosphate, nitrate-nitrite), however, has continued to yield some uncertainty due, in part, to interferences with the high saline water; thus, care should be taken in interpreting the results.

To assess the differences of major ionic constituents in the groundwater on a broad spatial and temporal scale for the entire Post-Uprate period, a tri-linear diagram was generated using the average ionic values from June 2013 to March 2015 (Figure 3.1-13). The data are consistent with the Pre-Uprate monitoring period and show that there is clear separation between the freshwater stations (TPGW-7, TPGW-8, TPGW-9) and the marine-influenced stations. The marine-influenced stations include all depths from TPGW-1, TPGW-2, TPGW-3, TPGW-10 through TPGW-14 (including TPGW-13 in the CCS), TPGW-4, TPGW-5, and TPGW-6 at medium and deep depths. The shallow stations at TPGW-4, TPGW-5, and TPGW-6, as well as the shallow depths at L-3 and L-5 plot out close to the freshwater well clusters but, depending on the thickness of the freshwater lens, can vary across the spectrum between the freshwater and marine-influenced clusters (Figure 3.1-13).

Consistent with the Pre-Uprate time period, the Post-Uprate ionic concentrations in the marine stations (TPGW-10, TPGW-11, and TPGW-14) were similar to the values observed by Reich et al. (2006) from a well in the middle of Biscayne Bay (Mid-Bay: well GW-MB), despite the increase in ionic concentrations observed at TPGW-10D and TPGW-11D. Calcium/magnesium (Ca/Mg) ratios are lowest in CCS waters and highest in groundwater-derived freshwater. The sodium/chloride (Na/Cl) ratios for freshwater are, however, higher than that of marine water. The well cluster in the CCS, TPGW-13, had higher ionic concentrations than those of the marine stations, but reflected a marine-driven source of water based on the ionic chemistry.

The only outlier in ionic ratios and concentrations was TPGW-8S. The Ca/Mg ratio at this well has been much higher than all the other wells in the Pre-Uprate and Interim Operating period (range: 220 to 11,000), indicating a significant imbalance in ionic ratios, driven by an excess of calcium in the water. These values, combined with consistently high pH and high alkalinity in this well indicates that it may be a result of grout contamination during well construction or some other up-gradient influence. A decline in Ca/Mg ratios at this site within the last year (i.e., September 2014 (36.7) and March 2015 (75.2) despite a high pH, indicates that this site is trending towards ionic ratios more like groundwater in other wells.

3.1.2.3 Nutrients

The same general patterns in nutrient concentrations were observed in the Post-Uprate period compared with the Pre-Uprate for the five stations monitored (TPGW-1, -2, -10, -13, -14). Although there were slight variations in concentrations over time, the range of nutrient concentrations observed and the broader overall landscape and vertical patterns remained the same, with a few notable exceptions as discussed below. Figures 3.1-14 and 3.1-15 show nutrient results for the September 2013, March 2014, September 2014, and March 2015 sampling

events. Additionally, per Agency request, a one-time sampling of TPGW-4 to TPGW-9 was conducted to assess the nutrient concentrations at these six well clusters at all depths. A brief discussion of these results is provided below.

Temporally, there was no difference in the well nutrient concentrations for most of the stations, with the exception of TPGW-10D. Nutrient concentrations tracked the patterns observed for the ions and specific conductance (i.e., higher nutrient concentrations with increasing ionic values). Consequently, at TPGW-10D, an increase in ionic values and specific conductance was matched by an increase in nutrient concentrations.

Similar to the Pre-Uprate period, there were no clear vertical trends observed within a well cluster in the Post-Uprate. Well clusters TPGW-1, -2, and -10 did not clearly show any differences in nutrient concentrations with depth; although, for a few of the quarters, nitrogen species concentrations were higher in the shallow well at TPGW-13 and lower at TPGW-14S and -14M compared with TPGW-14D for some events. Nitrogen concentrations were generally lower in the shallow wells compared with the deeper wells; one exception was TPGW-13, where the highest values were observed at the shallow depth for three of the four events during the Post-Uprate period. Nutrient concentrations were generally lower at well clusters TPGW-4 through TPGW-9 (sampled one time) compared with the well clusters closer to the CCS.

However, there was an anomaly in un-ionized ammonia values at TPGW-8S where the concentrations were about 100 times greater than at the other stations because of the high pH values at this site. The high un-ionized ammonia concentrations may be a function of the pH level at this site and not a real reflection of the nutrient status in the surrounding groundwater at this area. As a result of the high pH observed at TPGW-8S contributing to elevated ammonia levels, there was also an increase of TKN values—ammonia is an organic species that constitutes part of the TKN and, consequently, the total nitrogen (TN) was also elevated. A review of the TKN data showed no increase from the Pre-Uprate to the Post-Uprate at TPGW-1, TPGW-2, or TPGW-14. There was, however, an increase in TKN at TPGW-10D, consistent with the increase in specific conductance, and an increase in TPGW-13S, similar to the ionic patterns observed.

The nitrate-nitrite (NOx) data from all sites were also not different between the Pre- and the Post-Uprate monitoring period. Most of the values were low and below instrument MDLs for the entire duration with a few exceptions where notable data were observed. One such occurrence was during the Pre-Uprate, when TPGW-1D and TPGW-2D showed very high levels of NOx (8.00 and 5.30 mg/L respectively) in March 2011, and these two inorganic nitrogen forms composed more than 69% of the TN. After 10 events of sampling, however, it appears that these NOx values may have originally been in error, as they have never been observed to approach those levels at that site since. In fact, most of the NOx observed has been below MDLs, ranging from 0.005 to 0.50 mg/L. The second event of notable NOx data was when the laboratory used an MDL of 0.5 mg/L during September 2014. Setting the MDL at 0.5 mg/L is significant, as this value is then used to determine the TN for each sample and, consequently, the TN is biased upwards by 0.5 mg/L due to the NOx values being non-detect and reported at that high level.

TN values in well clusters TPGW-1, TPGW-2, and TPGW-13 and the deep well at TPGW-14 ranged from 1.4 mg/L to 9.8 mg/L during the Pre-Uprate; this is much higher compared with the Post-Uprate, where values ranged from 1.24 to 5.0 mg/L. However, if the two Pre-Uprate outlier values were omitted from the interpretation of the data, the time-series TN show that there is no difference between the Pre-Uprate and Post-Uprate values at TPGW-1 and TPGW-2. The TN concentrations are consistently lower in well cluster TPGW-10 compared with the other four well clusters mentioned above; however, the concentrations were higher in this well cluster during the Post-Uprate. While the highest concentrations tended to be found in the deep or medium depth wells at TPGW-1, -2, -10, and 14, the shallow well at well cluster TPGW-13 almost always had the highest concentration which, coupled with other data (i.e., CCS surface water data and other groundwater data), indicates that the CCS is a source of nutrients to the groundwater.

Most of the nitrogen in the wells were in organic form—more than 90% of the nitrogen was TKN with the exception of the two values observed at TPGW-1D and -2D (discussed previously) for most of the events. The only exception was during the September 2014 event when the inorganic NOx was reported with a MDL of 0.5 mg/L; this resulted in an unusually large fraction of the TN becoming inorganic.

In order to accurately compare the phosphorus data from the Pre- and Post-Uprate monitoring periods, the data from June and December 2010 OP values were eliminated because the laboratory did not conduct a blank subtraction on the samples and, consequently, biased the readings. This resulted in the comparison of two Pre-Uprate events (March and September 2011) against four Post-Uprate bi-annual events (September 2013 to March 2015). The limited dataset showed that there was no notable difference in OP ranges between the Pre- and Post-Uprate for the majority of the sites (TPGW-1S, -1M, -1D, -2D, -10M, -13D, -14S and -14D) over time, but OP decreased at TPGW-2S and -13M, and increased at TPGW-2M, -10S and -10D, -13S and -14D Post-Uprate. These patterns are not consistent within depth or across sites, and there appeared to be variation among seasons, as well. The OP values are similar to data from the USGS (Reich et al. 2006) for two wells north of the study area (onshore G3613 and Mid-Bay: SRP: 0.012 to 0.032 mg/L), although a number of the TP values obtained are higher than the USGS sites G3613 and Mid-Bay (TP: 0.012 to 0.033 mg/L).

TP concentrations ranged from 0.004 to 0.082 mg/L in the Pre-Uprate and from 0.002 to 0.071 mg/L during the Post-Uprate. The higher TP concentrations during the Pre-Uprate are likely biased because, following laboratory audits in early 2012, the SOP for TP was modified to account for saline interference seen in some samples. The method and instrumentation employed can only partially separate TP from a saline baseline shift. The laboratory determined the automated integration performed was quantifying the elevated saline baseline rather that the TP peak. The method modification with the new integration technique occurred prior to the September 2012 semiannual event. The TP results for saline samples since the modification have been markedly lower, in general. Therefore, the TP results in all the saline samples prior to this modification should be considered biased high.

3.2 SURFACE WATER QUALITY

3.2.1 Sample Collection and Analysis

During the Post-Uprate period, surface water data were collected from 18 stations (27 surface water samples per event plus QA/QC samples). The sampling methods followed FDEP protocols and remained the same as described in the Comprehensive Pre-Uprate Report (FPL 2012a); samples are still being collected from 1 ft below the top (T) and 1 ft above the bottom (B) unless the water depths in the CCS, ID, or canals are less than 3 ft. In Biscayne Bay, regardless of water depth, all samples were collected 1 ft above the bottom. Surface water sampling logs from the June 2013 to March 2015 sampling events are provided in Appendix G of this report; sampling logs generated prior to June 2013 from previous events are available in previous Uprate monitoring reports (FPL 2011a, 2012a, 2014a).

While the results between Pre-Uprate and Post-Uprate can be compared, there are some differences due to differing time periods and laboratory precision, which need to be considered when interpreting the results. The Post-Uprate period includes eight quarters of surface water data collected over two wet seasons and two dry seasons; there are five quarters of Post-Uprate data for tritium. The Pre-Uprate period includes seven quarters of surface water data, with one less event in the dry season. As discussed in Section 2.2, the surface water quality is influenced by daily and seasonal meteorological conditions and regional water management actions. These conditions can change from year to year. As previously discussed in Section 1.6 and Section 3.1, the laboratory reported the analytical results to two significant digits in the Pre-Uprate period but increased the reporting to three digits in the Post-Uprate period; the data, however, are only accurate to two digits.

3.2.2 Results and Discussion

Tables 3.2-1 through 3.2-8 provide a summary of the surface water analytical results from June 2013 through March 2015. DUS reports for each event are provided in Appendix H, and detailed Level IV laboratory reports from TestAmerica are included in Appendix I. Additionally, surface water stations have been grouped based on their general characteristics and location; Tables 3.2-9 and 3.2-10 show the range (minimum and maximum), average, and standard deviation of these water bodies from the Pre-Uprate period and the Post-Uprate period.

3.2.2.1 Chloride, Sodium, Specific Conductance, and Tritium

Temporal Differences

Chloride, sodium, specific conductance, and tritium varied seasonally with rainfall for most of the sites around the CCS. Stations in and around the CCS also fluctuated seasonally for chloride, sodium, and specific conductance, but not always for tritium—this reflected an influence of plant operations in addition to seasonal factors. Although there are differences observed between the Pre-Uprate and Post-Uprate, these differences are smaller than the seasonal changes observed. Specific conductance is an indicator of the salt content in the water and generally tracks the

chloride and sodium values. Figures 3.2-1, 3.2-2, 3.2-3, and 3.2-4 show Post-Uprate trends for chloride, sodium, specific conductance, and tritium for sampling events from June 2013 through March 2015. Pre-Uprate ranges and averages are also graphically shown for general comparison.

Per the FDEP, surface waters with chloride concentrations greater than 1,500 mg/L are defined as predominantly marine, while those with less than 1,500 mg/L are defined as predominantly fresh (F.A.C. 62-302.200). Based on this definition, most of the stations are in predominately marine waters; only TPSWC-1, -2, -3 and -6 would be considered predominantly freshwater stations, with the exception of June 2011 and June 2014 at the end of that year's dry season when chloride values were in excess of 1,500 mg/L at two of the three stations. The Class II/III criteria for specific conductance in freshwater (excluding consideration of background values) is less than 1,275 μ S/cm. Values greater than 1,275 μ S/cm in a coastal environment are often viewed as potentially having some marine influence.

The following discussion is focused mostly on chloride, sodium, and tritium results. Specific conductance is referred to on occasion; however, because it generally tracks the key ionic concentration patterns and specific conductance was discussed in detail in Section 2, further discussion of this parameter is not needed.

Chloride concentrations in the CCS ranged from 29,800 mg/L to 54,600 mg/L in the Post-Uprate and 27,000 mg/L to 39,000 mg/L during the Pre-Uprate. The average chloride concentration was more than 30% higher in the Post-Uprate period. The increase in chloride concentrations was observed starting in March 2013, but the highest values were not observed in the CCS until June 2014. Subsequent to June 2014, the chloride values declined to 40,000 mg/L at the end of the rainy season and with the freshening effort; however, values started to increase in 2015 and in March 2015 values were still above 50,000 mg/L for most of the stations. The sodium concentrations in the CCS ranged from 15,300 mg/L to 28,500 mg/L in the Post-Uprate and 15,000 mg/l to 22,000 mg/L during the Pre-Uprate, with an overall increase similar to chloride in the Post-Uprate period. A similar pattern of increase was observed for specific conductance, as well, but not for tritium, as the tritium values randomly fluctuate from less than 2,000 pCi/L to over 10,000 pCi/L, regardless of the Pre- or Post-Uprate period. Both the Pre- and Post-Uprate chloride and sodium data indicate that the driest time during the year appears to be early June of each year, when evaporation rates are high and the rainy season has not begun yet. However, the tritium values within the CCS appear to be decoupled from atmospheric conditions, as the tritium concentrations in the CCS are a function of plant activity.

The CCS is characterized as typically having hypersaline water, with specific conductance values from the quarterly sampling ranging between 68,344 μ S/cm to 88,902 μ S/cm during the Pre-Uprate and higher values (74,015 μ S/cm to 124,486 μ S/cm) in the Post-Uprate. During the same period, the surrounding Biscayne Bay stations had lower values than the CCS during both periods (Pre-Uprate: 30,586 μ S/cm to 66,855 μ S/cm; Post-Uprate: 42,086 μ S/cm to 60,067 μ S/cm). The highest value in Biscayne Bay was recorded in June 2011; hypersaline conditions do naturally occur in the Bay during dry conditions as noted at BNP automated station BISCA6 (>1 mile north of the CCS), which showed a specific conductance value of more than 66,000

 μ S/cm in June 2011, a period of marked drought (Biscayne National Park 2012). It appears that the Biscayne Bay stations are influenced primarily by seasonal patterns in rainfall and water availability.

The Biscayne Bay surface water chloride concentration ranged from 11,000 mg/L to 28,000 mg/L in the Pre-Uprate period and 15,400 mg/L to 22,500 mg/L in the Post-Uprate period. For comparison, the chloride concentration for seawater at 3.5 % salinity is 19,600 mg/L (Turekian 1968). Sodium concentrations ranged from 5,400 mg/L to 14,000 mg/L in the Pre-Uprate period and 8,610 mg/L to 12,800 mg/L in the Post-Uprate period. Average sodium levels in seawater are 11,050 mg/L at a salinity of 35 on the PSS-78 scale (Millero 1996), but can approach 14,000 mg/L in Biscayne Bay, depending on location and time of year (Reich et al. 2006). Average chloride and sodium values for the Pre-Uprate and Post-Uprate periods are provided in Table 3.2-10 and are typical of what is observed in the Bay; however, caution should be used in making direct interpretations regarding the difference between the two periods because the number of events and stations included are not the same. A more direct comparison of chloride and sodium concentrations between the two periods is with TPBBSW-3 over an equivalent period of time. The results indicate that average chloride and sodium concentrations for Pre- and Post-Uprate periods are essentially the same (less than several percent differences between time periods). Based on the ionic concentrations of surface water close to the plant being similar to what is observed in other parts of the Bay and the presence of very low tritium values in the Bay (typically less than 20 pCi/L), the CCS does not appear to have an influence on the Biscayne Bay surface waters at these locations, which are representative of the open Bay. The low tritium values in Biscayne Bay pore water as previously reported in the Initial Ecological Characterization Report (FPL 2012b) indicate there is not a groundwater pathway of CCS water into Biscayne Bay.

The ID samples (TPSWID-1, TPSWID-2, and TPSWID-3) of chloride ranged from 660 mg/L to 9210 mg/L, and the sodium samples ranged from 323 mg/L to 3,870 mg/L in the Post-Uprate period. As noted in Section 2.2, the salinity at these stations increases during periods of ID pumping. The maximum Post-Uprate values are well below those observed for June 2011 in the Pre-Uprate period, when concentrations of chloride and sodium reached 27,000 mg/L and 14,000 mg/L respectively. The highest tritium values (5677 pCi/L) recorded in the ID were also observed in June 2011. This was towards the end of a rather dry season and, based on the automated data, this reflects the most saline conditions recorded. Since manual sampling is conducted quarterly, the spikes in salinity/ionic concentrations associated with pumping may not always be captured in the quarterly analytical data. What is notable is the drop in all the values after pumping, indicating freshening of the ID, presumably via groundwater inflows and rainfall. Consequently, the ID waters are influenced by seasonal conditions as well as ID pumping during the dry season.

Chloride and sodium concentrations in the L-31E Canal (TPSWC-1, TPSWC-2, and TPSWC-3) typically varied with the season, ranging from 54 mg/L to 4,020 mg/L for chloride and 31 mg/L to 2,100 mg/L for sodium during the Post-Uprate period. The highest values typically occurred during the dry season, which is the same regardless of whether the data are from the Pre-Uprate, the Interim Operating, or the Post-Uprate period. Like the ID, the highest chloride and sodium

values were measured in June 2011. The tritium values observed in the L-31E Canal are within the range of values previously observed in the evaporation pan near TPGW-2, which is close to the canal. The tritium values in L-31E (8 pCi/L to 161 pCi/L Post-Uprate and 8 pCi/L to 125 pCi/L Pre-Uprate) are, in general, higher during the dry season, but the values are within the ranges observed in the nearby evaporation pan at TPGW-2 (see Section 3.4). While it cannot be conclusively determined there is no influence of the CCS on the L-31E via a groundwater pathway, there is reasonable evidence that the tritium concentrations measured in L-31E are via atmospheric deposition. The increase in salt concentration may be due more to a thinning of the freshwater lens in the dry season and historically saltier water entering into the L-31E Canal.

At surface water station TPSWC-4, located on the S-20 Canal, the ionic concentrations fluctuated and are affected by freshwater releases from the upstream S-20 structure. For example, in the Post-Uprate period the chloride concentrations ranged from 5,240 mg/L to 22,400 mg/L. A wider range of values were observed in the Pre-Uprate (460 mg/L to 28,000 mg/L). One change that occurred between the Pre- and Post-Uprate periods was the construction of a fixed weir downstream of TPSWC-4, so the site is no longer as tidally influenced. It is unclear how that weir structure is influencing the water quality/salinity because the canal is still brackish to marine. TPSWC-4 intermittently continues to have tritium levels an order of magnitude or two higher compared with L-31E stations and Biscayne Bay during the Post-Uprate, similar to the Pre-Uprate period. As previously reported, the tritium data, coupled with temperature data, indicate a potential influence from the CCS (movement of groundwater through the narrow berm separating the two water bodies).

Surface water station TPSWC-5 exhibited chloride and sodium values similar to the Biscayne Bay stations in the Post-Uprate (less than 4% difference). The maximum chloride and sodium values recorded at TPSWC-5 in the Post-Uprate period were 22,900 mg/L and 12,500 mg/L, respectively. Pre-Uprate maximum values were higher, at 27,000 mg/L and 13,000 mg/L. Tritium values in the Post-Uprate period averaged 45 pCi/L, with a maximum value of 140 PCi/L in June 2013. In the Pre-Uprate period, the average tritium concentration was more than 400 pCi/L at TPSWC-5B and that average was partially skewed by several high values, including 946 pCi/L in December 2010. While it is suspected that there is a greater potential for vapor exchange at TPSWC-5 as well as at TPSWC-4, an assessment of other data indicates there may be some groundwater exchange from the CCS into these immediately adjacent canals. As discussed in the Comprehensive Pre-Uprate Report (FPL 2012a), data from this site (occasionally an order of magnitude or two higher tritium levels, higher temperatures, and specific conductance specifically at depth) indicate some intermittent groundwater influence from the CCS. These effects were, however, less evident in the Post-Uprate period.

Spatial Differences

Spatially, in addition to differences among the water bodies observed, there were also differences between depths in the L-31E and ID, but not the CCS, which is a fairly well-mixed water body; only bottom samples were collected in Biscayne Bay. In the L-31E, S-20, ID, and Card Sound Canal, bottom samples frequently had higher chloride, sodium, specific conductance, and/or tritium values compared with samples from the top.

Several other interesting trends were also observed at some of the stations across the landscape in the five years of monitoring. The manual monitoring station, TPSWC-6, located on the Card Sound Road Canal, had chloride levels consistently below 200 mg/L, classifying this canal as freshwater, with one exception in June 2011. In this June sampling event, the chloride level at TPSWC-6 (bottom sample) was 25,000 mg/L. This station is about 6 miles inland, but the USGS has previously indicated that they found hypersaline conditions past this station as far as Florida City several years ago during the last drought (Wacker 2010). Subsequent to an earthen plug being installed by Miami-Dade County, the chloride values have remained less than 300 mg/L.

The chloride data at the L-31E stations (TPSWC-1, TPSWC-2, TPSWC-3) show that this canal is predominantly freshwater (less than 1,500 mg/L) throughout the year, with a few notable exceptions in the Post-Uprate period—June 2014 at TPSWC-2 and TPSWC-3, and March 2015 at TPSWC-3. In June 2014, a maximum chloride value of 4,020 mg/L was recorded at TPSWC-3, but in March 2014, the chloride concentration was only 301 mg/L. The spatial trends for sodium are similar to chloride. Station TPSWC-1 also consistently shows smaller seasonal increases in chloride and sodium concentrations relative to TPSWC-2 and TPSWC-3. In June 2014, the values increased, most notably at TPSWC-2 and TPSWC-3. Due to the earthen plug installed by SFWMD, the segment of the canal where TPSWC-1 is located is blocked from portions of the canal where TPSWC-2 and TPSWC-3 are located during the dry season. This explains why the chloride values are lower in this northern reach of the L-31E Canal. Of interest, though, are the tritium values for TPSWC-1, which are higher 75% of the time (June 2010 to March 2015) in comparison to TPSWC-3, despite the fact that over 75% of the time TPSWC-1 has a lower concentration of salt constituents. Furthermore, at the end of the dry season during June 2011 and June 2014, the highest chloride concentrations and specific conductance values were recorded at TPSWC-3 and were close to an order of magnitude higher than those recorded at TPSWC-1. Despite this difference, the tritium values were slightly higher still at TPSWC-1 and were not commensurately higher than other sampling events. This results in a poor correlation with tritium and salt water constituents and indicates a marine source other than the CCS may be influencing the L-31E Canal in the dry season.

3.2.2.2 Ions and Silica

Surface water ions (calcium, magnesium, potassium, sodium, boron, strontium, bromide, chloride, fluoride, and sulfate), similar to specific conductance, vary seasonally and with rainfall. The marine-derived waters occur in the following cationic abundance: Na > Mg > Ca \geq K > Sr > B, while the freshwater sources have the following concentrations: Na > Ca \geq Mg > K > Sr > B. There were no differences observed in the anionic abundances regardless of water source. Broadly, there are two distinct types of water—marine-derived waters that include the Biscayne Bay and CCS stations and fresher/groundwater-derived waters, which are waters found in the L-31E Canal and the ID. The high abundance of calcium in the freshwater is indicative of waters that have been in contact with the carbonate groundwater.

The tri-linear diagram of averaged Post-Uprate data further supported this water source identification, as there was distinct separation between the freshwater L-31E stations (TPSWC-1, -2, -3) and the marine-influenced stations (TPBBSW, TPSWCCS, TPSWC-4, and TPSWC-5). The TPSWID stations were intermediate to both types of water (Figure 3.2-5), although the data showed some variation depending on season.

Temporally, there were no broad landscape-scale differences in ionic ratios among the L-31E, Biscayne Bay, and ID stations between the Pre- and Post-Uprate monitoring periods. Differences observed for some parameters showed a trend of higher values in the Pre-Uprate period compared with the Post-Uprate period, a trend attributable to the drought conditions in June 2011. No drought conditions were observed during the Post-Uprate period. The tri-linear diagram from the Post-Uprate (Figure 3.2-5) is very similar to that of the Pre-Uprate (FPL 2012a), further reinforcing the idea of consistency between both time periods.

There were, however, a few sites located in different water bodies (i.e., S-20 and Card Sound Road Canals) where management practices resulted in a change in ionic values. TPSWC-4 and TPSWC-6 were part of the FPL Mitigation Bank and Miami-Dade County restoration efforts, respectively. A weir and downstream water control structures were placed on the S-20 Canal in early 2014, resulting in greater water retention and higher specific conductance water being recorded year-round. At TPSWC-6, an earthen plug was put into the Card Sound Road Canal in April 2013 that eliminated saltwater from the Bay moving up into this canal.

Although ionic concentrations varied to a greater degree than at the groundwater sites due to seasonal effects, the relative total concentrations of ions were consistent among the stations sampled. Ion concentrations at the Biscayne Bay surface water sites were similar in range to the values observed in Biscayne Bay by Reich et al. (2006). Ion concentrations in the CCS were significantly higher than those of Biscayne Bay, while the TPSWC and TPSWID ions were generally lower in concentration but varied seasonally with freshwater influence. Ionic concentrations were observed in the following order for the entire duration of monitoring: CCS > BB > ID > L-31E.

There were also differences among some sites between the top and bottom stations. These differences were generally in the L-31E (TPSWC-1, -2, -3), ID (TPSWID-1, -2, -3), S-20 (TPSWC-4), and Card Sound Canal (TPSWC-5), but not at the CCS sites due to the mixing/constant water flow. Where differences were observed, the bottom sites tended to have higher ionic concentrations than the sites at the top. This stratification tends to occur in deeper water bodies that do not have significant mixing and exchange.

Silica was measured only in the CCS and was higher in the Post-Uprate period compared with the Pre-Uprate period. Silica concentrations were fairly consistent among sites in sampling events because the CCS is well mixed. Silica ranged from 2.53 mg/L to 12.4 mg/L; (average: 7.07 mg/L), while the Pre-Uprate values were lower and ranged from 0.25 to 5.20 mg/L (average: 1.28 mg/L). In September 2013, silica concentrations averaged 2.65 mg/L, but increased in March 2014 to an average of 5.51 mg/L and remained at more than 10 mg/L for

September 2014 and March 2015. These observations are consistent with the increase in algae concentration in the CCS over the same time period.

Due to a method change in the fluoride and sulfide analyses, no Post-Uprate comparisons could be reasonably made.

3.2.2.3 Nutrients

Figures 3.2-6 and 3.2-7 show nutrient surface water results for TN and TP for both the Pre- and Post-Uprate periods. Nutrient values were lowest in Biscayne Bay, followed by the L-31E Canal, the ID, and CCS. This ranking order remained consistent for both the Pre- and Post-Uprate time periods.

Differences in specific nutrients over time in the different water bodies have been observed. In Biscayne Bay, there was an increase in ammonia and NOx in the Post-Uprate from the Pre-Uprate period. Ammonia values were highest in the CCS in September 2014, coincident with the algal bloom that occurred in the late fall; NOx values were also higher during this same quarter although this was an artifact of high MDLs at the laboratory. Similarly, in the CCS, there was a marked increase in ammonia and TKN and, consequently, the TN during the Post-Uprate. The laboratory is refining its process to ensure high MDLs will not bias future TN calculations.

Throughout the monitoring period, most of the nitrogen at all the stations was TKN (i.e., organic nitrogen). This was a landscape-scale observation regardless of location. A slight decrease in organic content was observed in September 2014, but this is an artifact of the high MDL in NOx analyses for this event. These organic to inorganic ratios are similar to observations by Reich et al. (2006) and the analytical data from the Florida International University Water Quality Monitoring Network (FIU-WQMN) (FIU 2012).

TP values did not show any appreciable difference between the Pre- and Post-Uprate, with the exception of the CCS and Biscayne Bay sites. At the CCS sites, TP increased during the Post-Uprate (average: 0.060 mg/L) compared with the Pre-Uprate (average: 0.028 mg/L). As noted in Section 3.1.2.3, TP results in saline samples prior to September 2012 should be considered biased high due to saline interference in some samples; this implies the Pre-Uprate average was lower than results indicate. Following laboratory audits in early 2012, the SOP for TP was modified. The September 2012 and March 2013 TP results showed a marked decrease from prior events, likely due to the SOP modification to address interference from salt in the saline and hypersaline samples. Subsequent to the modification, an increase was observed starting in September 2013 (average: 0.048 mg/L) and another increase was observed in September 2014 (average: 0.087 mg/L). The sources of these inputs have not been able to be defined. Since September 2014, however, TP values have declined, likely due to a combination of algae bloom cessation and hydrologic inputs.

For Biscayne Bay sites, the inverse pattern was observed: TP values were slightly lower in the Post-Uprate (average: 0.004 mg/L) compared with the Pre-Uprate (average: 0.03 mg/L). The highest Pre-Uprate values were recorded in September 2011, which followed a prolonged dry

season. The wet season following drought conditions has been shown to increase TP concentrations in coastal wetlands of South Florida (Childers 2005). As noted above, however, TP results in saline samples prior to September 2012 should be considered biased high. The level of bias is not, however, likely to be large enough to account for the Pre- and Post-Uprate average differences noted above. Therefore, even with these biases, the TP results are still considered slightly lower in the Post-Uprate period in Biscayne Bay.

In reviewing TP concentrations in Biscayne Bay, Reich et al. (2006) reported that TP in the mid-Bay area ranged from 0.005 to 0.045 mg/L, while the FIU-WQMN reported an average value of <0.01 mg/L over a 13-year period (1993 to 2005) at Site 122, offshore and southwest of Turkey Point. In addition, the FIU-WQMN data showed a range of 0 to 0.008 mg/L for OP just offshore of Turkey Point, while Reich et al. (2006) observed a wider range, from about 0.020 to 0.041 mg/L north of Turkey Point in the middle of the Bay.

As previously determined, a new method was applied to OP in March 2011 since the majority of the previous results showed OP being higher than TP, which is not possible. Although the method has been implemented, there are still periodic issues with the OP values. Consequently, the data are still suspect and the process is still being improved by the laboratory.

3.3 RAINFALL SAMPLE RESULTS

Tritium is being used as a tracer to assess the extent of CCS water via a groundwater pathway and, as part of this monitoring, it is important to understand the potential contribution of tritium to the surrounding water bodies around the CCS via atmospheric deposition.

The rainfall collectors are designed to capture rain and prevent its evaporation. There is a layer of mineral oil (approximately 1 inch thick) that floats on top of the rainfall collectors and essentially reduces or eliminates vapor exchange. The collector does not monitor the input of vapor-phase tritium, but is rather a cumulative composite of precipitation over three-month periods.

3.3.1 Sample Collection and Analysis

Rainfall is collected quarterly at seven locations (Figure 1.1-3). During the Post-Uprate period samples were collected in June 2013, September 2013, December 2013, March 2014, June 2014, September 2014, December 2014, and March 2015, which is consistent with the quarterly sampling schedule. Over the years, collectors at several stations have been periodically stolen or vandalized, resulting in the inability to collect a sample. Table 3.3-1 provides a summary of the samples collected from each rainfall collector and the status of sample receipt.

3.3.2 Results and Discussion

Rainfall tritium concentrations for the eight quarters of the Post-Uprate period did not exceed any values observed in the Pre-Uprate or Interim Operating period. Consistent with previous years' trends, tritium concentrations were highest at TPRF-2, which is closest to the CCS, and

lowest at TPRF-7 and -8, which are the farthest stations from the canals. Values at TPRF-2 ranged from 7.3 to 109.9 pCi/L, while values at TPRF-7 and -8 were generally below 20 pCi/L. Table 3.3-2 shows tritium results available for the Post-Uprate data as well as Pre-Uprate results. Over the entire monitoring period (2011-2015), tritium concentrations ranged from lower than "background" levels (20 pCi/L as defined by the Agencies) to 109.9 pCi/L (1-sigma of 8.0 pCi/L). Single higher values were observed at TPRF-2 during the Pre-Uprate (109.9 pCi/L in March 2012) and at TPRF-3 (68.5 pCi/L in March 2013), but elevated values have not been observed at these sites since those two events. This indicates that the tritium concentrations are influenced by some difference in predominant rainfall directionality around the CCS.

There were also seasonal patterns to the data—values at TPRF-2, -3, -4, and -8 tended to be highest in the March sampling event (rainfall from late December to early March) and June sampling event (rainfall from late March to early June) when it was the driest. This resulted in the highest average tritium values across all stations during that time period (36.2 pCi/L for March 2012). In the dry season, the tritium values from each site were highly divergent, while values from all sites would then converge during the wet season due to the increased and more regular rainfall. For example, in September 2013, tritium only ranged from 3.6 to 12.6 pCi/L (Table 3.3-2). Regardless of season, however, most values at sites farther from the CCS (i.e., TPRF-4, -5, -7, -8, and -12) were generally below 20 pCi/L, indicating limited influence most of the time. On a few occasions, however, the rainfall tritium values at TPRF-4, -5, -7,-8, and -12 were above 20 pCi/L, including a value of 37.3 pCi/L at TPRF-5. The results indicate there is an atmospheric pathway for tritium via rainfall that has the potential to influence tritium results for surface water and porewater.

It is important to note that under this monitoring plan, tritium is being measured only as a chemical tracer in order to determine potential movement of CCS water. At the levels being measured, tritium is not a public health concern.

3.4 EVAPORATION PANS

Following development of the Monitoring Plan, FPL identified that, in addition to rainfall, there is a likely an exchange of tritium between water vapor in the atmosphere and water in its liquid form in the environment. Consequently, evaporation pans were installed at different distances from the CCS to assess the input of vapor-phase tritium into the surrounding water bodies and the extent of vapor exchange between the atmosphere and the standing water. While the original intent of the evaporation pans was to assess the mechanism of vapor exchange, the pans are actually being used to assess the potential extent of atmospheric exchanges, whether it is from vapor exchange or rainfall. Since water in the evaporation pan is exposed to the same atmospheric conditions as the surrounding environment, the water reflects the amount of tritium that could be influencing a water body or shallow porewater via an atmospheric pathway. Tritium concentrations in water vapor in the atmosphere, the amount and timing of rainfall, and the tritium concentration in rain influences the values observed in the evaporation pan.

After monthly samples are collected from the evaporation pans, the water level is adjusted to a prescribed level by adding tap water, which has a low tritium concentration (effectively 0 to 30

pCi/L). The tritium concentration drops immediately once the source water is added since, in most instances, tritium source water concentrations are lower than concentrations in the evaporation pans. In the days that follow, the tritium concentration in the pan can increase due to exchange with the atmosphere and because the water level declines via evaporation.

In the absence of rain, the tritium concentration in the pan will eventually reach equilibrium with atmospheric water vapor. However, if a rain event occurs during the equilibration period, the tritium concentration in the pan can decline as a result of dilution by low tritium water. After the rain event, the tritium concentration in the pan will once again start moving towards the equilibrium concentration. Thus, the concentration of tritium in the pan is dynamic during the equilibration period and can change dramatically after rain events. This dynamic behavior is likely to be similar to surface water, such as low flow marsh water or canals near the CCS, as tritium vapor exchange and dilution by rainwater continuously affect the tritium concentration.

3.4.1 Sample Collection and Analysis

Evaporation pans were installed adjacent to well clusters TPGW-2, TPGW-3, TPGW-5, and TPGW-12 (TPEVP-2, TPEVP-3, TPEVP-5, and TPEVP-12); TPEVP-13 was set up at the same latitude as TPGW-13 on the raised berm just west of the main north-south Canal Road. Samples were collected monthly from all sites for tritium analysis. The source water used to fill the evaporation pans is analyzed for tritium since that concentration needs to be considered. For the Post-Uprate period, evaporation pan data are currently only available for June 2013 through September 2014. Table 3.4-1 provides a summary of the samples collected from each evaporation pan and the status of sample receipt. Evaporation pan data after September 2014 are still pending.

3.4.2 Results and Discussion

Analytical results from the initiation of sample collection in March 2011 through September 2014 are included in this report for completeness of comparison. Table 3.4-2 and Figure 3.4-1 show the tritium concentrations in the evaporation pans each month after approximately 30 to 45 days of being exposed to tritium vapor in the atmosphere, just before source water is added. The reporting record is almost complete, with the exception of the last eight months (October 2014 to May 2015) of data, due to the backlog of samples to be analyzed by the USGS.

Overall, tritium results in the evaporation pans appear to be driven by proximity to the CCS and by regional seasonal conditions. The concentrations range from non-detect to 1,610 pCi/L at TPEVP-13 and are highly dependent on distance from the CCS and the time of year (Figure 3.4-1). The values at the stations within (TPEVP-13) and in close proximity to (TPEVP-2) the CCS also appear to be influenced by the CCS tritium concentrations to some degree. A relationship of vapor exchange with distance from the CCS was consistent for the Pre-Uprate period, Interim Operating period, and the Post-Uprate period. While TPEVP-13 always had the highest tritium concentration, TPEVP-2, which is less than 1,000 ft away from the CCS, typically exhibited the second-highest concentrations. This evaporation pan is located close to the L-31E Canal. The maximum value at TPEVP-2 was 550 pCi/L. At station TPEVP-5, which is located more than

3 miles west of the CCS, the tritium values ranged from 0.0 pCi/L to 63.1 pCi/L. The patterns at TPEVP-3 and -12 are intermediate to TPEVP-2 and -5. The highest values were always observed at the driest times of the year (i.e., in February and March). Consequently, it appears that the values observed are primarily a function of seasonally influenced meteorological conditions, coupled with proximity to the CCS.

In comparison with the rainfall data alone, the evaporative data indicate that vapor phase exchanges of tritium may be more significant than rainfall effects; however, both rainfall and evaporative exchanges can result in tritium concentrations in excess of 20 pCi/L, particularly in the surface water, porewater, and very shallow groundwater. Atmospheric influences of tritium could exceed 200 pCi/L to 300 pCi/L within 1 mile of the CCS and be around 50 pCi/L at distances more than 3 miles from the CCS. These influences must be considered when assessing whether the tritium concentrations observed in a particular media are the result of a groundwater pathway or an atmospheric pathway.

It is important to note that under this monitoring plan, tritium is being measured only as a chemical tracer in order to determine potential movement of CCS water. At the levels being measured, tritium is not a public health concern.

TABLES

Table 3.0-1. Groundwater and Surface Water Sampling Locations and Events

Event	Locations	Source Category ¹
	TPGW-1, -2, -3, -4, -5, -6, -7, -8, -9, -10, -11, -12, -13, -14; L-3, -5; G-21, -28, -35	GW
Quarterly	TPBBSW – 1, 2, 3, 4, 5 TPSWC – 1, 2, 3, 4, 5, 6 TPSWID – 1, 2, 3	SW
	TPSWCCS – 1, 2, 3, 4, 5, 6, 7	CCS
	TPGW-3, 4, 5, 6, 7, 8, 9, 11, 13, L-3, L-5, G-21, G-28, G-35	GW
	TPGW – 1, 2, 10, 13, 14	GW - quarterly analytes plus nutrients
Semi-annual	TPBBSW – 1, 2, 3, 4, 5 TPSWC – 1, 2, 3, 4, 5, 6 TPSWID – 1, 2, 3	SW - quarterly analytes plus nutrients
	TPSWCCS – 1, 2, 3, 4, 5, 6, 7	CCS - quarterly analytes plus nutrients

Notes:

Key:

CCS = Cooling Canal System.

GW = Groundwater.

ORP = Oxidation reduction potential.

SW = Surface Water.

TPBBSW = Biscayne Bay Surface Water.

TPGW = Turkey Point Groundwater.

TPSWC = Turkey Point Surface Water Canal.

TPSWID = Turkey Point Surface Water Interceptor Ditch.

TPSWCCS = Turkey Point Surface Water Cooling Canal System.

¹ = Analytes from Table 3.0-2 plus field parameters (temperature, specific conductivity, DO, percent oxygen saturation, pH, ORP, and salinity) at all stations.

Table 3.0-2. Analytes Measured in Groundwater, Surface Water, and the Cooling Canal System

	Monitoring Plan			
Analyte	(Table 2-1) Label	GW	SW	ccs
Chloride (Cl ⁻)	Ions	Q	Q	Q
Sodium (Na ⁺)	Ions	Q	Q	Q
Other Anions (SO ₄ ²⁻ , F, Br ⁻)	Ions	SA	SA	SA
Other Cations (Ca ²⁺ , Mg ²⁺ , K ⁺ , Sr ²⁺ , B ⁺)	Ions	SA	SA	SA
Alkalinity	Ions	SA	SA	SA
Ammonia + unionized	Nutrients	SA	SA	SA
Nitrate/Nitrite	Nutrients	SA	SA	SA
Total Kjeldahl Nitrogen	Nutrients	SA	SA	SA
Total Phosphorus	Nutrients	SA	SA	SA
Soluble Reactive Phosphorus	Nutrients	SA	SA	SA
Silica	Nutrients	-	-	SA
Sulfides	Ions	SA	SA	SA
TDS	Other	Q	-	-
Tritium	Tracer	Q	Q	Q

Key:

Q = Quarterly event.

SA = Semi-annual event.

Table 3.1-1. Summary of Groundwater Analytical Results from the June 2013 Sampling Event

		TPGW-19	S TPGW-1I	M TPGW-1	TPGW-2S	TPGW-2M	TPGW-2D	TPGW-3S	TPGW-3M	TPGW-3D	TPGW-4S	TPGW-4M	TPGW-4D	TPGW-5S	TPGW-5M	TPGW-5D
Parameter	Units	6/4/2013	6/4/2013	6/4/2013	6/7/2013	6/7/2013	6/7/2013	6/11/2013	6/11/2013	6/11/2013	6/6/2013	6/6/2013	6/6/2013	6/6/2013	6/6/2013	6/6/2013
Temperature	°C	25.75	25.76	25.88	26.22	26.78	26.74	26.08	26.19	25.97	25.4	25.37	25.23	24.11	24.13	24.11
pН	SU	6.97	7.07	6.91	7.2	6.84	6.94	6.49	6.83	6.74	6.87	7.02	6.86	7.01	6.79	6.95
Dissolved Oxygen	mg/L	0.21	0.36	0.43	0.23	0.28	0.56	J 0.88	0.36	1.09	0.6	0.64	0.74	0.39	0.73	1.19
Specific Conductance	μS/cm	54661	72371	72253	69081	75789	77111	64740	69067	69917	1670	39169	43372	1134	32517	34844
Turbidity	NTU	0.35	0.01	J 0.1	0.69	0.13	0.08	0.04	0.32	0.3	0.39	0.14	0.16	0.1	0.19	0.22
Sodium	mg/L	10900	15200	15300	16800	18900	18600	13400	14500	14700	178	7540	8800	100	6340	6650
Chloride	mg/L	20500	29800	29900	27700	30900	30000	27300	29300	33000	342	13800	16400	204	12100	12700
Total Ammonia	mg/L as N										0.783	0.585	0.497	0.19 J	0.562	0.558
Ammonium ion (NH ₄ ⁺)	mg/L										1.00	0.748	0.636	0.243	0.72	0.714
Unionized NH ₃	mg/L										0.00411	0.00432	0.00252	0.00125	0.00224	0.00321
Nitrate/Nitrite	mg/L as N										0.0054 U	0.0054 U	0.0054 U	0.0054 U	0.0054	U 0.0054 U
TKN	mg/L										1.28	1.13	0.903	0.519	0.829	0.843
TN	mg/L										1.29	1.14	0.908	0.524	0.834	0.848
ortho-Phosphate	mg/L										0.0612 J	0.035 J	0.0327 J	0.0381	0.0419	J 0.039 J
Total Phosphorus (P)	mg/L										0.0022 UJ	0.0208 J	0.0272 J	0.00398 I	0.0196	J 0.0123 J
Total Dissolved Solids	mg/L	34300	50000	48300	43300	47400	49300	42500	45300	47500	850	21300	25900	613	20800	20800
Salinity	*	36.17	49.78	49.68	47.6	52.47	53.53	43.8	47.17	47.84	J 0.84 J	24.93	27.92	0.56 J	20.37	21.92
Tritium	pCi/L (1σ)	1189 (37)	2494 (77)	2340 (81)	2820 (94)	3190 (106)	3196 (107)	517 (19)	1799 (55)	1993 (61)	6.5 (6.1)	350 (14)	482 (19)	4.1 (6.4) UJ	283 (12)	363 (14)

Laboratory results are reported with 3 digits although only the first 2 are significant figures.

* PSS-78 salinity is unitless.

Text in blue is revised.

Sample 060613-DUP1 is a duplicate of TPGW-6M. Sample 060513-DUP1 is a duplicate of TPGW-9D. Sample 061213-DUP1 is a duplicate of TPGW-14S.

°C = Degrees Celsius. DUP = Duplicate. EB= Equipment Blank FB = Field Blank.

I = Value between the MDL and PQL. μ S/cm = MicroSiemen(s) per centimeter. σ = sigma (Standard Deviation).

J = Estimated (+/- indicate bias). mg/L = Milligram(s) per liter. N = Nitrogen $NH_3 = Ammonia$.

 NH_4^+ = Ammonium ion. NTU = Nephelometric Turbidity Units(s).

pCi/L = PicoCuries per liter. SU = Standard Unit(s). TKN = Total Kjeldahl nitrogen. TN = Total nitrogen.

TPGW = Turkey Point Groundwater.

Table 3.1-1. Summary of Groundwater Analytical Results from the June 2013 Sampling Event (continued)

		TPGW-6	SS	TPGW-6	6M	060613-D	UP1	TPGW-	SD S	TPGW-7	'S	TPGW-7	M	TPGW-7	D	TPGW-	8S	TPGW-8	M	TPGW-8	D	TPGW-9	S	TPGW-	9M	TPGW-9	9D
Parameter	Units	6/6/201	3	6/6/201	3	6/6/201	3	6/6/201	3	6/5/201	3	6/5/2013	3	6/5/201	3	6/5/201	3	6/5/2013	3	6/5/2013	3	6/5/2013	3	6/5/201	3	6/5/201	3
Temperature	°C	23.84		24.04				24.35		24.26		24.44		24.43		24.36		24.1		24.26		25.04		24.47		24.39	
pН	SU	6.94		7.02				6.83		6.99		6.96		7.04		11.66		6.99		6.88		6.75		6.71		6.89	
Dissolved Oxygen	mg/L	1.13		0.85				0.23		0.2		0.5		0.32		0.74		0.81		0.25		0.28		0.74		1.2	
Specific Conductance	μS/cm	1107		22767				23691		546		559		599		1178		642		677		605		625		642	1
Turbidity	NTU	0.98		0.01	J			1.42		0.95		0.09		0.31		0.35		0.02		0.7		0.12		0.22		0.24	1
Sodium	mg/L	88.7		4130		4090		4280		19		19.8		25.6		19.1		18		25.3		10.9		11.8		15.5	
Chloride	mg/L	178		7830		8050		8270		34.8		34.1		43.2		34.9		43.8		44.6		19.5		20		27.1	
Total Ammonia	mg/L as N	0.313		0.508		0.525		0.584		0.103		0.129		0.0867		0.179		0.139		0.141		0.353		0.305		0.368	
Ammonium ion (NH ₄ ⁺)	mg/L	0.401		0.65				0.748		0.132		0.165		0.111		0.03	U	0.178		0.181		0.452		0.391		0.471	
Unionized NH ₃	mg/L	0.00173		0.00341				0.0026		0.000657		0.000777		0.000627		0.216		0.000876		0.000698		0.00137		0.00104		0.00188	1
Nitrate/Nitrite	mg/L as N	0.0054	U	0.0054	U	0.0054	U	0.0054	U	0.01		0.00578	I	0.0141		0.00736	I	0.0054	U	0.0155		0.00871	I	0.0135		0.0239	
TKN	mg/L	0.849		0.523	J	0.767	J	0.712		0.973		1.24		3.43		11.8		0.326		0.471		0.81		0.678		0.793	1
TN	mg/L	0.854		0.528				0.717		0.983		1.25		3.44		11.8		0.331		0.487		0.819		0.692		0.817	1
ortho-Phosphate	mg/L	0.0544	J	0.0372	J	0.0365		0.0376	J	0.0014	U	0.00209	I	0.00229	I	0.0014	U	0.00149	I	0.00173	I	0.00665	I	0.00451	I	0.0014	U
Total Phosphorus (P)	mg/L	0.00332	IJ	0.013	J	0.0126		0.0131	J	0.00621	I	0.00658	I	0.00715	I	0.0044	U	0.0103	I	0.0112	I	0.0131	I	0.0383		0.0137	I
Total Dissolved Solids	mg/L	540		12800		13700		13900		264		296		304		280	J	332		352		300		332		332	
Salinity	*	0.55	J	13.74				14.35		0.26	J	0.27	J	0.29	J	0.58	J	0.31	J	0.33	J	0.29	J	0.3	J	0.31	J
Tritium	pCi/L (1σ)	14.9 (6.4)		3.1 (6.0)	UJ	8.2 (6.0)		7.6 (6.0)		6.1 (6.3)	UJ	8.0 (4.8)		-1.6 (6.3)	UJ	6.7 (4.8)		2.9 (4.7)	UJ	4.1 (4.7)	UJ	12.3 (4.6)		6.1 (4.7)		3.6 (4.7)	UJ

Laboratory results are reported with 3 digits although only the first 2 are significant figures.

* PSS-78 salinity is unitless.

Text in blue is revised.

Sample 060613-DUP1 is a duplicate of TPGW-6M. Sample 060513-DUP1 is a duplicate of TPGW-9D. Sample 061213-DUP1 is a duplicate of TPGW-14S.

KEY:

°C = Degrees Celsius. DUP = Duplicate. EB= Equipment Blank FB = Field Blank.

I = Value between the MDL and PQL.

 μ S/cm = MicroSiemen(s) per centimeter. σ = sigma (Standard Deviation). J = Estimated (+/- indicate bias). mg/L = Milligram(s) per liter.

N = Nitrogen NH₃ = Ammonia.

 NH_4^+ = Ammonium ion.

NTU = Nephelometric Turbidity Units(s).

pCi/L = PicoCuries per liter. SU = Standard Unit(s). TKN = Total Kjeldahl nitrogen.

TN = Total nitrogen.

TPGW = Turkey Point Groundwater.

Table 3.1-1. Summary of Groundwater Analytical Results from the June 2013 Sampling Event (continued)

		060513-D	UP1	TPGW-10	S	TPGW-10	M	TPGW-10	D	TPGW-11S	TPGW-1	1M	TPGW-11	D	TPGW-12	S	TPGW-12M		TPGW-12D	TPGW-13	S	TPGW-13N	Λ	TPGW-13D
Parameter	Units	6/5/201	3	6/13/2013	3	6/13/2013	3	6/13/2013	3	6/12/2013	6/12/20	13	6/12/201	3	6/4/2013		6/4/2013		6/4/2013	6/11/2013		6/11/2013		6/11/2013
Temperature	°C			26.58		26.61		26.29		25.94	26.08		26.27		26.21		26.33		26.19	29.57		29.19		29.44
pН	SU			7.53		7.48		6.69		6.79	6.58		6.74		6.51		6.81		7.14	6.73		6.84		6.86
Dissolved Oxygen	mg/L			0.3		0.25		0.34		0.08	0.05		0.2		0.67		0.44		0.16	0.33		0.24		0.66
Specific Conductance	μS/cm			52399		55198		65776		54830	56758		61576		45468		63156		55782	83609	J	79528		80552
Turbidity	NTU			0.27		0.23		0.29		0.4	0.44		0.41		0.4		0.3		0.38	0.11		0.12		0.26
Sodium	mg/L	15.3		10700		11600		13700		11400	11800		12900		8970		12800		13300	18100		17000		17100
Chloride	mg/L	25.2		23200		23800		29000		24300	23000		25700		16800		24700		25100	39800	J	37200		36600
Total Ammonia	mg/L as N	0.398																						
Ammonium ion (NH ₄ ⁺)	mg/L																							
Unionized NH ₃	mg/L																							
Nitrate/Nitrite	mg/L as N	0.0054	U																					
TKN	mg/L	0.754																						
TN	mg/L																							
ortho-Phosphate	mg/L	0.0014	U																					
Total Phosphorus (P)	mg/L	0.0022	U																					
Total Dissolved Solids	mg/L	340		37000		37300		43500		36100	37200		41900		27100		41600		13300	58500		55600		55400
Salinity	*			34.47		36.55		44.6		36.29	37.74		41.38		29.41		42.58		44.61	58.69	J	55.38		56.21
Tritium	pCi/L (1σ)	-3.3 (6.2)	UJ	-0.2 (7.4)	UJ	88.4 (8.9)		1204 (40)		-1.3 (7.5) UJ	109.5 (9.4)		764.4 (30)		152 (7.7)		1503 (47)	13	47 (48)	4582 (137)		3379 (101)		3554 (107)

Laboratory results are reported with 3 digits although only the first 2 are significant figures.

* PSS-78 salinity is unitless.

Text in blue is revised.

Sample 060613-DUP1 is a duplicate of TPGW-6M. Sample 060513-DUP1 is a duplicate of TPGW-9D. Sample 061213-DUP1 is a duplicate of TPGW-14S.

KEY:

°C = Degrees Celsius.
DUP = Duplicate.
EB= Equipment Blank
FB = Field Blank.

I = Value between the MDL and PQL.

 μ S/cm = MicroSiemen(s) per centimeter. σ = sigma (Standard Deviation).

J = Estimated (+/- indicate bias). mg/L = Milligram(s) per liter. N = Nitrogen

NH₃ = Ammonia. NH₄⁺ = Ammonium ion.

NTU = Nephelometric Turbidity Units(s).

pCi/L = PicoCuries per liter. SU = Standard Unit(s). TKN = Total Kjeldahl nitrogen.

TN = Total nitrogen.

TPGW = Turkey Point Groundwater.

Table 3.1-1. Summary of Groundwater Analytical Results from the June 2013 Sampling Event (continued)

		TPGW-	148	061213-DI	JP1	TPGW-14	ŀМ	TPGW-14	D	060413-F	B1	060513-F	В1	060613-F	B1	060713-1	FB1	061013-F	B1	061113-1	EB1	061213-F	B1	061313-F	B1
Parameter	Units	6/12/20	13	6/12/201	13	6/12/201	3	6/12/201	3	6/4/201	3	6/5/201	3	6/6/201	3	6/7/201	13	6/10/201	3	6/11/20	13	6/12/201	3	6/13/20	3
Temperature	°C	26.77				27.18		27.3																	
pН	SU	6.73				6.78		6.68																	
Dissolved Oxygen	mg/L	0.13				0.2		0.27																	
Specific Conductance	μS/cm	57630				63204		73522																	
Turbidity	NTU	0.04				0.4		0.06																	
Sodium	mg/L	11900		12500		13100		15900		0.31	U	0.31	U	0.31	U	0.31	U	0.31	U	0.31	U	0.31	U	0.31	U
Chloride	mg/L	24400		24600		27700		32900		0.25	U	0.25	U	0.25	U	0.25	U	0.25	U	0.25	U	0.25	U	0.25	U
Total Ammonia	mg/L as N											0.026	U	0.0309	I										
Ammonium ion (NH ₄ ⁺)	mg/L																								
Unionized NH ₃	mg/L																								
Nitrate/Nitrite	mg/L as N											0.0054	U	0.0054	U										
TKN	mg/L											0.236		0.15	U										
TN	mg/L																								
ortho-Phosphate	mg/L											0.0014	U	0.0014	U										
Total Phosphorus (P)	mg/L											0.0022	U	0.0022	U										
Total Dissolved Solids	mg/L	38900		38000		43200		51600				5	U	5	U			5	U	5	U	5	U		
Salinity	*	38.37				42.59		50.64																	
Tritium	pCi/L (1σ)	172 (11)		178 (11)	,	739 (30)		2592 (85)		-9.7 (4.7)	UJ	-4.2 (4.8)	UJ	-5.5 (5.9)	UJ	3.4 (5.2)	UJ	-7.8 (5.8)	UJ	0.9 (5.2)	UJ	-14.9 (7.2)	UJ	-6.6 (7.2)	UJ

Laboratory results are reported with 3 digits although only the first 2 are significant figures.

Text in blue is revised.

Sample 060613-DUP1 is a duplicate of TPGW-6M. Sample 060513-DUP1 is a duplicate of TPGW-9D. Sample 061213-DUP1 is a duplicate of TPGW-14S.

KEY:

°C = Degrees Celsius.

DUP = Duplicate.

EB= Equipment Blank

FB = Field Blank.

I = Value between the MDL and PQL. μS/cm = MicroSiemen(s) per centimeter.

 σ = sigma (Standard Deviation).

J = Estimated (+/- indicate bias). mg/L = Milligram(s) per liter.

N = Nitrogen NH₃ = Ammonia.

NH₄⁺ = Ammonium ion.

 $NTU = Nephelometric\ Turbidity\ Units(s).$

pCi/L = PicoCuries per liter. SU = Standard Unit(s). TKN = Total Kjeldahl nitrogen.

TN = Total nitrogen.

TPGW = Turkey Point Groundwater.

^{*} PSS-78 salinity is unitless.

Table 3.1-2. Summary of Groundwater Analytical Results from the September 2013 Sampling Event

		TPGW-1	S	TPGW-1M		TPGW-1D		TPGW-2S		TPGW-2M		091113-DU	P	TPGW-2D		TPGW-38	3	TPGW-3M		TPGW-3D		TPGW-4S	
Parameter	Units	09/06/201	3	09/06/2013	3	09/06/2013		09/11/2013		09/11/2013	3	09/11/2013	3	09/11/2013	3	09/11/201	3	09/11/2013		09/11/2013		09/03/2013	
Temperature	°C	26.68		26.74		27.10		26.08		26.48				26.77		26.70		26.61		26.79		25.60	
pН	SU	6.99		6.94		6.99		7.12		6.89				6.74		6.63		6.90		6.77		6.65	
Dissolved Oxygen	mg/L	0.33		0.40		1.07		0.10		0.09				0.95	J	0.20		0.19		1.93	J	0.47	
Specific Conductance	μS/cm	34093		72181		70477		66453		75066				77475		63967		67890		70817		1815	
Turbidity	NTU	0.45		0.29		0.24		0.79		0.11				0.09		0.07		0.11		0.28		0.30	
Silica, dissolved	mg/L																						
Calcium	mg/L	411		644		653		1080	J	669	J	667		673		653		624		639		139	
Magnesium	mg/L	726		1610	J-	1650	J-	1210	J	1680	J	1690		1730		1460		1550		1590		18.6	
Potassium	mg/L	241		592	J+	614	J+	527	J	614	J	613		628		509		558		569		4.04	
Sodium	mg/L	6290		14700		14300		13900	J	15900	J	15800		16200		13300		14300		14300		189	
Boron	mg/L	2.29		5.83		5.81		5.24		6.33		6.35		6.46		5.05		5.7		5.83		0.0667	
Strontium	mg/L	6.09		10.8		11.1		13.2		13.5		13.6		13.4		10.8		11.8		11.9		1.3	
Bromide	mg/L	45.2	J	92.5		101	J	94.8	J	107	J	108		111	J	91.8		96.5		98.3		1.30	
Chloride	mg/L	13500	J	28800		31300	J	28100	J	31800	J	32000		33500	J	27100		28800		29400		400	
Fluoride	mg/L	0.198	J	0.233	J-	0.251	J-	0.173	J	0.231	J	0.234	J	0.221	J	0.0240	U	0.182	J	0.183	J	0.0900	1
Sulfate	mg/L	1570	J	3660		3880	J	3340	J	3900	J	3910		4050	J	3400		3550		3650		9.40	
Total Ammonia	mg/L as N	0.948		1.60		1.55		1.57		1.93		1.86		1.85									
Ammonium ion (NH ₄ ⁺)	mg/L	1.21		2.05		1.98		2.00		2.47				2.37									
Unionized NH ₃	mg/L	0.00716		0.0108		0.0121		0.0153		0.0114				0.00793									
Nitrate/Nitrite	mg/L as N	0.0270	U	0.0280	I	0.0270	U	0.0270	U	0.0299		0.0227		0.0270	U								
TKN	mg/L	1.73	J	2.65	J	2.75	J	2.62		2.64		2.61		3.16							1		
TN	mg/L	1.76	J	2.68	J	2.78	J	2.65		2.67		2.63		3.19									
ortho-Phosphate	mg/L	0.0222		0.00340	I	0.0447	J	0.0104		0.0358	J	0.0356		0.0343	J								
Total Phosphorus (P)	mg/L	0.0282		0.0346		0.0346	J	0.0131		0.0204	J	0.0218		0.0169	J								
Alkalinity	mg/L	291	J	183		183	J	103	J	194	J	194		193	J	406		234		224		332	
Bicarbonate Alkalinity	mg/L as HCO ₃	291	J	183		183	J	103	J	194	J	194		193	J	406		234		224		332	
Sulfide	mg/L	1.46		1.00	U	1.38		1.24		1.01		1.09		1.01		11.0		1.17		1.63		1.00 U	U
Total Dissolved Solids	mg/L	20900		49800		49000		43200		53600		51400		51800		41100		44700		45200		900	
Salinity	*	21.35		49.6		48.24		45.13		51.9				53.82		43.2		46.23		48.51		0.9	J
Tritium	pCi/L (1σ)	533.1 (20.5)		2691.7 (87.9)		2743.4 (88.6)		3229.5 (102.0		3023.3 (92.7)		2321.5 (78.4)		3173.8 (99.5)		437.1 (16.6)		1762.1 (55.4)		1915.6 (61.4)		11.3 (6.9)	J

Laboratory anion and cation results are reported with 3 digits although only the first 2 are significant figures.

Text in Blue is revised.

* PSS-78 salinity is unitless.

Sample 090413-DUP1 is a duplicate of TPGW-8M. Sample 091113-DUP1 is a duplicate of TPGW-2M.

KEY:

°C = Degrees Celsius.

 μ S/cm = MicroSiemen(s) per centimeter.

 σ = sigma (Standard Deviation).

DUP = Duplicate.

EB = Equipment Blank.

FB = Field Blank.

 $HCO_3 = Bicarbonate$

I = Value between the MDL and PQL. J = Estimated (+/- indicate bias).

mg/L = Milligram(s) per liter.

N = Nitrogen $NH_3 = Ammonia.$

 NH_4^+ = Ammonium ion.

NTU = Nephelometric Turbidity Units(s).

pCi/L = PicoCuries per liter. SU = Standard Unit(s). TKN = Total Kjeldahl nitrogen. TN = Total nitrogen.

TPGW = Turkey Point Groundwater.

U = Analyzed for but not detected at the reported value.

Table 3.1-2. Summary of Groundwater Analytical Results from the September 2013 Sampling Event (continued)

Parameter C			TPGW-4N		TPGW-4)	TPGW-	5 S	TPGW-5I	M	TPGW-5)	TPGW-	6S	TPGW-	6M	TPGW-	6D	TPGW-	7 S	TPGW-	7 M	TPGW-	7D	TPGW-8	8 S
PH	Parameter			3		3)13		3		3		013		013		013		013		13		13)13
Dissolved Oxygen	Temperature		25.22		25.32		25.17		24.92		25.04		24.44				24.71		24.61		24.49		24.56			i
Specific Conductance InSteam 39421 43517 1028 33043 35014 1182 22893 23830 559 553 7788 1130 J.		SU	6.94		6.75		7.16		6.64		6.99		6.75		6.87		6.69		6.95		6.96		6.90		10.77	J
Turbidity	Dissolved Oxygen	mg/L		J	0.84		0.75	J	1.20		0.93	J	0.46		0.33	J	0.30		0.28		0.20		1.05		1.48	i
Silica dissolved mg/L 591		μS/cm	39421		43517		1028		33043		35014		1182		22893		23830		539		553		738		1139	J
Calcium	Turbidity	NTU	0.53		0.39		0.47		0.40		0.34		0.10		0.53		0.10		1.99		0.00	J	0.44		0.23	
Magnesium mg/L 784 890 7.08 646 664 11.5 403 419 3.87 3.91 4.41 0.564 Potassium mg/L 700 269 5.74 150 173 4.69 102 106 7.49 7.19 5.27 9.55 Solium mg/L 7080 J. 8130 80.6 5910 J. 6170 J. 99.5 3790 J. 18.4 19.7 38.4 18.3 Boron mg/L 1.42 2.11 0.0497 I 1.02 1.25 0.0605 0.789 0.813 0.0446 I 0.0489 I 0.0602 0.043 I Strontium mg/L 7.44 7.84 1.08 7.08 7.21 1.2 7.75 7.88 0.785 0.818 0.934 0.576 Bromide mg/L 46.6 55.1 0.584 37.9 44.1 0.727 26.5 27.7 0.147 0.152 0.348 0.211 Chloride mg/L 15500 17600 170 13100 13700 208 8120 8980 35.0 36.4 90.8 34.0 Flucride mg/L 1690 1990 16.9 1340 1480 8.87 825 872 22.1 23.7 25.7 46.7 Total Ammonian mg/L 8 N mg/L mg/L	Silica, dissolved	mg/L																								i
Potassium mg/L 200 269 5.74 150 173 4.69 102 106 7.49 7.19 5.27 9.55	Calcium	mg/L	591	J-	584	J-	109		609	J-	580	J-	119		497	J-	507	J-	79.0		82.6		95.1		102	i
Sodium mg/L 7080 J 8130 80.6 5910 J 6170 J 99.5 3790 J 3790 J 18.4 19.7 38.4 18.3	Magnesium	mg/L	784		890		7.08		646		664		11.5		403		419		3.87		3.91		4.41		0.564	i
Boron mg/L 1.42 2.11 0.0497 1 1.02 1.25 0.0605 0.789 0.813 0.0446 1 0.0489 1 0.0602 0.043 1 Strontium mg/L 7.44 7.84 1.08 7.08 7.21 1.2 7.75 7.88 0.785 0.818 0.934 0.576	Potassium	mg/L	200		269		5.74		150		173		4.69		102		106		7.49		7.19		5.27		9.55	
Strontium mg/L 7.44 7.84 1.08 7.08 7.21 1.2 7.75 7.88 0.785 0.818 0.934 0.576	Sodium	mg/L	7080	J-	8130		80.6		5910	J-	6170	J-	99.5		3790	J-	3970	J-	18.4		19.7		38.4		18.3	i
Bromide mg/L 46.6 55.1 0.584 37.9 44.1 0.727 26.5 27.7 0.147 0.152 0.348 0.211 Chloride mg/L 15500 17600 170 13100 13700 208 8120 8980 35.0 36.4 90.8 34.0 Fluoride mg/L 0.125 0.131 0.112 0.119 0.128 0.120 0.133 0.118 0.114 0.112 0.0813 I Sulfate mg/L 1690 1990 16.9 1340 1480 8.87 825 872 22.1 23.7 25.7 46.7 Total Ammonia mg/L as N mg/L 228 222	Boron	mg/L	1.42		2.11		0.0497	I	1.02		1.25		0.0605		0.789		0.813		0.0446	Ι	0.0489	I	0.0602		0.043	I
Chloride mg/L 15500 17600 170 13100 13700 208 8120 8980 35.0 36.4 90.8 34.0 Fluoride mg/L 0.125 0.131 0.112 0.119 0.128 0.120 0.133 0.133 0.118 0.114 0.112 0.0813 I Sulfate mg/L 1690 1990 16.9 1340 1480 8.87 825 872 22.1 23.7 25.7 46.7 Ammonium ion (NH₄') mg/L 1	Strontium	mg/L	7.44		7.84		1.08		7.08		7.21		1.2		7.75		7.88		0.785		0.818		0.934		0.576	
Fluoride	Bromide	mg/L	46.6		55.1		0.584		37.9		44.1		0.727		26.5		27.7		0.147		0.152		0.348		0.211	i
Sulfate	Chloride	mg/L	15500		17600		170		13100		13700		208		8120		8980		35.0		36.4		90.8		34.0	i
Total Ammonia mg/L as N mg/L mg/L </td <td>Fluoride</td> <td>mg/L</td> <td>0.125</td> <td></td> <td>0.131</td> <td></td> <td>0.112</td> <td></td> <td>0.119</td> <td></td> <td>0.128</td> <td></td> <td>0.120</td> <td></td> <td>0.133</td> <td></td> <td>0.133</td> <td></td> <td>0.118</td> <td></td> <td>0.114</td> <td></td> <td>0.112</td> <td></td> <td>0.0813</td> <td>I</td>	Fluoride	mg/L	0.125		0.131		0.112		0.119		0.128		0.120		0.133		0.133		0.118		0.114		0.112		0.0813	I
Ammonium ion (NH ₄ ⁺) mg/L mg	Sulfate	mg/L	1690		1990		16.9		1340		1480		8.87		825		872		22.1		23.7		25.7		46.7	
Unionized NH ₃	Total Ammonia	mg/L as N																								
Nitrate/Nitrite	Ammonium ion (NH ₄ ⁺)	mg/L																								
TKN mg/L l <td>Unionized NH₃</td> <td>mg/L</td> <td></td>	Unionized NH ₃	mg/L																								
TN mg/L m	Nitrate/Nitrite	mg/L as N																								
ortho-Phosphate mg/L	TKN	mg/L																								
ortho-Phosphate mg/L 212 203 244 228 222 282 210 217 199 203 201 182 Bicarbonate Alkalinity mg/L as HCO ₃ 212 203 244 228 222 282 210 217 199 203 201 1.00 U Sulfide mg/L 1.00 U	TN	mg/L																								
Alkalinity mg/L 212 203 244 228 222 282 210 217 199 203 201 182 Bicarbonate Alkalinity mg/L as HCO ₃ 212 203 244 228 222 282 210 217 199 203 201 1.00 U Sulfide mg/L 1.00 U 1.00 <th< td=""><td>ortho-Phosphate</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	ortho-Phosphate																									
Bicarbonate Alkalinity mg/L as HCO ₃ 212 203 244 228 222 282 210 217 199 203 201 1.00 U Sulfide mg/L 1.00 U 1.00 U 1.00 U 1.00 U 1.00 U 1.00 U Total Dissolved Solids mg/L 24000 27300 507 19900 20500 607 13900 14000 276 284 408 307 J	Total Phosphorus (P)	mg/L																								
Sulfide mg/L 1.00 U 1.30 U 1.77 1.38 1.06 1.22 1.00 U Total Dissolved Solids mg/L 24000 27300 507 19900 20500 607 13900 14000 276 284 408 307 J	Alkalinity	mg/L	212		203		244		228		222		282		210		217		199		203		201		182	1
Total Dissolved Solids mg/L 24000 27300 507 19900 20500 607 13900 14000 276 284 408 307 J	Bicarbonate Alkalinity	mg/L as HCO ₃	212		203		244		228		222		282		210		217		199		203		201		1.00	U
	Sulfide	mg/L	1.00	U	1.00	U	1.00	U	1.00	U	1.00	U	1.30		1.00	U	1.77		1.38		1.06		1.22		1.00	U
	Total Dissolved Solids	mg/L	24000		27300		507		19900		20500		607		13900		14000		276		284		408		307	J
Saimity * 25.1 28.0 0.51 J 20.7 22.0 0.59 J 13.82 14.43 0.26 J 0.27 J 0.36 J 0.56 J	Salinity	*	25.1		28.0		0.51	J	20.7		22.0		0.59	J	13.82		14.43		0.26	J	0.27	J	0.36	J	0.56	J
Tritium pCi/L (1σ) 313.1 (14.2) 487.4 (18.3) -6.0 (6.7) UJ 301.4 (13.8) 385.3 (16.6) -5.8 (6.7) UJ 1.7 (6.9) UJ 5.7 (6.8) UJ -6.9 (6.8) UJ 9.6 (7.1) -5.2 (6.2) UJ 8.6 (6.9)	Tritium	pCi/L (1σ)	313.1 (14.2)		487.4 (18.3)		-6.0 (6.7)	UJ	301.4 (13.8)		385.3 (16.6)		-5.8 (6.7)	UJ	1.7 (6.9)	UJ	5.7 (6.8)	UJ	-6.9 (6.8)	UJ	9.6 (7.1)		-5.2 (6.2)	UJ	8.6 (6.9)	

Laboratory anion and cation results are reported with 3 digits although only the first 2 are significant figures.

Text in Blue is revised.

* PSS-78 salinity is unitless.

Sample 090413-DUP1 is a duplicate of TPGW-8M.

Sample 091113-DUP1 is a duplicate of TPGW-2M.

KEY:

°C = Degrees Celsius.

 μ S/cm = MicroSiemen(s) per centimeter.

 σ = sigma (Standard Deviation).

DUP = Duplicate.

EB = Equipment Blank.

FB = Field Blank.

 HCO_3 = Bicarbonate

I = Value between the MDL and PQL.

J = Estimated (+/- indicate bias).

mg/L = Milligram(s) per liter.

N = Nitrogen

 $NH_3 = Ammonia$.

 $NH_4^+ = Ammonium ion.$

NTU = Nephelometric Turbidity Units(s).

pCi/L = PicoCuries per liter.

SU = Standard Unit(s).

TKN = Total Kjeldahl nitrogen.

TN = Total nitrogen.

TPGW = Turkey Point Groundwater.

U = Analyzed for but not detected at the reported value.

Table 3.1-2. Summary of Groundwater Analytical Results from the September 2013 Sampling Event (continued)

		TPGW-	8M	090413-	DUP	TPGW-	8D	TPGW-9	S	TPGW-	9 M	TPGW-	9D	TPGW-10	08	TPGW-10	M	TPGW-10D		TPGW-1	18	TPGW-11	M	TPGW-11	D	TPGW-12S
Parameter	Units	09/04/2	013	09/04/2	013	09/04/20	013	09/04/20	13	09/04/20	013	09/04/20	013	09/12/20	13	09/12/201	13	09/12/2013		09/12/20)13	09/12/20	13	09/12/201	3	09/06/2013
Temperature	°C	25.01				25.25		26.10		25.78		25.65		27.48		27.46		27.23		27.19		27.24		26.71		27.05
pН	SU	6.78				6.78		6.66		6.68		6.65		7.31		7.32		6.97		6.96		6.60		6.82		6.57
Dissolved Oxygen	mg/L	0.56				0.18		0.50		0.45		0.39		0.25		0.12		0.62	J	0.46		0.75	J	0.61		0.11
Specific Conductance	μS/cm	642				681		594		639		644		51928		54309		66489		54061		58157		59926		43559
Turbidity	NTU	0.10				0.96		2.31		0.54		0.09		0.17		0.08		0.14		0.16		0.00	J	0.26		0.54
Silica, dissolved	mg/L																									
Calcium	mg/L	102		102		101		114		117		111		506		506		649		545		596		622		501
Magnesium	mg/L	3.74		3.69		5.93		2.51		3.15		3.61		1400	J-	1390	J-	1740	J-	1360	J-	1390	J-	1470	J-	968
Potassium	mg/L	9.94		9.71		8.92		4.20		6.64		3.87		486		503		626		500		498		526		330
Sodium	mg/L	17.3		17.0		26.6		8.05		12.3		15.2		12000	J-	11900	J-	15200	J-	11900	J-	12500	J-	13200	J-	8310
Boron	mg/L	0.065		0.064		0.0786		0.0346	I	0.0492	I	0.0528		5.12		5.27		6.32		5.5		5.44		5.38		3.36
Strontium	mg/L	1.03		1.01		1.05		0.811		0.968		1.14		8.83		9.43		11.8		9.33		9.84		10.7		6.89
Bromide	mg/L	0.215		0.216		0.251		0.151		0.248		0.369		71.6		75.4		91.7		75.5		78.1		84.7		55.7
Chloride	mg/L	32.6		32.9		45.6		15.8		22.5		28.0		21100		22400		26900		22300		23300		25400		17600
Fluoride	mg/L	0.0947	I	0.0939	I	0.103		0.0885	I	0.0870	I	0.0908	I	0.748	J-	0.585	J-	0.250	J-	0.780	J-	0.531	J-	0.600	J-	0.395
Sulfate	mg/L	58.7		58.5		53.9		3.09		18.1		29.7		2760		2880		3400		2890		2920		3140		2170
Total Ammonia	mg/L as N													0.413		0.298		0.796								
Ammonium ion (NH ₄ ⁺)	mg/L													0.524		0.378		1.02								
Unionized NH ₃	mg/L													0.00684		0.00504		0.00597								
Nitrate/Nitrite	mg/L as N													0.128		0.00540	U	0.00998	I							
TKN	mg/L													0.741	J	0.762	J	1.17	J							
TN	mg/L													0.87	J	0.77	J	1.18	J							
ortho-Phosphate	mg/L													0.0222	J	0.0206	J	0.0400	J							
Total Phosphorus (P)	mg/L													0.00907	IJ	0.00601	IJ	0.0135	J							
Alkalinity	mg/L	226		223		227		286		284		266		130		117		157		288		333		280		562
Bicarbonate Alkalinity	mg/L as HCO ₃	226		223		227		286		284		266		130		117		157		288		333		280		562
Sulfide	mg/L	1.00	U	1.00	U	1.00	U	1.26		1.00	U	1.00	U	5.06		1.51		3.75		13.3		10.3		12.9		17.2
Total Dissolved Solids	mg/L	356		344		368		308		332		348		38100		41300		46900		37500		40400		43200		27300
Salinity	*	0.31	J			0.33	J	0.29	J	0.31	J	0.31	J	34.07		35.86		45.13		35.68		38.75		40.11		28.01
Tritium	pCi/L (1σ)	-9.0 (6.9)	UJ	2.9 (7.5)	UJ	8.2 (6.7)		23.8 (6.9)		7.1 (6.8)		8.7 (6.6)		31.7 (6.8)		26.5 (6.7)		1248.4 (42.2)		11.0 (6.6)		142.8 (9.4)		707.5 (26.9)		114.4 (8.3)

Laboratory anion and cation results are reported with 3 digits although only the first 2 are significant figures.

Text in Blue is revised.

* PSS-78 salinity is unitless.

Sample 090413-DUP1 is a duplicate of TPGW-8M. Sample 091113-DUP1 is a duplicate of TPGW-2M.

°C = Degrees Celsius.

 μ S/cm = MicroSiemen(s) per centimeter.

 σ = sigma (Standard Deviation).

DUP = Duplicate.

EB = Equipment Blank

FB = Field Blank.

HCO₃ = Bicarbonate

I = Value between the MDL and PQL. J = Estimated (+/- indicate bias). mg/L = Milligram(s) per liter.

N = Nitrogen $NH_3 = Ammonia$.

 NH_4^+ = Ammonium ion.

NTU = Nephelometric Turbidity Units(s).

pCi/L = PicoCuries per liter. SU = Standard Unit(s). TKN = Total Kjeldahl nitrogen.

TN = Total nitrogen.

TPGW = Turkey Point Groundwater.

U = Analyzed for but not detected at the reported value.

Table 3.1-2. Summary of Groundwater Analytical Results from the September 2013 Sampling Event (continued)

		TPGW-12N	VI	TPGW-12I)	TPGW-138	;	TPGW-13N		TPGW-13D)	TPGW-14	S	TPGW-14	M	TPGW-14	D	090313-F	FB1	090413-	FB1	090613-	EB1	091113-	FB1	091213-F	FB1
Parameter	Units	09/06/2013	3	09/06/2013	3	09/06/2013	;	09/06/2013		09/06/2013		09/12/201	3	09/12/201	3	09/12/201	3	09/03/20	13	09/04/20	013	09/06/2	013	09/11/2	013	09/12/20	013
Temperature	°C	27.38		27.43		29.53		29.27		29.58		27.36		27.37		27.40											1
pН	SU	6.81		7.20		6.77		6.85		6.84		6.92		6.83		6.70											1
Dissolved Oxygen	mg/L	0.13		0.26		0.02		0.32		0.13		0.19		0.03		1.10	J										
Specific Conductance	μS/cm	65648		64449		83887		78994		80613		57102		61790		75201											i
Turbidity	NTU	0.41		1.19		1.07		0.05		0.03		0.06		0.50		0.21											·
Silica, dissolved	mg/L																					0.0500	U				
Calcium	mg/L	616		605		758	J	693		722		547		662		671		0.100	U	0.100	U	0.100	U	0.100	U	0.100	U
Magnesium	mg/L	1480	J-	1430	J-	2010	J-	1720	J-	1850	J-	1370	J-	1590	J-	1790	J-	0.0200	U	0.0200	U	0.0267	I	0.0200	U	0.0200	U
Potassium	mg/L	526	J+	523	J+	753	J+	702	J+	683	J+	484		601		652		0.190	U	0.190	U	0.190	U	0.190	U	0.190	U
Sodium	mg/L	12600		13000		17700	J	16500		16500		12100	J-	14500	J-	15500	J-	0.310	U	0.310	U	0.310	U	0.310	U	0.310	U
Boron	mg/L	4.95		4.98		7.55		6.89		6.98		5.09		6.15		6.57		0.01	U	0.01	U	0.01	U	0.01	U	0.01	U
Strontium	mg/L	9.89		9.85		13.9		14.2		13.4		9.34		11.9		13.1		0.001	U	0.001	U	0.001	U	0.001	U	0.001	U
Bromide	mg/L	85.0		89.9		122	J	113	J	116	J	79.0		84.7		108	J	0.0130	U	0.0130	U	0.0130	U	0.0130	U	0.0130	U
Chloride	mg/L	28300		27800		37300	J	34700	J	36400	J	23500		25100		32900	J	0.250	U	0.250	U	0.250	U	0.250	U	0.250	U
Fluoride	mg/L	0.243	J-	0.239	J-	0.354	J-	0.193	J-	0.212	J-	0.484	J-	0.409	J-	0.377	V J-	0.0240	U	0.0240	U	0.0240	U	0.179		0.0240	U
Sulfate	mg/L	3550		3500		4820	J	4120	J	4580	J	2980		3160		3900	J	0.250	U	0.250	U	0.250	U	0.250	U	0.250	U
Total Ammonia	mg/L as N					2.59		1.45	J+	1.73		0.479		0.972		2.08						0.0314	I			0.0262	I
Ammonium ion (NH ₄ ⁺)	mg/L					3.31		1.85	J+	2.21		0.612		1.24		2.67											
Unionized NH ₃	mg/L					0.0144		0.00950	J+	0.0113		0.00323		0.00534		0.00850											
Nitrate/Nitrite	mg/L as N					0.0402	I	0.0892		0.0482	I	0.00645	I	0.00967	I	0.00917	Ι					0.0270	U			0.00540	U
TKN	mg/L					4.27		3.04	J+	3.00		1.31	J	1.53	J	3.00	J					0.294				0.311	<u> </u>
TN	mg/L					4.31		3.13	J+	3.05		1.32	J	1.54	J	3.01	J										ī
ortho-Phosphate	mg/L					0.0500	J	0.00163	I	0.0122		0.0505	J	0.077	J	0.0612	J					0.00140	U			0.00140	U
Total Phosphorus (P)	mg/L					0.0382	J	0.0378		0.0294		0.0332	J	0.0545	J	0.024	J					0.00220	U			0.00220	U
Alkalinity	mg/L	210		193		187	J	190	J	183	J	254		278		219	J	1.00	U	1.00	U	1.00	U	1.00	U	1.00	U
Bicarbonate Alkalinity	mg/L as HCO ₃	210		193		187	J	190	J	183	J	254		278		219	J	1.00	U	1.00	U	1.00	U	1.00	U	1.00	U
Sulfide	mg/L	1.89		1.00	U	9.45		1.00	U	1.00	U	9.71		10.2		6.14		1.00	U	1.00	U	1.00	U	1.00	U	1.00	U
Total Dissolved Solids	mg/L	45600		45000		59900		54000		56000		41500		43100		52000		5.00	U	5.00	U	5.00	U	5.00	U		
Salinity	*	44.47		43.54		58.93		54.95		56.25		37.85		41.5		51.98											$\overline{}$
Tritium	pCi/L (1σ)	1761.2 (57.9)		1540.6 (52.5)		4222.6 (139.4)		3093.9 (103.3)		3348.6 (112.1)		170.5 (10.0)		616.7 (23.7)		2826.2 (94.0)		11.8 (5.7)		-6.3 (6.9)	UJ	1.6 (5.7)	UJ	2.9 (5.3)	UJ	0.6 (5.6)	UJ
		NOTES:		` /			•				•		•				•		_	/		/		/			

Laboratory anion and cation results are reported with 3 digits although only the first 2 are significant figures.

Text in Blue is revised.

* PSS-78 salinity is unitless.

Sample 090413-DUP1 is a duplicate of TPGW-8M. Sample 091113-DUP1 is a duplicate of TPGW-2M.

KEY:

°C = Degrees Celsius. μS/cm = MicroSiemen(s) per centimeter.

 σ = sigma (Standard Deviation).

DUP = Duplicate.

EB = Equipment Blank.

FB = Field Blank.

HCO₃ = Bicarbonate

I = Value between the MDL and PQL. J = Estimated (+/- indicate bias).

mg/L = Milligram(s) per liter.

N = Nitrogen

 $NH_3 = Ammonia$.

 NH_4^+ = Ammonium ion.

NTU = Nephelometric Turbidity Units(s).

pCi/L = PicoCuries per liter. SU = Standard Unit(s).

TKN = Total Kjeldahl nitrogen.

TN = Total nitrogen.

TPGW = Turkey Point Groundwater.

U = Analyzed for but not detected at the reported value.

Table 3.1-3. Summary of Groundwater Analytical Results from the December 2013 Sampling Event

		TPGW-1S	TPGW-1M	TPGW-1D	TPGW-2S	TPGW-2M	TPGW-2D	TPGW-3S	TPGW-3M	TPGW-3D	TPGW-4S	TPGW-4M	TPGW-4D
Parameter	Units	12/04/2013	12/04/2013	12/04/2013	12/05/2013	12/05/2013	12/05/2013	12/02/2013	12/02/2013	12/02/2013	12/03/2013	12/03/2013	12/03/2013
Temperature	°C	26.27	26.32	26.39	25.88	26.22	26.52	25.78	25.73	25.83	25.56	25.39	25.13
pН	SU	6.92	6.99	6.93	7.01	6.86	6.83	6.55	6.81	6.79	6.80	6.80	6.88
Dissolved Oxygen	mg/L	0.17	0.23	0.15	0.21	0.20	0.25	0.45	0.13	0.35	0.24	0.27	0.22
Specific Conductance	μS/cm	40990	71492	71410	68018	74691	75916	63968	67946	69433	2057	38730	43259
Turbidity	NTU	0.18	0.08	0.02	0.35	0.01	J 0.14	0.06	0.00 J	0.15	0.01 J	0.79	0.01 J
Sodium	mg/L	7980	15300	15100	14400	15900	16300	13400	13900	14800	228	7330	8400
Chloride	mg/L	13500	29400	29400	27300	30500	30300	25200	27400	28600	460	15100	16300
Total Dissolved Solids	mg/L	26000	48700	47700	46600	53400	54800	43300	46300	47700	1020	22900	26900
Salinity	*	26.2	49.1	49.0	46.4	51.6	52.6	43.2	46.3	47.5	1.1 J	24.6	27.8
Tritium	pCi/L (1σ)	641.8 (23.8)	2580.3 (83.9)	2359.1 (76.4)	2682.0 (89.6)	3542.1 (118.7)	3455.7 (112.4)	399.5 (14.8)	1709.7 (54.6)	1849.8 (58.7)	12.3 (4.4) J	294.2 (11.0)	459.0 (16.0)

Laboratory results are reported with 3 digits although only the first 2 are significant figures.

Text in Blue is revised.

* PSS-78 salinity is unitless.

Sample 120413-DUP1 is a duplicate of 120413-TPGW-13S.

Sample120213-DUP1 is a duplicate of 120213-TPGW-6M.

KEY:

°C = Degrees Celsius.

μS/cm = MicroSiemen(s) per centimeter.

σ = sigma (Standard Deviation). DUP = Duplicate.

EB = Equipment Blank.

FB = Field Blank.

I = Value between the MDL and PQL.

J = Estimated (+/- indicate bias).

mg/L = Milligram(s) per liter.

NTU = Nephelometric Turbidity Units(s).

pCi/L = PicoCuries per liter.

SU = Standard Unit(s).

TPGW = Turkey Point Groundwater.
U = Analyzed for but not detected at the reported value.

Table 3.1-3. Summary of Groundwater Analytical Results from the December 2013 Sampling Event (continued)

		TPGW-	5S	TPGW-5N		TPGW-5)	TPGW-	6S	TPGW-	6 M	TPGW-	6D	120413-	DUP	TPGW-	7 S	TPGW-	7M	TPGW-	7D	TPGW-	·8S	TPGW-	8M	TPGW-8	8D
Parameter	Units	12/04/20	113	12/04/2013	3	12/04/201	3	12/04/20	13	12/04/20)13	12/04/20	013	12/04/2	013	12/03/2	013	12/03/20	013	12/03/20	013	12/03/2	013	12/03/20	013	12/03/20	13
Temperature	°C	24.17		24.15		24.00		23.94		24.10		24.16				24.25		24.09		24.21		24.52		25.24		24.17	
pН	SU	7.08		6.79		6.81		7.04		6.85		6.85				7.19		7.14		6.90		11.41		6.93		7.06	
Dissolved Oxygen	mg/L	0.57		0.47		0.37		0.35		0.37		1.54				0.27		0.24		0.27		0.34		0.29		0.29	
Specific Conductance	μS/cm	1120		32585		34738		1185		22688		23614				535		558		1056		1412	J	632		669	
Turbidity	NTU	0.04		0.01	J	0.00	J	0.24		0.03		0.22				0.01	J	0.06		0.25		0.82		0.09		0.44	
Sodium	mg/L	98.5		6040		6430		103		3950		4050		4220		18.8		20.2		59.4		18.2		16.7		25.1	
Chloride	mg/L	202		11900		12500		223		7980		8350		8930		34.0		35.0		180		32.4		30.8		42.2	
Total Dissolved Solids	mg/L	613		19900		19900		600		13800		13500		13800		236		268		620		300	J	308		376	
Salinity	*	0.6	J	20.4		21.9		0.6	J	13.7		14.3				0.3	J	0.3	J	0.5	J	0.7	J	0.3	J	0.3	J
Tritium	pCi/L (1σ)	16.8 (4.4)	J	245.7 (10.1)		284.1 (10.8)		-7.3 (6.0)	UJ	4.5 (6.2)	UJ	2.8 (6.0)	UJ	3.0 (6.0)	UJ	6.1 (4.3)	J	7.5 (4.3)	J	-3.2 (6.1)	UJ	3.9 (4.3)	UJ	9.7 (4.3)	J	15.3 (4.4)	J

Laboratory results are reported with 3 digits although only the first 2 are significant figures.

Text in Blue is revised.

* PSS-78 salinity is unitless.

Sample 120413-DUP1 is a duplicate of 120413-TPGW-13S. Sample 120213-DUP1 is a duplicate of 120213-TPGW-6M.

KEY:

°C = Degrees Celsius.

 μ S/cm = MicroSiemen(s) per centimeter.

 σ = sigma (Standard Deviation).

DUP = Duplicate.

EB = Equipment Blank.

FB = Field Blank.

I = Value between the MDL and PQL.

J = Estimated (+/- indicate bias). mg/L = Milligram(s) per liter.

NTU = Nephelometric Turbidity Units(s).

pCi/L = PicoCuries per liter. SU = Standard Unit(s).

TPGW = Turkey Point Groundwater.

Table 3.1-3. Summary of Groundwater Analytical Results from the December 2013 Sampling Event (continued)

Parameter	Units	TPGW- 12/03/20		TPGW- 12/03/20		TPGW- 12/03/20	-	TPGW-1 12/11/20	0S 13	TPGW-1 12/11/20		TPGW-10I 12/11/2013		TPGW-1 12/11/20		TPGW-11 12/11/201	TPGW-11D 12/11/2013	TPGW-12S 12/05/2013	TPGW-12M 12/05/2013	TPGW-12D 12/05/2013	TPGW-13S 12/02/2013	
Temperature	°C	25.16		24.16		24.37		26.59		26.52		26.09		26.07		25.88	25.76	25.96	26.04	26.23	28.75	
pН	SU	6.80		6.92		6.83		7.15		7.16		6.99		6.82		6.62	6.73	6.54	6.77	7.10	6.84	
Dissolved Oxygen	mg/L	0.57		0.24		0.61		0.39		0.25		0.35		0.30		0.55	0.69	0.75	0.15	0.31	0.19	
Specific Conductance	μS/cm	595		621		638		52766		55326	J	65884		55215		57021	61193	43162	61327	64659	82973	
Turbidity	NTU	0.67		0.21		0.12		0.08		0.00	J	0.00	J	0.00	J	0.35	0.17	0.21	0.20	0.49	0.01	J
Sodium	mg/L	8.77		12.7		15.5		10900		11500		14300		11500		12000	12800	8180	12900	13700	17200	\Box
Chloride	mg/L	16.4		22.4		27.1		20900		25600	J	26600		23000		23000	23400	16400	24100	26200	35100	
Total Dissolved Solids	mg/L	292		324		312		34500		35300		43500		35100		38500	41400	27100	40000	43100	58900	
Salinity	*	0.3	J	0.3	J	0.3	J	34.7		36.7	J	44.7		36.6		37.9	41.1	27.8	41.2	43.7	58.2	
Tritium	pCi/L (1σ)	5.6 (4.3)	J	9.4 (4.4)	J	8.4 (4.8)	J	1.2 (5.8)	UJ	15.9 (6.4)	J	1372.6 (47.0)		10.6 (5.9)	J	126.3 (9.1)	824.1 (30.7)	124.1 (9.4)	1488.3 (52.2)	1680.3 (58.1)	4468.8 (138.9)	

Laboratory results are reported with 3 digits although only the first 2 are significant figures.

Text in Blue is revised.

* PSS-78 salinity is unitless. Sample 120413-DUP1 is a duplicate of 120413-TPGW-13S. Sample120213-DUP1 is a duplicate of 120213-TPGW-6M.

°C = Degrees Celsius.

 μ S/cm = MicroSiemen(s) per centimeter. σ = sigma (Standard Deviation).

DUP = Duplicate.

EB = Equipment Blank.

FB = Field Blank.

I = Value between the MDL and PQL.
J = Estimated (+/- indicate bias).

mg/L = Milligram(s) per liter.

NTU = Nephelometric Turbidity Units(s).

pCi/L = PicoCuries per liter. SU = Standard Unit(s).

TPGW = Turkey Point Groundwater.

Table 3.1-3. Summary of Groundwater Analytical Results from the December 2013 Sampling Event (continued)

		120213-DUP	TPGW-13	M TPGW-13D	TPGW-14	S TPGW-1	4M TPGW-	14D 1	120213-EB1	120313-F	-B1	120413-	FB1	120513-	FB1	120613-	-FB1	121113-F	FB1
Parameter	Units	12/02/2013	12/02/201	3 12/02/2013	12/11/201	3 12/11/20	13 12/11/2	013	12/02/2013	12/03/20)13	12/04/2	013	12/05/2	013	12/06/2	2013	12/11/20	13
Temperature	°C		28.80	29.01	26.36	26.44	26.18												
pН	SU		6.85	6.92	6.79	6.70	6.73												
Dissolved Oxygen	mg/L		0.10	1.10	0.36	0.34	0.39												
Specific Conductance	μS/cm		78333	80246	57523	62249	74211												
Turbidity	NTU		0.01	J 0.06	0.00	J 0.16	0.87												
Sodium	mg/L	17400	16500	16800	12000	12800	15900	(0.310 U	0.310	U	0.310	U	0.310	U	0.310	U	0.310	U
Chloride	mg/L	41800	33000	33200	22500	25500	27900	(0.250 U	0.250	U	0.250	U	0.250	U	0.250	U	0.313	I
Total Dissolved Solids	mg/L	58800	54700	55900	37100	39300	50200		5.00 U	5.00	U	5.00	U	5.00	U	5.00	U	64.0	
Salinity	*		54.4	56.0	38.3	41.9	51.2												
Tritium	pCi/L (1σ)	4004.3 (123.4)	3071.7 (95.1)	3397.0 (105.3)	173.9 (10.7)	640.1 (25.0)	2909.1 (97.	2) 8.	5 (5.0)	-0.9 (4.8)	UJ	9.9 (4.2)		-7.9 (6.5)	UJ	6.0 (6.4)	UJ	-11.9 (6.0)	UJ

Laboratory results are reported with 3 digits although only the first 2 are significant figures.

Text in Blue is revised.

* PSS-78 salinity is unitless.

Sample 120413-DUP1 is a duplicate of 120413-TPGW-13S.

Sample120213-DUP1 is a duplicate of 120213-TPGW-6M.

KEY:

°C = Degrees Celsius. μS/cm = MicroSiemen(s) per centimeter. σ = sigma (Standard Deviation).

DUP = Duplicate.

EB = Equipment Blank.

FB = Field Blank.

I = Value between the MDL and PQL.

J = Estimated (+/- indicate bias).

mg/L = Milligram(s) per liter.

NTU = Nephelometric Turbidity Units(s).

pCi/L = PicoCuries per liter. SU = Standard Unit(s).

TPGW = Turkey Point Groundwater.

Table 3.1-4. Summary of Groundwater Analytical Results from the March 2014 Sampling Event

Perameter			TPGW-18	3	TPGW-1N		TPGW-10)	TPGW-25	;	TPGW-2M		030414-DU	P	TPGW-2D		TPGW-35	3	TPGW-3N		TPGW-3E)	TPGW-	4S	TPGW-4M
PH SU 7.02 7.07 6.87 7.06 6.91 6.66 6.57 6.90 6.81 6.87 6.89	Parameter			4		4		4		4			03/04/2014	4				4		1		4		14	
Dissolved Oxygen	Temperature	°C	26.07		25.89		26.35		25.73		25.65				25.99		26.08		25.71		26.18		25.32		25.05
Specific Conductance	pН	SU	7.02		7.07		6.87		7.06		6.91				6.66		6.57		6.90				6.87		6.89
Turbidity NTU 0.27 0.34 0.23 0.11 0.10 0.09 0.06 0.07 0.02 0.15 0.02 Calcium mg/L 454 6.634 637 691 692 6.75 700 675 5632 J 646 166 579 Magnesium mg/L 999 1660 1630 1510 1760 1690 1810 1480 1540 J 1560 28.1 835 Potassium mg/L 300 602 600 554 621 611 653 516 556 J 574 5.19 201 Sodium mg/L 3300 6.66 5.99 5.96 6.51 6.48 6.85 5.02 5.78 5.90 0.08 1.52 Bromide mg/L 7.83 12.20 12.10 13.10 14.30 14.40 14.40 11.10 12.00 12.30 1.55 7.91 Bromide	Dissolved Oxygen	mg/L	0.33		0.28		0.63		0.14		0.19				0.19		0.16		0.12		0.28		0.44		0.30
Calcium mg/L 454 6.54 6.37 6.91 6.92 6.75 700 6.75 6.32 J 6.64 1.66 5.79	Specific Conductance	μS/cm	41613		70203		71364		68244	J	74618				76333		63180		67828		69489		2485		38121
Magnesium mg/L 909	Turbidity	NTU	0.27		0.34		0.23		0.11		0.10				0.09		0.06		0.07		0.02		0.15		0.02
Potassium mg/L 300 602 600 554 621 611 653 516 556 J 574 5.19 201	Calcium	mg/L	454		634		637		691		692		675		700		675		632	J	646		166		579
Sodium mg/L 8190 15300 J 15400 J 14200 15900 15800 16200 13200 14300 J 15200 J 291 7530	Magnesium	mg/L	909		1660		1630		1510		1760		1690		1810		1480		1540	J	1560		28.1		835
Boron mg/L 3.03 6.06 5.99 5.96 6.51 6.48 6.85 5.02 5.78 5.90 0.08 1.52	Potassium	mg/L	300		602		600		554		621		611		653		516		556	J	574		5.19		201
Strontium mg/L 7.83 12.00 12.10 13.10 14.30 14.00 14.40 11.10 12.00 12.30 1.55 7.91	Sodium	mg/L	8190		15300	J	15400	J+	14200		15900		15800		16200		13200		14300	J	15200	J	291		7530
Bromide mg/L 52.1 97.4 98.6 92.5 J 104.0 102.0 106.0 84.3 92.2 J 95.3 2.2 49.7	Boron	mg/L	3.03		6.06		5.99		5.96		6.51		6.48		6.85		5.02		5.78		5.90		0.08		1.52
Chloride mg/L 14700 27300 27500 27600 J 30700 30700 31000 25400 27500 J 26500 609 14000 Fluoride mg/L 0.223 0.259 J 0.281 J 0.269 J 0.270 0.243 J 0.206 J 0.194 J 0.201 J 0.099 I 0.128 Sulfate mg/L 2000 3960 3800 3830 J 4130 4380 4370 3950 4380 J 0.09 1 1.780 Total Ammonia mg/L as N 1.290 1.240 J 1.620 J- 1.490 1.940 1.920 1.240 3950 4380 J 3700 27 1780 Ammonium ion (NH ₄ *) mg/L 1.65 1.58 J 2.07 J 1.90 2.48 1.59 J 4380 J 3700 2.78 1.80 1.59 J 0.0	Strontium	mg/L	7.83		12.00		12.10		13.10		14.30		14.00		14.40		11.10		12.00		12.30		1.55		7.91
Fluoride mg/L 0.223 0.259 J 0.281 J 0.224 J 0.269 J 0.270 0.243 J 0.206 J 0.194 J 0.201 J 0.099 I 0.128	Bromide	mg/L	52.1		97.4		98.6		92.5	J	104.0		102.0		106.0		84.3		92.2	J	95.3		2.2		49.7
Sulfate mg/L 2000 3960 3800 3830 J 4130 4380 4370 3950 4380 J 3700 27 1780 Total Ammonia mg/L as N 1.290 1.240 J 1.620 J-1.490 1.940 1.920 1.240 J 3700 27 1780 Ammonium ion (NH₄¹) mg/L 1.65 1.58 J 2.07 J-1.90 2.48 1.59 1.59 J 4380 4370 3950 4380 J 3700 27 1780 Ammonium ion (NH₄¹) mg/L 1.65 1.58 J 2.07 J-1.90 2.48 1.59 1.59 J 4380 4370 3950 4380 J 4380 4370 3950 4380 J 4380 2.48 1.59 1.59 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 <th>Chloride</th> <th>mg/L</th> <th>14700</th> <th></th> <th>27300</th> <th></th> <th>27500</th> <th></th> <th>27600</th> <th>J</th> <th>30700</th> <th></th> <th>30700</th> <th></th> <th>31000</th> <th></th> <th>25400</th> <th></th> <th>27500</th> <th>J</th> <th>26500</th> <th></th> <th>609</th> <th></th> <th>14000</th>	Chloride	mg/L	14700		27300		27500		27600	J	30700		30700		31000		25400		27500	J	26500		609		14000
Total Ammonia mg/L as N 1.290 1.240 J 1.620 J- 1.490 1.940 1.920 1.240 J 1.65 I.58 J 2.07 J- 1.90 2.48 I.59 I.59 II.59 III.59	Fluoride	mg/L	0.223		0.259	J	0.281	J-	0.224	J	0.269	J	0.270		0.243	J	0.206	J	0.194	J	0.201	J-	0.099	I	0.128
Ammonium ion (NH ₄ +) mg/L 1.65 1.58 J 2.07 J 1.90 2.48 1.59 1.59	Sulfate	mg/L	2000		3960		3800		3830	J	4130		4380		4370		3950		4380	J	3700		27		1780
Unionized NH ₃ mg/L 0.01000 0.01060 J 0.00908 J 0.01240 0.01140 0.01140 0.001419 0.00419	Total Ammonia	mg/L as N	1.290		1.240	J	1.620	J-	1.490		1.940		1.920		1.240										
Nitrate/Nitrite mg/L as N 0.0270 U 0.0270 U 0.0337 I 0.0336 I 0.0316 I 0.0318 0.0318 0.0318 0.0318 0.0318 0.0318 0.0318 0.0318 0.0318 </th <th>Ammonium ion (NH₄⁺)</th> <th>mg/L</th> <th>1.65</th> <th></th> <th>1.58</th> <th>J</th> <th>2.07</th> <th>J-</th> <th>1.90</th> <th></th> <th>2.48</th> <th></th> <th></th> <th></th> <th>1.59</th> <th></th>	Ammonium ion (NH ₄ ⁺)	mg/L	1.65		1.58	J	2.07	J-	1.90		2.48				1.59										
TKN mg/L 1.83 2.23 2.20 2.06 2.88 2.75 2.78 1<	Unionized NH ₃	mg/L	0.01000		0.01060	J	0.00908	J-	0.01240		0.01140				0.00419										
TN mg/L 1.86 2.26 2.23 2.09 2.91 2.78 2.81 1 6 6 6 6 7 7 1 0.0425 1 0.0417 0.0449 1 0.0449	Nitrate/Nitrite	mg/L as N	0.0270	U	0.0270	U	0.0270	U	0.0337	I	0.0336	I	0.0316	I	0.0318	I									
ortho-Phosphate mg/L 0.0101 J 0.0460 0.0177 J 0.0425 J 0.0417 0.0449	TKN	mg/L	1.83		2.23		2.20		2.06		2.88		2.75		2.78										
Total Phosphorus (P) mg/L 0.0039 IJ 0.0022 UJ 0.0022 UJ 0.0290 J 0.0313 0.0439 I	TN	mg/L	1.86		2.26		2.23		2.09		2.91		2.78		2.81										
Alkalinity mg/L 269 182 180 185 J 202 203 197 484 241 J 223 322 211 Bicarbonate Alkalinity mg/L as HCO ₃ 269 182 180 185 J 202 203 197 484 241 J 223 322 211 Sulfide mg/L 1.00 U 1.00 U 1.00 U 1.00 U 1.00 U 2.00 Q 1.00 UQ 1.00 U 1.00 U 1.00 U 1.00 U 1.00 U 1.00 U 2.00 Q 1.00 UQ 1.00 U 1.00 U 1.00 U 1.00 U 2.00 Q 1.00 UQ 1.00 U 1.00 U 1.00 U 1.00 U 1.00 U 1.00 U 2.00 Q 1.00 UQ 1.00 U 1.	ortho-Phosphate	mg/L	0.0101	J	0.0101	J	0.0460		0.0177	J	0.0425	J	0.0417		0.0449										
Bicarbonate Alkalinity mg/L as HCO ₃ 269 182 180 185 J 202 203 197 484 241 J 223 322 211 Sulfide mg/L 1.00 U 2.3100 1.00 U 2.3100 1.00 U 2.3100 1.00 1.00 U 1.00 U 2.3100 1.00 1.00 1.00 1.00 1.00 1.00	Total Phosphorus (P)	mg/L	0.0039	IJ	0.0022	UJ	0.0570		0.0022	UJ	0.0290	J	0.0313		0.0439										
Sulfide mg/L 1.00 U 1.00 <th>Alkalinity</th> <th>mg/L</th> <th>269</th> <th></th> <th>182</th> <th></th> <th>180</th> <th></th> <th>185</th> <th>J</th> <th>202</th> <th></th> <th>203</th> <th></th> <th>197</th> <th></th> <th>484</th> <th></th> <th>241</th> <th>J</th> <th>223</th> <th></th> <th>322</th> <th></th> <th>211</th>	Alkalinity	mg/L	269		182		180		185	J	202		203		197		484		241	J	223		322		211
Total Dissolved Solids mg/L 25300 48800 48700 47800 53100 52700 55200 42000 47000 47700 1390 23100	Bicarbonate Alkalinity	mg/L as HCO ₃	269		182		180		185	J	202		203		197		484		241	J	223		322		211
	Sulfide	mg/L	1.00	U	1.00	U	1.00	U	1.00	UQ	1.00	UQ	1.00	UQ	1.00	U	22.00	Q	1.00	UQ	1.00	UQ	1.00	U	1.00 U
	Total Dissolved Solids	mg/L	25300		48800		48700		47800	_	53100		52700		55200		42000	`	47000		47700		1390		23100
	Salinity	*	26.63		48.06		48.96		46.53	J	51.56				52.93		42.61		46.22		47.5		1.27	J	24.19
Tritium pCi/L (1σ) 701.0 (24.1) 2811.7 (91.4) 2702.2 (88.3) 2443.9 (78.6) 3226.6 (103.1) 2951.6 (95.2) 3225.0 (105.5) 281.1 (95.2) 1700.5 (56.2) 1888.7 (62.4) 0.8 (6.2) UJ 337.0 (14.8)	Tritium	pCi/L (1σ)	701.0 (24.1)		2811.7 (91.4)								2951.6 (95.2)		3225.0 (105.5)		281.1 (95.2)				1888.7 (62.4)		0.8 (6.2)	UJ	

Laboratory results are reported with 3 digits although only the first 2 are significant figures.

Text in Blue is revised.

* PSS-78 salinity is unitless.

Sample 030414-DUP1 is a duplicate of TPGW-2M. Sample 031114-DUP1 is a duplicate of TPGW-7M.

KEY:

°C = Degrees Celsius.

 μ S/cm = MicroSiemen(s) per centimeter.

 σ = sigma (Standard Deviation).

DUP = Duplicate.

FB = Field Blank.

HCO₃ = Bicarbonate

I = Value between the MDL and PQL.

J = Estimated (+/- indicate bias). mg/L = Milligram(s) per liter.
N = Nitrogen

 $NH_3 = Ammonia.$

 NH_4^+ = Ammonium ion.

NTU = Nephelometric Turbidity Units(s).

pCi/L = PicoCuries per liter.

Q = Holding time exceeded. SU = Standard Unit(s). TKN = Total Kjeldahl nitrogen.

TN = Total nitrogen.

TPGW = Turkey Point Groundwater.

Table 3.1-4. Summary of Groundwater Analytical Results from the March 2014 Sampling Event (continued)

		TPGW-4I)	TPGW-	·5S	TPGW-5N		TPGW-5		TPGW-0	6S	TPGW-	6M	TPGW-6	SD	TPGW-7	7 S	TPGW-7	M_	031114-	DUP_	TPGW-	7D _	TPGW-	8S	TPGW-8	
Parameter	Units	03/10/201	4	03/11/20	014	03/11/201	4	03/11/201	4	03/05/20	14	03/05/20)14	03/05/20	14	03/11/20	14	03/11/20	14	03/11/20	014	03/11/20)14	03/10/20)14	03/10/20	14
Temperature	°C	25.20		23.87		24.04		23.80		23.84		23.93		23.92		23.50		23.40				23.48		24.06		23.80	
рН	SU	6.81		7.24		6.61		6.80		7.10		6.81		6.90		7.22		7.20				6.64		11.86		7.10	
Dissolved Oxygen	mg/L	0.66		0.53		0.79		0.48		0.35		0.73		0.21		0.37		0.37				0.97		0.43		0.45	
Specific Conductance	μS/cm	42719		1012		32620		34101		1211		22635		23241		527		534				3029		1978	J	629	
Turbidity	NTU	0.00	J	0.38		0.21		0.22		0.01	J	0.00	J	0.06		0.42		0.36				0.12		0.41		0.04	
Calcium	mg/L	558		109		578		566		124		478		494		86		85		85		261		175	J	112	
Magnesium	mg/L	944		7.2		632		687		12.1		412		439		4.27		4.04		4.04		11.5		0.02	UJ	4.18	
Potassium	mg/L	258		5.8		142		176		4.65		101		107		7.7		7.57		7.44		8.38		10.2	J	11.4	
Sodium	mg/L	8700		86		6060		6570		104		3910		4160		20		20		20		278		18	J	17	
Boron	mg/L	2.11		0.07		0.99		1.35		0.06		0.80		0.85		0.05		0.05		0.05		0.06		0.05		0.07	
Strontium	mg/L	8.12		1.07		7.37		7.80		1.23		7.97		8.23		0.84		0.83		0.82		2.64		0.62		1.13	
Bromide	mg/L	53.5		0.6		40.2		43.9		0.8		27.0		27.7		0.2		0.2		0.2		2.9		0.2	J	0.2	
Chloride	mg/L	15600		165		11300		12400		212		7740		8070		34		35		35		825		35	J	31	
Fluoride	mg/L	0.135		0.119		0.125		0.142		0.121		0.127		0.140		0.133		0.121		0.121		0.091	I	0.090	IJ	0.095	I
Sulfate	mg/L	2100		19		1320		1490		9		835		871		22		25		25		19		50	J	66	
Total Ammonia	mg/L as N																										
Ammonium ion (NH ₄ ⁺)	mg/L																										
Unionized NH ₃	mg/L																										
Nitrate/Nitrite	mg/L as N																										
TKN	mg/L																										
TN	mg/L																										
ortho-Phosphate	mg/L																										
Total Phosphorus (P)	mg/L																										
Alkalinity	mg/L	203		237		232		217		289		202	J	217	J	201		200		200		174		257	J	220	
Bicarbonate Alkalinity	mg/L as HCO3	203		237		232		217		289		202	J	217	J	210		200		200		174		1	UJ	220	
Sulfide	mg/L	1.00	U	1.00	U	1.00	U	1.00	U	1.00	U	1.00	U	1.00	U	1.00	U	1.00	U	1.00	U	1.00	U	1.00	U	1.00	U
Total Dissolved Solids	mg/L	26900		553		19300		20900		693		14700		15700		272		272		252		2200		410	J	340	
Salinity	*	27.45		0.49	J	20.38		21.39		0.6	J	13.65		14.05		0.25	J	0.26	J			1.58	J	1.01	J	0.3	J
Tritium	pCi/L (1σ)	521.8 (20.5)		-1.6 (6.1)	UJ	276.4 (12.8)		356.3 (16.8)		20.5 (5.9)		21.3 (6.0)		24.1 (6.1)		-7.9 (7.2)	UJ	2.5 (7.2)	UJ	11 (5.4)		-9.2 (6.0)	UJ	10.8 (4.0)		11.0 (4.5)	
		NOTES:						()				(-/-/	ı	. (/		()		- (/		()		(-70)					

Laboratory results are reported with 3 digits although only the first 2 are significant figures.

Text in Blue is revised.

Sample 030414-DUP1 is a duplicate of TPGW-2M. Sample 031114-DUP1 is a duplicate of TPGW-7M.

KEY:

°C = Degrees Celsius.

 μ S/cm = MicroSiemen(s) per centimeter.

 σ = sigma (Standard Deviation).

DUP = Duplicate.

FB = Field Blank.

HCO₃ = Bicarbonate

I = Value between the MDL and PQL.

J = Estimated (+/- indicate bias). mg/L = Milligram(s) per liter. N = Nitrogen

 $NH_3 = Ammonia$. $NH_4^+ = Ammonium ion$.

NTU = Nephelometric Turbidity Units(s).

pCi/L = PicoCuries per liter.

Q = Holding time exceeded. SU = Standard Unit(s). TKN = Total Kjeldahl nitrogen.

TN = Total nitrogen.

TPGW = Turkey Point Groundwater.

^{*} PSS-78 salinity is unitless.

Table 3.1-4. Summary of Groundwater Analytical Results from the March 2014 Sampling Event (continued)

		TPGW-	8D	TPGW-9	9 S	TPGW-	-9M	TPGW	-9D	TPGW-1	0S	TPGW-1	OM	TPGW-10D)	TPGW-11	1S	TPGW-11M	TPGW-1	1D	TPGW-1	2 S	TPGW-12	VI	TPGW-12	D
Parameter	Units	03/10/2	014	03/10/20	14	03/10/2	014	03/10/2	014	03/12/20	14	03/12/20	14	03/12/2014		03/12/201	14	03/12/2014	03/12/20	14	03/05/20	14	03/05/201	4	03/05/201	4
Temperature	°C	24.17		24.42		23.84		23.74		26.19		26.36		26.16		25.58		25.56	25.58		26.39		26.02		25.97	
pН	SU	6.87		6.72		6.76		6.95		7.32		7.33		7.00		6.98		6.67	6.81		6.48		6.64		7.09	
Dissolved Oxygen	mg/L	0.73		0.53		1.11		0.46		0.31		0.21		0.35		0.42		0.30	0.11		0.62		0.72		0.13	
Specific Conductance	μS/cm	655		594		596		625		52152		54497		66201		54319		56935	61402		44292		61622		64257	
Turbidity	NTU	0.14		0.15		2.01		0.10		0.30		0.40		0.37		0.49		0.23	0.22		0.17		0.01	J	0.01	J
Calcium	mg/L	103		117		128		112		434		448		564		500		549	591	J	481	J	565		596	
Magnesium	mg/L	5.65		2.7		3.03		3.47		1190		1200		1500		1210		1290	1370	J	979	J	1370		1480	
Potassium	mg/L	9.11		5.47		5.81		3.8		436		447		553		457		470	511	J	328	J	475		516	
Sodium	mg/L	24		12		13		15		11000		11300		13900		11500		12000	13400	J	8560	J	12600		13400	
Boron	mg/L	0.07		0.05		0.06		0.05		4.67		4.83		5.73		5.10		5.06	5.23		3.50		4.91		5.23	
Strontium	mg/L	1.04		0.97		1.07		1.13		8.08		8.49		10.60		8.66		9.52	10.40		7.33		10.00		10.60	
Bromide	mg/L	0.3		0.2		0.2		0.4		68.3		73.6		91.0		72.3		75.7	83.4	J	54.2	J	80.5		120.0	
Chloride	mg/L	43		20		22		27		19300		21100		25800		20500		21900	32800	J	16800	J	23200		25900	
Fluoride	mg/L	0.093	I	0.099	Ι	0.093	I	0.085	I	0.783		0.595		0.263	J	0.809		0.567	0.654	J	0.414	J	0.259	J-	0.250	J
Sulfate	mg/L	57		7		11		30		2740		2780		3570		2870		3160	3310	J	2180	J	3210		3600	
Total Ammonia	mg/L as N									0.382		0.391		0.811	J											
Ammonium ion (NH ₄ ⁺)	mg/L									0.49		0.50		1.04	J											
Unionized NH ₃	mg/L									0.00592		0.00627		0.00604	J											
Nitrate/Nitrite	mg/L as N									0.0270	U	0.0270	U	0.0270	U											
TKN	mg/L									0.76		0.64		1.11												
TN	mg/L									0.79		0.67		1.14												
ortho-Phosphate	mg/L									0.0461	J	0.0202	J	0.0452	J											
Total Phosphorus (P)	mg/L									0.0022	UJ	0.0022	UJ	0.0039	IJ											
Alkalinity	mg/L	226		278		273		262		129		116		158		289		341	275	J	556	J	267	J	197	J
Bicarbonate Alkalinity	mg/L as HCO ₃	226		278		273		262		129		116		158		289		341	275	J	556	J	267	J	197	J
Sulfide	mg/L	1.00	U	1.28		1.00	U	1.00	U	4.32		1.00	UQ	3.84		11.20		6.72 Q	4.97	Q	19.40		4.09	Q	1.00	UQ
Total Dissolved Solids	mg/L	344		280		280		304		32900		36800		45000		35500		37400	42900		28900		44100		45300	
Salinity	*	0.32	J	0.29	J	0.29	J	0.3	J	34.29		36.03		44.94		35.92		37.88	41.26		28.55		41.44		43.44	
Tritium	pCi/L (1σ)	6.8 (3.8)		13.6 (4.1)		7.2 (3.9)		8.7 (3.9)		17.6 (6.2)	J	22.7 (5.7)	J	1378.6 (47.4)		6.9 (5.6)	J	155.0 (8.7)	808.4 (27.5)	125.3 (8.5)		1324.6 (43.9)		1506.2 (49.6)	
		NOTES		-						-		-				•		· · · · · · · · · · · · · · · · · · ·		-	-		-		-	

Laboratory results are reported with 3 digits although only the first 2 are significant figures.

Text in Blue is revised.

* PSS-78 salinity is unitless.

Sample 030414-DUP1 is a duplicate of TPGW-2M. Sample 031114-DUP1 is a duplicate of TPGW-7M.

°C = Degrees Celsius.

μS/cm = MicroSiemen(s) per centimeter.

 σ = sigma (Standard Deviation).

DUP = Duplicate.

FB = Field Blank.

HCO₃ = Bicarbonate

I = Value between the MDL and PQL.

J = Estimated (+/- indicate bias). mg/L = Milligram(s) per liter.

N = Nitrogen $NH_3 = Ammonia$.

 NH_4^+ = Ammonium ion.

NTU = Nephelometric Turbidity Units(s).

pCi/L = PicoCuries per liter.

Q = Holding time exceeded. SU = Standard Unit(s).

TKN = Total Kjeldahl nitrogen.

TN = Total nitrogen.

TPGW = Turkey Point Groundwater.

Table 3.1-4. Summary of Groundwater Analytical Results from the March 2014 Sampling Event (continued)

		TPGW-13	5	TPGW-13I	M	TPGW-13D		TPGW-1	IS	TPGW-14	VI	TPGW-14D		030414-F	FB1	030514-F	В1	031014-F	-B1	031114-F	B1	031214-	FB1
Parameter	Units	03/05/2014	ļ	03/05/201	4	03/05/2014		03/12/20	14	03/12/201	4	03/12/2014		03/04/20)14	03/05/20	14	03/10/20	14	03/11/20	14	03/12/20	014
Temperature	°C	29.47		29.50		29.43		25.82		25.56		26.08											
pН	SU	6.76		6.76		7.03		6.96		6.83		6.71											
Dissolved Oxygen	mg/L	0.30		0.45		0.13		0.30		0.25		0.42											
Specific Conductance	μS/cm	82533		78500		79151		56577		60817		73672											
Turbidity	NTU	0.01	J	0.02		0.19		0.23		0.25		0.34											
Calcium	mg/L	714		696		686		526		567		649		0.100	U	0.100	U	0.100	U	0.100	U	0	U
Magnesium	mg/L	2000		1850		1870		1310		1340		1660		0.0200	U	0.0200	U	0.0200	U	0.0200	U	0	U
Potassium	mg/L	710		651		658		474		509		632		0.190	U	0.190	U	0.190	U	0.190	U	0	U
Sodium	mg/L	17800		16600		17200		12200		13100		16000		0.310	U	0.310	U	0.310	U	0.310	U	0	U
Boron	mg/L	7.45		6.75		7.13		5.03		5.37		6.69		0.01		0.01		0.01		0.01		0	U
Strontium	mg/L	14.30		14.20		14.10		9.37		10.10		12.90		0.00		0.00		0.00		0.00		0	U
Bromide	mg/L	115.0		108.0		109.0		76.0		83.1		103.0		0.0130	U	0.0130	U	0.0130	U	0.0130	U	0.0	U
Chloride	mg/L	32900		31500		31400		20900		24100		29200		0.476	I	0.250	U	0.250	U	0.250	U	0	U
Fluoride	mg/L	0.339		0.196		0.210		0.514		0.431	J	0.397	J	0.0240	U	0.0240	U	0.0240	U	0.0240	U	0.024	U
Sulfate	mg/L	4680		4320		4220		3170		3340		4060		0.250	U	0.250	U	0.304	I	0.250	U	0	U
Total Ammonia	mg/L as N	2.540		1.820		1.100		0.647		1.160	J	1.050	J	0.0260	U	0.0260	U	0.0260	U	0.0260	U	0.0260	U
Ammonium ion (NH ₄ ⁺)	mg/L	3.25		2.33		1.40		0.83		1.49	J	1.35	J										
Unionized NH ₃	mg/L	0.01370		0.00986		0.01100		0.00430		0.00562	J	0.00400	J										
Nitrate/Nitrite	mg/L as N	0.0335	I	0.0270	U	0.0391	I	0.0270	U	0.0270	U	0.0270	U	0.02700	U	0.02700	U	0.02700	U	0.02700	U	0.02700	U
TKN	mg/L	2.74		2.27		2.65		0.99		1.51		3.09		0.300	U	0.300	U	0.300	U	0.300	U	0.30	U
TN	mg/L	2.77		2.30		2.69		1.02		1.54		3.12		0.33		0.33		0.33		0.33		0.33	
ortho-Phosphate	mg/L	0.0533	J	0.0043	IJ	0.0127	J	0.0434	J	0.0665	J	0.0563	J	0.00324	I	0.00413	I	0.00399	I	0.00179	I	0.00293	I
Total Phosphorus (P)	mg/L	0.0052	IJ	0.0075	I	0.0022	UJ	0.0022	UJ	0.0025	IJ	0.0044	IJ	0.00220	U	0.00220	U	0.00220	U	0.00220	U	0.00220	U
Alkalinity	mg/L	116	J	178	J	188	J	236		284		225		1.00	U	27.60		1.00	U	1.00	U	1	U
Bicarbonate Alkalinity	mg/L as HCO ₃	116	J	178	J	188	J	236		284		255		1.00	U	27.60		1.00	U	1.00	U	1	U
Sulfide	mg/L	5.71		1.00	UQ	1.00	UQ	4.74	Q	7.59	Q	4.26	Q	1.00	U	1.00	U	1.00	U	1.00	U	1.00	U
Total Dissolved Solids	mg/L	60300		55700		59100		36800	-	41400		51400	_	5	U	5	U	5	U	5	U	5	U
Salinity	*	57.81		54.54		55.07		37.6		40.81		50.8											
Tritium	pCi/L (1σ)	2133.0 (72.8)		3121.1 (98.4)		3419.8 (108.8)		142.3 (8.7)		528.1 (19.1)		2481.5 (75.5)				10.1 (5.8)		1.1 (3.8)	U	-15.3 (7.0)	U	8.3 (5.5)	
	• • • • •	NOTES:				, , , , , ,	1	` ′			•	•				` / 1		/		` '		` /	

Laboratory results are reported with 3 digits although only the first 2 are significant figures.

Text in Blue is revised.

* PSS-78 salinity is unitless.

Sample 030414-DUP1 is a duplicate of TPGW-2M. Sample 031114-DUP1 is a duplicate of TPGW-7M.

KEY:

°C = Degrees Celsius.

 μ S/cm = MicroSiemen(s) per centimeter.

 σ = sigma (Standard Deviation).

DUP = Duplicate.

FB = Field Blank.

HCO₃ = Bicarbonate

I = Value between the MDL and PQL.

J = Estimated (+/- indicate bias).

mg/L = Milligram(s) per liter. N = Nitrogen

 $NH_3 = Ammonia$.

 NH_4^+ = Ammonium ion.

NTU = Nephelometric Turbidity Units(s).

pCi/L = PicoCuries per liter.

Q = Holding time exceeded.

SU = Standard Unit(s).

TKN = Total Kjeldahl nitrogen.

TN = Total nitrogen.

TPGW = Turkey Point Groundwater.

Table 3.1-5. Summary of Groundwater Analytical Results from the June 2014 Sampling Event

		TPGW-1S	TPGW-1M	TPGW-1D	TPGW-2S	TPGW-2M	TPGW-2D	TPGW-3S	TPGW-3M	TPGW-3D	TPGW-4S	TPGW-4M	061014-DUP1	TPGW-4D
Parameter	Units	06/04/2014	06/04/2014	06/04/2014	06/11/2014	06/11/2014	06/11/2014	06/11/2014	06/11/2014	06/11/2014	06/10/2014	06/10/2014	06/10/2014	06/10/2014
Temperature	°C	26.17	26.23	26.40	26.83	27.41	27.66	26.56	26.46	26.67	25.72	25.53		25.55
pН	SU	6.95	7.02	7.01	7.33	7.00	6.90	6.60	6.94	6.86	6.87	6.94		6.89
Dissolved Oxygen	mg/L	0.19	0.39	0.15	0.15	0.12	0.16	0.12	0.11	0.13	0.26	0.17		0.23
Specific Conductance	μS/cm	53015	70781	71493	67169	75796	75727	62458	68014	68894	4624	39035		42713
Turbidity	NTU	0.15	0.22	0.00	J 0.07	0.21	0.20	0.00 J	0.00 J	0.10	0.29	0.94		0.47
Sodium	mg/L	10600	14700	15200	14700	16600	16600	12900	14600	15000	575	6470	7180	8300
Chloride	mg/L	19800	27300	28200	25200	29100	29700	22900	25500	26000	1310	14200	14000	15800
Total Dissolved Solids	mg/L	35400	49300	49700	52600	51700	52400	42400	46300	47600	2800	24000	24200	27600
Salinity	*	34.9	48.5	49.1	45.7	52.5	52.4	42.04	46.3	47.0	2.5	24.8		27.4
Tritium	pCi/L	1328 (44.3)	2367 (78.7)	2269 (75.9)	2441 (79.3)	3413 (109)	3081 (97.9)	218 (9.5)	1690 (55)	1922 (62.4)	12.6 (4.4)	321 (11.5)	269 (10.1)	451 (14.4)

Laboratory results are reported with 3 digits although only the first 2 are significant figures.

Text in Blue is revised.

* PSS-78 salinity is unitless.

Sample 061014-DUP1 is a duplicate of 061014 TPGW-4M.

Sample 060914-DUP1 is a duplicate of 060914 TPGW-9D.

Sample 060414-DUP is a duplicate of 060414 TPGW-13M.

KEY:

°C = Degrees Celsius.

μS/cm = MicroSiemen(s) per centimeter.

 σ = sigma (Standard Deviation).

DUP = Duplicate.

FB = Field Blank.

J = Estimated (+/- indicate bias).

mg/L = Milligram(s) per liter.

NTU = Nephelometric Turbidity Units(s).

pCi/L = PicoCuries per liter. SU = Standard Unit(s).

TPGW = Turkey Point Groundwater.

Table 3.1-5. Summary of Groundwater Analytical Results from the June 2014 Sampling Event (continued)

		TPGW-5	S	TPGW-5I	M	TPGW-5D		TPGW-6S		TPGW-6N	M	TPGW-6	D	TPGW-7	'S	TPGW-7	M	TPGW-7)	TPGW-85	5	TPGW-8	M	TPGW-8	D	TPGW-9	S	TPGW-9	9M
Parameter	Units	06/10/20	14	06/10/201	14	06/10/201	4	06/10/2014	4	06/10/201	4	06/10/201	4	06/09/20	14	06/09/20	14	06/09/201	4	06/09/201	4	06/09/201	14	06/09/201	4	06/09/20	14	06/09/20	114
Temperature	°C	24.56		24.51		24.34		24.67		24.76		25.05		25.29		25.35		25.24		25.21		24.58		24.75		25.69		25.48	
pН	SU	7.33		6.92		6.83		7.10		6.99		6.86		7.24		7.27		6.88		11.91		7.11		7.19		6.95		6.97	
Dissolved Oxygen	mg/L	0.24		0.21		0.24		0.13		0.15		0.26		0.15		0.15		0.19		0.21		0.18		0.06		0.25		0.35	
Specific Conductance	μS/cm	1001		32724		34788		1258		22677		23704		537		568		4149		1591	J	637		665		607		600	
Turbidity	NTU	0.12		0.33		0.08		0.13		0.37		1.53		0.63		1.41		0.01	J	0.66		1.10		0.72		2.70		0.29	
Sodium	mg/L	76.7		4220		6090		108		4060		4320		18.7		20.2		469		18.5		16.9		24.3		12.4		12.6	
Chloride	mg/L	156		11000		12000		228		7590		8130		33.3		36.7		1300		32.7		31.2		41.0		21.2		21.0	
Total Dissolved Solids	mg/L	527		19300		21900		673		13800		14300		256		280		3040		310	J	304		296		288		276	
Salinity	*	0.5	J	20.5		21.9		0.6 J	J	13.6		14.3		0.3	J	0.3	J	2.2		0.8	J	0.3	J	0.3	J	0.3	J	0.3	J
Tritium	pCi/L	9.1 (4.6)		247 (9.6)		342 (12.5)		6.8 (3.7)	1	7.8 (4.7)		9.3 (4.8)	,	7.8 (4.6)		14.4 (4.1)		4.8 (4.0)		8.4 (3.9)		7.4 (3.9)		16.7 (4.2)		4.9 (3.8)		7.4 (3.9)	

Laboratory results are reported with 3 digits although only the first 2 are significant figures.

Text in Blue is revised.

* PSS-78 salinity is unitless.

Sample 061014-DUP1 is a duplicate of 061014 TPGW-4M.

Sample 060914-DUP1 is a duplicate of 060914 TPGW-9D. Sample 060414-DUP is a duplicate of 060414 TPGW-13M.

KEY:

°C = Degrees Celsius.

FB = Field Blank. J = Estimated (+/- indicate bias).

 μ S/cm = MicroSiemen(s) per centimeter. σ = sigma (Standard Deviation).

mg/L = Milligram(s) per liter.

DUP = Duplicate. NTU = Nephelometric Turbidity Units(s).

pCi/L = PicoCuries per liter. SU = Standard Unit(s).

TPGW = Turkey Point Groundwater.

Table 3.1-5. Summary of Groundwater Analytical Results from the June 2014 Sampling Event (continued)

		TPGW-9D	060914-DUP	1 TPGW-10S	TPGW-10M	TPGW-10D	TPGW-11S	TPGW-11M	TPGW-11D	TPGW-12S	TPGW-12M	TPGW-12D	TPGW-13S	TPGW-13M	060414-DUP
Parameter	Units	06/09/2014	06/09/2014	06/12/2014	06/12/2014	06/12/2014	06/12/2014	06/12/2014	06/12/2014	06/04/2014	06/04/2014	06/04/2014	06/04/2014	6/4/2014	06/04/2014
Temperature	°C	24.83		27.78	27.24	27.05	26.79	26.45	26.55	26.70	26.81	26.72	29.97	29.73	
pН	SU	6.99		7.39	7.41	7.04	6.93	6.83	6.79	6.54	6.61	7.06	6.83	6.85	
Dissolved Oxygen	mg/L	0.18		0.32	0.31	0.19	0.20	0.27	0.29	0.30	0.06	0.09	0.11	0.16	
Specific Conductance	μS/cm	640		52808	55170	66806	55290	57373	62625	45260	56207	64861	83310	78127	
Turbidity	NTU	1.04		0.22	0.03	0.20	0.14	0.16	0.13	0.33	0.16	5.35	0.09	0.01	
Sodium	mg/L	15.7	15.4	10900	11500	14400	11400	11800	13200	8600	11300	13400	17500	16400	16400
Chloride	mg/L	26.3	26.1	19800	21100	25200	20700	21500	23800	16800	21300	25200	32700	31300	30900
Total Dissolved Solids	mg/L	300	340	33600	38300	45000	35600	38000	41700	29400	36900	43000	58800	55600	55200
Salinity	*	0.3 J		34.74	36.51	45.38	36.61	38.18	42.17	29.3	37.3	43.9	58.4	54.2	
Tritium	pCi/L	4.1 (3.8)	0.7 (3.8) U	4.4 (5.2) U	8.6 (5.2)	1355 (43)	8.0 (5.4)	157 (8.7)	801 (26.5)	110 (8.4)	681 (25.2)	1415 (48.4)	4172 (137)	2900 (95.4)	3066 (100)

Laboratory results are reported with 3 digits although only the first 2 are significant figures.

Text in Blue is revised.

* PSS-78 salinity is unitless.

Sample 061014-DUP1 is a duplicate of 061014 TPGW-4M. Sample 060914-DUP1 is a duplicate of 060914 TPGW-9D.

Sample 060414-DUP is a duplicate of 060414 TPGW-13M.

KEY:

°C = Degrees Celsius.

DUP = Duplicate.

FB = Field Blank.

 μ S/cm = MicroSiemen(s) per centimeter. σ = sigma (Standard Deviation).

J = Estimated (+/- indicate bias). mg/L = Milligram(s) per liter.

pCi/L = PicoCuries per liter.

SU = Standard Unit(s).
TPGW = Turkey Point Groundwater.

NTU = Nephelometric Turbidity Units(s). U = Analyzed for but not detected at the reported value.

Table 3.1-5. Summary of Groundwater Analytical Results from the June 2014 Sampling Event (continued)

		TPGW-14S	TPGW-14	M	TPGW-14	D	060414-F	В1	060514-F	В1	060614-	FB1	060914-F	-B1	061014-	FB1	061114-	FB1	061214-F	B1
Parameter	Units	06/12/2014	06/12/201	4	06/12/201	4	06/04/20	14	06/05/20	14	06/06/20	014	06/09/20)14	06/10/20)14	06/11/20	014	06/12/20	14
Temperature	°C	26.67	26.46		26.69															
pН	SU	6.92	6.80		6.88															
Dissolved Oxygen	mg/L	0.49	0.26		0.30															
Specific Conductance	μS/cm	57181	61296		73603															
Turbidity	NTU	0.14	0.26		0.33															
Sodium	mg/L	11900	13000		17100		0.310	U	0.310	U	0.310	U	0.310	U	0.310	U	0.310	U	0.310	U
Chloride	mg/L	20800	22600		27300		0.250	U	0.250	U	0.250	U	0.250	U	0.250	U	0.250	U	3.41	
Total Dissolved Solids	mg/L	38800	41900		52100		5.00	U	5.00	U	5.00	U	5.00	U	5.00	U	5.00	U	5.00	U
Salinity	*	38.03	41.15		50.73															
Tritium	pCi/L	132 (8.1)	482 (17.4)		2457 (78.6)		9.1 (6.1)		-3.5 (5.3)	U	8.3 (6.4)		1.5 (3.7)	U	1.1 (4.3)	U	1.8 (4.8)	U	-2.8 (3.6)	U

Laboratory results are reported with 3 digits although only the first 2 are significant figures.

Text in Blue is revised.

* PSS-78 salinity is unitless.

Sample 061014-DUP1 is a duplicate of 061014 TPGW-4M. Sample 060914-DUP1 is a duplicate of 060914 TPGW-9D. Sample 060414-DUP is a duplicate of 060414 TPGW-13M.

KEY:

°C = Degrees Celsius.

 μ S/cm = MicroSiemen(s) per centimeter.

σ = sigma (Standard Deviation). DUP = Duplicate.

FB = Field Blank.

J = Estimated (+/- indicate bias).

mg/L = Milligram(s) per liter. NTU = Nephelometric Turbidity Units(s).

pCi/L = PicoCuries per liter.

SU = Standard Unit(s).

TPGW = Turkey Point Groundwater.

Table 3.1-6. Summary of Groundwater Analytical Results from the September 2014 Sampling Event

		TPGW-1S	090914-D	UP	TPGW-1N		TPGW-1D)	TPGW-28	;	TPGW-2M		TPGW-2D)	TPGW-38	S	TPGW-3M		TPGW-3D		TPGW-4	S	TPGW-4M		TPGW-4D	b
Parameter	Units	09/09/2014	4 09/09/20	14	09/09/2014	ı	09/09/2014	4	09/10/201	4	09/10/2014	1	09/10/2014	1	09/10/201	4	09/10/2014		09/10/2014	4	09/09/201	4	09/09/2014	1	09/09/2014	4
Temperature	°C	26.95			26.70		26.58		26.33		26.95		26.96		26.64		26.61		26.88		26.60		26.54		27.20	
pН	SU	6.99			7.07		6.89		7.12		6.87		6.80		6.50		6.86		6.89		6.88		6.89		6.80	
Dissolved Oxygen	mg/L	0.16			0.10		0.07		0.07		0.11		0.11		0.20		0.07		0.08		0.15		0.09		0.09	
Specific Conductance	μS/cm	40311			70703		71440		65036		74336		75644		61593		67519		68637		2033		38945		43027	
Turbidity	NTU	0.00	J		0.01	J	0.33		0.00	J	0.01	J	0.01	J	0.00	J	0.00	J	0.00	J	0.10		0.18		0.08	
Silica, dissolved	mg/L																									
Calcium	mg/L	404	407		566		580		716		638		659		622		596		615		143		534	J	509	J
Magnesium	mg/L	764	766		1430		1460		1290	J	1560	J	1610	J-	1290		1410	J	1450	J	21.4		766	J	834	J
Potassium	mg/L	303	300		655		675		595	J	717	J	751	J+	569		644	J	660	J	4.8	J+	220	J	282	J
Sodium	mg/L	6840	6770		13400		13400		13000		15500		15800		12200		13700		13900		225		6620	J	7540	J
Boron	mg/L	2.57	2.52		5.65		5.82		5.13		6.24		6.52		4.77		5.56		5.61		0.08		1.42		1.99	1
Strontium	mg/L	6.74	6.66		10.50		10.80		12.10		13.70		13.80		10.00		11.60		11.80		1.34		7.22		7.39	
Bromide	mg/L	50.5	51.0		95.2	J	94.8	J	88.0		103.0		103.0	J	83.5		92.2		94.3		1.6		49.8	J	52.0	J
Chloride	mg/L	13800	14500		28100	J	28400	J	25400		29800		36900	QJ	23400		25900		26300		422		13800	J	15300	J
Fluoride	mg/L	0.200	0.200		0.260	J	0.280	J	0.180		0.240		0.230	J-	0.180		0.170		0.170		0.024	U	0.110	J	0.130	J
Sulfate	mg/L	1820	1810		3650	J	3650	J	3350		3840		4680	QJ	3130		3410		3500		15		1660	J	1920	J
Total Ammonia	mg/L as N	1.260	1.400		1.900		2.040		2.050		2.460		2.380													
Ammonium ion (NH ₄ ⁺)	mg/L	1.61			2.42		2.61		2.61		3.15		3.05													
Unionized NH ₃	mg/L	0.00970			0.01730		0.01220		0.02030		0.01440		0.01190													
Nitrate/Nitrite	mg/L as N	0.5000	U 0.5000	U	0.5000	U	0.5000	U	0.5000	U	0.5000	UЈ	0.5000	U J-												
TKN	mg/L	1.27	1.40		2.04		2.16		1.82		2.26		2.48													
TN	mg/L	1.77			2.54		2.66		2.32		2.76	J	2.98	J												
ortho-Phosphate	mg/L	0.0264	0.0277		0.0159	J	0.0458	J+	0.0101	J	0.0335	J	0.0398	J+												
Total Phosphorus (P)	mg/L	0.0362	0.0374		0.0368		0.0439		0.0190		0.0362		0.0497													
Alkalinity	mg/L	282	284		194	J	191	J	155		208		204	J	528		261		252		333		228	J	221	J
Bicarbonate Alkalinity	mg/L as HCO ₃	345	346		237	J	232	J	189		254		248	J	645		319		308		407		279	J	269	J
Sulfide	mg/L	0.05	I 0.02	I	0.01	I	0.16		0.10	U	0.10	U	0.10	UJ	22.00		0.04	I	0.10	U	0.17		0.10	U	0.10	U
Total Dissolved Solids	mg/L	25000	24600		49700		50400		44000		51600		52200		40800		44500		45900		1100		25200		27200	
Salinity	*	25.7			48.44		49.02		44.03		51.3		52.34		41.38		45.95		46.81		1.03	J	24.75		27.64	
Tritium	pCi/L (1σ)	606.8 (20.1)	605.7 (20.0)		2090.7 (61.0)		2368.6 (68.4)		2255.6 (74.3)		2834.0 (93.7)		3273.9 (108.0)		208.6 (9.8)		1557.0 (52.2)		1778.1 (60.2)		16.1 (4.9)	J 3	305.3 (11.9)		444.6 (15.9)	
-		NOTES:				-		•		•			•			-										

Laboratory anion and cation results are reported with 3 digits although only the first 2 are significant figures.

Text in Blue is revised.
* PSS-78 salinity is unitless.

Sample 090814-Dup is a duplicate of TPGW-9M. Sample 090914-Dup is a duplicate of TPGW-1S.

°C = Degrees Celsius.

 μ S/cm = MicroSiemen(s) per centimeter. σ = sigma (Standard Deviation).

DUP = Duplicate.

EB = Equipment Blank.

FB = Field Blank. HCO₃ = Bicarbonate

I = Value between the MDL and PQL.

J = Estimated (+/- indicate bias).

mg/L = Milligram(s) per liter. N = Nitrogen

 $NH_3 = Ammonia$.

 $NH_4' = Ammonium ion.$

NTU = Nephelometric Turbidity Units(s). pCi/L = PicoCuries per liter.

Q = Holding time exceeded.

SU = Standard Unit(s). TKN = Total Kjeldahl nitrogen.

TN = Total nitrogen.

TPGW = Turkey Point Groundwater.

U = Analyzed for but not detected at the reported value.

Table 3.1-6. Summary of Groundwater Analytical Results from the September 2014 Sampling Event (continued)

		TPGW-5	S	TPGW-5N	VI	TPGW-5)	TPGW-69	S	TPGW-6	VI	TPGW-6	D	TPGW-7	S	TPGW-7I	M	TPGW-7	D	TPGW-8	S	TPGW-8I	M	TPGW-8	D
Parameter	Units	09/09/201	14	09/09/201	4	09/09/201	4	09/08/201	4	09/08/201	4	09/08/201	4	09/08/201	14	09/08/201	4	09/08/201	14	09/08/201	4	09/08/201	14	09/08/201	4
Temperature	°C	24.79		25.38		25.64		24.78		26.60		25.44		25.61		25.68		26.00		25.65		25.35		25.50	
pН	SU	7.16		6.85		6.78		6.99		6.80		6.87		7.20		7.21		6.78		10.78		7.02		7.03	
Dissolved Oxygen	mg/L	0.15		0.18		0.09		0.15		0.22		0.08		0.08		0.09		0.11		0.10		0.12		0.13	
Specific Conductance	μS/cm	942		32232		34807		1254		22722		23590		539		546		4610		498		643		662	
Turbidity	NTU	0.52		0.00	J	0.00	J	0.16		0.13		0.30		0.32		0.06		0.28		11.30		0.00	J	0.00	J
Silica, dissolved	mg/L																								
Calcium	mg/L	105		536	J	515	J	122		452	Q	459	QJ	81		81		337		72	J	100		99	
Magnesium	mg/L	6.89		591	J	638	J	12.1		412	Q	424	QJ	4.09		3.87		16.2		1.96	J	3.9		5.49	
Potassium	mg/L	5.63		149	J	178	J	4.88		97.5	Q	99.7	QJ	8.48		7.19		8.99		9.1	J	10.4		9.09	
Sodium	mg/L	71		5360	J	5540	J	106		3630	Q	3680	QJ	20		19		518		16	J	16		23	
Boron	mg/L	0.05		0.91		1.20		0.06		0.799	Q	0.808	Q	0.05		0.05		0.06		0.07		0.07		0.07	
Strontium	mg/L	1.02		6.60		6.80		1.24		8.05	Q	8.13	Q	0.82		0.81		3.60		0.68		1.04		1.03	
Bromide	mg/L	0.5		39.4	J	43.5	J	0.8		26.0		27.3	J	0.1		0.2		5.0		0.2	J	0.2		0.2	
Chloride	mg/L	142		11700	J	13800	J	223		7510		7940	J	35		35		1450		32	J	31		40	
Fluoride	mg/L	0.100		0.110	J	0.130	J	0.110		0.120		0.140	J	0.120		0.110		0.024	U	0.024	UJ	0.100		0.024	U
Sulfate	mg/L	14		1200	J	1390	J	7		777		820	J	22		23		19		61	J	63		57	
Total Ammonia	mg/L as N																								
Ammonium ion (NH ₄ ⁺)	mg/L																								
Unionized NH ₃	mg/L																								
Nitrate/Nitrite	mg/L as N																								
TKN	mg/L																								
TN	mg/L																								
ortho-Phosphate	mg/L																								
Total Phosphorus (P)	mg/L																								
Alkalinity	mg/L	247		243	J	236	J	289		217		224	J	203		204		174		57	J	222		229	
Bicarbonate Alkalinity	mg/L as HCO ₃	301		296	J	288	J	353		265		273	J	248		249		213		1	UJ	271		279	
Sulfide	mg/L	0.04	I	0.10	U	0.10	U	0.09	I	0.10	U	0.10	U	0.10	U	0.10	U	0.06	I	0.01	I	0.03	I	0.07	I
Total Dissolved Solids	mg/L	487		20700		22400		640		14100		15100		252		252		3280		210		336		356	
Salinity	*	0.46	J	20.09		21.86		0.62	J	13.67		14.26		0.26	J	0.26	J	2.46		0.24	J	0.31	J	0.32	J
Tritium	pCi/L (1σ)	8.0 (4.7)	J	252.3 (10.7)		310.6 (12.3)		10.5 (4.9)		8.3 (4.7)		19.2 (5.1)		8.4 (6.3)		14.9 (6.8)		0.5 (7.1)	UJ	-2.5 (6.8)	UJ	-2.6 (6.6)	UJ	-0.9 (6.7)	UJ
j.	• • • / •	NOTES:			•													`					. — .	• • • • • • • • • • • • • • • • • • • •	

Laboratory anion and cation results are reported with 3 digits although only the first 2 are significant figures.

Text in Blue is revised.

* PSS-78 salinity is unitless.

Sample 090814-Dup is a duplicate of TPGW-9M. Sample 090914-Dup is a duplicate of TPGW-1S.

KEY:

°C = Degrees Celsius.

 μ S/cm = MicroSiemen(s) per centimeter.

 σ = sigma (Standard Deviation).

DUP = Duplicate.

EB = Equipment Blank.

FB = Field Blank.

HCO₃ = Bicarbonate

I = Value between the MDL and PQL.

J = Estimated (+/- indicate bias). mg/L = Milligram(s) per liter.

N = Nitrogen

 $NH_3 = Ammonia$.

 NH_4^{-} = Ammonium ion.

NTU = Nephelometric Turbidity Units(s). pCi/L = PicoCuries per liter.

Q = Holding time exceeded. SU = Standard Unit(s).

TKN = Total Kjeldahl nitrogen.

TN = Total nitrogen.

TPGW = Turkey Point Groundwater.

U = Analyzed for but not detected at the reported value. V = Detected in method blank.

Table 3.1-6. Summary of Groundwater Analytical Results from the September 2014 Sampling Event (continued)

		TPGW-9	S	TPGW-9	M	090814-DU	JP	TPGW-9	TPGW-9D TPGW-10S		TPGW-10	M	TPGW-10E)	TPGW-11S		TPGW-11I	M	TPGW-11	GW-11D TPGW-12			TPGW-12M		TPGW-12E		
Parameter	Units	09/08/20 ⁻	14	09/08/20 ⁻	14	09/08/201	4	09/08/20	14	09/11/201	14	09/11/201	4	09/11/2014		09/11/2014		09/11/201	4	09/11/201	4	09/05/2014	1	09/05/2014		09/05/2014	
Temperature	°C	26.32		25.40				25.22		27.93		27.70		27.42		27.43		27.66		27.32		27.84		28.34		28.28	
pН	SU	6.88		6.84				6.92		7.18		7.22		7.06		6.84		6.75		6.71		6.62		6.74		7.12	
Dissolved Oxygen	mg/L	0.20		0.16				0.22		0.20		0.17		0.18		0.19		0.21		0.31		0.04		0.12		0.05	1
Specific Conductance	μS/cm	604		637				631		53220		55680		67011		55625		57583		63106		45351		61206		65009	
Turbidity	NTU	0.00	J	0.23				0.01	J	0.01		0.00	J	0.00	J	0.06		0.09		0.01	J	0.17		0.00	J	0.00	J
Silica, dissolved	mg/L																										ĺ
Calcium	mg/L	114		114		111		107		393		411		531		479		500		559	J	460		547	J	574	J
Magnesium	mg/L	2.33		3.02		2.93		3.38		1060	J	1100	J	1370	J	1180	J	1150	J-	1310	J	909		1270	J	1370	J
Potassium	mg/L	3.28		5.78		5.59		3.79		484	J	503	J	646	J	528	J	532	J+	595	J	400		573	J	624	J
Sodium	mg/L	8		12		12		14		10400		11100		13800		11100		11700		12900	J	8830		12400	J	13300	J
Boron	mg/L	0.03	I	0.06		0.05	I	0.05		4.35		4.54		5.76		4.95		4.82		5.00		3.66		5.00		5.21	
Strontium	mg/L	0.83		0.94		0.92		1.10		7.34		7.93		10.10		8.34		8.91		10.00		7.44		10.10		10.60	
Bromide	mg/L	0.1		0.2		0.2		0.3		68.0	J	72.0		91.7		71.9		75.1		84.0	J	54.6		79.1	J	86.5	J
Chloride	mg/L	15		21		21		26		20300	J	21900		26400		21400		21500		25300	J	16900		24400	J	26300	J
Fluoride	mg/L	0.024	U	0.024	U	0.024	U	0.024	U	0.760	J-	0.570		0.240		0.780		0.570	J-	0.620	J	0.450		0.250	J	0.230	J
Sulfate	mg/L	2		13		14		27		2710	J	2870		3530		2830		2880		3260	J	2070		3150	J	3370	J
Total Ammonia	mg/L as N									0.922	J	0.771	J	1.410													ĺ
Ammonium ion (NH ₄ ⁺)	mg/L									1.17	J	0.98	J	1.80													П
Unionized NH ₃	mg/L									0.01170	J	0.01060	J	0.01320													ĺ
Nitrate/Nitrite	mg/L as N									0.5000	U	0.5000	U	0.5000	U												
TKN	mg/L									0.60	J	0.45	J	1.44													
TN	mg/L									1.10	J	0.95	J	1.94													
ortho-Phosphate	mg/L									0.0169		0.0158		0.0387													
Total Phosphorus (P)	mg/L									0.0192		0.0183		0.0387													
Alkalinity	mg/L	305	1	290		293		273		134	J	116		173		314		350		284	J	567		276	J	200	J
Bicarbonate Alkalinity	mg/L as HCO ₃	372		353		357		333		163	J	142		211		383		428		347	J	692		337	J	244	J
Sulfide	mg/L	0.49		0.15		0.18		0.05	I	4.00		0.52		3.30		12.00		8.60		4.40		16.00		2.80		0.34	r
Total Dissolved Solids	mg/L	288	i –	336		312		336		34600		36100		44700		36000	1	38400		41700		29600		42000		43800	
Salinity	*	0.29	J	0.31	J	_		0.31	J	35.03		36.87		45.53		36.84		38.31		42.51		29.28		41.04		43.96	
Tritium	pCi/L (1σ)	18.2 (5.9)		34.4 (6.3)		8.5 (5.1)		7.8 (5.7)		11.8 (5.6)		12.3 (5.9)		1582.6 (51.6)		60.9 (68)		182.2 (9.7)		851.1 (29.0)		112.2 (7.9)	13	332.4 (44.8)		1495.0 (48.8)	
	1 /	NOTES:		(5.6)	ь	, , , (c)		()		(0)		(>)		()		(/		(> - /)		(->10)		()		- / (/)		32.0 (13.0)	

Laboratory anion and cation results are reported with 3 digits although only the first 2 are significant figures. Text in Blue is revised.

* PSS-78 salinity is unitless.

Sample 090814-Dup is a duplicate of TPGW-9M. Sample 090914-Dup is a duplicate of TPGW-1S.

°C = Degrees Celsius.

 μ S/cm = MicroSiemen(s) per centimeter. σ = sigma (Standard Deviation).

DUP = Duplicate. EB = Equipment Blank.

FB = Field Blank. HCO₃ = Bicarbonate

I = Value between the MDL and PQL.

J = Estimated (+/- indicate bias).

mg/L = Milligram(s) per liter.

N = Nitrogen

NH₃ = Ammonia. NH₄⁺ = Ammonium ion.

NTU = Nephelometric Turbidity Units(s). pCi/L = PicoCuries per liter.

Q = Holding time exceeded.

SU = Standard Unit(s).

TKN = Total Kjeldahl nitrogen.

TN = Total nitrogen.
TPGW = Turkey Point Groundwater.

U = Analyzed for but not detected at the reported value. V = Detected in method blank.

Table 3.1-6. Summary of Groundwater Analytical Results from the September 2014 Sampling Event (continued)

Parameter		TPGW-13S		TPGW-13N	VI .	TPGW-13D		TPGW-14	5	TPGW-14N		TPGW-14D		090214-1	ЕΒ	090514-F	·B1	090814-F	·B1	090914-F	ъ	091014-F	B1	091114-I	FB1
	Units	09/05/2014		09/05/2014	4	09/05/2014			4	09/11/2014		09/11/2014		09/02/20	14	09/05/20	14	09/08/20	14	09/09/20	14	09/10/2014		09/11/2014	
Temperature	°C	30.34		30.00		30.20		28.02		27.77		27.99													
pН	SU	6.76		6.94		6.80		6.87		6.70		6.88													
Dissolved Oxygen	mg/L	0.12		0.08		0.09		0.18		0.20		0.14													
Specific Conductance	μS/cm	82466		78442		79773		57222		61555		73070													
Turbidity	NTU	0.00	J	0.00	J	0.00		0.00	J	0.00	J	0.00	J												
Silica, dissolved	mg/L													0.05	U	0.05	U	0.05	U	0.05	U	0.050	U	0.050	U
Calcium	mg/L	668	J	662	J	671	J	478		608		540		0.100	U	0.100	U	0.181		0.100	U	0.100	U	0.100	U
Magnesium	mg/L	1730	J-	1670	J	1700	J	1190	J	1540	J	1270	J	0.0200	U	0.0200	U	0.0200	U	0.0200	U	0.020	U	0.020	U
Potassium	mg/L	833	J+	788	J	812	J	520	J	712	J	580	J	0.190	U	0.190	U	0.190	U	0.190	U	0.190	U	0.190	U
Sodium	mg/L	17700	J+	16900	J	17100	J	11200		15300		12400	J	0.310	U	0.310	U	0.310	U	0.310	U	0.310	U	0.310	U
Boron	mg/L	7.59		6.94		7.35		4.59		6.36		5.07		0.01	U	0.01	U	0.01	U	0.01	U	0.010	U	0.010	U
Strontium	mg/L	14.20		14.30		14.50		8.45		12.00		9.60		0.00	U	0.00	U	0.00	U	0.00	U	0.001	U	0.001	U
Bromide	mg/L	117.0	J	108.0	J	110.0	J	74.2		82.4		102.0	J	0.0130	U	0.0130	U	0.0130	U	0.0130	U	0.013	U	0.013	U
Chloride	mg/L	34500	J	33100	J	33400	J	21300		24500		29100	J	0.250	U	0.575		0.250	U	0.250	U	0.250	U	0.250	U
Fluoride	mg/L	0.350	J-	0.190	J	0.220	J	0.490		0.410		0.360	J	0.0240	U	0.0240	U	0.0240	U	0.0240	U	0.024	U	0.024	U
Sulfate	mg/L	4500	J	4190	J	4280	J	2980		3250		3980	J	0.250	U	1.960		0.250	U	0.250	U	0.250	U	0.250	U
Total Ammonia	mg/L as N	1.720	J+	2.590		2.420		1.150	J	1.550	J	2.420		0.0677		0.2230		0.0647		0.0704		0.0554		0.0524	
Ammonium ion (NH ₄ ⁺)	mg/L	2.20	J	3.31		3.10		1.47	J	1.99	J	3.09													
Unionized NH ₃	mg/L	0.00986	J	0.02190		0.01510		0.00724	J	0.00649	J	0.01560													1
Nitrate/Nitrite	mg/L as N	0.1000	U J-	0.5000	UJ	0.5000	UJ	0.5000	U	0.5000	U	0.5000	U	0.10000	U	0.50000	U	0.50000	U	0.50000	U	0.50000	U	0.50000	U
TKN	mg/L	3.40		2.32		2.96		0.82	J	1.22	J	2.86		0.150	U	0.150	U	0.150	U	0.150	U	0.15	U	0.15	U
TN	mg/L	3.50	J	2.82	J	3.46	J	1.32	J	1.72	J	3.36													
ortho-Phosphate	mg/L	0.0439		0.0014	U	0.0028	I	0.0398		0.0548		0.0527		0.00140	U	0.00140	U	0.00140	U	0.00140	U	0.00140	U	0.00210	U
Total Phosphorus (P)	mg/L	0.0495		0.0494		0.0602		0.0400		0.0527		0.0500		0.00220	U	0.00220	U	0.00220	U	0.00220	U	0.00220	U	0.00300	U
Alkalinity	mg/L	232	J	203	J	211	J	244		290		232	J	1.00	U	1.00	U	1.00	U	1.00	U	1.00	U	1.00	U
Bicarbonate Alkalinity n	mg/L as HCO ₃	283	J	248	J	257	J	298		354		283	J	1.00	U	1.00	U	1.00	U	1.00	U	1.00	U	1.00	U
Sulfide	mg/L	8.80		0.10	U	0.24		3.70		5.90		3.50		0.10	U	0.10	U	0.10	U	0.10	U	0.10	U	0.10	U
Total Dissolved Solids	mg/L	61800		56900		58600		37000		42200		49200		5	U	5	U	5	U	5	U	5	U	5	U
Salinity	*	57.72		54.47		55.54		38.02		41.31		50.26													
Tritium	pCi/L (1σ)	3568.3 (114.2)		3102.6 (98.3)		3747.0 (118.2)		135.0 (8.6)		457.1 (17.7)		2262.1 (72.3)		6.5 (3.6)		7.8 (5.9)		-7.5 (6.7)	UJ	14.0 (5.1)		2.3 (5.0)	UJ	2.1 (5.5)	UJ

Laboratory anion and cation results are reported with 3 digits although only the first 2 are significant figures.

Text in Blue is revised.

* PSS-78 salinity is unitless. Sample 090814-Dup is a duplicate of TPGW-9M.

Sample 090914-Dup is a duplicate of TPGW-1S.

KEY:

°C = Degrees Celsius.

 μ S/cm = MicroSiemen(s) per centimeter.

 σ = sigma (Standard Deviation).

DUP = Duplicate.

EB = Equipment Blank.

FB = Field Blank.

HCO₃ = Bicarbonate

I = Value between the MDL and PQL.

J = Estimated (+/- indicate bias). mg/L = Milligram(s) per liter.

N = Nitrogen

 $NH_3 = Ammonia$. NH_4^{-} = Ammonium ion.

NTU = Nephelometric Turbidity Units(s). pCi/L = PicoCuries per liter.

Q = Holding time exceeded. SU = Standard Unit(s).

TKN = Total Kjeldahl nitrogen.

TN = Total nitrogen.

TPGW = Turkey Point Groundwater.

 $\mbox{U} = \mbox{Analyzed for but not detected at the reported value.}$ $\mbox{V} = \mbox{Detected in method blank.}$

Table 3.1-7. Summary of Groundwater Analytical Results from the December 2014 Sampling Event

		TPGW-1S TPGW-1M		TPGW-1D	TPGW-2S	TPGW-2M	TPGW-2D	TPGW-3S	TPGW-3M	TPGW-3D	TPGW-4S	TPGW-4M	TPGW-4D
Parameter	Units	12/02/2014	12/02/2014	12/02/2014	12/03/2014	12/03/2014	12/03/2014	12/03/2014	12/03/2014	12/03/2014	12/01/2014	12/01/2014	12/01/2014
Temperature	°C	25.85	26.04	26.38	26.21	26.27	26.46	26.36	25.99	26.08	25.72	25.42	25.37
pН	SU	7.01	7.05	7.01	7.04	6.92	6.90	6.76	6.91	6.93	6.94	6.88	6.99
Dissolved Oxygen	mg/L	0.06	0.07	0.08	0.06	0.08	0.23	0.04	0.07	0.08	0.09	0.06	0.10
Specific Conductance	μS/cm	46636	69999	70339	71495	74712	74777	60450	66401	67896	2001	38467	41962
Turbidity	NTU	0.17	0.28	0.01 J	0.17	0.38	0.12	0.24	0.30	0.27	0.20	0.26	0.24
Sodium	mg/L	8640	15300	14200	15600	16200	16200	12800	14100	14800	233	7320	7920
Chloride	mg/L	17400	27700	28300	29300	30400	30200	22900	26400	27100	443	14300	15700
Total Dissolved Solids	mg/L	30600	49300	50900	52300	54800	52900	42400	47900	48500	900	23800	29100
Salinity	*	30.26	47.90	48.16	49.08	51.62	51.67	40.51	45.10	46.26	1.02 J	J 24.43	26.91
Tritium	pCi/L	808.1 (29.9)	2276.6 (75.7)	2307.1 (77.3)	2912.3 (100.4)	3487.6 (119.6)	3130.5 (108.8)	213.9 (11.0)	1308.0 (44.8)	1640.1 (55.5)	13.1 (5.1)	295.9 (12.1)	434.2 (16.3)

Laboratory results are reported with 3 digits although only the first 2 are significant figures.

* PSS-78 salinity is unitless.
Sample 120214-DUP1 is a duplicate of 120214 TPGW-5D.

Sample 120114-DUP1 is a duplicate of 120114 TPGW-9S. Sample 120914-DUP is a duplicate of 120914 TPGW-12D.

Text in blue is revised

°C = Degrees Celsius.

μS/cm = MicroSiemen(s) per centimeter.

σ = sigma (Standard Deviation). DUP = Duplicate.

EB = Equipment Blank.

FB = Field Blank.

I = Value between the MDL and PQL.
J = Estimated (+/- indicate bias).

mg/L = Milligram(s) per liter.
NTU = Nephelometric Turbidity Units(s).

pCi/L = PicoCuries per liter. Q = Holding time exceeded.

SU = Standard Unit(s).

TPGW = Turkey Point Groundwater.

Table 3.1-7. Summary of Groundwater Analytical Results from the December 2014 Sampling Event (continued)

		TPGW-59	5	TPGW-5M	TPGW-5D	120214-	OUP	TPGW-6	S	TPGW-6M		TPGW-6)	TPGW-7	S	TPGW-7M		TPGW-7	D	TPGW-8	S	TPGW-8	M	TPGW-8D	
Parameter	Units	12/02/201	4	12/02/2014	12/02/2014	12/02/2)14	12/02/201	14	12/02/2014		12/02/201	4	12/02/201	4	12/02/2014		12/02/201	4	12/01/201	4	12/01/201	14	12/01/2014	
Temperature	°C	24.60		24.51	24.64			24.27		24.16		24.29		24.35		24.19		24.01		25.27		24.72		24.46	
pН	SU	7.20		6.88	6.92			7.08		6.94		6.93		7.28		7.26		6.97		11.59		7.10		7.11	
Dissolved Oxygen	mg/L	0.17		0.07	0.19			0.10		0.06		0.10		0.08		0.08		0.13		0.13		0.06		0.15	
Specific Conductance	μS/cm	849		31808	34344			1259		22338		23342		521	J	504		5176		1249	J	628		650	
Turbidity	NTU	0.50		0.07	0.10			0.40		0.24		0.67		0.20		0.23		1.66		0.38		0.31		0.31	
Sodium	mg/L	57.0		5530	6130	6220		113		3700		3810		19.9		20.3		622		17.8		17.0		24.3	
Chloride	mg/L	113		11500	12500	12500		232		7850		8310		34.4		35.5		1600		33.6		31.5		42.0	
Total Dissolved Solids	mg/L	360		20000	22300	21700		607		14600		14300		192	J	244		3900		280	J	332		376	
Salinity	*	0.42	J	19.84	21.56			0.63	J	13.45		14.11	•	0.25	J	0.26	J	2.78		0.62	J	0.30	J	0.32	J
Tritium	pCi/L	18.2 (6.1)	J	222.3 (11.3)	248.5 (12.2) J	326.5 (13.8) J	7.0 (5.7)	J	17.4 (6.3) J	J	24.0 (6.4)	J	-0.6 (4.6)	UJ	11.0 (4.9)	J	6.0 (5.7)	J	4.5 (4.9)	UJ	2.8 (4.9)		2.4 (4.6)	

Laboratory results are reported with 3 digits although only the first 2 are significant figures.

* PSS-78 salinity is unitless.

Sample 120214-DUP1 is a duplicate of 120214 TPGW-5D.

Sample 120114-DUP1 is a duplicate of 120114 TPGW-9S. Sample 120914-DUP is a duplicate of 120914 TPGW-12D.

Text in blue is revised

°C = Degrees Celsius.

 μ S/cm = MicroSiemen(s) per centimeter.

 σ = sigma (Standard Deviation).

DUP = Duplicate.
EB = Equipment Blank.

FB = Field Blank.

I = Value between the MDL and PQL.

J = Estimated (+/- indicate bias).

mg/L = Milligram(s) per liter.

NTU = Nephelometric Turbidity Units(s).

pCi/L = PicoCuries per liter. Q = Holding time exceeded.

SU = Standard Unit(s).

TPGW = Turkey Point Groundwater.

Table 3.1-7. Summary of Groundwater Analytical Results from the December 2014 Sampling Event (continued)

		TPGW-9S	120114-DUP	TPGW-9	I TPGW-9	D	TPGW-10	S	TPGW-10	M	TPGW-10D		TPGW-11	S	TPGW-11	M	TPGW-11E)	TPGW-12	S TPGW-12	M TPGW-12D	120914-DU	JP /
Parameter	Units	12/01/2014	12/01/2014	12/01/201	4 12/01/20	14	12/10/201	14	12/10/201	4	12/10/2014		12/10/201	4	12/10/201	4	12/10/2014	,	12/09/201	4 12/09/201	4 12/09/2014	12/09/2014	4
Temperature	°C	25.41		24.60	24.71		23.40		23.69		24.30		23.16		23.39		23.15		25.81	25.73	25.33		
pН	SU	6.89		7.00	7.08		7.28		7.29		7.02		6.94		6.74		6.80		6.56	6.67	7.08		
Dissolved Oxygen	mg/L	0.09		0.08	0.14		0.22		0.13		0.34		0.14		0.24		0.19		0.06	0.08	0.14		
Specific Conductance	μS/cm	593		618	629		52502		55379		67126		54842		57114		62801		44255	57705	64371		
Turbidity	NTU	0.30		1.41	0.39		0.28		0.42		0.14		0.31		0.88		0.22		0.85	1.51	0.33		
Sodium	mg/L	8.08	8.15	13.7	15.7		11100		11700		14700		11700		12100		13600		8880	11900	13500	13400	
Chloride	mg/L	14.9	15.0	24.5	26.3		20000		21500		27000		21400		22200		24800		16400	22500	25500	25700	
Total Dissolved Solids	mg/L	296	288	296	312		32200	Q	35100	Q	43000	Q	35800	Q	37900	Q	41900	Q	28700	37500	45200	44100	
Salinity	*	0.29	J	0.30	J 0.30	J	34.61		36.75		45.70		36.36		38.06		42.38		28.54	38.45	43.55		
Tritium	pCi/L	8.0 (4.9)	4.0 (4.9)	JJ 10.4 (4.9)	2.6 (4.8)	UJ	13.0 (3.2)		35.2 (3.7)		1556.3 (51.6)		13.5 (3.2)		186.0 (7.9)		903.7 (29.9)		106.7 (8.8)	861.7 (31.3)	1392.4 (38.5)	1421.4 (49.3)	

* PSS-78 salinity is unitless.

Sample 120214-DUP1 is a duplicate of 120214 TPGW-5D.

Sample 120114-DUP1 is a duplicate of 120114 TPGW-9S.

Sample 120914-DUP is a duplicate of 120914 TPGW-12D.

Text in blue is revised

KEY:

°C = Degrees Celsius.

μS/cm = MicroSiemen(s) per centimeter.

 σ = sigma (Standard Deviation).

DUP = Duplicate. EB = Equipment Blank.

FB = Field Blank.

I = Value between the MDL and PQL.

J = Estimated (+/- indicate bias).

mg/L = Milligram(s) per liter.
NTU = Nephelometric Turbidity Units(s).

pCi/L = PicoCuries per liter. Q = Holding time exceeded.

SU = Standard Unit(s).

TPGW = Turkey Point Groundwater. U = Analyzed for but not detected at the reported value.

Table 3.1-7. Summary of Groundwater Analytical Results from the December 2014 Sampling Event (continued)

		TPGW-13S	TPGW-13M	TPGW-13D	TPGW-14S	TPGW-14I	M TPGW-14	D	120114-	-EB	120214-	FB	120314	-FB	120414-	FΒ	120514-	FB1	120814-	·FB	120914	-FB	121014	-FB
Parameter	Units	12/09/2014	12/09/2014	12/09/2014	12/10/2014	12/10/201	4 12/10/201	4	12/01/20	014	12/02/20	14	12/03/2	014	12/04/20	014	12/05/20	014	12/08/20	014	12/09/2	014	12/10/2	014
Temperature	°C	29.76	29.18	29.36	23.61	23.20	23.63																	
pН	SU	6.69	6.87	6.85	6.96	6.79	6.83																	
Dissolved Oxygen	mg/L	0.12	0.09	0.11	0.17	0.19	0.31																	
Specific Conductance	μS/cm	84153	78037	79478	56511	60872	72855																	
Turbidity	NTU	0.36	0.34	0.48	0.34	0.31	0.50																	
Sodium	mg/L	18100	16700	17000	12200	13200	16100		0.310	U	0.310	U	0.310	U	0.310	U	0.310	U	0.310	U	0.310	U	0.310	U
Chloride	mg/L	35100	32300	33200	22200	23600	28900		0.200	U	0.200	U	0.200	U	0.200	U	0.200	U	0.200	U	0.257	I	0.200	U
Total Dissolved Solids	mg/L	60900	56100	57200	37500	Q 42100	Q 52300	Q	5.00	U	5.00	U	5.00	U	5.00	U	5.00	U	5.00	U	5.00	U		
Salinity	*	59.13	54.20	55.34	37.60	40.90	50.21																	
Tritium	pCi/L	4544.4 (151.8)	2968.9 (100.5)	3323.4 (110.8)	98.7 (5.1)	461.4 (15.7)	2290.8 (71.0)		-2.4 (4.8)	UJ	10.1 (5.9)		2.4 (5.5)	UJ	-1.2 (5.4)	UJ	11.7 (5.9)		-3.5 (7.0)	UJ	6.8 (6.3)		1.9 (2.9)	UJ

Laboratory results are reported with 3 digits although only the first 2 are significant figures.

* PSS-78 salinity is unitless.

Sample 120214-DUP1 is a duplicate of 120214 TPGW-5D. Sample 120114-DUP1 is a duplicate of 120114 TPGW-9S.

Sample 120914-DUP is a duplicate of 120914 TPGW-12D.

Text in blue is revised

KEY:

 $^{\circ}$ C = Degrees Celsius. μS/cm = MicroSiemen(s) per centimeter. σ = sigma (Standard Deviation).

DUP = Duplicate.

EB = Equipment Blank.

FB = Field Blank.

I = Value between the MDL and PQL.

J = Estimated (+/- indicate bias). mg/L = Milligram(s) per liter.

NTU = Nephelometric Turbidity Units(s).

pCi/L = PicoCuries per liter.

Q = Holding time exceeded. SU = Standard Unit(s).

TPGW = Turkey Point Groundwater.

Table 3.1-8. Summary of Groundwater Analytical Results from the March 2015 Sampling Event

Parameter Unite			TPGW-1S		TPGW-1N		TPGW-1D		TPGW-2S		TPGW-2N		030315-Dup		TPGW-2D		TPGW-35	5	TPGW-3M		TPGW-3D)	TPGW-4	S	TPGW-4N	I	TPGW-4D
pH SU 6.96 7.02 8 6.95 7.11 6.92 8 6.91 6.93 9 6.96 9 6.96 9 6.96 9 6.96 9 6.95 9 6.95 9 8 9 1 6.91 6.95 9 8 9 1 6.90 9 6.89 1 6.91 0.03 0 <th>Parameter</th> <th>Units</th> <th>03/05/2015</th> <th>5</th> <th>03/05/201</th> <th>5</th> <th>03/05/2015</th> <th></th> <th>03/03/2015</th> <th></th> <th>03/03/201</th> <th>5</th> <th>03/03/2015</th> <th></th> <th>03/03/2015</th> <th></th> <th>03/03/201</th> <th>5</th> <th>03/03/2015</th> <th></th> <th>03/03/201</th> <th>5</th> <th>03/02/201</th> <th>5</th> <th>03/02/201</th> <th>5</th> <th>03/02/2015</th>	Parameter	Units	03/05/2015	5	03/05/201	5	03/05/2015		03/03/2015		03/03/201	5	03/03/2015		03/03/2015		03/03/201	5	03/03/2015		03/03/201	5	03/02/201	5	03/02/201	5	03/02/2015
Dissolved Oxygen mg/L 0.09 0.16 0.11 0.06 0.15 0.06 0.15 0.06 0.15 0.06 0.15 0.06 0.15 0.06 0.15 0.06 0.15 0.06 0.15 0.06 0.15 0.06 0.15 0.06 0.15 0.06 0.15 0.06 0.15 0.06 0.15 0.06 0.15 0.05 0.15 0.06 0.15 0.05 0.	Temperature	°C	26.36		26.53		26.54		26.31		26.66				27.00		26.00		26.11		26.09		25.53		25.44		25.12
Specific Conductance LiScen LiSce	pН	SU	6.96		7.02		6.95		7.11		6.92				6.91		6.64		6.90		6.90		6.89		6.91		6.95
Turbidity NTU 2.99 8.80 10.16 0.32 0.03 0.06 0.06 0.063 0.16 0.063 0.16 0.037 0.066 0.053 0.065 0.	Dissolved Oxygen	mg/L	0.09		0.16		0.11		0.06		0.15				0.10		0.48		0.11		0.24		0.21		0.20		0.14
Silical dissolved mg/L S27	Specific Conductance	μS/cm	52625		71488	J	72112	J	68816	J	75536	J			75975		60490	J	66945	J	68199	J	3360	J	39265	J	42350
Calcium mg/L 527 619 632 674 654 664 664 664 627 J 610 J 625 J 177 J 55 J 574	Turbidity	NTU	2.59		8.50		0.16		0.32		0.03				0.16		0.63		0.16		0.16		0.37		0.66		0.53
Magnesium mg/L 1270	Silica, dissolved	mg/L																									
Potassium	Calcium	mg/L	527		619		632		674		654		664		664		627	J	610	J	625	J	177	J	55	J	574
Sodium mg/L 9600 13300 13700 12400 13400 13400 13800 13800 11000 J 12200 J 12900 J 411 J 723 J 8720	Magnesium	mg/L	1270		1750		1780		1590		1690		1730		1740		1340	J	1500	J	1540	J	39.8	J	81.8	J	936
Boron mg/L 3.84 1 5.76 5.93 5.94 6.62 6.68 6.57 4.85 5.49 5.68 0.1 U 0.14 2.07	Potassium	mg/L	358		546		560		563		620		629		635		472	J	540	J	558	J	6.31	J	19.6	J	258
Strottime mg/L 9.24 11.60 12.00 13.00 13.00 14.00 14.20 14.00 10.10 12.00 12.00 12.10 1.79 0.74 8.32 1.85 1.85 1.85	Sodium	mg/L	9600		13300		13700		12400		13400		13500		13800		11000	J	12200	J	12900	J	411	J	723	J	8720
Bromide mg/L 67.8	Boron	mg/L	3.84	I	5.76		5.93		5.94		6.62		6.68		6.57		4.85		5.49		5.68		0.1	U	0.14		2.07
Chloride mg/L 19000 28100 J 28700 J 27400 J 29900 J 30400 J 30600 23800 J 26800 J 27500 J 929 J 14400 J 15700	Strontium	mg/L	9.24		11.60		12.00		13.00		14.00		14.20		14.00		10.10		12.00		12.10		1.79		0.74		8.32
Fluoride mg/L 0.210 0.260 J 0.270 J 0.230 J 0.310 J 0.310 J 0.310 J 0.270 J 0.260 J 0.260 J 0.210 J 0.170 J 0.100 J 0.100 J 0.130 J 0.150	Bromide	mg/L	67.8		99.2	J	97.3	J	93.5	J	105.0	J	102.0	J	103.0		79.0	J	91.5	J	93.0	J	3.1	J	56.1	J	52.2
Sulfate mg/L 2620 3630 J 3720 J 3820 J 3770 J 3850 3000 J 3320 J 47 J 1620 J 1820 Total Ammonia mg/L as N 1.130 J 1.500 J 1.690 J 1.550 2.320 2.380 2.480 S 1.00 J 1.690 J 1.01 J 1.02 J 2.16 J 2.29 2.297 C 2.480 S 1.00 J 1.690 J 1.01 J 2.00 2.279 C 2.380 2.480 S 2.480 S 3.18 S 3.00<	Chloride	mg/L	19000		28100	J	28700	J	27400	J	29900	J	30400	J	30600		23800	J	26800	J	27500	J	929	J	14400	J	15700
Total Ammonia mg/L as N 1.130 J 1.500 J 1.690 J 1.950 2.320 2.780 2.480 I <t< th=""><th>Fluoride</th><th>mg/L</th><th>0.210</th><th></th><th>0.260</th><th>J</th><th>0.270</th><th>J</th><th>0.230</th><th>J</th><th>0.310</th><th>J</th><th>0.270</th><th>J</th><th>0.260</th><th></th><th>0.210</th><th>J</th><th>0.170</th><th>J</th><th>0.210</th><th>J</th><th>0.100</th><th>J</th><th>0.130</th><th>J</th><th>0.150</th></t<>	Fluoride	mg/L	0.210		0.260	J	0.270	J	0.230	J	0.310	J	0.270	J	0.260		0.210	J	0.170	J	0.210	J	0.100	J	0.130	J	0.150
Ammonium ion (NH ₄) mg/L 1.44 J 1.92 J 2.16 J 2.49 2.97 I 0.016 I	Sulfate	mg/L	2620		3630	J	3720	J	3420	J	3820	J	3770	J	3850		3000	J	3320	J	3440	J	47	J	1620	J	1820
Unionized NH ₃ mg/L 0.009 J 0.011 J 0.015 J 0.014 I 0.016 I 0.017 I 0.017 I 0.0371 0.0372 0.0372 0.0464 0.0464 <th>Total Ammonia</th> <th>mg/L as N</th> <th>1.130</th> <th>J</th> <th>1.500</th> <th>J</th> <th>1.690</th> <th>J</th> <th>1.950</th> <th></th> <th>2.320</th> <th></th> <th>2.780</th> <th></th> <th>2.480</th> <th></th>	Total Ammonia	mg/L as N	1.130	J	1.500	J	1.690	J	1.950		2.320		2.780		2.480												
Nitrate/Nitrite mg/L as N 0.0250 U 0.0250 U 0.0250 U 0.0336 I 0.0381 I 0.0381 I 0.0371 I	Ammonium ion (NH ₄ ⁺)	mg/L	1.44	J	1.92	J	2.16	J	2.49		2.97				3.18												i
TKN mg/L 1.83 2.30 1.21 J 2.46 3.12 3.28 2.76 Image: Control of the properties of the pro	Unionized NH ₃	mg/L	0.009	J	0.011	J	0.013	J	0.015		0.014				0.016												,
TN mg/L 1.86 2.33	Nitrate/Nitrite	mg/L as N	0.0250	U	0.0250	U	0.0250	U	0.0336	I	0.0381	I	0.0283	I	0.0371	I											
ortho-Phosphate mg/L 0.0193 0.0314 0.0487 0.0184 0.0464 0.0464 0.0439 0.0439 0.0464 0.0439 0.0556 0.0464 0.0459 0.0454 0.0556 0.0454 0.0556 0.0454 0.0556 0.0454 0.0556 0.0454 0.0454 0.0556 0.0454 0.0454 0.0556 0.0454 0.0454 0.0556 0.0454 0.0454 0.0556 0.0454 0.0454 0.0556 0.0454 0.0454 0.0556 0.0454 0.0454 0.0556 0.0454 0.0454 0.0556 0.0454 0.0454 0.0556 0.0454 0.0556 0.0454 0.0556	TKN	mg/L	1.83		2.30		1.21	J	2.46		3.12		3.28		2.76												
Total Phosphorus (P) mg/L 0.0342 0.0587 0.0463 0.0293 0.0461 0.0454 0.0556 0	TN	mg/L	1.86		2.33		1.24	J	2.49		3.16		3.31	J	2.80	J											
Alkalinity mg/L 254 185 J 183 J 167 J 213 J 205 528 J 257 J 231 J 323 216 J 212 Bicarbonate Alkalinity mg/L as HCO ₃ 310 226 J 224 J 204 J 260 J 259 J 250 645 J 314 J 282 J 394 263 J 258 Sulfide mg/L 0.23 0.25 0.44 0.10 I 0.85 0.96 0.25 8.52 0.15 0.08 I 0.12 0.04 U 0.04 I Total Dissolved Solids mg/L 33500 43600 49300 46400 49800 50600 51600 38800 46500 48900 1840 25800 28200 Salinity * 34.64 49.06 J 46.96 J 52.26 J 52.61	ortho-Phosphate	mg/L	0.0193		0.0314		0.0487		0.0184		0.0464		0.0464		0.0439												
Bicarbonate Alkalinity mg/L as HCO ₃ 310 226 J 224 J 260 J 259 J 250 645 J 314 J 282 J 394 263 J 258 Sulfide mg/L 0.23 0.25 0.44 0.10 I 0.85 0.96 0.25 8.52 0.15 0.08 I 0.12 0.04 U 0.04 I Total Dissolved Solids mg/L 33500 43600 49300 46400 49800 50600 51600 38800 46500 48900 1840 25800 28200 Salinity * 34.64 49.06 J 46.96 J 52.26 J 52.61 40.55 J 46.49 J 1.76 J 25.19 27.19	Total Phosphorus (P)	mg/L	0.0342		0.0587		0.0463		0.0293		0.0461		0.0454		0.0556												
Sulfide mg/L 0.23 0.25 0.44 0.10 I 0.85 0.96 0.25 8.52 0.15 0.08 I 0.12 0.04 U 0.04 I Total Dissolved Solids mg/L 33500 43600 49300 46400 49800 50600 51600 38800 46500 48900 1840 25800 28200 Salinity * 34.64 49.06 J 49.55 J 46.96 J 52.26 J 52.61 40.55 J 46.49 J 1.76 J 25 J 27.19	Alkalinity	mg/L	254		185	J	183	J	167	J	213	J	212	J	205		528	J	257	J	231	J	323		216	J	212
Total Dissolved Solids mg/L 33500 43600 49300 46400 49800 50600 51600 38800 46500 48900 1840 25800 28200 Salinity * 34.64 49.06 J 49.55 J 46.96 J 52.26 J 52.61 40.55 J 46.49 J 1.76 J 25 J 27.19	Bicarbonate Alkalinity	mg/L as HCO ₃	310		226	J	224	J	204	J	260	J	259	J	250		645	J	314	J	282	J	394		263	J	258
Salinity * 34.64 49.06 J 49.55 J 46.96 J 52.26 J 52.61 40.55 J 45.51 J 46.49 J 1.76 J 25 J 27.19	Sulfide	mg/L	0.23		0.25		0.44		0.10	I	0.85		0.96		0.25		8.52		0.15		0.08	I	0.12		0.04	U	0.04 I
	Total Dissolved Solids	Ŭ	33500		43600		49300		46400		49800		50600		51600		38800		46500		48900		1840		25800		28200
Tritium pCi/L (1σ) 1018.2 (33.7) 2234.6 (71.0) 2275.7 (71.6) 2307.2 (89.4) 2678.6 (91.9) 3105.0 (106.0) 2853.1 (90.3) 189.2 (7.6) 1378.8 (46.7) 1603.9 (53.4) 20.5 (5.9) J 311.6 (13.7) 426.8 (16.9)	Salinity	*	34.64		49.06	J	49.55	J	46.96	J	52.26	J			52.61		40.55	J	45.51	J	46.49	J	1.76	J	25	J	27.19
	Tritium	pCi/L (1σ)	1018.2 (33.7)		2234.6 (71.0)		2275.7 (71.6)		2307.2 (89.4)		2678.6 (91.9)		3105.0 (106.0)		2853.1 (90.3)		189.2 (7.6)		1378.8 (46.7)		1603.9 (53.4)		20.5 (5.9)	J	311.6 (13.7)		426.8 (16.9)

NOTES:
Laboratory results are reported with 3 digits although only the first 2 are significant figures.
* PSS-78 salinity is unitless.
Sample 030315-Dup is a duplicate of TPGW-2M.
Sample 030515-Dup is a duplicate of TPGW-9D.

Sample 030915-Dup is a duplicate of TPGW-12M.

Text in blue is revised

KEY:

 $^{\circ}$ C = Degrees Celsius. μS/cm = MicroSiemen(s) per centimeter. σ = sigma (Standard Deviation).

DUP = Duplicate.

EB = Equipment Blank.

FB = Field Blank.

HCO₃ = Bicarbonate

I = Value between the MDL and PQL. J = Estimated (+/- indicate bias). mg/L = Milligram(s) per liter.

N = Nitrogen

 $NH_3 = Ammonia.$

 NH_4^+ = Ammonium ion.

NTU = Nephelometric Turbidity Units(s).

pCi/L = PicoCuries per liter. Q = Holding time exceeded. SU = Standard Unit(s).

TKN = Total Kjeldahl nitrogen.

TN = Total nitrogen.

TPGW = Turkey Point Groundwater.

Table 3.1-8. Summary of Groundwater Analytical Results from the March 2015 Sampling Event (continued)

Parameter		TPGW-58	9	TPGW-5N	VI	TPGW-5D	'	TPGW-65	3	TPGW-6N		TPGW-6)	TPGW-75	5	TPGW-7N	VI .	TPGW-7	D	TPGW-8	S	TPGW-8N		TPGW-8D	
	Units	03/05/201	5	03/05/201	5	03/05/2015	5	03/02/201	5	03/02/201	5	03/02/201	5	03/02/201	5	03/02/201	5	03/02/201	15	03/02/201	15	03/02/201	5	03/02/2015	
Temperature	°C	24.13		24.68		24.51		23.86		24.12		24.03		24.17		24.28		23.99		24.18		24.15		24.24	
pН	SU	7.26		6.83		6.85		7.07		6.92		6.89		7.24		7.29		6.86		11.41		7.07		7.08	
Dissolved Oxygen	mg/L	0.25		0.24		0.34		0.17		0.20		0.15		0.05		0.03		0.12		0.27		0.24		0.25	
Specific Conductance	μS/cm	961		32899	J	35041	J	1232		22633		23682		534		537		6166		880	J	646		668	
Turbidity	NTU	0.50		0.19		0.19		0.47		0.30		0.37		1.09		0.33		0.43		0.46		0.21		0.22	
Silica, dissolved	mg/L																								
Calcium	mg/L	105		561	J	561	J	132		528		558		84		85		427		90		111		102	
Magnesium	mg/L	6.47		621	J	693	J	12.7		461		499		4.27		4.24		25		1.2		4.24		5.85	
Potassium	mg/L	5.26		135	J	173	J	4.82		109		117		8.12		7.61		8.47		10.8		12		9.4	
Sodium	mg/L	67		3930	J	4400	J	108		3930		4230		20		21		766		18		17		24	
Boron	mg/L	0.05	I	0.95		1.31		0.06		0.85		0.92		0.05	I	0.05	I	0.06		0.06		0.08		0.07	
Strontium	mg/L	1.02		7.20		7.87		1.28		8.97		9.37		0.82		0.82		4.54		0.65		1.12		1.05	
Bromide	mg/L	0.6		41.3	J	44.5	J	0.8		33.6		35.9		0.1		0.2		6.7		0.2		0.2		0.2	
Chloride	mg/L	149		11600	J	12700	J	219		7950		8390		35		36		1960		33		31		43	
Fluoride	mg/L	0.120		0.120	J	0.140	J	0.120		0.130		0.150		0.130		0.130		0.024	U	0.024	U	0.100		0.100	
Sulfate	mg/L	15		1220	J	1400	J	6		765		816		21		22		19		52		65		56	
Total Ammonia	mg/L as N																								
Ammonium ion (NH ₄ ⁺)	mg/L																								
Unionized NH ₃	mg/L																								
Nitrate/Nitrite	mg/L as N																								
TKN	mg/L																								
TN	mg/L																								
ortho-Phosphate	mg/L																								
Total Phosphorus (P)	mg/L																								
Alkalinity	mg/L	239		233	J	221	J	295		212		224		203		202		172		146		225		227	
Bicarbonate Alkalinity m	ng/L as HCO ₃	292		284	J	270	J	360		259		274		248		246		209		1	U	274		277	
Sulfide	mg/L	0.72	I	0.07	I	0.05	I	0.12		0.04	U	0.04	I	0.09	I	0.04	U	0.14		0.05	I	0.07	I	0.18	
Total Dissolved Solids	mg/L	520	Q	19800	Q	21100	Q	676		14100		15000		284		272		3740		276	J	350		366	
Salinity	*	0.47	J	20.57	J	22.05	J	0.61	J	13.65		14.34		0.26	J	0.26	J	3.35		0.43	J	0.31	J	0.32 J	\Box
Tritium	pCi/L (1σ)	-1.8 (5.2)	UJ	234.9 (11.0)		349.2 (14.5)		15.5 (5.5)	J	23.3 (5.7)	J	10.4 (5.3)	J	13.5 (5.5)	J	12.9 (5.5)	J	22.6 (5.7)	J	8.6 (5.5)	J	16.2 (5.9)	J	9.8 (5.5) J	j

Laboratory results are reported with 3 digits although only the first 2 are significant figures.

* PSS-78 salinity is unitless.

Sample 030315-Dup is a duplicate of TPGW-2M. Sample 030515-Dup is a duplicate of TPGW-9D.

Sample 030915-Dup is a duplicate of TPGW-12M.

Text in blue is revised

KEY:

°C = Degrees Celsius.

 μ S/cm = MicroSiemen(s) per centimeter.

 σ = sigma (Standard Deviation).

DUP = Duplicate.

EB = Equipment Blank.

FB = Field Blank.

HCO₃ = Bicarbonate

I = Value between the MDL and PQL.

J = Estimated (+/- indicate bias).

mg/L = Milligram(s) per liter.

N = Nitrogen

 $NH_3 = Ammonia$.

 NH_4^+ = Ammonium ion.

NTU = Nephelometric Turbidity Units(s).

pCi/L = PicoCuries per liter. Q = Holding time exceeded.

SU = Standard Unit(s).

TKN = Total Kjeldahl nitrogen.

TN = Total nitrogen.

TPGW = Turkey Point Groundwater.

Table 3.1-8. Summary of Groundwater Analytical Results from the March 2015 Sampling Event (continued)

		TPGW-9	S	TPGW-9	M	TPGW-9	D	030515-D	ир	TPGW-10)S	TPGW-10	M	TPGW-10E)	TPGW-11	S	TPGW-11	M	TPGW-11	D	TPGW-12	2S	TPGW-12N	Л	030915-Du	р
Parameter	Units	03/05/20	15	03/05/20	15	03/05/20 ⁻	15	03/05/201	5	03/04/20	15	03/04/201	5	03/04/2015		03/04/201	5	03/04/201	5	03/04/201	5	03/09/201	15	03/09/201	5	03/09/2015	5
Temperature	°C	24.69		24.30		24.11				25.82		25.72		25.62		25.31		25.30		25.37		26.74		26.81			
pН	SU	6.87		6.91		6.91				7.27		7.25		7.00		6.93		6.73		6.79		6.61		6.64			
Dissolved Oxygen	mg/L	0.23		0.23		0.52				0.20		0.13		0.18		0.21		0.33		0.17		0.26		0.08			
Specific Conductance	μS/cm	604		603		622				53820		56077	J	69409	J	55149	J	57580	J	64255	J	45042		58029	J		
Turbidity	NTU	0.23		0.23		0.13				0.22		0.29		0.12		0.29		0.27		0.09		0.12		0.27			
Silica, dissolved	mg/L																										
Calcium	mg/L	110		105		107		110		424		450		586		488	J	534	J	596	J	503		595	J	582	
Magnesium	mg/L	2.45		2.81		3.25		3.39		1300		1360		1790		1360	J	1420	J	1610	J	1010		1450	J	1330	
Potassium	mg/L	4.89		5.16		3.67		3.94		400		421		554		427	J	430	J	493	J	356		471	J	475	
Sodium	mg/L	12		12		15		15		9740	J	10200	J	13300	J	10400	J	10900	J	12300	J	8580	J	11200	J	11400	
Boron	mg/L	0.04	I	0.05	I	0.05	I	0.06		4.58	I	4.79	I	5.99		5.06		4.95	I	5.34		3.54		5.19		4.65	
Strontium	mg/L	0.83		0.90		1.12		1.14		7.98		8.66		11.10		8.53		9.23		10.70		7.83		10.10		10.10	
Bromide	mg/L	0.2		0.2		0.3		0.3		73.4		72.7	J	93.8	J	72.1	J	75.5	J	85.9	J	56.9		77.4	J	78.1	
Chloride	mg/L	22		23		27		27		17100		21200	J	27200	J	21000	J	22600	J	24900	J	16700		23100	J	22600	
Fluoride	mg/L	0.032	U	0.032	U	0.032	U	0.032	U	0.820		0.600	J	0.250	J	0.850	J	0.610	J	0.710	J	0.480	J	0.270	J	0.280	
Sulfate	mg/L	5		8		27		27		2710		2800	J	3530	J	2800	J	2880	J	3220	J	2010		2850	J	2890	
Total Ammonia	mg/L as N									0.594	J	0.423	J	1.170	J												
Ammonium ion (NH ₄ ⁺)	mg/L									0.75	J	0.53	J	1.50	J												
Unionized NH ₃	mg/L									0.009	J	0.006	J	0.009	J												
Nitrate/Nitrite	mg/L as N									0.0269	I	0.0289	I	0.0302	I												
TKN	mg/L									0.90		0.63		1.80													
TN	mg/L									0.92	J	0.66	J	1.83													
ortho-Phosphate	mg/L									0.0232		0.0194		0.0406													
Total Phosphorus (P)	mg/L									0.0322		0.0367		0.0447													
Alkalinity	mg/L	274		276		254		261		133		126	J	169	J	273	J	333	J	265	J	528		333	J	332	
Bicarbonate Alkalinity	mg/L as HCO ₃	335		336		310		319		162		154	J	207	J	333	J	406	J	324	J	644		406	J	406	
Sulfide	mg/L	0.62		0.30		0.09	I	0.10	I	4.70	0	1.54	0	5.90	0	8.83	0	7.72	0	5.46	0	5.10		8.31	J	5.23	J
Total Dissolved Solids	mg/L	324	Q	322	Q	344	Q			32400		34700	_	44700		34100	_	35600	_	40600		26700		38600	-	41600	
Salinity	*	0.29	J	0.29	J	0.3	J			35.54		37.23	J	47.45	J	36.54	J	38.37	J	43.46	J	29.09		38.67	J		
Tritium	pCi/L (1σ)	5.8 (5.3)		-0.2 (4.9)	UJ	-4.5 (4.8)	UJ	4.3 (5.5)	UJ	12.5 (5.2)	J	33.8 (5.8)	J	1598.0 (56.4)	-	6.9 (5.2)	J	180.7 (9.9)	_	876.9 (32.5)		90.8 (5.9)		955.5 (32.5)	-	959.4 (32.6)	
		NOTES:		3.2 ()		()		(0.0)		-2.0 (0.2)		22.0 (2.0)	ŭ			3.7 (2.2)	Ü	-50.7 (5.5)		2.00 (02.0)		2 3.0 (2.2)		2200 (22.0)		(52.0)	

* PSS-78 salinity is unitless.

Sample 030315-Dup is a duplicate of TPGW-2M.

Sample 030515-Dup is a duplicate of TPGW-9D. Sample 030915-Dup is a duplicate of TPGW-12M.

Text in blue is revised

KEY:

°C = Degrees Celsius.

μS/cm = MicroSiemen(s) per centimeter.

 σ = sigma (Standard Deviation).

DUP = Duplicate.

EB = Equipment Blank.

FB = Field Blank.

HCO₃ = Bicarbonate

I = Value between the MDL and PQL. J = Estimated (+/- indicate bias). mg/L = Milligram(s) per liter.

N = Nitrogen

 $NH_3 = Ammonia.$ NH_4^+ = Ammonium ion.

NTU = Nephelometric Turbidity Units(s).

pCi/L = PicoCuries per liter. Q = Holding time exceeded.

SU = Standard Unit(s). TKN = Total Kjeldahl nitrogen.

TN = Total nitrogen.

TPGW = Turkey Point Groundwater.

Table 3.1-8. Summary of Groundwater Analytical Results from the March 2015 Sampling Event (continued)

		TPGW-12I)	TPGW-13S		TPGW-13M		TPGW-13D		TPGW-14	IS	TPGW-14I	M	TPGW-14E)	030215-E	В	030315-	FB	030415-	FB	030515-F	-B1	030515-	FB2	030915-F	FB1	030915-F	FB2
Parameter	Units	03/09/2015	5	03/09/2015		03/09/2015		03/09/2015		03/04/20	15	03/04/201	5	03/04/2015	5	03/02/20	15	03/03/20	15	03/04/20	15	03/05/20	15	03/05/20)15	03/09/20	15	03/09/20	15
Temperature	°C	26.78		29.99		29.44		29.45		25.74		25.86		25.87													ш		
pН	SU	7.08		6.71		6.87		6.82		6.99		6.78		6.79													ш		
Dissolved Oxygen	mg/L	0.10		0.19		0.09		0.12		0.18		0.31		0.31													ш		
Specific Conductance	μS/cm	64578	J	84447	J	78024	J	79894	J	57239		61261		73310	J												ш		
Turbidity	NTU	0.37		5.62		1.88		0.11		0.23		0.18		0.22															i
Silica, dissolved	mg/L															0.05	U	0.05	U	0.05	U	0.050	U			0.0521	I		
Calcium	mg/L	612	J	788		717		733		501		557		640		0.100	U	0.100	U	0.100	U	0.100	U			0.1	U		
Magnesium	mg/L	1520	J	2200		2080		2180		1430		1520		1880		0.0200	U	0.0200	U	0.0200	U	0.020	U			0.02	U		i
Potassium	mg/L	537	J	750		655		696		449		472		596		0.190	U	0.190	U	0.190	U	0.190	U			0.19	U		
Sodium	mg/L	12600	J	17000		14700		14700		10800		11700	J-	13800		0.310	U	0.310	U	0.310	U	0.310	U			0.31	U		
Boron	mg/L	5.10		8.50		7.58		8.56		5.44		5.22		7.42		0.01	U	0.01	U	0.01	U	0.010	U			0.01	U		i
Strontium	mg/L	11.00		15.70		14.70		15.00		9.04		9.95		12.50		0.001	U	0.001	U	0.001	U	0.001	U			0.001	U		
Bromide	mg/L	130.0	J-	118.0	J	108.0	J	110.0	J	75.9		81.4		102	J	0.0130	U	0.0130	U	0.0250	U	0.025	U			0.025	U		
Chloride	mg/L	26000	J	35900	J	32700	J	32100	J	20800		23200		29500	J	0.200	U	0.200	U	0.200	U	0.200	U			0.200	U		ш
Fluoride	mg/L	0.260	J-	0.460	J	0.190	J	0.220	J	0.560		0.450		0.41	J	0.0240	U	0.0320	U	0.0320	U	0.032	U			0.032	U		
Sulfate	mg/L	3240	J	4410	J	4060	J	4120	J	2900		3080		3860	J	0.400	U	0.400	U	0.400	U	0.400	U			0.4	U		ш
Total Ammonia	mg/L as N			3.060		1.560		1.880		0.770	J	1.090	J+	1.99		0.1400	I	0.1570	I	0.1950	I	0.2400		0.1600	I	0.1	U	0.1	U
Ammonium ion (NH ₄ ⁺)	mg/L			3.92		2.00		2.41		0.98	J	1.39	J	2.55													1	1	
Unionized NH ₃	mg/L			0.015		0.012		0.011		0.006	J	0.005	J	0.009														(
Nitrate/Nitrite	mg/L as N			0.0280	IJ	0.0276	IJ	0.0966	J	0.0250	U	0.0308	IJ	0.03	IJ	0.005	UQ	0.005	U	0.00551	I	0.00500	U			0.0105			
TKN	mg/L			4.98		3.00		3.74		0.93		1.50		3.00		0.228	I	0.200	U	0.200	U	0.20	U			0.1	U		
TN	mg/L			5.01	J	3.03	J	3.84	J	0.96	J	1.53	J	3.03	J												\Box		
ortho-Phosphate	mg/L			0.0624	Q	0.0064	IJ	0.0705	J+	0.0479		0.0641		0.0588		0.0021	U	0.0021	U	0.0021	U	0.00210	U			0.0021	U		
Total Phosphorus (P)	mg/L			0.0636		0.0598		0.0635		0.0710		0.0682		0.0612		0.0030	U	0.0030	U	0.0030	U	0.00300	U			0.003	U		
Alkalinity	mg/L	196	J	295	J	203	J	215	J	232		289		233	J	1.00	U	1.00	U	1.00	U	1.00	U			1	U		
Bicarbonate Alkalinity	mg/L as HCO ₃	239	J	360	J	248	J	263	J	283		352		285	J	1.00	U	1.00	U	1.00	U	1.00	U			1	U		
Sulfide	mg/L	1.35		39.10		0.45	IJ	5.80		3.83	Q	6.01	Q	7.11	Q	0.04	U	0.04	U	0.05	ΙQ	0.04	U			0.0564	I		П
Total Dissolved Solids	mg/L	45400		58900		53000		56100		36500		39200		49700		5	U	5	U	5	U	5	U			5	U		П
Salinity	*	43.66	J	59.36	J	54.16	J	55.67	J	38.1		41.14		50.52	J												\Box		\Box
Tritium	pCi/L (1σ)	1532.7 (50.2)		4738.0 (162.8)		3044.4 (106.4)		3816.1 (133.4)		110.1 (7.8)		361.3 (15.4)		2297.2 (80.1)		6.0 (5.3)		4.6 (2.6)		5.0 (2.6)		-3.6 (5.0)	UJ			-0.1 (3.6)	UJ		П
	/	NOTES:	•		•					•		`										• • • •	•						

* PSS-78 salinity is unitless.

Sample 030315-Dup is a duplicate of TPGW-2M. Sample 030515-Dup is a duplicate of TPGW-9D.

Sample 030915-Dup is a duplicate of TPGW-12M.

Text in blue is revised KEY:

°C = Degrees Celsius. µS/cm = MicroSiemen(s) per centimeter.

 σ = sigma (Standard Deviation).

DUP = Duplicate.

EB = Equipment Blank.

FB = Field Blank.

HCO₃ = Bicarbonate

I = Value between the MDL and PQL. J = Estimated (+/- indicate bias).

mg/L = Milligram(s) per liter.

N = Nitrogen $NH_3 = Ammonia.$

 NH_4^+ = Ammonium ion.

NTU = Nephelometric Turbidity Units(s).

pCi/L = PicoCuries per liter. Q = Holding time exceeded. SU = Standard Unit(s).

TKN = Total Kjeldahl nitrogen.

TN = Total nitrogen.

TPGW = Turkey Point Groundwater.

Table 3.1-9. Summary of Groundwater Analytical Results from the June 2013 Historical Well Sampling Event

		TPGW-L3-18	TPGW-L3-	58 TPGW-L5-18	TPGW-L5-58	TPGW-G21-18	061013-DUP1	TPGW-G21-58	TPGW-G28-18	TPGW-G28-58	TPGW-G35-18	TPGW-G35-58	060713-FB	1 061013-FB1
Parameter	Units	6/7/2013	6/7/2013	6/7/2013	6/7/2013	6/10/2013	6/10/2013	6/10/2013	6/10/2013	6/10/2013	6/10/2013	6/10/2013	6/7/2013	6/10/2013
Temperature	°C	26.39	27.97	27.13	27.75	25.02		25.16	25.57	25.19	24.59	24.87		
pН	SU	7.14	6.86	7.2	6.84	6.9		6.64	7.94	6.79	6.94	7.16		
Dissolved Oxygen	mg/L	0.4	0.23	1.23	0.29	0.56		0.36	0.28	0.31	0.35	0.32		
Specific Conductance	μS/cm	1179	79416	547	74968	518		17408	7850	39487	634	14447		
Turbidity	NTU	3.01	0.14	1.66	0.15	0.71		0.32	59.73	27.6	0.94	0.3		
Sodium	mg/L	123	19500	41.2	18400	23.2	22.9	2820	1190	7460	26.8	2450	0.31	U 0.31 U
Chloride	mg/L	240	32700	78.4	30900	51.7	48	6250	2670	16000	48.4 J+	5070	0.25	U 0.25 U
Total Dissolved Solids	mg/L	627	50600	296	48500	268	264	12000	4460	24300	348	8300		5 U
Salinity	*	0.58	J 55.34	0.26 J	51.78	0.25 J		10.24	4.34	25.15	0.31 J	8.37		
Tritium	pCi/L (1σ)	60.9 (6.8)	4241 (125)	65.9 (7.1)	3420 (113)	10.3 (6.9)	11.1 (6.7)	50.4 (7.4)	18.7 (7.0)	397 (16.3)	18.6 (6.7)	15.1 (6.8)	3.4 (5.2) U	UJ -7.8 (5.8) U.

Text in blue is revised.

* PSS-78 salinity is unitless.
Sample 061013-DUP1 is a duplicate of 061013-TPGW-G21-18

KEY:

°C = Degrees Celsius. µS/cm = MicroSiemen(s) per centimeter.

 σ = sigma (Standard Deviation).

DUP = Duplicate.

FB = Field Blank.

J = Estimated (+/- indicate bias).

mg/L = Milligram(s) per liter. NTU = Nephelometric Turbidity Units(s).

pCi/L = PicoCuries per liter.

SU = Standard Unit(s).

TPGW = Turkey Point Groundwater.
U = Analyzed for but not detected at the reported value.

Table 3.1-10. Summary of Groundwater Analytical Results from the September 2013 Historical Well Sampling Event

Parameter Color: Color:			TPGW-L3	3-18	TPGW-L3-58	3	TPGW-L5	-18	TPGW-L5-58		TPGW-G2	1-18	090913-	DUP	TPGW-G21	-58	TPGW-G28	8-18	TPGW-G28	-58	TPGW-G3	5-18	TPGW-G35	-58	090913-	-B1	091013-F	В1
pH SU 7.37 6.89 7.26 6.87 7.28 0.20 0.11 8.25 6.84 7.23 7.17 0 0 0 Disolved Oxygen mgL 0.15 0.022 0.14 0.20 0.20 0.20 0.20 0.04 J 0.04 J 0.03 J 0.21 J 0.03 9.93 9.07 0.22 17918 0.00 0.00 0.02 0.02 0.02 0.02 0.00 0.00 0.00 0.02 0.02 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	Parameter	Units	09/10/20	13	09/10/2013		09/10/20	13	09/10/2013		09/09/20	13	09/09/20	013	09/09/201	3	09/09/20	13	09/09/201	3	09/09/20	13	09/09/201	3	09/09/20)13	09/10/20	13
Dissolved Oxygen	Temperature	°C	27.92		28.67		29.60		28.86		26.19				25.81		25.93		25.75		24.88		24.77					
Specific Conductance IpS/cm 704 1973 1727 75809 532 1 1718 532 1 1718 5034 1718 5034 39083 592 17918 1 1 1 1 1 1 1 1 1	pН	SU	7.37		6.89		7.26		6.87		7.28				6.71		8.25		6.84		7.23		7.17					
Turbidity NTU 2.53 C 0.06 0.72 C 0.07 C 1.42 C 0.53 C 19.45 C 10.00 C 0.27 C 0.22 C C C C C C C C C	Dissolved Oxygen	mg/L	0.15		0.22		0.14		0.20		0.20	J			0.04	J	0.19	J	0.03	J	0.21	J	0.31	J				
Calcium mg/L 67.4 I 67.7 83.9 I 735 87.5 87.5 87.0 635 259 593 I 90.7 313 0.100 U 0.000 0 0.000 <t< td=""><td>Specific Conductance</td><td>μS/cm</td><td>704</td><td></td><td>79173</td><td></td><td>1727</td><td></td><td>75809</td><td></td><td>532</td><td></td><td></td><td></td><td>17131</td><td></td><td>5034</td><td></td><td>39083</td><td></td><td>592</td><td></td><td>17918</td><td></td><td></td><td></td><td></td><td></td></t<>	Specific Conductance	μS/cm	704		79173		1727		75809		532				17131		5034		39083		592		17918					
Magnesium mg/L 7.69 c 1790 c 22.8 1810 c 3.82 c 3.80 c 221 c 70.0 c 807 c 5.59 c 342 c 0.0200 U	Turbidity	NTU	2.53		0.06		0.72		0.07		1.42				0.53		19.45		10.00		0.27		0.22					
Potassium mg/L 2.49 6.61 9.30 6.61 4.54 4.43 2.57 6.14.5 1.98 9.42 1.02 0.190 U 0.190 U Bodium mg/L 66.3 1.6900 225 17100 23.9 23.5 2690 988 7140 21.3 3000 0.010 U 0.045 0.045 6.87 0.064 0.048 1<0.155 1<0.195 1 1.43 0.065 1.53 0.001 U 0.01 U Bromide mg/L 0.644 1 13 0.88 15.2 0.711 0.769 0.52 2.35 7.17 0.8858 4.59 0.001 U 0.	Calcium	mg/L	67.4		677		83.9		735		87.5		87.0		635		259		593		90.7		313		0.100	U	0.100	U
Sodium mg/L 66.3 I 16900 2.25 I 17100 2.3.9 I 2.3.9 2.3.5 I 2690 I 7.140 I 3000 I 0.310 U 0.310 U 0.010 U 0.010 I 0.064 0.084 I 0.155 I 0.155 I 1.43 0.0655 1.53 0.01 U 0.	Magnesium	mg/L	7.69		1790		22.8		1810		3.82		3.80		221		70.0		807		5.59		342		0.0200	U	0.0200	U
Boron mg/L 0.0457 1 7.09 0.105 0 0.105 0 6.87 0.064 0 0.064 0 0.064 0 0.105 0 0.105 0 0.105 0 0.105 0 0.010 0 0.001 0 0.001 0 0 0.001 0 0 0.001 0 0 0 0.001 0 0 0 0 0 0 0 0 0	Potassium	mg/L	2.49		671		9.30		671		4.54		4.43		25.7		14.5		198		9.42		102		0.190	U	0.190	U
Strontium mg/L 0.644 I 13 0.88 I 15.2 0.771 I 0.769 I 6.52 I 2.35 7.17 I 0.858 I 4.59 0.001 U 0.001 U Bromide mg/L 134 34800 143 33300 46.6 45.1 6440 22.16 7.57 45.4 0.315 21.7 0.030 U 0.020 U 0.0250 U 0.0250 U 0.0240 U 0.024 0.214 21.6 6.52 0.250 U 5.0050 U 0.035 21.7 0.030 U 0.0240 U 0.0240 U 0.0240 U 0.0240 U 0.0240 U 0.0250	Sodium	mg/L	66.3		16900		225		17100		23.9		23.5		2690		988		7140		21.3		3000		0.310	U	0.310	U
Bromide mg/L 0.379 I 117 I 1.57 I 108 0.224 I 0.214 I 7.57 I 45.4 I 0.315 I 0.0130 U 0.0250 U	Boron	mg/L	0.0457	I	7.09		0.105		6.87		0.064		0.048	I	0.155	I	0.195	I	1.43		0.0655		1.53		0.01	U	0.01	U
Chloride mg/L 134 S4800 443 33300 46.6 45.1 6440 2210 15300 37.6 6490 0.250 U 0.250 U 0.250 U 0.250 U 0.250 U 0.250 U 0.0240	Strontium	mg/L	0.644		13		0.88		15.2		0.771		0.769		6.52		2.35		7.17		0.858		4.59		0.001	U	0.001	U
Fluoride mg/L 0.0923 I 0.299 0.0923 I 0.193 0.193 I 0.193 0.118 0.118 0.114 0.0870 I 0.0870 I 0.0783 I 0.131 0.136 0.126 0.159 0.0240 U 0.0240 U	Bromide	mg/L	0.379		117		1.57		108		0.224		0.214		21.6		7.57		45.4		0.315		21.7		0.0130	U	0.0130	U
Sulfate mg/L 2.11 4350 32.2 4080 10.5 J 8.48 J 216 173 1730 59.9 867 0.250 U 0.250 U Total Ammonia mg/L as N 1 1 1 1 1 1 1 1 1 0.0260 U 0.0261 I Nitrate/Nitrite mg/L as N 1 1 1 1 1 1 1 1 0.0260 U 0.0261 I TKN mg/L 1 1 1 1 1 1 1 1 0.0040 0 0.0040 U 0.0040	Chloride	mg/L	134		34800		443		33300		46.6		45.1		6440		2210		15300		37.6		6490		0.250	U	0.250	U
Total Ammonia mg/L as N	Fluoride	mg/L	0.0923	I	0.299		0.0923	I	0.193		0.118		0.114		0.0870	I	0.0783	I	0.131		0.126		0.159		0.0240	U	0.0240	U
Nitrate/Nitrite mg/L as N	Sulfate	mg/L	2.11		4350		32.2		4080		10.5	J	8.48	J	216		173		1730		59.9		867		0.250	U	0.250	U
TKN mg/L Image Im	Total Ammonia	mg/L as N																							0.0260	U	0.0261	I
ortho-Phosphate mg/L I	Nitrate/Nitrite	mg/L as N																							0.00760	I	0.00540	U
Total Phosphorus (P) mg/L I	TKN	mg/L																							0.366		0.255	
Alkalinity mg/L 153 185 181 189 204 201 201 118 212 176 167 1.00 U 1.00 U Bicarbonate Alkalinity mg/L as HCO ₃ 153 185 181 189 204 201 201 118 212 176 167 1.00 U 1.00 U Sulfide mg/L 1.12 1.67 1.12 1.00 U 1.15 1.00 U	ortho-Phosphate	mg/L																							0.00140	U	0.00140	U
Bicarbonate Alkalinity mg/L as HCO ₃ 153 185 181 189 204 201 201 118 212 176 167 1.00 U 1.00 U Sulfide mg/L 1.12 1.67 1.12 1.00 U 1.15 1.00 U 1.00 <td>Total Phosphorus (P)</td> <td>mg/L</td> <td></td> <td>0.00220</td> <td>U</td> <td>0.00220</td> <td>U</td>	Total Phosphorus (P)	mg/L																							0.00220	U	0.00220	U
Sulfide mg/L 1.12 1.67 1.12 1.00 U 1.00 U<	Alkalinity	mg/L	153		185		181		189		204		201		201		118		212		176		167		1.00	U	1.00	U
Total Dissolved Solids mg/L 412 56600 890 52000 292 288 10900 4120 24100 324 10300	Bicarbonate Alkalinity	mg/L as HCO ₃	153		185		181		189		204		201		201		118		212		176		167		1.00	U	1.00	U
Salinity * 0.34 J 55.12 0.87 J 52.41 0.26 J 10.08 3.43 24.83 0.29 J 10.58 I	Sulfide	mg/L	1.12		1.67		1.12		1.00	U	1.15		1.00	U	1.00	U	1.28		1.00	U	1.00	U	1.00	U	1.00	U	1.00	U
	Total Dissolved Solids	mg/L	412		56600		890		52000		292		288		10900		4120		24100		324		10300					
Tritium pCi/L (1σ) 36.2 (5.9) 3857.5 (118.9) 53.5 (5.3) 3137.8 (105.0) 5.4 (4.0) 7.6 (3.9) 40.9 (4.9) 6.5 (6.0) 407.9 (16.4) 6.4 (5.9) 2.9 (6.0) UJ 0.0 (5.7) UJ -3.3 (3.7) UJ	Salinity	*	0.34	J	55.12		0.87	J	52.41		0.26	J			10.08		3.43		24.83		0.29	J	10.58					
	Tritium	pCi/L (1σ)	36.2 (5.9)		3857.5 (118.9)		53.5 (5.3)		3137.8 (105.0)		5.4 (4.0)		7.6 (3.9)		40.9 (4.9)		6.5 (6.0)		407.9 (16.4)		6.4 (5.9)		2.9 (6.0)	UJ	0.0 (5.7)	UJ	-3.3 (3.7)	UJ

Laboratory anion and cation results are reported with 3 digits although only the first 2 are significant figures.

Text in blue is revised.

* PSS-78 salinity is unitless.

Sample 090913-DUP1 is a duplicate of G21-18.

°C = Degrees Celsius.

μS/cm = MicroSiemen(s) per centimeter.

σ = sigma (Standard Deviation).

DUP = Duplicate.

FB = Field Blank. HCO_3 = Bicarbonate.

I = Value between the MDL and PQL. J = Estimated (+/- indicate bias). mg/L = Milligram(s) per liter.

N = Nitrogen

NTU = Nephelometric Turbidity Units(s).

pCi/L = PicoCuries per liter.

SU = Standard Unit(s). TKN = Total Kjeldahl nitrogen. TPGW = Turkey Point Groundwater.

Table 3.1-11. Summary of Groundwater Analytical Results from the December 2013 Historical Well Sampling Event

		TPGW-L3-1	8 TPGW-L3-	58 TPGW-L	5-18	TPGW-L5-58	3	TPGW-G2	1-18	TPGW-G21	-58	TPGW-G28-18	TPGW-G28-58	TPGW-G3	5-18	120613-D	UP	TPGW-G35	-58	120513-F	B1	120613-	FB1
Parameter	Units	12/05/2013	12/05/2013	3 12/05/2	013	12/05/2013		12/06/20	13	12/06/201	3	12/06/2013	12/06/2013	12/06/20	113	12/06/20	13	12/06/201	3	12/05/20	13	12/06/2	013
Temperature	°C	27.16	27.58	27.28		27.85		25.22		24.86		25.04	24.99	24.67				24.54					
pН	SU	6.92	6.80	7.18		6.80		6.94		6.64		7.93	6.86	7.10				7.12					
Dissolved Oxygen	mg/L	0.44	0.31	0.29		0.32		0.64		0.42		0.37	0.83	0.36				0.32					
Specific Conductance	μS/cm	2298	78688	980		74021		579		17273		5610	38640	645				18389					
Turbidity	NTU	1.34	0.01	J 0.99		0.01	J	1.31		0.40		105.40	47.70	1.75				0.01					
Sodium	mg/L	292	16900	93.2		15900		24.8		2880		941	7070	30.6		30.5		3150		0.310	U	0.310	U
Chloride	mg/L	556	33000	189		30200		45.6		5540		1910	14900	56.4		60.4		6230		0.250	U	0.250	U
Total Dissolved Solids	mg/L	940	57100	480		52700		308		9700		3140	24200	336		320		9600		5.00	U	5.00	U
Salinity	*	1.2	J 54.8	0.5	J	51.0		0.2	J	10.2		3.0	24.6	0.3	J			10.9					
Tritium	pCi/L (1σ)	67.7 (8.1)	J 4072.4 (133.8)	43.8 (7.5)	J 332	329.1 (110.9)		7.9 (6.4)	J	29.5 (7.0)	J	17.0 (6.7) J	382.7 (16.2)	5.3 (6.2)	UJ	13.4 (6.5)	J	-1.9 (6.2)	UJ	-7.9 (6.5)	UJ	6.0 (6.4)	UJ

Text in blue is revised.
* PSS-78 salinity is unitless.

Sample 120613-DUP1 is a duplicate of 120613-TPGW-G35-18.

°C = Degrees Celsius. μS/cm = MicroSiemen(s) per centimeter. σ = sigma (Standard Deviation).

DUP = Duplicate.

FB = Field Blank.

J = Estimated (+/- indicate bias).

mg/L = Milligram(s) per liter.

NTU = Nephelometric Turbidity Units(s).

pCi/L = PicoCuries per liter.

SU = Standard Unit(s).

TPGW = Turkey Point Groundwater.

Table 3.1-12. Summary of Groundwater Analytical Results from the March 2014 Historical Well Sampling Event

Magnesium mg/L 11 I 1790 I 0 I 1660 4 180 22 802 8 8 340 0.0200 U 0.0200 U Potasium mg/L 4 667 3 594 5 29 8 208 13 12 114 0.190 U 0.010 U 0.190 U 0.010 U 0.010 U 0.010 U 0.010 U 0.010 U 0.010 U 0.030 U 0.030 U 0.030 U 0.030 U 0.030 U 0.03 0.04 0.031 U 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.02 2.2 2.05 2.4 4.95 0.6 0.6 0.6 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.02 0.02 0.030 U 0.030 U 0.02 1 0.013			TPGW-L3	3-18	TPGW-L3-58	3	TPGW-L5	-18	TPGW-L5-5	8	TPGW-G21-	18	TPGW-G2	21-58	TPGW-G2	8-18	TPGW-G28-	-58	TPGW-G35	5-18	030614-D	UP	TPGW-G3	5-58	030614-F	B1	030714-F	B1
Pissalved Dyspe SU 7.24 6.95 7.36 6.95 7.36 6.97 7.40 6.08 8.040 4.88 6.40 4.88 6.45 6.45 6.45 7.46 6.70 7.46 6.70 7.45 7.4	Parameter	Units	03/07/20)14	03/07/2014		03/07/20	14	03/07/2014		03/06/2014		03/06/20)14	03/06/20	14	03/06/2014	4	03/06/20	14	03/06/20	14	03/06/20	14	03/06/20	14	03/07/201	4
Dissolved Oxygen mg/L 0.47 0.56 0.56 0.61 0.43 0.43 0.48 0.40 0.45 0.40 0.45 0.45 0.45 0.45 0.77 0.51 0.45 0.	Temperature	°C	26.19		26.86		24.50		25.54		24.61		24.37		25.26		24.90		25.21				24.62					
Specific Conductance	pН	SU	7.24		6.95		7.36		6.87		7.40		6.70		9.46		6.92		7.56				7.10					i
Turbidity NTU 0.81 0.12 0.075 0.007 0.51 0.09 0.88 81.31 1.10 0.05 0.25 0.000	Dissolved Oxygen	mg/L	0.47		0.56		0.61		0.43		0.88		0.40		4.58		0.45		0.77				0.35					
Calcium mg/L 79	Specific Conductance	μS/cm	837		77142		799		72566		538		16305		1673		38299		755				18096					i
Magnesium mg/L 11 I 1790 I 0 I 1660 4 180 22 802 8 8 340 0.0200 U 0.0200 U Potasium mg/L 4 667 3 594 5 29 8 208 13 12 114 0.190 U 0.010 U 0.190 U 0.010 U 0.010 U 0.010 U 0.010 U 0.010 U 0.010 U 0.030 U 0.030 U 0.030 U 0.030 U 0.030 U 0.03 0.04 0.031 U 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.02 2.2 2.05 2.4 4.95 0.6 0.6 0.6 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.02 0.02 0.030 U 0.030 U 0.02 1 0.013	Turbidity	NTU	0.81		0.12		0.75		0.07		0.51		0.09		0.85		81.31		1.10				0.25					i
Potassium	Calcium	mg/L	79		671		81		669		81		581		98		587		69		68		307		0.100	U	0.100	U
Solim	Magnesium	mg/L	11		1790		10		1660		4		180		22		802		8		8		340		0.0200	U	0.0200	U
Boron mg/L 0.06 6.99 0.06 6.06 0.04 I 0.15 0.14 1.53 0.09 0.08 1.66 0.01 U 0.01 U Strontium mg/L 0.77 13.50 0.79 15.10 0.83 7.27 1.10 8.15 0.96 0.95 5.21 0.00 U 0.00 0 0.00 0 0.00 0 0 0 0 0 0 0 0	Potassium	mg/L	4		667		3		594		5		29		8		208		13		12		114		0.190	U	0.190	U
Strontium mg/L 0.77 I 3.50 0.79 15.10 0.83 7.27 I 1.10 8.15 0.96 0.95 5.21 0.00 U 0.00 U 0.00 U 0.010 U 0.010 U 0.013 U 0.014 116 117 6020 0.025 U 0.036 I 1 0.018 J 0.180 J 0.121 0.091 I 0.045 I 0.142 0.188 0.142 0.162 0.0240 U 0.0240	Sodium	mg/L	76		17100		68		16200	J	24		2700		350		7540		66		65		3350		0.310	U	0.310	U
Bromide mg/L 0.3 1 109.0 0.4 103.0 0.2 2.5 2.4 49.5 0.6 0.6 20.9 0.0130 U 0.0300 U <th< th=""><th>Boron</th><th>mg/L</th><th>0.06</th><th></th><th>6.99</th><th></th><th>0.06</th><th></th><th>6.06</th><th></th><th>0.04</th><th>I</th><th>0.15</th><th></th><th>0.14</th><th></th><th>1.53</th><th></th><th>0.09</th><th></th><th>0.08</th><th></th><th>1.66</th><th></th><th>0.01</th><th>U</th><th>0.01</th><th>U</th></th<>	Boron	mg/L	0.06		6.99		0.06		6.06		0.04	I	0.15		0.14		1.53		0.09		0.08		1.66		0.01	U	0.01	U
Chloride mg/L 141 31700 122 28800 43 5810 676 13800 116 117 6020 0.250 U 0.364 I Fluoride mg/L 0.092 I 0.317 J 0.080 I 0.180 J- 0.121 0.091 I 0.045 I 0.142 0.138 0.142 0.162 0.0240 U 0.0240 U Sulfate mg/L 20.6 4550 10.3 J 370 14.7 209 10.4 1760 76 77 925 0.338 I 1.110 Sulfate mg/L as N I I 3970 14.7 209 10.4 1760 76 77 925 0.338 I 1.110 Wittate/Nitrite mg/L as N I I I I I I I I 0.0250 U 0.0300 U 0.0300 U 0.0300 U <th< th=""><th>Strontium</th><th>mg/L</th><th>0.77</th><th></th><th>13.50</th><th></th><th>0.79</th><th></th><th>15.10</th><th></th><th>0.83</th><th></th><th>7.27</th><th></th><th>1.10</th><th></th><th>8.15</th><th></th><th>0.96</th><th></th><th>0.95</th><th></th><th>5.21</th><th></th><th>0.00</th><th>U</th><th>0.00</th><th>U</th></th<>	Strontium	mg/L	0.77		13.50		0.79		15.10		0.83		7.27		1.10		8.15		0.96		0.95		5.21		0.00	U	0.00	U
Fluoride	Bromide	mg/L	0.3		109.0		0.4		103.0		0.2		20.5		2.4		49.5		0.6		0.6		20.9		0.0130	U	0.0130	U
Sulfate mg/L 20.6 4550 10.3 J 3970 14.7 209 104 1760 76 77 925 0.338 I 1.110 Total Ammonia mg/L as N I </th <th>Chloride</th> <th>mg/L</th> <th>141</th> <th></th> <th>31700</th> <th></th> <th>122</th> <th></th> <th>28800</th> <th></th> <th>43</th> <th></th> <th>5810</th> <th></th> <th>676</th> <th></th> <th>13800</th> <th></th> <th>116</th> <th></th> <th>117</th> <th></th> <th>6020</th> <th></th> <th>0.250</th> <th>U</th> <th>0.364</th> <th>I</th>	Chloride	mg/L	141		31700		122		28800		43		5810		676		13800		116		117		6020		0.250	U	0.364	I
Total Ammonia	Fluoride	mg/L	0.092	I	0.317	J	0.080	I	0.180	J-	0.121		0.091	I	0.045	I	0.142		0.138		0.142		0.162		0.0240	U	0.0240	U
Nitrate/Nitrite mg/L as N Image of the properties of the proper	Sulfate	mg/L	20.6		4550		10.3	J	3970		14.7		209		104		1760		76		77		925		0.338	I	1.110	1
TKN mg/L Image: Control of the phosphate of the phosphate of the phosphorus (P) mg/L Image: Control of the phosphate of the phosphorus (P) mg/L Image: Control of the phosphate of the phosphorus (P) mg/L Image: Control of the phosphorus (P) Image: Control of the phosphorus (P) <t< th=""><th>Total Ammonia</th><th>mg/L as N</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>0.0260</th><th>U</th><th>0.0260</th><th>U</th></t<>	Total Ammonia	mg/L as N																							0.0260	U	0.0260	U
TN mg/L	Nitrate/Nitrite	mg/L as N																							0.03780	I	0.05550	1
ortho-Phosphate mg/L Image: Control of the phosphorus (P)	TKN	mg/L																							0.300	U	0.300	U
Total Phosphorus (P) mg/L l	TN	mg/L																							0.3378		0.3555	1
Alkalinity mg/L 187 183 210 192 196 203 76 217 115 118 170 1.00 U 1.00 U Bicarbonate Alkalinity mg/L as HCO ₃ 187 183 210 192 196 203 76 217 115 118 170 1.00 U 1.00 U Sulfide mg/L 1.00 UQ 1.00 UQ 1.84 1.00 U 1.00 <t< th=""><th>ortho-Phosphate</th><th>mg/L</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>0.00190</th><th>I</th><th>0.00140</th><th>U</th></t<>	ortho-Phosphate	mg/L																							0.00190	I	0.00140	U
Bicarbonate Alkalinity mg/L as HCO ₃ 187 183 210 192 196 203 76 217 115 118 170 1.00 U 1.00 U Sulfide mg/L 1.00 U Q 1.84 1.00 U	Total Phosphorus (P)	mg/L																							0.00220	U	0.00220	U
Sulfide mg/L 1.00 U Q 1.00 U Q 1.84 1.00 U	Alkalinity	mg/L	187		183		210		192		196		203		76		217		115		118		170		1.00	U	1.00	U
Total Dissolved Solids mg/L 440 55300 368 50800 276 10400 960 23700 368 348 10100 5 U 5 U Salinity * 0.41 J 53.55 0.39 J 49.93 0.26 J 9.56 0.84 J 24.33 0.37 J 10.69 I	Bicarbonate Alkalinity	mg/L as HCO ₃	187		183		210		192		196		203		76		217		115		118		170		1.00	U	1.00	U
Salinity * 0.41 J 53.55 0.39 J 49.93 0.26 J 9.56 0.84 J 24.33 0.37 J 10.69	Sulfide	mg/L	1.00	UQ	1.00	UQ	1.84		1.00	U	1.00	U	1.00	U	1.00	U	1.00	U	1.00	U	1.00	U	1.00	U	1.00	U	1.00	U
	Total Dissolved Solids	mg/L	440		55300		368		50800		276		10400		960		23700		368		348		10100		5	U	5	U
Tritium pCi/L (1g) 44.7 (4.3) 3790.0 (118.0) 32.8 (4.8) 2974.7 (91.9) 66.1 (4.9) 36.1 (4.0) 2.8 (3.4) 405.5 (14.5) 17.2 (3.6) 15.6 (3.6) 1.7 (3.3) -0.1 (3.2) -3.8 (4.0) U	Salinity	*	0.41	J	53.55		0.39	J	49.93		0.26	J	9.56		0.84	J	24.33		0.37	J			10.69					1
	Tritium	pCi/L (1σ)	44.7 (4.3)		3790.0 (118.0)		32.8 (4.8)		2974.7 (91.9)		66.1 (4.9)		36.1 (4.0)		2.8 (3.4)		405.5 (14.5)		17.2 (3.6)		15.6 (3.6)		1.7 (3.3)		-0.1 (3.2)		-3.8 (4.0)	U

Text in blue is revised.

* PSS-78 salinity is unitless. Sample 030614-DUP1 is a duplicate of G35-18.

KEY:

°C = Degrees Celsius.

 μ S/cm = MicroSiemen(s) per centimeter.

 σ = sigma (Standard Deviation).

DUP = Duplicate. FB = Field Blank.

HCO₃ = Bicarbonate

I = Value between the MDL and PQL. J = Estimated (+/- indicate bias). mg/L = Milligram(s) per liter.

N = Nitrogen

NTU = Nephelometric Turbidity Units(s). pCi/L = PicoCuries per liter.

Q = Holding time exceeded. SU = Standard Unit(s). TKN = Total Kjeldahl nitrogen.

TN = Total nitrogen.

TPGW = Turkey Point Groundwater.

Table 3.1-13. Summary of Groundwater Analytical Results from the June 2014 Historical Well Sampling Event

		TPGW-L3-18	TPGW-L3-58	TPGW-L5-18	TPGW-L5-58	TPGW-G21-1	8 TPGW-G21-58	TPGW-G28-18	TPGW-G28-58	TPGW-G35-18	TPGW-G35-58	060514-FB1	060614-FB1
Parameter	Units	06/06/2014	06/06/2014	06/06/2014	06/06/2014	06/05/2014	06/05/2014	06/05/2014	06/05/2014	06/05/2014	06/05/2014	06/05/2014	06/06/2014
Temperature	°C	28.23	28.67	28.38	28.10	25.23	25.61	26.30	26.61	24.74	24.68		
pН	SU	7.25	6.97	7.18	6.93	7.15	6.74	8.17	6.92	7.48	7.15		
Dissolved Oxygen	mg/L	0.24	0.29	0.29	0.31	0.20	0.33	0.67	0.29	0.25	0.29		
Specific Conductance	μS/cm	1406	79378	5387	74945	607	17445	2123	39496	693	19034		
Turbidity	NTU	1.92	0.00 J	0.05	0.03	1.65	1.15	3.75	27.31	0.51	0.34		
Sodium	mg/L	130	15800	708	13200	25.3	2410	344	5390	47.4	3040	0.310 U	0.310 U
Chloride	mg/L	265	31300	1560	29600	46.9	5840	743	13900	86.4	6050	0.250 U	0.250 U
Total Dissolved Solids	mg/L	680	55300	1700	49900	280	11000	1170	23300	310	10100	5.00 U	5.00 U
Salinity	*	0.7 J	55.3	2.9	51.7	0.3	J 10.3	1.0	25.1	0.3 J	11.3		
Tritium	pCi/L	81.8 (5.8)	3610 (115.5)	52.8 (5.0)	2918 (93.8)	4.6 (5.9)	U 31.7 (6.5)	10.4 (6.1)	383.3 (15.7)	4.1 (5.8) U	-3.8 (5.8) U	-3.5 (5.3) U	8.3 (6.4)

Laboratory results are reported with 3 digits although only the first 2 are significant figures.

Text in blue is revised.

* PSS-78 salinity is unitless.

KEY:

°C = Degrees Celsius.

 μ S/cm = MicroSiemen(s) per centimeter.

 σ = sigma (Standard Deviation).

FB = Field Blank.

J = Estimated (+/- indicate bias).

mg/L = Milligram(s) per liter.

NTU = Nephelometric Turbidity Units(s).

pCi/L = PicoCuries per liter.

SU = Standard Unit(s).

TPGW = Turkey Point Groundwater.

Table 3.1-14. Summary of Groundwater Analytical Results from the September 2014 Historical Well Sampling Event

Temperature pH Dissolved Oxygen Specific Conductance	Units °C SU mg/L μS/cm	09/02/2014 30.79 7.44 0.29	4	09/02/2014 29.13 6.95		09/02/2014	09/02/201	Л																		
pH Dissolved Oxygen Specific Conductance	SU mg/L	7.44				20.04		7	09/03/201	4	09/03/20	14	09/03/201	4	09/03/2014	4	09/03/2014	4	09/03/201	4	09/03/201	4	09/02/201	4	09/03/201	4
Dissolved Oxygen Specific Conductance	mg/L			6.05		30.04	29.29		25.75		25.61		26.15		25.73				25.13		24.87					
Specific Conductance	υ	0.29		0.93		7.33	6.86		7.25		6.73		9.38		6.94				7.30		7.17					
1. 1	μS/cm			0.23		0.19	0.39		0.18		0.23		0.18		0.15				0.16		0.41					
Turbidity		668		78275		2379	74309		514		16694		1936		39266				610		17735					
	NTU	0.25		0.00		0.32	0.00	J	0.70		0.00	J	5.55		16.28				0.11		0.00	J				
Calcium	mg/L	56		653	J	98	667	J	79		578	J	105		532	J	546		85		280	J	0.100	U	0.577	
Magnesium	mg/L	7		1630	J	31	1540	J	4		170	J	24		747	J	755		6		255	J	0.0200	U	0.0200	U
Potassium	mg/L	2		815	J	14	740	J	4		37	J	11		223	J	227		11		134	J	0.190	U	0.190	U
Sodium	mg/L	61		16400	J	305	15700	J	23		2490	J	359		6170	J	6250		22		2760	J	0.310	U	0.310	U
Boron	mg/L	0.06		7.39		0.15	6.47		0.04	I	0.16		0.14		1.50		1.52		0.07		1.64		0.01	U	0.01	U
Strontium	mg/L	0.55		13.10		1.08	15.00		0.76		6.81		1.08		7.03		7.37		0.92		4.75		0.00	U	0.00	U
Bromide	mg/L	0.4		110.0	J	2.0	104.0	J	0.2		20.7	J	1.9		46.8	J	48.2		0.3		19.7	J	0.0130	U	0.0130	U
Chloride	mg/L	122		32500	J	572	30400	J	44		6170	J	549		13700	J	13700		43		6060	J	0.250	U	0.250	U
Fluoride	mg/L	0.100		0.330	J	0.110	0.190	J	0.170		0.024	UJ	0.024	U	0.140	J	0.140		0.130		0.170	J	0.0240	U	0.0240	U
Sulfate	mg/L	1.6		4220	J	53.2	3930	J	3.9		203	J	99		1760	J	1770		61		852	J	0.250	U	0.389	I
Total Ammonia mg	ng/L as N																						0.0677		0.0629	
Nitrate/Nitrite mg	ng/L as N																						0.10000	U	0.10000	U
TKN	mg/L																						0.150	U	0.150	U
ortho-Phosphate	mg/L																						0.00140	U	0.00140	U
Total Phosphorus (P)	mg/L																						0.00220	U	0.00220	U
Alkalinity	mg/L	133		194	J	209	202	J	202		211	J	124		230	J	231		176		177	J	1.00	U	1.00	U
Bicarbonate Alkalinity mg/l	/L as HCO ₃	162		237	J	255	247	J	247		257	J	152		281	J	282		215		215	J	1.00	U	1.00	U
Sulfide	mg/L	0.55		0.10	U	0.19	0.10		0.48		0.10	U	0.10	U	0.10	U	0.10	U	0.22		0.10	U	0.10	U	0.10	U
Total Dissolved Solids	mg/L	368		55100		1320	51100		268		10100		1300		23100		24000		328		9600		5	U	5	U
Salinity	*	0.32	J	54.37		1.21 J	51.18		0.25	J	9.79		0.98	J	24.99				0.29	J	10.46					\Box
Tritium pC	Ci/L (1σ)	68.2 (6.6)		3604.3 (108.0)		64.7 (5.0) J	3062.8 (99.1)		22.7 (4.0)		45.0 (4.5)		8.0 (3.8)		393.0 (14.6)		385.3 (14.6)		6.4 (3.7)		0.6 (3.5)	UJ	6.5 (3.6)		-1.2 (3.4)	UJ

Text in blue is revised.

* PSS-78 salinity is unitless. Sample 090314-DUP1 is a duplicate of G28-58.

°C = Degrees Celsius.

 μ S/cm = MicroSiemen(s) per centimeter.

 σ = sigma (Standard Deviation).

DUP = Duplicate.

EB = Equipment Blank.

FB = Field Blank.

 HCO_3 = Bicarbonate.

I = Value between the MDL and PQL.

J = Estimated (+/- indicate bias). mg/L = Milligram(s) per liter.
N = Nitrogen

NTU = Nephelometric Turbidity Units(s).

pCi/L = PicoCuries per liter.

SU = Standard Unit(s).

TKN = Total Kjeldahl nitrogen.

TPGW = Turkey Point Groundwater.

Table 3.1-15. Summary of Groundwater Analytical Results from the December 2014 Historical Well Sampling Event

		TPGW-L3-	18	TPGW-L3-58	3 1	TPGW-L5-1	8	TPGW-L5-58	TPGW-G21	-18	TPGW-G21	-58	TPGW-G28	-18	TPGW-G28-	58	TPGW-G35-18	TPGV	V-G35-58	1:	20414-FI	В	120514-F	B1
Parameter	Units	12/04/201	4	12/04/2014		12/04/2014		12/04/2014	12/05/201	4	12/05/201	4	12/05/201	4	12/05/2014		12/05/2014	12/0	5/2014	1:	2/04/201	4	12/05/201	4
Temperature	°C	26.73		27.55		25.56		26.41	25.69		24.47		27.01		24.95		25.48	24.9	0					
pН	SU	6.97		6.92		7.28		6.94	7.16		6.73		8.83		6.89		7.21	7.1	9					
Dissolved Oxygen	mg/L	0.20		0.26		0.29		0.66	0.38		0.24		0.58		0.21		0.37	0.2	3					
Specific Conductance	μS/cm	3130		77802		2381		73527	552		17161		1858		38790		602	1833	38					
Turbidity	NTU	0.30		0.18		0.27		0.28	0.31		0.31		0.74		19.45		0.26	0.1	3					
Sodium	mg/L	353		17000		317		16400	23.6		2920		280		7840		23.3	334	0	0.	310	U	0.310	U
Chloride	mg/L	692		31500		617		29700	41.1		5980		487		14100		40.9	615	0	0.	200	U	0.200	U
Total Dissolved Solids	mg/L	1350		57800		1070		53200	268		11000		1120		25100		292	1070	00	5	.00	U	5.00	U
Salinity	*	1.63	J	54.06		1.22	J	50.68	0.27	J	10.10	•	0.94	J	24.67		0.29 J	10.8	4					
Tritium	pCi/L (1σ)	73.0 (7.1)		3386.9 (109.5)	10	2.1 (7.4)		2952.5 (101.7)	13.6 (7.6)	J	27.8 (7.9)	J	0.2(7.3)	UJ	433.7 (19.7)		20.7 (5.9) J	-4.3 (7.1) U.	J -1.2	(5.4)	UJ	11.7 (5.9)	

* PSS-78 salinity is unitless. Text in blue is revised.

°C = Degrees Celsius.

μS/cm = MicroSiemen(s) per centimeter.

σ = sigma (Standard Deviation).

FB = Field Blank.

J = Estimated (+/- indicate bias).

mg/L = Milligram(s) per liter.

NTU = Nephelometric Turbidity Units(s). pCi/L = PicoCuries per liter. SU = Standard Unit(s).

TPGW = Turkey Point Groundwater.

Table 3.1-16. Summary of Groundwater Analytical Results from the March 2015 Historical Well Sampling Event

		TPGW-L3	-18	TPGW-L3-58	3	TPGW-L5-	-18	TPGW-L5-5	8	TPGW-G21-18	TPGW-G2	1-58	TPGW-G28	3-18	TPGW-G28	-58	TPGW-G35	-18	TPGW-G35	-58	031015-F	B1	031015-F	B2	031115-F	31	031115-F	B2
Parameter	Units	03/11/20 ⁻	15	03/11/2015		03/11/201	15	03/11/2015	5	03/10/2015	03/10/20	15	03/10/20	15	03/10/201	5	03/10/201	5	03/10/201	5	03/10/20	15	03/10/20	15	03/11/20 ⁻	5	03/11/20 ⁻	15
Temperature	°C	26.31		27.80		24.45		25.95		24.86	24.91		25.39		25.05		24.81		24.70									
pН	SU	7.16		6.84		7.23		6.81		7.10	6.56		7.50		6.78		7.36		7.04									
Dissolved Oxygen	mg/L	0.27		0.26		0.42		0.27		0.26	0.36		1.12		0.25		0.26		0.20									
Specific Conductance	μS/cm	1100		77575		1016		72686	J	574	16916	J	1878		38626		699		18353	J								
Turbidity	NTU	4.80		0.41		0.51		0.03		0.85	0.14		4.98		9.91		0.60		0.02									
Calcium	mg/L	90.5		706		78.4		771	J	87.7	641	J	129		592		74.2		312	J	0.100	U			0.1	U		
Magnesium	mg/L	14.7		2110		14.2		1970	J	4.25	226	J	41.1		850		6.98		362	J	0.0200	U			0.02	U		
Potassium	mg/L	4.57		654		4.55		596	J	5.74	28.3	J	9.71	I	217		12.4		113	J	0.190	U			0.19	U		
Sodium	mg/L	106		15800		97.0		14300	J	25.7	2590	J	406		7970		49.6		2840	J-	0.310	U			0.31	U		
Boron	mg/L	0.069		7.720		0.075		8.550		0.049 I	0.206	I	0.196	I	1.580		0.085		1.630		0.01	U			0.01	U		
Strontium	mg/L	0.83		13.60		0.76		16.30		0.88	7.53		1.40		8.36		0.98		5.26		0.001	U			0.001	U		
Bromide	mg/L	0.524		115		0.494		104	J	0.200	20.6	J	2.35		50.6		0.491		22.0	J	0.0250	U			0.025	U		
Chloride	mg/L	211		29800		190		30500	J	48.9	6200	J	785		14500		96.0		6410	J	0.200	U			0.2	U		
Fluoride	mg/L	0.0320	UJ	0.320	J	0.0320	UJ	0.210	J-	0.130	0.100	J	0.0320	UJ	0.150	J	0.140	J	0.170	J	0.0320	U			0.032	U		
Sulfate	mg/L	35.1		4250		10.2		3750	J	17.0	199	J	107		1660		68.6		814	J	0.400	U			0.4	U		
Total Ammonia	mg/L as N																				0.123	I	0.100	U	0.251		0.1	U
Nitrate/Nitrite	mg/L as N																				0.00573	I			0.0152			
TKN	mg/L																				0.200	U			0.1	U		
ortho-Phosphate	mg/L																				0.00210	U			0.0021	U		
Total Phosphorus (P)	mg/L																				0.00300	U			0.003	U		
Alkalinity	mg/L	187		190		195		200	J	209	205	J	201		222		136		174	J	1.00	U			1	U		
Bicarbonate Alkalinity	mg/L as HCO ₃	227		231		238		244	J	255	250	J	245		271		166		213	J	1.00	U			1	U		
Sulfide	mg/L	0.246		0.160		3.92		0.0599	I	0.0399 I J	0.469	IJ	0.115	J	0.360	U	0.0469	IJ	0.0575	IJ	0.243				0.036	U		
Total Dissolved Solids	mg/L	626		57700		554		51700		314	10000		1100		24000		374		10100		5.00	U			5	U		
Salinity	*	0.54	J	53.78		0.50	J	50.02	J	0.28 J	9.93	J	0.95	J	24.55		0.34	J	10.86	J								
Tritium	pCi/L (1σ)	62.0 (6.2)		3249.1 (105.6)		80.4 (7.9)		2707.2 (88.1)		12.2 (3.9)	38.9 (6.9)		8.3 (3.7)		393.4 (15.0)		15.4 (3.9)		1.6 (3.6)	UJ	0.5 (3.8)	UJ			0.8 (6.1)	UJ		
		NOTES:										-		•														

Laboratory results are reported with 3 digits although only the first 2 are significant figures.

* PSS-78 salinity is unitless.

Text in blue is revised.

KEY:

 $^{\circ}$ C = Degrees Celsius. μS/cm = MicroSiemen(s) per centimeter. σ = sigma (Standard Deviation).

HCO₃ = Bicarbonate.

FB = Field Blank.

I = Value between the MDL and PQL.

J = Estimated (+/- indicate bias). mg/L = Milligram(s) per liter.

N = Nitrogen

NTU = Nephelometric Turbidity Units(s).

pCi/L = PicoCuries per liter. SU = Standard Unit(s). TKN = Total Kjeldahl nitrogen.

TPGW = Turkey Point Groundwater.

Table 3.1.17. Average (± Standard Deviation) of Pre-Uprate and Post-Uprate Ion Concentrations in Groundwater

		Mar	ine ¹	Fresh/B	rackish ²	TPG	W-13
Parameter	Units	Pre-Uprate	Post-Uprate	Pre-Uprate	Post-Uprate	Pre-Uprate	Post-Uprate
Temperature	°C	25.89 ± 1.66	26.12 ± 1.17	24.82 ± 1.14	25.12 ± 1.13	29.73 ± 0.44	29.5 ± 0.40
pН	SU	7.02 ± 0.22	6.89 ± 0.18	7.57 ± 1.15	7.31 ± 1.03	7.01 ± 0.15	6.84 ± 0.08
Dissolved Oxygen	mg/L	0.25 ± 0.20	0.30 ± 0.27	0.26 ± 0.22	0.38 ± 0.42	0.26 ± 0.30	0.22 ± 0.24
Spec Cond	μS/cm	57598 ± 16452	57446 ± 15637	4831 ± 9304	4760 ± 9325	84059 ± 2514	80623 ± 2186
Turbidity	NTU	0.8 ± 1.0	0.29 ± 0.70	2.64 ± 4.88	3.31 ± 12.5	0.51 ± 0.45	0.46 ± 1.18
Salinity	*	38.7 ± 12.2	38.6 ± 11.5	2.85 ± 5.86	2.81 ± 5.86	59.06 ± 2.07	56.3 ± 1.77
Calcium	mg/L	$597~\pm~89$	581 ± 92	165 ± 134	172 ± 157	746 ± 32.0	709 ± 37.9
Magnesium	mg/L	1438 ± 495	1288 ± 408	67 ± 181	75 ± 186	2233 ± 115	1905 ± 187
Potassium	mg/L	446 ± 193	468 ± 180	23 ± 56	24 ± 50	710 ± 53.0	724 ± 62.4
Sodium	mg/L	11660 ± 3920	11760 ± 3776	642.26 ± 1593	738.0 ± 1694	17857 ± 1195	16908 ± 839
Boron	mg/L	4.38 ± 1.94	4.62 ± 1.95	0.19 ± 0.4	0.22 ± 0.45	7.5 ± 0.6	7.44 ± 0.59
Strontium	mg/L	10.2 ± 2.36	10.2 ± 2.33	1.76 ± 1.79	1.93 ± 2.10	14.4 ± 0.60	14.4 ± 0.57
Bromide	mg/L	76.6 ± 29.7	78.0 ± 24.5	4.31 ± 11.1	5.23 ± 11.7	109 ± 16.9	113 ± 4.71
Chloride	mg/L	22247 ± 7492	22724 ± 7015	1358 ± 3279	1546 ± 3488	34476 ± 2750	34004 ± 2282
Fluoride	mg/L	0.46 ± 0.57	0.32 ± 0.20	0.13 ± 0.11	0.09 ± 0.04	0.80 ± 1.04	0.26 ± 0.09
Sulfate	mg/L	2735 ± 1005	2932 ± 1006	157 ± 374	168 ± 405	4257 ± 396	4358 ± 242
Alkalinity	mg/L	210 ± 73.1	240 ± 91.8	225 ± 83.3	216 ± 55.4	165 ± 36.1	200 ± 41.2
Bicarbonate Alkalinity	mg/L (CaCO ₃)	209 ± 74.4	$267\ \pm\ 108$	200 ± 72.8	232 ± 82.4	165 ± 36.1	225 ± 64.0
Sulfide	mg/L	3.22 ± 4.03	3.45 ± 4.74	1.11 ± 0.73	0.67 ± 0.60	7.14 ± 9.13	6.14 ± 10.9
Total Dissolved Solids	mg/L	38208 ± 12850	38490 ± 11783	2554 ± 5507	2795 ± 5714	60857 ± 5842	57238 ± 2281

Notes:

Key:

°C = Degrees Celsius.

SU = Standard Units

NTU = Nephelometric turbidity unit(s).

Max = Maximum. Min = Minimum. mg/L = Milligram(s) per liter.

* = Unitless

 μ S/cm = MicroSiemens per centimeter.

 $CaCO_3$ = Bicarbonate.

¹ Marine sites consist of TPGW-1S, -1M, 1D, -2S, -2M, -2D, -3S, -3M, -3D, -4M, -4D, -5M, -5D, -6M, -6D, -10S, -10M, -10D, -11S, -11M, -11D, -12S, -12M, -12D, -14S, -14M, -14D, L3-58, and L5-58.

² Fresh/Brackish sites consist of TPGW-4S, -5S, -6S, -7S, -7M, -7D, -8S, -8M, -8D, -9S, -9M, -9D, L3-18, L5-18, G21-18, G21-58, G28-18, G28-58, G35-18, and G35-58. Please see Appendix J for a list of values that were removed from this analysis and the rationale for removal.

Table 3.1-18. Range of Ion Concentrations in Groundwater for the Pre- and Post-Uprate Periods

			Ma	rine ¹			Fresh/	Brackish ²			TP	GW-13	
					Standard				Standard				Standard
Parameter	Units	Min	Max	Average	Deviation	Min	Max	Average	Deviation	Min	Max	Average	Deviation
Temperature	°C	18.32	29.40	26.01	1.42	22.05	30.79	24.98	1.14	28.75	30.47	29.62	0.43
pН	SU	6.45	8.15	6.95	0.21	6.56	12.10	7.43	1.09	6.52	7.25	6.92	0.15
Dissolved Oxygen	mg/L	0.03	1.93	0.28	0.24	0.03	4.58	0.33	0.36	0.02	1.10	0.24	0.26
Specific Conductance	μS/cm	21758	84800	57511	15972	429	41949	4790	9299	78024	90261	82096	2875
Turbidity	NTU	0.00	8.50	0.52	0.90	0.00	105.40	3.01	9.81	0.00	5.62	0.48	0.90
Salinity	*	13.07	59.82	38.61	11.79	0.20	26.93	2.83	5.85	54.16	64.20	57.46	2.35
Calcium	mg/L	393	1080	591	90	48.0	641	168	143	662	790	733	38
Magnesium	mg/L	403	2200	1382	469	0.02	910	70	183	1670	2500	2114	215
Potassium	mg/L	92	1400	454	188	2.32	440	24	53	600	833	715	56
Sodium	mg/L	3630	21000	11715	3838	6.00	8300	695	1647	14700	20000	17351	1116
Boron	mg/L	0.58	8.55	4.47	1.94	0.03	1.66	0.20	0.42	6.60	8.70	7.48	0.59
Strontium	mg/L	6.09	16.30	10.24	2.35	0.53	8.36	1.82	1.91	13.40	16.00	14.41	0.58
Bromide	mg/L	23.00	180.00	77.12	27.76	0.03	62.00	4.67	11.29	49	130	110	14
Chloride	mg/L	7100	36900	22508	7230	10	16000	1461	3391	26000	39800	34224	2493
Fluoride	mg/L	0.01	3.30	0.40	0.47	0.02	0.65	0.12	0.09	0.02	3.60	0.60	0.86
Sulfate	mg/L	680	4680	2809	1009	1	1800	161	386	3700	5000	4294	347
Alkalinity	mg/L	48	567	221	82	30	580	222	74	54	295	178	41
Bicarbonate Alkalinity	mg/L (CaCO ₃)	1.90	692.00	230.77	92.84	1.00	407.00	212.08	77.87	54.00	360.00	187.12	55.40
Sulfide	mg/L	0.01	22.0	3.31	4.30	0.01	8.30	0.95	0.72	0.10	39.1	6.78	9.66
Total Dissolved Solids	mg/L	12000	64000	38362	12264	160	26000	2686	5613	53000	75000	58927	4644

Notes:

Please see Appendix J for a list of values that were removed from this analysis and the rationale for removal.

Key:

°C = Degrees Celsius. Min = Minimum.

 $\text{CaCO}_3 = \text{Bicarbonate}. \\ \text{Max} = \text{Maximum}. \\ \text{NTU} = \text{Nephelometric turbidity unit(s)}.$

mg/L = Milligram(s) per liter. SU = Salinity Units

* = Unitless

¹ Marine sites consist of TPGW-1S, -1M, 1D, -2S, -2M, -2D, -3S, -3M, -3D, -4M, -4D, -5M, -5D, -6M, -6D, -10S, -10M, -10D, -11S, -11M, -11D, -12S, -12M, -12D, -14S, -14M, -14D, L3-58, L5-58.

² Fresh/Brackish sites consist of TPGW-4S, -5S, -6S, -7S, -7M, -7D, -8S, -8M, -8D, -9S, -9M, -9D, L3-18, L5-18, G21-18, G21-58, G28-18, G28-58, G35-18, G35-58.

Table 3.2-1. Summary of Surface Water Analytical Results from the June 2013 Sampling Event

		TPBBSW-	3B	TPBBSW-4E	TPBBSW	-5B	061313-Du	ıp1	TPSWC-1	T	TPSWC-1	В	TPSWC-2	T:	TPSWC-2	В	TPSWC-3	ΙT	TPSWC-3	В	TPSWC-4	Γ
Parameter	Units	6/13/201	3	6/13/2013	6/13/201	13	6/13/201	3	6/7/2013		6/7/2013	3	6/7/2013		6/7/2013		6/7/2013	}	6/7/2013	}	6/11/2013	
Temperature	°C	28.52		29.14	29.47				29.49		26.7		28.6		28.08		28.35		28.46		27.11	
pН	SU	7.85		7.68	7.79				7.77		7.14		7.68		7.56		7.6		7.59		6.9	
Dissolved Oxygen	mg/L	4.21		5.32	5.22				6.71		1.12		5.42		5.04		6		7.1		2.1	
Specific Conductance	μS/cm	53783		52173	46171				402	J	442	J	582		570		556		555		42969	
Turbidity	NTU	1.94		1.24	0.79				0.65		1.34		0.69		1.11		0.59		0.51		1.58	
Sodium	mg/L	10800		10600	8610		8900		30.9		32.6		54.8		55.4		50.4		51.4		8460	
Chloride	mg/L	20900		21300	17000		17900		53.9		55.2		106		106		95.6		95.4		16300	
Total Ammonia	mg/L as N																					
Nitrate/Nitrite	mg/L as N																					
TKN	mg/L																					
ortho-Phosphate	mg/L																					
Total Phosphorus (P)	mg/L																					
Total Dissolved Solids	mg/L																					
Salinity	*	35.4		34.2	29.8				0.2	J	0.2	J	0.3	J	0.3	J	0.3	J	0.3	J	27.6	
Tritium	pCi/L (1σ)	0.5 (7.3)	UJ	27.3 (7.8)	-7.5 (7.4)	UJ	-4.7 (7.2)	UJ	42.4 (6.7)		34.3 (7.0)		72.5 (6.7)		64.3 (7.1)		62.7 (7.0)		67.0 (6.4)		1447 (46)	

Laboratory results are reported with 3 digits although only the first 2 are significant figures.

Text and blue is revised.

* PSS-78 salinity is unitless.

061113-DUP1 is a field duplicate of sample 061113-TPSWC-4B.

061313-DUP1 is a field duplicate of sample 061313-TPBBSW-5B.

KEY:

°C = Degrees Celsius.

 μ S/cm = MicroSiemen(s) per centimeter.

 σ = sigma (Standard Deviation).

DUP = Duplicate.

EB = Equipment Blank.

FB = Field Blank.

J = Estimated (+/- indicate bias).

mg/L = Milligram(s) per liter.

N = Nitrogen

NTU = Nephelometric Turbidity Units(s).

pCi/L = PicoCuries per liter.

SU = Standard Unit(s).

TKN = Total Kjeldahl nitrogen.

Table 3.2-1. Summary of Surface Water Analytical Results from the June 2013 Sampling Event (continued)

		TPSWC-4B	061113-DUP1	TPSWC-	5T	TPSWC-5B	TPSWC-	6T	TPSWC-	6B	TPSWID-1	T	TPSWID-1B	TPSWID-	·2T	TPSWID-	2B	TPSWID-3	ST
Parameter	Units	6/11/2013	6/11/2013	6/11/201	3	6/11/2013	6/5/2013	3	6/5/201	3	6/3/2013		6/3/2013	6/3/201	3	6/3/201	3	6/3/2013	
Temperature	°C	27.16		29.83		27.19	25.23		25.18		30.14		29.14	29.35		28.13		28.72	
pН	SU	6.92		7.83		7.49	7.23		7.25		8.06		7.85	7.85		7.01		7.64	
Dissolved Oxygen	mg/L	0.19		6.67		2.43	2.62		2.17		5.79		5.17	6.25		0.43		4.74	
Specific Conductance	μS/cm	48000		50933	J	55524	808		818		4088		6510	3293		13700		3644	
Turbidity	NTU	8.23		0.73		6.73	0.51		0.41		0.74		0.9	0.41		20.55		0.51	
Sodium	mg/L	9560	9570	11500		10300	50		51.2		588		997	467		2300		497	
Chloride	mg/L	19500	18700	22900	J	21500	83.2		89.5		1210		1920	885		4300		969	
Total Ammonia	mg/L as N																		
Nitrate/Nitrite	mg/L as N																		
TKN	mg/L																		
ortho-Phosphate	mg/L																		
Total Phosphorus (P)	mg/L																		
Total Dissolved Solids	mg/L																		
Salinity	*	31.3		33.3	J	36.8	0.4	J	0.4	J	2.2		3.5	1.7	J	7.9		1.9	J
Tritium	pCi/L (1σ)	1636 (51)	1596 (53)	135 (9.0)		140 (8.1)	7.2 (6.4)		9.0 (6.3)		182 (8.8)		208 (9.4)	126 (7.3)		322 (13)		93.7 (6.3)	

Laboratory results are reported with 3 digits although only the first 2 are significant figures.

Text and blue is revised.

* PSS-78 salinity is unitless.

061113-DUP1 is a field duplicate of sample 061113-TPSWC-4B.

061313-DUP1 is a field duplicate of sample 061313-TPBBSW-5B.

KEY:

°C = Degrees Celsius.

 μ S/cm = MicroSiemen(s) per centimeter.

 σ = sigma (Standard Deviation).

DUP = Duplicate.

EB = Equipment Blank.

FB = Field Blank.

J = Estimated (+/- indicate bias).

mg/L = Milligram(s) per liter.

N = Nitrogen

NTU = Nephelometric Turbidity Units(s).

pCi/L = PicoCuries per liter.

SU = Standard Unit(s).

TKN = Total Kjeldahl nitrogen.

Table 3.2-1. Summary of Surface Water Analytical Results from the June 2013 Sampling Event (continued)

		TPSWID-3B	TPSWCCS-1B	TPSWCCS-2B	TPSWCCS-3B	TPSWCCS-4T	TPSWCCS-5T	TPSWCCS-7B	060313-FB1	060513-FE	31 0607°	3-FB1	061113-E	EB1	061313-F	B1
Parameter	Units	6/3/2013	6/3/2013	6/11/2013	6/3/2013	6/3/2013	6/3/2013	6/3/2013	6/3/2013	6/5/2013	6/7/	2013	6/11/20	13	6/13/201	3
Temperature	°C	27.59	40.33	36.51	33.55	31.51	32.47	37.76								
pН	SU	7.72	8.87	8.56	8.69	8.69	8.67	8.84								
Dissolved Oxygen	mg/L	5.02	4.28	8.45	4.86	5.55	5.14	6.38								
Specific Conductance	μS/cm	4006	75276	75280	74015	74816	74451	75876								
Turbidity	NTU	0.39	32.12	28.15	39.69	39.85	31.7	32.17								
Sodium	mg/L	571	15400	15700	15300	15500	15300	15300	0.31 U	0.31	U 0.3	U	0.31	U	0.31	U
Chloride	mg/L	1120	31000	33400	30200	32100	29800	30600	0.25 U	0.25	U 0.25	U	0.25	U	0.25	U
Total Ammonia	mg/L as N									0.026	U					
Nitrate/Nitrite	mg/L as N									0.0054	U					
TKN	mg/L									0.236						
ortho-Phosphate	mg/L									0.0014	U					
Total Phosphorus (P)	mg/L									0.0022	U					
Total Dissolved Solids	mg/L									5	U		5	U		
Salinity	*	2.1	51.4	51.6	50.8	51.5	51.2	51.4								
Tritium	pCi/L (1σ)	110 (6.8)	4431 (156)	4036 (130)	4290 (149)	4397 (151)	4544 (159)	4411 (154)	6.5 (5.0)	-4.2 (4.8)	UJ 3.4 (5	.2) UJ	0.9 (5.2)	UJ	-6.6 (7.2)	UJ

Laboratory results are reported with 3 digits although only the first 2 are significant figures.

Text and blue is revised.

* PSS-78 salinity is unitless.

061113-DUP1 is a field duplicate of sample 061113-TPSWC-4B.

061313-DUP1 is a field duplicate of sample 061313-TPBBSW-5B.

KEY:

°C = Degrees Celsius.

 μ S/cm = MicroSiemen(s) per centimeter.

 σ = sigma (Standard Deviation).

DUP = Duplicate.

EB = Equipment Blank.

FB = Field Blank.

J = Estimated (+/- indicate bias).

mg/L = Milligram(s) per liter.

N = Nitrogen

NTU = Nephelometric Turbidity Units(s).

pCi/L = PicoCuries per liter. SU = Standard Unit(s).

TKN = Total Kjeldahl nitrogen.

Table 3.2-2. Summary of Surface Water Analytical Results from the September 2013 Sampling Event

		TPBBSW-	3B	TPBBSW-	4B	TPBBSW-	5B	TPSWC-	Т	TPSWC-1	ΙB	091013-D	UP	TPSWC-	2T	TPSWC-	2B	TPSWC	-3T	TPSWC-	-3B	TPSWC-4	4T
Parameter	Units	09/12/201	3	09/12/201	13	09/12/201	3	09/10/20	3	09/10/20	13	09/10/201	13	09/10/20	13	09/10/20	13	09/10/20	013	09/10/20	013	09/11/201	13
Temperature	°C	29.10		28.42		28.29		28.71		28.54				28.83		29.00		29.93		29.56		29.06	
pН	SU	8.13		8.04		7.88		7.48		7.32				7.73		7.54		7.78		7.68		7.48	
Dissolved Oxygen	mg/L	5.30		5.29		4.41		3.47		1.65				4.77		2.74		5.02		4.24		2.86	
Specific Conductance	μS/cm	49303	J	52612	J	50460	J	576		593				578		588		608		614		23204	J
Turbidity	NTU	0.92		0.77		1.10		0.54		1.17				1.19		0.84		0.63		0.52		2.40	
Silica, dissolved	mg/L																						
Calcium	mg/L	410		408		396		54.3		53.6		53.9		50.2		51.7		52.5		52.2		251	
Magnesium	mg/L	1110	J-	1110	J-	1070	J-	6.93		6.76		6.80		6.43		6.62		6.26		6.09		420	
Potassium	mg/L	413		436		427		2.39		2.34		2.34		2.59		2.81		2.73		2.62		169	
Sodium	mg/L	9610		10100		9710		50.5		52.0		52.4		53.5		54.0		56.2		55.7		4000	
Boron	mg/L	4.32		4.82		4.49		0.0428	I	0.0425	Ι	0.043	I	0.037	I	0.0395	I	0.0376	I	0.0362	I	1.74	
Strontium	mg/L	7.01		7.24		7.14		0.518		0.512		0.514		0.536		0.567		0.555		0.544		3.92	
Bromide	mg/L	68.3	J	70.8	J	70.1	J	0.178		0.207		0.208		0.207		0.227		0.265		0.279		28.2	J
Chloride	mg/L	19900	J	21200	J	20600	J	113		119		120		117		118		122		116		9050	J
Fluoride	mg/L	0.856	J	0.889	J	0.893	J	0.0636	Ι	0.0664	I	0.0741	I	0.0773	I	0.0786	I	0.0760	I	0.0744	I	0.345	J
Sulfate	mg/L	2580	J	2730	J	2620	J	1.16		1.03		1.11		1.42		0.713		4.71		3.11		1040	J
Total Ammonia	mg/L as N	0.0426	IJ	0.0415	IJ	0.0408	IJ	0.174	J	0.233	J	0.230		0.154	J	0.166	J	0.131	J	0.132	J	0.240	
Ammonium ion (NH ₄ ⁺)	mg/L	0.0497	J	0.0494	J	0.049752		0.219	J	0.295	J			0.190		0.208		0.161		0.164		0.302	
Unionized NH ₃	mg/L	0.00480	J	0.00370	J	0.002705		0.00460	J	0.00424	J			0.00718		0.00512		0.00733		0.00578		0.00650	
Nitrate/Nitrite	mg/L as N	0.00849	I	0.00540	U	0.00540	U	0.0200	J+	0.0206	J+	0.0112	J	0.00827	IJ+	0.0109	J+	0.0125	J+	0.0315	J+	0.0267	J+
TKN	mg/L	1.28	J	0.935	J	0.990	J	1.21	J	2.92		1.29		1.33	J	1.29	J	1.16	J	1.15	J	1.02	
TN	mg/L	1.29	J	0.94	J	1.00	J	1.23	J	2.94	J			1.34	J	1.30	J	1.17	J	1.18	J	1.05	J
ortho-Phosphate	mg/L	0.00140	U	0.00140	U	0.00140	U	0.00140	U	0.00140	U	0.00140	U	0.00140	U	0.00140	U	0.00140	U	0.00140	U	0.00140	U
Total Phosphorus (P)	mg/L	0.00220	U	0.00220	U	0.00440	U	0.00315	I J-	0.00831	I J-	0.00451	I	0.00289	I J-	0.00220	U J-	0.00220	U J-	0.00220	U J-	0.00220	U J-
Alkalinity	mg/L	135	J	124	J	129	J	118		118		118		109		114		118		119		240	J
Bicarbonate Alkalinity	mg/L as HCO ₃	135	J	124	J	129	J	118		118		118		109		114		118		119		240	J
Sulfide	mg/L	1.00	U	1.00	U	1.00	U	1.00	U	1.00	U	1.00	U	1.00	U	1.00	U	1.00	U	1.00	U	1.00	U
Total Dissolved Solids	mg/L																						
Salinity	*	32.1	J	34.6	J	33.0	J	0.3	J	0.3	J			0.3	J	0.3	J	0.3	J	0.3	J	14.0	J
Tritium	pCi/L (1σ)	8.7 (6.5) NOTES:		12.3 (6.4)		23.6 (6.9)		25.5 (4.3)		28.3 (4.7)		31.4 (4.6)		36.7 (4.8)		33.0 (4.6)		31.1 (5.5)		24.8 (4.5)		190.7 (9.7)	

Laboratory anion and cation results are reported with 3 digits although only the first 2 are significant figures.

Sample 091013-DUP is a duplicate of TPSWC-1B. Sample 091113-DUP2 is a duplicate of TPSWC-5B.

KEY:

°C = Degrees Celsius.

 μ S/cm = MicroSiemen(s) per centimeter.

 σ = sigma (Standard Deviation).

 HCO_3 = Bicarbonate.

DUP = Duplicate.

EB = Equipment Blank.

FB = Field Blank.

I = Value between the MDL and PQL.

J = Estimated (+/- indicate bias).

mg/L = Milligram(s) per liter.

N = Nitrogen

 $NH_3 = Ammonia$.

 NH_4^+ = Ammonium ion.

NTU = Nephelometric Turbidity Units(s).

pCi/L = PicoCuries per liter.

SU = Standard Unit(s).

TKN = Total Kjeldahl nitrogen.

TN = Total nitrogen.

Text in Blue is revised.

^{*} PSS-78 salinity is unitless.

Table 3.2-2. Summary of Surface Water Analytical Results from the September 2013 Sampling Event (continued)

		TPSWC-	4B	TPSWC-	5T	TPSWC-5	В	091113-DU	P2	TPSWC-	·6T	TPSWC	-6B	TPSWID-1	Т	TPSWID-1	В	TPSWID-2	2T	TPSWID-2	2B	TPSWID-3	зт	TPSWID-3	BB
Parameter	Units	09/11/20	13	09/11/20	13	09/11/201	3	09/11/201	3	09/09/20	13	09/09/2	013	09/05/201	3	09/05/201	3	09/05/201	3	09/05/201	3	09/05/201	3	09/05/201	3
Temperature	°C	29.92		30.60		30.71				25.82		25.83		31.89		30.53		32.30		29.00		31.59		30.01	
pН	SU	7.63		7.94		7.76				7.48		7.38		7.44		7.35		7.44		6.71		7.51		7.03	
Dissolved Oxygen	mg/L	3.23		5.14		4.04				1.49	J	0.94	J	5.52		4.58		5.77		0.42		5.86		1.36	
Specific Conductance	μS/cm	47521	J	52069	J	53157	J			750		758		3570		3565		3067		5929		2523		2520	
Turbidity	NTU	9.43		0.56		1.01				0.25		0.77		0.60		1.65		0.60		16.17		0.38		0.33	
Silica, dissolved	mg/L																								
Calcium	mg/L	394		415		443		460		88.5		86.3		109		107		121		195		100		120	
Magnesium	mg/L	954		1120		1190		1130		8.26		8.75		63.1		57.3		49.0		94.8		33.0		38.6	
Potassium	mg/L	386		430		437		452		9.40		9.47		20.3		20.8		16.3		29.5		14.5		13.8	
Sodium	mg/L	9100		10200		10300		10400		48.3		54.3		485		491		406		835		331		323	
Boron	mg/L	3.96		4.52		4.51		4.51		0.0722		0.073		0.238		0.243		0.164		0.268		0.133		0.129	
Strontium	mg/L	6.55		7.1		7.42		7.42		0.943		0.939		1.2		1.21		1.23		2.15		1.21		1.18	
Bromide	mg/L	65.3	J	70.6	J	72.5	J	72.6		0.475		0.513		3.13		3.17		2.71		6.09		2.18		2.17	
Chloride	mg/L	18000	J	20900	J	21500	J	21600		82.6		102		1000		1000		837		1760		676		660	
Fluoride	mg/L	0.757	J	0.835	J	0.807	J	0.807		0.121		0.113		0.129		0.133		0.121		0.143		0.108		0.119	
Sulfate	mg/L	2310	J	2670	J	2750	J	2750		53.0		48.5		93.3		93.0		73.8		156		56.9		56.2	
Total Ammonia	mg/L as N	0.0780		0.0361	Ι	0.0260	U	0.0260	U	0.0879		0.0793		0.0931		0.113		0.139		0.435		0.146		0.277	
Ammonium ion (NH ₄ ⁺)	mg/L	0.0970		0.0433		0.0300	U			0.111		0.101		0.117		0.143		0.174		0.557		0.182		0.353	
Unionized NH ₃	mg/L	0.00313		0.00299		0	U			0.00191		0.00137		0.00278		0.00252		0.00427		0.00203		0.00500		0.00288	1
Nitrate/Nitrite	mg/L as N	0.0102	J+	0.0176	J+	0.00600	I J+	0.00753	I	0.0291	J+	0.0289	J+	0.0270	U	0.0270	U	0.0270	U	0.0270	U	0.0421	I	0.0297	Ι
TKN	mg/L	0.849		0.549		0.743	J	2.39	J	0.591	J	0.512	J	0.819		0.890		0.908		1.19		0.767		0.871	
TN	mg/L	0.86	J	0.57	J	0.75	J			0.62	J	0.54	J	0.85		0.92		0.94		1.22		0.81		0.90	
ortho-Phosphate	mg/L	0.00140	U	0.00140	U	0.00140	U	0.00140	U	0.00140	U	0.00140	U	0.00140	U	0.00140	U	0.00140	U	0.00140	U	0.00140	U	0.00140	U
Total Phosphorus (P)	mg/L	0.00220	U J-	0.00220	U J-	0.00220	U J-	0.00220	U	0.00220	U J-	0.00220	U J-	0.00361	Ι	0.00334	Ι	0.00258	Ι	0.0101		0.00220	U	0.00277	Ι
Alkalinity	mg/L	151	J	130	J	143	J	142		192		194		247		251		214		312		206		223	1
Bicarbonate Alkalinity	mg/L as HCO ₃	151	J	130	J	143	J	142		192		194		247		251		214		312		206		223	
Sulfide	mg/L	1.00	U	1.00	U	1.00	U	1.00	U	1.00	U	1.00	U	1.25		1.07		1.00	U	2.08		1.00	U	1.15	
Total Dissolved Solids	mg/L																								
Salinity	*	30.8	J	34.1	J	34.9	J			0.4	J	0.4	J	1.9	J	1.9	J	1.6	J	3.2		1.3	J	1.3	J
Tritium	pCi/L (1σ)	57.1 (6.4) NOTES:		28.3 (5.7)		67.0 (6.7)		83.0 (7.0)		17.4 (6.0)		5.8 (5.9)	UJ	108.8 (5.7)		111.9 (5.8)		90.7 (5.1)		78.0 (4.9)		63.6 (4.4)		64.8 (4.5)	i

Sample 091013-DUP is a duplicate of TPSWC-1B. Sample 091113-DUP2 is a duplicate of TPSWC-5B.

KEY:

°C = Degrees Celsius.

 μ S/cm = MicroSiemen(s) per centimeter.

 σ = sigma (Standard Deviation).

 HCO_3 = Bicarbonate.

DUP = Duplicate.

EB = Equipment Blank. FB = Field Blank.

I = Value between the MDL and PQL. J = Estimated (+/- indicate bias). mg/L = Milligram(s) per liter.

N = Nitrogen $NH_3 = Ammonia$.

 NH_4^+ = Ammonium ion.

NTU = Nephelometric Turbidity Units(s).

pCi/L = PicoCuries per liter. SU = Standard Unit(s).

TKN = Total Kjeldahl nitrogen.

TN = Total nitrogen.

Text in Blue is revised.

^{*} PSS-78 salinity is unitless.

Table 3.2-2. Summary of Surface Water Analytical Results from the September 2013 Sampling Event (continued)

		TPSWCCS-1	В	TPSWCCS-2	В	TPSWCCS-3	В	TPSWCCS-4	Т	TPSWCCS-5		TPSWCCS-7	В	090513-F	В1	090613-E	В1	090913-F	В1	091013-F	В1	091113-	-B1	091213-	FB1
Parameter	Units	09/05/2013		09/06/2013		09/05/2013		09/05/2013		09/05/2013		09/05/2013		09/05/20	13	09/06/20	13	09/09/20	13	09/10/20	13	09/11/20)13	09/12/2	013
Temperature	°C	39.56		34.86		34.35		33.58		33.09		36.97													
pН	SU	8.53		8.76		8.49		8.68		8.64		8.55													
Dissolved Oxygen	mg/L	4.68		4.92		6.07		6.72		5.77		5.45													
Specific Conductance	μS/cm	88287	J	88270	J	84330	J	88135	J	87241	J	88914	J												
Turbidity	NTU	81.66		78.94		76.18		76.24		79.45		83.28													
Silica, dissolved	mg/L	2.62	J-	2.66		2.76	J-	2.69	J-	2.61	J-	2.53	J-	0.0500	U	0.0500	U								
Calcium	mg/L	783	J	791	J	778		823		830	J	830	J	0.100	U	0.100	U	0.100	U	0.100	U	0.100	U	0.100	U
Magnesium	mg/L	1920	J-	1930	J-	1920		2050		2090	J	2050	J	0.0200	U	0.0267	I	0.0200	U	0.0200	U	0.0200	U	0.0200	U
Potassium	mg/L	860	J+	855	J+	769		826		802	J	817	J	0.190	U	0.190	U	0.190	U	0.190	U	0.190	U	0.190	U
Sodium	mg/L	18600	J	18600	J	17200		18200		18200	J	18600	J	0.310	U	0.310	U	0.310	U	0.310	U	0.310	U	0.310	U
Boron	mg/L	9.11		9.22		8.32		8.73		8.43		8.90		0.0	U	0.01	U	0.010	U	0.01	U	0.01	U	0.01	U
Strontium	mg/L	16.5		16.4		15.4		16.4		15.8		16.2		0.001	U	0.001	U	0.001	U	0.001	U	0.001	U	0.001	U
Bromide	mg/L	132	J	133	J	127	J	139	J	136	J	138	J	0.0130	U	0.0130	U	0.0130	U	0.0130	U	0.0130	U	0.0130	U
Chloride	mg/L	37200	J	40100	J	37700	J	40200	J	38600	J	39000	J	0.250	U	0.250	U	0.250	U	0.250	U	0.250	U	0.250	U
Fluoride	mg/L	0.739	J-	0.729	J	0.720	J-	0.732	J-	0.739	J	0.742	J-	0.0240	U	0.0240	U	0.0240	U	0.0240	U	0.179		0.0240	U
Sulfate	mg/L	5220	J	5090	J	4990	J	5330	J	5300	J	5360	J	0.250	U	0.250	U	0.250	U	0.250	U	0.250	U	0.250	U
Total Ammonia	mg/L as N	0.0907	J+	0.109	J	0.0952		0.0956		0.0781		0.0878		0.0260	U	0.0314	I	0.0260	U	0.0261	Ι			0.0262	I
Ammonium ion (NH ₄ ⁺)	mg/L	0.0770	J+	0.0853	J	0.0918		0.0824		0.0700		0.0776												0.0319	
Unionized NH ₃	mg/L	0.0374	J+	0.0518	J	0.0289		0.0382		0.0287		0.0334												0.00164	
Nitrate/Nitrite	mg/L as N	0.0270	U	0.0270	U	0.0270	U	0.0270	U	0.0400	Ι	0.0270	U	0.0270	U	0.0270	U	0.00760	Ι	0.00540	U			0.00540	U
TKN	mg/L	14.9		17.7		14.6		14.6		14.8		14.6		0.150	U	0.294		0.366		0.255				0.311	
TN	mg/L	14.93		17.73		14.63		14.63		14.84		14.63				0.32									
ortho-Phosphate	mg/L	0.00652	Ι	0.0162		0.00140	U	0.00748	Ι	0.00811	Ι	0.00782	Ι	0.00140	U	0.00140	U	0.00140	U	0.00140	U			0.00140	U
Total Phosphorus (P)	mg/L	0.0524		0.0460		0.0285		0.0429		0.0625		0.0535		0.00220	U	0.00220	U	0.00220	U	0.00220	U			0.00220	U
Alkalinity	mg/L	124	J	128	J	132	J	127	J	127	J	126	J	1.00	U	1.00	U	1.00	U	1.00	U	1.00	U	1.00	U
Bicarbonate Alkalinity	mg/L as HCO ₃	76.5	J	39.0	J	70.8	J	28.4	J	27.4	J	55.3	J	1.00	U	1.00	U	1.00	U	1.00	U	1.00	U	1.00	U
Sulfide	mg/L	1.00	U	1.00	U	1.00	U	1.00	U	1.38		1.00	U	1.00	U	1.00	U	1.00	U	1.00	U	1.00	U	1.00	U
Total Dissolved Solids	mg/L															5.00	U					5.00	U		
Salinity	*	61.9	J	62.2	J	59.0	J	62.2	J	61.5	J	62.7	J												
Tritium	pCi/L (1σ)	1783.1 (60.9)		1801.6 (59.7)		1486.0 (47.6)		1646.8 (56.1)		1655.1 (56.0)		1644.0 (54.4)		2.4 (6.6)	UJ	1.6 (5.7)	UJ	0.0 (5.7)	UJ	-3.3 (3.7)	UJ	2.9 (5.3)	UJ	0.6 (5.6)	UJ

Laboratory anion and cation results are reported with 3 digits although only the first 2 are significant figures.

Text in Blue is revised.

* PSS-78 salinity is unitless.

Sample 091013-DUP is a duplicate of TPSWC-1B. Sample 091113-DUP2 is a duplicate of TPSWC-5B.

KEY:

°C = Degrees Celsius.

 μ S/cm = MicroSiemen(s) per centimeter.

 σ = sigma (Standard Deviation).

 HCO_3 = Bicarbonate.

DUP = Duplicate.

EB = Equipment Blank. FB = Field Blank.

I = Value between the MDL and PQL. J = Estimated (+/- indicate bias). mg/L = Milligram(s) per liter.

N = Nitrogen

 $NH_3 = Ammonia$.

 NH_4^+ = Ammonium ion.

NTU = Nephelometric Turbidity Units(s).

pCi/L = PicoCuries per liter. SU = Standard Unit(s).

TKN = Total Kjeldahl nitrogen.

TN = Total nitrogen.

Table 3.2-3. Summary of Surface Water Analytical Results from the December 2013 Sampling Event

		TPBBSW-3	3 TPBBSW-4	B TPBBSW-5E	TPSWC-1T	120513-DUP	TPSWC-1	B TPSWC-2T	TPSWC-2B	TPSWC-3T	TPSWC-3B	TPSWC-4T
Parameter	Units	12/11/2013	12/11/2013	3 12/11/2013	12/5/2013	12/5/2013	12/5/2013	3 12/5/2013	12/5/2013	12/5/2013	12/5/2013	12/10/2013
Temperature	°C	26.18	25.27	25.6	23.87		23.05	25.43	23.79	24.97	23.4	25.76
pН	SU	7.99	7.94	7.71	7.39		7.18	7.65	7.32	7.91	7.52	7.19
Dissolved Oxygen	mg/L	6.79	8.89	5.3	6.09		1.27	7.42	3.4	7.44	2.5	1.72
Specific Conductance	μS/cm	47355	47251	45990	648		778	619	639	636	1378	22129
Turbidity	NTU	1.15	0.54	0.55	0.85		1.24	0.38	0.64	0.68	3.36	1.08
Sodium	mg/L	9680	9550	9190	58.4	58.3	69.2	58.7	59.8	60.2	180	3800
Chloride	mg/L	18200	18000	17300	115	115	139	119	120	122	364	7290
Total Dissolved Solids	mg/L											
Salinity	*	30.78	30.72	29.8	0.31		0.38	J 0.3	J 0.31 J	0.31 J	0.69 J	13.3
Tritium	$pCi/L(1\sigma)$	8.9 (5.7)	J 3.1 (5.7) U	JJ 5.1 (5.8) U	J 30.4 (6.6)	44.4 (6.8) J	17.4 (6.4)	J 25.4 (6.6)	J 19.1 (6.4) J	8.6 (6.1) J	15.2 (6.4) J	87.5 (7.3)

Laboratory results are reported with 3 digits although only the first 2 are significant figures.

Text in blue is revised.

* PSS-78 salinity is unitless.

120513-DUP is a field duplicate of sample 120513-TPSWC-1T 121013-DUP is a field duplicate of sample 121013-TPSWCCS-5T

KEY:

 σ = sigma (Standard Deviation). NTU = Nephelometric Turbidity Units(s).

DUP = Duplicate. pCi/L = PicoCuries per liter. EB = Equipment Blank SU = Standard Unit(s).

FB = Field Blank. U = Analyzed for but not detected at the reported value.

I = Value between the MDL and PQL.

Table 3.2-3. Summary of Surface Water Analytical Results from the December 2013 Sampling Event (continued)

		TPSWC-4B	TPSWC-5T	TPSWC-5B	TPSWC-61	T TPSW	C-6B	TPSWID-1	Т	TPSWID-1	В	TPSWID-2	2T	TPSWID-	2B	TPSWID-3	3 T	TPSWID-3B
Parameter	Units	12/10/2013	12/10/2013	12/10/2013	12/6/2013	12/6/	2013	12/10/2013	3	12/10/2013	3	12/10/201	3	12/10/20 ²	13	12/2/2013	3	12/2/2013
Temperature	°C	27.24	25.62	25.62	23.48	23.4		25.69		25.75		25.89		25.95		24.42		23.56
pН	SU	6.89	7.86	7.75	7.21	7.27		7.78		7.78		7.55		7.18		7.63		7.68
Dissolved Oxygen	mg/L	0.28	7.08	4.52	2.67	2.05		6.2		5.94		5.24		1.07		6.28		6.06
Specific Conductance	μS/cm	28910	45693	47271	771	779		3289		3292		2718		3214		3947		5713
Turbidity	NTU	7.36	0.51	0.41	0.29	0.23		0.4		0.27		0.22		1.24		6.34		0.18
Sodium	mg/L	5260	9110	9260	54.6	57		464		465		370		444		571		888
Chloride	mg/L	10400	18000	18200	97.8	101		859		833		736		865		1120		1740
Total Dissolved Solids	mg/L																	
Salinity	*	17.78	29.58	30.74	0.38	J 0.38	J	1.72	J	1.72	J	1.4	J	1.67	J	2.09		3.09
Tritium	pCi/L (1σ)	179.1 (9.6)	13.5 (5.7) J	47.2 (6.4) J	12.6 (6.9)	J 6.0 (6.	B) UJ	88.9 (8.3)		113.3 (8.8)		66.7 (7.7)	J	68.5 (7.6)	J	48.8 (5.7)	J	50.2 (5.6) J

Laboratory results are reported with 3 digits although only the first 2 are significant figures.

Text in blue is revised.

* PSS-78 salinity is unitless.

120513-DUP is a field duplicate of sample 120513-TPSWC-1T

121013-DUP is a field duplicate of sample 121013-TPSWCCS-5T

KEY:

°C = Degrees Celsius.

J = Estimated (+/- indicate bias).

 μ S/cm = MicroSiemen(s) per centimeter.

mg/L = Milligram(s) per liter.

 σ = sigma (Standard Deviation).

NTU = Nephelometric Turbidity Units(s).

DUP = Duplicate.

pCi/L = PicoCuries per liter.

EB = Equipment Blank

SU = Standard Unit(s).

FB = Field Blank.

U = Analyzed for but not detected at the reported value.

I = Value between the MDL and PQL.

Table 3.2-3. Summary of Surface Water Analytical Results from the December 2013 Sampling Event (continued)

		TPSWCCS-1B	TPSWCCS-2B	TPSWCCS-3B	TPSWCCS-4T	TPSWCCS-5T	121013-DUP	TPSWCCS-7	В	120213-E	EB1	120513-F	-B1	120613-	FB1	121013-F	B1	121113-F	B1
Parameter	Units	12/10/2013	12/2/2013	12/10/2013	12/10/2013	12/10/2013	12/10/2013	12/10/2013		12/02/20	013	12/05/20	13	12/06/20	013	12/10/20	13	12/11/20 ⁻	13
Temperature	°C	34.67	28.1	30.98	29.15	28.67		34.84											
pН	SU	8.13	8.2	8.18	8.22	8.17		8.22											
Dissolved Oxygen	mg/L	5.51	5.3	6.15	6.12	4.93		7.66											
Specific Conductance	μS/cm	92911	87950	90569	92534	92242		93266	J										
Turbidity	NTU	61.99	56.87	74.52	63.08	53.53		48.69											
Sodium	mg/L	19200	19200	18400	19300	19600	19300	19600		0.310	U	0.310	U	0.310	U	0.31	U	0.310	U
Chloride	mg/L	41600	37000	38800	39800	38100	39700	45900	J	0.250	U	0.250	U	0.250	U	0.297	I	0.313	Ι
Total Dissolved Solids	mg/L									5.00	U	5.00	U	5.00	U	5	U	64.0	
Salinity	*	66.14	62.32	64.38	66.14	65.91		66.77	J										
Tritium	pCi/L (1σ)	3636.6 (111.1)	1486.9 (46.9)	3444.6 (106.8)	3110.7 (96.0)	3356.0 (104.5)	3420.8 (106.0)	3839.4 (119.3)		8.5 (5.0)		-7.9 (6.5)	UJ	6.0 (6.4)	UJ	11.4 (6.6)		-11.9 (6.0)	UJ

Laboratory results are reported with 3 digits although only the first 2 are significant figures.

Text in blue is revised.

* PSS-78 salinity is unitless.

120513-DUP is a field duplicate of sample 120513-TPSWC-1T

121013-DUP is a field duplicate of sample 121013-TPSWCCS-5T

KEY:

°C = Degrees Celsius.

 μ S/cm = MicroSiemen(s) per centimeter.

 σ = sigma (Standard Deviation).

DUP = Duplicate.

EB = Equipment Blank

FB = Field Blank.

I = Value between the MDL and PQL.

J = Estimated (+/- indicate bias).

mg/L = Milligram(s) per liter.

NTU = Nephelometric Turbidity Units(s).

pCi/L = PicoCuries per liter.

SU = Standard Unit(s).

Table 3.2-4. Summary of Surface Water Analytical Results from the March 2014 Sampling Event

		TPBBSW-	-3B	TPBBSW-	-4B	031214-D	UP	TPBBSW-	5B	TPSWC-1	Т	TPSWC-1	В	TPSWC-2	2T	TPSWC-2	2B	TPSWC-	3T	TPSWC-3	ВВ
Parameter	Units	03/12/20	14	03/12/20 ⁻	14	03/12/20 ⁻	14	03/12/20	14	03/07/201	4	03/07/201	4	03/07/201	4	03/07/201	14	03/07/20	14	03/07/201	14
Temperature	°C	25.15		24.80				25.00		26.27		25.10		25.63		25.49		25.04		25.03	
pН	SU	8.35		8.21				8.19		8.03		7.63		8.34		8.14		8.23		8.18	
Dissolved Oxygen	mg/L	6.95		7.03				6.00		7.54		4.70		7.77		6.95		7.94		7.70	
Specific Conductance	μS/cm	51939		51356				48399		771		785		913		911		1279		1296	
Turbidity	NTU	0.65		0.51				0.75		1.86		3.77		1.33		2.24		2.26		2.31	
Silica, dissolved	mg/L																				
Calcium	mg/L	426		418		413		386		66.5		68.6		72.1		74		85.5		85.8	
Magnesium	mg/L	1150		1130		1110		1030		10.7		10.8		10.2		10.6		15		15.2	
Potassium	mg/L	435		428		425		385		3.6		3.74		3.93		4.04		5.11		5.07	
Sodium	mg/L	10900		10700		10900		10100		74.9		76.9		98		97.9		146		150	
Boron	mg/L	4.75		4.76		4.69		4.21		0.0508		0.0528		0.0472	I	0.0486	I	0.0682		0.0582	
Strontium	mg/L	7.73		7.63		7.49		6.95		0.617		0.627		0.763		0.778		0.888		0.885	
Bromide	mg/L	69.4		68.3		68.3		63		0.294		0.308		0.452		0.457		0.763		0.798	
Chloride	mg/L	19400		20200		19000		17500		139		141		185		183		290		301	
Fluoride	mg/L	0.867		0.871		0.889		0.85	J-	0.0722	I	0.0713	I	0.0774	I	0.0777	I	0.0857	I	0.085	I
Sulfate	mg/L	2850		2770		2770		2550		8.03	J	8.91	J	13.1		13		24.3		19.6	
Total Ammonia	mg/L as N	0.163	J	0.111	J	0.0691	J	0.026	U	0.303		0.439		0.34		0.186		0.227		0.231	J
Ammonium ion (NH ₄ ⁺)	mg/L	0.186	J	0.131	J			0.05	U	0.365		0.551		0.387		0.221		0.266		0.273	J
Unionized NH ₃	mg/L	0.0226	J	0.0112	J			0.000017	U	0.023		0.0127		0.0475		0.017		0.0244		0.0223	J
Nitrate/Nitrite	mg/L as N	0.039	I	0.0478	I	0.027	U	0.027	U	0.0646	J	0.027	U	0.027	U	0.027	U	0.027	U	0.027	U
TKN	mg/L	0.554		0.544		0.536		0.533		0.701		0.871		0.702		0.815		0.686		0.757	
TN	mg/L	0.593		0.592		0.563		0.560		0.766	J	0.898		0.729		0.842		0.713		0.784	
ortho-Phosphate	mg/L	0.0117	J	0.0014	U	0.0014	U	0.0014	U	0.0019	I	0.0014	U	0.00241	I	0.00159	I	0.0014	U	0.00187	I
Total Phosphorus (P)	mg/L	0.0022	UJ	0.0022	U	0.0022	U	0.0113	I	0.0122		0.0103		0.0184	I	0.00443	I	0.00566	I	0.00565	I
Alkalinity	mg/L	134		138		139		150		167		171		159		153		182		178	
Bicarbonate Alkalinity	mg/L as HCO ₃	134		138		139		150		167		171		159		153		178		178	
Sulfide	mg/L	1	UQ	1	UQ	1	UQ	1	UQ	1	U	1	U	1	U	1	U	1	U	1	U
Salinity	*	34.2		33.7				31.6		0.4	J	0.4	J	0.5	J	0.5	J	0.6	J	0.6	J
Tritium	pCi/L (1σ)	17.5 (5.6)		18.0 (5.6)		4.9 (5.6)		3.2 (5.6)		52.3 (4.9)		53.4 (5.0)		53.5 (4.9)		46.6 (4.8)		39.0 (4.2)		33.3 (4.4)	

Laboratory results are reported with 3 digits although only the first 2 are significant figures.

Text in blue is revised.

Sample 031214-DUP is a duplicate of BBSW-4B. Sample 030714-DUP2 is a duplicate of TPSWC-3B.

KEY:

 $^{\circ}$ C = Degrees Celsius. μ S/cm = MicroSiemen(s) per centimeter.

 σ = sigma (Standard Deviation).

DUP = Duplicate.

EB = Equipment Blank.

FB = Field Blank.

 HCO_3 = Bicarbonate.

I = Value between the MDL and PQL. J = Estimated (+/- indicate bias). mg/L = Milligram(s) per liter.

N = Nitrogen

 $NH_3 = Ammonia$.

 NH_4^+ = Ammonium ion.

NTU = Nephelometric Turbidity Units(s).

pCi/L = PicoCuries per liter. Q = Holding time exceeded.

SU = Standard Unit(s).

TKN = Total Kjeldahl nitrogen.

TN = Total nitrogen.

^{*} PSS-78 salinity is unitless.

Table 3.2-4. Summary of Surface Water Analytical Results from the March 2014 Sampling Event (continued)

		030714-D	UP	TPSWC-4	IT	TPSWC-4	В	TPSWC-5	σT	TPSWC-5	В	TPSWC-6	T	TPSWC-6	В	TPSWID-1	ΙT	TPSWID-	1B	TPSWID-	2T	TPSWID-	2B	TPSWID-	3T	TPSWID-	3B
Parameter	Units	03/07/201	14	03/04/201	4	03/04/201	4	03/04/201	4	03/04/201	4	03/10/201	4	03/10/201	14	03/03/201	4	03/03/201	14	03/03/201	14	03/03/20	14	03/03/201	14	03/03/20	14
Temperature	°C			25.62		26.03		26.36		25.33		23.52		23.39		28.48		28.00		27.46		25.84		27.37		25.65	
pН	SU			7.62		7.63		7.85		7.96		7.32		7.27		7.60		6.90		7.28		7.22		7.46		7.35	
Dissolved Oxygen	mg/L			3.38		3.24		3.32		3.77		2.25		2.24		5.73		0.39		4.72		3.11		7.83		3.83	
Specific Conductance	μS/cm			16204		19942		51652		51703		716		721		4851		10656		3226		3967		3304		3291	
Turbidity	NTU			0.56		6.99		0.28		1.03		0.27		0.37		0.75		39.79		0.53		1.09		0.51		0.44	
Silica, dissolved	mg/L																										
Calcium	mg/L	86.9		224		244		429		425		77.6		78.9		147		186		139		151		141		138	
Magnesium	mg/L	15.3		300		374		1200		1200		8.55		8.73		82.5		186		48.2		61.2		47.8		46.2	
Potassium	mg/L	5.15		110		141		420		415		11		11.2		30.7		77		18.1		22.1		18.2		17.6	
Sodium	mg/L	151		2860		3580		10400		10500		50.1		51.5		710		1760		430		547		441		430	
Boron	mg/L	0.0568		1.16		1.49		4.59		4.57		0.0785		0.0813		0.353		0.812		0.181		0.225		0.183		0.167	
Strontium	mg/L	0.896		3.19		3.64		7.6		7.5		0.973		0.983		1.71		2.52		1.52		1.71		1.49		1.44	
Bromide	mg/L	0.799		18.4		23.3		67.1		67.2		0.488		0.491		4.23		10.9		2.81		3.52		2.9		2.89	
Chloride	mg/L	302		5240		6560		19500		19300		89.1		92.5		1330		3270		827		1060		853		858	
Fluoride	mg/L	0.0777	I	0.333		0.403		0.932		0.956		0.121		0.12		0.154		0.203		0.12		0.128		0.116		0.109	
Sulfate	mg/L	19.6		681		881		2780		2770		66.3		67.4		145		389		84.4		108		79.7		78.2	
Total Ammonia	mg/L as N	0.404	J	0.386		0.596		0.303		0.382		0.178		0.285		0.207		0.713		0.497		0.0272	I	0.18		0.275	
Ammonium ion (NH ₄ ⁺)	mg/L			0.484		0.747		0.373		0.466		0.226		0.363		0.259		0.912		0.631		0.05	U	0.227		0.349	
Unionized NH ₃	mg/L			0.0113		0.0184		0.0156		0.0234		0.00229		0.00324		0.00706		0.0048		0.00768		0.000328		0.00416		0.0044	
Nitrate/Nitrite	mg/L as N	0.027	U	0.103		0.0996		0.0289	I	0.027	U	0.029	I	0.037	I	0.0816	J	0.0433	IJ	0.0835	J	0.132	J	0.202	J	0.168	J
TKN	mg/L	0.672		1.05		0.952		0.385	I	0.396	I	0.321	I	0.3	U	0.874	J	1.72	J	0.738	J	0.768	J	0.697	J	0.668	J
TN	mg/L	0.699		1.15		1.05		0.414		0.423		0.350		0.337		0.956	J	1.76	J	0.822	J	0.900	J	0.899	J	0.836	J
ortho-Phosphate	mg/L	0.00258	I	0.0014	U	0.0014	U	0.0014	U	0.0014	U	0.00178	IJ	0.00211	IJ	0.0169	IJ	0.0166	IJ	0.014	UJ	0.014	UJ	0.014	UJ	0.014	UJ
Total Phosphorus (P)	mg/L	0.00695	I	0.00283	I	0.003	I	0.00368	I	0.00594	I	0.0022	U	0.0022	U	0.00689	IJ	0.0324		0.00229	IJ	0.00245	IJ	0.00229	IJ	0.00285	IJ
Alkalinity	mg/L	175		248		251		153		147		161		158		344		448		280		298		264		271	
Bicarbonate Alkalinity	mg/L as HCO ₃	175		248		251		153		147		161		158		344		448		280		298		264		271	
Sulfide	mg/L	1	U	1	U	1	U	1	UQ	1	UQ	1	U	1	U	1	U	4.5		1	U	1	U	1	U	1	U
Salinity	*			9.5		11.9		33.9		34.0		0.4	J	0.4	J	2.6		6.0		1.7	J	2.1		1.7	J	1.7	J
Tritium	pCi/L (1σ)	23.6 (4.2)		139.1 (7.3)		116.6 (8.2)		61.4 (6.8)		31.0 (6.4)		1.8 (6.1)	UJ	-2.1 (5.9)	UJ	158.9 (9.9)		167.8 (8.1)		86.4 (5.8)		87.8 (5.9)		62.8 (5.1)		70.3 (5.3)	

Laboratory results are reported with 3 digits although only the first 2 are significant figures.

Text in blue is revised.

* PSS-78 salinity is unitless.

Sample 031214-DUP is a duplicate of BBSW-4B.

Sample 030714-DUP2 is a duplicate of TPSWC-3B.

KEY:

°C = Degrees Celsius. μS/cm = MicroSiemen(s) per centimeter.

 σ = sigma (Standard Deviation).

DUP = Duplicate.

EB = Equipment Blank.

FB = Field Blank.

 HCO_3 = Bicarbonate.

I = Value between the MDL and PQL. J = Estimated (+/- indicate bias).

mg/L = Milligram(s) per liter.

N = Nitrogen

 $NH_3 = Ammonia.$

 NH_4^+ = Ammonium ion.

NTU = Nephelometric Turbidity Units(s).

pCi/L = PicoCuries per liter. Q = Holding time exceeded.

SU = Standard Unit(s).

TKN = Total Kjeldahl nitrogen.

TN = Total nitrogen.

Table 3.2-4. Summary of Surface Water Analytical Results from the March 2014 Sampling Event (continued)

		TPSWCCS-	-1B	TPSWCCS-	2B	TPSWCCS-	3B	TPSWCCS-	4T	TPSWCCS	-5T	TPSWCCS	-7B	030314-E	B1	030414-FE	31	030714-F	B1	031014-F	B1	031214-F	B1
Parameter	Units	03/03/201	4	03/05/201	4	03/03/201	4	03/03/201	4	03/03/201	4	03/03/201	4	03/03/20	14	03/04/201	4	03/07/201	14	03/10/20	14	03/12/20	14
Temperature	°C	37.43		34.53		32.26		29.23		29.22		36.76											
pН	SU	8.42		8.79		8.39		8.45		8.38		8.56											
Dissolved Oxygen	mg/L	8.30		6.85		8.79		7.54		8.75		12.30											
Specific Conductance	μS/cm	109243		107890	J	101963		107858	J	107648	J	101912											
Turbidity	NTU	106.30		93.91		102.50		90.78		103.30		261.10											
Silica, dissolved	mg/L	5.64	J	5.47	J	5.33	J-	5.67	J	5.49	J	5.44	J	0.05	U	0.05	U	0.05	U	0.05	U	0.05	U
Calcium	mg/L	1050		1020	J	990		1050	J	1050	J	1010		0.1	U	0.1	U	0.1	U	0.1	U	0.1	U
Magnesium	mg/L	2650		2440	J	2440		2640	J	2620	J	2510		0.02	U	0.02	U	0.02	U	0.02	U	0.02	U
Potassium	mg/L	1000		1010	J	952		993	J	994	J	933		0.19	U	0.19	U	0.19	U	0.19	U	0.19	U
Sodium	mg/L	24500		24100	J	23200		23600	J	23500	J	22400		0.31	U	0.31	U	0.31	U	0.31	U	0.31	U
Boron	mg/L	11.7		12		10.6		11.5		11.5		11.1		0.01	U	0.01	U	0.01	U	0.01	U	0.01	U
Strontium	mg/L	21.2		21.2		20		21.2		20.9		20.3		0.001	U	0.001	U	0.001	U	0.001	U	0.001	U
Bromide	mg/L	175		177	J	148		168	J	166	J	171		0.013	U	0.013	U	0.013	U	0.013	U	0.013	U
Chloride	mg/L	46000		48900	J	41600		47800	J	48500	J	42300		0.25	U	0.476	I	0.364	I	0.25	U	0.25	U
Fluoride	mg/L	0.845	J	0.906	J	0.814	J	0.838	J	0.841	J	0.821	J	0.024	U	0.024	U	0.024	U	0.024	U	0.024	U
Sulfate	mg/L	7740		7130	J	6470		7290	J	7270	J	7300		0.766		0.25	U	1.11		0.304	I	0.250	U
Total Ammonia	mg/L as N	0.152	J	0.234	J	0.114	J	0.132	J	0.0842	J	0.103	J	0.026	U	0.026	U	0.026	U	0.026	U	0.026	U
Ammonium ion (NH ₄ ⁺)	mg/L	0.145	J	0.18	J	0.119	J	0.14	J	0.0915	J	0.0907	J										
Unionized NH ₃	mg/L	0.0476	J	0.114	J	0.0259	J	0.0284	J	0.0158	J	0.0394	J										
Nitrate/Nitrite	mg/L as N	0.0389	IJ	0.0445	IJ	0.027	UJ	0.0499	IJ	0.0416	IJ	0.0385	IJ	0.0331	I	0.027	U	0.0555		0.027	U	0.027	U
TKN	mg/L	10.6	J	0.3	U	9.74	J	10.7	J	10.5	J	13.3	J	6.55		0.3	U	0.3	U	0.3	U	0.3	U
TN	mg/L	10.6	J	0.340	J	9.77	J	10.7	J	10.5	J	13.3	J										
ortho-Phosphate	mg/L	0.014	U	0.0014	U	0.014	U?	0.014	U	0.014	U	0.014	U	0.00325	I	0.00324	I	0.0014	U	0.00399	I	0.00293	I
Total Phosphorus (P)	mg/L	0.0583		0.00752	I	0.0894		0.0282		0.0585		0.0425		0.0022	U	0.0022	U	0.0022	U	0.0022	U	0.0022	U
Alkalinity	mg/L	151		146	J	158		150	J	147	J	169		1.41		1	U	1	U	1	U	1	U
Bicarbonate Alkalinity	mg/L as HCO ₃	54.3		19.3	J	98.4		94.9	J	102	J	77		1.41		1	U	1	U	1	U	1	U
Sulfide	mg/L	1	UQ	1	UQ	1	UQ	1	UQ	1	UQ	1	UQ	1	U	1	U	1	U	1	U	1	U
Salinity	*	80.1		79.1	J	74.0		79.4	J	79.3	J	73.7											
Tritium	pCi/L (1σ)	13073 (432)		15487 (482)		12886 (410)		13997 (443)		13488 (432)		11232 (355)		-2.5 (6.4)	UJ			-3.8 (4.0)	UJ	1.1 (3.8)	UJ	8.3 (5.5)	

Laboratory results are reported with 3 digits although only the first 2 are significant figures.

Text in blue is revised.

Sample 031214-DUP is a duplicate of BBSW-4B.

Sample 030714-DUP2 is a duplicate of TPSWC-3B.

KEY:

°C = Degrees Celsius. μS/cm = MicroSiemen(s) per centimeter. σ = sigma (Standard Deviation).

DUP = Duplicate.

EB = Equipment Blank.

FB = Field Blank.

 HCO_3 = Bicarbonate.

I = Value between the MDL and PQL.

J = Estimated (+/- indicate bias).

mg/L = Milligram(s) per liter.

N = Nitrogen

 $NH_3 = Ammonia$.

 NH_4^+ = Ammonium ion.

NTU = Nephelometric Turbidity Units(s).

pCi/L = PicoCuries per liter. Q = Holding time exceeded.

SU = Standard Unit(s).

TKN = Total Kjeldahl nitrogen.

TN = Total nitrogen.

^{*} PSS-78 salinity is unitless.

Table 3.2-5. Summary of Surface Water Analytical Results from the June 2014 Sampling Event

		TPBBSW-3B	TPBBSW-4	B TPBBSW-5E	B TPSWC-1T	TPSWC-1E	B TPSWC-2T	TPSWC-2B	TPSWC-3T	060614-DUP1	TPSWC-3B	TPSWC-4T
Parameter	Units	06/12/2014	06/12/2014	06/12/2014	06/06/2014	06/06/2014	1 06/06/2014	06/06/2014	06/06/2014	06/06/2014	06/06/2014	06/11/2014
Temperature	°C	28.10	28.94	28.58	30.53	28.65	30.12	29.22	28.06		29.31	30.34
pН	SU	8.26	8.13	7.93	7.93	7.96	8.06	7.93	7.95		7.31	7.56
Dissolved Oxygen	mg/L	4.99	5.49	4.87	6.99	6.26	6.60	6.41	6.15		0.14	4.19
Specific Conductance	μS/cm	59831	58410	60067	2018	1904	10650	11018	8283		12823	55750
Turbidity	NTU	0.93	0.48	1.34	2.35	6.96	1.65	3.78	0.96		5.74	1.68
Sodium	mg/L	12600	12300	12800	242	226	1660	1680	1290	1260	2100	11600
Chloride	mg/L	22400	21800	22500	446	421	3180	3270	2490	2500	4020	20700
Total Dissolved Solids	mg/L											
Salinity	*	40.0	38.89	40.2	1.02	J 0.96	J 5.98	6.21	4.58		7.32	36.84
Tritium	pCi/L (1σ)	6.2 (5.2)	6.4 (5.2)	9.0 (5.5)	105 (7.9)	117 (8.2)	102 (8.1)	107 (8.2)	78.1 (7.4)	68.3 (7.2)	66.9 (7.1)	43.4 (4.5)

Laboratory results are reported with 3 digits although only the first 2 are significant figures.

* PSS-78 salinity is unitless.

Text in blue is revised.

060614-DUP1 is a field duplicate of sample 060614-TPSWC-3T 060314-DUP is a field duplicate of sample 060314-TPSWCCS-7B

KEY:

°C = Degrees Celsius. μS/cm = MicroSiemen(s) per centimeter. σ = sigma (Standard Deviation).

DUP = Duplicate.

EB = Equipment Blank. FB = Field Blank.

J = Estimated (+/- indicate bias).

mg/L = Milligram(s) per liter.

NTU = Nephelometric Turbidity Units(s).

pCi/L = PicoCuries per liter.

SU = Standard Unit(s).

Table 3.2-5. Summary of Surface Water Analytical Results from the June 2014 Sampling Event (continued)

		TPSWC-4B	TPSWC-5T	TPSWC-5	B TPSWC-6	T TPSWC-	6B TPSWID-	1T TPSWID-1	B TPSWID-2	T TPSWID-2B	TPSWID-3T	TPSWID-3B
Parameter	Units	06/11/2014	06/11/2014	06/11/201	4 06/09/2014	4 06/09/20	14 06/03/20	14 06/03/2014	4 06/03/2014	4 06/03/2014	06/03/2014	06/03/2014
Temperature	°C	31.22	30.28	29.83	26.52	26.44	27.98	29.00	28.26	28.30	28.06	28.43
pН	SU	7.60	7.95	7.99	7.31	7.30	7.51	6.85	7.55	6.92	7.77	6.95
Dissolved Oxygen	mg/L	3.40	4.21	4.42	0.28	0.18	6.31	0.16	5.44	0.39	7.69	0.51
Specific Conductance	μS/cm	57771	59357	58550	1532	1558	10275	18156	6363	9000	6023	24518
Turbidity	NTU	12.42	0.78	2.96	0.76	1.19	1.29	66.13	0.60	8.15	0.64	0.98
Sodium	mg/L	11900	12500	12500	160	162	1660	3020	913	1360	890	3870
Chloride	mg/L	22400	22600	22900	285	292	3050	5770	1790	2660	1710	8180
Total Dissolved Solids	mg/L											
Salinity	*	38.32	39.55	38.96	0.77	J 0.78	J 5.77	10.67	3.45	5	3.25	14.83
Tritium	pCi/L (1σ)	37.1 (4.4)	3.4 (3.7)	U 12.4 (3.8)	8.5 (4.5)	11.4 (4.5)	367 (16.8)	401 (16.8)	200 (10.9)	190 (10.5)	148 (9.3)	189 (10.6)

Laboratory results are reported with 3 digits although only the first 2 are significant figures.

* PSS-78 salinity is unitless.

Text in blue is revised.

060614-DUP1 is a field duplicate of sample 060614-TPSWC-3T 060314-DUP is a field duplicate of sample 060314-TPSWCCS-7B

KEY:

°C = Degrees Celsius. μS/cm = MicroSiemen(s) per centimeter. σ = sigma (Standard Deviation).

DUP = Duplicate.

EB = Equipment Blank. FB = Field Blank.

J = Estimated (+/- indicate bias).

mg/L = Milligram(s) per liter.

NTU = Nephelometric Turbidity Units(s).

pCi/L = PicoCuries per liter.

SU = Standard Unit(s).

Table 3.2-5. Summary of Surface Water Analytical Results from the June 2014 Sampling Event (continued)

		TPSWCCS-1B	TPSWCCS-2B	TPSWCCS-3B	TPSWCCS-4T	TPSWCCS-5T	TPSWCCS-7B	060314-DUI	P	060314-E	В	060414-FB	1	060614-F	B1	060914-F	B1	061114-F	B1	061214-F	FB1
Parameter	Units	06/03/2014	06/04/2014	06/03/2014	06/03/2014	06/03/2014	06/03/2014	06/03/2014		06/03/201	4	06/04/2014	4	06/06/20	14	06/09/20	14	06/11/20	14	06/12/20	14
Temperature	°C	37.70	33.68	32.92	29.05	29.60	34.58														
pН	SU	7.71	7.75	7.68	7.77	7.80	7.75														
Dissolved Oxygen	mg/L	0.98	2.07	1.01	1.60	2.61	1.93														
Specific Conductance	μS/cm	122810	123693	119769	123937	121777	124486														\Box
Turbidity	NTU	156.1	150.9	148.1	142.4	152.6	158.3														
Sodium	mg/L	28100	28500	27600	27800	28300	28500	28700		0.310	U	0.310	U	0.310	U	0.310	U	0.310	U	0.310	U
Chloride	mg/L	53400	54300	54200	54600	54100	54600	54300		0.250	U	0.250	U	0.250	U	0.250	U	0.250	U	3.41	
Total Dissolved Solids	mg/L									5.00	U	5.00	U	5.00	U	5.00	U	5.00	U	5.00	U
Salinity	*	92.34	93.53	89.94	94.1	92.01	94.14														
Tritium	pCi/L (1σ)	9908 (321)	9829 (300)	8897 (284)	9575 (306)	9973 (321)	9853 (312)	9590 (306)		10.9 (6.0)		9.1 (6.1)		8.3 (6.4)		1.5 (3.7)	U	1.8 (4.8)	U	-2.8 (3.6)	U

* PSS-78 salinity is unitless.

Text in blue is revised.

060614-DUP1 is a field duplicate of sample 060614-TPSWC-3T 060314-DUP is a field duplicate of sample 060314-TPSWCCS-7B

KEY:

°C = Degrees Celsius. μS/cm = MicroSiemen(s) per centimeter.

 σ = sigma (Standard Deviation).

DUP = Duplicate.

EB = Equipment Blank.

FB = Field Blank.

J = Estimated (+/- indicate bias).

mg/L = Milligram(s) per liter.

NTU = Nephelometric Turbidity Units(s).

pCi/L = PicoCuries per liter.

SU = Standard Unit(s).

Table 3.2-6. Summary of Surface Water Analytical Results from the September 2014 Sampling Event

		TPBBSW-	3B	TPBBSW	-4B	TPBBSW-	5B	TPSWC-	1T	TPSWC-	1B	TPSWC-2	:T	TPSWC-2	В	TPSWC-3	Т	TPSWC-	3B	TPSWC-4	IT	091014-D	ир
Parameter	Units	09/11/201	4	09/11/20	14	09/11/201	14	09/02/20	14	09/02/20	14	09/05/201	4	09/05/201	4	09/05/201	4	09/05/20	14	09/10/20	4	09/10/201	4
Temperature	°C	29.45		28.86		28.86		30.83		30.13		32.17		30.96		32.79		31.34		30.25			
pН	SU	8.13		8.06		7.74		7.55		7.23		7.91		7.48		7.80		7.41		7.67			
Dissolved Oxygen	mg/L	4.02		4.91		2.34		3.97		0.17		6.35		2.89		5.44		0.49		3.96			
Specific Conductance	μS/cm	56080		55486	J	56215		471	J	604	J	598		601		680		1604		24228			
Turbidity	NTU	0.55		0.23		0.47		0.77		8.1		0.66		0.89		0.13		1.3		4.05			
Silica, dissolved	mg/L																						
Calcium	mg/L	436		421		455		82.4	J	48.8	J	52.4		55.7		54.2		64.4		266		271	
Magnesium	mg/L	1180	J-	1140	J	1200	J	8.4	J	6.5	J	7.41		7.71		7.55		20.7		494		497	
Potassium	mg/L	536	J+	528	J	554	J	3.48	J	2.83	J	2.73		2.8		3.15		8.24		222		227	
Sodium	mg/L	11400		11100		11400		47	J	31.9	J	51.4		50.8		63		183		4450		4490	
Boron	mg/L	4.96		4.91		5.21		0.0769		0.068		0.0655		0.0647		0.0604		0.112		1.84		1.9	
Strontium	mg/L	8.1		7.79		8.34		0.603		0.414		0.54		0.54		0.578		0.701		4.47		4.58	
Bromide	mg/L	73.5		73.2	J	73.8		0.193		0.243		0.265		0.271		0.332		1.17		29.9		29.6	
Chloride	mg/L	21200		21400	J	21800		59.2		82.6		101		96.9		123		372		8430		8310	
Fluoride	mg/L	0.98	J-	0.89	J	0.89		0.024	U	0.024	U	0.024	U	0.024	U	0.024	U	0.024	U	0.45		0.44	
Sulfate	mg/L	2890		2760	J	2970		6.24		11.4		5.14	J	6.81	J	4.53	J	36.5		1060		1050	
Total Ammonia	mg/L as N	0.0652	J	0.915	J	0.496	J	0.827		0.817		0.829	J	0.812	J	1.12	J	0.713	J	0.975		1.2	
Ammonium ion (NH ₄ ⁺)	mg/L	0.0759	J	1.08	J	0.613	J	1.03		1.04		0.991	J	1.02	J	1.36	J	0.896	J	1.21			
Unionized NH ₃	mg/L	0.0075	J	0.0875	J	0.0237	J	0.0295		0.0135		0.071	J	0.025	J	0.0787	J	0.0192	J	0.0437			
Nitrate/Nitrite	mg/L as N	0.5	U	0.5	U	0.5	U	0.1	U	0.1	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
TKN	mg/L	0.3	U	0.3	UJ	0.504		1.07		1.41		1.15		1.13		1.24		1.15		1.37		1.27	
TN	mg/L	0.800		0.800	J	1.004		1.170		1.510		1.650		1.630		1.740		1.650		1.870		1.770	
ortho-Phosphate	mg/L	0.105	U J	0.105	UJ	0.105	U J	0.0014	U	0.00415	I	0.07	UЈ	0.07	U J	0.07	UЈ	0.07	U J	0.07	U J	0.07	U
Total Phosphorus (P)	mg/L	0.003	U J	0.003	UJ	0.003	U J	0.0129		0.0484		0.00803	IJ	0.00872	IJ	0.00745	IJ	0.0103	J	0.00547	IJ	0.00269	I
Alkalinity	mg/L	131		127	J	151		130		146		124		134		128		139		189		190	
Bicarbonate Alkalinity	mg/L as HCO ₃	159		154	J	184		159		178		151		163		157		169		231		232	
Sulfide	mg/L	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U
Total Dissolved Solids	mg/L																						
Salinity	*	37.1		36.7	J	37.2		0.2	J	0.3	J	0.3	J	0.3	J	0.3	J	0.8	J	14.6			
Tritium	pCi/L	11.4 (5.7)		7.1 (5.6)		12.7 (5.6)		84.0 (7.1)		55.9 (6.3)	J	161.3 (9.3)		128.4 (8.5)		119.2 (7.1)		85.9 (7.6)		145.8 (8.1)		128.3 (7.6)	

Laboratory results are reported with 3 digits although only the first 2 are significant figures.

Text in Blue is revised.

^{*} PSS-78 salinity is unitless.

^{**} Outlier. Value is suspect based on comparisons with historic data from this station and substantially deviates from concurrent values for neighboring CCS monitoring stations.

Sample 091014-DUP is a duplicate of TPSWC-4T. Sample 090414-DUP1 is a duplicate of TPSWID-3B.

KEY:

[°]C = Degrees Celsius.

 $[\]mu$ S/cm = MicroSiemen(s) per centimeter.

 $[\]sigma$ = sigma (Standard Deviation).

DUP = Duplicate.

EB = Equipment Blank.

FB = Field Blank.

 HCO_3 = Bicarbonate.

I = Value between the MDL and PQL.

J = Estimated (+/- indicate bias).

mg/L = Milligram(s) per liter. N = Nitrogen

 $NH_3 = Ammonia$.

 NH_4^+ = Ammonium ion.

NTU = Nephelometric Turbidity Units(s).

pCi/L = PicoCuries per liter. SU = Standard Unit(s).

TKN = Total Kjeldahl nitrogen.

TN = Total nitrogen.

U = Analyzed for but not detected at the reported value.

Table 3.2-6. Summary of Surface Water Analytical Results from the September 2014 Sampling Event (continued)

		TPSWC-4	4B	TPSWC-	5T	TPSWC-5	В	TPSWC-	6T	TPSWC-0	6B	TPSWID-1	Т	TPSWID-1	В	TPSWID-2	?T	TPSWID-	2B	TPSWID-3	T	TPSWID-3	В	090414-D	up
Parameter	Units	09/10/201	14	09/10/20	14	09/10/201	4	09/03/20	14	09/03/20	14	09/04/2014	4	09/04/2014	1	09/04/201	4	09/04/20	14	09/04/201	4	09/04/201	4	09/04/20	4
Temperature	°C	31.73		28.42		30.00		26.00		26.16		32.48		31.43		32.08		29.94		31.32		31.53			
pН	SU	7.61		8.03		7.97		7.42		7.38		7.90		7.74		7.68		7.04		7.76		7.40			
Dissolved Oxygen	mg/L	2.63		5.91		4.31		0.93		0.95		9.14		6.60		6.69		1.80		6.79		3.00			
Specific Conductance	μS/cm	43816		53420		57253		821		849		5584		5648		4226		6157		4403		8307			
Turbidity	NTU	2.94		0.45		0.26		0.14		0.06		1.07		0.52		0.86		1.51		0.61		1.09			
Silica, dissolved	mg/L																								
Calcium	mg/L	377		400		454		86.2		83.4		141		144		131		178		121		151		154	
Magnesium	mg/L	888	J	1100	J-	1520	J	9.98		10.4		82.4		85.5		57.9		79.2		59.2		121		123	
Potassium	mg/L	411	J	516	J+	583	J	11.4		10.9		38		39.1		27.3		37.8		27.9		60.3		61.5	
Sodium	mg/L	8270		11100		11800		59.3		64		770		787		575		844		541		1140		1170	
Boron	mg/L	3.73		4.85		5.39		0.0855		0.0846		0.358		0.375		0.23		0.292		0.221		0.476		0.486	
Strontium	mg/L	6.85		7.86		8.86		0.984		0.956		1.75		1.78		1.59		2.15		1.41		1.95		1.98	
Bromide	mg/L	56.2		69		75.7		0.511		0.56		5.26		5.17		3.8		5.77		3.99		8.39		8.3	
Chloride	mg/L	15900		20200		21900		112		128		1540		1550		1130		1810		1270		2400		2390	
Fluoride	mg/L	0.69		0.87		0.87		0.11		0.11		0.14		0.15		0.12		0.13		0.14		0.17		0.16	
Sulfate	mg/L	2130		2720		2940		52.4		58.8		166		168		116		160		119		291		325	
Total Ammonia	mg/L as N	1.12	J	0.0995	J	0.94	J	0.646	J	0.465	J	0.534	J	0.472	J	0.898	J	1.16	J	0.794		0.587	J	0.707	
Ammonium ion (NH ₄ ⁺)	mg/L	1.39	J	0.119	J	1.12	J	0.817	J	0.589	J	0.638	J	0.579	J	1.11	J	1.48	J	0.972		0.738	J		
Unionized NH ₃	mg/L	0.0484	J	0.00868	J	0.0798	J	0.0124	J	0.00824	J	0.0456	J	0.0268	J	0.0464	J	0.0123	J	0.0465		0.0157	J		
Nitrate/Nitrite	mg/L as N	0.5	UJ	0.5	U J-	0.5	UJ	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U	0.5	U	0.1	U	0.1	U	0.1	U
TKN	mg/L	0.768	J	0.336	I	0.414	J	0.3	UJ	0.3	UJ	0.656		0.702		0.644	J	0.902	J	0.904		0.66		0.616	
TN	mg/L	1.268	J	0.836	J	0.914	J	0.400	J	0.400	J	0.756		0.802		0.744	J	1.402	J	1.004		0.760		0.716	
ortho-Phosphate	mg/L	0.07	UJ	0.07	U J	0.07	U J	0.0014	U	0.0014	U	0.07	UЈ	0.07	UЈ	0.07	U J	0.07	UJ	0.07	UJ	0.07	U J	0.07	U
Total Phosphorus (P)	mg/L	0.00395	IJ	0.0022	UJ	0.0022	UJ	0.00466	Ι	0.0022	U	0.0034	IJ	0.0028	IJ	0.0022	U J	0.00398	IJ	0.00619	IJ	0.00281	IJ	0.00277	Ι
Alkalinity	mg/L	181		130		141		192		197		282		292		246		292		229		226		236	
Bicarbonate Alkalinity	mg/L as HCO ₃	221		159		172		234		241		344		356		300		357		279		276		287	
Sulfide	mg/L	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U
Total Dissolved Solids	mg/L																								
Salinity	*	28.1		35.2		38.0		0.4	J	0.4	J	3.0		3.0		2.2		3.3		2.3		4.6			
Tritium	pCi/L	64.6 (6.1)		22.5 (5.3)		20.2 (5.3)		23.0 (4.1)		11.7 (3.7)		261.9 (10.6)		276.0 (11.4)		196.7 (9.3)	J	90.2 (6.4)	J	149.8 (7.9)	J	127.6 (7.5)	J	128.7 (7.4)	J

Laboratory results are reported with 3 digits although only the first 2 are significant figures.

Sample 090414-DUP1 is a duplicate of TPSWID-3B.

KEY:

°C = Degrees Celsius.

 μ S/cm = MicroSiemen(s) per centimeter.

 σ = sigma (Standard Deviation).

DUP = Duplicate.

EB = Equipment Blank.

FB = Field Blank.

 HCO_3 = Bicarbonate.

I = Value between the MDL and PQL.

J = Estimated (+/- indicate bias).

mg/L = Milligram(s) per liter.

N = Nitrogen

 $NH_3 = Ammonia$.

 NH_4^+ = Ammonium ion.

NTU = Nephelometric Turbidity Units(s).

pCi/L = PicoCuries per liter. SU = Standard Unit(s).

TKN = Total Kjeldahl nitrogen.

TN = Total nitrogen.

Text in Blue is revised.

^{*} PSS-78 salinity is unitless.

^{**} Outlier. Value is suspect based on comparisons with historic data from this station and substantially deviates from concurrent values for neighboring CCS monitoring stations. Sample 091014-DUP is a duplicate of TPSWC-4T.

Table 3.2-6. Summary of Surface Water Analytical Results from the September 2014 Sampling Event (continued)

		TPSWCCS-1B	3	TPSWCCS-2E	3	TPSWCCS-3B		TPSWCCS-4T		TPSWCCS-5T		TPSWCCS-7B		090214-EE	3	090314-F	В	090414-F	В1	090514-F	B1	091014-	FB1	091114-F	B1
Parameter	Units	09/04/2014		09/05/2014		09/04/2014		09/04/2014		09/04/2014		09/04/2014		09/02/2014	4	09/03/20	14	09/04/20	14	09/05/20	14	09/10/20)14	09/11/20	14
Temperature	°C	38.90		37.55		35.61		34.34		34.49		38.27													
pH	SU	7.65		7.70		7.67		7.72		7.72		7.69													
Dissolved Oxygen	mg/L	0.12		1.27		0.27		0.61		0.21		0.96													
Specific Conductance	μS/cm	118575	J	120417	J	117724		120344	J	119703	J	119981	J												
Turbidity	NTU	59.53		60.18		54.82		56.48		57.78		61.78													
Silica, dissolved	mg/L	10.5	J-	10	J	9.26	J	9.91	J	9.62	J	10.8	J	0.05	U	0.05	U	0.05	U	0.05	U	0.05	U	0.05	U
Calcium	mg/L	1120	J	1170	J	1100		1110	J	1130	J	1120	J	0.1	U	0.577		0.1	U	0.1	U	0.1	U	0.1	U
Magnesium	mg/L	2560	J-	2630	J	2520	J	2560	J	2580	J	2590	J	0.02	U	0.02	U	0.0201	I	0.02	U	0.02	U	0.02	U
Potassium	mg/L	1360	J+	1380	J	1370	J	1420	J	1410	J	1360	J	0.19	U	0.19	U	0.19	U	0.19	U	0.19	U	0.19	U
Sodium	mg/L	26200		26700	J	26900		26600	J	26000	J	26900	J	0.31	U	0.31	U	0.31	U	0.31	U	0.31	U	0.31	U
Boron	mg/L	13.2		14.3		13.4		13.8		13.6		13.5		0.01	U	0.01	U	0.01	U	0.01	U	0.01	U	10	U
Strontium	mg/L	23.9		24.9		24		24.8		24.5		23.8		0.001	U	0.001	U	0.001	U	0.001	U	0.001	U	1	U
Bromide	mg/L	179	J	185	J	183		188	J	182	J	187	J	0.013	U	0.013	U	0.013	U	0.013	U	0.013	U	0.013	U
Chloride	mg/L	52700	J	53700	J	53700		53900	J	51700	J	52500	J	0.25	U	0.25	U	0.25	U	0.575		0.25	U	0.25	U
Fluoride	mg/L	0.89	J-	0.86	J	0.86	J	0.84	J	0.84	J	0.87	J	0.024	U	0.024	U	0.024	U	0.024	U	0.024	U	0.024	U
Sulfate	mg/L	7420	J	7190	J	7310		7480	J	6920	J	7180	J	0.25	U	0.389	Ι	0.25	U	1.96		0.25	U	0.25	U
Total Ammonia	mg/L as N	0.882		0.452	J	1.03		0.946		0.904		0.722		0.0677		0.0629		0.0653		0.223		0.0554		0.0524	
Ammonium ion (NH ₄ ⁺)	mg/L	1.06		0.545	J	1.26		1.15		1.1		0.869													
Unionized NH ₃	mg/L	0.0654		0.0344	J	0.0651		0.0616		0.0594		0.0561													
Nitrate/Nitrite	mg/L as N	0.1	U J-	0.5	U	0.1	UJ	0.1	U J	0.1	U J	0.1	UЈ	0.1	U	0.1	U	0.5	U	0.5	U	0.5	U	0.5	U
TKN	mg/L	13.4		2.82		12.4		3.98		3.38		12.8		0.15	U	0.15	U	0.15	U	0.15	U	0.15	U	0.15	U
TN	mg/L	13.500	J	3.320		12.500	J	4.080	J	3.480	J	12.900	J	0.250		0.250		0.650		0.650		0.650		0.650	
ortho-Phosphate	mg/L	0.07	U	0.07	U	0.07	U	0.07	U	0.07	U	0.07	U	0.0014	U	0.0014	U	0.07	U	0.0014	U	0.0014	U	0.0021	U
Total Phosphorus (P)	mg/L	0.0847		0.106		0.0863		0.0843		0.0852		0.0761		0.0022	U	0.0022	U	0.0022	U	0.0022	U	0.0022	U	0.003	U
Alkalinity	mg/L	220	J	227		222		224	J	214	J	219	J	1	U	1	U	1	U	1	U	1	U	1	U
Bicarbonate Alkalinity	mg/L as HCO ₃	268	J	277		271		273	J	261	J	267	J	1	U	1	U	1	U	1	U	1	U	1	U
Sulfide	mg/L	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U
Total Dissolved Solids	mg/L													5	U			5	U	5	U	5	U	5	U
Salinity	*	88.3	J	90.2	J	87.9		90.4	J	89.7	J	89.7	J												
Tritium	pCi/L	16537.6 (515.2)		16280.5 (501.1)		14599.7 (447.8)		15350.8 (475.0)		15542.7 (452.4)		**29659.2 (915.3)		6.5 (3.6)	1	-1.2 (3.4)	UJ	21.4 (5.4)		7.8 (5.9)		2.3 (5.0)	UJ	2.1 (5.5)	UJ
	_	NOTES:		<u> </u>		/-			-											/					-

Text in Blue is revised.

KEY:

°C = Degrees Celsius.

 μ S/cm = MicroSiemen(s) per centimeter.

 σ = sigma (Standard Deviation).

DUP = Duplicate.

EB = Equipment Blank.

FB = Field Blank.

 HCO_3 = Bicarbonate.

I = Value between the MDL and PQL. J = Estimated (+/- indicate bias).

mg/L = Milligram(s) per liter.

N = Nitrogen

 $NH_3 = Ammonia$.

 NH_4^+ = Ammonium ion.

NTU = Nephelometric Turbidity Units(s).

pCi/L = PicoCuries per liter.

SU = Standard Unit(s).

TKN = Total Kjeldahl nitrogen.

TN = Total nitrogen.

^{*} PSS-78 salinity is unitless.

^{**} Outlier. Value is suspect based on comparisons with historic data from this station and substantially deviates from concurrent values for neighboring CCS monitoring stations.

Sample 091014-DUP is a duplicate of TPSWID-3B.

Table 3.2-7. Summary of Surface Water Analytical Results from the December 2014 Sampling Event

		TPBBSW-3	B TPBBSW-4E	TPBBSW-5B	TPSWC-1T	TPSWC-1B	TPSWC-2T	TPSWC-2B	TPSWC-3T	TPSWC-3B	TPSWC-4T	TPSWC-4B
Parameter	Units	12/10/2014	12/10/2014	12/10/2014	12/04/2014	12/04/2014	12/04/2014	12/04/2014	12/04/2014	12/04/2014	12/03/2014	12/03/2014
Temperature	°C	17.63	19.53	18.82	24.42	23.28	24.23	23.35	23.12	23.31	24.32	24.08
pН	SU	8.16	8.06	7.80	7.72	7.42	8.15	7.96	7.86	7.53	7.87	7.81
Dissolved Oxygen	mg/L	8.99	6.51	6.46	8.30	2.80	10.05	7.63	6.46	3.82	5.21	4.53
Specific Conductance	μS/cm	42086	49440	48606	783	811	779	826	1119	1928	32623	45675
Turbidity	NTU	0.87	0.57	0.75	0.72	1.15	0.58	0.96	0.66	1.12	1.00	3.74
Sodium	mg/L	8680	10200	10100	74.6	76.8	76.4	86.4	132	260	6490	9530
Chloride	mg/L	15400	18200	15600	127	153	150	167	249	488	11900	16700
Total Dissolved Solids	mg/L											
Salinity	*	27.08	32.40	31.79	0.38 J	0.40 J	0.38 J	0.40 J	0.55 J	0.98 J	20.38	29.61
Tritium	pCi/L (1σ)	9.4 (3.1)	10.5 (3.1)	13.8 (3.1)	71.9 (7.0)	69.2 (7.4)	101.3 (7.7)	105.9 (7.9)	95.5 (7.5)	84.4 (7.5)	103.6 (7.7)	50.0 (6.1)

Laboratory results are reported with 3 digits although only the first 2 are significant figures.

Text in blue is revised.

* PSS-78 salinity is unitless.

120314-DUP1 is a duplicate of 120314-TPSWC-5T 120814-DUP1 is a duplicate of 120814-TPSWID-3T

KEY:

°C = Degrees Celsius.

 μ S/cm = MicroSiemen(s) per centimeter.

 σ = sigma (Standard Deviation).

DUP = Duplicate.

EB = Equipment Blank

FB = Field Blank.

I = Value between the MDL and PQL.

J = Estimated (+/- indicate bias).

mg/L = Milligram(s) per liter.

NTU = Nephelometric Turbidity Units(s).

pCi/L = PicoCuries per liter.

SU = Standard Unit(s).

Table 3.2-7. Summary of Surface Water Analytical Results from the December 2014 Sampling Event (continued)

		TPSWC-5T	120314-DUP	TPSWC-5B	TPSWC-6T	TPSWC-6B	TPSWID-1T	TPSWID-1B	TPSWID-2T	TPSWID-2B	TPSWID-3T	120814-DUP	TPSWID-3B
Parameter	Units	12/03/2014	12/03/2014	12/03/2014	12/05/2014	12/05/2014	12/08/2014	12/08/2014	12/08/2014	12/08/2014	12/08/2014	12/08/2014	12/08/2014
Temperature	°C	23.07		22.92	24.97	24.56	24.41	24.44	24.87	24.31	24.98		24.68
pН	SU	8.04		7.96	7.35	7.31	7.74	7.06	7.55	7.55	7.55		7.38
Dissolved Oxygen	mg/L	5.91		4.98	2.46	1.71	6.67	0.60	7.13	3.82	6.45		3.25
Specific Conductance	μS/cm	46030		48818	875	995	9663	11976	6554	8127	9230		11942
Turbidity	NTU	0.74		1.32	0.43	0.47	1.05	2.88	0.67	1.04	1.55		0.85
Sodium	mg/L	9560	9660	10200	72.9	94.7	1680	1990	1040	1320	1560	1560	2050
Chloride	mg/L	17500	17200	17700	136	168	2970	3620	1930	2430	2860	2880	3790
Total Dissolved Solids	mg/L												
Salinity	*	29.88		31.91	0.43 J	0.49 J	5.43	6.84	3.58	4.51	5.16		6.82
Tritium	pCi/L (1σ)	35.4 (6.1)	17.9 (5.7)	64.0 (6.7)	2.9 (7.4) UJ	2.2 (7.5) UJ	284.1 (14.7)	308.0 (14.4)	165.0 (10.2)	206.3 (11.4)	172.8 (10.4)	168.4 (10.2)	161.7 (10.1)

NOTES:

Laboratory results are reported with 3 digits although only the first 2 are significant figures.

Text in blue is revised.

* PSS-78 salinity is unitless.

120314-DUP1 is a duplicate of 120314-TPSWC-5T

120814-DUP1 is a duplicate of 120814-TPSWID-3T

KEY:

°C = Degrees Celsius.

 μ S/cm = MicroSiemen(s) per centimeter.

 σ = sigma (Standard Deviation).

DUP = Duplicate.

EB = Equipment Blank

FB = Field Blank.

I = Value between the MDL and PQL.

J = Estimated (+/- indicate bias).

mg/L = Milligram(s) per liter.

NTU = Nephelometric Turbidity Units(s).

pCi/L = PicoCuries per liter.

SU = Standard Unit(s).

Table 3.2-7. Summary of Surface Water Analytical Results from the December 2014 Sampling Event (continued)

		TPSWCCS-1B	TPSWCCS-2B	TPSWCCS-3B	TPSWCCS-4T	TPSWCCS-5T	TPSWCCS-7B	120114-	EB	120314-	FB	120414-F	В	120514-F	B1	120814-	FB	120914-	·FB	121014-	FB
Parameter	Units	12/08/2014	12/09/2014	12/08/2014	12/08/2014	12/08/2014	12/08/2014	12/01/20	014	12/03/20	14	12/04/201	14	12/05/20 ⁻	14	12/08/20	14	12/09/20	014	12/10/20	14
Temperature	°C	34.71	27.15	26.50	25.50	25.84	32.08														
pН	SU	7.85	7.89	7.92	7.93	7.90	7.88														
Dissolved Oxygen	mg/L	4.29	4.14	4.59	4.53	4.63	4.52														
Specific Conductance	μS/cm	97737	98460	96888	97805	97711	97358														
Turbidity	NTU	20.19	20.74	15.30	12.33	17.44	15.80														
Sodium	mg/L	21800	22800	21900	21900	22300	22100	0.310	U	0.310	U	0.310	U	0.310	U	0.310	U	0.310	U	0.310	U
Chloride	mg/L	42400	39000	40900	43200	40000	42300	0.200	U	0.200	U	0.200	U	0.200	U	0.200	U	0.257	I	0.200	U
Total Dissolved Solids	mg/L							5.00	U	5.00	U	5.00	U	5.00	U	5.00	U	5.00	U		
Salinity	*	70.25	71.27	69.94	70.76	70.65	70.09														
Tritium	$pCi/L(1\sigma)$	7745.9 (268.6)	6234.6 (192.2)	7915.6 (278.5)	8127.4 (282.1)	8323.7 (287.9)	7622.1 (267.5)	-2.4 (4.8)) UJ	2.4 (5.5)	UJ	-1.2 (5.4)	UJ	11.7 (5.9)		-3.5 (7.0)	UJ	6.8 (6.3)		1.9 (2.9)	UJ

NOTES:

Laboratory results are reported with 3 digits although only the first 2 are significant figures.

Text in blue is revised.

* PSS-78 salinity is unitless. 120314-DUP1 is a duplicate of 120314-TPSWC-5T

120814-DUP1 is a duplicate of 120814-TPSWID-3T

KEY:

°C = Degrees Celsius. μS/cm = MicroSiemen(s) per centimeter. σ = sigma (Standard Deviation).

DUP = Duplicate.

EB = Equipment Blank
FB = Field Blank.

I = Value between the MDL and PQL.

J = Estimated (+/- indicate bias). mg/L = Milligram(s) per liter. NTU = Nephelometric Turbidity Units(s).

pCi/L = PicoCuries per liter.

SU = Standard Unit(s).

Table 3.2-8. Summary of Surface Water Analytical Results from the March 2015 Sampling Event

		TPBBSW-	3B	030415-D	up	TPBBSW-	-4B	TPBBSW-	-5B	TPSWC-	1T	TPSWC-	1B	TPSWC-2	2T	031115-D	ир	TPSWC-2	2B	TPSWC-	3T	TPSWC-	3B	TPSWC-4	4T
Parameter	Units	03/04/20	15	03/04/20	15	03/04/20	15	03/04/20	15	03/11/20	15	03/11/20	15	03/11/20	15	03/11/201	15	03/11/20	15	03/11/20	15	03/11/20	15	03/03/20	15
Temperature	°C	25.18				24.90		24.69		28.41		26.48		27.31				26.60		25.52		25.75		25.54	
pН	SU	8.24				8.09		7.99		7.99		7.42		8.35				8.35		8.18		7.62		7.75	
Dissolved Oxygen	mg/L	6.67				6.18		6.60		7.30		2.94		9.43				8.86		7.61		4.64		5.74	
Specific Conductance	μS/cm	52557				53121		53022	J	1129		1175		1475				1825		2074		7269		46010	
Turbidity	NTU	0.66				1.37		2.11		2.77		6.94		0.99				0.83		1.6		3.33		1.08	
Silica, dissolved	mg/L																								
Calcium	mg/L	420		421		427		422		83.3		85		70.7		72.5		77.8		86.6		125		398	
Magnesium	mg/L	1320		1320		1340		1310		16.5		16.9		19.8		20.4		26		29.2		112		1010	
Potassium	mg/L	407		410		420		413		5.4		5.45		6.91		7.01		8.65		9.78		38.7		361	
Sodium	mg/L	10100		10100		10100		9960		116	J	118	J	156	J	170	J	212	J	247	J-	1040	J	9180	
Boron	mg/L	4.61	I	4.61	I	4.69	I	4.67	I	0.0701		0.0704		0.0744		0.0692		0.0867		0.0924		0.402		3.84	
Strontium	mg/L	7.68		7.75		7.85		7.75		0.797		0.81		0.805		0.825		0.894		0.994		1.62		6.92	
Bromide	mg/L	70.9		70.4		73.4		72.5	J	0.562		0.625		0.951		0.949		1.28		1.55		6.45		59.5	
Chloride	mg/L	19700		19900		19700		20300	J	241		250		380		377		479		551		2060	L	17700	
Fluoride	mg/L	0.93		0.91		0.93		0.93	J	0.032	U	0.032	U	0.032	U	0.032	U	0.032	U	0.032	U	0.16		0.86	
Sulfate	mg/L	2600		2590		2030		2650	J	11.7		12.7		25.3		25.2		35.9		44.2		229		2220	
Total Ammonia	mg/L as N	0.225	J	0.178	IJ	0.155	IJ	0.264	J	0.367	J	0.446	J	0.163	IJ	0.193	IJ	0.328	J	0.364	J	0.114	IJ	0.392	J
Ammonium ion (NH ₄ ⁺)	mg/L	0.267	J			0.187	J	0.323	J	0.442	J	0.565	J	0.181	J			0.367	J	0.431	J	0.143	J	0.487	J
Unionized NH ₃	mg/L	0.023	J			0.013	J	0.017	J	0.030	J	0.008	J	0.029	J			0.055	J	0.037	J	0.003	J	0.017	J
Nitrate/Nitrite	mg/L as N	0.025	U	0.025	U	0.025	U	0.025	U	0.0361	IJ	0.0376	IJ	0.0303	IJ	0.0304	IJ	0.0321	IJ	0.0311	IJ	0.0388	IJ	0.0685	
TKN	mg/L	0.418		0.38	I	0.424		0.257		0.822		0.99		0.938	J	0.894		0.986		0.918		0.974		0.65	
TN	mg/L	0.443		0.405	J	0.449		0.282		0.858	J	1.028	J	0.968	J	0.924	J	1.018	J	0.949	J	1.013	J	0.719	J
ortho-Phosphate	mg/L	0.0021	U	0.0021	U	0.0021	U	0.0021	U	0.0021	UJ	0.0021	UJ	0.0021	UJ	0.0021	UJ	0.0021	UJ	0.0021	U J-	0.0021	UJ	0.0021	U
Total Phosphorus (P)	mg/L	0.003	U	0.003	U	0.003	U	0.003	U	0.0153	J	0.0262	J	0.0111	J	0.0111	J	0.0101	J	0.0117	J+	0.049	J	0.00628	I
Alkalinity	mg/L	141		142		142		147	J	194		205		146		146		150		163		179		184	
Bicarbonate Alkalinity	mg/L as HCO ₃	153		162		173		179	J	237		250		176		178		175		199		218		224	
Sulfide	mg/L	0.36	UQ	0.36	UQ	0.387	ΙQJ	0.575	ΙQ	0.0446	I	0.036	U	0.036	U	0.036	U	0.036	U	0.036	U	0.036	U	0.036	U
Total Dissolved Solids	mg/L																								
Salinity	*	34.6				35.0		35.0	J	0.6	J	0.6	J	0.7	J			0.9	J	1.1	J	4.0		29.8	
Tritium	pCi/L (1σ)																								

Laboratory results are reported with 3 digits although only the first 2 are significant figures.

* PSS-78 salinity is unitless.

Sample 030415-DUP is a duplicate of TPBBSW-3B. Sample 031115-DUP is a duplicate of TPSWC-2T.

KEY:

°C = Degrees Celsius. μS/cm = MicroSiemen(s) per centimeter.

 σ = sigma (Standard Deviation).

DUP = Duplicate.

EB = Equipment Blank.

FB = Field Blank.

 HCO_3 = Bicarbonate.

I = Value between the MDL and PQL. J = Estimated (+/- indicate bias).

mg/L = Milligram(s) per liter.

N = Nitrogen

 $NH_3 = Ammonia$.

 NH_4^+ = Ammonium ion.

Q = Holding time exceeded.

NTU = Nephelometric Turbidity Units(s). pCi/L = PicoCuries per liter.

SU = Standard Unit(s).

TKN = Total Kjeldahl nitrogen.

TN = Total nitrogen.

Table 3.2-8. Summary of Surface Water Analytical Results from the March 2015 Sampling Event (continued)

		TPSWC-	4B	TPSWC-5	δT	TPSWC-	5B	TPSWC-	6T	TPSWC-	6B	TPSWID-	1T	TPSWID-1	1B	TPSWID-2	2T	TPSWID-2	2B	TPSWID-	3T	TPSWID-	3B	TPSWCCS	-1B	TPSWCCS	S-2B
Parameter	Units	03/03/20	15	03/03/201	15	03/03/20	15	03/10/20	15	03/10/20	15	03/06/201	15	03/06/201	15	03/06/201	15	03/06/201	5	03/06/201	15	03/06/20	15	03/06/201	15	03/09/20	15
Temperature	°C	26.59		25.40		25.27		26.04		25.34		29.30		29.50		28.28		27.23		27.67		26.76		34.07		30.26	i
pН	SU	7.81		8.04		8.04		7.28		7.25		7.15	J	5.39	J	6.92	J	6.72	J	7.14	J	6.77	J	7.82	J	7.83	
Dissolved Oxygen	mg/L	5.29		5.54		5.81		1.65		2.00		6.61		1.24		4.01		1.02		5.92		2.09		3.48		2.58	1
Specific Conductance	μS/cm	48292		52697	J	51860	J	743		740		8401		18458		4219		8425		5746		25982		113081	J	110404	J
Turbidity	NTU	2.14		0.43		0.82		0.32		0.80		0.76		24.10		0.70		5.80		0.77		0.87		126.00		127.60	i
Silica, dissolved	mg/L																							8.84	J-	12.4	1
Calcium	mg/L	408		414		427		82.2		83.4		171		238		145		216		163		307		1130		1150	1
Magnesium	mg/L	1060		1150		1190		8.84		9.09		159		368		63.3		146		95.5		533		3200		3140	$\overline{}$
Potassium	mg/L	377		414		429		11.6		11.8		51.6		123		21.6		45.3		30.9		175		1030		1030	i
Sodium	mg/L	9570		9870		9680		49.5		51.7		1250		2530		552		1240		847		3480		22800	J-	20900	1
Boron	mg/L	4.05		4.57		4.72		0.0826		0.0834		0.0535		1.29		0.23	I	0.459	I	0.318	I	1.7		12.1		11.9	i
Strontium	mg/L	7.11		7.56		7.86		1.06		1.07		2.26		3.58		1.63		2.76		1.87		4.73		23.9		23.2	1
Bromide	mg/L	62.9		71.2	J	70.2	J	0.487		0.496		8.42		0.258		3.93		8.55		5.67		30.5		171	J	252	J
Chloride	mg/L	18300		20600	J	19900	J	93.2		95.1		2550		6180		1190		2610		1710		9210		50200	J	50000	J
Fluoride	mg/L	0.91		1.02	J	1	J	0.12		0.12		0.16		0.24		0.13		0.15		0.13		0.24		1.00	J-	1.00	J
Sulfate	mg/L	2380		2580	J	2610	J	62.5		62.2		269		605		109		258		149		1030		6970	J	6220	J
Total Ammonia	mg/L as N	0.29	J	0.183	IJ	0.349	J	0.234	J	0.131	IJ	0.333	J	1.36		0.621	J	0.572	J	0.408	J	0.263	J	1.84	J	1.09	i I
Ammonium ion (NH ₄ ⁺)	mg/L	0.359	J	0.223	J	0.425	J	0.297	J	0.167	J	0.423	J	1.747		0.794	J	0.733	J	0.520	J	0.337	J	2.258	J	1.337	<i>i</i>
Unionized NH ₃	mg/L	0.014	J	0.012	J	0.024	J	0.003	J	0.001	J	0.005	J	0.001		0.004	J	0.002	J	0.004	J	0.001	J	0.108	J	0.064	1
Nitrate/Nitrite	mg/L as N	0.0511		0.0511		0.0491	I	0.0544	J	0.147		0.0688		0.0369	I	0.0564		0.025	U	0.171		0.0668		0.025	U	0.025	U
TKN	mg/L	0.726		0.454		0.612		0.248		0.396	I	1.13		1.98		0.934		0.888		0.814		0.798		4.44		3.12	i
TN	mg/L	0.777	J	0.505	J	0.661	J	0.302	J	0.543		1.199		2.017	J	0.990	J	0.913		0.985		0.865		4.465	J	3.145	<i>i</i>
ortho-Phosphate	mg/L	0.0021	U	0.0021	U	0.0021	U	0.0021	U	0.0021	U J-	0.00637	IJ	0.01	I	0.0042	UJ	0.0042	U	0.0042	U	0.0042	U	0.0106	Ι	0.0105	U Q J-
Total Phosphorus (P)	mg/L	0.00585	I	0.00338	I	0.003	U	0.003	U	0.003	U	0.00349	IJ	0.0111		0.00322	IJ	0.00782	I	0.00472	I	0.0108		0.0559		0.0619	<i>i</i>
Alkalinity	mg/L	183		146	J	147	J	169		170		295		419		269		305		261		265		208	J	210	J
Bicarbonate Alkalinity	mg/L as HCO ₃	223		178	J	179	J	207		207		359		511		329		372		318		323		254	J	256	J
Sulfide	mg/L	0.036	U	0.036	U	0.036	U	0.036	U	0.036	U	0.0717	IJ	0.54	I	0.337	J	4.64		0.0517	IJ	0.0611	IJ	0.36	U	0.36	U
Total Dissolved Solids	mg/L																										1
Salinity	*	31.5		34.7	J	34.1	J	0.4	J	0.4	J	4.6		10.9		2.2		4.7		3.1		15.8		83.8	J	81.6	J
Tritium	pCi/L (1σ)																										$\overline{}$
		NOTES:	•				•		•		•	•				•						•					

NOTES:

Laboratory results are reported with 3 digits although only the first 2 are significant figures.

* PSS-78 salinity is unitless.
Sample 030415-DUP is a duplicate of TPBBSW-3B. Sample 031115-DUP is a duplicate of TPSWC-2T.

KEY:

°C = Degrees Celsius.

μS/cm = MicroSiemen(s) per centimeter.

σ = sigma (Standard Deviation).

DUP = Duplicate.

EB = Equipment Blank.

FB = Field Blank.

 HCO_3 = Bicarbonate.

I = Value between the MDL and PQL. J = Estimated (+/- indicate bias).

mg/L = Milligram(s) per liter.

N = Nitrogen

 $NH_3 = Ammonia$.

 NH_4^+ = Ammonium ion.

Q = Holding time exceeded.

NTU = Nephelometric Turbidity Units(s). pCi/L = PicoCuries per liter.

SU = Standard Unit(s).

TKN = Total Kjeldahl nitrogen.

TN = Total nitrogen.

Table 3.2-8. Summary of Surface Water Analytical Results from the March 2015 Sampling Event (continued)

Parameter Condection Cond			TPSWCCS-	-3B	TPSWCCS	-4T	TPSWCCS-	-5T	TPSWCCS-	-7B	030215-E	В	030315-F	В	030415-F	В	030615-FI	B1 03	0615-FB2	0309	5-FB1	030915-	FB2	031015-F	B1	031015-1	-B2	031115-F	B1 _	031115-FB2
H	Parameter	Units	03/06/201	15	03/09/201	5	03/09/201	5	03/06/201	5	03/02/201	5	03/03/20	15	03/04/201	5	03/06/201	15 0	3/06/2015	03/09	/2015	03/09/2	015	03/10/20	15	03/10/20)15	03/11/20	15	03/11/2015
Dissiply	Temperature	°C	32.98		28.03		27.80		33.22																					
Specific Conductance JScom 112924 J 114270 J	pН	SU	7.84	J	7.83		7.86		7.86	J																				
Turbidity	Dissolved Oxygen	mg/L	4.62		3.13		3.47		3.44																					
Silica, dissolved mg L 9	Specific Conductance	μS/cm	112924	J	114270	J	112000	J	114070	J																				
Calcium	Turbidity	NTU	127.70		126.00		144.30		127.50																					
Magnesism	Silica, dissolved	mg/L	9	J	12		12.3		9.01	J	0.05	U	0.05	U	0.05	U	0.05	U		0.052	1 1			0.05	U			0.05	U	
Poississim mg L 993 J 1040 J 2000 J 2000 J 2000 J 21000 J 2	Calcium	mg/L	1090		1160		1170		1100		0.100	U	0.1	U	0.1	U	0.1	U		0.1	J	J		0.1	U			0.1	U	
Solim Mg/L 21100 Mg/L 21200 Mg/L 2120	Magnesium	mg/L	3070		3040		3130		3090		0.0200	U	0.02	U	0.02	U	0.02	U		0.02	: t	ı		0.02	U			0.02	U	
Boron mg/L 12.3 1 12.2 2 12.2 3 12.2 4 12.2 5 12.2	Potassium	mg/L	993		1040		1050		1000		0.190	U	0.19	U	0.19	U	0.19	U		0.19	J	J		0.19	U			0.19	U	
Strontium mg/L 23.2 1 23.5 2 23.6 2	Sodium	mg/L	21100	J	22000		21900		21200	J	0.310	U	0.31	U	0.31	U	0.31	U		0.31	J	J		0.31	U			0.31	U	
Bromide mg/L 189 J 172 J 249 J 175 J 0.0130 U 0.0131 U 0.025 U 0.025 U U U U U U U U U	Boron	mg/L	12.3		12		12.2		13		0.01	U	0.01	U	0.01	U	0.01	U		0.01	J	J		0.01	U			0.01	U	
Chloride mg/L 50700 J 51300 J	Strontium	mg/L	23.2		23.5		23.6		23.6		0.001	U	0.001	U	0.001	U	0.001	U		0.00	1 L	J		0.001	U			0.001	U	
Fluoride mg/L 1.00 J 0.98 J 1.00 J 0.092 J 0.090 J 0.002 U 0.032 U 0.044 U 0.04	Bromide	mg/L	189	J	172	J	249	J	175	J	0.0130	U	0.013	U	0.025	U	0.025	U		0.02	5 L	J		0.025	U			0.025	U	
Sulfate mg/L 6940 J 7020 J 6990 J 7110 J 0.400 U 0.4 U 0.0	Chloride	mg/L	50700	J	51300	J	45200	J	50800	J	0.200	U	0.2	U	0.2	U	0.2	U		0.2	J	J		0.2	U			0.2	U	
Total Ammonia	Fluoride	mg/L	1.00	J	0.98	J	1.00	J	1.00	J	0.0240	U	0.032	U	0.032	U	0.032	U		0.03	2 L	J		0.032	U			0.032	U	
Ammonium ion (NH ₄) mg/L 1.509 J 2.357 J 0.0434 J 5.360 J J 0.023 J 0.023 J 0.023 J 0.023 J 0.023 J 0.023 J 0.025 J 0.025	Sulfate	mg/L	6940	J	7020	J	6990	J	7110	J	0.400	U	0.4	U	0.4	U	0.4	U		0.4	Ţ	J		0.4	U			0.4	U	
Unionized NH ₃ mg/L 0.072 J 0.098 I 0.023 J 0.025 U 0.005 U 0.0055 U 0.0057 U 0.0152 U 0.028 U 0.0258 I 0.2 U 0.02 U 0.0152 U 0.0152 U 0.02 U 0.002	Total Ammonia	mg/L as N	1.23	IJ	1.91		0.355		4.42	J	0.1400	I	0.157	I	0.195	I	0.116	I	0.1 U	0.1	Ţ	0.1	U	0.123	I	0.1	U	0.251		0.1
NitrateNitrite mg/L as N 0.0299 I 0.0445 IJ 0.053 J 0.025 U 0.005 UQ 0.005 U 0.00551 I 0.0055 U 0.0105 U 0.0105 U 0.0105 U 0.00573 I 0.0152 U 0.0152 U 0.0154 U 0.0152 U 0.0155 U 0.015	Ammonium ion (NH ₄ ⁺)	mg/L	1.509	J	2.357		0.434		5.360	J																				
TKN mg/L 4.68 3.96 4.26 4.34 0.228 1 0.2 U 0.2 U 0.1 U 0.1 U 0.1 U 0.1 U 0.2 U 0.2 U 0.1 U 0.1 U 0.2 U	Unionized NH ₃	mg/L	0.072	J	0.098		0.023		0.323	J																				
TN mg/L 4.710 J 4.005 J 4.313 J 4.365 J W 0.0042 U 0.0105 U 0.0105 U 0.0105 U 0.0042 U 0.0042 U 0.0042 U 0.0021	Nitrate/Nitrite	mg/L as N	0.0299	I	0.0445	ΙJ	0.053	J	0.025	U	0.005	UQ	0.005	U	0.00551	I	0.005	U		0.010	5			0.00573	I			0.0152		
ortho-Phosphate mg/L 0.0042 U 0.0105 U 0.0042 U 0.0021 U 0.003 U 0.003 <th>TKN</th> <th>mg/L</th> <th>4.68</th> <th></th> <th>3.96</th> <th></th> <th>4.26</th> <th></th> <th>4.34</th> <th></th> <th>0.228</th> <th>I</th> <th>0.2</th> <th>U</th> <th>0.2</th> <th>U</th> <th>0.1</th> <th>U</th> <th></th> <th>0.1</th> <th>Ţ</th> <th>J</th> <th></th> <th>0.2</th> <th>U</th> <th></th> <th></th> <th>0.1</th> <th>U</th> <th></th>	TKN	mg/L	4.68		3.96		4.26		4.34		0.228	I	0.2	U	0.2	U	0.1	U		0.1	Ţ	J		0.2	U			0.1	U	
Total Phosphorus (P) mg/L 0.0561 0.0626 0.0613 0.0574 0.0030 U 0.003 U 1.00 U	TN	mg/L	4.710	J	4.005	J	4.313	J	4.365	J																				
Alkalinity mg/L 208 J 210 J 207 J 209 J 1.00 U 1.00	ortho-Phosphate	mg/L	0.0042	U	0.0105	U	0.0105	U	0.0042	U	0.0021	U	0.0021	U	0.0021	U	0.0021	U		0.002	1 L	J		0.0021	U			0.0021	U	
Bicarbonate Alkalinity mg/L as HCO ₃ 254 J 257 J 253 J 255 J 1.00 U	Total Phosphorus (P)	mg/L	0.0561		0.0626		0.0613		0.0574		0.0030	U	0.003	U	0.003	U	0.003	U		0.00	3 L	J		0.003	U			0.003	U	
Sulfide mg/L 0.0564 I J 0.0611 I J 0.611 I 0.0375 I J 0.036 U 0.0481 I Q 0.0469 I 0.0564 I 0.243 0.036 U Total Dissolved Solids mg/L I I I 0.0564 I 0.0564 I 0.036 U 0.036 U Salinity * 83.7 J 82.6 J 83.2 J 84.7 J I 0.036 U 5.00 U 5.00 <th< th=""><th>Alkalinity</th><th>mg/L</th><th>208</th><th>J</th><th>210</th><th>J</th><th>207</th><th>J</th><th>209</th><th>J</th><th>1.00</th><th>U</th><th>1.00</th><th>U</th><th>1.00</th><th>U</th><th>1.00</th><th>U</th><th></th><th>1.00</th><th>J</th><th>J</th><th></th><th>1.00</th><th>U</th><th></th><th></th><th>1.00</th><th>U</th><th></th></th<>	Alkalinity	mg/L	208	J	210	J	207	J	209	J	1.00	U	1.00	U	1.00	U	1.00	U		1.00	J	J		1.00	U			1.00	U	
Total Dissolved Solids mg/L Image: Control of the cont		mg/L as HCO ₃	254	J	257	J	253	J		J	1.00	U	1.00	U	1.00	U	1.00	U		1.00	J	J		1.00	U			1.00	U	
Salinity * 83.7 J 82.6 J 83.2 J 84.7 J	Sulfide	mg/L	0.0564	IJ	0.0611	IJ	0.611	I	0.375	IJ	0.04	U	0.036	U	0.0481	ΙQ	0.0469	I		0.056	4 1			0.243				0.036	U	
	Total Dissolved Solids	mg/L									5.00	U	5.00	U	5.00	U	5.00	U		5.00	J	ı 💮		5.00	U			5.00	U	
Tritium pCi/L (1σ)	Salinity	*	83.7	J	82.6	J	83.2	J	84.7	J																				
NOTES:	Tritium	1 (-)									_																			

NOTES:

Laboratory results are reported with 3 digits although only the first 2 are significant figures.

* PSS-78 salinity is unitless.

Sample 030415-DUP is a duplicate of TPBBSW-3B. Sample 031115-DUP is a duplicate of TPSWC-2T.

°C = Degrees Celsius. µS/cm = MicroSiemen(s) per centimeter.

 σ = sigma (Standard Deviation).

DUP = Duplicate.

EB = Equipment Blank.

FB = Field Blank.

 HCO_3 = Bicarbonate.

I = Value between the MDL and PQL. J = Estimated (+/- indicate bias).

mg/L = Milligram(s) per liter.

N = Nitrogen

 $NH_3 = Ammonia$. NH_4^+ = Ammonium ion.

Q = Holding time exceeded.

NTU = Nephelometric Turbidity Units(s).

pCi/L = PicoCuries per liter. SU = Standard Unit(s).

TKN = Total Kjeldahl nitrogen.

TN = Total nitrogen.

Table 3.2-9. Range of Post-Uprate Ion Concentrations in Surface Water

			Bisc	ayne Bay			Interce	eptor Ditch			L	-31E			Coolir	ng Canals	
					Standard				Standard				Standard				Standard
Parameter	Units	Min	Max	Average	Deviation	Min	Max	Average	Deviation	Min	Max	Average	Deviation	Min	Max	Average	Deviation
Temperature	°C	17.02	31.51	26.29	4.32	23.48	36.14	28.18	2.76	22.76	33.00	27.63	2.91	19.43	40.33	32.30	4.87
pН	SU	7.68	8.57	8.12	0.22	5.39	8.52	7.45	0.44	7.14	8.83	7.83	0.35	7.65	8.94	8.22	0.35
Dissolved Oxygen	mg/L	2.34	8.99	6.01	1.42	0.04	9.14	3.83	2.57	0.14	10.05	5.45	2.46	0.12	12.30	4.87	2.24
Specific Conductance	μS/cm	37725	64512	51399	5641	2076	66251	10401	13095	402	16610	1750	2874	68344	124486	91789	15985
Turbidity	NTU	0.23	8.62	1.48	1.43	0.18	66.13	4.42	10.03	0.13	26.27	3.22	4.82	3.18	261.10	47.60	52.49
Salinity	*	23.96	43.43	33.74	4.12	1.05	44.82	6.19	8.70	0.19	9.68	0.93	1.64	46.64	94.14	65.99	13.46
Calcium	mg/L	330	500	426	44	87	610	191	116	44	230	73	32	570	1170	850	167
Magnesium	mg/L	870	1700	1265	196	28	1700	237	374	6	320	22	45	1800	3200	2357	346
Potassium	mg/L	280	590	431	73	12	560	81	121	2	100	8	14	560	1420	832	219
Sodium	mg/L	7200	14000	10498	1410	290	14000	1777	2651	27	2600	230	461	15000	28500	19926	3774
Boron	mg/L	3.1	5.4	4.6	0.6	0.1	5.3	0.8	1.2	0.0	1.1	0.1	0.2	6.2	14.3	9.0	2.3
Strontium	mg/L	5.4	9.5	7.6	0.9	1.0	11.0	2.6	2.2	0.4	3.0	0.8	0.4	12.0	24.9	16.7	4.1
Bromide	mg/L	44.0	95.0	69.5	12.4	0.3	85.0	12.2	17.8	0.0	19.0	1.1	2.7	52.0	270.0	135.9	41.2
Chloride	mg/L	14000	26000	19567	2692	110	27000	3398	5091	39	5300	451	905	27000	54600	39507	7828
Fluoride	mg/L	0.1	1.0	0.7	0.3	0.0	3.2	0.3	0.4	0.0	0.9	0.1	0.2	0.0	6.5	1.0	1.2
Sulfate	mg/L	2000	3700	2648	380	30	2900	404	601	1	640	34	90	1900	7740	5088	1415
Alkalinity	mg/L	58	170	128	23	120	448	252	63	82	205	145	32	73	227	156	35
Bicarbonate Alkalinity as CaCO ₃	mg/L (CaCO ₃)	57	184	132	29	120	511	263	74	1	970	161	109	19	277	146	67
Sulfides	mg/L	0.1	1.0	0.9	0.3	0.1	13.0	1.6	2.3	0.0	1.0	0.8	0.4	0.1	1.4	0.9	0.3
Ammonia	mg/L	0.026	0.915	0.147	0.192	0.027	1.900	0.433	0.373	0.081	1.120	0.287	0.237	0.067	4.420	0.437	0.738
Ammonium	mg/L	0.034	1.080	0.164	0.233	0.050	2.400	0.547	0.474	0.050	1.360	0.350	0.295	0.050	5.360	0.507	0.910
Unionized ammonia	mg/L	0.000	0.088	0.015	0.019	0.000	0.047	0.013	0.014	0.000	0.079	0.017	0.017	0.000	0.323	0.042	0.049
Nitrate+Nitrite	mg/L	0.005	0.048	0.023	0.012	0.005	0.202	0.050	0.050	0.005	0.550	0.057	0.105	0.005	1.000	0.054	0.150
Total Kjedahl Nitrogen	mg/L	0.110	1.280	0.489	0.268	0.644	2.400	0.991	0.369	0.470	2.920	1.051	0.370	0.300	17.700	6.242	4.980
Total Nitrogen	mg/L	0.250	1.288	0.535	0.268	0.737	2.400	1.094	0.378	0.470	2.941	1.086	0.387	0.340	17.727	6.008	4.954
Orthophosphate	mg/L	0.001	0.012	0.003	0.003	0.001	0.041	0.010	0.012	0.001	0.005	0.002	0.001	0.001	0.087	0.020	0.028
Total Phosphorus	mg/L	0.002	0.049	0.011	0.013	0.002	0.040	0.007	0.008	0.002	0.049	0.011	0.011	0.004	0.106	0.050	0.025

Please see Appendix J for a list of values that were removed from this analysis and the rationale for removal.

Key

°C = Degrees Celsius. Min = Minimum.

 $CaCO_3$ = Bicarbonate. μ S/cm = MilliSiemens per centimeter. Max = Maximum. NTU = Nephelometric turbidity unit(s)

mg/L = Milligram(s) per liter. SU = Standard units.

¹ Biscayne Bay sites include BBSW-3B, -4B, and -5B.

 $^{^{\}rm 2}$ Interceptor Ditch sites include TPSWID-1T, -1B, -2T, -2B, -3T, and -3B.

 $^{^{3}}$ L-31E sites include TPSWC-1T, -1B, -2T, -2B, -3T, and -3B.

 $^{^{\}rm 4}$ CCS sites include TPSWCCS-1B, -2B, -3B, -4T, -5T, and -7B.

Table 3.2-10. Average (± Standard Deviation) of Pre-Uprate and Post-Uprate Ion Concentrations in Surface Water

		Biscay	/ne Bay ¹	Intercepto	or Ditch ²	L31	-E ³	C	CS ⁴
Parameter	Units	Pre-Uprate	Post-Uprate	Pre-Uprate	Post-Uprate	Pre-Uprate	Post-Uprate	Pre-Uprate	Post-Uprate
Temperature	°C	26.40 ± 5.27	26.19 ± 3.41	28.15 ± 2.86	28.20 ± 2.69	28.08 ± 3.10	27.23 ± 2.70	31.35 ± 5.70	28.20 ± 2.69
pН	SU	8.24 ± 0.20	8.01 ± 0.19	7.56 ± 0.41	7.35 ± 0.45	7.93 ± 0.36	7.74 ± 0.32	8.31 ± 0.27	8.15 ± 0.40
Dissolved Oxygen	mg/L	6.32 ± 1.34	5.78 ± 1.47	3.10 ± 2.54	4.39 ± 2.47	5.61 ± 2.41	5.33 ± 2.51	5.31 ± 1.49	4.53 ± 2.63
Specific Conductance	μS/cm	51012 ± 6790	51738 ± 4531	14066 ± 17711	7193 ± 5343	1612 ± 2857	1870 ± 2913	80577 ± 5193	101600 ± 15801
Turbidity	NTU	2.15 ± 1.84	0.89 ± 0.46	4.24 ± 7.91	4.57 ± 11.66	4.85 ± 6.45	1.8 ± 1.82	8.29 ± 3.53	82.0 ± 51.16
Salinity	*	33.45 ± 4.96	34.00 ± 3.31	8.67 ± 11.84	4.02 ± 3.27	0.85 ± 1.65	1.0 ± 1.66	56.90 ± 4.62	73.9 ± 13.63
Calcium	mg/L	430 ± 54	419 ± 18	211 ± 138	157 ± 47	76 ± 38	69 ± 18	751 ± 80	1023 ± 137
Magnesium	mg/L	1317 ± 220	1174 ± 101	310 ± 447	111 ± 114	$25~\pm~54$	16 ± 21	2243 ± 243	2557 ± 409
Potassium	mg/L	421 ± 80	449 ± 57	104 ± 144	41 ± 38	9 ± 17	6 ± 7	706 ± 80	1052 ± 212
Sodium	mg/L	10576 ± 1723	10429 ± 1101	2577 ± 3638	1078 ± 833	208 ± 455	249 ± 469	17714 ± 1686	21860 ± 4036
Boron	mg/L	4.50 ± 0.69	4.70 ± 0.27	1.01 ± 1.40	0.38 ± 0.38	0.10 ± 0.18	0.1 ± 0.07	7.61 ± 0.85	11.5 ± 1.85
Strontium	mg/L	7.61 ± 1.13	7.60 ± 0.43	2.96 ± 2.60	1.92 ± 0.83	0.83 ± 0.50	0.7 ± 0.25	14.12 ± 1.19	21.2 ± 3.30
Bromide	mg/L	68.90 ± 15.43	70.60 ± 3.12	15.90 ± 21.12	5.68 ± 5.83	1.31 ± 3.28	0.8 ± 1.27	114.88 ± 30.30	171.8 ± 31.55
Chloride	mg/L	19476 ± 3326	19646 ± 2058	4790 ± 6969	2179 ± 1858	409 ± 916	487 ± 904	34048 ± 2888	44283 ± 7671
Fluoride	mg/L	0.54 ± 0.27	0.90 ± 0.04	0.31 ± 0.48	0.15 ± 0.04	0.18 ± 0.24	0.06 ± 0.03	1.06 ± 1.54	0.86 ± 0.10
Sulfate	mg/L	2638 ± 447	2667 ± 240	520 ± 714	202 ± 216	$41\ \pm\ 108$	22 ± 46	4205 ± 725	6635 ± 893
Alkalinity	mg/L	$122\ \pm\ 27$	137 ± 9	$235~\pm~60$	281 ± 58	144 ± 35	$148\ \pm\ 28$	143 ± 23	178 ± 40
Bicarbonate Alkalinity as CaCO ₃	mg/L (CaCO ₃)	$121\ \pm\ 28$	$151~\pm~20$	$235~\pm~60$	312 ± 71	$159\ \pm\ 134$	164 ± 37	136 ± 25	$162\ \pm\ 104$
Sulfide	mg/L	1.00 ± 0.00	0.64 ± 0.40	2.03 ± 2.72	0.97 ± 1.23	1.00 ± 0.00	0.5 ± 0.48	1.00 ± 0.00	0.6 ± 0.45
Ammonia	mg/L	0.076 ± 0.032	0.1897 ± 0.2341	0.47 ± 0.45	0.41 ± 0.32	0.18 ± 0.07	0.3 ± 0.28	0.18 ± 0.12	0.6 ± 0.90
Ammonium	mg/L	0.081 ± 0.034	0.2141 ± 0.2853	0.59 ± 0.58	0.52 ± 0.41	0.23 ± 0.09	0.4 ± 0.35	0.20 ± 0.16	0.7 ± 1.11
Unionized ammonia	mg/L	0.015 ± 0.013	0.0144 ± 0.0220	0.02 ± 0.01	0.01 ± 0.01	0.01 ± 0.01	0.0 ± 0.02	0.03 ± 0.01	0.1 ± 0.06
Nitrate+Nitrite	mg/L	0.021 ± 0.011	0.0236 ± 0.0126	0.03 ± 0.04	0.06 ± 0.05	0.08 ± 0.15	0.0 ± 0.05	0.08 ± 0.23	0.0 ± 0.01
Total Kjedahl Nitrogen	mg/L	0.330 ± 0.148	0.5837 ± 0.2819	1.13 ± 0.45	0.91 ± 0.29	0.98 ± 0.29	1.1 ± 0.41	2.02 ± 0.31	8.8 ± 4.74
Total Nitrogen	mg/L	0.367 ± 0.129	0.6612 ± 0.2794	1.20 ± 0.45	1.01 ± 0.30	1.06 ± 0.31	1.1 ± 0.44	2.06 ± 0.48	9.0 ± 4.72
Orthophosphate	mg/L	0.003 ± 0.002	0.0026 ± 0.0029	0.02 ± 0.02	0.01 ± 0.01	0.00 ± 0.00	0.0 ± 0.00	0.02 ± 0.04	0.0 ± 0.03
Total Phosphorus	mg/L	0.025 ± 0.013	0.0034 ± 0.0022	0.01 ± 0.01	0.01 ± 0.01	0.01 ± 0.01	0.0 ± 0.01	0.03 ± 0.02	0.1 ± 0.02

Notes:

Please see Appendix J for a list of values that were removed from this analysis and the rationale for removal.

Key:

°C = Degrees Celsius.

 $CaCO_3$ = Bicarbonate.

Max = Maximum.

mg/L = Milligram(s) per liter.

¹ Biscayne Bay sites include BBSW-3B, -4B, and -5B.

² Interceptor Ditch sites include TPSWID-1T, -1B, -2T, -2B, -3T, and -3B.

³ L-31E sites include TPSWC-1T, -1B, -2T, -2B, -3T, and -3B.

 $^{^{4}}$ CCS sites include TPSWCCS-1B, -2B, -3B, -4T, -5T, and -7B.

Table 3.3-1. Summary of Rainfall Sample Collected and Data Received

Month	TPRF-2	TPRF-3	TPRF-4	TPRF-5	TPRF-7	TPRF-8	TPRF-12
Jul-11	✓	✓	✓	NA	√ *	✓	✓
Sep-11	✓	✓	✓	✓	✓	✓	✓
Dec-11	✓	✓	✓	✓	✓	✓	✓
Mar-12	✓	✓	✓	✓	NA	✓	✓
Jun-12	✓	✓	✓	✓	NA	✓	✓
Sep-12	✓	✓	✓	✓	✓	✓	✓
Dec-12	✓	✓	✓	✓	✓	✓	✓
Mar-13	✓	✓	NA	✓	✓	✓	✓
Jun-13	✓	✓	NA	✓	✓	✓	✓
Sep-13	✓	✓	NA	✓	✓	✓	✓
Dec-13	✓	✓	✓	✓	✓	✓	✓
Mar-14	✓	✓	✓	✓	✓	✓	✓
Jun-14	✓	✓	✓	✓	✓	✓	✓
Sep-14	✓	✓	✓	✓	✓	✓	✓
Dec-14	✓	✓	✓	✓	✓	✓	✓
Mar-15	✓	✓	✓	✓	√	✓	✓

Notes:

Not Available - TPRF-5 was stolen in in July 2011. TPRF-7 was stolen in March and replaced in June 2012.

Not Available - TPRF-4 was stolen in in March 2013. TPRF-7 was stolen in March and replaced in June 2013.

Key:

✓ = Data available.

NA = Not available.

^{*} Data collected on 8/18/2011.

Table 3.3-2. Rainfall Tritium Data

Rainfall	Sample	Conc	entration (_l	oCi/L)
Station	Date	Value	1-Sigma	MDL
RF-2	7/29/2011	34.1	5.4	4.6
RF-3	7/29/2011	23.5	5.5	5.0
RF-4	7/29/2011	11.3	5.2	5.0
RF-8	7/29/2011	4.4	4.8	4.8
RF-12	7/29/2011	29.2	5.8	5.1
RF-BLANK	7/29/2011	6.3	5.0	4.9
RF-7	8/18/2011	24.7	5.6	5.1
RF-2	9/29/2011	7.3	7.8	7.6
RF-3	9/29/2011	25.3	8.2	7.4
RF-4	9/29/2011	6.5	7.6	7.5
RF-5	9/29/2011	17.3	7.9	7.4
RF-7	9/29/2011	12.6	7.8	7.5
RF-8	9/29/2011	19.0	8.0	7.6
RF-12	9/29/2011	24.2	8.2	7.4
RF-BLANK	9/29/2011	3.0	7.5	7.4
RF-2	12/21/2011	42.2	8.6	7.2
RF-3	12/21/2011	9.8	7.7	7.4
RF-4	12/21/2011	8.1	7.5	7.3
RF-5	12/21/2011	37.3	8.6	7.4
RF-7	12/21/2011	11.5	7.6	7.3
RF-8	12/21/2011	10.9	7.7	7.4
RF-12	12/21/2011	18.1	7.6	7.0
RF-BLANK	12/21/2011	8.0	7.0	6.8
RF-2	3/22/2012	109.9	8	3
RF-3	3/22/2012	17.1	3.5	3
RF-4	3/22/2012	25.8	3.7	2.9
RF-5	3/22/2012	27.7	4.8	3.7
RF-7	NA	(Gauge stole	n
RF-8	3/22/2012	9.6	4.1	3.8
RF-12	3/22/2012	27.1	4.9	3.8
RF-2	6/14/2012	82.6	7.4	5.9
RF-3	6/14/2012	10.4	6.1	5.9
RF-4	6/13/2012	7.8	6.0	5.9
RF-5	6/6/2012	18.3	6.2	5.9
RF-7	NA	(Gauge stole	1

Table 3.3-2. Rainfall Tritium Data

Rainfall	Sample	Conc	entration (_l	oCi/L)
Station	Date	Value	1-Sigma	MDL
RF-8	6/4/2012	14.7	6.2	6.0
RF-12	6/7/2012	-3.0	5.9	5.9
RF-2	9/6/2012	25.5	4.3	4.0
RF-3	9/6/2012	11.1	4.3	4.2
RF-4	9/7/2012	9.6	4.2	4.1
RF-5	9/18/2012	15.3	4.4	4.2
RF-7	9/7/2012	12.0	4.2	4.0
RF-8	9/4/2012	11.1	4.3	4.1
RF-12	9/11/2012	14.4	4.3	4.2
RF-2	12/11/2012	34.2	5.8	5.3
RF-3	12/11/2012	14.2	5.5	5.3
RF-4	12/4/2012	18.7	7.1	6.8
RF-5	12/10/2012	18.3	5.6	5.3
RF-7	12/4/2012	12.5	5.5	5.3
RF-8	12/3/2012	8.5	5.5	5.4
RF-12	12/6/2012	10.5	5.4	5.3
RF-2	3/7/2013	38.2	7.1	6.5
RF-3	3/7/2013	68.5	7.4	6.3
RF-4	NA	(Gauge stoler	1
RF-5	3/8/2013	4.5	5.8	5.8
RF-7	3/8/2013	4.9	5.7	5.7
RF-8	3/2/2013	24.9	6.0	5.7
RF-12	3/2/2013	5.3	5.7	5.6
RF-2	6/7/2013	28.7	6.2	5.9
RF-3	6/11/2013	-4.0	6.0	6.1
RF-4	NA	(Gauge stoler	ı
RF-5	6/6/2013	14.4	6.0	5.8
RF-7	6/5/2013	-7.8	6.0	6.1
RF-8	6/5/2013	-3.4	6.1	6.1
RF-12	6/18/2013	6.5	5.6	5.5
RF-2	9/11/2013	12.6	5.0	4.8
RF-3	9/11/2013	9.8	5.0	4.9
RF-4	NA	(Gauge stoler	1
RF-5	9/3/2013	6.0	4.9	4.8

Table 3.3-2. Rainfall Tritium Data

Rainfall	Sample	Conc	entration (¡	oCi/L)
Station	Date	Value	1-Sigma	MDL
RF-7	9/4/2013	8.9	5.2	5.1
RF-8	9/4/2013	8.3	4.6	4.5
RF-12	9/6/2013	3.6	5.1	5.0
RF-2	12/5/2013	19.7	4.0	3.6
RF-3	12/2/2013	2.6	3.6	3.6
RF-4	12/3/2013	2.9	3.6	3.5
RF-5	12/4/2013	0.8	3.4	3.4
RF-7	12/3/2013	-3.7	4.7	4.8
RF-8	12/3/2013	-5.2	4.6	4.7
RF-12	12/4/2013	-3.2	4.6	4.7
RF-2	3/4/2014	18.5	7.2	6.9
RF-3	3/4/2014	11.6	7.1	6.9
RF-4	3/10/2014	14.2	7.1	6.9
RF-5	3/11/2014	7.3	6.1	5.9
RF-7	3/11/2014	6.8	5.8	5.7
RF-8	3/10/2014	7.4	6.0	5.8
RF-12	3/5/2014	15.7	6.0	5.7
RF-2	6/11/2014	43.6	6.0	5.3
RF-3	6/11/2014	-0.6	5.2	5.2
RF-4	6/10/2014	6.3	5.4	5.3
RF-5	6/10/2014	8.6	5.2	5.1
RF-7	6/9/2014	3.0	5.3	5.2
RF-8	6/9/2014	8.0	5.5	5.4
RF-12	6/4/2014	11.1	5.2	5.1
RF-2	9/10/2014	32.6	4.8	4.1
RF-3	9/10/2014	15.3	4.5	4.2
RF-4	9/9/2014	12.2	4.3	4.1
RF-5	9/9/2014	21.6	4.6	4.2
RF-7	9/8/2014	12.2	3.8	3.6
RF-8	9/8/2014	7.8	4.2	4.0
RF-12	9/5/2014	25.5	4.7	4.1
RF-2	12/3/2014	89.5	6.3	4.0
RF-3	12/3/2014	33.8	4.6	3.9
RF-4	12/1/2014	20.7	4.3	3.8

Table 3.3-2. Rainfall Tritium Data

Rainfall	Sample	Conc	entration (_l	pCi/L)
Station	Date	Value	1-Sigma	MDL
RF-5	12/2/2014	12.7	4.2	3.9
RF-7	12/2/2014	9.2	4.2	4.0
RF-8	12/1/2014	8.7	4.1	3.9
RF-12	12/9/2014	20.5	4.3	3.9
RF-2	3/3/2015	16.0	3.0	2.7
RF-3	3/3/2015	10.0	2.8	2.6
RF-4	3/2/2015	8.4	2.9	2.7
RF-5	3/5/2015	3.2	2.7	2.6
RF-7	3/2/2015	7.4	2.7	2.6
RF-8	3/2/2015	6.3	2.9	2.7
RF-12	3/9/2015	17.2	3.1	2.7

Key:

pCi/L = picoCuries per liter.

MDL = Minimum detection limit.

RF = Rainfall.

Table 3.4-1. Summary of Evaporation Pan Collected and Data Received

Table 3.4-1. Summary of Evaporation Pan Collected and Data Received TPEVP-Pumped-											
Month	TPEVP-2	TPEVP-3	TPEVP-5	TPEVP-12	TPEVP-13A ¹	TPEVP-Source	Source ²				
Mar-11	✓	✓	✓	✓	NA	✓	NA				
Apr-11	✓	✓	✓	✓	NA	✓	✓				
May-11	✓	✓	✓	✓	✓	✓	✓				
Jun-11	✓	✓	✓	✓	✓	✓	✓				
Aug-11 ³	✓	✓	√ *	✓	✓	NA	NA				
Sep-11	✓	✓	✓	✓	√	✓	NA				
Oct-11	✓	✓	✓	✓	√	✓	NA				
Nov-11 ⁴	✓	✓	✓	√	✓	NA	NA				
Dec-11	✓	√	√	✓	✓	√	√				
Jan-12	√	√	√	✓	√	√	√				
Feb-12	✓	√	√	✓	√	✓	✓				
Mar-12	✓	√	√	✓	✓	✓	✓				
Apr-12	<u>·</u>	<i>√</i>	✓	✓	√ ·	√	<i>√</i>				
May-12	<u>√</u>	· ✓	✓ ·	✓	✓	√	NA				
Jun-12	√	√	√	✓	√	√	NA				
Jul-12	√	√	√	✓	✓	✓	NA				
Aug-12	✓	√	√	✓	√	✓	NA				
Sep-12	<u>·</u>	<i>√</i>	✓	<i>✓</i>	✓	<i>✓</i>	NA				
Oct-12	<u>·</u>	<i>√</i>	✓	✓	√ ·	√	NA				
Nov-12	<u>√</u>	<i>✓</i>	✓	✓	✓	√	√ ·				
Dec-12	√	√	√	✓	√	✓	√				
Jan-13	<u>·</u>	<i>√</i>	✓	✓	√ ·	√	<i>√</i>				
Feb-13	<u> </u>	· ✓	<i>✓</i>	· ✓	<i>√</i>	√	<i>✓</i>				
Mar-13	<u>·</u>	<i>√</i>	✓	<i>✓</i>	✓	<i>✓</i>	<i>✓</i>				
Apr-13	<i>✓</i>	· ✓	<i>✓</i>	<i>√</i>	<i>√</i>	✓	<i>✓</i>				
May-13	<u>√</u>	NA	✓	✓	✓	√	√ ·				
Jun-13	√	√ ·	√	√	√	√	NA				
Jul-13	<u>·</u>	<i>✓</i>	✓ ·	✓	✓	✓	√ ·				
Aug-13	✓	√	√	✓	√	✓	√				
Sep-13	✓	√	√	√	✓	✓	✓				
Oct-13	√	√	√	✓	√	√	√				
Nov-13	✓	√	√	✓	✓	✓	✓				
Dec-13	✓	✓	√	✓	✓	✓	✓				
Jan-14	✓	✓	√	√	✓	✓	✓				
Feb-14	✓	√	√	✓	√	✓	✓				
Mar-14	✓	√	√	√	√	✓	✓				
Apr-14	✓	✓	✓	√	√	✓	✓				
May-14	✓	√	√	√	√	✓	✓				
Jun-14	✓	√	√	✓	√	✓	✓				
Jul-14	✓	√	√	√	√	✓	✓				
Aug-14	✓	✓	✓	✓	✓	✓	✓				
Sep-14	✓	√	√	✓	√	✓	✓				
Oct-14	P	P	P	P	P	P	P				
Nov-14	P	P	P	P	P	P	P				
Dec-14	P	P	P	P	P	P	P				
Jan-15	P	P	P	P	P	P	P				
Feb-15 ⁵	P	NA	P	NA	P	P	P				
Mar-15	P	P	P	P	P	P	P				
Apr-15	P	P	P	P	P	P	P				
May-15	P	P	P	P	P	P	P				
Jun-15	P	P	P	P	P	P	P				
Notes:	-	-	<u>-</u>	ı -	ı -	-					

Notes:

Key:

¹ TPEVP-13A was not set up until April 2011; the first samples were collected in May 2011. ² TPEVP-Pumped-Source is only collected when water transported in the water bladders is used to fill pans at TPEVP-5 on a different day. After April 2012, a faster refilling method was used and all site re-filling was completed within a day.

³ Pans were full in August and not refilled; therefore, there was no Source Water. TPEVP-5 was visited 7/29/11 instead of 8/2/11 (for all other sites).

⁴ Pans were full in November and not refilled; therefore, there was no Source Water for that month.

⁵ Pans were dry so no samples were taken.

P - Samples collected but results not available.

NA - Sample not collected, data not available.

^{✓ =} Data available.

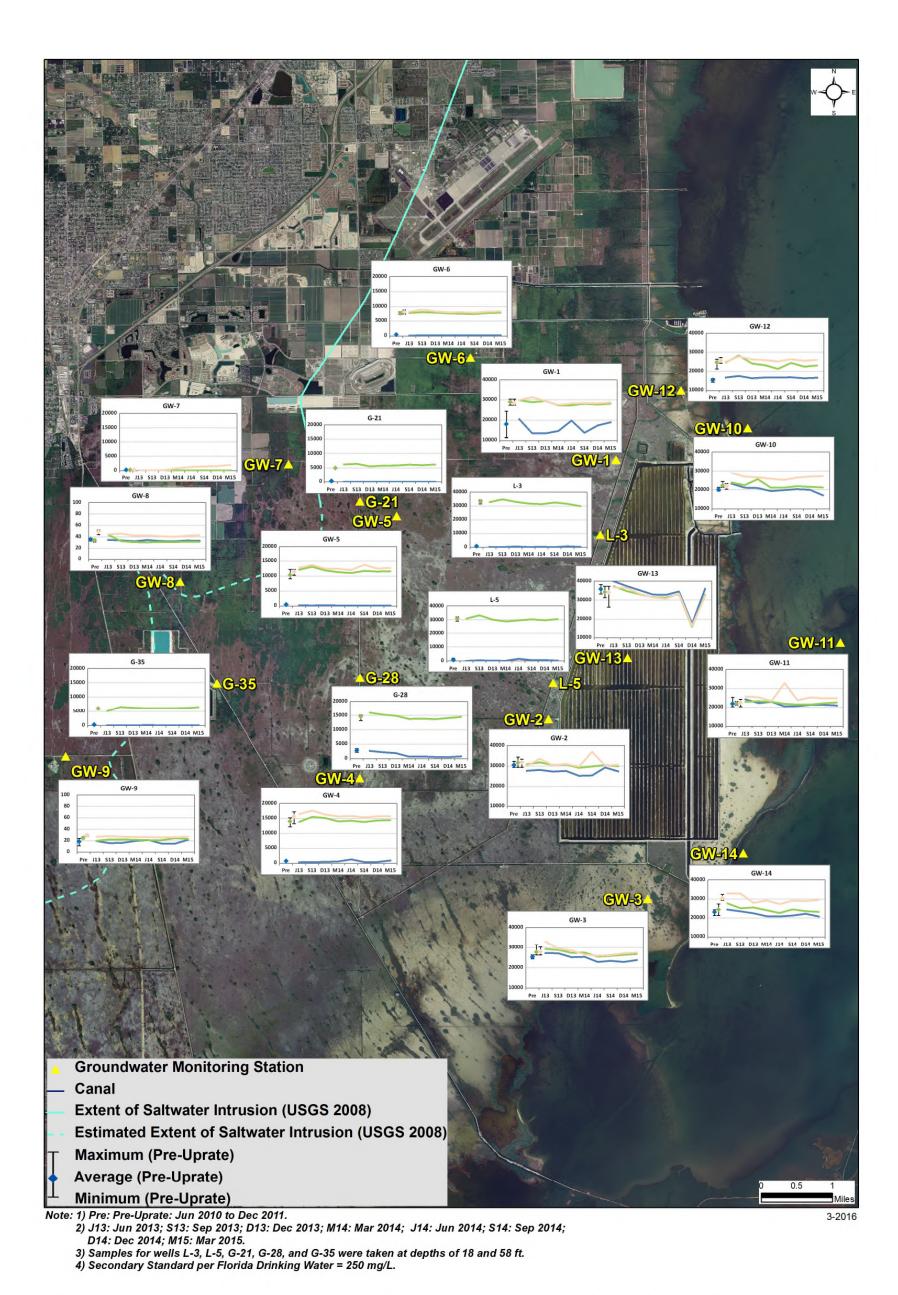
NA = Not available.

P = Pending.

Table 3.4-2. Evaporation Pan Tritium Results (pCi/L ± 1 sigma)

		milium Results (p	oCi/L ± 1 sigma)			
Date	TPEVP-2	TPEVP-3	TPEVP-5	TPEVP-12	TPEVP-13	Source
3/1/2011	153.0 ± 13.0	43.4 ± 7.7	11.0 ± 6.4	22.1 ± 6.9	$NA \pm NA$	5.0 ± 6.3
4/19/2011	249.0 ± 19.0	45.1 ± 6.5	49.6 ± 7.0	55.0 ± 6.9	NA ± NA	18.5 ± 5.4
5/24/2011	283.4 ± 19.6	36.0 ± 7.2	39.2 ± 7.2	30.0 ± 6.9	490.3 ± 31.5	18.1 ± 7.5
6/24/2011	26.3 ± 6.8	17.9 ± 6.7	39.0 ± 7.2	22.6 ± 6.6	274.7 ± 19.0	21.2 ± 6.7
8/2/2011	75.3 ± 7.0	57.2 ± 6.3	19.6 ± 4.8	10.9 ± 4.5	181.0 ± 13.0	NA ± NA
9/28/2011	38.3 ± 8.3	12.8 ± 6.6	18.9 ± 7.6	14.4 ± 6.8	114.4 ± 11.3	7.3 ± 7.2
10/27/2011	63.4 ± 9.4	43.0 ± 8.3	11.3 ± 7.3	18.5 ± 7.6	115.4 ± 11.7	13.0 ± 7.5
11/30/2011	180.5 ± 13.3	47.9 ± 6.5	11.3 ± 5.0	10.1 ± 4.3	374.1 ± 24.3	NA ± NA
12/20/2011	361.0 ± 24.0	83.9 ± 8.5	28.6 ± 7.5	0.0 ± 7.0	647.0 ± 42.0	3.1 ± 6.9
1/24/2012	313.0 ± 22.0	109.0 ± 11.0	51.4 ± 8.6	17.2 ± 7.4	776.0 ± 44.0	17.8 ± 8.2
2/20/2012	322.0 ± 23.0	71.9 ± 9.6	39.0 ± 8.0	56.6 ± 9.0	1050.0 ± 64.0	16.7 ± 8.0
3/20/2012	550.0 ± 40.0	59.0 ± 9.4	63.1 ± 8.7	30.9 ± 7.1	974.0 ± 66.0	17.8 ± 6.9
4/24/2012	209.0 ± 7.5	52.0 ± 8.5	42.6 ± 3.2	16.0 ± 2.9	590.0 ± 18.6	8.6 ± 3.0
5/21/2012	113.0 ± 5.2	44.4 ± 3.4	24.5 ± 3.1	17.4 ± 3.2	284.0 ± 9.6	7.5 ± 2.9
6/19/2012	117.9 ± 6.1	28.1 ± 3.5	24.8 ± 4.4	18.7 ± 4.3	349.0 ± 12.3	4.3 ± 6.3
7/23/2012	52.2 ± 4.9	28.7 ± 4.5	16.5 ± 4.3	6.0 ± 4.0	118.1 ± 6.0	1.9 ± 4.3
8/20/2012	40.3 ± 4.7	13.2 ± 4.5	10.7 ± 3.9	10.1 ± 3.9	115.5 ± 6.2	5.4 ± 4.1
9/20/2012	134.0 ± 6.9	29.6 ± 4.0	17.9 ± 4.4	13.0 ± 4.5	417.0 ± 15.0	7.5 ± 4.2
10/22/2012	125.2 ± 8.2	59.1 ± 4.6	13.5 ± 4.7	12.7 ± 4.8	309.5 ± 12.4	1.1 ± 4.6
11/20/2012	111.9 ± 5.6	76.0 ± 6.7	12.3 ± 4.2	7.8 ± 4.2	337.2 ± 11.8	10.4 ± 4.1
12/18/2012	183.9 ± 9.4	67.5 ± 5.3	19.8 ± 5.6	23.1 ± 5.6	446.3 ± 16.8	7.8 ± 5.3
1/18/2013	225.9 ± 9.2	27.1 ± 6.4	40.2 ± 4.6	13.8 ± 4.0	577.7 ± 19.7	2.0 ± 4.1
2/20/2013	173.6 ± 7.8	119.1 ± 4.4	37.2 ± 5.1	39.0 ± 6.8	532.9 ± 20.1	19.8 ± 6.7
3/18/2013	184.8 ± 10.2	76.1 ± 6.7	40.5 ± 7.2	78.5 ± 7.7	700.5 ± 25.7	30.0 ± 6.8
4/19/2013	249.1 ± 13.1	31.4 ± 7.6	33.2 ± 5.7	31.4 ± 5.7	569.4 ± 19.2	7.8 ± 5.4
5/20/2013	193.9 ± 9.1	NA ± 7.9	29.7 ± 5.8	12.5 ± 5.4	531.3 ± 18.1	1.7 ± 5.4
6/20/2013	135.6 ± 8.5	14.4 ± 6.1	33.0 ± 6.2	19.8 ± 6.1	320.4 ± 13.6	-5.8 ± 5.8
7/23/2013	90.3 ± 8.2	14.9 ± 6.8	19.1 ± 6.9	15.8 ± 6.9	175.9 ± 10.5	7.3 ± 6.6
8/28/2013	57.2 ± 5.8	27.4 ± 5.2	13.5 ± 4.9	-1.1 ± 4.8	125.9 ± 7.5	6.9 ± 5.0
9/23/2013	44.9 ± 4.4	15.4 ± 4.8	3.0 ± 4.6	15.0 ± 4.8	99.3 ± 6.8	2.2 ± 4.6
10/24/2013	40.2 ± 5.2	11.3 ± 4.7	6.3 ± 4.4	11.6 ± 4.8	78.9 ± 6.1	9.9 ± 4.5
11/26/2013	46.9 ± 4.4	5.8 ± 3.6	11.2 ± 3.7	3.5 ± 3.6	63.7 ± 4.6	8.1 ± 3.7
12/19/2013	90.2 ± 6.9	33.1 ± 5.4	1.1 ± 4.8	0.4 ± 4.7	236.4 ± 11.5	-10.1 ± 4.5
1/21/2014	105.9 ± 7.3	23.9 ± 5.2	0.0 ± 4.5	2.2 ± 4.7	244.4 ± 9.8	2.9 ± 4.8
2/20/2014	195.4 ± 8.5	59.9 ± 4.5	25.6 ± 3.9	19.6 ± 3.7	413.4 ± 13.4	6.4 ± 3.5
3/27/2014	308.0 ± 13.7	80.6 ± 7.5	49.4 ± 6.8	111.3 ± 8.3	1610.1 ± 53.8	13.3 ± 6.0
4/17/2014	467.3 ± 18.3	49.4 ± 6.7	48.6 ± 5.4	39.0 ± 5.1	1180.8 ± 38.3	5.3 ± 4.7
5/16/2014	305.5 ± 12.2	17.8 ± 4.8	48.3 ± 5.5	56.5 ± 5.6	681.2 ± 23.8	7.4 ± 4.7
6/19/2014	280.0 ± 11.9	17.9 ± 5.4	38.6 ± 5.6	244.8 ± 11.0	415.5 ± 16.3	4.3 ± 5.5
7/28/2014	92.7 ± 6.7	32.0 ± 6.2	44.1 ± 6.7	35.6 ± 6.3	623.0 ± 23.3	1.6 ± 5.7
8/20/2014	119.1 ± 5.9	40.3 ± 3.5	37.2 ± 3.5	52.6 ± 4.0	804.1 ± 27.8	10.3 ± 2.9
9/16/2014	317.0 ± 12.2	28.0 ± 3.9	46.5 ± 4.2	37.6 ± 4.2	909.5 ± 31.0	4.7 ± 3.6
Min	26.3	5.8	0.0	-1.1	63.7	-10.1
Max	550.0	119.1	63.1	244.8	1610.1	30.0
Average	176.8	42.7	27.9	29.8	471.4	8.2
Std Error	18.7	4.2	2.5	6.3	53.8	1.2

Note:


^{*} Source value for the month is the tritium value from the previous month i.e. Feb Tritium values were a function of the atmospheric processes and tritium Source from Jan.

NA = for Source water, this applies when pans were full and not refilled that event. For 5/20/13, the evaporation pan dried up and no sample was available.

FIGURES

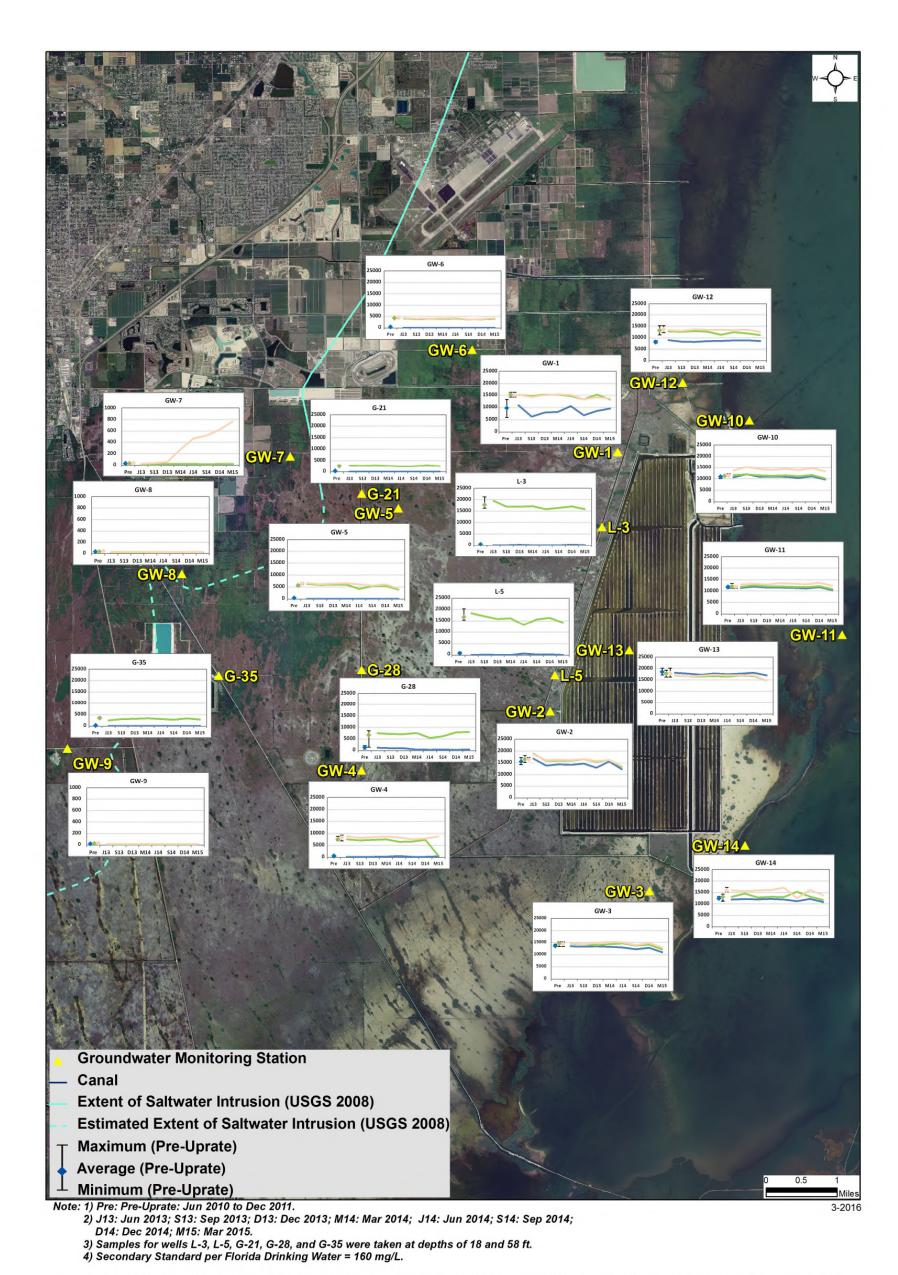
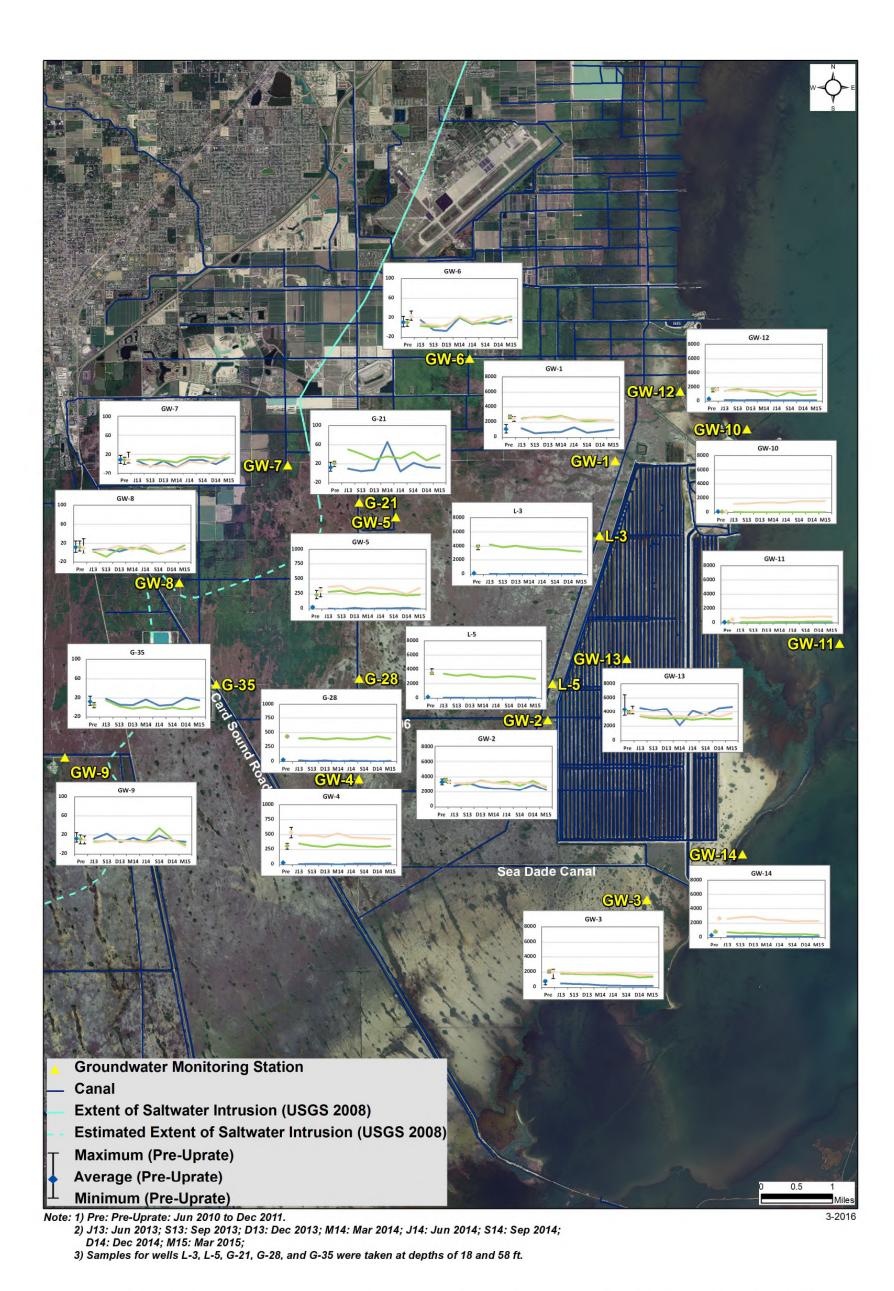


Figure 3.1-1. Typical Groundwater Field Sampling Setup.

Quarterly Groundwater Chloride samples (mg/L) collected at 3 depths: shallow (blue); intermediate (green); and deep (orange). Pre-Uprate data shows average and range, while Post-Uprate values are for events from Jun 2013 to Mar 2015.

Figure 3.1-2. Range (Pre-Uprate) and Results (Post-Uprate) of Quarterly Groundwater Samples for Chloride (mg/L).

Quarterly Groundwater Sodium samples (mg/L) collected at 3 depths: shallow (blue); intermediate (green); and deep (orange). Pre-Uprate data shows average and range, while Post-Uprate values are for events from Jun 2013 to Mar 2015.


Figure 3.1-3. Range (Pre-Uprate) and Results (Post-Uprate) of Quarterly Groundwater Samples for Sodium (mg/L).

Quarterly Groundwater Specific Conductance samples (µS/cm) collected at 3 depths: shallow (blue); intermediate (green); and deep (orange).

Pre-Uprate data shows average and range, while Post-Uprate values are for events from Jun 2013 to Mar 2015.

Figure 3.1-4. Range (Pre-Uprate) and Results (Post-Uprate) of Quarterly Groundwater Samples for Specific Conductance (μS/cm).

Quarterly Groundwater Tritium values (pCi/L) collected at 3 depths: shallow (blue); intermediate (green); and deep (orange). Pre-Uprate data shows average and range, while Post-Uprate values are for events from June 2013 to March 2015.

Figure 3.1-5. Range (Pre-Uprate) and Results (Post-Uprate) of Quarterly Groundwater Values for Tritium (pCi/L).

Figure 3.1-6. Locations of Aquifer Cross Sections for Groundwater Chloride and Tritium Concentrations.

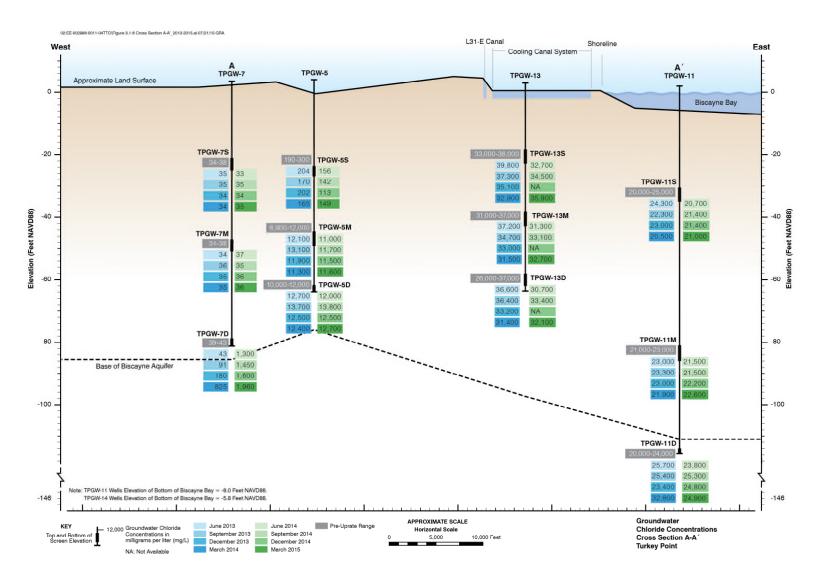


Figure 3.1-7. Cross Section A-A' Showing Quarterly Groundwater Chloride Concentrations from June 2013 through March 2015 and Pre-Uprate Ranges.

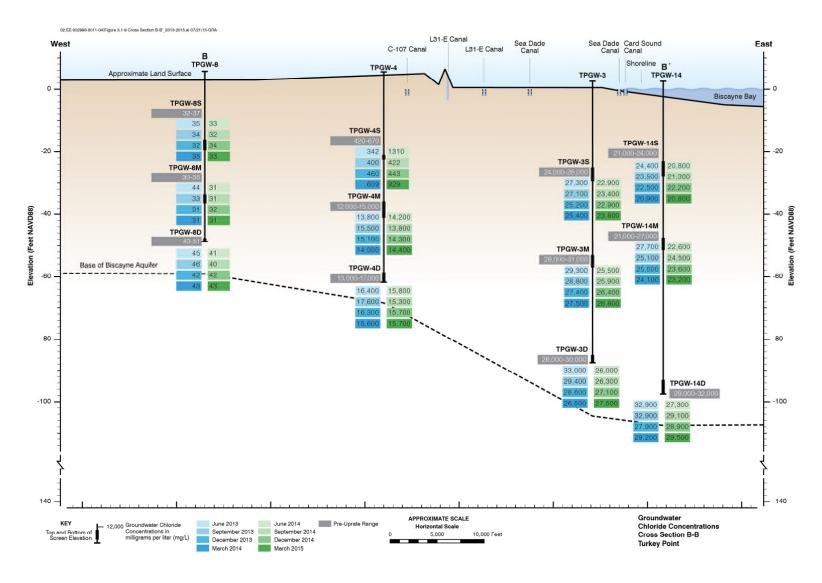


Figure 3.1-8. Cross Section B-B' Showing Quarterly Groundwater Chloride Concentrations from June 2013 through March 2015 and Pre-Uprate Ranges.

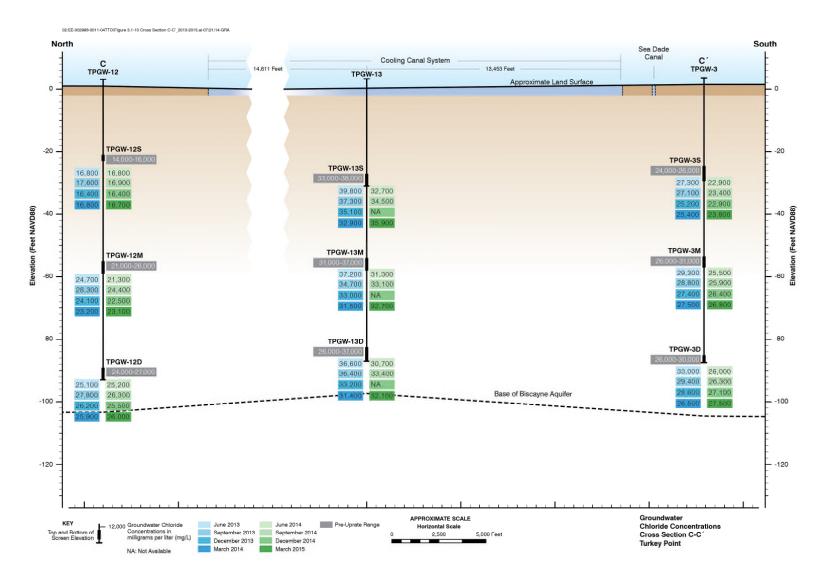


Figure 3.1-9. Cross Section C-C' Showing Quarterly Groundwater Chloride Concentrations from June 2013 through March 2015 and Pre-Uprate Ranges.

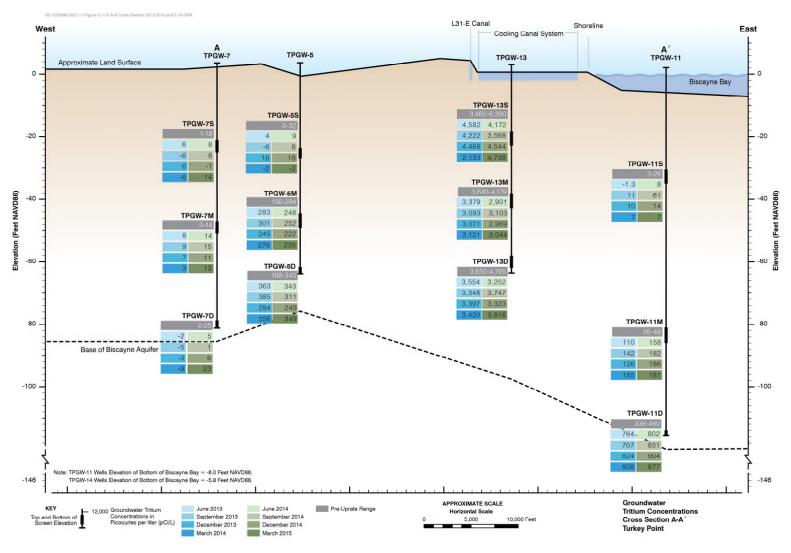


Figure 3.1-10. Cross Section A-A' Showing Quarterly Groundwater Tritium Concentrations from June 2013 through March 2015 and Pre-Uprate Ranges.

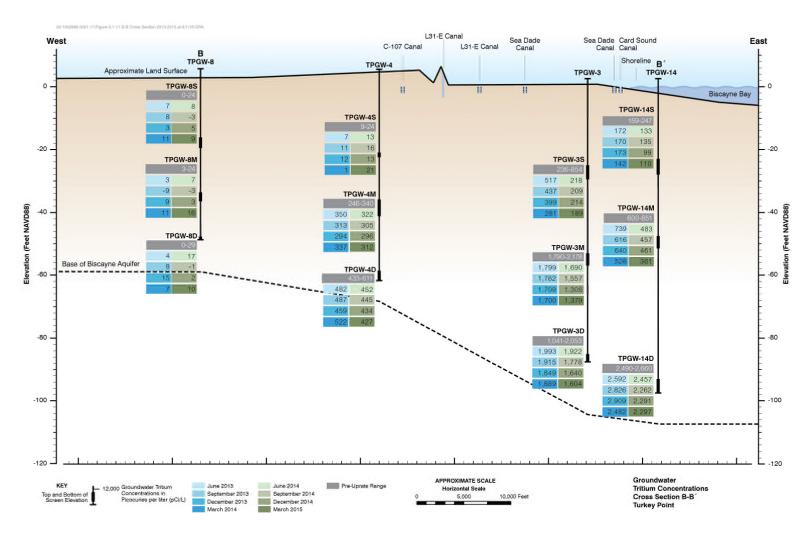
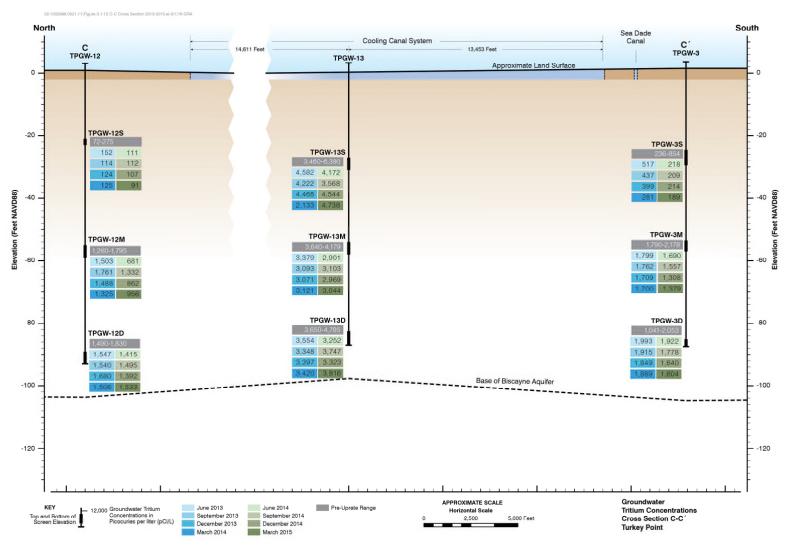
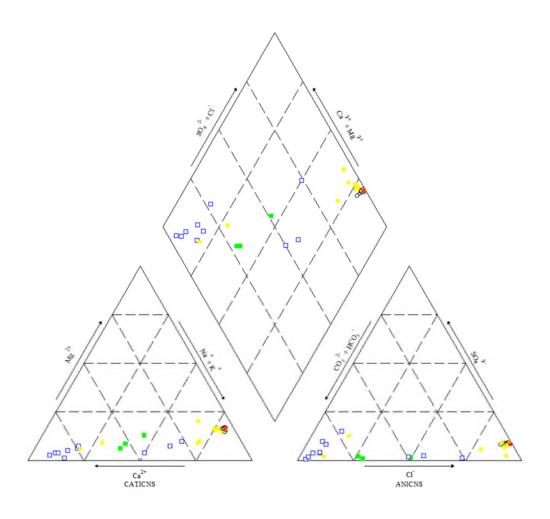
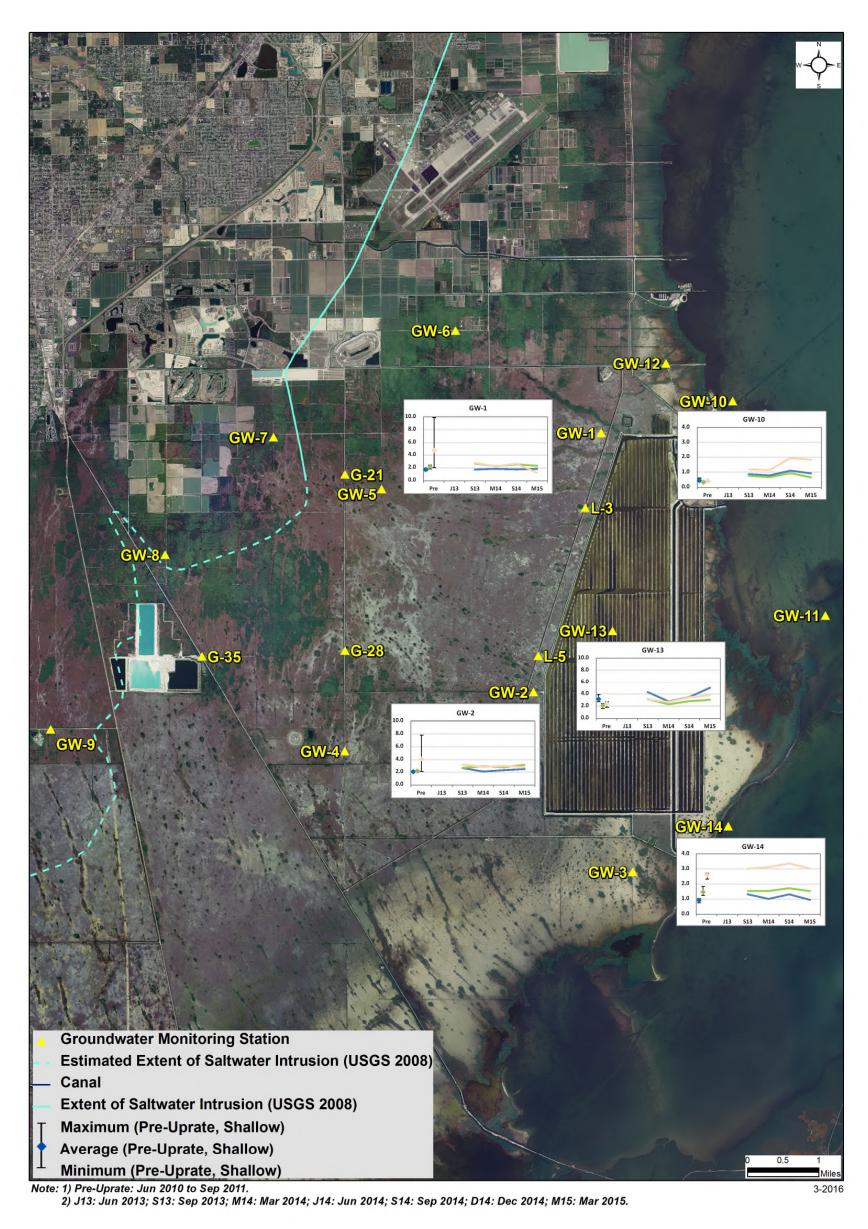


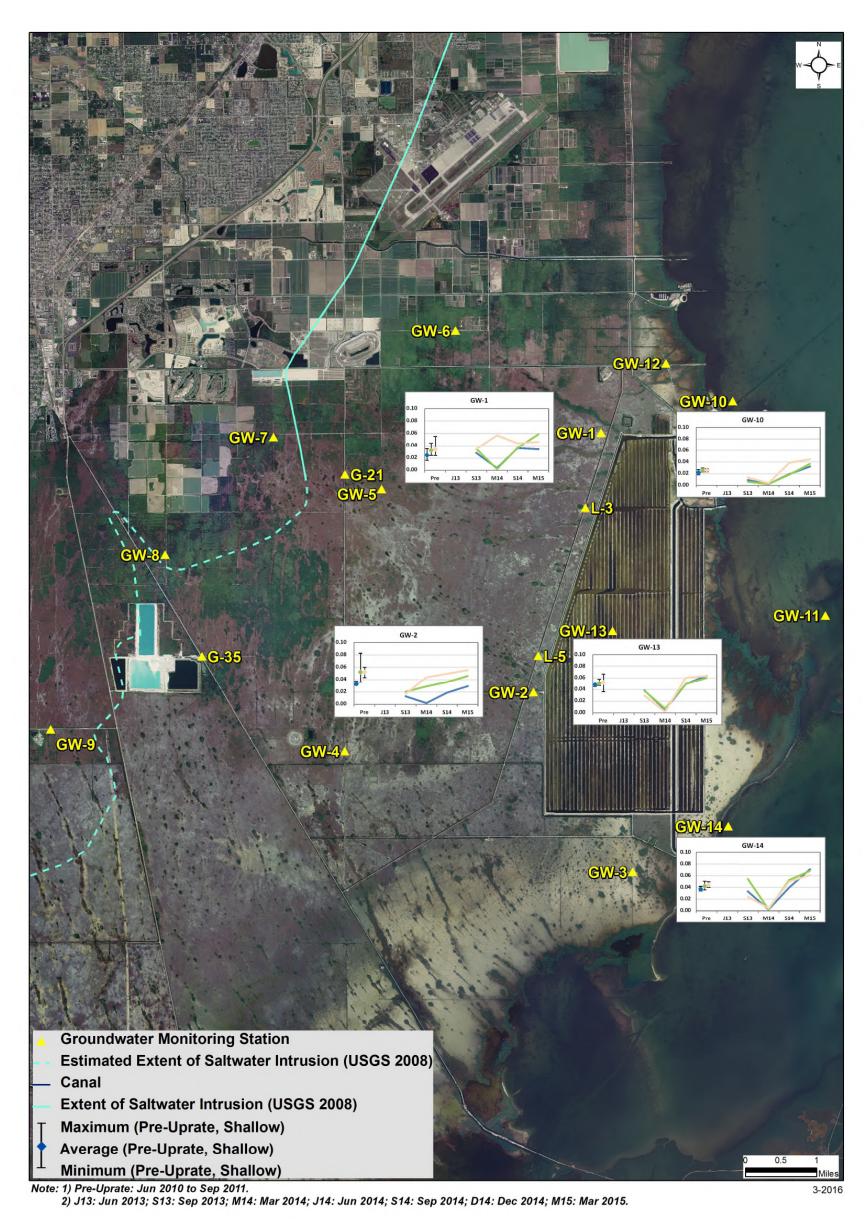
Figure 3.1-11. Cross Section B-B' Showing Quarterly Groundwater Tritium Concentrations from June 2013 through March 2015 and Pre-Uprate Ranges.


Figure 3.1-12. Cross Section C-C' Showing Quarterly Groundwater Tritium Concentrations from June 2013 through March 2015 and Pre-Uprate Ranges.

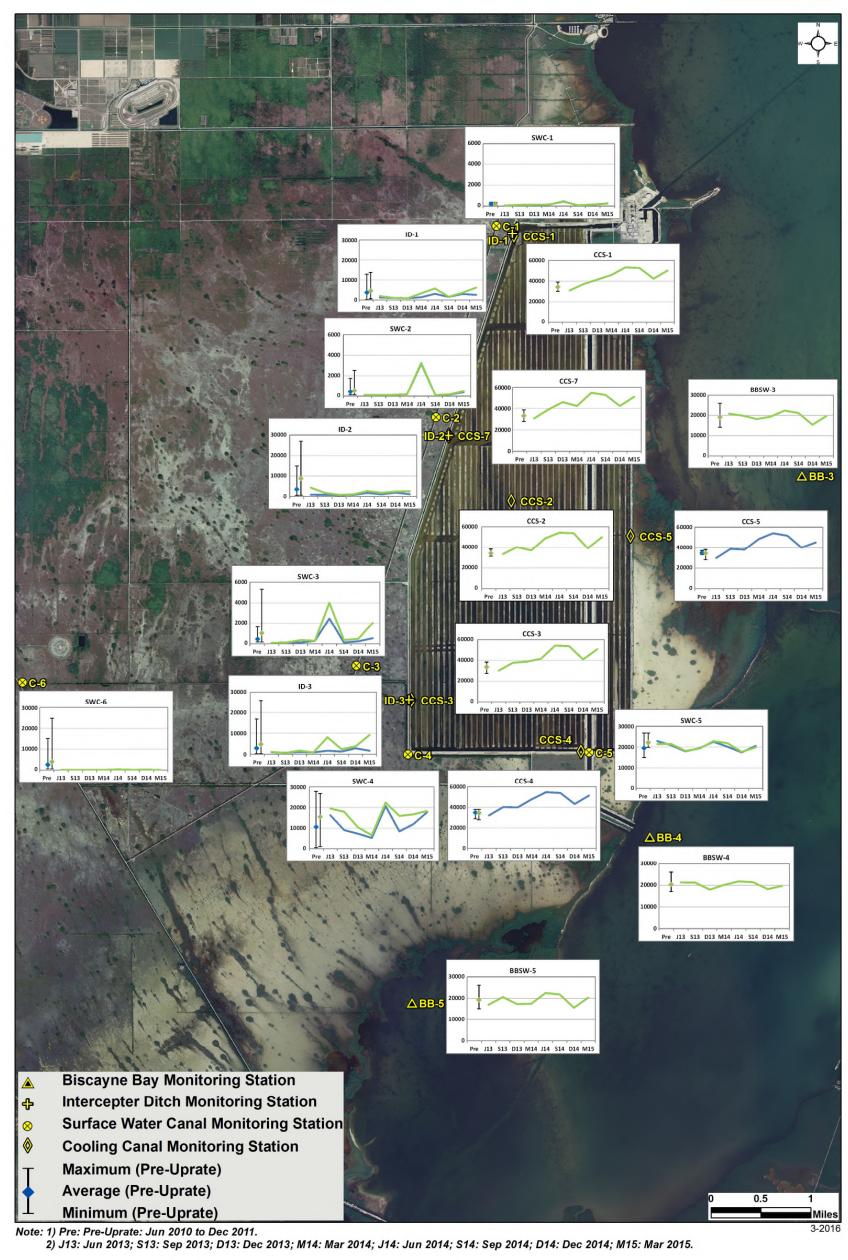
Legend:

TPGW-1, -2, -3, -12, -14 = \bigcirc ; TPGW-4, -5, -6 = $\stackrel{\blacksquare}{=}$; TPGW-7, -8, -9 = $\stackrel{\square}{=}$; TPGW-10, -11 = $\stackrel{\triangle}{=}$; TPGW-13 = $\stackrel{\bigstar}{\rightleftharpoons}$; TPGW-L3, -L5, -G21, -G28, -G35 = $\stackrel{\bigcirc}{=}$


Figure 3.1-13. Post-Uprate Tri-Linear Diagram of Average Groundwater Ionic Concentrations.

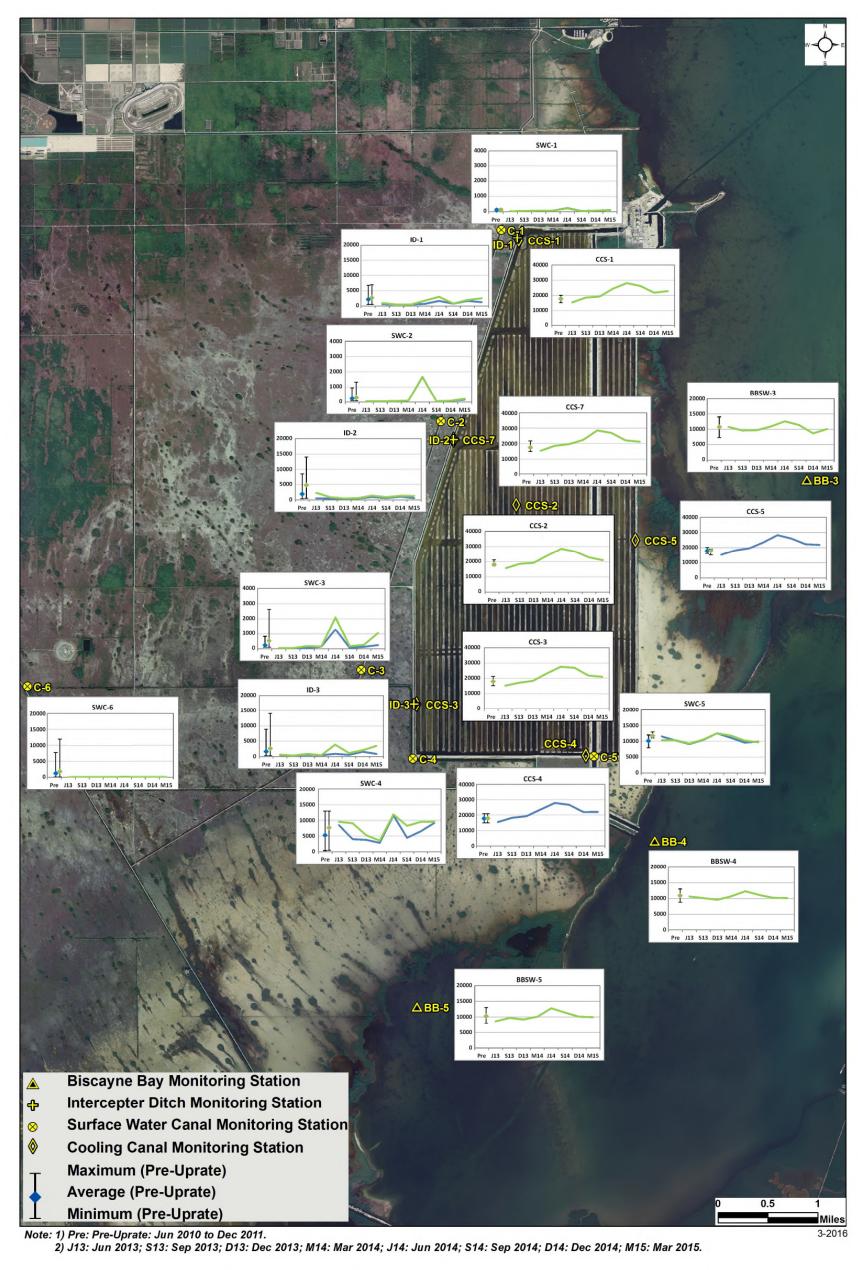
Semi-Annual Total Nitrogen values (mg/L) for Groundwater Samples Taken at 3 depths: shallow (blue); intermediate (green); and deep (orange).

Pre-Uprate data shows average and range, while Post-Uprate values are for events from Jun 2013 to Mar 2015.


Figure 3.1-14. Range (Pre-Uprate) and Results (Post-Uprate) of Semi-Annual Groundwater Total Nitrogen Values from the Shallow (S) and Deep (D) Wells.

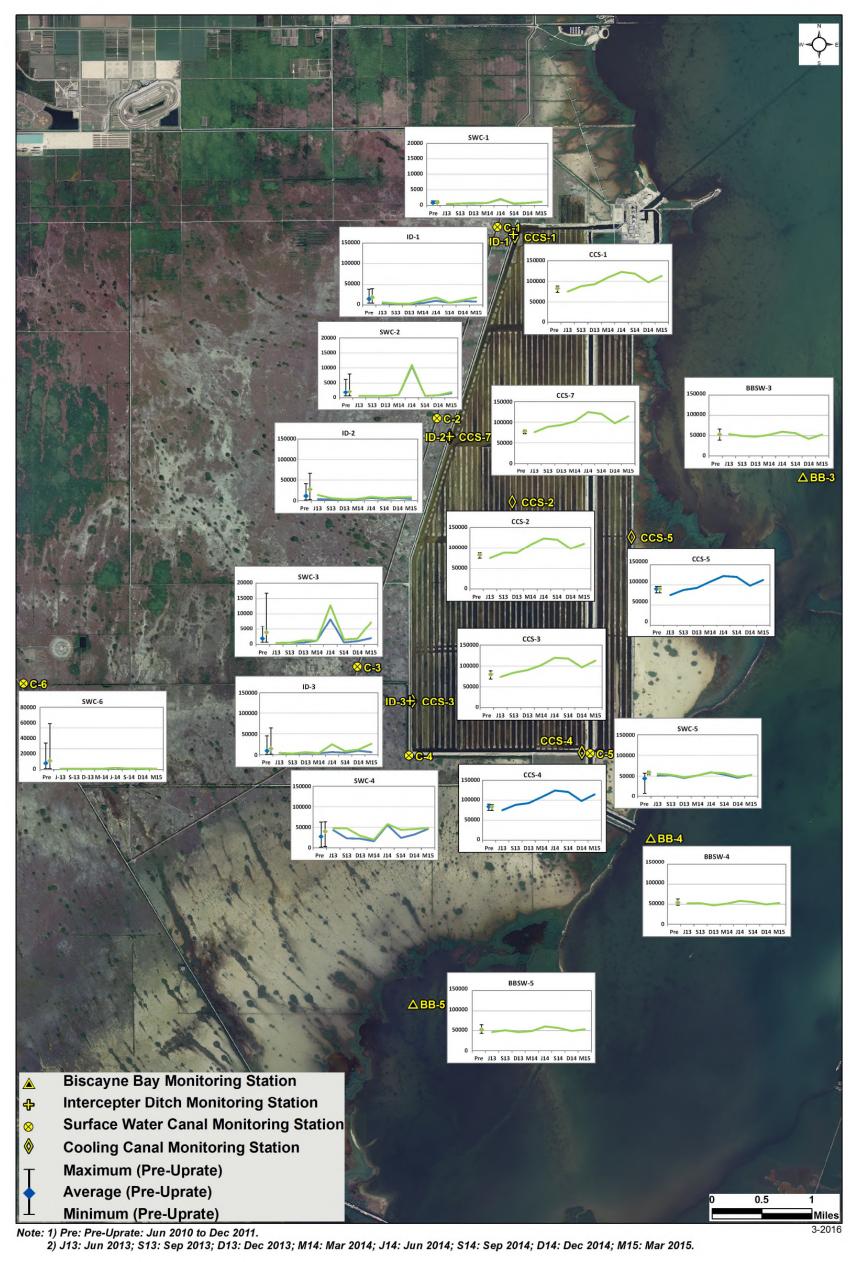
Semi-Annual Total Phosphorus values (mg/L) for Groundwater Samples Taken at 3 depths: shallow (blue); intermediate (green); and deep (orange).

Pre-Uprate data shows average and range, while Post-Uprate values are for events from Jun 2013 to Mar 2015...


Figure 3.1-15. Range (Pre-Uprate) and Results (Post-Uprate) of Semi-Annual Groundwater Total Phosphorus Values from the Shallow (S) and Deep (D) Wells.

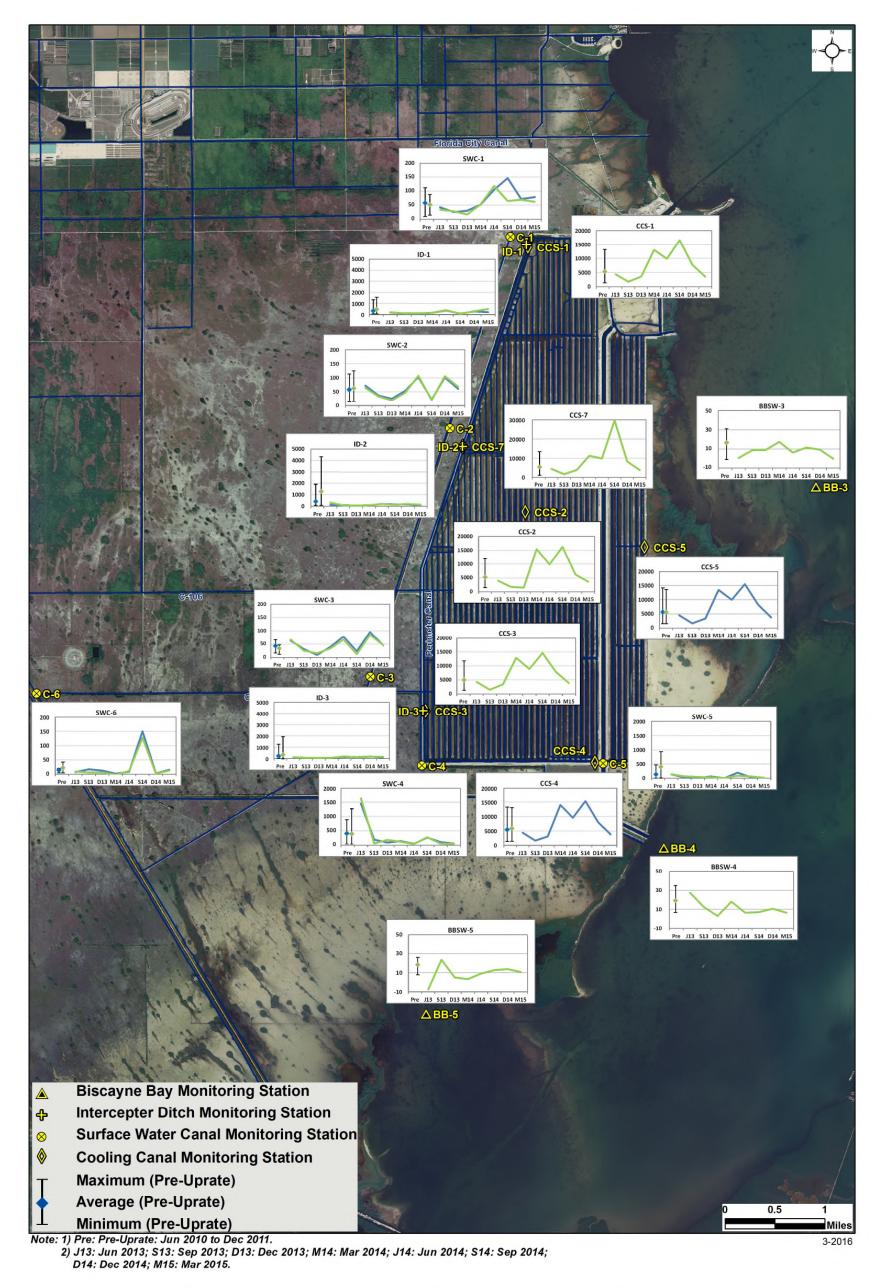
Quarterly Surface Water Chloride samples (mg/L) collected at 1 foot from the top (blue) and/or 1 foot from the bottom (green).

Pre-Uprate data shows average and range, while Post-Uprate values are for events from Jun 2013 to Mar 2015.


Figure 3.2-1. Range (Pre-Uprate) and Results (Post-Uprate) of Quarterly Surface Water Samples for Chloride (mg/L).

Quarterly Surface Water Sodium samples (mg/L) collected at 1 foot from the top (blue) and/or 1 foot from the bottom (green).

Pre-Uprate data shows average and range, while Post-Uprate values are for events from Jun 2013 to Mar 2015.


Figure 3.2-2. Range (Pre-Uprate) and Results (Post-Uprate) of Quarterly Surface Water Samples for Sodium (mg/L).

Quarterly Surface Water Specific Conductance samples (µS/cm) collected at 1 foot from the top (blue) and/or 1 foot from the bottom (green).

Pre-Uprate data shows average and range, while Post-Uprate values are for events from Jun 2013 to Mar 2015.


Figure 3.2-3. Range (Pre-Uprate) and Results (Post-Uprate) of Quarterly Surface Water Samples for Specific Conductance (μS/cm).

Quarterly Surface Water Tritium values (pCi/L) collected at 1 foot from the top (blue) and/or 1 foot from the bottom (green).

Pre-Uprate data shows average and range, while Post-Uprate values are for events from June 2013 to March 2015.

Figure 3.2-4. Range (Pre-Uprate) and Results (Post-Uprate) of Quarterly Surface Water Values for Tritium (pCi/L).

Legend: TPBBSW = \triangle , TPSWC = \bigcirc , TPSWID = \square , TPSWCCS = \bigstar


Figure 3.2-5. Post-Uprate Tri-Linear Diagram of Average Surface Water Ionic Concentrations.

Semi-Annual Surface Water Total Nitrogen samples (mg/L) collected at 1 foot from the top (blue) and/or 1 foot from the bottom (green).

Pre-Uprate data shows average and range, while Post-Uprate values are for events from Sep 2013 to Mar 2015.

Figure 3.2-6. Range (Pre-Uprate) and Results (Post-Uprate) of Semi-Annual Surface Water Samples for Total Nitrogen.

Semi-Annual Surface Water Total Phosphorus samples (mg/L) collected at 1 foot from the top (blue) and/or 1 foot from the bottom (green).

Pre-Uprate data shows average and range, while Post-Uprate values are for events from Sep 2013 to Mar 2015.

Figure 3.2-7. Range (Pre-Uprate) and Results (Post-Uprate) of Semi-Annual Surface Water Samples for Total Phosphorus.

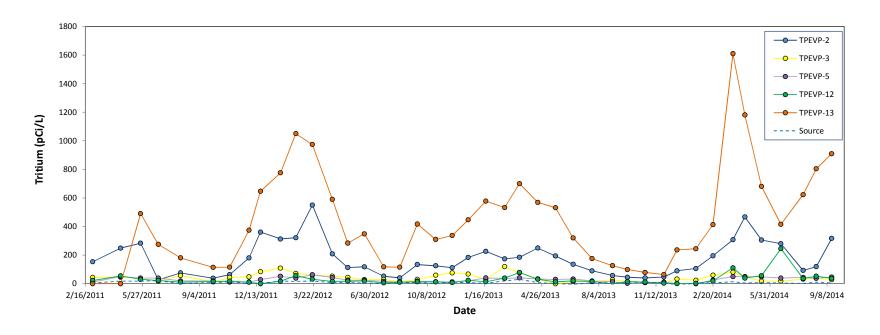


Figure 3.4-1. Evaporation Pan Tritium Data from March 2011 to September 2014.

4. ECOLOGICAL MONITORING

The purpose of ecological monitoring around the CCS was to identify existing baseline conditions and evaluate potential impacts, if any, as a result of the Uprate. Ecological monitoring was conducted starting in 2010 to: 1) establish the Pre-Uprate status of ecological conditions and biotic components, and 2) determine the extent to which, if any, CCS operations may have affected the surrounding ecological conditions and components during the Post-Uprate period. Biotic components of primary interest were marsh and mangrove wetlands adjacent to the CCS, and SAV in Biscayne Bay by the Plant.

This section focuses on data from the Post-Uprate sampling period, which includes eight terrestrial ecological monitoring events (August 2013, November 2013, February 2014, May 2014, August 2014, November 2014, February 2015, and May 2015 [see Table 4.1-1]) and four sampling events in Biscayne Bay (September 2013, April 2014, September 2014, and May 2015). An overview of the Pre-Uprate ecological conditions are also provided here, as a comparison with the Post-Uprate data.

4.1 Marsh, Mangroves, and Tree Islands

Plot establishment and monitoring setup is provided in detail in the Comprehensive Pre-Uprate Report (FPL 2012a). Per the Monitoring Plan (SFWMD 2009a), 12 transects were established to capture ecological characteristics and changes over time across the landscape surrounding the Turkey Point Power Plant (Figure 1.3-1). A total of 16 marsh, 4 tree island, and 12 mangrove 20-meter by 20-meter (20x20) plots were established along six marsh and six mangrove transects. Nested within each 20x20 plot are four 1-meter by 1-meter (1x1) subplots and four 5-meter by-5 meter (5x5) subplots. The 5x5 subplots were set up to capture changes in the woody species, and the 1x1 subplots were designed to measure changes within the herbaceous community. Of the 32 marsh, tree island, and mangrove 20x20 plots, six were established within reference transects (four in the marsh and two within the mangroves).

A reduction in ecological monitoring was implemented for the Post-Uprate period (see Section 1, Table 1.1-1). As part of the reduction, the mangrove site measurements were limited to once a year. Marsh vegetation measurements were still conducted on a quarterly basis, while tree islands were sampled semi-annually. Ionic analyses were limited to chloride and sodium, and stable isotopic analyses were eliminated from all sites; nutrients and tritium continue to be sampled at all sites.

4.1.1 Methods and Materials

4.1.1.1 Vegetation Sampling

For herbaceous subplots, all individuals of the dominant and co-dominant herbaceous emergent plants were counted. Plots to the west of the CCS and the reference plots primarily consisted of sawgrass (*Cladium jamaicense*); in some plots during certain events, spikerush (*Eleocharis cellulosa*) was co-dominant with sawgrass (Table 4.1-2). In plots to the south, saltgrass (*Distichlis spicata*) was the dominant herbaceous vegetation in the 1x1 subplots within the mangrove plots.

In the 1x1 plots, either 30% of the plants or 15 individuals (whichever value was greater) of the dominant species were tagged. Tagged plants were measured for the parameters needed to calculate biomass estimates. Parameters required for the biomass equations varied with species, but measurements included length, diameter at base, diameter at tip, and number of live leaves. Biomass estimates were subsequently used to calculate plot productivity and turnover in grams per square meter (g/m^2) .

For the woody species, three trees were tagged in each 5x5 subplot and up to six branches per tree were tagged. Only dominant species were individually measured. Tree species selection was based on the dominance of each species, and individuals of a species were chosen based on which general tree sizes represented the highest percentages of biomass in the subplot. For example, if 60% of the coverage of red mangrove (*Rhizophora mangle*) in a subplot was made up of small trees and 40% of the subplot was made up of large trees, two small trees and one large tree were tagged. Canopy width and length (and depth for white mangrove [*Laguncularia racemosa*] only), height, main stem diameter, and number of branches were recorded for each tagged tree to obtain tree biomass based on published allometric equations (Coronado-Molina et al. 2004).

Additional information about biomass and productivity calculations for dominant woody and herbaceous species is provided in both the Comprehensive Pre-Uprate Report (FPL 2012a) and Appendix K.

4.1.1.2 Porewater Sampling

Field specific conductance and temperature were recorded at 0, 30, and 60 centimeter (cm) depths, and additional samples were collected at 30 cm for nutrient analyses per the Monitoring Plan (SFWMD 2009a) and were modified per the Post-Uprate reductions (SFWMD 2013b and c). Samples were collected from the northeast 1x1 and 5x5 subplots at all sites. The method for collecting porewater is detailed in Appendix A of the QAPP (FPL 2013b) and the Comprehensive Pre-Uprate Report (FPL 2012a). Less porewater was required for each sample in the Post-Uprate because the number of analytes was reduced.

At each subplot, a peristaltic pump was connected to a PushPoint Sampler (PushPoint Sampler PPX36, M.H.E. Products, East Tawas, Michigan) using polyethylene and silicon tubing. Low volume samples (approximately 50 milliliters [mL]) were collected at 0 and 60 cm within both

the 1x1 and 5x5 subplots for specific conductance and temperature readings. These readings were collected using a conductance/temperature sensor connected to a hand-held console (AT100 probe and Rugged Reader console, In-Situ Inc., Fort Collins, Colorado). New tubing and a PushPoint Sampler cleaned using FDEP FC1000 procedures were used to collect samples at 30 cm. Once the PushPoint Sampler was inserted to 30cm depth, water was pumped for several seconds prior to collection to clear excess sediment from the tubing, and a small volume was collected for conductance and temperature readings. For the nutrient analysis, a 200- to 450-mL porewater sample was collected in a pre-cleaned, 1-liter sample bottle from both the 1x1 and the 5x5 subplots at a 30-cm depth interval, for a total composite sample volume of 400 to 900 mL. When sampling nutrients, a pH reading was made using a pH meter (Extech® PH220, FLIR Systems, Waltham, Massachusetts) and was recorded on the field datasheets. The pH value is used to calculate ammonia and is therefore recorded only during nutrient sampling events. The composite sample was distributed into the sample bottles using the same tubing and pump used for sample collection at 30 cm. Once the sample was distributed, the pH of chemically preserved samples was tested. If needed, preservative was added to the sample and the number of drops added was recorded on the field datasheet. The water level was marked on each sample bottle to help the laboratory determine if the bottles had been sealed properly during transport. The sample bottles were then placed in sealed plastic bags if preserved in ice and were stored per their preservation requirements for laboratory analysis.

4.1.1.3 Statistical Analysis

Differences among sites were examined statistically using NCSS 9.0 (NCSS LLC, Kaysville, Utah). Data were examined to determine if there were differences between Pre-Uprate and Post-Uprate data using repeated measures analyses-of-variance (ANOVAs).

4.1.2 Results and Discussion

4.1.2.1 Community Description

The key vegetation communities in each of the general habitats are shown in Table 4.1-2 and a complete list of species is provided in Appendix L. Transects F2, F3, F4, and F6 were freshwater marsh transects, each with 3 marsh plots and 1 tree island plot. The marsh plots were dominated by sawgrass, although scrub woody species were periodically encountered. Vegetation monitoring at the tree island plots was discontinued after May 2011 due to concerns over poison ivy. Although the F1 transect was designated as freshwater habitat, mangroves were present in both plots along this transect. F5 was primarily a mangrove plot, dominated by needlegrass rush (*Juncus roemerianus*), saltgrass, red mangrove, and white mangrove. Transect F5 is located in an area south of the Plant that was impounded during the Pre-Uprate and Interim periods, but was recently hydrologically restored. F1 is located in an impounded area north of the Plant. Dense periphyton mats were observed among the vegetation in the F2, F3, F4, and F6 plots but were not present in either F1 or F5 because of the higher salinity environments in these two transects, which was due to impoundment. All trees in the M transects were scrub mangroves, dominated mostly by the red mangrove (Table 4.1-2).

The Shannon-Wiener Index (SWI) of Diversity and species evenness were calculated from the plant communities in the 1x1 and 5x5 subplots located in the northeast corner of each plot. Eleven total species of woody and herbaceous plants were documented in the northeast corners of the plots during the November 2013 sampling event, and nine were present during the November 2014 event (Table 4.1-3). In the freshwater F-plots (F2, F3, F4, and F6), sawgrass and spikerush were the two species encountered most often. In the mangrove plots, red mangrove was the most prevalent species (Table 4.1-3). Diversity ranged from one to four species within a plot and from one to six species when comparing transects (Table 4.1-3).

The SWI is a measure of the probability that a randomly sampled individual will be of a particular species. For instance, an SWI value of 0 indicates that only one species is present with no uncertainty as to what species a randomly sampled individual will be. Values can range from 0 to 4.5 but, in the transects measured, SWI was low and all transects had SWI values less than 1.2 (Table 4.1-4). In the marsh plots, diversity was lowest in the F4 plots (SWI = 0), as all plots along the transect were dominated by a single species, sawgrass. Overall, the relatively low SWI values indicate low species diversity and low abundance of non-dominant species (i.e., most plots are dominated by sawgrass, with spikerush sparsely present). Diversity was highest in the freshwater marsh at transect F3 during both the November 2013 and 2014 sampling events (SWI = 0.742 and 0.681, respectively). Diversity was also low in the mangrove plots, which were dominated by red mangrove with white and black mangrove sparsely present. M5-1 was the most diverse mangrove plot, with four species (Table 4.1-3). The community with the highest diversity was the marsh-mangrove mix, which had three (F1) and six (F5) species along those transects. F5 was the most diverse transect as it was composed of a mix of woody and nonwoody species within the different plots. Although the SWI values have fluctuated each year, the overall trends have remained consistent throughout the entire monitoring period (Table 4.1-4).

Species evenness is a measure of how evenly distributed (numerically) each species is at a site. A species evenness of 1 means an equal number of individuals of each species is present. The low evenness values of the mangrove plots indicate one highly dominant species (red mangrove) with other species sparsely intermixed. Higher evenness values for some of the marsh plots show that at plots such as F1-1, F3-1, and F3-3, most species present are well-represented (Table 4.1-4). Species evenness cannot be calculated when only one species is present in a plot, which is the case for most of the plots (F6-2 excluded) along the F6 and M6 reference transects. The mangrove plots had the lowest species evenness, while the marsh sites had the highest (Table 4.1-4). These trends have remained consistent throughout the entire monitoring period.

4.1.2.2 Freshwater Marsh Sampling

As sawgrass was the primary herbaceous species measured in the marsh plots, to focus on landscape trends, discussion of the herbaceous vegetation is limited to sawgrass. Sawgrass cover was consistently ≤25%, and average vegetation height for each sampling event never exceeded 1.1 meters (m) (Tables 4.1-5 and 4.1-6, respectively). These vegetation patterns are consistent with the "sparse sawgrass" community commonly observed in Florida (Olmsted and Armentano 1997).

Sawgrass percent cover values have remained consistent during the entire monitoring period. The percent cover values are reported as percentage categories per the QAPP (FPL 2013b) (see Table 4.1-5). During the Post-Uprate period, values remained the same with the exception of small variations at F2-3, F3-3, F6-1, and F6-3 (Table 4.1-5). Changes in percentage categories observed between the Pre-Uprate and the Post-Uprate events are present, but are due to incremental and/or seasonal changes in percent cover and not rapid decline/growth.

Sawgrass height varied significantly by site, with F4-1 and F1-2 being the tallest plots and F3-1 being the shortest (Table 4.1-6). Many sites have been consistently trending downward with the exception of F4-1, F4-2, F1-2, F6-1, F6-2, and F6-3, which show a more irregular pattern that is possibly linked to wet/dry seasonal variations. The reason for the downward trend is unclear as other parameters that are related to height (porewater nutrients, live biomass, and total biomass) do not reflect the same trend. Notably, although the field crews take as much care and precaution as possible not to damage the vegetation, anthropogenic factors related to repeated sampling of the same plants over time could cause the decrease. However, despite this trend of decreasing height across the landscape, there have been no differences in the rank order of vegetation heights between the Pre- and the Post-Uprate periods. Plants in F3, F2, and F6 (reference transect) have always had shorter sawgrass relative to F1 and F4 in the Pre-Uprate and the Post-Uprate periods. These differences may be explained by inherent hydrologic and biogeochemical interactions within each plot and are not related to the Uprate or CCS operations.

Both live and total sawgrass biomass were calculated using the equations presented in Table 4.1-7. These equations were derived from semi-annual plant harvests conducted in accordance with this project. Both live and total biomass follow the same general patterns across the landscape, with F4-1 and F1-2 having the highest values and F3-1 the lowest (Tables 4.1-8 and 4.1-9). This overall trend has remained consistent during the Pre-Uprate and the Post-Uprate monitoring. A statistical test was performed to determine whether Pre-Uprate live sawgrass biomass is significantly different from Post-Uprate live sawgrass biomass. The analysis showed there is no significant difference in sawgrass live biomass between the two time periods ($F_{1,195}$ =0.38; P=0.547).

The Model Lands Marsh adjacent to the Turkey Point plant has similar hydrology and community composition as the C-111 Basin and Taylor Slough (Childers et al. 2006). Although the Model Lands is smaller in size than either the C-111 or Taylor Slough, these landscapes are similarly characterized by sawgrass marshes, tree islands, and hydrology driven by rain, canal overflow, and surface water runoff (Childers et al. 2006). Historic live biomass data at study sites in the C-111 Basin and Taylor Slough (located west of the study area) generally range from 100 to 300 g/m² annually (Childers et al. 2006). Live biomass during the Pre-Uprate and the Post-Uprate periods was less than 110 g/m² at 9 of the 14 sawgrass plots, including all three plots along reference transect F6 (Table 4.1-9). None of the sawgrass plots exceeded 300 g/m² (Table 4.1-8), with the exception of F4-1 in November 2013.

Since ecological sampling initially began in November 2010, sawgrass annual net primary productivity (ANPP) is calculated from November to November of each year. In both the Preand Post-Uprate periods, productivity at plots F1-1, F1-2, F2-1, and F4-1 was consistently high

compared with the other marsh sites, while productivity at F3-1 was consistently low (Table 4.1-10). The remaining plots exhibit a more variable pattern that can likely be attributed to meteorological conditions. Annual mean productivity from the C-111 Basin typically ranges from about 200 to 500 g/m², while mean productivity at Taylor Slough in Everglades National Park was typically less than 300 g/m² (Childers et al. 2006). The values from this study are consistent with the values observed at Taylor Slough.

Sclerophylly is a measure of leaf hardness or toughness that reflects climate and nutrient conditions. Low sclerophylly values represent more ideal growing conditions compared to high sclerophylly values. Post-Uprate sclerophylly is highly variable from season to season, showing no consistent trends within or between sites (Table 4.1-11). However, sawgrass sclerophylly was significantly higher during the Post-Uprate monitoring period compared with the Pre-Uprate $(F_{1,97}=134.9; P<0.0001)$. The meteorological conditions during the Post-Uprate monitoring were noticeably drier relative to the previous year, i.e., 40.15 inches from June 2013 to May 2014 and 41.18 inches from June 2014 to May 2015, versus 70.38 inches from June 2012 to May 2013 at the S-20 rainfall station (see Section 2, Table 2.4-8). The increase in sclerophylly is most likely due to the drier meteorological conditions that were present during the Post-Uprate time period.

The leaf nutrient trends in November 2013 and May 2014 are consistent with data from the Pre-Uprate period. A summary of sawgrass leaf nutrients and stable isotopes is presented in Tables 4.1-12 through 4.1-18. C3 photosynthetic plants (e.g., sawgrass) can have carbon isotope values between -34 parts per mille (%) and -22% (Smith and Epstein 1971), where -22% is representative of plants from desert conditions and -34‰ is indicative of tropical rainforest vegetation (Kohn 2010). Chang et al. (2009) found that carbon isotopes from sawgrass in the Loxahatchee National Wildlife Refuge (LNWR) ranged from -30.1% to -24.5%. Carbon isotopes from sawgrass collected during the Post-Uprate period ranged from -27.8 (F4-2 May 2014) to -25.9 (F6-2 November 2014), within range of the plant community in the LNWR and the Pre-Uprate data (Table 4.1-15). The nitrogen isotopes (δ^{15} N) found in sawgrass from the LNWR ranged from -5.3% to 7.7%, while sawgrass adjacent to Turkey Point had an average range of -5.75% (F4-2 May 2014) to 2.84% (F1-2 May 2015) during the Post-Uprate period (Table 4.1-16). The molar ratio of carbon to nitrogen (C:N) never fell below 47:1, which is representative of mature plants with high lignin content (Table 4.1-17). Terrestrial environments are considered nitrogen-limited when the nitrogen to phosphorus (N:P) ratio is below 14 and phosphorous-limited when the N:P ratio is above 16. All N:P ratios were well above 16, indicating a P-limited system (Table 4.1-18).

The specific conductance and temperature of porewater collected from a 30 cm depth within the sediment are presented in Tables 4.1-19 and 4.1-20. Statistical comparisons were performed to determine whether or not porewater specific conductance and temperature at a 30-cm depth changed significantly between Pre- and Post-Uprate monitoring. Because F5-1 and F5-2 are not representative of a freshwater marsh (their water chemistry and vegetation communities are more consistent with a brackish marsh) they were omitted from this analysis. Additionally, the tree island plots were not included in this analysis because they are not considered marsh habitat. The analysis showed that there was no significant difference between Pre- and Post-Uprate porewater specific conductance ($F_{1,164}$ =1.46; P=0.25) or porewater temperature ($F_{1,164}$ =0.06;

P=0.80). CCS water is characterized by high specific conductance and temperature. The absence of higher specific conductance and temperature in the Post-Uprate porewater data suggests that the surrounding marsh is not influenced by the Uprate or CCS operations.

Post-Uprate monitoring consists of sampling quarterly for sodium, chloride, and tritium; and bi-annually for nutrients (May and November). Porewater analytical data for August 2013 to May 2015 are presented in Tables 4.1-21 through 4.1-28. In some quarters, data are not available for sites (e.g., F3-4, F4-4) which were often too dry at 30 cm and did not yield enough porewater for analysis.

In the Post-Uprate, marsh transects west of the CCS (F2, F3, F4) generally had higher sodium and chloride values with distance from the L-31 Canal (Figures 4.1-1 and 4.1-2). The reference transect, F6, showed a similar trend across the landscape as well, with the farthest site from any canal, F6-3, having the highest values. The impounded north transect (plots F1-1 and F1-2) had lower sodium and chloride levels than the impounded plots to the south (F5-1 and F5-2). Although considered marsh sites, the southern impounded plots were more similar to the mangrove sodium and chloride values than the other marsh plots.

During the Post-Uprate period, the hydrology of plots F5-1, F5-2, and M5-1 was drastically modified. The roads that historically impounded these areas were removed as part of an effort to restore their natural hydrology. While the removal of the roads has helped restore these areas to a more natural state, the change in hydrology is so significant that it will be no longer be feasible to attribute any changes in vegetative community or porewater chemistry between the Pre- and Post-Uprate to CCS influence.

A repeated measures ANOVA was performed to evaluate Pre-Uprate and Post-Uprate differences in porewater analytes. For all marsh analyses, the four impounded plots (F1-1, F1-2, F5-1, and F5-2) and the four tree island plots (F2-4, F3-4, F4-4, and F6-4) were omitted because the vegetative communities and the water chemistry found at these sites are different from marsh habitat. Sodium and chloride values were generally lowest during the wet season and highest in the dry season. The lowest annual values were observed during the wet season, i.e., either in August or November. There was no significant difference between Pre-Uprate and Post-Uprate values for either sodium ($F_{1,162}$ =1.74; P=0.21) or chloride ($F_{1,162}$ =1.10; P=0.32) in the marsh.

In the Post-Uprate, marsh porewater nutrients (TN and TP) showed no consistent trends with distance from the CCS (Figures 4.1-3 and 4.1-4), demonstrating a wide range of natural variability across the landscape. Porewater TKN, ammonia, and TP were analyzed to evaluate Pre-Uprate and Post-Uprate differences. There was no difference in Pre-Uprate and Post-Uprate TKN ($F_{1,80}$ =2.91; P=0.016) or ammonia ($F_{1,80}$ =4.33; P=0.0.061) in the marsh sites, but Post-Uprate TP was significantly higher than Pre-Uprate TP ($F_{1,80}$ =10.99; P=0.007).

Porewater tritium data are available through the February 2015 sampling event, but the May 2015 data were still pending at the time of this report. Data showed no difference between Pre-Uprate and Post-Uprate tritium concentrations in the marsh sites $(F_{1,150}) = 0.17$; P = 0.692). As in the Pre-Uprate period, Post-Uprate tritium concentrations in marsh sites generally decreased as distance from the CCS increased (Figure 4.1-5). A similar trend was observed in evaporation

pans around the CCS (see section 3.4). Higher concentrations closer to the CCS indicate that atmospheric deposition is the main source of tritium in the marsh as in evaporation pans.

The porewater nutrient concentrations in the tree island plots are typically higher than the surrounding marsh. Ion concentrations vary seasonally with higher values observed in the dry season months (February and May) than the wet season (August and November). Water availability in the tree islands has been highly infrequent throughout the monitoring period. When water is available at these sites, it is often so fresh (specific conductance < 725 μ S/cm) that it does not meet the sampling requirements established in the QAPP (FPL, 2013b), and no sample is collected. Due to the limited data available from these sites, temporal trends in porewater chemistry cannot be analyzed.

The structure and composition of the sawgrass marsh communities within the study area have remained stable throughout the entire monitoring effort. Many of the fluctuations observed are due to seasonal and meteorological conditions. Overall, the vegetation characteristics summarized above (i.e., live biomass, productivity, leaf nutrient concentration), porewater chemistry, and community composition are representative of the hydrologically modified marshes found throughout southern Florida.

4.1.2.3 Mangrove Sampling

Post-Uprate vegetation sampling at the M sites occurred during the November 2013 and November 2014 sampling, while porewater was sampled in November 2013, May 2014, and November 2014. Values from the same timeframes during the Pre-Uprate monitoring period are provided for comparison along with the Pre-Uprate value ranges. As red mangrove is the primary woody species measured in the mangrove plots, to focus on landscape trends, discussion of the woody vegetation is limited to red mangrove.

Percent cover has remained consistent during the Post-Uprate period for all sites (Table 4.1-29). The cover also has not changed between the Pre- and the Post-Uprate time periods, with the exception of M3-1. The change in percentage categories observed between Pre-Uprate and Post-Uprate events at M3-1 is difficult to interpret due to the wide range of values included in each percentage category. Because of this, it is worth noting that the changes in percent cover classes that have occurred during the monitoring period are due to incremental and/or seasonal changes in percent cover, not rapid decline/growth.

Lugo and Snedaker (1974) classified a scrub mangrove forest as having trees that are less than 1.5 m (150 cm) tall. All of the trees measured within the study area are consistent with this classification. At the F sites, red mangrove height remained consistent throughout the Post-Uprate sampling period (within 9 cm), indicating that very little vertical growth/die-off has occurred during the Post-Uprate events (Table 4.1-30). A statistical test was performed to compare Pre-Uprate and Post-Uprate red mangrove height at the M sites. The Post-Uprate height dataset consists of two events at the M sites (November 2013 and November 2014), so the analysis included Pre-Uprate data from October 2010 and November 2011 to help balance the dataset while still representing similar seasons. The analysis showed that the trees are

significantly taller Post-Uprate, suggesting that the dwarf mangrove populations within the study area are slowly growing and that no considerable die-off has occurred ($F_{1,47}$ =27.05; P=0.0003). Slow growth is expected in dwarf mangrove ecosystems because of the difficult growing conditions naturally found in these areas (McKee et al. 2002).

Red mangrove biomass was calculated using the allometric equation presented in Coronado-Molina et al. (2004). Seasonal fluctuations in red mangrove biomass are present, and while Post-Uprate biomass values for plots M3-2, M4-2, and M5-2 are below the Pre-Uprate ranges for these sites, there are no consistent increasing or decreasing trends over time (Table 4.1-31). A statistical test was conducted to compare Pre-Uprate and Post-Uprate red mangrove biomass at the M sites. Because the Post-Uprate biomass dataset consists of two events at the M sites (November 2013 and November 2014), the analysis included Pre-Uprate data from October 2010 and November 2011 to help balance the dataset while still representing similar seasons. The analysis showed that there is no significant difference between Pre- and Post-Uprate red mangrove biomass ($F_{1,47}$ =2.42; P=0.15). This suggests that there has been no considerable change in the red mangrove community between the Pre- and Post-Uprate periods.

Sclerophylly sampling was performed during the November 2013 and November 2014 sampling events (Table 4.1-32). A statistical test was performed to compare Pre-Uprate and Post-Uprate red mangrove sclerophylly at the M sites. The Post-Uprate sclerophylly dataset consists of two events at the M-sites (November 2013 and November 2014), so the analysis included Pre-Uprate data from October 2010 and November 2011 to help balance the dataset while still representing similar seasons. The Post-Uprate red mangrove sclerophylly values were significantly higher than the Pre-Uprate data, indicative of the mangrove leaves being thicker and more succulent ($F_{1,45}$ =24.71; P=0.0004). This is most likely a result of the drier meteorological conditions during this time period.

Mangrove ANPP was measured during the Pre-Uprate period based on quarterly field measurements of 6 individual branches on 3 representative trees in each 5x5 subplot. ANPP was calculated by tracking the number of leaves lost and gained on each individually measured branch every 3 months (see Appendix K for more details). However, as part of the Post-Uprate reductions, sampling of the 5x5 woody subplots was decreased to one a year, making it impossible to track leaf loss/gain over time using the methodology established in the QAPP (FPL, 2013b). Consequently, mangrove ANPP cannot be calculated for the Post-Uprate period, and the individual branch data collected in November 2013 and 2014 are unusable within the scope of this project.

Mangrove leaf nutrients, stable isotopes, and molar ratios for the November 2013 Post-Uprate event are presented in Tables 4.1-33 through 4.1-39. Carbon isotope data were within the normal range that C3 plants are known to have (-34‰ to -22‰ from Smith and Epstein 1971), reaching as high as -24.7‰ (M3-2 November 2014) and as low as -28.0‰ (F2-2 November 2013). In the Carbon isotope total average over all Post-Uprate seasons was -25.9‰, which is representative of data from scrub red mangroves in Belize (-25.3‰ from Smallwood et al. 2003 and -26.4‰ from McKee et al. 2002). Red mangrove δ^{15} N ranged from -11.3‰ to 3.6‰ and averaged -3.6‰ (Table 4.1-37). McKee et al. (2002) found average δ^{15} N values of -5.38‰ in similar scrub

mangrove habitats. Low nitrogen isotope values are a consequence of the slow growth patterns and the resulting low nitrogen demand associated with scrub mangrove forests (McKee et al. 2002). The Post-Uprate leaf nutrient and isotope values are consistent with the Pre-Uprate data and are within the ideal ranges established in the literature for similar dwarf mangrove plant communities (Smallwood et al. 2003; McKee et al. 2002). The N:P molar ratios of the leaves were well above 16, indicating that all mangrove sites are P-limited (Table 4.1-39).

A statistical test was performed to determine whether or not porewater specific conductance and temperature at a 30-cm depth changed significantly between Pre- and Post-Uprate monitoring. The Post-Uprate porewater dataset consists of four events at the M sites (November 2013, May 2014, November 2014, and May 2015), so the analysis included Pre-Uprate data from October 2010 and May and November 2011 to help balance the dataset while still representing similar seasons. The analysis showed that neither porewater specific conductance ($F_{1,81}$ =4.75; P=0.052) nor temperature ($F_{1,81}$ =1.56; P=0.24) were significantly different between the Pre- and Post-Uprate time periods. CCS water is characterized by both high specific conductance and temperature. The absence of higher specific conductance and temperature in the Post-Uprate data suggests that the mangrove habitat surrounding Turkey Point is not influenced by the Uprate or by CCS operations.

The Post-Uprate porewater dataset for sodium and chloride consists of four events at the M sites (November 2013, May 2014, November 2014, and May 2015), so the analysis included Pre-Uprate data from October 2010 and May and November 2011 to help balance the dataset while still representing similar seasons. Overall, there was no difference in sodium ($F_{1,80}$ =1.26; P=0.286) or chloride values ($F_{1,79}$ =1.55; P=0.238) between the Pre- and Post-Uprate periods. The highest values were observed in May and August 2011 after a dry spring earlier that year.

The Post-Uprate porewater dataset for TP, TKN, and ammonia consists of four events at the M sites (November 2013, May 2014, November 2014, and May 2015), so the analysis included Pre-Uprate data from October 2010 and May and November 2011 to help balance the dataset while still representing similar seasons. A comparison of the Post-Uprate and the Pre-Uprate events showed that there was no difference between Pre-Uprate and Post-Uprate TKN ($F_{1,80}$ =0.10; P=0.753), TP ($F_{1,80}$ =3.34; P=0.100), or ammonia ($F_{1,80}$ =0.57; P=0.110).

The Post-Uprate porewater dataset for tritium consists of three events at the M sites (November 2013, May 2014, November 2014; May 2015 data were still pending at the time of this report); therefore, the analysis included Pre-Uprate data from October 2010 and May and November 2011 to help balance the dataset while still representing similar seasons. The available data were analyzed to evaluate Pre-Uprate and Post-Uprate differences. Based on the available data, there was no difference between Pre-Uprate and Post-Uprate tritium concentrations in the mangrove sites $(F_{1,68}) = 0.51$; P = 0.492).

The structure and composition of the scrub mangrove communities within the study area have remained stable throughout the entire monitoring effort. The system is driven by concurrent stressors, including nutrient deficiency, high salinities, and saturated soil. The vegetation

characteristics of the study area are consistent with scrub mangrove forests found along the coastal fringe of south Florida and the Florida Keys (Lugo and Snedaker 1974).

4.2 Biscayne Bay

Pre-Uprate ecological monitoring was conducted semi-annually between September 2010 and September 2011 (two fall events and one spring event), and semi-annual Post-Uprate monitoring was conducted between September 2013 and May 2015 (two fall and two spring events). The sampling setup was based on the approved Monitoring Plan (FPL 2010) and followed the QAPP (FPL 2011b, 2013b). Four study areas were selected for ecological sampling, three adjacent to the CCS within Biscayne Bay and Card Sound (BB1 to BB3) and one reference site in Barnes Sound (BB4; Figure 1.3-1).

Pre-Uprate monitoring was conducted along five shore-parallel transects within each study area to document changes in SAV cover and faunal composition with increasing distance from the CCS. Insofar as no ecologically significant differences were detected among transects during Pre-Uprate monitoring, three of the five SAV transects in each area were eliminated from Post-Uprate monitoring; the two transects closest to shore in each area were retained (Figure 4.2-1). Additionally, the usefulness of Pre-Uprate faunal data in assessing uprate effects was reviewed and upon concurrence from the agencies, that component was eliminated from Post-Uprate monitoring.

In this section, the results of Post-Uprate monitoring conducted during September 2013 and 2014 (two fall events) and May 2014 and 2015 (two spring events) are presented and compared with results from Pre-Uprate monitoring. Because data are only available from a single spring Pre-Uprate event, the data for the two fall Pre-Uprate events were averaged to produce a single value for comparative purposes.

4.2.1 Methods and Materials

Within each study area, two 2-kilometer (km)-long, shore-parallel transects were used to monitor ecological conditions (Figure 1.3-1). These transects, designated "a" and "b," were located 250 m and 500 m from shore, respectively. Each transect was divided into eight 250m-long segments. A 1 m² point randomly selected along each 250 m segment during the initial Pre-Uprate event was selected as the permanent sampling location for all future sampling events (Table 4.2-1). These points were numbered 1 through 8. Thus, a sampling point designated as BB1-b-4 represents Area BB1, Transect b, and Sampling Point 4. This design produced a total of 16 sampling points per study area and 64 points for all areas combined. Post-Uprate data collection methods followed the QAPP (FPL 2013b) and were consistent with methods used for Pre-Uprate monitoring, as reported in the Comprehensive Pre-Uprate Report (FPL 2012a).

4.2.1.1 Physical Parameters and Surface Water Quality Data

General environmental data were collected at each sampling point. This included tidal cycle, air temperature, wind speed and direction, and sky conditions. The tidal cycle (high, low, ebb, or

flood tide) was recorded based on published tide tables. A NIST-certified thermometer was used to determine air temperature. Wind speed was estimated, and wind direction was determined by use of a compass. Sky conditions were noted as clear (0% to 25% cloud cover), partly cloudy (25% to 50% cloud cover), mostly cloudy (50% to 75% cloud cover), or overcast (more than 75% cloud cover). Notes were made of any precipitation during the sampling event.

Light attenuation was measured at a single, fixed sampling point (Sampling Point 4) along each transect. A LI-COR LI-1400 data logger was connected to a LI-COR LI-193 spherical sensor and a LI-COR LI-190 quantum sensor to measure light (micromoles per square meter per second [μmols/m²/sec]) at depth and at the surface, simultaneously. The LI-193 sensor was mounted in a weighted, black frame, while the LI-190 sensor was placed in an unshaded area on the boat. In water depths less than 1.5 m, three measurements were taken: 0.3 m below the surface, middepth, and 0.3 m above the bottom. In water depths greater than 1.5 m, five measurements were taken at equidistant depths starting at 0.3 m below the surface and finishing at 0.3 m above the bottom. Records of light measurements were made as the sensor was lowered to each depth, and again as the sensor was raised, for a total of six to ten readings per sampling point. Sampling depth and time of sampling were recorded for each paired surface and underwater reading. For this report, only surface, mid-depth, and bottom values are presented.

A Hach Quanta water quality meter was used to measure water quality at each sampling point. Monitored variables included temperature (°C), specific conductance (milliSiemens per centimeter [mS/cm], converted to µS/cm for reporting purposes), salinity (ppt), dissolved oxygen (DO) (milligrams per liter [mg/L]), pH, oxidation reduction potential (ORP) (millivolts [mV]), and turbidity (NTU). Salinity was calculated (not measured directly) by the water quality meter using conductance and a temperature correction normalized to 15°C (PSS-78 scale). Water column measurements were taken approximately 30 cm below the surface and 30 cm above the bottom.

4.2.1.2 Porewater Water Quality

At each station, porewater was collected at 30cm using the methods described in the Comprehensive Pre-Uprate Report (FPL 2012a). If sediment depth was less than 30cm, the bottom was probed within a 2m to 5m radius of the sampling point until the target depth could be reached. Porewater was extracted with a Pushpoint Sampler and measured with a Hach Quanta water quality meter, while temperature was measured in situ with a thermocouple datalogger (TCTemp1000, ThermoWorks Inc., Lindon, UT).

After completing SAV/water quality sampling at all eight points on a transect, specific conductance data for porewater were reviewed, and the location with the highest conductance value was selected as the porewater sampling point. At each of these sampling points, the porewater sampler was inserted to a depth of 30cm, and the tubing attached to the sipper was connected to a peristaltic pump on the boat. For each sample, 500 to 750 mL of porewater was extracted from two sampling locations (<0.5m apart). After collection, the two porewater samples were combined and homogenized and subsequently distributed into pre-labeled analyte containers for laboratory analyses in accordance with the QAPP (FPL 2013b). Samples were

analyzed for the following variables: sodium, chloride, nitrate-nitrite as N, OP, unionized ammonia, ammonium, TKN, TP, and tritium.

4.2.1.3 Submerged Aquatic Vegetation Surveys and Ecological Observations

SAV surveys were conducted at all 16 sampling points within each study area (eight/transect). Four quarter-meter quadrats were thrown from the boat roughly equidistant within a 3m radius around the marked sampling point. The SAV within each of the four quadrats was examined and percent cover score was recorded on underwater datasheets. Each of 26 pre-established categories of SAV (Table 4.2-2) used by the SFWMD, Florida Fish and Wildlife Fisheries Habitat Assessment Program, and the RER were scored using the Braun-Blanquet Cover Abundance (BBCA) Index methodology previously described in the Comprehensive Pre-Uprate Report (FPL 2012a). The BBCA method assigns a code to each species or taxonomic group based on its contribution to bottom coverage, as follows:

0 = bare

0.1 = <5% cover with a solitary individual/shoot

0.5 = <5% cover with few individuals/shoots

1 = <5% cover with numerous individuals/shoots

 $2 = \geq 5\%$ cover and $\leq 25\%$ cover

3 = 25% cover and $\leq 50\%$ cover

4 = >50% cover and $\leq 75\%$ cover

5 = >75% cover

The macrophyte scores for the four quadrats were averaged to produce a mean score for each sampling point, and then all eight points were averaged to produce a mean transect score. To ensure consistency in assessments among FPL and the Agencies, BBCA scoring was done only by divers who had previously attended annual Interagency Calibration Exercises hosted by the SFWMD in Key Largo (May 17, 2013 and May 22, 2014).

In addition to quantifying SAV coverage, sediment depth was considered an important variable in determining the relative abundance of seagrasses. Within each scored quadrat, a rod was inserted into the substrate near each of the four corners and in the middle. Depth to refusal (i.e., underlying hardbottom) for the five points were averaged and recorded.

A qualitative characterization of benthic conditions surrounding each sampling point was made by a diver at the beginning of each SAV survey. This characterization, made out to the range of visibility, generally encompassed an area within a 5 m to 10 m radius of the sampling point. Observations were recorded under three main categories:

- Overall conditions radius and visibility (in feet) of the area that was assessed and the
 overall biotic coverage (Open, Fairly Open, Moderately Open, Mostly Covered, and
 Uniform);
- Qualitative assessment of seagrass, drift algae, and *Batophora* coverage in the surveyed area (Sparse, Sparse to Moderate, Moderate to Dense); and

• Generalization of the amount of calcareous algae, sponges, corals, and gorgonians found in the area (None, Few, Many).

The substrate in the immediate vicinity of each sampling point was also qualitatively characterized by noting the presence/absence of the following sediment types: sandy, shell hash, silty, and rubble. If a handful of substrate was picked up, released, and settled relatively quickly with little drift, it was classified as sandy. If a plume was evident and it settled more slowly, it was classified as silty. Pockets of shell fragments mixed in with the sand were classified as shell hash, while rocks or hardbottom either exposed or just beneath a veneer of sediment were classified as rubble.

4.2.1.4 Seagrass Leaf Nutrient Analysis

Seagrass leaf collections were made at the same two points along each transect (1 and 4 on transect a and 2 and 5 on transect b) used for collecting soil cores during Pre-Uprate monitoring. At each point, divers collected blades of turtle grass (*Thalassia testudinum*), the dominant seagrass species, by clipping the blades at the substrate. Samples were placed in labeled plastic bags, maintained on ice, and transported to the laboratory for analysis. In the lab, senescent material was removed from the sample and the green blades scraped of epiphytes. Each sample was then oven-dried at 105°C for a minimum of 24 hours. The dried leaves were ground to a powder, homogenized, and an 8 to 10 g sub-sample placed in a labeled plastic bag for subsequent nutrient analysis.

4.2.2 Results and Discussion

4.2.2.1 Water Depth and Bottom Conditions

Water Depth

Sampling was conducted over all tidal cycles, and the data presented herein are actual depths at the time of sampling, unadjusted for tides. Mean water depth for all study areas and transects combined during the fall Post-Uprate events ranged from 2.2 (2013) to 2.4 m (2014) and averaged 2.2 m during both (2014 and 2015) spring sampling events (Table 4.2-3). Area BB1 had the shallowest mean depth (1.7 m for both fall events and 1.5 to 1.6 m for the two spring events), while Area BB3 had the greatest (2.8 to 3.0 m in the fall and 2.8 to 2.9 m in the spring). During the most recent year of sampling (fall 2014 and spring 2015), 31% of all sampling points, all study areas combined, were in water depths of 1 to 2 m, 58% were in depths of 2.1 to 3 m, and 11% were in depths greater than 3 m.

Sediments

Sediment type varied considerably within and among the four study areas (Table 4.2-4). Between 70% and 78% of the points sampled during each Post-Uprate event were classified as sandy-shell hash. Seven to 18 sampling points (11% to 28%) per event had a silty component, with the highest number recorded during the fall 2013 event. The majority of silty sampling points were located in Area BB4. Similarly, 8 to 13 Post-Uprate sampling points during each

Post-Uprate event had rubble present, again mostly in Area BB4. These findings are consistent with Pre-Uprate (FPL 2012a) observations (Table 4.2-4) and demonstrate that sediment conditions in Area BB4, the reference area within Barnes Sound, are somewhat different from the other areas.

4.2.2.2 Surface Water Quality

Temperature, turbidity, DO, salinity, and other water quality variables in Biscayne Bay are highly dynamic and reflect prevailing conditions at the time of sampling, including time of day (air temperature), tidal stage, currents, cloud cover, wind, waves, rainfall, and recent extent of freshwater runoff. All of these factors, both independently and collectively, create considerable natural spatial and temporal variability within the system. Consequently, care must be taken in drawing any definitive conclusions from the water quality data presented below, particularly considering that measurements are only taken twice per year over the course of a few days.

Light Attenuation

There was considerable variability in light attenuation data among areas, transects, and seasons (Table 4.2-5), which is not surprising, given the variation in those factors (winds, waves, currents, rainfall, etc.) that collectively contribute to water clarity. The only obvious trend detected both within and between Pre- and Post-Uprate study periods was the consistent increase in attenuation with increasing water depth, which is normal.

Temperature

Mean surface and bottom water temperatures along each transect for all Pre- and Post-Uprate monitoring periods combined were within the range of 26.0°C to 30.2°C (79°F to 86°F) during times of sampling (Table 4.2-6). There was relatively little difference between mean fall and spring values, although temperatures were slightly warmer (< 2.0°C) during the fall. Mean fall Post-Uprate surface temperatures within all four study sites were 0.2°C to 0.3°C warmer than their comparable Pre-Uprate values, while mean spring Post-Uprate values were about 0.8° to 1.0°C warmer. The only exception to the latter was in Area BB4, where spring Post-Uprate temperatures were about 0.7°C cooler than the comparable Pre-Uprate mean.

As would be expected in a shallow, well-mixed water body, there was very little difference between mean surface and bottom water temperatures along any transect. Consequently, there was also very little difference among seasons, transects, and sampling periods.

Specific Conductance and Salinity

Over the entire course of Pre- and Post-Uprate monitoring, mean surface specific conductance and its derivative, salinity, ranged from 41,456 μ S/cm (26.8 [in PSS-78 scale]) in Area BB1 in fall 2013 to 59,194 μ S/cm (39.6 PSU), also in Area BB1 in spring 2014 (Tables 4.2-7 and 4.2-8). During both the Pre- and Post-Uprate monitoring, salinity was generally lower during fall sampling (wet season) than during spring sampling (dry season). These findings are consistent with seasonal and regional rainfall and hydrologic influences. The only exception to this pattern

was found during fall 2014 when relatively high salinity values were recorded, suggestive of a preceding period of relatively low rainfall. There were no apparent trends in salinity between transects within any area, either Pre- or Post-Uprate. Similarly there were only minor differences in mean surface and bottom salinity within any study area, suggestive of a well-mixed water column. The only exception occurred during fall Pre-Uprate monitoring, when mean salinity in Areas BB3 and BB4 was 1.8 PSU higher on the bottom than at the surface. This finding is suggestive of a recent rainfall event, with greater freshwater runoff in the southern portion of the study area. Runoff may create temporary stratification of the water column, with heavier, more saline water trapped on the bottom.

During spring Post-Uprate monitoring, hypersaline (> 35.0 PSU) water was present at all sites except Area BB4. However, similar conditions were documented during spring Pre-Uprate monitoring, even in Area BB4 (Table 4.2-8). Mean spring Pre-Uprate salinity values fell within the range of comparable Post-Uprate values at all sites except Area BB4, which was more saline during Pre-Uprate spring sampling.

Salinities in Areas BB1 and BB4 were lower than the other two study areas during fall Pre-Uprate monitoring and fall 2013 Post-Uprate monitoring. This pattern prevailed during spring monitoring both Pre- and Post-Uprate in Area BB4, whereas during dry periods (including fall 2014), surface salinity in Area BB1 was similar to values in Areas BB2 and BB3. The persistence of lower salinities within Area BB4 may be attributable to its location in Barnes Sound at the southern end of the study area, where different hydrologic and hydrodynamic conditions may prevail (e.g., higher levels of freshwater terrestrial runoff, less mixing, lower turnover rates, etc.).

Dissolved Oxygen, pH, Turbidity, and Oxidation-Reduction Potential

Over the entire course of Post-Uprate monitoring, mean surface DO values were relatively stable, ranging between 4.7 mg/L (BB4 in fall 2014) and 6.0 mg/L (BB1 in spring 2015 and BB4 spring 2014 [Table 4.2-9]). During Pre-Uprate monitoring, DO ranged from 5.0 mg/L (BB1 in spring) to 6.3 mg/L (BB2 in spring). There were no consistent trends between transects within any area and only minor differences between seasons. Mean surface DO values were 0.10 (BB1) to 0.60 mg/L (BB2) lower during fall Post-Uprate monitoring than during the comparable Pre-Uprate period. During the spring, Post-Uprate values were 0.60 to 0.85 mg/L higher than comparable Pre-Uprate values in Areas BB4 and BB1, respectively, but 0.05 to 0.50 mg/L lower in Areas BB3 and BB2, respectively. Differences among study areas and Pre- and Post-Uprate monitoring periods are relatively minor and likely reflect natural variability within the system. Likewise, there were very small differences between surface and bottom DO values within any of the study areas either Pre- or Post-Uprate, suggestive of a well-mixed and oxygenated water column.

As with DO, pH within the study area was relatively stable, with mean values during Post-Uprate monitoring ranging only from 7.7 (BB1 in fall 2014) to 8.3 (BB1 in spring 2014 [Table 4.2-10]). Both higher (8.6 at BB2 in spring) and lower (7.6 at BB1 in fall) values were recorded during Pre-Uprate monitoring. Relatively minor differences and no apparent trends were detected when

looking at differences in pH between transects, depths, seasons, or Pre- and Post-Uprate monitoring periods.

Water clarity has been high, as reflected by the very low turbidity values throughout the period of study (Table 4.2-11). Mean values for all study sites were less than 0.4 NTU during Post-Uprate monitoring, and for the most part, turbidity was undetectable (0.0 NTU). Higher values, although still relatively low, were found during fall Pre-Uprate monitoring, with the highest mean values occurring at the surface in Area BB4 (4.7 NTU) and at the bottom in Area BB4 (6.0 NTU). These data are reflective of persistent clear water, both spatially and temporally. Waves and currents may periodically suspend bottom sediments, and thus it is not surprising that the highest values were found in BB4, where siltier conditions are present. However, these elevated levels appear to be very ephemeral.

Unlike the other water quality parameters, ORP values tended to be highly variable, both spatially and temporally, with mean values during Post-Uprate monitoring ranging from 27.6 mV (BB1 in spring 2014) to 346.8 mV (BB2 in spring 2015; Table 4.2-12). There were no consistent seasonal patterns, as relatively low values, comparable to those obtained during Pre-Uprate monitoring, were recorded in fall 2013 and spring 2014, whereas fall 2014 and spring 2015 values were often many times higher than those obtained during Pre-Uprate monitoring. Likewise differences among stations were inconsistent. Although ORP was highly variable both spatially and temporally, it appears that it was fairly uniform within the water column at any particular location, as surface and bottom values within each area varied only slightly.

4.2.2.3 Porewater Quality

As for water column temperatures, porewater temperatures were relatively consistent among areas, transects, and seasons, with fall Post-Uprate temperatures being only slightly warmer than comparable spring values (Table 4.2-13). Post-Uprate porewater temperatures ranged from 27.2°C (81.0°F) at BB2 and BB3 in spring 2014 to 30.9°C (87.6°F) at BB4 in fall 2013, with the greatest difference between fall and spring Post-Uprate means (2.3°C [4.1°F]) occurring in Area BB4. Mean Pre-Uprate porewater temperatures fell within the same approximate range as Post-Uprate values (27.1°C at BB2 in spring to 29.2°C at BB1 in fall), and showed the same seasonal trend. Post-Uprate porewater temperatures were slightly warmer than corresponding seasonal Pre-Uprate means, with the greatest difference (1.5°C) found in Area BB4, the reference site.

Sediments have an insulating effect, and thus changes in porewater temperatures tend to lag behind changes in overlying water column temperatures. For example, as water column temperatures decline, porewater temperatures tend to remain slightly warmer. During Pre-Uprate monitoring, mean porewater temperatures ranged from 0.6°C warmer than the overlying water column (BB3 in spring) to 0.5°C cooler (BB4 in spring; Table 4.2-14). During Post-Uprate monitoring, mean porewater temperatures ranged from 1.5°C warmer (BB4 in fall 2013) to 0.8°C cooler (BB1 in spring 2015). The greatest differences between porewater and overlying water column temperatures were found in Area BB4 during both fall Post-Uprate events.

During the fall Post-Uprate monitoring, porewater specific conductance ranged from 47,081 μ S/cm (BB4 in 2013) to 55,363 μ S/cm (BB3 in 2014 [Table 4.2-15]). Fall Pre-Uprate values fell within that same range, with Areas BB2 and BB3 having slightly higher mean porewater conductance than Areas BB1 and BB4, the same relationship found during fall 2013 Post-Uprate monitoring (differences among study sites were largely absent in fall 2014). Porewater specific conductance during spring Post-Uprate monitoring was typically higher than comparable fall values, ranging from 49,794 μ S/cm (BB4 in 2014) to 56,900 μ S/cm (BB2 in 2014). Spring Pre-Uprate values fell within the same approximate range. As for water column specific conductance, mean porewater conductance tended to be lower in Area BB4 than the other study areas, particularly during the spring, a pattern also seen during Pre-Uprate monitoring.

Similar to porewater temperature, porewater specific conductance is largely a reflection of the conductance in the overlying water column. During the fall Pre-Uprate monitoring, differences between porewater and bottom water column conductance were similar among areas, with porewater conductance ranging from 2,447 μ S/cm (BB4) to 4,097 μ S/cm (BB1) higher than conductance in the overlying water column (Table 4.2-15). That difference persisted during fall 2013 Post-Uprate monitoring in both Areas BB1 and BB4; however, differences were largely absent at the other two sites. During spring Pre-Uprate monitoring, porewater specific conductance was 1,781 μ S/cm (BB1) to 7,037 μ S/cm (BB4) lower than conductance in the overlying water column, whereas during the spring 2014 Post-Uprate monitoring the opposite pattern was present (porewater conductance slightly higher than conductance in the water column). However, there were no consistent trends within or among study areas or seasons, demonstrating the considerable natural variability in porewater specific conductance and its relationship to the overlying water column, likely resulting from the insular effects of sediments.

Sodium concentrations in porewater ranged from an average of 8,890 mg/L (BB4 in fall 2013) to 10,600 mg/L (BB3 in fall 2013) during fall Post-Uprate monitoring (Table 4.2-16). These values were very similar to those obtained during fall Pre-Uprate monitoring. During Pre-Uprate monitoring, spring values were slightly higher than corresponding fall values at all sites, ranging from 10,400 to 12,500 mg/L. This same pattern was present during the spring 2015 sampling event. However, during the first spring Post-Uprate monitoring event in 2014, values were many times higher than either comparable Pre-Uprate values or fall Post-Uprate values, ranging from 50,400 mg/L (BB4) to 59,200 (BB1). Differences in porewater sodium among areas and transects were relatively small during any sampling period.

Chloride concentrations in porewater ranged from an average of 18,800 mg/L (BB4 in spring 2014) to 23,350 mg/L (BB1 in spring 2014) during Post-Uprate monitoring (Table 4.2-16). These data were within the range of values reported during Pre-Uprate monitoring (17,500 at BB4 in the fall to 24,000 mg/L at BB1 in the spring). Fall Post-Uprate values in all study areas were slightly higher than comparable Pre-Uprate values, while spring Post-Uprate values were very similar or slightly lower than corresponding Pre-Uprate values. Area BB4 tended to have lower porewater chloride values than the other three study areas, both before and after the uprate.

Very low concentrations of nitrate and nitrite were present in porewater during Post-Uprate monitoring (Table 4.2-16). In most instances, these nutrients were either undetectable or the

values fell between the MDL and the practical quantification limit (PQL). The only quantifiable values obtained during Post-Uprate monitoring occurred at transect a in Area BB1 during spring 2014 (0.0840 mg/L) and at transect b in Area BB2 during fall 2013 (0.7860 mg/L). The latter value is likely an anomaly, as it was far outside the range of any other reported result. The data provide no basis for assessing temporal or spatial variation in nitrogen levels.

Ammonia concentrations were also very low throughout the period of study (Table 4.2-16). During fall Pre-Uprate monitoring, values ranged from 0.001 mg/L (BB1 and BB3) to 0.004 mg/L (BB4) and from 0.002 mg/L (BB4 in 2013) to 0.013 mg/L (BB2 in 2013) during fall Post-Uprate sampling. With the exception of Area BB1 in fall 2014 and Area BB2 in fall 2013, Post-Uprate ammonia values were very similar to comparable values obtained during Pre-Uprate sampling. Furthermore, the slightly elevated mean for Area BB2 in fall 2013 resulted from a single high result (0.024 mg/L) on transect *a*. Although mean spring Post-Uprate ammonia values remained low, they often exceeded comparable Pre-Uprate means. However, differences among study areas during each monitoring event were typically minor, and annual within-area differences demonstrate the considerable natural temporal variability present within the system.

Mean TKN concentrations ranged from 0.45 mg/L (BB3) to 0.91 mg/L (BB4) during fall Pre-Uprate monitoring and from 0.43 mg/L (BB3 in 2013) to 0.96 mg/L (BB2 in 2014) during fall Post-Uprate monitoring (Table 4.2-16). Similar levels of TKN were found during spring Pre-Uprate monitoring (0.29 mg/L at BB3 to 1.05 mg/L at BB1) and during spring 2014 Post-Uprate monitoring (0.55 mg/L at BB2 to 1.00 mg/L at BB4). However, considerably higher levels were found in Study Areas BB1 (4.62 mg/L) and BB4 (1.68 mg/L) during the most recent spring sampling event (2015). It is uncertain if these higher values are anomalous or reflect occasional natural local spikes in porewater TKN levels. Mean fall Post-Uprate TKN values were generally higher than comparable Pre-Uprate means in all areas except Area BB4, where they were slightly lower. However, the spring 2014 Post-Uprate mean for Area BB4, was lower than the Pre-Uprate mean. These data are suggestive of relatively high temporal and spatial variability in TKN concentrations within the project area.

Total phosphorous and OP levels in porewater were relatively low before the uprate and were largely undetectable following the uprate (Table 4.2-16). Tritium values were not available for either the fall or spring Post-Uprate monitoring events at the time this report was prepared.

4.2.2.4 Submerged Aquatic Vegetation

Study Area Characterization

Study Area BB1 can generally be described as embayment-like and is somewhat more sheltered from the effects of wind than the other study areas because portions are located west of the Arsenicker Islands and south of the Turkey Point peninsula (Figure 4.2-1). It is also the shallowest of the study areas (Table 4.2-3). Transects within this area had sparse to moderate macrophyte coverage throughout both Pre- and the Post-Uprate monitoring periods. Turtle grass was present in more than 95% of quadrats during both Pre- and Post-Uprate sampling periods, and there were only marginal differences between seasons during either period (Table 4.2-17). Coverage in Area BB1 was widespread on both the inner and outer transects, during Pre-Uprate

monitoring. Following the uprate, coverage of turtle grass was slightly lower along the inshore transect, but by spring 2015, it was present in 100% of quadrats on both transects.

Shoal grass, *Halodule wrightii*, was also present in BB1 but much less widespread than turtle grass, and coverage never exceeded 5% within any quadrat. This species was present in 10% of the fall and 13% of the spring Pre-Uprate quadrats, compared with an average of 27% and 34%, respectively, of the fall and spring Post-Uprate quadrats (Table 4.2-17). Unlike turtle grass, shoal grass in Area BB1 was much more spatially variable during Pre-Uprate monitoring, occurring in only 3% of all inshore quadrats compared with 22% of quadrats on the offshore transect. During the first fall event (2013) following the uprate, coverage on the inshore transect increased considerably, and it was about 50% as abundant as grasses on the offshore transect. Thereafter, inshore coverage continued to increase, and differences between transects diminished; in spring 2015, 44% of all quadrats on both transects contained shoal grass.

The nearshore transects in BB2 had many open areas, with drift algae, gorgonians, sponges, and sparse seagrass. Turtle grass was present in half of all the quadrats during Pre-Uprate monitoring, but only about one-third of the quadrats during Post-Uprate sampling (Table 4.2-17). Turtle grass coverage in BB2 was much more temporally and seasonally variable than in the other study areas. During the spring Pre-Uprate sampling event, it was much more abundant on the offshore transect, and that same pattern persisted during spring Post-Uprate monitoring. However, during the fall it tended to be more abundant on the nearshore transect, both before and after the uprate.

Shoal grass in BB2 was present in 23% of the fall Pre-Uprate quadrats and between 28% and 33% of the comparable Post-Uprate quadrats, depending on year (Table 4.2-17). Similarly, it was present in 31% of the spring Pre-Uprate quadrats and 33% to 36% of the comparable Post-Uprate quadrats. This species tended to be much more abundant along the nearshore transects, both before and after the uprate, although coverage never exceeded 5%. The only exception to that pattern occurred during the spring Pre-Uprate monitoring period, when it was more abundant offshore.

Area BB3 is the deepest of the four study areas (mean depth 2.9 m [Table 4.2-3]). Turtle grass occurred in 77% of the Pre-Uprate quadrats and 72% to 80% of the Post-Uprate quadrats (Table 4.2-17). It tended to be slightly more abundant on nearshore transects during both spring and fall Pre-Uprate monitoring, but the only appreciable difference between transects during Post-Uprate monitoring occurred in spring 2015, when it was much more abundant nearshore (81% on transect *a* vs. 66% on transect *b*). Shoal grass was present in both nearshore and offshore transects during the fall and spring Pre-Uprate sampling events (7% and 16%, respectively), and abundance was similar between the inshore and offshore transect. Following the uprate, this species was essentially absent from the nearshore transect during both fall and spring sampling events. Offshore coverage (transect *b*) was relatively high during fall 2013 (16%), and but much less abundant during other periods; it did not occur in any quadrats during the spring 2015 event.

Both BB4 transects were composed of silty substrates, with rubble and small corals scattered throughout. Turtle grass was present in about 91% of the quadrats during both fall and spring

Pre-Uprate monitoring events and from 83% to 92% of the Post-Uprate events (Table 4.2-17). It was consistently more abundant nearshore, both before and after the uprate. Shoal grass was scarce throughout BB4, during both Pre and Post-Uprate sampling events (2% to 3% Pre- and 0% to 6% Post-Uprate).

Although seagrasses were widely observed, they occurred primarily in sparse or sparse to moderate assemblages around the sampling points used for this study. During Post-Uprate monitoring, BB2 and BB4 generally had the highest percentage of observations of sparse seagrass (68.8% to 93.8%), and conversely, the lowest percentages of sparse to moderate coverage (6.3% to 31.3%); no points were scored as moderate to dense (Table 4.2-18). Moderate to dense seagrass occurred in more than 10% of all quadrats scored during all four Post-Uprate monitoring events in BB1, whereas occurrence of moderate to dense grasses (6.3 % of all sampling points) occurred during a single event (fall 2014) in BB3.

Seagrass coverage within the study areas is primarily *Thalassia* coverage, which is the dominant species in tropical and sub-tropical coastal waters. Robblee and Browder (2007) found *Thalassia* generally to be the most abundant seagrass present at their monitoring locations in both Biscayne Bay and Florida Bay (frequency of occurrence ranged from 80% to 98%). High cover and low-standing crop of seagrass is typical of Biscayne Bay and has been attributed to the shallow depth of sediments. As the *Thalassia* rhizosphere typically extends 25 to 40 cm into the substrate (Enriquez et al. 2001; Robblee and Browder 2007), this grass cannot effectively colonize and grow in areas where only a thin veneer of substrate exists over the hardbottom. In the previous report (FPL 2014a, Table 4.2-17), a positive correlation was found between seagrass BBCA scores and sediment depth across all areas, suggesting that seagrass coverage within the study area is largely based on the availability of suitable substrate for colonization and growth.

Calcareous algae was ubiquitous throughout the project area, with all areas scored as having either a few or many present (Table 4.2-18). In BB3 and BB4, from 81.3% to 100% of all points scored during Post-Uprate monitoring fell within the "many" category. On average, Area BB1 had similar percentages of points categorized during Post-Uprate events as having few or many calcareous algae present, with the highest relative abundance occurring during fall events.

Drift algae was present during all Post-Uprate monitoring events, although coverage within the majority of sampling points was scored as sparse (Table 4.2-18). *Batophora* was widespread in all areas and ranged in coverage from sparse to moderate/dense. Area BB3 was the only area without any Post-Uprate sampling points scored as having moderate to dense *Batophora* coverage.

Sponges were also prevalent in all of the areas during Post-Uprate monitoring, with most points having either a few or many present (Table 4.2-18). Gorgonians (soft corals) occurred less frequently in BB2 and BB3 and were completely absent within all sampling points in BB1 and BB4. Stony corals were found in all areas, but less frequently in BB1 than the other three areas. Converse to the relationship between seagrasses and sediments, the relative abundance of both stony and soft corals within the study area relates largely to the amount of exposed hardbottom

present. Those areas with relatively large amounts of unconsolidated sediments, such as Area BB1, have fewer corals than areas where exposed hardbottom is more expansive.

Macrophyte Coverage

BBCA scores for SAV (total macrophytes, total seagrass, and total algae) are semi-quantitative, as each score represents a range of values (1 = <5% coverage, 2 = 5% to 25% coverage, 3 = 25% to 50%, 4 = 50% to 75%, and 5 = >75%), and the numerical ranges vary among scores (5%, 20%, and 25%, respectively). This can skew results when scores are averaged. Nevertheless, the means do provide a reasonable gauge for assessing relative coverage.

Mean total macrophyte (seagrass, drift algae, and attached macroalgae) BBCA scores ranged from 1.5 (BB1 in spring 2015) to 3.1 (BB3 in fall 2014) during Post-Uprate monitoring and from 1.9 (BB1 and BB4 in fall) to 2.8 (BB3 in spring) during Pre-Uprate monitoring (Table 4.2-19a). Although there was considerable variation among study areas during some sampling events, these relationships were not consistent among sampling events. For example, BB3 had the highest mean total macrophyte BBCA score (3.1 and 2.9, respectively) and BB1 the lowest (1.7 and 1.5, respectively) during fall 2014 and spring 2015 sampling, but during the spring of 2014, BB3 had a much lower mean score (1.6) than BB1 (2.5). Similarly, there were no consistent trends between transects or seasons. During spring Pre-Uprate sampling, mean scores for all four study areas fell within the range of comparable Post-Uprate values. During the fall, the Pre-Uprate scores at the other three sites were either marginally or well below the comparable Post-Uprate means.

Some of the variation in total macrophyte BBCA values can be attributed to the very patchy nature of many of the SAV species within the project area and the randomness of quadrat placement around sampling points. Variation in scores is also driven by changes in drift algae (Table 4.2-18). Drift macroalgae cover can be highly variable over small temporal scales, as the algae are easily moved around by prevailing winds, tides, and currents. Thus, total macrophyte coverage often reflects local hydrologic conditions immediately prior to and during each sampling event.

A better assessment of SAV conditions is a comparison of the attached seagrass and macroalgae community. Mean total macroalgae (all species exclusive of drift algae) BBCA scores ranged from 1.2 (BB3 in spring 2014) to 3.1 (BB3 in fall 2014) during Post-Uprate monitoring and from 1.3 (BB3 and BB4 in fall) to 2.1 (BB3 in spring) during Pre-Uprate monitoring (Table 4.2-19b). BB1 tended to have the least coverage of attached macroalgae, and BB3 the most, although similar to total macrophyte scores, relationships among study areas were not consistent across sampling events. During fall Pre-Uprate sampling, mean BBCA macroalgae scores for all four study areas were below, and in some cases well below, comparable Post-Uprate values. During spring sampling, Pre-Uprate scores were either within the range or below comparable Post-Uprate means.

Mean total seagrass BBCA scores ranged from 0.5 (BB2 in spring 2014) to 2.8 (BB3 in fall 2014) during Post-Uprate monitoring and from 0.5 (BB2 in spring) to 1.4 (BB1 in spring) during Pre-Uprate monitoring (Table 4.2-19c). There were no consistent trends among areas or seasons. For example, at BB3 seagrass coverage averaged a score of 1.3 during the first fall Post-Uprate event (2013) and 2.8 the next (2014). Likewise, BB4 had a mean BBCA score of 0.9 during the first spring Post-Uprate event (2014) and a score of 2.1 the next (2015). Pre-Uprate scores for total seagrass in all four study sites were at the lower end or below the comparable Post-Uprate ranges during both spring and fall sampling periods.

The fall sampling events occur at the end of the seagrass growing season. Soon thereafter, the grasses enter a period of senescence when leaves are shed and above-ground coverage declines. Thus, seagrass coverage at a particular location would be expected to be greater in the fall than in the early spring, which is at the end of this quiescent period. Again, however, BBCA scores encompass a broad range of coverages, and an increase in coverage might not always be reflected by a higher score. For example, a doubling of coverage from 10% to 20% would not change the BBCA score, which is 2 (5% to 25%). Thus, although mean Post-Uprate seagrass BBCA scores tended to be slightly higher in the fall than in the spring, that was not always the case.

4.2.2.5 Seagrass Leaf Nutrients

Nutrients within the water column can be highly variable, both spatially and temporally, making it difficult to accurately characterize prevailing conditions. However, over time, nutrients present in the water column become sequestered in sediment porewater where they are used by seagrasses for growth. Thus, nutrient concentrations in leaf tissue provide a much more reliable gauge of prevailing nutrient loads and limiting elements within the environment.

Mean total nitrogen (TN) values during Post-Uprate monitoring ranged from 19,200 milligrams per kilogram (mg/kg) in BB2 (2014) to 23,300 mg/kg in BB1 (2013; Table 4.2-20). In general, Post-Uprate values were slightly lower than comparable Pre-Uprate values in all study areas, including Area BB4, the reference site. Differences among study areas were relatively small within both fall Post-Uprate sampling periods, whereas during Pre-Uprate monitoring, turtle grass collected from Area BB3 had a much higher mean TN concentration (28,474 mg/kg) than the other three areas.

Mean total phosphorus (TP) values during Post-Uprate monitoring ranged from 552 mg/kg in BB1 (2013) to 698 mg/kg in BB4 (2013 [Table 4.2-20]). Mean Post-Uprate values were higher than comparable Pre-Uprate values in all study areas, particularly at the southern end of the project area; the largest increase in mean leaf TP values (285 mg/kg) between Pre- and Post-Uprate monitoring was found in Area BB4, the reference site. Likewise, seagrasses in Area BB4 had higher Post-Uprate mean TP values than any other study area; during Pre-Uprate sampling, Area BB4 had lower TP values than the other three areas.

Mean total carbon (C) values ranged from 350,750 mg/kg (BB2 and BB4 in 2014) to 415,500 mg/kg (BB1 in 2013; Table 4.2-20) during Post-Uprate monitoring and from 386,112 mg/kg

(BB1) to 520,571 mg/kg (BB3) during Pre-Uprate monitoring. Leaf carbon values were similar among study areas during each fall Post-Uprate monitoring event but varied appreciably between years. Values were much more spatially variable during Pre-Uprate monitoring; Area BB3, in particular, had much higher leaf carbon than the other three study areas. With the exception of Area BB3, Pre-Uprate means were within or close to the range of comparable Post-Uprate means.

In a long-term study of seagrass nutrients, Fourqurean and Zieman (2002) found that nitrogen accounted for between 0.88% and 3.96% (mean = 1.82%) of the dry weight of *Thalassia* leaves collected over a broad geographic area of the Florida Keys. Mean values obtained for each study area during the current Turkey Point monitoring program ranged from 1.92% (BB2 in 2014) to 2.85% (BB3 during Pre-Uprate) and averaged 2.17% (Table 4.2-20). Similarly, the Florida Keys data indicated a range of 0.048% to 0.243% for leaf phosphorus (mean = 0.113%) and a 29.4% to 43.3% range (mean = 36.9%) for leaf carbon. In the current study, those ranges were 0.041% to 0.070% (mean = 0.056%) and 35.1% to 52.1% (mean = 39.7%), respectively. Thus, leaf nutrient values reported in this report are all within the range of values reported for turtle grass in similar areas of South Florida.

Analysis of nutrient ratios provide an indication of which elements limit seagrass growth. N:P ratios above 30 are indicative of a phosphorus limited environment, whereas much lower ratios are indicative of nitrogen-limited conditions. Mean N:P ratios ranged from 42.2 (BB2) to 54.1 (BB3) during Pre-Uprate monitoring, and those values declined in all study areas during Post-Uprate sampling; the largest decline occurred in Area BB4, the reference site. Within each sampling period, there was a general north to south decrease in N:P ratios within each Post-Uprate sampling period, with the lowest values occurring in Area BB4. However even within Area BB4, the N:P ratio was very close to 30. These data indicate that phosphorus is the limiting nutrient for seagrass growth throughout the project area, although it is less limiting within the southern portion. Within the Florida Keys, Fourqurean and Zieman (2002) found N:P ratios ranging from 15.4 to 107.1, with a mean of 34.8. Although there is considerable temporal and spatial variability in levels of leaf nutrients with the project area, the patterns observed among study areas provide no indication of any CCS influence on the seagrass community but, rather, reflect regional landscape hydrology and anthropogenic management influences.

Overall, the patterns observed throughout the study area are reflective of regional landscape hydrology and variable meteorological conditions, and are not indicative of CCS influence.

TABLES

Table 4.1-1. Data and Samples Collected from August 2013 through May 2015

Measurements	August 2013	November 2013	February 2014	May 2014	August 2014	November 2014	February 2015	May 2015
Measure herbaceous plants in 1x1m subplots	X	X	X	X	X	X	X	X
Measure woody plants in 5x5m subplots		X				X		
Collect herbaceous leaf samples for mass and nutrient analysis		X		X		X		X
Collect woody leaf samples for mass and nutrient analysis		X				X		
Estimate herbaceous plant cover in 1x1m subplots	X	X	X	X	X	X	X	X
Estimate woody plant cover in 5x5m subplots		X				X		
Collect porewater samples for nutrient analysis		X		X		X		X
Collect porewater samples for tracer suite analysis	X	X	X	X	X	X	X	X

Key:

 $\dot{m} = meter(s)$.

Table 4.1-2. Plot Location, Community Description, Dominant Vegetation in Subplots in 2013-2015

Location			East Plot I degrees)				Set Up (meters)		
Transect	Plot	Latitude	Longitude	Community	Herbaceous Dominant Species	Woody Dominant Species	1 x 1m	5 x 5m	
F1	1	25.43503	-80.34692	Marsh/Mangrove	Cladium jamaicense	Rhizophora mangle	Y	Y	
F1	2	25.44027	-80.34042	Freshwater marsh	C. jamaicense	R. mangle	Y	Y	
F2	1	25.4331	-80.35403	Freshwater marsh	C. jamaicense	None	Y	N	
F2	2	25.43286	-80.35864	Freshwater marsh	C. jamaicense	R. mangle	Y	Y	
F2	3	25.43328	-80.36346	Freshwater marsh	C. jamaicense	None	Y	N	
F3	1	25.4084	-80.36248	Freshwater marsh	C. jamaicense	None	Y	N	
F3	2	25.40815	-80.36722	Freshwater marsh	C. jamaicense	None	Y	N	
F3	3	25.40806	-80.37231	Freshwater marsh	C. jamaicense	None	Y	N	
F4	1	25.38657	-80.37074	Freshwater marsh	C. jamaicense	None	Y	N	
F4	2	25.38669	-80.37492	Freshwater marsh	C. jamaicense	None	Y	N	
F4	3	25.38655	-80.37908	Freshwater marsh	C. jamaicense	None	Y	N	
F5	1	25.3557	-80.36692	Scrub mangrove	Distichlis spicata	Laguncularia racemosa R. mangle	Y	Y	

Table 4.1-2. Plot Location, Community Description, Dominant Vegetation in Subplots in 2013-2015

Location			East Plot I degrees)					Up ters)
Transect	Plot	Latitude	Longitude	Community	Herbaceous Dominant Species	Woody Dominant Species	1 x 1m	5 x 5m
F5	2	25.35304	-80.356	Scrub mangrove	D. spicata Juncus roemerianus	R. mangle	Y	Y
F6	1	25.35469	-80.43848	Freshwater marsh	C. jamaicense	None	Y	N
F6	2	25.34966	-80.43619	Freshwater marsh	C. jamaicense	None	Y	N
F6	3	25.34413	-80.43097	Freshwater marsh	C. jamaicense	C. erectus	Y	N
M1	1	25.44296	-80.33598	Scrub mangrove	None	R. mangle	N	Y
M1	2	25.44716	-80.33269	Scrub mangrove	None	R. mangle	N	Y
M2	1	25.40535	-80.3307	Scrub mangrove	None	R. mangle	N	Y
M2	2	25.40521	-80.3299	Scrub mangrove	None	R. mangle	N	Y
M3	1	25.38628	-80.33083	Scrub mangrove	None	R. mangle	N	Y
M3	2	25.3845	-80.32794	Scrub mangrove	None	R. mangle	N	Y
M4	1	25.3563	-80.33138	Scrub mangrove	None	R. mangle	N	Y
M4	2	25.35468	-80.32911	Scrub mangrove	None	R. mangle	N	Y
M5	1	25.35186	-80.35543	Scrub mangrove	D. spicata	R. mangle Avicennia germinans	Y	Y
M5	2	25.34507	-80.33381	Scrub mangrove	None	R. mangle	Y	Y
M6	1	25.29448	-80.39633	Scrub mangrove	None	R. mangle	N	Y
M6	2	25.29305	-80.39538	Scrub mangrove	None	R. mangle	N	Y

Note:

NE = Location is at northeast corner of plot.

Key:

m = Meter(s).

Table 4.1-3. Species and Individuals Counted in Subplots for Shannon-Wiener Index of Diversity Calculations in November 2013 and November 2014

	,	Novembe	r 2013	November 2014					
Community Type *	Plot	Species Present	# of Individuals	Species Present	# of Individuals				
	FO 1	C. jamaicense	77	C. jamaicense	85				
	F2-1	E. cellulosa	17	E. cellulosa	5				
		C. jamaicense	38	C. jamaicense	38				
	F2-2	E. cellulosa	38	E. cellulosa	14				
		R. mangle	2	R. mangle	2				
	E2 2	C. jamaicense	66	C. jamaicense	56				
	F2-3	E. cellulosa	4	E. cellulosa	10				
	E2 1	C. jamaicense	34	C. jamaicense	32				
	F3-1	E. cellulosa	35	E. cellulosa	23				
		C. jamaicense	37	C. jamaicense	38				
Marsh	F3-2	Aster spp.	1	Aster spp.	NA				
		M. scandens	1	M. scandens	NA				
	E2 2	C. jamaicense	33	C. jamaicense	37				
	F3-3	E. cellulosa	84	E. cellulosa	55				
	F4-1	C. jamaicense	155	C. jamaicense	120				
	F4-2	C. jamaicense	44	C. jamaicense	43				
	F4-3	C. jamaicense	41	C. jamaicense	27				
	F6-1	C. jamaicense	37	C. jamaicense	58				
	E6.2	C. jamaicense	38	C. jamaicense	43				
	F6-2	E. cellulosa	NA	E. cellulosa	101				
	F6-3	C. jamaicense	53	C. jamaicense	75				
	F1-1	C. jamaicense	56	C. jamaicense	45				
	F1-1	R. mangle	32	R. mangle	32				
		C. jamaicense	62	C. jamaicense	78				
	F1-2	R. mangle	11	R. mangle	10				
		C. erectus	1	C. erectus	1				
Brackish Marsh-		R. mangle	45	R. mangle	154				
Mangrove	F5-1	D. spicata	NA	D. spicata	2				
		L. racemosa	58	L. racemosa	65				
		C. erectus	5	C. erectus	2				
		D. spicata	28	D. spicata	29				
	F5-2	J. romerianus	8	J. romerianus	17				
		B. frutescens	5	B. frutescens	320				
		R. mangle	169	R. mangle	239				

Table 4.1-3. Species and Individuals Counted in Subplots for Shannon-Wiener Index of Diversity Calculations in November 2013 and November 2014

Community		November	r 2013	November 2014					
Community Type *	Plot	Species Present	# of Individuals	Species Present	# of Individuals				
	M1-1	R. mangle	269	R. mangle	643				
	M1-2	R. mangle	116	R. mangle	165				
	M1-2	L. racemosa	4	L. racemosa	3				
	M2-1	R. mangle	14	R. mangle	20				
	M2-2	R. mangle	464	R. mangle	576				
	1V1Z-Z	A. germinans	NA	A. germinans	1				
	M3-1	R. mangle	74	R. mangle	68				
	M3-2	R. mangle	47	R. mangle	45				
	M4-1	R. mangle	73	R. mangle	53				
Mangrove	IVI4-1	A. germinans	1	A. germinans	1				
	M4-2	R. mangle	64	R. mangle	67				
	1014-2	A. germinans	1	A. germinans	1				
		D. spicata	24	D. spicata	34				
	M5-1	R. mangle	189	R. mangle	323				
	1/13-1	A. germinans	15	A. germinans	11				
		L. racemosa	4	L. racemosa	3				
	M5-2	R. mangle	38	R. mangle	46				
	M6-1	R. mangle	24	R. mangle	22				
	M6-2	R. mangle	31	R. mangle	37				

Note:

^{*} Calculations are done once per year in November. In the marsh plots, all plants were counted in the northeast 1x1 (1 m²) subplot; similarly the northeast 5x5 (25 m²) was counted for the mangrove plots.

Table 4.1-4. Pre-Uprate and Post-Uprate Shannon-Wiener Index Calculated Values for Plots and Transects

					Pre-U	prate							Post-L	Jprate			
			Augus	t 2011			Augus	st 2012			Novemb	er 2013			Novemb	er 2014	
Location	on		on Wiener ndex		pecies enness		on Wiener ndex		ecies nness		on Wiener ndex	_	oecies enness		on Wiener ndex		pecies enness
Transect	Plot	Plot	Transect	Plot	Transect	Plot	Transect	Plot	Transect	Plot	Transect	Plot	Transect	Plot	Transect	Plot	Transect
F1	1 2	0.603 0.442	0.532	0.870 0.403	0.484	0.530 0.510	0.541	0.764 0.464	0.492	0.288 0.206	0.580	0.946 0.446	0.837	0.679 0.446	0.584	0.979 0.406	0.843
F2	1 2 3	0.128 0.195 0.215	0.670	0.185 0.281 0.310	0.609	0.113 0.506 0	0.192	0.162 0.461 N/A	0.175	0.473 0.701 0.219	0.601	0.682 0.723 0.316	0.547	0.215 0.719 0.425	0.454	0.310 0.655 0.614	0.413
F3	1 2 3	0.670 0.271 0.518	0.762	0.966 0.391 0.747	0.694	0.130 0.239 0.325	0.243	0.187 0.345 0.469	0.221	0.693 0.026 0.595	0.742	1.000 0.024 0.858	0.535	0.680 0 0.674	0.681	0.981 N/A 0.972	0.982
F4	1 2 3	0 0	0	N/A N/A N/A	N/A	0 0	0	N/A N/A N/A	N/A	0 0	0	N/A N/A N/A	N/A	0 0	0	N/A N/A N/A	N/A
F5	1 2	0.512 0.837	1.151	0.739 0.604	0.715	0.766 0.943	1.169	0.697 0.680	0.653	0.476 0.482	1.014	0.765 0.474	0.566	0.700 0.659	0.836	0.505 0.475	0.467
F6	1 2 3	0 0.682 0	0.458	N/A 0.984 N/A	0.661	0 0.687 0	0.460	N/A 0.991 N/A	0.664	0 0 0	0	N/A N/A N/A	N/A	0 0.610 0	0.656	N/A 0.880 N/A	0.946
M1	1 2	0.040	0.011	N/A 0.057	0.002	0 0.255	0.076	N/A 0.369	0.109	0 0.113	0.057	N/A 0.211	0.083	0.090	0.024	N/A 0.129	0.035
M2	1 2	0 0.120	0.115	N/A 0.174	0.020	0 0.122	0.116	N/A 0.176	0.168	0	0	N/A N/A	N/A	0.013	0.012	N/A 0.018	0.018
М3	1 2	0	0	N/A N/A	N/A	0	0	N/A N/A	N/A	0	0	N/A N/A	N/A	0	0	N/A N/A	N/A
M4	1 2	0.074	0.060	N/A 0.563	0.013	0.063	0.070	0.091 0.115	0.101	0.058	0.075	0.103 0.115	0.109	0.092	0.084	0.133 0.111	0.121
M5	1 2	0.314	0.290	0.453 N/A	0.049	0.577	0.530	0.416 N/A	0.383	0.482	0.584	0.468 N/A	0.421	0.483	0.444	0.348 N/A	0.320
M6	1 2	0	0	N/A N/A	N/A	0	0	N/A N/A	N/A	0	0	N/A N/A	N/A	0	0	N/A N/A	N/A

Key:
 N/A = Not applicable. Species evenness cannot be calculated when only one species is present.

Table 4.1-5. Average Sawgrass Coverage per Plot and Transect for Post-Uprate Period with Pre-Uprate Average

			<u> </u>						Pe	ercent Co	ver (%)								
		Pre-Upra	ate Average	Augu	st 2013	Novem	ber 2013	Febru	ary 2014	May	/ 2014	Augı	ıst 2014	Novem	nber 2014	Febru	ary 2015	May	2015
Transect	Plot	Plot	Transect	Plot	Transect Average	Plot	Transect Average	Plot	Transect Average	Plot	Transect Average	Plot	Transect Average	Plot	Transect Average	Plot	Transect Average	Plot	Transect Average
	1	2-5%		6-25%		6-25%		6-25%		6-25%		6-25%		6-25%		6-25%		6-25%	
F1	2	6-25%	6-25%	6-25%	6-25%	6-25%	6-25%	6-25%	6-25%	6-25%	6-25%	6-25%	6-25%	6-25%	6-25%	6-25%	6-25%	6-25%	6-25%
	1	6-25%		6-25%		6-25%		6-25%		6-25%		6-25%		6-25%		6-25%		6-25%	
	2	6-25%		2-5%		2-5%		2-5%		2-5%		2-5%		2-5%		2-5%		2-5%	
F2	3	6-25%	6-25%	2-5%	6-25%	6-25%	6-25%	2-5%	6-25%	2-5%	6-25%	2-5%	6-25%	2-5%	6-25%	2-5%	6-25%	6-25%	6-25%
	1	2-5%		2-5%		2-5%		2-5%		2-5%		2-5%		2-5%		2-5%		2-5%	
	2	2-5%		2-5%		2-5%		2-5%		2-5%		2-5%		2-5%		2-5%		2-5%	
F3	3	6-25%	2-5%	2-5%	2-5%	2-5%	2-5%	2-5%	2-5%	6-25%	2-5%	2-5%	2-5%	2-5%	2-5%	2-5%	2-5%	2-5%	2-5%
	1	6-25%		6-25%		6-25%		6-25%		6-25%		6-25%		6-25%		6-25%		6-25%	
	2	2-5%		2-5%		2-5%		2-5%		2-5%		2-5%		2-5%		2-5%		2-5%	
F4	3	2-5%	6-25%	2-5%	6-25%	2-5%	6-25%	2-5%	6-25%	2-5%	6-25%	2-5%	6-25%	2-5%	6-25%	2-5%	6-25%	2-5%	6-25%
	1	2-5%		2-5%		2-5%		2-5%		6-25%		2-5%		2-5%		2-5%		6-25%	
	2	2-5%		2-5%		2-5%		2-5%		2-5%		2-5%		2-5%		2-5%		2-5%	
F6	3	6-25%	2-5%	2-5%	2-5%	6-25%	2-5%	6-25%	2-5%	2-5%	2-5%	2-5%	2-5%	2-5%	2-5%	6-25%	2-5%	6-25%	2-5%

Key: % = Percent.

Table 4.1-6. Average Sawgrass Height per Plot and Transect for Post-Uprate Period with Pre-Uprate Range

								A	verage H	eight ± Stand	dard Erro	or (cm)							
		Pre-Uprat	te Range		Aug	ust 2013			Novem	ber 2013			Febru	ary 2014			May	/ 2014	
Transect	Plot	Plot	Transect	Plot	SE	Transect	SE	Plot	SE	Transect	SE	Plot	SE	Transect	SE	Plot	SE	Transect	SE
	1	84.9 - 100.0		83.5	2.9			81.4	2.5			80.9	2.1	_		80.6	2.0	_	
F1	2	100.0 - 114.5	93.8 - 107.8	89.7	2.2	87.2	1.8	97.0	2.2	88.4	1.8	93.3	2.6	86.5	1.7	94.3	2.0	86.8	1.5
	1	80.6 - 96.3		76.7	1.1			76.9	1.0			74.5	1.4			70.8	1.2		
	2	73.5 - 89.6		75.0	1.7			74.9	2.3			73.5	3.1			69.4	2.3		
F2	3	67.6 - 80.4	75.5 - 90.3	69.8	1.5	74.3	0.8	66.7	1.5	73.4	0.9	63.7	1.6	71.1	1.2	60.7	1.4	67.5	1.0
	1	58.2 - 64.9		65.5	1.4			63.6	1.4			58.2	1.8			53.1	1.6		
	2	61.7 - 73.0		67.8	1.4			66.4	1.7			60.4	2.0			53.2	1.8		
F3	3	79.8 - 101.6	67.7 - 78.3	81.5	2.1	72.4	1.2	80.4	2.1	70.2	1.1	71.8	2.2	63.5	1.2	69.7	2.0	58.7	1.2
	1	103.1 - 123.9		97.9	2.2			99.8	2.0			96.2	2.1			93.9	1.9		
	2	62.1 - 79.9		67.1	1.2			66.5	1.6			63.5	1.7			57.9	1.9		
F4	3	73.9 - 89.1	80.9 - 96.3	75.1	1.3	82.4	1.4	74.6	1.8	84.9	1.5	70.9	1.7	81.4	1.5	61.9	1.8	76.6	1.6
	1	76.3 - 99.3		82.4	1.7			88.4	1.7			85.2	2.1			78.8	2.6		
	2	66.6 - 87.0		74.1	1.2			80.6	1.5			79.7	2.3			71.8	2.0		
F6	3	67.3 - 81.5	70.5 - 89.9	67.0	1.4	74.7	1.0	74.2	1.3	81.0	1.0	70.9	1.7	78.5	1.2	66.7	1.4	72.4	1.2

Key: SE = Standard error cm= Centimeters

Table 4.1-6. Average Sawgrass Height per Plot and Transect for Post-Uprate Period with Pre-Uprate Range

								A	verage H	eight ± Stand	dard Erro	or (cm)							
		Pre-Uprat	te Range		Aug	ust 2014			Novem	ber 2014			Febru	ary 2015			May	2015	
Transect	Plot	Plot	Transect	Plot	SE	Transect	SE	Plot	SE	Transect	SE	Plot	SE	Transect	SE	Plot	SE	Transect	SE
	1	84.9 - 100.0		81.6	2.0			87.3	1.9			80.6	2.6			77.6	2.1	_	
F1	2	100.0 - 114.5	93.8 - 107.8	94.2	2.4	87.3	1.6	99.3	2.4	93.0	1.6	103.1	2.2	91.3	2.0	98.1	2.7	87.6	1.9
	1	80.6 - 96.3		72.0	1.2			71.6	1.4			67.1	1.8			68.8	1.4		
	2	73.5 - 89.6		64.7	1.7			67.4	1.8			67.5	2.5			69.1	1.9		
F2	3	67.6 - 80.4	75.5 - 90.3	64.5	1.3	68.0	0.8	65.7	1.4	68.8	0.9	66.7	1.7	67.1	1.1	64.6	1.7	67.7	1.0
	1	58.2 - 64.9		56.4	1.5			60.2	1.5			57.0	1.7			57.7	1.4		
	2	61.7 - 73.0		59.1	1.6			60.3	1.8			59.5	1.7			54.1	1.7		
F3	3	79.8 - 101.6	67.7 - 78.3	73.2	2.5	63.5	1.3	76.2	2.3	65.9	1.2	66.9	2.4	61.3	1.2	66.4	2.2	59.5	1.1
	1	103.1 - 123.9		95.6	2.0			100.2	2.0			94.9	2.3			90.7	2.1		
	2	62.1 - 79.9		63.9	1.6			67.3	1.4			65.1	1.7			61.3	1.6		
F4	3	73.9 - 89.1	80.9 - 96.3	63.5	1.4	79.3	1.5	67.3	1.7	82.3	1.5	64.1	1.8	78.4	1.6	59.6	1.7	74.3	1.5
	1	76.3 - 99.3		84.0	1.6			83.6	2.0			82.1	2.1			80.3	1.9		
	2	66.6 - 87.0		75.2	1.6			75.0	1.4			71.8	1.9			70.9	1.5		
F6	3	67.3 - 81.5	70.5 - 89.9	69.2	1.6	76.1	1.0	74.2	1.4	77.7	1.0	74.5	1.2	76.3	1.1	69.1	1.7	73.6	1.0

Key: SE = Standard error cm= Centimeters

Table 4.1-7. Live and Total Sawgrass Biomass Equations for Post-Uprate Events

Season	Model	R ²	p-Value	N
Total Biomass E	Equations			
November 2013	Total Biomass = $-1.22987 + 2.55800 \text{ (Cdb2)}^2 + 0.03882 \text{ (NoLL)}^2 + 0.0002949 \text{ (LLL)}^2$	0.8286	<0.0001	168
May 2014	Total Biomass = $-0.46210 + 2.63119 \text{ (cdb1)}^2 + 0.0003069 \text{ (LLL)}^2$	0.8722	<0.0001	168
November 2014	Total Biomass = $-0.72370 + 2.76793 \text{ (cdb1)}^2 + 0.0002746 \text{ (LLL)}^2$	0.8919	<0.0001	168
May 2015	Total Biomass = $-0.77219 + 0.0002245 \text{ (LLL)}^2 + 0.01133 \text{ (NoLL)}^2 + 4.03109 \text{ (Cdb2)}^2$	0.8262	<0.0001	168
Live Biomass E	quations			
November 2013	Live Biomass = $-1.53848 + 1.18027 \text{ (Cdb1)} + 0.71527 \text{ (Cdb2)}^2 + 0.04703 \text{ (NoLL)}^2 + 0.0002064 \text{ (LLL)}^2$	0.8785	<0.01	168
May 2014	Live Biomass = $-2.45943 + 2.31954$ (Cdb2) + 0.37373 (NoLL) + 0.0001897 (LLL) ²	0.8158	<0.01	168
November 2014	Live Biomass = $-1.54544 + 1.04701 \text{ (Cdb1)}^2 + 0.33790 \text{ (NoLL)} + 0.0002246 \text{ (LLL)}^2$	0.8227	< 0.01	168
May 2015	Live Biomass = $-1.55056 + 0.31339$ (NoLL) + 0.0001671 (LLL) ² + 1.850 (Cdb2) ²	0.7591	<0.01	168

Key:

Cdb1 = Culm diameter at base 1.

Cdb2 = Culm diameter at base 2.

LLL = Longest live leaf.

NoLL = Number of live leaves. N = Sample size.

Table 4.1-8. Average Sawgrass Live Biomass per Plot and Transect for Post-Uprate Events with Pre-Uprate Range

						Live B	iomass (g/m	า ²)											
		Pre-Upra	te Range		Aug	ust 2013			Nover	nber 2013			Febru	uary 2014			Ma	y 2014	
Transect	Plot	Plot	Transect	Plot	SE	Transect	SE	Plot	SE	Transect	SE	Plot	SE	Transect	SE	Plot	SE	Transect	SE
F1	1	66.7 - 145.2		117.7	26.7			135.8	37.5			128.1	34.0			150.1	20.5		
1.1	2	142.9 - 190.2	104.8 - 167.7	184.9	14.2	151.3	18.9	147.6	21.5	141.7	20.1	162.7	17.5	145.4	18.9	202.9	24.0	176.5	17.7
	1	112.7 - 208.8		130.4	15.8			151.3	20.4			126.6	15.8			135.1	17.0		
F2	2	42.3 - 74.3		46.6	8.4			54.9	9.5			56.5	6.8			56.9	4.4		
	3	52.4 - 83.5	69.1 - 122.2	50.3	4.0	75.8	12.9	65.9	11.5	90.7	15.1	58.6	5.6	80.6	11.2	74.6	8.2	88.9	11.7
	1	29.2 - 43.3		38.0	5.9			39.5	4.9			44.5	2.8			42.2	4.8		
F3	2	43.4 - 60.3		50.9	8.4			61.1	5.2			42.8	6.4			45.6	4.4		
	3	78.5 - 141.9	53.1 - 79.4	86.2	1.7	58.4	6.9	83.5	6.0	61.4	6.1	68.5	6.0	51.9	4.5	93.3	2.8	60.4	7.3
	1	184.9 - 275.5		264.4	71.6			320.9	85.6			234.0	30.1			268.4	26.4		
F4	2	41.3 - 70.8		47.7	5.8			50.7	10.2			54.2	6.4			61.2	9.3		
	3	57.9 - 97.7	94.7 - 147.8	64.7	11.3	125.6	36.9	66.4	9.2	146.0	45.6	56.7	2.5	115.0	27.0	52.9	4.3	127.5	31.3
	1	48.7 - 98		49.4	10.6			63.6	14.8			75.4	24.5			94.1	25.4		
F6	2	36.0 - 84.8		54.9	8.8			54.6	10.4			48.4	7.6			50.2	13.3		
	3	62.6 - 100.8	50.8 - 92.1	53.2	5.7	52.5	4.5	64.0	13.9	60.7	7.0	71.3	15.4	65.0	9.7	72.9	14.7	72.4	11.1

Key: SE = Standard error g/m² = Grams per square meter

Table 4.1-8. Average Sawgrass Live Biomass per Plot and Transect for Post-Uprate Events with Pre-Uprate Range

								Live	Biomas	ss (g/m²)									
		Pre-Upra	te Range		Augus	st 2014			Nov	ember 2014			Febru	ary 2015			May	y 2015	
Transect	Plot	Plot	Transect	Plot	SE	Transect	SE	Plot	SE	Transect	SE	Plot	SE	Transect	SE	Plot	SE	Transect	SE
F1	1	66.7 - 145.2		135.3	27.6			162.7	22.7			177.1	28.0			136.2	24.6		
1.1	2	142.9 - 190.2	104.8 - 167.7	209.4	20.6	172.4	21.2	178.3	30.7	170.5	17.9	222.7	39.6	199.9	24.1	207.8	40.4	172.0	25.8
	1	112.7 - 208.8		119.7	10.6			117.0	9.3			106.5	5.7			95.4	8.5		
F2	2	42.3 - 74.3		39.4	2.7			47.8	6.6			57.1	9.8			48.3	3.9		
	3	52.4 - 83.5	69.1 - 122.2	57.8	8.8	72.3	11.2	54.5	8.9	73.1	10.4	75.9	8.5	79.8	7.5	67.4	9.0	70.4	7.0
	1	29.2 - 43.3		29.1	2.2			44.5	3.2			36.7	2.7			32.3	4.8		
F3	2	43.4 - 60.3		38.3	3.5			57.2	2.8			49.7	7.4			38.9	4.2		
	3	78.5 - 141.9	53.1 - 79.4	77.6	5.5	50.1	7.0	88.8	8.8	63.5	6.3	74.2	5.9	53.5	5.6	79.1	14.0	50.1	7.8
	1	184.9 - 275.5		281.4	42.4			294.6	45.5			225.1	44.9			196.9	24.9		
F4	2	41.3 - 70.8		61.3	10.9			74.5	16.5			65.9	13.4			47.1	4.2		
	3	57.9 - 97.7	94.7 - 147.8	37.8	1.6	126.8	35.6	53.5	6.0	140.9	36.0	47.1	8.3	112.7	28.0	46.6	9.9	96.9	22.8
	1	48.7 - 98		63.1	18.4			93.4	36.7			91.8	35.5			97.7	41.5		
F6	2	36.0 - 84.8		56.5	7.0			55.6	5.6			47.7	9.1			34.0	3.8		
	3	62.6 - 100.8	50.8 - 92.1	66.2	11.1	61.9	6.9	95.2	22.9	80.1	14.6	75.5	22.7	71.6	14.1	72.3	20.3	68.0	16.0

Key: SE = Standard error g/m² = Grams per square meter

Table 4.1-9. Average Sawgrass Total Biomass per Plot and Transect for Post-Uprate Events with Pre-Uprate Range

									Biom	ass (g/m²)									
		Pre-Upra	te Range		Aug	ust 2013			Novem	nber 2013			Febru	uary 2014			Ма	y 2014	
Transect	Plot	Plot	Transect	Plot	SE	Transect	SE	Plot	SE	Transect	SE	Plot	SE	Transect	SE	Plot	SE	Transect	SE
F1	1	87.6 - 262.8		164.1	35.2			189.3	54.8			201.0	55.8			231.7	36.3		
1.1	2	174.8 - 396.7	131.2 - 314.1	254.6	15.7	209.3	24.7	206.8	29.4	198.0	29.0	259.0	27.3	230.0	30.8	326.7	37.2	279.2	30.0
	1	203 - 306.9		169.9	23.5			197.3	29.5			213.3	22.2			224.2	31.5		
F2	2	65.6 - 166.6		61.8	12.5			73.2	11.3			86.4	10.4			93.4	8.9	_	
	3	80.8 - 157.9	116.5 - 199.7	67.4	7.2	99.7	17.1	87.4	13.5	119.3	19.7	87.5	7.4	129.1	19.6	106.9	6.8	141.5	20.4
	1	32.7 - 104.1		49.3	8.5			51.2	6.3			67.7	5.1			59.3	4.5		
F3	2	50 - 138.2		65.7	9.7			80.5	9.4			69.3	12.5			68.9	13.2	_	
	3	142.4 - 285.2	75.0 - 169.0	118.9	4.4	78.0	9.8	116.0	9.6	82.5	9.2	125.1	13.4	87.4	9.9	146.1	6.2	91.4	12.6
	1	287.6 - 661.8		363.1	100.0			448.3	116.9			392.3	48.7			428.9	33.3		
F4	2	59.3 - 161.7		60.9	6.1			68.4	14.5			83.3	8.3			92.9	15.0		
	3	81.5 - 206	142.8 - 325.9	87.7	15.6	170.6	51.3	87.9	13.6	201.5	63.6	97.6	4.3	191.0	45.5	99.0	5.3	206.9	48.6
	1	84.4 - 219.2		67.3	13.9			87.7	19.6			140.9	44.3			155.8	39.1		
F6	2	51.9 - 205.8		74.5	13.9			70.5	13.8			95.2	15.2			92.3	22.6		
	3	60.5 - 258	65.6 - 228.4	73.7	7.1	71.8	6.4	87.3	18.8	81.8	9.5	115.3	23.1	117.1	16.7	131.1	26.0	126.4	17.6

Key: SE = Standard error g/m² = Grams per square meter

Table 4.1-9. Average Sawgrass Total Biomass per Plot and Transect for Post-Uprate Events with Pre-Uprate Range

									Bio	omass (g/m²									
		Pre-Upra	te Range		Augi	ust 2014			Nover	nber 2014			Febru	uary 2015			M	lay 2015	
Transect	Plot	Plot	Transect	Plot	SE	Transect	SE	Plot	SE	Transect	SE	Plot	SE	Transect	SE	Plot	SE	Transect	SE
F1	1	87.6 - 262.8		194.4	38.4			240.0	40.4			277.9	45.4			230.5	46.8		
11	2	174.8 - 396.7	131.2 - 314.1	305.5	38.2	250.0	32.7	248.4	43.2	244.2	27.4	360.4	55.1	319.1	36.5	327.5	59.1	279.0	39.4
	1	203 - 306.9		155.0	11.1			165.9	14.3			170.1	11.2			143.8	15.5		
F2	2	65.6 - 166.6		59.2	4.6			66.9	8.9			87.3	14.1			77.9	4.8		
	3	80.8 - 157.9	116.5 - 199.7	72.5	7.0	95.6	13.5	81.8	13.7	104.9	14.7	127.0	17.2	128.1	12.7	116.3	22.5	112.7	11.7
	1	32.7 - 104.1		38.7	7.0			55.5	5.8			60.5	7.4			49.2	4.4		
F3	2	50 - 138.2		44.0	3.1			71.0	4.9			81.0	14.7			49.2	4.5		
	3	142.4 - 285.2	75.0 - 169.0	106.0	12.4	65.1	10.8	146.7	15.6	91.1	13.1	115.9	13.3	85.8	9.4	112.2	19.8	70.2	10.9
	1	287.6 - 661.8		407.5	54.0			451.2	62.6			363.1	74.6			307.4	43.0		
F4	2	59.3 - 161.7		71.1	9.8			89.2	18.6			104.1	17.3			80.0	8.7		
	3	81.5 - 206	142.8 - 325.9	56.6	4.6	178.4	51.6	75.9	9.4	205.4	56.1	75.1	11.3	180.8	45.5	83.8	22.1	157.1	35.3
	1	84.4 - 219.2		89.9	25.1			124.9	49.1			155.6	60.3			161.1	66.9		
F6	2	51.9 - 205.8		68.2	13.3			76.7	6.1			79.5	10.9			52.1	4.2		
	3	60.5 - 258	65.6 - 228.4	100.2	21.2	86.1	11.4	117.2	27.2	105.3	18.8	130.8	37.7	122.0	23.7	118.0	34.3	110.4	26.4

Key:

SE = Standard error

g/m² = grams per square meter

Table 4.1-10. Annual Net Primary Productivity for the Pre- and Post-Uprate Periods.

			ANPP (g/m²/yr)	
Transect	Plot	November 2010 to November 2011	November 2011 to November 2012	November 2013 to November 2014
	1	148.4	235.0	253.8
F1	2	282.4	220.2	280.9
	1	153.3	199.2	157.2
	2	108.5	125.8	68.5
F2	3	98.3	113.8	92.6
	1	63.3	64.5	69.2
	2	79.8	102.5	82.9
F3	3	110.0	158.3	153.9
	1	278.1	392.2	440.1
	2	74.5	81.5	129.7
F4	3	107.9	68.2	67.8
	1	134.2	82.9	190.1
	2	104.8	72.7	97.9
F6	3	134.2	121.3	161.8

Key:
ANPP = Annual net primary productivity
g/m²/yr = Grams per square meter per year

Table 4.1-11. Sawgrass Leaf Sclerophylly per Plot and Transect for Post-Uprate Period with Pre-Uprate Range

			7 7 1						Scler	ophylly (g/m	²)								
		Pre-Upra	te Range		Novem	nber 2013			Ma	y 2014			Nover	mber 2014			Ма	y 2015	
Transect	Plot	Plot	Transect	Plot	SE	Transect	SE	Plot	SE	Transect	SE	Plot	SE	Transect	SE	Plot	SE	Transect	SE
	1	101.2 - 166.8		170.3	6.7			196.1	13.4			241.5	16.6			188.0	9.9		
F1	2	132.0 - 147.0	126.1 - 155.5	156.4	12.1	163.3	6.9	216.6	12.0	206.4	9	189.9	14.3	215.7	12.0	194.7	14.7	191.4	8.7
	1	123.2 - 230.9		175.6	4.2			261.2	13.3			222.3	12.4			211.0	12.7		
	2	133.2 - 235.1		202.3	10.6			236.6	8.7			276.9	24.1			248.7	11.5		
F2	3	125.9 - 215.3	137.6 - 179.7	197.7	20.3	191.9	7.8	209.2	11.4	235.7	7.3	200.8	19.1	233.3	12.0	210.5	6.4	223.4	6.6
	1	128.6 - 174.8		222.6	11.5			130.0	9.9			269.4	16.6			186.7	13.6		
	2	134.0 - 179.8		200.2	6.8			183.0	11.3			247.4	11.8			199.2	18.5		
F3	3	121.7 - 199.1	130 - 178	233.3	16.5	218.7	7.3	219.0	14.1	177.3	9.1	269.9	15.7	262.2	8.5	196.8	15.4	194.2	9.0
	1	142.4 - 171.0		149.6	9.2			228.2	16.2			187.4	6.8			204.4	21.4		
	2	148.0 - 183.2		138.5	5.8			205.0	13.6			180.4	10.6			183.1	12.2		
F4	3	153.0 - 186.7	146.1 - 163.9	149.3	7.1	145.8	4.3	248.3	8.6	227.2	8	200.2	9.7	189.4	5.3	269.5	16.8	219.0	11.5
	1	118.7 - 170.0		210.8	9.3			205.8	8.5			281.0	17.3			214.1	9.5		
	2	129.2 - 160.7		206.6	6.7			189.5	15.8			225.3	10.0			187.8	12.1		
F6	3	118.9 - 163.5	125.1 - 142.1	206.8	10.6	208.1	5.1	199.0	11.3	198.1	6.9	312.9	23.8	273.1	11.8	198.4	17.3	200.1	7.7

Key: SE = Standard error g/m² = Grams per square meter

Table 4.1-12. Average Leaf Carbon for Sawgrass per Plot and Transect during the Post-Uprate Period with Pre-Uprate Range

								C. jamai	cense T	otal Carbor	n (mg/kg	g)							
		Pre-Upra	te Range		Novem	ber 2013			May	2014			Novem	ber 2014			May	2015	
Transect	Plot	Plot	Transect	Plot	SE	Transect	SE	Plot	SE	Transect	SE	Plot	SE	Transect	SE	Plot	SE	Transect	SE
	1	441033 - 499000		478000	1000			449000	3342			466447	3134			452050	5255		
F1	2	460875 - 502750	452371 - 501143	478500	2533	478250	1264	458500	4839	453750	3261	470130	2546	468288	1995	457078	2014	454564	2773
	1	458275 - 507000		468000	3629			460500	3594			469354	3012			463197	1332		
	2	456450 - 498840		465750	5023			464750	2839			476717	2124			457788	1748		
F2	3	460375 - 503750	458367 - 503000	472750	1797	468833	2135	457500	5605	460917	2360	470404	1611	472159	1559	461169	708	460718	968
	1	453150 - 513174		464250	4404			458750	2496			469915	3733			457475	2716		
	2	436000 - 505443		470750	3591			460750	2175			477972	1586			461426	990		
F3	3	452000 - 501134	449917 - 507079	466000	3342	467000	2153	455250	1377	458250	1280	462421	11977	470103	4266	459918	2418	459606	1238
	1	438725 - 489974		472500	4873			463000	4223			475233	3420			459194	1731		
	2	456250 - 486780		479500	5560			473250	1887			491097	20071			458656	791		
F4	3	451000 - 485454	449909 - 487403	482500	3403	478167	2760	477750	4131	471333	2638	475424	2631	480585	6583	460174	2555	459341	979
	1	470025 - 512279		475250	3568			463750	3794			476003	2943			458759	2214		
	2	467325 - 508211		478500	5795			468000	4416			476182	890			460887	1798		
F6	3	436250 - 511270	457867 - 510524	462500	2872	472083	3049	467000	3391	466250	2104	473207	831	475131	1045	460191	2912	459945	1258

Key:

SE = Standard error

mg/kg = milligrams per kilogram

Table 4.1-13. Average Leaf Total Nitrogen for Sawgrass per Plot and Transect during the Post-Uprate Period with Pre-Uprate Range

								C. jamaicer	nse Tota	al Nitrogen	(mg/k	(g)							
		Pre-Upra	te Range	N	lovemk	per 2013			May 20	014		N	lovem	ber 2014			May 2	2015	
Transect	Plot	Plot	Transect	Plot	SE	Transect	SE	Plot	SE	Transect	SE	Plot	SE	Transect	SE	Plot	SE	Transect	SE
	1	5233 - 9701		7250	250			8500	645			8024	107			8295	834		
F1	2	4425 - 10750	4771 - 10286	5750	250	6500	327	8750	629	8625	420	9143	291	8584	256	8734	394	8514	435
	1	6725 - 11000		6250	479			8500	289			8832	490			8274	464		
	2	8750 - 10500		6000	0			8250	250			8100	618			9358	464		
F2	3	6050 - 11750	7175 - 11083	6500	289	6250	179	8000	408	8250	179	9084	626	8672	329	8690	138	8774	243
	1	6625 - 9250		6000	0			7500	500			7721	730			6997	258		
	2	5975 - 8476		6000	408			7250	629			8461	653			8656	503		
F3	3	6325 - 9185	6308 - 8423	5750	250	5917	149	8000	408	7583	288	8732	351	8305	339	7926	633	7860	328
	1	7725 - 8250		5750	479			8500	645			9243	614			8424	252		
	2	5800 - 8987		5750	479			7500	289			9435	619			8333	369		
F4	3	8000 - 9139	6763 - 8746	5750	250	5750	218	7750	629	7917	313	9094	324	9257	284	7882	412	8213	197
	1	6000 - 10500		6000	408			7750	479			9273	547			7540	496		
	2	5225 - 12000		5750	250			8750	250			8903	218			8182	546		
F6	3	4625 - 10250	5283 - 10917	7750	479	6500	337	8000	577	8167	271	8493	174	8890	208	7576	184	7766	246

Key:

SE = Standard error

mg/kg = milligrams per kilogram

Table 4.1-14. Average Leaf Total Phosphorous for Sawgrass per Plot and Transect During the Post-Uprate Period with Pre-Uprate Range

							C	C. jamaice	ense To	tal Phospho	rous	(mg/kg)							
		Pre-Upra	ate Range		Novem	nber 2013			May	2014			Nove	mber 2014			May	2015	
Transect	Plot	Plot	Transect	Plot	SE	Transect	SE	Plot	SE	Transect	SE	Plot	SE	Transect	SE	Plot	SE	Transect	SE
	1	213 - 247		144	12			296	37			181	10			269	19		
F1	2	180 - 248	194 - 241	127	9	136	8	313	30	304	22	241	20	211	15	257	3	263	9
	1	175 - 228		163	14			232	6			201	25			253	15		
	2	160 - 203		164	11			237	17			184	9			260	16		
F2	3	93 - 260	143 - 230	167	15	164	7	249	13	239	7	237	19	207	12	241	16	251	9
	1	148 - 195		120	6			190	6			327	141			231	6		
	2	163 - 220		120	7			175	13			196	23			253	21		
F3	3	123 - 273	147 - 225	164	9	134	7	234	10	199	9	233	14	252	46	237	6	240	7
	1	225 - 300		117	30			319	8			276	23			310	15		
	2	93 - 218		156	13			244	8			216	7			265	7		
F4	3	208 - 240	181 - 234	169	5	147	12	252	11	272	11	250	13	247	11	251	6	275	9
	1	190 - 240		159	26			219	20			267	16			246	17		
	2	215 - 225		155	9			196	15			251	19			302	18		
F6	3	130 - 200	193 - 220	162	26	159	11	192	15	202	9	233	5	250	9	267	10	272	11

Key:

SE = Standard error

mg/kg = milligrams per kilogram

Table 4.1-15. Average Leaf Carbon Isotopes for Sawgrass per Plot and Transect during the Post-Uprate Period with Pre-Uprate Range

							C	. jamaice	nse Ca	rbon Isotope	es (‰)								
		Pre-Upra	te Range		Noven	nber 2013			May	y 2014			Novem	ber 2014			May	2015	
Transect	Plot	Plot	Transect	Plot	SE	Transect	SE	Plot	SE	Transect	SE	Plot	SE	Transect	SE	Plot	SE	Transect	SE
	1	-28.3 to -25.5		-27.3	0.5			-27.3	0.2			-27.2	0.3			-27.5	0.3		
F1	2	-27.3 to -24.3	-27.2 to -25.6	-27.3	0.4	-27.3	0.3	-26.8	0.3	-27.0	0.2	-26.7	0.3	-27.0	0.2	-27.2	0.5	-27.4	0.3
	1	-26.5 to -25.4		-26.1	0.1			-27.0	0.1			-26.9	0.1			-26.3	0.1		
	2	-27.0 to -25.2		-26.3	0.2			-26.9	0.1			-26.9	0.3			-26.5	0.2		
F2	3	-26.8 to -25.6	-26.7 to -25.4	-26.7	0.3	-26.4	0.1	-27.1	0.2	-27.0	0.1	-26.4	0.1	-26.7	0.1	-26.8	0.3	-26.5	0.1
	1	-26.5 to -25.2		-26.5	0.2			-26.7	0.1			-26.6	0.2			-26.5	0.3		
	2	-26.0 to -25.1		-26.2	0.3			-26.6	0.1			-26.9	0.3			-26.5	0.2		
F3	3	-26.2 to -25.1	-26.1 to -25.1	-26.1	0.3	-26.3	0.2	-26.3	0.2	-26.5	0.1	-26.2	0.3	-26.6	0.2	-26.4	0.2	-26.5	0.1
	1	-26.9 to -24.9		-27.1	0.2			-27.5	0.5			-26.6	0.2			-26.6	0.2		
	2	-26.7 to -25.2		-26.3	0.1			-27.8	0.4			-26.5	0.1			-27.0	0.5		
F4	3	-26.3 to -25.4	-26.5 to -25.0	-26.5	0.2	-26.6	0.1	-26.9	0.3	-27.4	0.2	-26.6	0.1	-26.5	0.1	-26.6	0.1	-26.7	0.2
	1	-26.7 to -24.8		-26.3	0.3			-27.6	0.2			-26.0	0.2			-26.8	0.2		
	2	-26.3 to -24.9		-26.1	0.3			-27.0	0.1			-25.9	0.2			-26.5	0.2		
F6	3	-26.7 to -25.4	-26.5 to -25.0	-26.5	0.2	-26.3	0.2	-27.6	0.1	-27.4	0.1	-26.2	0.2	-26.1	0.1	-26.5	0.2	-26.6	0.1

Key:

SE = Standard error

‰ = parts per mille

Table 4.1-16. Average Leaf Nitrogen Isotopes for Sawgrass per Plot and Transect during the Post-Uprate Period with Pre-Uprate Range

							(C. jamai	cense	Nitrogen Iso	otopes	(‰)							
		Pre-Upra	te Range		Nove	mber 2013			Ma	y 2014			Nove	mber 2014			Ma	ıy 2015	
Transect	Plot	Plot	Transect	Plot	SE	Transect	SE	Plot	SE	Transect	SE	Plot	SE	Transect	SE	Plot	SE	Transect	SE
	1	-3.38 to 2.44		-0.83	0.62			-0.80	0.29			-0.50	0.51			2.75	0.61		
F1	2	-3.79 to 0.53	-3.62 to 1.31	-1.78	0.46	-1.30	0.40	-1.05	0.53	-0.93	0.28	-0.23	0.46	-0.37	0.32	2.84	0.39	2.80	0.34
	1	-3.20 to -0.45		-2.50	0.74			-2.70	0.38			-2.03	0.50			0.66	0.44		
	2	-4.63 to -0.98		-1.88	0.50			-2.90	0.31			-1.85	0.31			0.78	0.30		
F2	3	-3.13 to 0.00	-3.65 to -0.48	-1.13	0.17	-1.83	0.32	-1.43	0.31	-2.34	0.26	-1.01	0.25	-1.63	0.24	0.77	0.34	0.74	0.19
	1	-4.93 to -2.20		-3.45	0.32			-5.15	0.93			-3.60	0.89			0.30	0.40		
	2	-4.45 to -0.73		-2.78	0.60			-3.23	0.48			-3.37	0.50			-0.95	0.50		
F3	3	-4.28 to -0.79	-4.55 to -1.39	-3.10	0.64	-3.11	0.29	-3.00	0.77	-3.79	0.49	-3.20	0.87	-3.39	0.41	-0.74	0.77	-0.46	0.34
	1	-5.01 to -0.18		-2.60	0.42			-1.60	0.64			-2.30	0.76			2.74	0.88		
	2	-5.88 to -2.40		-3.90	0.43			-5.75	0.35			-4.51	0.44			-1.75	0.34		
F4	3	-3.07 to -1.40	-5.45 to -1.32	-3.53	0.31	-3.34	0.26	-3.95	0.22	-3.77	0.56	-3.54	0.59	-3.45	0.42	-0.63	0.49	0.12	0.66
	1	-4.18 to -0.93		-3.73	0.17			-4.23	0.54			-3.86	0.37			-1.43	0.34		
	2	-3.72 to -1.15		-3.70	0.64			-3.63	0.76			-3.19	0.61			-0.63	0.75		
F6	3	-5.05 to -0.85	-4.32 to -0.98	-2.80	0.77	-3.41	0.33	-3.68	0.43	-3.84	0.32	-1.73	0.45	-2.93	0.37	-1.01	0.37	-1.02	0.29

Key:

SE = Standard error

‰ = parts per mille

Table 4.1-17. Sawgrass Leaf C:N Molar Ratio per Plot and Transect in the **Post-Uprate Period**

1 OSI-Opra			C. jar	naicense	C:N Molar	Ratio	
		Novem	ber 2013	May	2014	Novem	ber 2014
			_		_		_
Transect	Plot	Plot	Transect	Plot	Transect	Plot	Transect
	1	77:1		62:1		68:1	
F1	2	97:1	86:1	61:1	61:1	60:1	64:1
	1	87:1		63:1		62:1	
	2	91:1		66:1		69:1	
F2	3	85:1	88:1	67:1	65:1	60:1	64:1
	1	90:1		71:1		71:1	
	2	92:1		74:1		66:1	
F3	3	95:1	92:1	66:1	71:1	62:1	66:1
	1	96:1		64:1		60:1	
	2	97:1		74:1		61:1	
F4	3	98:1	97:1	72:1	69:1	61:1	61:1
	1	92:1		70:1		60:1	
	2	97:1		62:1		62:1	
F6	3	70:1	85:1	68:1	67:1	65:1	62:1

Key: C = Carbon

N = Nitrogen.

Table 4.1-18. Sawgrass Leaf N:P Molar Ratio per Plot and Transect in the Post-Uprate Period

1 ost opra			C.	jamaicei	nse N:P Rat	io	
		Novem	ber 2013	May	2014	Novem	ber 2014
Transect	Plot	Plot	Transect	Plot	Transect	Plot	Transect
	1	111:1		64:1		98:1	
F1	2	100:1	106:1	62:1	63:1	84:1	90:1
	1	85:1		81:1		97:1	
	2	81:1		77:1		98:1	
F2	3	86:1	84:1	71:1	76:1	85:1	93:1
	1	111:1		88:1		52:1	
	2	111:1		92:1		96:1	
F3	3	78:1	98:1	76:1	84:1	83:1	73:1
	1	109:1		59:1		74:1	
	2	82:1		68:1		97:1	
F4	3	75:1	87:1	68:1	65:1	80:1	83:1
	1	83:1		78:1		77:1	
	2	82:1		99:1		79:1	
F6	3	106:1	91:1	92:1	89:1	81:1	79:1

Key:

N = Nitrogen

P = Phosphorous

Table 4.1-19. Average Specific Conductance (µS/cm) of Porewater at Each Site for Each Post-Uprate Quarter with Pre-Uprate Range

		erage Specific Cond	(μ.σ.σ)					•		ice at 30 cn									
		Pre-Upra	te Range		Augus	st 2013				ber 2013			Febru	ary 2014			May	2014	
Transect	Plot	Plot	Transect	Plot	SE	Transect	SE	Plot	SE	Transect	SE	Plot	SE	Transect	SE	Plot	SE	Transect	SE
	1	2260.8 - 5230.9		1543.9	258.4			1382.3	5.7			1458.5	145.1			1508.2	137.1		
F1	2	1320.4 - 2173.0	1790.6 - 3666.8	1175.1	407.8	1359.5	224.0	1537.9	21.5	1460.1	45.8	1268.1	76.4	1363.3	86.6	1733.7	116.9	1621.0	98.2
	1	908.0 - 2127.7		1074.2	240.0			1145.1	122.8			971.3	164.0			1163.2	80.3		
	2	1231.0 - 2362.2		1273.3	63.8			1432.3	37.8			1260.1	115.9			1481.8	60.1		
	3	2048.0 - 2722.6		2236.0	138.7			2316.6	16.5			1826.9	116.9			2414.3	46.9		
F2	4	670.0 - 1180.8	1227.4 - 2622.9	N/A	N/A	1527.8	238.5	749.9	49.8	1411.0	219.4	N/A	N/A	1352.8	169.9	887.4	53.0	1486.7	218.7
	1	1380.2 - 2105.1		1341.8	58.2			1298.8	23.7			1191.0	7.0			1290.3	63.9		
	2	1559.1 - 2089.2		1529.2	42.3			1498.0	72.1			1314.1	26.3			1502.9	22.5		
	3	2359.9 - 3214.6		2201.0	74.8			2140.5	217.9			2082.3	121.2			1984.0	30.6		
F3	4	380.6 - 782.4	1436.9 - 2047.8	N/A	N/A	1690.7	167.1	702.5	64.8	1409.9	199.3	N/A	N/A	1529.1	179.3	N/A	N/A	1592.4	131.2
	1	758.0 - 965.6		697.5	28.8			858.4	6.0			873.2	68.8			1030.7	2.9		
	2	568.0 - 825.8		512.4	45.2			728.3	47.6			799.6	16.3			787.0	34.9		
	3	827.3 - 1012.2		789.6	30.9			943.2	82.1			1011.6	91.2			1053.6	72.6		
F4	4	1108.9 - 1719.9	883.3 - 1243.1	N/A	N/A	666.5	53.9	1103.5	59.3	947.4	54.7	N/A	N/A	894.8	49.3	1013.8	0.00	965.2	49.5
	1	19168.9 - 31996.6		34647.6	301.1			44370.5	25.7			34810.5	22.5			38982.4	443.6		
F5	2	19903.9 - 65050.8	19413.9 - 48523.7	54925.4	2860.2	44786.5	5970.3	50433.2	180.3	47401.8	1751.7	48482.0	606.6	41646.2	3954.4	67745.0	1709.5	53363.7	8334.3
	1	888.5 - 1125.2		1005.7	15.4			1060.5	28.8			1034.0	48.8			1039.2	42.2		
	2	1070.3 - 1206.8		1187.0	18.0			1230.0	11.7			1200.0	7.7			1213.7	1.4		
	3	2523.5 - 3293.6		3199.7	372.3			2936.5	445.0			2578.5	160.3			3621.2	126.9		
F6	4	645.5 - 1218.6	1282.1 - 1784.7	N/A	N/A	1797.5	455.0	1120.4	242.4	1586.8	310.6	N/A	N/A	1604.1	312.6	N/A	N/A	1958.0	528.0
	1	40788.2 - 64315.3		N/A	N/A			42284.0	670.6			N/A	N/A			47442.4	3794.9		
M1	2	46019.7 - 63884.7	43403.9 - 64100.0	N/A	N/A	N/A	N/A	46491.1	562.6	44387.6	1266.0	N/A	N/A	N/A	N/A	54083.4	5423.1	50762.9	3313.2
	1	43276.9 - 62516.0		N/A	N/A			49759.1	761.2			N/A	N/A			54776.0	49.5		
M2	2	49553.4 - 64093.4	46998.0 - 63304.7	N/A	N/A	N/A	N/A	49810.8	970.6	49784.9	503.8	N/A	N/A	N/A	N/A	54022.1	125.3	54399.0	224.5
	1	45589.1 - 67367.6		N/A	N/A			44296.6				N/A	N/A			54147.0			
M3	2	43649.9 - 64913.6	44903.7 - 66140.6	N/A	N/A	N/A	N/A	48499.3	337.0	46397.9	1679.4	N/A	N/A	N/A	N/A	55514.8		54830.9	1399.4
	1	41543.2 - 79855.8		N/A	N/A			51665.7				N/A	N/A			67294.6			
M4	2	46134.3 - 85880.5	44093.6 - 82868.1	N/A	N/A	N/A	N/A	48034.9	1637.2	49850.3	1321.1	N/A	N/A	N/A	N/A	62224.8	625.0	64759.7	2332.1
	1	44949.4 - 81750.9		N/A	N/A			47225.9	536.0			N/A	N/A			63430.5	1078.3		
M5	2	41321.5 - 58485.8	46473.0 - 70118.4	N/A	N/A	N/A	N/A	49061.6	1048.3	48143.7	715.5	N/A	N/A	N/A	N/A	56922.2	1272.7	60176.4	1998.4
	1	41186.5 - 51057.4		N/A	N/A			42390.8	323.2			N/A	N/A			47797.3	1007.2		
M6	2	44630.5 - 48738.8	42908.5 - 49898.1	N/A	N/A	N/A	N/A	44969.5	375.0	43680.2	771.4	N/A	N/A	N/A	N/A	45635.3	398.1	46716.3	764.8

Key: μS = Microsiemens.

cm = Centimeters.

N/A = Not applicable.

Table 4.1-19. Average Specific Conductance (µS/cm) of Porewater at Each Site for Each Post-Uprate Quarter with Pre-Uprate Range

		erage Specific Conc	,							ce at 30 cm									
		Pre-Upra	te Range		Augu	ıst 2014				ber 2014			Febru	ary 2015			May	2015	
Transect	Plot	Plot	Transect	Plot	SE	Transect	SE	Plot	SE	Transect	SE	Plot	SE	Transect	SE	Plot	SE	Transect	SE
	1	2260.8 - 5230.9		1707.3	31.8			1614.0	72.0			1549.7	253.0			1651.3	87.1		
F1	2	1320.4 - 2173.0	1790.6 - 3666.8	1541.3	184.2	1624.3	90.1	1751.5	21.5	1682.8	50.2	2054.1	89.7	1801.9	182.3	2343.5	47.0	1997.4	203.9
	1	908.0 - 2127.7		1213.2	54.3			1095.0	35.0			1334.2	47.0			1313.9	98.8		
	2	1231.0 - 2362.2		1414.9	138.0			1511.5	87.5			1628.5	105.9			1867.3	10.1		
	3	2048.0 - 2722.6		2478.4	84.4			2206.5	256.5			2183.4	19.6			2687.0	70.0		
F2	4	670.0 - 1180.8	1227.4 - 2622.9	N/A	N/A	1702.2	252.1	1028.0	61.0	1460.3	185.0	N/A	N/A	1715.4	160.4	1486.4	70.9	1838.6	201.8
	1	1380.2 - 2105.1		1583.5	56.2			1345.5	45.5			1325.8	24.2			1441.0	43.2		
	2	1559.1 - 2089.2		1739.6	74.2			1649.0	0.0			1528.6	57.1			1564.5	50.6		
	3	2359.9 - 3214.6		2361.9	72.5			2420.0	27.0			2085.9	158.0			2357.3	28.3		
F3	4	380.6 - 782.4	1436.9 - 2047.8	N/A	N/A	1895.0	153.4	911.5	198.5	1581.5	211.7	N/A	N/A	1646.7	150.3	1284.8	254.6	1661.9	164.1
	1	758.0 - 965.6		982.5	35.0			876.5	0.5			1032.0	1.6			1201.9	0.6		
	2	568.0 - 825.8		774.9	197.8			875.5	88.5			920.2	15.7			993.5	9.1		
	3	827.3 - 1012.2		977.3	84.3			1143.5	150.5			1141.2	132.4			1166.6	6.1		
F4	4	1108.9 - 1719.9	883.3 - 1243.1	N/A	N/A	911.5	70.9	1444.3	130.5	1156.8	100.6	N/A	N/A	1031.1	53.0	1717.8	120.7	1359.5	109.6
	1	19168.9 - 31996.6		6659.7	3588.1			10367.5	1096.5			25101.3	324.0			35971.2	503.3		
F5	2	19903.9 - 65050.8	19413.9 - 48523.7	50984.5	7378.7	28822.1	13226.6	37802.0	3256.0	24084.8	8042.9	40245.0	338.0	32673.1	4375.8	58597.0	70.2	47284.1	6534.8
	1	888.5 - 1125.2		996.2	77.0			1076.5	0.5			1010.2	40.0			1027.8	5.8		
	2	1070.3 - 1206.8		1189.5	78.0			1205.0	70.0			1264.9	1.9			1266.8	1.2		
	3	2523.5 - 3293.6		3566.0	476.8			3624.5	395.5			3098.9	299.9			3408.2	360.6		
F6	4	645.5 - 1218.6	1282.1 - 1784.7	N/A	N/A	1917.2	537.6	1252.0	156.0	1789.5	409.3	N/A	N/A	1791.3	423.4	932.7	49.3	1658.9	390.6
	1	40788.2 - 64315.3		N/A	N/A			50315.0	24.0			N/A	N/A			50587.5	351.2		
M1	2	46019.7 - 63884.7	43403.9 - 64100.0	N/A	N/A	N/A	N/A	52282.0	459.0	51298.5	598.0	N/A	N/A	N/A	N/A	52081.2	1324.4	51334.4	706.3
	1	43276.9 - 62516.0		N/A	N/A			55697.0	191.0			N/A	N/A			55039.6	934.4		
M2	2	49553.4 - 64093.4	46998.0 - 63304.7	N/A	N/A	N/A	N/A	57373.0	2301.0	56535.0	1059.5	N/A	N/A	N/A	N/A	58440.7	809.5	56740.1	1103.9
	1	45589.1 - 67367.6		N/A	N/A			53692.0	5981.0			N/A	N/A			56126.7	1197.8		
M3	2	43649.9 - 64913.6	44903.7 - 66140.6	N/A	N/A	N/A	N/A	58572.5	17.5	56132.3	2819.1	N/A	N/A	N/A	N/A	56201.7	708.7	56164.2	568.6
	1	41543.2 - 79855.8		N/A	N/A			59041.5				N/A	N/A			64433.2	1074.6		
M4	2	46134.3 - 85880.5	44093.6 - 82868.1	N/A	N/A	N/A	N/A	65533.0	802.0	62287.3	2433.8	N/A	N/A	N/A	N/A	68768.2	737.9	66600.7	1359.9
	1	44949.4 - 81750.9		N/A	N/A			55870.0	837.0			N/A	N/A			64549.2	1903.2		
M5	2	41321.5 - 58485.8	46473.0 - 70118.4	N/A	N/A	N/A	N/A	54233.5	519.5	55051.8	620.4	N/A	N/A	N/A	N/A	54744.5	609.1	59646.9	2945.6
	1	41186.5 - 51057.4		N/A	N/A			45339.0	674.0			N/A	N/A			46487.4	668.3		
M6	2	44630.5 - 48738.8	42908.5 - 49898.1	N/A	N/A	N/A	N/A	46657.0	927.0	45998.0	603.1	N/A	N/A	N/A	N/A	47579.1	319.9	47033.3	436.8

Key: μS = Microsiemens.

cm = Centimeters.

N/A = Not applicable.

Table 4.1-20. Average Temperature (°C) of Porewater at Each Site for Each Post-Uprate Quarter with Pre-Uprate Range

			stature (C) O							rature at 30									
		Pre-Upra	te Range		Aug	just 2013			Nove	mber 2013			Febr	uary 2014			Ма	y 2014	
Transect	Plot	Plot	Transect	Plot	SE	Transect	SE	Plot	SE	Transect	SE	Plot	SE	Transect	SE	Plot	SE	Transect	SE
	1	23.2 - 30.6		30.0	0.1			26.3	0.1			25.9	0.1			28.1	0.2		
F1	2	20.0 - 31.7	21.8 - 31.1	29.1	0.2	29.5	0.3	26.4	0.1	26.3	0.1	24.6	0.1	25.2	0.4	26.5	0.0	27.3	0.5
	1	22.6 - 29.6		28.8	0.0			26.3	0.5			22.3	0.2			28.5	0.4		
	2	22.3 - 28.6		28.5	0.1			24.0	0.1			21.6	0.1			27.3	0.3		
	3	22.8 - 29.0		28.7	0.0			24.2	0.2			22.9	0.3			26.7	0.2		
F2	4	22.3 - 30.0	22.9 - 29.3	N/A	N/A	28.6	0.1	25.7	0.1	25.1	0.4	N/A	N/A	22.3	0.2	28.0	0.4	27.6	0.3
	1	22.8 - 28.8		30.0	0.0			26.0	0.1			25.0	0.2			27.6	0.2		
	2	23.0 - 30.1		29.9	0.1			26.7	0.2			25.1	0.2			27.9	0.2		
	3	22.7 - 32.6		29.7	0.2			26.4	0.3			24.8	0.3			26.3	0.3		
F3	4	23.1 - 28.7	23.0 - 29.7	N/A	N/A	29.9	0.1	25.4	0.1	26.2	0.2	N/A	N/A	25.0	0.1	N/A	N/A	27.3	0.3
	1	21.4 - 29.2		30.0	0.5			26.2	0.2			24.6	0.1			26.8	0.4		
	2	21.4 - 31.4		30.3	0.1			27.4	0.1			25.5	0.6			26.5	0.3		
	3	24.7 - 32.1		30.1	0.1			26.6	0.1			25.5	0.2			26.7	0.4		
F4	4	23.6 - 27.9	22.8 - 30.2	N/A	N/A	30.1	0.2	25.8	0.2	26.3	0.2	N/A	N/A	25.2	0.3	28.3	0.0	26.9	0.3
	1	25.1 - 34.5		30.0	0.2			28.5	0.1			25.0	0.1			28.7	0.2		
F5	2	24.8 - 34.1	24.9 - 33.7	30.9	0.4	30.5	0.3	28.0	0.4	28.3	0.2	26.5	0.2	25.8	0.5	28.1	0.0	28.4	0.2
	1	23.5 - 28.7		28.7	0.1			24.5	0.2			23.3	0.1			26.4	0.5		
	2	23.9 - 29.4		29.7	0.1			24.6	0.2			24.8	0.0			26.8	0.2		
	3	21.6 - 30.1		29.5	0.1			24.6	0.1			24.6	0.3			26.1	0.4		
F6	4	21.4 - 27.1	22.9 - 28.5	N/A	N/A	29.3	0.2	23.2	0.2	24.2	0.2	N/A	N/A	24.2	0.3	N/A	N/A	26.4	0.2
	1	22.1 - 31.9		N/A	N/A			25.1	0.3			N/A	N/A			28.6	0.1		
M1	2	23.4 - 31.1	22.7 - 31.5	N/A	N/A	N/A	N/A	26.5	0.0	25.8	0.4	N/A	N/A	N/A	N/A	27.9	0.0	28.2	0.2
	1	22.8 - 32.6		N/A	N/A			26.8	0.3			N/A	N/A			28.4	0.1		
M2	2	23.2 - 32.1	23.0 - 32.3	N/A	N/A	N/A	N/A	27.2	0.0	27.0	0.2	N/A	N/A	N/A	N/A	28.6	0.4	28.5	0.2
	1	22.1 - 31.3		N/A	N/A			27.0	0.2			N/A	N/A			29.7	0.3		
M3	2	20.9 - 31.0	21.5 - 31.1	N/A	N/A	N/A	N/A	26.9	0.2	27.0	0.1	N/A	N/A	N/A	N/A	29.3	0.6	29.5	0.3
	1	23.0 - 33.5		N/A	N/A			27.5	0.3			N/A	N/A			29.1	0.0		
M4	2	20.5 - 32.7	23.3 - 33.1	N/A	N/A	N/A	N/A	27.4	0.5	27.4	0.2	N/A	N/A	N/A	N/A	29.2	0.5	29.1	0.2
	1	24.2 - 32.8		N/A	N/A			27.1	0.2			N/A	N/A			30.1	0.4		
M5	2	18.4 - 31.0	22.8 - 31.9	N/A	N/A	N/A	N/A	26.5	0.2	26.8	0.2	N/A	N/A	N/A	N/A	27.8	0.1	29.0	0.7
	1	24.3 - 31.5		N/A	N/A			27.5	0.0			N/A	N/A			27.7	0.1		
M6 Key:	2	24.5 - 32.5	24.4 - 32.0	N/A	N/A	N/A	N/A	27.9	0.2	27.7	0.2	N/A	N/A	N/A	N/A	27.2	0.2	27.5	0.2

Key:

°C = Degrees Celsius.

cm = Centimeters.

N/A = Not applicable.

Table 4.1-20. Average Temperature (°C) of Porewater at Each Site for Each Post-Uprate Quarter with Pre-Uprate Range

		erage rempe								ature at 30				<u> </u>					
		Pre-Upra	te Range		Aug	gust 2014			Nove	mber 2014			Febr	uary 2015			Ma	ay 2015	
Transect	Plot	Plot	Transect	Plot	SE	Transect	SE	Plot	SE	Transect	SE	Plot	SE	Transect	SE	Plot	SE	Transect	SE
	1	23.2 - 30.6		30.7	0.3			24.9	0.1			24.9	0.2			29.3	0.4		
F1	2	20.0 - 31.7	21.8 - 31.1	30.6	0.2	30.6	0.2	24.7	0.1	24.8	0.1	23.2	0.2	24.1	0.5	29.3	0.1	29.3	0.2
	1	22.6 - 29.6		30.8	0.3			25.0	0.7			23.2	0.8			27.9	0.0		
	2	22.3 - 28.6		31.5	0.2			24.0	0.2			21.0	0.0			28.3	0.3		
	3	22.8 - 29.0		29.8	0.0			24.0	0.3			20.7	0.0			27.5	0.1		
F2	4	22.3 - 30.0	22.9 - 29.3	N/A	N/A	30.7	0.3	24.6	0.2	24.4	0.2	N/A	N/A	21.6	0.5	25.3	0.2	27.2	0.4
	1	22.8 - 28.8		30.2	0.1			22.6	0.4			22.5	0.1			27.0	0.9		
	2	23.0 - 30.1		30.7	0.0			23.2	0.4			22.5	0.1			26.8	0.6		
	3	22.7 - 32.6		30.3	0.1			22.9	0.0			22.7	0.1			26.3	0.5		
F3	4	23.1 - 28.7	23.0 - 29.7	N/A	N/A	30.4	0.1	24.3	0.0	23.3	0.3	N/A	N/A	22.5	0.1	24.7	0.0	26.2	0.4
	1	21.4 - 29.2		30.2	0.2			24.2	0.1			22.1	0.0			28.5	0.5		
	2	21.4 - 31.4		30.6	0.0			25.3	0.1			22.7	0.1			29.7	0.7		
	3	24.7 - 32.1		31.2	0.2			25.2	0.0			22.4	0.3			28.8	0.6		
F4	4	23.6 - 27.9	22.8 - 30.2	N/A	N/A	30.7	0.2	24.0	0.1	24.5	0.2	N/A	N/A	22.4	0.1	26.0	0.3	27.8	0.5
	1	25.1 - 34.5		29.7	0.1			26.1	0.0			21.7	0.1			29.0	0.1		
F5	2	24.8 - 34.1	24.9 - 33.7	32.1	0.1	30.9	0.7	27.5	0.1	26.8	0.4	22.4	0.1	22.1	0.2	30.3	0.1	29.6	0.4
	1	23.5 - 28.7		29.8	0.0			25.5	0.2			19.4	0.2			25.5	0.1		
	2	23.9 - 29.4		29.8	0.0			24.8	0.0			22.0	0.3			26.6	0.2		
	3	21.6 - 30.1		30.1	0.0			25.0	0.1			22.3	0.2			27.2	0.7		
F6	4	21.4 - 27.1	22.9 - 28.5	N/A	N/A	29.9	0.1	24.2	0.6	24.9	0.2	N/A	N/A	21.3	0.6	24.4	0.1	25.9	0.4
	1	22.1 - 31.9		N/A	N/A			25.7	0.1			N/A	N/A			30.5	0.5		
M1	2	23.4 - 31.1	22.7 - 31.5	N/A	N/A	N/A	N/A	25.0	0.0	25.4	0.2		N/A	N/A	N/A	1	0.9	30.1	0.5
	1	22.8 - 32.6		N/A	N/A			25.9	0.1			N/A	N/A			28.0	0.0		
M2	2	23.2 - 32.1	23.0 - 32.3	N/A	N/A	N/A	N/A	26.6	0.4	26.2	0.3			N/A	N/A		0.1	27.9	0.1
	_ 1	22.1 - 31.3			N/A			25.1				N/A				29.1			
M3	2		21.5 - 31.1	N/A	N/A	N/A	N/A	25.8	0.1	25.5	0.3	N/A		N/A	N/A	28.7	0.0	28.9	0.1
	1	23.0 - 33.5						25.1	0.3	_		N/A				29.8			
M4	2	20.5 - 32.7	23.3 - 33.1	N/A	N/A	N/A	N/A	25.5	0.0	25.3	0.2			N/A	N/A	<u> </u>	0.1	29.8	0.2
	1	24.2 - 32.8		N/A	N/A			26.2	0.1			N/A	N/A			28.1	0.1		
M5	2	18.4 - 31.0	22.8 - 31.9	N/A	N/A	N/A	N/A	24.4	0.0	25.3	0.5			N/A	N/A			28.9	0.5
	1	24.3 - 31.5		N/A	N/A			26.4	0.0			N/A				28.0			
M6	2	24.5 - 32.5	24.4 - 32.0	N/A	N/A	N/A	N/A	26.5	0.0	26.4	0.0	N/A	N/A	N/A	N/A	28.2	0.1	28.1	0.1

Key:

°C = Degrees Celsius.

cm = Centimeters.

N/A = Not applicable.

Table 4.1-21. Marsh and Mangrove Analytical Porewater August 2013

	J	PW-F1-1		PW-F1-2	2	PW-F2-	1	PW-F2-2	2	PW-F2-	3	PW-F3-		PW-F3-2	2	PW-F3-3	3	PW-F4-	1
Parameter	Units	8/7/2013	3	8/7/2013	3	8/9/2013	3	8/9/2013	3	8/9/2013	3	8/13/201	3	8/13/201	3	8/13/201	3	8/13/201	3
Temperature	°C	29.98		29.06		28.77		28.48		28.69		30.02		29.94		29.66		30.04	
Specific Conductance	μS/cm	1543.93		1175.11		1074.17		1273.25		2235.98		1341.78		1529.19		2201.01		697.5	
Sodium	mg/L	132		73		88		87.2		103		125		139		268		38.5	
Chloride	mg/L	184		107		146		195		433		227		281		496		71.9	
Salinity	*	0.9	J	0.6	J	0.4	J	0.7	J	1.2	J	0.7	J	0.8	J	1.1	J	0.3	J
Tritium	pCi/L (1σ)	93.7 (8.7)	J	22.7 (7.0)	J	49.6 (7.9)		36.9 (7.2)		29.1 (7.0)		86.1 (6.4)		40.8 (8.2)		51.2 (8.2)		30.5 (7.6)	

		PW-F4-	3	PW-F5-]	PW-F5-2	2	PW-F6-	1	PW-F6-2	2	PW-F6-	3	PW-EB1		PW-FB	1
Parameter	Units	8/13/201	3	8/8/2013	3	8/8/2013	3	8/12/201	3	8/12/201	3	8/12/201	3	8/7/2013	3	8/13/201	3
Temperature	°C	30.05		30.02		30.91		28.72		29.72		28.01					
Specific Conductance	μS/cm	789.57		34647.64	J	54925.39		1005.72		1186.95		3199.73					
Sodium	mg/L	52.2		6690		10500		223		77		386		2.39		0.31	U
Chloride	mg/L	92.7		24900	J	20200		119		152		804		0.253	I	0.25	U
Salinity	*	0.4	J	22.4	J	37.1		0.5	J	0.6	J	1.7	J				
Tritium	pCi/L (1σ)	16.6 (7.5)		93.8 (8.5)		66.8 (8.0)		7.2 (6.7)		5.1 (7.4)	UJ	2.9 (7.2)	UJ	9.8 (6.9)		3.2 (4.8)	UJ

NOTES:

Laboratory results are reported with 3 digits although only the first 2 are significant figures.

* PSS-78 salinity is untiless

Text in blue revised

KEY:

 $^{\circ}$ C = Degrees Celsius. FB = Field Blank. pCi/L = PicoCuries per liter.

 μ S/cm = MicroSiemen(s) per centimeter. I = Value between the MDL and PQL. PSS-78 = Practical Salinity Scale of 1978.

 $\sigma = sigma \ (Standard \ Deviation). \qquad \qquad J = Estimated \ (+/- \ indicate \ bias). \qquad \qquad PW = Porewater.$

 $EB = Equipment \ Blank.$ $mg/L = Milligram(s) \ per \ liter.$ $U = Analyzed \ for \ but \ not \ detected \ at the \ reported \ value.$

Table 4.1-22. Marsh and Mangrove Analytical Porewater November 2013

		PW-F1	-1	PW-F1	-2	PW-F2	-1	PW-F2	-2	PW-F2	-3	PW-F2	-4	PW-F3	-1	PW-F3	-2	PW-F3-	-3
Parameter	Units	11/05/20	13	11/19/20	13	11/08/20	013	11/14/20	013	11/14/20	13	11/12/20	13	11/12/20	013	11/12/20	13	11/12/20	13
Temperature	°C	26.29		26.36		26.33		26.33		24.24		25.75		26.05		26.75		26.43	
pН	SU	6.56		6.65		6.69		6.69		6.62		6.04		6.69		6.76		6.69	
Specific Conductance	μS/cm	1382.26		1537.93		1145.06		1432.31		2316.59		749.91		1298.82		1497.47		2140.47	
Sodium	mg/L	127		121		73.3		102		219		60		109		120		230	
Chloride	mg/L	164		204		134		205		453		112		214		253		479	
Total Ammonia	mg/L as N	0.629	J	1.4		1.96		2.13		1.76		0.772		2.45		2.72		1.98	
Ammonium ion (NH ₄ ⁺)	mg/L	0.807	J	1.81		2.51		2.73		2.26		0.992		3.14		3.48		2.54	
Unionized NH ₃	mg/L	0.00172	J	0.00478		0.00726		0.00789		0.00479		0.000616		0.0089		0.0122		0.00739	
Nitrate/Nitrite	mg/L as N	0.027	U	0.027	U	0.027	U	0.027	U	0.027	U	0.027	U	0.027	U	0.027	U	0.027	U
TKN	mg/L	2.18	J	2.77		2.7		3.28		3.15		2.26		4.02		4.16		3.3	
TN	mg/L	2.207	J	2.797		2.727		3.307		3.177		2.287		4.047		4.187		3.327	
ortho-Phosphate	mg/L	0.0014	U	0.00246	I	0.0028	U J-	0.0014	U J-	0.00215	I J-	0.00234	ΙV	0.00141	ΙV	0.0014	U	0.0014	U
Total Phosphorus (P)	mg/L	0.0023	I	0.0022	U	0.0316		0.0177		0.0136		0.0022	U	0.00999	I	0.00623	I	0.00227	I
Salinity	*	0.70	J	0.78	J	0.58	J	0.75	J	1.21	J	0.37	J	0.66	J	0.76	J	1.11	J
Tritium	pCi/L (±1σ)	54.3 (5.4)		20.0 (6.1)		42.6 (5.0)		29.8 (7.3)		16.5 (5.9)		18.6 (4.6)		48.3 (7.5)		51.2 (5.1)		42.8 (5.0)	

Laboratory results are reported with 3 digits although only the first 2 are significant figures.

Text in blue are revised

KEY

 $^{\circ}$ C = Degrees Celsius. mg/L = Milligram(s) per liter. $SU = Standard\ unit(s)$. $\mu S/cm = MicroSiemen(s)$ per centimeter. N = Nitrogen. $TKN = Total\ Kjeldahl\ nitrogen$.

 $\sigma = sigma \ (Standard \ Deviation). \\ NH_3 = Ammonia. \\ TN = Total \ nitrogen.$

 $EB = Equipment \ Blank.$ $NH_4^+ = Ammonum \ ion.$ $U = Analyzed \ for \ but \ not \ detected \ at the reported value.$ $FB = Field \ Blank.$ $V = Detected \ in \ method \ blank.$

I = Value between the MDL and PQL. PSS-78 = Practical Salinity Scale of 1978.

J = Estimated (+/- indicate bias). PW = Porewater.

^{*} PSS-78 salinity is untiless

Table 4.1-22. Marsh and Mangrove Analytical Porewater November 2013

		PW-F3	-4	PW-F4	-1	PW-F4	-2	PW-F4	-3	PW-F4	-4	PW-F5	-1	PW-F5	-2	PW-F6	-1	PW-F6	-2
Parameter	Units	11/12/20	013	11/11/20	13	11/11/20	13	11/11/20	13	11/11/20	13	11/18/20	13	11/18/20	13	11/13/20	13	11/13/20	013
Temperature	°C	25.42		26.24		27.36		26.58		25.48		28.96		28.00		24.47		24.64	
pН	SU	5.81		6.61		6.9		6.68		6.31		6.72		6.86		6.75		6.67	
Specific Conductance	μS/cm	702.46		858.43		728.3		943.17		1103.53		44370.52		50433.17		1060.5		1229.96	
Sodium	mg/L	71.6		40.1		42.1		52.2		77.9		8550		9130		49.5		76	
Chloride	mg/L	132		77.9		85.2		102		145		16600		18800		112		171	
Total Ammonia	mg/L as N	0.421		0.857		1.92		1.72		1.03		0.904		0.996		2.53		2.01	
Ammonium ion (NH ₄ ⁺)	mg/L	0.541		1.1		2.46		2.2		1.32		1.16		1.27		3.24		2.58	
Unionized NH ₃	mg/L	0.000193		0.00263		0.0124		0.00634		0.0015		0.0043		0.00612		0.00944		0.00632	
Nitrate/Nitrite	mg/L as N	0.027	U	0.027	U	0.027	U	0.027	U	0.027	U	0.027	U	0.027	U	0.027	U	0.027	U
TKN	mg/L	2.09		2.76		2.82		2.78		2.9		2.59		1.57		3.64		2.95	
TN	mg/L	2.117		2.787		2.847		2.807		2.927		2.617		1.597		3.667		2.977	
ortho-Phosphate	mg/L	0.00255	ΙV	0.00265	I V J	0.00194	ΙV	0.0014	U	0.00328	ΙV	0.0014	U	0.0014	U	0.00233	I J-	0.0014	U J-
Total Phosphorus (P)	mg/L	0.0022	U	0.0022	UJ	0.0022	U	0.00504	I	0.00545	I	0.0022	U	0.0022	U	0.0022	U	0.0022	U
Salinity	*	0.35	J	0.43	J	0.36	J	0.48	J	0.55	J	29.16		33.69		0.54	J	0.62	J
Tritium	pCi/L (±1σ)	28.0 (4.3)		29.6 (4.6)		25.0 (4.6)		24.6 (4.6)		28.0 (4.7)		43.4 (6.3)		17.2 (6.6)		7.2 (6.5)		2.2 (5.5)	UJ

Laboratory results are reported with 3 digits although only the first 2 are significant figures.

* PSS-78 salinity is untiless

Text in blue are revised

KEY:

 $^{\circ}$ C = Degrees Celsius. mg/L = Milligram(s) per liter. SU = Standard unit(s). μ S/cm = MicroSiemen(s) per centimeter. N = Nitrogen. TKN = Total Kjeldahl nitrogen.

 $\sigma = sigma \ (Standard \ Deviation). \\ NH_3 = Ammonia. \\ TN = Total \ nitrogen.$

 $EB = Equipment \ Blank.$ $NH_4^+ = Ammonum \ ion.$ $U = Analyzed \ for \ but \ not \ detected \ at the reported \ value.$ $FB = Field \ Blank.$ $V = Detected \ in \ method \ blank.$

I = Value between the MDL and PQL. PSS-78 = Practical Salinity Scale of 1978.

J = Estimated (+/-indicate bias). PW = Porewater.

Table 4.1-22. Marsh and Mangrove Analytical Porewater November 2013

		PW-F6	-3	PW-F6	-4	PW-M1	-1	PW-M1	-2	PW-M2	-1	PW-M2	-2	PW-M3	-1	PW-M3	3-2	PW-M4	-1
Parameter	Units	11/13/20	013	11/13/20	13	11/05/20	13	11/06/20	013	11/19/20	13	11/20/20	13	11/19/20	13	11/20/20	013	11/19/20	13
Temperature	°C	24.63		23.21		25.14		26.48		26.78		27.17		27.02		26.91		27.50	
pН	SU	6.57		6.4		6.53		6.61		6.83		6.55		7.04		6.91		6.88	
Specific Conductance	μS/cm	2936.48		1120.44		42284		46491.11		49759.09		49810.77		44296.57		48499.3		48034.91	
Sodium	mg/L	313		44		7950		9170	J	9660		9330		8670		8960	J	10100	
Chloride	mg/L	639		78.9		16300		18200		18800		19000		17200		17900		19500	
Total Ammonia	mg/L as N	1.61		0.822		0.411	J	0.287	J	1.02		0.406	J	0.529		0.756	J	0.834	
Ammonium ion (NH ₄ ⁺)	mg/L	2.07		1.06		0.527	J	0.368	J	1.31		0.521	J	0.675		0.967	J	1.07	
Unionized NH ₃	mg/L	0.00402		0.00125		0.00097	J	0.000894	J	0.00538		0.000542	J	0.00459		0.00483	J	0.00518	
Nitrate/Nitrite	mg/L as N	0.027	U	0.0443	I	0.027	U	0.027	UJ	0.027	U	0.0428	I	0.027	U	0.027	UJ	0.027	U
TKN	mg/L	2.71		3.02		0.719	J	0.89	J	1.45		0.916	J	1.2		1.59	J	1.65	
TN	mg/L	2.737		3.0643		0.746	J	0.917	J	1.477		0.9588	J	1.227		1.617	J	1.677	
ortho-Phosphate	mg/L	0.0014	U J-	0.00478	I J-	0.00656	IJ	0.0206	J	0.00625	IJ	0.0242	J	0.00214	I	0.00245	I	0.0014	U
Total Phosphorus (P)	mg/L	0.0022	U	0.0022	UJ	0.0022	UJ	0.0022	UJ	0.0022	UJ	0.0022	UJ	0.0022	U	0.0022	UJ	0.0022	U
Salinity	*	1.55	J	0.56	J	27.59		30.70		33.13		33.18		29.10		32.19		34.57	
Tritium	pCi/L (±1σ)	8.4 (5.7)		9.7 (5.6)		14.2 (4.7)		8.1 (4.4)		17.1 (6.2)		10.0 (3.7)		8.6 (5.8)		9.5 (3.6)		5.6 (7.0)	UJ

Laboratory results are reported with 3 digits although only the first 2 are significant figures.

Text in blue are revised

KEY:

 $^{\circ}$ C = Degrees Celsius. mg/L = Milligram(s) per liter.

 μ S/cm = MicroSiemen(s) per centimeter. N = Nitrogen. TKN = Total Kjeldahl nitrogen.

 σ = sigma (Standard Deviation). NH₃ = Ammonia. TN = Total nitrogen.

 $EB = Equipment \ Blank.$ $NH_4^+ = Ammonum \ ion.$ $U = Analyzed \ for \ but \ not \ detected \ at the \ reported \ value.$

FB = Field Blank. pCi/L = PicoCuries per liter. V = Detected in method blank.

I = Value between the MDL and PQL. PSS-78 = Practical Salinity Scale of 1978.

J = Estimated (+/- indicate bias). PW = Porewater.

SU = Standard unit(s).

^{*} PSS-78 salinity is untiless

Table 4.1-22. Marsh and Mangrove Analytical Porewater November 2013

		PW-M4	-2	PW-M5	-1	PW-M5	-2	PW-M6	-1	PW-M6	-2	PW-EB	31	PW-FB	1
Parameter	Units	11/06/20	013	11/18/20	13	11/06/20	13	11/07/20	13	11/07/20	13	11/05/20	13	11/20/20	13
Temperature	°C	27.38		27.09		26.50		27.46		27.89					
pН	SU	6.59		6.85		6.84		6.49		6.46					
Specific Conductance	μS/cm	48034.91		47225.85		49061.62		42390.85		44969.55					
Sodium	mg/L	9490	J	8720		9530		7800	J	8300	J	1.28		0.31	U
Chloride	mg/L	18800		18000		19600		16300		16800		0.25	U	0.25	U
Total Ammonia	mg/L as N	1.1	J	0.495		0.894		2.22	J	2.41	J	0.236		0.273	
Ammonium ion (NH ₄ ⁺)	mg/L	1.41	J	0.633		1.14		2.85	J	3.09	J				
Unionized NH ₃	mg/L	0.00349	J	0.00279		0.00473		0.00562	J	0.00587	J				
Nitrate/Nitrite	mg/L as N	0.027	UJ	0.027	U	0.027	U	0.027	UJ	0.027	UJ	0.027	U	0.027	U
TKN	mg/L	2.37	J	1.37		1.38		2.83	J-	3.02	J	0.498		0.285	
TN	mg/L	2.397	J	1.397		1.407		2.857	J	3.047	J				
ortho-Phosphate	mg/L	0.00625	IJ	0.0014	U	0.0193	J	0.0319	J	0.0344	J	0.00284	I	0.0014	U
Total Phosphorus (P)	mg/L	0.0022	UJ	0.0022	U	0.0022	UJ	0.00556	IJ	0.0022	UJ	0.0022	U	0.0022	U
Salinity	*	31.86		31.25		32.60		27.70		29.59					
Tritium	pCi/L ($\pm 1\sigma$)	13.1 (4.4)		22.0 (6.4)		45.1 (4.8)		9.3 (4.3)		12.4 (4.5)		-3.4 (4.4)	UJ	0.5 (3.5)	UJ

Laboratory results are reported with 3 digits although only the first 2 are significant figures.

* PSS-78 salinity is untiless

Text in blue are revised

KEY:

 $^{\circ}$ C = Degrees Celsius. mg/L = Milligram(s) per liter. SU = Standard unit(s). μ S/cm = MicroSiemen(s) per centimeter. N = Nitrogen. TKN = Total Kjeldahl nitrogen.

 $\sigma = sigma \ (Standard \ Deviation). \\ NH_3 = Ammonia. \\ TN = Total \ nitrogen.$

 $EB = Equipment \ Blank.$ $NH_4^+ = Ammonum \ ion.$ $U = Analyzed \ for \ but \ not \ detected \ at the \ reported \ value.$

 $FB = Field \ Blank. \qquad \qquad pCi/L = PicoCuries \ per \ liter. \qquad \qquad V = Detected \ in \ method \ blank.$

I = Value between the MDL and PQL. PSS-78 = Practical Salinity Scale of 1978.

J = Estimated (+/- indicate bias). PW = Porewater.

Table 4.1-23. Marsh and Mangrove Analytical Porewater February 2014

		PW-F1-		PW-F1-2	2	PW-F2-	1	PW-F2-2	2	PW-F2-	3	PW-F3-1		PW-F3-2	2	PW-F3-3	3	PW-F4-1	
Parameter	Units	02/04/201	14	02/04/201	4	02/13/201	14	02/13/201	4	02/13/201	14	02/06/201	4	02/06/201	4	02/06/201	14	02/05/201	4
Temperature	°C	25.9		24.6		22.3		21.6		22.9		25.0		25.1		24.8		24.6	
Specific Conductance	μS/cm	1458		1268		971		1259		1826		1190		1314		2082		873	
Sodium	mg/L	162		125		77.9		95.7		189		110		124		245		55.5	
Chloride	mg/L	157		193		126		178		330		196		230		455		119	
Salinity	*	0.74	J	0.64	J	0.49	J	0.64	J	0.94	J	0.6	J	0.67	J	1.01	J	0.44	J
Tritium	pCi/L (1σ)	53.9 (4.4)		23.7 (3.8)		48.0 (7.5)		31.9 (7.4)		17.0 (7.2)		69.9 (4.7)		31.9 (7.0)		34.3 (6.8)		33.6 (4.0)	

		PW-F4-2	2	PW-F4-3	3	PW-F5-	1	PW-F5-2	2	PW-F6-	1	PW-F6-2	2	PW-F6-	3	PW-EB	1	PW-FB	-1
Parameter	Units	02/05/201	14	02/05/201	4	02/11/201	14	02/11/201	4	02/12/201	14	02/12/201	14	02/12/20 ⁻	14	02/05/20	14	02/13/20	014
Temperature	°C	25.6		25.5		25.0		26.5		23.3		24.8		24.6					
Specific Conductance	μS/cm	799		1011		34810		48481		1033		1200		2578					
Sodium	mg/L	56.4		59.2		6910		10400		53.9		81.5		312		0.310	U	0.310	U
Chloride	mg/L	110		126		12900		18700		116		167		560		0.250	U	0.250	U
Salinity	*	0.4	J	0.51	J	22.2		32.2		0.52	J	0.61	J	1.4	J				
Tritium	pCi/L (1σ)	35.6 (4.1)		24.7 (3.9)		46.8 (7.6)		35.1 (7.3)		1.4 (6.8)	UJ	-1.5 (6.5)	UJ	3.7 (6.6)	UJ	3.2 (3.3)	UJ	-9.0 (8.3)) UJ

Laboratory results are reported with 3 digits although only the first 2 are significant figures.

* PSS-78 salinity is untiless

Text in blue are revised

KEY:

 $^{\circ}$ C = Degrees Celsius. mg/L = Milligram(s) per liter. μ S/cm = MicroSiemen(s) per centimeter. pCi/L = PicoCuries per liter.

 σ = sigma (Standard Deviation). PSS-78 = Practical Salinity Scale of 1978.

EB = Equipment Blank. PW = Porewater.

FB = Field Blank. U = Analyzed for but not detected at the reported value.

J = Estimated (+/- indicate bias).

Table 4.1-24. Marsh and Mangrove Analytical Porewater May 2014

		PW-F1-1		PW-F1-2		PW-F2-1		PW-F2-2		PW-F2-3		PW-F2-4		PW-F3-1		PW-F3-2	
Parameter	Units	05/05/201	4	05/05/2014	4	05/08/2014	4	05/08/2014	4	05/08/2014	4	05/02/2014	4	05/02/2014	4	05/02/2014	4
Temperature	°C	28.08		26.49		28.52		27.33		26.74		27.98		27.62		27.94	
pН	SU	6.99		6.86		7.36		7.17		6.91		6.17		6.86		6.77	
Specific Conductance	μS/cm	1508		1734		1163		1482		2414		887		1290		1503	
Sodium	mg/L	138		176		82.3		127		256		66.4	J	110		123	
Chloride	mg/L	174		316		150		246		498		138		213		273	
Total Ammonia	mg/L as N	0.026	U	0.341	J	0.026	U	0.026	U								
Ammonium ion (NH₄⁺)	mg/L	0.05	U	0.438	J	0.05	U	0.05	U								
Unionized NH ₃	mg/L	0.000017	U	0.000429	J	0.000017	U	0.000017	U								
Nitrate/Nitrite	mg/L as N	0.0654		0.638		0.027	U	0.276		0.0294	I	0.0297	IJ	0.0349	Ι	0.027	U
TKN	mg/L	1.08		2.45		3.05		2.91		4.44		2.14	J	4.23		5.12	
TN	mg/L	1.1454		3.088		3.077		3.186		4.4694		2.1697	J	4.2649		5.147	
ortho-Phosphate	mg/L	0.00171	I	0.0047	Ι	0.0014	I	0.0014	U	0.00159	I	0.0014	U	0.0014	U	0.0014	U
Total Phosphorus (P)	mg/L	0.00292	I	0.00492	I	0.0022	U	0.00351	I	0.0116		0.013	J	0.0217		0.0022	U
Salinity	*	0.8	J	0.9	J	0.6	J	0.8	J	1.3	J	0.4	J	0.7	J	0.8	J
Tritium	pCi/L (1σ)	99.2 (8.4)		40.7 (7.0)		58.2 (6.2)		30.6 (5.6)		29.9 (5.0)		32.9 (5.9)		74.1 (7.3)		37.6 (6.8)	

Laboratory results are reported with 3 digits although only the first 2 are significant figures.

Text in blue is revised

FB = Field Blank.

KEY:

 $^{\circ}$ C = Degrees Celsius. J = Estimated (+/- indicate bias). PSS-78 = Practical Salinity Scale of 1978.

 $\mu S/cm = MicroSiemen(s) \ per \ centimeter. \qquad mg/L = Milligram(s) \ per \ liter. \qquad PW = Porewater.$ $\sigma = sigma \ (Standard \ Deviation). \qquad N = Nitrogen. \qquad SU = Standard \ unit(s).$ $EB = Equipment \ Blank. \qquad NH_3 = Ammonia. \qquad TKN = Total \ Kjeldahl \ nitrogen.$

 NH_4^+ = Ammonum ion.

I = Value between the MDL and PQL. pCi/L = PicoCuries per liter. U = Analyzed for but not detected at the reported value.

TN = Total nitrogen.

^{*} PSS-78 salinity is untiless

Table 4.1-24. Marsh and Mangrove Analytical Porewater May 2014

		PW-F3-3		PW-F4-1		PW-F4-2		PW-F4-3		PW-F4-4		PW-F5-1		PW-F5-2		PW-F6-1	
Parameter	Units	05/02/201	4	05/06/2014	4	05/06/2014	4	05/06/2014	4	05/02/2014	4	05/13/2014	4	05/13/2014	4	05/07/2014	4
Temperature	°C	26.31		26.80		26.55		26.72		28.34		28.69		28.05		26.39	
pН	SU	6.70		6.68		6.78		6.62		6.53		6.59		6.88		6.71	
Specific Conductance	μS/cm	1984		1031		787		1054		1014		38982		67745		1039	
Sodium	mg/L	215		60.7		48.3		65.3		68.4		7210	J	13600		54.6	
Chloride	mg/L	434		132		94		123		125		14200		26400		111	
Total Ammonia	mg/L as N	0.026	U	0.515	J	0.152		0.026	U								
Ammonium ion (NH₄⁺)	mg/L	0.05	U	0.66	J	0.194		0.05	U								
Unionized NH ₃	mg/L	0.000017	U	0.00179	J	0.000981		0.000017	U								
Nitrate/Nitrite	mg/L as N	0.0541		0.0288	Ι	0.027	U	0.027	U	0.0285	I	0.027	UJ	0.027	U	0.027	U
TKN	mg/L	3.17		4.65	J	6.02		6.13		3.49		2.96	J	2.64	J	5.46	
TN	mg/L	3.2241		4.6788	J	6.047		6.157		3.5185		2.987	J	2.667	J	5.487	
ortho-Phosphate	mg/L	0.0014	U	0.0014	U	0.0014	U	0.0014	U	0.00199	I	0.0014	U	0.0014	U	0.0014	U
Total Phosphorus (P)	mg/L	0.00246	I	0.0147		0.0022	U	0.0022	U	0.00716	I	0.011	UJ	0.015	I	0.0022	U
Salinity	*	1.0	J	0.5	J	0.4	J	0.5	J	0.5	J	25.2		47.1		0.5	J
Tritium	pCi/L (1σ)	25.0 (6.8)		38.7 (6.8)		18.9 (6.5)		25.5 (6.6)		30.3 (6.2)		39.4 (5.0)	J	22.9 (5.7)	J	-0.4 (6.3)	UJ

Laboratory results are reported with 3 digits although only the first 2 are significant figures.

Text in blue is revised

KEY:

 $^{\circ}$ C = Degrees Celsius. J = Estimated (+/- indicate bias). PSS-78 = Practical Salinity Scale of 1978.

 $\mu S/cm = MicroSiemen(s) \ per \ centimeter. \qquad mg/L = Milligram(s) \ per \ liter. \qquad PW = Porewater.$ $\sigma = sigma \ (Standard \ Deviation). \qquad N = Nitrogen. \qquad SU = Standard \ unit(s).$ $EB = Equipment \ Blank. \qquad NH_3 = Ammonia. \qquad TKN = Total \ Kjeldahl \ nitrogen.$

FB = Field Blank. $NH_4^+ = Ammonum ion.$ TN = Total nitrogen.

I = Value between the MDL and PQL. pCi/L = PicoCuries per liter. U = Analyzed for but not detected at the reported value.

^{*} PSS-78 salinity is untiless

Table 4.1-24. Marsh and Mangrove Analytical Porewater May 2014

		PW-F6-2		PW-F6-3		PW-M1-1		PW-M1-2		PW-M2-1		PW-M2-2	2	PW-M3-1		PW-M3-2	
Parameter	Units	05/07/201	4	05/07/2014	4	05/05/2014	1	05/12/201	4	05/01/2014	Ļ	05/01/201	4	05/01/2014	4	05/01/201	4
Temperature	°C	26.82		26.08		28.61		27.88		28.41		28.59		29.71		29.27	
pН	SU	6.58		6.67		6.65		6.71		7.13		6.51		6.83		6.79	
Specific Conductance	μS/cm	1214		3621		47442		54083		54776		54022		54147		55515	
Sodium	mg/L	80.6		442		9090		10300	J	9210		10800	J	7480		10700	J
Chloride	mg/L	167.000		870.000		16800		20000		20600		20500		20400		21100	
Total Ammonia	mg/L as N	1.07		0.026	U	0.0764		0.0611	J	0.026	U	0.026	UJ	0.283		0.283	J
Ammonium ion (NH ₄ ⁺)	mg/L	1.37		0.05	U	0.0979		0.0783	J	0.05	U	0.05	UJ	0.362		0.362	J
Unionized NH ₃	mg/L	0.00319		0.000017	U	0.000302		0.000264	J	0.000017	U	0.000017	UJ	0.00183		0.00162	J
Nitrate/Nitrite	mg/L as N	0.027	U	0.027	U	0.027	U	0.027	UJ	0.027	U	0.0354	IJ	0.027	U	0.038	IJ
TKN	mg/L	3.87		2.16		0.685		1.34	J	1.78	J	1.62	J	1.5	J	3.14	J
TN	mg/L	3.897		2.187		0.712		1.367	J	1.807	J	1.6554	J	1.527	J	3.178	J
ortho-Phosphate	mg/L	0.0014	U	0.0014	U	0.0014	U	0.00203	I	0.0014	UJ	0.0014	UJ	0.0014	UJ-	0.0014	UJ
Total Phosphorus (P)	mg/L	0.0022	U	0.0414		0.0022	U	0.011	UJ	0.0022	U	0.0128	J	0.0023	IJ	0.00478	IJ
Salinity	*	0.6	J	1.9	J	31.5		36.5		37.0		36.4		36.5		37.5	
Tritium	pCi/L (1σ)	5.2 (6.2)	UJ	11.0 (5.7)		24.4 (6.5)		16.8 (5.5)		44.8 (6.6)		33.1 (6.4)		78.9 (7.4)		56.5 (6.9)	

Laboratory results are reported with 3 digits although only the first 2 are significant figures.

Text in blue is revised

KEY:

 $^{\circ}$ C = Degrees Celsius. J = Estimated (+/- indicate bias). PSS-78 = Practical Salinity Scale of 1978.

 μ S/cm = MicroSiemen(s) per centimeter.mg/L = Milligram(s) per liter.PW = Porewater. σ = sigma (Standard Deviation).N = Nitrogen.SU = Standard unit(s).EB = Equipment Blank. NH_3 = Ammonia.TKN = Total Kjeldahl nitrogen.FB = Field Blank. NH_4^+ = Ammonum ion.TN = Total nitrogen.

I = Value between the MDL and PQL. pCi/L = PicoCuries per liter. U = Analyzed for but not detected at the reported value.

^{*} PSS-78 salinity is untiless

Table 4.1-24. Marsh and Mangrove Analytical Porewater May 2014

		PW-M4-1		PW-M4-2		PW-M5-1		PW-M5-2		PW-M6-1		PW-M6-2		PW-EB1		PW-FB-1	
Parameter	Units	05/01/201	4	05/12/2014	4	05/01/2014	4	05/12/2014	4	05/12/2014	4	05/12/201	4	05/01/2014	4	05/13/201	4
Temperature	°C	29.08		29.19		30.09		27.84		27.72		27.25					
pН	SU	6.78		6.70		6.81		6.99		6.80		6.82					
Specific Conductance	μS/cm	67295		62225		63431		56922		47797		45635					
Sodium	mg/L	12600		12600	J	12400		11400	J	9200	J	8830	J	0.31	U	0.31	U
Chloride	mg/L	27000		24200		24600		21900		17900		16300		1.25		0.25	U
Total Ammonia	mg/L as N	0.309		0.814	J	0.144		0.394	J	1.19	J	1.64	J	0.026	U	0.026	U
Ammonium ion (NH ₄ ⁺)	mg/L	0.395		1.04	J	0.184		0.503	J	1.52	J	2.1	J				
Unionized NH ₃	mg/L	0.0017		0.00376	J	0.00091		0.00322	J	0.00625	J	0.00873	J				
Nitrate/Nitrite	mg/L as N	0.0303	I	0.027	UJ	0.0589		0.0477	IJ	0.0311	IJ	0.0316	IJ	0.027	U	0.027	U
TKN	mg/L	5.04		2.52	J	2.41	J	2.24	J	3.21	J	3.17	J	0.462		0.444	
TN	mg/L	5.0703		2.547	J	2.4689	J	2.2877	J	3.2411	J	3.2016	J	0.489		0.471	
ortho-Phosphate	mg/L	0.0014	U	0.00489	I	0.0014	UJ	0.0028	I	0.0115		0.0409		0.0014	U	0.00303	I
Total Phosphorus (P)	mg/L	0.0022	U	0.011	UJ	0.00432	IJ	0.0197	IJ	0.011	UJ	0.011	UJ	0.00231	I	0.011	U
Salinity	*	46.7		42.7		43.7		38.6		31.7		30.1					
Tritium	pCi/L (1σ)	99.9 (8.0)		59.6 (6.3)		57.5 (7.3)		23.8 (5.5)		11.9 (5.2)		23.6 (5.2)		-1.8 (5.7)	UJ	6.8 (4.5)	

Laboratory results are reported with 3 digits although only the first 2 are significant figures.

Text in blue is revised

FB = Field Blank.

KEY:

 $^{\circ}$ C = Degrees Celsius. J = Estimated (+/- indicate bias). PSS-78 = Practical Salinity Scale of 1978.

 μ S/cm = MicroSiemen(s) per centimeter. mg/L = Milligram(s) per liter. PW = Porewater. σ = sigma (Standard Deviation). N = Nitrogen. SU = Standard unit(s). EB = Equipment Blank. NH $_3$ = Ammonia. TKN = Total Kjeldahl nitrogen.

 NH_4^+ = Ammonum ion.

I = Value between the MDL and PQL. pCi/L = PicoCuries per liter. U = Analyzed for but not detected at the reported value.

TN = Total nitrogen.

^{*} PSS-78 salinity is untiless

Table 4.1-25. Marsh and Mangrove Analytical Porewater August 2014

		PW-F1-1		PW-F1-2	2	PW-F2-1		PW-F2-2	2	PW-F2-3	3	PW-F3-1		PW-F3-2	2	PW-F3-3	3	PW-F4-1	
Parameter	Units	08/12/201	4	08/12/201	4	08/13/201	4	08/13/201	4	08/14/201	14	08/06/201	4	08/06/201	4	08/06/201	4	08/06/201	4
Temperature	°C	30.67		30.57		30.77		31.48		29.78		30.16		30.73		30.28		30.23	
Specific Conductance	μS/cm	1707.35		1541.31		1213.18		1414.95		2478.42		1583.49		1739.56		2361.92		982.47	
Sodium	mg/L	142		115		80.0		107.0		241		132		141		242		67.0	
Chloride	mg/L	184		203		150		217		525		287		311		527		130	
Salinity	*	0.88	J	0.79	J	0.61	J	0.72	J	1.3	J	0.81	J	0.89	J	1.23	J	0.48	J
Tritium	pCi/L (1σ)	109 (5.7)		41.4 (3.8)		56.6 (4.2)		42.5 (3.4)		26.8 (3.1)		76.1 (4.8)		51.9 (5.0)		50.7 (5.1)		46.3 (4.9)	

		PW-F4-2	2	PW-F4-3	3	PW-F5-	1	PW-F5-2	PW-F6-	1	PW-F6-	2	PW-F6-	3	PW-EB	1	PW-FB	-1
Parameter	Units	08/06/20	14	08/06/201	4	08/08/20 ⁻	14	08/08/2014	08/07/20	14	08/07/20 ⁻	14	08/07/20	14	08/06/20	14	08/13/20	14
Temperature	°C	30.59		31.22		29.68		32.14	29.81		29.78		30.11					
Specific Conductance	μS/cm	774.89		977.29		6659.71		50984.46	996.23		1189.48		3565.97					
Sodium	mg/L	54.3		62.8		904		8770	54.5		78.8		368		1.570		0.310	U
Chloride	mg/L	111		133		1650	J	17300	123		176		814		0.250	U	0.250	U
Salinity	*	0.38	J	0.49	J	3.75	J	34.2	0.5	J	0.59	J	1.87	J				
Tritium	pCi/L (1σ)	39.1 (4.9)		51.7 (5.1)		33.9 (3.5)		41.5 (3.7)	-1.2 (2.9)	UJ	2.7 (2.9)	UJ	8.6 (2.9)		0.3 (4.2)	UJ	-1.9 (2.8)	UJ

Laboratory results are reported with 3 digits although only the first 2 are significant figures.

* PSS-78 salinity is untiless

Text in blue are revised

KEY:

 $^{\circ}$ C = Degrees Celsius. mg/L = Milligram(s) per liter. μ S/cm = MicroSiemen(s) per centimeter. pCi/L = PicoCuries per liter.

 σ = sigma (Standard Deviation) PSS-78 = Practical Salinity Scale of 1978.

EB = Equipment Blank. PW = Porewater.

FB = Field Blank. U = Analyzed for but not detected at the reported value.

J = Estimated (+/- indicate bias).

Table 4.1-26. Marsh and Mangrove Analytical Porewater November 2014

		PW-F1-		PW-F1-2	2	PW-F2-	1	PW-F2-2	2	PW-F2-3	3	PW-F2-4	1	PW-F3-		PW-F3-2	2	PW-F3-	3
Parameter	Units	11/04/201	4	11/13/201	14	11/05/201	14	11/05/20	14	11/05/20	14	11/18/201	4	11/19/201	14	11/19/201	14	11/19/20 ⁻	14
Temperature	°C	24.85		24.75		25.00		24.00		24.00		24.59		22.61		23.20		22.90	
pН	SU	6.77		6.74		6.92		6.82		6.73		6.21		6.78		6.78		6.54	
Specific Conductance	μS/cm	1614.0		1751.5		1095.0		1511.5		2206.5		1028.0		1345.5		1649.0		2420.0	
Sodium	mg/L	127		159		73.4		103		175		82.2		116		127		239	
Chloride	mg/L	168		318		132		240		431		179		242		298		527	
Total Ammonia	mg/L as N	0.446	J	0.610		1.08		1.02		1.79		0.504		1.75		1.42		1.35	
Ammonium ion (NH ₄ ⁺)	mg/L	0.572	J	0.782		1.38		1.31		2.29		0.647		2.24		1.82		1.73	
Unionized NH ₃	mg/L	0.00179	J	0.00227		0.00618		0.00432		0.00617		0.000548		0.00613		0.00519		0.00278	
Nitrate/Nitrite	mg/L as N	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U
TKN	mg/L	2.92		2.18		2.04		2.22		2.72		2.20		2.76		3.58		2.40	
TN	mg/L	3.420		2.680		2.540		2.720		3.220		2.700		3.260		4.080		2.900	
ortho-Phosphate	mg/L	0.00210	U	0.00210	U	0.00210	U	0.00210	U	0.00210	U	0.00210	U	0.00210	U	0.00210	U	0.00210	U
Total Phosphorus (P)	mg/L	0.00300	U	0.0479	I	0.120		0.0873		0.0470		0.0248	I	0.0427	I	0.0666		0.0212	I
Salinity	*	0.81	J	0.89	J	0.54	J	0.76	J	1.13	J	0.51	J	0.68	J	0.83	J	1.25	J
Tritium	pCi/L (1σ)	136 (6.4)		47.9 (6.5)		71.1 (4.6)		48.1 (4.1)		39.9 (3.8)		33.6 (3.3)		107 (5.4)		56.1 (4.1)		49.2 (4.0)	

Laboratory results are reported with 3 digits although only the first 2 are significant figures.

Text in blue are revised

KEY:

 $^{\circ}$ C = Degrees Celsius. mg/L = Milligram(s) per liter. PW = Porewater. μ S/cm = MicroSiemen(s) per centimeter. N = Nitrogen. SU = Standard unit(s). σ = sigma (Standard Deviation) NH₃ = Ammonia. TKN = Total Kjeldahl nitrogen.

EB = Equipment Blank. $NH_4^+ = Ammonum ion.$ TN = Total nitrogen.

FB = Field Blank. NTU = Nephelometric Turbidity Units(s). U = Analyzed for but not detected at the reported value.

 $I = Value \ between \ the \ MDL \ and \ PQL. \qquad \qquad pCi/L = PicoCuries \ per \ liter.$

J = Estimated (+/- indicate bias). PSS-78 = Practical Salinity Scale of 1978.

^{*} PSS-78 salinity is untiless

Table 4.1-26. Marsh and Mangrove Analytical Porewater November 2014

		PW-F3-4	4	PW-F4-	1	PW-F4-2	2	PW-F4-	3	PW-F4-4	4	PW-F5-	1	PW-F5-	2	PW-F6-	1	PW-F6-	2
Parameter	Units	11/18/201	14	11/18/201	4	11/18/201	14	11/18/20 ⁻	14	11/18/201	14	11/14/201	14	11/14/20	14	11/17/20	14	11/17/20	14
Temperature	°C	24.31		24.18		25.33		25.16		24.03		26.14		27.52		25.50		24.84	
pН	SU	5.95		6.59		6.84		6.57		5.99		6.72		6.89		6.71		6.62	
Specific Conductance	μS/cm	911.5		876.5		875.5		1143.5		1444.3		10367.5		37802.0		1076.5		1205.0	
Sodium	mg/L	88.6		47.1		57.2		65.2		110		1590		7410		50.1		71.7	
Chloride	mg/L	188		103		119		144		240		3290		13100		121		182	
Total Ammonia	mg/L as N	0.146		0.411		1.14		0.847		0.641		0.417		0.383		1.69		0.787	
Ammonium ion (NH ₄ ⁺)	mg/L	0.188		0.527		1.46		1.09		0.824		0.534		0.490		2.17		1.01	
Unionized NH ₃	mg/L	0		0.00104		0.00556		0.00219		0.000404		0.00163		0.00244		0.00619		0.00224	
Nitrate/Nitrite	mg/L as N	0.500	U	0.625	Ι	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U
TKN	mg/L	2.46		1.97		4.36		5.70		3.94		1.66		1.19		2.32		1.48	
TN	mg/L	2.960		2.595		4.860		6.200		4.440		2.160		1.690		2.820		1.980	
ortho-Phosphate	mg/L	0.00210	U	0.00210	U	0.00210	U	0.00210	U	0.00325	Ι	0.00210	U	0.00210	U	0.00210	U	0.00210	U
Total Phosphorus (P)	mg/L	0.0237	I	0.0214	I	0.0574		0.0667		0.0714		0.0183	I	0.0217	I	0.0373	I	0.0171	I
Salinity	*	0.45	J	0.43	J	0.43	J	0.51	J	0.76	J	5.85		23.94		0.53	J	0.60	J
Tritium	pCi/L (1σ)	41.7 (3.6)		81.7 (4.6)		62.2 (4.0)		38.0 (3.5)		37.6 (3.3)		48.4 (6.3)		61.2 (6.6)		15.3 (5.7)		10.9 (5.5)	

NOTES:

Laboratory results are reported with 3 digits although only the first 2 are significant figures.

Text in blue are revised

KEY:

 $^{\circ}$ C = Degrees Celsius. mg/L = Milligram(s) per liter. PW = Porewater. μ S/cm = MicroSiemen(s) per centimeter. N = Nitrogen. SU = Standard unit(s). σ = sigma (Standard Deviation) NH₃ = Ammonia. TKN = Total Kjeldahl nitrogen.

EB = Equipment Blank. $NH_4^+ = Ammonum ion.$ TN = Total nitrogen.

FB = Field Blank. NTU = Nephelometric Turbidity Units(s). U = Analyzed for but not detected at the reported value.

I = Value between the MDL and PQL. pCi/L = PicoCuries per liter.

J = Estimated (+/- indicate bias). PSS-78 = Practical Salinity Scale of 1978.

^{*} PSS-78 salinity is untiless

Table 4.1-26. Marsh and Mangrove Analytical Porewater November 2014

Table 4.1 20: Marsh and M		PW-F6-3		PW-F6-4		PW-M1-	1 _	PW-M1-	2	PW-M2-	1 _	PW-M2-	2	PW-M3-	1 _	PW-M3-	2
Parameter	Units	11/17/201		11/17/201		11/13/201		11/11/20		11/06/201		11/06/201		11/10/201		11/10/20	
Temperature	°C	25.03		24.23		25.72		25.01		25.89		26.58		25.20		25.80	
pН	SU	6.68		6.52		6.48		6.55		6.96		6.54		7.03		6.81	
Specific Conductance	μS/cm	3624.5		1252.0		50315.0		52282.0		55697.0		57373.0		53692.0		58572.5	
Sodium	mg/L	367		53.9		9880		9410		11000		11100		10200		11200	
Chloride	mg/L	819		115		19400		20400		20200		20600		21000		22800	
Total Ammonia	mg/L as N	0.571		0.318		0.199		0.140		0.718		0.161		0.490		0.333	
Ammonium ion (NH ₄ ⁺)	mg/L	0.732		0.408		0.255		0.180		0.918		0.207		0.626		0.426	
Unionized NH ₃	mg/L	0.00189		0.000688		0.000436		0.000343		0.00479		0.000430		0.00366		0.00157	
Nitrate/Nitrite	mg/L as N	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U
TKN	mg/L	1.55		2.46		0.730		0.476		1.86		0.706		2.50		0.814	
TN	mg/L	2.050		2.960		1.230		0.976		2.360		1.206		3.000		1.314	
ortho-Phosphate	mg/L	0.00210	U	0.00210	U	0.00210	U	0.0225		0.00210	U	0.00210	U	0.00210	U	0.00210	U
Total Phosphorus (P)	mg/L	0.0623		0.0495	I	0.0352	I	0.0197	I	0.0700		0.0189	I	0.0318	I	0.0218	I
Salinity	*	1.91	J	0.63	J	32.96		34.4		36.94		38.19		35.51		39.51	
Tritium	pCi/L (1σ)	23.4 (5.7)		23.9 (5.8)		26.3 (6.0)		22.9 (5.8)		37.4 (3.7)		27.1 (3.5)		84.7 (4.5)		57.5 (3.8)	

NOTES:

Laboratory results are reported with 3 digits although only the first 2 are significant figures.

Text in blue are revised

KEY:

 $^{\circ}$ C = Degrees Celsius. mg/L = Milligram(s) per liter. PW = Porewater. μ S/cm = MicroSiemen(s) per centimeter. N = Nitrogen. SU = Standard unit(s). σ = sigma (Standard Deviation) NH₃ = Ammonia. TKN = Total Kjeldahl nitrogen.

EB = Equipment Blank. $NH_4^+ = Ammonum ion.$ TN = Total nitrogen.

 $FB = Field \ Blank. \qquad \qquad NTU = Nephelometric \ Turbidity \ Units(s). \qquad U = Analyzed \ for \ but \ not \ detected \ at \ the \ reported \ value.$

 $I = Value \ between \ the \ MDL \ and \ PQL.$ $pCi/L = PicoCuries \ per \ liter.$

J = Estimated (+/- indicate bias). PSS-78 = Practical Salinity Scale of 1978.

^{*} PSS-78 salinity is untiless

Table 4.1-26. Marsh and Mangrove Analytical Porewater November 2014

Tubic 4.1 20. Marsh and M		PW-M4-		PW-M4-		PW-M5-	1 _	PW-M5-	2	PW-M6-		PW-M6-2	2	PW-EB1		PW-FB	1
Parameter	Units	11/04/20	14	11/11/201	4	11/14/201	4	11/11/201	14	11/12/201	4	11/12/201	4	11/04/201	4	11/19/20 ⁻	14
Temperature	°C	25.09		25.51		26.23		24.37		26.41		26.47					
pН	SU	6.77		6.69		6.55		6.91		6.50		6.60					
Specific Conductance	μS/cm	59041.5		65533.0		55870.0		54233.5		45339.0		46657.0					
Sodium	mg/L	11400		12600		10300		10200		8580		9630		0.310	U	0.310	U
Chloride	mg/L	22700		26300		21800		20300		16900		18300		0.250	U	0.200	U
Total Ammonia	mg/L as N	0.624	J	2.58		0.212		0.622		2.31		1.95		0.168		0.0649	
Ammonium ion (NH ₄ ⁺)	mg/L	0.800	J	3.31		0.272		0.796		2.96		2.50					
Unionized NH ₃	mg/L	0.00255	J	0.00903		0.000566		0.00333		0.00556		0.00593					
Nitrate/Nitrite	mg/L as N	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U	0.500	U
TKN	mg/L	1.45		2.66		0.688		1.11		2.72		2.48		0.300	U	0.300	U
TN	mg/L	1.950		3.160		1.188		1.610		3.220		2.980					
ortho-Phosphate	mg/L	0.00210	U	0.0193		0.00210	U	0.00538	I	0.0548		0.0492		0.00210	U	0.00210	U
Total Phosphorus (P)	mg/L	0.00300	U	0.0171	I	0.0150	U	0.0245	I	0.0150	U	0.0150	U	0.00300	U	0.0150	U
Salinity	*	39.50		44.45		37.13		35.9		28.62		30.27					
Tritium	pCi/L (1σ)	53.6 (4.2)		36.8 (5.9)		53.4 (6.5)		26.7 (5.8)		12.5 (5.4)		11.0 (5.4)		4.4 (3.0)		3.5 (2.8)	

NOTES:

Laboratory results are reported with 3 digits although only the first 2 are significant figures.

I = Value between the MDL and PQL.

Text in blue are revised

KEY:

 $^{\circ}$ C = Degrees Celsius. mg/L = Milligram(s) per liter. PW = Porewater. μ S/cm = MicroSiemen(s) per centimeter. N = Nitrogen. SU = Standard unit(s). σ = sigma (Standard Deviation) NH₃ = Ammonia. TKN = Total Kjeldahl nitrogen.

pCi/L = PicoCuries per liter.

EB = Equipment Blank. $NH_4^+ = Ammonum ion.$ TN = Total nitrogen.

FB = Field Blank. NTU = Nephelometric Turbidity Units(s).

J = Estimated (+/- indicate bias). PSS-78 = Practical Salinity Scale of 1978.

U = Analyzed for but not detected at the reported value.

^{*} PSS-78 salinity is untiless

 Table 4.1-27. Marsh and Mangrove Analytical Porewater February 2015

		PW-F1-1	1	PW-F1-2	PW-F1-2		PW-F2-1		2	PW-F2-3		PW-F3-1		PW-F3-2		PW-F3-3		PW-F4-	1
Parameter	Units	02/04/201	15	02/04/201	02/04/2015		02/05/2015		15	02/05/2015		02/09/2015		02/09/201		02/09/201		02/09/201	
Temperature	°C	24.95		23.22		23.23		21.01		20.70		22.46		22.47		22.69		22.05	
Specific Conductance	μS/cm	1549.68		2054.15		1334.21		1628.54		2183.40		1325.76		1528.57		2085.88		1031.97	
Sodium	mg/L	115		201		97.9		142		220		121		140		239		61.7	
Chloride	mg/L	166		391		198		291		457		248		291		504		146	
Salinity	*	0.79	J	1.11	J	0.65	J	0.83	J	1.16	J	0.67	J	0.78	J	1.08	J	0.52	J
Tritium	pCi/L (1σ)	127 (8.9)		42.9 (6.9)		56.8 (7.2)		43.3 (7.1)		29.4 (6.6)		109 (8.6)		66.9 (7.6)		48.3 (6.9)		101 (8.3)	

		PW-F4-2	2	PW-F4-3		PW-F5-1		PW-F5-2		PW-F6-1		PW-F6-2		PW-F6-3		PW-EB1		PW-FB1	
Parameter	Units	02/09/201	15	02/09/2015		02/06/2015		02/06/2015		02/03/2015		5 02/03/20 ²		5 02/03/20		15 02/03/20		02/09/201	15
Temperature	°C	22.70		22.40		21.69		22.44		19.44		21.97		22.34					
Specific Conductance	μS/cm	920.23		1141.25		25101.25		40245.01		1010.21		1264.87		3098.87					
Sodium	mg/L	62.9		74.1		4210		7860		55.9		81.5		352		1.52		0.310	U
Chloride	mg/L	134		156		8770		15500		127		179		756		0.200	U	0.200	U
Salinity	*	0.46	J	0.57	J	15.46		26.05		0.51	J	0.64	J	1.64	J				
Tritium	pCi/L (1σ)	70.8 (7.4)		48.5 (7.1)		91.2 (8.0)		77.8 (7.6)		12.7 (2.9)	J	16.9 (3.0)	J	16.6 (3.0)	J	11.5 (2.8)		-11.0 (6.0)	UJ

NOTES:

Laboratory results are reported with 3 digits although only the first 2 are significant figures.

* PSS-78 salinity is untiless

Text in blue is revised

KEY:

 $^{\circ}$ C = Degrees Celsius. mg/L = Milligram(s) per liter. μ S/cm = MicroSiemen(s) per centimeter. pCi/L = PicoCuries per liter.

 σ = sigma (Standard Deviation). PSS-78 = Practical Salinity Scale of 1978.

EB = Equipment Blank. PW = Porewater.

FB = Field Blank. U = Analyzed for but not detected at the reported value.

J = Estimated (+/- indicate bias).

 Table 4.1-28. Marsh and Mangrove Analytical Porewater May 2015

Table 4.1 20. Marsh and Mar		PW-F1-1		PW-F1-1 PW-F1-2		PW-F2-1		PW-F2-2		PW-F2-3		PW-F2-4		PW-F3-1		PW-F3-2		PW-F3-3	
Parameter	Units	05/13/201	05/13/2015		05/13/2015		05/18/2015		05/18/2015		05/18/2015		05/06/2015		15	05/06/2015		05/06/2015	
Temperature	°C	29.28		29.34		27.88		28.28		27.53		25.28		26.97		26.82		26.28	
pН	SU	6.67		6.66		6.71		6.67		6.68		6.28		7.09		6.99		6.97	
Specific Conductance	μS/cm	1651.26		2343.45		1313.85		1867.27		2687.02		1486.36		1441.00		1564.55		2357.32	
Sodium	mg/L	130		266		88.5		160		298		140		134		149		255	
Chloride	mg/L	185		419		198		317		561		319		270		311		523	
Total Ammonia	mg/L as N	0.217	J-	0.325	J	0.261	J	0.358	J	0.533	J	0.350		0.576		0.923		0.289	
Ammonium ion (NH ₄ ⁺)	mg/L	0.278	J	0.416	J	0.334	J	0.459	J	0.683	J	0.450		0.735		1.179		0.369	
Unionized NH ₃	mg/L	0.00103	J	0.00154	J	0.00111	J	0.00158	J	0.00219	J	0.00050		0.00572		0.00730		0.00220	
Nitrate/Nitrite	mg/L as N	0.0500	U	0.0500	U	0.00500	U	0.00500	U	0.00500	U	0.0599		0.0525		0.203		0.0500	U
TKN	mg/L	2.10		3.24		9.60		8.38		3.22		2.24		3.14		3.02		2.52	
TN	mg/L	2.15		3.29		9.61		8.39		3.23		2.30		3.19		3.22		2.57	
ortho-Phosphate	mg/L	0.00210	U	0.00210	U	0.00210	U	0.00210	U	0.00210	U	0.00210	U	0.00210	U	0.00210	U	0.00210	U
Total Phosphorus (P)	mg/L	0.0323	I	0.0616		0.121		0.0831		0.0405	I	0.00300	U	0.0326	I	0.00600	U	0.0323	I
Salinity	*	0.85	J	1.22	J	0.65	J	0.96	J	1.42	J	0.74	J	0.73	J	0.80	J	1.23	J
Tritium	pCi/L (1σ)																		

NOTES:

Laboratory anion and cation results are reported with 3 digits although only the first 2 are significant figures.

Tritium data pending due to USGS backlog.

Text in blue are revised

KEY:

 $^{\circ}$ C = Degrees Celsius. J = Estimated (+/- indicate bias). PSS-78 = Practical Salinity Scale of 1978.

 $\mu S/cm = MicroSiemen(s)$ per centimeter. mg/L = Milligram(s) per liter. PW = Porewater. $\sigma = sigma$ (Standard Deviation) N = Nitrogen. SU = Standard unit(s). EB = Equipment Blank. $NH_3 = Ammonia$. TKN = Total Kjeldahl nitrogen.

FB = Field Blank. $NH_4^+ = Ammonum ion.$ TN = Total nitrogen.

I = Value between the MDL and PQL. pCi/L = PicoCuries per liter. U = Analyzed for but not detected at the reported value.

^{*} PSS-78 salinity is untiless

Table 4.1-28. Marsh and Mangrove Analytical Porewater May 2015

Table 4.1-20. Mai Sii aliu Mai		PW-F3-		PW-F4-1		PW-F4-2	2	PW-F4-	3	PW-F4-4		PW-F5-	1	PW-F5-2		PW-F6-1		PW-F6-2	
Parameter	Units	05/06/2015		05/14/2015		05/14/2015		05/14/2015		05/14/2015		05/21/2015		05/21/2015		05/07/2015		05/07/2015	
Temperature	°C	24.67		28.48		29.66		28.82		25.97		28.99		30.26		25.50		26.65	
pН	SU	5.95		6.41		6.74		6.69		6.30		6.51		6.80		6.62		6.86	
Specific Conductance	μS/cm	1284.75		1201.91		993.47		1166.60		1717.84		35971.15		58596.96		1027.79		1266.77	
Sodium	mg/L	143		68.1		69.0		77.1		138		6500	J	12000	J	43.7		81.7	
Chloride	mg/L	321		142		150		157		324		12600		22700		113		176	
Total Ammonia	mg/L as N	0.100	U	0.204	J	0.508	J	0.662	J	0.493	J	0.555	J	0.292	J	1.41		1.13	
Ammonium ion (NH ₄ ⁺)	mg/L	0.129	U	0.262	J	0.651	J	0.848	J	0.633	J	0.712	J	0.374	J	1.809		1.446	
Unionized NH ₃	mg/L	0.00007	U	0.00045	J	0.00248	J	0.00302	J	0.00073	J	0.00160	J	0.00179	J	0.00401		0.00686	
Nitrate/Nitrite	mg/L as N	0.0500	U	0.00500	U	0.00500	U	0.00500	U	0.00500	U	0.0500	UJ	0.0500	UJ	0.0500	U	0.0500	U
TKN	mg/L	2.40		1.97		4.68		3.26		7.70		1.69	J	0.774	J	8.46		1.66	
TN	mg/L	2.45		1.98		4.69		3.27		7.71		1.74	J	0.82	J	8.51		1.71	
ortho-Phosphate	mg/L	0.00210	U	0.00210	U	0.00253	I	0.00210	U	0.00210	U	0.00210	U	0.00210	U	0.00210	U	0.00210	U
Total Phosphorus (P)	mg/L	0.0706		0.0150	U	0.0718		0.0491	I	0.137		0.0151	IJ	0.0197	IJ	0.0692		0.0150	U
Salinity	*	0.65	J	0.60	J	0.50	J	0.59	J	0.88	J	23.09		39.92		0.52	J	0.64	J
Tritium	pCi/L (1σ)																		

NOTES:

Laboratory anion and cation results are reported with 3 digits although only the first 2 are significant figures.

Tritium data pending due to USGS backlog.

Text in blue are revised

KEY:

 $\mu S/cm = MicroSiemen(s) \ per \ centimeter. \qquad mg/L = Milligram(s) \ per \ liter. \qquad PW = Porewater.$ $\sigma = sigma \ (Standard \ Deviation) \qquad N = Nitrogen. \qquad SU = Standard \ unit(s).$ $EB = Equipment \ Blank. \qquad NH_3 = Ammonia. \qquad TKN = Total \ Kjeldahl \ nitrogen.$

FB = Field Blank. $NH_4^+ = Ammonum ion.$ TN = Total nitrogen.

I = Value between the MDL and PQL. pCi/L = PicoCuries per liter. U = Analyzed for but not detected at the reported value.

^{*} PSS-78 salinity is untiless

Table 4.1-28. Marsh and Mangrove Analytical Porewater May 2015

Table III 201 Malen and Mal		PW-F6-		PW-F6-	4	PW-M1-	1	PW-M1-2	2	PW-M2-	1	PW-M2-	2	PW-M3-	1	PW-M3-	2	PW-M4-	1
Parameter	Units	05/07/201	15	05/07/201	15	05/18/201	15	05/20/201	5	05/12/201	15	05/12/201	5	05/12/201	15	05/12/20	15	05/12/201	15
Temperature	°C	27.22		24.38		30.46		29.65		27.99		27.78		29.06		28.69		29.79	
pН	SU	6.80		6.25		6.85		6.56		7.03		6.48		6.94		7.07		7.05	
Specific Conductance	μS/cm	3408.22		932.69		50587.55		52081.18		55039.56		58440.67		56126.70		56201.70		64433.23	
Sodium	mg/L	362		46.5		10100		10500	J	11700		11000	J	10900		10700	J	12800	
Chloride	mg/L	788		104		19600		20700		20700		22100		19600		21000		25200	
Total Ammonia	mg/L as N	0.363		0.188	I	0.100	U	0.105	J	0.512	J+	0.353	J	0.566		0.618	J	0.644	
Ammonium ion (NH₄⁺)	mg/L	0.465		0.241		0.128	U	0.135	J	0.654	J	0.453	J	0.724		0.788	J	0.820	
Unionized NH ₃	mg/L	0.00181		0.00025		0.00077	U	0.00039	J	0.00433	J	0.00095	J	0.00408		0.00704	J	0.00782	
Nitrate/Nitrite	mg/L as N	0.0500	U	0.0500	U	0.0250	U	0.0250	UJ	0.119		0.0500	UJ	0.0500	U	0.0500	UJ	0.0500	U
TKN	mg/L	2.98		3.98		2.56		0.606	J	2.06		1.15	J	1.25		0.656	J	0.650	
TN	mg/L	3.03		4.03		2.59		0.63	J	2.18		1.20	J	1.30		0.71	J	0.70	
ortho-Phosphate	mg/L	0.00210	U	0.00210	U	0.00210	U												
Total Phosphorus (P)	mg/L	0.0347	I	0.0670		0.0441	I	0.0321	I	0.0394	I	0.0206	IJ	0.0195	I	0.0150	U J	0.0158	I
Salinity	*	1.81	J	0.47	J	33.81		34.92		37.14		39.75		38.00		38.04		44.47	
Tritium	pCi/L (1σ)																		

NOTES:

Laboratory anion and cation results are reported with 3 digits although only the first 2 are significant figures.

Tritium data pending due to USGS backlog.

Text in blue are revised

FB = Field Blank.

KEY:

°C = Degrees Celsius. J = Estimated (+/- indicate bias). PSS-78 = Practical Salinity Scale of 1978.

 $\mu S/cm = MicroSiemen(s) \ per \ centimeter. \qquad mg/L = Milligram(s) \ per \ liter. \qquad PW = Porewater.$ $\sigma = sigma \ (Standard \ Deviation) \qquad N = Nitrogen. \qquad SU = Standard \ unit(s).$ $EB = Equipment \ Blank. \qquad NH_3 = Ammonia. \qquad TKN = Total \ Kjeldahl \ nitrogen.$

 NH_4^+ = Ammonum ion.

I = Value between the MDL and PQL. pCi/L = PicoCuries per liter. U = Analyzed for but not detected at the reported value.

TN = Total nitrogen.

^{*} PSS-78 salinity is untiless

Table 4.1-28. Marsh and Mangrove Analytical Porewater May 2015

Table 4.1 20. Marsh and Mar		PW-M4-		PW-M5-	1	PW-M5-	2	PW-M6-	1	PW-M6-	2	PW-EB	1	PW-EB	1	PW-FB	1
Parameter	Units	05/20/201	15	05/21/20	15	05/20/201	15	05/19/20 ⁻	15	05/19/201	5	05/06/20 ⁻	15	05/21/20	15	05/21/20	15
Temperature	°C	29.82		28.15		29.59		27.96		28.17							
pН	SU	6.66		6.65		6.77		6.73		6.76							
Specific Conductance	μS/cm	68768.24		64549.25		54744.48		46487.45		47579.07							
Sodium	mg/L	14600	J	13400	J	11200	J	9080	J	9360	J	0.310	U			0.310	U
Chloride	mg/L	28500		25200		21600		17600		18000		1.17				0.200	U
Total Ammonia	mg/L as N	1.53	J	0.185	IJ	0.850	J	1.87	J	2.34	J			0.100	U	0.100	U
Ammonium ion (NH ₄ ⁺)	mg/L	1.960	J	0.237	J	1.088	J	2.396	J	2.996	J						
Unionized NH ₃	mg/L	0.00747	J	0.00079	J	0.00522	J	0.00797	J	0.01253	J						
Nitrate/Nitrite	mg/L as N	0.129	J	0.143	J	0.0250	UJ	0.0250	UJ	0.0250	UJ	0.00500	U			0.00500	U
TKN	mg/L	1.53	J	2.60	J	0.692	J	2.90	J	2.60	J	0.200	U			0.100	U
TN	mg/L	1.66	J	2.74	J	0.72	J	2.93	J	2.63	J						
ortho-Phosphate	mg/L	0.00210	U	0.00210	U	0.00210	U	0.00818	I	0.0113		0.00210	U			0.00210	U
Total Phosphorus (P)	mg/L	0.0300	UJ	0.0319	IJ	0.0300	UJ	0.0238	IJ	0.0530	J	0.0120	U			0.0150	U
Salinity	*	47.91		44.52		36.95		30.71		31.53							
Tritium	pCi/L (1σ)																

NOTES:

Laboratory anion and cation results are reported with 3 digits although only the first 2 are significant figures.

Tritium data pending due to USGS backlog.

Text in blue are revised

KEY:

 $^{\circ}$ C = Degrees Celsius. J = Estimated (+/- indicate bias). PSS-78 = Practical Salinity Scale of 1978.

 $\mu S/cm = MicroSiemen(s)$ per centimeter. mg/L = Milligram(s) per liter. PW = Porewater. $\sigma = sigma (Standard Deviation)$ N = Nitrogen. SU = Standard unit(s). EB = Equipment Blank. $NH_3 = Ammonia$. TKN = Total Kjeldahl nitrogen.

FB = Field Blank. $NH_4^+ = Ammonum ion.$ TN = Total nitrogen.

I = Value between the MDL and PQL. pCi/L = PicoCuries per liter. U = Analyzed for but not detected at the reported value.

^{*} PSS-78 salinity is untiless

4.1-29. Percent Cover of Red Mangroves per Plot and Transect for Post-Uprate Period with Pre-Uprate Average

Oprate Av					Percent (%) Cover			
		Pre-Uprate	e Average	Augu	st 2013	Novem	ber 2013	Noveml	ber 2014
Transect	Plot	Plot	Transect	Plot	Transect	Plot	Transect	Plot	Transect
F1	1	6-25%		6-25%		6-25%		6-25%	
1.1	2	2-5%	6-25%	2-5%	6-25%	2-5%	6-25%	2-5%	6-25%
	1	0-1%		0-1%		0-1%		0-1%	
F2	2	0-1%		0-1%		0-1%		0-1%	
	3	0-1%	0-1%	0-1%	0-1%	0-1%	0-1%	0-1%	0-1%
F5	1	6-25%		6-25%		6-25%		6-25%	
1.3	2	6-25%	6-25%	6-25%	6-25%	6-25%	6-25%	6-25%	6-25%
M1	1	26-50%		N/A		26-50%		26-50%	
1V1 1	2	26-50%	26-50%	N/A	N/A	26-50%	26-50%	26-50%	26-50%
M2	1	6-25%		N/A		6-25%		6-25%	
IVIZ	2	26-50%	6-25%	N/A	N/A	26-50%	6-25%	26-50%	6-25%
M3	1	26-50%		N/A		6-25%		6-25%	
IVIS	2	6-25%	6-25%	N/A	N/A	6-25%	6-25%	6-25%	6-25%
M4	1	6-25%		N/A		6-25%		6-25%	
1714	2	6-25%	6-25%	N/A	N/A	6-25%	6-25%	6-25%	6-25%
M5	1	6-25%		N/A		6-25%		6-25%	
IVIS	2	6-25%	6-25%	N/A	N/A	6-25%	6-25%	6-25%	6-25%
M6	1	6-25%		N/A		6-25%		6-25%	
IVIO	2	6-25%	6-25%	N/A	N/A	6-25%	6-25%	6-25%	6-25%

Key: % = Percent.

Table 4.1-30. Average Red Mangrove Height per Plot and Transect for Post-Uprate Period with Pre-Uprate Range

		Height ± Standard Error (cm)													
		Pre-Uprat	e Range		Aug	just 2013			Nover	mber 2013			Novem	nber 2014	
Transect	Plot	Plot	Transect	Plot	SE	Transect	SE	Plot	SE	Transect	SE	Plot	SE	Transect	SE
	1	112.3 - 114.6		112.3	6.2			113.8	6.3			112.8	6.4		
F1	2	83.7 - 90.0	83.7 - 114.6	88.4	2.8	101.5	4.4	92.4	3.2	104.0	4.3	90.7	3.4	102.7	4.4
F2	2	41.8 - 43.5	41.8 - 43.5	48.7	3.5	-	-	49.5	3.1	-	-	52.3	4.9	-	-
	1	77.1 - 83.2		85.8	19.2			83.8	19.7			92.2	19.8		
F5	2	57.8 - 59.5	57.8 - 83.2	60.6	6.4	68.0	7.4	69.0	7.2	72.7	7.1	64.8	6.0	72.9	7.5
	1	71.3 - 72.7		N/A	N/A			74.5	1.9			75.6	2.3		
M1	2	84.6 - 86.4	71.3 - 86.4	N/A	N/A	N/A	N/A	88.7	3.6	81.6	2.5	90.0	3.7	82.8	2.6
	1	87.3 - 88.8		N/A	N/A			90.3	4.1			91.7	4.1		
M2	2	67.0 - 70.2	67.0 - 88.8	N/A	N/A	N/A	N/A	69.9	2.1	80.1	3.1	71.3	1.9	81.5	3.1
	1	80.8 - 84.8		N/A	N/A			82.2	4.0			84.3	4.1		
M3	2	96.4 - 97.8	80.8 - 97.8	N/A	N/A	N/A	N/A	99.1	6.5	90.6	4.1	100.1	6.8	92.2	4.2
	1	78.6 - 83.0		N/A	N/A			86.4	4.7			87.0	4.7		
M4	2	82.3 - 83.7	78.6 - 83.7	N/A	N/A	N/A	N/A	86.0	5.8	86.2	3.6	89.0	6.2	88.0	3.8
	1	57.5 - 59.6		N/A	N/A			61.5	3.2			63.0	3.2		
M5	2	110.3 - 111.5	57.5 - 111.5	N/A	N/A	N/A	N/A	112.0	5.3	87.9	6.2	111.6	5.5	88.4	6.1
	1	100.0 - 103.7		N/A	N/A			105.4	5.6			103.1	7.2		
M6	2	88.5 - 94.3	88.5 - 103.7	N/A	N/A	N/A	N/A	98.3	6.4	101.8	4.2	95.8	7.1	99.5	5.0

Key: cm = Centimeters. N/A = Not applicable. SE = Standard Error.

Table 4.1-31. Average Red Mangrove Biomass per Plot and Transect for Post-Uprate Events with Pre-Uprate Range

				Bio	omass ±	Standard Er	ror (g/m ²	²)			
		Pre-Upra	te Range		Noven	nber 2013			Nover	mber 2014	
_	.		_ ,	.	0=		0=		0=		0=
Transect	Plot	Plot	Transect	Plot	SE	Transect	SE	Plot	SE	Transect	SE
F1	1	210.0 - 221.0		262.8	65.6			255.9	69.5		
	2	25.0 - 36.8	121.7 - 128.5	48.1	14.2	155.4	51.1	55.6	16.6	155.7	50.3
	1	0.0 - 0.0		0.0	0.0			0.0	0.0		
F2	2	2.3 - 10.0		13.7	4.8			7.5	4.4		
	3	0.0 - 0.0	0.8 - 3.3	0.0	0.0	4.6	2.4	0.0	0.0	2.5	1.7
F5	1	93.8 - 118.8		127.1	44.0			142.8	54.8		
1.3	2	253.2 - 303.9	179.3 - 211.3	247.6	34.2	187.3	34.4	253.0	39.2	197.9	37.5
M1	1	660.5 - 849.7		702.3	58.0			746.2	23.8		
1V1 1	2	620.4 - 684.1	649.1 - 766.9	624.0	21.0	663.2	32.2	618.7	21.4	682.4	28.3
M2	1	119.0 - 134.0		247.6	164.4			263.5	186.5		
1V12	2	572.5 - 654.8	347.7 - 393.6	585.1	66.5	416.4	104.0	698.6	81.7	481.0	125.1
M3	1	360.1 - 399.2		393.4	43.1			397.2	38.2		
1413	2	201.8 - 252.8	282 - 322.4	191.9	28.9	292.6	45.0	191.8	29.8	294.5	44.8
M4	1	201.5 - 226.2		208.8	22.8			204.8	24.0		
171-4	2	342.2 - 387.9	273.5 - 307	326.1	31.2	267.4	28.5	327.5	33.0	266.1	29.9
M5	1	256.5 - 319.9		271.0	39.1			280.4	39.5		
1713	2	320.7 - 412.6	288.6 - 366.3	272.5	32.5	271.7	23.5	271.7	29.5	276.0	22.9
M6	1	145.3 - 168.4		145.8	19.4			146.1	20.5		
IVIU	2	156.7 - 246.3	154.8 - 207.3	176.4	21.8	161.1	14.7	162.3	21.6	154.2	14.1

Key:

g/m² = Grams per square meter.

N/A = Not applicable. SE = Standard Error.

Note: Values in blue are revised from previous report.

Table 4.1-32. Red Mangrove Sclerophylly per Plot and Transect for Post-Uprate Period with Pre-Uprate Range

		mangrove colorer	, , ,			ylly (g/m²)					
		Pre-Upra	te Range		Nove	mber 2013			Nover	nber 2014	
Transect	Plot	Plot	Transect	Plot	SE	Transect	SE	Plot	SE	Transect	SE
	1	234.1 - 249.5		269.8	3.9			252.9	5.5		
F1	2	223.9 - 253.9	229.0 - 251.7	241.2	7.1	255.5	5.0	236.0	3.8	244.5	3.7
F2	2	228.8 - 291.0	228.8 - 291.0	250.9	6.9	250.9	6.9	229.4	5.4	229.4	5.4
	1	163.0 - 240.8		227.3	3.2			231.1	7.5		
F5	2	206.9 - 265.5	180.6 - 242.1	257.9	15.3	242.6	8.3	238.0	7.5	234.6	5.2
	1	216.8 - 259.6		253.1	9.9			272.3	13.7		
M1	2	218.2 - 254.4	217.5 - 257	269.6	17.8	261.3	10.1	246.3	6.1	259.3	7.8
	1	246.7 - 275.4		281.1	9.8			246.8	6.1		
M2	2	244.3 - 259.1	245.5 - 267.3	265.5	7.5	273.3	6.3	262.9	9.3	254.9	5.7
	1	233.5 - 298.9		255.8	6.2			241.9	8.2		
M3	2	223.1 - 252.4	235.7 - 275.7	248.6	7.3	252.2	4.7	241.7	10.1	241.8	6.4
	1	220.6 - 244.3		232.2	6.4			224.2	14.9		
M4	2	214.6 - 242.0	219.1 - 243.1	236.0	6.2	234.1	4.4	225.4	10.9	224.8	9.0
	1	222.3 - 267.9		249.1	4.5			263.8	9.5		
M5	2	216.2 - 260.9	219.3 - 260.7	267.1	7.1	258.1	4.5	255.0	7.2	259.4	5.9
	1	232.9 - 265.6		269.6	8.4			248.4	6.5		
M6	2	245.8 - 286.3	239.4 - 276.0	268.9	6.6	269.3	5.2	249.1	10.1	248.8	5.9

Key: $g/m^2 = Grams per square meter.$

Table 4.1-33. Average Leaf Carbon for Red Mangrove per Plot and Transect during the Post-Uprate Period with Pre-Uprate Range

		ige Lear Garbon for K	,			Carbon (mg/					
		Pre-Uprat	e Ranges		Novembe	er 2013			Novem	ber 2014	
Transect	Plot	Plot	Transect	Plot	SE	Transect	SE	Plot	SE	Transect	SE
	1	462675 - 490082		441750	854			463401	3216		
F1	2	476030 - 490500	474613 - 490000	448500	4173	445125	2349	461210	1755	462305	1746
F2	2	437350 - 488041	448467 - 488041	440000	4041	440000	4041	442125	7689	442125	7689
	1	456250 - 494134		463000	3873			465282	2785		
F5	2	465250 - 498172	460750 - 496441	446000	5017	454500	4351	446415	4383	455848	4300
	1	454750 - 492975		433750	2250			436081	3548		
M1	2	457500 - 500800	456125 - 496888	438000	7246	435875	3603	448374	5416	442228	3792
	1	459250 - 471325		430750	10028			456700	9094		
M2	2	392150 - 468684	431738 - 468300	428000	2799	429375	4847	442339	1336	449519	5047
	1	459059 - 476925		444000	4601			544949	101720		
M3	2	395125 - 470100	436025 - 464579	448000	4916	446000	3207	427798	4802	486373	52080
	1	460750 - 586650		457500	7053			546349	97957		
M4	2	437300 - 474908	456250 - 511975	453750	10896	455625	6050	456379	8739	501364	48597
	1	434450 - 477311		438250	3473			436899	21409		
M5	2	450700 - 481027	442575 - 479169	443750	6600	441000	3606	444321	7852	440610	10649
	1	441500 - 471298		430000	5292			443764	4745		
M6	2	444250 - 469203	442875 - 470251	436750	7576	433375	4464	422769	6011	433266	5321

Key: mg/kg = Milligrams per kilogram. SE = Standard Error.

Table 4.1-34. Average Leaf Total Nitrogen for Red Mangrove per Plot and Transect during the Post-Uprate Period with Pre-Uprate

range			R	. mangle	Total	Nitrogen (mo	g/kg)				
		Pre-Uprat	e Ranges		Nover	nber 2013			Nover	mber 2014	
Transect	Plot	Plot	Transect	Plot	SE	Transect	SE	Plot	SE	Transect	SE
	1	12355 - 15975		10750	250			10680	694		
F1	2	12450 - 16925	12402 - 16450	10750	250	10750	164	11734	454	11207	433
F2	2	10371- 14500	10371 - 15400	10333	882	10333	882	12091	1351	12091	1351
	1	13250 - 19300		13750	250			12585	622		
F5	2	12250 - 15000	12750 - 16433	12750	250	13250	250	12349	358	12467	335
	1	12721 - 15500		10250	479			10615	743		
M1	2	13000 - 16275	12939 - 15863	11250	250	10750	313	11599	161	11107	398
	1	10250 - 14175		9500	500			11540	554		
M2	2	10750 - 13275	10500 - 13725	11000	408	10250	412	9785	142	10662	424
	1	11500 - 13925		11750	250			11235	547		
M3	2	12250 - 12775	11875 - 13350	10750	479	11250	313	10141	210	10688	341
	1	12250 - 20525		13000	577			12432	488		
M4	2	13000 - 14950	12625 - 17738	13000	408	13000	327	14343	872	13387	587
	1	12000 - 18450		11750	479			10882	892		
M5	2	11454 - 15275	11815 - 16863	10750	250	11250	313	10284	407	10583	468
	1	10278 - 11750		10500	500			10926	309		
M6	2	10507 - 11750	10393 - 11750	10000	408	10250	313	10655	143	10791	166

Key: mg/kg = Milligrams per kilogram. SE = Standard Error.

Table 4.1-35. Average Leaf Total Phosphorus for Red Mangrove per Plot and Transect during the Post-Uprate Period with

Pre-Uprate Range

TTO Optato It			R.	mangle	Total	Phosphorou	s (mg/	/kg)			
		Pre-uprat	e Ranges		Nove	mber 2013			Nove	mber 2014	
Transect	Plot	Plot	Transect	Plot	SE	Transect	SE	Plot	SE	Transect	SE
	1	305.3 - 500.0		444.0	21.1			534.5	26.8		
F1	2	425.0 - 570.0	365.2 - 535.0	464.0	42.4	454.0	22.3	621.3	21.1	577.9	22.8
F2	2	305.5 - 560.0	360.0 - 560.0	526.7	67.3	526.7	67.3	740.0	170.0	740.0	170.0
	1	315.7 - 565.0		606.3	13.9			492.0	26.9		
F5	2	382.5 - 432.5	360.2 - 498.8	506.3	29.0	556.3	24.1	541.3	24.7	516.6	19.3
	1	380.0 - 485.0		474.5	25.5			533.5	85.8		
M1	2	455.0 - 487.5	417.5 - 486.3	553.8	27.5	514.1	22.9	568.3	12.1	550.9	40.6
	1	412.5 - 502.5		550.5	20.5			605.0	26.9		
M2	2	402.5 - 465.0	407.5 - 483.8	584.8	43.9	567.6	23.3	544.3	17.8	574.6	18.8
	1	233.1 - 497.5		639.8	19.5			567.8	23.3		
M3	2	455.0 - 537.5	344.0 - 517.5	626.3	31.8	633.0	17.5	587.5	25.0	577.6	16.3
	1	365.3 - 557.5		707.0	60.3			667.5	22.6		
M4	2	377.5 - 517.5	371.4 - 537.5	639.8	25.1	673.4	32.8	680.3	97.3	673.9	46.3
	1	345.0 - 480.0		546.3	30.9			592.3	27.9		
M5	2	322.9 - 522.5	401.4 - 433.8	449.0	15.2	497.6	24.3	538.3	27.1	565.3	20.7
	1	430.0 - 525.0		480.5	19.6			590.5	15.0		
M6	2	402.5 - 462.5	416.3 - 493.8	457.3	30.8	468.9	17.5	582.0	13.6	586.3	9.5

Key: mg/kg = Milligrams per kilogram. SE = Standard Error.

Table 4.1-36. Average Leaf Carbon Isotopes for Red Mangrove per Plot and Transect during the Post-Uprate Period with

Pre-Uprate Range

Tre-oprate N			R. I	mangle	Carbo	on Isotopes (‰)				
		Pre-Uprat	e Ranges		Nove	mber 2013			Nove	ember 2014	
Transect	Plot	Plot	Transect	Plot	SE	Transect	SE	Plot	SE	Transect	SE
	1	-27.6 to -25.8		-27.2	0.2			-27.7	0.1		
F1	2	-27.1 to -25.7	-27.2 to -25.7	-27.3	0.3	-27.2	0.2	-27.5	0.2	-27.6	0.1
F2	2	-28.4 to -26.1	-28.4 to -26.1	-28.0	0.3	-28.0	0.3	-27.5	0.4	-27.5	0.4
	1	-27.7 to -25.9		-27.3	0.3			-27.4	0.1		
F5	2	-26.4 to -25.7	-26.9 to -25.8	-25.7	0.2	-26.5	0.3	-26.0	0.1	-26.7	0.3
	1	-26.1 to -24.4		-25.9	0.1			-26.1	0.4		
M 1	2	-26.0 to -24.2	-26.0 to -24.3	-25.8	0.4	-25.8	0.2	-26.1	0.2	-26.1	0.2
	1	-25.7 to -22.6		-25.2	0.2			-24.9	0.3		
M2	2	-25.6 to -24.3	-25.6 to -23.4	-25.4	0.3	-25.3	0.2	-25.6	0.2	-25.3	0.2
	1	-25.7 to -24.1		-24.8	0.4			-25.2	0.0		
M3	2	-25.3 to -23.9	-25.5 to -24.1	-24.8	0.2	-24.8	0.2	-24.7	0.3	-25.0	0.1
	1	-25.7 to -23.4		-25.1	0.3			-25.1	0.3		
M4	2	-26.0 to -24.9	-25.9 to -24.3	-25.1	0.1	-25.1	0.1	-25.6	0.3	-25.3	0.2
	1	-25.3 to -22.8		-25.4	0.1			-25.5	0.1		
M5	2	-25.9 to -22.9	-25.4 to -22.9	-25.8	0.2	-25.6	0.1	-25.6	0.0	-25.6	0.1
	1	-25.9 to -24.7		-25.4	0.3			-25.7	0.1		
M6	2	-25.6 to -25.1	-25.8 to -24.9	-25.5	0.2	-25.5	0.2	-25.1	0.2	-25.4	0.2

Key: % = Parts per mille. SE =Standard Error.

Table 4.1-37. Average Leaf Nitrogen Isotopes for Red Mangrove per Plot and Transect during the Post-Uprate Period

with Pre-Uprate Range

With the opin			R.	mangle	Nitro	gen Isotopes	s (‰)				
		Pre-Uprate	e Ranges		Nove	mber 2013			Nove	mber 2014	
Transect	Plot	Plot	Transect	Plot	SE	Transect	SE	Plot	SE	Transect	SE
	1	-2.4 to -0.3		-0.1	0.5			-0.9	0.1		
F1	2	-6.5 to -6.0	-4.5 to -3.2	-3.9	0.8	-2.0	0.9	-4.4	0.5	-2.7	0.7
F2	2	-1.7 to -0.7	-1.9 to -0.7	-0.2	0.5	-0.2	0.5	-1.2	0.8	-1.2	0.8
	1	-2.7 to -0.8		-0.6	0.7			-0.2	0.6		
F5	2	-2.1 to -1.6	-2.0 to -1.4	-3.1	0.7	-1.8	0.7	-4.4	0.6	-2.3	0.9
	1	-1.3 to -0.6		1.2	0.6			0.4	1.1		
M1	2	1.4 to 2.5	0.4 to 0.8	3.2	0.2	2.2	0.5	3.3	0.2	1.9	0.7
	1	-11.2 to -9.3		-10.0	1.3			-11.3	0.9		
M2	2	-2.6 to -1.2	-6.8 to -6.0	-1.5	1.0	-5.7	1.8	-1.9	1.8	-6.6	2.0
	1	-9.0 to -4.1		-5.6	1.4			-5.4	1.1		
M3	2	-8.5 to -5.6	-7.3 to -5.7	-8.3	1.5	-6.9	1.1	-9.6	0.8	-7.5	1.0
	1	-6.0 to -5.1		-5.2	0.4			-5.3	0.4		
M4	2	-6.4 to -4.0	-5.8 to -4.6	-6.5	0.6	-5.9	0.4	-3.7	1.1	-4.5	0.6
	1	1.3 to 2.6		2.1	1.0			3.6	0.4		
M5	2	-7.4 to -4.8	-3.0 to -1.1	-6.0	1.1	-2.0	1.7	-5.9	1.6	-1.2	2.0
	1	-6.1 to -4.1		-6.4	0.9			-7.0	1.3		
M6	2	-7.2 to -7.1	-6.6 to -5.6	-8.4	0.1	-7.4	0.5	-9.6	0.3	-8.3	0.8

Key:
% = Parts per mille.
SE =Standard Error.

Table 4.1-38. Red Mangrove Leaf C:N Molar Ratio per Plot and **Transect in the Post-Uprate Period**

		-oprate Peri	R. mangle C:N M	olar Ratio)
		Nove	mber 2013	Novem	ber 2014
Transect	Plot	Plot	Transect	Plot	Transect
	1	48:1		51:1	
F1	2	49:1	48:1	46:1	48:1
F2	2	50:1	-	43:1	-
	1	39:1		43:1	
F5	2	41:1	40:1	42:1	43:1
	1	49:1		48:1	
M1	2	45:1	47:1	45:1	46:1
	1	53:1		46:1	
M2	2	45:1	49:1	53:1	49:1
	1	44:1		57:1	
M3	2	49:1	46:1	49:1	53:1
	1	41:1		51:1	
M4	2	41:1	41:1	37:1	44:1
	1	44:1		47:1	
M5	2	48:1	46:1	50:1	49:1
	1	48:1		47:1	
M6	2	51:1	49:1	46:1	47:1

Key: C = Carbon.

N = Nitrogen.

Table 4.1-39. Red Mangrove Leaf N:P Molar Ratio per Plot and Transect

in the Post-Uprate Period

III tile Post-o		R. mangle N:P Ratio									
		Novem	ber 2013	Novem	nber 2014						
Transect	Plot	Plot	Transect	Plot	Transect						
	1	54:1		44:1							
F1	2	51:1	52:1	42:1	43:1						
F2	2	43:1	-	36:1	-						
	1	50:1		57:1							
F5	2	56:1	53:1	51:1	53:1						
	1	48:1		44:1							
M1	2	45:1	46:1	45:1	45:1						
	1	38:1		42:1							
M2	2	42:1	40:1	40:1	41:1						
	1	41:1		44:1							
M3	2	38:1	39:1	38:1	41:1						
	1	41:1		41:1							
M4	2	45:1	43:1	47:1	44:1						
	1	48:1		41:1							
M5	2	53:1	50:1	42:1	41:1						
	1	48:1		41:1							
M6	2	48:1	48:1	41:1	41:1						

Key:

N = Nitrogen. P = Phosphorous.

Table 4.2-1 Latitude and Longitude of Biscayne Bay, Card Sound, and Barnes Sound Ecological Sampling Points

Point	Latitude	Longitude
BB1-a-1	25.42632	80.32344
BB1-a-2	25.42355	80.32348
BB1-a-3	25.42296	80.32346
BB1-a-4	25.41888	80.32347
BB1-a-5	25.41664	80.32343
BB1-a-6	25.41644	80.32344
BB1-a-7	25.41217	80.32345
BB1-a-8	25.41074	80.32344
BB1-b-1	25.42769	80.32095
BB1-b-2	25.42335	80.32097
BB1-b-3	25.42116	80.32096
BB1-b-4	25.42049	80.32096
BB1-b-5	25.41750	80.32094
BB1-b-6	25.41514	80.32094
BB1-b-7	25.41306	80.32094
BB1-b-8	25.41130	80.32095
BB2-a-1	25.37277	80.30706
BB2-a-2	25.37171	80.30782
BB2-a-3	25.37021	80.30888
BB2-a-4	25.36822	80.31030
BB2-a-5	25.36692	80.31122
BB2-a-6	25.36490	80.31265
BB2-a-7	25.36334	80.31375
BB2-a-8	25.36009	80.31604
BB2-b-1	25.37296	80.30388
BB2-b-2	25.37088	80.30538
BB2-b-3	25.36808	80.30740
BB2-b-4	25.36702	80.30816
BB2-b-5	25.36481	80.30966
BB2-b-6	25.36344	80.31065
BB2-b-7	25.36159	80.31196
BB2-b-8	25.35886	80.31391

Point	Latitude	Longitude
BB3-a-1	25.35211	80.32451
BB3-a-2	25.35034	80.32586
BB3-a-3	25.34834	80.32731
BB3-a-4	25.34671	80.32854
BB3-a-5	25.34400	80.33055
BB3-a-6	25.34172	80.33224
BB3-a-7	25.34089	80.33284
BB3-a-8	25.33927	80.33405
BB3-b-1	25.35051	80.32288
BB3-b-2	25.34832	80.32450
BB3-b-3	25.34663	80.32575
BB3-b-4	25.34426	80.32749
BB3-b-5	25.34346	80.32808
BB3-b-6	25.34202	80.32914
BB3-b-7	25.33996	80.33068
BB3-b-8	25.33817	80.33199
BB4-a-1	25.28361	80.38995
BB4-a-2	25.28203	80.39109
BB4-a-3	25.28096	80.39186
BB4-a-4	25.27843	80.39368
BB4-a-5	25.27762	80.39426
BB4-a-6	25.27576	80.39561
BB4-a-7	25.27357	80.39718
BB4-a-8	25.27135	80.39879
BB4-b-1	25.28255	80.38793
BB4-b-2	25.28035	80.38951
BB4-b-3	25.27996	80.38978
BB4-b-4	25.27821	80.39103
BB4-b-5	25.27587	80.39272
BB4-b-6	25.27476	80.39350
BB4-b-7	25.27293	80.39482
BB4-b-8	25.27068	80.39641

Table 4.2-2 Categories of Submerged Aquatic Vegetation Scored Using Braun-Blanquet Cover Abundance Index Method at Each Sampling Point

Totals	Algae	Seagrasses	Calcareous Algae	Fleshy Green Algae	Corals/ Sponges ¹
Total Macrophytes	Total Macroalgae	Thalassia testudinum	Penicillus	Batophora/ Dasycladus	Corals
Total Drift Red	Total Calcareous	Halodule wrightii	Rhipocephalus	Anadyomene	Gorgonians/Soft Corals
Total Macrophytes Minus Drift Red	Total Green Other (Fleshy)	Syringodium filiforme	Halimeda		Sponges
Total Seagrass	Total Red Other	Ruppia martima	Udotea		
	Total Brown	Halophila engelmannii	Acetabularia		
		Halophila johnsonii			
		Halophila decipiens			

Notes:

¹ Presence/absence only

Table 4.2-3 Mean Water Depth (m) + One Standard Error (SE) by Transect, Season, and Study Area for All Preand Post-Uprate Monitoring Events. Minimum and Maximum Values Also Presented for the 2014/2015 Sampling Period.

Area	Transect			Fall 2013	Fall 2014	Spring 2014	Spring 2015	Fall 2014 and Spring 2015 Combined	
		Fall Mean	Spring Mean	Mean ± SE	Mean ± SE	Mean ± SE	Mean ± SE	Min	Max
	a	1.6	1.4	1.7 ± 0.04	1.6 ± 0.03	1.5 ± 0.04	1.4 ± 0.06	1.1	1.7
BB1	b	1.5	1.3	1.6 ± 0.04	1.8 ± 0.05	1.5 ± 0.02	1.7 ± 0.06	1.5	2.0
	Total	1.8	1.6	1.7 ± 0.03	1.7 ± 0.03	1.5 ± 0.02	1.6 ± 0.05	1.1	2.0
	a	2.4	2.2	2.2 ± 0.09	2.3 ± 0.09	2.2 ± 0.07	2.2 ± 0.09	1.9	2.8
BB2	b	2.3	2.0	2.6 ± 0.10	2.7 ± 0.11	2.4 ± 0.10	2.6 ± 0.13	2.1	3.1
	Total	2.5	2.3	2.4 ± 0.08	2.5 ± 0.09	2.3 ± 0.06	2.4 ± 0.09	1.9	3.1
	a	2.8	2.7	2.7 ± 0.07	2.9 ± 0.05	2.8 ± 0.05	2.9 ± 0.05	2.7	3.2
BB3	b	2.7	2.7	3.0 ± 0.06	3.1 ± 0.03	2.8 ± 0.05	3.0 ± 0.04	2.8	3.3
	Total	2.9	2.8	2.8 ± 0.06	3.0 ± 0.04	2.8 ± 0.03	2.9 ± 0.03	2.7	3.3
	a	2.1	1.9	2.0 ± 0.03	2.3 ± 0.02	2.1 ± 0.03	2.1 ± 0.04	2.0	2.4
BB4	b	2.0	1.9	2.1 ± 0.02	2.4 ± 0.01	2.1 ± 0.02	2.1 ± 0.03	2.0	2.4
	Total	2.1	2.0	2.1 ± 0.02	2.3 ± 0.02	2.1 ± 0.02	2.1 ± 0.02	2.0	2.4
All	l Areas	2.2	2.1	2.2 ± 0.06	2.4 ± 0.07	2.2 ± 0.06	2.2 ± 0.07	1.1	3.3

m = meter(s)

Table 4.2-4 Number of Points Within Each Study Area (n=16) Containing Each of Eight Substrate Types For All Fall and Spring Pre-and Post-Uprate Monitoring Events.

Sample Period	Area	Sandy and Rubble	Sandy and Shell Hash	Sandy, Shell Hash, Rubble	Sandy, Silty, Shell Hash, Rubble	Silty	Silty and Sandy	Silty, Sandy, and Shell Hash	Silty, Sandy, Rubble
	BB1		9	1			1	5	
	BB2		16						
Pre-Uprate Fall ¹	BB3		16					1	
	BB4		6		4	1		1	
	Total		46	6	4	1	1	6	
	BB1		7	1			2	6	
	BB2		16						
Fall 2013	BB3		15					1	
	BB4		7		7	1		1	
	Total		45	1	7	1	2	8	
	BB1		11	1	1			3	
	BB2		16						
Fall 2014	BB3		16						
	BB4		4	9		1			2
	Total		47	10	1	1		3	2

Table 4.2-4 Number of Points Within Each Study Area (n=16) Containing Each of Eight Substrate Types For All Fall and Spring Pre-and Post-Uprate Monitoring Events.

Sample Period	Area	Sandy and Rubble	Sandy and Shell Hash	Sandy, Shell Hash, Rubble	Sandy, Silty, Shell Hash, Rubble	Silty	Silty and Sandy	Silty, Sandy, and Shell Hash	Silty, Sandy, Rubble
	BB1		13	1				2	
D. H.	BB2		15				1		
Pre-Uprate Spring	BB3		14					2	
	BB4		6	5	4		1		
	Total		48	6	4		2	4	
	BB1		13	1				2	
	BB2		15				1		
Spring 2014	BB3		14					2	
	BB4		6	5	4		1		
	Total		48	6	4		2	4	
	BB1		13					3	
	BB2		16						
Spring 2015	BB3		15	1					
	BB4	1	6	4	2		1	1	1
	Total	1	50	5	2		1	4	1

¹ Number of occurrences for the 2 fall pre-uprate events averaged to nearest whole number

Table 4.2-5 Light Readings (µmols/m2/sec) Taken Simultaneously in Air and Water at Each of Three Depths at One Point Along Each Transect During All Fall and Spring Pre- and Post-Uprate Monitoring Events.

						Sub-Surfa	ce				
Area	Tran- sect	Pre-Up	rate Mean	Fall 2	Fall 2013		014	Spring	2014	Spring 2015	
		Fall % ATN ¹	Spring % ATN	Depth (m)	% ATN	Depth (m)	% ATN	Depth (m)	% ATN	Depth (m)	% ATN
	a	21%	21%	0.3	19%	0.3	13%	0.3	14%	0.3	15%
BB1	b	14%	28%	0.3	17%	0.3	14%	0.3	21%	0.3	7%
	Area	19%	24%	0.3	18%	0.3	13%	0.3	18%	0.3	11%
	a	29%	17%	0.3	25%	0.3	21%	0.3	18%	0.3	3%
BB2	b	7%	16%	0.3	21%	0.3	13%	0.3	16%	0.3	5%
	Area	19%	17%	0.3	23%	0.3	17%	0.3	17%	0.3	4%
	a	15%	23%	0.3	49%	0.3	23%	0.3	14%	0.3	10%
BB3	b	21%	30%	0.3	40%	0.3	24%	0.3	22%	0.3	5%
	Area	18%	26%	0.3	44%	0.3	23%	0.3	18%	0.3	7%
	a	11%	20%	0.3	26%	0.3	19%	0.3	16%	0.3	6%
BB4	b	14%	11%	0.3	37%	0.3	12%	0.3	13%	0.3	7%
	Area	12%	16%	0.3	32%	0.3	15%	0.3	14%	0.3	6%

Table 4.2-5 Light Readings (µmols/m2/sec) Taken Simultaneously in Air and Water at Each of Three Depths at One Point Along Each Transect During All Fall and Spring Pre- and Post-Uprate Monitoring Events.

						Mid-Dept	h				
Area	Tran- sect	Pre-Up	Pre-Uprate Mean		Fall 2013		014	Spring	2014	Spring 2015	
	3301	Fall % ATN ¹	Spring % ATN	Depth (m)	% ATN	Depth (m)	% ATN	Depth (m)	% ATN	Depth (m)	% ATN
	a	36%	30%	0.9	43%	0.7	28%	0.7	31%	0.8	23%
BB1	b	40%	39%	0.9	36%	0.9	29%	0.6	30%	0.9	26%
	Area	37%	34%	0.9	39%	0.8	28%	0.7	31%	0.9	25%
	a	48%	23%	1	51%	1.0	37%	1	32%	1.0	25%
BB2	b	7%	40%	1.2	57%	1.2	41%	1.2	32%	1.2	34%
	Area	29%	38%	1.1	55%	1.1	39%	1.1	32%	1.1	29%
	a	54%	51%	1.3	55%	1.3	46%	1.3	32%	1.3	41%
BB3	b	46%	42%	1.5	66%	1.5	49%	1.5	35%	1.5	27%
	Area	49%	46%	1.4	60%	1.4	48%	1.4	34%	1.4	34%
	a	48%	35%	0.9	52%	0.9	35%	0.9	48%	0.9	38%
BB4	b	53%	35%	1	50%	1.0	46%	1	29%	1.0	35%
	Area	50%	35%	0.9	51%	0.9	41%	0.9	34%	0.9	37%

Table 4.2-5 Light Readings (µmols/m2/sec) Taken Simultaneously in Air and Water at Each of Three Depths at One Point Along Each Transect During All Fall and Spring Pre- and Post-Uprate Monitoring Events.

						Off-Botto	m				
Area	Tran- sect	Pre-Upi	Pre-Uprate Mean		Fall 2013		014	Spring	2014	Spring	2015
		Fall % ATN ¹	Spring % ATN	Depth (m)	% ATN	Depth (m)	% ATN	Depth (m)	% ATN	Depth (m)	% ATN
	a	41%	34%	1.5	54%	1.0	51%	1	37%	1.4	44%
BB1	b	49%	51%	1.4	43%	1.4	49%	1.5	37%	1.4	44%
	Area	44%	42%	1.5	48%	1.2	50%	1.3	37%	1.4	44%
	a	57%	40%	1.7	69%	1.7	52%	1.7	35%	1.7	52%
BB2	b	18%	55%	2	72%	2.0	55%	2	44%	2.0	56%
	Area	39%	52%	1.9	71%	1.9	53%	1.9	39%	1.9	54%
	a	72%	67%	2.2	67%	2.2	62%	2.2	48%	2.2	59%
BB3	b	68%	73%	2.7	90%	2.7	67%	2.7	49%	2.7	62%
	Area	70%	68%	2.5	81%	2.5	65%	2.5	49%	2.5	60%
	a	67%	51%	1.5	57%	1.5	55%	1.5	55%	1.5	55%
BB4	b	62%	50%	1.7	60%	1.7	75%	1.7	59%	1.7	52%
	Area	65%	50%	1.6	58%	1.6	65%	1.6	56%	1.6	53%

Notes:

Key:

µmols/m2/sec = Micromoles per Second per Square Meter m = Meter(s)

ATN = Attenuation.

¹Percent Attenuation (% ATN) is the percentage of attenuation from the air reading.

²Attenuation (ATN) is the difference between the air and water readings.

Table 4.2-6 Mean and Standard Error (SE) for Surface and Bottom Water Column Temperatures (°C) by Transect, Season, and Study Area for All Pre- and Post-Uprate Monitoring Events.

					Surface		
Area	Transect	Pre-	Uprate	Fall 2013	Fall 2014	Spring 2014	Spring 2015
		Fall Mean	Spring Mean	Mean ± SE	Mean ± SE	Mean ± SE	Mean ± SE
	a	29.4	26.6	29.6 ± 0.1	27.9 ± 0.0	26.0 ± 0.0	28.8 ± 0.2
BB1	b	28.1	27.3	30.2 ± 0.2	28.3 ± 0.2	27.0 ± 0.1	29.0 ± 0.1
	Area	28.8	26.9	29.9 ± 0.1	28.1 ± 0.1	26.5 ± 0.1	28.9 ± 0.1
	a	27.9	27.2	29.2 ± 0.1	28.0 ± 0.0	26.7 ± 0.1	28.0 ± 0.0
BB2	b	28.1	26.5	29.6 ± 0.2	28.3 ± 0.1	27.5 ± 0.1	28.1 ± 0.1
	Area	28.5	26.8	29.4 ± 0.1	28.2 ± 0.1	27.1 ± 0.1	28.1 \pm 0.0
	a	28.5	26.6	29.1 ± 0.0	28.1 ± 0.0	26.8 ± 0.1	28.3 ± 0.1
BB3	b	28.5	26.8	29.4 ± 0.0	28.5 ± 0.1	27.3 ± 0.1	28.8 ± 0.1
	Area	28.5	26.7	29.2 ± 0.1	28.3 ± 0.1	27.0 \pm 0.1	28.6 ± 0.1
	a	28.1	28.6	29.1 ± 0.1	27.6 ± 0.0	27.1 ± 0.0	27.8 ± 0.1
BB4	b	28.5	28.8	29.7 ± 0.1	28.3 ± 0.1	28.0 ± 0.1	28.9 ± 0.1
	Area	28.3	28.7	29.4 ± 0.1	27.9 ± 0.1	27.5 ± 0.1	28.4 ± 0.2

Table 4.2-6 Mean and Standard Error (SE) for Surface and Bottom Water Column Temperatures (°C) by Transect, Season, and Study Area for All Pre- and Post-Uprate Monitoring Events.

					Bottom		
Area	Transect	Pre-	Uprate	Fall 2013	Fall 2014	Spring 2014	Spring 2015
		Fall Mean	Spring Mean	Mean ± SE	Mean ± SE	Mean ± SE	Mean ± SE
	a	29.4	26.6	29.6 ± 0.2	28.0 ± 0.0	26.0 ± 0.0	28.8 ± 0.2
BB1	b	28.1	27.3	30.2 ± 0.1	28.3 ± 0.2	27.0 ± 0.1	29.0 ± 0.1
	Area	28.7	26.9	29.9 ± 0.1	28.2 ± 0.1	26.5 ± 0.1	28.9 ± 0.1
	a	27.9	27.2	29.2 ± 0.1	28.0 ± 0.0	26.7 ± 0.1	28.0 ± 0.0
BB2	b	28.2	26.5	29.6 ± 0.1	28.3 ± 0.1	27.5 ± 0.1	28.1 ± 0.1
	Area	28.1	26.6	29.4 ± 0.1	28.2 ± 0.1	27.1 ± 0.1	28.1 ± 0.0
	a	28.7	26.6	29.1 ± 0.0	28.1 ± 0.0	26.8 ± 0.1	28.3 ± 0.1
BB3	b	28.6	26.6	29.4 ± 0.0	28.5 ± 0.1	27.4 ± 0.2	28.8 ± 0.1
	Area	28.6	26.6	29.2 ± 0.1	28.3 ± 0.1	27.1 \pm 0.1	28.6 ± 0.1
	a	28.2	28.6	29.1 ± 0.1	27.7 ± 0.1	27.1 ± 0.0	27.9 ± 0.0
BB4	b	28.5	28.8	29.7 ± 0.1	28.2 ± 0.0	28.0 ± 0.1	29.0 ± 0.1
	Area	28.4	28.7	29.4 ± 0.1	27.9 ± 0.1	27.5 ± 0.1	28.4 ± 0.1

SE = Standard Error

°C = Degrees Celcius

Table 4.2-7 Mean and Standard Error (SE) for Surface and Bottom Water Column Specific Conductance (µS/cm) by Transect, Season, and Study Area for All Pre- and Post-Uprate Monitoring Events.

					Surface		
Area	Transect	Pre-Upr	ate Mean	Fall 2013	Fall 2014	Spring 2014	Spring 2015
		Fall	Spring	Mean ± SE	Mean ± SE	Mean ± SE	Mean ± SE
	a	45,181	57,081	$39,988 \pm 373$	53,800 ± 327	59,613 ± 190	55,250 ± 171
BB1	b	43,250	58,325	$42,925 \pm 111$	54,488 ± 416	58,775 ± 190	55,813 ± 35
	Area	44,216	57,703	41,456 ± 423	54,144 ± 270	59,194 ± 170	55,531 ± 111
	a	47,131	57,088	51,863 ± 311	54,213 ± 30	57,638 ± 30	55,075 ± 45
BB2	b	47,906	58,263	$51,625 \pm 518$	53,813 ± 30	57,600 ± 50	54,738 ± 18
	Area	47,519	57,675	51,744 ± 293	54,013 ± 55	57,619 ± 30	54,906 ± 50
	a	44,513	58,313	52,400 ± 204	54,163 ± 32	58,013 ± 180	54,988 ± 40
BB3	b	45,600	57,700	52,800 ± 105	54,188 ± 23	58,413 ± 170	54,513 ± 30
	Area	45,056	58,006	52,600 ± 123	54,175 ± 19	58,213 ± 130	54,750 ± 66
	a	42,188	56,206	43,413 ± 348	52,388 ± 221	53,175 ± 100	51,463 ± 203
BB4	b	44,656	56,538	44,238 ± 273	53,050 ± 93	52,900 ± 60	52,438 ± 174
	Area	43,422	56,372	43,825 ± 239	52,719 ± 144	53,038 ± 60	51,950 ± 181

Table 4.2-7 Mean and Standard Error (SE) for Surface and Bottom Water Column Specific Conductance (µS/cm) by Transect, Season, and Study Area for All Pre- and Post-Uprate Monitoring Events.

					Bottom		
Area	Transect	Pre-Upr	ate Mean	Fall 2013	Fall 2014	Spring 2014	Spring 2015
		Fall	Spring	Mean ± SE	Mean ± SE	Mean ± SE	Mean ± SE
	a	45,206	57,113	$40,313 \pm 358$	53,788 ± 331	59,538 ± 180	55,238 ± 168
BB1	b	43,281	58,338	$44,238 \pm 243$	54,513 ± 385	58,700 ± 210	$55,788 \pm 40$
	Area	44,244	57,725	42,275 ± 548	54,150 ± 263	59,119 ± 170	55,513 ± 109
	a	47,413	57,075	52,138 ± 184	54,175 ± 31	57,575 ± 30	55,063 ± 56
BB2	b	48,206	58,263	52,663 ± 134	$53,788 \pm \ 23$	$57,525 \pm 40$	$54,713 \pm 30$
	Area	47,809	57,669	52,400 ± 129	53,981 ± 53	57,550 ± 30	54,888 ± 55
	a	47,719	58,313	52,438 ± 189	54,113 ± 30	57,975 ± 200	54,950 ± 46
BB3	b	48,413	57,838	52,900 ± 63	54,188 ± 13	58,400 ± 170	54,500 ± 27
	Area	48,066	58,075	52,669 ± 113	54,150 ± 18	58,188 ± 140	54,725 ± 64
	a	45,869	56,225	43,775 ± 524	52,550 ± 221	53,088 ± 80	51,775 ± 203
BB4	b	46,144	56,550	44,300 ± 296	53,663 ± 60	52,863 ± 60	52,388 ± 167
	Area	46,006	56,388	44,038 ± 299	53,106 ± 164	52,975 ± 60	52,081 ± 143

 μ S/cm = Micro-Siemens per Centimenter(s).

Table 4.2-8 Mean and Standard Error (SE) for Surface and Bottom Column Water Salinity (PSU) by Transect, Season, and Study Area for all Pre- and Post-Uprate Monitoring Events.

					Surface		
Area	Transect		-Uprate /lean	Fall 2013	Fall 2014	Spring 2014	Spring 2015
		Fall	Spring	Mean ± SE	Mean ± SE	Mean ± SE	Mean ± SE
	a	29.4	38.0	25.7 ± 0.26	35.7 ± 0.2	39.9 ± 0.14	36.8 ± 0.1
BB1	b	28.1	39.1	27.8 ± 0.09	36.2 ± 0.3	39.3 ± 0.14	36.6 ± 0.6
	Area	28.7	38.6	26.8 ± 0.31	36.0 ± 0.2	39.6 ± 0.12	36.7 ± 0.3
	a	30.8	38.1	34.3 ± 0.22	36.0 ± 0.0	38.5 ± 0.02	36.7 ± 0.0
BB2	b	31.4	39.0	34.2 ± 0.36	35.7 ± 0.0	38.5 ± 0.03	36.4 ± 0.0
	Area	31.1	38.5	34.3 ± 0.21	35.9 ± 0.0	38.5 ± 0.02	36.5 ± 0.0
	a	29.3	39.0	34.7 ± 0.16	36.0 ± 0.0	38.8 ± 0.14	36.6 ± 0.0
BB3	b	30.2	38.4	35.0 ± 0.08	36.0 ± 0.0	39.1 ± 0.14	36.3 ± 0.0
	Area	29.8	38.7	34.9 ± 0.10	36.0 ± 0.0	39.0 ± 0.10	36.4 ± 0.0
	a	27.4	37.5	28.1 ± 0.24	34.6 ± 0.2	35.2 ± 0.07	33.9 ± 0.2
BB4	b	28.9	37.8	28.7 ± 0.19	35.2 ± 0.1	35.0 ± 0.04	34.7 ± 0.1
	Area	28.2	37.7	28.4 ± 0.17	34.9 ± 0.1	35.1 ± 0.04	34.3 ± 0.1

Table 4.2-8 Mean and Standard Error (SE) for Surface and Bottom Column Water Salinity (PSU) by Transect, Season, and Study Area for all Pre- and Post-Uprate Monitoring Events.

					Bottom		
Area	Transect		-Uprate ⁄lean	Fall 2013	Fall 2014	Spring 2014	Spring 2015
		Fall	Spring	Mean ± SE	Mean ± SE	Mean ± SE	Mean ± SE
	a	29.4	38.1	25.9 ± 0.24	35.7 ± 0.2	39.9 ± 0.15	36.8 ± 0.1
BB1	b	28.1	39.1	28.7 ± 0.16	36.2 ± 0.3	39.3 ± 0.15	37.2 ± 0.0
	Area	28.8	38.6	27.3 ± 0.39	36.0 ± 0.2	39.6 ± 0.13	37.0 ± 0.1
	a	31.0	38.1	34.5 ± 0.13	36.0 ± 0.0	38.5 ± 0.02	36.6 ± 0.0
BB2	b	31.5	39.0	34.9 ± 0.09	35.7 ± 0.0	38.5 ± 0.04	36.4 ± 0.0
	Area	31.3	38.6	34.7 ± 0.09	35.9 ± 0.0	38.5 ± 0.02	36.5 ± 0.0
	a	31.6	39.0	34.7 ± 0.14	36.0 ± 0.0	38.8 ± 0.15	36.6 ± 0.0
BB3	b	31.7	38.7	35.1 ± 0.05	36.0 ± 0.0	39.1 ± 0.13	36.3 ± 0.0
	Area	31.6	38.8	34.9 ± 0.09	36.0 ± 0.0	38.9 ± 0.11	36.4 ± 0.0
	a	29.8	37.6	28.3 ± 0.37	34.8 ± 0.1	35.1 ± 0.06	34.2 ± 0.1
BB4	b	30.1	37.8	28.8 ± 0.22	35.9 ± 0.3	35.0 ± 0.04	34.7 ± 0.1
	Area	30.0	37.7	28.6 ± 0.22	35.3 ± 0.2	35.1 ± 0.04	34.5 ± 0.1

PSU = Practical Salinity Unit(s).

Table 4.2-9 Mean and Standard Error (SE) for Surface and Bottom Water Column DO (mg/L) by Transect, Season, and Study Area for all Pre- and Post-Uprate Events.

					Surface		
Area	Transect	Pre-U	orate Mean	Fall 2013	Fall 2014	Spring 2014	Spring 2015
		Fall	Spring	Mean ± SE	Mean ± SE	Mean ± SE	Mean ± SE
	a	5.8	4.8	6.1 ± 0.26	5.3 ± 0.1	5.3 ± 0.14	6.0 ± 0.2
BB1	b	5.5	5.2	5.0 ± 0.87	5.6 ± 0.1	6.2 ± 0.14	6.0 ± 0.1
	Area	5.6	5.0	5.6 ± 0.31	5.4 ± 0.1	5.7 ± 0.12	6.0 ± 0.1
	a	6.2	6.6	5.4 ± 0.22	5.6 ± 0.1	5.7 ± 0.02	5.4 ± 0.1
BB2	b	6.0	6.0	4.9 ± 0.36	6.0 ± 0.0	6.1 ± 0.03	5.7 ± 0.1
	Area	6.1	6.3	5.2 ± 0.21	5.8 ± 0.1	5.9 ± 0.02	5.5 ± 0.1
	a	5.7	5.8	5.3 ± 0.16	5.3 ± 0.0	5.7 ± 0.14	5.7 ± 0.0
BB3	b	6.4	6.0	5.6 ± 0.08	5.7 ± 0.1	6.0 ± 0.14	6.0 ± 0.0
	Area	6.0	5.9	5.5 ± 0.10	5.5 ± 0.1	5.9 ± 0.10	5.8 ± 0.0
	a	5.3	5.2	5.1 ± 0.24	4.9 ± 0.1	5.6 ± 0.07	5.5 ± 0.0
BB4	b	5.6	5.5	5.7 ± 0.19	4.5 ± 0.1	6.3 ± 0.04	6.2 ± 0.1
	Area	5.5	5.3	5.4 ± 0.17	4.7 ± 0.1	6.0 ± 0.04	5.8 ± 0.1

Table 4.2-9 Mean and Standard Error (SE) for Surface and Bottom Water Column DO (mg/L) by Transect, Season, and Study Area for all Pre- and Post-Uprate Events.

					Bottom		
Area	Transect	Pre-U	orate Mean	Fall 2013	Fall 2014	Spring 2014	Spring 2015
		Fall	Spring	Mean ± SE	Mean ± SE	Mean ± SE	Mean ± SE
	a	5.6	4.8	6.2 ± 0.24	5.2 ± 0.1	5.3 ± 0.15	6.0 ± 0.2
BB1	b	5.3	5.0	5.3 ± 0.16	5.5 ± 0.1	6.1 ± 0.15	6.0 ± 0.1
	Area	5.5	4.9	5.8 ± 0.39	5.4 ± 0.1	5.7 ± 0.13	6.0 ± 0.1
	a	6.0	6.6	5.3 ± 0.13	5.5 ± 0.0	5.7 ± 0.13	5.4 ± 0.1
BB2	b	5.9	6.0	5.3 ± 0.09	6.1 ± 0.1	6.1 ± 0.04	5.6 ± 0.0
	Area	6.0	6.3	5.3 ± 0.09	5.8 ± 0.1	5.9 ± 0.02	5.5 ± 0.1
	a	5.1	6.0	5.2 ± 0.14	5.3 ± 0.1	5.7 ± 0.15	5.7 ± 0.0
BB3	b	5.4	6.0	5.6 ± 0.05	5.8 ± 0.0	6.1 ± 0.13	6.0 ± 0.0
	Area	5.3	6.0	5.4 ± 0.09	5.5 ± 0.1	5.9 ± 0.11	5.8 ± 0.0
	a	4.8	5.2	5.0 ± 0.37	4.4 ± 0.2	5.6 ± 0.06	5.2 ± 0.2
BB4	b	5.4	5.4	5.7 ± 0.22	4.8 ± 0.1	6.3 ± 0.04	6.2 ± 0.1
	Area	5.1	5.3	5.3 ± 0.22	4.6 ± 0.1	6.0 ± 0.04	5.7 ± 0.2

mg/L = Milligram per liter

Table 4.2-10 Mean and Standard Error (SE) for Surface and Bottom Water Column pH by Transect, Season, and Study Area for All Pre- and Post-Uprate Events.

					Surface		
Area	Transect	Pre-U	orate Mean	Fall 2013	Fall 2014	Spring 2014	Spring 2015
		Fall	Spring	Mean ± SE	Mean ± SE	Mean ± SE	Mean ± SE
	a	8.0	8.6	8.0 ± 0.02	7.5 ± 0.0	8.2 ± 0.02	8.1 ± 0.0
BB1	b	7.3	8.5	8.1 ± 0.02	7.8 ± 0.0	8.3 ± 0.02	8.2 ± 0.0
	Area	7.6	8.5	8.0 \pm 0.01	7.7 \pm 0.0	8.3 ± 0.02	8.1 ± 0.0
	a	7.7	8.5	8.1 ± 0.03	7.8 ± 0.0	8.2 ± 0.01	8.0 ± 0.0
BB2	b	7.9	8.6	8.0 ± 0.02	7.9 ± 0.0	8.2 ± 0.01	8.0 ± 0.0
	Area	7.8	8.6	8.1 \pm 0.02	7.8 ± 0.0	8.2 \pm 0.01	8.0 ± 0.0
	a	7.7	8.3	8.1 ± 0.01	7.7 ± 0.0	8.2 ± 0.02	8.0 ± 0.0
BB3	b	7.9	8.3	8.1 ± 0.01	7.8 ± 0.0	8.3 ± 0.01	8.0 ± 0.0
	Area	7.8	8.3	8.1 \pm 0.01	7.8 ± 0.0	8.2 \pm 0.01	8.0 ± 0.0
	a	7.8	8.1	7.9 ± 0.02	7.9 ± 0.0	8.2 ± 0.01	7.8 ± 0.0
BB4	b	7.9	8.0	8.0 ± 0.02	7.9 ± 0.0	8.2 ± 0.01	7.9 ± 0.0
	Area	7.9	8.0	7.9 ± 0.02	7.9 ± 0.0	8.2 ± 0.01	7.9 ± 0.0

Table 4.2-10 Mean and Standard Error (SE) for Surface and Bottom Water Column pH by Transect, Season, and Study Area for All Pre- and Post-Uprate Events.

					Bottom		
Area	Transect	Pre-Up	orate Mean	Fall 2013	Fall 2014	Spring 2014	Spring 2015
		Fall	Spring	Mean ± SE	Mean ± SE	Mean ± SE	Mean ± SE
	a	8.0	8.6	8.0 ± 0.02	7.6 ± 0.0	8.2 ± 0.02	8.1 ± 0.0
BB1	b	7.4	8.6	8.1 ± 0.03	7.9 ± 0.0	8.3 ± 0.01	8.2 ± 0.0
	Area	7.7	8.6	8.1 \pm 0.02	7.7 \pm 0.0	8.3 ± 0.02	8.2 ± 0.0
	a	7.8	8.5	8.1 ± 0.03	7.9 ± 0.0	8.2 ± 0.01	8.0 ± 0.0
BB2	b	8.0	8.6	8.0 ± 0.01	7.9 ± 0.0	8.3 ± 0.00	8.0 ± 0.0
	Area	7.9	8.6	8.1 \pm 0.01	7.9 ± 0.0	8.2 ± 0.01	8.0 ± 0.0
	a	7.8	8.3	8.1 ± 0.01	7.8 ± 0.0	8.3 ± 0.02	8.0 ± 0.0
BB3	b	7.9	8.3	$8.1 \pm \ 0.01$	7.9 ± 0.0	8.3 ± 0.01	8.0 ± 0.0
	Area	7.9	8.3	8.1 \pm 0.01	7.8 ± 0.0	8.3 ± 0.01	8.0 ± 0.0
	a	7.9	8.1	7.9 ± 0.02	7.9 ± 0.0	8.2 ± 0.00	7.9 ± 0.0
BB4	b	7.9	8.0	8.0 ± 0.02	7.9 ± 0.0	8.2 ± 0.01	7.9 ± 0.0
	Area	7.9	8.1	7.9 ± 0.01	7.9 ± 0.0	8.2 ± 0.01	7.9 ± 0.0

Key: SE = Standard Error.

Table 4.2-11 Mean and Standard Error (SE) for Surface and Bottom Water Column Turbidity (NTU) by Transect, Season, and Study Area for All Pre- and Post-Uprate Monitoring Events.

			Surface							
Area	Transect	Pre-Up	orate Mean	Fall 2013	Fall 2014	Spring 2014	Spring 2015			
		Fall	Spring	Mean ± SE	Mean ± SE	Mean ± SE	Mean ± SE			
	a	4.5	0.0	0.0 ± 0.00	0.0 ± 0.00	0.0 ± 0.00	0.1 ± 0.08			
BB1	b	3.1	0.0	0.0 ± 0.00	0.0 ± 0.00	0.0 ± 0.00	0.0 ± 0.00			
	Area	3.8	0.0	0.0 ± 0.00	0.0 ± 0.00	0.0 ± 0.00	0.0 ± 0.04			
	a	0.8	0.0	0.0 ± 0.00	0.0 ± 0.00	0.0 ± 0.00	0.0 ± 0.00			
BB2	b	0.0	0.0	0.0 ± 0.00	0.0 ± 0.00	0.0 ± 0.00	0.0 ± 0.00			
	Area	0.4	0.0	0.0 ± 0.00	0.0 ± 0.00	0.0 ± 0.00	0.0 ± 0.00			
	a	0.2	0.0	0.0 ± 0.00	0.0 ± 0.00	0.9 ± 0.64	0.0 ± 0.64			
BB3	b	0.0	0.0	0.0 ± 0.00	0.0 ± 0.00	0.0 ± 0.00	0.0 ± 0.00			
	Area	0.1	0.0	0.0 ± 0.00	0.0 ± 0.00	0.4 ± 0.50	0.0 ± 0.00			
	a	6.8	1.1	0.0 ± 0.00	0.0 ± 0.00	0.0 ± 0.00	0.3 ± 0.29			
BB4	b	2.7	0.1	0.0 ± 0.00	0.0 ± 0.00	0.0 ± 0.00	0.0 ± 0.00			
	Area	4.7	0.6	0.0 ± 0.00	0.0 ± 0.00	0.0 ± 0.00	0.1 ± 0.14			

Table 4.2-11 Mean and Standard Error (SE) for Surface and Bottom Water Column Turbidity (NTU) by Transect, Season, and Study Area for All Pre- and Post-Uprate Monitoring Events.

			Bottom							
Area	Transect	Pre-Up	orate Mean	Fall 2013	Fall 2014	Spring 2014	Spring 2015			
		Fall	Spring	Mean ± SE	Mean ± SE	Mean ± SE	Mean ± SE			
	a	3.7	0.0	0.0 ± 0.00	0.0 ± 0.00	0.0 ± 0.00	0.1 ± 0.14			
BB1	b	3.3	0.0	0.0 ± 0.00	0.0 ± 0.00	0.0 ± 0.00	0.0 ± 0.00			
	Area	3.5	0.0	0.0 ± 0.00	0.0 ± 0.00	0.0 ± 0.00	0.1 ± 0.07			
	a	0.0	0.0	0.0 ± 0.00	0.0 ± 0.00	0.0 ± 0.00	0.0 ± 0.00			
BB2	b	0.0	0.0	0.0 ± 0.00	0.0 ± 0.00	0.0 ± 0.00	0.0 ± 0.00			
	Area	0.0	0.0	0.0 ± 0.00	0.0 ± 0.00	0.0 ± 0.00	0.0 ± 0.00			
	a	0.1	0.0	0.0 ± 0.00	0.0 ± 0.00	1.4 ± 0.64	0.0 ± 0.00			
BB3	b	0.0	0.0	0.0 ± 0.00	0.0 ± 0.00	0.0 ± 0.00	0.0 ± 0.00			
	Area	0.0	0.0	0.0 ± 0.00	0.0 ± 0.00	0.7 ± 0.36	0.0 ± 0.00			
	a	9.2	1.5	0.0 ± 0.00	0.0 ± 0.00	0.0 ± 0.00	0.4 ± 0.36			
BB4	b	2.7	0.5	0.0 ± 0.00	0.0 ± 0.00	0.0 ± 0.00	0.0 ± 0.00			
	Area	6.0	1.0	0.0 ± 0.00	0.0 ± 0.00	0.0 ± 0.00	0.2 ± 0.18			

NTU = Nephelometric Turbidity Unit(s).

Table 4.2-12 Mean and Standard Error (SE) for Surface and Bottom Water Column ORP (mV) by Transect, Season, and Study Area for All Pre- and Post-Uprate Monitoring Events.

					Surface		
Area	Transect		Uprate lean	Fall 2013	Fall 2014	Spring 2014	Spring 2015
		Fall	Spring	Mean ± SE	Mean ± SE	Mean ± SE	Mean ± SE
	a	167.6	14.4	113.8 ± 15.57	376.9 ± 4.5	25.5 ± 23.83	311.1 ± 12.9
BB1	b	163.4	26.3	49.1 ± 7.17	266.3 ± 26.9	29.8 ± 7.81	357.9 ± 3.2
	Area	165.5	20.3	81.4 ± 11.75	321.6 ± 19.4	27.6 ± 12.12	334.5 ± 8.8
	a	137.8	95.8	78.6 ± 8.68	223.6 ± 23.8	52.1 ± 13.86	347.5 ± 6.0
BB2	b	117.1	64.8	71.1 ± 11.43	251.4 ± 12.5	20.8 ± 9.05	346.0 ± 4.8
	Area	127.4	80.3	74.9 ± 7.00	237.5 ± 13.5	36.4 ± 8.96	346.8 ± 3.7
	a	109.8	25.1	89.6 ± 6.47	339.8 ± 18.7	54.9 ± 11.78	351.5 ± 3.6
BB3	b	59.8	35.5	75.8 ± 6.59	249.3 ± 17.2	44.1 ± 16.77	338.9 ± 4.8
	Area	84.8	30.3	82.7 ± 4.81	294.5 ± 16.9	49.5 ± 10.00	345.2 ± 3.3
	a	76.1	78.1	98.0 ± 8.40	299.6 ± 24.2	85.5 ± 16.18	342.0 ± 17.6
BB4	b	93.3	86.5	74.4 ± 6.32	232.9 ± 22.3	65.5 ± 10.63	349.9 ± 1.6
	Area	84.7	82.3	86.2 ± 5.92	266.3 ± 18.1	75.5 ± 9.70	345.9 ± 8.6

Table 4.2-12 Mean and Standard Error (SE) for Surface and Bottom Water Column ORP (mV) by Transect, Season, and Study Area for All Pre- and Post-Uprate Monitoring Events.

					Bottom		
Area	Transect		Uprate ean	Fall 2013	Fall 2014	Spring 2014	Spring 2015
		Fall	Spring	Mean ± SE	Mean ± SE	Mean ± SE	Mean ± SE
	a	160.7	12.1	107.8 ± 13.48	368.0 ± 4.3	21.6 ± 22.52	298.8 ± 11.0
BB1	b	164.6	29.0	40.3 ± 5.89	261.1 ±24.9	23.8 ± 7.20	343.9 ± 3.7
	Area	162.6	20.6	74.0 ± 11.24	314.6 ± 18.4	22.7 ± 11.42	321.3 ± 8.1
	a	134.6	96.1	72.5 ± 9.58	222.4 ± 23.9	41.8 ± 15.25	339.9 ± 4.6
BB2	b	112.3	62.0	65.0 ± 11.59	242.4 ± 11.0	13.1 ± 7.01	334.4 ±3.5
	Area	123.4	79.1	68.8 ± 7.33	232.4 ± 13.0	27.4 ± 8.91	337.1 ±2.9
	a	108.1	26.4	71.8 ± 8.81	327.8 ± 19.6	46.5 ± 13.12	337.9 ± 3.1
BB3	b	61.7	34.5	61.6 ± 7.51	245.9 ± 15.0	33.8 ± 16.76	327.9 ± 4.9
	Area	84.9	30.4	66.7 ± 5.74	286.8 ± 15.9	40.1 ± 10.41	332.9 ± 3.1
	a	72.8	72.8	90.1 ± 8.83	290.5 ± 24.5	79.4 ± 17.04	314.8 ± 17.8
BB4	b	90.9	82.3	72.1 ± 5.29	237.5 ± 20.0	59.4 ± 10.34	339.1 ± 2.9
	Area	81.8	77.5	81.1 ± 5.49	264.0 ± 16.7	69.4 ± 9.97	326.9 ± 9.3

mV = Millivolt(s)

Table 4.2-13 Mean Porewater Temperatures (°C) + One Standard Error (SE) by Transect, Season, and Study Area for All Pre- and Post-Uprate Monitoring Events.

Area	Transect	Pre-Uprate Mean		Fall 2013	Fall 2014	Spring 2014	Spring 2015
		Fall	Spring	Mean ± SE	Mean ± SE	Mean ± SE	Mean ± SE
BB1	a	29.3	27.3	29.2 ± 0.16	29.0 ± 0.03	27.4 ± 0.03	28.1 ± 0.07
	b	29.1	27.0	29.2 ± 0.05	28.5 ± 0.07	27.2 ± 0.03	28.1 ± 0.03
	Area	29.2	27.2	29.2 ± 0.08	28.8 ± 0.07	27.3 ± 0.03	28.1 ± 0.04
BB2	a	28.3	27.3	29.2 ± 0.02	28.5 ± 0.05	27.3 ± 0.03	28.0 ± 0.05
	b	28.2	26.8	29.3 ± 0.08	28.6 ± 0.05	27.2 ± 0.02	27.9 ± 0.03
	Area	28.2	27.1	29.2 \pm 0.04	28.5 ± 0.03	27.2 \pm 0.02	27.9 \pm 0.03
BB3	a	28.6	27.3	29.2 ± 0.03	28.9 ± 0.05	27.3 ± 0.03	27.8 ± 0.02
	b	28.5	27.1	29.2 ± 0.02	28.9 ± 0.04	27.2 ± 0.02	27.8 ± 0.04
	Area	28.5	27.2	29.2 \pm 0.02	28.9 ± 0.03	27.2 ± 0.02	27.8 \pm 0.02
BB4	a	28.5	28.2	30.8 ± 0.61	29.2 ± 0.03	27.6 ± 0.03	27.8 ± 0.04
	b	28.5	28.2	32.3 ± 0.53	29.1 ± 0.03	27.4 ± 0.11	27.9 ± 0.05
	Area	28.5	28.2	30.9 ± 0.33	29.1 ± 0.02	27.5 ± 0.06	27.9 ± 0.03

 $^{\circ}\text{C}$ = Degrees Celcius.

Table 4.2-14 Comparisons of Mean Porewater and Bottom Water Column Temperatures (°C) by Transect, Season, and Study Area for All Pre- and Post-Uprate Monitoring Events.

		Pre-uprat	te Fall		Pre-Uprate	Spring	
Area	Transect	Mea	n	Difference ¹	Mea	n	Difference
		Porewater	Bottom		Porewater	Bottom	
	a	29.3	29.4	0.2	27.3	26.6	-0.7
BB1	b	29.1	28.1	-1.0	27.0	27.3	0.3
	Area	29.2	28.7	-0.4	27.2	26.9	-0.2
	a	28.3	27.9	-0.4	27.3	27.2	-0.1
BB2	b	28.2	28.2	0.0	26.8	26.5	-0.3
	Area	28.2	28.1	-0.2	27.1	26.9	-0.2
	a	28.6	28.7	0.1	27.3	26.6	-0.7
BB3	b	28.5	28.6	0.1	27.1	26.6	-0.5
	Area	28.5	28.6	0.1	27.2	26.6	-0.6
	a	28.5	28.2	-0.3	28.2	28.6	0.4
BB4	b	28.5	28.5	0.0	28.2	28.8	0.6
	Area	28.5	28.4	-0.2	28.2	28.7	0.5

Table 4.2-14 Comparisons of Mean Porewater and Bottom Water Column Temperatures (°C) by Transect, Season, and Study Area for All Pre- and Post-Uprate Monitoring Events.

		Fall 20)13		Spring 2	2014	
Area	Transect	Mea	n	Difference ¹	Mea	n	Difference
		Porewater	Bottom		Porewater	Bottom	
	a	29.2	29.6	0.4	27.4	26.0	-1.4
BB1	b	29.2	30.2	1.0	27.2	27.0	-0.2
	Area	29.2	29.9	0.7	27.3	26.5	-0.8
	a	29.2	29.2	0.0	27.3	26.7	-0.6
BB2	b	29.3	29.6	0.3	27.2	27.5	0.3
	Area	29.2	29.4	0.2	27.2	27.1	-0.1
	a	29.2	29.1	-0.1	27.3	26.8	-0.5
BB3	b	29.2	29.4	0.2	27.2	27.4	0.2
	Area	29.2	29.2	0.0	27.2	27.1	-0.1
	a	30.8	29.1	-1.7	27.6	27.1	-0.5
BB4	b	32.3	29.7	-2.6	27.4	28.0	0.6
	Area	30.9	29.4	-1.5	27.5	27.5	0.0

Table 4.2-14 Comparisons of Mean Porewater and Bottom Water Column Temperatures (°C) by Transect, Season, and Study Area for All Pre- and Post-Uprate Monitoring Events.

		Fall 20)14		Spring 2	2015	
Area	Transect	Mea	n	Difference	Mea	n	Difference
		Porewater	Bottom		Porewater	Bottom	
	a	29.0	28.0	-1.1	28.1	28.8	0.7
BB1	b	28.5	28.3	-0.2	28.1	29.0	0.9
	Area	28.8	28.2	-0.6	28.1	28.9	0.8
	a	28.5	28.0	-0.5	28.0	28.0	0.0
BB2	b	28.6	28.3	-0.2	27.9	28.1	0.2
	Area	28.5	28.2	-0.4	27.9	28.1	0.1
	a	28.9	28.1	-0.7	27.8	28.3	0.4
BB3	b	28.9	28.5	-0.3	27.8	28.8	1.0
	Area	28.9	28.3	-0.5	27.8	28.6	0.7
	a	29.2	27.7	-1.5	27.8	27.9	0.1
BB4	b	29.1	28.2	-1.0	27.9	29.0	1.0
	Area	29.1	27.9	-1.2	27.9	28.4	0.5

Key:

°C = Degrees Celcius.

¹ Positive values indicate the porewater temperature is lower than the ambient water temperature.

Table 4.2-15 Comparison of Mean Porewater and Bottom Water Column Specific Conductance (µS/cm) by Transect, Season, and Study Area for all Pre- and Post-Uprate Monitoring Events.

		Pre-Upra	te Fall		Fall 20	013		Fall 20	014	
Area	Transect	Mean Sp Conduc (μS/c	tance	Difference ¹	Mean Sp Conduc (μS/c	tance	Difference	Mean Sp Conduc (μS/c	tance	Difference
		Porewater	Bottom		Porewater	Bottom		Porewater	Bottom	
	a	48,337	45,206	-3,131	46,963	40,313	-6,650	55,588	53,787	-1,801
BB1	b	48,344	43,281	-5,063	47,425	44,238	-3,187	55,075	54,513	-562
	Area	48,340	44,244	-4,096	47,194	42,275	-4,919	55,331	54,150	-1,181
	a	51,306	47,413	-3,893	52,275	52,138	-137	55,075	54,175	-900
BB2	b	52,050	48,206	-3,844	52,550	52,663	113	54,600	53,787	-813
	Area	51,678	47,809	-3,869	52,413	52,400	-13	54,838	53,981	-857
	a	50,525	47,719	-2,806	52,113	52,438	325	55,525	54,112	-1,413
BB3	b	52,837	48,413	-4,424	52,513	52,900	387	55,200	54,188	-1,012
	Area	51,681	48,066	-3,615	52,313	52,669	356	55,363	54,150	-1,213
	a	48,281	45,869	-2,412	46,463	43,775	-2,688	52,625	52,550	-75
BB4	b	48,625	46,144	-2,481	47,700	44,300	-3,400	53,637	53,662	25
	Area	48,453	46,006	-2,447	47,081	44,038	-3,043	53,131	53,106	-25

Table 4.2-15 Comparison of Mean Porewater and Bottom Water Column Specific Conductance (μS/cm) by Transect, Season, and Study Area for all Pre- and Post-Uprate Monitoring Events.

		Pre-Uprate	Spring		Spring	2014		Spring	2015	
Area	Transect	Mean Sp Conduct (μS/c	tance	Difference ¹	Mean Sp Conduc (μS/c	tance	Difference ¹	Mean Sp Conduc (µS/c	tance	Difference ¹
		Porewater	Bottom		Porewater	Bottom		Porewater	Bottom	
	a	56,450	57,113	663	56,163	59,538	3,375	54,487	55,238	751
BB1	b	55,437	58,338	2,901	56,263	58,700	2437	54,650	55,788	1,138
	Area	55,944	57,725	1,781	56,213	59,119	2,906	54,569	55,513	944
	a	55,238	57,075	1,837	57,825	57,575	-250	54,875	55,062	187
BB2	b	56,050	58,263	2,213	55,975	57,525	1550	54,575	54,712	137
	Area	55,644	57,669	2,025	56,900	57,550	650	54,725	54,887	162
	a	55,063	58,313	3,250	56,688	57,975	1,287	54,875	54,950	75
BB3	b	55,075	57,838	2,763	56,363	58,400	2,037	54,463	54,500	37
	Area	55,069	58,075	3,006	56,525	58,188	1,663	54,669	54,725	56
	a	48,238	56,225	7,987	49,550	53,088	3538	52,913	51,775	-1,138
BB4	b	50,463	56,550	6,087	50,038	52,863	2825	53,287	52,388	-899
	Area	49,350	56,388	7,038	49,794	52,975	3181	53,100	52,081	-1,019

Key:

 μ S/cm = Micro-Siemens per Centimenter.

¹ Positive values indicate the porewater specific conductance is lower than the bottom water column specific conductance.

Table 4.2-16 Porewater Nutrient Concentrations by Transect, Season, and Study Area for All Pre- and Post-Uprate Monitoring Events.

					Soc	dium (mg	/L)				
Area	Transect	Pre-Up	rate Mean	Fall 2	2013	Fall 2	2014	Spring	2014	Spring 2015	
		Fall Value	Spring Value	Value	Qual	Value	Qual	Value	Qual	Value	Qual
	a	9,150	13,000	8,970		9,570		59,100		11,400	
BB1	b	9,350	12,000	9,760		9,760		59,300		11,300	
	Area Mean	9,250	12,500	9,365		9,665		59,200		11,350	
	a	10,450	12,000	10,300		9,050		57,800		11,100	
BB2	b	10,500	11,000	10,600		9,870		58,000		11,000	
	Area Mean	10,475	11,500	10,450		9,460		57,900		11,050	
	a	10,500	10,000	10,600		9,730		57,700		11,100	
BB3	b	10,450	11,000	10,600		9,500		56,400		11,200	
	Area Mean	10,475	10,500	10,600		9,615		57,050		11,150	
	a	9,300	9,800	8,870		9,170		50,200		10,500	
BB4	b	9,100	11,000	8,910		9,120		50,600		10,700	
	Area Mean	9,200	10,400	8,890		9,145		50,400		10,600	

Table 4.2-16 Porewater Nutrient Concentrations by Transect, Season, and Study Area for All Pre- and Post-Uprate Monitoring Events.

					Chlo	ride (mg/	/L)				
Area	Transect	Pre-Upra	te Mean	Fall 2	2013	Fall 2	2014	Spring	2014	Spring	2015
		Fall Value	Spring Value	Value	Qual	Value	Qual	Value	Qual	Value	Qual
	a	18,000	24,000	19,500		21,500		23,300		21,300	
BB1	b	18,500	24,000	20,400		21,100		23,400		20,900	
DD1	Area Mean	18,250	24,000	19,950		21,300		23,350		21,100	
	a	19,000	23,000	22,100		21,200		22,000		20,200	
BB2	b	19,000	22,000	22,400		21,100		22,500		20,600	
	Area Mean	19,000	22,500	22,250		21,150		22,250		20,400	
	a	20,000	22,000	22,200		21,100		22,500		20,700	
BB3	b	18,500	21,000	21,600		20,900		21,600		21,100	
	Area Mean	19,250	21,500	21,900		21,000		22,050		20,900	
	a	18,000	20,000	19,000		20,300		19,100		19,600	
BB4	b	17,000	21,000	19,000		20,400		18,500		20,000	
	Area Mean	17,500	20,500	19,000		20,350		18,800		19,800	

Table 4.2-16 Porewater Nutrient Concentrations by Transect, Season, and Study Area for All Pre- and Post-Uprate Monitoring Events.

					Nitrate-	-Nitrite (r	ng/L)				
Area	Transect	Pre-Upra	ite Mean	Fall 2	2013	Fall 2	014 ¹	Spring	2014	Spring	2015
		Fall Value	Spring Value	Value	Qual	Value	Qual	Value	Qual	Value	Qual
	a	0.0225	0.1100	0.0079	IJ	0.5000	U	0.0840		0.0500	U
BB1	b	0.0289	0.2100	0.0090	IJ	0.5000	U	0.0270	U	0.0500	U
	Area Mean	0.0257	0.1600	0.0085		0.5000		0.0555		0.0500	
	a	0.0049	0.0260	0.0054	U	0.5000	U	0.0490	I	0.0250	U
BB2	b	0.0051	0.0250	0.7860		0.5000	U	0.0270	U	0.0250	U
	Area Mean	0.0050	0.0255	0.3957		0.5000		0.0380		0.0250	
	a	0.0065	0.0360	0.0054	U	0.5000	U	0.0340	I	0.0250	U
BB3	b	0.0070	0.0240	0.0054	U	0.5000	U	0.0270	U	0.0250	U
	Area Mean	0.0067	0.0300	0.0054		0.5000		0.0305		0.0250	
	a	0.0184	0.1300	0.0054	U	0.5000	U	0.0270	U	0.0250	U
BB4	b	0.0124	0.1200	0.0067	IJ	0.5000	U	0.0270	U	0.0250	U
	Area Mean	0.0154	0.1250	0.0060		0.5000		0.0270		0.0250	

Table 4.2-16 Porewater Nutrient Concentrations by Transect, Season, and Study Area for All Pre- and Post-Uprate Monitoring Events.

				Un	ionized	Ammoni	ia (mg/L	-)			
Area	Transect	Pre-Upra	ate Mean	Fall 2	2013	Fall 2	2014	Spring	2014	Spring 2015	
		Fall Value	Spring Value	Value	Qual	Value	Qual	Value	Qual	Value	Qual
	a	0.001	0.003	0.002	J	0.011		0.009		0.016	
BB1	b	0.002	0.000	0.008	J	0.005		0.022		0.006	
	Area Mean	0.001	0.002	0.005		0.008		0.016		0.011	
	a	0.004	0.006	0.024	J	0.003		0.016		0.002	U
BB2	b	0.001	0.010	0.003	J	0.001		0.008		0.003	J
552	Area Mean	0.002	0.008	0.013		0.002		0.012		0.002	
	a	0.001	0.000	0.001	J	0.006		0.017		0.003	
BB3	b	0.002	0.002	0.005	J	0.001		0.015		0.003	U
BB 3	Area Mean	0.001	0.001	0.003		0.003		0.016		0.003	
	a	0.004	0.003	0.002	J	0.002		0.013		0.008	
BB4	b	0.004	0.009	0.002	J	0.006		0.019		0.010	
, , , , , , , , , , , , , , , , , , ,	Area Mean	0.004	0.006	0.002		0.004		0.016		0.009	

Table 4.2-16 Porewater Nutrient Concentrations by Transect, Season, and Study Area for All Pre- and Post-Uprate Monitoring Events.

				Tota	al Kjeda	ıhl Nitroge	en (mg/l	_)			
Area	Transect	Pre-Upr	ate Mean	Fall	2013	Fall	2014	Spring	2014	Spring	2015
		Fall Value	Spring Value	Value	Qual	Value	Qual	Value	Qual	Value	Qual
	a	0.600	0.900	0.675	J	0.867		0.717		0.432	
BB1	b	0.595	1.200	0.779	J	0.470		0.987		8.800	
ББТ	Area Mean	0.5975	1.0500	0.7270		0.6685		0.8520		4.6160	
	a	0.660	0.810	0.967	J	1.150		0.791		0.410	
BB2	b	0.475	0.460	0.598	J	0.774		0.300	U	0.234	IJ
	Area Mean	0.5675	0.6350	0.7825		0.9620		0.5455		0.3220	
	a	0.500	0.230	0.499	J	0.651		0.896		0.200	U
BB3	b	0.390	0.350	0.371	IJ	0.628		0.590		0.200	U
	Area Mean	0.4450	0.2900	0.4350		0.6395		0.7430		0.2000	
	a	1.125	0.460	0.633	J	0.803		1.020		2.760	
BB4	b	0.685	1.000	0.602	J	0.898		0.974		0.602	
	Area Mean	0.9050	0.7300	0.6175		0.8505		0.9970		1.6810	

Table 4.2-16 Porewater Nutrient Concentrations by Transect, Season, and Study Area for All Pre- and Post-Uprate Monitoring Events.

				To	otal Pho	sphorus	(mg/L)				
Area	Transect	Pre-Upra	ite Mean	Fall 2	2013	Fall 2	2014	Spring	2014	Spring	2015
		Fall Value	Spring Value	Value	Qual	Value	Qual	Value	Qual	Value	Qual
	a	0.0120	0.0230	0.0022	UJ	0.0040	I	0.0022	U	0.0150	U
BB1	b	0.0135	0.0210	0.0022	UJ	0.0030	U	0.0022	U	0.0941	
	Area Mean	0.0128	0.0220	0.0022		0.0035		0.0022		0.0546	
	a	0.0155	0.0200	0.0022	U	0.0030	U	0.0022	U	0.0150	U
BB2	b	0.0160	0.0200	0.0022	UJ	0.0030	U	0.0022	U	0.0150	U
	Area Mean	0.0158	0.0200	0.0022		0.0030		0.0022		0.0150	
	a	0.0180	0.0190	0.0022	UJ	0.0030	U	0.0022	U	0.0150	U
BB3	b	0.0135	0.0200	0.0022	UJ	0.0030	U	0.0022	U	0.0247	I
	Area Mean	0.0158	0.0195	0.0022		0.0030		0.0022		0.0199	
	a	0.0280	0.0260	0.0022	UJ	0.0036	I	0.0022	U	0.0952	
BB4	b	0.0195	0.0230	0.0022	U	0.0030	U	0.0022	U	0.0309	I
	Area Mean	0.0238	0.0245	0.0022		0.0033		0.0022		0.0631	

Table 4.2-16 Porewater Nutrient Concentrations by Transect, Season, and Study Area for All Pre- and Post-Uprate Monitoring Events.

				0	rtho-Ph	osphate	(mg/L)				
Area	Transect	Pre-Upra	te Mean	Fall 2	2013	Fall 2	2014	Spring	2014	Spring	2015
		Fall Value	Spring Value	Value	Qual	Value	Qual	Value	Qual	Value	Qual
	a	0.0382	0.0400	0.0181	J	0.0021	U	0.0014	U	0.0021	U
BB1	b	0.0387	0.0024	0.0089	IJ	0.0021	U	0.0014	U	0.0021	U
	Area Mean	0.0385	0.0212	0.0135		0.0021		0.0014		0.0021	
	a	0.0071	0.0044	0.0016	I	0.0021	U	0.0014	U	0.0026	I
BB2	b	0.0241	0.0036	0.0288	J	0.0037	I	0.0014	U	0.0038	I
222	Area Mean	0.0156	0.0040	0.0152		0.0029		0.0014		0.0032	
	a	0.0657	0.0038	0.0262	J	0.0021	U	0.0014	U	0.0021	U
BB3	b	0.0510	0.0029	0.0171	J	0.0036	I	0.0014	U	0.0063	Ι
	Area Mean	0.0584	0.0034	0.0217		0.0029		0.0014		0.0042	
	a	0.0162	0.0015	0.0052	IJ	0.0021	U	0.0014	U	0.0021	U
BB4	b	0.0162	0.0051	0.0023	I	0.0023	I	0.0014	U	0.0021	U
	Area Mean	0.0162	0.0033	0.0038		0.0022		0.0014		0.0021	

Table 4.2-16 Porewater Nutrient Concentrations by Transect, Season, and Study Area for All Pre- and Post-Uprate Monitoring Events.

					Triti	um (pCi/	L)				
Area	Transect	Pre-Upra	te Mean	Fall 2	2013	Fall 2014		Spring 2014		Spring 2015 ²	
		Fall Value	Spring Value	Value	Qual	Value	Qual	Value	Qual	Value	Qual
	a	9.3	11.9	25.1	J	15.8		18.9			
BB1	b	9.5	16.3	25.8	J	6.3		16.6			
	Area Mean	9.4	14.10	25.5		11.0		17.8			
	a	13.7	13.0	19.3	J	8.5		4.7	UJ		
BB2	b	9.0	5.8	17.4	J	8.9		18.3			
	Area Mean	11.3	9.40	18.4		8.7		11.5			
	a	20.0	9.6	21.5	J	9.9		21.6			
BB3	b	23.2	15.2	22.5	J	6.1		25.6			
	Area Mean	21.6	12.40	22.0		8.0		23.6			
	a	8.1	13.7	3.8	J	8.2		19.5			
BB4	b	9.6	19.5	5.0	J	8.4		0.8	UJ		
	Area Mean	8.8	16.60	4.4		8.3		10.2			

Key:

I = Value between the MDL and PQL

J = Estimated (+/- indicate bias)

Q = Holding time exceeded.

Qual = Qualifier

U = Analyzed for but not detected at the reported value.

¹ Fall 2014 laboratory MDL was elevated.

²Values for tritium not yet reported for the Spring 2015 sampling event.

Table 4.2-17 Percentage of Quadrats Along Each Transect (n=32) Containing *Halodule wrightii* (HW) and/or *Thalassia testudinum* (TT) by Study Area (n=64) and Season for All Pre- and Post-Uprate Monitoring Events.

Area	Transect		Fall Mean ¹ S		Jprate ring	5 5 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Fall 2014		Spring 2014		Spring 2015	
		HW	TT	HW	TT	HW	TT	HW	TT	HW	TT	HW	TT
	a	9%	97%	3%	97%	16%	100%	28%	100%	22%	100%	44%	100%
BB1	b	11%	97%	22%	100%	38%	94%	28%	91%	28%	94%	44%	100%
	Total	10%	97%	13%	98%	27%	97%	28%	95%	25%	97%	44%	100%
	a	34%	55%	25%	28%	50%	34%	44%	41%	47%	9%	50%	25%
BB2	b	11%	44%	38%	72%	16%	38%	13%	31%	19%	41%	22%	44%
	Total	23%	49%	31%	50%	33%	36%	28%	36%	33%	25%	36%	34%
	a	6%	84%	16%	81%	0%	72%	3%	81%	0%	72%	0%	81%
BB3	b	8%	70%	16%	72%	16%	75%	0%	78%	9%	72%	0%	66%
	Total	7%	77%	16%	77%	8%	73%	2%	80%	5%	72%	0%	73%
	a	3%	98%	3%	97%	6%	100%	0%	100%	6%	100%	0%	94%
BB4	b	2%	84%	3%	84%	0%	84%	0%	81%	3%	78%	3%	72%
	Total	2%	91%	3%	91%	3%	92%	0%	91%	5%	89%	2%	83%
Total All	Total All Areas		79%	16%	79%	18%	75%	14%	75%	17%	71%	20%	73%

¹ Fall 2010 and Fall 2011 quadrats combined and averaged for percentage

Key: HW = Halodule wrightii TT = Thalassia testudinum

Table 4.2-18 Percentage (%) of Sampling Points Within Each Study Area (n=16) Having Specific Bottom Conditions During Each of Four Post-Uprate Monitoring Events.

			BB1				BB2		
Category	Coverage / Presence	Fall 2013	Spring 2014	Fall 2014	Spring 2015	Fall 2013	Spring 2014	Fall 2014	Spring 2015
	Open	0.0	0.0	0.0	0.0	0.0	18.8	18.8	31.3
	Fairly Open	25.0	68.8	50.0	75.0	50.0	68.8	62.5	37.5
Overall	Moderately Open	37.5	12.5	37.5	6.3	18.8	12.5	6.3	25.0
	Mostly Covered	37.5	18.8	12.5	12.5	25.0	0.0	12.5	0.0
	Uniform	0.0	0.0	0.0	6.3	6.3	0.0	0.0	0.0
	Sparse	25.0	62.5	62.5	37.5	87.5	87.5	93.8	81.3
Seagrass	Sparse to Moderate	62.5	25.0	25.0	43.8	12.5	12.5	6.3	18.8
	Moderate to Dense	12.5	12.5	12.5	18.8	0.0	0.0	0.0	0.0
	Sparse	93.8	62.5	100.0	43.8	43.8	68.8	100.0	43.8
Drift Algae	Sparse to Moderate	6.3	37.5	0.0	50.0	43.8	25.0	0.0	37.5
	Moderate to Dense	0.0	0.0	0.0	6.3	12.5	6.3	0.0	18.8
	Sparse	31.3	31.3	6.3	25.0	25.0	62.5	43.8	56.3
Batophora	Sparse to Moderate	25.0	56.3	81.3	68.8	37.5	25.0	37.5	25.0
	Moderate to Dense	43.8	12.5	12.5	6.3	37.5	12.5	18.8	18.8
Calcareous	None	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Calcareous Algae	Few	31.3	62.5	43.8	56.3	12.5	12.5	25.0	12.5
Aigat	Many	68.8	37.5	56.3	43.8	87.5	87.5	75.0	87.5
	None	0.0	6.3	0.0	0.0	6.3	0.0	0.0	0.0
Sponges	Few	87.5	87.5	87.5	62.5	25.0	18.8	18.8	12.5
	Many	12.5	6.3	12.5	37.5	68.8	81.3	81.3	87.5
	None	43.8	37.5	56.3	68.8	6.3	18.8	12.5	12.5
Corals	Few	56.3	62.5	43.8	18.8	31.3	12.5	25.0	50.0
	Many	0.0	0.0	0.0	0.0	62.5	68.8	62.5	37.5
	None	100.0	100.0	100.0	100.0	25.0	18.8	25.0	18.8
Gorgonians	Few	0.0	0.0	0.0	0.0	12.5	0.0	6.3	12.5
	Many	0.0	0.0	0.0	0.0	62.5	81.3	68.8	68.8

Table 4.2-18 Percentage (%) of Sampling Points Within Each Study Area (n=16) Having Specific Bottom Conditions During Each of Four Post-Uprate Monitoring Events.

			BB3				BB4		
Category	Coverage / Presence	Fall 2013	Spring 2014	Fall 2014	Spring 2015	Fall 2013	Spring 2014	Fall 2014	Spring 2015
	Open	0.0	12.5	0.0	0.0	0.0	0.0	0.0	6.3
	Fairly Open	50.0	62.5	43.8	68.8	31.3	37.5	43.8	81.3
Overall	Moderately Open	37.5	25.0	50.0	6.3	50.0	37.5	56.3	0.0
	Mostly Covered	12.5	0.0	6.3	0.0	18.8	25.0	0.0	12.5
	Uniform	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Sparse	75.0	81.3	68.8	62.5	93.8	68.8	87.5	87.5
Seagrass	Sparse to Moderate	25.0	18.8	25.0	37.5	6.3	31.3	12.5	12.5
	Moderate to Dense	0.0	0.0	6.3	0.0	0.0	0.0	0.0	0.0
	Sparse	25.0	93.8	100.0	43.8	18.8	43.8	100.0	25.0
Drift Algae	Sparse to Moderate	43.8	6.3	0.0	25.0	68.8	37.5	0.0	50.0
	Moderate to Dense	31.3	0.0	0.0	31.3	12.5	18.8	0.0	25.0
	Sparse	31.3	93.8	68.8	68.8	56.3	18.8	12.5	37.5
Batophora	Sparse to Moderate	68.8	6.3	31.3	31.3	43.8	68.8	56.3	62.5
	Moderate to Dense	0.0	0.0	0.0	0.0	0.0	12.5	31.3	0.0
C-1	None	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Calcareous Algae	Few	0.0	18.8	6.3	0.0	0.0	0.0	0.0	0.0
Aigac	Many	100.0	81.3	93.8	100.0	100.0	100.0	100.0	100.0
	None	0.0	0.0	0.0	0.0	0.0	6.3	0.0	0.0
Sponges	Few	56.3	25.0	0.0	18.8	25.0	68.8	12.5	25.0
	Many	43.8	75.0	100.0	81.3	75.0	25.0	87.5	75.0
	None	6.3	18.8	0.0	6.3	6.3	6.3	6.3	6.3
Corals	Few	56.3	31.3	31.3	43.8	25.0	62.5	37.5	43.8
	Many	37.5	50.0	68.8	50.0	68.8	31.3	56.3	50.0
	None	25.0	31.3	37.5	25.0	100.0	100.0	100.0	100.0
Gorgonians	Few	37.5	18.8	12.5	18.8	0.0	0.0	0.0	0.0
	Many	37.5	50.0	50.0	56.3	0.0	0.0	0.0	0.0

Table 4.2-19a Mean Braun-Blaunquet Coverage Abundance¹ (BBCA) Scores <u>+</u> One Standard Error (SE) for Total Macrophytes, Total Seagrass, and Total Macroalgae, by Transect, Season, and Study Area for All Pre- and Post-Uprate Monitoring Events.

				Total Macrophyt	es		
Area	Tran- sect	Pre-Uprate Fall	Pre-Uprate Spring	Fall 2013	Fall 2014	Spring 2014	Spring 2015
		Mean	Mean	Mean ± SE	Mean ± SE	Mean ± SE	Mean ± SE
	a	2.1	2.3	2.1 ± 0.1	1.6 ± 0.1	3.0 ± 0.2	1.4 ± 0.1
BB1	b	1.8	2.7	2.3 ± 0.1	1.8 ± 0.1	2.1 ± 0.1	1.7 ± 0.1
	Area	1.9	2.5	2.2 ± 0.1	1.7 ± 0.1	2.5 ± 0.1	1.5 \pm 0.1
	a	2.3	2.3	3.2 ± 0.3	2.3 ± 0.1	1.7 ± 0.2	2.2 ± 0.1
BB2	b	2.3	2.3	2.6 ± 0.2	2.7 ± 0.1	1.8 ± 0.2	2.6 ± 0.1
	Area	2.3	2.3	2.9 ± 0.2	2.5 \pm 0.1	1.7 ± 0.1	2.4 ± 0.1
	a	2.4	2.8	3.0 ± 0.2	3.0 ± 0.1	1.4 ± 0.1	2.8 ± 0.1
BB3	b	1.8	2.8	2.3 ± 0.2	3.1 ± 0.0	1.8 ± 0.1	3.0 ± 0.0
	Area	2.1	2.8	2.6 ± 0.1	3.1 ± 0.0	1.6 ± 0.1	2.9 ± 0.0
	a	1.8	2.0	2.7 ± 0.1	2.3 ± 0.0	2.5 ± 0.1	2.1 ± 0.0
BB4	b	1.9	2.4	2.4 ± 0.2	2.4 ± 0.0	2.8 ± 0.2	2.1 ± 0.0
	Area	1.9	2.2	2.6 ± 0.1	2.3 ± 0.0	2.7 ± 0.1	2.1 ± 0.0

4-122

Table 4.2-19b Mean Braun-Blaunquet Coverage Abundance¹ (BBCA) Scores <u>+</u> One Standard Error (SE) for Total Macrophytes, Total Seagrass, and Total Macroalgae, by Transect, Season, and Study Area for All Pre- and Post-Uprate Monitoring Events.

				Total Mac	roalgae		
Area	Tran- sect	Pre-Uprate Fall	Pre-Uprate Spring	Fall 2013	Fall 2014	Spring 2014	Spring 2015
		Mean	Mean	Mean ± SE	Mean ± SE	Mean ± SE	Mean ± SE
	a	1.4	1.6	1.5 ± 0.1	1.6 ± 0.1	2.1 ± 0.1	1.4 ± 0.1
BB1	b	1.6	1.9	2.1 ± 0.1	1.8 ± 0.1	1.7 ± 0.1	1.7 ± 0.1
	Area	1.5	1.8	1.8 ± 0.1	1.7 ± 0.1	1.9 ± 0.1	1.5 ± 0.1
	a	1.6	1.7	2.9 ± 0.3	2.3 ± 0.1	1.3 ± 0.1	2.2 ± 0.1
BB2	b	1.7	1.8	1.8 ± 0.1	2.7 ± 0.1	1.5 ± 0.2	2.6 ± 0.1
	Area	1.6	1.7	2.4 ± 0.2	2.5 ± 0.1	1.4 ± 0.1	2.4 ± 0.1
	a	1.3	1.9	1.4 ± 0.1	3.0 ± 0.1	1.1 ± 0.1	2.8 ± 0.1
BB3	b	1.3	2.4	1.7 ± 0.1	3.1 ± 0.0	1.3 ± 0.1	3.0 ± 0.0
	Area	1.3	2.1	1.6 ± 0.1	3.1 ± 0.0	1.2 ± 0.0	2.9 ± 0.0
	a	1.3	1.8	2.3 ± 0.2	2.3 ± 0.0	2.1 ± 0.2	2.1 ± 0.0
BB4	b	1.4	1.8	1.8 ± 0.1	2.4 ± 0.0	2.5 ± 0.2	2.1 ± 0.0
	Area	1.3	1.8	2.0 ± 0.1	2.3 ± 0.0	2.3 ± 0.1	2.1 ± 0.0

Table 4.2-19c Mean Braun-Blaunquet Coverage Abundance¹ (BBCA) Scores and Depth to Hardbottom <u>+</u> One Standard Error (SE) for Total Macrophytes, Total Seagrass, and Total Macroalgae, by Transect, Season, and Study Area for All Pre- and Post-Uprate Monitoring Events.

				Total	Seagrass			the state of the s	ardbottom n)*
Area	Tran- sect	Pre- Uprate Fall	Pre- Uprate Spring	Fall 2013	Fall 2014	Spring 2014	Spring 2015	Fall 2014	Spring 2015
		Mean	Mean	Mean ± SE	Mean ± SE	Mean ± SE	Mean ± SE	Mean ± SE	Mean ± SE
	a	1.5	1.3	1.5 ± 0.2	1.6 ± 0.0	1.8 ± 0.2	1.4 ± 0.1	16.8 ± 4.3	17.0 ± 8.9
BB1	b	1.1	1.6	1.1 ± 0.1	1.8 ± 0.1	1.1 ± 0.1	1.7 ± 0.1	9.1 ± 1.3	12.4 ± 5.5
	Area	1.3	1.4	1.3 \pm 0.1	1.7 ± 0.0	1.4 \pm 0.1	1.5 \pm 0.1	12.9 \pm 2.4	14.8 ± 5.1
	a	0.9	0.4	1.2 ± 0.1	1.7 ± 0.4	0.5 ± 0.1	1.4 ± 0.4	6.6 ± 2.0	5.1 ± 2.3
BB2	b	0.7	0.7	1.5 ± 0.1	1.4 ± 0.5	0.4 ± 0.1	2.0 ± 0.5	8.7 ± 4.2	9.3 ± 5.9
	Area	0.8	0.5	1.4 \pm 0.1	1.5 ± 0.3	0.5 ± 0.1	1.7 \pm 0.3	7.6 ± 2.3	7.2 \pm 3.1
	a	1.4	1.3	1.5 ± 0.1	3.0 ± 0.0	1.1 ± 0.1	2.9 ± 0.1	13.5 ± 4.0	14.3 ± 7.6
BB3	b	0.7	0.8	1.2 ± 0.1	2.7 ± 0.4	0.9 ± 0.1	2.6 ± 0.4	7.3 ± 0.9	5.8 ± 1.1
	Area	1.1	1.0	1.3 \pm 0.1	2.8 ± 0.2	1.0 ± 0.1	2.7 ± 0.2	10.4 ± 2.1	10.1 ± 3.9
	a	1.0	1.1	1.3 ± 0.1	2.3 ± 0.0	1 ± 0.0	2.1 ± 0.0	8.3 ± 1.8	11.1 ± 3.1
BB4	b	0.9	1.0	1.0 ± 0.1	2.4 ± 0.0	0.8 ± 0.1	2.1 ± 0.0	7.9 ± 1.7	4.9 ± 1.0
	Area	0.9	1.0	1.1 \pm 0.1	2.3 ± 0.0	0.9 ± 0.1	2.1 ± 0.0	8.1 ± 1.2	8.0 ± 1.8

Key:

BBCA = Braun-Blaunquet Coverage Abundance

cm = Centimeter(s)

m = Meter(s)

SE = Standard Error

^{*}Depth to hardbottom not measured in pre-uprate events.

¹BBCA scores: 1 (includes 0.1 and 0.5) - less than 5% coverage; 2 - 5% to 25% coverage; 3 - 25% to 50% coverage; 4 - 50% to 75% coverage;

^{5 - 75%} to 100% coverage.

Table 4.2-20 Analytical Results for Seagrass Leaf Nutrient Samples Collected within Each Study Area During Fall Post-Uprate Monitoring Compared to the Fall Pre-Uprate Mean.

Meth	od		353.	.2 & 351.	2				365.4		
Param	Parameter		Total Nitrogen Fall 2013		Nitro	otal gen Fall 014	*Pre- Uprate Fall Mean	To Phosp Fall 2	horus	Total Phosphorus Fall 2014	
Area	Transect	wt%	wt%	Qual- ifier	wt%	Qual- ifier	mg/Kg	mg/Kg	Qual- ifier	mg/Kg	Qual- ifier
	a	2.33	2.35		2.10		625.00	548.50		573.00	
BB1	b	2.33	2.30		2.15		395.00	555.00		544.50	
	Total	2.33	2.33		2.13		510.00	551.75		558.75	
	a	2.18	2.00		1.91		495.00	581.50		560.00	
BB2	b	2.26	2.05		1.93		560.00	607.50		579.00	
	Total	2.22	2.03		1.92		527.50	594.50		569.50	
	a	2.80	2.00		2.04		495.00	628.50		606.50	
BB3	b	2.90	2.05		1.98		560.00	628.00		554.50	
	Total	2.85	2.03		2.01		422.50	628.25		580.50	
	a	2.12	2.00		1.96		400.00	689.50		657.00	
BB4	b	2.21	2.10		1.95		425.00	706.00		663.00	
	Total	2.17	2.05		1.96		412.50	697.75		660.00	

Table 4.2-20 Analytical Results for Seagrass Leaf Nutrient Samples Collected within Each Study Area During Fall Post-Uprate Monitoring Compared to the Fall Pre-Uprate Mean.

Meth	od		L	J of M				Į	J of M			
Param	neter	Pre-Uprate Fall Mean	d13C Fall 2013		d13C Fall 2014						d15N all 2014	
Area	Transect	‰	‰	Qual- ifier	‰	Qual- ifier	‰	‰	Qual- ifier	‰	Qual- ifier	
	a	-11.73	-9.70		-9.80		5.78	6.45		5.30		
BB1	b	-10.53	-9.60		-9.20		4.59	4.55		4.00		
	Total	-11.13	-9.65		-9.50		5.19	5.50		4.65		
	a	-8.71	-9.00		-9.10		1.92	2.95		3.38		
BB2	b	-10.14	-9.85		-9.95		2.98	3.25		3.40		
	Total	-9.42	-9.43		-9.53		2.45	3.10		3.39		
	a	-10.79	-10.55		-10.65		3.87	3.70		3.85		
BB3	b	-10.61	-10.50		-10.60		4.32	3.65		3.70		
	Total	-10.70	-10.53		-10.63		4.09	3.68		3.78		
	a	-11.60	-10.75		-10.55		5.35	4.85		4.15		
BB4	b	-11.40	-10.70		-10.40		4.75	4.10		4.13		
	Total	-11.50	-10.73		-10.48		5.05	4.48		4.14		

Table 4.2-20 Analytical Results for Seagrass Leaf Nutrient Samples Collected within Each Study Area During Fall Post-Uprate Monitoring Compared to the Fall Pre-Uprate Mean.

M	ethod			J of M			
Par	ameter	Pre-Uprate Fall Mean	Total Ca	rbon Fall 2013	Total Carbon Fall 2014		
Area	Transect	wt%	wt%	Qualifier	wt%	Qualifier	
	a	39.50	41.25		35.20		
BB1	b	38.59	41.85		35.70		
	Total	39.04	41.55		35.45		
	a	38.55	41.65		35.50		
BB2	b	38.67	40.60		34.65		
	Total	38.61	41.13		35.08		
	a	52.07	41.25		35.60		
BB3	b	52.04	41.35		35.15		
	Total	52.06	41.30		35.38		
	a	40.72	40.70		34.90		
BB4	b	40.85	40.55		35.25		
	Total	40.79	40.63		35.08		

Methods 353.2 and 351.2 refer to the corresponding EPA methods

*Phosphorus was not included in testing for Fall 2010, only Fall 2011 Pre-Uprate Event

Key:

‰ = Parts per Thousand

wt% = Weight percent

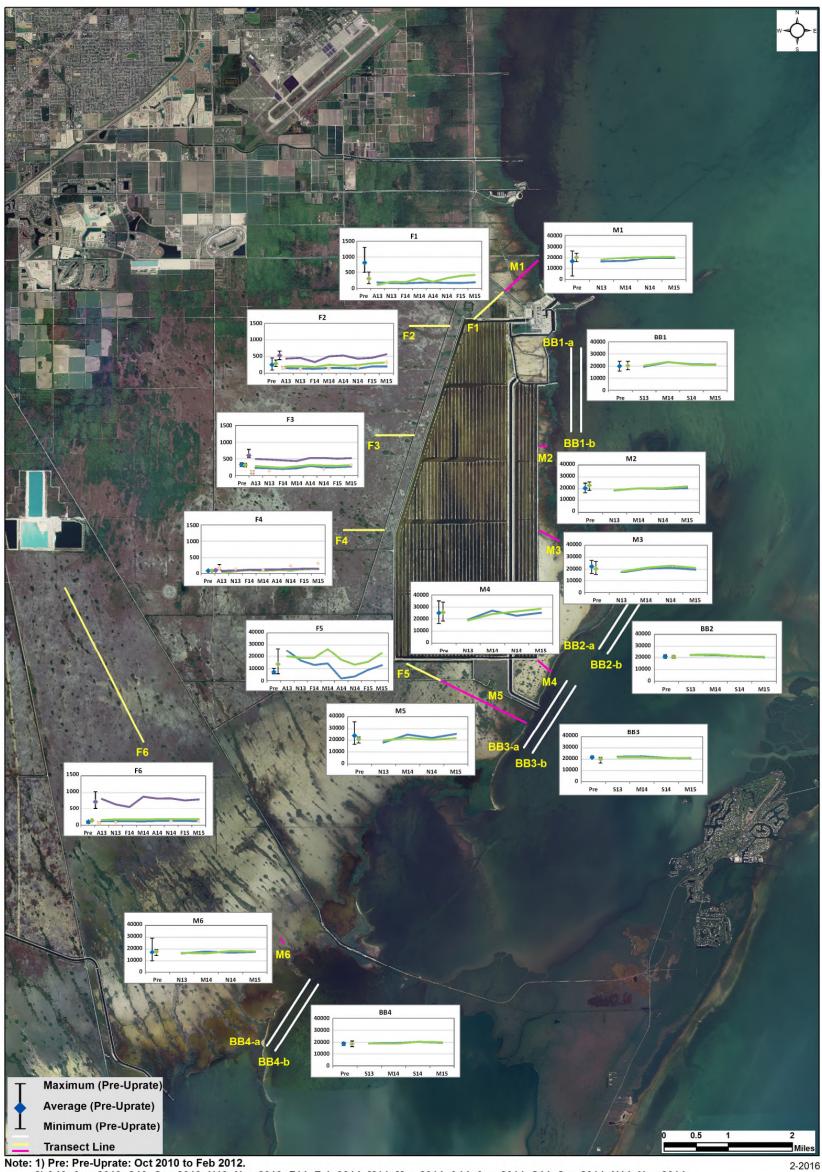
mg/Kg = Milligrams per kilogram

U of M - University of Miami

d13C = Carbon Isotopes

d15N = Nitrogen Isotopes

FIGURES


Note: 1) Pre: Pre-Uprate: Oct 2010 to Feb 2012.
2) A13: Aug 2013; S13: Sep 2013; N13: Nov 2013; F14: Feb 2014; M14: May 2014; A14: Aug 2014; S14: Sep 2014; N14: Nov 2014; F15: Feb 2015; M15: May 2015.

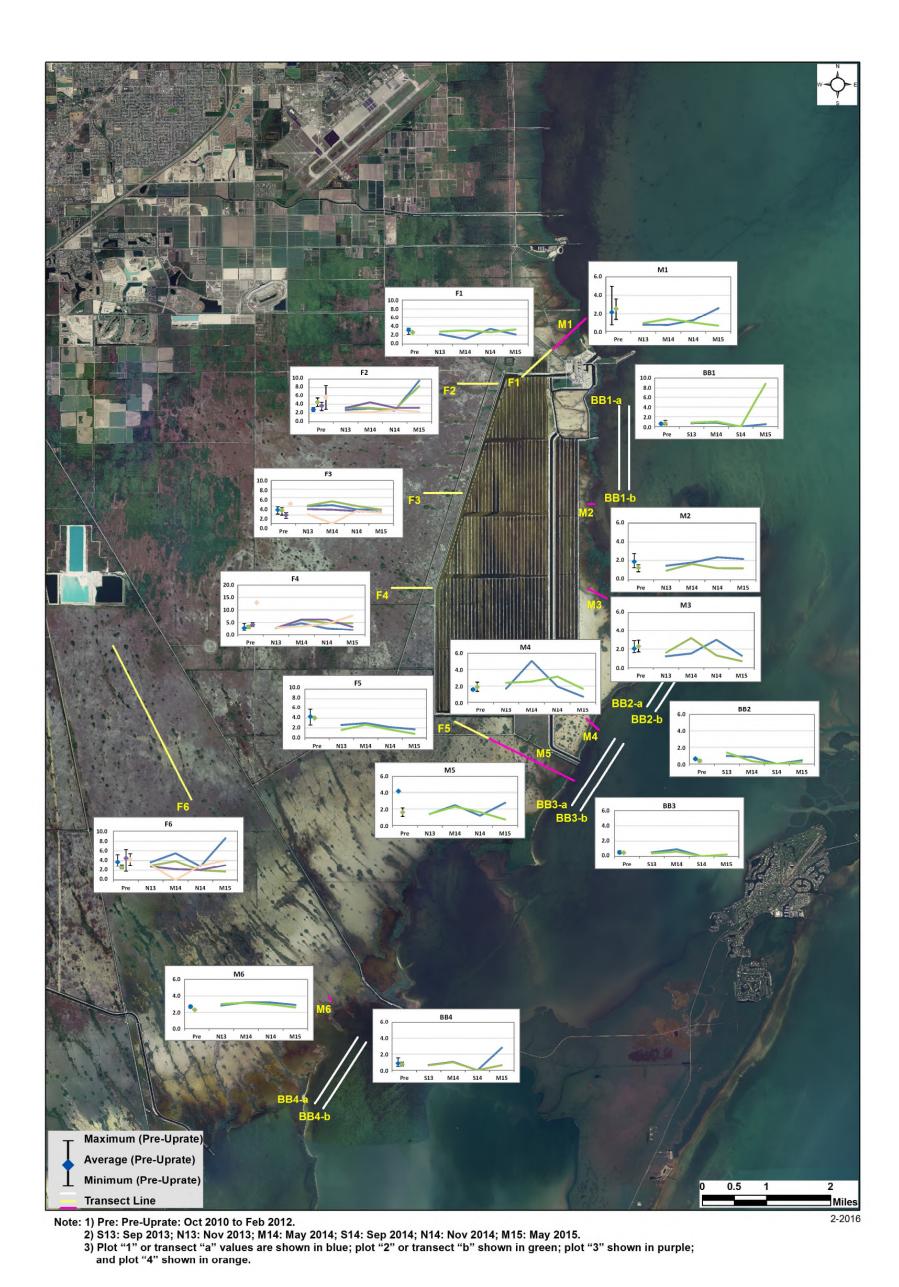
3) Plot "1" or transect "a" values are shown in blue; plot "2" or transect "b" shown in green; plot "3" shown in purple; and plot "4" shown in orange.

Porewater Sodium samples (mg/L) collected at 30 cm depth.

Pre-Uprate data shows average and range, while Post-Uprate values are for events from Aug 2013 to May 2015.

Figure 4.1-1. Post-Uprate Porewater Sodium (mg/L) Results with Pre-Uprate Ranges.

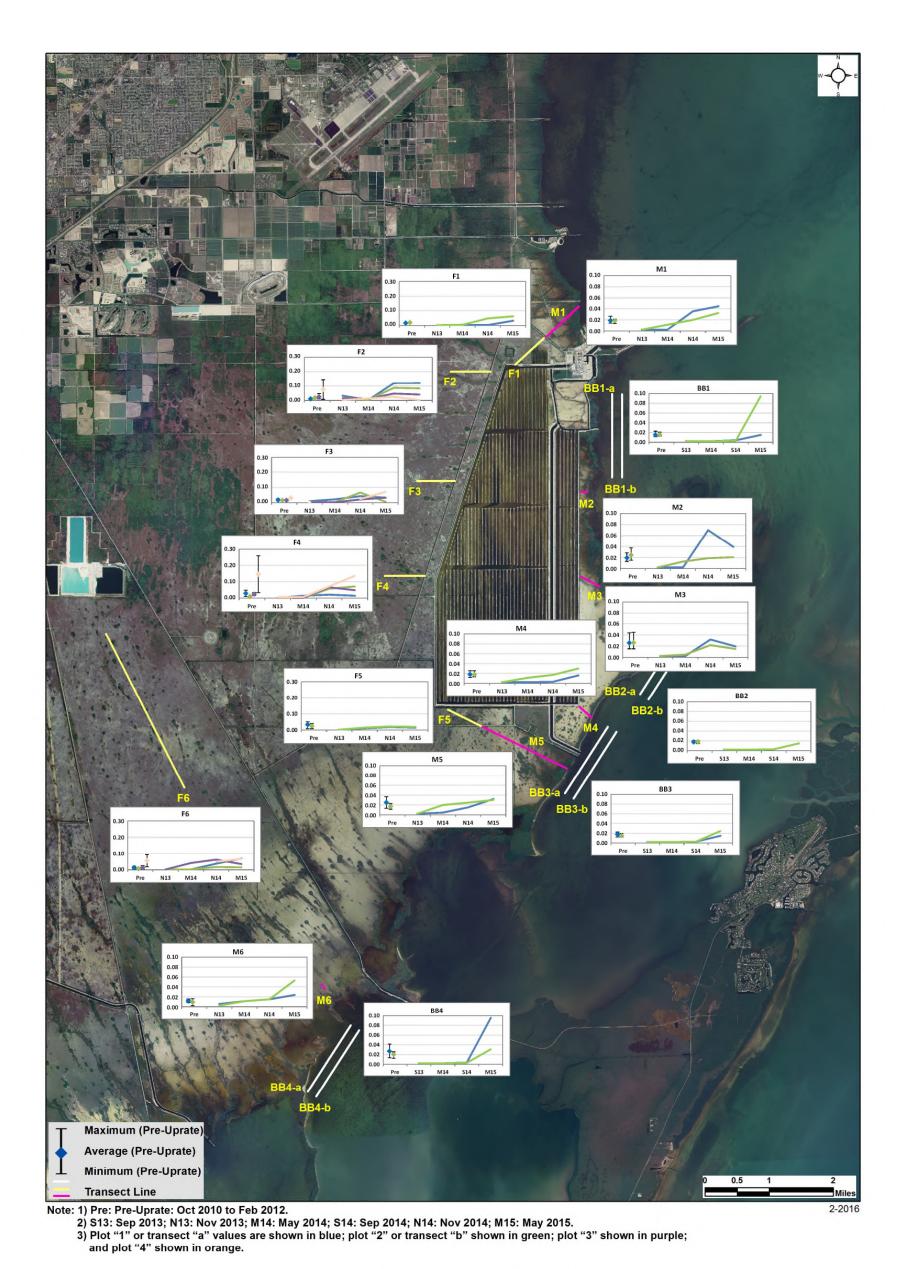
: 1) Pre: Pre-Uprate: Oct 2010 to Feb 2012.


2) A13: Aug 2013; S13: Sep 2013; N13: Nov 2013; F14: Feb 2014; M14: May 2014; A14: Aug 2014; S14: Sep 2014; N14: Nov 2014; F15: Feb 2015; M15: May 2015.

3) Plot "1" or transect "a" values are shown in blue; plot "2" or transect "b" shown in green; plot "3" shown in purple; and plot "4" shown in orange.

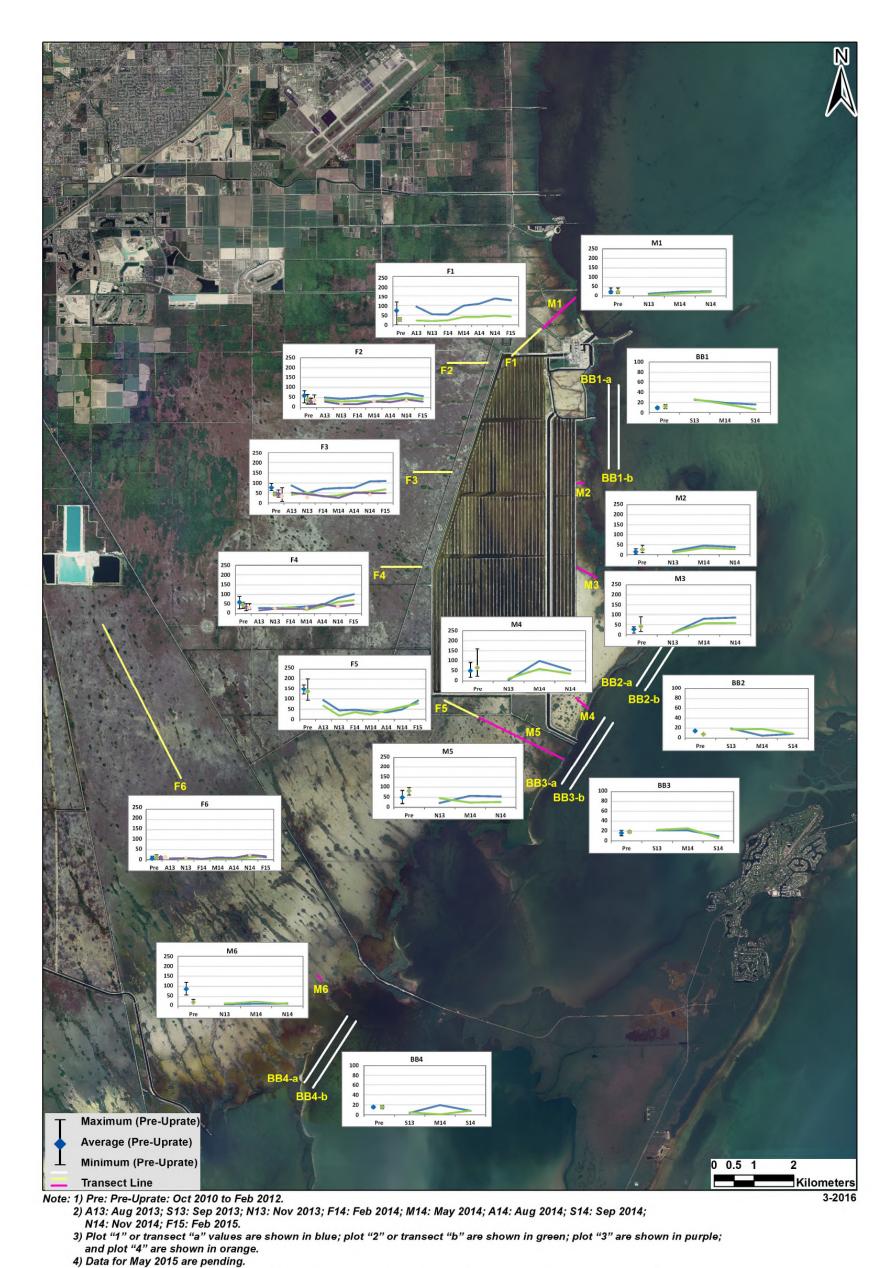
Porewater Chloride samples (mg/L) collected at 30 cm depth.

Pre-Uprate data shows average and range, while Post-Uprate values are for events from Aug 2013 to May 2015.


Figure 4.1-2. Post-Uprate Porewater Chloride (mg/L) Results with Pre-Uprate Ranges.

Porewater Total Nitrogen samples (mg/L) collected at 30 cm depth.

Pre-Uprate data shows average and range, while Post-Uprate values are for events from Aug 2013 to May 2015.


Figure 4.1-3. Post-Uprate Semi-Annual Porewater Total Nitrogen (mg/L) Results with Pre-Uprate Ranges.

Porewater Total Phosphorus samples (mg/L) collected at 30 cm depth.

Pre-Uprate data shows average and range, while Post-Uprate values are for events from Aug 2013 to May 2015.

Figure 4.1-4. Post-Uprate Semi-Annual Porewater Total Phosphorus (mg/L) Results with Pre-Uprate Ranges.

Quarterly ecological Tritium samples (pCi/L) collected at 30 cm depth.

Ranges of data in periods of Pre-Uprate and quaterly values in the Post-Uprate period from Aug 2013 to Feb 2015.

Figure 4.1-5. Post-Uprate Porewater Tritium (pCi/L) Results with Pre-Uprate Ranges.

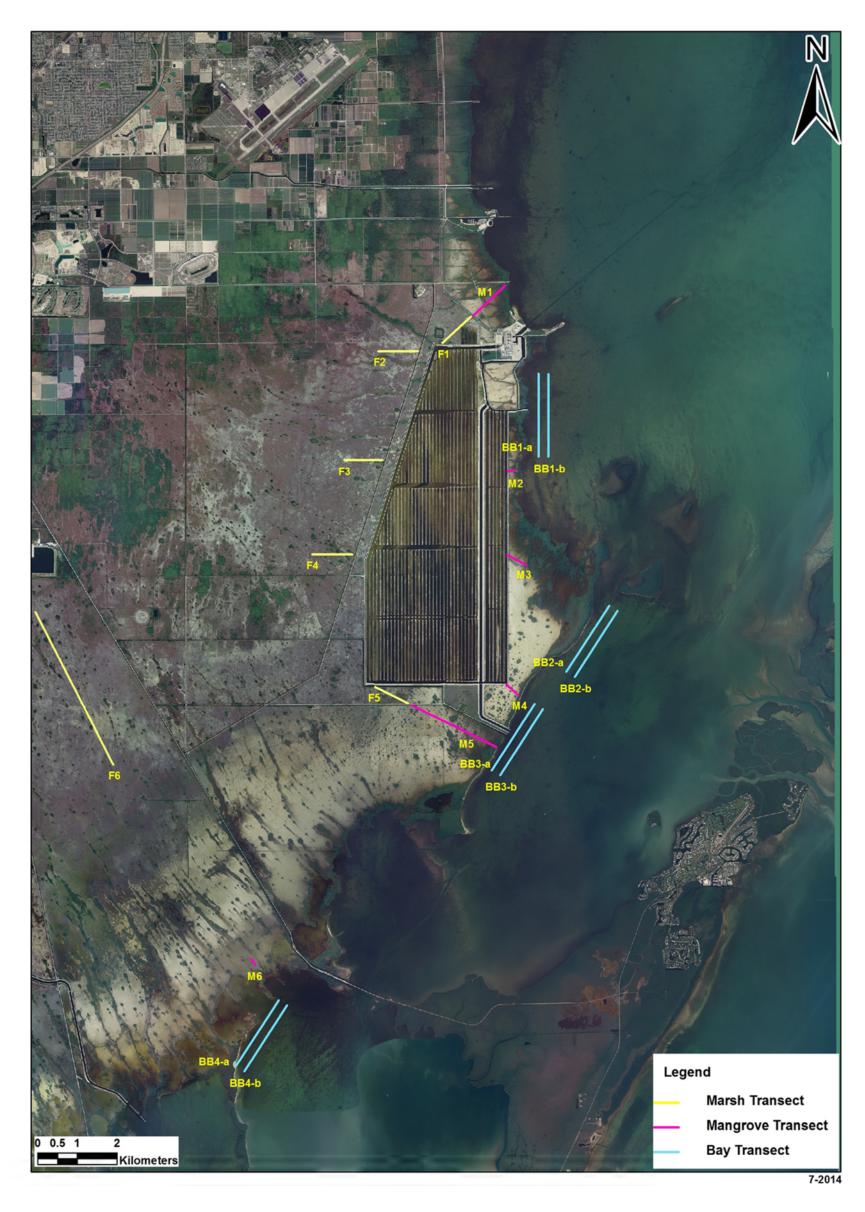


Figure 4.2-1. Post-Uprate Ecological Transect Locations.

5. HYDROGEOLOGIC ASSESSMENT

Information regarding the geologic and hydrogeologic conditions of the area, data previously collected to assess groundwater responses to environmental conditions in the area, and operational effects of the CCS on groundwater water levels have been reviewed. Data have also been collected and evaluated as part of the monitoring effort to assess the extent of the CCS hypersaline groundwater plume and interaction between the CCS surface water and groundwater. Discussion is provided below.

5.1 Biscayne Aquifer and Groundwater Responses

Southeastern Miami-Dade County, which includes Turkey Point, is underlain by two aquifer systems: the shallow unconfined Biscayne Aquifer/Surficial Aquifer System (BAS) and the deep Floridan Aquifer System (FAS). The focus of the Turkey Point Uprate monitoring effort is on the BAS because of its importance to the area to the west of the CCS as a drinking water supply and its shallow, unconfined depth. All the Turkey Point monitoring wells are screened in the BAS in high-flow zones (JLA 2010). There are zones of high permeability in the BAS typically associated with interconnected, touching vug porosity, bedding plane flow zones, cavernous flow zones, and/or touching dissolutioned fossil molds (Cunningham et al. 2004). Typically, within the Miami Limestone and Fort Thompson Formation, these high permeability zones occur at the base of depositional cycles that are characterized by touching-vug floatstone and rudstone, pelloidal packstone and grainstone, framestone, and vuggy wackestone and packstone (Cunningham et al. 2004, 2006). The BAS can exhibit very high hydraulic conductivities (in excess of 10,000 ft/day in some formations [Fish and Stewart 1991]) that can facilitate groundwater migration, but is countered by low hydraulic natural gradients across the region. Further details on the BAS and geologic conditions can be found in the Comprehensive Pre-Uprate Report (2012a) and in Hydrology of the Surficial Aquifer System, Dade County Florida (Fish and Stewart 1991).

Information was presented in the Comprehensive Pre-Uprate Report (FPL 2012a) that assessed groundwater responses to environmental conditions in the area and operational effects of the CCS. A number of these findings remain valid Post-Uprate and include the following:

- The exchange between the CCS, surface water, and groundwater are controlled by a number of variables, including groundwater and surface water stages and water densities.
- Water level data indicate that tidal fluctuations in Biscayne Bay surface water (of several feet) are reflected by fluctuations of a much smaller magnitude (hundredths of a foot) in groundwater beneath and in the CCS. This observation suggests that the aquifer beneath the CCS and Biscayne Bay do not behave as a single water body and that there is not a free exchange of water between them. Rather, there is some resistance to flow, implying

a more limited hydraulic connection than might otherwise be inferred if water levels fluctuated in a similar fashion.

- The groundwater levels in all land-based wells respond almost instantaneously to large rain events, and all three well depths follow identical (or nearly identical) patterns, which suggests close connections between the shallow, intermediate, and deep zones.
- The differences in water levels between shallow, intermediate, and deep wells are
 influenced by density differences and the depth of the well. Wells that are uniformly
 fresh across all three depth intervals have water levels that plot on top of each other.
 Other wells have water levels at different depth intervals that are separated, due, in part
 (or wholly), to density differences.
- The determination of groundwater flow is complicated by the variable groundwater densities, non-homogenous characteristics of the aquifer, and influences of nearby surface water bodies.
- Normal operations of the CCS (based on a review of outage and non-outage periods) do not appear to have a measurable effect on groundwater levels. If there is an effect, it is masked by meteorological conditions.
- Pumping the ID can immediately lower water levels up to almost 1 foot in the ID. This has an observable influence (around ±0.1 ft) almost instantaneously on groundwater at all zones in the immediate vicinity (TPGW-1 and TPGW-2) and surface water in the L-31E Canal. The effect on other wells farther away has not been observed.
- Movement of CCS water into the groundwater and groundwater flow into the CCS is governed by the water elevations and densities.

5.2 Extent of CCS Water and Rate of Migration

As discussed in the February 2011 Semi-Annual Report (FPL 2011a), the presence of saltwater in the aquifer west of Turkey Point pre-dates the CCS and was documented well inland in the 1950s (Klein 1957). This saltwater zone can move both seasonally and from year to year (Peters and Reynolds 2008); however, the results of FPL's five years of monitoring show generally limited change in chloride concentrations west of the CCS, except for some reduction in thickness of the fresher water surficial zone during the 2011 drought/dry season. Marine water existed in much of the groundwater in the area prior to the CCS being constructed and CCS water has since intermixed with historic salt water. Because the Agencies are interested in determining the extent of groundwater affected by the hypersaline water from the CCS, water chemistry in the CCS, Biscayne Bay, and the groundwater were assessed during the Pre-Uprate phase of monitoring to determine if the CCS water could be finger-printed. Parameters such as cations, ions, or most isotopes did not distinguish CCS water from Biscayne Bay water below concentrations found in Biscayne Bay. The Agencies recommended that FPL use tritium as a tracer for CCS water since it was unique to the CCS at the concentrations present. As a result,

the distribution of tritium can provide some insight into the possible movement and extent of CCS waters.

It is important to note that, under this Monitoring Plan, tritium is being measured only as a chemical tracer in order to determine the potential movement of CCS water. At the levels being measured, the tritium is not a public health concern. Tritium is also being routinely monitored in the CCS by the FDOH-BRC.

As discussed in Sections 2 and 3 and previously reported in the Post-Uprate Report (FPL 2014a), the most notable changes in the extent of saline water in the groundwater is the increase in specific conductance at TPGW-10D and, to a lesser extent, at TPGW-11D, which began before the Post-Uprate period. There has been a corresponding increase in tritium at a concentration high enough to indicate an influence from the CCS. In the Interim Operating period, water levels on the intake side of the plant at TPSWCCS-6 were higher than normal for an extended period. It is possible that the increase in specific conductance and tritium at TPGW-10D and TPGW-11D could be attributable, in part, to the higher water levels at TPSWCCS-6.

Another notable increase in specific conductance was at TPGW-7D, where levels began to rise in July 2013 from less than 600 μ S/cm to more than 6,500 μ S/cm by May 2015 (see Section 2, Figure 2.1-8). This rise, however, has not been accompanied by an increase in tritium. The tritium values have remained low (close to or below 20 pCi/L), which suggests this is most likely marine water that potentially pre-dates the CCS.

While a few water quality changes have occurred in the groundwater during the Post-Uprate period, most of the groundwater chemistry has been similar over the five-year period. This indicates that groundwater movement may be more gradual, at least on the scale of the monitoring network. More abrupt changes, which are rarely observed, may be associated with a well in or close to a fresh/salt water interface, either vertically or horizontally. This was observed in the Pre-Uprate period at TPGW-L-3 during 2011, when the shallow depth shifted from typically fresh to brackish and then back to predominantly fresh during the wet season.

Figures 5.2-1, 5.2-2, and 5.2-3 show transect locations and cross-sectional isopleths of pre-CCS (April 1, 1971, through February 1, 1972) and recent (March 2015) specific conductance data. Isopleths show the approximate change in specific conductance concentrations from the early 1970s (pre-CCS operation) to the recent period. Other than accounting for the recent increases, primarily in TPGW-10D and TPGW-7D, these figures are similar to those provided in the Comprehensive Pre-Uprate Report (FPL 2012a). All isopleths represent estimations of historical and current water quality conditions and were developed based on interpolation methods and best professional judgment. While chloride concentrations provide more direct evidence of saltwater/marine water intrusion, specific conductance can also be used as a surrogate, with the understanding that its value can be affected by salts found in fresh water. In nearly all the wells sampled for this current monitoring effort, a high specific conductance value (more than 1,275 μ S/cm) appears to indicate marine influences. Only one well (TPGW-8S) had specific conductance readings for an extended period that were influenced by another ion (calcium) and may not reflect marine influences.

Figures 5.2-2 and 5.2-3 also show the approximate historical limit of what would now be defined by the FDEP as Class G-III Ground Water (i.e., TDS greater than 10,000 mg/L, per Chapter 62-520.430, F.A.C.). While historical TDS values are not available for all stations, there is a relationship between specific conductance and TDS; based on the current analytical data, the TDS value is, on average, 60% of the specific conductance value. This relationship was used to calculate historical TDS values and to estimate the approximate limits of G-III groundwater prior to CCS construction. This historic limit was developed during and included in the Comprehensive Pre-Uprate Report (FPL 2012a).

Plan view maps showing the approximate current limits of specific conductance in each zone (shallow, intermediate, and deep) are provided in Figure 5.2-4 and are compared with Pre-Uprate period data. The changes between the periods are limited.

Figures 5.2-5 and 5.2-6 show cross-sections similar to the above specific conductance cross-sections, except that average Post-Uprate tritium values are shown. The figures include both the average tritium value for each well and corresponding average Post-Uprate chloride value. The figures show groundwater tritium concentrations in excess of 3,000 pCi/L near the CCS. These concentrations diminish with distance from the CCS. Values are in the hundreds of picoCuries, miles west of the CCS, at depth. The extent of tritium in the groundwater is less to the east of the CCS. Note that much of the water in the vicinity of the CCS historically could be classified as non-potable, based on pre-CCS TDS concentrations in the groundwater. Figure 5.2-7 shows plan view maps of average tritium concentrations for the shallow, intermediate, and deep zones, respectively for the Pre- and Post-Uprate periods. All isopleths represent estimated locations of tritium contours and were developed based on interpolation methods and best professional judgment. There is little change on any of the tritium maps between the Pre-Uprate and Post-Uprate, other than what has been previously discussed regarding TPGW-10D.

In the Comprehensive Pre-Uprate Report (FPL 2012a), the average horizontal rate of migration of CCS waters to the west was estimated to between 525 ft per year (northern part) and 660 ft per year (southern part). To the east of the CCS, the rate of migration was estimated to be 290 ft per year. The actual movement of the saline groundwater in any given year can be abated by high rainfall conditions or exacerbated by drought conditions.

Vertical hydraulic conductivities are typically an order of magnitude or two lower than horizontal hydraulic conductivities (Argonne National Laboratories) in anisotropic formations. Efforts conducted by Bechtel as part of the Turkey Point Unit 6 & 7 project (Andersen 2011) estimated vertical hydraulic conductivities that were an order of magnitude less than the horizontal hydraulic conductivities. While the exact rate of vertical migration is not known at Turkey Point, information from well cluster TPGW-13 can provide some insights. A review of the tritium data at TPGW-13S, 13M, and 13D reveal average concentrations for the entire period of monitoring to be 4,353 pCi/L, 3,468 pCi/L, and 3,722 pCi/L, respectively. Although the surface water tritium levels vary substantially, the groundwater levels are somewhat buffered from large swings in concentrations. By considering the half-life of tritium (12.3 years) and the depths of these wells, a range of values for the rate of vertical migration can be estimated. Since TPGW-

13M and TPGW-13D are 27 and 55 ft deeper than TPGW-13S, a rate of migration of 12 to 32 ft per year in the deeper portions of the aquifer is calculated. In addition, it has been observed that, despite the high specific conductance values measured in the CCS in the Post-Uprate period (particularly since late 2013), the effect has yet to be clearly seen in TPGW-13S. Since TPGW-13S is screened about 27 ft below the shallow canals and 8 to 10 ft below the Grand Canal, it is estimated that the rate of vertical migration in this upper layer of the formation is less than 6 ft per year (8 ft/1.5 years). While these calculations are not intended to be precise, they provide some indication of the general rate of vertical movement of the hypersaline water below the CCS.

One of the biggest surface water changes in the Post-Uprate period is the increase in specific conductance/salinity in the CCS. The increase in salinity is being driven, to a large degree, by an increase in temperature in the CCS, which causes more water to evaporate from the CCS. The increase in CCS surface water temperatures during the Post-Uprate period cannot be explained by the Uprate. As the salinity increases, the density of the water increases, which creates more pressure/driving head and a potential increase in migration of saline groundwater. Some of the density increases are mitigated by warmer waters, but there is an overall rise in density of the CCS waters. During the Pre-Uprate monitoring period, the average density at TPSWCCS-1 was approximately 1.03 grams per cubic centimeters (g/cm³). In May 2015, the density at this same station was around 1.06 g/cm³. For much of the CCS, which is less than 4 ft deep, this equates to an increase of less than 0.12 ft in head (3% increase). For deeper portions of the CCS that are 15 to 20 ft deep, this the increase in head equates to 0.45 to 0.60 ft (3% increase). Although the change is small, this increase in head can affect the exchange of groundwater in and out of the CCS. Further discussion is provided in the following section i.e. Section 5.3.

While there has been an increase in driving head, and specific conductance values have increased in the CCS, the effects have yet to be readily seen in the Post-Uprate period. As mentioned above, the specific conductance in the shallowest well at TPGW-13 has yet to respond to the increased values in the overlying CCS surface water. The few notable changes in specific conductance in several of the other wells do not appear related to the Post-Uprate operation of Units 3 and 4, given the time of the occurrence. The previously reported occasional seepage effects of the CCS at TPSWC-5 (Grand Canal immediately adjacent to and south of the CCS) observed during the Pre-Uprate period were not as evident, based on temperature and specific conductance data in the Post-Uprate period.

5.3 Water and Salt Balance Model

Tetra Tech, Inc. has developed a model of the water and salt balance for the CCS. The purpose of this model is to quantify the volume of water and mass of salt entering and exiting the CCS over a period of time. This Excel-based model, the underlying conceptualization of the relationship between the CCS and the surrounding environmental systems, key calculations, and results were most recently detailed in the Comprehensive Pre-Uprate Monitoring Report (FPL 2012a). That version of the model simulated water and salt flow to and from the CCS for the period between September 2010 and June 2012. Currently, the modeled period extends through

May 2015 and encompasses the Post-Uprate period. This period of time includes the increases in both CCS salinity and temperature (that were observed to begin in fall 2013), the drop in salinity due to the addition of L-31E water in the fall of 2014, and the subsequent rebound in salinity in the CCS.

The conceptual model and associated calculations are predominantly unchanged since last presented in the 2012 Comprehensive Pre-Uprate Monitoring Report. As such, only a brief summary of the model is provided below. In addition, model results and corresponding conclusions regarding the operation of the CCS, based on the current calibrated water and salt balance model, are provided herein. The Excel spreadsheet that comprises the model is provided in a separate data file.

5.3.1 Model Summary

As Figure 5.3-1 depicts, the water balance of the control volume (i.e., the CCS) is comprised of seepage (lateral through the sides and vertical through the bottom), blowdown (additional water pumped from other units to the CCS), precipitation (including runoff from earth berms between canals), and evaporation. Other than evaporation and precipitation, these are the same mechanisms by which salt flows into and out of the CCS. The means by which water and/or salt is transferred (e.g., seepage, evaporation) is calculated using various equations provided in the 2012 Comprehensive Pre-Uprate Monitoring Report. Calculations were performed for a 57-month period from September 2010 through May 2015. Average flows of water and salt into and out of the control volume were calculated for each day of this period using hydrologic, water quality, and meteorological data measured within, beneath, and adjacent to the CCS. The average daily flows were summed to estimate the amount of water and salt that enters or exits the control volume during each month and the entire 57-month period. These calculations demonstrate and validate the conceptual model of the CCS and, in so doing, illustrate the hydrologic mechanisms by which the CCS functions.

Calculated water flows are reported in 10^6 gallons per day (mgd). The mass flux into or out of the control volume is calculated by multiplying the volumetric flow by the salinity of the body of water from which the water is flowing. Salinity from the same groundwater and surface water monitoring stations used in the 2012 Comprehensive Pre Uprate Report (FPL 2012a) were used in the calculations and reported in the practical salinity scale (PSS-78), which is equivalent to grams per liter (g/L). Calculated mass fluxes are reported in thousands of pounds per day (lb x 1,000/day).

Over time, the gain/loss of water and salt mass within the control volume results in a change in the control volume's water and salt mass storage. Increased water storage, for instance, occurs when more water enters the control volume than exits. Storage, then, can be estimated by summing all of the components of the water (and salt) balance. When the net flow is positive (into the control volume) during a specified period of time, the storage of control volume increases. Conversely, a net negative (out of the control volume) flow implies a decrease in storage during a specified time period.

Another manner in which a change in storage can be estimated relies on direct measurements of water elevations and salinities within the control volume. A change in water elevation within the control volume can be calculated as a difference between water elevations at the beginning and end of a specified time period. The product of this change in water elevations and the surface area of the control volume provides an estimate of the change in the volume of water contained in the control volume during that period of time. Estimates of daily storage changes derived from this method are used to further calibrate the water and salt balance model to ensure an accurate simulation of temporal trends in CCS water elevation and salinity.

5.3.2 Model Calibration

The individual components of the water and salt balance were simulated daily and summed for each month from September 2010 through May 2015, as well as for the collective 57-month period. The individual components of flow are summed in order to calculate a simulated change in volume for each month and for the 57-month period. These simulated changes in storage were compared with observed changes in CCS water and salt storage for each month and the entire calibration period. Errors between the simulated and observed monthly storage changes were minimized by adjusting key variables associated with the flow balance model; this process is called calibration. The calibration process ensures that the model can accurately reflect the average changes in CCS storage over the 57-month time frame while also effectively capturing day-to-day changes in CCS water and mass storage. Calibration of the water and salt balance model was achieved by adjusting hydraulic conductivities of the aguifer materials adjacent to and beneath the CCS that factor into the calculation of seepage to/from groundwater and Biscayne Bay. Additional adjustable parameters include the coefficients in the wind function (FPL 2012a), the amount of runoff that enters the control volume as a percentage of precipitation, the amount of Unit 5 cooling tower water that is lost to evaporation before entering the CCS, and the salinity of the Unit 5 blowdown as a percentage of seawater. The calibrated model parameter values are provided in Table 5.3-1.

The horizontal hydraulic conductivities laterally adjacent to the control volume were calibrated to range between 500 ft/day and 900 ft/day. The calibrated vertical conductivities beneath the control volume ranged from 0.1 ft/day to 4 ft/day. The horizontal hydraulic conductivities of the side faces of the CCS are relatively high due the assumed incising of highly permeable material that underlies the muck and Miami limestone by deeper canals. For the same reason, the northern discharge canals and return canals were calibrated to relatively high vertical hydraulic conductivities (4 ft/day and 3.8 ft/day, respectively). Lower vertical hydraulic conductivities were calibrated for the middle and southern portions of the discharge canals, as well as the southern portion of the return canals (0.1 ft/day).

A notable deviation from the conceptual CCS water and salt flow balance is the recognition of reduced flow in the plant discharge canals. In early 2014, FPL noted that water flow was quite low in some plant discharge canals. In some cases, it was observed that CCS water did not flow in parts of individual canals. The lack of flow in certain individual canals limits the intended function of the CCS as a radiator, such that water preferentially flows through other canals at a faster rate than normal. The greater rate of flow of CCS water in some canals inhibits the

process of evaporation and the cooling effect that evaporation provides to the CCS. This phenomenon was simulated by reducing the CCS discharge canals' surface area between January 2014 and May 2015 by between 16% and 20%. Though coarse, this approximation accounts for both a physical reduction in surface area as well as the related limits on the evaporative process.

5.3.3 Model Results and Discussion

Results of the simulated 57-month water and salt balance model are provided in Tables 5.3-2 and 5.3-3, respectively. Monthly balance results follow in Tables 5.3-4 and 5.3-5. The modeled net flow of water, as calculated by the summing the components of the water balance for the 57-month calibration period, is denoted as the "Modeled Change in CCS Storage" and was calculated to be an average outflow of 0.22 mgd over the 57-month calibration period (Table 5.3-2). The observed change in storage, which is the difference in the volume of water in the CCS between the final and first days of the calibration period, divided by the number of days in the period, was observed to be 0.54 mgd. Though the model underestimated a net outflow of water from the CCS over the whole time period, the residual error between the simulated and observed flow is very small (0.32 mgd). This error is small (0.3%) relative to the monthly net observed flows, which range from a net outflow of 46.6 mgd (October 2010) and a net inflow of 52.1 mgd (September 2010).

The model simulated a net influx of salt over the 57-month period at rate of 597 (lb x 1,000)/day. The corresponding observed rate of salt inflow was calculated by multiplying the average observed salinity in the CCS on the final and first day of the calibration period by the corresponding CCS volumes on those days. The difference between these two products, divided by the number of days in the calibration period, shows that the net inflow of salt is about 405 (lb x 1,000)/day. The error associated with the mass flux is an overestimation by approximately 192 (lb x 1,000)/day. As in the case of water balance simulation, the magnitude of this overestimation is small (0.9%) relative to the range in monthly average flows; the monthly net mass fluxes range from an outflow of 13,790 (lb x 1,000)/day (October 2010) to an inflow of 8,659 (lb x 1,000)/day (June 2011). This error marks an improvement over an earlier version of the model (discussed in the 2014 Annual Post-Uprate Monitoring Report [FPL 2014a]).

Figures 5.3-2 and 5.3-3 illustrate the model's ability to match the magnitude and direction of net monthly flows of water and salt, respectively. Figure 5.3-2 compares observed and modeled net monthly flows of water into and out of the CCS. There is a seasonal trend in observed flows to/from the CCS, where inflows are generally associated with the wet season and outflows are generally associated with the dry season. The model is able to replicate this trend reasonably well. However, there are isolated periods of time where the model does not accurately simulate the magnitude or direction of the net flow (e.g., March to July 2011, October 2013, January 2015). Figure 5.3-3 compares observed and modeled net monthly flows of salt into and out of the CCS. Like the modeled water flows, estimated salt mass fluxes generally match observed fluxes well, although there are individual months where the estimated mass flux is less accurate.

Implicit in the model's ability to simulate monthly net water and salt mass flows is the accurate simulation of daily flows to and from the CCS. Because the model is able to characterize the daily flows of water and salt, the model is able to estimate the daily changes in CCS water and salt storage. As previously mentioned, these changes in storage are associated with daily changes in CCS water levels and salinity. Figure 5.3-4 shows the model-calculated water level in the CCS, which varies over the period of record. These modeled water levels range between approximately -1.63 ft NAVD 88 and 0.81 ft NAVD 88 and reflect an average water level throughout the entire CCS. The observed CCS water levels over time are also shown in this figure; the observed values reflect the mean of daily-averaged water elevations across the seven sensors in the CCS. The daily-averaged observed water levels vary across a range similar to that of the simulated water levels (-1.71 ft NAVD 88 to 0.63 ft NAVD 88). Simulated water elevations are calculated by dividing the simulated daily change in CCS storage by the average daily CCS surface area and adding the resulting value (which reflects a change in water level) to the previous day's simulated water elevation. It is evident from this figure that the model effectively captures the general trend in CCS water elevations over the 57-month period and accurately simulates average CCS water elevations throughout much of the calibration period. Nevertheless, there were periods of time where the model either generally under-simulated observed water levels (late 2011 and 2013) or, conversely, over-simulated water levels (mid-2014 through May 2015).

Though the model over-simulated water levels toward the end of the model simulation, this error is relatively small. Moreover, the temporal fluctuations in water levels are reasonably well-matched. This is particularly relevant since this period of time includes fall 2014, when 914 million gallons of L-31E Canal water were pumped into the CCS over a 21-day duration. During this addition, the simulated increase in water levels (approximately 0.5 ft) closely matched the observed water level increase in the CCS (approximately 0.4 ft). The model also accounted for water pumped into the CCS from the Floridan Aquifer (PTF5 well #3) and Biscayne Aquifer (PW-1) and the associated changes in stage since July 2013 and January 2015, respectively.

Similar to the calculation of CCS water levels, changes in salt mass storage within the CCS can be used to calculate average CCS salinity changes over time. The simulated daily net flow of salt is divided by the simulated volume of water in the CCS, which results in a change in salinity. This change in salinity is added to the simulated salinity calculated for the previous day to produce a simulated salinity for the current day. Like the simulated CCS water level, the model salinity reflects a representative daily salinity throughout the CCS. Figure 5.3-5 compares the simulated salinities to those observed in the CCS over the period of record. Observed salinities are the mean of daily averaged salinities measured in the CCS monitoring stations. The model under-simulated salinity between May 2012 and December 2013 and over-simulated between June 2014 and May 2015. However, these under- and over-simulations were generally small. Moreover, the simulated temporal trends in salinity throughout much of the 57-month timeframe matched the temporal trends in the average observed CCS salinity.

As in the case of the simulation of water levels in the CCS, it is important to note that the model simulated salinity and daily changes during the November 2013 through September 2014 timeframe, when salinity increased from about 60 g/L to approximately 90 g/L. Moreover, the

modeled drop in salinity (11 g/L) due to the addition of L-31E Canal water from September to October 2014 closely matched the observed drop in salinity (13 g/L). In addition, the subsequent increase in salinity (October 2014 through April 2015) was replicated by the model, as was the subsequent significant drop in salinity attributable to a late-April rainfall event. The fact that the model matches these notable fluctuations in CCS salinity reinforces the conceptual model, which suggests that changes in CCS salinity are predicated solely on changes in the flow of water into and out of the CCS. Again, changes attributable to the addition of Floridan Aquifer water from PTF5 #3 and Biscayne Aquifer water from PW-1 are accounted for by the model with reasonable accuracy.

Given that the simulated timeframe is nearly evenly partitioned into the Pre-Uprate, Interim, and Post-Uprate periods, it is appropriate to discuss the water and salt balance model results in terms of these operational periods. Inspection of Figure 5.3-2 does not reveal a marked difference in water changes in water storage (inflows and outflows) among the three operating periods. Perhaps the only distinguishing characteristic is a significant decrease in storage (outflow) that occurs at the inception of the Post-Uprate period in June 2013. This outflow is attributable to increase in seepage to groundwater and in evaporative losses. Figure 5.3-3, however, suggests that mass accrues at a greater rate during the Post-Uprate period than in the other two operating periods. This is consistent with the increase in CCS salinity during this timeframe.

Tables 5.3-6 and 5.3-7 summarize the simulated water and salt flow balances for the Pre-Uprate, Interim, and Post-Uprate periods. Though the net water and salt balances are on the same order of magnitude for each of the three operating periods, the magnitude of the inflows and outflows are fairly different. For instance, the magnitude of water inflows and outflows are greater during the Pre-Uprate and Post-Uprate periods than in the Interim period. Likewise, the exchanges of salt are generally greater in the Pre-Uprate and Post-Uprate periods than in the Interim period. The modeled water balances match the corresponding observed balances reasonably well in each of the operating periods. Though the match between modeled and observed salt mass balances appears to be slightly degraded when compared to the water balance match, in fact the associated salt mass balance error is relatively low in the context of the range of the individual mass balance components (e.g. maximum inflow minus maximum outflow). Additionally, relative to the variability in observed monthly net salt mass flows, the error between the simulated and observed mass balance for these three periods is fairly low

The accurate simulation of changing CCS inflows, outflows, water elevations, and salinities is complex due to the different components of the balance model and their varying impacts upon CCS water and salt storage. For instance, vertical flows into and out of the control volume are generally larger than horizontal flows and have a greater impact on CCS water elevation. The salinity of inflowing water, however, can vary depending upon the source of the water. For example, horizontal flow from the west (L-31E Canal) is non-saline and has a pronounced mitigating impact upon CCS salinities; vertical flow from groundwater beneath portions of the plant discharge canals is saline to hyper-saline and generally increases the salinity of the CCS. The correct balance of both water and salt mass flow is difficult to estimate in the model. In addition, the simulated timeframe encompasses Pre-Uprate, Interim, and Post-Uprate periods, during which CCS water salinity and temperatures fluctuate significantly. The model addresses

associated impacts on the CCS by explicitly simulating the effects of water/air temperature gradients on evaporation. Whereas numerous sources and sinks of water, varying salinities, and changes in water temperature do increase model complexity, the need to accurately simulate these different components of CCS operation constrains the number of possible solutions.

Though the model is able to simulate the complex dynamics associated with the CCS over a 57-month timeframe with reasonable accuracy, there are periods of time where the simulated flows of water and salt do not accurately reflect observed conditions. Consequently, the simulated water level and salinities in the CCS deviate from those that have been observed at various times in the simulation period. However, the overall performance of the model reinforces its utility as a tool for understanding how the CCS has and will operate under varying meteorological, hydrological, and operational conditions. This is best demonstrated by the fact that the same conceptual model employed to characterize changes in CCS storage of water and salt during the Pre-Uprate period is used to explain changes in water and salt storage during the Post-Uprate period, a period of time during which water levels have generally decreased, salinities have dramatically increased, water temperatures have risen, and algal blooms have developed within the CCS. Nevertheless, the exchanges of flows between the CCS and surrounding environment during Post-Uprate period are governed by the same hydrologic principles as during the Pre-Uprate period.

This robustness and accuracy in the model underpins FPL's understanding of processes that control the CCS and the manner in which the CCS interacts with the adjacent aquifer and water bodies. This accuracy in simulating the historical changes within the CCS bolsters confidence in the model's utility as a tool to evaluate the sensitivity of CCS operations to certain factors, such as changes in operation, drought conditions, storm events, added water, and other potential environmental stresses. Additionally, the model accuracy validates the fact that the most appropriate data are being collected to effectively capture CCS operations, identify interactions between the CCS and the surrounding environment, and support FPL's comprehension of historical and future operations of the CCS. This model continues to be refined and improved with further information on the CCS.

TABLES

Table 5.3-1. Calibration Parameters.

Parameter Name	Calibrated Value	Units
Vertical Hydraulic Conductivity (Zone A)	4.0	ft/day
Vertical Hydraulic Conductivity (Zone B)	0.1	ft/day
Vertical Hydraulic Conductivity (Zone C)	0.1	ft/day
Vertical Hydraulic Conductivity (Zone D)	3.0	ft/day
West Face Hydraulic Conductivity	825	ft/day
East Face Hydraulic Conductivity	900	ft/day
North Face Hydraulic Conductivity	500	ft/day
South Face Hydraulic Conductivity	675	ft/day
Evaporation Modifier (Factor Multiplier)	0.71	•
Runoff Modifier (as % of Precipitation)	32%	
Blowdown Evaporation Factor	40%	
Blowdown Concentration (as % of Seawater)	0.25	

Table 5.3-2. Calculated Fluid Flows from Water Budget Components.

September 2010 to May 2015			
Water Bu	dget Component	Flow (MGD)	Volume (gal x 10^6)
	W. Seepage	0.77	1329.68
	E. Seepage	13.59	23557.82
	N. Seepage	0.01	16.37
	S. Seepage	3.30	5730.53
	Bottom Seepage	8.87	15378.74
\mathbf{S}	Precipitation and Runoff	19.52	33846.97
CC	Evaporation	0.00	0.00
Into CCS	Unit 3, 4 Added Water	0.49	851.01
Ir	Unit 5 Blowdown	1.96	3393.11
	ID Pumping	3.58	6206.00
	Added Water (e.g. L-31E)	1.93	3352.82
	Plant Outflow	Equal to Intake	
	Plant Intake	Equal to Outflow	
	Total In:	54.02	93663.04
	W. Seepage	-0.06	-4.67
	E. Seepage	-1.77	-5941.48
	N. Seepage	-0.01	-10.45
	S. Seepage	0.00	-44.05
$\hat{\mathbf{x}}$	Bottom Seepage	-11.09	-19504.75
Out of CCS	Precipitation and Runoff	0.00	0.00
of	Evaporation	-31.49	-68542.75
ut	Unit 3, 4 Added Water	0.00	0.00
0	Unit 5 Blowdown	0.00	0.00
	ID Pumping	0.00	0.00
	Plant Outflow	Eq	ual to Intake
	Plant Intake	Equ	al to Outflow
	Total Out:	-44.43	-94047.87
Modeled Cha	nge in CCS Storage:	-0.22	-384.83
	Observed Change	-0.54	-938.00

Key:

CCS = Cooling Canal System.

gal = Gallon.

ID = Interceptor Ditch.

MGD = Million gallons per day.

Table 5.3-3. Calculated Mass Flows from Salt Budget Components.

September 2010 to May 2015			
Mass	Budget Component	lb/day (x1000)	Mass (lb x 1000)
	W. Seepage	6.12	10617.41
	E. Seepage	3874.04	6717584.84
	N. Seepage	1.90	3288.71
	S. Seepage	664.37	1152011.09
	Bottom Seepage	2471.89	4286258.31
\mathbf{z}	Precipitation and Runoff	0.00	0.00
CC	Evaporation	0.00	0.00
Into CCS	Unit 3, 4 Added Water	0.00	0.00
II.	Unit 5 Blowdown	142.89	247772.59
	ID Pumped Water	360.30	624756.49
	Added Water (e.g. L-31E)	219.43	380491.12
	Plant Outflow	Equal to Intake	
	Plant Intake	Equal to Outflow	
	Total In:	7740.93	13422780.57
	W. Seepage	-46.15	-80019.11
	E. Seepage	-1467.02	-2543816.50
	N. Seepage	-3.32	-5753.07
	S. Seepage	-11.44	-19830.75
$\hat{\mathbf{x}}$	Bottom Seepage	-5615.47	-9737218.65
Out of CCS	Precipitation and Runoff	0.00	0.00
of	Evaporation	0.00	0.00
ă,	Unit 3, 4 Added Water	0.00	0.00
0	Unit 5 Blowdown	0.00	0.00
	ID Pumping	0.00	0.00
	Plant Outflow	Ed	qual to Intake
	Plant Intake	Equ	ual to Outflow
	Total Out:	-7143.39	-12386638.08
Modeled (Change in CCS Storage:	597.54	1036142.49
	Observed Change	404.70	701742.27

CCS = Cooling Canal System.
ID = Interceptor Ditch.
Ib = Pound(s).

Table 5.3-4. Calculated Fluid Flows from Water Budget Components.

	September 2010			
	Water Budget Component	Flow (MGD)	Volume (gal x 10^6)	
	W. Seepage	0.63	18.92	
	E. Seepage	11.48	344.30	
	N. Seepage	0.02	0.45	
	S. Seepage	3.43	102.78	
7.0	Bottom Seepage	8.21	246.36	
S	Precipitation and Runoff	77.48	2324.42	
Into CCS	Evaporation	0.00	0.00	
	Unit 3, 4 Added Water	0.29	8.64	
	Unit 5 Blowdown	1.96	58.73	
	ID Pumping	0.00	0.00	
	Plant Outflow	Equal to Intake		
	Plant Intake	Equal to Outflow		
	Total In:	103.49	3104.60	
	W. Seepage	0.00	0.00	
	E. Seepage	-5.01	-150.18	
	N. Seepage	0.00	-0.08	
	S. Seepage	0.00	0.00	
Ñ	Bottom Seepage	-6.05	-181.43	
Out of CCS	Precipitation and Runoff	0.00	0.00	
of	Evaporation	-39.24	-1177.31	
ū	Unit 3, 4 Added Water	0.00	0.00	
	Unit 5 Blowdown	0.00	0.00	
	ID Pumping	0.00	0.00	
	Plant Outflow	H	Equal to Intake	
	Plant Intake		qual to Outflow	
	Total Out:	-50.30	-1509.00	
Mo	odeled Change in CCS Storage:	53.19	1595.60	
	Observed Change	52.14	1564.08	

Key:

CCS = Cooling Canal System.

gal = Gallon.

ID = Interceptor Ditch.

MGD = Million gallons per day.

Table 5.3-4. Calculated Fluid Flows from Water Budget Components.

	October 2010		
	Water Budget Component	Flow (MGD)	Volume (gal x 10^6)
	W. Seepage	0.22	6.82
	E. Seepage	0.72	22.35
	N. Seepage	0.00	0.15
	S. Seepage	2.75	85.32
7.0	Bottom Seepage	5.48	169.95
S	Precipitation and Runoff	13.40	415.34
0	Evaporation	0.00	0.00
Into CCS	Unit 3, 4 Added Water	0.29	8.93
	Blowdown	1.49	46.21
	ID Pumping	0.00	0.00
	Plant Outflow	Equal to Intake	
	Plant Intake	Equal to Outflow	
	Total In:	24.36	755.07
	W. Seepage	-0.01	-0.28
	E. Seepage	-21.35	-661.91
	N. Seepage	-0.01	-0.19
	S. Seepage	-0.05	-1.53
Š	Bottom Seepage	-19.27	-597.45
\mathcal{C}	Precipitation and Runoff	0.00	0.00
Out of CCS	Evaporation	-30.81	-955.14
ut	Unit 3, 4 Added Water	0.00	0.00
0	Unit 5 Blowdown	0.00	0.00
	ID Pumping	0.00	0.00
	Plant Outflow	Equal to Intake	
	Plant Intake	Ed	qual to Outflow
	Total Out:	-71.50	-2216.51
Me	odeled Change in CCS Storage:	-47.14	-1461.45
	Observed Change	-46.60	-1444.52

Table 5.3-4. Calculated Fluid Flows from Water Budget Components.

	November 2010			
	Water Budget Component	Flow (MGD)	Volume (gal x 10^6)	
	W. Seepage	0.26	7.92	
	E. Seepage	4.72	141.59	
	N. Seepage	0.00	0.14	
	S. Seepage	2.39	71.78	
	Bottom Seepage	1.43	42.94	
Into CCS	Precipitation and Runoff	26.53	795.80	
	Evaporation	0.00	0.00	
	Unit 3, 4 Added Water	0.29	8.64	
	Blowdown	1.00	29.97	
	ID Pumping	0.00	0.00	
	Plant Outflow	Е	Equal to Intake	
	Plant Intake	Equal to Outflow		
	Total In:	36.63	1098.78	
	W. Seepage	-0.06	-1.73	
	E. Seepage	-6.82	-204.53	
	N. Seepage	0.00	-0.11	
	S. Seepage	-0.03	-0.89	
	Bottom Seepage	-13.30	-398.86	
S	Precipitation and Runoff	0.00	0.00	
f C	Evaporation	-30.18	-905.40	
Out of CCS	Unit 3, 4 Added Water	0.00	0.00	
	Unit 5 Blowdown	0.00	0.00	
		0.00	0.00	
	ID Pumping			
	Plant Outflow		Equal to Intake	
	Plant Intake		qual to Outflow	
	Total Out:	-50.38	-1511.52	
Mo	odeled Change in CCS Storage:	-13.76	-412.74	
	Observed Change	-5.02	-150.50	

Table 5.3-4. Calculated Fluid Flows from Water Budget Components.

	December 2010			
	Water Budget Component	Flow (MGD)	Volume (gal x 10^6)	
	W. Seepage	0.74	22.85	
	E. Seepage	16.54	512.73	
	N. Seepage	0.00	0.00	
	S. Seepage	2.17	67.16	
7.0	Bottom Seepage	1.58	48.88	
S	Precipitation and Runoff	3.74	115.80	
0	Evaporation	0.00	0.00	
Into CCS	Unit 3, 4 Added Water	0.29	8.93	
	Blowdown	1.44	44.66	
	ID Pumping	0.00	0.00	
	Plant Outflow	Equal to Intake		
	Plant Intake	Equal to Outflow		
	Total In:	26.48	821.00	
	W. Seepage	0.00	0.00	
	E. Seepage	-0.44	-13.72	
	N. Seepage	-0.01	-0.41	
	S. Seepage	-0.01	-0.18	
Š	Bottom Seepage	-15.96	-494.83	
Out of CCS	Precipitation and Runoff	0.00	0.00	
of	Evaporation	-28.78	-892.12	
nt	Unit 3, 4 Added Water	0.00	0.00	
0	Unit 5 Blowdown	0.00	0.00	
	ID Pumping	0.00	0.00	
	Plant Outflow		Equal to Intake	
	Plant Intake		qual to Outflow	
	Total Out:	-45.20	-1401.25	
Me	odeled Change in CCS Storage:	-18.72	-580.25	
	Observed Change	-12.72	-394.29	

Table 5.3-4. Calculated Fluid Flows from Water Budget Components.

	January 2011			
	Water Budget Component	Flow (MGD)	Volume (gal x 10^6)	
	W. Seepage	1.53	47.29	
	E. Seepage	9.42	291.89	
	N. Seepage	0.00	0.00	
	S. Seepage	1.87	57.82	
7.0	Bottom Seepage	2.08	64.43	
S	Precipitation and Runoff	19.13	593.17	
0	Evaporation	0.00	0.00	
Into CCS	Unit 3, 4 Added Water	0.29	8.93	
	Blowdown	1.64	50.81	
	ID Pumping	4.91	152.24	
	Plant Outflow	Equal to Intake		
	Plant Intake	Equal to Outflow		
	Total In:	40.86	1266.58	
	W. Seepage	0.00	0.00	
	E. Seepage	-3.70	-114.58	
	N. Seepage	-0.01	-0.45	
	S. Seepage	0.00	0.00	
Ñ	Bottom Seepage	-18.51	-573.86	
\sim	Precipitation and Runoff	0.00	0.00	
Out of CCS	Evaporation	-27.80	-861.81	
ut	Unit 3, 4 Added Water	0.00	0.00	
0	Unit 5 Blowdown	0.00	0.00	
	ID Pumping	0.00	0.00	
	Plant Outflow	E	Equal to Intake	
	Plant Intake	Ed	qual to Outflow	
	Total Out:	-50.02	-1550.70	
Mo	odeled Change in CCS Storage:	-9.17	-284.12	
	Observed Change	-2.54	-78.88	

Table 5.3-4. Calculated Fluid Flows from Water Budget Components.

	February 2011			
	Water Budget Component	Flow (MGD)	Volume (gal x 10^6)	
	W. Seepage	1.09	30.53	
	E. Seepage	23.22	650.20	
	N. Seepage	0.00	0.00	
	S. Seepage	3.78	105.80	
7.0	Bottom Seepage	7.17	200.74	
	Precipitation and Runoff	0.69	19.22	
0	Evaporation	0.00	0.00	
Into CCS	Unit 3, 4 Added Water	0.29	8.06	
	Blowdown	1.39	38.92	
	ID Pumping	2.25	63.03	
	Plant Outflow	Equal to Intake		
	Plant Intake	Equal to Outflow		
	Total In:	39.87	1116.49	
	W. Seepage	0.00	0.00	
	E. Seepage	-0.35	-9.70	
	N. Seepage	-0.02	-0.56	
	S. Seepage	0.00	0.00	
Š	Bottom Seepage	-20.78	-581.75	
\sim	Precipitation and Runoff	0.00	0.00	
Out of CCS	Evaporation	-33.42	-935.67	
at a	Unit 3, 4 Added Water	0.00	0.00	
0	Unit 5 Blowdown	0.00	0.00	
	ID Pumping	0.00	0.00	
	Plant Outflow	E	Equal to Intake	
	Plant Intake	Ed	qual to Outflow	
	Total Out:	-54.56	-1527.68	
Me	odeled Change in CCS Storage:	-14.69	-411.19	
	Observed Change	-14.26	-399.40	

Table 5.3-4. Calculated Fluid Flows from Water Budget Components.

	March 2011		
	Water Budget Component	Flow (MGD)	Volume (gal x 10^6)
	W. Seepage	1.22	37.97
	E. Seepage	18.92	586.39
	N. Seepage	0.00	0.08
	S. Seepage	4.14	128.24
7.0	Bottom Seepage	7.82	242.27
S	Precipitation and Runoff	7.02	217.53
0	Evaporation	0.00	0.00
Into CCS	Unit 3, 4 Added Water	0.29	8.93
	Blowdown	1.33	41.10
	ID Pumping	9.37	290.40
	Plant Outflow	Equal to Intake	
	Plant Intake	Equal to Outflow	
	Total In:	50.09	1552.91
	W. Seepage	0.00	0.00
	E. Seepage	-0.28	-8.56
	N. Seepage	0.00	-0.14
	S. Seepage	0.00	0.00
Š	Bottom Seepage	-18.45	-571.91
\mathcal{C}	Precipitation and Runoff	0.00	0.00
Out of CCS	Evaporation	-34.86	-1080.73
ut	Unit 3, 4 Added Water	0.00	0.00
0	Unit 5 Blowdown	0.00	0.00
	ID Pumping	0.00	0.00
	Plant Outflow	Е	Equal to Intake
	Plant Intake	Ec	qual to Outflow
	Total Out:	-53.59	-1661.34
Mo	odeled Change in CCS Storage:	-3.50	-108.43
	Observed Change	3.19	99.02

Table 5.3-4. Calculated Fluid Flows from Water Budget Components.

	April 2011		
	Water Budget Component	Flow (MGD)	Volume (gal x 10^6)
	W. Seepage	0.97	29.01
	E. Seepage	26.45	793.57
	N. Seepage	0.00	0.10
	S. Seepage	5.07	152.07
7.0	Bottom Seepage	12.05	361.43
S	Precipitation and Runoff	10.21	306.21
0	Evaporation	0.00	0.00
Into CCS	Unit 3, 4 Added Water	0.29	8.64
	Blowdown	2.26	67.89
	ID Pumping	7.46	223.80
	Plant Outflow	Equal to Intake	
	Plant Intake	Equal to Outflow	
	Total In:	64.76	1942.71
	W. Seepage	0.00	0.00
	E. Seepage	0.00	0.00
	N. Seepage	0.00	-0.08
	S. Seepage	0.00	0.00
Š	Bottom Seepage	-19.71	-591.19
\sim	Precipitation and Runoff	0.00	0.00
Out of CCS	Evaporation	-36.05	-1081.54
at a	Unit 3, 4 Added Water	0.00	0.00
0	Unit 5 Blowdown	0.00	0.00
	ID Pumping	0.00	0.00
	Plant Outflow	E	Equal to Intake
	Plant Intake	Ed	qual to Outflow
	Total Out:	-55.76	-1672.82
Me	odeled Change in CCS Storage:	9.00	269.90
	Observed Change	-7.85	-235.45

Table 5.3-4. Calculated Fluid Flows from Water Budget Components.

	May 2011		
	Water Budget Component	Flow (MGD)	Volume (gal x 10^6)
	W. Seepage	1.25	38.65
	E. Seepage	42.98	1332.39
	N. Seepage	0.00	0.00
	S. Seepage	5.91	183.26
7.0	Bottom Seepage	20.72	642.30
S	Precipitation and Runoff	6.82	211.30
0	Evaporation	0.00	0.00
Into CCS	Unit 3, 4 Added Water	0.29	8.93
	Blowdown	2.32	71.85
	ID Pumping	14.81	459.13
	Plant Outflow	Equal to Intake	
	Plant Intake	Equal to Outflow	
	Total In:	95.09	2947.82
	W. Seepage	0.00	0.00
	E. Seepage	0.00	0.00
	N. Seepage	-0.04	-1.19
	S. Seepage	0.00	0.00
Ñ	Bottom Seepage	-52.85	-1638.30
\mathcal{C}	Precipitation and Runoff	0.00	0.00
Out of CCS	Evaporation	-42.55	-1319.03
ut	Unit 3, 4 Added Water	0.00	0.00
0	Unit 5 Blowdown	0.00	0.00
	ID Pumping	0.00	0.00
	Plant Outflow	Е	Equal to Intake
	Plant Intake	Ec	qual to Outflow
	Total Out:	-95.44	-2958.52
Mo	odeled Change in CCS Storage:	-0.35	-10.70
	Observed Change	11.51	356.77

Table 5.3-4. Calculated Fluid Flows from Water Budget Components.

	June 2011			
	Water Budget Component	Flow (MGD)	Volume (gal x 10^6)	
	W. Seepage	1.38	41.40	
	E. Seepage	34.62	1038.51	
	N. Seepage	0.00	0.00	
	S. Seepage	5.76	172.73	
7.0	Bottom Seepage	21.40	642.01	
S	Precipitation and Runoff	7.90	237.08	
) o	Evaporation	0.00	0.00	
Into CCS	Unit 3, 4 Added Water	0.53	15.99	
	Blowdown	2.04	61.20	
	ID Pumping	16.13	483.83	
	Plant Outflow	Equal to Intake		
	Plant Intake	Equal to Outflow		
	Total In:	89.76	2692.75	
	W. Seepage	0.00	0.00	
	E. Seepage	-0.01	-0.24	
	N. Seepage	-0.03	-1.02	
	S. Seepage	0.00	0.00	
Š	Bottom Seepage	-44.27	-1327.96	
\mathcal{C}	Precipitation and Runoff	0.00	0.00	
Out of CCS	Evaporation	-45.18	-1355.26	
ut	Unit 3, 4 Added Water	0.00	0.00	
0	Unit 5 Blowdown	0.00	0.00	
	ID Pumping	0.00	0.00	
	Plant Outflow	Equal to Intake		
	Plant Intake	Equal to Outflow		
	Total Out:	-89.48	-2684.48	
Me	odeled Change in CCS Storage:	0.28	8.27	
	Observed Change	10.30	309.07	

Table 5.3-4. Calculated Fluid Flows from Water Budget Components.

	July 2011			
	Water Budget Component	Flow (MGD)	Volume (gal x 10^6)	
	W. Seepage	1.70	52.59	
	E. Seepage	4.33	134.19	
	N. Seepage	0.00	0.00	
	S. Seepage	1.79	55.58	
7.0	Bottom Seepage	4.26	132.21	
Into CCS	Precipitation and Runoff	44.51	1379.89	
0	Evaporation	0.00	0.00	
	Unit 3, 4 Added Water	0.54	16.59	
	Blowdown	2.26	70.00	
	ID Pumping	0.00	0.00	
	Plant Outflow	Equal to Intake		
	Plant Intake	Equal to Outflow		
	Total In:	59.39	1841.05	
	W. Seepage	0.00	0.00	
	E. Seepage	-10.96	-339.74	
	N. Seepage	-0.01	-0.43	
	S. Seepage	-0.12	-3.86	
Š	Bottom Seepage	-14.71	-455.93	
\mathcal{C}	Precipitation and Runoff	0.00	0.00	
Out of CCS	Evaporation	-46.46	-1440.12	
ut	Unit 3, 4 Added Water	0.00	0.00	
0	Unit 5 Blowdown	0.00	0.00	
	ID Pumping	0.00	0.00	
	Plant Outflow	Е	Equal to Intake	
	Plant Intake	Ec	qual to Outflow	
	Total Out:	-72.26	-2240.09	
Mo	odeled Change in CCS Storage:	-12.87	-399.04	
	Observed Change	9.24	286.59	

Table 5.3-4. Calculated Fluid Flows from Water Budget Components.

	August 2011			
	Water Budget Component	Flow (MGD)	Volume (gal x 10^6)	
	W. Seepage	1.01	31.42	
	E. Seepage	12.59	390.34	
	N. Seepage	0.00	0.13	
	S. Seepage	3.46	107.17	
7.0	Bottom Seepage	4.96	153.82	
Into CCS	Precipitation and Runoff	37.20	1153.08	
) o	Evaporation	0.00	0.00	
	Unit 3, 4 Added Water	0.53	16.36	
	Blowdown	2.08	64.50	
	ID Pumping	0.00	0.00	
	Plant Outflow	Equal to Intake		
	Plant Intake	Equal to Outflow		
	Total In:	61.83	1916.83	
	W. Seepage	0.00	-0.05	
	E. Seepage	-2.36	-73.13	
	N. Seepage	0.00	-0.03	
	S. Seepage	0.00	0.00	
Š	Bottom Seepage	-4.17	-129.14	
\mathcal{C}	Precipitation and Runoff	0.00	0.00	
Out of CCS	Evaporation	-44.38	-1375.79	
ut	Unit 3, 4 Added Water	0.00	0.00	
0	Unit 5 Blowdown	0.00	0.00	
	ID Pumping	0.00	0.00	
	Plant Outflow	Equal to Intake		
	Plant Intake	Ed	qual to Outflow	
	Total Out:	-50.91	-1578.14	
Me	odeled Change in CCS Storage:	10.93	338.68	
	Observed Change	20.17	625.23	

Table 5.3-4. Calculated Fluid Flows from Water Budget Components.

	September 2011			
	Water Budget Component	Flow (MGD)	Volume (gal x 10^6)	
	W. Seepage	0.72	21.49	
	E. Seepage	9.09	272.63	
	N. Seepage	0.00	0.02	
	S. Seepage	2.83	85.04	
7.0	Bottom Seepage	2.74	82.09	
	Precipitation and Runoff	36.97	1109.02	
0	Evaporation	0.00	0.00	
Into CCS	Unit 3, 4 Added Water	0.55	16.55	
	Blowdown	1.96	58.73	
	ID Pumping	5.74	172.08	
	Plant Outflow	Equal to Intake		
	Plant Intake	Equal to Outflow		
	Total In:	60.59	1817.64	
	W. Seepage	-0.02	-0.61	
	E. Seepage	-1.84	-55.24	
	N. Seepage	-0.01	-0.21	
	S. Seepage	0.00	0.00	
Š	Bottom Seepage	-8.50	-254.92	
\sim	Precipitation and Runoff	0.00	0.00	
Out of CCS	Evaporation	-44.71	-1341.33	
ut	Unit 3, 4 Added Water	0.00	0.00	
	Unit 5 Blowdown	0.00	0.00	
	ID Pumping	0.00	0.00	
	Plant Outflow	E	Equal to Intake	
	Plant Intake	Ed	qual to Outflow	
	Total Out:	-55.08	-1652.30	
Mo	odeled Change in CCS Storage:	5.51	165.34	
	Observed Change	-5.14	-154.17	

Table 5.3-4. Calculated Fluid Flows from Water Budget Components.

	October 2011			
	Water Budget Component	Flow (MGD)	Volume (gal x 10^6)	
	W. Seepage	0.65	20.10	
	E. Seepage	5.60	173.66	
	N. Seepage	0.00	0.11	
	S. Seepage	3.35	103.76	
7.0	Bottom Seepage	5.71	176.94	
Into CCS	Precipitation and Runoff	52.19	1617.81	
) o	Evaporation	0.00	0.00	
	Unit 3, 4 Added Water	0.52	16.21	
	Blowdown	1.49	46.21	
	ID Pumping	0.00	0.00	
	Plant Outflow	Equal to Intake		
	Plant Intake	Equal to Outflow		
	Total In:	69.51	2154.81	
	W. Seepage	0.00	0.00	
	E. Seepage	-8.89	-275.64	
	N. Seepage	-0.01	-0.24	
	S. Seepage	0.00	0.00	
Š	Bottom Seepage	-10.32	-319.94	
\mathcal{C}	Precipitation and Runoff	0.00	0.00	
Out of CCS	Evaporation	-32.80	-1016.88	
ut	Unit 3, 4 Added Water	0.00	0.00	
0	Unit 5 Blowdown	0.00	0.00	
	ID Pumping	0.00	0.00	
	Plant Outflow	Equal to Intake		
	Plant Intake	Ec	qual to Outflow	
	Total Out:	-52.02	-1612.71	
Me	odeled Change in CCS Storage:	17.49	542.10	
	Observed Change	8.79	272.51	

Table 5.3-4. Calculated Fluid Flows from Water Budget Components.

	November 2011		
	Water Budget Component	Flow (MGD)	Volume (gal x 10^6)
	W. Seepage	0.41	12.17
	E. Seepage	13.09	392.76
	N. Seepage	0.01	0.22
	S. Seepage	3.05	91.39
70	Bottom Seepage	5.29	158.61
	Precipitation and Runoff	1.22	36.63
0	Evaporation	0.00	0.00
Into CCS	Unit 3, 4 Added Water	0.47	14.14
	Blowdown	1.00	29.97
	ID Pumping	0.00	0.00
	Plant Outflow	Equal to Intake	
	Plant Intake	Equal to Outflow	
	Total In:	24.53	735.89
	W. Seepage	0.00	-0.01
	E. Seepage	-0.97	-29.08
	N. Seepage	0.00	-0.07
	S. Seepage	0.00	0.00
Š	Bottom Seepage	-3.87	-116.07
\mathcal{C}	Precipitation and Runoff	0.00	0.00
Out of CCS	Evaporation	-34.49	-1034.58
ut	Unit 3, 4 Added Water	0.00	0.00
0	Unit 5 Blowdown	0.00	0.00
	ID Pumping	0.00	0.00
	Plant Outflow	Equal to Intake	
	Plant Intake		qual to Outflow
	Total Out:	-39.33	-443.93
Mo	odeled Change in CCS Storage:	-14.80	291.96
Observed Change		-25.56	-766.91

Table 5.3-4. Calculated Fluid Flows from Water Budget Components.

	December 2011		
	Water Budget Component	Flow (MGD)	Volume (gal x 10^6)
	W. Seepage	0.89	27.63
	E. Seepage	19.03	589.82
	N. Seepage	0.01	0.16
	S. Seepage	3.40	105.51
7.0	Bottom Seepage	5.84	180.97
S	Precipitation and Runoff	1.75	54.20
0	Evaporation	0.00	0.00
Into CCS	Unit 3, 4 Added Water	0.61	18.76
	Blowdown	1.44	44.66
	ID Pumping	9.14	283.37
	Plant Outflow	Equal to Intake	
	Plant Intake	Equal to Outflow	
	Total In:	42.10	1305.07
	W. Seepage	0.00	0.00
	E. Seepage	-0.20	-6.09
	N. Seepage	0.00	-0.13
	S. Seepage	0.00	0.00
Š	Bottom Seepage	-13.18	-408.58
\sim	Precipitation and Runoff	0.00	0.00
Out of CCS	Evaporation	-30.95	-959.30
ū	Unit 3, 4 Added Water	0.00	0.00
0	Unit 5 Blowdown	0.00	0.00
	ID Pumping	0.00	0.00
	Plant Outflow	E	Equal to Intake
	Plant Intake	Equal to Outflow	
	Total Out:	-44.33	-1374.09
Me	odeled Change in CCS Storage:	-2.23	-69.03
	Observed Change	-11.66	-361.51

Table 5.3-4. Calculated Fluid Flows from Water Budget Components.

	January 2012		
	Water Budget Component	Flow (MGD)	Volume (gal x 10^6)
	W. Seepage	1.44	44.63
	E. Seepage	22.89	709.62
	N. Seepage	0.00	0.02
	S. Seepage	3.76	116.71
7.0	Bottom Seepage	8.86	274.53
S	Precipitation and Runoff	2.78	86.27
0	Evaporation	0.00	0.00
Into CCS	Unit 3, 4 Added Water	0.59	18.37
	Blowdown	1.77	55.00
	ID Pumping	15.39	476.96
	Plant Outflow	Equal to Intake	
	Plant Intake	Equal to Outflow	
	Total In:	57.49	1782.10
	W. Seepage	0.00	0.00
	E. Seepage	-0.03	-0.88
	N. Seepage	-0.02	-0.54
	S. Seepage	0.00	0.00
Š	Bottom Seepage	-29.29	-908.09
\mathcal{C}	Precipitation and Runoff	0.00	0.00
Out of CCS	Evaporation	-32.66	-1012.42
ut	Unit 3, 4 Added Water	0.00	0.00
0	Unit 5 Blowdown	0.00	0.00
	ID Pumping	0.00	0.00
	Plant Outflow	E	Equal to Intake
	Plant Intake	Ec	qual to Outflow
	Total Out:	-62.00	-1921.92
Mo	odeled Change in CCS Storage:	-4.51	-139.82
	Observed Change	-9.98	-309.33

Table 5.3-4. Calculated Fluid Flows from Water Budget Components.

	February 2012			
	Water Budget Component	Flow (MGD)	Volume (gal x 10^6)	
	W. Seepage	1.08	31.33	
	E. Seepage	10.96	317.73	
	N. Seepage	0.01	0.23	
	S. Seepage	2.75	79.68	
7.0	Bottom Seepage	5.10	147.91	
S	Precipitation and Runoff	34.97	1014.27	
0	Evaporation	0.00	0.00	
Into CCS	Unit 3, 4 Added Water	0.52	15.17	
	Blowdown	1.56	45.36	
	ID Pumping	1.50	43.56	
	Plant Outflow	Equal to Intake		
	Plant Intake	Equal to Outflow		
	Total In:	58.46	1695.22	
	W. Seepage	0.00	0.00	
	E. Seepage	-1.48	-43.02	
	N. Seepage	0.00	-0.03	
	S. Seepage	0.00	0.00	
Š	Bottom Seepage	-8.57	-248.40	
\mathcal{C}	Precipitation and Runoff	0.00	0.00	
Out of CCS	Evaporation	-31.99	-927.63	
ut	Unit 3, 4 Added Water	0.00	0.00	
0	Unit 5 Blowdown	0.00	0.00	
	ID Pumping	0.00	0.00	
	Plant Outflow	Equal to Intake		
	Plant Intake	Ed	qual to Outflow	
	Total Out:	-42.04	-1219.08	
Me	odeled Change in CCS Storage:	16.42	476.15	
	Observed Change	12.36	358.44	

Table 5.3-4. Calculated Fluid Flows from Water Budget Components.

	March 2012		
	Water Budget Component	Flow (MGD)	Volume (gal x 10^6)
	W. Seepage	0.79	24.47
	E. Seepage	16.36	507.04
	N. Seepage	0.02	0.67
	S. Seepage	3.86	119.81
7.0	Bottom Seepage	10.20	316.28
S	Precipitation and Runoff	2.38	73.78
0	Evaporation	0.00	0.00
Into CCS	Unit 3, 4 Added Water	0.35	10.99
	Blowdown	1.97	61.12
	ID Pumping	4.10	126.99
	Plant Outflow	Equal to Intake	
	Plant Intake	Equal to Outflow	
	Total In:	40.04	1241.16
	W. Seepage	0.00	0.00
	E. Seepage	-0.48	-14.94
	N. Seepage	0.00	-0.01
	S. Seepage	0.00	0.00
Ñ	Bottom Seepage	-7.38	-228.72
\mathcal{C}	Precipitation and Runoff	0.00	0.00
Out of CCS	Evaporation	-33.30	-1032.35
Ţ,	Unit 3, 4 Added Water	0.00	0.00
0	Unit 5 Blowdown	0.00	0.00
	ID Pumping	0.00	0.00
	Plant Outflow	Equal to Intake	
	Plant Intake	Ec	qual to Outflow
	Total Out:	-41.16	-1276.03
Mo	odeled Change in CCS Storage:	-1.12	-34.87
	Observed Change	-11.24	-348.30

Table 5.3-4. Calculated Fluid Flows from Water Budget Components.

	April 2012			
	Water Budget Component	Flow (MGD)	Volume (gal x 10^6)	
	W. Seepage	1.26	37.86	
	E. Seepage	16.15	484.45	
	N. Seepage	0.01	0.25	
	S. Seepage	3.78	113.46	
7.0	Bottom Seepage	11.02	330.61	
Into CCS	Precipitation and Runoff	50.10	1502.87	
0	Evaporation	0.00	0.00	
	Unit 3, 4 Added Water	0.39	11.73	
	Blowdown	1.96	58.81	
	ID Pumping	9.76	292.86	
	Plant Outflow	Equal to Intake		
	Plant Intake	Equal to Outflow		
	Total In:	94.43	2832.90	
	W. Seepage	0.00	0.00	
	E. Seepage	-0.25	-7.57	
	N. Seepage	0.00	-0.05	
	S. Seepage	0.00	0.00	
Š	Bottom Seepage	-13.01	-390.18	
\mathcal{C}	Precipitation and Runoff	0.00	0.00	
Out of CCS	Evaporation	-35.26	-1057.88	
ut	Unit 3, 4 Added Water	0.00	0.00	
0	Unit 5 Blowdown	0.00	0.00	
	ID Pumping	0.00	0.00	
	Plant Outflow	Equal to Intake		
	Plant Intake	Ed	qual to Outflow	
	Total Out:	-48.52	-1455.68	
Me	odeled Change in CCS Storage:	45.91	1377.21	
	Observed Change	33.69	1010.73	

Table 5.3-4. Calculated Fluid Flows from Water Budget Components.

	May 2012			
	Water Budget Component	Flow (MGD)	Volume (gal x 10^6)	
	W. Seepage	1.06	33.01	
	E. Seepage	0.50	15.35	
	N. Seepage	0.02	0.74	
	S. Seepage	1.26	39.07	
7.0	Bottom Seepage	11.57	358.62	
S	Precipitation and Runoff	40.57	1257.52	
) C	Evaporation	0.00	0.00	
Into CCS	Unit 3, 4 Added Water	0.41	12.61	
	Blowdown	1.94	60.08	
	ID Pumping	0.00	0.00	
	Plant Outflow	Equal to Intake		
	Plant Intake	Equal to Outflow		
	Total In:	57.32	1777.00	
	W. Seepage	0.00	0.00	
	E. Seepage	-13.27	-411.50	
	N. Seepage	0.00	-0.02	
	S. Seepage	0.00	-0.06	
Ñ	Bottom Seepage	-9.28	-287.64	
\mathcal{C}	Precipitation and Runoff	0.00	0.00	
Out of CCS	Evaporation	-33.70	-1044.78	
ut	Unit 3, 4 Added Water	0.00	0.00	
0	Unit 5 Blowdown	0.00	0.00	
	ID Pumping	0.00	0.00	
	Plant Outflow	E	Equal to Intake	
	Plant Intake	Ed	qual to Outflow	
	Total Out:	-56.26	-1744.00	
Mo	odeled Change in CCS Storage:	1.06	33.00	
	Observed Change	-2.89	-89.62	

Table 5.3-4. Calculated Fluid Flows from Water Budget Components.

	June 2012		
	Water Budget Component	Flow (MGD)	Volume (gal x 10^6)
	W. Seepage	0.57	17.18
	E. Seepage	3.39	101.59
	N. Seepage	0.02	0.50
	S. Seepage	2.23	66.92
7.0	Bottom Seepage	8.87	265.96
Into CCS	Precipitation and Runoff	30.36	910.93
	Evaporation	0.00	0.00
	Unit 3, 4 Added Water	0.29	8.66
	Blowdown	2.07	61.95
	ID Pumping	0.00	0.00
	Plant Outflow	Equal to Intake	
	Plant Intake	Equal to Outflow	
	Total In:	47.79	1433.70
	W. Seepage	0.00	-0.06
	E. Seepage	-9.13	-273.94
	N. Seepage	0.00	-0.02
	S. Seepage	0.00	0.00
Ñ	Bottom Seepage	-7.01	-210.24
\mathcal{C}	Precipitation and Runoff	0.00	0.00
Out of CCS	Evaporation	-34.00	-1019.97
Ħ	Unit 3, 4 Added Water	0.00	0.00
0	Unit 5 Blowdown	0.00	0.00
	ID Pumping	0.00	0.00
	Plant Outflow	Equal to Intake	
	Plant Intake	Equal to Outflow	
	Total Out:	-50.14	-1504.23
Modeled Change in CCS Storage:		-2.35	-70.53
	Observed Change	-3.50	-105.04

Table 5.3-4. Calculated Fluid Flows from Water Budget Components.

	July 2012		
	Water Budget Component	Flow (MGD)	Volume (gal x 10^6)
	W. Seepage	0.92	28.53
	E. Seepage	0.02	0.56
	N. Seepage	0.02	0.72
	S. Seepage	1.41	43.82
7.0	Bottom Seepage	14.13	438.04
S	Precipitation and Runoff	29.22	905.74
0	Evaporation	0.00	0.00
Into CCS	Unit 3, 4 Added Water	0.34	10.51
	Blowdown	2.13	66.14
	ID Pumping	0.00	0.00
	Plant Outflow	Equal to Intake	
	Plant Intake	Equal to Outflow	
	Total In:	48.20	1494.06
	W. Seepage	0.00	0.00
	E. Seepage	-11.08	-343.33
	N. Seepage	0.00	0.00
	S. Seepage	-0.06	-1.97
Š	Bottom Seepage	-9.56	-296.50
\mathcal{C}	Precipitation and Runoff	0.00	0.00
Out of CCS	Evaporation	-40.50	-1255.63
ut	Unit 3, 4 Added Water	0.00	0.00
0	Unit 5 Blowdown	0.00	0.00
	ID Pumping	0.00	0.00
	Plant Outflow	Equal to Intake	
	Plant Intake	Equal to Outflow	
	Total Out:	-61.21	-1897.42
Modeled Change in CCS Storage:		-13.01	-403.36
	Observed Change	-7.97	-247.19

Table 5.3-4. Calculated Fluid Flows from Water Budget Components.

	August 2012		
	Water Budget Component	Flow (MGD)	Volume (gal x 10^6)
	W. Seepage	0.94	29.28
	E. Seepage	5.79	179.38
	N. Seepage	0.02	0.64
	S. Seepage	2.52	77.97
7.0	Bottom Seepage	12.31	381.65
	Precipitation and Runoff	39.51	1224.70
	Evaporation	0.00	0.00
Into CCS	Unit 3, 4 Added Water	0.27	8.51
	Blowdown	2.20	68.22
	ID Pumping	0.00	0.00
	Plant Outflow	Equal to Intake	
	Plant Intake	Equal to Outflow	
	Total In:	63.56	1970.35
	W. Seepage	0.00	0.00
	E. Seepage	-6.13	-190.09
	N. Seepage	0.00	0.00
	S. Seepage	-0.03	-0.91
Š	Bottom Seepage	-6.38	-197.72
\mathcal{C}	Precipitation and Runoff	0.00	0.00
Out of CCS	Evaporation	-39.72	-1231.38
Ħ	Unit 3, 4 Added Water	0.00	0.00
0	Unit 5 Blowdown	0.00	0.00
	ID Pumping	0.00	0.00
	Plant Outflow	Equal to Intake	
	Plant Intake	Equal to Outflow	
	Total Out:	-52.26	-1620.10
Modeled Change in CCS Storage:		11.30	350.25
Observed Change		21.72	673.22

Table 5.3-4. Calculated Fluid Flows from Water Budget Components.

September 2012			
	Water Budget Component	Flow (MGD)	Volume (gal x 10^6)
	W. Seepage	0.64	19.16
	E. Seepage	2.51	75.25
	N. Seepage	0.01	0.37
	S. Seepage	2.29	68.62
7.0	Bottom Seepage	7.77	233.02
	Precipitation and Runoff	29.60	887.85
0	Evaporation	0.00	0.00
Into CCS	Unit 3, 4 Added Water	0.73	22.00
	Blowdown	1.93	57.86
	ID Pumping	0.00	0.00
	Plant Outflow	Equal to Intake	
	Plant Intake	Equal to Outflow	
	Total In:	45.47	1364.14
	W. Seepage	-0.01	-0.17
	E. Seepage	-10.00	-300.02
	N. Seepage	0.00	0.00
	S. Seepage	-0.03	-1.04
Š	Bottom Seepage	-10.96	-328.68
\mathcal{C}	Precipitation and Runoff	0.00	0.00
Out of CCS	Evaporation	-39.33	-1180.03
ut	Unit 3, 4 Added Water	0.00	0.00
0	Unit 5 Blowdown	0.00	0.00
	ID Pumping	0.00	0.00
	Plant Outflow	Equal to Intake	
	Plant Intake	Equal to Outflow	
	Total Out:	-60.33	-1809.94
Modeled Change in CCS Storage:		-14.86	-445.80
Observed Change		-5.35	-160.61

Table 5.3-4. Calculated Fluid Flows from Water Budget Components.

	October 2012		
	Water Budget Component	Flow (MGD)	Volume (gal x 10^6)
	W. Seepage	0.27	8.34
	E. Seepage	19.18	594.67
	N. Seepage	0.02	0.62
	S. Seepage	3.54	109.70
7.0	Bottom Seepage	14.06	435.85
Into CCS	Precipitation and Runoff	14.07	436.27
) o	Evaporation	0.00	0.00
	Unit 3, 4 Added Water	0.89	27.69
	Blowdown	1.89	58.47
	ID Pumping	0.00	0.00
	Plant Outflow	Equal to Intake	
	Plant Intake	Equal to Outflow	
	Total In:	53.92	1671.61
	W. Seepage	-0.02	-0.48
	E. Seepage	-4.46	-138.26
	N. Seepage	0.00	-0.06
	S. Seepage	-0.02	-0.54
Š	Bottom Seepage	-5.43	-168.36
\mathcal{C}	Precipitation and Runoff	0.00	0.00
Out of CCS	Evaporation	-39.07	-1211.07
ut	Unit 3, 4 Added Water	0.00	0.00
0	Unit 5 Blowdown	0.00	0.00
	ID Pumping	0.00	0.00
	Plant Outflow	Equal to Intake	
	Plant Intake	Equal to Outflow	
	Total Out:	-48.99	-1518.76
Modeled Change in CCS Storage:		4.93	152.85
	Observed Change	7.58	235.01

Table 5.3-4. Calculated Fluid Flows from Water Budget Components.

November 2012			
	Water Budget Component	Flow (MGD)	Volume (gal x 10^6)
	W. Seepage	0.37	11.23
	E. Seepage	7.77	233.12
	N. Seepage	0.03	0.88
	S. Seepage	2.97	89.15
7.0	Bottom Seepage	13.66	409.80
S	Precipitation and Runoff	1.70	51.08
0	Evaporation	0.00	0.00
Into CCS	Unit 3, 4 Added Water	0.79	23.74
	Blowdown	1.31	39.39
	ID Pumping	0.00	0.00
	Plant Outflow	Equal to Intake	
	Plant Intake	Equal to Outflow	
	Total In:	28.61	858.38
	W. Seepage	0.00	0.00
	E. Seepage	-2.49	-74.57
	N. Seepage	0.00	0.00
	S. Seepage	0.00	0.00
Š	Bottom Seepage	-2.45	-73.61
\sim	Precipitation and Runoff	0.00	0.00
Out of CCS	Evaporation	-28.57	-856.97
ut	Unit 3, 4 Added Water	0.00	0.00
	Unit 5 Blowdown	0.00	0.00
	ID Pumping	0.00	0.00
	Plant Outflow	Equal to Intake	
	Plant Intake	Equal to Outflow	
	Total Out:	-33.50	-1005.15
Modeled Change in CCS Storage:		-4.89	-146.77
Observed Change		-3.88	-116.28

Table 5.3-4. Calculated Fluid Flows from Water Budget Components.

December 2012			
	Water Budget Component	Flow (MGD)	Volume (gal x 10^6)
	W. Seepage	0.73	22.60
	E. Seepage	0.43	13.27
	N. Seepage	0.02	0.57
	S. Seepage	1.38	42.89
7.0	Bottom Seepage	7.59	235.25
S	Precipitation and Runoff	1.84	56.99
0	Evaporation	0.00	0.00
Into CCS	Unit 3, 4 Added Water	0.50	15.62
	Blowdown	1.49	46.34
	ID Pumping	0.00	0.00
	Plant Outflow	Equal to Intake	
	Plant Intake	Equal to Outflow	
	Total In:	13.98	433.51
	W. Seepage	0.00	0.00
	E. Seepage	-8.03	-248.97
	N. Seepage	0.00	0.00
	S. Seepage	0.00	-0.02
Š	Bottom Seepage	-5.51	-170.70
\sim	Precipitation and Runoff	0.00	0.00
Out of CCS	Evaporation	-23.23	-720.01
at a	Unit 3, 4 Added Water	0.00	0.00
0	Unit 5 Blowdown	0.00	0.00
	ID Pumping	0.00	0.00
	Plant Outflow	Equal to Intake	
	Plant Intake	Equal to Outflow	
	Total Out:	-36.76	-1139.70
Me	odeled Change in CCS Storage:	-22.78	-706.18
	Observed Change	-28.66	-888.55

Table 5.3-4. Calculated Fluid Flows from Water Budget Components.

	January 2013			
	Water Budget Component	Flow (MGD)	Volume (gal x 10^6)	
	W. Seepage	0.83	25.62	
	E. Seepage	7.15	221.66	
	N. Seepage	0.02	0.57	
	S. Seepage	3.21	99.43	
7.0	Bottom Seepage	8.15	252.64	
S	Precipitation and Runoff	1.04	32.31	
0	Evaporation	0.00	0.00	
Into CCS	Unit 3, 4 Added Water	0.52	16.25	
	Blowdown	1.74	53.89	
	ID Pumping	2.40	74.25	
	Plant Outflow	Equal to Intake		
	Plant Intake	Equal to Outflow		
	Total In:	25.05	776.62	
	W. Seepage	0.00	0.00	
	E. Seepage	-2.40	-74.34	
	N. Seepage	0.00	0.00	
	S. Seepage	0.00	0.00	
Š	Bottom Seepage	-1.69	-52.47	
\sim	Precipitation and Runoff	0.00	0.00	
Out of CCS	Evaporation	-24.23	-750.99	
at a	Unit 3, 4 Added Water	0.00	0.00	
	Unit 5 Blowdown	0.00	0.00	
	ID Pumping	0.00	0.00	
	Plant Outflow	E	Equal to Intake	
	Plant Intake	Ec	qual to Outflow	
	Total Out:	-28.32	-877.80	
Mo	deled Change in CCS Storage:	-3.26	-101.18	
	Observed Change	-10.70	-331.69	

Table 5.3-4. Calculated Fluid Flows from Water Budget Components.

	February 2013			
	Water Budget Component	Flow (MGD)	Volume (gal x 10^6)	
	W. Seepage	0.93	26.13	
	E. Seepage	9.75	273.11	
	N. Seepage	0.01	0.37	
	S. Seepage	3.44	96.40	
7.0	Bottom Seepage	7.50	209.97	
S	Precipitation and Runoff	5.37	150.43	
0	Evaporation	0.00	0.00	
Into CCS	Unit 3, 4 Added Water	0.34	9.50	
	Blowdown	1.63	45.65	
	ID Pumping	8.45	236.52	
	Plant Outflow	Equal to Intake		
	Plant Intake	Equal to Outflow		
	Total In:	37.43	1048.09	
	W. Seepage	0.00	0.00	
	E. Seepage	-2.76	-77.32	
	N. Seepage	0.00	0.00	
	S. Seepage	0.00	0.00	
Š	Bottom Seepage	-6.60	-184.72	
\mathcal{C}	Precipitation and Runoff	0.00	0.00	
Out of CCS	Evaporation	-23.28	-651.88	
ut	Unit 3, 4 Added Water	0.00	0.00	
0	Unit 5 Blowdown	0.00	0.00	
	ID Pumping	0.00	0.00	
	Plant Outflow	E	Equal to Intake	
	Plant Intake	Ed	qual to Outflow	
	Total Out:	-32.64	-913.92	
Me	odeled Change in CCS Storage:	4.79	134.17	
	Observed Change	1.10	30.86	

Table 5.3-4. Calculated Fluid Flows from Water Budget Components.

	March 2013			
	Water Budget Component	Flow (MGD)	Volume (gal x 10^6)	
	W. Seepage	0.77	23.74	
	E. Seepage	20.14	624.25	
	N. Seepage	0.01	0.18	
	S. Seepage	4.28	132.63	
7.0	Bottom Seepage	12.61	390.87	
Into CCS	Precipitation and Runoff	5.13	158.93	
0	Evaporation	0.00	0.00	
[nt	Unit 3, 4 Added Water	0.52	16.05	
	Blowdown	1.92	59.67	
	ID Pumping	7.41	229.77	
	Plant Outflow	Equal to Intake		
	Plant Intake	Equal to Outflow		
	Total In:	52.78	1636.09	
	W. Seepage	0.00	0.00	
	E. Seepage	0.00	0.00	
	N. Seepage	0.00	-0.13	
	S. Seepage	0.00	0.00	
Ñ	Bottom Seepage	-11.51	-356.90	
\sim	Precipitation and Runoff	0.00	0.00	
Out of CCS	Evaporation	-27.64	-856.78	
ut	Unit 3, 4 Added Water	0.00	0.00	
0	Unit 5 Blowdown	0.00	0.00	
	ID Pumping	0.00	0.00	
	Plant Outflow	E	Equal to Intake	
	Plant Intake	Ed	qual to Outflow	
	Total Out:	-39.16	-1213.81	
Mo	odeled Change in CCS Storage:	13.62	422.28	
	Observed Change	3.84	119.01	

Table 5.3-4. Calculated Fluid Flows from Water Budget Components.

April 2013			
	Water Budget Component	Flow (MGD)	Volume (gal x 10^6)
	W. Seepage	0.95	28.47
	E. Seepage	23.12	693.51
	N. Seepage	0.00	0.00
	S. Seepage	3.52	105.47
7.0	Bottom Seepage	7.55	226.58
Into CCS	Precipitation and Runoff	22.71	681.31
0	Evaporation	0.00	0.00
Int	Unit 3, 4 Added Water	0.71	21.24
	Blowdown	1.91	57.39
	ID Pumping	9.24	277.20
	Plant Outflow	Equal to Intake	
	Plant Intake	Equal to Outflow	
	Total In:	69.71	2091.16
	W. Seepage	0.00	0.00
	E. Seepage	-0.15	-4.51
	N. Seepage	-0.02	-0.66
	S. Seepage	0.00	0.00
Ñ	Bottom Seepage	-26.60	-798.04
Out of CCS	Precipitation and Runoff	0.00	0.00
of	Evaporation	-38.01	-1140.28
ū	Unit 3, 4 Added Water	0.00	0.00
0	Unit 5 Blowdown	0.00	0.00
	ID Pumping	0.00	0.00
	Plant Outflow		Equal to Intake
	Plant Intake	Е	Equal to Outflow
	Total Out:	-64.78	-1943.49
Me	odeled Change in CCS Storage:	4.92	147.67
	Observed Change	12.76	382.66

Table 5.3-4. Calculated Fluid Flows from Water Budget Components.

	May 2013			
	Water Budget Component	Flow (MGD)	Volume (gal x 10^6)	
	W. Seepage	0.88	27.34	
	E. Seepage	12.95	401.59	
	N. Seepage	0.00	0.00	
	S. Seepage	2.52	78.11	
7.0	Bottom Seepage	2.83	87.61	
Into CCS	Precipitation and Runoff	48.92	1516.41	
0	Evaporation	0.00	0.00	
[nt	Unit 3, 4 Added Water	0.93	28.68	
	Blowdown	2.15	66.71	
	ID Pumping	6.15	190.71	
	Plant Outflow	Equal to Intake		
	Plant Intake	Equal to Outflow		
	Total In:	77.33	2397.16	
	W. Seepage	0.00	0.00	
	E. Seepage	-1.71	-53.14	
	N. Seepage	-0.01	-0.41	
	S. Seepage	-0.03	-0.93	
Ñ	Bottom Seepage	-17.48	-541.96	
\mathcal{C}	Precipitation and Runoff	0.00	0.00	
Out of CCS	Evaporation	-42.96	-1331.72	
ut	Unit 3, 4 Added Water	0.00	0.00	
0	Unit 5 Blowdown	0.00	0.00	
	ID Pumping	0.00	0.00	
	Plant Outflow	Equal to Intake		
	Plant Intake	Ec	qual to Outflow	
	Total Out:	-62.20	-1928.16	
Mo	odeled Change in CCS Storage:	15.13	469.00	
	Observed Change	22.68	703.18	

Table 5.3-4. Calculated Fluid Flows from Water Budget Components.

	June 2013		
	Water Budget Component	Flow (MGD)	Volume (gal x 10^6)
	W. Seepage	0.93	27.98
	E. Seepage	6.33	189.89
	N. Seepage	0.00	0.00
	S. Seepage	1.42	42.74
7.0	Bottom Seepage	1.58	47.48
Into CCS	Precipitation and Runoff	18.28	548.29
) o	Evaporation	0.00	0.00
	Unit 3, 4 Added Water	0.56	16.94
	Blowdown	1.99	59.59
	ID Pumping	0.68	20.52
	Plant Outflow	Equal to Intake	
	Plant Intake	Equal to Outflow	
	Total In:	31.78	953.44
	W. Seepage	0.00	0.00
	E. Seepage	-14.22	-426.63
	N. Seepage	-0.02	-0.66
	S. Seepage	-0.85	-25.47
Ñ	Bottom Seepage	-21.98	-659.37
\mathcal{C}	Precipitation and Runoff	0.00	0.00
Out of CCS	Evaporation	-51.32	-1539.52
ut	Unit 3, 4 Added Water	0.00	0.00
0	Unit 5 Blowdown	0.00	0.00
	ID Pumping	0.00	0.00
	Plant Outflow	E	Equal to Intake
	Plant Intake	Ec	qual to Outflow
	Total Out:	-88.39	-2651.64
M	odeled Change in CCS Storage:	-56.61	-1698.20
	Observed Change	-31.07	-931.98

Table 5.3-4. Calculated Fluid Flows from Water Budget Components.

	July 2013			
	Water Budget Component	Flow (MGD)	Volume (gal x 10^6)	
	W. Seepage	0.80	24.80	
	E. Seepage	13.88	430.23	
	N. Seepage	0.00	0.02	
	S. Seepage	2.75	85.21	
7.0	Bottom Seepage	5.10	158.03	
Into CCS	Precipitation and Runoff	47.74	1479.85	
) (Evaporation	0.00	0.00	
[nt	Unit 3, 4 Added Water	0.55	16.95	
	Blowdown	2.05	63.45	
	ID Pumping	0.70	21.78	
	Plant Outflow	Equal to Intake		
	Plant Intake	Equal to Outflow		
	Total In:	73.56	2280.32	
	W. Seepage	0.00	0.00	
	E. Seepage	-2.71	-83.88	
	N. Seepage	-0.01	-0.33	
	S. Seepage	0.00	0.00	
Ñ	Bottom Seepage	-9.67	-299.78	
\mathcal{C}	Precipitation and Runoff	0.00	0.00	
Out of CCS	Evaporation	-51.21	-1587.62	
ut	Unit 3, 4 Added Water	0.00	0.00	
0	Unit 5 Blowdown	0.00	0.00	
	ID Pumping	0.00	0.00	
	Plant Outflow	E	Equal to Intake	
	Plant Intake		qual to Outflow	
	Total Out:	-63.60	-1971.62	
Mo	odeled Change in CCS Storage:	9.96	308.70	
	Observed Change	19.61	607.86	

Table 5.3-4. Calculated Fluid Flows from Water Budget Components.

	August 2013		
	Water Budget Component	Flow (MGD)	Volume (gal x 10^6)
	W. Seepage	0.68	21.23
	E. Seepage	19.87	615.97
	N. Seepage	0.01	0.16
	S. Seepage	3.37	104.42
7.0	Bottom Seepage	6.45	200.05
S	Precipitation and Runoff	32.21	998.49
0	Evaporation	0.00	0.00
Into CCS	Unit 3, 4 Added Water	0.70	21.73
	Blowdown	2.57	79.64
	ID Pumping	0.00	0.00
	Plant Outflow	Equal to Intake	
	Plant Intake	Equal to Outflow	
	Total In:	65.86	2041.70
	W. Seepage	0.00	0.00
	E. Seepage	-2.72	-84.23
	N. Seepage	-0.01	-0.29
	S. Seepage	-0.03	-1.05
Š	Bottom Seepage	-6.99	-216.74
\sim	Precipitation and Runoff	0.00	0.00
Out of CCS	Evaporation	-72.85	-2258.31
ut	Unit 3, 4 Added Water	0.00	0.00
0	Unit 5 Blowdown	0.00	0.00
	ID Pumping	0.00	0.00
	Plant Outflow	E	Equal to Intake
	Plant Intake	Ed	qual to Outflow
	Total Out:	-82.60	-2560.62
Me	odeled Change in CCS Storage:	-16.74	-518.92
	Observed Change	-6.11	-189.45

Table 5.3-4. Calculated Fluid Flows from Water Budget Components.

	September 2013			
	Water Budget Component	Flow (MGD)	Volume (gal x 10^6)	
	W. Seepage	0.23	6.93	
	E. Seepage	14.72	441.57	
	N. Seepage	0.01	0.43	
	S. Seepage	2.50	74.93	
7.0	Bottom Seepage	11.17	335.20	
S	Precipitation and Runoff	20.70	620.94	
) (Evaporation	0.00	0.00	
Into CCS	Unit 3, 4 Added Water	0.36	10.89	
	Blowdown	1.45	43.60	
	ID Pumping	0.00	0.00	
	Plant Outflow	Equal to Intake		
	Plant Intake	Equal to Outflow		
	Total In:	51.15	1534.50	
	W. Seepage	0.00	0.00	
	E. Seepage	-0.25	-7.45	
	N. Seepage	0.00	0.00	
	S. Seepage	0.00	0.00	
Ñ	Bottom Seepage	-0.44	-13.34	
\mathcal{C}	Precipitation and Runoff	0.00	0.00	
Out of CCS	Evaporation	-34.36	-1030.80	
ut	Unit 3, 4 Added Water	0.00	0.00	
0	Unit 5 Blowdown	0.00	0.00	
	ID Pumping	0.00	0.00	
	Plant Outflow	Equal to Intake		
	Plant Intake	Ed	qual to Outflow	
	Total Out:	-35.05	-1051.58	
Mo	odeled Change in CCS Storage:	16.10	482.91	
	Observed Change	10.23	307.04	

Table 5.3-4. Calculated Fluid Flows from Water Budget Components.

	October 2013		
	Water Budget Component	Flow (MGD)	Volume (gal x 10^6)
	W. Seepage	0.28	8.69
	E. Seepage	18.85	584.33
	N. Seepage	0.03	1.02
	S. Seepage	3.97	122.97
7.0	Bottom Seepage	24.88	771.30
	Precipitation and Runoff	7.33	227.12
0	Evaporation	0.00	0.00
Into CCS	Unit 3, 4 Added Water	0.55	16.96
	Blowdown	2.25	69.88
	ID Pumping	0.00	0.00
	Plant Outflow	Equal to Intake	
	Plant Intake	Equal to Outflow	
	Total In:	58.14	1802.26
	W. Seepage	0.00	0.00
	E. Seepage	-0.63	-19.39
	N. Seepage	0.00	0.00
	S. Seepage	0.00	0.00
Š	Bottom Seepage	-0.17	-5.12
\sim	Precipitation and Runoff	0.00	0.00
Out of CCS	Evaporation	-53.09	-1645.78
Ħ	Unit 3, 4 Added Water	0.00	0.00
0	Unit 5 Blowdown	0.00	0.00
	ID Pumping	0.00	0.00
	Plant Outflow	F	Equal to Intake
	Plant Intake	Ec	qual to Outflow
	Total Out:	-53.88	-1670.29
M	odeled Change in CCS Storage:	4.26	131.97
	Observed Change	-5.40	-167.52

Table 5.3-4. Calculated Fluid Flows from Water Budget Components.

	November 2013			
	Water Budget Component	Flow (MGD)	Volume (gal x 10^6)	
	W. Seepage	0.26	7.75	
	E. Seepage	15.80	473.94	
	N. Seepage	0.03	0.82	
	S. Seepage	3.45	103.65	
7.0	Bottom Seepage	19.90	597.10	
S	Precipitation and Runoff	32.18	965.32	
) c	Evaporation	0.00	0.00	
Into CCS	Unit 3, 4 Added Water	0.49	14.56	
	Blowdown	1.79	53.85	
	ID Pumping	0.00	0.00	
	Plant Outflow	Equal to Intake		
	Plant Intake	Equal to Outflow		
	Total In:	73.90	2216.99	
	W. Seepage	0.00	-0.03	
	E. Seepage	-0.87	-26.12	
	N. Seepage	0.00	0.00	
	S. Seepage	0.00	0.00	
Š	Bottom Seepage	-0.96	-28.75	
\mathcal{C}	Precipitation and Runoff	0.00	0.00	
Out of CCS	Evaporation	-43.14	-1294.07	
ut	Unit 3, 4 Added Water	0.00	0.00	
	Unit 5 Blowdown	0.00	0.00	
	ID Pumping	0.00	0.00	
	Plant Outflow	E	Equal to Intake	
	Plant Intake	Equal to Outflow		
	Total Out:	-44.97	-1348.97	
Mo	odeled Change in CCS Storage:	28.93	868.01	
	Observed Change	13.98	419.29	

Table 5.3-4. Calculated Fluid Flows from Water Budget Components.

	December 2013		
	Water Budget Component	Flow (MGD)	Volume (gal x 10^6)
	W. Seepage	0.33	10.11
	E. Seepage	5.00	155.06
	N. Seepage	0.01	0.21
	S. Seepage	2.10	65.18
7.0	Bottom Seepage	3.84	118.90
S	Precipitation and Runoff	4.42	137.06
0	Evaporation	0.00	0.00
Into CCS	Unit 3, 4 Added Water	0.50	15.50
	Blowdown	1.79	55.54
	ID Pumping	0.00	0.00
	Plant Outflow	Equal to Intake	
	Plant Intake	Equal to Outflow	
	Total In:	17.99	557.56
	W. Seepage	0.00	0.00
	E. Seepage	-3.65	-113.07
	N. Seepage	0.00	-0.03
	S. Seepage	0.00	0.00
Š	Bottom Seepage	-4.99	-154.79
\mathcal{C}	Precipitation and Runoff	0.00	0.00
Out of CCS	Evaporation	-40.83	-1265.84
ut	Unit 3, 4 Added Water	0.00	0.00
0	Unit 5 Blowdown	0.00	0.00
	ID Pumping	0.00	0.00
	Plant Outflow	F	Equal to Intake
	Plant Intake	Eo	qual to Outflow
	Total Out:	-49.48	-1533.74
Me	odeled Change in CCS Storage:	-31.49	-976.18
	Observed Change	-21.47	-665.45

Table 5.3-4. Calculated Fluid Flows from Water Budget Components.

January 2014			
	Water Budget Component	Flow (MGD)	Volume (gal x 10^6)
	W. Seepage	0.57	17.81
	E. Seepage	10.12	313.58
	N. Seepage	0.02	0.48
	S. Seepage	3.20	99.10
7.0	Bottom Seepage	7.97	247.10
Into CCS	Precipitation and Runoff	8.44	261.68
0	Evaporation	0.00	0.00
	Unit 3, 4 Added Water	0.47	14.68
	Blowdown	1.67	51.80
	ID Pumping	0.00	0.00
	Plant Outflow	Equal to Intake	
	Plant Intake	Equal to Outflow	
	Total In:	32.46	1006.24
	W. Seepage	0.00	0.00
	E. Seepage	-1.25	-38.73
	N. Seepage	0.00	0.00
	S. Seepage	0.00	0.00
Ñ	Bottom Seepage	-1.80	-55.73
ည	Precipitation and Runoff	0.00	0.00
Out of CCS	Evaporation	-31.70	-982.74
ut	Unit 3, 4 Added Water	0.00	0.00
0	Unit 5 Blowdown	0.00	0.00
	ID Pumping	0.00	0.00
	Plant Outflow	E	Equal to Intake
	Plant Intake	Ed	qual to Outflow
	Total Out:	-34.75	-1077.21
Mo	odeled Change in CCS Storage:	-2.29	-70.98
Observed Change		-6.40	-198.28

Table 5.3-4. Calculated Fluid Flows from Water Budget Components.

	January 2014			
	Water Budget Component	Flow (MGD)	Volume (gal x 10^6)	
	W. Seepage	0.57	17.81	
	E. Seepage	10.12	313.58	
	N. Seepage	0.02	0.48	
	S. Seepage	3.20	99.10	
7.0	Bottom Seepage	7.97	247.10	
Into CCS	Precipitation and Runoff	8.44	261.68	
0	Evaporation	0.00	0.00	
[nt	Unit 3, 4 Added Water	0.47	14.68	
	Blowdown	1.67	51.80	
	ID Pumping	0.00	0.00	
	Plant Outflow	Equ	ıal to Intake	
	Plant Intake	Equal to Outflow		
	Total In:	32.46	1006.24	
	W. Seepage	0.00	0.00	
	E. Seepage	-1.25	-38.73	
	N. Seepage	0.00	0.00	
	S. Seepage	0.00	0.00	
Š	Bottom Seepage	-1.80	-55.73	
C	Precipitation and Runoff	0.00	0.00	
Out of CCS	Evaporation	-31.70	-982.74	
ut	Unit 3, 4 Added Water	0.00	0.00	
0	Unit 5 Blowdown	0.00	0.00	
	ID Pumping	0.00	0.00	
	Plant Outflow	Equ	ıal to Intake	
	Plant Intake	Equa	al to Outflow	
	Total Out:	-34.75	-1077.21	
Mod	eled Change in CCS Storage:	-2.29	-70.98	
	Observed Change	-6.40	-198.28	

Table 5.3-4. Calculated Fluid Flows from Water Budget Components.

February 2014			
	Water Budget Component	Flow (MGD)	Volume (gal x 10^6)
	W. Seepage	0.69	19.25
	E. Seepage	13.84	387.43
	N. Seepage	0.02	0.57
	S. Seepage	4.71	131.95
7.0	Bottom Seepage	11.54	323.12
Into CCS	Precipitation and Runoff	10.25	287.10
0	Evaporation	0.00	0.00
	Unit 3, 4 Added Water	0.48	13.58
	Blowdown	1.63	45.52
	ID Pumping	1.35	37.89
	Plant Outflow	E	Equal to Intake
	Plant Intake	Equal to Outflow	
	Total In:	44.51	1246.42
	W. Seepage	0.00	0.00
	E. Seepage	-0.37	-10.25
	N. Seepage	0.00	0.00
	S. Seepage	0.00	0.00
Š	Bottom Seepage	-0.75	-21.08
Out of CCS	Precipitation and Runoff	0.00	0.00
of	Evaporation	-43.10	-1206.67
ut	Unit 3, 4 Added Water	0.00	0.00
0	Unit 5 Blowdown	0.00	0.00
	ID Pumping	0.00	0.00
	Plant Outflow		Equal to Intake
	Plant Intake	Ес	qual to Outflow
	Total Out:	-44.21	-1238.00
Me	odeled Change in CCS Storage:	0.30	8.42
	Observed Change	-7.95	-222.68

Table 5.3-4. Calculated Fluid Flows from Water Budget Components.

	March 2014			
	Water Budget Component	Flow (MGD)	Volume (gal x 10^6)	
	W. Seepage	0.68	21.15	
	E. Seepage	14.42	447.03	
	N. Seepage	0.02	0.71	
	S. Seepage	4.31	133.62	
7.0	Bottom Seepage	11.74	363.92	
Into CCS	Precipitation and Runoff	6.77	209.72	
0	Evaporation	0.00	0.00	
[nt	Unit 3, 4 Added Water	0.39	12.07	
	Blowdown	2.02	62.50	
	ID Pumping	1.93	59.76	
	Plant Outflow	Equal to Intake		
	Plant Intake	Equal to Outflow		
	Total In:	42.27	1310.49	
	W. Seepage	0.00	0.00	
	E. Seepage	-0.01	-0.33	
	N. Seepage	0.00	0.00	
	S. Seepage	0.00	0.00	
Ñ	Bottom Seepage	-1.01	-31.30	
\sim	Precipitation and Runoff	0.00	0.00	
Out of CCS	Evaporation	-41.51	-1286.80	
ut	Unit 3, 4 Added Water	0.00	0.00	
0	Unit 5 Blowdown	0.00	0.00	
	ID Pumping	0.00	0.00	
	Plant Outflow	E	Equal to Intake	
	Plant Intake	Ed	qual to Outflow	
	Total Out:	-42.53	-1318.44	
Mo	odeled Change in CCS Storage:	-0.26	-7.96	
	Observed Change	-7.86	-243.70	

Table 5.3-4. Calculated Fluid Flows from Water Budget Components.

	April 2014			
	Water Budget Component	Flow (MGD)	Volume (gal x 10^6)	
	W. Seepage	0.66	19.67	
	E. Seepage	25.03	750.93	
	N. Seepage	0.02	0.67	
	S. Seepage	5.29	158.60	
7.0	Bottom Seepage	17.23	516.79	
S	Precipitation and Runoff	2.36	70.84	
) c	Evaporation	0.00	0.00	
Into CCS	Unit 3, 4 Added Water	0.33	10.01	
	Blowdown	2.42	72.71	
	ID Pumping	3.19	95.76	
	Plant Outflow	Equal to Intake		
	Plant Intake	Equal to Outflow		
	Total In:	56.53	1695.97	
	W. Seepage	0.00	0.00	
	E. Seepage	0.00	0.00	
	N. Seepage	0.00	0.00	
	S. Seepage	0.00	0.00	
Š	Bottom Seepage	-3.73	-111.95	
\mathcal{C}	Precipitation and Runoff	0.00	0.00	
Out of CCS	Evaporation	-42.72	-1281.73	
ū	Unit 3, 4 Added Water	0.00	0.00	
0	Unit 5 Blowdown	0.00	0.00	
	ID Pumping	0.00	0.00	
	Plant Outflow	E	Equal to Intake	
	Plant Intake	Ed	qual to Outflow	
	Total Out:	-46.46	-1393.68	
Me	odeled Change in CCS Storage:	10.08	302.29	
	Observed Change	1.08	32.37	

Table 5.3-4. Calculated Fluid Flows from Water Budget Components.

May 2014			
	Water Budget Component	Flow (MGD)	Volume (gal x 10^6)
	W. Seepage	0.68	20.99
	E. Seepage	33.43	1036.20
	N. Seepage	0.00	0.14
	S. Seepage	4.99	154.57
	Bottom Seepage	21.15	655.73
Š	Precipitation and Runoff	6.93	214.70
Into CCS	Evaporation	0.00	0.00
to	Unit 3, 4 Added Water	0.46	14.40
In	Blowdown	2.21	68.43
	ID Pumping	7.00	217.08
	Added Water (e.g. L-31E)	0.00	0.00
	Plant Outflow	Equal to Intake	
	Plant Intake	Equal to Outflow	
	Total In:	76.85	2382.24
	W. Seepage	0.00	0.00
	E. Seepage	0.00	0.00
	N. Seepage	0.00	-0.13
	S. Seepage	0.00	0.00
Š	Bottom Seepage	-9.78	-303.28
Out of CCS	Precipitation and Runoff	0.00	0.00
of (Evaporation	-56.21	-1742.62
Ħ	Unit 3, 4 Added Water	0.00	0.00
	chit's, i raded i dier	0.00	0.00
Ō	Unit 5 Blowdown	0.00	0.00
Ō			
ō	Unit 5 Blowdown	0.00 0.00	0.00
Ō	Unit 5 Blowdown ID Pumping Plant Outflow Plant Intake	0.00 0.00 I	0.00 0.00
	Unit 5 Blowdown ID Pumping Plant Outflow Plant Intake Total Out:	0.00 0.00	0.00 0.00 Equal to Intake
	Unit 5 Blowdown ID Pumping Plant Outflow Plant Intake	0.00 0.00 I	0.00 0.00 Equal to Intake qual to Outflow

Table 5.3-4. Calculated Fluid Flows from Water Budget Components.

June 2014			
	Water Budget Component	Flow (MGD)	Volume (gal x 10^6)
	W. Seepage	0.80	24.00
	E. Seepage	20.49	614.66
	N. Seepage	0.00	0.05
	S. Seepage	4.21	126.29
	Bottom Seepage	10.99	329.66
Š	Precipitation and Runoff	26.04	781.25
\mathcal{C}	Evaporation	0.00	0.00
Into CCS	Unit 3, 4 Added Water	0.62	18.70
In	Blowdown	2.53	76.02
	ID Pumping	2.77	83.16
	Added Water (e.g. L-31E)	0.00	0.00
	Plant Outflow	Equal to Intake	
	Plant Intake	Equal to Outflow	
	Total In:	68.46	2053.78
	W. Seepage	0.00	0.00
	E. Seepage	0.00	0.00
	E. Seepage	0.00	0.00
	N. Seepage	0.00	-0.12
	N. Seepage		
Š	1	0.00	-0.12
SCS	N. Seepage S. Seepage	0.00 0.00	-0.12 0.00
of CCS	N. Seepage S. Seepage Bottom Seepage	0.00 0.00 -2.07	-0.12 0.00 -62.12
ut of CCS	N. Seepage S. Seepage Bottom Seepage Precipitation and Runoff	0.00 0.00 -2.07 0.00	-0.12 0.00 -62.12 0.00
Out of CCS	N. Seepage S. Seepage Bottom Seepage Precipitation and Runoff Evaporation	0.00 0.00 -2.07 0.00 -54.47	-0.12 0.00 -62.12 0.00 -1634.13
Out of CCS	N. Seepage S. Seepage Bottom Seepage Precipitation and Runoff Evaporation Unit 3, 4 Added Water	0.00 0.00 -2.07 0.00 -54.47 0.00	-0.12 0.00 -62.12 0.00 -1634.13 0.00
Out of CCS	N. Seepage S. Seepage Bottom Seepage Precipitation and Runoff Evaporation Unit 3, 4 Added Water Unit 5 Blowdown	0.00 0.00 -2.07 0.00 -54.47 0.00 0.00 0.00	-0.12 0.00 -62.12 0.00 -1634.13 0.00 0.00
Out of CCS	N. Seepage S. Seepage Bottom Seepage Precipitation and Runoff Evaporation Unit 3, 4 Added Water Unit 5 Blowdown ID Pumping	0.00 0.00 -2.07 0.00 -54.47 0.00 0.00 0.00	-0.12 0.00 -62.12 0.00 -1634.13 0.00 0.00 0.00 0.00 Equal to Intake qual to Outflow
Out of CCS	N. Seepage S. Seepage Bottom Seepage Precipitation and Runoff Evaporation Unit 3, 4 Added Water Unit 5 Blowdown ID Pumping Plant Outflow	0.00 0.00 -2.07 0.00 -54.47 0.00 0.00 0.00	-0.12 0.00 -62.12 0.00 -1634.13 0.00 0.00 0.00 0.00
	N. Seepage S. Seepage Bottom Seepage Precipitation and Runoff Evaporation Unit 3, 4 Added Water Unit 5 Blowdown ID Pumping Plant Outflow Plant Intake	0.00 0.00 -2.07 0.00 -54.47 0.00 0.00 0.00	-0.12 0.00 -62.12 0.00 -1634.13 0.00 0.00 0.00 0.00 Equal to Intake qual to Outflow

Table 5.3-4. Calculated Fluid Flows from Water Budget Components.

July 2014			
	Water Budget Component	Flow (MGD)	Volume (gal x 10^6)
	W. Seepage	1.01	31.16
	E. Seepage	11.05	342.53
	N. Seepage	0.00	0.01
	S. Seepage	4.44	137.63
	Bottom Seepage	6.53	202.50
Š	Precipitation and Runoff	31.02	961.54
Into CCS	Evaporation	0.00	0.00
to	Unit 3, 4 Added Water	0.62	19.32
In	Blowdown	2.78	86.09
	ID Pumping	0.00	0.00
	Added Water (e.g. L-31E)	3.97	122.96
	Plant Outflow	Equal to Intake	
	Plant Intake	Equal to Outflow	
	Total In:	61.41	1903.75
	W. Seepage	0.00	0.00
	E. Seepage	-0.40	-12.41
	N. Seepage	-0.01	-0.32
	S. Seepage	0.00	0.00
			0.00
Ñ	Bottom Seepage	-2.34	-72.66
CCS	Bottom Seepage Precipitation and Runoff	-2.34 0.00	
of CCS			-72.66
ut of CCS	Precipitation and Runoff	0.00	-72.66 0.00
Out of CCS	Precipitation and Runoff Evaporation	0.00 -54.12	-72.66 0.00 -1677.77
Out of CCS	Precipitation and Runoff Evaporation Unit 3, 4 Added Water	0.00 -54.12 0.00	-72.66 0.00 -1677.77 0.00
Out of CCS	Precipitation and Runoff Evaporation Unit 3, 4 Added Water Unit 5 Blowdown	0.00 -54.12 0.00 0.00 0.00	-72.66 0.00 -1677.77 0.00 0.00
Out of CCS	Precipitation and Runoff Evaporation Unit 3, 4 Added Water Unit 5 Blowdown ID Pumping	0.00 -54.12 0.00 0.00 0.00	-72.66 0.00 -1677.77 0.00 0.00 0.00
Out of CCS	Precipitation and Runoff Evaporation Unit 3, 4 Added Water Unit 5 Blowdown ID Pumping Plant Outflow	0.00 -54.12 0.00 0.00 0.00	-72.66 0.00 -1677.77 0.00 0.00 0.00 Equal to Intake
	Precipitation and Runoff Evaporation Unit 3, 4 Added Water Unit 5 Blowdown ID Pumping Plant Outflow Plant Intake	0.00 -54.12 0.00 0.00 0.00	-72.66 0.00 -1677.77 0.00 0.00 0.00 0.00 Equal to Intake

Table 5.3-4. Calculated Fluid Flows from Water Budget Components.

	August 2014			
	Water Budget Component	Flow (MGD)	Volume (gal x 10^6)	
	W. Seepage	0.71	21.95	
	E. Seepage	23.67	733.89	
	N. Seepage	0.00	0.15	
	S. Seepage	4.97	154.14	
	Bottom Seepage	12.62	391.37	
Š	Precipitation and Runoff	15.64	484.97	
Into CCS	Evaporation	0.00	0.00	
to	Unit 3, 4 Added Water	0.61	18.99	
In	Blowdown	2.85	88.45	
	ID Pumping	0.00	0.00	
	Added Water (e.g. L-31E)	4.09	126.76	
	Plant Outflow	Equal to Intake		
	Plant Intake	Equal to Outflow		
	Total In:	65.18	2020.68	
	W. Seepage	0.00	0.00	
	E. Seepage	0.00	0.00	
	N. Seepage	0.00	-0.11	
	S. Seepage	0.00	0.00	
Š	Bottom Seepage	-0.08	-2.62	
\mathcal{C}	Precipitation and Runoff	0.00	0.00	
_				
of	Evaporation	-58.35	-1808.79	
ut of	Evaporation Unit 3, 4 Added Water	-58.35 0.00	-1808.79 0.00	
Out of CCS	1			
Out of	Unit 3, 4 Added Water	0.00	0.00	
Out of	Unit 3, 4 Added Water Unit 5 Blowdown	0.00 0.00 0.00	0.00 0.00	
Out of	Unit 3, 4 Added Water Unit 5 Blowdown ID Pumping	0.00 0.00 0.00	0.00 0.00 0.00	
	Unit 3, 4 Added Water Unit 5 Blowdown ID Pumping Plant Outflow Plant Intake Total Out:	0.00 0.00 0.00	0.00 0.00 0.00 Equal to Intake	
	Unit 3, 4 Added Water Unit 5 Blowdown ID Pumping Plant Outflow Plant Intake	0.00 0.00 0.00 I	0.00 0.00 0.00 Equal to Intake qual to Outflow	

Table 5.3-4. Calculated Fluid Flows from Water Budget Components.

September 2014			
	Water Budget Component	Flow (MGD)	Volume (gal x 10^6)
	W. Seepage	0.32	9.58
	E. Seepage	13.56	406.91
	N. Seepage	0.01	0.30
	S. Seepage	4.53	135.80
	Bottom Seepage	12.04	361.16
Š	Precipitation and Runoff	19.02	570.46
\mathcal{C}	Evaporation	0.00	0.00
Into CCS	Unit 3, 4 Added Water	0.53	15.82
In	Blowdown	2.66	79.83
	ID Pumping	0.00	0.00
	Added Water (e.g. L-31E)	9.45	283.54
	Plant Outflow	Equal to Intake	
	Plant Intake	Equal to Outflow	
	Total In:	62.11	1863.40
	W. Seepage	0.00	0.00
	E. Seepage	-0.45	-13.42
	N. Seepage	0.00	-0.03
	14. Beepage	0.00	-0.03
		0.00	0.00
Š	S. Seepage Bottom Seepage		
SOO	S. Seepage	0.00	0.00
of CCS	S. Seepage Bottom Seepage	0.00 -0.28	0.00 -8.49
ut of CCS	S. Seepage Bottom Seepage Precipitation and Runoff	0.00 -0.28 0.00	0.00 -8.49 0.00
Out of CCS	S. Seepage Bottom Seepage Precipitation and Runoff Evaporation	0.00 -0.28 0.00 -48.30	0.00 -8.49 0.00 -1448.86
Out of CCS	S. Seepage Bottom Seepage Precipitation and Runoff Evaporation Unit 3, 4 Added Water	0.00 -0.28 0.00 -48.30 0.00	0.00 -8.49 0.00 -1448.86 0.00
Out of CCS	S. Seepage Bottom Seepage Precipitation and Runoff Evaporation Unit 3, 4 Added Water Unit 5 Blowdown	0.00 -0.28 0.00 -48.30 0.00 0.00	0.00 -8.49 0.00 -1448.86 0.00 0.00
Out of CCS	S. Seepage Bottom Seepage Precipitation and Runoff Evaporation Unit 3, 4 Added Water Unit 5 Blowdown ID Pumping	0.00 -0.28 0.00 -48.30 0.00 0.00 0.00	0.00 -8.49 0.00 -1448.86 0.00 0.00 0.00
	S. Seepage Bottom Seepage Precipitation and Runoff Evaporation Unit 3, 4 Added Water Unit 5 Blowdown ID Pumping Plant Outflow Plant Intake Total Out:	0.00 -0.28 0.00 -48.30 0.00 0.00 0.00	0.00 -8.49 0.00 -1448.86 0.00 0.00 0.00 0.00 Equal to Intake
	S. Seepage Bottom Seepage Precipitation and Runoff Evaporation Unit 3, 4 Added Water Unit 5 Blowdown ID Pumping Plant Outflow Plant Intake	0.00 -0.28 0.00 -48.30 0.00 0.00 0.00	0.00 -8.49 0.00 -1448.86 0.00 0.00 0.00 Equal to Intake

Table 5.3-4. Calculated Fluid Flows from Water Budget Components.

	October 2014			
	Water Budget Component	Flow (MGD)	Volume (gal x 10^6)	
	W. Seepage	0.40	12.29	
	E. Seepage	0.42	13.13	
	N. Seepage	0.01	0.24	
	S. Seepage	1.54	47.83	
	Bottom Seepage	4.00	124.06	
S	Precipitation and Runoff	32.55	1009.10	
Into CCS	Evaporation	0.00	0.00	
to	Unit 3, 4 Added Water	0.46	14.16	
I	Blowdown	2.40	74.39	
	ID Pumping	13.66	423.54	
	Added Water (e.g. L-31E)	25.28	783.62	
	Plant Outflow	Equal to Intake		
	Plant Intake	Equal to Outflow		
	Total In:	80.72	2502.37	
	W. Seepage	-0.04	-1.27	
	E. Seepage	-16.02	-496.54	
	N. Seepage	-0.01	-0.29	
	S. Seepage	-0.14	-4.36	
Ñ	Bottom Seepage	-16.88	-523.17	
\sim	Precipitation and Runoff	0.00	0.00	
Out of CCS	Evaporation	-38.09	-1180.80	
ut	Unit 3, 4 Added Water	0.00	0.00	
0	Unit 5 Blowdown	0.00	0.00	
	ID Pumping	0.00	0.00	
	Plant Outflow	F	Equal to Intake	
	Plant Intake		qual to Outflow	
	Total Out:	-71.17	-2206.42	
Modeled Change in CCS Storage:		9.55	295.95	
141(<u> </u>			

Table 5.3-4. Calculated Fluid Flows from Water Budget Components.

	November 2014			
	Water Budget Component	Flow (MGD)	Volume (gal x 10^6)	
	W. Seepage	0.71	21.39	
	E. Seepage	4.63	138.85	
	N. Seepage	0.01	0.15	
	S. Seepage	2.19	65.78	
	Bottom Seepage	1.95	58.61	
Š	Precipitation and Runoff	2.44	73.23	
\mathcal{C}	Evaporation	0.00	0.00	
Into CCS	Unit 3, 4 Added Water	0.55	16.60	
In	Blowdown	1.89	56.81	
	ID Pumping	9.89	296.55	
	Added Water (e.g. L-31E)	5.22	156.58	
	Plant Outflow	Equal to Intake		
	Plant Intake	Equal to Outflow		
	Total In:	29.49	884.56	
	W. Seepage	0.00	0.00	
	E. Seepage	-5.95	-178.35	
	N. Seepage	0.00	-0.09	
	S. Seepage	-0.04	-1.26	
Ñ	Bottom Seepage	-11.24	-337.13	
\mathcal{C}	Precipitation and Runoff	0.00	0.00	
Out of CCS	Evaporation	-36.40	-1091.88	
ut	Unit 3, 4 Added Water	0.00	0.00	
0	Unit 5 Blowdown	0.00	0.00	
	ID Pumping	0.00	0.00	
	Plant Outflow	E	Equal to Intake	
	Plant Intake	Ed	qual to Outflow	
	Total Out:	-53.62	-1608.71	
Mo	deled Change in CCS Storage:	-24.14	-724.16	
	Observed Change	-25.31	-759.36	

Table 5.3-4. Calculated Fluid Flows from Water Budget Components.

	December 2014			
	Water Budget Component	Flow (MGD)	Volume (gal x 10^6)	
	W. Seepage	0.39	12.19	
	E. Seepage	7.13	220.99	
	N. Seepage	0.01	0.44	
	S. Seepage	3.66	113.41	
	Bottom Seepage	6.27	194.27	
Š	Precipitation and Runoff	12.37	383.60	
\mathcal{C}	Evaporation	0.00	0.00	
Into CCS	Unit 3, 4 Added Water	0.48	14.84	
I	Blowdown	1.93	59.85	
	ID Pumping	0.66	20.43	
	Added Water (e.g. L-31E)	3.26	100.98	
	Plant Outflow	Equal to Intake		
	Plant Intake	Equal to Outflow		
	Total In:	36.16	1120.99	
	W. Seepage	0.00	0.00	
	w. Beepage	0.00	0.00	
	E. Seepage	-2.57	-79.74	
	E. Seepage N. Seepage			
	E. Seepage	-2.57	-79.74	
Š	E. Seepage N. Seepage	-2.57 0.00	-79.74 -0.01	
CCS	E. Seepage N. Seepage S. Seepage	-2.57 0.00 0.00	-79.74 -0.01 0.00	
of CCS	E. Seepage N. Seepage S. Seepage Bottom Seepage	-2.57 0.00 0.00 -2.91	-79.74 -0.01 0.00 -90.34	
ut of CCS	E. Seepage N. Seepage S. Seepage Bottom Seepage Precipitation and Runoff Evaporation Unit 3, 4 Added Water	-2.57 0.00 0.00 -2.91 0.00	-79.74 -0.01 0.00 -90.34 0.00	
Out of CCS	E. Seepage N. Seepage S. Seepage Bottom Seepage Precipitation and Runoff Evaporation	-2.57 0.00 0.00 -2.91 0.00 -32.64	-79.74 -0.01 0.00 -90.34 0.00 -1011.85	
Out of CCS	E. Seepage N. Seepage S. Seepage Bottom Seepage Precipitation and Runoff Evaporation Unit 3, 4 Added Water	-2.57 0.00 0.00 -2.91 0.00 -32.64 0.00	-79.74 -0.01 0.00 -90.34 0.00 -1011.85 0.00	
Out of CCS	E. Seepage N. Seepage S. Seepage Bottom Seepage Precipitation and Runoff Evaporation Unit 3, 4 Added Water Unit 5 Blowdown	-2.57 0.00 0.00 -2.91 0.00 -32.64 0.00 0.00 0.00	-79.74 -0.01 0.00 -90.34 0.00 -1011.85 0.00 0.00	
Out of CCS	E. Seepage N. Seepage S. Seepage Bottom Seepage Precipitation and Runoff Evaporation Unit 3, 4 Added Water Unit 5 Blowdown ID Pumping Plant Outflow Plant Intake	-2.57 0.00 0.00 -2.91 0.00 -32.64 0.00 0.00 0.00	-79.74 -0.01 0.00 -90.34 0.00 -1011.85 0.00 0.00 0.00 Equal to Intake qual to Outflow	
	E. Seepage N. Seepage S. Seepage Bottom Seepage Precipitation and Runoff Evaporation Unit 3, 4 Added Water Unit 5 Blowdown ID Pumping Plant Outflow Plant Intake Total Out:	-2.57 0.00 0.00 -2.91 0.00 -32.64 0.00 0.00 0.00	-79.74 -0.01 0.00 -90.34 0.00 -1011.85 0.00 0.00 0.00 0.00	
	E. Seepage N. Seepage S. Seepage Bottom Seepage Precipitation and Runoff Evaporation Unit 3, 4 Added Water Unit 5 Blowdown ID Pumping Plant Outflow Plant Intake	-2.57 0.00 0.00 -2.91 0.00 -32.64 0.00 0.00 0.00	-79.74 -0.01 0.00 -90.34 0.00 -1011.85 0.00 0.00 0.00 Equal to Intake qual to Outflow	

Table 5.3-4. Calculated Fluid Flows from Water Budget Components.

	January 2015			
	Water Budget Component	Flow (MGD)	Volume (gal x 10^6)	
	W. Seepage	0.40	12.08	
	E. Seepage	8.10	243.11	
	N. Seepage	0.01	0.34	
	S. Seepage	3.72	111.70	
	Bottom Seepage	7.62	228.57	
S	Precipitation and Runoff	11.00	329.92	
\supset	Evaporation	0.00	0.00	
Into CCS	Unit 3, 4 Added Water	0.55	16.56	
1	Blowdown	2.15	64.51	
	ID Pumping	0.00	0.00	
	Added Water (e.g. L-31E)	11.26	337.90	
	Plant Outflow	Equal to Intake		
	Plant Intake	Equal to Outflow		
	Total In:	44.82	1344.69	
	W. Seepage	0.00	0.00	
	E. Seepage	-1.43	-42.89	
	N. Seepage	0.00	-0.01	
	S. Seepage	0.00	0.00	
Ñ	Bottom Seepage	-1.58	-47.32	
Out of CCS	Precipitation and Runoff	0.00	0.00	
of	Evaporation	-38.11	-1143.28	
at a	Unit 3, 4 Added Water	0.00	0.00	
0	Unit 5 Blowdown	0.00	0.00	
	ID Pumping	0.00	0.00	
	Plant Outflow	E	Equal to Intake	
	Plant Intake		qual to Outflow	
	Total Out:	-41.12	-1233.50	
Modeled Change in CCS Storage:		3.71	111.20	
171	<u> </u>			

Table 5.3-4. Calculated Fluid Flows from Water Budget Components.

February 2015			
	Water Budget Component	Flow (MGD)	Volume (gal x 10^6)
	W. Seepage	0.62	19.25
	E. Seepage	12.33	382.08
	N. Seepage	0.01	0.38
	S. Seepage	3.70	114.85
	Bottom Seepage	4.12	127.67
CS	Precipitation and Runoff	5.68	176.18
Into CCS	Evaporation	0.00	0.00
nto	Unit 3, 4 Added Water	0.51	15.68
Ī	Blowdown	1.89	58.71
	ID Pumping	5.20	161.19
	Added Water (e.g. L-31E)	13.46	417.31
	Plant Outflow	Equal to Intake	
	Plant Intake	Ed	qual to Outflow
	Total In:	47.53	1473.30
	W. Seepage	0.00	0.00
	E. Seepage	-1.34	-41.44
	N. Seepage	0.00	-0.01
	S. Seepage	0.00	0.00
Š	Bottom Seepage	-9.72	-301.46
\sim	Precipitation and Runoff	0.00	0.00
of	Evaporation	-34.02	-1054.70
Out of CCS	Unit 3, 4 Added Water	0.00	0.00
0	Unit 5 Blowdown	0.00	0.00
	ID Pumping	0.00	0.00
	Plant Outflow		Equal to Intake
	Plant Intake	Ec	qual to Outflow
	Total Out:	-45.08	-1397.61
Mo	odeled Change in CCS Storage:	2.44	75.69
Observed Change		2.44	68.30

Table 5.3-4. Calculated Fluid Flows from Water Budget Components.

	March 2015			
	Water Budget Component	Flow (MGD)	Volume (gal x 10^6)	
	W. Seepage	0.73	21.88	
	E. Seepage	8.63	258.83	
	N. Seepage	0.00	0.09	
	S. Seepage	2.81	84.35	
	Bottom Seepage	0.51	15.27	
Š	Precipitation and Runoff	10.46	313.88	
Into CCS	Evaporation	0.00	0.00	
to	Unit 3, 4 Added Water	0.61	18.27	
l I	Blowdown	2.36	70.75	
	ID Pumping	9.45	283.44	
	Added Water (e.g. L-31E)	15.40	462.02	
	Plant Outflow	Equal to Intake		
	Plant Intake	Ec	qual to Outflow	
	Total In:	50.96	1528.79	
	W. Seepage	0.00	0.00	
	E. Seepage	-2.13	-63.78	
	N. Seepage	-0.01	-0.19	
	S. Seepage	0.00	0.00	
Š	Bottom Seepage	-28.51	-855.32	
ည	Precipitation and Runoff	0.00	0.00	
of (Evaporation	-47.34	-1420.23	
Out of CCS	Unit 3, 4 Added Water	0.00	0.00	
0	Unit 5 Blowdown	0.00	0.00	
	ID Pumping	0.00	0.00	
	Plant Outflow	E	Equal to Intake	
	Plant Intake	Ec	qual to Outflow	
	Total Out:	-77.98	-2339.52	
Mo	odeled Change in CCS Storage:	-27.02	-810.74	
Observed Change		-12.11	-375.50	

Table 5.3-4. Calculated Fluid Flows from Water Budget Components.

April 2015			
	Water Budget Component	Flow (MGD)	Volume (gal x 10^6)
	W. Seepage	0.89	27.54
	E. Seepage	26.72	828.47
	N. Seepage	0.00	0.00
	S. Seepage	2.88	89.24
	Bottom Seepage	10.17	315.32
Š	Precipitation and Runoff	34.63	1073.50
Into CCS	Evaporation	0.00	0.00
to	Unit 3, 4 Added Water	0.53	16.42
In	Blowdown	2.39	74.24
	ID Pumping	12.06	374.01
	Added Water (e.g. L-31E)	13.99	433.76
	Plant Outflow	Equal to Intake	
	Plant Intake	Equal to Outflow	
	Total In:	104.27	3232.50
	W. Seepage	0.00	0.00
	E. Seepage	-0.06	-1.84
	N. Seepage	-0.01	-0.46
		-0.01	-0.40
	S. Seepage	0.00	0.00
Š			
SOO	S. Seepage	0.00	0.00
of CCS	S. Seepage Bottom Seepage	0.00 -29.22	0.00 -905.96
ut of CCS	S. Seepage Bottom Seepage Precipitation and Runoff Evaporation Unit 3, 4 Added Water	0.00 -29.22 0.00	0.00 -905.96 0.00
Out of CCS	S. Seepage Bottom Seepage Precipitation and Runoff Evaporation	0.00 -29.22 0.00 -49.98	0.00 -905.96 0.00 -1549.30
Out of CCS	S. Seepage Bottom Seepage Precipitation and Runoff Evaporation Unit 3, 4 Added Water Unit 5 Blowdown ID Pumping	0.00 -29.22 0.00 -49.98 0.00 0.00 0.00	0.00 -905.96 0.00 -1549.30 0.00 0.00 0.00
Out of CCS	S. Seepage Bottom Seepage Precipitation and Runoff Evaporation Unit 3, 4 Added Water Unit 5 Blowdown ID Pumping Plant Outflow	0.00 -29.22 0.00 -49.98 0.00 0.00 0.00	0.00 -905.96 0.00 -1549.30 0.00 0.00 0.00 0.00 Equal to Intake
Out of CCS	S. Seepage Bottom Seepage Precipitation and Runoff Evaporation Unit 3, 4 Added Water Unit 5 Blowdown ID Pumping Plant Outflow Plant Intake	0.00 -29.22 0.00 -49.98 0.00 0.00 0.00	0.00 -905.96 0.00 -1549.30 0.00 0.00 0.00 Gual to Intake
	S. Seepage Bottom Seepage Precipitation and Runoff Evaporation Unit 3, 4 Added Water Unit 5 Blowdown ID Pumping Plant Outflow Plant Intake Total Out:	0.00 -29.22 0.00 -49.98 0.00 0.00 0.00	0.00 -905.96 0.00 -1549.30 0.00 0.00 0.00 0.00 Equal to Intake
	S. Seepage Bottom Seepage Precipitation and Runoff Evaporation Unit 3, 4 Added Water Unit 5 Blowdown ID Pumping Plant Outflow Plant Intake	0.00 -29.22 0.00 -49.98 0.00 0.00 0.00	0.00 -905.96 0.00 -1549.30 0.00 0.00 0.00 Gual to Intake

Table 5.3-4. Calculated Fluid Flows from Water Budget Components.

	May 2015			
	Water Budget Component	Flow (MGD)	Volume (gal x 10^6)	
	W. Seepage	0.81	24.34	
	E. Seepage	14.49	434.74	
	N. Seepage	0.00	0.15	
	S. Seepage	3.91	117.29	
	Bottom Seepage	5.15	154.41	
∞	Precipitation and Runoff	4.47	134.06	
\sim	Evaporation	0.00	0.00	
Into CCS	Unit 3, 4 Added Water	0.56	16.87	
In	Blowdown	2.98	89.47	
	ID Pumping	1.14	34.20	
	Added Water (e.g. L-31E)	4.25	127.38	
	Plant Outflow	Equal to Intake		
	Plant Intake	Equal to Outflow		
	Total In:	37.76	1132.93	
	W. Seepage	0.00	0.00	
	E. Seepage	-0.08	-2.26	
	N. Seepage	0.00	-0.06	
	S. Seepage	0.00	0.00	
S	Bottom Seepage	-10.40	-311.85	
\mathcal{C}	Precipitation and Runoff	0.00	0.00	
Out of CCS	Evaporation	-46.15	-1384.62	
at a	Unit 3, 4 Added Water	0.00	0.00	
0	Unit 5 Blowdown	0.00	0.00	
	ID Pumping	0.00	0.00	
	Plant Outflow	E	Equal to Intake	
	Plant Intake	Ec	qual to Outflow	
	Total Out:	-56.63	-1698.79	
Mo	odeled Change in CCS Storage:	-18.86	-565.87	
	Observed Change	-23.99	-743.60	

Table 5.3-5. Calculated Mass Flows from Salt Budget Components.

September 2010			
	Mass Budget Component	lb/day (x1000)	Mass (lb x 1000)
	W. Seepage	1.32	39.74
	E. Seepage	2367.81	71034.23
	N. Seepage	3.26	97.90
	S. Seepage	141.52	4245.59
7.0	Bottom Seepage	1757.29	52718.75
Into CCS	Precipitation and Runoff	0.00	0.00
0	Evaporation	0.00	0.00
	Unit 3, 4 Added Water	0.00	0.00
	Unit 5 Blowdown	142.95	4288.51
	ID Pumped Water	0.00	0.00
	Plant Outflow	Equal to Intake	
	Plant Intake	Equal to Outflow	
	Total In:	4414.16	132424.73
	W. Seepage	0.00	0.00
	E. Seepage	-2107.47	-63224.09
	N. Seepage	-1.00	-30.03
	S. Seepage	0.00	0.00
Ñ	Bottom Seepage	-3148.36	-94450.90
\mathcal{C}	Precipitation and Runoff	0.00	0.00
Out of CCS	Evaporation	0.00	0.00
ut	Unit 3, 4 Added Water	0.00	0.00
0	Unit 5 Blowdown	0.00	0.00
	ID Pumping	0.00	0.00
	Plant Outflow		to Intake
	Plant Intake	Equal t	to Outflow
	Total Out:	-5256.83	-157705.02
M	odeled Change in CCS Storage:	-842.68	-157705.02
	Observed Change	1464.29	43928.58

Key:

CCS = Cooling Canal System.

ID = Interceptor Ditch.

Ib = Pound.

Table 5.3-5. Calculated Mass Flows from Salt Budget Components.

October 2010			
	Mass Budget Component	lb/day (x1000)	Mass (lb x 1000)
	W. Seepage	0.42	13.07
	E. Seepage	145.46	4509.21
	N. Seepage	1.03	32.01
	S. Seepage	9.79	303.49
7.0	Bottom Seepage	1578.86	48944.78
Into CCS	Precipitation and Runoff	0.00	0.00
0	Evaporation	0.00	0.00
	Unit 3, 4 Added Water	0.00	0.00
	Unit 5 Blowdown	108.85	3374.49
	ID Pumped Water	0.00	0.00
	Plant Outflow	Equal to Intake	
	Plant Intake	Equal to Outflow	
	Total In:	1844.42	57177.05
	W. Seepage	-90.08	-2792.56
	E. Seepage	-8248.71	-255710.08
	N. Seepage	-2.35	-72.84
	S. Seepage	-19.82	-614.51
Š	Bottom Seepage	-7351.71	-227902.88
Out of CCS	Precipitation and Runoff	0.00	0.00
of (Evaporation	0.00	0.00
ut	Unit 3, 4 Added Water	0.00	0.00
0	Unit 5 Blowdown	0.00	0.00
	ID Pumping	0.00	0.00
	Plant Outflow	Equal	to Intake
	Plant Intake	Equal (to Outflow
	Total Out:	-15712.67	-487092.89
M	odeled Change in CCS Storage:	-13868.25	-429915.84
	Observed Change	-13790.42	-427502.87

Table 5.3-5. Calculated Mass Flows from Salt Budget Components.

	November 2010			
	Mass Budget Component	lb/day (x1000)	Mass (lb x 1000)	
	W. Seepage	0.62	18.65	
	E. Seepage	1112.86	33385.66	
	N. Seepage	1.02	30.47	
	S. Seepage	86.35	2590.47	
7.0	Bottom Seepage	448.66	13459.68	
S	Precipitation and Runoff	0.00	0.00	
0	Evaporation	0.00	0.00	
Into CCS	Unit 3, 4 Added Water	0.00	0.00	
	Unit 5 Blowdown	72.95	2188.41	
	ID Pumped Water	0.00	0.00	
	Plant Outflow	Equal to Intake		
	Plant Intake	Equal to Outflow		
	Total In:	1722.44	51673.35	
	W. Seepage	-561.32	-16839.75	
	E. Seepage	-2562.68	-76880.51	
	N. Seepage	-1.36	-40.70	
	S. Seepage	-11.76	-352.92	
Ñ	Bottom Seepage	-4970.49	-149114.70	
\mathcal{C}	Precipitation and Runoff	0.00	0.00	
Out of CCS	Evaporation	0.00	0.00	
at a	Unit 3, 4 Added Water	0.00	0.00	
0	Unit 5 Blowdown	0.00	0.00	
	ID Pumping	0.00	0.00	
	Plant Outflow	Equal	to Intake	
	Plant Intake	Equal t	o Outflow	
	Total Out:	-8107.62	-243228.57	
Me	odeled Change in CCS Storage:	-6385.17	-191555.23	
	Observed Change	-2876.16	-86284.89	

Table 5.3-5. Calculated Mass Flows from Salt Budget Components.

December 2010			
	Mass Budget Component	lb/day (x1000)	Mass (lb x 1000)
	W. Seepage	2.64	81.97
	E. Seepage	4285.67	132855.83
	N. Seepage	0.00	0.00
	S. Seepage	408.74	12670.94
7.0	Bottom Seepage	453.49	14058.10
Into CCS	Precipitation and Runoff	0.00	0.00
) C	Evaporation	0.00	0.00
[nt	Unit 3, 4 Added Water	0.00	0.00
	Unit 5 Blowdown	105.19	3260.84
	ID Pumped Water	0.00	0.00
	Plant Outflow	Equal to Intake	
	Plant Intake	Equal to Outflow	
	Total In:	5255.73	162927.68
	W. Seepage	0.00	0.00
	E. Seepage	-162.55	-5039.00
	N. Seepage	-4.76	-147.53
	S. Seepage	-2.38	-73.76
Ñ	Bottom Seepage	-5813.63	-180222.52
Out of CCS	Precipitation and Runoff	0.00	0.00
of (Evaporation	0.00	0.00
ut	Unit 3, 4 Added Water	0.00	0.00
0	Unit 5 Blowdown	0.00	0.00
	ID Pumping	0.00	0.00
	Plant Outflow	Equal	to Intake
	Plant Intake	Equal	to Outflow
	Total Out:	-5983.32	-185482.82
M	odeled Change in CCS Storage:	-727.59	-22555.14
	Observed Change	-1555.92	-48233.42

Table 5.3-5. Calculated Mass Flows from Salt Budget Components.

	January 2011			
	Mass Budget Component	lb/day (x1000)	Mass (lb x 1000)	
	W. Seepage	5.82	180.56	
	E. Seepage	2552.32	79121.95	
	N. Seepage	0.02	0.72	
	S. Seepage	351.22	10887.84	
7.0	Bottom Seepage	583.72	18095.32	
S	Precipitation and Runoff	0.00	0.00	
0	Evaporation	0.00	0.00	
Into CCS	Unit 3, 4 Added Water	0.00	0.00	
	Unit 5 Blowdown	119.67	3709.91	
	ID Pumped Water	185.05	5736.69	
	Plant Outflow	Equal to Intake		
	Plant Intake	Equal to Outflow		
	Total In:	3797.84	117732.99	
	W. Seepage	0.00	0.00	
	E. Seepage	-1442.13	-44705.99	
	N. Seepage	-5.83	-180.58	
	S. Seepage	0.00	0.00	
Ñ	Bottom Seepage	-7389.58	-229076.98	
\sim	Precipitation and Runoff	0.00	0.00	
Out of CCS	Evaporation	0.00	0.00	
ut	Unit 3, 4 Added Water	0.00	0.00	
0	Unit 5 Blowdown	0.00	0.00	
	ID Pumping	0.00	0.00	
	Plant Outflow	Equal	to Intake	
	Plant Intake	Equal t	o Outflow	
	Total Out:	-8837.53	-273963.56	
Me	odeled Change in CCS Storage:	-5039.70	-156230.57	
	Observed Change	-910.35	-28220.95	

Table 5.3-5. Calculated Mass Flows from Salt Budget Components.

	February 2011			
	Mass Budget Component	lb/day (x1000)	Mass (lb x 1000)	
	W. Seepage	3.72	104.03	
	E. Seepage	6193.40	173415.07	
	N. Seepage	0.00	0.00	
	S. Seepage	633.20	17729.66	
7.0	Bottom Seepage	2001.44	56040.28	
Into CCS	Precipitation and Runoff	0.00	0.00	
) C	Evaporation	0.00	0.00	
	Unit 3, 4 Added Water	0.00	0.00	
	Unit 5 Blowdown	101.50	2842.14	
	ID Pumped Water	73.70	2063.56	
	Plant Outflow	Equal to Intake		
	Plant Intake	Equal to Outflow		
	Total In:	9006.95	252194.73	
	W. Seepage	0.00	0.00	
	E. Seepage	-152.30	-4264.37	
	N. Seepage	-9.05	-253.36	
	S. Seepage	0.00	0.00	
Š	Bottom Seepage	-9382.55	-262711.31	
\mathcal{C}	Precipitation and Runoff	0.00	0.00	
Out of CCS	Evaporation	0.00	0.00	
ut	Unit 3, 4 Added Water	0.00	0.00	
0	Unit 5 Blowdown	0.00	0.00	
	ID Pumping	0.00	0.00	
	Plant Outflow	Equal	to Intake	
	Plant Intake	Equal	to Outflow	
	Total Out:	-9543.89	-267229.04	
M	odeled Change in CCS Storage:	-536.94	-15034.31	
	Observed Change	1264.60	35408.76	

Table 5.3-5. Calculated Mass Flows from Salt Budget Components.

March 2011			
	Mass Budget Component	lb/day (x1000)	Mass (lb x 1000)
	W. Seepage	6.30	195.21
	E. Seepage	5635.93	174713.82
	N. Seepage	0.54	16.89
	S. Seepage	843.27	26141.22
7.0	Bottom Seepage	2189.25	67866.90
S	Precipitation and Runoff	0.00	0.00
) C	Evaporation	0.00	0.00
Into CCS	Unit 3, 4 Added Water	0.00	0.00
	Unit 5 Blowdown	96.82	3001.46
	ID Pumped Water	774.24	24001.46
	Plant Outflow	Equal to Intake	
	Plant Intake	Equal to Outflow	
	Total In:	9546.35	295936.97
	W. Seepage	0.00	0.00
	E. Seepage	-133.36	-4134.31
	N. Seepage	-2.15	-66.72
	S. Seepage	0.00	0.00
Ñ	Bottom Seepage	-8496.44	-263389.76
CC	Precipitation and Runoff	0.00	0.00
Out of CCS	Evaporation	0.00	0.00
ut	Unit 3, 4 Added Water	0.00	0.00
0	Unit 5 Blowdown	0.00	0.00
	ID Pumping	0.00	0.00
	Plant Outflow	Equal	to Intake
	Plant Intake	Equal (to Outflow
	Total Out:	-8631.96	-267590.80
Me	odeled Change in CCS Storage:	914.39	28346.17
	Observed Change	2504.94	77653.08

Table 5.3-5. Calculated Mass Flows from Salt Budget Components.

	April 2011			
	Mass Budget Component	lb/day (x1000)	Mass (lb x 1000)	
	W. Seepage	6.92	207.58	
	E. Seepage	8457.74	253732.07	
	N. Seepage	0.69	20.75	
	S. Seepage	1325.65	39769.41	
7.0	Bottom Seepage	3391.45	101743.46	
S	Precipitation and Runoff	0.00	0.00	
) C	Evaporation	0.00	0.00	
Into CCS	Unit 3, 4 Added Water	0.00	0.00	
	Unit 5 Blowdown	165.25	4957.53	
	ID Pumped Water	751.05	22531.49	
	Plant Outflow	Equal to Intake		
	Plant Intake	Equal to Outflow		
	Total In:	14098.74	422962.29	
	W. Seepage	0.00	0.00	
	E. Seepage	0.00	0.00	
	N. Seepage	-1.16	-34.89	
	S. Seepage	0.00	0.00	
Š	Bottom Seepage	-8372.65	-251179.64	
\mathcal{C}	Precipitation and Runoff	0.00	0.00	
Out of CCS	Evaporation	0.00	0.00	
ut	Unit 3, 4 Added Water	0.00	0.00	
0	Unit 5 Blowdown	0.00	0.00	
	ID Pumping	0.00	0.00	
	Plant Outflow	Equal to Intake		
	Plant Intake	Equal	to Outflow	
	Total Out:	-8373.82	-251214.54	
M	odeled Change in CCS Storage:	5724.93	171747.75	
	Observed Change	-4057.29	-121718.78	

Table 5.3-5. Calculated Mass Flows from Salt Budget Components.

May 2011			
	Mass Budget Component	lb/day (x1000)	Mass (lb x 1000)
	W. Seepage	22.76	705.69
	E. Seepage	14314.76	443757.52
	N. Seepage	0.00	0.00
	S. Seepage	1950.48	60464.95
7.0	Bottom Seepage	5815.91	180293.08
S	Precipitation and Runoff	0.00	0.00
0	Evaporation	0.00	0.00
Into CCS	Unit 3, 4 Added Water	0.00	0.00
	Unit 5 Blowdown	169.25	5246.87
	ID Pumped Water	3405.55	105571.94
	Plant Outflow	Equal to Intake	
	Plant Intake	Equal to Outflow	
	Total In:	25678.71	796040.04
	W. Seepage	0.00	0.00
	E. Seepage	0.00	0.00
	N. Seepage	-18.40	-570.36
	S. Seepage	0.00	0.00
Š	Bottom Seepage	-25285.18	-783840.65
\sim	Precipitation and Runoff	0.00	0.00
Out of CCS	Evaporation	0.00	0.00
ut	Unit 3, 4 Added Water	0.00	0.00
0	Unit 5 Blowdown	0.00	0.00
	ID Pumping	0.00	0.00
	Plant Outflow	Equal	to Intake
	Plant Intake	Equal t	to Outflow
	Total Out:	-25303.58	-784411.01
Me	odeled Change in CCS Storage:	375.13	11629.03
	Observed Change	6228.37	193079.32

Table 5.3-5. Calculated Mass Flows from Salt Budget Components.

June 2011			
	Mass Budget Component	lb/day (x1000)	Mass (lb x 1000)
	W. Seepage	34.43	1032.86
	E. Seepage	12237.99	367139.73
	N. Seepage	0.00	0.00
	S. Seepage	2011.79	60353.71
7.0	Bottom Seepage	6058.29	181748.84
Into CCS	Precipitation and Runoff	0.00	0.00
0	Evaporation	0.00	0.00
	Unit 3, 4 Added Water	0.00	0.00
	Unit 5 Blowdown	148.97	4469.00
	ID Pumped Water	4597.36	137920.85
	Plant Outflow	Equal to Intake	
	Plant Intake	Equal to Outflow	
	Total In:	25088.83	752665.00
	W. Seepage	0.00	0.00
	E. Seepage	-4.13	-123.93
	N. Seepage	-16.95	-508.47
	S. Seepage	0.00	0.00
Š	Bottom Seepage	-21821.28	-654638.29
Out of CCS	Precipitation and Runoff	0.00	0.00
of	Evaporation	0.00	0.00
ut	Unit 3, 4 Added Water	0.00	0.00
	Unit 5 Blowdown	0.00	0.00
	ID Pumping	0.00	0.00
	Plant Outflow	Equal	to Intake
	Plant Intake	Equal to Outflow	
	Total Out:	-21842.36	-655270.68
M	odeled Change in CCS Storage:	3246.48	97394.32
	Observed Change	8658.55	259756.64

Table 5.3-5. Calculated Mass Flows from Salt Budget Components.

July 2011			
	Mass Budget Component	lb/day (x1000)	Mass (lb x 1000)
	W. Seepage	19.96	618.77
	E. Seepage	1467.54	45493.62
	N. Seepage	0.00	0.00
	S. Seepage	542.84	16828.19
7.0	Bottom Seepage	1464.15	45388.73
Into CCS	Precipitation and Runoff	0.00	0.00
) (Evaporation	0.00	0.00
Int	Unit 3, 4 Added Water	0.00	0.00
	Unit 5 Blowdown	164.90	5111.87
	ID Pumped Water	0.00	0.00
	Plant Outflow	Equal to Intake	
	Plant Intake	Equal to Outflow	
	Total In:	3659.39	113441.18
	W. Seepage	0.00	0.00
	E. Seepage	-5149.44	-159632.70
	N. Seepage	-6.85	-212.23
	S. Seepage	-59.11	-1832.49
Ñ	Bottom Seepage	-8619.80	-267213.76
Out of CCS	Precipitation and Runoff	0.00	0.00
of (Evaporation	0.00	0.00
ut	Unit 3, 4 Added Water	0.00	0.00
0	Unit 5 Blowdown	0.00	0.00
	ID Pumping	0.00	0.00
	Plant Outflow	Equal	to Intake
	Plant Intake	Equal t	to Outflow
	Total Out:	-13835.20	-428891.19
Modeled Change in CCS Storage:		-10175.81	-315450.01
Observed Change		3237.34	100357.40

Table 5.3-5. Calculated Mass Flows from Salt Budget Components.

August 2011			
	Mass Budget Component	lb/day (x1000)	Mass (lb x 1000)
	W. Seepage	6.44	199.73
	E. Seepage	4818.73	149380.50
	N. Seepage	0.98	30.43
	S. Seepage	500.29	15508.86
7.0	Bottom Seepage	2143.75	66456.30
Into CCS	Precipitation and Runoff	0.00	0.00
) C	Evaporation	0.00	0.00
[nt	Unit 3, 4 Added Water	0.00	0.00
	Unit 5 Blowdown	151.94	4710.17
	ID Pumped Water	0.00	0.00
	Plant Outflow	Equal to Intake	
	Plant Intake	Equal to Outflow	
	Total In:	7622.13	236285.99
	W. Seepage	-57.15	-1771.69
	E. Seepage	-57.86	-1793.76
	N. Seepage	-0.60	-18.59
	S. Seepage	0.00	0.00
Š	Bottom Seepage	-1809.39	-56091.02
\mathcal{C}	Precipitation and Runoff	0.00	0.00
Out of CCS	Evaporation	0.00	0.00
ut	Unit 3, 4 Added Water	0.00	0.00
0	Unit 5 Blowdown	0.00	0.00
	ID Pumping	0.00	0.00
	Plant Outflow	Equal to Intake	
	Plant Intake	Equal to Outflow	
	Total Out:	-1925.00	-59675.06
Modeled Change in CCS Storage:		5697.13	176610.93
Observed Change		4028.64	124887.94

Table 5.3-5. Calculated Mass Flows from Salt Budget Components.

September 2011			
	Mass Budget Component	lb/day (x1000)	Mass (lb x 1000)
	W. Seepage	2.46	73.74
	E. Seepage	2518.16	75544.84
	N. Seepage	0.12	3.49
	S. Seepage	365.74	10972.20
7.0	Bottom Seepage	867.21	26016.23
Into CCS	Precipitation and Runoff	0.00	0.00
0	Evaporation	0.00	0.00
	Unit 3, 4 Added Water	0.00	0.00
	Unit 5 Blowdown	142.95	4288.51
	ID Pumped Water	406.90	12207.06
	Plant Outflow	Equal to Intake	
	Plant Intake	Equal to Outflow	
	Total In:	4303.54	129106.06
	W. Seepage	-681.83	-20454.85
	E. Seepage	-725.18	-21755.44
	N. Seepage	-3.46	-103.68
	S. Seepage	0.00	0.00
Š	Bottom Seepage	-4157.26	-124717.89
Out of CCS	Precipitation and Runoff	0.00	0.00
of	Evaporation	0.00	0.00
ut	Unit 3, 4 Added Water	0.00	0.00
0	Unit 5 Blowdown	0.00	0.00
	ID Pumping	0.00	0.00
	Plant Outflow	Equal to Intake	
	Plant Intake	Equal to Outflow	
	Total Out:	-5567.73	-167031.86
Me	odeled Change in CCS Storage:	-1264.19	-37925.80
Observed Change		-3663.57	-109906.97

Table 5.3-5. Calculated Mass Flows from Salt Budget Components.

	October 2011			
	Mass Budget Component	lb/day (x1000)	Mass (lb x 1000)	
	W. Seepage	1.29	39.99	
	E. Seepage	2800.88	86827.20	
	N. Seepage	0.39	12.19	
	S. Seepage	219.37	6800.38	
7.0	Bottom Seepage	4150.65	128670.25	
Into CCS	Precipitation and Runoff	0.00	0.00	
) C	Evaporation	0.00	0.00	
	Unit 3, 4 Added Water	0.00	0.00	
	Unit 5 Blowdown	108.85	3374.49	
	ID Pumped Water	0.00	0.00	
	Plant Outflow	Equal to Intake		
	Plant Intake	Equal to Outflow		
	Total In:	7281.44	225724.50	
	W. Seepage	0.00	0.00	
	E. Seepage	-990.71	-30712.12	
	N. Seepage	-3.96	-122.70	
	S. Seepage	0.00	0.00	
Š	Bottom Seepage	-38.92	-1206.45	
\mathcal{C}	Precipitation and Runoff	0.00	0.00	
Out of CCS	Evaporation	0.00	0.00	
ut	Unit 3, 4 Added Water	0.00	0.00	
0	Unit 5 Blowdown	0.00	0.00	
	ID Pumping	0.00	0.00	
	Plant Outflow	Equal	to Intake	
	Plant Intake	Equal to Outflow		
	Total Out:	-1033.59	-32041.28	
M	odeled Change in CCS Storage:	6247.85	193683.22	
	Observed Change	-3871.33	-120011.08	

Table 5.3-5. Calculated Mass Flows from Salt Budget Components.

	November 2011			
	Mass Budget Component	lb/day (x1000)	Mass (lb x 1000)	
	W. Seepage	1.32	39.50	
	E. Seepage	2309.02	69270.64	
	N. Seepage	1.24	37.31	
	S. Seepage	415.72	12471.49	
7.0	Bottom Seepage	1942.59	58277.79	
Into CCS	Precipitation and Runoff	0.00	0.00	
0	Evaporation	0.00	0.00	
	Unit 3, 4 Added Water	0.00	0.00	
	Unit 5 Blowdown	72.95	2188.41	
	ID Pumped Water	0.00	0.00	
	Plant Outflow	Equal to Intake		
	Plant Intake	Equal to Outflow		
	Total In:	4742.84	142285.15	
	W. Seepage	-2.60	-77.88	
	E. Seepage	-395.12	-11853.47	
	N. Seepage	-1.38	-41.50	
	S. Seepage	0.00	0.00	
Š	Bottom Seepage	-1464.94	-43948.27	
\sim	Precipitation and Runoff	0.00	0.00	
Out of CCS	Evaporation	0.00	0.00	
ut	Unit 3, 4 Added Water	0.00	0.00	
0	Unit 5 Blowdown	0.00	0.00	
	ID Pumping	0.00	0.00	
	Plant Outflow	Equal to Intake		
	Plant Intake	Equal to Outflow		
	Total Out:	-1864.04	-55921.12	
Me	odeled Change in CCS Storage:	2878.80	86364.02	
	Observed Change	-3673.05	-110191.36	

Table 5.3-5. Calculated Mass Flows from Salt Budget Components.

December 2011			
	Mass Budget Component	lb/day (x1000)	Mass (lb x 1000)
	W. Seepage	2.55	79.07
	E. Seepage	3595.66	111465.45
	N. Seepage	1.01	31.46
	S. Seepage	701.00	21730.94
7.0	Bottom Seepage	1765.94	54744.18
Into CCS	Precipitation and Runoff	0.00	0.00
0	Evaporation	0.00	0.00
	Unit 3, 4 Added Water	0.00	0.00
	Unit 5 Blowdown	105.19	3260.84
	ID Pumped Water	431.13	13365.08
	Plant Outflow	Equal to Intake	
	Plant Intake	Equal to Outflow	
	Total In:	6602.48	204677.00
	W. Seepage	0.00	0.00
	E. Seepage	-99.37	-3080.36
	N. Seepage	-2.01	-62.16
	S. Seepage	0.00	0.00
Š	Bottom Seepage	-6333.22	-196329.83
Out of CCS	Precipitation and Runoff	0.00	0.00
of	Evaporation	0.00	0.00
at a	Unit 3, 4 Added Water	0.00	0.00
0	Unit 5 Blowdown	0.00	0.00
	ID Pumping	0.00	0.00
	Plant Outflow	Equal to Intake	
	Plant Intake	Equal t	to Outflow
	Total Out:	-6434.59	-199472.35
M	odeled Change in CCS Storage:	167.89	5204.65
Observed Change		-3828.22	-118674.85

Table 5.3-5. Calculated Mass Flows from Salt Budget Components.

January 2012			
	Mass Budget Component	lb/day (x1000)	Mass (lb x 1000)
	W. Seepage	5.92	183.39
	E. Seepage	5523.45	171226.89
	N. Seepage	0.16	4.83
	S. Seepage	824.99	25574.55
7.0	Bottom Seepage	2720.16	84324.88
Into CCS	Precipitation and Runoff	0.00	0.00
	Evaporation	0.00	0.00
	Unit 3, 4 Added Water	0.00	0.00
	Unit 5 Blowdown	129.55	4016.08
	ID Pumped Water	2219.37	68800.40
	Plant Outflow	Equal to Intake	
	Plant Intake	Equal to Outflow	
	Total In:	11423.58	354131.01
	W. Seepage	0.00	0.00
	E. Seepage	-14.38	-445.70
	N. Seepage	-8.30	-257.31
	S. Seepage	0.00	0.00
Ñ	Bottom Seepage	-13952.78	-432536.10
Out of CCS	Precipitation and Runoff	0.00	0.00
of	Evaporation	0.00	0.00
at n	Unit 3, 4 Added Water	0.00	0.00
0	Unit 5 Blowdown	0.00	0.00
	ID Pumping	0.00	0.00
	Plant Outflow	Equal	to Intake
	Plant Intake	Equal t	to Outflow
	Total Out:	-13975.46	-433239.11
M	odeled Change in CCS Storage:	-2551.87	-79108.10
Observed Change		-2625.35	-81385.79

Table 5.3-5. Calculated Mass Flows from Salt Budget Components.

February 2012			
	Mass Budget Component	lb/day (x1000)	Mass (lb x 1000)
	W. Seepage	4.80	139.07
	E. Seepage	2717.89	78818.90
	N. Seepage	1.78	51.48
	S. Seepage	627.76	18204.99
7.0	Bottom Seepage	3039.98	88159.42
Into CCS	Precipitation and Runoff	0.00	0.00
0 C	Evaporation	0.00	0.00
[nt	Unit 3, 4 Added Water	0.00	0.00
	Unit 5 Blowdown	114.21	3312.10
	ID Pumped Water	189.46	5494.29
	Plant Outflow	Equal to Intake	
	Plant Intake	Equal to Outflow	
	Total In:	6695.87	194180.25
	W. Seepage	0.00	0.00
	E. Seepage	-713.59	-20694.17
	N. Seepage	-0.50	-14.61
	S. Seepage	0.00	0.00
Ñ	Bottom Seepage	-4974.71	-144266.56
\mathcal{C}	Precipitation and Runoff	0.00	0.00
Out of CCS	Evaporation	0.00	0.00
ut	Unit 3, 4 Added Water	0.00	0.00
0	Unit 5 Blowdown	0.00	0.00
	ID Pumping	0.00	0.00
	Plant Outflow	Equal	to Intake
	Plant Intake	Equal to Outflow	
	Total Out:	-5688.80	-164975.34
M	odeled Change in CCS Storage:	1007.07	29204.91
Observed Change		3362.46	97511.42

Table 5.3-5. Calculated Mass Flows from Salt Budget Components.

	March 2012			
	Mass Budget Component	lb/day (x1000)	Mass (lb x 1000)	
	W. Seepage	3.50	108.45	
	E. Seepage	4722.94	146411.22	
	N. Seepage	4.94	153.03	
	S. Seepage	899.57	27886.53	
7.0	Bottom Seepage	3412.96	105801.72	
Into CCS	Precipitation and Runoff	0.00	0.00	
0	Evaporation	0.00	0.00	
	Unit 3, 4 Added Water	0.00	0.00	
	Unit 5 Blowdown	143.97	4463.00	
	ID Pumped Water	187.62	5816.11	
	Plant Outflow	Equal to Intake		
	Plant Intake	Equal to Outflow		
	Total In:	9375.49	290640.06	
	W. Seepage	0.00	0.00	
	E. Seepage	-243.93	-7561.81	
	N. Seepage	-0.21	-6.62	
	S. Seepage	0.00	0.00	
Š	Bottom Seepage	-3587.83	-111222.82	
\sim	Precipitation and Runoff	0.00	0.00	
Out of CCS	Evaporation	0.00	0.00	
ut	Unit 3, 4 Added Water	0.00	0.00	
0	Unit 5 Blowdown	0.00	0.00	
	ID Pumping	0.00	0.00	
	Plant Outflow	Equal	to Intake	
	Plant Intake	Equal t	to Outflow	
	Total Out:	-3831.98	-118791.24	
Me	odeled Change in CCS Storage:	5543.51	171848.81	
	Observed Change	-500.48	-15514.87	

Table 5.3-5. Calculated Mass Flows from Salt Budget Components.

April 2012			
	Mass Budget Component	lb/day (x1000)	Mass (lb x 1000)
	W. Seepage	12.67	380.17
	E. Seepage	5083.99	152519.68
	N. Seepage	1.97	59.07
	S. Seepage	1027.09	30812.75
7.0	Bottom Seepage	3222.55	96676.59
Into CCS	Precipitation and Runoff	0.00	0.00
0	Evaporation	0.00	0.00
	Unit 3, 4 Added Water	0.00	0.00
	Unit 5 Blowdown	143.15	4294.46
	ID Pumped Water	1035.51	31065.19
	Plant Outflow	Equal to Intake	
	Plant Intake	Equal to Outflow	
	Total In:	10526.93	315807.89
	W. Seepage	0.00	0.00
	E. Seepage	-121.57	-3647.20
	N. Seepage	-0.98	-29.32
	S. Seepage	0.00	0.00
Š	Bottom Seepage	-7106.70	-213201.07
Out of CCS	Precipitation and Runoff	0.00	0.00
of (Evaporation	0.00	0.00
nt	Unit 3, 4 Added Water	0.00	0.00
0	Unit 5 Blowdown	0.00	0.00
	ID Pumping	0.00	0.00
	Plant Outflow	Equal to Intake	
	Plant Intake	Equal	to Outflow
	Total Out:	-7229.25	-216877.58
M	odeled Change in CCS Storage:	3297.68	98930.31
Observed Change		4132.59	123977.58

Table 5.3-5. Calculated Mass Flows from Salt Budget Components.

May 2012			
	Mass Budget Component	lb/day (x1000)	Mass (lb x 1000)
	W. Seepage	7.32	226.98
	E. Seepage	150.38	4661.72
	N. Seepage	5.55	172.14
	S. Seepage	162.56	5039.38
7.0	Bottom Seepage	2945.99	91325.68
Into CCS	Precipitation and Runoff	0.00	0.00
0	Evaporation	0.00	0.00
	Unit 3, 4 Added Water	0.00	0.00
	Unit 5 Blowdown	141.53	4387.54
	ID Pumped Water	0.00	0.00
	Plant Outflow	Equal to Intake	
	Plant Intake	Equal to Outflow	
	Total In:	3413.34	105813.44
	W. Seepage	0.00	0.00
	E. Seepage	-5714.04	-177135.24
	N. Seepage	-0.30	-9.32
	S. Seepage	-0.83	-25.76
Ñ	Bottom Seepage	-3916.75	-121419.13
\sim	Precipitation and Runoff	0.00	0.00
Out of CCS	Evaporation	0.00	0.00
ut	Unit 3, 4 Added Water	0.00	0.00
0	Unit 5 Blowdown	0.00	0.00
	ID Pumping	0.00	0.00
	Plant Outflow	Equal	to Intake
	Plant Intake	Equal t	to Outflow
	Total Out:	-9631.92	-298589.45
M	odeled Change in CCS Storage:	-6218.58	-192776.01
	Observed Change	-4664.11	-144587.53

Table 5.3-5. Calculated Mass Flows from Salt Budget Components.

	June 2012			
	Mass Budget Component	lb/day (x1000)	Mass (lb x 1000)	
	W. Seepage	1.77	53.22	
	E. Seepage	743.75	22312.43	
	N. Seepage	3.89	116.62	
	S. Seepage	314.62	9438.70	
7.0	Bottom Seepage	2478.26	74347.84	
Into CCS	Precipitation and Runoff	0.00	0.00	
0	Evaporation	0.00	0.00	
	Unit 3, 4 Added Water	0.00	0.00	
	Unit 5 Blowdown	150.80	4524.00	
	ID Pumped Water	0.00	0.00	
	Plant Outflow	Equal to Intake		
	Plant Intake	Equal to Outflow		
	Total In:	3693.09	110792.82	
	W. Seepage	-32.19	-965.63	
	E. Seepage	-3706.73	-111201.98	
	N. Seepage	-0.27	-7.97	
	S. Seepage	0.00	0.00	
Š	Bottom Seepage	-2818.78	-84563.47	
Out of CCS	Precipitation and Runoff	0.00	0.00	
of	Evaporation	0.00	0.00	
at a	Unit 3, 4 Added Water	0.00	0.00	
	Unit 5 Blowdown	0.00	0.00	
	ID Pumping	0.00	0.00	
	Plant Outflow	Equal	to Intake	
	Plant Intake	Equal	to Outflow	
	Total Out:	-6557.97	-196739.05	
M	odeled Change in CCS Storage:	-2864.87	-85946.23	
Observed Change		-2740.38	-82211.41	

Table 5.3-5. Calculated Mass Flows from Salt Budget Components.

	July 2012			
	Mass Budget Component	lb/day (x1000)	Mass (lb x 1000)	
	W. Seepage	2.29	71.09	
	E. Seepage	4.53	140.39	
	N. Seepage	5.42	167.89	
	S. Seepage	90.89	2817.55	
7.0	Bottom Seepage	3358.12	104101.82	
Into CCS	Precipitation and Runoff	0.00	0.00	
0	Evaporation	0.00	0.00	
	Unit 3, 4 Added Water	0.00	0.00	
	Unit 5 Blowdown	155.80	4829.81	
	ID Pumped Water	0.00	0.00	
	Plant Outflow	Equal to Intake		
	Plant Intake	Equal to Outflow		
	Total In:	3617.05	112128.55	
	W. Seepage	0.00	0.00	
	E. Seepage	-4476.42	-138769.10	
	N. Seepage	0.00	0.00	
	S. Seepage	-25.83	-800.83	
Ñ	Bottom Seepage	-3810.46	-118124.27	
\sim	Precipitation and Runoff	0.00	0.00	
Out of CCS	Evaporation	0.00	0.00	
ut	Unit 3, 4 Added Water	0.00	0.00	
0	Unit 5 Blowdown	0.00	0.00	
	ID Pumping	0.00	0.00	
	Plant Outflow	Equal	to Intake	
	Plant Intake	Equal t	o Outflow	
	Total Out:	-8312.72	-257694.20	
M	odeled Change in CCS Storage:	-4695.67	-145565.65	
	Observed Change	-2497.19	-77412.85	

Table 5.3-5. Calculated Mass Flows from Salt Budget Components.

	August 2012			
	Mass Budget Component	lb/day (x1000)	Mass (lb x 1000)	
	W. Seepage	2.22	68.82	
	E. Seepage	1315.71	40787.10	
	N. Seepage	4.79	148.53	
	S. Seepage	164.61	5102.99	
7.0	Bottom Seepage	2923.81	90638.04	
S	Precipitation and Runoff	0.00	0.00	
) C	Evaporation	0.00	0.00	
Into CCS	Unit 3, 4 Added Water	0.00	0.00	
	Unit 5 Blowdown	160.70	4981.80	
	ID Pumped Water	0.00	0.00	
	Plant Outflow	Equal to Intake		
	Plant Intake	Equal to Outflow		
	Total In:	4571.85	141727.27	
	W. Seepage	0.00	0.00	
	E. Seepage	-2322.51	-71997.77	
	N. Seepage	0.00	0.00	
	S. Seepage	-11.91	-369.31	
Š	Bottom Seepage	-2437.96	-75576.61	
\mathcal{C}	Precipitation and Runoff	0.00	0.00	
Out of CCS	Evaporation	0.00	0.00	
ut	Unit 3, 4 Added Water	0.00	0.00	
0	Unit 5 Blowdown	0.00	0.00	
	ID Pumping	0.00	0.00	
	Plant Outflow	Equal	to Intake	
	Plant Intake	Equal (to Outflow	
	Total Out:	-4772.38	-147943.69	
M	odeled Change in CCS Storage:	-200.53	-6216.42	
	Observed Change	1642.83	50927.78	

Table 5.3-5. Calculated Mass Flows from Salt Budget Components.

	September 2012			
	Mass Budget Component	lb/day (x1000)	Mass (lb x 1000)	
	W. Seepage	1.28	38.29	
	E. Seepage	561.40	16841.87	
	N. Seepage	2.87	85.98	
	S. Seepage	36.55	1096.39	
7.0	Bottom Seepage	1640.38	49211.44	
Into CCS	Precipitation and Runoff	0.00	0.00	
0	Evaporation	0.00	0.00	
	Unit 3, 4 Added Water	0.00	0.00	
	Unit 5 Blowdown	140.84	4225.23	
	ID Pumped Water	0.00	0.00	
	Plant Outflow	Equal to Intake		
	Plant Intake	Equal to Outflow		
	Total In:	2383.31	71499.20	
	W. Seepage	-67.28	-2018.37	
	E. Seepage	-3779.14	-113374.23	
	N. Seepage	-0.02	-0.64	
	S. Seepage	-13.36	-400.94	
Š	Bottom Seepage	-4064.05	-121921.62	
\sim	Precipitation and Runoff	0.00	0.00	
Out of CCS	Evaporation	0.00	0.00	
ut	Unit 3, 4 Added Water	0.00	0.00	
0	Unit 5 Blowdown	0.00	0.00	
	ID Pumping	0.00	0.00	
	Plant Outflow	Equal to Intake		
	Plant Intake	Equal t	to Outflow	
	Total Out:	-7923.86	-237715.80	
Me	odeled Change in CCS Storage:	-5540.55	-166216.60	
	Observed Change	-2600.46	-78013.94	

Table 5.3-5. Calculated Mass Flows from Salt Budget Components.

	October 2012			
	Mass Budget Component	lb/day (x1000)	Mass (lb x 1000)	
	W. Seepage	0.75	23.18	
	E. Seepage	3404.60	105542.53	
	N. Seepage	3.25	100.85	
	S. Seepage	612.24	18979.43	
7.0	Bottom Seepage	3429.20	106305.29	
Into CCS	Precipitation and Runoff	0.00	0.00	
) C	Evaporation	0.00	0.00	
	Unit 3, 4 Added Water	0.00	0.00	
	Unit 5 Blowdown	137.73	4269.50	
	ID Pumped Water	0.00	0.00	
	Plant Outflow	Equal to Intake		
	Plant Intake	Equal to Outflow		
	Total In:	7587.77	235220.78	
	W. Seepage	-163.09	-5055.73	
	E. Seepage	-1660.10	-51462.95	
	N. Seepage	-1.16	-35.89	
	S. Seepage	-6.52	-202.27	
Š	Bottom Seepage	-1982.01	-61442.38	
\mathcal{C}	Precipitation and Runoff	0.00	0.00	
Out of CCS	Evaporation	0.00	0.00	
ut	Unit 3, 4 Added Water	0.00	0.00	
0	Unit 5 Blowdown	0.00	0.00	
	ID Pumping	0.00	0.00	
	Plant Outflow	Equal	to Intake	
	Plant Intake	Equal (to Outflow	
	Total Out:	-3812.88	-118199.24	
M	odeled Change in CCS Storage:	3774.89	117021.55	
	Observed Change	6379.02	197749.67	

Table 5.3-5. Calculated Mass Flows from Salt Budget Components.

November 2012			
	Mass Budget Component	lb/day (x1000)	Mass (lb x 1000)
	W. Seepage	2.70	80.98
	E. Seepage	1784.00	53520.07
	N. Seepage	4.16	124.84
	S. Seepage	684.72	20541.49
70	Bottom Seepage	3275.44	98263.10
Into CCS	Precipitation and Runoff	0.00	0.00
0	Evaporation	0.00	0.00
	Unit 3, 4 Added Water	0.00	0.00
	Unit 5 Blowdown	95.89	2876.57
	ID Pumped Water	0.00	0.00
	Plant Outflow	Equal to Intake	
	Plant Intake	Equal to Outflow	
	Total In:	5846.90	175407.05
	W. Seepage	0.00	0.00
	E. Seepage	-980.36	-29410.67
	N. Seepage	0.00	0.00
	S. Seepage	0.00	0.00
Š	Bottom Seepage	-958.69	-28760.77
Out of CCS	Precipitation and Runoff	0.00	0.00
of	Evaporation	0.00	0.00
at a	Unit 3, 4 Added Water	0.00	0.00
0	Unit 5 Blowdown	0.00	0.00
	ID Pumping	0.00	0.00
	Plant Outflow	Equal to Intake	
	Plant Intake	Equal to Outflow	
	Total Out:	-1939.05	-58171.43
Me	odeled Change in CCS Storage:	3907.85	117235.62
Observed Change		2368.82	71064.75

Table 5.3-5. Calculated Mass Flows from Salt Budget Components.

December 2012			
	Mass Budget Component	lb/day (x1000)	Mass (lb x 1000)
	W. Seepage	6.22	192.82
	E. Seepage	108.87	3375.04
	N. Seepage	4.21	130.51
	S. Seepage	276.39	8568.06
7.0	Bottom Seepage	1940.48	60154.80
Into CCS	Precipitation and Runoff	0.00	0.00
0	Evaporation	0.00	0.00
	Unit 3, 4 Added Water	0.00	0.00
	Unit 5 Blowdown	109.16	3383.97
	ID Pumped Water	0.00	0.00
	Plant Outflow	Equal to Intake	
	Plant Intake	Equal to Outflow	
	Total In:	2445.33	75805.20
	W. Seepage	0.00	0.00
	E. Seepage	-3354.85	-104000.43
	N. Seepage	0.00	0.00
	S. Seepage	-0.23	-7.11
Š	Bottom Seepage	-2072.95	-64261.37
Out of CCS	Precipitation and Runoff	0.00	0.00
of	Evaporation	0.00	0.00
ut	Unit 3, 4 Added Water	0.00	0.00
	Unit 5 Blowdown	0.00	0.00
	ID Pumping	0.00	0.00
	Plant Outflow	Equal	to Intake
	Plant Intake	Equal	to Outflow
	Total Out:	-5428.03	-168268.92
M	odeled Change in CCS Storage:	-2982.70	-92463.72
Observed Change		-7753.08	-240345.33

Table 5.3-5. Calculated Mass Flows from Salt Budget Components.

	January 2013			
	Mass Budget Component	lb/day (x1000)	Mass (lb x 1000)	
	W. Seepage	6.20	192.05	
	E. Seepage	1924.13	59647.96	
	N. Seepage	4.36	135.08	
	S. Seepage	687.26	21305.13	
7.0	Bottom Seepage	2256.99	69966.81	
Into CCS	Precipitation and Runoff	0.00	0.00	
0	Evaporation	0.00	0.00	
	Unit 3, 4 Added Water	0.00	0.00	
	Unit 5 Blowdown	126.94	3935.07	
	ID Pumped Water	60.40	1872.54	
	Plant Outflow	Equal to Intake		
	Plant Intake	Equal to Outflow		
	Total In:	5066.28	157054.65	
	W. Seepage	0.00	0.00	
	E. Seepage	-1075.17	-33330.31	
	N. Seepage	0.00	0.00	
	S. Seepage	0.00	0.00	
Š	Bottom Seepage	-722.42	-22395.07	
\sim	Precipitation and Runoff	0.00	0.00	
Out of CCS	Evaporation	0.00	0.00	
ut	Unit 3, 4 Added Water	0.00	0.00	
0	Unit 5 Blowdown	0.00	0.00	
	ID Pumping	0.00	0.00	
	Plant Outflow	Equal	to Intake	
	Plant Intake	Equal t	to Outflow	
	Total Out:	-1797.59	-55725.38	
Me	odeled Change in CCS Storage:	3268.69	101329.27	
	Observed Change	525.54	16291.69	

Table 5.3-5. Calculated Mass Flows from Salt Budget Components.

February 2013			
	Mass Budget Component	lb/day (x1000)	Mass (lb x 1000)
	W. Seepage	8.45	236.61
	E. Seepage	2663.89	74589.03
	N. Seepage	3.16	88.59
	S. Seepage	894.66	25050.34
7.0	Bottom Seepage	2063.41	57775.55
Into CCS	Precipitation and Runoff	0.00	0.00
0	Evaporation	0.00	0.00
	Unit 3, 4 Added Water	0.00	0.00
	Unit 5 Blowdown	119.06	3333.75
	ID Pumped Water	324.14	9075.87
	Plant Outflow	Equal to Intake	
	Plant Intake	Equal to Outflow	
	Total In:	6076.78	170149.75
	W. Seepage	0.00	0.00
	E. Seepage	-1306.60	-36584.73
	N. Seepage	-0.08	-2.20
	S. Seepage	0.00	0.00
Š	Bottom Seepage	-3429.98	-96039.49
Out of CCS	Precipitation and Runoff	0.00	0.00
of	Evaporation	0.00	0.00
ū	Unit 3, 4 Added Water	0.00	0.00
0	Unit 5 Blowdown	0.00	0.00
	ID Pumping	0.00	0.00
	Plant Outflow	Equal	to Intake
	Plant Intake	Equal	to Outflow
	Total Out:	-4736.66	-132626.43
M	odeled Change in CCS Storage:	1340.12	37523.32
Observed Change		1710.98	47907.57

Table 5.3-5. Calculated Mass Flows from Salt Budget Components.

March 2013			
	Mass Budget Component	lb/day (x1000)	Mass (lb x 1000)
	W. Seepage	9.49	294.09
	E. Seepage	6181.90	191639.04
	N. Seepage	1.42	44.00
	S. Seepage	1225.74	37997.99
7.0	Bottom Seepage	2066.77	64069.78
Into CCS	Precipitation and Runoff	0.00	0.00
) C	Evaporation	0.00	0.00
Int	Unit 3, 4 Added Water	0.00	0.00
	Unit 5 Blowdown	140.55	4356.98
	ID Pumped Water	347.21	10763.51
	Plant Outflow	Equal to Intake	
	Plant Intake	Equal to Outflow	
	Total In:	9973.08	309165.38
	W. Seepage	0.00	0.00
	E. Seepage	0.00	0.00
	N. Seepage	-2.06	-63.94
	S. Seepage	0.00	0.00
Ñ	Bottom Seepage	-4851.44	-150394.72
ည	Precipitation and Runoff	0.00	0.00
Out of CCS	Evaporation	0.00	0.00
ut	Unit 3, 4 Added Water	0.00	0.00
0	Unit 5 Blowdown	0.00	0.00
	ID Pumping	0.00	0.00
	Plant Outflow	Equal	to Intake
	Plant Intake	Equal (to Outflow
	Total Out:	-4853.51	-150458.66
Modeled Change in CCS Storage:		5119.57	158706.72
Observed Change		4065.17	126020.42

Table 5.3-5. Calculated Mass Flows from Salt Budget Components.

April 2013			
	Mass Budget Component	lb/day (x1000)	Mass (lb x 1000)
	W. Seepage	11.54	346.20
	E. Seepage	6804.14	204124.17
	N. Seepage	0.00	0.00
	S. Seepage	838.93	25168.01
70	Bottom Seepage	2205.58	66167.30
Into CCS	Precipitation and Runoff	0.00	0.00
0	Evaporation	0.00	0.00
l t	Unit 3, 4 Added Water	0.00	0.00
	Unit 5 Blowdown	139.68	4190.40
	ID Pumped Water	478.94	14368.08
	Plant Outflow	Equal to Intake	
	Plant Intake	Equal to Outflow	
	Total In:	10478.81	314364.17
	W. Seepage	0.00	0.00
	E. Seepage	-72.08	-2162.45
	N. Seepage	-10.84	-325.20
	S. Seepage	0.00	0.00
Š	Bottom Seepage	-13020.92	-390627.55
\sim	Precipitation and Runoff	0.00	0.00
Out of CCS	Evaporation	0.00	0.00
ut	Unit 3, 4 Added Water	0.00	0.00
0	Unit 5 Blowdown	0.00	0.00
	ID Pumping	0.00	0.00
	Plant Outflow		to Intake
	Plant Intake		o Outflow
	Total Out:	-13103.84	-393115.19
Me	odeled Change in CCS Storage:	-2625.03	-78751.02
	Observed Change	4774.59	143237.63

Table 5.3-5. Calculated Mass Flows from Salt Budget Components.

May 2013			
	Mass Budget Component	lb/day (x1000)	Mass (lb x 1000)
	W. Seepage	5.61	174.03
	E. Seepage	3676.69	113977.27
	N. Seepage	0.00	0.00
	S. Seepage	618.85	19184.31
7.0	Bottom Seepage	827.40	25649.44
Into CCS	Precipitation and Runoff	0.00	0.00
0	Evaporation	0.00	0.00
	Unit 3, 4 Added Water	0.00	0.00
	Unit 5 Blowdown	157.13	4871.04
	ID Pumped Water	287.40	8909.54
	Plant Outflow	Equal to Intake	
	Plant Intake	Equal to Outflow	
	Total In:	5573.08	172765.63
	W. Seepage	0.00	0.00
	E. Seepage	-746.77	-23149.74
	N. Seepage	-6.57	-203.76
	S. Seepage	-12.70	-393.70
Š	Bottom Seepage	-8403.65	-260513.06
\sim	Precipitation and Runoff	0.00	0.00
Out of CCS	Evaporation	0.00	0.00
ut	Unit 3, 4 Added Water	0.00	0.00
0	Unit 5 Blowdown	0.00	0.00
	ID Pumping	0.00	0.00
	Plant Outflow	Equal	to Intake
	Plant Intake	Equal t	to Outflow
	Total Out:	-9169.69	-284260.25
Me	odeled Change in CCS Storage:	-3596.60	-111494.63
	Observed Change	1237.57	38364.62

Table 5.3-5. Calculated Mass Flows from Salt Budget Components.

	June 2013			
	Mass Budget Component	lb/day (x1000)	Mass (lb x 1000)	
	W. Seepage	3.59	107.83	
	E. Seepage	1935.70	58071.12	
	N. Seepage	0.00	0.00	
	S. Seepage	260.17	7805.20	
7.0	Bottom Seepage	466.22	13986.52	
Into CCS	Precipitation and Runoff	0.00	0.00	
0	Evaporation	0.00	0.00	
	Unit 3, 4 Added Water	0.00	0.00	
	Unit 5 Blowdown	145.05	4351.64	
	ID Pumped Water	18.96	568.88	
	Plant Outflow	Equal to Intake		
	Plant Intake	Equal to Outflow		
	Total In:	2829.71	84891.18	
	W. Seepage	0.00	0.00	
	E. Seepage	-6156.68	-184700.28	
	N. Seepage	-10.10	-303.10	
	S. Seepage	-367.26	-11017.89	
Š	Bottom Seepage	-9970.74	-299122.23	
Out of CCS	Precipitation and Runoff	0.00	0.00	
of (Evaporation	0.00	0.00	
ut	Unit 3, 4 Added Water	0.00	0.00	
0	Unit 5 Blowdown	0.00	0.00	
	ID Pumping	0.00	0.00	
	Plant Outflow	Equal	to Intake	
	Plant Intake	Equal	to Outflow	
	Total Out:	-16504.78	-495143.50	
M	odeled Change in CCS Storage:	-13675.08	-410252.31	
	Observed Change	-4607.17	-138215.25	

Table 5.3-5. Calculated Mass Flows from Salt Budget Components.

July 2013			
	Mass Budget Component	lb/day (x1000)	Mass (lb x 1000)
	W. Seepage	2.60	80.51
	E. Seepage	3940.49	122155.33
	N. Seepage	0.00	0.00
	S. Seepage	520.65	16140.17
7.0	Bottom Seepage	1521.54	47167.79
Into CCS	Precipitation and Runoff	0.00	0.00
) C	Evaporation	0.00	0.00
[nt	Unit 3, 4 Added Water	0.00	0.00
	Unit 5 Blowdown	149.46	4633.21
	ID Pumped Water	20.32	629.86
	Plant Outflow	Equal to Intake	
	Plant Intake	Equal to Outflow	
	Total In:	6155.06	190806.87
	W. Seepage	0.00	0.00
	E. Seepage	-1223.74	-37935.92
	N. Seepage	-6.19	-191.85
	S. Seepage	0.00	0.00
Ñ	Bottom Seepage	-4747.42	-147169.99
\mathcal{C}	Precipitation and Runoff	0.00	0.00
Out of CCS	Evaporation	0.00	0.00
ut	Unit 3, 4 Added Water	0.00	0.00
0	Unit 5 Blowdown	0.00	0.00
	ID Pumping	0.00	0.00
	Plant Outflow	Equal	to Intake
	Plant Intake	Equal	to Outflow
	Total Out:	-5977.35	-185297.76
Me	odeled Change in CCS Storage:	177.71	5509.11
	Observed Change	4833.38	149834.84

Table 5.3-5. Calculated Mass Flows from Salt Budget Components.

August 2013			
	Mass Budget Component	lb/day (x1000)	Mass (lb x 1000)
	W. Seepage	1.65	51.06
	E. Seepage	3909.73	121201.56
	N. Seepage	0.40	12.37
	S. Seepage	436.28	13524.78
7.0	Bottom Seepage	1229.28	38107.54
Into CCS	Precipitation and Runoff	0.00	0.00
) c	Evaporation	0.00	0.00
	Unit 3, 4 Added Water	0.00	0.00
	Unit 5 Blowdown	136.24	4223.30
	ID Pumped Water	0.00	0.00
	Plant Outflow	Equal to Intake	
	Plant Intake	Equal to Outflow	
	Total In:	5713.57	177120.59
	W. Seepage	0.00	0.00
	E. Seepage	-1196.82	-37101.49
	N. Seepage	-6.00	-186.11
	S. Seepage	-16.17	-501.24
Š	Bottom Seepage	-3601.96	-111660.71
\mathcal{C}	Precipitation and Runoff	0.00	0.00
Out of CCS	Evaporation	0.00	0.00
nt	Unit 3, 4 Added Water	0.00	0.00
0	Unit 5 Blowdown	0.00	0.00
	ID Pumping	0.00	0.00
	Plant Outflow	Equal	to Intake
	Plant Intake	Equal	to Outflow
	Total Out:	-4820.95	-149449.56
M	odeled Change in CCS Storage:	892.61	27671.04
Observed Change		3101.52	96147.08

Table 5.3-5. Calculated Mass Flows from Salt Budget Components.

	September 2013			
	Mass Budget Component	lb/day (x1000)	Mass (lb x 1000)	
	W. Seepage	1.25	37.54	
	E. Seepage	4990.46	149713.86	
	N. Seepage	3.92	117.62	
	S. Seepage	743.84	22315.07	
7.0	Bottom Seepage	3869.36	116080.74	
S	Precipitation and Runoff	0.00	0.00	
0	Evaporation	0.00	0.00	
Into CCS	Unit 3, 4 Added Water	0.00	0.00	
	Unit 5 Blowdown	159.20	4775.91	
	ID Pumped Water	0.00	0.00	
	Plant Outflow	Equal to Intake		
	Plant Intake	Equal to Outflow		
	Total In:	10969.13	329073.89	
	W. Seepage	0.00	0.00	
	E. Seepage	-134.55	-4036.48	
	N. Seepage	-0.19	-5.75	
	S. Seepage	0.00	0.00	
Š	Bottom Seepage	-263.07	-7892.07	
\sim	Precipitation and Runoff	0.00	0.00	
Out of CCS	Evaporation	0.00	0.00	
ut	Unit 3, 4 Added Water	0.00	0.00	
0	Unit 5 Blowdown	0.00	0.00	
	ID Pumping	0.00	0.00	
	Plant Outflow	Equal to Intake		
	Plant Intake	Equal to Outflow		
	Total Out:	-397.81	-11934.30	
Me	odeled Change in CCS Storage:	9370.21	281106.43	
	Observed Change	5122.20	153666.00	

Table 5.3-5. Calculated Mass Flows from Salt Budget Components.

	October 2013			
	Mass Budget Component	lb/day (x1000)	Mass (lb x 1000)	
	W. Seepage	0.96	29.76	
	E. Seepage	3904.36	121035.14	
	N. Seepage	7.80	241.71	
	S. Seepage	761.95	23620.31	
7.0	Bottom Seepage	6513.91	201931.11	
Into CCS	Precipitation and Runoff	0.00	0.00	
) C	Evaporation	0.00	0.00	
	Unit 3, 4 Added Water	0.00	0.00	
	Unit 5 Blowdown	164.60	5102.72	
	ID Pumped Water	0.00	0.00	
	Plant Outflow	Equal to Intake		
	Plant Intake	Equal to Outflow		
	Total In:	11353.57	351960.75	
	W. Seepage	0.00	0.00	
	E. Seepage	-316.00	-9795.90	
	N. Seepage	0.00	0.00	
	S. Seepage	0.00	0.00	
Š	Bottom Seepage	-86.56	-2683.26	
\mathcal{C}	Precipitation and Runoff	0.00	0.00	
Out of CCS	Evaporation	0.00	0.00	
ut	Unit 3, 4 Added Water	0.00	0.00	
0	Unit 5 Blowdown	0.00	0.00	
	ID Pumping	0.00	0.00	
	Plant Outflow	Equal to Intake		
	Plant Intake	Equal	to Outflow	
	Total Out:	-402.55	-12479.17	
M	odeled Change in CCS Storage:	10951.02	339481.59	
	Observed Change	5172.10	160335.08	

Table 5.3-5. Calculated Mass Flows from Salt Budget Components.

November 2013			
	Mass Budget Component	lb/day (x1000)	Mass (lb x 1000)
	W. Seepage	1.34	40.07
	E. Seepage	3405.86	102175.90
	N. Seepage	6.40	192.02
	S. Seepage	808.83	24265.00
7.0	Bottom Seepage	3906.18	117185.38
Into CCS	Precipitation and Runoff	0.00	0.00
0	Evaporation	0.00	0.00
	Unit 3, 4 Added Water	0.00	0.00
	Unit 5 Blowdown	131.07	3932.08
	ID Pumped Water	0.00	0.00
	Plant Outflow	Equal to Intake	
	Plant Intake	Equal to Outflow	
	Total In:	8259.68	247790.45
	W. Seepage	-21.40	-641.98
	E. Seepage	-470.60	-14117.90
	N. Seepage	0.00	0.00
	S. Seepage	0.00	0.00
Ñ	Bottom Seepage	-769.53	-23085.79
\mathcal{C}	Precipitation and Runoff	0.00	0.00
Out of CCS	Evaporation	0.00	0.00
ut	Unit 3, 4 Added Water	0.00	0.00
0	Unit 5 Blowdown	0.00	0.00
	ID Pumping	0.00	0.00
	Plant Outflow	Equal	to Intake
	Plant Intake	Equal to Outflow	
	Total Out:	-1261.52	-37845.66
Me	odeled Change in CCS Storage:	6998.16	209944.79
Observed Change		3117.41	93522.19

Table 5.3-5. Calculated Mass Flows from Salt Budget Components.

December 2013			
	Mass Budget Component	lb/day (x1000)	Mass (lb x 1000)
	W. Seepage	1.50	46.37
	E. Seepage	1005.24	31162.38
	N. Seepage	1.41	43.82
	S. Seepage	320.93	9948.86
7.0	Bottom Seepage	1003.58	31111.07
Into CCS	Precipitation and Runoff	0.00	0.00
0	Evaporation	0.00	0.00
	Unit 3, 4 Added Water	0.00	0.00
	Unit 5 Blowdown	130.83	4055.70
	ID Pumped Water	0.00	0.00
	Plant Outflow	Equal to Intake	
	Plant Intake	Equal to Outflow	
	Total In:	2463.49	76368.21
	W. Seepage	0.00	0.00
	E. Seepage	-1924.84	-59669.92
	N. Seepage	-0.72	-22.30
	S. Seepage	0.00	0.00
Š	Bottom Seepage	-2688.32	-83337.81
Out of CCS	Precipitation and Runoff	0.00	0.00
of	Evaporation	0.00	0.00
at a	Unit 3, 4 Added Water	0.00	0.00
0	Unit 5 Blowdown	0.00	0.00
	ID Pumping	0.00	0.00
	Plant Outflow	Equal	to Intake
	Plant Intake	Equal to Outflow	
	Total Out:	-4613.87	-143030.02
M	odeled Change in CCS Storage:	-2150.38	-143030.02
Observed Change		-6529.12	-202402.80

Table 5.3-5. Calculated Mass Flows from Salt Budget Components.

	January 2014			
	Mass Budget Component	lb/day (x1000)	Mass (lb x 1000)	
	W. Seepage	2.36	73.19	
	E. Seepage	2226.86	69032.53	
	N. Seepage	3.76	116.46	
	S. Seepage	462.15	14326.61	
7.0	Bottom Seepage	2102.48	65176.86	
Into CCS	Precipitation and Runoff	0.00	0.00	
0	Evaporation	0.00	0.00	
[nt	Unit 3, 4 Added Water	0.00	0.00	
	Unit 5 Blowdown	122.02	3782.67	
	ID Pumped Water	0.00	0.00	
	Plant Outflow	Equal to Intake		
	Plant Intake	Equal to Outflow		
	Total In:	4919.62	152508.32	
	W. Seepage	0.00	0.00	
	E. Seepage	-660.45	-20473.93	
	N. Seepage	-0.11	-3.52	
	S. Seepage	0.00	0.00	
Š	Bottom Seepage	-953.71	-29565.14	
\mathcal{C}	Precipitation and Runoff	0.00	0.00	
Out of CCS	Evaporation	0.00	0.00	
ut	Unit 3, 4 Added Water	0.00	0.00	
0	Unit 5 Blowdown	0.00	0.00	
	ID Pumping	0.00	0.00	
	Plant Outflow	Equal	to Intake	
	Plant Intake	Equal	to Outflow	
	Total Out:	-1614.28	-50042.59	
Me	odeled Change in CCS Storage:	3305.35	102465.73	
	Observed Change	-445.87	-13822.03	

Table 5.3-5. Calculated Mass Flows from Salt Budget Components.

February 2014			
	Mass Budget Component	lb/day (x1000)	Mass (lb x 1000)
	W. Seepage	2.99	83.81
	E. Seepage	3608.33	101033.25
	N. Seepage	4.91	137.49
	S. Seepage	412.57	11551.82
7.0	Bottom Seepage	3078.46	86196.88
Into CCS	Precipitation and Runoff	0.00	0.00
) C	Evaporation	0.00	0.00
	Unit 3, 4 Added Water	0.00	0.00
	Unit 5 Blowdown	118.73	3324.34
	ID Pumped Water	31.99	895.74
	Plant Outflow	Equal to Intake	
	Plant Intake	Equal to Outflow	
	Total In:	7257.98	203223.33
	W. Seepage	0.00	0.00
	E. Seepage	-195.05	-5461.33
	N. Seepage	0.00	0.00
	S. Seepage	0.00	0.00
Š	Bottom Seepage	-419.64	-11749.95
\mathcal{C}	Precipitation and Runoff	0.00	0.00
Out of CCS	Evaporation	0.00	0.00
ut	Unit 3, 4 Added Water	0.00	0.00
0	Unit 5 Blowdown	0.00	0.00
	ID Pumping	0.00	0.00
	Plant Outflow	Equal	to Intake
	Plant Intake	Equal to Outflow	
	Total Out:	-614.69	-17211.28
M	odeled Change in CCS Storage:	6643.29	186012.05
Observed Change		625.60	17516.93

Table 5.3-5. Calculated Mass Flows from Salt Budget Components.

March 2014				
	Mass Budget Component	lb/day (x1000)	Mass (lb x 1000)	
	W. Seepage	3.36	104.31	
	E. Seepage	4067.78	126101.17	
	N. Seepage	5.56	172.22	
	S. Seepage	381.87	11837.92	
7.0	Bottom Seepage	3172.67	98352.74	
Into CCS	Precipitation and Runoff	0.00	0.00	
0	Evaporation	0.00	0.00	
[nt	Unit 3, 4 Added Water	0.00	0.00	
	Unit 5 Blowdown	147.23	4563.98	
	ID Pumped Water	58.78	1822.19	
	Plant Outflow	Equal to Intake		
	Plant Intake	Equal to Outflow		
	Total In:	7837.24	242954.52	
	W. Seepage	0.00	0.00	
	E. Seepage	-6.43	-199.21	
	N. Seepage	-0.08	-2.45	
	S. Seepage	0.00	0.00	
Š	Bottom Seepage	-686.46	-21280.39	
\mathcal{C}	Precipitation and Runoff	0.00	0.00	
Out of CCS	Evaporation	0.00	0.00	
nt	Unit 3, 4 Added Water	0.00	0.00	
0	Unit 5 Blowdown	0.00	0.00	
	ID Pumping	0.00	0.00	
	Plant Outflow	Equal	to Intake	
	Plant Intake	Equal (to Outflow	
	Total Out:	-692.97	-21482.06	
Me	odeled Change in CCS Storage:	7144.27	221472.46	
	Observed Change	3657.01	113367.46	

Table 5.3-5. Calculated Mass Flows from Salt Budget Components.

	April 2014				
	Mass Budget Component	lb/day (x1000)	Mass (lb x 1000)		
	W. Seepage	5.61	168.39		
	E. Seepage	8221.78	246653.26		
	N. Seepage	5.79	173.62		
	S. Seepage	910.11	27303.36		
7.0	Bottom Seepage	4988.04	149641.17		
Into CCS	Precipitation and Runoff	0.00	0.00		
) c	Evaporation	0.00	0.00		
	Unit 3, 4 Added Water	0.00	0.00		
	Unit 5 Blowdown	176.97	5309.23		
	ID Pumped Water	100.96	3028.93		
	Plant Outflow	Equal to Intake			
	Plant Intake	Equal to Outflow			
	Total In:	14409.26	432277.95		
	W. Seepage	0.00	0.00		
	E. Seepage	0.00	0.00		
	N. Seepage	0.00	0.00		
	S. Seepage	0.00	0.00		
Š	Bottom Seepage	-2828.19	-84845.68		
\mathcal{C}	Precipitation and Runoff	0.00	0.00		
Out of CCS	Evaporation	0.00	0.00		
ut	Unit 3, 4 Added Water	0.00	0.00		
	Unit 5 Blowdown	0.00	0.00		
	ID Pumping	0.00	0.00		
	Plant Outflow	Equal	to Intake		
	Plant Intake	Equal	to Outflow		
	Total Out:	-2828.19	-84845.68		
M	odeled Change in CCS Storage:	11581.08	347432.27		
			175406.11		

Table 5.3-5. Calculated Mass Flows from Salt Budget Components.

	May 2014			
	Mass Budget Component	lb/day (x1000)	Mass (lb x 1000)	
	W. Seepage	19.51	604.92	
	E. Seepage	11455.78	355129.18	
	N. Seepage	0.97	30.19	
	S. Seepage	1663.96	51582.86	
	Bottom Seepage	6357.27	197075.45	
Š	Precipitation and Runoff	0.00	0.00	
Into CCS	Evaporation	0.00	0.00	
to	Unit 3, 4 Added Water	0.00	0.00	
In	Unit 5 Blowdown	161.19	4996.88	
	ID Pumped Water	376.82	11681.42	
	Added Water (e.g. L-31E)	0.00	0.00	
	Plant Outflow	Equal to Intake		
	Plant Intake	Equal to Outflow		
	Total In:	20035.51	621100.89	
	W C	0.00	0.00	
	W. Seepage	0.00	0.00	
	E. Seepage	0.00	0.00	
	E. Seepage N. Seepage			
	E. Seepage	0.00	0.00	
Š	E. Seepage N. Seepage	0.00 -3.53	0.00 -109.40	
SOO	E. Seepage N. Seepage S. Seepage	0.00 -3.53 0.00	0.00 -109.40 0.00	
of CCS	E. Seepage N. Seepage S. Seepage Bottom Seepage	0.00 -3.53 0.00 -7474.33	0.00 -109.40 0.00 -231704.37	
ut of CCS	E. Seepage N. Seepage S. Seepage Bottom Seepage Precipitation and Runoff Evaporation Unit 3, 4 Added Water	0.00 -3.53 0.00 -7474.33 0.00	0.00 -109.40 0.00 -231704.37 0.00	
Out of CCS	E. Seepage N. Seepage S. Seepage Bottom Seepage Precipitation and Runoff Evaporation	0.00 -3.53 0.00 -7474.33 0.00 0.00	0.00 -109.40 0.00 -231704.37 0.00 0.00	
Out of CCS	E. Seepage N. Seepage S. Seepage Bottom Seepage Precipitation and Runoff Evaporation Unit 3, 4 Added Water Unit 5 Blowdown ID Pumping	0.00 -3.53 0.00 -7474.33 0.00 0.00 0.00 0.00 0.00	0.00 -109.40 0.00 -231704.37 0.00 0.00 0.00 0.00 0.00	
Out of CCS	E. Seepage N. Seepage S. Seepage Bottom Seepage Precipitation and Runoff Evaporation Unit 3, 4 Added Water Unit 5 Blowdown ID Pumping Plant Outflow	0.00 -3.53 0.00 -7474.33 0.00 0.00 0.00 0.00 0.00 Equal	0.00 -109.40 0.00 -231704.37 0.00 0.00 0.00 0.00 0.00 to Intake	
Out of CCS	E. Seepage N. Seepage S. Seepage Bottom Seepage Precipitation and Runoff Evaporation Unit 3, 4 Added Water Unit 5 Blowdown ID Pumping Plant Outflow Plant Intake	0.00 -3.53 0.00 -7474.33 0.00 0.00 0.00 0.00 0.00 Equal	0.00 -109.40 0.00 -231704.37 0.00 0.00 0.00 0.00 0.00 to Intake	
Out of CCS	E. Seepage N. Seepage S. Seepage Bottom Seepage Precipitation and Runoff Evaporation Unit 3, 4 Added Water Unit 5 Blowdown ID Pumping Plant Outflow	0.00 -3.53 0.00 -7474.33 0.00 0.00 0.00 0.00 0.00 Equal	0.00 -109.40 0.00 -231704.37 0.00 0.00 0.00 0.00 0.00 to Intake	
	E. Seepage N. Seepage S. Seepage Bottom Seepage Precipitation and Runoff Evaporation Unit 3, 4 Added Water Unit 5 Blowdown ID Pumping Plant Outflow Plant Intake	0.00 -3.53 0.00 -7474.33 0.00 0.00 0.00 0.00 0.00 Equal	0.00 -109.40 0.00 -231704.37 0.00 0.00 0.00 0.00 0.00 to Intake	

Table 5.3-5. Calculated Mass Flows from Salt Budget Components.

	June 2014				
	Mass Budget Component	lb/day (x1000)	Mass (lb x 1000)		
	W. Seepage	23.70	710.97		
	E. Seepage	6914.35	207430.40		
	N. Seepage	0.41	12.17		
	S. Seepage	1226.07	36781.98		
	Bottom Seepage	3144.95	94348.42		
S	Precipitation and Runoff	0.00	0.00		
CC	Evaporation	0.00	0.00		
Into CCS	Unit 3, 4 Added Water	0.00	0.00		
In	Unit 5 Blowdown	185.05	5551.44		
	ID Pumped Water	146.27	4388.23		
	Added Water (e.g. L-31E)	0.00	0.00		
	Plant Outflow	Equal to Intake			
	Plant Intake	Equal to Outflow			
	Total In:	11640.79	349223.61		
	W. Seepage	0.00	0.00		
	E. Seepage	0.00	0.00		
	N. Seepage	-3.08	-92.33		
	S. Seepage	0.00	0.00		
Ñ	Bottom Seepage	-1625.15	-48754.54		
CC	Precipitation and Runoff	0.00	0.00		
Out of CCS	Evaporation	0.00	0.00		
ut	Unit 3, 4 Added Water	0.00	0.00		
0	Unit 5 Blowdown	0.00	0.00		
	ID Pumping	0.00	0.00		
	Plant Outflow	Equal	to Intake		
	Plant Intake	Equal (to Outflow		
	Total Out:	-1628.23	-48846.87		
Mo	odeled Change in CCS Storage:	10012.56	300376.73		
Observed Change 8607.32 258219.46		8607.32	258219.46		

Table 5.3-5. Calculated Mass Flows from Salt Budget Components.

	July 2014			
	Mass Budget Component	lb/day (x1000)	Mass (lb x 1000)	
	W. Seepage	14.93	462.74	
	E. Seepage	3538.20	109684.24	
	N. Seepage	0.10	3.20	
	S. Seepage	715.30	22174.33	
	Bottom Seepage	1643.69	50954.52	
Š	Precipitation and Runoff	0.00	0.00	
Into CCS	Evaporation	0.00	0.00	
to	Unit 3, 4 Added Water	0.00	0.00	
I	Unit 5 Blowdown	202.80	6286.80	
	ID Pumped Water	0.00	0.00	
	Added Water (e.g. L-31E)	72.82	2257.51	
	Plant Outflow	Equal to Intake		
	Plant Intake	Equal to Outflow		
	Total In:	6187.85	191823.34	
	W. Seepage	0.00	0.00	
	E. Seepage	-293.89	-9110.44	
	E. Seepage	=>0.0>	, 110	
	N. Seepage	-7.68	-237.97	
Ş	N. Seepage	-7.68	-237.97	
SOO	N. Seepage S. Seepage	-7.68 0.00	-237.97 0.00	
of CCS	N. Seepage S. Seepage Bottom Seepage	-7.68 0.00 -1708.02	-237.97 0.00 -52948.49	
ut of CCS	N. Seepage S. Seepage Bottom Seepage Precipitation and Runoff Evaporation Unit 3, 4 Added Water	-7.68 0.00 -1708.02 0.00	-237.97 0.00 -52948.49 0.00	
Out of CCS	N. Seepage S. Seepage Bottom Seepage Precipitation and Runoff Evaporation	-7.68 0.00 -1708.02 0.00 0.00	-237.97 0.00 -52948.49 0.00 0.00	
Out of CCS	N. Seepage S. Seepage Bottom Seepage Precipitation and Runoff Evaporation Unit 3, 4 Added Water	-7.68 0.00 -1708.02 0.00 0.00 0.00	-237.97 0.00 -52948.49 0.00 0.00 0.00	
Out of CCS	N. Seepage S. Seepage Bottom Seepage Precipitation and Runoff Evaporation Unit 3, 4 Added Water Unit 5 Blowdown ID Pumping Plant Outflow	-7.68 0.00 -1708.02 0.00 0.00 0.00 0.00 0.00	-237.97 0.00 -52948.49 0.00 0.00 0.00 0.00	
Out of CCS	N. Seepage S. Seepage Bottom Seepage Precipitation and Runoff Evaporation Unit 3, 4 Added Water Unit 5 Blowdown ID Pumping Plant Outflow Plant Intake	-7.68 0.00 -1708.02 0.00 0.00 0.00 0.00 0.00 Equal	-237.97 0.00 -52948.49 0.00 0.00 0.00 0.00 0.00 0.00 to Intake	
Out of CCS	N. Seepage S. Seepage Bottom Seepage Precipitation and Runoff Evaporation Unit 3, 4 Added Water Unit 5 Blowdown ID Pumping Plant Outflow	-7.68 0.00 -1708.02 0.00 0.00 0.00 0.00 0.00 Equal	-237.97 0.00 -52948.49 0.00 0.00 0.00 0.00 0.00 to Intake	
	N. Seepage S. Seepage Bottom Seepage Precipitation and Runoff Evaporation Unit 3, 4 Added Water Unit 5 Blowdown ID Pumping Plant Outflow Plant Intake	-7.68 0.00 -1708.02 0.00 0.00 0.00 0.00 0.00 Equal	-237.97 0.00 -52948.49 0.00 0.00 0.00 0.00 0.00 0.00 to Intake	

Table 5.3-5. Calculated Mass Flows from Salt Budget Components.

August 2014			
	Mass Budget Component	lb/day (x1000)	Mass (lb x 1000)
	W. Seepage	5.46	169.33
	E. Seepage	7697.88	238634.27
	N. Seepage	0.36	11.21
	S. Seepage	780.04	24181.32
	Bottom Seepage	3275.25	101532.74
Š	Precipitation and Runoff	0.00	0.00
Into CCS	Evaporation	0.00	0.00
5	Unit 3, 4 Added Water	0.00	0.00
I	Unit 5 Blowdown	208.36	6459.04
	ID Pumped Water	0.00	0.00
	Added Water (e.g. L-31E)	75.08	2327.35
	Plant Outflow	Equal to Intake	
	Plant Intake	Equal to Outflow	
	Total In:	12042.43	373315.27
	W. Seepage	0.00	0.00
	E. Seepage	0.00	0.00
	N. Seepage	-3.14	-97.39
	S. Seepage	0.00	0.00
Ñ	Bottom Seepage	-61.22	-1897.75
\mathcal{C}	Precipitation and Runoff	0.00	0.00
Out of CCS	Evaporation	0.00	0.00
=			
	Unit 3, 4 Added Water	0.00	0.00
O	Unit 3, 4 Added Water Unit 5 Blowdown	0.00	0.00 0.00
nO			
nO	Unit 5 Blowdown	0.00 0.00	0.00
nO	Unit 5 Blowdown ID Pumping	0.00 0.00 Equal Equal	0.00 0.00 to Intake to Outflow
	Unit 5 Blowdown ID Pumping Plant Outflow Plant Intake Total Out:	0.00 0.00 Equal	0.00 0.00 to Intake
	Unit 5 Blowdown ID Pumping Plant Outflow Plant Intake	0.00 0.00 Equal Equal	0.00 0.00 to Intake to Outflow

Table 5.3-5. Calculated Mass Flows from Salt Budget Components.

	September 2014			
	Mass Budget Component	lb/day (x1000)	Mass (lb x 1000)	
	W. Seepage	1.92	57.51	
	E. Seepage	4382.24	131467.29	
	N. Seepage	1.15	34.56	
	S. Seepage	1016.29	30488.73	
	Bottom Seepage	2953.06	88591.95	
Š	Precipitation and Runoff	0.00	0.00	
Into CCS	Evaporation	0.00	0.00	
to	Unit 3, 4 Added Water	0.00	0.00	
F	Unit 5 Blowdown	194.31	5829.15	
	ID Pumped Water	0.00	0.00	
	Added Water (e.g. L-31E)	86.86	2605.80	
	Plant Outflow	Equal to Intake		
	Plant Intake	Equal to Outflow		
	Total In:	8635.83	259074.99	
	W. Seepage	0.00	0.00	
	E. Seepage	-324.60	-9738.11	
	N. Seepage	-0.95	-28.50	
	S. Seepage	0.00	0.00	
70	5			
94	Bottom Seepage	-211.28	-6338.26	
CC	Bottom Seepage Precipitation and Runoff	-211.28 0.00		
of CCS			-6338.26	
ut of CCS	Precipitation and Runoff	0.00	-6338.26 0.00	
Out of CCS	Precipitation and Runoff Evaporation	0.00 0.00	-6338.26 0.00 0.00	
Out of CCS	Precipitation and Runoff Evaporation Unit 3, 4 Added Water	0.00 0.00 0.00	-6338.26 0.00 0.00 0.00	
Out of CCS	Precipitation and Runoff Evaporation Unit 3, 4 Added Water Unit 5 Blowdown ID Pumping Plant Outflow	0.00 0.00 0.00 0.00 0.00 Equal	-6338.26 0.00 0.00 0.00 0.00 0.00 to Intake	
Out of CCS	Precipitation and Runoff Evaporation Unit 3, 4 Added Water Unit 5 Blowdown ID Pumping	0.00 0.00 0.00 0.00 0.00 Equal	-6338.26 0.00 0.00 0.00 0.00 0.00 to Intake	
Out of CC	Precipitation and Runoff Evaporation Unit 3, 4 Added Water Unit 5 Blowdown ID Pumping Plant Outflow	0.00 0.00 0.00 0.00 0.00 Equal	-6338.26 0.00 0.00 0.00 0.00 0.00 to Intake	
	Precipitation and Runoff Evaporation Unit 3, 4 Added Water Unit 5 Blowdown ID Pumping Plant Outflow Plant Intake	0.00 0.00 0.00 0.00 0.00 Equal	-6338.26 0.00 0.00 0.00 0.00 0.00 to Intake	

Table 5.3-5. Calculated Mass Flows from Salt Budget Components.

	October 2014				
	Mass Budget Component	lb/day (x1000)	Mass (lb x 1000)		
	W. Seepage	2.83	87.86		
	E. Seepage	103.09	3195.74		
	N. Seepage	0.50	15.42		
	S. Seepage	332.18	10297.71		
	Bottom Seepage	893.37	27694.54		
Š	Precipitation and Runoff	0.00	0.00		
Into CCS	Evaporation	0.00	0.00		
to	Unit 3, 4 Added Water	0.00	0.00		
F	Unit 5 Blowdown	175.24	5432.40		
	ID Pumped Water	592.23	18359.04		
	Added Water (e.g. L-31E)	90.13	2793.93		
	Plant Outflow	Equal to Intake			
	Plant Intake	Equal to Outflow			
	Total In:	2189.57	67876.64		
	W. Seepage	-948.41	-29400.67		
	E. Seepage	-9654.91	-299302.19		
	N. Seepage	-7.75	-240.29		
	S. Seepage	-81.25	-2518.86		
Ñ	Bottom Seepage	-9834.43	-304867.45		
Out of CCS	Precipitation and Runoff	0.00	0.00		
of	Evaporation	0.00	0.00		
ut	Unit 3, 4 Added Water	0.00	0.00		
0	Unit 5 Blowdown	0.00	0.00		
	ID Pumping	0.00	0.00		
	Plant Outflow	Equal	to Intake		
	Plant Intake		o Outflow		
	Total Out:	-20526.76	-636329.47		
Me	odeled Change in CCS Storage:	-18337.19	-568452.83		
		-394506.69			

Table 5.3-5. Calculated Mass Flows from Salt Budget Components.

	November 2014			
	Mass Budget Component	lb/day (x1000)	Mass (lb x 1000)	
	W. Seepage	4.38	135.93	
	E. Seepage	914.73	28356.77	
	N. Seepage	1.21	37.58	
	S. Seepage	473.29	14672.03	
	Bottom Seepage	517.41	16039.64	
Š	Precipitation and Runoff	0.00	0.00	
\mathcal{C}	Evaporation	0.00	0.00	
Into CCS	Unit 3, 4 Added Water	0.00	0.00	
In	Unit 5 Blowdown	133.82	4148.48	
	ID Pumped Water	694.15	21518.73	
	Added Water (e.g. L-31E)	92.73	2874.76	
	Plant Outflow	Equal to Intake		
	Plant Intake	Equal to Outflow		
	Total In:	2831.74	87783.92	
	W. Seepage	0.00	0.00	
	E. Seepage	-3191.19	-98926.85	
	N. Seepage	-1.57	-48.81	
	S. Seepage	-23.20	-719.15	
Ñ	Bottom Seepage	-6108.72	-189370.45	
Out of CCS	Precipitation and Runoff	0.00	0.00	
of	Evaporation	0.00	0.00	
at n	Unit 3, 4 Added Water	0.00	0.00	
0	Unit 5 Blowdown	0.00	0.00	
	ID Pumping	0.00	0.00	
	Plant Outflow	•	to Intake	
	Plant Intake		to Outflow	
	Total Out:	-9324.69	-289065.26	
M	odeled Change in CCS Storage:	-6492.95	-201281	

Table 5.3-5. Calculated Mass Flows from Salt Budget Components.

	December 2014				
	Mass Budget Component	lb/day (x1000)	Mass (lb x 1000)		
	W. Seepage	2.98	92.26		
	E. Seepage	1559.53	48345.42		
	N. Seepage	0.00	0.00		
	S. Seepage	881.57	27328.52		
	Bottom Seepage	1696.12	52579.83		
Š	Precipitation and Runoff	0.00	0.00		
Into CCS	Evaporation	0.00	0.00		
5	Unit 3, 4 Added Water	0.00	0.00		
I	Unit 5 Blowdown	140.97	4370.16		
	ID Pumped Water	26.26	814.17		
	Added Water (e.g. L-31E)	59.81	1853.98		
	Plant Outflow	Equal to Intake			
	Plant Intake	Equal to Outflow			
	Total In:	4367.24	135384.33		
	W. Seepage	0.00	0.00		
	E. Seepage	-1487.27	-46105.22		
	N. Seepage	-1.54	-47.88		
	S. Seepage	0.00	0.00		
Ñ	Bottom Seepage	1710.00			
()	Dottom Scepage	-1719.22	-53295.82		
l ŏ	Precipitation and Runoff	0.00	-53295.82 0.00		
of CC					
ut of CO	Precipitation and Runoff Evaporation Unit 3, 4 Added Water	0.00	0.00		
Out of CCS	Precipitation and Runoff Evaporation	0.00 0.00	0.00 0.00		
Out of CO	Precipitation and Runoff Evaporation Unit 3, 4 Added Water	0.00 0.00 0.00	0.00 0.00 0.00		
Out of CO	Precipitation and Runoff Evaporation Unit 3, 4 Added Water Unit 5 Blowdown ID Pumping Plant Outflow	0.00 0.00 0.00 0.00 0.00 Equal	0.00 0.00 0.00 0.00 0.00 to Intake		
Out of CO	Precipitation and Runoff Evaporation Unit 3, 4 Added Water Unit 5 Blowdown ID Pumping Plant Outflow Plant Intake	0.00 0.00 0.00 0.00 0.00 Equal	0.00 0.00 0.00 0.00 0.00 to Intake		
Out of CC	Precipitation and Runoff Evaporation Unit 3, 4 Added Water Unit 5 Blowdown ID Pumping Plant Outflow	0.00 0.00 0.00 0.00 0.00 Equal	0.00 0.00 0.00 0.00 0.00 to Intake		
	Precipitation and Runoff Evaporation Unit 3, 4 Added Water Unit 5 Blowdown ID Pumping Plant Outflow Plant Intake	0.00 0.00 0.00 0.00 0.00 Equal	0.00 0.00 0.00 0.00 0.00 to Intake		

Table 5.3-5. Calculated Mass Flows from Salt Budget Components.

	January 2015			
	Mass Budget Component	lb/day (x1000)	Mass (lb x 1000)	
	W. Seepage	2.78	86.16	
	E. Seepage	1889.33	58569.13	
	N. Seepage	0.00	0.00	
	S. Seepage	773.79	23987.45	
	Bottom Seepage	2010.64	62329.98	
Š	Precipitation and Runoff	0.00	0.00	
Into CCS	Evaporation	0.00	0.00	
5	Unit 3, 4 Added Water	0.00	0.00	
In	Unit 5 Blowdown	151.96	4710.77	
	ID Pumped Water	0.00	0.00	
	Added Water (e.g. L-31E)	1906.00	59086.05	
	Plant Outflow	Equal to Intake		
	Plant Intake	Equal to Outflow		
	Total In:	6734.50	208769.55	
	W. Seepage	0.00	0.00	
	E. Seepage	-826.80	-25630.88	
	N. Seepage	-1.31	-40.72	
	S. Seepage	0.00	0.00	
Ñ	Bottom Seepage	-917.38	-28438.86	
Out of CCS	Precipitation and Runoff	0.00	0.00	
of	Evaporation	0.00	0.00	
at a	Unit 3, 4 Added Water	0.00	0.00	
0	Unit 5 Blowdown	0.00	0.00	
	ID Pumping	0.00	0.00	
	Plant Outflow	Equal	to Intake	
	Plant Intake	Equal t	to Outflow	
	Total Out:	-1745.50	-54110.46	
Me	odeled Change in CCS Storage:	4989.00	154659.08	
	Observed Change	-870.42	-26983.15	

Table 5.3-5. Calculated Mass Flows from Salt Budget Components.

	February 2015			
	Mass Budget Component	lb/day (x1000)	Mass (lb x 1000)	
	W. Seepage	4.84	150.08	
	E. Seepage	3093.63	95902.56	
	N. Seepage	0.00	0.00	
	S. Seepage	955.91	29633.23	
	Bottom Seepage	1270.26	39378.13	
Š	Precipitation and Runoff	0.00	0.00	
Into CCS	Evaporation	0.00	0.00	
5	Unit 3, 4 Added Water	0.00	0.00	
I	Unit 5 Blowdown	138.29	4286.90	
	ID Pumped Water	236.74	7339.05	
	Added Water (e.g. L-31E)	2784.16	86308.84	
	Plant Outflow	Equal to Intake		
	Plant Intake	Equal to Outflow		
	Total In:	8483.83	262998.80	
	W. Seepage	0.00	0.00	
	E. Seepage	-896.00	-27775.96	
	N. Seepage	-1.48	-46.03	
	S. Seepage	0.00	0.00	
Ñ	Bottom Seepage	-6247.18	-193662.57	
Out of CCS	Precipitation and Runoff	0.00	0.00	
of	Evaporation	0.00	0.00	
at a	Unit 3, 4 Added Water	0.00	0.00	
0	Unit 5 Blowdown	0.00	0.00	
	ID Pumping	0.00	0.00	
	Plant Outflow	•	to Intake	
	Plant Intake		to Outflow	
		7111(-221484.56	
	Total Out:	-7144.66	-221404.50	
Mo	Total Out: odeled Change in CCS Storage:	1339.17	41514.24	

Table 5.3-5. Calculated Mass Flows from Salt Budget Components.

March 2015				
	Mass Budget Component	lb/day (x1000)	Mass (lb x 1000)	
	W. Seepage	6.84	211.99	
	E. Seepage	2514.31	77943.47	
	N. Seepage	0.00	0.00	
	S. Seepage	736.80	22840.77	
	Bottom Seepage	150.96	4679.72	
Š	Precipitation and Runoff	0.00	0.00	
\mathcal{C}	Evaporation	0.00	0.00	
Into CCS	Unit 3, 4 Added Water	0.00	0.00	
L	Unit 5 Blowdown	166.66	5166.45	
	ID Pumped Water	679.17	21054.32	
	Added Water (e.g. L-31E)	3082.46	95556.22	
	Plant Outflow	Equal to Intake		
	Plant Intake	Equal t	to Outflow	
	Total In:	7337.19	227452.93	
	W. Seepage	0.00	0.00	
	E. Seepage	-1398.29	-43347.03	
	N. Seepage	-7.42	-230.11	
	S. Seepage	0.00	0.00	
Ñ	Bottom Seepage	-19423.49	-602128.07	
Out of CCS	Precipitation and Runoff	0.00	0.00	
of	Evaporation	0.00	0.00	
Ţ,	Unit 3, 4 Added Water	0.00	0.00	
0	Unit 5 Blowdown	0.00	0.00	
	ID Pumping	0.00	0.00	
	Plant Outflow	Equal to Intake		
	Plant Intake		to Outflow	
	Total Out:	-20829.20	-645705.21	
Modeled Change in CCS Storage:		-13492.01	-418252.28	
M	oucica change in CCD biorage.	15472101	110202120	

Table 5.3-5. Calculated Mass Flows from Salt Budget Components.

April 2015				
	Mass Budget Component	lb/day (x1000)	Mass (lb x 1000)	
	W. Seepage	10.69	331.39	
	E. Seepage	8653.51	268258.95	
	N. Seepage	0.03	0.84	
	S. Seepage	822.92	25510.60	
	Bottom Seepage	3021.01	93651.27	
Š	Precipitation and Runoff	0.00	0.00	
\mathcal{C}	Evaporation	0.00	0.00	
Into CCS	Unit 3, 4 Added Water	0.00	0.00	
In	Unit 5 Blowdown	174.87	5420.98	
	ID Pumped Water	1658.22	51404.67	
	Added Water (e.g. L-31E)	2860.71	88682.03	
	Plant Outflow	Equal to Intake		
	Plant Intake	Equal	to Outflow	
	Total In:	17201.96	533260.73	
	W Caanaaa	0.00	0.00	
	W. Seepage	0.00	0.00	
	E. Seepage	-36.09	-1118.73	
	E. Seepage N. Seepage		I .	
	E. Seepage	-36.09	-1118.73	
Š	E. Seepage N. Seepage S. Seepage Bottom Seepage	-36.09 -11.26	-1118.73 -349.19	
ccs	E. Seepage N. Seepage S. Seepage	-36.09 -11.26 0.00	-1118.73 -349.19 0.00	
of CCS	E. Seepage N. Seepage S. Seepage Bottom Seepage	-36.09 -11.26 0.00 -22298.06	-1118.73 -349.19 0.00 -691239.80	
ut of CCS	E. Seepage N. Seepage S. Seepage Bottom Seepage Precipitation and Runoff Evaporation Unit 3, 4 Added Water	-36.09 -11.26 0.00 -22298.06 0.00	-1118.73 -349.19 0.00 -691239.80 0.00	
Out of CCS	E. Seepage N. Seepage S. Seepage Bottom Seepage Precipitation and Runoff Evaporation	-36.09 -11.26 0.00 -22298.06 0.00 0.00	-1118.73 -349.19 0.00 -691239.80 0.00 0.00	
Out of CCS	E. Seepage N. Seepage S. Seepage Bottom Seepage Precipitation and Runoff Evaporation Unit 3, 4 Added Water Unit 5 Blowdown ID Pumping	-36.09 -11.26 0.00 -22298.06 0.00 0.00 0.00 0.00 0.00	-1118.73 -349.19 0.00 -691239.80 0.00 0.00 0.00 0.00 0.00	
Out of CCS	E. Seepage N. Seepage S. Seepage Bottom Seepage Precipitation and Runoff Evaporation Unit 3, 4 Added Water Unit 5 Blowdown ID Pumping Plant Outflow	-36.09 -11.26 0.00 -22298.06 0.00 0.00 0.00 0.00 0.00 Equal	-1118.73 -349.19 0.00 -691239.80 0.00 0.00 0.00 0.00 0.00 to Intake	
Out of CCS	E. Seepage N. Seepage S. Seepage Bottom Seepage Precipitation and Runoff Evaporation Unit 3, 4 Added Water Unit 5 Blowdown ID Pumping Plant Outflow Plant Intake	-36.09 -11.26 0.00 -22298.06 0.00 0.00 0.00 0.00 0.00 Equal	-1118.73 -349.19 0.00 -691239.80 0.00 0.00 0.00 0.00 0.00 to Intake to Outflow	
	E. Seepage N. Seepage S. Seepage Bottom Seepage Precipitation and Runoff Evaporation Unit 3, 4 Added Water Unit 5 Blowdown ID Pumping Plant Outflow Plant Intake Total Out:	-36.09 -11.26 0.00 -22298.06 0.00 0.00 0.00 0.00 0.00 Equal	-1118.73 -349.19 0.00 -691239.80 0.00 0.00 0.00 0.00 0.00 to Intake	
	E. Seepage N. Seepage S. Seepage Bottom Seepage Precipitation and Runoff Evaporation Unit 3, 4 Added Water Unit 5 Blowdown ID Pumping Plant Outflow Plant Intake	-36.09 -11.26 0.00 -22298.06 0.00 0.00 0.00 0.00 0.00 Equal	-1118.73 -349.19 0.00 -691239.80 0.00 0.00 0.00 0.00 0.00 to Intake to Outflow	

Table 5.3-5. Calculated Mass Flows from Salt Budget Components.

May 2015				
	Mass Budget Component	lb/day (x1000)	Mass (lb x 1000)	
	W. Seepage	8.19	253.84	
	E. Seepage	4340.30	134549.32	
	N. Seepage	1.26	39.14	
	S. Seepage	892.08	27654.53	
	Bottom Seepage	1451.68	45002.18	
Š	Precipitation and Runoff	0.00	0.00	
Into CCS	Evaporation	0.00	0.00	
5	Unit 3, 4 Added Water	0.00	0.00	
I	Unit 5 Blowdown	210.76	6533.60	
	ID Pumped Water	54.44	1687.60	
	Added Water (e.g. L-31E)	1165.96	36144.64	
	Plant Outflow	Equal to Intake		
	Plant Intake	Equal t	to Outflow	
	Total In:	8124.67	251864.86	
	W. Seepage	0.00	0.00	
	E. Seepage	-46.13	-1430.13	
	N. Seepage	-1.49	-46.24	
	S. Seepage	0.00	0.00	
Ñ	S. Seepage Bottom Seepage	0.00 -7318.65	0.00 -226878.25	
SOO				
of CCS	Bottom Seepage Precipitation and Runoff Evaporation	-7318.65	-226878.25	
ut of CCS	Bottom Seepage Precipitation and Runoff Evaporation Unit 3, 4 Added Water	-7318.65 0.00	-226878.25 0.00	
Out of CCS	Bottom Seepage Precipitation and Runoff Evaporation	-7318.65 0.00 0.00	-226878.25 0.00 0.00	
Out of CCS	Bottom Seepage Precipitation and Runoff Evaporation Unit 3, 4 Added Water	-7318.65 0.00 0.00 0.00	-226878.25 0.00 0.00 0.00	
Out of CCS	Bottom Seepage Precipitation and Runoff Evaporation Unit 3, 4 Added Water Unit 5 Blowdown ID Pumping Plant Outflow	-7318.65 0.00 0.00 0.00 0.00 0.00	-226878.25 0.00 0.00 0.00 0.00	
Out of CCS	Bottom Seepage Precipitation and Runoff Evaporation Unit 3, 4 Added Water Unit 5 Blowdown ID Pumping Plant Outflow Plant Intake	-7318.65 0.00 0.00 0.00 0.00 0.00 Equal	-226878.25 0.00 0.00 0.00 0.00 0.00 to Intake	
	Bottom Seepage Precipitation and Runoff Evaporation Unit 3, 4 Added Water Unit 5 Blowdown ID Pumping Plant Outflow Plant Intake Total Out:	-7318.65 0.00 0.00 0.00 0.00 0.00 Equal	-226878.25 0.00 0.00 0.00 0.00 0.00 to Intake	
	Bottom Seepage Precipitation and Runoff Evaporation Unit 3, 4 Added Water Unit 5 Blowdown ID Pumping Plant Outflow Plant Intake	-7318.65 0.00 0.00 0.00 0.00 0.00 Equal	-226878.25 0.00 0.00 0.00 0.00 0.00 to Intake	

Table 5.3-6. Calculated Fluid Flows from Water Budget Components for (Pre-Uprate).

September 2010 to February 2012				
Water Bu	dget Component	Flow (MGD)	Volume (gal x 10^6)	
	W. Seepage	0.30	522.73	
	E. Seepage	5.01	8694.66	
	N. Seepage	0.00	1.78	
	S. Seepage	1.08	1871.80	
	Bottom Seepage	2.29	3968.39	
∞	Precipitation and Runoff	6.74	11687.03	
Into CCS	Evaporation	0.00	0.00	
to	Unit 3, 4 Added Water	0.13	226.76	
i i	Unit 5 Blowdown	0.53	925.77	
	ID Pumping	1.53	2648.39	
	Added Water (e.g. L-31E)	0.00	0.00	
	Plant Outflow	Equal to Intake		
	Plant Intake	Equal to Outflow		
	Total In:	17.62	30547.30	
	W. Seepage	0.00	-2.67	
	E. Seepage	-1.15	-1986.23	
	N. Seepage	0.00	-5.93	
	S. Seepage	0.00	-6.46	
$\hat{\mathbf{x}}$	Bottom Seepage	-5.65	-9798.61	
\mathcal{L}	D ' ' ' ID CC	0.00		
	Precipitation and Runoff	0.00	0.00	
of C	Evaporation	0.00 -11.34	0.00 -19672.07	
ut of C				
Out of CCS	Evaporation	-11.34	-19672.07	
Out of C	Evaporation Unit 3, 4 Added Water	-11.34 0.00	-19672.07 0.00	
Out of C	Evaporation Unit 3, 4 Added Water Unit 5 Blowdown	-11.34 0.00 0.00 0.00	-19672.07 0.00 0.00	
Out of C	Evaporation Unit 3, 4 Added Water Unit 5 Blowdown ID Pumping	-11.34 0.00 0.00 0.00 Eq	-19672.07 0.00 0.00 0.00	
Out of C	Evaporation Unit 3, 4 Added Water Unit 5 Blowdown ID Pumping Plant Outflow	-11.34 0.00 0.00 0.00 Eq	-19672.07 0.00 0.00 0.00 ual to Intake	
	Evaporation Unit 3, 4 Added Water Unit 5 Blowdown ID Pumping Plant Outflow Plant Intake	-11.34 0.00 0.00 0.00 Eq	-19672.07 0.00 0.00 0.00 ual to Intake al to Outflow	

Table 5.3-6. Calculated Fluid Flows from Water Budget Components (Interim).

March 2012 to May 2013				
Water Bu	dget Component	Flow (MGD)	Volume (gal x 10^6)	
	W. Seepage	0.21	362.95	
	E. Seepage	2.55	4418.81	
	N. Seepage	0.00	7.07	
	S. Seepage	0.74	1283.45	
	Bottom Seepage	2.64	4572.75	
$\tilde{\mathbf{x}}$	Precipitation and Runoff	5.68	9847.12	
CC	Evaporation	0.00	0.00	
Into CCS	Unit 3, 4 Added Water	0.14	243.76	
In	Unit 5 Blowdown	0.50	861.70	
	ID Pumping	0.82	1428.30	
	Added Water (e.g. L-31E)	0.00	0.00	
	Plant Outflow	Equal to Intake		
	Plant Intake	Equal to Outflow		
	Total In:	13.28	23025.91	
	Total III.	13.20	23023.91	
	W. Seepage	0.00	-0.70	
	W. Seepage	0.00	-0.70 -2212.48 -1.38	
	W. Seepage E. Seepage	0.00 -1.28	-0.70 -2212.48	
S	W. Seepage E. Seepage N. Seepage S. Seepage Bottom Seepage	0.00 -1.28 0.00	-0.70 -2212.48 -1.38	
CCS	W. Seepage E. Seepage N. Seepage S. Seepage	0.00 -1.28 0.00 0.00 -2.47 0.00	-0.70 -2212.48 -1.38 -5.45 -4286.45 0.00	
of CCS	W. Seepage E. Seepage N. Seepage S. Seepage Bottom Seepage Precipitation and Runoff Evaporation	0.00 -1.28 0.00 0.00 -2.47 0.00 -8.85	-0.70 -2212.48 -1.38 -5.45 -4286.45	
ut of CCS	W. Seepage E. Seepage N. Seepage S. Seepage Bottom Seepage Precipitation and Runoff Evaporation Unit 3, 4 Added Water	0.00 -1.28 0.00 0.00 -2.47 0.00 -8.85 0.00	-0.70 -2212.48 -1.38 -5.45 -4286.45 0.00 -15341.70 0.00	
Out of CCS	W. Seepage E. Seepage N. Seepage S. Seepage Bottom Seepage Precipitation and Runoff Evaporation	0.00 -1.28 0.00 0.00 -2.47 0.00 -8.85 0.00 0.00	-0.70 -2212.48 -1.38 -5.45 -4286.45 0.00 -15341.70 0.00 0.00	
Out of CCS	W. Seepage E. Seepage N. Seepage S. Seepage Bottom Seepage Precipitation and Runoff Evaporation Unit 3, 4 Added Water Unit 5 Blowdown ID Pumping	0.00 -1.28 0.00 0.00 -2.47 0.00 -8.85 0.00	-0.70 -2212.48 -1.38 -5.45 -4286.45 0.00 -15341.70 0.00	
Out of CCS	W. Seepage E. Seepage N. Seepage S. Seepage Bottom Seepage Precipitation and Runoff Evaporation Unit 3, 4 Added Water Unit 5 Blowdown ID Pumping Plant Outflow	0.00 -1.28 0.00 0.00 -2.47 0.00 -8.85 0.00 0.00 0.00 Eq	-0.70 -2212.48 -1.38 -5.45 -4286.45 0.00 -15341.70 0.00 0.00 0.00 ual to Intake	
Out of CCS	W. Seepage E. Seepage N. Seepage S. Seepage Bottom Seepage Precipitation and Runoff Evaporation Unit 3, 4 Added Water Unit 5 Blowdown ID Pumping Plant Outflow Plant Intake	0.00 -1.28 0.00 0.00 -2.47 0.00 -8.85 0.00 0.00 0.00 Eq	-0.70 -2212.48 -1.38 -5.45 -4286.45 0.00 -15341.70 0.00 0.00 0.00 ual to Intake al to Outflow	
	W. Seepage E. Seepage N. Seepage S. Seepage Bottom Seepage Precipitation and Runoff Evaporation Unit 3, 4 Added Water Unit 5 Blowdown ID Pumping Plant Outflow Plant Intake Total Out:	0.00 -1.28 0.00 0.00 -2.47 0.00 -8.85 0.00 0.00 0.00 Eq	-0.70 -2212.48 -1.38 -5.45 -4286.45 0.00 -15341.70 0.00 0.00 0.00 ual to Intake	
	W. Seepage E. Seepage N. Seepage S. Seepage Bottom Seepage Precipitation and Runoff Evaporation Unit 3, 4 Added Water Unit 5 Blowdown ID Pumping Plant Outflow Plant Intake	0.00 -1.28 0.00 0.00 -2.47 0.00 -8.85 0.00 0.00 0.00 Eq	-0.70 -2212.48 -1.38 -5.45 -4286.45 0.00 -15341.70 0.00 0.00 0.00 ual to Intake al to Outflow	

Table 5.3-6. Calculated Fluid Flows from Water Budget Components (Post-Uprate).

June 2013 to May 2015				
Water Bu	dget Component	Flow (MGD)	Volume (gal x 10^6)	
	W. Seepage	0.26	444.00	
	E. Seepage	6.02	10444.35	
	N. Seepage	0.00	7.52	
	S. Seepage	1.49	2575.27	
	Bottom Seepage	3.94	6837.60	
$\tilde{\mathbf{x}}$	Precipitation and Runoff	7.10	12312.81	
CC	Evaporation	0.00	0.00	
Into CCS	Unit 3, 4 Added Water	0.22	380.50	
In	Unit 5 Blowdown	0.93	1605.64	
	ID Pumping	1.23	2129.31	
	Added Water (e.g. L-31E)	1.93	3352.82	
	Plant Outflow	Equal to Intake		
	Plant Intake	Equal to Outflow		
	Total In:	23.12	40089.83	
	1 Ottal III.	20.12	T0007.03	
	W. Seepage	0.00	-1.30	
	W. Seepage	0.00	-1.30	
	W. Seepage E. Seepage	0.00 -1.01	-1.30 -1742.78	
S	W. Seepage E. Seepage N. Seepage S. Seepage Bottom Seepage	0.00 -1.01 0.00	-1.30 -1742.78 -3.14	
CCS	W. Seepage E. Seepage N. Seepage S. Seepage	0.00 -1.01 0.00 -0.02	-1.30 -1742.78 -3.14 -32.13 -5419.68 0.00	
of CCS	W. Seepage E. Seepage N. Seepage S. Seepage Bottom Seepage	0.00 -1.01 0.00 -0.02 -3.13	-1.30 -1742.78 -3.14 -32.13 -5419.68	
ut of CCS	W. Seepage E. Seepage N. Seepage S. Seepage Bottom Seepage Precipitation and Runoff Evaporation Unit 3, 4 Added Water	0.00 -1.01 0.00 -0.02 -3.13 0.00	-1.30 -1742.78 -3.14 -32.13 -5419.68 0.00	
Out of CCS	W. Seepage E. Seepage N. Seepage S. Seepage Bottom Seepage Precipitation and Runoff Evaporation	0.00 -1.01 0.00 -0.02 -3.13 0.00 -19.34	-1.30 -1742.78 -3.14 -32.13 -5419.68 0.00 -33528.70	
Out of CCS	W. Seepage E. Seepage N. Seepage S. Seepage Bottom Seepage Precipitation and Runoff Evaporation Unit 3, 4 Added Water Unit 5 Blowdown ID Pumping	0.00 -1.01 0.00 -0.02 -3.13 0.00 -19.34 0.00	-1.30 -1742.78 -3.14 -32.13 -5419.68 0.00 -33528.70 0.00	
Out of CCS	W. Seepage E. Seepage N. Seepage S. Seepage Bottom Seepage Precipitation and Runoff Evaporation Unit 3, 4 Added Water Unit 5 Blowdown ID Pumping Plant Outflow	0.00 -1.01 0.00 -0.02 -3.13 0.00 -19.34 0.00 0.00 0.00	-1.30 -1742.78 -3.14 -32.13 -5419.68 0.00 -33528.70 0.00 0.00	
Out of CCS	W. Seepage E. Seepage N. Seepage S. Seepage Bottom Seepage Precipitation and Runoff Evaporation Unit 3, 4 Added Water Unit 5 Blowdown ID Pumping Plant Outflow Plant Intake	0.00 -1.01 0.00 -0.02 -3.13 0.00 -19.34 0.00 0.00 0.00 Eq	-1.30 -1742.78 -3.14 -32.13 -5419.68 0.00 -33528.70 0.00 0.00 0.00 ual to Intake al to Outflow	
	W. Seepage E. Seepage N. Seepage S. Seepage Bottom Seepage Precipitation and Runoff Evaporation Unit 3, 4 Added Water Unit 5 Blowdown ID Pumping Plant Outflow Plant Intake Total Out:	0.00 -1.01 0.00 -0.02 -3.13 0.00 -19.34 0.00 0.00 0.00 Eq	-1.30 -1742.78 -3.14 -32.13 -5419.68 0.00 -33528.70 0.00 0.00 0.00 0.00 ual to Intake	
	W. Seepage E. Seepage N. Seepage S. Seepage Bottom Seepage Precipitation and Runoff Evaporation Unit 3, 4 Added Water Unit 5 Blowdown ID Pumping Plant Outflow Plant Intake	0.00 -1.01 0.00 -0.02 -3.13 0.00 -19.34 0.00 0.00 0.00 Eq	-1.30 -1742.78 -3.14 -32.13 -5419.68 0.00 -33528.70 0.00 0.00 0.00 ual to Intake al to Outflow	

Table 5.3-7. Calculated Mass Flows from Salt Budget Components (Pre-Uprate).

September 2010 to February 2012				
Mass	Budget Component	lb/day (x1000)	Mass (lb x 1000)	
	W. Seepage	2.28	3952.60	
	E. Seepage	1454.26	2521693.12	
	N. Seepage	0.21	369.94	
	S. Seepage	209.49	363248.88	
	Bottom Seepage	742.22	1287006.96	
×	Precipitation and Runoff	0.00	0.00	
\sim	Evaporation	0.00	0.00	
Into CCS	Unit 3, 4 Added Water	0.00	0.00	
rI.	Unit 5 Blowdown	38.99	67601.64	
	ID Pumped Water	229.35	397692.82	
	Added Water (e.g. L-31E)	0.00	0.00	
	Plant Outflow	Equal to Intake		
	Plant Intake	Equ	ual to Outflow	
	Total In:	2676.80	4641565.97	
	W. Seepage	-24.18	-41936.73	
	W. Seepage E. Seepage	-24.18 -406.03	-41936.73 -704049.99	
	E. Seepage	-406.03	-704049.99	
Ş	E. Seepage N. Seepage	-406.03 -1.58	-704049.99 -2738.28	
SOO	E. Seepage N. Seepage S. Seepage	-406.03 -1.58 -1.66 -2516.05 0.00	-704049.99 -2738.28 -2873.69 -4362837.54 0.00	
of CCS	E. Seepage N. Seepage S. Seepage Bottom Seepage Precipitation and Runoff Evaporation	-406.03 -1.58 -1.66 -2516.05	-704049.99 -2738.28 -2873.69 -4362837.54	
ut of CCS	E. Seepage N. Seepage S. Seepage Bottom Seepage Precipitation and Runoff Evaporation Unit 3, 4 Added Water	-406.03 -1.58 -1.66 -2516.05 0.00	-704049.99 -2738.28 -2873.69 -4362837.54 0.00	
Out of CCS	E. Seepage N. Seepage S. Seepage Bottom Seepage Precipitation and Runoff Evaporation Unit 3, 4 Added Water Unit 5 Blowdown	-406.03 -1.58 -1.66 -2516.05 0.00 0.00	-704049.99 -2738.28 -2873.69 -4362837.54 0.00 0.00 0.00 0.00	
Out of CCS	E. Seepage N. Seepage S. Seepage Bottom Seepage Precipitation and Runoff Evaporation Unit 3, 4 Added Water Unit 5 Blowdown ID Pumping	-406.03 -1.58 -1.66 -2516.05 0.00 0.00 0.00	-704049.99 -2738.28 -2873.69 -4362837.54 0.00 0.00 0.00	
Out of CCS	E. Seepage N. Seepage S. Seepage Bottom Seepage Precipitation and Runoff Evaporation Unit 3, 4 Added Water Unit 5 Blowdown ID Pumping Plant Outflow	-406.03 -1.58 -1.66 -2516.05 0.00 0.00 0.00 0.00 0.00 Ec	-704049.99 -2738.28 -2873.69 -4362837.54 0.00 0.00 0.00 0.00 0.00 0.00 unal to Intake	
Out of CCS	E. Seepage N. Seepage S. Seepage Bottom Seepage Precipitation and Runoff Evaporation Unit 3, 4 Added Water Unit 5 Blowdown ID Pumping Plant Outflow Plant Intake	-406.03 -1.58 -1.66 -2516.05 0.00 0.00 0.00 0.00 0.00 Ecc	-704049.99 -2738.28 -2873.69 -4362837.54 0.00 0.00 0.00 0.00 0.00 0.00 uual to Intake	
	E. Seepage N. Seepage S. Seepage Bottom Seepage Precipitation and Runoff Evaporation Unit 3, 4 Added Water Unit 5 Blowdown ID Pumping Plant Outflow Plant Intake Total Out:	-406.03 -1.58 -1.66 -2516.05 0.00 0.00 0.00 0.00 0.00 Ec	-704049.99 -2738.28 -2873.69 -4362837.54 0.00 0.00 0.00 0.00 0.00 0.00 unal to Intake	
	E. Seepage N. Seepage S. Seepage Bottom Seepage Precipitation and Runoff Evaporation Unit 3, 4 Added Water Unit 5 Blowdown ID Pumping Plant Outflow Plant Intake	-406.03 -1.58 -1.66 -2516.05 0.00 0.00 0.00 0.00 0.00 Ecc	-704049.99 -2738.28 -2873.69 -4362837.54 0.00 0.00 0.00 0.00 0.00 0.00 uual to Intake	

Table 5.3-7. Calculated Mass Flows from Salt Budget Components (Interim).

March 2012 to May 2013				
Mass	Budget Component	lb/day (x1000)	Mass (lb x 1000)	
	W. Seepage	1.43	2486.99	
	E. Seepage	686.33	1190089.51	
	N. Seepage	0.88	1527.13	
	S. Seepage	149.36	258989.04	
	Bottom Seepage	669.24	1160455.22	
\mathbf{x}	Precipitation and Runoff	0.00	0.00	
S	Evaporation	0.00	0.00	
Into CCS	Unit 3, 4 Added Water	0.00	0.00	
H	Unit 5 Blowdown	36.29	62923.11	
	ID Pumped Water	47.22	81870.84	
	Added Water (e.g. L-31E)	0.00	0.00	
	Plant Outflow	Equal to Intake		
	Plant Intake	Equal to Outflow		
	Total In:	1590.74	2758341.84	
	W. Seepage	-4.64	-8039.73	
	W. Seepage E. Seepage	-4.64 -521.22	-8039.73 -903788.60	
		-521.22 -0.39		
	E. Seepage	-521.22	-903788.60	
Ş	E. Seepage N. Seepage S. Seepage Bottom Seepage	-521.22 -0.39	-903788.60 -684.84	
SOO	E. Seepage N. Seepage S. Seepage	-521.22 -0.39 -1.27 -1107.53 0.00	-903788.60 -684.84 -2199.92 -1920463.42 0.00	
of CCS	E. Seepage N. Seepage S. Seepage Bottom Seepage Precipitation and Runoff Evaporation	-521.22 -0.39 -1.27 -1107.53 0.00 0.00	-903788.60 -684.84 -2199.92 -1920463.42 0.00 0.00	
ut of CCS	E. Seepage N. Seepage S. Seepage Bottom Seepage Precipitation and Runoff Evaporation Unit 3, 4 Added Water	-521.22 -0.39 -1.27 -1107.53 0.00 0.00 0.00	-903788.60 -684.84 -2199.92 -1920463.42 0.00 0.00 0.00	
Out of CCS	E. Seepage N. Seepage S. Seepage Bottom Seepage Precipitation and Runoff Evaporation Unit 3, 4 Added Water Unit 5 Blowdown	-521.22 -0.39 -1.27 -1107.53 0.00 0.00	-903788.60 -684.84 -2199.92 -1920463.42 0.00 0.00 0.00 0.00 0.00	
Out of CCS	E. Seepage N. Seepage S. Seepage Bottom Seepage Precipitation and Runoff Evaporation Unit 3, 4 Added Water Unit 5 Blowdown ID Pumping	-521.22 -0.39 -1.27 -1107.53 0.00 0.00 0.00 0.00 0.00	-903788.60 -684.84 -2199.92 -1920463.42 0.00 0.00 0.00 0.00 0.00	
Out of CCS	E. Seepage N. Seepage S. Seepage Bottom Seepage Precipitation and Runoff Evaporation Unit 3, 4 Added Water Unit 5 Blowdown ID Pumping Plant Outflow	-521.22 -0.39 -1.27 -1107.53 0.00 0.00 0.00 0.00 0.00	-903788.60 -684.84 -2199.92 -1920463.42 0.00 0.00 0.00 0.00 0.00 0.00 unual to Intake	
Out of CCS	E. Seepage N. Seepage S. Seepage Bottom Seepage Precipitation and Runoff Evaporation Unit 3, 4 Added Water Unit 5 Blowdown ID Pumping Plant Outflow Plant Intake	-521.22 -0.39 -1.27 -1107.53 0.00 0.00 0.00 0.00 0.00 Ec	-903788.60 -684.84 -2199.92 -1920463.42 0.00 0.00 0.00 0.00 0.00 0.00 qual to Intake	
	E. Seepage N. Seepage S. Seepage Bottom Seepage Precipitation and Runoff Evaporation Unit 3, 4 Added Water Unit 5 Blowdown ID Pumping Plant Outflow Plant Intake Total Out:	-521.22 -0.39 -1.27 -1107.53 0.00 0.00 0.00 0.00 0.00	-903788.60 -684.84 -2199.92 -1920463.42 0.00 0.00 0.00 0.00 0.00 0.00 unual to Intake	
	E. Seepage N. Seepage S. Seepage Bottom Seepage Precipitation and Runoff Evaporation Unit 3, 4 Added Water Unit 5 Blowdown ID Pumping Plant Outflow Plant Intake	-521.22 -0.39 -1.27 -1107.53 0.00 0.00 0.00 0.00 0.00 Ec	-903788.60 -684.84 -2199.92 -1920463.42 0.00 0.00 0.00 0.00 0.00 0.00 qual to Intake	

Table 5.3-7. Calculated Mass Flows from Salt Budget Components (Post-Uprate).

June 2013 to May 2015				
Mass	Mass Budget Component		Mass (lb x 1000)	
	W. Seepage	2.41	4177.83	
	E. Seepage	1733.45	3005802.21	
	N. Seepage	0.80	1391.65	
	S. Seepage	305.52	529773.17	
	Bottom Seepage	1060.44	1838796.14	
\mathbf{x}	Precipitation and Runoff	0.00	0.00	
Into CCS	Evaporation	0.00	0.00	
to	Unit 3, 4 Added Water	0.00	0.00	
rI.	Unit 5 Blowdown	67.62	117247.84	
	ID Pumped Water	83.73	145192.82	
	Added Water (e.g. L-31E)	219.43	380491.12	
	Plant Outflow	Equal to Intake		
	Plant Intake	Equ	ual to Outflow	
	Total In:	3473.40	6022872.76	
	W. Seepage	-17.33	-30042.65	
	E. Seepage	-539.78	-935977.91	
	N. Seepage	-1.34	-2329.95	
	S. Seepage	-8.51	-14757.14	
$\tilde{\mathbf{x}}$	Bottom Seepage	-1991.88	-3453917.68	
Out of CCS	Precipitation and Runoff	0.00	0.00	
of (Evaporation	0.00	0.00	
ūţ	Unit 3, 4 Added Water	0.00	0.00	
0	Unit 5 Blowdown	0.00	0.00	
	ID Pumping	0.00	0.00	
	Plant Outflow	Equal to Intake		
	Plant Intake	Eq:	ual to Outflow	
	Total Out:	-2558.84	-4437025.34	
Modeled (Change in CCS Storage:	914.56	1585847.43	
	Observed Change	233.18	170219.73	

FIGURES

Figure 5.2-1. Locations of Specific Conductance and Tritium Cross Sections.

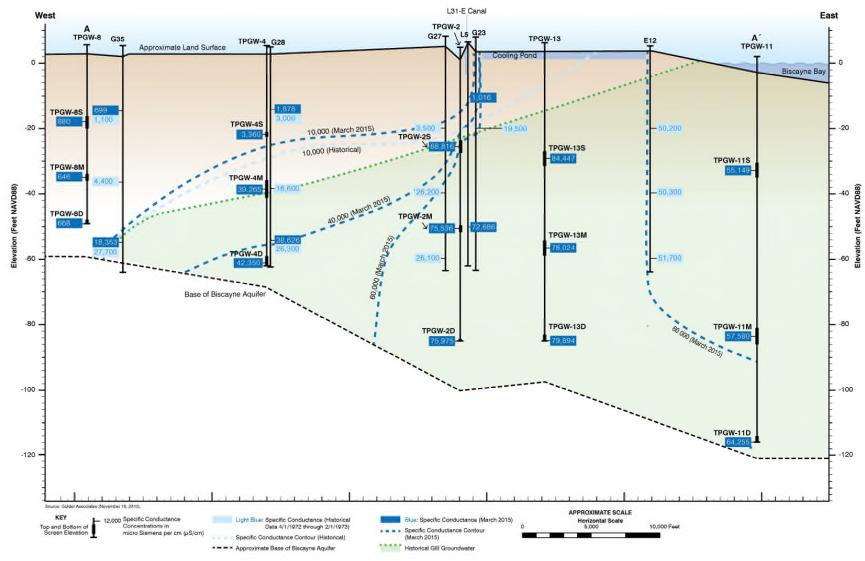


Figure 5.2-2. Specific Conductance Cross Section A-A', Historic and Current Concentration Isopleths.

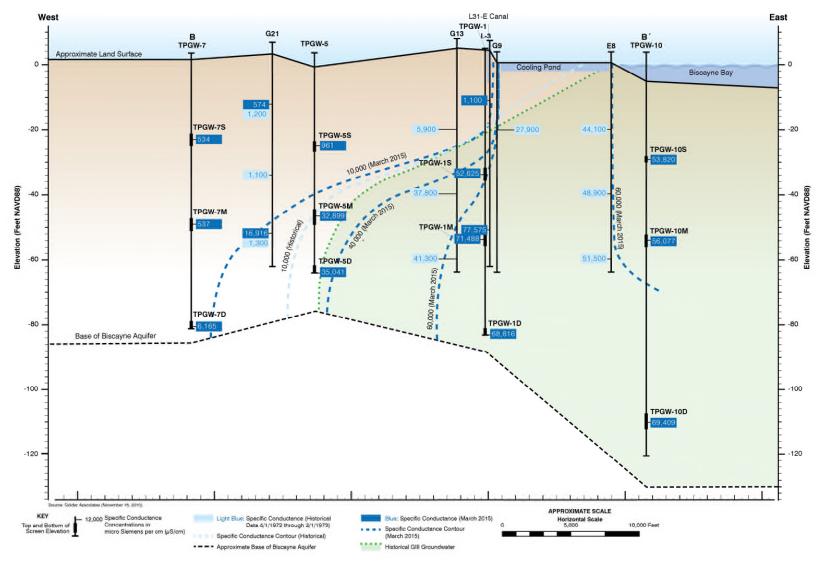


Figure 5.2-3. Specific Conductance Cross Section B-B', Historic and Current Concentration Isopleths.

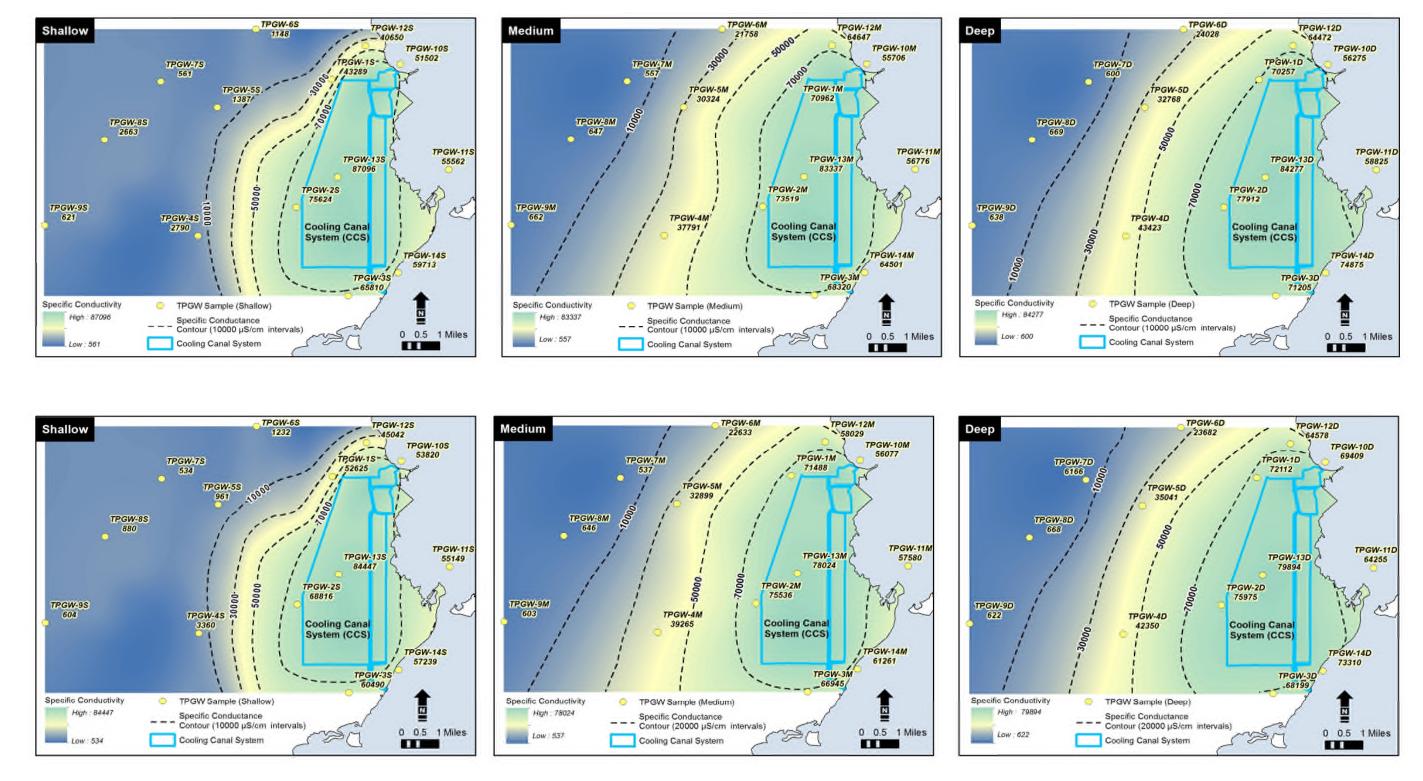


Figure 5.2-4. Shallow Well Pre-Uprate (Top) and Post-Uprate (Bottom) Average Specific Conductance Isopleths.

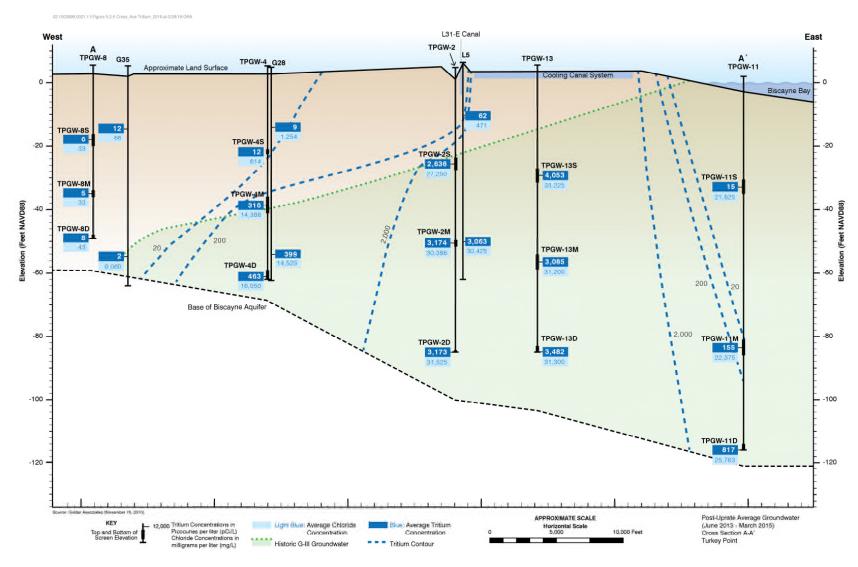


Figure 5.2-5. Post-Uprate Tritium Isopleth/Cross Section A-A' with Chloride Concentrations and Historic G-III Boundary.

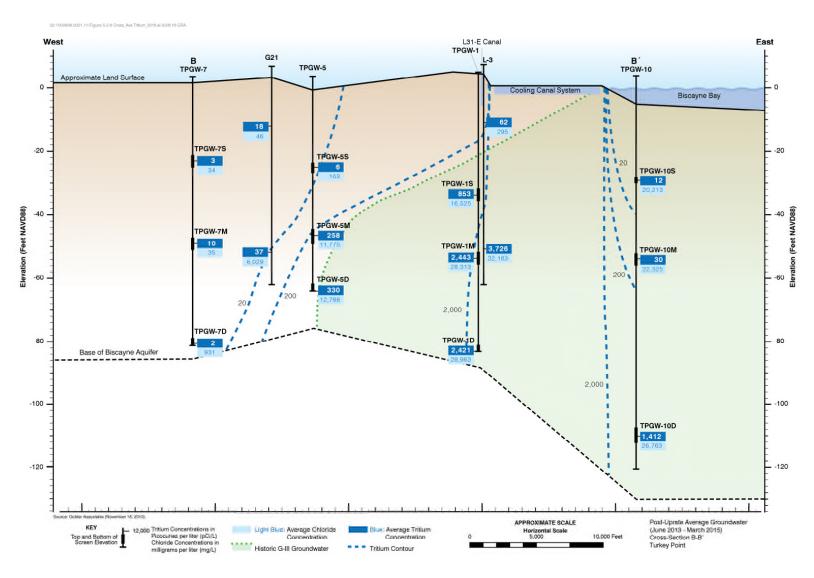


Figure 5.2-6. Post-Uprate Tritium Isopleth/Cross Section B-B' with Chloride Concentrations and Historic G-III Boundary.

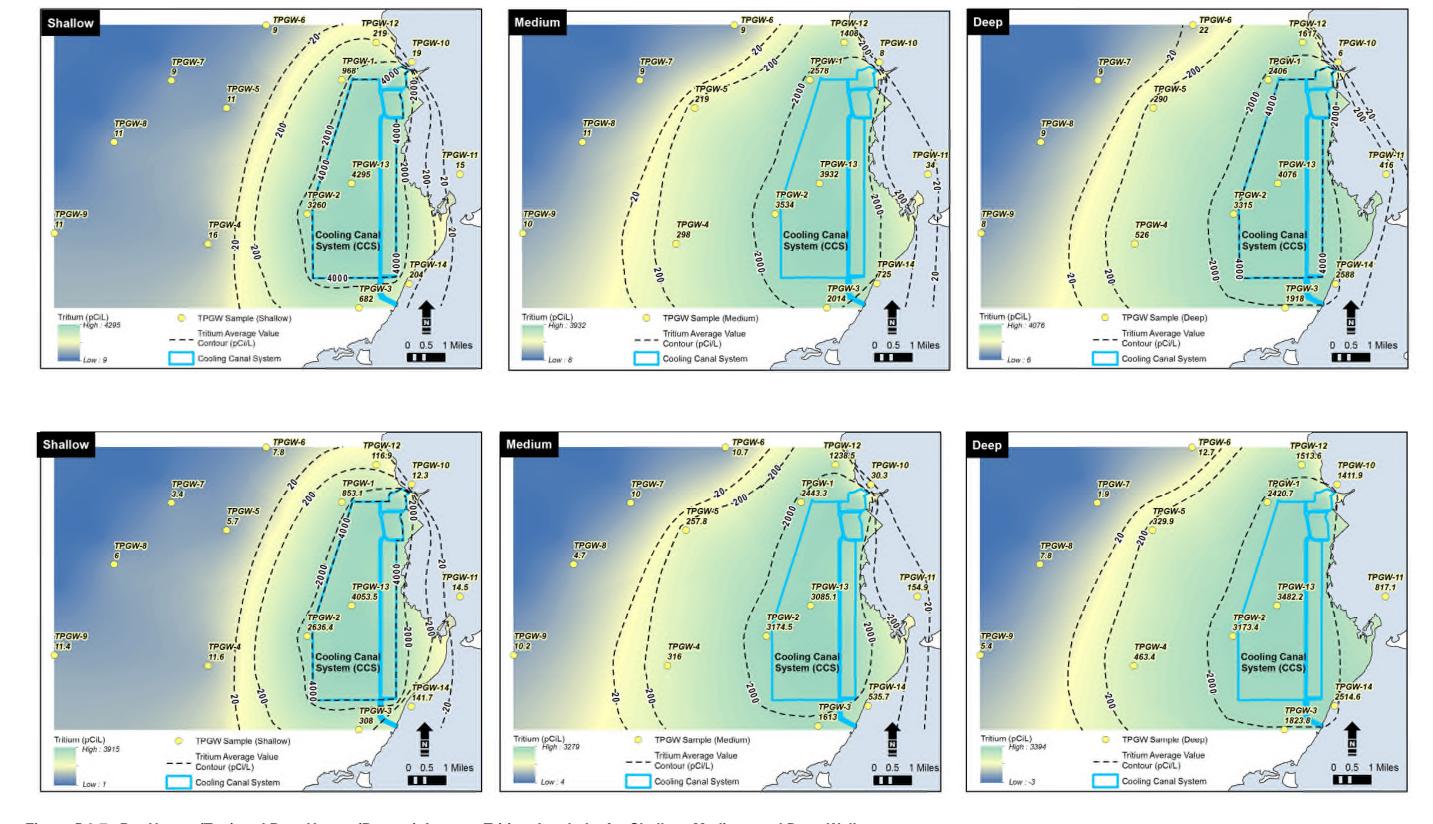


Figure 5.2-7. Pre-Uprate (Top) and Post-Uprate (Bottom) Average Tritium Isopleths for Shallow, Medium, and Deep Wells.

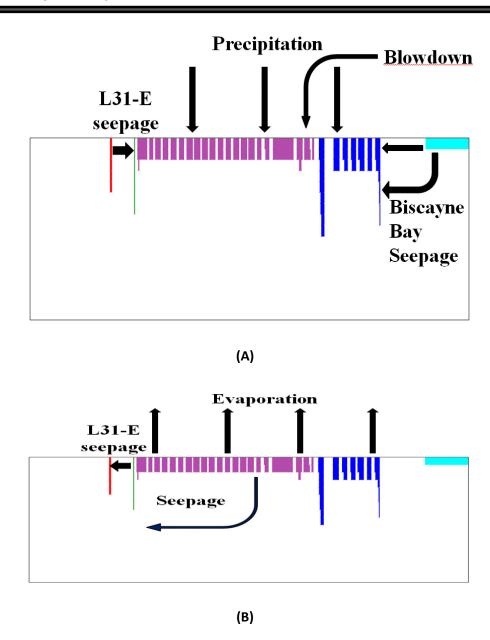


Figure 5.3-1. Flow (A) into and (B) out of the CCS, Shown in Cross-Section.

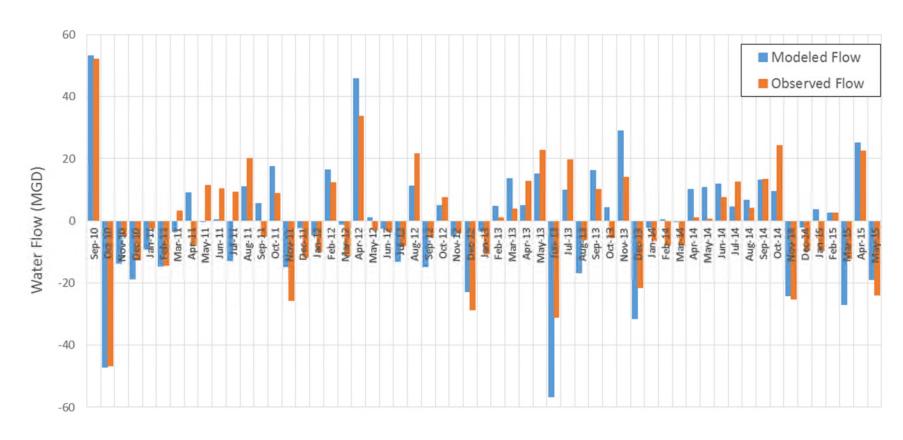


Figure 5.3-2. Modeled versus Measured Net Monthly Flows of Water for the CCS over the 57-Month Period .

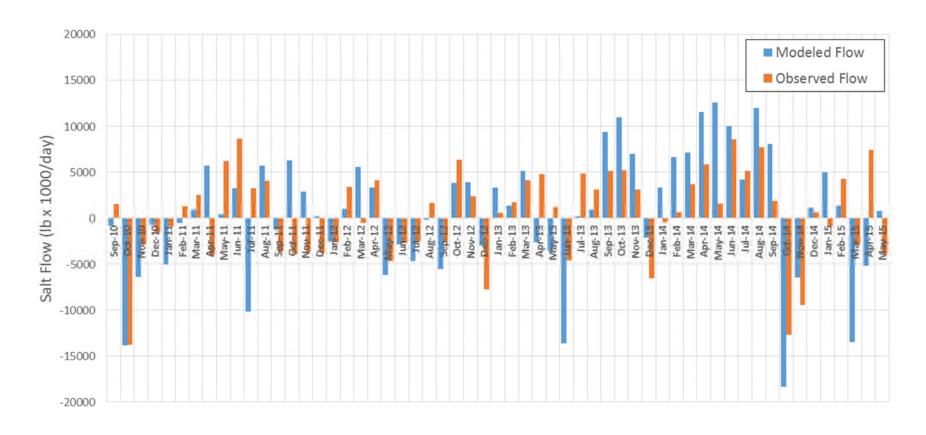


Figure 5.3-3. Modeled versus Measured Net Monthly Flows of Salt Mass for the CCS over the 57-Month Period .



Figure 5.3-4. Modeled versus Measured Water Elevations (NAVD 88) in the CCS over the 57-Month Period; Used to Validate the Conceptual Model and Calibrate the Water Balance Model to Temporal Trends in Water Elevation.

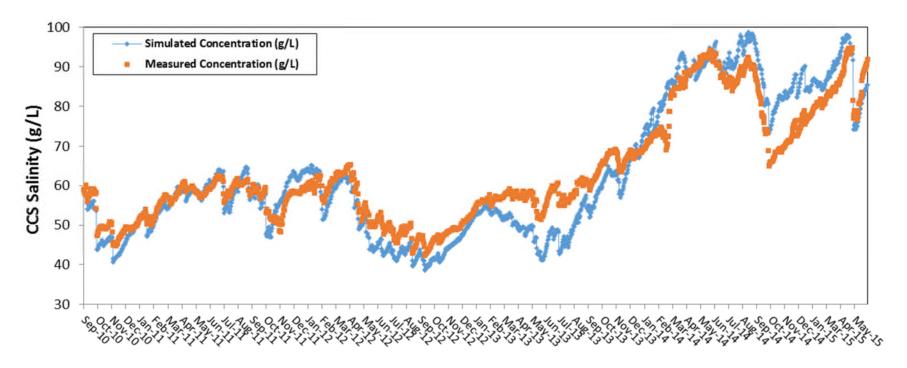


Figure 5.3-5. Modeled versus Measured Salinity in the CCS over the 57-Month Period; Used to Validate the Conceptual Model and Calibrate the Water Balance Model to Temporal Trends in Salinity.

6. INTERCEPTOR DITCH OPERATION

6.1 INTRODUCTION

The purpose of the ID, according to Section II (A)(1) of the Fifth Supplemental Agreement between SFWMD and FPL, dated October 16, 2009, is "to restrict movement of saline water from the cooling water system westward of Levee 31E adjacent to the cooling canal system to those amounts which would occur without the existence of the cooling canal system." When water levels in the CCS get to high and/or natural freshwater seaward gradients are non-existent, the water level in the ID is lowered by pumping water from the ID. This lowering of the ID water levels facilitates a seaward gradient between the L-31E Canal and the CCS or, depending upon CCS water levels, intercepts saline groundwater moving westward from the CCS. This effort restricts inland movement of cooling canal water in the upper zones of the aquifer.

FPL is required to follow certain operational procedures, with the most current procedures formally adopted in 2012. Prior operating criteria and procedures for the ID system were included in the 1983 Agreement between FPL and SFWMD. Monitoring data are required to be collected, including groundwater levels, conductivities, and temperatures in wells L-3, L-5, G-21, G-28, and G-35. In addition, surface water levels are required to be monitored in the L-31E, ID, and the western-most CCS canal (C-32) at five transects (A through E). FPL has prepared annual reports on the ID operation and groundwater conditions, referred to as the Annual Report Groundwater Monitoring Program, in compliance with the above-mentioned Agreements. Since August 2012, this annual reporting is incorporated as a section in the Turkey Point Plant Uprate annual reports.

The information presented in this section pertains to the operation of the ID from June 1, 2014, through May 31, 2015, and includes the same type of information as presented in previous ID operation reports (i.e., Golder Associates, Inc. 2011; FPL 2012a, 2014a). For consistency, the focus of this section is the historical L and G wells and the operation of the ID. Figure 6.1-1 shows the well locations and five surface water transects (A through E). Information on wells installed as part of the Uprate Project can be found in Sections 2 and 3 of this report. Where appropriate, references to the data in these sections will be made.

6.2 OPERATIONAL OR STRUCTURAL CHANGES

As discussed in the Comprehensive Pre-Uprate Report (FPL 2012a), FPL initiated a more conservative, revised, operational procedure for the ID in December 2011 that considered freshwater head equivalents for the surface water transects. This resulted in changes to the operational criteria that trigger pumping the ID. The criteria were refined further, and the operational criteria/triggers that have been used since December 2012 are as follows:

- If the L-31E water elevation minus the C-32 water elevation is equal to or greater than 0.25 ft, then no pumping of the ID is necessary because a seaward gradient exists.
- If the L-31E water elevation minus the C-32 water elevation is less than 0.25 ft, a natural seaward gradient may still exist if the L-31E water elevation minus the ID water elevation is equal to or greater than 0.30 ft and the density of the water in the ID is less than or equal to 1.012 g/cm³. If the density in the ID is higher than 1.012 g/cm³, a higher elevation difference between the L-31E Canal and the ID is necessary and can be calculated by converting the surface water levels to freshwater head equivalents.
- If a natural seaward gradient does not exist, an artificial gradient is created by pumping the ID until the ID is maintained at an elevation of at least 0.30 to 0.70 ft lower than the L-31E Canal, depending on the density of the ID water.

The operation of the ID pumps is based on water level readings at each of the five surface water transects. Traditionally, FPL has taken manual water level readings at least once every week during the dry season and at least twice a month during the wet season (Appendix M). When the Turkey Point Monitoring Plan (SFWMD 2009a) was approved by the Agencies, automated stations were installed at Transects A, C, and E. As discussed in Section 2, these stations currently report data at 1-hour intervals and typically transmit by telemetry to a database every day. FPL is still manually recording water levels at each transect during the dry season at least once every week and at least twice per month during the wet season to evaluate hydraulic gradients. FPL also uses the automated data to determine if they need to visit the sites more frequently and operate the ID pumps (Appendix M).

One of the potential challenges in operating the ID in this reporting period was the ability to maintain the desired gradients when extended periods of pumping are required. Since the CCS has been getting saltier and the water has become denser in the Post-Uprate period through May 2015, the trigger for pumping has become more frequent. When the ID pumps are operated, the salinity in the ID also increases. As the salinity/density of the ID rises, the desired elevation differences between the L-31E Canal and ID must be increased in order to maintain a density-corrected gradient. At some point, it becomes difficult to meet the water elevation differentials due to the increasing density. Thus, any efforts to freshen the CCS can help reduce the long-term frequency of ID pumping.

6.3 Meteorological Conditions

Meteorological data noted in Section 2.4 of this report include daily data collected from TPM-1. Daily rainfall data have also been traditionally recorded by SFWMD at structure S-20F, located along the L-31E Canal, approximately 2.5 miles north of the CCS. Figure 6.3-1 shows the monthly rainfall at S-20F and TPM-1 for the ID reporting period of June 2014 to May 2015, and compares the data to historical averages (1968 to 2014) at S-20F. As discussed in Section 2.4, the rainfall monitoring station at TPM-1 had been under-reporting hourly values that were used to calculated monthly totals. Instead of using the hourly data, the daily totals, which appear to be properly reported, have been used to calculate the monthly totals.

Rainfall for June 2014 to May 2015 was below the historic annual average from July 1968 to May 2014 at station S-20F. The rain gauge at station S-20F recorded 41.2 inches of precipitation from June 2014 to May 2015, while 42.3 inches of rain were recorded at TPM-1. The annual 1968 to 2014 average at S-20F is 46.4 inches.

As shown on Figure 6.3-1, the rainfall distribution for the period from June 2014 through May 2015 was predominantly concentrated in the months of June through October, which are the traditionally wet season months. However, heavy rain does occasionally occur in the dry season (November to May), as evidenced by the highest monthly total approaching 8 inches in April 2015 at TPM-1. During an average year, approximately 74% of the precipitation occurs during the wet season, with the remainder occurring during the dry season. In the 2014/2015 reporting period, less than 65% of the rainfall fell in the wet season; however, the wet April of 2015 lowered that percentage.

6.4 WATER QUALITY AND WATER LEVEL RESULTS AND DISCUSSION

6.4.1 Groundwater Levels

Groundwater levels are manually measured and samples and are collected quarterly from historical wells L-3, L-5, G-21, G-28, and G-35. During the Post-Uprate reporting period, water levels were measured in June 2014, September 2014, December 2014, and March 2015. Figure 6.4-1 shows the groundwater levels measured during this time period and the maximum and minimum levels recorded during the historical period. The start dates for the historical period for each well are as follows:

- L-3: April 1974;
- L-5: January 1976;
- G-21: April 1972;
- G-28: April 1972; and
- G-35: April 1972.

The historical period for wells L-3, L-5, G-21, and G-28 was extended to include data through May 2015 for this report. Because data were not recorded for well G-35 between 1983 and 2010, the historical maximums and minimum for G-35 are not as comparable to the other wells.

The groundwater elevations during this reporting period at L-3 and L-5 were all lower than the groundwater elevations in wells G-21, G-28 and G-35, which are farther west. The lowest water levels in all wells were recorded in June 2014 at the end of the dry season, and the highest water levels were typically recorded in September or December. However, G-35 exhibited its highest water level in March 2015. All water levels were within the historic maximum and minimum ranges.

6.4.2 Vertical Groundwater Temperature Profiles

Groundwater temperatures are measured on a quarterly basis at 1-ft intervals throughout the water column in L-3, L-5, G-21, G-28, and G-35. For this monitoring period, temperatures were recorded in June 2014, September 2014, December 2014, and March 2015. Figures 6.4-2 through 6.4-6 show the temperature profile with depth and are compared with the historical envelope for each well, where available. As reported by Golder Associates, Inc. (2011), the historical envelope represents both the highest and lowest temperatures recorded during the period from July 1981 through June 1991.

All wells were within the historical envelopes (where established) for temperature, except for a couple of depth intervals in one or more quarters. In September 2014, the water temperatures in the upper 5 to 15 feet of the water column of wells L-3, L-5, G-21 and G-28 were 1°C to 2°C higher than the historical maximum. Water temperatures were also skirting the historic maximum values in December 2014 at L-3 and in June 2014 at L-5 for water elevations starting at -18 to -24 ft NAVD 88 and extending to -12 or -20 ft NAVD 88. There is no historical envelope for G-35, but the temperature profile for G-35 is similar to G-28, other than that the water temperature in G-35 within the top 8 feet was nearly 1°C cooler in September 2014.

6.4.3 Vertical Groundwater Chloride Profiles

Groundwater specific conductance is measured at 1-ft intervals across the entire water column in all five wells. The specific conductance data are then converted to chloride values according to the procedures outlined in the 1983 Agreement and which continue to be followed. For this monitoring period, specific conductance values were measured in June 2014, September 2014, December 2014, and March 2015, and corresponding chloride values were calculated. Similar to the temperature profiles, chloride profiles have been developed and compared with historical envelopes when available (Figures 6.4-7 through 6.4-11). The historical envelope represents both the highest and lowest chloride levels recorded during the period from July 1981 through June 1991.

For the current reporting period, and similar to previous reporting periods, in most cases the chloride values at depth exceeded the historical envelope. The depth at which the calculated chloride values at L-3 began to exceed the historical envelope in June 2014 was -32 ft NAVD 88 as well as September 2014 at -46 ft NAVD 88 and March 2015 at a depth of -52 ft NAVD 88. At L-5, the calculated chloride values began to skirt or slightly exceed the maximum historical values at a depth of approximately -25 ft NAVD 88 for all quarters. In the G-series wells, the depths where the historical maximum were exceeded were deeper (-42 ft to -43 ft NAVD 88 at G-21, and -31 ft to -32 NAVD 88 for G-28). The highest values were found at L-3 (31.4 parts per thousand [ppt]) and L-5 (29.5 ppt) at or near the bottom sample depth of approximately -50 ft NAVD 88. The lowest concentrations were at G-35, where the levels are minimal, to about elevation -41 ft NAVD 88, below which they increased to values between 5 and 7 ppt. Golder Associates, Inc. (2011) reported that the historical chloride levels at those depths in the 1970s reached up about 10 ppt.

What is clear from the vertical profiles is the quick change in chloride values with depth, indicating a fairly sharp transition in water quality. This transitional boundary moves up and down, depending on seasonal variations. The profiles also show the presence of a shallow, predominantly freshwater (per FDEP, F.A.C. 62-302.200) lens in L-3, L-5, G-21, G-28, and G-35.

6.4.4 Interceptor Ditch Operation and Transect Surface Water Levels

Surface water levels have been traditionally measured in L-31E, the ID, and C-32 (CCS) as required by the ID operation procedure. The water levels are measured in these canals at pumping Lines A, B, C, D, and E, as shown on Figure 6.1-1. Water levels recorded during the past 12-month monitoring period are presented on Figures 6.4-12 through 6.4-16. The data for these figures are based on the manual readings by FPL staff at all five transect locations.

With a few exceptions, water levels in the L-31E Canal were higher than in the C-32 at all transects. The most notable exception was in March and/or April 2015, when the CCS was higher for up to one to three weeks in transects A, B, and C. Also, on October 15, 2014, the water level in L-31E dropped below the ID and CCS in transects A and B in response to a high rate of temporary pumping from the L-31E Canal. Table 6.4-1 shows the range in head differences in L-31E and C-32 at each transect and the range in head differences in L-31E and the ID. Transect E occasionally has ID water levels higher than L-31E water levels.

Although none of the information presented in the above figures is corrected for density, Figures 6.4-17 through 6.4-19 illustrate differences in water levels between L-31E and the CCS (C-32) and differences between L-31E and the ID for transects A, C, and E, respectively, considering density differences (freshwater head equivalents). Basically, the figures show the difference in elevation between the L-31E Canal in relation to the CCS and ID, as well as the difference in water level between the ID and CCS. For these graphs, the undesired scenario is when both the black line and the orange line are less than zero (both the CCS and ID are higher than L-31E) AND the black line is lower than the orange line (CCS is also higher than ID). This rarely happens; however, when it does occur, it is for a very short duration.

Operation of the ID pumps is shown on Figure 6.4-20, along with the measured rainfall. Table 6.4-2 shows how many hours each pump operated every month, along with the volume of water pumped. Data in Table 6.4-3 identifies when pumping was required by the water levels and when such pumping actually occurred.

6.4.5 Pressure Gradient Density Correction

In previous reports on the ID, Golder Associates, Inc. (2011) and FPL (2012a) analyzed the data to assess groundwater flow based on pressure gradients between L-3 and G-21, and between L-5 and G-28. The analysis addressed the Agencies' concerns that water level readings taken in wells and surface water bodies do not necessarily represent the actual pressure gradients within the groundwater or surface water due to differences in density and temperature between locations. Because surface water levels are being measured as proxies for groundwater levels in

order to estimate groundwater movement, and groundwater levels are being estimated as proxies for pressure gradients, their analyses dealt with groundwater pressure gradients only.

This type of analysis lends itself favorably to the L and G series wells, since they are screened across their entire (or nearly entire) depth, and temperature and specific conductance data are available at 1-ft intervals. This is important, since the temperature and specific conductance do not vary linearly with depth. The temperature and specific conductance data can be used to calculate a density at each measurement point.

Using specific conductance and temperature data collected from the September 2014 sampling event, the water densities by depth for wells L-3 and G-21 have been calculated and are plotted on Figure 6.4-21. Based on the densities shown on Figure 6.4-21, the pressure over depth (pressure gradient) for wells L-3 and G-21 for the September 2014 sampling event has been calculated and is shown on Figure 6.4-22. The data shown on Figure 6.4-22 indicate that the pressure gradient at well G-21 is slightly higher than that at well L-3 from the surface down to about -45 ft NAVD 88, below which the gradients overlap or L-3 is just slightly higher than at G-21. Because the pressure gradients are close in value, it is easier to see the difference when plotted, as shown on Figure 6.4-23, which illustrates the pressure excess or deficit between the G and the corresponding L series wells. Similar analyses were performed for wells G-21 and L-3 during the March 2015 sampling event (Figure 6.4-24). These same analyses were also conducted for well G-28 versus well L-5 during the September 2014 sampling episode (Figure 6.4-25) and for well G-28 versus well L-5 during the March 2015 sampling episode (Figure 6.4-26).

In all of the cases examined (G-21 and L-3 in September 2013, G-21 and L-3 in March 2014, G-28 and L-5 in September 2013, and G-28 and L-5 in March 2014), the groundwater gradient is seaward in the upper levels of the aquifer, down to approximately -40 ft to -45 ft NAVD 88 for well G-21 versus well L-3, and down to about -44 ft to -48 ft NAVD 88 for well G-28 versus well L-5.

The operation of the ID still maintains an overall seaward gradient from the L-31E Canal and/or the L-series wells in the upper levels of the aquifer. There have been a few short durations where a landward gradient existed based on automated water level readings and considering density effects, but the frequency and duration was very limited.

TABLES

Table 6.4-1. Range in Surface Water Head Differences.

Data		Line A		Line B		Line C		e D	Line E	
Date	L31-C32	L31-ID								
6/2/14	0.04	0.25	0.16	0.28	0.02	-0.02	0.25	-0.02	0.39	0.00
6/3/14	0.15	0.36	0.15	0.20	0.40	0.40	0.58	0.18	0.62	0.13
6/4/14	0.24	0.18	0.34	0.20	0.43	0.16	0.62	0.12	0.67	0.07
6/5/14	0.12	0.21	0.20	0.24	0.3	0.14	0.57	0.13	0.63	0.13
6/6/14	0.04	0.58	0.14	0.62	0.26	0.27	0.56	0.16	0.59	0.10
6/9/14	0.12	0.17	0.23	0.20	0.37	0.15	0.69	0.16	0.80	0.12
6/10/14	0.17	0.22	0.27	0.25	0.35	0.15	0.67	0.18	0.78	0.14
6/11/14	0.08	0.63	0.20	0.64	0.33	0.23	0.62	0.18	0.73	0.22
6/16/14	0.21	0.21	0.31	0.23	0.36	0.13	0.60	0.12	0.65	0.06
6/17/14	0.17	0.17	0.28	0.21	0.37	0.14	0.62	0.12	0.69	0.07
6/18/14	0.14	0.68	0.26	0.70	0.40	0.28	0.62	0.12	0.69	0.07
6/20/14	0.42	0.06	0.43	0.11	0.54	0.08	0.82	0.08	0.86	0.06
7/1/14	0.68	0.34	0.73	0.37	0.95	0.21	0.71	0.19	0.95	0.18
7/16/14	0.54	0.48	0.67	0.33	0.96	0.22	0.96	0.20	1.00	0.18
8/11/14	0.71	0.31	0.80	0.33	0.78	0.25	0.97	0.24	0.97	0.20
8/18/14	0.51	0.26	0.59	0.27	0.60	0.17	0.62	0.16	0.64	0.10
9/2/14	0.42	0.19	0.44	0.17	0.43	0.04	0.67	0.06	0.65	-0.02
9/9/14	0.26	0.15	0.34	0.16	0.40	0.06	0.62	0.16	0.62	-0.04
9/10/14	0.31	0.17	0.41	0.19	0.41	0.06	0.62	0.16	0.64	-0.04
9/17/14	0.39	0.15	0.46	0.16	0.57	0.05	0.70	0.04	0.69	-0.02
10/2/14	0.53	0.84	0.66	0.98	0.46	0.80	0.53	-0.01	0.50	-0.06
10/13/14	0.17	-0.05	0.16	0.08	0.16	-0.06	0.24	-0.07	0.17	-0.11
10/15/14	-0.27	-0.27	-0.26	-0.22	0.12	0.08	0.14	0.11	0.12	0.03
10/16/14	0.12	0.15	0.11	0.18	0.06	0.10	0.11	0.12	0.12	0.12
10/17/14	0.12	0.16	0.16	0.20	0.06	0.11	0.09	0.1	0.06	0.07
10/18/14	0.10	0.40	0.13	0.39	0.06	0.34	0.08	0.33	0.08	0.10

Table 6.4-1. Range in Surface Water Head Differences.

Date	Line A		Lin	Line B		e C	Line D		Line E	
Date	L31-C32	L31-ID								
10/20/14	0.07	0.06	0.09	0.04	0.1	-0.01	0.13	-0.04	0.07	-0.09
10/21/14	0.09	0.38	0.11	0.38	0.06	0.25	0.13	0.24	0.09	0.14
10/22/14	0.16	0.42	0.14	0.42	0.08	0.31	0.1	0.31	0.06	0.2
10/23/14	0.15	0.25	0.13	0.25	0.09	0.12	0.13	0.2	0.06	0.14
10/27/14	0.22	0.24	0.21	0.27	0.18	0.19	0.18	0.18	0.13	0.12
10/28/14	0.25	0.37	0.2	0.41	0.16	0.36	0.16	0.33	0.12	0.25
10/29/14	0.16	0.23	0.2	0.28	0.14	0.18	0.16	0.28	0.08	0.21
10/30/14	0.16	0.44	0.18	0.48	0.11	0.38	0.14	0.36	0.07	0.3
10/31/14	0.17	0.22	0.18	0.22	0.16	0.16	0.2	0.34	0.2	0.3
11/3/14	0.32	0.13	0.33	0.16	0.25	0.04	0.26	0.01	0.16	-0.04
11/4/14	0.25	0.18	0.26	0.19	0.17	0.06	0.18	0.21	0.12	0.14
11/5/14	0.2	0.31	0.23	0.33	0.19	0.36	0.23	0.36	0.16	0.22
11/6/14	0.17	0.26	0.2	0.28	0.19	0.25	0.24	0.25	0.19	0.19
11/7/14	0.17	0.2	0.21	0.2	0.17	0.15	0.22	0.29	0.18	0.26
11/10/14	0.26	0.16	0.27	0.18	0.17	0.06	0.22	0.04	0.18	0
11/11/14	0.23	0.25	0.26	0.26	0.17	0.17	0.23	0.27	0.17	0.18
11/12/14	0.16	0.32	0.19	0.37	0.14	0.28	0.2	0.36	0.15	0.24
11/13/14	0.17	0.28	0.2	0.32	0.15	0.22	0.23	0.27	0.14	0.18
11/17/14	0.1	0.1	0.14	0.14	0.15	0.06	0.26	0.04	0.25	0
11/18/14	0.15	0.32	0.18	0.34	0.17	0.25	0.27	0.2	0.26	0.14
11/19/14	0.25	0.32	0.26	0.33	0.22	0.26	0.27	0.21	0.25	0.13
11/20/14	0.22	0.35	0.25	0.36	0.21	0.26	0.21	0.14	0.2	0.1
11/21/14	0.25	0.28	0.28	0.29	0.27	0.45	0.27	0.45	0.28	0.3
11/24/14	0.17	0.18	0.22	0.21	0.23	0.13	0.38	0.1	0.37	0.07
11/26/14	0.14	0.44	0.23	0.47	0.15	0.36	0.34	0.39	0.35	0.41
12/2/14	0.29	0.11	0.31	0.11	0.36	0.1	0.45	0.07	0.42	0.02

Table 6.4-1. Range in Surface Water Head Differences.

Date	Line A		Line B		Line C		Line D		Line E	
Date	L31-C32	L31-ID								
12/9/14	0.35	0.08	0.40	0.11	0.37	0.03	0.41	0.38	0.38	0.00
12/18/14	0.27	0.11	0.30	0.14	0.29	0.11	0.47	0.08	0.42	0.06
12/19/14	0.28	0.12	0.29	0.13	0.28	0.12	0.47	0.08	0.44	0.06
12/22/14	0.22	0.12	0.27	0.14	0.27	0.09	0.50	0.09	0.40	-0.06
12/23/14	0.20	8.0	0.28	0.83	0.29	0.11	0.48	0.12	0.40	0.02
12/30/14	0.39	0.16	0.41	0.21	0.42	0.07	0.56	0.07	0.57	0.08
1/8/15	0.43	0.10	0.52	0.12	0.52	0.04	0.55	0.02	0.54	0.00
1/13/15	0.25	0.13	0.54	0.16	0.51	0.06	0.68	0.03	0.61	-0.01
1/21/15	0.41	0.06	0.46	80.0	0.50	0.03	0.62	0.04	0.60	0.00
1/28/15	0.43	0.16	0.47	0.15	0.50	0.12	0.57	0.14	0.53	0.04
2/2/15	0.22	0.14	0.42	0.28	0.35	0.10	0.66	0.15	0.62	0.04
2/4/15	0.17	0.63	0.25	0.64	0.37	0.22	0.46	0.21	0.50	0.13
2/6/15	0.32	0.18	0.36	0.18	0.33	0.13	0.55	0.14	0.50	0.04
2/9/15	0.22	0.16	0.29	0.19	0.28	0.14	0.54	0.12	0.55	0.06
2/11/15	0.25	0.67	0.28	0.66	0.27	0.21	0.52	0.20	0.49	0.14
2/13/15	0.23	0.13	0.28	0.14	0.28	0.12	0.51	0.11	0.49	0.09
2/16/15	0.2	0.11	0.30	0.14	0.29	0.13	0.48	0.10	0.48	0.02
2/18/15	0.31	0.46	0.36	0.46	0.35	0.17	0.52	0.16	0.45	0.09
2/24/15	0.17	0.18	0.31	0.22	0.28	0.16	0.55	0.15	0.60	0.10
2/26/15	0.06	0.59	0.12	0.60	0.28	0.34	0.53	0.33	0.57	0.27
3/2/15	0.20	0.15	0.24	0.15	0.23	0.09	0.38	0.08	0.42	0.06
3/4/15	0.03	0.47	0.08	0.45	0.13	0.38	0.30	0.22	0.27	0.15
3/6/15	0.03	0.12	0.07	0.18	0.16	0.09	0.35	0.14	0.35	0.08
3/9/15	0.23	0.12	0.32	0.17	0.26	0.07	0.51	0.06	0.50	0.01
3/10/15	0.15	0.54	0.26	0.60	0.22	0.28	0.43	0.14	0.46	0.06
3/11/15	0.13	0.43	0.21	0.45	0.19	0.41	0.45	0.19	0.46	0.13

Table 6.4-1. Range in Surface Water Head Differences.

Date	Line A		Line B		Lin	e C	Line D		Line E	
Date	L31-C32	L31-ID								
3/12/15	0.15	0.17	0.23	0.22	0.20	0.13	0.40	0.12	0.41	0.07
3/13/15	0.08	0.39	0.16	0.40	0.14	0.34	0.31	0.19	0.36	0.13
3/16/15	0.06	0.57	0.14	0.18	0.09	0.10	0.32	0.09	0.34	0.03
3/18/15	0.03	0.26	0.12	0.28	0.14	0.24	0.35	0.11	0.32	0.06
3/20/15	-0.02	0.41	0.06	0.40	0.10	0.35	0.26	0.11	0.28	0.04
3/23/15	-0.11	0.22	-0.02	0.30	-0.08	0.20	0.32	0.06	0.31	-0.01
3/25/15	-0.16	0.43	-0.06	0.42	-0.05	0.38	0.36	0.15	0.35	0.07
3/26/15	-0.19	0.19	-0.10	0.18	-0.05	0.14	0.36	0.12	0.39	0.07
3/30/15	-0.03	0.21	0.04	0.21	0.05	0.15	0.51	0.17	0.52	0.09
4/1/15	-0.13	0.48	-0.05	0.45	-0.17	0.36	0.31	0.20	0.32	0.12
4/2/15	-0.13	0.24	-0.02	0.26	-0.1	0.12	0.30	0.10	0.34	0.04
4/3/15	-0.12	0.49	-0.05	0.49	-0.14	0.34	0.25	0.19	0.25	0.10
4/6/15	-0.23	0.28	-0.10	0.28	-0.24	0.04	0.19	0.05	0.28	-0.02
4/8/15	-0.34	0.46	-0.21	0.47	-0.38	0.25	0.09	0.25	0.18	0.14
4/9/15	-0.36	0.42	-0.26	0.44	-0.43	0.21	0.05	0.26	0.07	0.18
4/10/15	-0.39	0.50	-0.23	0.53	-0.44	0.26	0.01	0.19	0.15	0.12
4/13/15	-0.37	0.39	-0.23	0.40	-0.47	0.33	0.05	0.33	0.16	0.24
4/15/15	-0.32	0.34	-0.23	0.36	-0.44	0.34	0.04	0.31	0.14	0.22
4/16/15	-0.30	0.46	-0.23	0.44	-0.47	0.16	0.00	0.08	0.12	0.07
4/20/15	-0.31	0.32	-0.17	0.32	-0.42	0.09	0.19	0.08	0.30	0.01
4/23/15	-0.22	0.35	-0.12	0.38	-0.13	0.41	0.36	0.30	0.46	0.28
4/27/15	-0.16	0.26	-0.08	0.28	-0.08	0.16	0.45	0.15	0.50	0.09
4/29/15	0.43	0.51	0.43	0.41	0.58	0.48	0.88	0.28	1.01	0.25
5/5/15	0.58	0.28	0.62	0.28	0.58	0.20	0.75	0.18	0.81	0.10
5/11/15	0.43	0.41	0.46	0.28	0.42	0.42	0.69	0.44	0.66	0.08
5/19/15	0.36	0.22	0.36	0.14	0.34	0.14	0.74	0.14	0.70	0.10

Table 6.4-1. Range in Surface Water Head Differences.

Date	Line A		Line B		Line C		Line D		Line E	
Date	L31-C32	L31-ID								
5/21/15	0.22	-0.08	0.30	0.24	0.38	0.20	0.82	0.22	0.80	0.15
5/22/15	0.27	0.96	0.33	0.97	0.41	0.24	0.77	0.23	0.79	0.16
5/26/15	0.20	0.26	0.27	0.29	0.30	0.22	0.75	0.25	0.66	0.14
5/27/15	0.16	0.71	0.24	0.72	0.28	0.34	0.66	0.26	0.72	0.18
5/29/15	0.10	0.23	0.17	0.27	0.18	0.22	0.64	0.15	0.67	0.12

Table 6.4-2. Hours and Volumes of ID Pump Operation per Month.

ID				2014		2015						
Pumped Hours	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May
N1	71	0	0	0	0	8	23	0	251	23	139	35
N2	0	0	0	0	18	49	0	0	0	163	72	0
S 1	24	0	0	0	189	118	0	0	0	120	147	3
S2	0	0	0	0	264	26	0	0	0	0	80	0
Pumped Volume (MG)												
N1	67	0	0	0	0	3	21	0	191	29	130	34
N2	0	0	0	0	17	46	0	0	0	134	68	0
S 1	23	0	0	0	180	112	0	0	0	127	105	3
S2	0	0	0	0	250	25	0	0	0	0	77	0

Table 6.4-3. Pumping Summary.

Date	Pump 1	Pump 2	Pump 3	Pump 4	Performed Pumping
6/2/2014			Yes		Х
6/3/2014			Yes		Х
6/4/2014	Yes				Х
6/5/2014	Yes				Х
6/6/2014	Yes				Х
6/9/2014	Yes				Х
6/10/2014	Yes				Х
6/11/2014	Yes				Х
6/13/2015	Yes				Х
6/16/2014	Yes				Х
6/17/2014	Yes				Х
6/18/2014	Yes				Х
10/13/2014				Yes	Х
10/14/2014				Yes	Х
10/15/2014				Yes	Х
10/16/2014			Yes	Yes	Х
10/17/2014		Yes	Yes		Х
10/18/2014		Yes	Yes		Х
10/20/2014			Yes	Yes	Х
10/21/2014			Yes	Yes	Х
10/22/2014			Yes	Yes	Х
10/23/2014			Yes	Yes	Х
10/24/2014				Yes	Х
10/25/2014				Yes	Х
10/26/2014				Yes	Х
10/27/2014			Yes	Yes	Х
10/28/2014			Yes	Yes	Х
10/29/2014			Yes	Yes	Х
10/30/2014			Yes	Yes	Х
10/31/2014				Yes	Х
11/3/2014				Yes	Х
11/4/2014			Yes		Х
11/5/2014			Yes		Х
11/6/2014			Yes		Х
11/7/2014	Yes		Yes	Yes	Х
11/10/2014				Yes	Х
11/11/2014			Yes		Х

Table 6.4-3. Pumping Summary.

Date	Pump 1	Pump 2	Pump 3	Pump 4	Performed Pumping
11/12/2014			Yes		х
11/13/2014	Yes				Х
11/17/2014		Yes			Х
11/18/2014		Yes			Х
11/20/2014				Yes	Х
11/21/2014				Yes	Х
11/24/2014			Yes		Х
11/25/2014			Yes		Х
11/26/2014			Yes		Х
12/22/2014	Yes				Х
12/23/2014	Yes				х
2/2/2015	Yes				Х
2/3/2015	Yes				Х
2/4/2015	Yes				Х
2/6/2015	Yes				Х
2/7/2015	Yes				Х
2/8/2015	Yes				Х
2/9/2015	Yes				Х
2/13/2015	Yes				Х
2/16/2015	Yes				Х
2/17/2015	Yes				Х
2/18/2015	Yes				Х
2/24/2015	Yes				Х
2/25/2015	Yes				Х
2/26/2015	Yes				Х
3/2/2015		Yes			Х
3/3/2015		Yes			Х
3/4/2015		Yes			Х
3/6/2015		Yes			Х
3/9/2015	Yes				Х
3/10/2015	Yes	Yes			Х
3/11/2015		Yes			Х
3/12/2015		Yes			Х
3/13/2015		Yes			Х
3/16/2015		Yes			Х
3/17/2015		Yes			Х
3/18/2015		Yes	Yes		Х

Table 6.4-3. Pumping Summary.

Date	Pump 1	Pump 2	Pump 3	Pump 4	Performed Pumping
3/19/2015			Yes		Х
3/20/2015			Yes		X
3/23/2015			Yes		Х
3/24/2015			Yes		Х
3/25/2015			Yes		Х
3/26/2015			Yes		Х
3/302015			Yes		Х
3/31/2015			Yes		Х
4/1/2015			Yes		Х
4/2/2015			Yes		Х
4/3/2015			Yes		Х
4/6/2015				Yes	Х
4/7/2015				Yes	Х
4/8/2015				Yes	Х
4/9/2015			Yes	Yes	Х
4/10/2015	Yes		Yes	Yes	Х
4/11/2015	Yes				Х
4/12/2015	Yes				Х
4/13/2015	Yes				Х
4/14/2015	Yes				х
4/15/2015	Yes				Х
4/16/2015	Yes				Х
4/20/2015		Yes			Х
4/21/2015		Yes			Х
4/22/2015		Yes			Х
4/23/2015		Yes			Х
4/27/2015			Yes		Х
4/28/2015			Yes		Х
4/29/2015			Yes		Х
5/21/2015	Yes				Х
5/22/2015	Yes				Х
5/26/2015	Yes				Х
5/27/2015	Yes				Х
5/29/2015			Yes		Х

FIGURES

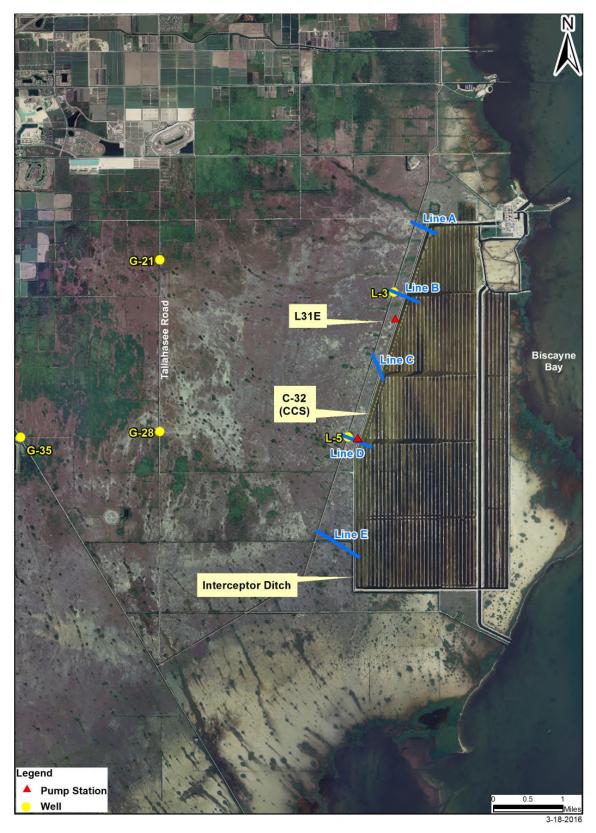


Figure 6.1-1. Historic ID Monitoring Wells and Transects.

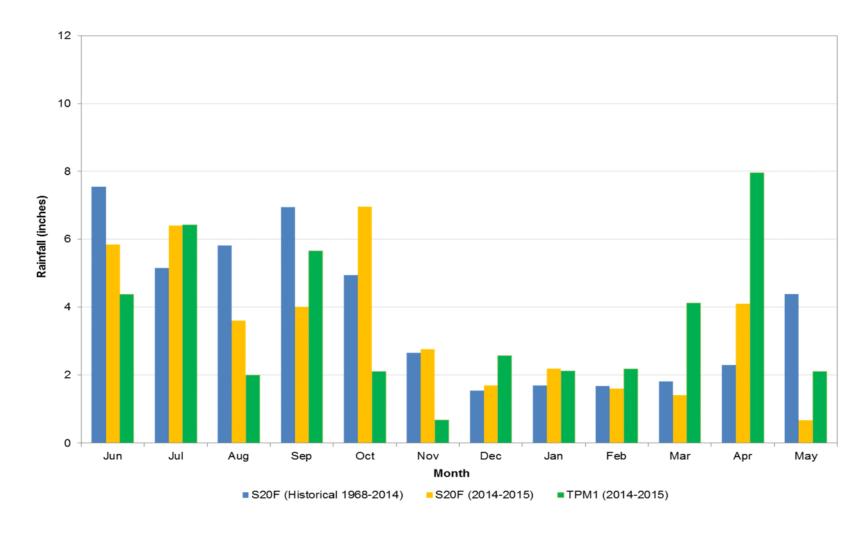


Figure 6.3-1. Comparison of ID Monitoring Period (June 2014 - May 2015) to Average Monthly Historic Rainfall.

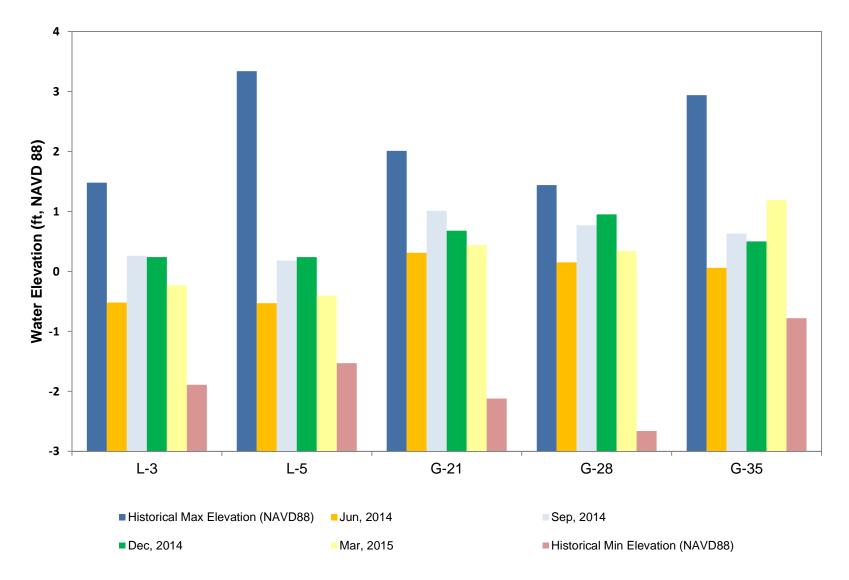


Figure 6.4-1. Historical Min and Max, and Quarterly L-3, L-5, G-21, G-28, and G-35 Groundwater Levels.

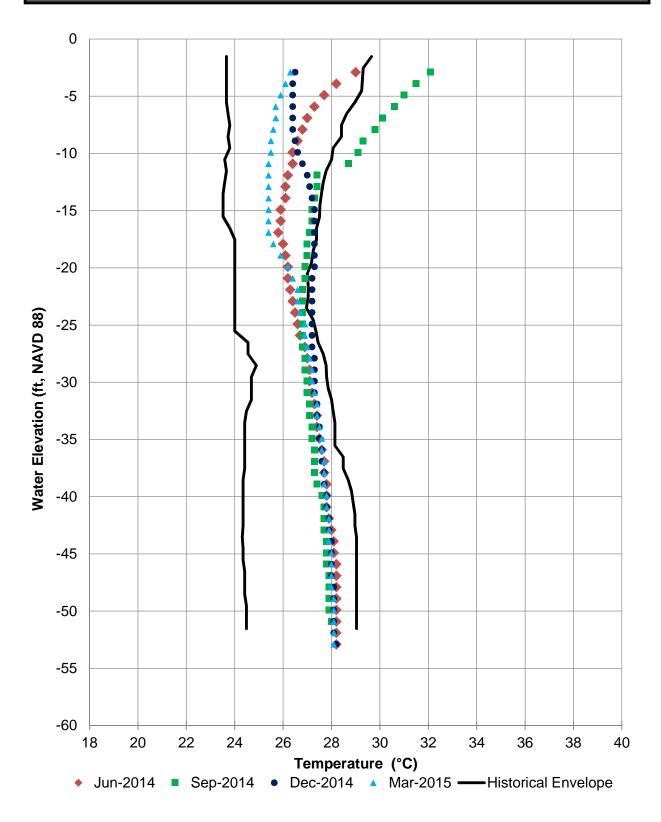


Figure 6.4-2. L-3 Vertical Temperature Profile June 2014 through March 2015.

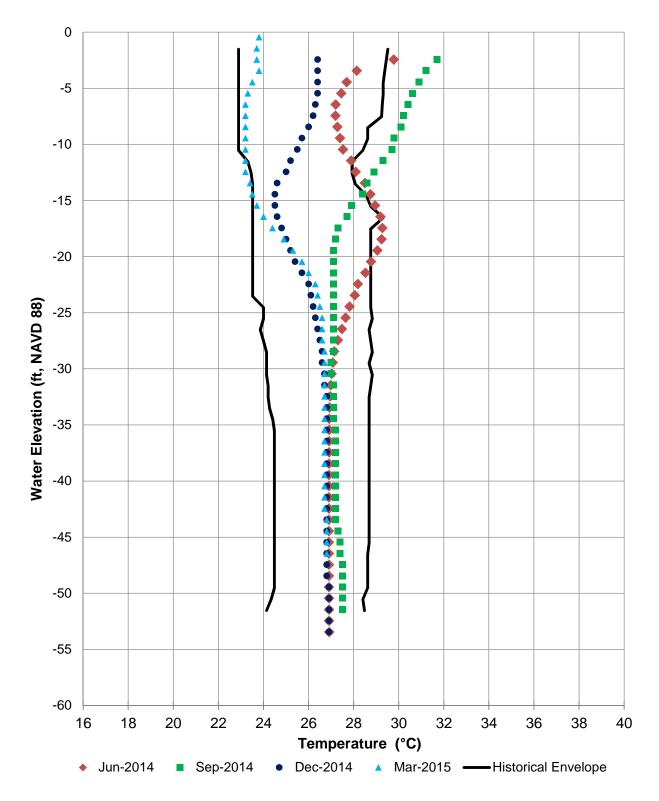


Figure 6.4-3. L-5 Vertical Temperature Profile June 2014 through March 2015.

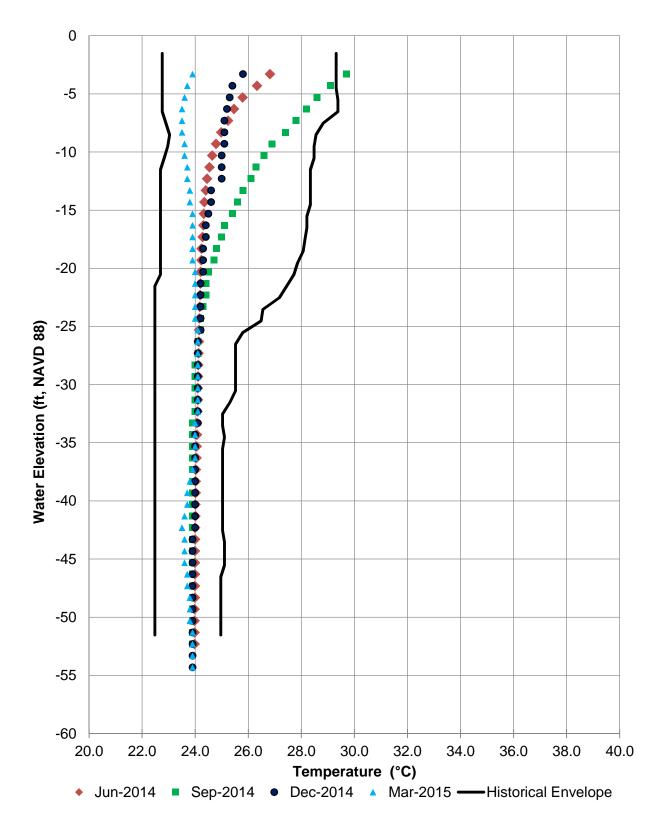


Figure 6.4-4. G-21 Vertical Temperature Profile June 2014 through March 2015.

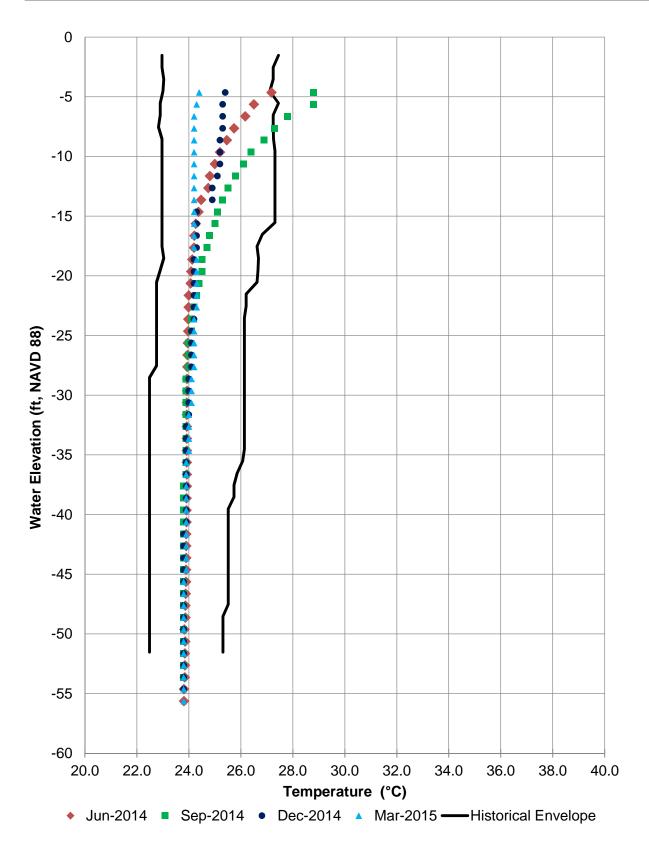


Figure 6.4-5. G-28 Vertical Temperature Profile June 2014 through March 2015.

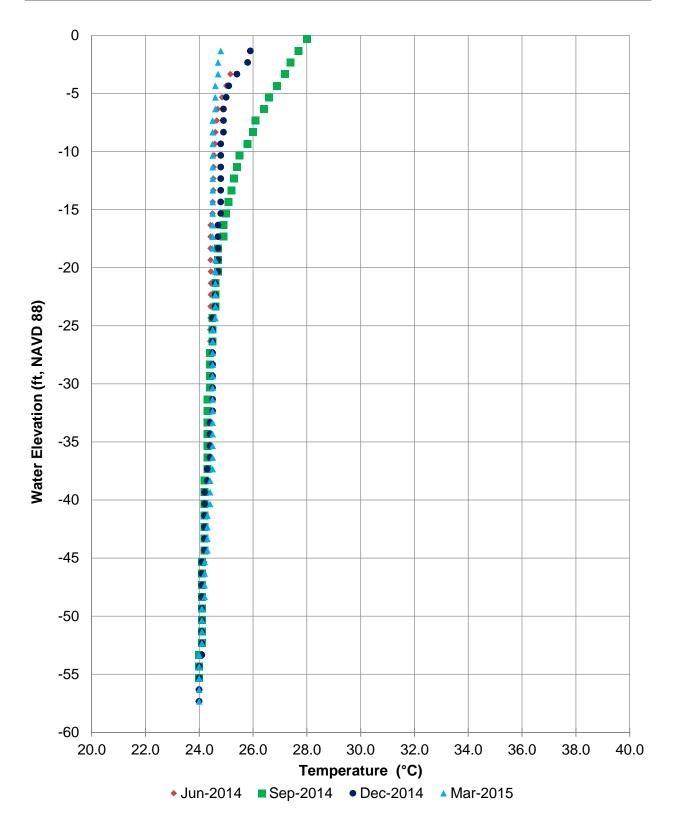


Figure 6.4-6. G-35 Vertical Temperature Profile June 2014 through March 2015.

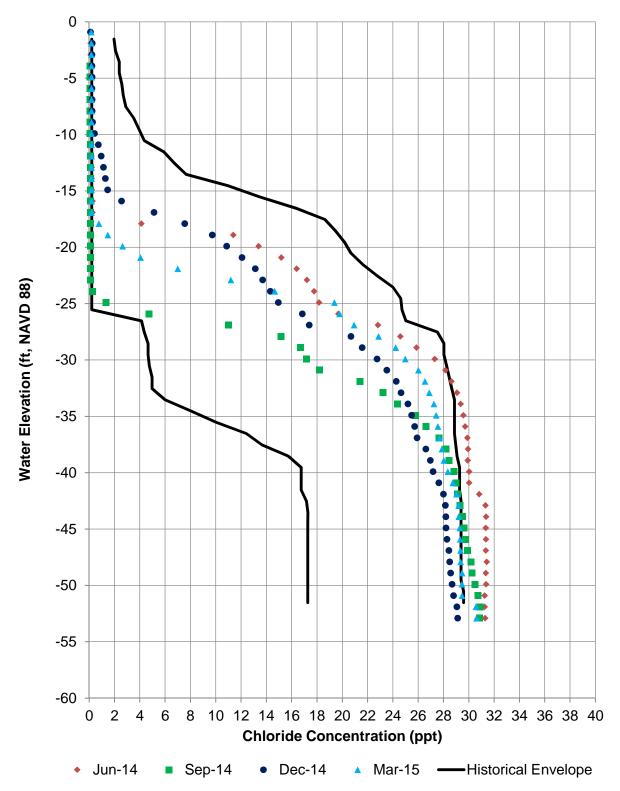


Figure 6.4-7. L-3 Vertical Chloride Profile June 2014 through March 2015.

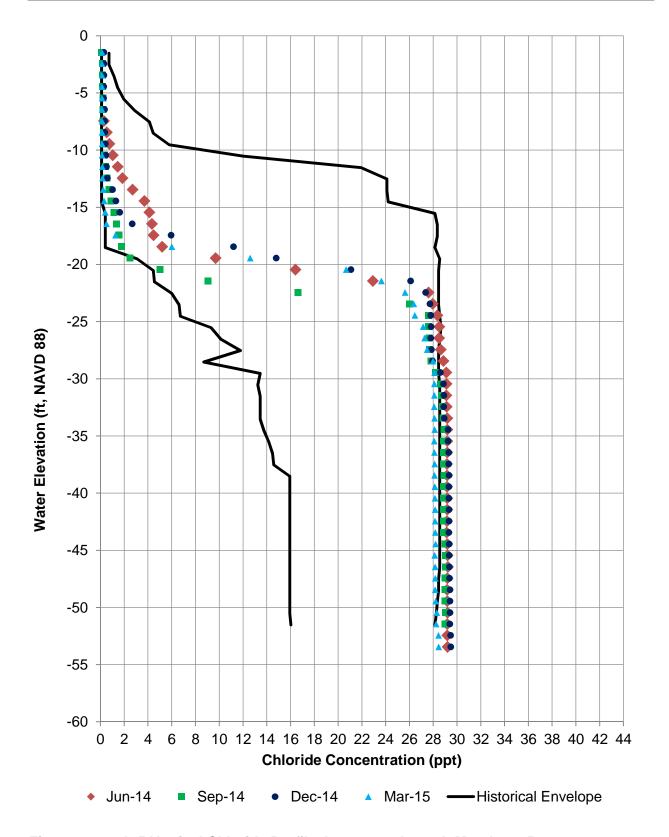


Figure 6.4-8. L-5 Vertical Chloride Profile June 2014 through March 2015.

6-25

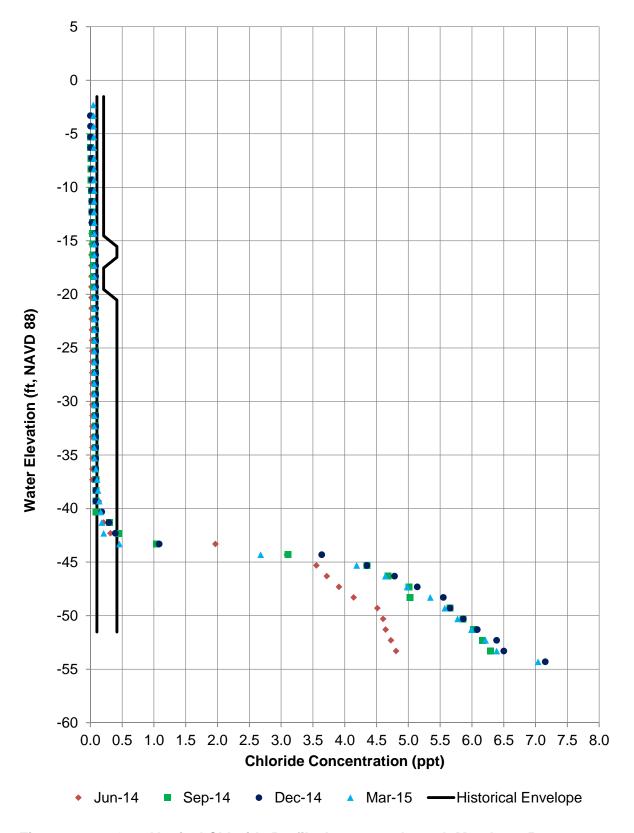


Figure 6.4-9. G-21 Vertical Chloride Profile June 2014 through March 2015.

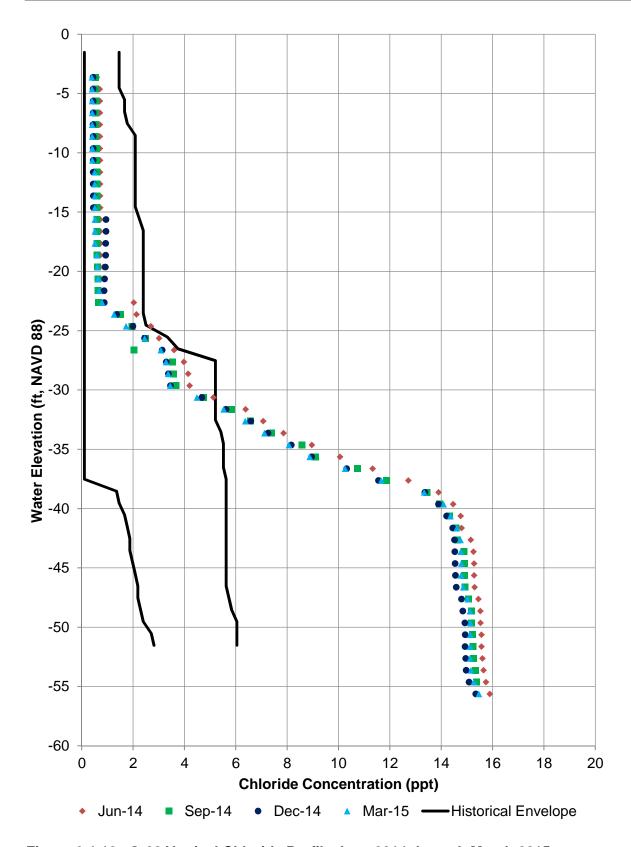


Figure 6.4-10. G-28 Vertical Chloride Profile June 2014 through March 2015.

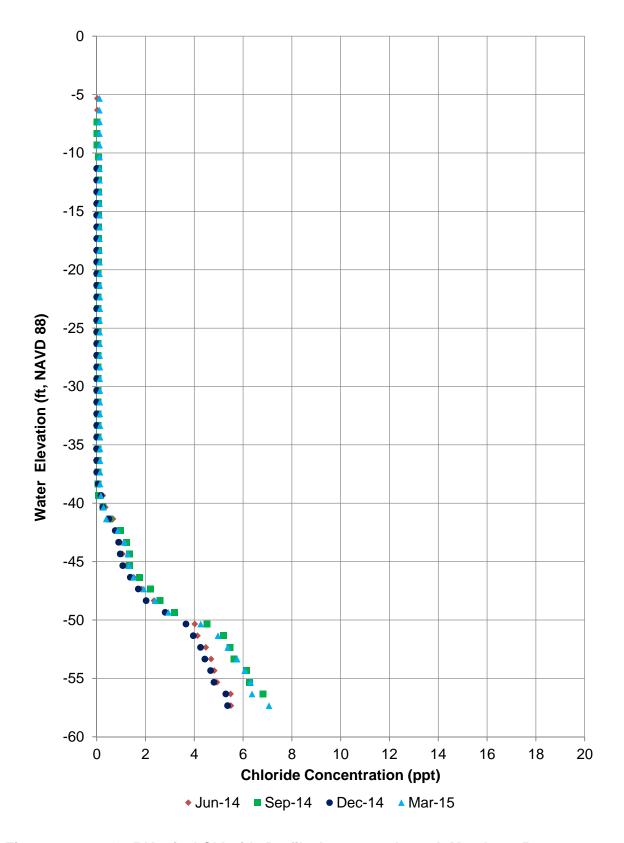


Figure 6.4-11. G-35 Vertical Chloride Profile June 2014 through March 2015.

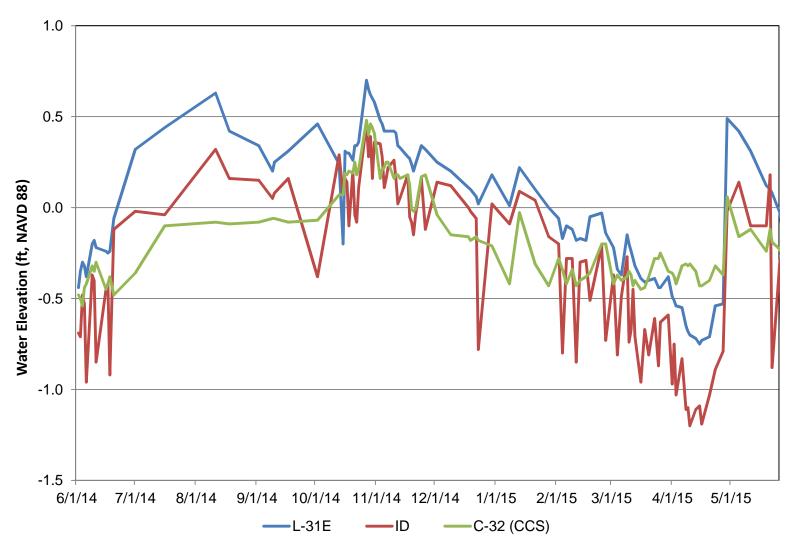


Figure 6.4-12. Transect A Water Levels (June 2014 through May 2015).

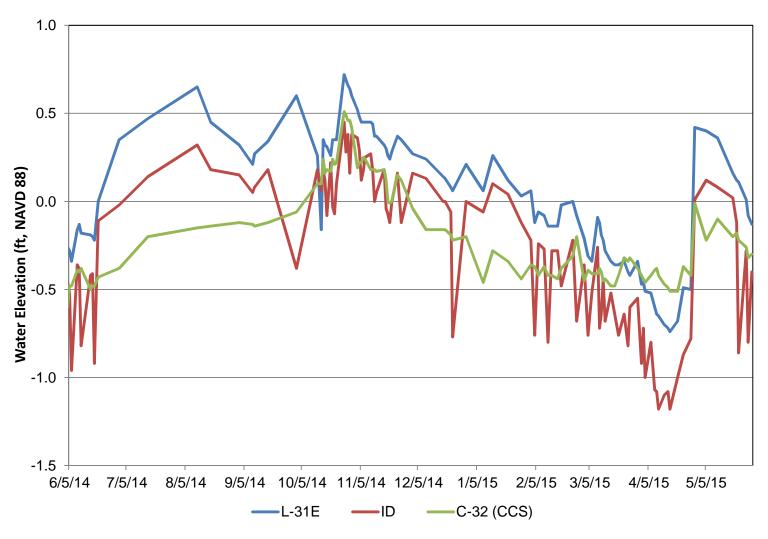


Figure 6.4-13. Transect B Water Levels (June 2014 through May 2015).

Figure 6.4-14. Transect C Water Levels (June 2014 through May 2015).

Figure 6.4-15. Transect D Water Levels (June 2014 through May 2015).

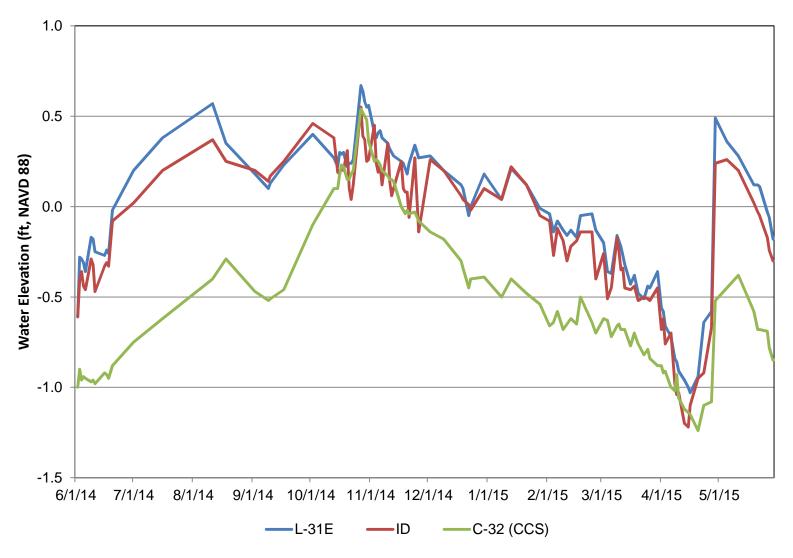


Figure 6.4-16. Transect E Water Levels (June 2014 through May 2015).

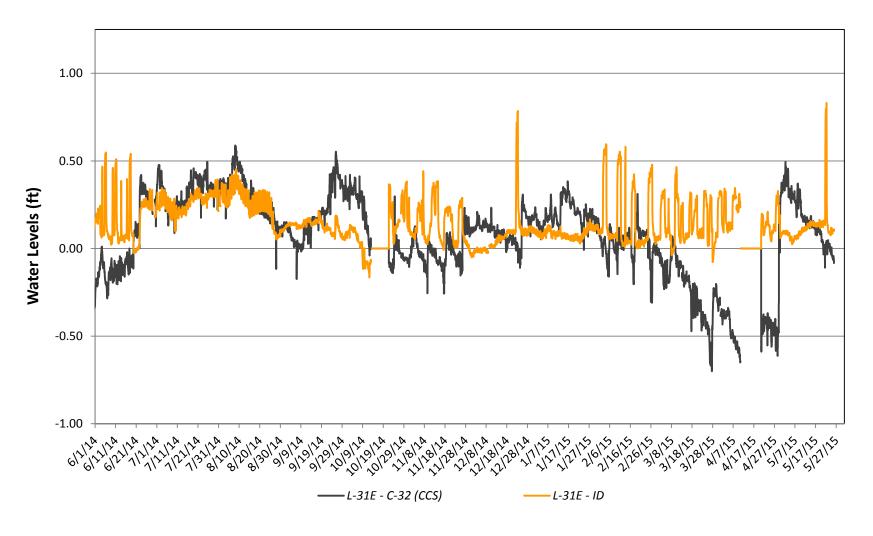


Figure 6.4-17. Differences in Freshwater Head Equivalent/Density Corrected Water Levels between L-31E and C-32 (CCS), and L-31E and ID (based on actual water depths and bottom densities) – Transect A.

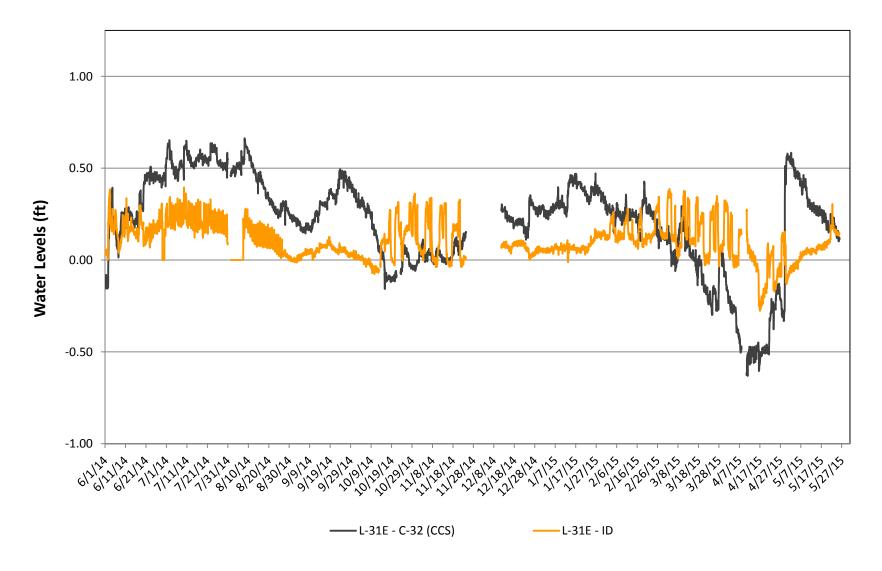


Figure 6.4-18. Differences in Freshwater Head Equivalent/Density Corrected Water Levels between L-31E and C-32, and L-31E and ID (based on actual water depths and bottom densities) – Transect C.

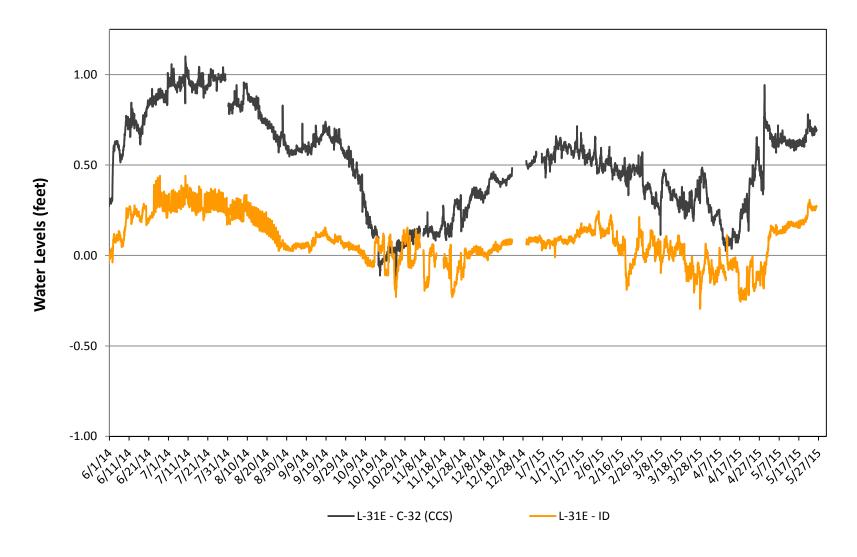


Figure 6.4-19. Differences in Freshwater Head Equivalent/Density Corrected Water Levels between L-31E and C-32 (CCS), and L-31E and ID (based on actual water depths and bottom densities) – Transect E.

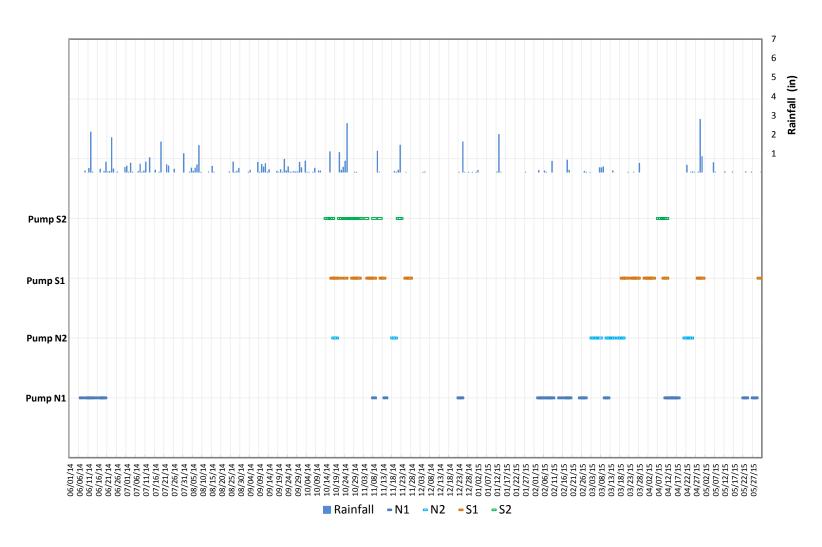


Figure 6.4-20. Interceptor Ditch Pump Operation and Rainfall.

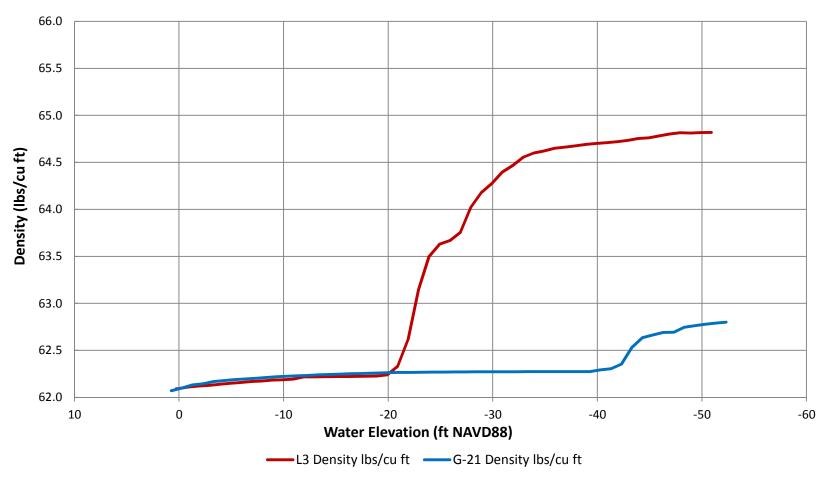


Figure 6.4-21. Density vs. Elevation Wells L-3 and G-21 during September 2014 Sampling Event.

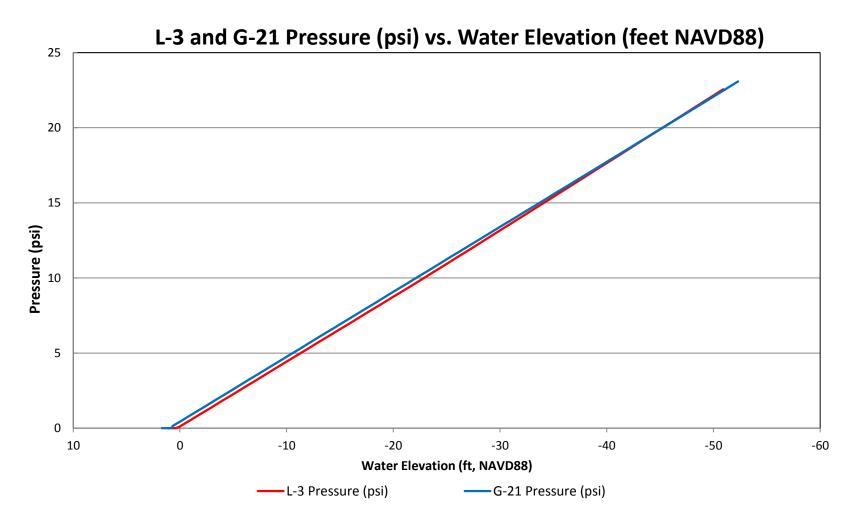


Figure 6.4-22. Pressure vs. Elevation Wells L-3 and G-21 during September 2014 Sampling Event.

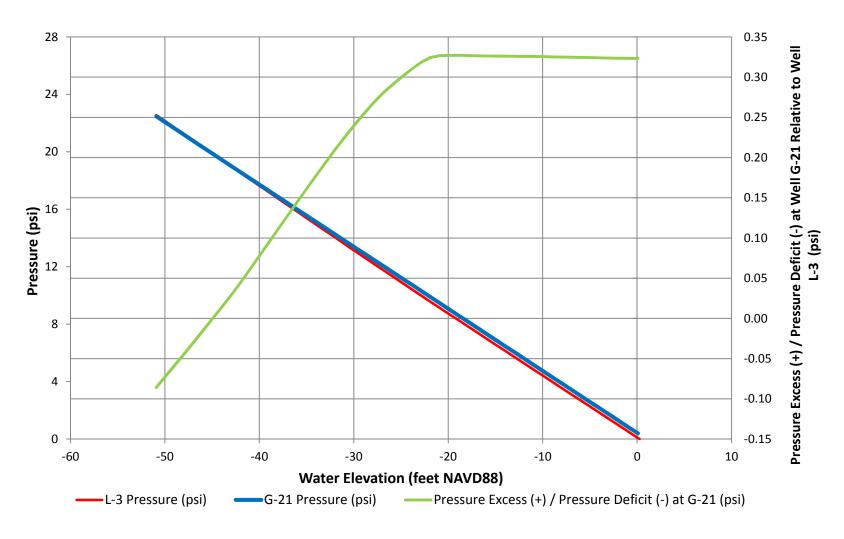


Figure 6.4-23. Pressure Gradient Difference between Well L-3 and Well G-21 during September 2014 Sampling Event.

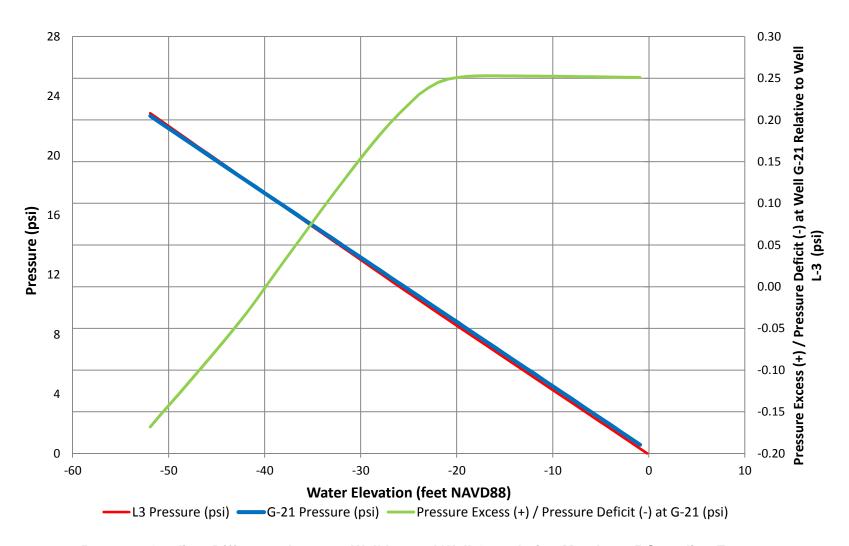


Figure 6.4-24. Pressure Gradient Difference between Well L-3 and Well G-21 during March 2015 Sampling Event.

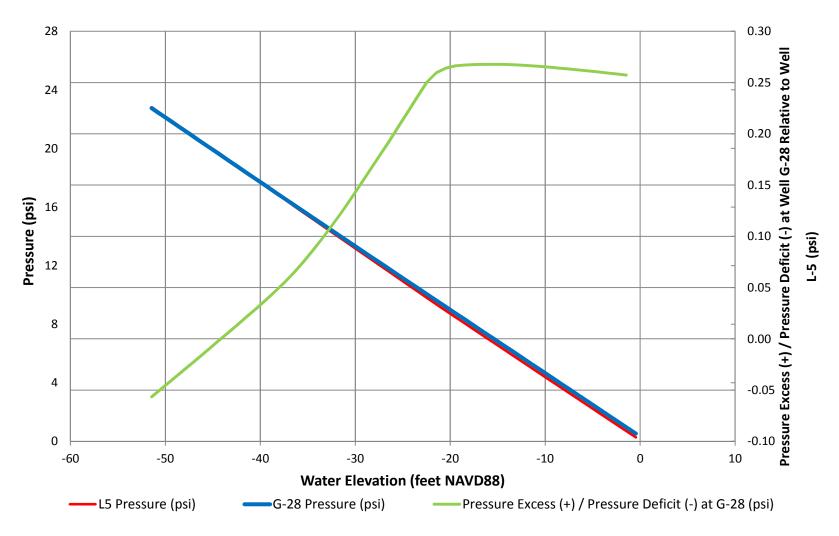


Figure 6.4-25. Pressure Gradient Difference between Well L-5 and Well G-28 during September 2014 Sampling Event.

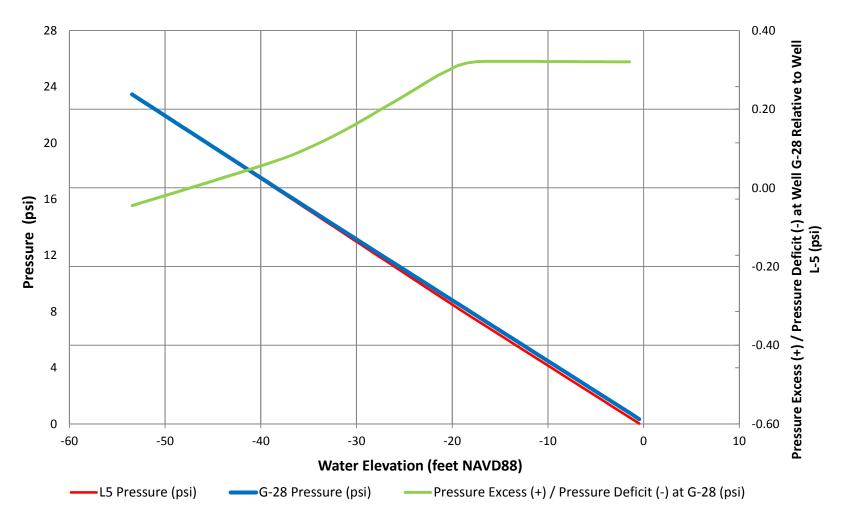


Figure 6.4-26. Pressure Gradient Difference between Well L-5 and Well G-28 during March 2015 Sampling Event.

7 SUMMARY AND INTERPRETATIONS

In accordance with the Turkey Point Monitoring Plan (SFWMD 2009a) and the Fifth Supplemental Agreement (SFWMD 2009b), FPL is required to assess the groundwater, surface water, ecological, and meteorological conditions in and surrounding the Turkey Point Plant CCS. Saltwater intrusion has been documented in south Miami-Dade County since the early 1900s and was noted as far as approximately 8 to 10 miles inland of the coast in the vicinity of Turkey Point by the 1950s (Klein 1957). The challenge in this southern part of the county is determining the factors that affect the inland extent and orientation of the freshwater/saltwater interface and the current source of saltwater. The purpose of this effort is to assess Pre-Uprate conditions prior to the uprating of Turkey Point Nuclear Units 3 and 4 and to assess effects following the uprating (Post-Uprate).

Monitoring was initiated in June 2010 and has continued through May 2015 and beyond. FPL notified the FDEP of the commencement of the Uprate of Nuclear Units 3 and 4 on September 24, 2010. Uprate modifications were performed on both units, with only unit being uprated at a time. The final modifications for Unit 3 took place from February 26, 2012, to September 5, 2012, and the unit reached full uprate power on October 31, 2012. The final modifications for Unit 4 took place during November 5, 2012, to April 17, 2013, and the unit reached full uprated power on May 8, 2013. Both units were operating together within their uprated capacities starting May 27, 2013. Data collected prior to February 26, 2012 are part of the Pre-Uprate period, while data collected between February 26, 2012 and May 27, 2013 are part of the Interim Operating period. Data collected after May 27, 2013, are referred to as part of the Post-Uprate period.

This comprehensive report incorporates findings from the Post-Uprate monitoring period from June 2013 to May 2015 and, where applicable, compares the Post-Uprate with the Pre-Uprate monitoring period. This section provides a summary and interpretation of the results. The results in this report are based on:

- Automated water quality and water level data (over 4,500,000 data points) and analytical
 results for a wide array of parameters from 47 groundwater wells and 18 surface water
 stations (plus one additional non-automated surface water station) located throughout the
 area;
- Field data and analytical data, including plant community characteristics, leaf characteristics, nutrient content in leaves, and pore water quality from marsh, mangroves, and trees islands over a broad area around the CCS;
- Field and analytical data for SAV, coral and sponge community composition and cover, nutrient content in seagrass leaves and sediment, light attenuation, and porewater quality in Biscayne Bay;

- Automated meteorological data including rainfall, wind speed and direction, temperature, and other parameters;
- Geophysical data from annual induction logging in 14 deep wells; and
- Applicable data collected by others.

Many of the current findings are similar to the findings reported in last year's Post-Uprate Annual Report (FPL 2014a).

7.1 Groundwater

- Most of the observations made in the Pre-Uprate period regarding groundwater quality
 (i.e., specific conductance, temperature, cations, anions, tritium, nutrients) and levels, the
 influence of meteorological conditions, operation of the CCS, and operation of the ID
 (FPL 2012a) are the same for the Post-Uprate period. The higher water densities in the
 CCS will impact groundwater flow and gradients, but seasonal changes and rainfall have
 a greater impact on groundwater levels.
- Despite the increases in temperature and specific conductance in the CCS surface water in the Post-Uprate period, data collected from May 2013 to May 2015 at TPGW-13 do not indicate a corresponding increase in groundwater temperature or specific conductance, suggesting that there is not a high or rapid degree of exchange between the CCS surface water and the groundwater below.
- The Post-Uprate results still indicate hypersaline groundwater below the CCS and immediately adjacent, to the west of the CCS. Farther west of the CCS, out approximately 3 miles, saline water in decreasing ionic concentrations at depth is evident. The outermost wells to the west, TPGW-8 and TPGW-9, are fresh at all depths.
- Chloride, sodium, and tritium concentrations from the Post-Uprate period are within the ranges observed in the Pre-Uprate period for the majority of stations, with only a few exceptions:
 - These stations include two monitoring stations in Biscayne Bay, TPGW-10D and, to a lesser extent, TPGW-11D. These trends began during the Interim Operating period. Increases in chloride, sodium, and tritium concentrations in these Biscayne Bay wells are suspected to be attributed to the temporary reductions in the historic Pre-Uprate eastward gradients beneath the Bay that occurred during the Interim Operating period, when plant outages reduced pumping rates. Tritium in TPGW-10D and TPGW-11D seems to have leveled off somewhat in the last three of four quarters of monitoring.

- O Chloride, sodium, and specific conductance at TPGW-7D were higher during the Post-Uprate period compared with the Pre-Uprate period. This well was fresh at all depths during the Pre-Uprate period, but is now slightly brackish at the deep interval. However, the most recent tritium data collected through March 2015 indicate CCS water is not present at that location. This change does not appear to be related to the Uprate, but may be a function of regional water withdrawals/management practices, the long-term operation of the CCS, lag effects of droughts, and sea level rise.
- Smaller increases were also observed at TPGW-12S and TPGW-G-21-58, although it is likely that these changes are influenced by broader landscape-scale seasonal dynamics and regional water management processes that extend beyond plant operations.
- o Minor temporary increases were also observed in TPGW-10M, TPGW-14M, and TPGW-14D early in the Post-Uprate period; however, the values have since dropped back to, or below, Pre-Uprate levels.

7.2 Surface Water

- With the exception of the CCS, the majority of conclusions regarding water quality and stage from this Post-Uprate report are similar to the Pre-Uprate reporting period (FPL 2012a).
- For most surface water stations around the CCS, there was no readily apparent impact of the CCS via the groundwater pathway during Pre- or Post-Uprate. The only exceptions are described below:
 - At two locations in the surface water canal stations immediately adjacent to the south end of the CCS (TPSWC-4 located in the S-20 and TPSWC-5 in the Card Sound Canal), there appeared to be some CCS water intermittently present during the Pre-Uprate and Post-Uprate monitoring period. However, water quality and tritium data collected during the Pre- and Post-Uprate monitoring period at TPBBSW-4, located at the mouth of the Card Sound Canal in Biscayne Bay, did not show evidence of CCS water. This indicates influence immediately adjacent to the CCS, but minimal, if any, influence in Biscayne Bay.
- There were increases in specific conductance in the L-31E Canal during the Post-Uprate dry season similar to observations during the Pre-Uprate period; however, there continues to be no commensurate increases with tritium. The increases in specific conductance in L-31E cannot be readily linked to a CCS groundwater pathway.

- While there have been changes, as noted below, that have occurred in surface water during the Post-Uprate period (specifically the CCS), it does not appear that the Uprate is the cause, or the primary cause, of these changes.
 - O Specific conductance in the CCS began to rise to levels above Pre-Uprate values in the fall of 2013 (and reached more than 120,000 μS/cm [salinity of 95 (in PSS-78 scale)] in May 2014). The value began to decline in September 2014 as a result of temporary CCS freshening efforts from the L-31E Canal (September/October 2014) and wet season rainfall. However, with the subsequent dry season and no other freshwater inputs, the specific conductance again exceeded 120,000 μS/cm by April 2015.
 - o Beginning in 2013 and continuing through 2015, the CCS experienced an algae bloom of halotolerant unicellular blue green algae (cyanobacteria), which increased the turbidity and solar radiation retention of the canal water and decreased the thermal transfer efficiency of the CCS. The resulting increase in average water temperature increased the rate of evaporation, which increased ionic concentration in the canal system. The unicellular algae (cell size on the order of 10 microns) also became a component of the canal sediments and effectively blocked the historic hydraulic connection between groundwater beneath the CCS and canal water within the CCS. This reduction, in connection to the groundwater system, resulted in elevated salinity, algae concentrations, and reduced thermal efficiency of the system.
 - o Fresher surface water or groundwater sources, coupled with rainfall, are helpful in diluting the hypersaline water in the CCS. As a result of the temporary CCS freshening effort and the rainfall from September 25, 2014, through October 15, 2014, the average specific conductance values dropped by 22% within the CCS. On October 24, 2014, a rainfall of about 4 inches reduced the CCS specific conductance values by approximately 10% in just a few days.
 - o The water temperature also increased in the CCS during the Post-Uprate period and, on average, was approximately 3°C to 5°C warmer than during the Pre-Uprate period. This increase in CCS surface water temperatures during the Post-Uprate period cannot be readily explained by the Uprate because the total heat rejection rate to the CCS from Turkey Point Units 1, 2, 3, and 4, operating at full capacity prior to the Uprate, would have been higher than the Post-Uprate heat rejection rate to the CCS for Units 1, 3, and 4, operating at full capacity. Unit 2 was dedicated to operate in a synchronous condenser mode (i.e., not producing steam heat) in the beginning of 2011, thereby requiring no heat rejection from the CCS.
 - O Nutrients (TKN) have increased in the CCS since June 2013 and appear to have contributed to algal blooms in the CCS. The algal species in the CCS is known to be a nitrogen-fixer, which may be contributing to the TKN observed. FPL is

- undertaking a series of actions in a separate effort to evaluate the causes of the algal blooms and mitigate those causes and effects.
- O Some of the potential groundwater seepage effects reported in the Comprehensive Pre-Uprate Report (FPL 2012a) at TPSWC-4 and TPSWC-5 were not as evident in the Post-Uprate period. However, the CCS does appear to be have some intermittent effects on these two adjacent locations (i.e., higher water temperatures relative to other non-CCS stations and, occasionally, high tritium concentrations or specific conductance at depth).
- The increase in salinity and temperature in the CCS did not appear to a have corresponding influence in Biscayne Bay or the L-31E Canal.

7.3 Water Budget

- The model simulates a net water loss of 0.53 mgd from the CCS during the Pre-Uprate period (based on available data from September 2010 to March 2012) and a net salt loss of 273 (lb x 1,000)/day within the CCS over the same period. This resulted in decreased water levels and salt concentration within the CCS.
- The model simulates a net water loss of 0.37 mgd from the CCS during the Post-Uprate period (June 2013 to May 2015) and a net salt gain of 915 (lb x 1,000)/day within the CCS over the same period. This has resulted in decreased water levels and increased salinity within the CCS.
- Compared to the overall average for the Post-Uprate period, the modeled net water loss was an order of magnitude higher and salt gain was approximately 2.5 times higher in the first year of Post Uprate.
- The model simulates the changes that have occurred in the CCS reasonably well, with the higher temperature and increased evaporation rate being large factors in the increase in specific conductance in the Post-Uprate period.
- An increase in evaporative losses (approximately 60%) during the Post-Uprate period has contributed to the decline in water levels and increase in salt content (and salinity) in the CCS.
- Reductions in CCS water levels and higher saline groundwater inflows during the Post-Uprate period have also increased the salt content/salinity in the CCS.

7.4 Interceptor Ditch

Major Findings

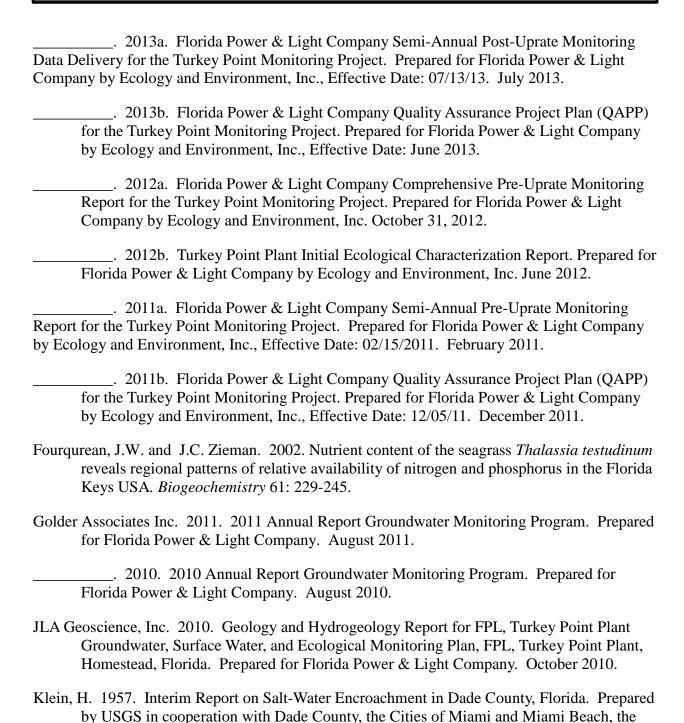
- FPL is operating and maintaining the ID pumps in a manner to maintain a net seaward gradient between the L-31E Canal and the westernmost CCS canal (C-32). The operations of the ID have been effective in maintaining predominantly fresh groundwater in the upper portion of the aquifer west of the CCS. A shallow, fresh water lens still exists west of the CCS and is supported by the induction logging conducted for this project and the continuous specific conductance profiling done in several historical wells for the ID monitoring.
- The volume pumped from June 1, 2014, to May 31, 2015, was 1.64 billion gallons.

7.5 Ecological

- Ecological monitoring in Biscayne Bay and the marsh and mangrove areas surrounding Turkey Point still show no evidence of impacts from the CCS. Changes appear to be more seasonally and meteorologically driven.
- Findings were similar to those previously summarized in the Comprehensive Pre-Uprate Report (FPL 2012a).

8. REFERENCES

- Argonne National Laboratory. n.d. http://web.ead.anl.gov/resrad/datacoll/conuct.htm
- Andersen, P. F. Email to Jim Bolleter, Ecology and Environment, August 24, 2011.
- Biscayne National Park. 2007. Salinity sampling in Biscayne Bay (2005-2006). Annual Report to the United States Army Corps of Engineers for the Monitoring and Assessment Plan of the Comprehensive Everglades restoration Plan for RECOVER Assessment Team Southeast Estuary Subteam. 151 pp.
- ______. 2012. Comprehensive Everglades Restoration Plan, Monitoring and Assessment Unpublished Data retrieved from South Florida Natural Resources Center (SFNRC) DataForEVER Dataset, Everglades National Park, Homestead, FL. Generated by Sarah Bellmund (8/6/12), using Appaserver software (http://www.appaserver.com), Sacramento, CA. Public URL not currently available, please send data requests to EVER data request@nps.gov.
- Chang, C. Y., P. V. McCormick, S. Newman, and E. Elliott. 2009. Isotopic indicators of environmental change in a subtropical wetland. *Ecological Indicators* 9:825-836.
- Childers, D.L., S.M.L. Ewe, D. Rondeau, and T.Grahl. 2005. Water quality, hydrology, soil and macrophyte dynamics in the Southeast Everglades: a multi-year study. Annual Report for Everglades National Park. 28 pp.
- Childers, D. L., D. Iwaniec, D. Rondeau, G. Rubio, E. Verdon, and C. J. Madden. 2006. Responses of sawgrass and spikerush to variation in hydrologic drivers and salinity in Southern Everglades marshes. *Hydrobiologia*. 569 (1):273-292.
- Coronado-Molina, C., J. W. Day, E. Reyes, and B. C. Perez. 2004. Standing crop and aboveground biomass partitioning of a dwarf mangrove forest in Taylor River Slough, Florida. *Wetlands Ecology and Management*. 12:157-164.
- Cunningham, K. J., J. F. Carlson, G. L. Wingard, E. Robinson, and M. A. Wacker. 2004. Characterization of Aquifer Heterogeneity Using Cyclostratigraphy and Geophysical Methods in the Upper Part of the Karstic Biscayne Aquifer, Southeastern Florida. U.S. Geological Survey, Water-Resources Investigation Report 03-4208.
- Cunningham, K. J., M. A. Wacker, E. Robinson, J. F. Dixon, and G. L. Wingard. 2006. A Cyclostratigraphic and Borehole-Geophysical Approach to Development of a Three-Dimensional Conceptual Hydrogeologic Model of the Karstic Biscayne Aquifer,

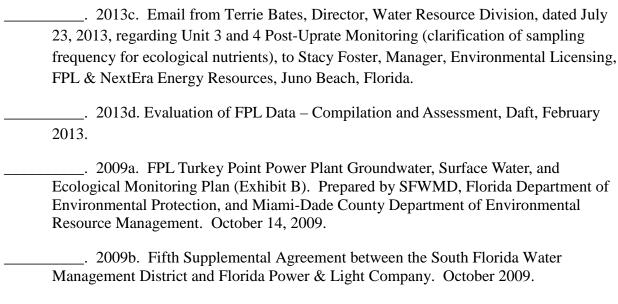

- Southeastern Florida: U.S. Geological Survey Scientific Investigations Report 2005-5235, 69 pp.
- Enriquez, S., N. Marba, C.M. Duarte, B. I. van Tussenbroek, and G. Reyes-Zavala. 2001. Effects of seagrass *Thalassia testudinum* on sediment redox. *Marine Ecology Progress Series*. 219:149-158.
- Fish, J. E. and M. Stewart. 1991. Hydrogeology of the surficial aquifer system, Dade County, Florida. U.S. Geological Survey Water-Resources Investigations Report 80-4108
- Florida International University. 2012. Florida International University Water Quality Monitoring Network. http://serc.fiu.edu/wqmnetwork/SFWMD-CD/Pages/BB.htm.
- Florida Power & Light Company (FPL). 2015a. Florida Power & Light Company Semi-Annual Post-Uprate Monitoring Data Delivery for the Turkey Point Monitoring Project. Prepared for Florida Power & Light Company by Ecology and Environment, Inc. February 2015.

 ______. 2015b. Florida Power & Light Company Annual Post-Uprate Report Addendum for the Turkey Point Monitoring Project. Prepared for Florida Power & Light Company by Ecology and Environment, Inc. May 2015.

 ______. 2014a. Florida Power & Light Company Annual Post-Uprate Monitoring Report for the Turkey Point Monitoring Project. Prepared for Florida Power & Light Company by Ecology and Environment, Inc. February 2014.

 ______. 2014b. Turkey Point Power Plan Groundwater, Surface Water, and Ecological Monitoring Project Groundwater and Surface Water Audit Report. Prepared for Florida Power & Light Company by Ecology and Environment, Inc. December 2013

 ______. 2014c. Weekly Status Report for Florida Power & Light Temporary Cooling Canal
- ______. 2014c. Weekly Status Report for Florida Power & Light Temporary Cooling Canal System Freshening Project (September 24 to September 28, 2014). Prepared for Florida Power & Light Company by Ecology and Environment, Inc. September 2014
- ______. 2014d. Weekly Status Report for Florida Power & Light Temporary Cooling Canal System Freshening Project (September 29 to October 5, 2014). Prepared for Florida Power & Light Company by Ecology and Environment, Inc., October 2014
- ______. 2014e. Weekly Status Report for Florida Power & Light Temporary Cooling Canal System Freshening Project (October 6 to October 12, 2014). Prepared for Florida Power & Light Company by Ecology and Environment, Inc. October 2014
- ______. 2014f. Weekly Status Report for Florida Power & Light Temporary Cooling Canal System Freshening Project (October 13 to October 15, 2014). Prepared for Florida Power & Light Company by Ecology and Environment, Inc. October 2014



Kohn, M. J. 2010. Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo) ecology and (paleo) climate. *Proceedings of the National Academy of Sciences*. 107(46):207-226.

Tallahassee, Florida.

Central and Southern Florida Flood Control District, and the Florida Geological Survey.

- Lugo, A. E. and S. Snedaker. 1974. The Ecology of Mangroves. *Annual Review of Ecology and Systematics* 5:39-64.
- McKee, K. L., I. C. Feller, M. Popp, and W. Wanek. 2002. Mangrove Isotopic (δ^{15} N and δ^{13} C) Fractionation Across a Nitrogen vs. Phosphorous Limitation Gradient. *Ecology* 83(4):1065-1075.
- Millero, F. J. 1996. Chemical Oceanography. (3rd ed). Boca Raton, Florida: CRC Press. 536 pp.
- NIST/SEMATECH. 2012. e-Handbook of Statistical Methods. http://www.itl.nist.gov/div898/handbook. Section 7.1.6. Accessed 3/30/16.
- Olmsted, I. and T. V. Armentano. 1997. Vegetation of Shark Slough, Everglades National Park. SFNRC Technical Report 97-001. 39 pp.
- Peters, C. and J. Reynolds. 2008. "Saltwater Intrusion Monitoring in the Biscayne Aquifer near Florida City, Miami-Dade County, Florida: 1996-2007." CH2M Hill, Inc., consultant to Florida Keys Aquaduct Authority, Key West, FL. Presentation at SWIM 20th Salt Water Intrusion Meeting, June 23-27, 2008 Conference, Naples, Florida.
- Reich, C., R. B. Halley, T. Hickey, and P. Swarzenski. 2006. Groundwater Characterization and Assessment of Contaminants in Marine Areas of Biscayne National Park. Technical Report/NPS/NRWRD/NRTR-2006/356: 40 p.
- Robblee, M. B. and J. A. Browder. 2007. Year 2 Annual Report. USGS Work Order #19. NOAA Work Order #3 for MAP activities 3.2.3.5 and 3.2.4.5. South Florida Fish and Invertebrate Assessment Network. 84 pp.
- Smallwood, B. J., M.J. Wooller, M.E. Jacobson, and M.L. Fogel. 2003. Isotopic and molecular distributions of biochemicals from fresh and buried *Rhizophora mangle* leaves. In *Geochemical Transactions* 4(7): 38-46.
- Smith, B. N. and S. Epstein. 1971. Two Categories of 13C/12C Ratios for Higher Plants. *Plant Physiology* 47(3): 380-384.
- South Florida Water Management District (SFWMD). 2013a. Letter from Terrie Bates, Director, Water Resource Division, dated June 3, 2013, regarding Units 3 and 4 Post-Uprate Monitoring (reduction of groundwater/surface water monitoring), to Barbara Linkiewicz, FPL & NextEra Energy Resources, Juno Beach, Florida.
- ______. 2013b. Letter from Terrie Bates, Director, Water Resource Division, dated July 17, 2013, regarding Unit 3 and 4 Post-Uprate Monitoring (reduction of ecological monitoring), to Barbara Linkiewicz, FPL & NextEra Energy Resources, Juno Beach, Florida.

Turekian, K. 1968. *Oceans*. Englewood Cliffs, New Jersey: Prentice-Hall.

Wacker, M. 2010. Personal communication between Mike Wacker, U.S. Geological Survey, and Jim Bolleter, Ecology and Environment, Inc. February 2010.