

UNIT 1

REACTOR CONTAINMENT BUILDING

INTEGRATED LEAK RATE TEST

_

.

AUGUST 1983

8405040075 840420 PDR ADDCK 05000269 P PDR DUKE POWER COMPANY

Oconee Nuclear Station

Unit 1

Reactor Containment Building

Integrated Leak Rate Test

1 Prepared by Ken G. Rohde

Ass't Engineer, Test

Reviewed by; 10 Graham Davenport -B

Acting Performance Engineer ILRT Coordinator

Approved by: Tony S. Barr

Acting Supt. Tech. Services

TABLE OF CONTENTS

.

.

٠.

s.;

(†)

Sect	ion		Page	
1.0	Introduction			
2.0) Summary and Conclusions			
	2.1	Synopsis	2 - 1	
	2.2	Supplemental Type "C" Tests	2-2	
	2.3	Test Results	2-2	
	2.4	Error Analysis	2 - 5	
	2.5	Test Organization	2-6	
3.0) Design Information			
	3.1	Reactor Building	3-1	
	3.2	Measurement System	3-2	
	3.3	Pressurization System	3-3	
	3.4	Recirculation System	3-3	
	3.5	Computer Programs	3-4	
4.0) Conduct of Local Leak Tests			
	4.1	Local Leak Rate Test	4-1	
	4.2	Local Leak Test Failure Data	4-1	

1.0 Introduction

The Periodic Integrated Leak Rate Test (ILRT) of the Oconee Nuclear Station Unit 1 containment building was attempted at ~ 29.5 PSIG at the end of July 1983. The Leak Rate and Upper Confidence Limit (UCL) were above the allowable limits and a decision was made to complete full pressure test at ~ 59 PSIG.

The Full Pressure Integrated Leak Rate Test (ILRT) on Unit 1 was satisfactorily completed on August 3, 1983. The testing was conducted in accordance with the requirements of Technical Specification 4.4, BN-TOP-1 (Bechtel Testing Criteria for ILRT), ANSI ANS 56.8 - 1981 and 10CFR50, Appendix J. The absolute method of testing was employed with the containment temperatures measured at 24 locations and containment dewpoint temperatures at two locations. Leakage was measured at design basis accident pressure of ~ 59 PSIG. A measured induced leakage was used to verify the results.

Analysis of final test data shows the results to be within the specified limits for this containment, which has a maximum allowable leak rate of 0.1875 Wt%/day. The leakage rate was measured at 0.14485 Wt%/day, and the Upper Confidence Limit (UCL) was determined to be 0.15205 Wt%/day.

Analysis of verification test data shows the results to be within the specified range for this test, which has a maximum deviation of \pm 25% L. The deviation as measured was -0. θ 366 Wt %/day or -19.52% L_a.

2.0 Summary and Conclusions

2.1 Synopsis

The Unit 1 Containment ILRT was performed in accordance with the Periodic Test Procedure PT/1/A/0150/03A as approved for use on July 24, 1983.

Pressurization began at 0000 hours on July 30, 1983, using two permanent compressors and three (rental) temporary compressors. Instrumentation showed that pressurization was not occuring and the compressors were shut down. Investigation showed that the control air supplies to 1LRT-15 (Pressurization Line Block Valve) and 1LRT-16 (Depressurization Vent to Atmosphere) had been cross-connected. (These valves are normally closed. The controllers are on the portable LRT Instrument Cabinet and are connected to instrument air only for the ILRT.) Due to the erroneous connections, the pressurization line was blocked and a relief valve opened. This connection was corrected and pressurization began with all five compressors running by 0400 hours. At 1045 hours the compressors were secured with the containment pressure at approximately 30.8 PSIG, and the stabilization period began. During stabilization an indicated leak of approximately 1 Wt%/day was observed. Inspection for leaks began.

At 1645 hours on July 30, $19\overline{8}3$, a small leak from the Emergency Hatch Equalization Line was found. Inspection for additional leaks continued. At 1800 hours leakage was found around the personnel hatch handwheel the personnel hatch was pressurized to 8 PSIG. Following pressurizing the personnel hatch to 8 PSIG, the leak rate was calculated to be 0.67 Wt%/day.

At 0002 hours on July 31, 1983, the following was systematically done: A cap was installed on the equipment hatch equalization line; 1LRT-16 (Depressurization Vent to Atmosphere Outside of 1LRT-17) was closed; the personnel hatch was pressurized to 20 PSIG; 1LWD-5 (Vent to the LAWT on Penetration 54) was closed; and both root valves to 1PG-186 were closed (Vent Outside of N_2 Penetrations #39 and #53). At 0200 hours it became obvious that all of the above had little or no effect on the leak rate. At about 1100 hours the emergency hatch equalization line was plugged. A leak was found on the flange on 1CC-76 and repaired. At 1250 hours the following actions were taken to restore the system to normal test line-up: Personnel hatch depressurized; 1LRT-16 opened; 1LWD-5 opened; plug on emergency hatch line removed; equipment hatch equalization line plug removed. At 1524 hours both root valves to 1PG-186 opened. At 1730 hours penetration number 44 was isolated by closing 1CC-72 and 1CC-74.

At 0650 hours on August 1, 1983, the leak rate and upper confidence limit were still greater than 0.1000 Wt%/day. At 2000 hours a decision was made to pressurize to 60 PSIG and perform the test at full test pressure Pa. Between 2035 and 2050 hours all five compressors were started to pressurize containment.

2 - 1

At 0330 hours on August 2, 1983, 1CC-72 and 1CC-74 were opened returning penetration 44 to its test line-up. At 0602 hours the compressors were secured with the containment pressure at approximately 61.1 PSIG. At 1000 hours stem leaks were found on the following valves: 1IA-90, 1BS-1, 1LPSW-242, 1CC-76 and 1FDW-408. At 1020 hours 1CC-72 and 1CC-74 were closed to isolate 1CC-76 and 1CC-77 penetration 44. At 1300 hours 1IA-1125, (the Rotometer Isolation Valve), 1IA-1126 and 1IA-1117 (Instrument Air Isolation Valves) were closed. The line between 1IA-1126 and 1IA-1117 was cut and mechanically separated to allow proper venting and prevent inleakage should 1IA-1126 and 1IA-1117 leak. 1IA-90 was back seated. The stem leak on 1IA-90 decreased considerably. At 1645 hours 1N-128 and 1N-130 were closed to isolate one path through penetrations 39 and 53. At 2050 hours the personnel hatch was pressurized to 49 PSIG.

At 0030 hours on August 3, 1983, 1N-128 and 1N-130 were reopened for proper line-up for these paths on penetrations 39 and 53. At 0448 hours on August 3, 1983, the Reactor Building Integrated Leak Rate Test was terminated. The leak rate was 0.1386 and the 95% Upper Confidence Limit was 0.1458.

2.2 Supplement Type "C" Leak Rate Tests

Supplemental Type "C" Leak Rate Tests were performed on penetrations 41 and 44 and the personnel hatch. Shown in Table 1 are the results of these tests before and after any subsequent maintenance. As can be seen in Table 1, the addition of these post maintenance leakages to the measured total does not exceed the acceptance criteria for either the ILRT or for the 95% Upper confidence Limit.

2.3 Test Results

Tabulated below are the leak rates measured for the test and the total leak rate when the supplemental type "C" results are added to the CILRT Leak Rate. All leak rates are reported in weight percent per day (Wt%/day) of containment mass at Post-Accident Conditions.

Test	Acceptance Criteria	Tech. Spec. Limit	Calculated Leak Rate	95% (UCL)
59 PSIG	0.1875	0.1875	0.1386	0.1458
Test 95% Supplemen	UCL tal Type "C" Tes	sts		0.1458 0.00625

Total Leakage

The verification test consisted of imposing a known leak rate on the containment at the end of the CILRT. Results from this supplemental test is acceptable provided the difference between the Suppmental Test Data and the Type "A" Test Data is within 25% of L₂.

0.15205

Test Leak Rate 0.1386 Imposed Leak Rate 0.1761	Wt%/day Wt%/day
Total 0.3147 Verification Leak Rate (Measured). 0.2781	Wt%/day Wt%/day
Difference 0.0366 Percent of L19.52%	Wt%/day (Maximum Allowed ±25%)
This verification data demonstrates the accuracy of th	CIIPT Dete

This verification data demonstrates the accuracy of the CILRT Data and demonstrates the validity of the verification test.

TABLE 1 SUPPLEMENTAL TYPE "C" LEAK RATE TEST

LEAK SOURCE (OR TROUBLE- SHOOTING ACTION)	TIME/DATE IDENTIFIED	CORRECTIVE ACTION	RETURNED TO ILRT LINEUP	OBSERVED EFFECT ON ILRT	SUPPLEMENTAL TYPE C REQUIRED	TYPE C RESULTS IN WT%/ DAY	EFFECT ON FINAL LEAK RATE *	EFFECT ON FINAL 95% ULC ☆
VALUES FROM	THE AUGUST 19	983 ILRT		·······	·····	<u> </u>	0.1386	0.1458
Isolated Pen. 44	8-2-83/ 1020	None	No	None	Yes	B-0.0025	B-0.1411	B-0.1483
Closed ICC- 72, 74						A-0.00012	A-0.13872	A-0.14592
11A-90	8-2-83/	Backseat	No	None	Yes	0.006	B-0.1471	B-0.1543
Stem Leak	1300		:	(No maintena	<pre>ice performed)</pre>	0.006	A-0.14472	A-0.15192
PG-186	8-2-83/ 1600	Closed 1N- 128	Yes-1N-128 Open	None	No			
Isolated Pen. 33	8-2-83/ 1700	Closed 1N- 130 ·	Yes-1N-130 Open	None	No			
Outer Door Handwheel	8-2-83/ 1830	Repaired	N/A	None	Yes			
Pers. Hatch						B-0.062	B-0.2091	B-0.2163
Personnel Hatch	8-2-83/ 2050	Press. to 49 PSIG	No	None	Yes	A-0.00013	A-0.14485	<u>A-0.15205</u>

.

*Note: B - Results are before repair added to leak rate from ILRT.

A - Results are after repair added to leak rate from ILRT.

All leak rates are reported in weight percent per day (Wt%/day) of containment mass at post-accident conditions.

2 - 4

5

2.4 Error Analysis

Three kinds of errors can be introduced into the leak rate test calculations. They are: 1) systematic measurement error due to instrumentation; 2) random measurement error due to instrumentation; and 3) inclusion of a bad data point into the calculation. Each of these types of errors is addressed below and is based on information in ANS-N274, work group 56.8, revision 3, Nov., 1978.

A) Systematic Measurement Errors

Systematic error is the error introduced by a difference between the measured parameter and the actual value of the parameter, produced by predictable or identifiable effects.

Instrument calibration traceable to the National Bureau of Standards is one method of holding this error to a minimum. However, since the mass-plot data analysis technique calculates the leakage based on a ratio of these measured parameters and not the actual value, the overall effect of these systematic instrumentation errors can be considered negligable, if the instrument drift over the test period is not significant.

The instrument calibration, and instrument drift, can be determined to be acceptable at the end of the test period by the Verification Test. This test imposes a known leakage on the containment structure through an independently calibrated instrument which causes a known change in the leak rate. If the instrumentation has not experienced a calibration shift, and no other system change has occurred, the verification test measured leak rate would compare well with the sum of the test leak rate and the imposed leak rate. Therefore, a successful Verification Test confirms that the leak rate test instrumentation systematic error is within acceptable limits. Any other error associated with the measurement is due to random error.

B) Random Measurement Error

Random errors are those errors in the measured parameters whose sign and magnitude vary without pattern or discernable cause, such as instrument calibration.

For the leak rate test, the effect of random errors must be considered in the data analysis. This is accomplished by statistical techniques in which the deviation from at least a square fit regression line of measured data is bounded such that a certain fraction of the data points lie within the bounds. These bounds define a region called the confidence interval. The probability that any measured data point will fall within the confidence interval is called the confidence level.

The confidence level set for this test is 95%, and from this, the limits or values of the confidence interval are calculated. The lower limit of this interval is of no significant consequence since

the reported leak rate is higher. If the actual leakage is lower than the reported value, due to the inclusion of erroneously high values, then the reported value is of a conservative nature. If, on the other hand, random measurement errors has caused the inclusion of erroneously low values, then the actual leakage would be higher than the reported value. For this reason, the upper boundary (limit) to the 95% confidence interval is of significance to the test results and is included in the report.

C) Inclusion of Bad Data Points in the Calculations

Criteria exist in statistical analysis for the rejection of bad data points in the process of data analysis. This is not necessary in the mass-plot method for two reasons. First, since the massplot calculation is based on a regression fit of all the data points, a single erroneous value will have little effect on the calculated leak rate. Secondly, since the random error analysis clearly shows the need to calculate and report the upper limit of the 95% confidence interval, the inclusion of a bad data point in the calculation is already accounted for in the data analysis.

D) Analysis Conclusions

The information above, on each type of error, demonstrates that if the 95% upper confidence limit is less than 75% L_t and that the verification test results are acceptable, then the containment leakage rate accurately accounts for any instrument errors in the leak rate measurement system.

2.5 Test Organization

The Performance Section at the Oconee Nuclear Station has overall responsibility for the CILRT. The testing activities were supervised by the test co-ordinator. The organizational chart is presented in Figure 2.6.1. The test personnel were as follows:

Α.	Test Co-ordinator responsible for all ILRT activities	Τ.	S.	Barr
B.	Shift Co-ordinator (one per shift) responsible for testing activities on their assigned shifts	Т. В.	D. G.	Curtis Davenport
C.	Data Engineers (one per shift) responsible Data Analysis	M. K.	J. G.	Robinson Rohde
D.	Support Engineer (technical support- engineer from System Results Group, Duke Power) (one per shift)	D. T.	Hu We	bbart lch

E. Operators (normal shift)

.

۰.

F. Test Computer Support (filled in R. P. Todd for T. D. Curtis as needed)

Minor changes were made due to length of test.

.

.

.

ter i se conservation de la conserv

OCONEE ILRT ORGANIZATION

Figure 2.6-1

3.0 Design Information

3.1 Reactor Building

The reactor building is a reinforced and post-tensioned concrete structure designed to contain any accidental release of radioactivity from the reactor coolant system as defined in the Final Safety Analysis Report (Reference 1).

The structure consists of a post-tensioned reinforced concrete cylinder and dome connected to and supported by a massive reinforced concrete foundation slab as shown in Figure 3.1-1. The entire interior surface of the structure is lined with a 1/4 inch thick welded ASTM A36 steel plate to assure a high degree of leak tightness. Numerous mechanical and electrical systems penetrate the Reactor Building wall through welded steel penetrations.

Principal dimensions are as follows:

Inside Diameter	116 ft.
Inside Height (including Dome)	208-1/2 ft.
Vertical Wall Thickness _	3-3/4 ft.
Dome Thickness	3-1/4 ft.
Foundation Slab Thickness	8-1/2 ft.
Liner Plate Thickness	1/4 inch
Internal Free Volume	1,910,000 Cu. ft.

3.2 Measurement Systems

Instrumentation used for the Oconee Unit 1 ILRT is similar to that used on previous tests conducted by Bechtel. The leak rate test measurement system is shown schematically in Figure 3.2-1.

Reactor Building pressure was measured by a Ruska Instrument precision pressure gauge. The unit was calibrated before the test.

Reactor Building temperature was measured by twenty-four (24) calibrated RTDs and read on a Kaye RAMP digital recorder. Each RTD was assumed to be representative of a fraction of the total containment volume.

Reactor Building dewpoint temperature was measured by two (2) General Eastern Dewpoint Hygrometers.

The relative location of the humidity sensors is shown in Figure 3.4-1. A 0-10.45 SCFM Brooks rotometer was used in establishing a known leak rate.

3.2.1 Instrument List

Specifications for the instrumentation used for the Oconee Unit 1 ILRT are listed in Table 3.2-1.

3.2.2 Temperature Sensor Locations

The locations of temperature sensors within the Reactor Building are shown in Figures 3.2-2 through 3.3-6.

3.2.3 RTD and Dewpoint Volume Fractions

Volume fractions were used for calculating the average temperature and the average dewpoint temperature in the containment. These fractions were determined using an equivalent volume for each sensor. The free volume of the containment was divided into "cells" with a sensor center in each. Volume fractions are given in Table 3.2-2.

3.3 Pressurization System

Reactor Building pressurization was accomplished by two (2) electric motor driven and three (3) diesel driven air compressors operating in parallel. These compressors also include aftercoolers as integral equipment. The discharge from the compressors passes through a air dryer which reduces the moisture content in the air prior to its entry into the Reactor Building. The specifications for these components are as follows:

- A. Two (2) electric driven Joy Turbo-Air (20V2) centrifugal type air compressors with a capacity of 2300 SCFM @ 80 PSIG. Three (3) diesel driven Atlas Compco Oil Free Air Compressors with a capacity of 1500 SCFM @ 102 PSIG.
- B. Two (2) Basco size 22048 aftercoolers (Integral to Compressors), type "ES" Fixed Tubesheet, with a capacity of 2100 SCFM @ 14.4 PSIA and with a design pressure of 150 PSIG. One (1) RP Adams Aftercoolers with a capacity of 5500 SCFM @ 80 PSIA and a design pressure of 150 PSIG.
- C. One (1) Hankison (Model H-15) refrigerator type air dryer with inertial impingement separator, and a capacity of 3750 SCFM (100°F Sat. inlet) @ 100 PSIG. Three (3) Van Air Refrigerator Type Air Dryer with a capacity of 1500 SCFM @ 100 PSIG.

These valves, 1LRT-15, 1LRT-16, and 1LRT-17 are used to control pressurization of the Reactor Building. The controls for these valves are located in the test panel. The pressurization system is shown schematically in Figure 3.3-1. The valves used to control depressurization are as follows: 1LRT-15, 1LRT-16, and 1LRT-17 for minimum release, 2LRT-15, and 2LRT-16 for increased release, finally remove rental equipment leaving flange open, remove flange to Unit 3 and open LRT-13, and LRT-10 for unlimited release rate.

3.4 Recirculation System

One Reactor Building Cooling Fan was on low speed for this test.

3.5 Computer Programs

The containment integrated leak rate test specified that the test would utilize the IBM-XT Program or the plant computer program in data analysis. Both programs calculate the mass-plot leak rate.

The off-line programs were written for and run on the IBM-XT system. Two programs were used, one to calculate the corrected values of building pressure and temperature, the second to calculate the leak rate. Tables of corrected temperature and pressure were stored in separate permanent files.

3.5.1 ILRT Program

3.5.1.1 Purpose

This program is used to process the raw data for use in leak rate calculations and print out these values.

- 3.5.1.2 Program Inputs
 - a) 24 RTD temperatures in °F
 - b) 2 Dewpoint temperature in °F
 - c) absolute pressure in PSIA

3.5.1.3 Calculations

Three calculations are performed with the input data. They are:

- a) Corrected building temperature
- b) Vapor pressure of water from dewpoint temperatures
- c) Corrected building pressure

3.5.1.4 Temperature

a) Apply the instrument calibration correction factors for each RTD, loaded as part of the program.

- b) Multiply each temperature by the volume fraction associated with each RTD.
- c) Sum the volume weighted temperatures for building average.
- 3.5.1.5 Dewpoint Temperature
 - a) The values entered into this program have already been corrected for instrument calibration.
 - b) Average the two values.
 - c) From the dewpoint temperature (Saturation Temperature), the vapor pressure (Saturation Pressure) is determined from the steam tables. The tables are available from the IBM-XT as a library program.

3.5.1.6 Pressure

a) Subtract vapor pressure from input absolute pressure.

3.5.1.7 Program Summary

This program will calculate the leak rate and 95% UCL from the input data, corrected pressure and temperature, based on the mass-plot method. It includes two output options, either the leak rate calculated from the designated start/stop points or a table of the leak rate and 95% UCL for each data point. The calculations are based on the formulas in Appendix B to ANS N274, work group 56.8, revision 3 - Nov. 15, 1978. As this work is readily available, it is not duplicated here.

. . .

TABLE 3.2-1

INSTRUMENT SPECIFICATIONS

Absolute Pressure Gauge

Mfg. Model Range Resolution Accuracy Oconee I.D.

Ruska 6000-151-100 0-100 PSIA 0.01% 0.006% + 0.024 PSI 28024 and 28025

Pressure Gauge

Mfg. Range Accuracy Repeatability

Heise 0-100 psig 0.1 psi 0.1 psi

Temperature Elements

Mfg. Model Type Range Repeatability and hysterisis Accuracy

Leeds & Northrup 8197 RTD, Copper, 100 ohms 0-150°F ±.02°F ±.0.12°F

Temperature, Pressure and Dewpoint Indication for Sensors

Mfg. Model Type Range

Oconee I.D. Accuracy

Dewpoint Temperature

Mfg. Model Range Accuracy Sensitivity Standard Lab I.D. Kaye Instrument 64RR Ramp Relay Scanner DVM 40,000 mV, 400.00 mV 4.0000 V, 10.000 V 0CPRF-28121 ±0.01% + 2 Counts + 4 μV

General Eastern 1200 AP 120°F ±0.4°F ±0.05°F SYIAC 11111 and SYIAC 11174 TABLE 3.2-1 (Cont'd)

••

.

Flow Indicator

• :

Mfg. Type Model Range Accuracy Repeatability Serial No.

.

Brooks Rotometer 1110-24 0 to 10.45 SCFM ± 1% of instantaneous reading Better than 1/4% of instrument reading 7004-39848

.

TABLE 3.2-2

1

.

۰. .

م . - ·

- - --- ---

.

VOLUME FRACTIONS

Volume Fractions for RTDS

RTD #	Volume Fraction
1	03
1	.05
2	.02
3	
4	.05
5	.02
. 6	.03
7	.01
8	.08
9	.05
10	.05
11	. 02
12	. 02
13	.01
14	02
15	. 02
16	.01
17	.05
18	.09
19	.11
20	.01
21	.01
22	.09
23	.11
24	.07
	Total 1.00

Dewpoint Sensors Volume Fraction

. . ' --

Dewpoint Sensor #	Volume Fraction
1 (Azimuth 100° Elevation 850') 2 (Aximuth 260° Elevation 850')	0.4
2 (Aximuch 200 Lievación 050)	Total 1.0

REACTOR BUILDING

11

LEAK RATE MEASUREMENT SYSTEM

.

.

۰.

Figure 3.2-1 Test Measurement System Schematic.

.

REACTOR BUILDING BASEMENT FLOOR ELEVATION 787'

.

.

Figure 3.2-2

REACTOR BUILDING INSTERMEDIATE FLOOR ELEVATION 830'

Figure 3.2-3

REACTOR BUILDING OPERATING FLOOR ELEVATION 850'

Figure 3.2-4

Figure 3.2-5

RECOR BUILDING PRESSURIZATION SYS

4.0 Conduct of Local Leak Tests

4.1 Local Leak Rate Test

The purpose of the Local Leak testing program was to systematically check the integrity of valves (seats and packing), flanges, pipe and electrical penetration welds, seals and compression fittings that are part of the boundaries of the containment system. These tests, specified by section 4.4.1.2 of the Technical Specifications, have a combined Acceptance Criteria of less than or equal to 0.125% of the Reactor Building atmosphere per 24 hours. Final analysis of all penetration leakage rates shows that the total penetration leakage rate was approximately 26.34 percent of the allowable.

4.1.1 Test Method

All electrical and mechanical penetration, including locks and hatches, were tested by pressurizing ~59 PSIG. The pressure, temperature and barometric pressure were recorded before and after the leak test (duration of test determined by penetration volume) and the leak rate determined by the mass difference method.

4.1.2 Penetration Test Results

Per Technical Specification 4.4.1.2.3, the total leakage from all penetrations and isolation valves shall not exceed 0.125% of the Reactor Building atmosphere in 24 hours. The total measured leak rate from all penetrations prior to this test was 0.0329% per 24 hours. Results of all local penetration tests done since the last type A test are given in Tables 4.1-1 through 4.1-2.

4.2 Local Leak Test Failure Data

Per 10CFR50, Appendix J, V.B.3, a listing of all type "C" local leak tests that are failed to meet the acceptance criteria since the last ILRT are reported in Table 4.2.

TABLE 4.1-1

.

.

.

.

÷ ,

	TYPE "B" TESTS	
PENETRATION	DATE	WT%/DAY LEAKAGE
Electrical Penetrations	07/11/81	5.529x10 ⁻⁷
· · · ·	06/15/83	1.257x10 ⁻⁶
Equipment Hatch	2	5.003x10 ⁻⁵
	12/16/81	6.408x10 ⁻⁷
	06/02/82	0.000
	06/08/82	0.000
	07/29/83	1.005×10^{-7}
	08/04/83	1.885×10^{-7}
	08/07/83	1.257×10^{-7}
Personnel Hatch	04/17/80	4.310×10^{-4}
	09/02/80	0.000
•	02/20/81	2.416×10^{-3}
	03/01/81	0.000
	12/17/81	0.000
	01/14/82	3.331×10^{-3}
	01/17/82	2.410×10^{-3}
	01/22/82	7.444×10^{4}
	02/22/82	8.177x10_4
	03/20/82	1.315×10^{-4}
	06/08/82	7.228x10_4
	09/09/82	3.603x10_5
	10/27/82	1.314x10 ⁻³
	01/27/83	0.000
	04/27/83	1.303×10^{-4}
	07/24/83	4.145×10^{-3}
	08/04/83	1.667×10^{-2}
	08/14/83	3.566x10 ⁻³
Personnel Hatch O'Rings	06/01/81	0.000
	06/23/81	1.257×10^{-6}
	08/06/81	6.157×10^{-7}
	12/21/81	1.083x10_5
	12/24/81	4.373x10_
	12/26/81	2.224x10_
	12/29/81	1.257x10_6
	12/31/81	2.434x10_°
	01/26/82	6.660x10_/
	02/05/82	8.620x10_7
	02/26/82	6.283x10_7
	03/03/82	8.670x10_/
	03/24/82	1.206x10 ⁵

TABLE 4.1-1 (Cont'd)

.

.

PENETRATION	DATE	WT%/DAY LEAKAGE
Personnel Hatch O'Ring (Cont'd)	03/26/82	6.534x10 ⁷
	04/01/82	1.081×10^{-7}
	04/22/82	3.267x10 ⁻⁷
	05/01/82	6.609×10^{-7}
	06/10/82	4.360×10^{-7}
	06/13/82	1.106x10 ⁻⁶
	06/15/82	1.106x10 ⁻⁶
	06/27/82	1.257×10^{-6}
	07/16/82	4.272×10^{-7}
	09/13/82	8.796x10 ⁻⁷
	09/22/82	4.297×10^{-7}
	10/09/82	1.382×10^{-6}
	10/28/82	2.488×10^{-6}
	10/30/82	1.709×10^{-6}
	12/22/82	1.257×10^{-6}
	03/25/83	1.257×10^{-6}
	08/17/83	6.283x10 ⁻ 6
	08/20/83	2.513×10^{-7}
	09/14/83	2.513×10^{-6}
	09/16/83	2.513×10^{-6}
Emergency Hatch	05/20/80	2.972×10^{-4}
	09/16/80	1.155×10^{-4}
	02/04/81	6.459×10^{-4}
	02/21/81	6.256×10^{-4}
	12/13/81	2.538×10^{-4}
	12/15/81	1.411×10^{-5}
	02/18/82	2.508×10^{-4}
	03/19/82	1.723×10^{-4}
	06/29/82	1.009x10 ⁴
	09/14/82	9.899x10 ⁻⁵
	12/14/82	3.393z10 ⁻⁵
	03/17/83	3.342×10^{-5}
	03/24/83	4.637×10^{-4}
	07/26/83	4.147×10^{-4}
	08/14/83	0.000
Emergency Hatch O'Ring	03/21/83	7.225×10^{-7}
	04/14/83	3.644×10^{-7}
Purge Valves	02/22/82	1.157x10 ⁻³
	03/20/82	1.873x10 ⁻³
	06/03/82	8.972x10 ⁻⁴
	06/08/82	3.239x10 ⁻⁴
	10/26/82	3.288×10^{-4}
	10/26/82	3.198×10^{-4}
	07/29/83	1.157x10 ⁻⁴
	08/11/83	7.979x10 ⁻⁵
	08/12/83	2.400×10^{-4}

TABLE 4.1-2

TYPE "C" TESTS

PENETRATION

· . .

. .

.

DATE

WT%/DAY LEAKAGE

Mechanical Penetration

.

TABLE 4.2

.

. .

.

.

`. .

а. ц. г.,

.

۰,

LOCAL TEST FAILURE DATA

ITEM	DATE	REASON FOR FAILURE	CORRECTIVE ACTION
HP-393	07/05/81	Leaking Past Seat	Lapped Seat
RC-7	07/25/81	Leaking Past Seat	Replaced Valve
HP-283	07/25/81	Leaking Past Seat	Replaced Valve
HP - 145	07/25/81	Leaking Past Seat	Replaced Valve
HP-284	07/25/81	Leaking Past Seat	Cleaned Internal Parts
HP-144	07/25/81	Leaking Past Seat	Replaced Valve
HP-146	09/03/81	Leaking Past Seat	Replaced Valve
HP-147	10/02/81	Leaking Past Seat	Lapped Seat & Disc
FDW-108	10/26/81	Leaking Past Seat	Replaced Valve
CC-7	11/10/81	Leaking Past Seat	Readjusted Torque Switch
DW-155	12/01/81	Leaking Past Seat	Lapped Seat
DW-156	12/01/81	Leaking Past Seat	Replaced Valve
HP-253	01/21/82	Leaking Past Seat	Replaced Valve
HP-236	01/21/82	Leaking Past Seat	Replaced Valve
HP-254	01/21/82	Leaking Past Seat	Replaced Valve
HP-242	01/21/82	Leaking Past Seat	Replaced Valve
HP-286	06/12/83	Leaking Past Seat	Lapped Seat & Disc
HP-146	06/12/83	Leaking Past Seat	Lapped Seat & Disc
CS-12	06/17/83	Leaking Past Seat	Lapped New Seat to Body
CC-77	06/17/83	Leaking Past Seat	Cleaned and Adjusted Seat
CC-76	06/17/83	Leaking Past Seat	Cleaned Parts & Reassembled
HP-284	07/18/83	Leaking Past Seat	Lapped Seat & Disc
HP-393	07/24/83	Leaking Past Seat	Lapped Seat & Disc
SF-97	07/24/83	Not Seating Fully	Adjusted Limit Torque
HP-417	07/25/83	Not Seating Fully	Adjusted Limit Torque

	CL DCK	CORRE	CTED	MASS	LEAK	95% UCL
- UATA			EMPERATURE		RATE	LEAK RATE
SELNU	105	74.331	38.0100	699816.1	-0.4861	0.9271
179	2008	74.550	38.0100	699814.0	-0.2301	0.1646
130	2103	74 770	88.0000	599827.1	-0.2889	-0.0814
101	2112	74.330	88.0000	699820.J	-0.2099	-0.0534
197	2119	74.330	38.0000	699824.3	-0.1776	-0.0661
194	-,	74.770	88.0100	59981J.7	-0.1146	-0.0062
185	2128	74.330	88.0000	699820.7	-0.0960	-0.0116
1 124	21 33	74.530	38.0000	599819.9	-0.0790	-0.0106
197	2138	74.320	88.0000	699724.9	0.1114	0.3202
188	2145	74.319	37.9900	699736.5	0.1994	0.3937
189	2148	74.330	88.0000	699821.4	0.1302	0.3081
190	2155	74.319	38.0100	699709.6	0.2149	0.3891
191	2158	74.319	88.0200	699693.6	0.2808	0.4452
192	2203	74.320	88.0000	699725.9	0.2898	0.4329
193	2208	74.319	87.9900	699732.6	0.2845	0.4103
194	2213	74.320	87.9800	699751.1	0.2623	0.3758
195	2218	74.319	87.9800	699747.6	0.2451	0.3478
196	2223	74.319	87.9800	699740.1	0.2326	0.3254
197	2228	74.319	87.9800	699746.5	0.2170	0.3020
198	2233	74.319	87.9800	699745.4	0.2038	0.2821
199	2238	74.319	87.9800	699747.2	0.1904	0.2629
200	2243	74.320	87.9800	699749.6	0.1/69	0.2443
201	2248	74.319	87.9800	699744.3	0.1578	0.2305
202	2253	74.319	87.9800	699747.2	0.15/1	0.2158
203	2258	74.319	87.9600	699767.8	0.1415	0.1760
204	2303	74.309	87.9600	699675.3	0.1362	0.2104
205	2308	74.308	87.9600	699670.4	0.16/5	0.1001
206	2313	74.319	87.9500	699781.6	0.1466	0.1771
207	2318	74.309	87.9500	699686.4	0.151/	0.2010
208	2323	74.309	87.9300	677670./	0.1348	0.2005
209	2329	74.309	87.7500	699686.7	0.1570	0.1003
210	2333	74.308	87.9500	699683.3	0.1383	0.1774
211	2338	74.309	87.9500	699686./	0.1384	0.1968
212	2343	74.309	87.9600	699675.5	0.1403	0 1951
213	2348	74.309	87.9600	5776/4.0	0.1670	0 1954
214	2353	74.309	87.9700	677662.2	0.1419	0.1979
215	2338	74.309	87.9800		0.1517	0.1908
216	3	74.309	87.9800	400494 0	0 1575	0.1857
217	8	74.309	87.9300	400702 0	0.1522	0.1795
218	13	74.309	87.9400	100100 8	0.1472	0.1737
219	18	74.509	87.7400	400407 4	0.1474	0.1681
220	23	74.309	87.9400	100107 Q	0.1385	0.1624
221	28	74.308	97.9300	499417 8	0.1436	0.1680
-222	33	74.298	87.7300	409494.4	0.1402	0.1637
223	38	74.507	87.7300	499498.8	0.1353	0.1584
224	43	74.307	97 9400	499494.9	0.1311	0.1536
225	48	74.308	87.7400	100100 A	0.1264	0.1484
225	53	74.309	87.9400	499421.8	0.1292	0.1506
227	28	74.301		499484.9	0.1261	0.1469
228	103	74.309	87.7300	100504 T	0.1307	0.1511
227	108	74.299	87.7300	699404-4	0.1336	0.1535
230	115	74.277	87.7400	499580.5	0.1378	0.1574
231	118	74.277	87.9800	699619.6	0.1384	0.1573
232	123	74.277	97.9300	699619.7	0.1391	0.1573
100	128	74.277	97 9300	699617.4	0.1392	0.1568
204	133	74.477	87.9400	699602.5	0.1401	0.1572
203	1.00	74 799	87.9400	699606.8	0.1403	0.1568
200	140	74 200	87.9400	699604.6	0.1407	0.1566
237	140	74 300	87.9400	677613.2	0.1399	0.1553
	199	74.299	87.9300	699620.3	0.1387	0.1537
240	202	74.299	87,9400	677608.1	0.1381	0.1526
241	208	74.299	87.9400	699607.8	0.1377	0.1518
247	213	74.299	37.9500	699592.3	0.1380	0.1515
243	218	74.299	87.9400	699610.3	0.1367	0.1499
744	223	74.299	87,9400	699610.3	0.1356	0.1485
245	228	74.299	87.9500	699591.5	0.1354	0.1479
246	233	74.299	87.9500	699594.0	0.1348	0.1470
247	238	74.289	87.9400	699511.2	0.1381	0.1504
248	243	74.299	87.9400	699609.5	0.1365	0.1486
249	248	74.289	87.9300	699525.4	0.1385	0,1504
250	253	74.289	87.9200	699539.5	0.1398	0.1514
251	258	74.289	87.9200	699543.0	0.1406	0.1519
252	303	74.289	87.9300	699528.6	0.1419	0.1530
253	308	74.289	87.9200	699538.1	0.1427	0.1535
254	313	74.289	87.9200	699534.9	0.1429	0.1535
255	318	74.289	37.9200	699539.2	0.1433	0.1536
256	323	74.289	97.9100	699549.9	0.1425	0.1325
257	328	74.289	87.9200	699539.2	0.1425	0.1323
258	333	74.289	87.9200	699538.1	0.1426	0.1521
259	338	74.289	87.9300	699522.8	0.1431	0.1524
240	343	74.289	87.9200	699536.3	0.1426	0.1517 ;
261	348	74.289	87.9200	699541.6	0.1420	0.1309
262	353	74.289	87.9300	699526.1	0.1420	0.1507
263	358	74.289	87.9000	699563.3	0.1406	0.1492
264	403	74.289	87.9400	699512.5	0.1407	0.1491
265	408	74.289	87.9300	699521.8	0.1403	0.1483
266	413	74.289	37.9500	599502.3	0.1404	0.1485
267	418	74.239	87.9400	599513.3	0.1401	0.14/7
258	420	74.299	87.9300	5775 24. 0	0.1093	0.14/0
; 269	429	74.289	37.9400	699513.7	0.1092	0.1460
1 270	433	74.299	37.7400	599314.4	0,1088	0.1454
1 271	473	74.299	37.9400	599513.3	0.1084	0-1468
- 272	440	74.279	97.9200	599442.1		
				2.000		.

•

.

.

•

...,

DATA	CL OCK	COR	RECTED	MASS	LEAK	95% UCL
	TIME	PRESSURE	TEMPERATURE		RATE	LEAK RATE
	1707	74.234	87.9800	698948.1	0.0309	0.5955
3/0	1320	74 234	87,9800	698944.1	0.0603	0.1826
377	1328	74.204	87 9900	698836.5	0.9419	2.1397
378	1555	74.224	97 9900	498932.5	0.4945	1.3934
379	1338	74.204	87.7700	498907.8	0.3917	1.0043
280	1343	74.233	88.0000		0.2185	0.6987
381	1348	74.234	87.9900	400077 7	0.1607	0.5287
382	1353	74.234	88.0000		0 1295	0.4194
383	1358	74.234	88.0000	678710.3	0 2944	0.5684
384	1403	74.224	88.0000	678824.8	0.2044	0.6071
385	1408	74.224	88.0000	698825.9	0.3803	0.5014
384	1413	74.235	88.0100	698912.7	0.2771	0.0014
387	1418	74.234	88.0100	498905.5	0.2254	0.4204
789	1473	74.224	88.0200	698802.9	0.2910	0.4/44
700	1428	74.225	88.0100	698817.8	0.3163	0.4//6
780	1475	74.225	88.0200	698804.0	0.3370	0.4803
370	1479	74.274	88,0200	698801. 5	0.3483	0.4757
371	1438	74 774	88.0200	698799.0	0.3523	0.4659
	1440	74 224	88.0300	698783.7	0.3387	0.4608
393	1448	74.227	88.0300	698790.5	0.3552	0.4473
394	1453	74.44		658801.1	0.3436	0,4279
395	1458	74.224		498791.6	0.3355	0.4127
396	1503	74.225	88.0300	499790 8	0.3298	0.4006
397	1508	74.223	88.0300	/ 00701 7	0 3184	0.3844
398	1513	74.225	88.0300	470/71.3	0.3083	0.3699
379	1518	74.224	88.0300		0.3037	0.3609
400	1523	74.224	88.0400	678//1.0	0.0007	0.3467
401	1528	74.224	88.0300	698/84.1	0.2728	0 3328
402	1533	74.224	88.0300	698/8/.6	0.4014	0 3498
403	1538	74.214	88.0400	698683.6	0.2981	0.3400
404	1543	74.224	88.0500	698763.9	0.2902	0.3384
405	1548	74.224	88.0200	698799.3	0.2730	0.3208
406	1553	74.214	88.0400	698683.6	0.2836	0.3278
407	1558	74-214	88.0300	698695.3	0.2884	0.0018
407	1403	74-214	87.9900	698740.9	0.2815	0.3229
408	1400	74.224	88.0400	698771.6	0.2691	0.3100
409	1000	74.715	88.0400	698685.4	0.2728	0.3116
410	1010	74 014	88.0400	698681.1	0.2758	0.3127
411	1618	74.217		698667.6	0.2789	0.3140
412	1623	74.214		698671.1	0.2805	0.3138
413	1628	74.214		498448.3	0.2808	0.3124
414	1633	74.214	88.0000	200470 0	0.2798	0.3090
415	1638	74.214	88.0400		0 7794	0.3082
415	1643	74.214	88.0600	070000.1	0.2705	0.2049
417	1648	74.214	88.0600	678633.3	0.2/73	0 7048
418	1653	74.214	88.0600	698655.3	0.2/83	0.0040
419	1458	74.214	88.0600	698653.5	0.2770	0.0041
420	1703	74.213	88.0500	678660.9	0.2740	0.2782
471	1708	74.214	88.0600	698649.8	0.2718	0.2951
921 AMM	1717	74.214	88.0600	698652.3	0.2689	0.2914
422	1710	74 214	88.0600	678651.0	0.2659	0.2877
423	1/18	74 704	88.0800	698530.4	0.2739	0.2962
424	1/20	/ * • • • •			0 2781	0.2998

--

•

· · · ·

.

.

NORMALIZED MASS

88.1 OCONEE UNIT 1 1 INTEGRATED LEAK RATE TEST TEMPERATURE IN AUGUST, 1983 11 88.0 TEMPERATURE vs. TIME 87.9 2.0 3.0 6.0 7.0 8.0 1.0 4.0 5.0 TIME IN HOURS.

Гч

·

Attachment 3

DUKE POWER COMPANY P.O. BOX 33189 CHARLOTTE, N.G. 28242

:

HAL B. TUCKER vice president nuclear production

 Σ

October 25, 1983

теlерноле (704) 373-4531

Mr. James P. O'Reilly, Regional Administrator U. S. Nuclear Regulatory Commission Region II 101 Marietta Street, NW, Suite 2900 Atlanta, Georgia 30303

Re: Oconee Nuclear Station Docket No. 50-269 Unit 1 RB Integrated Leak Rate Test

Dear Mr. O'Reilly:

Pursuant to Oconee Nuclear Station Technical Specification 4.4.1.1.5, please find attached a copy of the Unit 1 Reactor Containment Building Integrated Leak Rate Test that was completed in August 1983.

Very truly yours,

lal. 1. Laca

Hal B. Tucker

JCP/php

Attachment

bcc:	(w/o at	ttachment)
	R. S.	Bhatnagar
	K. S.	Canady
	N. A.	Rutherford
	R. L.	Gill
	P. F.	Guill
	R. C.	Futrell
	R. T.	Bond (ONS)
	B. G.	Davenport
	Group	File: 0S-801.01
	(1
	(w/atta	achment)
	Group	-F11e: US-818.01