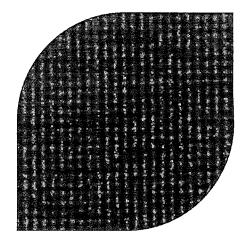


AREVA Inc. 2016 Fuel Performance Meeting

June 1 – 2, 2016 Rockville, MD

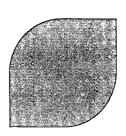


2016 Fuel Performance Meeting Table of Contents

Tab	Description
1	BWR Operating Experience and Fuel Exams
2	ATRIUM™ 11 Irradiation Program & Poolside Inspection Results
3	BWR Topical Reports Overview
4	Update on BWR Advanced Engineering Methods
5	PWR Fuel Designs and Operating Experience
6	Update of AREVA Activities and Plans Related to 10 CFR 50.46c
7	PWR Topical Reports Overview
8	PWR Fuel Seismic/LOCA Method
9	US PWR Advanced Methods
10	AREVA Program on Enhanced Accident Tolerant Fuel

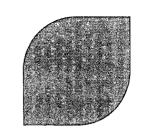
Copyright © 2016

AREVA Inc. All Rights Reserved



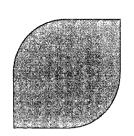
AREVA / NRC Annual Fuel Performance Meeting

Rockville, MD June 1–2, 2016


Fuel Performance Meeting Objectives

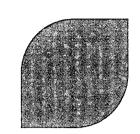
- ►Increase NRC's understanding of AREVA's:
 - ♦ Fuel activities, products and strategies
 - ♦ Fuel operating experience, observations and solutions
 - Advanced codes and methods development
- ► Discuss AREVA's submitted and planned topical reports and associated customer needs
- ► Exchange ideas and expectations on fuelrelated issues
 - Open communication and questions encouraged to maximize benefit to NRC Staff and AREVA

Agenda – June 1, 2016 Morning

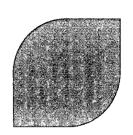

- ▶ 10:00 Introductions and Safety Message J. Rowley / N. Hottle
- ▶ 10:05 NRR Management Discussion T. McGinty et al.
- ► 10:45 NRR Updates

 Pilot LTR Review Process J. Dean

 Topical Report Change Management J. Dean
- ▶ 11:00 AREVA Inc. Regulatory Perspectives G. Peters
- ▶ 11:15 U.S. Fuel Product Implementation Plans R. Freeman
- ▶ 11:30 Lunch


Agenda – June 1, 2016 Afternoon

- ▶ 12:30 Introductions and Safety Message J. Rowley / N. Hottle
- ▶ 12:45 BWR Operating Experience and Fuel Exams N. Garner
- ► 1:45 ATRIUM™ 11 Irradiation Program & Poolside Inspection Results S. Cole
- **▶** 2:45 Break
- ► 3:00 BWR Topical Reports Overview R. Pederson
- ► 3:15 Update on BWR Advanced Engineering Methods K. Quick
- **▶** 4:15 Wrap-up of Day 1
- ► 4:30 Adjourn


Agenda – June 2, 2016 Morning

- ▶ 9:00 Introductions and Safety Message J. Rowley / N. Hottle
- ▶ 9:15 PWR Fuel Designs and Operating Experience B. Friend
- ▶ 11:00 Break
- ▶ 11:15 RIA Criteria Revision Status Update P. Clifford
- ► 11:25 10 CFR 50.46c Rule Change NRC – P. Clifford AREVA – L. Gerken
- ► 12:00 Lunch



Agenda – June 2, 2016 Afternoon

- ► 1:00 Introductions and Safety Message J. Rowley / N. Hottle
- ► 1:10 PWR Topical Reports Overview R. Pederson
- ▶ 1:20 PWR Fuel Seismic/LOCA Method B. Matthews
- **▶** 2:05 Break
- ▶ 2:15 US PWR Advanced Methods K. Segard
- 3:15 AREVA Program on Enhanced Accident Tolerant Fuel C. Lewis
- ► 4:15 Wrap-up / Actions
- ► 4:30 Adjourn

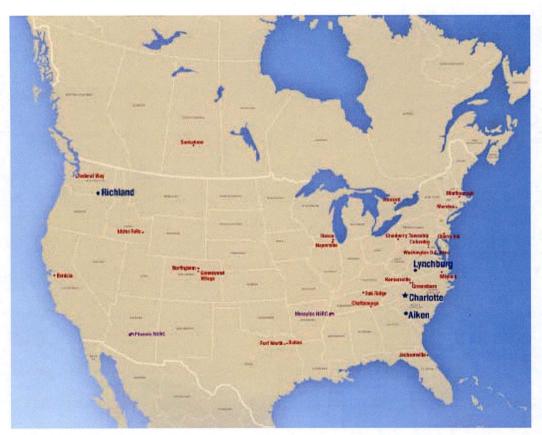
AREVA Inc. Regulatory Perspectives

Gary Peters
Director, Licensing and Regulatory Affairs

Our international presence

AREVA Inc.

Charlotte, NC – North America Headquarters


Lynchburg, Va.

Richland, Wash.

Nearly 4,100 employees committed to Operational Excellence in approximately 42 locations across North America

4 AREVA

AREVA Inc. Business Capabilities

Mining ·Saskatchewan, Canada

Front End Lynchburg, VA Richland, WA


Reactors & Services ·Lynchburg, VA

- (Services) Charlotte, NC
- Marlborough, MA
- ·Fort Worth, TX nto, Canada

Back End

- Columbia, MD
- Charlotte, NC
- Aiken, SC
- San Onofre, CA

Renewables

Santa Clara, CA

Active sales presence in US

Fuel in all U.S. **Reactor Designs**

Key supplier of Services in U.S.



Leader in Dry **Fuel Storage**

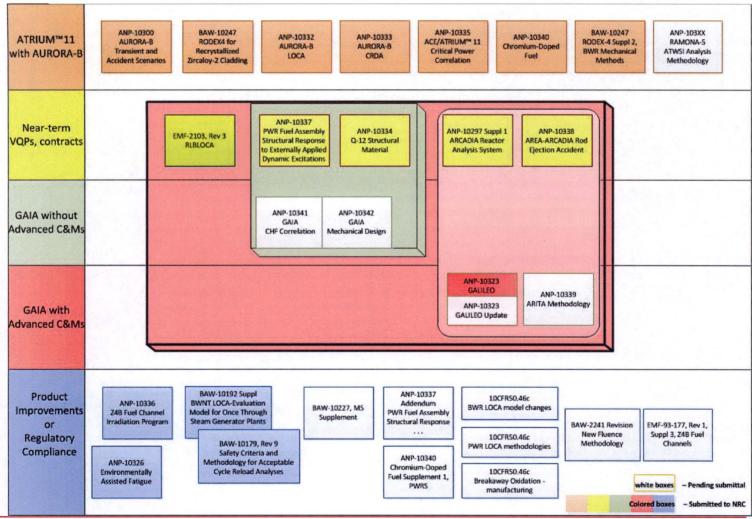
Strategic Initiatives

US Fuel Product Implementation Plans

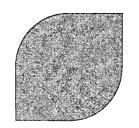
Robert S. Freeman Vice President, U.S. Nuclear Fuels

- Discuss AREVA's implementation plans for advanced fuel products
- ► Clarify need for alignment of NRC's topical report reviews with AREVA's priorities
- ► Emphasize need for efficient, timely NRC review of AREVA's topical reports

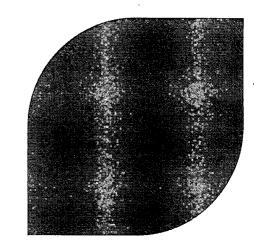
GAIA Go-To-Market in US



ATRIUM™ 11 Go-To-Market In US 2016 2017 2018 2019

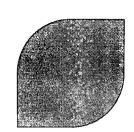

Topical Reports

Priorities discussed during management review meetings remain unchanged.



Summary/Conclusions

- ►AREVA recognizes the benefit of routine open/transparent dialogue with NRC
- ►Efficient, timely completion of NRC reviews is needed to support transitions to advanced fuel products and codes and methods.
- ►AREVA has clear priorities for NRC's review of topical reports

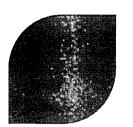

BWR Operating Experience and Fuel Exams

Norman Garner Technical Sales Manager

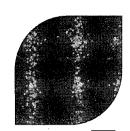
Rockville, MD June 1–2, 2016

BWR Operating Experience Agenda

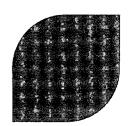
- **▶**Objectives
- **▶BWR Fuel Reliability Overview**
 - **♦ ATRIUM™ Load Chain Events**
 - ♦ Fuel Rod Failure 10 Year Rolling History
- ▶2015 Fuel Examination Campaigns
 - **♦ ATRIUM™ 10XM Leads and Reloads**
 - **♦ Z4B™ Lead Use Fuel Channels**
- **▶**Future Fuel Examination Campaigns


BWR Operating Experience Objectives

- ► Provide a status update on the overall performance of AREVA's BWR fuel products
- ► Provide an overview of fuel examinations and results from 2015 campaigns
- ► Provide an overview of future fuel examination plans
- ► Engage in dialogue regarding NRC interests and priorities for BWR fuel surveillance

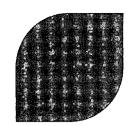


ATRIUM™ BWR Fuel Load Chain Events – 2014/2015

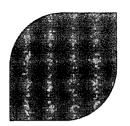


Connecting Bolt Event Root cause evaluation

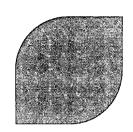
Connecting Bolt Event Remedial actions



Water Channel Event Fracture details

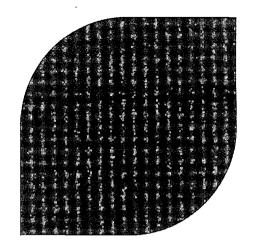


Water Channel Event Fracture evaluation



Water Channel Event Root cause evaluation

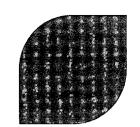
ATRIUM™ Load Chain Events Conclusions



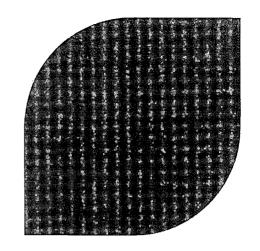
► Steps taken with respect to the connecting bolt event are sufficient to assure this failure mechanism will not recur

► Remedial restrictions are practicable to assure no recurrence of the water channel event failure mode

♦ Specific type of cleaning should not be performed on ATRIUM™ fuel



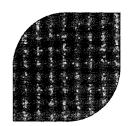
BWR Fuel Reliability


General performance statistics

AREVA is delivering on zero BWR fuel rod failure expectations



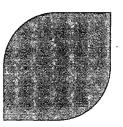
2015 Post-irradiation Examinations (PIE)


ATRIUM™ 10XM Reloads and LTAs Z4B™ Advanced Alloy Fuel Channels

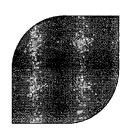
US BWR Fuel PIE 2015 Examinations

4-Face Visual Examination Appearance consistent with expectations

Fuel Rod Visual Examination Appearance consistent with expectations



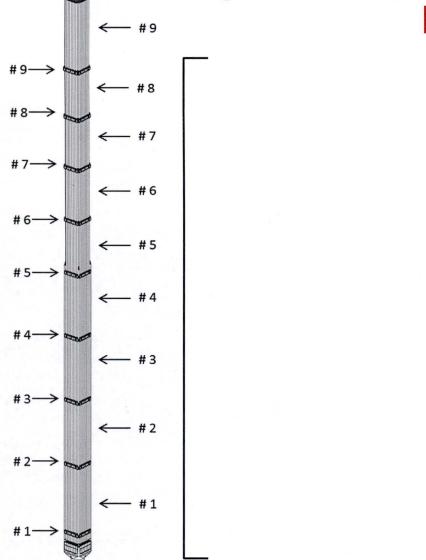
Assessment of Observations

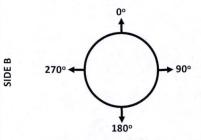


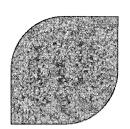
Spacer Grid Shadow Corrosion Background

- ► Close proximity of Ni-based alloys or stainless steel to Zircaloy can result in accelerated corrosion under irradiation in BWRs
 - ♦ Shadow corrosion on fuel rods under spacer grids largely occurs early in life and is greatest at low to moderate void conditions (lower elevations)
 - ♦ Shadow corrosion behavior depends on various factors (e.g. cladding and surface condition, spacer type/material/design, water chemistry, operating conditions)

Spacer Grid Shadow Corrosion Campaign Scope

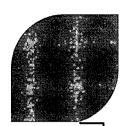

▶ Scope of poolside inspections included:


*SSC: Spacer [Grid] Shadow Corrosion



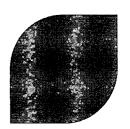

Fuel Rod Orientation for Examinations

Data for EPRI FRP SSC Program Reference liftoff in span between grids



Data for EPRI FRP SSC Program Liftoff 45° from spacer contact points

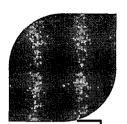
Data for EPRI FRP SSC Program Liftoff at spacer contact points

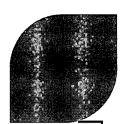


Shadow Corrosion Surveillance Observations & Next Steps

US BWR Fuel PIE 2015 Examinations

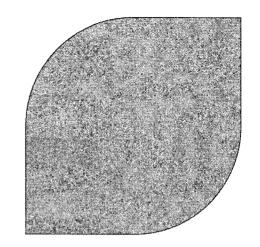
ATRIUM™ 10XM LTA Exam


Fuel Channel Surveillance Z4B™ Alloy Lead Use Channels


U

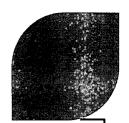
Fuel Channel Surveillance Z4B™ Alloy- continued

Fuel Channel Surveillance Channel Coupon Removal

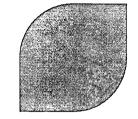


Z4B™ vs Zry-4 Fuel Channel Coupon Data

Z4B™ Fuel Channel Summary

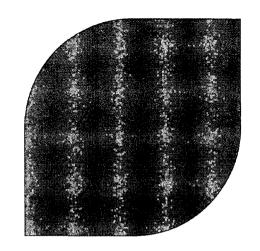


2016-2020 Forecast for Post-irradiation Examinations (PIE)



US BWR Fuel PIE Planning 5-year View

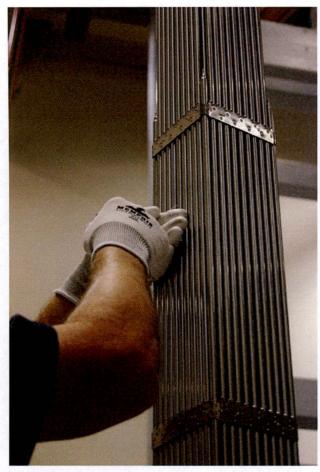
BWR Operating Experience Summary



Acronyms/Nomenclature

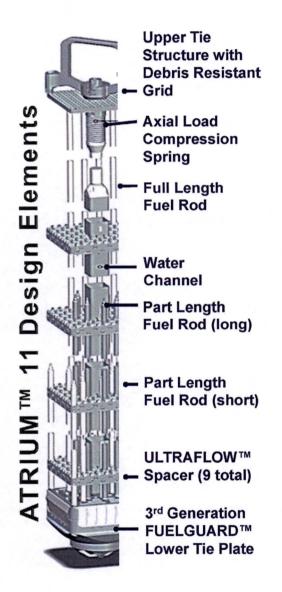
- **▶** BOL/EOL: Beginning-of-Life/End-of-Life
- BQ: Beta-Quench
- ▶ EFID: Effective Full Insertion Days- Fraction of full control blade insertion depth X number of days inserted
- ► EOC: End-of-Cycle
- ► EPRI FRP: Electric Power Research Institute Fuel Reliability Program
- ► HAZ: Heat affected zone (artifact of welding operations)
- ► IASCC: Irradiation Assisted Stress Corrosion Cracking
- ▶ IGSCC: Intergranular Stress Corrosion Cracking
- ► LTA: Lead Test Assembly
- ► LUC: Lead Use Channel
- ▶ OLNC: Online NobleChem, a trademark of GE Hitachi Nuclear Energy for platinum injection into the primary system
- ► PCI/MPS: Pellet-Clad Interaction/Missing Pellet Surface
- ▶ PIE: Post Irradiation Exam
- ▶ SSC: Spacer [Grid] Shadow Corrosion, local increase in cladding oxide in close proximity to Ni-alloy elements of spacer grids
- ► ULF-S: ULTRAFLOW™-S Alloy-718 spacer grid with CrN vapor deposition coating
- ► Z4B™: AREVA proprietary variation of Zircaloy-4 with iron and chromium above ASTM specification (developed under the working name of Zircaloy-BWR)

ATRIUM, FUELGUARD, ULTRAFLOW, and Z4B are trademarks of AREVA NP in the USA and other countries


ATRIUM™ 11 Irradiation Program & Poolside Inspection Results

Steven Cole BWR Fuel Product Line Manager

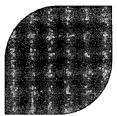
Rockville, MD June 1-2, 2016


Objectives

ATRIUM™ 11 Fabrication, Richland WA

- Reiterate the purpose & safety advantages of the ATRIUM™ 11 fuel design
- Recap the new features of the ATRIUM™ 11
- ▶ Provide the current status of the ATRIUM™ 11 LTA program
- ► Share the ATRIUM™ 11 poolside irradiation results

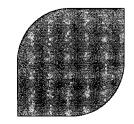
Why ATRIUM™ 11?


- ➤ ~10 years ago, AREVA launched a development project to proactively address the industry need for superior BWR fuel safety and efficient reactor operation
- ► The new design had to address the known & anticipated failure mechanisms and increase design margins relative to the current (i.e., 10x10) designs
 - While simultaneously reducing fuel cycle costs
- Meeting these design objectives required combining high performing, proven technology with breakthrough innovation
- ► The 11x11 fuel rod array is the key breakthrough which led to meeting & surpassing the design objectives
- The primary purpose of the ATRIUM™ 11 is to increase margins to design limits

ATRIUM™ 11 Fuel Rod Design



The ATRIUM™ 11 provides a comprehensive defense from the leading BWR fuel failure cause: debris fretting

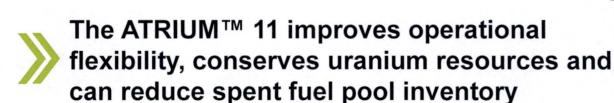


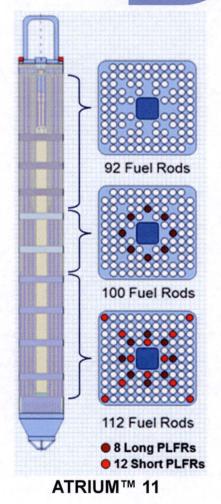
INPO Level 4 Event Report (March 17, 2016) was issued on the adverse tren	ıd
in debris related fuel failures	

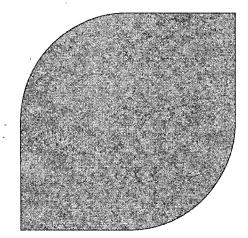
The 3rd Generation FUELGUARD™ (3GFG) debris filter is standard on the ATRIUM™ 11

ATRIUM™ 11 Fuel Channel

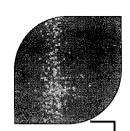
- ► Manufactured from Z4B™ material & beta-quenched for dimensional stability
 - ♦ Comprehensive protection against hydrogen & fluence induced bow



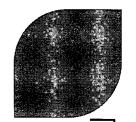

The ATRIUM™ 11 fuel channel combines mechanical design features with Z4B™ BQ material to avoid fuel channel related safety risks and reliability issues


ATRIUM™ 11 Fuel Cycle Performance

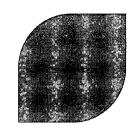
- Cycle design simulations confirm that the ATRIUM™ 11 increases the calculated design margins for the transient and accident licensing analyses (Ref: "ATRIUM™ 11 The Utilization of Reduced LHGR for Optimized BWR Operations" Topfuel 2013)
- ► The reduced LHGR allows for more flexible plant maneuvering, leading to improved capacity factors



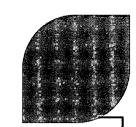
ATRIUM™ 11 LTA Key Inspection Results


The main ATRIUM™ 11 irradiation program consists of 40 LTAs operating across 5 reactors worldwide since 2012

The ATRIUM™ 11 irradiation program is designed to fully demonstrate the product across the range of operating regimes & to provide EOL experience prior to the first US reload

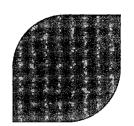

Fuel Channel Visual Inspection

Excellent visual appearance with no unusual corrosion or mechanical anomaly



Fuel Rod Visual Inspection

ATRIUM™ 11 Fuel Rod Hot Cell Examination

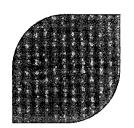


As in prior new fuel introductions, hot cell exams are used to substantiate poolside results

Visual assessment of ATRIUM™ 11 ULTRAFLOW™ spacer grid

Overall excellent visual appearance. No bent mixing vanes or damaged springs.

ATRIUM™ 11 UTP inspection



As expected visual appearance.

No issues with removal or installation.

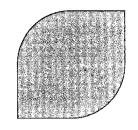
3rd Generation FUELGUARD™ Visual Inspection

Perfect mechanical integrity of all new features

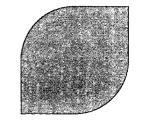
ATRIUM™ 11 Fuel Rod Growth

ATRIUM™ 11 Fuel Rod Diameter Change

ATRIUM™ 11 Fuel Rod Corrosion

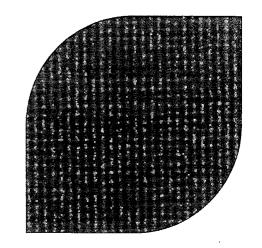


Shadow Corrosion Assessment



Summary

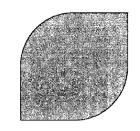
- ► The ATRIUM[™] 11 was purposefully developed to improve safety and to avoid fuel operational issues
- ► The ATRIUM™ 11 main LTA program launched in 2012 is comprised of a group of 5 utilities hosting a total of 40 ATRIUM™ 11 lead assemblies
- ► The ATRIUM™ 11 LTA program comprehensively demonstrates the various design features across the range of expected operating regimes
- ► End of life data will be available prior to the initial ATRIUM™ 11 reload in the US
- ► Poolside measurements to-date confirm the expected ATRIUM™ 11 performance and demonstrate in-reactor serviceability
- ► AREVA together with our customers and the NRC are executing the plan to realize the ATRIUM™ 11 safety benefits and operational flexibility to be gained in reload applications



Acronyms/Nomenclature

- 3GFG: 3rd Generation FUELGUARDTM lower tie plate debris filter
- ABB: ASEA Brown Boveri
- ASEA: Allmänna Svenska Elektriska Aktiebolaget (Sweden)
- BQ: Beta-Quench Heat Treatment
- BWR: Boiling Water Reactor
- CSDM: Cold Shutdown Margin
- **■** EOL: End of Life
- FA: Fuel Assembly
- HWC: Hydrogen Water Chemistry
- KWU: Kraftwerk Union (Germany)
- LHGR: Linear Heat Generation Rate

- LTA: Lead Test Assembly
- LTP: Lower Tie Plate
- NWC: Noble Water Chemistry
- OLNC: Online NobleChem, a trademark of GE Hitachi Nuclear Energy for platinum injection into primary system
- PCI: Pellet Clad Interaction
- PIE: Post-Irradiation Examination
- PLFRs: Part Length Fuel Rods
- SFP: Spent Fuel Pool
- UTP: Upper Tie Plate
- Z4B™: AREVA proprietary fuel channel material

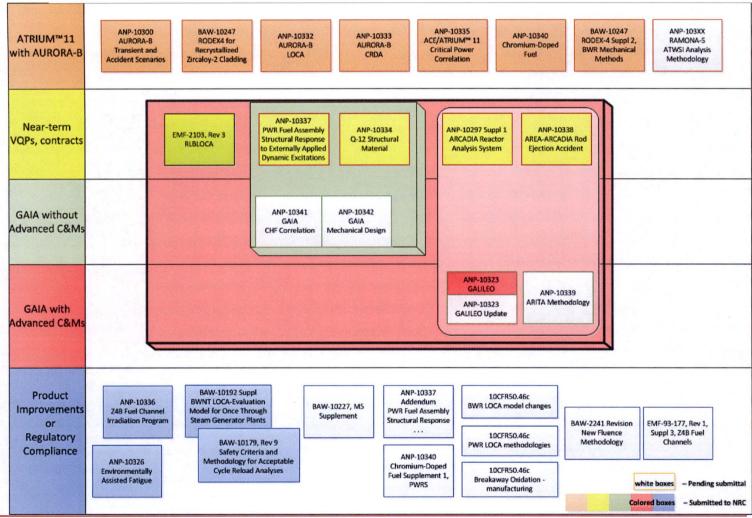


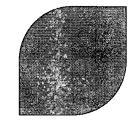
BWR Topical Reports Overview

Ronda Pederson Advisory Engineer Fuel Regulatory Strategy

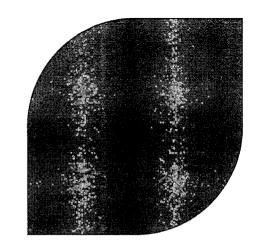
Objectives

- ▶ Discuss AREVA's implementation plans for advanced BWR fuel products, and supporting codes and methods
- ► Clarify need for alignment of NRC's topical report reviews with AREVA's priorities
- ► Emphasize need for efficient, timely NRC review of AREVA's topical reports




Topical Reports

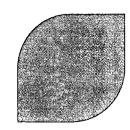
Priorities discussed during management review meetings remain unchanged.



Summary/Conclusions

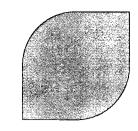
► AREVA recognizes the benefit of routine open/transparent dialogue with NRC

► AREVA has clear priorities for NRC's review of topical reports


Update on BWR Advanced Engineering Methods

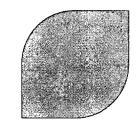
Kevin Quick Supervisor Thermal Hydraulic Codes and Methods

Rockville, MD June 1–2, 2016



Agenda

- **▶**Objectives
- **►AURORA-B Methodology Suite**
 - ♦ Status and Schedule
 - **♦ LTR Review Progress**
 - **♦** Summary
- ►ATWSi Methodology to support extended flow window licensing
- ► Additional BWR LTR Submittals
- **▶**Summary

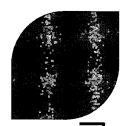


Objectives

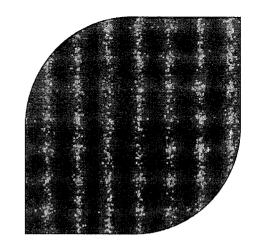
- ► Demonstrate AREVA's commitment to address changes in regulatory requirements and customer needs
- ► Provide an overview and status of AURORA-B methods relative to industry needs
- ► Provide an overview of future generic ATWSi methodology development
- ► Obtain NRC feedback on AREVA's BWR Core Engineering Outlook

Background

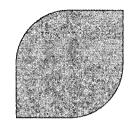
▶Based on NRC feedback


- New methods development based on state of the art codes
- Codes are based on first principles minimizing use of empirical formulations

▶New methods allow AREVA to


- Improve safety with better analytical tools
- ♦ Transition from legacy methods
- ♦ Improve modeling of phenomena with more explicit tools

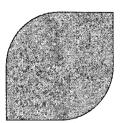
New Methods Code Suite



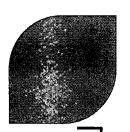
AURORA-B Methodology Suite

AURORA-B Status

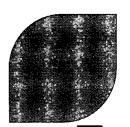
- ► Three AREVA BWR methodologies have been submitted to the NRC
 - **♦ AOO..... Draft SER expected in July**
 - **♦ LOCA.... Not yet Accepted; NRC Active Status?**
 - CRDA.... Accepted for review; NRC Active Status?
- ►Approval of these methodologies is required to address proposed changes in regulatory requirements



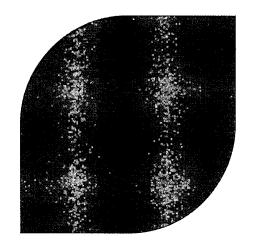
Codes and Methods Schedule



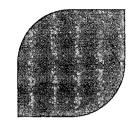
Implementation Planning



AURORA-B AOO Review Reaching Resolution

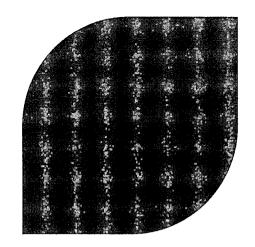


AURORA-B Summary/Conclusions



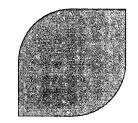
ATWSi Methodology

ATWSi Methodology


► A recent plant specific ATWSi methodology has been utilized by AREVA to support MELLLA+ operation

ATWSi Methodology

Additional BWR LTR Submittals

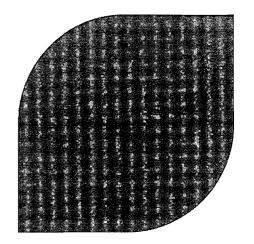


Chromium Doped Fuel

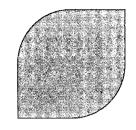
- ►ANP-10340, submitted on April 29th, addresses the incorporation of Chromia-Doped fuel properties in RODEX4. The LTR describes:
 - ♦ Cr₂O₃-doped material property database and the required changes to the standard RODEX4 fuel properties
 - ♦ Cr₂O₃-doped irradiation database including both steadystate data and ramp tests for code benchmarking
 - Senchmarking of RODEX4 against the database and updating of relevant licensing codes

♦	Assessment of the impact of Cr ₂ O ₃ -doped UO ₂ properties	s on
	licensing evaluations	

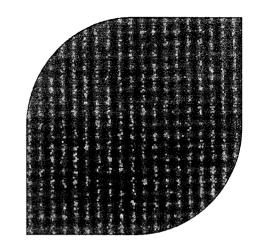
BWR Mechanical Design


►BAW-10247P-A Supplement 2P, submitted on April 29th, introduces improvements to AREVA's BWR fuel mechanical methods based on recent data

Enhanced Option III

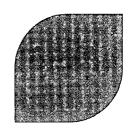


Summary



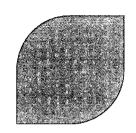
Summary

- ►AREVA has listened to NRC guidance and is investing in the advancement of codes and methodologies
- ► Advances in codes and methods are accompanied by a robust validation process
- ► Advances include capabilities to address proposed changes in regulations and provide greater flexibility to meet future needs
- ► Advanced codes and methods provide licensees with accurate and safe assessments of margins to fuel design limits, transients and accidents



PWR Fuel Designs and Operating Experience

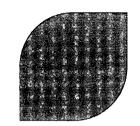
Brian Friend Advisory Engineer Fuel Reliability and Performance


PWR Fuel Designs and Operating Experience - Agenda

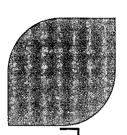
- **▶**Objectives
- **▶**Current Reload Fuel Products
 - **♦ HTP™ Design Overview and Status**
 - **♦ Reliability and Recent Performance**
 - **♦ Future Examination Campaigns**
- ►AGORA® 5AI
 - ♦ Design Overview and European Operating Experience
 - **♦** Surry LFA Program
- ►GAIA[™] Next Generation Fuel
 - Design Overview and European Operating Experience
 - ♦ Shearon Harris LFA Program

PWR Fuel Designs and Operating Experience - Objectives

- ► Familiarize the NRC Staff with AREVA's key PWR design features.
- ► Provide a status update on the overall performance of AREVA's PWR fuel designs.
- ► Provide an overview of PWR fuel examinations and results of recent surveillance campaigns.
- ► Provide an overview of future examination plans.

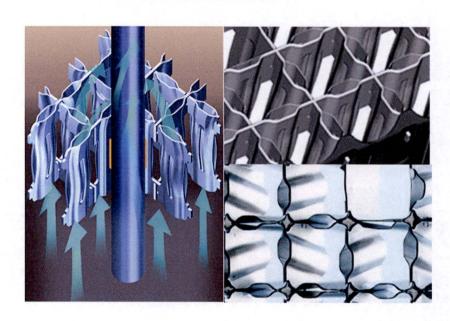

PWR Fuel Designs and Operating Experience – Objectives (cont.)

- Provide a status on the implementation of the next generation of PWR fuel design GAIA™.
- ► Familiarize the NRC Staff with AREVA's Lead Fuel Assembly programs involving GAIA[™] and AGORA[®] 5A-I.
- ► Engage in dialogue regarding NRC interests and priorities for PWR fuel surveillance.

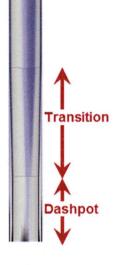

HTP™ PWR Fuel Extensive Operating Experience

- **►** Over 18,700 HTP[™] assemblies irradiated in 50 cores worldwide
 - **♦ Arrays from 14x14 to 18x18**
 - ♦ In reactors from various vendors CE, Framatome, Westinghouse, Siemens and B&W

HTP™ PWR Fuel Proven Features

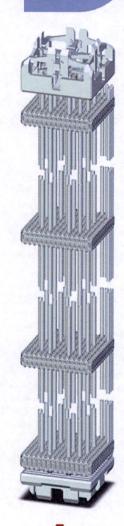

►M5[®] Fuel Rod Cladding

- Significant reduction is oxidation and hydrogen pickup (compared to Zircaloy-4)
- Supports high burnup design criteria for RIA and LOCA fuel performance with low hydrogen pickup
- Over 20 years of experience (15 in the U.S.)

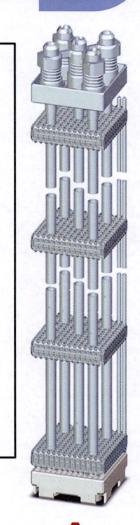


HTP™ PWR Fuel Proven Features

► Spacer grid designs with exceptional GTRF performance in challenging flow conditions

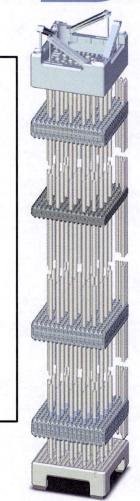

► MONOBLOCTM
Guide Tube

► FUELGUARD™
Bottom Nozzle


AREVA U.S. PWR Reloads B&W Plants

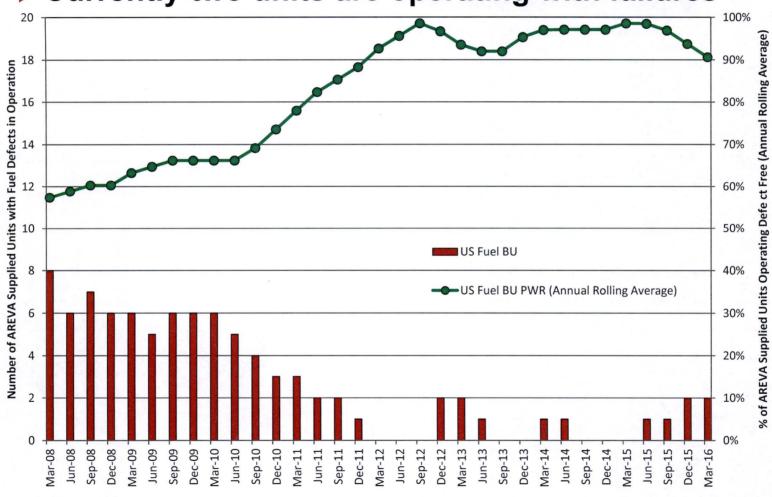
Transition to the Mark-B-HTP™ fuel design has been effective in eliminating GTRF failures in challenging flow environments.

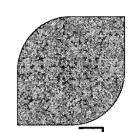
AREVA U.S. PWR Reloads CE Plants



HTP™ designs continue to have excellent fuel performance in challenging flow conditions.

AREVA U.S. PWR Reloads Westinghouse Plants

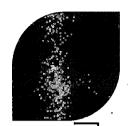



HTP™ designs excel in corrosion, fretting, debris resistance, and lateral structural integrity performance.

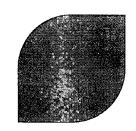
PWR Fuel Reliability Status

Currently two units are operating with failures

PWR Fuel Reliability Historical Perspective

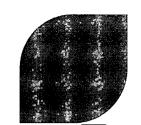


No fuel failures discharged in 2015. Recent failures are in legacy designs.



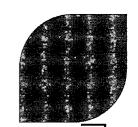
Recent Surveillance Campaigns

Fuel Assembly Distortion Management (Grid Damage)

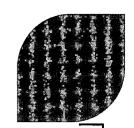


► With implementation of Adv. W17-HTPTM (two cycles), improvements in fuel assembly distortion have resulted in less grid damage.

No fuel scheduled for reinsertion was discharged due to grid damage.

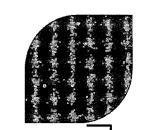

Fuel Assembly Distortion Management (In-core Drag)

Significant improvement after first cycle.


Fuel Assembly Distortion Management (In-core Drag)

Continued improvement in distortion with HTP™ implementation.

HTP Implementation Grid width



The grid width behaviour of the Sequoyah-2 W17-HTP™ lies within the expected range of the experience feedback

HTP Implementation FA Length



The assembly growth behaviour of the Sequoyah-2 Adv. W17-HTP™ with M5® fuel rods is similar to the W17-HTP™ design with Zry-4 fuel rods

Mark-B HTP HDS Cracking Visuals

Since heat treatment process controls implemented in 2008 to favourably control the cooling rate, no spring damage has been observed.

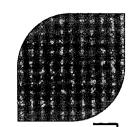
Mark-B-HTP Verification Fuel Assembly Length

The assembly length behaviour of the Oconee-2 Mark-B-HTP™ lies within the expected range of the experience feedback

B&W Baffle InteractionContinued Surveillance of Wear

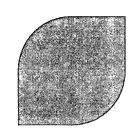
No changes in frequency and severity

B&W Baffle Interaction Pre-emptive Reconstitution



Moving to a pre-emptive instead of re-active response

Upcoming PWR Fuel Surveillance Campaigns through 2018



AGORA® 5A-I Fuel Assembly Attributes

Q12TM Alloy Structural Material

- ► The Quaternary Alloy Q12[™] consists of Zr with additions of Nb, Sn, and Fe
 - ♦ Tin improves irradiation-induced creep resistance
 - Iron helps sustain corrosion resistance
- ► Mechanical properties and material properties are similar to M5[®] and Zry-4
- **▶Q12™ MONOBLOC™** guide tubes are manufactured by pilgering
- ► The final heat treatment leads to a stable fullyrecrystallized material condition

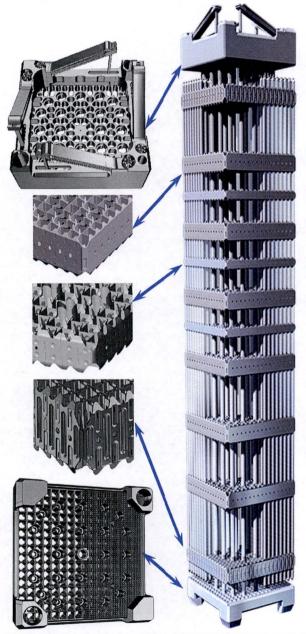
Q12TM Alloy **Experience Base**

Plant	Lattice	Year Inserted	Quantity of Assembly	Q12™ GT	Q12™ Grid
D21	18x18	2011	12	J	J
		2013	8	J	J
D20	18x18	2010	4	J	
		2012	4	J	J
D18	18x18	2010	4	J	
D26	17x17	2012	2	J	
B42		2015	8	J	
Doo	17x17	2013	68	J	V
D80		2015	68	J	
D61		2014	56	J	
		2015	64	J	
D35	16x16	2012	4	J	J
D14	16x16	2012	4	J	J
D25	15x15	2012	4	J	
D24	15x15	2013	2	J	J

Since 2010, AREVA has irradiated 312 fuel assemblies with Q12™ (34 with both guide tubes and grids).

AGORA® 5A Operating Experience

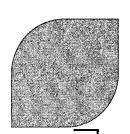
Plant	Cycle / Year Delivered	# FAs Delivered	Failed Rods
	28 / 2010	68	None
	29 / 2011	68	None
D 0	30 / 2013	56	None
D9	31 / 2014	68	None
	Total	260	Max Burnup 51 GWd/mtU Three 18 month cycles
	32 / 2007	32	None
	33 / 2008	36	None
	34 / 2010	32	None
Doc	35 / 2012	28	None
D25	36 / 2012	8 AGORA® 5A-I LFAs	None
	37 / 2013	24	None
	Total	160	Max Burnup 61 GWd/mtU Five 12 month cycles



- ▶8 LFAs 2016 delivery (cycle 28)
- **▶**Poolside Surveillance

Builds on worldwide experience with successful operation of a proven design

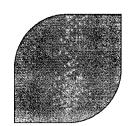
GAIA: Next Generation Fuel Assembly Attributes


- ► Top Nozzle (1/4-Turn Quick Disconnect)
- ► HMPTM Upper Grid (relaxed springs)
- ► M5[®] GAIA Spacer Grid (6x)
- M5® Intermediate GAIA Mixer (IGM) (3x)
- M5® Fuel Rod
- ► Welded Structure (8 per connection)
- ► Q12TM Alloy MONOBLOCTM GT (Increased OD)
- ► HMPTM Bottom Grid
- ► GRIP™ Bottom Nozzle

Building upon proven experience, the GAIA fuel assembly improves performance and safety margins.

GAIA Spacer Grids

► GAIA structural grid


Combines proven experience of mixing vane with line contact

►IGM (Intermediate GAIA Mixer)

Based on proven experience of the AFA design

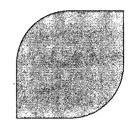
GAIA GRIPTM Bottom Nozzle

- ► Combines flow stability of FUELGUARD™ with low △P of TRAPPER®
- ► Flow stabilization CFD evaluations confirmed by testing (Laser Doppler)
- ► High anti-debris efficiency

► Bullet nose interface with fuel rod protects against rod vibration and reduces trailing edge turbulence

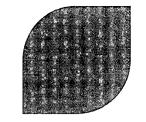
GAIA - European LFA experience Assembly Growth

The growth behaviour of the GAIA LFAs lies within the expected range of the experience feedback



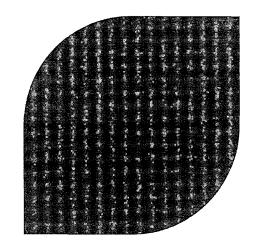
- ▶8 LTAs inserted in 2015 at Shearon Harris,
- **▶**Poolside Confirmatory Surveillance

Next Generation Product – combines innovation with proven design



Summary/Conclusions

- ► HTP continues to be successful in addressing conditions adverse to fuel performance.
- ► All U.S. customers are in the process of implementing advanced cladding (M5®) with low oxidation, growth, and hydrogen pickup.
- ► AREVA's commitment to resolving conditions adverse to fuel reliability remain evident.
- ► AREVA is implementing next generation products based on improvements of successful and effective design features.
- ► AREVA's active PIE program continues to validate the successful performance of AREVA fuel products.



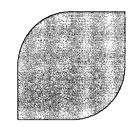
Acronyms/Nomenclature

>	B&W	Babcock and Wilcox
>	CFD	Computational Fluid Dynamics
>	CE	Combustion Engineering
•	DNB	Departure from Nucleate Boiling
>	FA	Fuel Assembly
>	FR	Fuel Rod
>	GT	Guide Tube
•	GTRF	Grid-to-Rod Fretting
•	HDS	Hold-down Spring
•	I FM	Intermediate Flow Mixer
•	IGM	Intermediate GAIA Mixer
•	LFA	Lead Fuel Assembly
•	LOCA	Loss of Coolant Accident
•	LTL	Lower Tolerance Limit
\blacktriangleright	NRC	Nuclear Regulatory Commission
•	000	Oconee
•	PIE	Post Irradiation Examination
•	PWR	Pressurized Water Reactor
•	RIA	Reactivity Insertion Accident
>	RCCA	Rod Cluster Control Assembly
\blacktriangleright	SS	Stainless Steel
	SSR	Stainless Steel Rod
•	TMI	Three Mile Island
>	UTL	Upper Tolerance Limit
•	Zrv-4	Zircalov-4 allov

Update of AREVA Activities and Plans Related to 10 CFR 50.46c

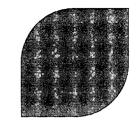
Lisa Gerken
Principal Engineer
W&CE LOCA Analysis

June 2, 2016



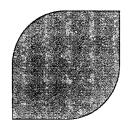
Agenda

- ► Rule Status: High Level Overview
- **▶**Submittal Plans
- **▶**Breakaway Oxidation Testing
- ► AREVA Activities and Schedule



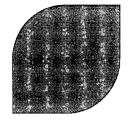
Rule Status

- ► Rule Package under Commission Review:
 - ♦ SECY-16-0033: Rule Language and Statements of Consideration
- **▶** Supporting information, not for Commission approval:
 - ♦ Regulatory Guide (RG) 1.222: Measuring Breakaway Oxidation Behavior
 - ♦ RG 1.223: Determining Post-Quench Ductility
 - RG 1.224: Establishing Analytical Limits for Zirconium-Alloy Cladding Material
 - ♦ RG 1.229: Risk-Informed Approach for Addressing the Effects of Debris on Post Accident Long-Term Core Cooling – To be provided to Commission in June 2016
- ► First required industry action: Licensee submittal of implementation plan within 6 months, requires vendor coordination



Submittal Plans

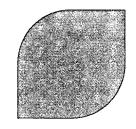
► AREVA plans for submittal content: Unchanged from 2015



Breakaway Oxidation Testing

▶BrOx Testing Status

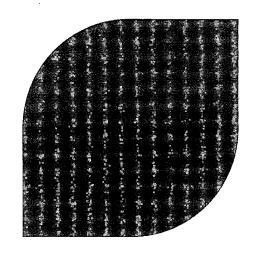
- ♦ Equipment procured; Fully meets the specifications of RG 1.222
- Currently concluding internal device validation and qualification program
 - Including round robin tests with CEA
 - Demonstrates well controlled temperature and humidity
 - Results consistent with previous test results and CEA



AREVA Activities and Schedule

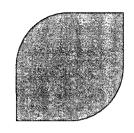
▶ NRC and Licensee Schedule

- ♦ 10 CFR 50.46c Effective Date: <u>Unknown</u>
- ♦ Licensee implementation plan: Effective Date +6 months
- ♦ Final licensee compliance demonstration submittal: Effective Date +60 months
- ♦ Final compliance demonstration approval: Effective Date +84 months



Summary

- ► NRC and AREVA have a mutual interest in supporting the 10 CFR 50.46c project goals and schedule
- ► AREVA will:
 - Provide customers with cost and time efficient solutions
 - Work with customers to develop their implementation plans
 - Support early and frequent interactions with the NRC
- ► AREVA requests that the NRC:
 - Continue to communicate the 50.46c activity needs and schedule to key players and management levels of the utility
 - Keep open lines of communication between the NRC and AREVA to provide update on status and any new developments
 - Develop a streamlined Topical Report review process and schedule with AREVA to ensure the overall compliance requirements can be met

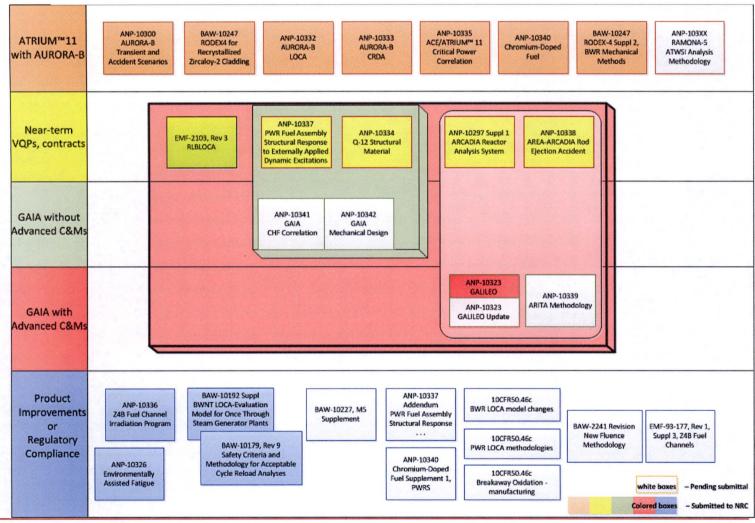


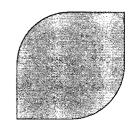
PWR Topical Reports Overview

Ronda Pederson
Advisory Engineer
Fuel Regulatory Strategy

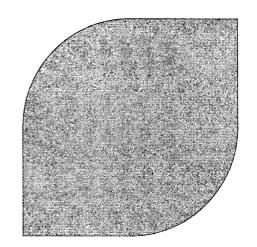
Objectives

- ► Discuss AREVA's implementation plans for PWR advanced fuel products and codes and methods
- ► Emphasize need for efficient, timely NRC review of AREVA's topical reports


GAIA Go-To-Market in US

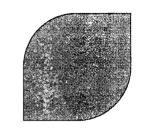

Topical Reports

Priorities discussed during management review meetings remain unchanged.



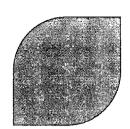
Summary/Conclusions

- ►AREVA recognizes the benefit of routine open/transparent dialogue with NRC
- ►Efficient, timely completion of NRC reviews is needed to support transitions to advanced fuel products and codes and methods.
- ►AREVA has clear priorities for NRC's review of topical reports



PWR Fuel Seismic/LOCA Method

Brett Matthews
Supervisor
Fuel Mechanics

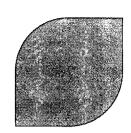


Objectives

► Provide an update on AREVA's current and future activities associated with fuel seismic and LOCA methodology

Status of AREVA Seismic/LOCA Methodology

- ► AREVA's "seismic" methodology is moving!
- ► BAW-10133 → ANP-10337
- ► ANP-10337 submitted in August 2015
- ► Working for approval no later than [


- ► Why are we moving?
 - Address industry issues
 - IN 2012-09: Irradiation Effects on Spacer Grid Crush Strength
 - Damping
 - LOOP
 - GT Stress Allowables
 - **♦ Capture the progress made during review of US EPR DC**
 - Usability. . .streamline and consolidate old topical content

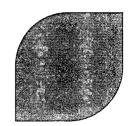
ANP-10337 sets a new standard and builds a robust platform for future methodology

Status of AREVA Seismic/LOCA Methodology


► Highlights of ANP-10337:

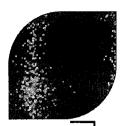
- ♦ Generic applicability to PWRs
- Streamline and consolidate content from BAW-10133PA
- Update vertical methodology
- Update methodology for nongrid stresses
- Clarification on combination of horizontal and vertical loads
- Clarification on testing protocols and benchmarking

- Definition of grid allowables based on grid deformation
- Definition of test protocol for EOL grids (IN 2012-09)
- Definition of assembly dynamic characteristics in EOL condition (IN 2012-09)
- Loss-of-Offsite Power (LOOP)
- ◇ Definition of guide tube stress allowables (ASME Level C)


Status of AREVA Seismic/LOCA Methodology

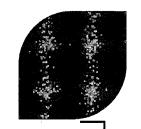
- ► In the interim, AREVA is applying content from ANP-10337...
 - Methods applied and approved for St. Lucie Unit 2 fuel transition
 - Main issues from ANP-10337 are addressed and summarized in LAR and corresponding RAI responses
 - ♦ Methods are currently being applied to . . .

Beyond ANP-10337

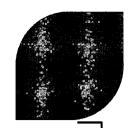


- ► AREVA plans to use ANP-10337 as a platform to build new products and methods
- ► Two examples to build upon ANP-10337 are:

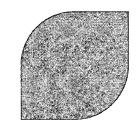
♦G	AIA	fuel	design	



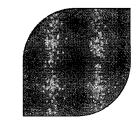
GAIA Spacer Grid Behavior



New Testing Protocols


New Testing Protocols

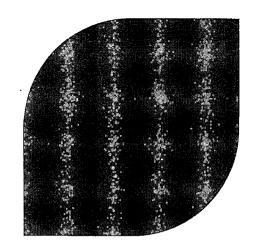
New Testing Protocols



Summary

- ►AREVA is proactively addressing emerging issues
- ►AREVA is investing in products and methods beyond ANP-10337
- ►AREVA requests full NRC support in the review of ANP-10337
- ►AREVA requests a push for a modernization of staff guidance in the area of seismic/LOCA methodology

Acronyms/Nomenclature


▶ BOL Beginning Of Life

▶ EOL End Of Life

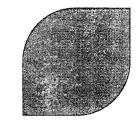
▶ GT Guide Tube

► LOCA Loss-Of-Coolant Accident

► LOOP Loss-Of-Offsite Power

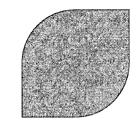
US PWR Advanced Methods

Kevin Segard Supervisor, PWR Methods and Licensing AREVA Expert


Rockville, MD June 1–2, 2016

Agenda

- Objectives
- Introduction
- ► ARCADIA® Code System
- ► GALILEO™ Fuel Performance Code
- ► AREA™ Rod Ejection Methodology
- ► ARITA™ Non-LOCA Methodology
- Summary



Objectives

- ▶ Provide a status update on
 - **♦ ARCADIA® Supplement**
 - **♦** GALILEO™

 - **♦ ARITA™**
- ► Provide an overview on methodology development
- **▶**Obtain NRC feedback

Background

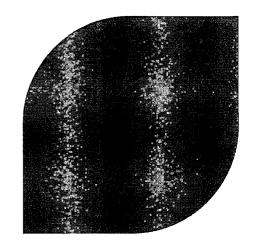
▶Based on NRC feedback

- New methods development based on state of the art codes
- Codes are based on first principles minimizing use of empirical formulations

► New methods allow AREVA to

- Improve safety with better analytical tools
- Replace legacy methods
- Improve modeling of phenomena with more explicit tools

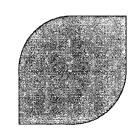
New Methods Code Suite


▶Codes

- ♦ APOLLO2-A Assembly lattice code
- **♦ ARTEMIS™ 3D core simulator code**
- **♦ COBRA-FLX™ Core thermal-hydraulics code**
- **♦ GALILEO™ Fuel thermal-mechanical code**
- ♦ S-RELAP5 System thermal-hydraulics code

▶Code Status

- ♦ ARCADIA® codes received NRC approval in 2013
 - Supplement 1 submitted to NRC in June 2015
- **♦ GALILEO™ Currently under review**

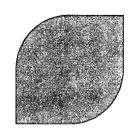


ARCADIA® Supplement

ARCADIA® Background

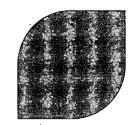
- ► Approved 2013
- **▶** Consists of
 - ♦ ANP-10297PA "ARCADIA®"
 - ♦ ANP-10331PA "COBRA-FLX™"

► ANP-10297P Supplement 1 submitted June 2015


- Comparisons to MOX identified code modification beneficial to UO₂ cores
- Improved MEDIAN power reconstruction technique for power distributions
- ♦ Addition of a spacer grid model
- Improved treatment of transients
- **♦ Improvements to ^{147m}Pm branching ratio**
- Upscatter in U and Pu isotopes

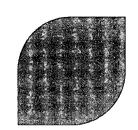
► Under NRC review

♦ Audit for understanding held April 28 – 29, 2016



ARCADIA® Supplement Purpose

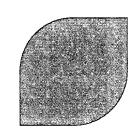
- ► Address code enhancements
- ► Additional core benchmarks
 - Enriched Reprocessed Uranium cycles
 - Cold critical boron comparisons
- ► Additional transient benchmarks
 - ♦ SPERT III E-Core rod ejection
- ► Extension of MEDIAN process to Rh and fission detectors
- **▶**Uncertainty definitions
 - ♦ Total Rod Worth
 - **♦ ITC/MTC**



Lattice Calculations

▶Pm branching ratio and U, Pu upscatter intended to adjust reactivity behavior

APOLLO2-A Experimental Validation


▶Critical Experiments:

- ♦ B&W
- **♦ CAMELEON (Gad)**
- **♦ EPICURE-MOX**
- **♦ EPICURE-UOX**
- ♦ Kritz-KWU (Pu)
- ♦ Kritz-KWU (U)

▶Additional Validations

- **♦** Fission rate measurements
- **♦** Spent fuel isotopics

ARTEMIS™ Validation

► Re-analysis of benchmark data (criteria established in ANP-10297PA)

♦ HZP Physics Testing

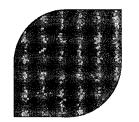
• ARO CBC ±50 ppm (or ±500 pcm equivalent)

• Individual rod worth ±15% (±100 pcm for low worth banks)

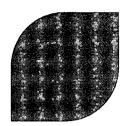
• Total rod worth ±10%

• ITC ±2 pcm/°F

♦ Core Follow Data


• Boron Concentrations ±50 ppm (or ±500 pcm equivalent)

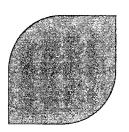
• Core RPD RMS*100 < 5.0 (absolute difference)


• Axial Power distribution RMS*100 < 5.0 (absolute difference)

ARTEMIS™ HZP Physics Testing Results

ARTEMIS™ HFP CBC Results

ARCADIA® Range of Applicability


▶Capable of modeling

- Diverse plant types (core size and configuration)
- ♦ Diverse lattice types (enrichment, and BP loadings)
- **♦ Diverse cycle lengths**

Plant Type	Core Size	Fuel	# of Cycles	Lattice	Burnable Absorbers	Control Rod Absorbers	Detectors
W	157	UO ₂	14	17x17	Pyrex, WABA, IFBA, Gd	Hf, AIC	TIP
W	157	UO ₂	1	17x17	Pyrex + Gd	AIC	TIP
CE	217	UO ₂	9	14x14	Gd	B ₄ C	SPND
S	177	UO ₂	5	15x15	Gd	AIC	AMS
S	193	UO ₂	5	18x18	Gd	AIC	AMS
W	193	UO₂	3	17x17	B₄C, B₄C + Gd	AIC	TIP
W	193	UO₂	3	17x17	B₄C, B₄C + Gd	AIC	TIP
B&W	177	UO ₂	7	15x15	B₄C, B₄C + Gd, Gd	AIC	SPND
W	157	UO ₂	5	15x15	Gd (up to 10 wt%)	AIC	TIP
W	157	ERU	6	17x17	None	AIC	TIP

Total Number of Cycles 58

ARTEMIS™ **Qualification Criteria**

► Established in ANP-10297P Supplement 1

HZP Physics Testing

• ARO CBC

±50 ppm (or ±500 pcm equivalent)

Individual rod worth

±15% (±100 pcm for low worth banks)

Core Follow Data

Boron Concentrations

±50 ppm (or ±500 pcm equivalent)

Core RPD

RMS*100 < 5.0 (absolute difference)

Axial Power distribution RMS*100 < 5.0 (absolute difference)

► Analysis of PWR using Er burnable absorbers

Preliminary results are within the criteria specified above

- ► Established criteria are met
- ► Expected improvements to results were achieved
- ► Justification has been provided of the update process defined in ANP-10297PA

GALILEOTM

Next-Generation Fuel Rod Performance Code: GALILEO™

- Improved fuel rod modeling
 - Capable of modelling PWR and BWR fuel (Zirc-4, M5®, CWSRA and RXA Zirc-2 cladding materials and UO₂, UO₂-Gd₂O₃, and MOX pellet materials)
 - Benefits from the modeling of latest observed phenomena, including fuel thermal conductivity reduction with burnup and high burnup effects
- Extensive calibration and validation Database
- Modern statistical methodology
 - Methodology is based on the approved RODEX4 methodology
- ► Ready for future industry needs
 - Support rod burnup of [
 - Support high duty cores resulting from Extended Power Uprates (EPUs)
- GALILEO™ addresses all recent NRC concerns on legacy fuel rod performance codes

arge Validation Database Covering Entire Burnup Range of Interest

All Models Benefits from Large Calibration Database

GALILEO™ Timeline

21 AREVA

- ► GALILEO™ topical report was submitted for NRC approval in August 2013 and accepted by the Staff for review in March 2014
 - BAW-10323P, "Fuel Rod Thermal-Mechanical Methodology for Boiling Water Reactors and Pressurized Water Reactors"
 - Initial draft of RAIs was received in April 2015
 - Final RAIs issued in April 2016 after positive interactions between NRC, PNNL, and AREVA
- ▶ AREVA revised the scope of requested approval to exclude review for applicability to MOX and BWR by letter dated November 23, 2015
 - Approval now requested only for PWR fuel (Zircaloy-4, M5®, UO2, and Gd2O3) irradiated in B&W, CE and Westinghouse reactors
- AREVA has resolved the code convergence issues discovered after submittal of the topical report
 - Resolution required changes to key models (fuel cracking, fission gas release, and gaseous swelling)
 - Code is currently being re-calibrated and validated
- Updated topical report will be submitted in [
- Preparation of RAI responses will resume after updated topical report is submitted to the NRC

AREA™ - ARCADIA® Rod Ejection Analysis Methodology

- Current rod ejection methods at AREVA use point kinetics or r-z kinetics
- ►AREA™ is a 3D kinetics approach
 - ◆ ARTEMIS™ is the 3D kinetics engine

- Manual or automatic coupling to RELAP5 used to perform system pressure calculation
- ►AREA™ designed to address changes in regulatory requirements
- ►AREA™ submitted for review in October 2015

- Power level and cycle burnup are treated (not just the four corners)
- Parameter biasing performed to ensure a conservative model
- ◆ Oxidation and Hydrogen pick-up limits established using GALILEO™

Method uses a 3D kinetics approach to remove excess conservatism in the analysis while providing a more accurate assessment of the event

▶Limiting Pin Determination

- ◆ Peak pin ≠ limiting pin
- Burnup limits will determine limiting pin
 - Worst combination of oxide thickness and ∆cal/g
- Energy deposited in higher burnup pins can be significant
- ARCADIA[®] Code System provides a significant improvement in determining the deposited energy

AREA™ Fuel Temperature

- Method developed to meet current and proposed NRC RIA requirements
- Method uses a 3D kinetics approach to remove excess conservatism in the analysis while providing a more accurate assessment of the event
- ►The AREA™ Method ensures safe plant operation while anticipating future regulation changes

ARITA™ ARCADIA®/RELAP Integrated Transient Analysis

► Topical report addresses

- Phenomena Identification and Ranking Table
- Assessment Matrix Table
- Range of applicability
- W and CE setpoints
- Mixed core treatment
- Non-LOCA events divided in SAFDL and non-SAFDL
- DNB propagation
- Power Distribution Control

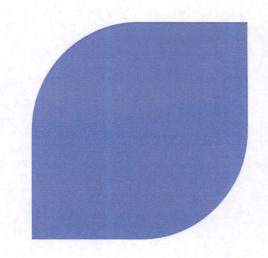
ARITA™ Non-LOCA Event Analysis

- **▶**Events supporting SAFDLs
 - ◆ 3D transient ARTEMIS™ coupled to S-RELAP5
 - ♦ FCM analysis performed with GALILEO™
- ► Non-SAFDL event analysis
 - ◆ 0D (point kinetics) S-RELAP5 using ARTEMIS™ neutronic data
 - DNB and FCM not considered

Method uses a 3D kinetics approach to remove excess conservatism in the analysis while providing a more accurate assessment of the event

ARITA™ Reactor Vessel Mixing

- ► Test data under review
 - EPRI/WCAP
 - Oconee
 - B&W 177 Plant Test Facility
 - LACYDON
 - ♦ JULIETTE/ROMEO
 - ROCOM
 - Various publicly available papers
- **▶** Observations



- Incorporates the coupling of ARTEMIS™ and S-RELAP5 creating a 3D transient model for SAFDL events
- Standalone S-RELAP5 modeling with ARTEMIS™ neutronics inputs for non-SAFDL events
- Event analyses based on PIRT evaluation
- ► Topical will incorporate a treatment for mixing in various regions of the vessel
- Many aspects for modeling of a PWR are considered and implemented

Summary

- ►AREVA has listened to the NRC and is advancing both codes and methodologies
- ► Advances in codes are consistent with changes in regulations while flexible to meet future needs
- Advanced Codes and Methods provide utilities operational flexibility
- ► Advanced methods provide an accurate and safe assessment of Non-LOCA events

Chris Lewis Sr. Project Manager AREVA Fuels

Agenda/Objectives

Agenda

- DOE Program Background
- AREVA EATF Concepts
 - Cr-Coated M5[™] with Cr₂O₃-Doped UO₂ Pellets
 - SiC-SiC Sandwich Cladding
 - Molybdenum Based Alloy Cladding
- AREVA Phase 2 Roadmap

Objectives

- Develop an understanding of the drivers of this effort and goals
- Get an introduction to the AREVA EATF concepts
- Present a high level roadmap of future activities

DOE Background

Senate Guidance Regarding Accident Tolerant Fuel

- In the Consolidated Appropriations Act, 2012, Conference Report 112-75, the Department of Energy, Office of Nuclear Energy was:
 - Directed "to give priority to developing enhanced fuels and cladding for light water reactors to improve safety in the event of accidents in the reactor or spent fuel pools,"
 - Urged "that special technical emphasis and funding priority be given to activities aimed at the development and near-term qualification of meltdown-resistant, accident-tolerant nuclear fuels that would enhance the safety of present and future generations of Light Water Reactors,
 - And requested "to report to the Committee, within 90 days of enactment of this act, on its plan for development of meltdown resistant fuels leading to reactor testing and utilization by 2020."

Definition of EATF

Nuclear Energy

Definition and Challenge

Definition of Fuels with Enhanced Accident Tolerance

Fuels with enhanced accident tolerance are those that, in comparison with the standard UO₂ – Zircaloy system currently used by the nuclear industry, can tolerate loss of active cooling in the reactor core for a considerably longer time period (depending on the LWR system and accident scenario) while maintaining or improving the fuel performance during normal operations, operational transients, as well as design-basis and beyond design-basis events.

10-year Goal

Insert a LTA/LTR into an operating commercial reactor

Attributes of EATF

Major Attributes to Address

Nuclear Energy

Improved Reaction Kinetics with Steam

- -Heat of oxidation
- -Oxidation rate

Improved Fuel Properties

- -Lower operating temperatures
- -Clad internal oxidation
- -Fuel relocation / dispersion
- -Fuel melting

High temperature during loss of active cooling

Slower Hydrogen Generation Rate

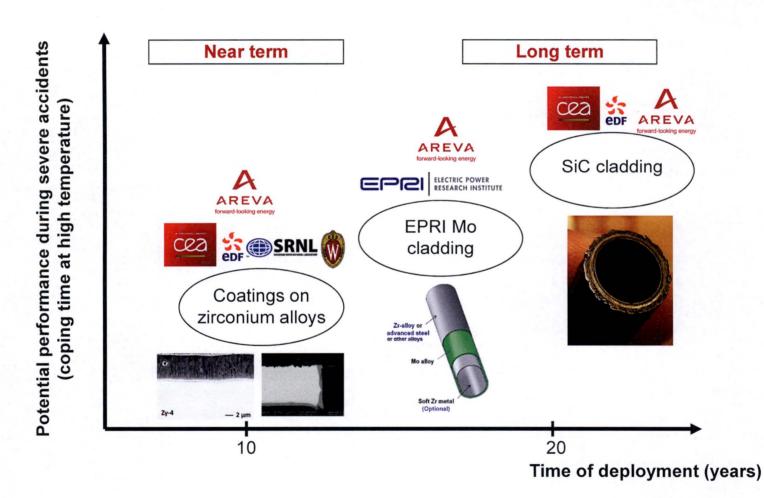
- -Hydrogen bubble
- -Hydrogen explosion
- -Hydrogen embrittlement of the clad

Improved Cladding Properties

- -Clad fracture
- -Geometric stability
- -Thermal shock resistance
- -Melting of the cladding

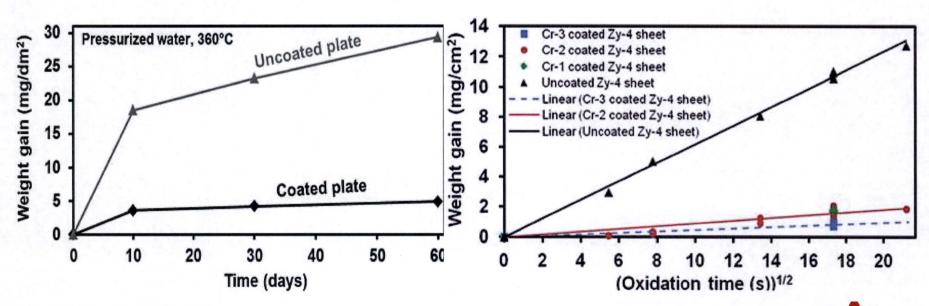
Enhanced Retention of Fission Products

- -Gaseous fission products
- -Solid/liquid fission products


Based on these safety-related issues, metrics for quantifying the enhancements in accident tolerance must be developed in conjunction with the safety features of a given LWR design and based on specific accident scenarios.

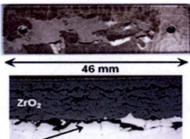
AREVA EATF Concepts

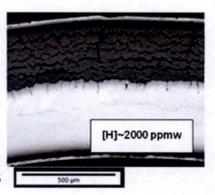
AREVA's Global Scope for EATF



Cr-Coated Zr-4/M5TM Cladding

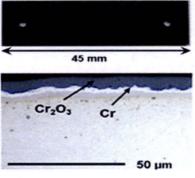
- ▶ Based on current Zr-4 or M5[™] fuel rod cladding configurations
 - Chromium coatings on the order of 5-15 μm
 - Applied with Physical Vapor Deposition (PVD) coating process
- Provides improved PWR water and high temperature steam oxidation kinetics

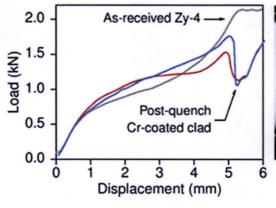


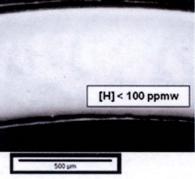

Cr-Coated Zr-4/M5™ Cladding

Improved Beyond Design Basis Accident (BDBA) Performance (Ductility) **Uncoated Zy-4**

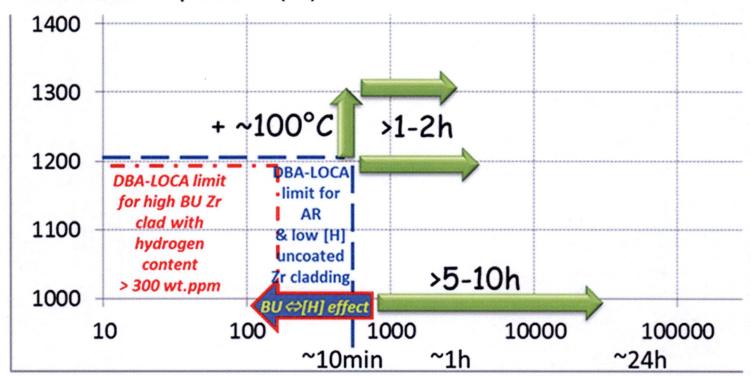
200 µm


2.0 As-received Zy-4 1.5 Toad (kN) 0.5 Post-quench uncoated clad 0.0 Displacement (mm)



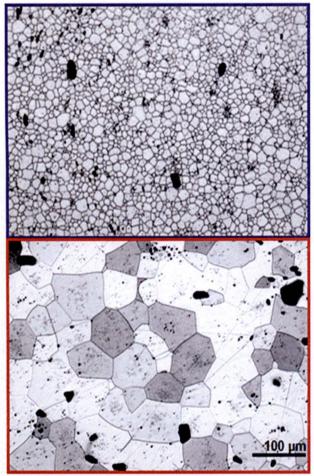

Comparison of uncoated and chromium coated Zircaloy-4 (Zy-4) samples after exposure to 1000 °C steam for 15000s by Cr-Coated Zy-4 metallographic cross-section and post-quench mechanical behavior.

Zr-a(O)


Cr-Coated Zr-4/M5™ Cladding

Cr-Coated Zr-4/M5™ Cladding

► Improved Coping Time for Severe Accidents
Oxidation Temperature (°C)

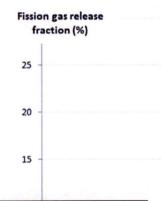

One sided oxidation time (s)

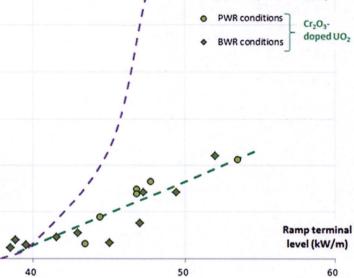
Potential gains in coping time due to the chromium coating

Cr2O3-doped UO2: 60 µm

▶ UO₂ pellet doped with up to 0.16 w/o Cr₂O₃

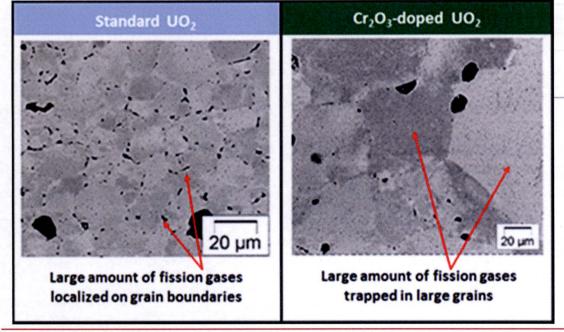
- Provides for large grain, viscoplastic microstructure
- Enhanced densification (>96 %TD)
- Improved washout behavior
- Reduced susceptibility to chipping

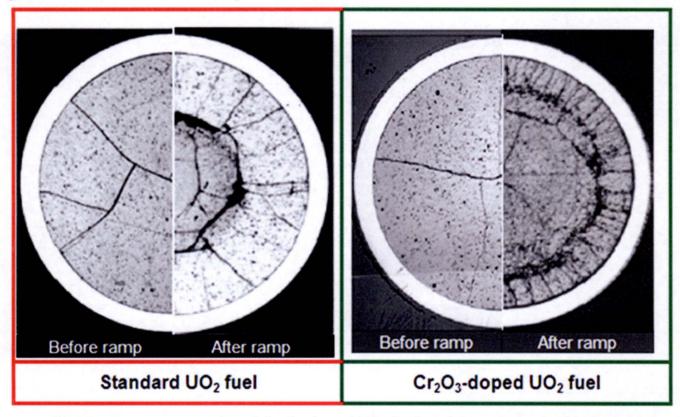

Cr₂O₃ Doped UO₂ Pellets



Cr₂O₃ Doped UO₂ Pellets

Improved Fission Gas Retention


Fission gas distribution in conventional and Cr2O3 doped UO2 fuel irradiated to a burnup of approximately 62 GWd/tU

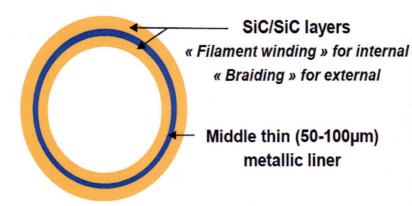

- - Std. UO2 (PWR conditions)

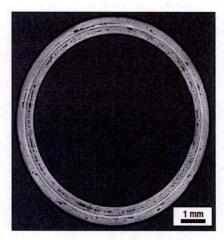
Fission gas release (FGR) kinetics in UO2 and Cr2O3 doped UO2 fuels in ramp testing conditions

Cr₂O₃ Doped UO₂ Pellets

Improved PCI Performance that may also translate to improved accident performance

Post ramp ceramographs of Cr₂O₃ doped UO₂ fuel and the reference UO₂ fuel




SiC/SiC Sandwich Cladding

► Concept under development through a Tripartite R&D program with CEA and EdF

« SANDWICH » CLADDING: A SOLUTION TO LEAK-TIGHTNESS

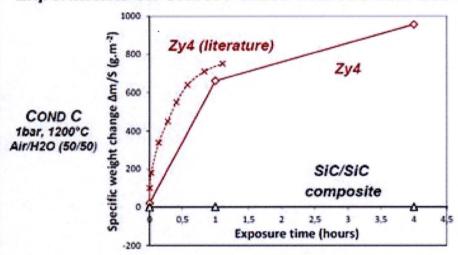
Candidate materials for liner selected on thermochemical and neutronic criteria : Ta, Nb (GFR)

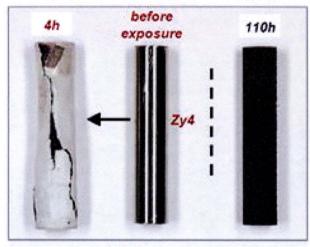
Patent WO 2013/017621 A1

Other benefits: liner protection, end-closure by welding

Development of "sandwich" cladding was driven by GEN IV nuclear systems

Transposition to LWR is achievable with the manufacturing process





SiC/SiC Sandwich Cladding

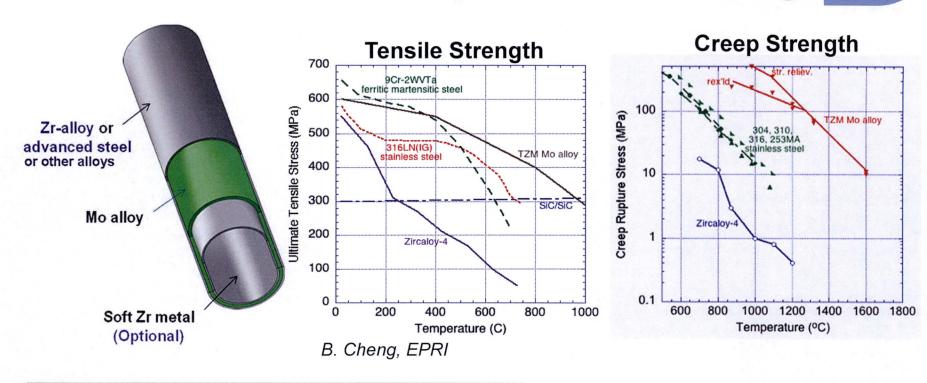
Oxidation tests performed in LWR conditions (360° C) for up to 3500h and in accidental behavior in Air/H₂O (50/50) at 1200° C for 4-110h

Experiments on SiC/SiC tubes without liner and Zircaloy-4 clad segments as baseline material

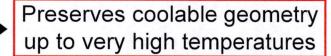
SiC/SiC composite

The oxidation kinetics are extremely slower than for Zr alloys!

Confirmation of high potential for SiC/SiC


Main advantages:

- Very low oxidation kinetics in high temperature steam and LWR conditions
- High strength at high temperatures
- High melting temperature



Molybdenum Cladding

- High melting temperature = 2623°C
- Good high temperature mechanical behavior
 - High thermal conductivity

EATF Phase 2 Roadmap

- Current plan assumes submittal of an LAR for Cr-Coated cladding concept
 - Coating has no discernable impact on underlying Zr properties (apart from improved corrosion performance) – may lend itself favorably to a 50.59 review

Phase 2 - Major EATF Tasks	Government Fiscal Year							
	2017	2018	2019	2020	2021	2022	2023+	
Cr-Cr2O3 Concept								
Development & Characterization								
Safety Bases Development								
Economic Impact Assessment				and the latest and the latest				
Manufacturing Integration								
Cr-Coating of Clad								
Cr ₂ O ₃ Doping of Pellets								
Cr-Cr ₂ O ₃ LFA Irradiation Program								
Host Utility 50.59 Evaluation			Y I					
Development of LAR					1. 11 20 to 15 1			-
NRC Interactions and Review of LAR								
Fabrication of LFAs								
Irradiation of LFAs (plus On-Site and Hot Cell PIE-6)							٥	٥
SiC-SiC Concept			<u> </u>					
Development & Characterization								
Economic Impact Assessment						7 0		
Manufacturing Integration								

► ACRS Subcommittee briefing on EATF June 23, 2016

► Finalize EATF Phase 2 DOE funding September 2016

Establish final schedules

► Set up next NRC EATF technical meeting Early 2017