

Non-Power Production and Utilization Facility (NPUF) Construction Inspection Program (CIP)

U.S. Nuclear Regulatory Commission May 26, 2016

Construction Inspection Program Overview

Carl Weber Office of New Reactors

Background

- Generic CIP to cover NPUFs
 - Not all aspects will apply to every facility
- Sample based
- Focus on safety related systems, structures, and components (SSCs)
- Quality Assurance Program commitments
 - Corrective Action Program

Licensing and Oversight Responsibility

Inspection Manual Chapter (IMC) 2550

- NPUF-CIP: Single IMC
 - Facility Specific Assessment and Review Group (FSARG)
 - Inspection Report format
 - Enforcement (Traditional)
 - Overall Inspection Strategy
 - Assessment
- Transition to Operations.
- Qualification and Training for Inspectors addressed in IMC 1245

Inspection Procedures (IPs)

- Facility Construction
 - IP 69020, Inspections Of Structures, Systems And Components During Construction Of Non-Power Production and Utilization Facilities
- Quality of Construction
 - IP 69021, Inspections Of Quality Assurance Program Implementation During Construction Of Non-Power Production and Utilization Facilities
- Operational Readiness
 - IP 69022, Inspections Of Operational Readiness During Construction Of Non-Power Production and Utilization Facilities

Facility Construction Inspection Procedure

- Structures, systems and components (SSC) inspection procedure
- Sample selection will be based on safety significance (QL-1 systems)
- Potential inspection areas:
 - Foundations and buildings
 - Structural steel and supports
 - Piping restraints and supports
 - Electrical cable
 - Ventilation and confinement systems
 - Nuclear welding
 - Fire protection systems

- Structural concrete
- Piping systems
- Mechanical components
- Electrical systems and components
- I&C systems
- Structural welding
- Inspections include applicable aspects of QA Program implementation

Quality of Construction Inspection Procedure

- Quality Assurance (QA) Implementation IP
- Consists of 3 parts
 - One Time QA Implementation Inspection.
 - Periodic QA Inspections (at least annually):
 - Corrective Action Program (CAP) Review.
 - Design Control, Nonconformance Control, Audits.
 - Other Criteria (as needed).
 - Reactive Inspections (e.g., problem areas identified during SSC inspections, adverse trends, etc.)
- ANSI 15.8 requirements

Operational Readiness Inspection Procedure

- Operational Readiness Assessment Inspection
 - One time inspection
 - Conducted after licensee submits operating license application and near the end of construction activities
 - Covers status of CIP completion, and may include programs needed for operations
- Inspection supports decision on operating license application determination

Construction Oversight and Inspections

William Gloersen Region II

Oversight and Inspections: Communication

- Establish and maintain frequent communications with NRC
- Establish point of contact for NRC RII construction project manager
- Conduct weekly teleconferences with the following participants:
 - NRC licensing (HQ) and construction project management staff (RII)
 - SHINE licensing and construction project management staff

Oversight and Inspections: Communication

- Consider developing a construction status briefing sheet to facilitate the teleconference with the following information:
 - Construction status and schedule
 - Major milestones
 - Major activities in the past week
 - Major activities planned
 - NRC inspection schedule
 - Inspections completed
 - Inspections planned
 - Licensing Status
 - Key licensing actions
 - Meetings
 - SHINE drop-in visits to NRC HQ or RII
 - NRC management visits to SHINE
 - Public meetings

Oversight and Inspections

- Establish and maintain a restricted access electronic reading room for use by both NRC inspection and licensing staff
- Types of information provided in the electronic reading room
 - Licensing Documents
 - Construction Authorization
 - Quality Assurance Plan
 - Safety Analysis Report
 - Inspection Documents
 - Construction Schedules
 - Project Procedures
 - Condition Reports
 - Non-conformance Reports
 - Engineering documents and drawings
 - Construction photographs

Observations

- Develop strong partnerships with proven vendors
- Maintain critical oversight of work planning packages
- Perform intrusive and strategic inspections to confirm work is performed correctly prior to major undertakings and prior to NRC inspections

Observations

- Develop a robust corrective action program
 - Identify, classify, and track conditions adverse to quality
 - Ensure proper implementation and closure of corrective actions are completed
 - Consider a Management Review Committee
- Safety Culture
 - Keep the terms simple and usable for the construction staff
 - Encourage staff to have a questioning attitude
 - Demonstrate importance daily and reward behaviors
- SHINE Management Oversight
 - Challenge the status quo
 - Be seen in the field and model the correct behaviors and priorities – seek to understand

Construction Lessons Learned: New Reactors

Phil O'Bryan Office of New Reactors

Discussion Topics

- Design Control Lessons Learned
- Construction Lessons Learned
- Corrective Action Program Lessons Learned

Design Control Lessons Learned

- Unclear Licensing Basis
 - New aspect of design that wasn't originally described or addressed in Construction Permit
 - Misapplication of Codes/Standards in licensing basis
- Lack of awareness of licensing basis commitments
 - Use of standard methodologies not in licensing basis
 - Misinterpretation of Codes/Standards
 - Use of wrong revision of Codes/Standards
 - Incorrect, or lack of, vendor specifications
 - Field changes poorly researched

Construction Lessons Learned

- Poor vendor quality, not identified by receipt inspection
- Poor Work Packages/Procedures
- Constructability & Field engineering
- Poor Supervision/QC oversight

Corrective Action Program (CAP) Lessons Learned

- Safety Conscience Work Environment and workers new to nuclear industry
- Use of multiple CAPs/QAPs
- Use-as-is justifications
- Use of CAP to reconcile deviations and licensing basis

Construction Lessons Learned: Fuel Cycle Facilities

David Tiktinsky Office of Nuclear Material Safety and Safeguards

Topics

- Commitments in licensing documents
- Change process
- QA programs
- NRC observations

Commitments Made in Licensing Documents

- Clear commitments in licensing documents (e.g. codes, standard and exceptions)
 - NRC inspects against licensing commitments
 - Interpretations of code requirements
 - Clear language
 - Deviations and exceptions from codes and standards
 - Descriptions versus commitments

Change Process During Construction

- Change requirements used for evaluating changes to site, structures, processes, systems, components, etc. (for ISA summary)
- Change process for license application
 - NRC reviews and inspects process and results
 - Reassess criteria based on actual experience

NRC Observations

- Design control
- Vendor oversight
- Inspection

Design Control Inspection Findings

- Translating design requirements (including codes and standards) into design and construction documents and properly implementing design documents
- Initiating, performing, verifying and documenting design changes and evaluating the impact of those changes on the design bases

Design Control Corrective Actions

- Training
- Surveillance activities at vendors
- Documentation of code deviations
- Procedure revisions

Supplier and Vendor Inspection Findings

- Compliance of inspection procedures with respect to ASME codes
- Oversight of vendors QA activities
- Documentation of weld repair procedures
- QA examinations of repair welds not performed as required by procurement specifications
- Vendor welder qualification program
- Inadequate documentation of weld repair/rework activities

Supplier and Vendor Corrective Actions

- Training related to preparing technical justifications
- Revised procedures to provide project personnel instructions on handling supplier issued non-conformance reports
- Additional oversight of vendors QA
- Clarification of procurement specifications

Lessons Learned from Industry Representative*

- Accepted Industry Practice does not necessarily affect the NRC's Position
- Emphasis on survey of the supply chain not realistic, unless accounted for when developing procurement strategy for how to establish a supply chain for a CGI
- The completeness of the evaluation, survey results, test results and the final acceptance records are important for CGI as any other nuclear component

*Presented by Rodney Whitney, MOX Services at NRC vendor oversight workshop in August 2012.

Challenges to Quality Construction (Industry)

- Ensuring vendors and construction contractors are implementing quality assurance requirements
- All organizations should be trained on and use similar corrective action programs
- Designing and redesigning as construction continues impacts inspection resources and scheduling
- Design control and verifications
 - Does the field design match the approved design?

Vendor-Related Lessons

Learned/Recommendations (Industry)

- Know your supplier's (and your supplier's supplier) fabrication and CGD processes
- Demand objective evidence that suppliers and subsuppliers have appropriate QA programs & CGD Processes in-place to assure implementation is effective
- Otherwise you may see or get:
 - Procedures not workable or developed but not followed
 - Implementing procedures don't consistently address requirements
 - Incapable of identifying critical characteristics
 - Lack of experience with nuclear regulations and QA requirements
 - Control of sub-suppliers by prime suppliers is poor

Vendor-Related Lessons

Learned/Recommendations (Industry)

- Allow vendor flexibility in sampling plans due to their knowledge of particular circumstance of their supply chain knowledge
 - Allow vendors to propose alternatives for your acceptance
 - Experience has shown that QL-1 (IROFS) vendors vary dramatically in their knowledge of standard sampling plans and implementation of sampling plan methodology
 - Example: Destructive/Non-destructive testing of raw materials

Vendor-Related Lessons Learned/Recommendations (Industry)

- Vendor Communication with project CGD group is very important.
 - Placing CGD personnel in the vendor shop can be very beneficial.
 - Train Subcontract Technical Representatives to understand project CGD positions, since they are the first line of technical oversight of the vendor.
 - Understand foreign company quirks.

Vendor-Related Lessons

Learned/Recommendations (Industry)

- Aggressive management and oversight of CGD programs is prudent
 - Review all vendor Commercial Grade Dedication plans and procedures initially.
 - Reviews may be stopped or lessened when confidence is gained with vendors program
- CGD acceptance process needs to be closely coordinated with receipt inspection capabilities

NRC Enforcement Program

Tom Marenchin Office of Enforcement

Purpose of Enforcement Program: Support NRC Mission

- Enforcement Action Should Be Used:
 - As a deterrent to emphasize the importance of compliance with requirements, and
 - To encourage prompt identification and prompt, comprehensive correction of violations

Enforcement Tools

- Formal Mechanisms (legally binding)
 - Minor violation
 - Non-cited violation (NCV)
 - Notice of violation
 - Civil penalty
 - Order
 - Demand for Information
- Administrative Actions (not legally binding)
 - Notice of Deviation (failure to satisfy non-binding requirement)
 - Notice of Nonconformance (contractor failure)
 - Confirmatory Action Letter (licensee agreement to take specified actions)

NRC Enforcement Process

- Identify
- Assess
- Disposition

Identifying Noncompliances

- What requirement was violated?
- How was the requirement violated?
- When did the noncompliance occur?
- How long did it exist?
- Who identified it and when?
- What is significance
- What is the root cause? (if known)
- Corrective actions?

Significance

- NRC consider four issues:
 - Actual safety consequences
 - Potential safety consequences
 - Potential for impacting the NRC's ability to perform its regulatory function
 - Any willful aspects of the violation

Traditional Enforcement

- Each violation assigned a Severity Level (SL)
 - SL I, II, III, IV, with SL I being the most significant and SL IV being the least significant on risk
 - Enforcement Policy Provides violation examples for each of the four SLs
 - Section 6.5 Facility Construction (10 CFR Part 50 and 52 Licensees and Fuel Cycle Facilities)
 - SL may be increased if violation determined to be willful

Notice of Violation (NOV)

- A written notice setting forth one or more violations of a legally binding requirement
- NOV states:
 - When violation occurred (date)
 - Who violated requirement
 - Time and/or number of times violation occurred
 - Brief description of the violation (i.e., what actually happened resulting in the violation)
- A civil penalty may be issued in conjunction with NOV

Escalated Enforcement

- SL I, II, III violations Civil Penalties
- NOVs to individuals
- Orders to modify, suspend, or revoke NRC licensees or the authority to engage in NRClicensed activities
- Orders to impose civil penalties

Enforcement Panel

- All proposed escalated enforcement reviewed by enforcement panel
- Panel participants include OE, regional staff, headquarters staff, and, if needed, OGC
- Panel considers:
 - Facts of the violation and requirements
 - SL and violations examples in Policy
 - Whether Identification Credit is warranted
 - Whether Enforcement Discretion is appropriate
 - Whether a CP is appropriate
 - Whether to hold a PEC

Predecisional Enforcement Conference (PEC)

- Held if needed by NRC or requested by licensee
- Normally open to public
- Purpose to obtain information to assist enforcement decision:
 - Facts, Root Causes, Missed Opportunities
 - Corrective Actions taken or planned
 - Significance

References

• NRC Enforcement Policy

<u>http://www.nrc.gov</u> (select Electronic Reading Room, then Document Collections, then Enforcement Docs, then Enforcement Policy)

NRC Enforcement Manual

<u>http://www.nrc.gov</u> (select Electronic Reading Room, then Document Collections, then Enforcement Docs, then Enforcement Guidance, then Enforcement Manual)

 Issued Escalated Enforcement Actions
 <u>http://www.nrc.gov/about-</u> nrc/regulatory/enforcement/current.html

