

AP1000 Construction

Translating Technical Requirements and Licensing Commitments into Construction

Anthony Ponko & Robert Mathis Division of Construction Inspection

> Region II July 28, 2016

Agenda

- Overview of design implementation at AP1000
 construction sites
- Examples of inspection findings associated with translation of structural code requirements into final design output documents
- Digital I&C inspection implementation

- Vogtle Units 3 & 4 and V.C. Summer Units 2 & 3 are first AP1000 Plants under construction in U.S.
- Both plants licensed under 10 CFR 52 and reference AP1000 design certification document (Pt. 52, App. D)
- The detailed design of structures, systems, and components must comply with AP1000 DCD Tier 1 & Tier 2* information, including applicable codes and standards, and Inspections, Tests, Analysis and Acceptance Criteria (ITAAC)

- The importance of design control to safety is reflected in quality assurance requirements and the construction reactor oversight process (cROP)
 - Design Control one of 18 Quality Assurance Criteria in 10 CFR Part 50, Appendix B
 - Design/Engineering one of six cornerstones of safety identified in cROP

AP1000 design implementation during construction verified through:

- Routine ITAAC and programmatic inspections conducted by regional and resident inspectors in accordance with IMC 2503 and 2504
 - Review final construction documents
 - Review design deviations (disposition of nonconformances) and design change documents
- Engineering Design Verification (EDV) and ITAAC inspections conducted at vendor facilities in accordance with IMC 2507 and IMC 2503

Current status of AP1000 construction sites:

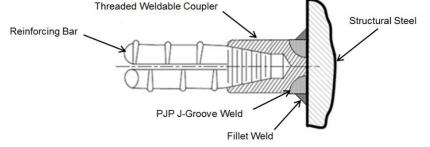
- 14 NRC identified violations associated with design control since implementation of cROP (6 Vogtle & 8 V.C. Summer)
- All violations of Very Low Safety Significance (Green)
- Both Plants currently in Licensee Response Column of Construction Action Matrix

Structural Inspection Examples

Anchorage and spacing of headed shear reinforcement in structural components of the nuclear island not in compliance with licensing basis (NCV 05200027/2013010-01)

- Bars used to resist out of plane shear forces in slabs and walls
- Typically used to enhance constructability/ alleviate congestion
- Anchorage and spacing not in compliance with Tier 2* code ACI 349-01
- Bars too short and spaced too far apart to be fully effective

Structural Inspection Examples, cont.


Issue Resolution

- Adopt alternate acceptance criteria provided in ACI 318-11.
- Revise design as necessary where does not meet ACI 318-11 criteria for headed reinforcement
- LAR (License Amendment 5) required due to departure from Tier 2* information (ACI 349-01)

Structural Inspection Examples, cont.

Weld allowable stress calculation not in compliance with licensing basis (NCV 05200025/2015002-01)

- Design of weld attaching mechanical coupler to steel plate not in compliance with Tier 2* code - AISC N690-94
- Embedments used to transmit loads to concrete structures
- Identified at V.C. Summer but affected both sites

Structural Inspection Examples, cont.

Issue Resolution

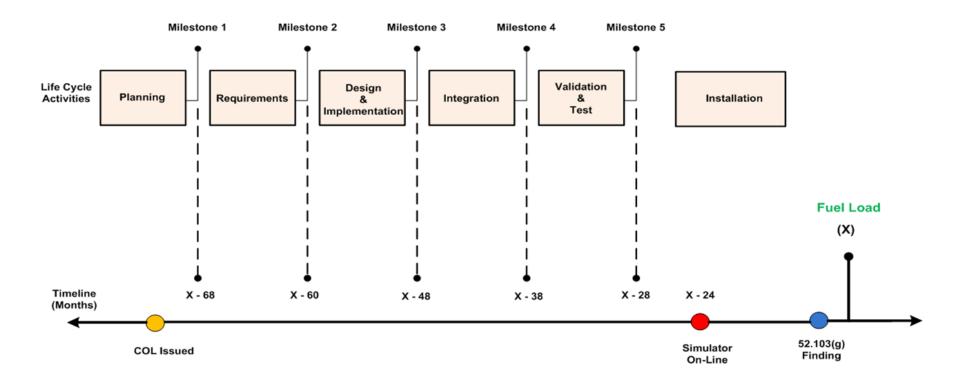
- Destructive testing of weld to verify sufficient capacity and to support approval of special system of design or construction in accordance with AISC N690-94
- LAR (License amendment 40) due to departure from Tier 2* information (AISC N690-94)

AP1000 Digital I&C ITAAC Inspection

Region II July 28, 2016

Background

- IP 65001.22, Inspection of Digital Instrumentation and Control (DI&C), Issued 12/19/2011
- Front-Load Approach Series of programmatic, implementation, and in-process testing observations
- Sampling Focus System/Software life cycle attributes and design outputs. For DI&C, there is reliance on the Licensee having a rigorous process and Independent Verification & Validation (IV&V) program
- Inspection Emphasis: Process, Configuration Management, IV&V, Traceability throughout the development life cycle



Inspection Strategy

- Inspections driven by milestones
- Milestones coincide with IP 65001.22 Appendices 1-6 also modeled as system/software life cycle phases:
 - Planning Phase (Milestone 1)
 - Requirements Phase (Milestone 2)
 - Design & Implementation Phase (Milestone 3)
 - Integration Phase (Milestone 4)
 - Validation & Testing Phase (Milestone 5)
 - Installation Phase
- Inspections consist of a coordinated effort between Region II and NRO

DI&C Inspection Strategy

Digital I&C Development and Inspection Chronology

14

DI&C Inspection Examples

- Protection and Safety Monitoring System (PMS) Requirements Phase Inspection (Vogtle 3&4 @ Westinghouse) - May 2012
- Results: NOV, Green ITAAC Finding (ITAAC 2.5.02.11.b, 2.5.2.12)
- Inadequate translation of requirements contained in:
 - IEEE 1012, Software Verification and Validation
 - ASME NQA-1, Quality Assurance Program Requirements
 - IEEE 1074, Developing Software Life Cycle Processes
 - IEEE 803, Software Requirements Specification
- Issue Resolution: IV&V tasks and reports were completed; Traceability to Software Requirements Specification completed; Training on key processes, industry codes and standards; and Mapping of codes and standards to process and procedures performed.

DI&C Inspection Examples, cont.

- PMS Design, Implementation, and Testing Inspection (Vogtle 3&4 and VC Summer 2&3 @ Westinghouse) -March 2015
- Results: Notice of Nonconformance
- Inadequate Equipment Qualification associated with:
 - Current Transients in Isolation Devices
 - Electromagnetic Compatibility Testing for PMS Cabinets
 - Dedication of M&TE used for EMC Testing Services
- Corrective actions are in-process and will be verified by inspection