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ABSTRACT

Cast austenitic stainless steel (CASS) materials are used extensively in reactor coolant
pressure boundary systems as well as core support structure and reactor internals. However,
these materials have a duplex structure consisting of austenite and ferrite phases and are
susceptible to thermal aging embrittlement during reactor service. In addition, the prolonged
exposure of these materials to neutron irradiation changes their microstructure and
microchemistry, which can degrade their fracture properties even further. This reportis a
revision of NUREG/CR-4513, Rev. 1, ANL-93/22 (August 1994); it revises the procedure and
correlations used for predicting the change in fracture toughness and tensile properties of CASS
components due to thermal aging during service in light water reactors at 280-330°C
(535-625°F). The updated correlations are based on the current fracture toughness database
for CASS materials aged up to 100,000 h at 290-350°C (554-633°F). The methodology for
estimating fracture properties has been extended to cover CASS materials with a ferrite content
of up to 40%. The correlations for estimating the change in tensile stress, including the
Ramberg/Osgood parameters for strain hardening, are also described. The fracture toughness
J-R curve, tensile stress, and Charpy-impact energy of aged CASS materials are estimated
from material composition. The mechanical properties of a specific CASS material are
estimated from the extent and kinetics of thermal embrittlement. Embrittlement is characterized
in terms of room temperature Charpy-impact energy. The extent or degree of thermal
embrittlement at “saturation” (i.e., the minimum impact energy that can be achieved for a
material after long-term aging) is determined from the chemical composition of the material.
Charpy-impact energy as a function of the time and temperature of reactor service is estimated
from the kinetics of thermal embrittlement, which are also determined from the chemical
composition. Data on the initial impact energy and tensile flow stress of the unaged material are
required for these estimations. The fracture toughness J-R curve for the material is then
obtained by correlating room temperature Charpy-impact energy with fracture toughness
parameters. The values of J,. are determined from the estimated J-R curve and flow stress. A
common “predicted lower-bound” J-R curve for CASS materials of unknown chemical
composition is also defined for a given grade of steel, range of ferrite content, and temperature.
In addition, guidance is provided for evaluating the combined effects of thermal and neutron
embrittlement of CASS materials used in the reactor core internal components.
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EXECUTIVE SUMMARY

Cast austenitic stainless steels (CASSs) used in reactor pressure-boundary components —
such as valve bodies, pump casings, primary coolant piping, and some reactor core internal
components of light water reactors (LWRs) — suffer a loss in fracture toughness due to thermal
aging after many years of service at temperatures in the range of 280-320°C (=535-610°F).
Thermal aging of CASS materials at these temperatures causes an increase in hardness and
tensile strength and a decrease in ductility, impact strength, and fracture toughness of the
material. The Charpy transition curve also shifts to higher temperatures. In addition, for CASS
materials used in reactor core support structures and core internals components, exposure to
neutron irradiation for extended periods leads to further degradation of their fracture properties
due to radiation hardening and radiation-induced segregation (RIS). In such instances, a
fracture mechanics methodology, such as linear-elastic fracture mechanics (LEFM) or elastic-
plastic fracture mechanics (EPFM) is needed for analyzing structural integrity and developing
inspection guidelines. Therefore, an assessment of the degradation of mechanical properties
due to thermal and irradiation embrittlement is required to evaluate the performance of CASS
components during prolonged exposure to service temperatures and environments.

Investigations at Argonne National Laboratory (ANL) and elsewhere have shown that thermal
embrittlement of CASS components can occur during the reactor design lifetime of 40 years.
Different grades and heats of CASS materials exhibit varying degrees of thermal embrittlement.
In general, the low carbon (low C) CF-3 materials are the most resistant to thermal
embrittlement, and the Mo-bearing, high C CF-8M materials are the least resistant.

Embrittlement of CASS materials can result in brittle fracture associated with cleavage and/or
twinning of the ferrite phase and separation of the ferrite/austenite phase boundary. The
amount of cleavage increases with increases in the degree of thermal embrittlement or
decreases in test temperature. At high temperatures (>500°C), twinning appears to plays an
important role in brittle failure of ferrite. The thermal aging of CASS materials at temperatures
<500°C (<932°F) leads to (a) the formation of a Cr-rich o' phase by spinodal decomposition and
by precipitation and growth of o', and (b) the nucleation and growth of additional phases such as
o', Ni- and Si-rich G phase, M,3Cg carbides, and vy, austenite. The formation of the o' phase
provides the strengthening mechanisms that increase strain hardening and local tensile stress.
Consequently, the critical stress level for brittle fracture is attained at higher temperatures.
Predominantly brittle failure occurs when either the ferrite phase is continuous (e.g., in CASS
material with a high ferrite content) or the ferrite/austenite phase boundary provides an easy
path for crack propagation (e.g., in high-C grades of cast steel with large phase-boundary
carbides). Consequently, the amount, size, and distribution of the ferrite phase in the duplex
structure along with the presence of phase-boundary carbides are important parameters in
controlling the degree or extent of thermal embrittlement.

NUREG/CR-4513, Rev. 1, presented a procedure and correlations for estimating the Charpy-
impact energy and fracture toughness J-R curve of CASS components under LWR operating
conditions from material information readily available in certified material test records (CMTRS).
In this report, the procedure and correlations have been updated by using a much larger
fracture toughness database for thermally aged CASS materials. The applicability of the
methodology has also been extended to materials with a ferrite content of up to 40%. In
addition, for CASS materials used in the reactor core support structure and core internals
components, guidance is provided for evaluating the combined effects of thermal and neutron
embrittlement. The procedure for estimating the change in tensile stress, including the
Ramberg/Osgood parameters for strain hardening, is also presented.
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The fracture toughness of a specific CASS material is estimated from the extent and kinetics of
thermal embrittlement. The extent of thermal embrittlement (i.e., the degradation of mechanical
properties) is characterized by the room-temperature (RT) Charpy-impact energy. A correlation
for the extent of thermal embrittlement at “saturation” (i.e., the minimum impact energy that
would be achieved for the material after long-term aging) is given in terms of the chemical
composition. The extent of the change in RT Charpy-impact energy as a function of the time
and temperature of reactor service is estimated from the extent of change in RT Charpy-impact
energy at saturation and from the correlations describing the kinetics of embrittliement, which
are also given in terms of chemical composition.

The fracture toughness J-R curve for the material is then obtained from the correlation between
the fracture toughness parameters and the RT Charpy-impact energy. The tensile yield and
flow stresses and Ramberg/Osgood parameters for tensile strain hardening are estimated from
the flow stress of the unaged material and the kinetics of embrittlement. The fracture toughness
Jic and tearing modulus can then be determined from the estimated J-R curve and tensile flow
stress. A common lower-bound J-R curve for CASS materials of unknown chemical
composition is also defined for a given material specification, ferrite content, and temperature.

The differences between the methodology presented in this report and that described in
NUREG/CR-4513, Rev. 1, are as follows:

(i) For CF-8M materials, the correlation between the RT Charpy-impact energy and
material parameter ¢ has been revised.

(i) For CF-8M materials, the correlations between the RT Charpy-impact energy and
coefficient C of the J-R curve at RT and 290-320°C have been extended to include
CASS materials with a ferrite content of up to 40%.

(i)  The correlations between the RT Charpy-impact energy and exponent “n” of the J-R
curve at RT and 290-320°C have been revised.

(iv) The minimum fracture toughness J-R curve for centrifugally cast CASS materials, has
been revised.

(v) New lower-bound curves that correlate the saturation RT Charpy-impact energy with
ferrite content for CF-3, CF-8, and CF-8M materials are presented.

(vi) Guidance is provided for estimating the lower-bound fracture toughness curves for
CASS materials used in the reactor core support structures and core internals
components.

These updated expressions for estimating fracture toughness of CASS materials during reactor
service have the following impact on the criteria proposed by NRC for determining the
susceptibility of various categories of CASS components to thermal aging embrittlement. Based
on the casting process and whether the materials contains low Mo (0.5 wt.% max.) or high Mo
(2.0-3.0 wt.%), the proposed criteria specify the ferrite content above which the material would
be susceptible to thermal embrittiement.

e The criteria for low-Mo CF-3 and CF-8 materials have not changed. All centrifugally cast
materials and static cast materials containing <20% ferrite are not susceptible to thermal
embrittlement. Only static cast materials containing >20% ferrite are potentially
susceptible.
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e The criteria for CF-8M materials depend on whether the material contains =210 wt.% Ni.

- The criterion for static cast CF-8M materials containing <10% Ni has not changed.
Static cast materials with <14% ferrite are not susceptible and with >14% ferrite are
potentially susceptible.

- The criterion for centrifugally cast CF-8M materials containing <10% Ni has been
revised. The threshold value of ferrite content has been decreased from 20% to 19%
ferrite. Centrifugally cast materials with <19% ferrite are not susceptible and with
>19% ferrite are potentially susceptible to thermal embrittlement.

- The criterion for static cast CF-8M materials containing 210% Ni has been revised.
The threshold value of ferrite content has been decreased from 14% to 11% ferrite.
Static cast materials with <11% ferrite are not susceptible and with >11% ferrite are
potentially susceptible to thermal embrittlement.

- The criterion for centrifugally cast CF-8M materials containing 210% Ni has been
revised. The threshold value of ferrite content has been decreased from 20% to 13%
ferrite. Centrifugally cast materials with £13% ferrite are not susceptible and with
>13% ferrite are potentially susceptible to thermal embrittlement.

The methodology presented in this NUREG/CR report is only applicable to service times that
are equivalent to 10,000 h at 400°C. This corresponds to

2125 effective full power years (efpy) at 290°C for CF-8/CF-3 materials,
230 efpy at 320°C for CF-8/CF-3 and 215 efpy for CF-8M materials used within primary
pressure boundary components, and

e 215 efpy at 350°C for CF-8/CF-3 materials used in the reactor core internals.

Additional long-term aging data are needed to estimate fracture properties for longer service
times. Furthermore, this methodology may not be applicable for CF-8M materials with more
than a trace amount of Nb, particularly for materials containing >15% ferrite. The methodology
also does not consider the effect of reactor coolant environment on fracture toughness. Limited
data indicate significant effect of environment, particularly at low temperatures (e.g., shutdown
water chemistry at 54°C). In addition, the existing fracture toughness data on LWR-irradiated
CF-3 and CF-8 materials is inadequate to accurately establish the lower-bound J-R curves for
these materials as a function of neutron dose.
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aging management program
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control element assembly
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control rod guide tube

compact tension

crack tip opening displacement
cold-worked

dissolved oxygen

displacement(s) per atom

Electricité de France

effective full power year(s)

Etude des Matériaux (EDF formula for ferrite content prediction)
elastic-plastic fracture mechanics

Electric Power Research Institute

Iron

ferrite number

Framatome (now Areva)

General Electric

George Fischer

gas metal-arc weld

gas tungsten-arc weld

heat-affected zone

Japan Power Electric Engineering and Inspection Corp.
Japan Nuclear Energy Safety Organization
J-integral resistance

kilo pounds per square inch

linear-elastic fracture mechanics
low-pressure core injection
low-temperature crack propagation
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T
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Materials Engineering Associates, Inc.
Mitsubishi Heavy Industries
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Molybdenum

Materials Reliability Program
megawatt(s)-electric

Nitrogen

Niobium

nil-ductility transition

Nickel

National Power

nuclear power plant

U.S. Nuclear Regulatory Commission
normal water chemistry
Phosphorous

probabilistic fracture mechanics
part(s) per billion

part(s) per million

pressurized water reactor
radiation-induced segregation
room temperature (25°C)

Sulfur

small-angle neutron scattering
submerged arc weld

stress corrosion cracking
single-edge bend

Silicon

Structural Integrity Associates, Inc.
shielded metal arc weld

stainless steel

transmission electron microscopy
transgranular

Titanium

The Welding Institute
Westinghouse
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Creq
Cv

CVint

CVsat

da
dJ

NOMENCLATURE

crack length
coefficient of the power-law J-R curve
chromium equivalent for the material

room temperature “normalized” Charpy-impact energy; i.e., Charpy-impact energy per
unit fracture area at any given service and aging time (J/cm2). The fracture area for a
standard Charpy V-notch specimen (ASTM Specification E 23) is 0.8 cm2. The value
of the impact energy in J has been divided by 0.8 to obtain the “normalized” impact
energy in J/cm2.

initial room temperature “normalized” Charpy-impact energy of a material; i.e., unaged
material (J/cm?2)

room temperature “normalized” Charpy-impact energy of a material at saturation. It
represents a “quasi-saturation” value of RT (i.e., 25°C) impact energy achieved by the
material after long-term aging, primarily due to spinodal decomposition of the ferrite.
The impact energy continues to decrease further during aging, but at much slower
rate.

increment in crack length
increment in J integral
elastic modulus

ferrite content

J integral, a mathematical expression used to characterize the local stress-strain field
at the crack tip region (parameter J represents the driving force for crack propagation)

deformation J integral

value of J near the onset of crack extension

modified J integral

kilo pound per square inch

stress intensity factor

critical stress intensity factor

equivalent critical stress intensity factor

constraint factor for the power-law J-R curve

constraint factor, which relates J to the crack tip opening displacement (CTOD)
mega Pascal

exponent of the power-law J-R curve

Ramberg-Osgood parameter

nickel equivalent for the material

aging parameter; i.e., the log of the time of aging at 400°C

activation energy for the process of thermal embrittlement (kJ/mole)

gas constant

the ratio of the tensile flow stress of aged and unaged CASS (6taged/Stunaged)
the ratio of the tensile yield strength of aged and unaged CASS (6yaged/Gyunaged)
time (h)

tearing modulus or temperature
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shape factor of the curve for the change in room-temperature Charpy-impact energy
with the time and temperature of aging

Ramberg-Osgood parameter

half the maximum change in room temperature Charpy-impact energy
gamma phase (i.e., austenite)

ferrite content calculated from the chemical composition of a material (%)
crack extension

strain

material parameter

stress

flow stress, defined as the average of yield and ultimate strength

an arbitrary reference stress

ultimate strength

yield strength

aging behavior at 400°C; i.e., the log of the time to achieve the  reduction in impact
energy at 400°C

Poisson ratio

In this report, all values of impact energy were normalized with respect to the actual cross-
sectional area of the Charpy-impact specimen. Thus, for a standard Charpy V-notch specimen
per ASTM Specification E 23 (i.e., 10 x 10-mm cross section and 2-mm V notch), the impact
energy value in J was divided by 0.8 cm?2 to obtain the impact energy in J/cm2. The impact
energies obtained for sub-size specimens were normalized with respect to the actual cross-
sectional area, and appropriate correction factors were applied to account for size effects.
Similarly, impact energies from other standards, such as the 2.5-mm U-notch specimens used
for the Charpy VSM values in Switzerland or the 5-mm U-notch specimens used for the KCU
values in France, were converted to a Charpy V-notch value by appropriate correlations.

Sl units of measurements are used in this report. Conversion factors for measurements in
British units are as follows:

To Convert from To Multiply by
in. mm 25.4

J* ft-Ib 0.7376
kJ/m2 in.-Ib/in.? 5.71015
kJd/mole kcal/mole 0.239

* When the impact energy is expressed in Jlem?, first multiply by 0.8 to obtain the impact energy of an ASTM
standard Charpy V-notch specimen in J.
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1 INTRODUCTION

Austenitic stainless steels (SSs) are used extensively as structural alloys in light water reactor
(LWR) systems, including reactor core internal components, because of their excellent ductility,
high notch toughness, corrosion resistance, and good formability. In addition, cast austenitic
stainless steel (CASS) materials are used in LWR systems for reactor pressure-boundary
components, such as valve bodies, pump casings, primary coolant piping, and some reactor
core internal components. Although austenitic SSs are completely austenitic in the wrought
condition, CASS materials or welded SSs have a duplex structure consisting of austenite and
ferrite phases. The ferrite phase provides additional benefits; it increases tensile strength and
improves resistance to stress corrosion cracking (SCC).

However, CASS materials, because they have a duplex structure, are susceptible to thermal
embrittlement after extended operation at reactor operating temperatures for core internals,1-32
typically 282°C (540°F) for boiling water reactors (BWRs), 288-327°C (550—-621°F) for
pressurized water reactor (PWR) primary coolant piping, and 343°C (650°F) for PWR
pressurizers. In addition, exposure to neutron irradiation for extended periods changes the
microstructure (radiation hardening) and microchemistry (radiation-induced segregation or RIS)
of wrought and cast austenitic SSs and degrades their fracture properties.33-47 In such
instances, a fracture mechanics methodology, such as linear-elastic fracture mechanics (LEFM)
or elastic-plastic fracture mechanics (EPFM), is needed for analyzing structural integrity and
developing inspection guidelines. EPFM involves the J integral-resistance (J-R) curve approach
where failure is caused by plastic deformation. The J integral is a mathematical expression
used to characterize the local stress-strain field at the crack tip region (parameter J represents
the driving force for crack propagation), and the J-R curve characterizes the resistance of the
material to stable crack extension. The fracture toughness of such materials is represented by
fracture mechanics parameters such as Ji¢, the value of J near the onset of crack extension,
and T, the tearing modulus, which characterizes the slope of the J-R curve:

dl E
T=-—1, 1
dalc G? ( )

where the first term represents the slope of the J-R curve at a, E is the elastic modulus, a is
the crack length, and oy is the flow stress defined as the average of the yield strength (o) and
ultimate strength (c,). The LEFM methodology is used where failure involves negligible plastic
deformation. The fracture toughness of such materials is represented by parameter K. (i.e.,
critical stress intensity factor, a plane strain fracture toughness measure), which characterizes
the resistance of the material to unstable crack extension. Since J,; and K,; have different units,
it is often convenient to represent Ji; in terms of a parameter K;., which has the units of the
stress intensity factor and is determined from the J); value using the relationship:

Kic = (E"Ji0)¥?, (2

where the normalized elastic modulus is given by E” = E/(1 - v2), E is the elastic modulus, and v
is the Poisson ratio. Only in cases where LEFM is applicable, is K;. equal to the critical stress
intensity.

The fracture toughness of austenitic SSs has been divided into three broad categories.*8
Category lll corresponds to materials with a high toughness and with J,. that is above 150 kJ/m?2
(857 in.-Ib/in.2). In these materials, fracture occurs after stable crack extension at stresses well



above the yield strength. Category Il corresponds to materials with intermediate toughness and
with Jic in a range of 30-150 kJ/m?2 (171-857 in.-Ib/in.2). In Category Il materials, fracture
occurs by stable or unstable crack extension at stress levels close to the yield strength.
Category | corresponds to low-toughness materials with J;; of <30 kJ/m?2 (<171 in.-lb/in.2), and
fracture occurs below the yield strength with little or no stable crack extension.

Unirradiated and unaged wrought SSs and CASS materials fall in Category Ill. For these
materials, the fracture toughness J,; values for Type 304 and 316 SS at temperatures up to
125°C (257°F) vary between 169 and 1660 kJ/m2 (965 and 9479 in.-Ib/in.2), with a median value
of 672 kJ/m2 (3,837 in.-Ib/in.2).48 The J;; values at 400-550°C (752—1022°F) are approximately
35% lower, with a median value of 421 kJ/m?2 (2404 in.-Ib/in.2). Fracture in such high-toughness
materials is by the nucleation and coalescence of microvoids and is characterized by dimpled
fracture morphology. Typically, CASS materials also exhibit ductile fracture at temperatures up
to 550°C (1022°F), but their fracture toughness is lower than that of the wrought SSs. The
fracture toughness of CASS material is affected by the density and morphology of second-
phase inclusions in the material, and it varies with the casting method. For example, static cast
products have a slightly lower fracture toughness than the centrifugally cast pipes.

Extensive studies have been conducted on the thermal embrittlement of CASS materials at
Georg Fischer Co. (GF),! Westinghouse (WH),2 The Welding Institute (TWI),6 Framatome
(FRA),’-9 Electric Power Research Institute (EPRI),10 Argonne National Laboratory (ANL),12-18
Central Electricity Generating Board” (CEGB),2! Electricité de France (EdF),22-27 Mitsubishi
Heavy Industries (MHI),28-31 and Japan Nuclear Energy Safety Organization (JNES).32 In the
ANL study, a procedure and correlations were developed for estimating the Charpy-impact
energy and fracture toughness J-R curve of CASS components under LWR operating conditions
from material information readily available in certified material test records (CMTRS). The
methodology for estimating the fracture toughness of aged CASS materials was described in
NUREG/CR-4513, Rev. 1.16 The ANL estimation scheme is applicable to Grades CF-3, CF-3A,
CF-8, CF-8A, CF-3M, and CF-8M of CASS materials within American Society for Testing and
Materials (ASTM) Specification A351 for austenitic castings for pressure-retaining parts and
Specification A451 for centrifugally cast austenitic SS pipes for high-temperature service. The
fracture toughness of a specific CASS material is estimated from the extent and kinetics of
thermal embrittlement.

The extent of thermal embrittlement (i.e., the degradation of mechanical properties) is
characterized by the room temperature (RT), “normalized” Charpy-impact energy (Cy or Charpy-
impact energy per unit fracture area). A correlation for the change in RT Charpy-impact energy
at “saturation” (i.e., the minimum Charpy-impact energy that would be achieved for the material
after long—term aging) is given in terms of the material chemical composition. The extent of the
change in RT Charpy-impact energy as a function of the time and temperature of reactor service
is estimated from the change the RT Charpy-impact energy at saturation and the correlations
describing the kinetics of embrittlement. The kinetics of embrittlement are given in terms of the
material composition and the initial Charpy-impact energy, Cyint, Of the material in the unaged
condition. If Cy;n is not known, a typical value of 200 J/cm? (118 ft-Ib) is assumed.

The fracture toughness J-R curve for the material is then obtained from the correlation between
the fracture toughness parameters and RT Charpy-impact energy. A common lower-bound J-R
curve for CASS materials of unknown chemical composition is also defined for a given material
specification, ferrite content, and temperature. Tensile yield and flow stresses and
Ramberg/Osgood parameters for tensile strain hardening are estimated from the flow stress of

*The British electricity industry from 1957 to 1990 when it was privatized.



the unaged material and the kinetics of embrittlement.18 Examples of estimating mechanical
properties of CASS components during reactor service is presented. The significant features of
the methodology proposed in NUREG/CR-4513, Rev. 1,16 are as follows:

e The correlations are based on a database consisting of about 80 compositions of CASS
materials and of mechanical-property data (mostly Charpy V-notch impact energy) on
materials aged up to 58,000 h at 290-350°C (554—-662°F).

o The saturation RT impact energy Cysg is estimated from two different correlations. In
general, the two methods result in comparable estimates for most materials. However,
for a few heats one or the other set of expressions results in estimates that are more
accurate. Itis likely that minor differences in the composition and microstructure of the
ferrite caused by differences in the production heat treatment and possibly in the casting
process influence Cygy Values. These factors are difficult to quantify from the existing
database. To ensure that the estimates are either accurate or conservative for all heats
of CASS materials within ASTM Specification A351, the lower of the two estimated
values is used for estimating the fracture properties.

e Separate correlations are proposed for estimating the saturation RT impact energy Cysat
for low-Mo (maximum 0.5 wt.%) CF-3 and CF-8 materials and high-Mo (2.0 to 3.9 wt.%)
CF-8M materials; also, for the latter, separate correlations are proposed for materials
containing <10 wt.% Ni and those containing 210 wt.% Ni.

e Separate correlations are also proposed for estimating fracture toughness J-R curves for
static cast and centrifugally cast materials; the fracture toughness of the latter is
considered superior.

e The methodology also includes correlations for estimating the yield and flow stresses
and Ramberg/Osgood parameters for tensile strain hardening of aged CASS materials
from the initial tensile properties and the kinetics of thermal embrittlement.

The criteria used in developing the NUREG/CR-4523, Rev. 1, correlations ensure that the
estimated mechanical properties are either accurate or somewhat conservative for compositions
of CASS materials within ASTM Specification A351. The correlations do not consider the
effects of metallurgical differences that can arise from differences in production heat treatments
or casting processes; therefore, they may be conservative for some CASS materials.
Mechanical properties are expressed in S| units (see Nomenclature for units of measure and for
conversion factors for British units). However, the methodology in NUREG/CR-4513, Rev. 1,
has the following limitations.

1. The correlations may yield nonconservative estimates of the fracture toughness J-R curve
for compositions of static-cast CF-8M steel that are very sensitive to thermal aging. These
compositions consist of static-cast CF-8M materials for which the estimated value of the RT
Charpy-impact energy Cysg is less than 25 J/cm? (15 ft-Ib). Typically, these compositions
contained 25% or more ferrite. The thermal embrittlement data on CASS materials that
were available at the time NUREG/CR-4513, Rev. 1, was published were not adequate for
accurately establishing the correlations between the RT Charpy-impact energy and fracture
toughness parameters for Cyg, Values less than 25 J/cm?2.

2. Furthermore, the methodology is not applicable for CASS materials that may contain a
significant amount of Nb content (i.e., more than 0.05 wt.%). An acceptable level of Nb
content was not defined in NUREG/CR-4513 Rev. 1. The ASTM Specification A351 for CF-
8M cast material also does not specify a maximum amount of Nb in the casting; but typically,
these materials contain less than 0.05 wt.% Nb.



3. For CASS materials used in reactor core support structures and core internal components,
the combined effect of thermal aging and neutron irradiation embrittlement was also not
discussed in the NUREG/CR-4523, Rev. 1, report.

The results of NUREG/CR-4513, Rev. 1, indicate that the lower-bound fracture toughness of
thermally aged CASS materials is similar to that of submerged arc welds (SAWS) of austenitic
SSs. Based on these results, the NRC staff accepted the use of the SAW flaw evaluation
procedures in IWB3640 of Section XI of the American Society of Mechanical Engineers (ASME)
Code (the 1989 edition of the Section XI Code) to evaluate flaws in thermally aged CASS
materials (with a ferrite content of less than 25%).4° The NRC staff recognized that since this
conclusion is based on the lower-bound fracture toughness of aged CASS materials, in some
instances, utilities might estimate component-specific fracture toughness by using procedures
developed by ANL on a case-by-case fracture mechanics flaw evaluation.

In addition, based on the results of NUREG/CR-4513, Rev. 1, the industry proposed screening
criteria in EPRI TR-106092 to determine if a specific component should be inspected due to its
potential susceptibility to thermal aging.>® The EPRI report uses a deformation J value of

255 kJ/m2 (1450 in.-Ib/in.2) at a crack depth of 2.5 mm (0.1 in.) (i.e., J> 5 value) to differentiate
between a nonsignificant and a potentially significant reduction in fracture toughness for fully
aged CASS material. Flaw tolerance evaluations, described in Appendices A and B of

EPRI TR-106092 demonstrate that a material toughness of 255 kJ/m2 adequately protects
against a loss of structural integrity in CASS components.

The NRC staff reviewed the EPRI TR-106092 report and other industry submittals addressing
thermal embrittlement of CASS materials and developed a position for managing the
degradation of fracture properties of thermally aged CASS materials.51 The staff found that
Appendices A and B of the EPRI report provide an acceptable justification that 255 kJ/m? is an
acceptable screening value to use in differentiating between a nonsignificant and a potentially
significant reduction in fracture toughness of aged CASS components. The staff compared the
J> 5 values taken from the saturated lower-bound J-R curves as well as the J, 5 values from the
experimental data with the screening value of 255 kJ/m? in order to develop screening criteria
for determining the susceptibility of various categories of CASS components to thermal aging.
Table 1 presents the criteria that are based upon the Mo content, casting process, and ferrite
content of the material. The same screening criteria for thermal embrittlement of CASS
materials have also been proposed by industry.43 The criteria are applicable to all primary
pressure boundary components constructed from SA-351 Grades CF-3, CF-3A, CF-8, CF-8A,
and CF-8M, with service conditions above 250°C (482°F). Alternately, components can be
considered as "potentially susceptible” without considering such screening. The details of the
criteria are as follows:51

¢ For high Mo static castings, materials with ferrite levels >14% are considered potentially
susceptible to thermal embrittlement. Materials with ferrite content <14% have adequate
fracture toughness (i.e., the J, 5 values are above 255 kJ/m?2).

¢ For high Mo centrifugal castings, materials with ferrite levels >20% are considered
potentially susceptible, and those with <20% ferrite have adequate fracture toughness.

o For low Mo static castings, materials with ferrite levels >20% are considered potentially
susceptible to thermal embrittlement. However, as discussed later, the J, 5 values for
CASS materials with up to 40% ferrite are well above the screening value of 255 kJ/m2.

e For low Mo centrifugal castings, none of the CASS materials are considered susceptible
to thermal embrittlement. The J, 5 values are well above 255 kJ/m2 for all materials.



Table 1. Screening criteria for thermal-aging susceptibility of CASS CF-3, CF-8, and
CF-8M materials (Ref. 51).

Mo Content (wt.%) Casting Method Ferrite Content (%) | Susceptibility Determination
High (2.0-3.0) Static <14 Not susceptible
>14 Potentially susceptible
Centrifugal <20 Not susceptible
>20 Potentially susceptible
Low (0.5 max.) Static <20 Not susceptible
>20 Potentially susceptible
Centrifugal All Not susceptible

The NRC staff position5! also recognized that for reactor vessel internal components fabricated
from CASS materials, the concurrent exposure to high neutron fluence levels can result in a
combined effect wherein the service-degraded fracture toughness is reduced from the levels
predicted independently for either thermal aging or neutron irradiation alone. Therefore, reactor
vessel internal components that are determined to be subject to thermal embrittlement require
additional consideration of the neutron fluence of the component to determine the full range of
degradation mechanisms applicable for the component.

The component-specific evaluation looks first at the neutron fluence of the component. If the
neutron fluence exceeds 1x1017 n/cm2 (E>1 MeV), a mechanical loading assessment would be
conducted for the component.>1 This assessment will determine the maximum tensile loading
on the component during ASME Code Level A, B, C and D conditions. A supplemental
inspection is not required for the component if the loading is compressive or low enough to
preclude fracture of the component. Failure to meet this criterion would require continued use
of the supplemental inspection program.

If the neutron fluence is less than 1x1017 n/cm? (E>1 MeV), an assessment would be made to
determine if the affected component(s) are bounded by the screening criteria in Table 1. In
order to demonstrate that the screening criteria are applicable to reactor vessel internal
components, a flaw tolerance evaluation specific to the reactor vessel internal components
would be required similar to that provided in EPRI TR-106092.51 If the material is determined to
be "potentially susceptible,” then a supplemental examination is required on those susceptible
components determined to be limiting from the standpoint of thermal aging susceptibility (e.g.,
Mo content, d-ferrite content, casting process, and operating temperature), and cracking
susceptibility (applied stress level, operating time and environmental conditions). No
inspections or evaluations are required if the material is determined not susceptible. The
threshold neutron dose above which an assessment of the neutron embrittlement and its
effect on component design is needed has been updated in Section 5.3.1.1 of this report.

The NRC staff further proposed®! that if a particular heat of CASS material is found or assumed
"potentially susceptible" and subject to plausible degradation (e.g., thermal fatigue), aging
management can be accomplished through volumetric examination or a plant/component-
specific flaw tolerance evaluation. The volumetric examination should be performed on the
base material of the heat, with the scope of the inspection covering the portions determined to
be limiting from the standpoint of the applied stress level, operating time and environmental
considerations. Alternately, a plant/component-specific flaw tolerance evaluation using the
specific geometry and stress information can be used to demonstrate that the thermally
embrittled material has adequate toughness.



Furthermore, based on Lee et al.,*° flaws detected in CASS components should be evaluated in
accordance with the applicable procedures of IWB-3500 in Section Xl of the ASME Code. If the
delta ferrite content does not exceed 25%, then flaw evaluation would be in accordance with the
principles associated with IWB-3640 procedures for SAW, disregarding the Code restriction of
20% delta ferrite in IWB-3641(b)(1) (of the 1989 edition of the Code). If the material is
"potentially susceptible,” and the delta-ferrite content exceeds 25%, then flaw evaluation would
be on a case-by-case basis using fracture toughness data supplied by the licensee, such as that
published by Jayet-Gendrot, et al.24

Since the time NUREG/CR-4513 Rev. 1 was published and the NRC staff developed a position
for managing the degradation of the fracture properties of thermally aged CASS materials, the
industry has also published a few topical reports describing a methodology for managing the
structural integrity of CASS components during LWR service. EPRI 1016236 provided a
preliminary methodology for the flaw tolerance evaluation, which when used in concert with
inspection techniques being developed by EPRI can be used for the long-term management of
CASS piping in the nuclear industry.>2 The EPRI 1024966 report applies a probabilistic fracture
mechanics (PFM) methodology for the evaluation of depths of part-circumferential cracks in fully
aged CASS piping that would fail with a given probability when specified loads are applied.>3
The PFM method relies on the key elements of a deterministic analysis but also incorporates
the inherent uncertainties in these parameters. The methodology is based on the data and
correlations developed in NUREG/CR-4513, Rev. 1,16 for fracture toughness and NUREG/CR-
614218 for tensile properties.

The EPRI 1024966 report also provides a technical basis for management of thermal aging and
reliability of CASS piping in PWRs. The results indicated that CASS piping components are
highly flaw-tolerant, even in the thermally aged condition. ASME Code Case N-838 was also
developed based on the PFM methodology for evaluating the effects of thermal aging and
uncertainties in the CF-8M CASS piping material properties. The technical basis for the flaw
tolerance evaluation of CASS piping to support the Code Case is presented in a Materials
Reliability Program (MRP) report, MRP-362.54 The combined effects of thermal and neutron
embrittlement of CASS materials for PWR and BWR core internals are also discussed in
industry reports MRP-276% and BWRVIP-234,56 respectively.

In this report, the methodology presented earlier in NUREG/CR-4513, Rev. 1, has been
updated. The revised methodology is applicable to CASS materials containing up to 40% ferrite
and for operating times equivalent to only 10,000 h at 400°C. This corresponds to

2125 effective full power years (efpy) at 290°C for CF-8/CF-3 materials, and
=230 efpy at 320°C for CF-8/CF-3 and =15 efpy for CF-8M materials used within primary
pressure boundary components, and

e 215 efpy at 350°C for CF-8/CF-3 materials used in the reactor core internals.”

The combined effects of thermal and neutron embrittiement on the loss of fracture toughness of
these materials have also been included. The lower-bound value of fracture toughness —
defined in terms of the Ji;, C (i.e. the coefficient of the power law J-R curve), or the J value at a
2.5-mm crack extension — due to thermal and neutron embrittlement is expressed in terms of
the neutron dose. The details regarding the various CASS materials and the associated
Charpy-impact energy, tensile property and fracture toughness J-R curve information included
in the database evaluated for this study are compiled and tabulated in Appendix A.

A higher temperature is used to include gamma-heating effect.



2 THERMAL EMBRITTLEMENT OF CAST
STAINLESS STEELS

It has been known that binary Fe-Cr alloys and ferritic SSs are susceptible to severe
embrittlement when exposed to temperatures in the range of 300 to 500°C (572 to 932°F).57-59
The potential for significant embrittlement of CASS duplex materials, has been confirmed by
studies at ANL12-18 and elsewherel.2.6-10.21-32 on materials that were aged at temperatures of
285 to 450°C (545 to 842°F) for times up to 118,000 h (=13.5 yr). The results indicate that
thermal aging of CASS materials (ASTM Specification A-351 for Grades* CF-3, CF-3A, CF-8,
CF-8A, and CF-8M) at 250-350°C (482-662°F) (a) increases their hardness and tensile
strength; (b) decreases their ductility, impact strength, and fracture toughness; and (c) shifts the
Charpy transition curve to higher temperatures. Different grades and heats of CASS exhibit
varying degrees of thermal embrittlement. The low-carbon (low-C) CF-3 materials are the most
resistant to thermal embrittlement, and the Mo-bearing, high-C CF-8M materials are the least
resistant. Ferrite morphology has a strong effect on the degree or extent of embrittlement,
whereas small changes in the material composition significantly alter the kinetics of
embrittlement. In addition, as the results of studies on the kinetics of thermal aging
demonstrate, thermal embrittlement of CASS materials can occur during the initial 40-year
license period for power reactor operation.12

2.1 Mechanism of Thermal Embrittlement

Fracture of the 300 series austenitic SSs occurs essentially by nucleation, growth, and
coalescence of microvoids, which results in a dimpled fracture morphology, regardless of the
test temperature.*® The heat-to-heat variability is due to the differences in the density and
morphology of inclusions such as carbides, calcium aluminates, and manganese sulfides, which
serve as nucleation sites for void formation. The large inclusions or inclusion clusters aligned in
the working direction fail early in the deformation process, thereby resulting in poor fracture
toughness. In relatively tough materials, microvoids nucleate away from the primary fracture
plane, and significant plastic deformation is required for void coalescence.

A similar fracture behavior is also observed in unaged CASS materials; fracture occurs by
microvoid coalescence. In CASS materials, voids nucleate preferentially within the ferrite
phase, or at inclusions and phase boundaries.20.22.48 The overall fracture toughness is
controlled by the density and morphology of the second phase particles and to some extent by
the volume fraction of ferrite.

Furthermore, in materials with a duplex structure, the ferrite phase exhibits a ductile-to-brittle-
transition temperature. The plastic straining capacity of ferrite is substantially decreased at low
temperatures. However, the ferrite is ductile at RT and higher temperatures. Therefore, in the
unaged condition, CASS materials exhibit a ductile dimpled fracture. The transition
temperatures of unaged materials are relatively low. The differences in the transition
temperature for the various unaged heats and grades of CASS materials are due to the amount
of ferrite and the differences in the mechanism of brittle fracture. The high-carbon CF-8 or CF-
8M materials have a higher transition temperature than CF-3 materials because of the presence
of phase boundary carbides. The carbides weaken the boundaries and lead to premature
phase boundary separation with little or no strain hardening.12

*The CF-3A and CF-8A grades represent materials with a high tensile strength. The chemical composition of these
grades is further restricted within the composition limits of CF-3 and CF-8 in order to obtain a ferrite/austenite ratio
that results in higher ultimate and yield strengths. In this report, they are considered equivalent to CF-3 and CF-8
grades.



The available data indicate that the fracture toughness of wrought austenitic SSs is strongly
influenced by specimen orientation.3° Fracture toughness J-R tests on Type 304 control-rod
and Type 304L top guide materials irradiated to 4.7—12.0 displacements per atom (dpa) in a
BWR show lower fracture toughness in the longitudinal direction (T-L orientation)* than in the L-
T orientation. The lower fracture toughness along the T-L orientation is attributed to the
presence of stringers. These stringers consisted of long, narrow particles oriented in the rolling
direction that result in a long, narrow quasi-cleavage structure that is parallel to the crack plane
and thereby accelerates crack advance. When stringers are aligned parallel to the crack
propagation direction T-L (or C-L) orientation, tear ridges are nucleated ahead of the crack front,
and the coalescence of these torn ridges results in premature crack advance without extensive
plastic deformation.3® When stringers are normal to the crack propagation direction (i.e., L-T or
L-C orientation), microvoids are very deep and equiaxed, which blunts the advancing crack tip,
and significant plastic deformation is needed for failure.

The available data also indicate that CASS materials suffer from thermal embrittlement of the
ferrite during service at 300-450°C (572—-842°F) and that the ductile-to-brittle transition
temperatures shift higher.12-18.48 The time-temperature curves for the formation of various
phases in thermally aged CASS materials# are shown in Fig. 1. The results indicate that at
temperatures above 550°C (1020°F), the embrittlement is largely due to the formation of the
sigma phase, and that below 500°C (930°F), the precipitation of the o' phase leads to
embrittlement. The formation of carbides and the chi phase influences mechanical properties in
the 500-600°C (930—1110°F) temperature range. At reactor operating temperatures of 280—
370°C (535—-698°F), thermal aging of CASS materials leads to:
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Figure 1. Time-temperature curve for the formation of various

phases in CASS materials (Ref. 4).

(@) spinodal decomposition of the ferrite into high-Cr a' and low-Cr a regions;

*The first letter represents the direction perpendicular to the plane of the crack, and the second letter represents the
direction of crack advance. For plates, L = longitudinal or rolling direction and T = transverse direction (i.e.,
perpendicular to the rolling direction but not across the plate thickness). For pipes, L = longitudinal or axial direction,
and C = circumferential direction (across the wall).



(b) nucleation and growth of the high-Cr a' phase;
(c) precipitation of a Ni- and Si-rich G phase, M,3Cg, and y, (austenite); and

(d) additional precipitation and/or growth of existing carbides at ferrite/austenite phase
boundaries.>:60-67

Another mechanism that can cause such behavior is a decrease in the ferrite content of CASS
materials aged at temperatures above 400°C, particularly CF-8M materials. The metallographic
data on CF-8 and CF-8M materials indicate significant precipitation of phase boundary carbides
and/or growth of existing carbides during thermal aging, particularly at 450°C. The precipitation
of Cr-rich carbides is always accompanied by a decrease in the ferrite content.# The depletion
of Cr destabilizes the ferrite phase, leading to ferrite-to-austenite transformation along the phase
boundary. The growth of austenite into the ferrite grain occurs as cellular precipitation, along
with the carbides.# Such transformations can result in an increase in Charpy-impact energy.

A study at EdF on the evolution of thermally aged CASS materials using Charpy U-notch impact
test specimens indicates that at RT, the brittle transgranular fracture of ferrite takes place
primarily by cleavage; some twinning is also observed in highly embrittied material.22 Multiple
cleavage of ferrite islands is observed throughout the material. All the cleavage facets are
parallel to each other, regardless of the geometry of the individual islands. The percent of
cleavage increases with increases in the degree of thermal embrittlement or with decreases in
test temperature. At higher temperatures, although cleavage of the ferrite is reduced, twinning
appears to play an important role in brittle failure of ferrite. The ferrite/austenite phase boundary
exhibits a jagged appearance, with very fine lines and straight deformation bands within the
ferrite islands (most likely slip bands and twins).22 Figure 2 shows deformation twins in a
Charpy-impact specimen of CF-8 material aged for 30,000 h at 350°C and tested at 290°C. The
fracture behavior of the austenite also changes from a dimple fracture to shear fracture. The
presence of a completely embrittled ferrite skeleton promotes the low-energy failure mode of
ductile shearing or tearing of the austenite ligaments between the islands of ferrite.® Typically,
in unaged duplex materials, cavities initiate from the cleavage cracks in the ferrite and not from
matrix-inclusion decohesions.

Figure 2.

Deformation twins in a
Charpy-impact specimen
of CF-8 material aged for
30000 h at 350°C and
tested at 290°C (Ref. 12).

Another study on microstructural characterization and fracture behavior of unaged and aged
CF-8M material at RT using Charpy V-notch and fracture toughness CT specimens also showed



similar failure mechanisms.68 At RT, a fully ductile dimple fracture is observed for unaged
material and material aged up to 40,000 h at 300°C (572°F). Ductile dimple fracture and brittle
cleavage facets are observed for material aged up to 10,000 h at 350 and 400°C (662 and
752°F). In addition to these two fracture modes, ferrite/austenite phase boundary separation is
also observed in materials aged at 450°C (842°F). Phase boundary separation is generally
observed in high-C CASS materials aged at high temperatures (i.e., 400 or 450°C).
Fractographic evaluation of both Charpy V-notch and fracture toughness CT specimens shows
similar fracture modes for aged CF8M material. The only difference is that in the CT
specimens, longer aging times are needed before brittle cleavage fracture is observed.
Although only RT (i.e., 25°C) tests were conducted in this study, tests at higher temperatures
are expected to show a larger fraction of ductile dimple fracture and less brittle fracture.

Thus, severely embrittled CASS materials generally exhibit large areas of brittle transgranular
fracture of ferrite, linked by ductile shearing or tearing of the austenite ligaments. The degree of
embrittlement and, thus, the toughness of the material are controlled by the amount of brittle
fracture. CASS materials with poor toughness and impact strength exhibit a greater fraction of
brittle fracture. For some CASS materials, although a fraction of the material may fail in a brittle
fashion, the surrounding austenite provides ductility and toughness. Such materials have
adequate toughness even after long-term aging. A predominantly brittle failure occurs when
either the ferrite phase is continuous (e.g., in cast material with a large ferrite content) or the
ferrite/austenite phase boundary provides an easy path for crack propagation (e.g., in high-C
grades of cast steel with large phase-boundary carbides). For CF-8M materials with lacy ferrite
morphology, ferrite contents of about 10% or more can provide a continuous ferrite phase.”
Consequently, the amount, size, and distribution of the ferrite phase in the duplex structure and
the presence of phase-boundary carbides are important parameters in controlling the degree or
extent of thermal embrittlement.

Cleavage of ferrite occurs when the local tensile stress reaches the critical cleavage fracture
stress. At low temperatures, (i.e., high values of yield strength), cleavage cracks nucleate in the
ferrite in the plastic zone near the notch tip at loads that are below general yielding. At high
temperatures (i.e., low values of yield stress), strain hardening is needed to raise the local
tensile stress to the cleavage fracture stress. Ductile fracture results when strain hardening is
not sufficient to raise the tensile stress to the critical value. The relationship between the
degree of cleavage fracture and toughness, however, is complex since cleavage cracks can be
initiated by several mechanisms (e.g., dislocation pile-up, cracking of carbide or nitride particles,
and cracking of twin intersections). Each mechanism requires a unique stress level. Thus, for
the same degree of cleavage fracture, the toughness may vary in different CASS materials.

The time-temperature curves for the formation of various phases and the change in the impact
strength of thermally aged CASS materials,3 indicate that at temperatures above 550°C
(1022°F), the embrittlement is largely due to formation of the sigma phase, and that below
500°C (932°F), precipitation of the o' phase leads to embrittlement. Furthermore, the time-
temperature transformation curves for Fe-Cr alloys indicate that the o' phase is not stable at
550°C (1022°F). At 550°C, the Fe-Cr alloys are embirittled after aging for >10 h owing to the
formation of the sigma phase.# Consequently, the fracture toughness of embrittled CASS
materials can be recovered virtually completely by annealing for 1 h at 550°C (1022°F) and
water quenching. This short heat treatment dissolves the o' phase and prevents formation of
sigma phase.12 The dissolution of o' has been confirmed by microstructural studies.>

* Per private communications with Mr. M. Guttmann, EdF, Research and Development, Department MMC, 77818
Moret sur Loing, France, in January 1986.
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2.2 Distribution and Morphology of Ferrite in CASS Materials

2.2.1 Ferrite Morphology

The degree and kinetics of thermal embrittlement of CASS materials are controlled primarily by
the amount, size, and distribution of the ferrite phase, and to some extent by the presence of
carbides or nitrides at the phase boundaries. These material parameters in turn depend on the
chemical composition of the materials and the manufacturing process. Differences in the
thermal aging behavior have been observed in CASS materials produced by different foundries,
suggesting that the material composition and ferrite content are not the only parameters that are
relevant for thermal aging; manufacturing parameters may also be important.2>

The pseudo binary diagram for Fe-Ni-19%Cr system is shown in Fig. 3. Duplex SSs with high
Cr contents solidify into a primary § ferrite phase. Such materials generally have lathy ferrite
morphology. These materials are most sensitive to thermal aging. Materials that solidify in the
d+y regime exhibit vermicular and interdendritic lacy ferrite morphology. In both cases, during
cooling of the solidified material, if the concentrations of the y-forming elements such as C, N,
Mn, and Ni, are sufficient, a fraction of the &-ferrite transforms to y-austenite by solid-state & to y
transformation. Furthermore, if the cooling rate between 900 and 600°C (1652—-1112°F) is slow,
o ferrite can transform to the brittle sigma (o) phase, and M23Cg carbides can also precipitate at
the &/y phase boundaries, both of which lead to degradation of the mechanical properties of the
material.25> Therefore, the manufacturing processes require that the casting must be annealed
at around 1100°C (2012°F) followed by a rapid quench to avoid the formation of these
deleterious precipitates.

1600
- Fe-Ni Alloy with 19%Cr
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Figure 3. Pseudo binary diagram for Fe-Ni-19%Cr alloy (Ref. 25).

Typically, the structure of the core of large sand-cast CASS components consists of equiaxed
grains, and the surface regions contain columnar grains, elongated in the direction of the
temperature gradient. Steeper temperature gradients result in smaller and more elongated
columnar grains.2> Examples of equiaxed and columnar grain structures are shown in Figs. 4
and 5, respectively.
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Cast CF-8 Steel Cast CF-3 Steel

Circum. Axial Circum.

Figure 4. Microstructure along the axial and circumferential sections of centrifugally
cast CF-8 and CF-3 stainless steel pipes showing equiaxed grain structure.

Figure 5. Microstructure along axial section of a check valve from the
decommissioned Shippingport reactor showing columnar grains.

The effect of manufacturing process on the thermal embrittlement of CASS materials has been
investigated by Massoud et al.25> The manufacturing process for castings involves solidification
of the material from a liquid state at around 1500°C (2732°F), followed by a homogenizing heat
treatment of the solid at 1050-1150°C (1922-2102°F) and water quenching. The homogenizing
treatment allows any brittle phases such as ¢ phase that may have precipitated during
solidification to dissolve. It also establishes the ferrite-austenite ratio in the material and the
partitioning of the alloying elements in the two phases. Consequently, the homogenizing
treatment may be important for thermal embrittlement of the material during reactor service.

The results of the parametric study of the manufacturing process parameters conducted by
Massoud et al.25 indicate that the microstructural changes in the ferrite by spinodal
decomposition during thermal aging at temperatures between 250 and 400°C are very sensitive
to the initial state of the ferrite in the as-quenched condition. Any manufacturing process
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parameter that improves the homogeneity of the ferrite solid solution such as long
homogenizing heat treatments and rapid quench, delay the beginning of the ferrite
decomposition, which results in a more aging-resistant CASS material. The significant results
from the EdF study are as follows:

¢ The solidification rate affects the morphology of the ferrite-austenite microstucture and
the characteristics of the toughness transition curve but does not seem to affect the
aging behavior of the steel. The size and spacing of the ferrite phase increase with a
decrease in cooling rate. Material with the low cooling rate has a high upper shelf
Charpy-impact energy.

¢ An increase in the homogenizing treatment temperature increases the ferrite content of
the material and the chemical composition within each phase. Consequently, it affects
the aging behavior of the steel. The fracture toughness of CASS materials treated at a
high temperature (which consequently have a high ferrite content) decreases sooner
than the fracture toughness materials treated at a low temperature. However, the overall
thermal embrittlement behavior depends on two mechanisms that counter each other. In
CASS materials with higher ferrite content, the extent of thermal embrittlement is greater
than it is in materials with low ferrite content. However, the ferrite in high-ferrite
materials is less sensitive to thermal embrittlement because its Cr content is lower.
Although the materials treated at low temperatures have low ferrite content and aging
effects on them start late, they are more sensitive to thermal embrittlement. This
behavior is discussed further in Section 2.3.

¢ The homogenizing treatment holding time and the quenching rate affect the beginning of
the decomposition of the ferrite and consequently the overall kinetics of aging.

The ferrite morphology of the various CASS materials varies with the ferrite content, chemical
composition, and size of the casting. Figure 6 shows examples of the ferrite morphology and
ferrite content in centrifugally cast CF-3 and CF-8 pipes and a static cast CF-3 pump impeller.
Studies conducted at ANL on 30 heats of CF-3, CF-8, and CF-8M CASS materials showed that
globular ferrite morphology was observed for materials containing <5% ferrite.12 Some
differences in morphology were observed for the different grades of CASS materials containing
>5% ferrite. The CF-8 and CF-8M materials had a lacy morphology while the CF-3 cast
materials showed a mixture of lacy and acicular ferrite.

2.2.2 Ferrite Content

Significant variations in ferrite content within a CASS component have been observed in hot-leg
elbow and crossover-leg elbow removed from the Ringhals reactor.6® The material of the
elbows is ASTM Specification 351 CF-8M steel, and the ferrite content, determined from the
modified Schaefler diagram,”9 is 20.1 for the hot-leg elbow and 19.8% for the crossover-leg
elbow. Test rings were cut from the two elbows, and the ferrite content measured with a ferrite
meter at the inside surface at three different heights of the ring, as well as through the thickness
of the ring. Around 700 measurements were made, and the results show that the ferrite content
in the actual components varies significantly. The ferrite content of the hot-leg elbow varies
from 3.0% to 22.5%, with an average of 13.3% *4.2% ferrite; that of the crossover-leg elbow
from 1.5% to 15.0%, with an average of 9.8% +3.4% ferrite. The results also indicate that for
both elbows, the measured average ferrite contents are comparable with the values estimated
from the material chemical composition by using Hull's equivalent factors’? or the ASTM
A800/A800M methodology.72:73
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Static cast CF-3 Stainless Steel Pump Impeller
VANE 1 VANE 3
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Centrifugally cast CF-3 Stainless Steel Pipe
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Figure 6. Ferrite content and morphology of vanes of a static cast CF-3 pump
impeller and along a circumferential section of regions near the inside
and outside diameter of centrifugally cast CF-3 and CF-8 pipes.
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Similar variations in the ferrite content have also been observed in the ANL studies on CASS
materials, obtained from actual reactor components. The measured ferrite content of vanes of a
static-cast CF-3 pump impeller and along circumferential section of regions near the inside and
outside diameter of centrifugally cast CF-3 and CF-8 pipes are higher near the outer surface
than the inner surface. The values are about 20% higher for the CF-3 pipe (Heat P2) and 40%
higher for the CF-8 pipe (Heat P1). In addition, the ferrite content of one of the pump impeller
vane is about 40% higher than that of Vane 1. The ferrite contents estimated from the chemical
composition by using Hull's equivalent factors are 17.7, 15.6, and 17.1% for the CF-8 pipe, CF-3
pipe, and CF-3 pump impeller, respectively. The estimated values are comparable to the
measured average values of ferrite contents for the CF-3 pipe and pump impeller but lower than
the measured values for the CF-8 pipe.

These observations indicate that if measured value of ferrite content is used for design
calculations or analyses, several locations should be selected across the length and width of the
component to ensure that it is representative of the entire component. The results also indicate
that for centrifugally cast SS pipes, the extent of embrittlement is likely to increase from the
inner surface towards the surface because of the increasing ferrite content.

The ferrite content in CASS structures depends on the chemical composition and the
manufacturing process history of the material. Typically, it is (a) measured using metallographic
examination or instruments that utilize the magnetic response of the casting or (b) estimated
from the chemical composition of the casting. When the CMTR is available, the ferrite content
is estimated from the chemical composition of the material, and measuring techniques are used
when the CMTR is not available.

2.2.2.1 Measured Ferrite

Until 1973, the ferrite content in duplex structures such as CASS materials was determined by
metallographic examination of the structure. A sample of the material was polished and etched
to reveal the ferrite and austenite phases, and a grid was superimposed over the image of an
optical microscope to determine, by point counting, the percentage of ferrite in the sample. The
main drawback with this method is that the point-count estimates of ferrite can vary depending
on the etching technique used to reveal the ferrite phase and on the number of grid points used
in the measurements. Furthermore, as discussed, the ferrite content in most CASS
components varies significantly in different regions of the component, and obtaining
metallographic samples from various regions may not be practical.

Among the magnetic methods, the Magne-Gage and Feritescope are the most commonly used
instruments for measuring the ferrite content in CASS materials. The Magne-Gage is a
continuous-reading type of instrument that uses a spring to measure the attraction between a
magnet and the material of unknown ferrite content, and the response is compared with that of a
calibrated sample. Typically, the ferrite number (FN) is measured by using a Magne-Gage in
accordance with standard American Welding Society (AWS) procedure A4.2-74.74 The
Feritescope operates on the magneto-induction principle, wherein the relative magnetic
permeability of the specimen is measured. However, because the magnets or the probes of
these instruments are small, the surface roughness or curvature of the sample is an important
parameter that can change the magnetic linkage with the material being measured. In addition,
phases other than ferrite and austenite may form in the material during service; these may alter
the magnetic response of the material so that the indicated ferrite content is quite different from
the content of a material with the same chemical composition that has undergone a different
heat treatment.
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2.2.2.2 Estimated Ferrite

Although a quantitative metallographic method gives the most accurate estimate of ferrite
content, determining the percentage of ferrite from the chemical composition of the material is
the most common method used to control ferrite during the solidification of the metal from a
melt. The accuracy of these estimates, however, depends on the accuracy of the chemical
analysis and on the degree of variability within the casting. In addition, these methods do not
consider the effects of the casting process. The most commonly used methods for estimating
ferrite are described below.

2.2.2.2.1 Hull's Equivalent Factor:

When a CMTR is available, the ferrite content is calculated from the chemical composition in
terms of Hull's equivalent factors’? for Ni and Cr, given by

Creq = Cr + 1.21(Mo) + 0.48(Si) — 4.99 3)
and

Nigg = (Ni) + 0.11(Mn) — 0.0086(Mn)?2 + 18.4(N) + 24.5(C) + 2.77, 4)
where the concentrations of the various alloying and interstitial elements are given in wt.%. The
concentration of N is often not available in a CMTR; if not known, it is assumed to be 0.04 wt.%.
The ferrite content & is given by

8¢ = 100.3(Creq/ Nigg)? — 170.72(Creq/ Nigg) + 74.22. (5)

The measured ferrite content and values calculated from Hull's equivalent factor for the various
CASS heats used in studies at ANL,12 GF,1 Electricité de France (EdF),22 National Power
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(NP),21 FRA,” and the Electric Power Research Institute (EPRI)10 are shown in Fig. 7. For most
heats, the difference between the estimated and measured values is +6% ferrite. The results
also indicate that the calculated ferrite content is generally lower than the measured values for
CF-8M heats that contained 210% Ni.

2.2.2.2.2 ASTM A800/800M Methodology:

In this methodology, 2 the ferrite content of the casting is estimated from the central line of the
of the Schoefer diagram’3 at the composition ratio of Cr equivalent, Creq, to Ni equivalent, Nigg,
determined from the formula:

Creg/Nigq = (Cr + 1.5Si + 1.4Mo + Nb — 4.99)/(Ni +30C + 0.5Mn + 26(N — 0.02) + 2.77) (6)

The values of the composition ratio (Creq/Nigg) for a given ferrite content (F), or vice versa, is
then determined mathematically from the equation of the central line:

Creqg/Nigq = 0.9 + 3.38883 x 10-2F — 5.58175 x 10-4F2 + 4.22861 x 10-°F3 (7)

The measured ferrite content and values calculated from the ASTM A800/A800M methodology
for the same heats of CASS materials plotted in Fig. 7 are shown in Fig. 8. Since the Nb
content is typically not reported for CASS CF-3, CF-8, and CF-8M materials, it is assumed to be
zero and the ferrite content is calculated using Eqgs. 6 and 7. Estimated values of ferrite if an Nb
content of 0.2 wt.% is used would be about 7% higher for CASS materials with 5% ferrite and
about 4% higher for materials with 30% ferrite. The results indicate that for ferrite contents
more than 20%, the calculated ferrite content for several heats is lower than the measured
values. Most of these heats with significantly lower calculated values contained 22.0-23.0 wt.%
Cr and about 8.0-8.5 wt.% Ni. Ferrite contents estimated from the two methods, Hull's
equivalent factor and ASTM A800/A800M method show excellent agreement for ferrite contents
up to 20%. The ASTM A800/A800M method under predicts the ferrite content for CASS
materials with more than 20% ferrite. Figure 9a shows the difference between the two methods.
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2.2.2.2.3 Methodology Developed by EdF:

The expressions used by EdF to estimate ferrite content in a casting, are slightly different from
those used in the ASTM A800/800M method. EdF has developed the following expression for
estimating ferrite,

Ferrite = 21.8R2 — 5.96R + 3.39, (8)
where R is the ratio of Creq and Nigq expressed as,
R = (Cr + Mo + 0.65Si — 17.6)/(Ni +20C + 8.3N + 0.08Mn — 5.18). (9)

A comparison of estimates of ferrite content based on the Hull's equivalent factor and EdF
method is shown in Fig 9b. In general, the Hull's method predicts slightly higher ferrite contents.
The two methods show good agreement for materials with up to 15% ferrite. The ferrite
contents determined from the EdF method are compared with those from the

ASTM A800/A800M method in Fig 10. The estimated values based of the EdF and
A800/A800M methods show good agreement for ferrite contents up to 25%. The A800/A800M
method under predicts for materials with ferrite content >25%.

2.3 Kinetics of Thermal Embrittlement

The degree of embrittlement, as documented in the NUREG/CR-4513, Rev. 1, is characterized
in terms of the Charpy-impact energy of notched toughness specimens. The “best estimates” of
the degree of embrittlement at reactor operating temperatures are obtained from Arrhenius
extrapolations of laboratory data obtained at higher temperatures.! The aging time to reach a
given degree of embrittlement at different temperatures is determined from:

_10Pexp| 41 1
t=10 exp[R{T 673}]’ (10)
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where Q is the activation energy, R is the gas constant, T is the temperature, and P is an aging
parameter that describes the combined effect of time and temperature on aging. It represents
the degree of aging reached after 10P h at 400°C (752°F). Thus, P = 1 for aging 10 h at 400°C.
The aging parameter for any given aging condition is obtained by rewriting Eqg. 10 so that,

1000Q( 1 1)
P~ log,(t) - 19_143LTS+273 B 673J'

(11)
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The activation energy for the process of embrittlement has been described by Slama et al.” in
terms of the chemical composition of the cast material. Thus,

Q(kJ/mole) = -182.6 + 19.9(% Si) + 11.08(% Cr) + 14.4(% Mo). (12)

The activation energy calculated from Eq. 12 for the various CASS materials included in this
study is in the range of 41-88 kJ/mole (9.8-21.0 kcal/mole) for CF-3 material, 43—91 kJ/mole
(10.3-21.7 kcal/mole) for CF-8, 77-115 kJ/mole (18.4-27.5 kcal/mole) for CF-8M with <10% Ni,
and 68-128 kJ/mole (16.3—-30.6 kcal/mole) for CF-8M with 210% Ni. These values are
generally lower than the values that were obtained from the mechanical property data

(e.g., Charpy-impact) for most of the CASS materials, particularly for CF-3 and CF-8 materials.
For example, the activation energies obtained experimentally from the studies at ANL,
EdF/Framatome, and CEGB are in the range of 86—250 kJ/mole for CF-3, 63—253 kJ/mole for
CF-8, 81-164 kJ/mole for CF-8M with <10% Ni, and 90-172 kJ/mole for CF-8M with 210% Ni.
However, the calculated values for the CASS CF-3, CF-8, and CF-8M materials investigated in
the GF study show good agreement with the experimental values of activation energies
obtained from the Charpy-impact energy data for thermally aged materials.

Furthermore, the calculated values from Eq. 12 are significantly lower than the activation energy
of spinodal decomposition in CASS materials. The spinodal decomposition and G-phase
precipitation in low-temperature-aged CASS materials have been investigated by transmission
electron microscopy (TEM), atom probe field ion microscopy (APFIM), small angle neutron
scattering (SANS), and extraction replica techniques.60-67 The activation energy of the spinodal
reaction in CF-3 SS was 250+30 kJ/mole (60+7 kcal/mole).64 This value is comparable to that
for Cr diffusion in Fe-Cr alloys. The lower values for the activation energy for thermal
embrittlement of CASS materials are most likely due to other factors, such as the effect of the
formation of carbides and nitrides at the phase boundaries or the effect of G-phase and/or y»
precipitation in ferrite, all of which can change the fracture mechanism of the aged material

For example, the precipitation of large carbides or nitrides at phase boundaries can initiate
phase boundary separation by particle cracking. Consequently, a lower degree of spinodal
decomposition (i.e., smaller amplitude of Cr fluctuation) is needed for a given change in
mechanical properties. The material would show a reduction in impact strength faster than a
material without phase boundary carbides would. However, the precipitation of carbides or
nitrides occurs primarily at 400 or 450°C and is extremely slow at lower temperatures. Thus,
the influence of phase boundary carbides would tend to increase the apparent activation energy
of embrittlement measured from mechanical property data.

The other factor that can influence the overall activation energy for embrittlement is the
precipitation of other second-phase particles in ferrite — in particular, the G phase (a
multicomponent phase consisting of Ni, Si, Mo, Cr, and Fe and some Mn and C).62.66 The
kinetics of G-phase precipitation depend on the chemical composition of the cast material.> For
some heats, the G phase is observed after times as short as 10,000 h at 400°C, while other
heats require up to 70,000 h of aging at 400°C for G-phase formation. In general, precipitation
of the G phase is faster in the Mo-containing CF-8M materials.>60.62 The aging conditions for
which the G phase has been detected by TEM or SANS techniques in various CASS materials
are shown in Fig. 11. The kinetics for the decrease in the Charpy impact energy of the aged
material are also plotted in the figure. The actual aging times for a given decrease in impact-
energy varies significantly for the various heats (shown by the horizontal scatter bars in Fig. 11).
Generally, the aging times for the CF-8M materials are lower than for the CF-3 or CF-8
materials.
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The mechanism by which the G phase influences thermal embrittlement of CASS materials is not
well understood. The precipitation of the G phase can influence the kinetics of embrittlement by
either directly altering the kinetics of spinodal decomposition or by changing the deformation and
fracture behavior of the ferrite matrix and thereby influencing the effectiveness of spinodal
decomposition. The only experimental data on the kinetics of spinodal decomposition in CASS
materials were obtained by modeling the amplitude of Cr fluctuations, measured by APFIM, in
thermally aged CF-3 steel.18 The results yield an activation energy of 250 kJ/mole. No G phase
was observed in the steel after 5,000 h at 400 or 350°C. As shown in Fig. 11, most heats require
210,000 h at 400°C and 230,000 h at 350°C before G-phase precipitates are detected.
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Figure 11.  Arrhenius plots for the formation of the G phase and a reduction in
impact energy.

The low values of activation energy obtained from mechanical property data (e.qg., for the GF CASS
materials) are most likely due to the effect of G-phase precipitation on the deformation behavior of
the ferrite matrix. The concomitant precipitation of the G phase may alter the frequency (spacing) of
Cr fluctuations produced by spinodal decomposition, which would be more effective in strain
hardening. Thus, a lower degree of spinodal decomposition (i.e., lower amplitude of the Cr
fluctuations) would be needed for a given change in mechanical properties. The G phase was
observed in the GF heats of CASS materials, and the measured activation energies for thermal
embrittlement obtained from the Charpy-impact data were between 63 and 106 kJ/mole.

The above methodology, however, assumes a unique aging behavior at 400°C (752°F), which is
not observed for CASS materials produced at various foundries by using different manufacturing
processes. The decrease in RT Charpy-impact energy during thermal aging at 400°C (752°F)
of several heats of CASS materials17.10.12,13-15 js shown in Fig. 12. The results indicate that all
materials reach “quasi-saturation” RT impact energy (i.e., a minimum value that would be
achieved by the material after long-term aging, primarily due to spinodal decomposition of the
ferrite). Although the decrease in the RT impact energy during aging at 400°C occurs primarily
within 10,000 h, the impact energy for most CASS materials continues to decrease beyond
10,000 h,1.12-14 hut at a much slower rate. Furthermore, thermal aging studies at EdF on
numerous heats of CF-8M material have shown that the RT Charpy U-notch impact energy for
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Figure 12. Decrease in Charpy-impact energy for various heats of CASS
materials aged at 400°C.

materials aged for 10,000 h at 350°C is lower than for those aged at 400°C. However, after
being aged further up to 30,000 h, the impact energy for materials aged at 350°C did not
change significantly, whereas the impact energy for materials aged at 400°C decreased to a
lower value than that reached by those aged at 350°C for 30,000 h.

Note that the proposed methodology for estimating the extent of thermal embrittlement of CASS
materials is applicable to service times equivalent to 10,000 h at 400°C. This service time
corresponds to P = 4.0. It represents 2125 efpy at 290°C for CF-8/CF-3 materials and =30 efpy
at 320°C for CF-8/CF-3 materials and =215 efpy for CF-8M materials used within primary
pressure boundary components. For CF-8/CF-3 materials used in the core support structures
and core internals, it represents 215 efpy at 350°C. The procedure for estimating the thermal
embrittlement of CASS materials for longer service times will be established when additional
long-term aging data on RT Charpy-impact energy and fracture toughness J-R curve are
available for CF-8 and CF-8M materials. Limited data indicate that the concentration of
(Ni+Si+Mo) in the material is an important parameter for further reduction in fracture properties
of CASS components.

For a specific CASS material, the actual value of this quasi-saturation RT Charpy-impact energy
is independent of aging temperature but depends strongly on the chemical composition of the
material. It is lower for the Mo-bearing CF-8M materials than it is for the Mo-free CF-3 or CF-8
materials, and it decreases with an increase in the ferrite content and the concentration of C or
N in the steel.

Figure 12 also indicates that for a given decrease in the RT Charpy-impact energy, the time for
aging at 400°C varies by more than two orders of magnitude for the various heats. For
example, the time required for the impact energy to start decreasing varies from about 50 h
(EPRI heats) to more than 1000 h (GF heats). The time for the start of thermal aging effects
varies from 50 to 500 h for the ANL and FRA heats. For some materials, the decrease in impact
energy is very fast (i.e., low activation energy), and for others, it is slow (i.e., high activation
energy). Typically, CASS materials that take longer for thermal embrittlement to start have low

22



activation energy, and materials that take short times for embrittlement to start have high
activation energy. This behavior is consistent with the results of the parametric study of the
manufacturing process parameters at EdF,2> which showed that CASS materials that are
solution-treated at a high temperature have a high ferrite content and their thermal
embrittlement starts early during aging, but they are less susceptible to thermal embrittlement
(e.g., activation energy for embrittlement is high). On the other hand, CASS materials that are
solution-treated at a low temperature have low ferrite content and their thermal embrittlement
starts late during aging, but they are very susceptible to thermal embrittlement (e.g., activation
energy for embrittlement is low). Such differences may be attributed to compositional
differences in the material due to differences in the casting process.

The results also indicate that for most CASS materials, the total time to reach saturation impact
energy is approximately the same for all grades and heats of CASS materials. In other words,
the time for thermal embrittlement to start plus the time for embrittlement to occur is about the
same. CASS materials that start early take longer to embrittle, and materials that start late take
a relatively shorter time to embrittle. Consequently, half the maximum change in RT Charpy-
impact energy (i.e., parameter ) and the log of the time to achieve the 3 reduction in impact
energy at 400°C (i.e., parameter 0) represent two important parameter for characterizing the
kinetics of thermal embrittlement.16 The values of parameters  and 6 for the various heats of
CASS materials shown in Fig. 12 are listed in Table 2; parameter a is a shape factor.

Furthermore, microstructural examination of aged CASS materials suggests that materials that
take longer for embrittlement to start at 400°C are associated with clusters of Ni-Si, Mo-Si, and
Ni-Si-Mo in the ferrite matrix.560 These clusters are considered precursors of G-phase
nucleation and precipitation. CASS materials with low activation energy (i.e., fast embrittlement)
show G-phase precipitation after aging, but embrittlement at 400°C takes longer to start. CASS
materials with high activation energy (i.e., slow embrittlement) do not contain the G phase but
embrittlement at 400°C takes a relatively short time to start.>60-62 The presence of Ni-Si-Mo
clusters in the ferrite matrix of an unaged material may be considered a signature of materials
that are potentially sensitive to thermal embrittlement (i.e., such materials show low activation
energy for thermal embrittlement but take longer to embrittle at 400°C.

Since thermally embrittlement of CASS materials is caused primarily by spinodal decomposition
of ferrite,>11.12 the kinetics of thermal embrittlement are controlled by the amplitude and spacing
of the Cr-rich regions in the ferrite. The low activation energies of thermal embrittlement are
most likely caused by variations in the spacing of these regions. Atom probe field-ion
microscopy studies indicate that the spacing between Cr fluctuations decreases with decreasing
temperature.61.65 Therefore, production heat treatment and the casting process, both of which
affect ferrite composition and microstructure of the material, would affect microstructural
evolution during aging as well as the kinetics of embrittlement.

Based on these observations, in NUREG/CR-4513, Rev. 1, the change in RT Charpy-impact
energy, Cy, as a function of time and temperature was expressed in terms of the RT saturation
impact energy, Cysat, and the kinetics of embrittlement. The decrease in Cy with time was
expressed as

l0g10Cv = 10910Cvsat + B{1 — tanh [(P — 6)/a]}, (13)

where the aging parameter P is determined from Eqg. 11 The constants a and 3 are determined
from the initial RT impact energy, Cyint, and Cygy as follows:
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Table 2.

Chemical composition, ferrite content, and kinetics of thermal embrittlement

for various heats of CASS materials.

Chemical Composition (wt.%) Ferrite (%) Cysat Constants Q
Heat Cr Mo Si Ni Mn C N Calc. Mea (J/cm?) B 0 o (kdJ/mole)
Argonne National Laboratory
52 19.49 0.35 0.92 9.40 0.57 0.009 0.052 10.3 13.5 161.8 - - - -
51 20.13 0.32 0.86 9.06 0.63 0.010 0.058 14.3 18.0 115.9 0.139 3.53 1.15 204.7
47 19.81 0.59 1.06 10.63 0.60 0.018 0.028 8.4 16.3 163.7 0.069 2.29 1.20 195.7
P2 20.20 0.16 0.94 9.38 0.74 0.019 0.040 12.5 15.6 141.3 0.258 2.83 1.09 218.6
| 20.20 0.45 0.83 8.70 0.47 0.019 0.032 20.4 17.1 134.3 0.094 2.10 1.00 250.0
69 20.18 0.34 1.13 8.59 0.63 0.023 0.028 21.0 23.6 76.7 0.214 3.21 1.07 175.9
P1 20.49 0.04 1.12 8.10 0.59 0.036 0.057 17.6 24.1 53.7 0.305 2.57 0.75 252.7
61 20.65 0.32 1.01 8.86 0.65 0.054 0.080 10.0 13.1 93.3 0.214 3.48 1.20 197.8
59 20.33 0.32 1.08 9.34 0.60 0.062 0.045 8.8 13.5 89.1 0.197 3.14 1.20 249.4
68 2064 031 1.07 8.08 0.64 0.063 0.062 149 234 47.1 0.301 2.88 0.68 161.1
60 21.05 031 095 834 0.67 0.064 0.058 154 211 44.8 0.291 2.89 0.88 210.9
56 1965 034 1.05 9.28 057 0.066 0.030 7.3 10.1 117.6 - - - -
74 19.11 251 0.73 9.03 054 0.064 0.048 155 184 63.1 0.269 3.44 0.70 95.0
75 20.86 2,58 0.67 9.12 0.53 0.065 0.052 248 27.8 32.1 0.436 2.82 0.1 139.0
66 1945 239 049 928 0.60 0.047 0.029 19.6 19.8 87.9 0.208 3.16 1.57 163.9
64 20.76 246 0.63 9.40 0.60 0.038 0.038 29.0 284 41.1 0.338 2.81 0.60 147.3
65 20.78 257 0.48 9.63 0.50 0.049 0.064 209 234 59.7 0.260 2.99 0.59 153.8
P4 19.64 2.05 1.02 10.00 1.07 0.040 0.151 5.9 10.0 62.7 0.289 270 0.62 158.7
63 19.37 257 058 1185 0.61 0.055 0.031 6.4 104 1265 0.119 283 111 1555
Georg Fischer Co.
284 23.00 0.17 0.52 8.23 0.28 0.025 0.037 43.6 42.0 20.5 0.551 3.66 0.39 85.9
280 21.60 0.25 1.37 8.00 0.50 0.028 0.038 36.3 38.0 19.6 0.609 3.20 0.73 88.9
282 2250 0.15 0.35 8.53 0.43 0.035 0.040 29.7 38.0 28.5 0.500 3.65 0.39 91.6
281 23.10 0.17 0.45 8.60 0.41 0.036 0.053 31.4 30.0 17.2 0.618 3.76 0.47 89.8
283 22.60 0.23 0.53 7.88 0.48 0.036 0.032 42.6 42.0 18.6 0.599 3.60 0.44 83.7
278 20.20 0.13 1.00 8.27 0.28 0.038 0.030 18.5 15.0 68.3 0.347 3.90 0.29 63.1
279 22.00 0.22 1.36 7.85 0.37 0.040 0.032 39.5 40.0 23.8 0.546 3.06 0.58 93.5
277 20.50 0.06 1.81 8.13 0.54 0.052 0.019 22.5 28.0 30.7 0.466 3.54 0.49 87.7
291 19.60 0.66 1.59 10.60 0.28 0.065 0.054 4.2 6.0 121.9 0.195 3.65 0.35 71.2
292 21.60 0.13 1.57 7.52 0.34 0.090 0.039 23.9 28.0 17.2 0.373 3.07 0.44 98.8
290 20.00 2.40 1.51 8.30 0.41 0.054 0.050 31.3 32.0 15.8 0.624 3.48 0.12 81.0
288 19.60 2.53 1.70 8.40 0.47 0.052 0.022 35.6 28.0 14.9 0.671 2.96 0.66 105.3
287 2050 258 051 846 050 0.047 0.033 372 38.0 20.5 0.555 3.46 0.36 90.3
286 2020 244 133 9.13 040 0.072 0.062 189 22.0 15.5 0.594 3.03 0.72 106.4
289 1970 230 144 825 048 0.001 0.032 22,6 30.0 16.2 0580 329 041 90.1
285 1880 235 0.86 9.49 048 0.047 0.039 14.0 10.0 61.1 0.313 3.60 0.20 89.3
Framatome
A 1890 0.10 099 890 1.14 0.021 0.074 6.0 6.3 166.0 0.090 344 0.20 111.7
E 21.04 0.08 054 847 0.80 0.035 0.051 17.6 165 45.7 0.334 2.63 0.65 132.9
F 19.72 034 116 833 0.26 0.038 0.026 17.7 12.0 83.2 0.282 245 1.23 176.2
C 2073 0.13 1.09 8.19 091 0.042 0.035 209 201 51.1 0.393 3.30 045 83.1
G 2065 0.02 1.03 8.08 0.74 0.040 0.073 153 17.0 62.5 - - - -
H 20.70 0.05 1.18 8.07 0.71 0.050 0.045 183 215 50.6 - - - -
D 19.15 2.50 0.94 10.32 1.12 0.026 0.063 12.2 13.9 33.0 0.439 3.30 0.40 89.7
| 19.36  2.40 0.98 10.69 0.70 0.020 0.039 14.1 15.5 150.7 - - - -
K 20.80 2.62 0.75 10.45 1.09 0.060 0.056 15.4 14.0 48.5 - - - -
L 20.76  2.48 0.81 10.56 0.79 0.040 0.042 18.6 19.0 30.4 - 3.00 - -
B 20.12 2.52 0.93 10.56 0.83 0.053 0.042 14.0 17.3 28.2 0.478 2.55 0.47 128.6
Westinghouse
C148 2095 2.63 0.53 9.48 1.02 0.061 0.056 22.1 14.0 53.1 - 2.80 - -
Electric Power Research Institute
EPRI 22.04 023 084 793 074 003 0045 360 320 300 0564 210 0.60 2250
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o =—0.585 + 0.795l091¢Cysat (14)

and
B = (log1o Cvint — 10910Cysan/2. (15)

The CMTR for a specific CASS component provides information on the chemical composition,
tensile strength, and possibly the Charpy-impact energy of the material. If Cy; is not known, a
typical value of 200 J/cm? [or 160 J (118 ft-Ib) for a standard Charpy V-notch specimen] may be
used. The value of 0 is not available for CASS components in the field, and can only be
obtained from aging archival material for 5,000-10,000 h at 400°C (752°F). However,
parametric studies show that the aging response at reactor temperatures is relatively insensitive
to the values of 06.7> However, the existing data indicate that 0 varies with the material
composition and ferrite content. Additional data on the kinetics of thermal embrittlement of
CF-3, CF-3M, CF-8, and CF-8M materials containing a wide range of compositions and ferrite
contents are needed to establish an expression correlating 6 to the material composition.
Based on the data listed in Table 2, a value of 2.9 for 6 (i.e., mean of the experimental data) is
used to estimate thermal embrittlement at 280—-400°C (536—752°F). In the NUREG/CR-4513
methodology, the activation energy for thermal embrittlement is expressed in terms of both
chemical composition and the constant 6.16 The activation energy Q (in kJ/mole) for CF-3 and
CF-8 materials is given by

Q=10[7452-7.200—-3.46 Si—1.78 Cr + 148 N — 61 C], (16)

and for CF-8M materials is given by

Q=10[74.52 —7.20 0 — 3.46 Si — 1.78 Cr — 4.35 Mn+ 23 N]. (17)

Equations 16 and 17 are slightly different from the expressions proposed by Slama et al. in
1983 (i.e. Eq. 12).7 These equations are applicable to compositions within ASTM Specification
A351, with an upper limit of 1.2 wt.% for Mn content. Actual Mn content is used when CASS
materials contain up to 1.2 wt.% Mn. For materials containing more than 1.2 wt.% Mn, 1.2 wt.%
is assumed. Furthermore, the values of Q predicted from Egs. 16 and 17 should be between a
minimum of 65 kJ/mole (15.5 kcal/mole) and a maximum of 250 kJ/mole (59.8 kcal/mole)
maximum; Q is assumed to be 65 kJ/mole if the predicted values are lower and 250 kJ/mole if
the predicted values are higher. However, since several processes are responsible for thermal
embrittlement of CASS materials, and each process has its own temperature dependence, the
existing data indicates a change in activation energy of embrittlement with temperature.

The above expressions for estimating activation energy Q for thermal aging embrittlement of
CASS materials agree qualitatively with the microstructural and mechanical property data. For
example, an increase in the value of 6 decreases the activation energy, as expected. The
contributions of Si for all grades of CASS materials and of Mn for CF-8M materials are
consistent with their effect on the formation of the G phase. These elements should promote
precipitation of the G phase: hence, the coefficients for these elements should have a negative
sign, because activation energy for thermal embrittlement is low for materials that show G-
phase precipitation. An increase in C or N in the steel will promote carbide or nitride
precipitation at high temperatures and thus increase the activation energy. The positive sign of
the constant for the N content agrees with this behavior. The constant for the C content in steel,
however, has a negative sign. Itis likely that C also promotes the precipitation of the G phase,
a multicomponent phase consisting of Ni, Si, Mo, Cr, and Fe and some Mn and C.62.67
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2.4 Extent of Thermal Embrittlement

All CASS materials reach the “saturation” RT impact energy (i.e., a minimum value achieved by
the material primarily because of spinodal decomposition) after long-term aging. The actual
value of the saturation RT impact energy for a specific CASS material is independent of the
aging temperature (between 250-450°C) but depends strongly on the chemical composition of
the steel. It is lower for the Mo-bearing CF-8M materials than for the Mo-free CF-3 or CF-8
materials, and it decreases with an increase in the ferrite content or the concentration of C or N
in the steel.16 Typically, the extent of thermal embrittlement has been characterized by the RT
“normalized” Charpy-impact energy (Charpy-impact energy per unit fracture area).

In the ANL studies,12-17 correlations have been developed for the extent of thermal
embrittlement at quasi-saturation, Cysg (i.€., the minimum RT Charpy-impact energy that would
be achieved for the material because of spinodal decomposition), in terms of the chemical
composition of the material. The extent of thermal embrittlement as a function of the time and
temperature of the reactor service is estimated from the extent of embrittlement at saturation
and the correlations describing the kinetics of embrittlement, which are given in terms of the
material chemical composition and the initial Charpy-impact energy, Cyint, Of the material in the
unaged condition. If Cy;. is not known, a typical value of 200 J/cm?2 (118 ft-Ib) is assumed. The
fracture toughness J-R curve for the material is then obtained from the correlation between the
fracture toughness parameters and the RT Charpy-impact energy used to characterize the
extent of thermal embrittlement. A common lower-bound J-R curve for various grades of CASS
materials of unknown chemical composition is defined for a given material specification, ferrite
content, and temperature. Correlations are also developed for estimating changes in tensile
strength and Ramberg/Osgood parameters for strain hardening.18 The methodology for
estimating fracture properties of aged CASS materials has been updated in this report.

The extent of thermal embrittlement has been extended to operating times equivalent to

10,000 h at 400°C. The procedure for estimating thermal embrittlement for aging times beyond
10,000 h at 400°C will be established as and when RT Charpy-impact data are available for CF-
8 and CF-8M materials aged for 10,000-40,000 h at 400°C. An aging time of 40,000 h at 400°C
is equivalent to 260 efpy at 320°C for CF-8M and 2120 efpy at 320°C for CF-8/CF-3 materials
used in the primary pressure boundary components, and 245 efpy for CF-8/CF-3 materials used
in reactor core support and core internals.

2.4.1 Charpy-lmpact Energy

In the ANL studies,2 different correlations are developed to estimate the saturation RT impact
energy of the various grades of CASS materials. To ensure that the estimates are either
accurate or conservative for all heats, the saturation RT impact energy for a specific material is
determined by two slightly different expressions, both correlating the RT Charpy impact energy
with a material parameter, ¢, that depends on the material’s ferrite content and its chemical
composition. The lower value is used to estimate the mechanical properties of thermally aged
CASS materials. The RT Charpy-impact energies at saturation (i.e., for CASS materials aged
10,000 h at 400°C), Cysqt, Observed experimentally at ANL,12-14 GF,1 Westinghouse (WH),2
TWI,5 FRA,” EPRI10 CEGB,?! EdF,22 and MHI28-32 gre plotted as a function of the material
parameter ¢ in Fig. 13. The data represents CF-3, CF-3M, CF-8, and CF-8M materials with 3 to
49% ferrite. The data for grades CF-3 and CF-8 are plotted together, and for grades CF-3M
and CF-8M, materials containing <10% Ni are plotted separate from those containing 210% Ni.
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A value of 10% Ni is used in this study to determine if primary y (austenite) forms during
solidification of the castings from the liquid. For CASS CF-8M compositions containing

<10% Ni, the solidification sequence is as follows: Liq. — Lig. + & — 8, with 8 — v in the solid.”®
Austenite nucleates predominantly at ferrite grain boundaries and to a lesser extent at
interdendritic locations within the ferrite. For CF-8M compositions containing 210% Ni, the
solidification sequence is likely to be as follows: Liq. — Lig. + 8 — Lig. + 6 + y > & + vy, with

& — v continuing in the solid.”® The austenite forms first in the liquid as a secondary phase
enveloping the primary ferrite. Upon further cooling, it grows in the remaining liquid as well as
into ferrite. The latter reaction continues below the solidus line. The actual microstructures of
the casting depend on the Cr/Ni ratio for the specific composition. Because of significant
differences in the composition and microstructure of the ferrite in CF-8M materials with <10 or
210% Ni, separate expressions have been developed for these two materials.

The results indicate that for CF-3M and CF-8M materials, the original expressions correlating
Cysat to the material parameter ¢ need to be revised to extend their applicability for materials
containing more than 25% ferrite. The expressions for CF-3 and CF-8 materials do not require
revision. For these grades, although experimental Cys, for a few heats with high values of ¢ is
lower than the predicted value, the chemical composition of these heats was outside the ASTM
specifications for CF-3 and CF-8 materials. The Cr content in these heats was significantly
higher than the 21% maximum specified in the specifications, and for some materials, the Ni
content was also lower than the 8% specified minimum.

For CF-3/CF-8 materials, the expressions in NUREG/CR-4513, Rev. 1, are retained. The best-
fit expressions are used to avoid over conservatism in the estimation methodology. The
saturation value of RT impact energy, Cysat, IS the lower value determined from

l0g10Cysat = 1.15 + 1.36exp(—0.035®), (18)
where the material parameter ® is expressed as

@ = &.(Cr + Si)(C + 0.4N), (29)

and from

10910Cvsat = 5.64 — 0.0065 — 0.185Cr + 0.273Mo — 0.204Si
+ 0.044Ni — 2.12(C + 0.4N). (20)

For CF-3M/CF-8M materials, the expressions between Cygy; and ¢ have been revised. For
materials with <10% Ni, the Cys4 value is the lower value determined from

l0910Cyvsat = 0.27 + 2.81exp(—0.0229), (21)
where the material parameter ® is expressed as

® = 8(Ni + Si + Mn)2(C + 0.4N)/5, (22)
and from

10g10Cysat = 7.28 — 0.011 5, — 0.185Cr — 0.369Mo — 0.451Si
— 0.007Ni — 4.71(C + 0.4N). (23)
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For materials with 210% Ni, the saturation value of the RT impact energy Cysa: is the lower
value determined from

10910Cvsat = 0.84 + 2.54exp(—0.047D), (24)
where the material parameter ® is expressed as

® = 8(Ni + Si + Mn)2(C + 0.4N)/5, (25)
and from

10g10Cysat = 7.28 — 0.011 5, — 0.185Cr — 0.369Mo — 0.451Si
— 0.007Ni — 4.71(C + 0.4N). (26)

If not known, the N content is assumed to be 0.04 wt.%. The correlations are optimized using
mechanical property results on approximately 140 compositions of CASS materials that were
aged up to 60,000 h at 290-350°C (554—662°F).

To provide a more realistic comparison, the data obtained for aging temperatures 400°C or
higher are not used. Figure 14 shows the difference between the estimated Cy4 vValues based
on the original expressions in NUREG/CR-4513, Rev. 1, and the updated expression, for CF-8M
and CF-3M materials. The original and updated curves are shown as solid and chain-dash
lines, respectively. The chemical composition, ferrite content, and saturation RT Charpy-impact
energy are given in Table 2.

The measured values of Cys4 and the lower of the two values estimated from (a) the material
parameter ¢ (Egs. 18, 21, and 24) and (b) the material chemical composition and ferrite content
dc (Egs. 20, 23, and 26), are plotted in Fig. 15. The results indicate that the estimates based on
Eqgs. 18-26 are either accurate or conservative. However, the predicted Cys4 for four heats
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Figure 14. Comparison of the updated (chain-dash line) and original (solid line)
correlation between the RT Charpy-impact energy at saturation and
material parameter ¢.
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(two CF-3 and two CF-8M materials) is significantly higher than the measured value. The
reason for such a large difference is not clear. The expressions given by Egs. 18-26 for
estimating Cysy for a specific CASS material are correlated to the material's ferrite content and
its chemical composition because a review of the thermal embrittlement data for aged CASS
materials indicated that a correlation between the Charpy impact energy and ferrite content
alone did not yield good results. The Cygy for CF-3, CF-8, and CF-8M materials shown in

Fig. 13 is plotted as a function of the material ferrite content in Fig. 16; the results show a poor

correlation.
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lower of these two values.
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Figure 17.

Fracture surface of Charpy-
impact specimen of Heat 4331
aged for 700 h at 400°C and
tested at room temperature
(Ref. 12).

2.4.2 Effect of Trace Nb Content

Limited data indicate a significant reduction in the RT Charpy-impact energy of Heat 4331 of
CF-8M material aged for only 700 h at 400°C. Unlike most CF-8M materials, which contain only
trace amounts of Nb (e.g. <0.05 wt.%), Heat 4331 contained 0.2 wt.% Nb. The fracture surface
of the Charpy-impact test specimen (Fig. 17) show that the phase boundaries are decorated
with large Nb carbides (or carbo-nitrides) that can crack easily. These phase-boundary
carbides alter the deformation and fracture behavior of the material, promoting initiation of
cleavage by particle cracking. None of the other heats of CASS materials included in the ANL
study contained more than trace amounts of Nb. The fracture surfaces of these heats of CASS
materials exhibit, depending on the extent of embrittlement, a combination of dimpled ductile
tearing, ductile shear failure, cleavage, and phase-boundary separation. For room-temperature
tests, the amount of cleavage increased with the extent of embrittlement.

These differences in the fracture behavior of the Charpy-impact specimens are reflected in the
ductile-to-brittle transition curves for thermally aged CASS materials. The effect of thermal
aging on the transition curves for Heats 4331 (23.8% ferrite) and Heat 75 (24.8% ferrite) aged
for different times at 400°C are shown in Fig. 18. The results show significant differences in the
transition temperature for the two heats of CF-8M materials. The transition temperature at
81.25 J/cm2 (i.e., 50 ft-Ib) Charpy-impact energy for Heat 75 aged at 400°C for 2,570 h and
10,000 h is 65°C and 140°C, respectively; for Heat 4331 aged at 400°C for only 700 h, it is
220°C. Thus, the transition temperature is much higher for Heat 4331, even though it was aged
for only 700 h. The results also indicate that although the Charpy-impact energy at 270-290°C
is not significantly different for the three aging conditions, the RT Charpy-impact energy is much
lower for Heat 4331 than for Heat 75 aged for longer times. For Heat 4331, the Charpy-impact
energy at 290°C continues to decrease after aging at 400°C for more than 700 h.

These results indicate the potential effects of a trace amount of Nb content on the thermal
embrittlement of CASS materials during service in LWRs. The ASTM Specifications A351 and
A451 for the chemical composition of CF-3, CF-3M, CF-8, and CF-8M grades of CASS do not
specify any maximum limit for the Nb content in the casting. Typically, the trace Nb content in
these grades of CASS materials produced in the United States is very low (less than 0.05 wt.%).
However, castings produced in Europe may contain higher levels of Nb. The source for higher
Nb content is the use of Type 347 scrap metal to produce the casting. Consequently, the
amount of Nb is often more than 0.05 wt.% if Type 347 scrap metal is used.
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2.4.3 Fracture Toughness J-R Curve

The fracture toughness J-R curve for a specific CASS material can be estimated from its RT
Charpy-impact energy. The J-R curve is expressed by the power-law relationship J43 = CAa",
where Jq is deformation J per ASTM Specifications E 813-85 and E 1152-87, Aa is a crack
extension, and C and n are constants. The coefficient C, at RT (25°C) or reactor temperatures
(290-320°C), and the RT Charpy-impact energy for aged and unaged CASS materials are
plotted in Fig. 19a and b respectively, based on an updated fracture toughness database.
Fracture toughness data from studies at ANL,12-15 FRA,7.8 EPRI,10 EdF,23.24.26 Mitsubishi Heavy
Industries (MHI),28-32 The Welding Institute (TWI),6 and Materials Engineering Associates, Inc.
(MEA),”7 are included in the figure. These plots provide a correlation between coefficient C of
the Power-law J-R curve and RT Charpy-impact energy of the material. Thus, saturation values
of C can be obtained form the saturation value of RT Charpy-impact energy.
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Figure 19a. Correlation between RT Charpy-impact energy and coefficient C at RT for
CF-3, CF-8, CF-3M, and CF-8M CASS materials.
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Figure 19b. Correlation between RT Charpy-impact energy and coefficient C at 290—
320°C for CF-3, CF-8, CF-3M, and CF-8M CASS materials.

At both RT (25°C) and reactor temperatures (290-320°C), the coefficient C decreases with a
decrease in the RT Charpy-impact energy. Separate correlations are obtained for CF-3 and
CF-8 materials and for CF-8M materials; the latter show a larger decrease in the fracture
toughness for a given impact energy. Furthermore, for CF-8M materials, the decrease in the
values of coefficient C is much greater for RT Charpy-impact energy values that are less than
about 35 J/cm? for fracture toughness tests at RT and 41-46 J/cm? for fracture toughness tests
at reactor temperatures. However, all of the fracture toughness data for CF-8M materials with
very low values of RT Charpy-impact energy are for materials containing 210% Ni. It is not
clear whether CF-8M materials with <10% Ni also show a similar behavior.

As discussed later in this section, data on chemical compositions of CASS piping materials from
a select sample of nuclear power plants (NPPs) in the United States indicate that at least 9% of
the CF-8M materials currently used in operating NPPs contain more than 25% ferrite. For these
materials, the methodology developed earlier in NUREG/CR-4513, Rev. 1, is not applicable for
flaw tolerance evaluations. In this report, the methodology for estimating thermal embrittlement
has been extended to cover CASS materials containing more than 25% ferrite. For CF-8M
materials, a bilinear expression is developed between RT Charpy-impact energy and coefficient
C of the power-law J-R curve.

To help ensure that the estimated J-R curve was conservative for all material and aging
conditions, the correlations for estimating the J-R curves for static-cast materials were obtained
by subtracting the value of the standard deviation for the fit to the data from the best-fit curve in
Fig. 19; these curves are shown as chain dot curves. For centrifugally cast materials, the best-
fit correlations were used; typically, the data scatter is considerably smaller for centrifugally cast
materials than static cast materials. For CF-8M materials, the value of the RT Charpy-impact
energy for the transition from one expression to the other varies between 35 and 46 J/cm?
because of the differences in the standard deviation for the fit to the individual set of data.

For static-cast CASS materials, the coefficient C of the J-R curve at RT for CF-3 or CF-8
materials is expressed as

C = 49[C,]°52; (27)
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for CF-8M materials with RT Charpy impact energy values 235 J/cm?Z, it is expressed as

C = 16[Cy]0¢7; (28)
and for CF-8M materials with RT Charpy impact energy values <35 J/cm?, it is expressed as

C = 1.44[Cy]-35. (29)

For static-cast CASS materials, the coefficient C of the J-R curve at 290-320°C for CF-3 or
CF-8 materials is expressed as

C = 102[Cy]°-28; (30)
for CF-8M materials with RT Charpy impact energy values of 246 J/cm?Z, it is expressed as

C = 49[Cy]041; (31)
and for CF-8m materials with RT Charpy impact energy values <46 J/cm2, it is expressed as

C = 5.5[Cy]0%. (32)

For centrifugally cast CASS materials, the coefficient C of the J-R curve at RT for CF-3 or CF-8
materials is expressed as

C = 57[C\]°52; (33)
for CF-8M materials with RT Charpy impact energy values 235 J/cm?, it is expressed as

C = 20[Cy]°¢7; (34)
and for CF-8M materials with RT Charpy impact energy values of <35 J/cm?, it is expressed as

C = 1.78[Cy]1%5. (35)

For centrifugally cast CASS materials, the coefficient C of the J-R curve at 290-320°C for CF-3
or CF-8 materials is expressed as

C = 134[C,]°-28; (36)
for CF-8M materials with RT Charpy impact energy values 241 J/cm?Z, it is expressed as

C = 57[Cy]o4; (37)
and for CF-8M materials with RT Charpy impact energy values <41 J/cm?, it is expressed as

C = 6.9[Cy]0-%8. (38)
The distribution of the value of the power-law J-R curve exponent, n, for various grades of

thermally aged and unaged CASS materials is shown in Fig. 20. The available database
consists of 129 fracture toughness J-R curve tests at RT and 141 tests at reactor temperatures
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Figure 20. Distribution of the J-R curve exponent for various grades of thermally aged
and unaged CASS materials at (a) room temperature and (b) 290-325°C.

of 290-325°C. In general, the exponent n is higher at RT than at reactor temperatures. The
median value is 0.55 at RT and 0.50 at 290-325°C. The results show that only about 4% of the
values at reactor temperature and less than 2% of them at RT are below a value of 0.33.
However, an investigation of the thermal embrittlement of CASS materials at EdF indicated that
exponent n of the power-law J-R curve can be as low as 0.2 for some heats of CF-8 and CF-8M
materials, particularly at reactor temperatures.”

The exponent n of the power-law J-R curve has also been correlated with the RT Charpy-impact
energy Cy. In NUREG/CF-4513, Rev. 1, to ensure that the estimated J-R curves were
conservative, the correlations between exponent n and the corresponding RT Charpy-impact
energy for the same material condition represented the lower-bound values of n. The updated
data for the RT Charpy-impact energy and the corresponding value of fracture toughness J-R
curve exponent n at RT and 290-325°C, for CF-3, CF-8, and CF-8M CASS materials, are
plotted in Fig. 21. A review of the updated fracture toughness data indicates that some of the
recent data are below the correlations in NUREG/CR-4513, Rev. 1,16 between exponent n and
RT Charpy-impact energy. Consequently, the correlations!6 for estimating the J-R curve
exponent n have been revised; the updated correlations are slightly lower. The revised
correlations representing the lower-bound values are shown in the Fig. 21.

For static-cast or centrifugally cast CASS materials, the exponent n at RT for CF-3 materials is

n = 0.16 + 0.13l0g;0[Cy]; (39)

* Per private communications with Dr. Sebastien Saillet, EdF, Research and Development, Department MMC, 77818
Moret sur Loing, France, in April 2015.
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for CF-8 materials, it is

n = 0.18 + 0.10log1o[Cy]; (40)
and for CF-8M materials, it is

n = 0.20 + 0.08log;0[Cv]. (41)

For static-cast or centrifugally cast CASS materials, the exponent n at 290-320°C for CF-3
materials is

n = 0.15 + 0.12log;[Cy]; (42)
for CF-8 materials, it is

n=0.17 + 0.09 logo[CV]; (43)
and for CF-8M materials, it is

n =0.19 + 0.07log0[Cy]. (44)

Equations 27—-44 may be used to determine the fracture toughness J-R curve of static- or
centrifugally cast CF-3, CF-8, and CF-8M CASS materials from the RT Charpy-impact energy of
the material. If the RT Charpy-impact energy is not known, then the saturation fracture
toughness J-R curves for these CASS materials can be determined from their chemical
composition available in the CMTRs using Egs. 18-26 and Egs. 27—44. The following
observations can be drawn from this study of thermal embrittlement of CASS materials:4°

(&) Among the grades considered, CF-8M materials have the smallest J4 value for a given
crack extension. The value of J4 at a given crack extension for CF-8M materials is
generally about half of that of the other grades.

(b) CF-3, CF-3A, CF-8, and CF-8A materials show a similar extent of thermal aging. The
value of Jgy at a given crack extension for CF-8 and CF-8A materials is generally less
than 10% lower than that for CF-3 and CF-3A materials.

(c) Static-cast CASS materials are more susceptible to thermal aging than are the
centrifugally cast materials. The value of J4 at a given crack extension for static-cast
SS is generally about 20% lower than that for the centrifugally cast material with a
similar ferrite content.

(d) Although CF-8M materials show a similar extent of thermal aging on the fracture
toughness J-R curve both at RT and at the reactor operating temperature, the value of
Jq at a given crack extension for CF-3, CF-3A, CF-8, and CF-8A materials is generally
about 20% lower at the reactor temperature than at RT.

These correlations are valid for static-cast and centrifugally cast CF-3, CF-3A, CF-8, CF-8A,
and CF-8M materials defined by ASTM Specification A351. The criteria used in developing
these correlations ensure that the estimated mechanical properties are adequately conservative
for compositions of CASS materials within ASTM A351. The updated correlations are
applicable to all compositions of CF-8M materials, including materials with ferrite contents
above 25%. However, in the updated database, there were little or no fracture toughness J-R
curve data for CF-3 and CF-8 materials with a Cys4 Of less than 30 J/cm?2 (17.7 ft-lb). Therefore,
the correlations presented in this report may not be applicable to those compositions of CF-3
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and CF-8 materials for which the estimated value of Cyg4 is less than 30 J/cm?2 (<17.7 ft-Ib).
Typically, such compositions would contain more than 30% ferrite. Furthermore, the
correlations may not encompass all metallurgical factors that can arise from differences in
production heat treatment or casting processes and may be overly conservative.

Note that these correlations account for the degradation of the mechanical properties of typical
heats of CASS materials. They do not consider the initial fracture properties of the unaged
material. Some CASS materials may have low initial fracture toughness, and the estimated J-R
curves may be higher than the initial value. Therefore, some knowledge about the initial
fracture toughness of the material is needed to justify the use of the estimated fracture
toughness. The initial fracture toughness J-R curves may be estimated from the RT Charpy-
impact energy of the unaged material.

Flaw tolerance methods are often used to develop ASME Code Section XI flaw acceptance
standards or to justify alternatives to the ASME Code Section Xl in-service inspection (ISI)
requirements. Recently, EPRI Report 1019128 (December 2009),78 presented a flaw tolerance
approach based on elastic-plastic fracture mechanics considerations that could be used in
combination with a demonstrated inspection method for managing the effects of the aging of
CASS piping, particularly piping containing more than 20% ferrite content. The sources of the
CASS data included (a) information obtained from a Westinghouse data search based on a
random sampling of heats of CASS material from 15 plants (Table 3) and (b) data packages

Table 3.  Primary circuit piping CASS material in Westinghouse plants (Ref. 78).

Plant Name Size (MWe) SLystem Material
oops Type
Beaver Valley 2 852 3 CF-8/CF-8A
Callaway 1 1157 4 CF-8/CF-8A
Catawba 1 1153 4 CF-8/CF-8A
Catawba 2 1153 4 CF-8/CF-8A
Comanche Peak 1 1150 4 CF-8/CF-8A
Farley 1 829 3 CF-8/CF-8A
Farley 2 829 3 CF-8/CF-8A
McGuire 1 1180 4 CF-8/CF-8A
McGuire 2 1180 4 CF-8/CF-8A
Millstone 3 1150 4 CF-8/CF-8A
North Anna 1 934 3 CF-8/CF-8A
North Anna 2 788 3 CF-8/CF-8A
South Texas 1 1250 4 CF-8/CF-8A
South Texas 2 1250 4 CF-8/CF-8A
Vogtle 1 1113 4 CF-8/CF-8A
Vogtle 2 1113 4 CF-8/CF-8A
Watts Bar 1 1177 4 CF-8/CF-8A
Watts Bar 2 1177 4 CF-8/CF-8A
Wolf Creek 1158 4 CF-8/CF-8A
Beaver Valley 1 852 3 CF-8M
Cook 1 1090 4 CF-8M
Cook 2 1054 4 CF-8M
Kewaunee 560 2 CF-8M
Prairie Island 2 530 2 CF-8M
Sequoyah 1 1140 4 CF-8M
Sequoyah 2 1140 4 CF-8M
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from the Sandusky Foundry and Machine Co., NUREG/CR-5024, and Structural Integrity
Associates. The CASS data were used to estimate the ferrite contents of a representative
sample of CASS CF-3, CF-8, CF-8A, and CF-8M materials and to perform statistical analyses to
study the distribution of the ferrite contents of these materials. When information for the Mo and
N contents was not available, values of 0.5 and 0.04 (wt.%), respectively, were assumed.

The results yielded mean ferrite content and standard deviation values of 15.9% and 4.9% for
CF-8 material (total of 333 data points) and 17.6% and 5.4% for CF-8M material (total of

147 data points). The total amounts of data for CF-3 were too small (fewer than 15 data points)
to provide meaningful estimates. The distribution of the ferrite content for CF-8M materials

(Fig. 22) indicated that nearly 9% of the heats of CF-8M material contained more than 25%
ferrite. Therefore, the updated correlations presented in this report would be applicable to these
heats of CF-8M material that are currently used in the U.S. PWRs. The expressions presented
in Eqs. 27-38 are valid for CF-3, CF-8, and CF-8M materials with ferrite contents of up to 40%.
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Figure 22. Distribution of ferrite content in CASS grades of (a) CF-8, (b) CF-8A, (c) CF-
8M, and (d) CF-3 piping material in Westinghouse PWRs (Ref. 78).
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2.4.3.1 Potential Effects of Reactor Coolant Environment

The potential effects of a simulated BWR primary coolant environment on the fracture
toughness of sensitized Type 304 SS at 98 and 288°C were investigated by Nakajima et al. at
displacement rates of 0.5, 0.01, and 0.001 mm/min.”® The fracture toughness J-R curve tests at
98°C were conducted air-saturated water, and the tests at 288°C were conducted in water
containing 0.2 parts per million (ppm) or 8 ppm dissolved oxygen (DO). Three-point-bend
specimens were used for the tests at 98°C and 1-T compact tension specimens at 288°C. The
specimens were sensitized by being heat-treated at 650°C for 0.5, 1, 2, and 4 h; heat treatment
for 2 h at 650°C was considered the standard sensitized condition. The experimental fracture
toughness J-R curves at 98 and 288°C for several displacement rates in air and water
environments are shown in Fig. 23. The results indicate no effect of displacement rate for the
as-received Type 304 SS. However, for the sensitized material in water environment, the
fracture toughness J decreased with a decreasing displacement rate and an increasing degree
of sensitization. At 288°C, the effect of the water environment increased with an increasing DO
in the environment. The fracture toughness J-R curves obtained at a 0.01 mm/min extension
rate are representative of a typical fracture toughness J-R curve test. In the ANL studies on
CASS materials, the J-R curve tests were conducted at an extension rate of about

0.02 mm/min.
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Figure 23. Fracture toughness J-R curves for sensitized Type 304 SS in simulated
BWR coolant at 288°C and three different displacement rates (Ref. 79).

Potential effects of reactor coolant environment on fracture toughness have also been studied at
ANL for neutron-irradiated wrought and cast austenitic SSs.4’ The results indicate that the
effect of the environment may be insignificant for materials with poor fracture toughness

(e.g., irradiated SSs or thermally aged CASS materials with J;. values below 200 kJ/m2).
However, a recent scoping study on low-temperature crack propagation (LTCP) for thermally
aged CASS CF-8 material in PWR environments showed that the fracture toughness J-R curve
is generally lower in PWR water than in air, and it is significantly lower in PWR shutdown water
chemistry at 54°C than in air.80 Fracture toughness J-R curve tests were conducted in air on 1-
T CT specimens of CF-8 material (ANL Heat 68) that was thermally aged for about 138,000 h
(about 15.8 years) at 350°C. The ferrite content calculated from Hull's equivalent factors was
15%; it was 23% when measured by a Feritescope. The specimens were either fatigue
precracked in air at 54°C or were fatigue-plus-SCC precracked in PWR water at 315°C. The
fracture toughness J-R curve data for these tests are shown in Fig. 24. Note that one of the
specimens that was precracked in PWR water at 315°C was inadvertently tested at an elevated
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temperature of 315°C in PWR primary water chemistry. The updated lower-bound J-R curve at
RT for CF-8 material with 15-25% ferrite is also shown in the figure for comparison.

The results indicate that at 54°C, the J-R curve data in air are bounded, with an additional
margin, by the updated lower-bound J-R curve. However, the J-R curve data for specimens
precracked in air at 54°C and then tested in PWR shutdown water chemistry at 54°C are
significantly below the lower-bound curve. The fractography of the test specimens show
multiple fracture planes that are distinct from the primary plane established by the fatigue
precrack. These results indicate an apparently large effect from the coolant environment on the
fracture toughness; every material and test condition are identical for the two sets of duplicate
tests, except one specimen is tested in air and the other in water. The specimens that are
precracked in PWR water at 315°C and then tested in PWR water at 54°C or 315°C also show
reduced fracture toughness relative to those tested in air, but the difference is less. The J-R
curve data for the specimen that are cooled down from 315°C and tested at 54°C shutdown
water chemistry are only marginally below the lower-bound J-R curve, and the data for the
specimen that are precracked and tested at 315°C PWR primary water chemistry are slightly
above the lower-bound curve.
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Figure 24. Fracture toughness J-R curve data for thermally aged Heat 68 of
CF-8M plate at 54°C. The curve represents the lower bound curve at
RT for static-cast CF-8 material (Ref. 80).

The large reduction in fracture toughness of the aged CASS CF-8 material is attributed to
potential synergy between hydrogen embrittlement from LTCP and thermal embrittlement
associated with decomposition of the ferrite at reactor temperatures.80 The authors
recommended that the multiple fracture paths during J-R curve testing should be examined to
determine whether any microstructural features are associated with such behavior.

A similar low-fracture-toughness behavior has also been observed for Alloys 600 and 690 in
hydrogenated water at 54°C and at low displacement rates (i.e., under quasi-static
conditions).81.82 For Alloy 600, the J,; value obtained at a displacement rate of 0.05 mm/h is
30% lower in hydrogenated water at 54—149°C than in air.81 For Alloy 690 tested in
hydrogenated water at 54°C, the fracture toughness J,. obtained at displacement rates of 0.005
to 15 mm/h is a factor of 16 lower than that observed at a displacement rate of 305 mm/h.82
The significant decrease in fracture toughness under a simulated PWR shutdown water
chemistry has been attributed to hydrogen-induced intergranular cracking.
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These results indicate that environment can further decrease the fracture toughness of
materials relative to the fracture toughness obtained in air. For some heats of wrought and cast
austenitic SSs and welds, some values of fracture toughness in coolant environments are likely
to be below the lower-bound trend curve. In particular, the fracture toughness data for
unirradiated, aged CF-8 material in a PWR SWC environment at 54°C are significantly lower
because of the potential synergy between the hydrogen embrittlement and thermal
embrittlement associated with the spinodal decomposition of the ferrite. However, it is not clear
whether the large reduction in the fracture toughness of thermally aged CASS materials is
unique and associated with PWR SWC conditions or it can occur under other low-temperature
LWR environments. Therefore, the minimum acceptable fracture toughness J,. values for
thermally aged CASS materials in LWR environments at temperatures less than 100°C are
needed to establish the possible effects of LWR coolant environments on the thermal
embrittlement of CASS materials.

2.4.3.2 Potential Effects of High Loading Rate

Typically, the fracture toughness of wrought SSs increases with increases in the loading rate.
The limited data on the effect of the loading rate on the fracture toughness of CASS materials
are somewhat inconsistent. Fracture toughness tests on a high-ferrite-content CF-3 material in
the as-cast and aged conditions at three loading rates at RT and 300°C show no significant
variation for the as-cast material with an increasing strain rate, either at RT or at 300°C.83
However, for the RT tests on aged material, increasing the loading rate resulted in an increase
in J. but a decrease in the slope, dJ/da, of the J-R curve. The slowest loading rate was a quasi-
static rate typical of J-integral testing. The second rate was approximately three orders of
magnitude faster, and the highest rate was about one additional order of magnitude faster.
Similarly, fracture toughness tests on CF-3M material (16% ferrite) aged for 1000 h at 500°C
and tested at 0°C showed that increasing the loading rate reduced the crack initiation (J;) as
well as the slope of the J-R curve to about 18% of the values for quasi-static loading (Fig. 25).84
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These limited data that indicate that an inverse loading rate affects the fracture toughness for
thermally aged CASS materials need to be investigated further to determine the potential
decrease in fracture toughness at loading rates that are associated with typical seismic activity.
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2.5 Methodology for Estimating Thermal Embrittlement of CASS Materials

A flow diagram for estimating mechanical properties of CASS materials during reactor service is
shown in Fig. 26. The estimation scheme is divided into three sections based on available
material information. In Section A of the flow diagram, “predicted lower—bound” fracture
toughness is defined for CF-3, CF-8, and CF-8M materials of unknown composition (i.e., when
CMTR is not available). For materials with an unknown composition, when the ferrite content of
the steel is known, a different lower-bound fracture toughness and impact energy are defined for
materials containing <10%, >10-15%, >15-20%, >25-30%, or >30—40% ferrite. However, as
discussed earlier in Section 2.2, it is important to make sure that the value of the ferrite content
used in the estimation scheme is representative of the material.
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Figure 26. Flow diagram for estimating mechanical properties of thermally aged CASS

materials in LWR systems.
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Sections B and C of the flow diagram describe the methodology for estimating mechanical
properties when a CMTR is available (i.e., the chemical composition of the CASS material is
known). Section B describes the estimation of the “saturation” impact energy and fracture
toughness J-R curve. The only information needed for these estimates is the chemical
composition of the material, which is used to estimate the saturation J-R curve for the thermally
aged material. However, the correlations presented in this report account for the degradation of
mechanical properties due to thermal aging; they do not explicitly consider the initial fracture
properties of the unaged material. Some heats of CASS materials may be inherently weak and
have poor fracture properties in the unaged condition. For such materials, the estimated
saturation fracture toughness based on the proposed methodology may be higher than the
fracture toughness of the unaged material. Therefore, it is important to have some information
about the fracture toughness of the unaged material. The material fracture toughness is
generally not available in the CMTR. It can be estimated by using the expressions presented in
Fig. 19 from the initial RT Charpy-impact energy of the unaged material, if known.

The available fracture toughness J-R curve data at 290-320°C (554—-608°F) for unaged CASS
materials are shown in Fig. 27a and the J-R curves for several heats of wrought Type 304 and
316 SSs19.77.85-88 gre shown in Fig. 27b. The results indicate that the J-R curves for a few
“weak” heats of static-cast CASS materials are lower than for wrought austenitic SSs.
Therefore, the saturation fracture toughness properties that should be used for design analyses
for thermally aged CASS materials depend on whether or not the estimated saturation fracture
toughness is lower than the initial fracture toughness of the unaged materials. The initial
fracture toughness of the material can be estimated from its RT Charpy-impact energy.

However, the fracture toughness of the CASS material is not available in CMTRs. Two different
options are used to establish the saturation fracture toughness of the thermally aged material.
In the first option, the initial RT Charpy-impact energy of the unaged material is known, and this
value is used to estimate the initial fracture toughness of the material. CASS materials with
poor fracture properties are relatively insensitive to thermal aging, and the fracture toughness of
the material due to thermal aging during reactor service typically does not change significantly.
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Figure 27. Predicted and measured fracture toughness J-R curves for unaged
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Therefore, if the estimated saturation fracture toughness of the aged material is higher than the
fracture toughness of the unaged material, the latter is used as the worst-case toughness for
that material.

In the second option, the initial RT Charpy-impact energy is not known; therefore, the minimum
fracture toughness of all unaged heats and heat treatment conditions for CASS materials is
used as an upper bound for the estimated fracture toughness. This minimum upper-bound
fracture toughness of unaged CASS materials is used as the worst-case fracture toughness for
the material if the estimated saturation fracture-toughness of thermally aged material is higher.
Typically, the fracture toughness of unaged CASS materials is slightly higher at RT than it is at
290-320°C. However, for convenience, the minimum fracture toughness of unaged static-cast
CASS materials at temperatures between RT and 320°C can be expressed as

Jg = 400[Aa]0-40, (45)

and that of centrifugally cast CASS materials can be expressed as

Jd = 550[Aa]0-43. (46)

Based on the recent data from Japan, the lower-bound J-R curve for unaged centrifugally cast
material has been decreased relative to the original curve in NUREG/CR-4513, Rev. 1. The
estimation of mechanical properties at any given time and temperature of service (i.e., service
time properties) is described in Section C of the flow diagram. The initial impact energy of the
unaged material is required for these estimates. If this is not known, the initial impact energy of
200 J/cm? (118 ft-Ib) is assumed. However, similar to the procedure in Section B of the flow
diagram, the initial fracture toughness of the unaged material or the minimum fracture
toughness of unaged CASS materials is used as an upper bound for the estimates.

The methodology for estimating fracture toughness of thermally aged CASS materials
presented in this report can be used to estimate the fracture toughness J-R curves at RT (25°C)
or reactor temperatures (290-320°C). Fracture toughness J values at temperatures between 25
and 290°C can be obtained from a linear interpolation of the values at 25 and 290°C (77 and
608°F).

The initial tensile properties of the unaged material are needed for estimating the tensile
strength and Ramberg/Osgood strain hardening parameters. If the initial flow stress of the
CASS material is known, the J; value and tearing modulus of the thermally aged material can
then be determined from the estimated values of the J-R curve and flow stress of the aged
material.

However, as mentioned earlier, the above methodology for estimating fracture toughness of
CASS materials in reactor service is not applicable to CF-8M materials that have more than a
trace amount of Nb. The chemical requirements for ASTM Specification A351 or A451 do not
specify any upper limit for Nb. Typically, CF-8M steels contain only trace amounts of Nb.
However, the Nb content could be high in castings produced by using Type 347 scrap metal.
For example, in the ANL study, the measured RT Charpy-impact energy of a thermally aged
heat of CF-8M steel containing about 23% ferrite and 0.2% Nb was significantly lower than that
predicted from the above methodology. The fracture surface of the Charpy specimen showed
that the phase boundaries were decorated with large Nb carbide particles that cracked easily.
Therefore, for CF-8M materials with more than 15% ferrite, it would be advisable to determine
the Nb content of the material and take appropriate actions if that content is 0.1% or higher.
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The above methodology only accounts for the thermal embrittlement of CASS materials and is
therefore applicable to materials outside the reactor core. It does not consider the effects of
neutron embrittlement or the synergism between thermal and neutron embrittlement. For core
internal components, which have a prolonged exposure both to elevated temperatures and to
neutron radiation, the combined effects of thermal and neutron irradiation need to be evaluated.
An acceptable approach for estimating the fracture toughness of CASS materials used in the
reactor core is presented in Section 5 of this report.
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3 ASSESSMENT OF THERMAL EMBRITTLEMENT

3.1 Estimation of Thermal Embrittlement of CASS Materials of Known
Composition and Service Condition — Service Time Values

The RT Charpy-impact energy of a specific CASS material as a function of service time and
temperature can be obtained from estimated Cys4: (EQs. 3-5 and 18-26) and the kinetics of
embrittlement (Eqgs. 11,13-17). A value of 2.9 for 6 was assumed for all thermal aging
conditions. The initial Charpy-impact energy, Cyint, Of the unaged steel is also needed for
estimating the decrease in impact energy. If this is not known, a typical value of 200 J/cm?2
(118 ft-Ib) is assumed. The RT Charpy-impact energy observed experimentally and that
estimated from the chemical composition and initial impact energy of the CASS materials are
presented in Figs. 19 and 20 of NUREG/CR-4513, Rev. 1. For convenience, these figures in
NUREG/CR-4513 Rev. 1 are reproduced in Appendix B of this report.

The results indicated that in general, the estimates of RT Charpy-impact energy at aging
temperatures of <330°C (<626°F) were either accurate or conservative for all grades of CASS
materials. A few heats showed poor agreement because either the estimated Cys5; Was higher
than the experimental value (FRA Heat D and ANL Heat 47) or the estimated activation energy
was high (FRA Heat C and GF Heat 278). Even at 350°C, because the 6 values for most of the
heats were either greater than or only slightly lower than 2.9, the estimated values of RT
Charpy-impact energy showed good agreement with the experimental results. The EPRI heat
and an EdF heat (experimental 6 is 2.1 for both heats) alone show nonconservative estimates,
at 350°C. Therefore, to ensure that the estimates are conservative, a 0 value of 2.5 rather than
2.9 should be used at 330-360°C (626—680°F).

Once the RT Charpy-impact energy, Cy, is known, the service-time coefficient C and

exponent n of the fracture toughness J-R curve are determined from Eqgs. 27-38 and 39-44,
respectively. The variation in the experimental values of coefficient C as a function of aging
time and temperature is compared with that estimated from the methodology proposed in this
report (i.e., material composition and the initial RT Charpy-impact energy) for at least one heat
each of CF-3, CF-8, and CF-8M material in Figs. 28-31. As discussed earlier for the estimated
values of RT Charpy-impact energy, the results indicate that at reactor operating temperatures
(i.e., 280-350°C), the estimated change in the fracture toughness coefficient C with the aging
time is either accurate or slightly conservative for all grades of CASS material.

The methodology and expressions for estimating the changes in (a) tensile flow and yield
stresses and (b) the engineering stress-strain curve of CASS materials, as a function of time
and temperature of service are described in NUREG/CR-6142.18 The tensile properties of aged
CASS materials are determined from known material information (i.e., chemical composition
and initial tensile strength of the steel). The fracture toughness J,. values for the service-aged
CASS material can be determined from the estimated values of the fracture toughness J-R
curve and flow stress.

The proposed methodology can be used to estimate the change in fracture toughness of CASS
materials for known material composition and service conditions, particularly for service
temperatures of 280-350°C (536-662°F). Examples of experimental and estimated fracture
toughness J-R curves for several CF-3, CF-8, and CF-8M materials thermally aged for 30,000 h
at 350°C or for 50,000 or 53,000 h at 320°C) are shown in Figs. 32—-38. Relative to the
experimental results, the estimated J-R curves are either accurate or slightly conservative.
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Figure 28. Estimated and experimental values of coefficient C of the J-R curve
for static-cast CF-3 plate during thermal aging. Values at 100 h are
for unaged material.
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Figure 29. Estimated and experimental values of coefficient C of the J-R curve
for static-cast CF-8 plate during thermal aging. Values at 100 h are
for unaged material.
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Figure 32. Experimental and estimated fracture toughness J-R curves at RT and
290°C for an ANL heat of a static cast CF-8 plate.

3000 L L T T T LI | L I
| Static Cast CF-3 Plate : : Static Cast CF 3 Plate i
| Heat695 =21.0%,8 =23.6% | Predicted Unaged Heat 69 5 =21.0%, §,,=236% |

2900L 2 ged 50,000 h at 320°C i J=T8440a0% 'Aged 50,000 h at 320°C '

I Room temperatu re 290°C

R | Predicted Aged. A - | 1
NE r e - i Predicted Unaged E
S 1500 ] - = 45408204 ]
= r ] r Predicted Aged ! h ]
- r 1 C J =399.74a040 ; ]
1000~ ] L N e — ]
500__ . Spiecimen No. ] i Specimen No. ]
B Predlcied Saiu;a;:on A 691-038 ] A 691-038 1
. J =503.7Aa ; <& 692-05V | J = 357.7Aa0.38 o 692-08V ]
' P P | Irerrdrrrrdrreedd i A I TN R T TR ]

Q0 2 4 6 8 10 0 2 4 6 8 10

Crack Extension {mm}) Crack Extension (mm)

Figure 33. Experimental and estimated fracture toughness J-R curves at RT and 290°C
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Figure 35. Experimental and estimated fracture toughness J-R curves at RT and

290°C for an ANL heat of a static cast CF-8M plate.
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Figure 36. Experimental and estimated fracture toughness J-R curves at RT and 290°C
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3.2 Estimation of the Thermal Embrittlement of CASS Materials of Unknown
Composition: Lower-Bound Values

The ANL methodology provides the expressions for estimating fracture toughness J-R curves of
unaged and aged CASS materials as a function of the estimated RT Charpy-impact energy;
which, in turn, is determined from the a material parameter that depends on the chemical
composition and ferrite content of the material. However, for convenience, lower bound J-R
curves are defined as a function of ferrite content in the CASS material. These curves bound at
least 95% of the data. The fracture toughness J-R curve is defined by the power-law
relationship Jq = CAa", where Jqyis deformation J per ASTM Specifications E 813-85 and E
1152-87, Aa is a crack extension, and C and n are constants. The coefficient C and exponent n
for the lower-bound fracture toughness J-R curve are determined from the bounding value of
Cysat for a range of ferrite contents in the CASS material.

First the bounding values of the saturation RT Charpy-impact energy, Cysat, for ferrite contents
<10%, >10-15%, >15-20%, >20-25%, >25-30%, and >30-40% are established for each grade
of CASS material from the plots of estimated Cys4; and ferrite content, as shown in Fig. 39. The
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Figure 39. Correlation between saturation RT Charpy-impact energy
and ferrite content.
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RT Cysqt for the different grades of CASS materials is the lower value determined from the sets
of expressions given in Egs. 18-26. Separate expressions are proposed for CF-8M materials
containing <10% Ni and those containing 210% Ni. The latter are most susceptible to thermal
embrittlement than the other grades.

Note that the estimated and not measured value of RT Charpy-impact energy is used in this
methodology because a value that is representative of a casting would require tests on several
specimens taken from different portions of the casting. This may not be always possible. The
estimated Cysa and the corresponding values of coefficient C and exponent n of the J-R curve
at RT and 290-320°C (550—-608°F) for CF-3, CF-8, and CF-8M with <10 and =210% Ni and
various ranges of ferrite content are listed in Table 4. The estimated lower-bound J-R curves at
RT and at 290-320°C for some of the ferrite ranges, are shown in Figs. 40 and 41, respectively,
for static-cast materials, and in Figs. 42 and 43, respectively, for centrifugally cast material.
These plots are updated versions of Figs. 3 and 4 of NUREG/CR-4513, Rev. 1.16 The lower-
bound fracture toughness J-R curves can be used for completely embrittled CASS materials of
unknown composition.
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Table 4. The lower-bound J-R curve at RT and 290-320°C for aged CASS materials.

Estimated Static Cast Material Centrifugally Cast Material
Material Cvsat Room Temp. 290-320°C Room Temp. 290-320°C
Grade (Jlem?) C n C n C n C n
Ferrite Content >30-40%
CF-3/CF-3A 27 270 0.35 256 0.32 314 0.35 336 0.32
CF-8/CF-8A 22 242 0.31 241 0.29 282 0.31 317 0.29
CF-8M (Ni <10%) 14 49 0.29 71 0.27 60 0.29 89 0.27
CF-8M (Ni 210%) 9 27 0.27 46 0.26 33 0.27 57 0.26
Ferrite Content >25-30%
CF-3/CF-3A 31 292 0.35 267 0.33 340 0.35 351 0.33
CF-8/CF-8A 24 259 0.32 250 0.30 301 0.32 328 0.30
CF-8M (Ni <10%) 17 65 0.30 87 0.28 80 0.30 109 0.28
CF-8M (Ni 210%) 11 35 0.28 55 0.26 43 0.28 69 0.26
Ferrite Content >20-25%
CF-3/CF-3A 37 321 0.36 281 0.34 373 0.36 369 0.34
CF-8/CF-8A 28 279 0.33 260 0.30 325 0.33 342 0.30
CF-8M (Ni <10%) 21 90 0.31 111 0.28 111 0.31 139 0.28
CF-8M (Ni 210%) 13 a7 0.29 70 0.27 59 0.29 87 0.27
Ferrite Content >15-20%
CF-3/CF-3A 46 360 0.38 298 0.35 418 0.38 392 0.35
CF-8/CF-8A 34 307 0.33 274 0.31 357 0.33 360 0.31
CF-8M (Ni <10%) 29 135 0.32 149 0.29 167 0.32 187 0.29
CF-8M (Ni 210%) 18 70 0.30 92 0.28 86 0.30 115 0.28
Ferrite Content >10-15%
CF-3/CF-3A 61 416 0.39 323 0.36 484 0.39 424 0.36
CF-8/CF-8A 43 346 0.34 292 0.32 403 0.34 384 0.32
CF-8M (Ni <10%) 43 198 0.33 228 0.30 247 0.33 266 0.30
CF-8M (Ni 210%) 26 115 0.31 132 0.29 142 0.31 166 0.29
Ferrite Content <10%
CF-3/CF-3A 91 512 0.41 361 0.39 595 0.41 474 0.39
CF-8/CF-8A 60 411 0.36 320 0.33 478 0.36 421 0.33
CF-8M (Ni <10%) 74 285 0.35 286 0.32 357 0.35 332 0.32
CF-8M (Ni 210%) 43 199 0.33 229 0.30 249 0.33 267 0.30

3.3 Screening Criteria for Susceptibility of CASS Materials to Thermal
Embrittlement

An EPRI report on the thermal aging embrittlement of CASS components proposed using the

J value at a crack extension of 2.5 mm (0.1 in.), J, 5, to differentiate between nonsignificant and
potentially significant reductions in the fracture toughness of thermally aged CASS materials.>0
Flaw tolerance evaluations were presented in Appendices A and B of the EPRI report to support
the choice of a threshold value of J, 5 = 255 kJ/m2 (1456 in.-Ib/in.2). The NRC staff found that
the use of J, 5 = 255 kJ/m?2 as a screening approach for the fracture toughness of CASS
materials is acceptable.®® The screening criteria to determine the susceptibility of CASS
components to thermal aging embrittlement are outlined in Table 1.51

The expressions presented in Fig. 39 and the methodology described in Section 2.4.3 for

estimating the corresponding fracture toughness J-R curve for the RT Charpy-impact energy
trend curves in Fig. 39 can be used to check the validity of the ferrite content criteria given in
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Figure 41.
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Table 1. The saturation J, 5 corresponding to the RT Charpy-impact energy trend curves in

Fig. 39 are shown in Figs. 44 and 45 for static-cast and centrifugally cast materials, respectively.
In these figures, the updated screening criterion is represented by the ferrite content when the
J, 5 value decreases below the acceptable threshold value of 255 kJ/m?2.

The results indicate that for CF-3 and CF-8 materials, values of J, 5 for both static-cast and
centrifugally cast materials are significantly above the threshold value of 255 kJ/m2. Therefore,
the screening criterion that states that the reduction in fracture toughness due to thermal
embrittlement of centrifugally cast CF-3 and CF-8 materials is "nonsignificant" is valid, and the
criterion that the reduction in the fracture toughness of static-cast CF-3 and CF-8 materials is
"significant” only for materials with more than 20% ferrite is a conservative criterion.
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Figure 44. Saturation J at a 2.5 mm crack extension as a function of the ferrite
content for static-cast CF-3, CF-8, and CF-8M CASS materials.
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Figure 45.
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Saturation J at a 2.5 mm crack extension as a function of the ferrite
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The results for CF-8M steels with <10% Ni indicate that the J, 5 values are above the 255 kJ/m?2
threshold value for static-cast materials with ferrite contents of <16% and for centrifugally cast
materials with ferrite contents of <19%. Therefore, the existing criterion that the reduction in the
fracture toughness of static-cast CF-8M materials containing <10% Ni is "significant" only for
materials with more than 14% ferrite is also a conservative criterion. However, for centrifugally
cast CF-8M materials containing <10% Ni, the threshold ferrite content above which the
reduction in the fracture toughness of the material is considered "significant" should be
decreased from 20% ferrite to 19% ferrite.

Similarly for CF-8M steels with 210% Ni, the J, 5 values are above the 255 kJ/m?2 threshold
value for ferrite contents of <11% for static-cast materials and <13% for centrifugally cast
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materials. Therefore, for CF-8M materials containing 210% Ni, the threshold ferrite content
above which the reduction in the fracture toughness is considered "significant” should be
decreased from 14% ferrite to 11% ferrite for static-cast materials and from 20% ferrite to 13%
ferrite for centrifugally cast materials. The revised screening criteria for the thermal-aging
susceptibility of CASS CF-3, CF-3M, CF-8, and CF-8M materials are given in Table 5. The
screening criteria for the thermal-aging susceptibility of CASS materials that have been changed
are as follows.

() The criterion for static-cast and centrifugally cast CF-8M materials with 210% Ni.
(i) The criterion for centrifugally cast CF-8M materials with <10% Ni.

Table 5. Updated screening criteria for thermal-aging susceptibility of CASS CF-3, CF-8,
and CF-8M materials.

Mo Content (wt.%) Casting Method Ferrite Content (%) | Susceptibility Determination

High (2.0-3.0) Static <14 (<11) Not susceptible

with <10% Ni (=10% Ni) >14 (>11) Potentially susceptible
Centrifugal <19 (<13) Not susceptible

>19 (>13) Potentially susceptible
Low (0.5 max.) Static <20 Not susceptible

>20 Potentially susceptible
Centrifugal All Not susceptible

3.4 Estimation of Tensile Flow Stress

This section is essentially the same as Section 3.4 of NUREG/CR-4513 Rev. 1. The tensile flow
stress of aged CASS materials can be estimated from correlations between the ratio of the
tensile flow stress of aged and unaged materials and a normalized aging parameter. Based on
the analysis described in NUREG/CR-6142, the ratio of the tensile flow stress (Ry) of aged and
unaged CASS materials (cfaged/Srunaged) IS plotted as a function of a normalized aging parameter
(P-06+2.9)in Fig. 46. Flow stress is defined as the mean of the 0.2% vyield strength and
ultimate strength, and the aging parameter is normalized with respect to a 6 value of 2.9. In
NUREG/CR-4513, Rev. 1, the aging parameter P was determined from Eq. 11 and experimental
values of activation energy. The correlations between R; and the normalized aging parameter
used for estimating flow stress were obtained by subtracting the value of the standard deviation
for the fit to the data from the best-fit curve. At both RT and 290°C, the Ry increases with
thermal aging; the increase in the flow stress of CF-3 steels is the smallest and the increase in
the flow stress of CF—8M steels is the largest.

The tensile flow stress of aged CASS materials can be estimated from the initial tensile flow
stress and the correlations given in Fig. 46. Note that the x-axis in these plots is reduced to P
for a 0 value of 2.9. At RT, the tensile-flow-strength ratio, Rt = (Gtaged/Cfunaged) for CF-3 steel is
given by

R¢=0.90 + 0.05P (1.00 = R¢=1.10); (47)

for CF-8 steel, it is given by
R¢=0.84 + 0.08P (1.00 = Rf £1.16); (48)
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and for CF-8M steel, it is given by
R¢=0.77 + 0.10P (1.00 = Rf<1.19). (49)

At 290°C (554°F), the Rf for CF-3 steel is given by
R = 0.87 + 0.06P (1.00 = Rf <1.08); (50)

and for CF-8 steel, it is given by
Rf=0.83 + 0.09P (1.00 < R¢<1.14); (51)

and for CF-8M steel, it is given by
Rf=0.69 + 0.14P (1.00 = Rf=1.24). (52)

The minimum and maximum values of the ratio R; are given for each grade of steel and each
temperature; a minimum or a maximum value is assumed, respectively, when the calculated
ratio is smaller than the minimum ratio or greater than the maximum ratio.

Equations 50-52 are valid for service temperatures between 280 and 330°C (536 and 626°F)
and ferrite contents of >7% for CF-8M steel and >10% for CF-3 and CF-8 steels. Thermal aging
has little or no effect on the tensile strength of CASS materials with low ferrite content. The
available database is inadequate for estimating the tensile properties at service temperatures of
<280°C (<536°F). The estimated values of tensile flow stress at 290°C (554°F) and at RT for
various heats of aged CASS materials are obtained by first determining the aging parameter
from Eqg. 11, and activation energy form Eqgs. 14-17 (using a 0 value of 2.9). The tensile flow
stress is then estimated from Egs. 47-52 and the initial flow stress of the material. The fracture
toughness J; values for aged CASS materials is then determined from the estimated J-R curve
and flow stress. Only the chemical composition, the initial Charpy-impact energy, and the flow
stress of the unaged material are used for the estimates. The estimated J,. values show good
agreement with the experimental results; in most cases, the estimated J;; is lower but within
30% of the observed value.16

The data on the tensile properties of CASS materials indicate that the increase in yield strength
due to thermal aging is much lower than the increase in ultimate strength. At RT, the tensile-
yield-strength ratio Ry = (Gyaged/Gyunaged) for CF-3 steel is given by

Ry = 0.873 + 0.048P (1.00 = R, =1.07); (53)

for CF-8 steel, it is given by
Ry =0.798 + 0.076P (1.00 = Ry =1.10); (54)

and for CF-8M steel, it is given by
Ry =0.708 + 0.092P (1.00 = R, =1.10). (55)

At 290°C (554°F), the tensile-yield-strength ratio Ry = (Gtaged/Gtunaged) for CF-3 steel is given by
Ry = 0.844 + 0.058P (1.00 = R, =1.05); (56)

for CF-8 steel, it is given by
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Ry = 0.788 + 0.086P (1.00 < R, £1.09); (57)

and for CF-8M steel, it is given by
Ry =0.635 + 0.129P (1.00 =R, =1.14). (58)

The minimum and maximum values of the tensile-yield-strength ratio Ry are given for each
grade of steel and temperature. Equations 56-58 are valid for service temperatures between
280 and 330°C (536 and 626°F) and ferrite contents of >7% for CF-8M steel and >10% for CF-3
and CF-8 materials. Similar to the flow stress estimations, the aging parameter and activation
energy are obtained from Egs. 11 and 14-17 and by using 6 value of 2.9. Tensile yield strength
is then estimated from Egs. 56-58 and the initial yield strength of the material. The results
indicate that the estimated values are conservative for most material and aging conditions.

The engineering stress versus strain behavior of aged CASS materials can also be obtained
from the estimated flow stress.18 The engineering stress-versus-strain curve is expressed by
the Ramberg-Osgood equation

£ (o) (6\n1

0”05 o) >

where ¢ and ¢ are engineering stress and strain, respectively; g is an arbitrary reference
stress, often assumed to be equal to the flow or yield stress; the reference strain gg = 6o/E; o1
and n; are Ramberg-Osgood parameters; and E is the elastic modulus. The Ramberg-Osgood
equation can be rearranged to the form

Ee-c (o‘\m 50
_a1LG_fJ , (60)

which is more convenient for fitting stress-versus-strain data; o1 can be determined at o/cf =1
and n; can be obtained from the slope of the log-log plot of Eq. 60. The parameter ny is
different for the three grades of CASS materials but does not depend on the aging condition.
The parameter a4 decreases with aging and shows good correlation with the flow stress of. For
engineering stress-versus-strain curves up to 5% strain, the Ramberg-Osgood parameters at
RT for CF-3 materials are given by

Gy

oy = 143.9 — 0.2670¢ (N1 = 6.1); (61)

for CF-8 steel, it is given by
oy = 157.9 — 0.300c¢ (ny =6.4); (62)

and for CF-8M steel, it is given by
oy = 50.9 - 0.0724cf (ny =5.6). (63)

At 290°C (554°F), the Ramberg-Osgood parameters for engineering stress-vs.-strain curves up
to 5% strain, for CF-3 materials, are given by
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oy = 102.1 — 0.2350% (N1 = 6.2); (64)

for CF-8 steel, it is given by
o1 = 153.3 — 0.3730f (ny =7.2); (65)

and for CF-8M steel, it is given by
oy = 145.9 — 0.3140f (ny = 6.6). (66)

Similar correlations have also been developed for stress-versus-strain curves up to 15% strain
or up to the ultimate strength.18
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4 USE OF METHODOLOGY IN ASME CODE, SECTION XI

This section is an addition to the report; it covers a topic that was not included in NUREG/CR-
4513 Rev. 1. The estimated lower-bound fracture toughness J-R curves described in
NUREG/CR-4513, Rev. 1 for thermally aged CASS materials were compared with the fracture
toughness J-R curve used in the 1989 edition of the ASME Section XI, Subsection IWB-3640
“Evaluation Procedures and Acceptance Criteria for Austenitic Piping,” for evaluation of flux
welds.49 The comparison is shown in Fig. 47 for static-cast and centrifugally cast CASS
materials. The results show that the lower-bound fracture toughness of thermally aged CASS
material with up to 25% ferrite is similar to the fracture toughness J-R curve used in Subsection
Xl IWB-3640 to evaluate SAWs. The procedures in ASME Section XI Subsection IWB-3640
reduce the load bearing capacity of the SS component to account for the reduced fracture
toughness of the SAWSs, based on elastic-plastic fracture mechanics analyses.89.90 Because
the lower-bound fracture toughness of thermally aged CASS steel is similar to the fracture
toughness of SAWSs used in the elastic-plastic fracture mechanics analyses of the 1989 edition
of ASME Section XI IWB-3640, the procedures in IWB-3640 for SAWSs are directly applicable to
CASS materials.
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Figure 47. Comparison of the lower-bound J-R curve at 290°C for aged static-cast
CF-8M material estimated by using the NUREG/CR-4513, Rev. 1,
expressions, with the SAW data used to develop ASME Section XI,
Subsection IWB-3640 evaluations.

Furthermore, since the flaw evaluation is based on the unaged material ultimate strength, this
approach would be conservative. Experimental data indicate that the flow stress (i.e., half of the
sum of the ultimate and yield strengths) is increased by about 10%, 14%, and 24% for CF-3 and
CF-3A, CF-8 and CF-8A, and CF-8M materials, respectively.16 A higher ultimate stress would
increase the load-bearing capability of a component. Therefore, the procedures developed in
Subsection IWB-3640 for SAWSs have been accepted for evaluating flaws in thermally aged
CASS materials to address aging degradation concerns associated with license renewal
applications.#® The use of the IWB-3640 SAW procedures for evaluating flaws in thermally aged
CASS components is considered conservative because, (a) the lower-bound fracture toughness
of thermally aged CASS is similar to the fracture toughness used in IWB-3640 to evaluate SAW,
(b) the actual fracture toughness of a thermally aged CASS component in a U.S. NPP would
likely be higher than the ANL lower-bound fracture toughness, and (c) the thermally aged
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components would be able to withstand more loads because of the increased ultimate strength
resulting from thermal aging.

The ASME Section XI Subsection IWB-3641 “Evaluation Procedures Based on Flaw Size”
states; Evaluation procedures based on flaw size may be used subject to the following:

(@) The evaluation procedures and acceptance criteria are applicable to austenitic pipe NPS 4
or greater and portions of the adjoining pipe fittings within a distance of Vrt of the weld
centerline (where r is the nominal outside radius and t is the nominal thickness of the pipe).

(b) The evaluation procedures and acceptance criteria are applicable to pipe and pipe fittings
(and associated weld materials) which:
1. are made of wrought stainless steel, Ni-Cr-Fe alloy, or cast stainless steel (with ferrite
level less than 20% or 20FN;
2. have a specified minimum yield strength less than 45 ksi; and
3. have S, values given in Table I-1.2 of Section Il

(c) For cast stainless steel materials, adequate toughness for the pipe to reach limit load after
aging shall be demonstrated.

The methodology and evaluation procedures are described in Subsections IWB-3641.1 and
IWB-3641.2, respectively. A flaw growth analysis is performed on the detected flaw to
determine the maximum growth during a specified evaluation period. The flaw evaluation is
based on the analytical procedures described in Section XI Nonmandatory Appendix C to
determine the critical flaw parameters. The maximum allowable flaw depth of a circumferential
flaw under normal operating conditions is calculated from Table IWB-3641-1 for flaws in base
metal and gas metal-arc weld (GMAW) and gas tungsten-arc weld (GTAW), and from

Table IWB-3641-5 for flaws in SAW and shielded metal arc weld (SMAW). Similarly, the
maximum allowable flaw depth of a circumferential flaw under emergency and faulted conditions
is calculated from Table IWB-3641-2 and IWB-3641-6, respectively for base metal and
GTAW/GMAW, and SAW/SMAW.

Thus, the use of the ASME Section XI, Subsection IWB-3640 (the 1989 edition), SAW
procedures for evaluating flaws in thermally aged CASS components is considered to be a
“screening” step to determine whether a further, detailed flaw evaluation that accounts for actual
plant-specific material properties should be performed. The procedures in IWB-3640 for SAWs
have been available since the winter 1985 Addenda for Section Xl, and they have been applied
successfully by utilities without resulting in unnecessary component repairs or replacements.
However, note that the ANL methodology of NUREG/CR-4513, Rev. 1, is not applicable to
CASS CF-8M materials containing >25% ferrite or to CF-8M materials containing more than
trace amounts of Nb. Even then, the proposed flaw evaluation procedures, which are based on
the lower-bound fracture toughness of thermally aged CASS materials, are expected to be
sufficient in the vast majority of cases.

In this report, the plots in Fig. 47 have been updated to include a comparison of the new lower-
bound fracture toughness J-R curve presented in Figs. 40 and 42 with the J-R curve of SAWs
used to develop the ASME Section Xl, Subsection IWB-3640 evaluations. The results for static-
cast and centrifugally cast CF-8M materials containing <10% Ni or 210% Ni, are shown in

Figs. 48 and 49, respectively. These plots indicate that the use of the procedures in IWB-3640
for SAWSs for evaluating flaws in aged CASS materials may not be adequate for CF-8M
materials with 210% Ni and containing >10% ferrite, particularly for static cast material.
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Similarly, the IWB-3640 procedure for SAWs may not be adequate for CF-8M materials with
<10% Ni and containing >15% ferrite static cast material and 20% ferrite for centrifugally cast
materials. The lower-bound J-R curves listed in Table 4 and shown in Figs. 40-43 should be
used for these materials.
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Figure 48. Comparison of the lower-bound J-R curve at 290°C for aged static-cast
CF-8M material estimated by using the updated expressions, with the
fracture toughness of SAW data used to develop ASME Section XI,
Subsection IWB-3640 evaluations.
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Figure 49. Comparison of the lower-bound J-R curve at 290°C for aged centrifugally
cast CF-8M estimated by using the updated expressions, with the fracture
toughness of SAW data used to develop ASME Section Xl, Subsection
IWB-3640 evaluations.

4.1 Current Editions of the ASME Code Section Xl

As discussed above, the procedures developed in the 1989 edition of the ASME Code
Subsection IWB-3640 for SAWSs have been accepted for evaluating flaws in thermally aged
CASS materials to address aging degradation concerns associated with license renewal
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applications.49 Although the revised lower-bound fracture toughness J-R curves shown in

Figs. 48 and 49 indicate that the Subsection IWB-3640 flaw evaluation methodology may not be
applicable to some heats of CF-8M materials, particularly those containing 210% Ni, the IWB-
3640 procedures are applicable for CF-3, CF-8, and some heats of CF-8M materials. However,
in 1996, Tables IWB-3641-5 and 6 were deleted, Subsection IWB-3641.2 “Evaluation” item

(c) was revised, and the maximum allowable flaw depth are now calculated using Tables IWB-
3641-1 and 2 for normal operating conditions and emergency and faulted conditions
respectively. In addition, Tables IWB-3641-1 and 2 were revised to include Z factors load
multipliers that are used to modify stress ratio for performing flaw evaluations of austenitic welds
fabricated by SMAW and SAW. The revised flaw evaluation methodology is applicable to cast
stainless steels, with a minimum yield strength not greater than 310 MPa (45 ksi). However, the
methodology does not address thermal aging effects for CASS materials.

Thus, in 1995 and later versions of the ASME Section X| Subsection IWB-3640 evaluation
procedures and acceptance criteria for austenitic piping, determination of the allowable flaw
depth based on Tables IWB-3641-5 and 6 has been replaced by the Z factor load multiplier
approach to modify the stress ratio for SMAW and SAW flaw evaluations. However, the
applicability of the SMAW/SAW flaw evaluations using the Z factor load multiplier approach to
flaw evaluations of thermally aged CASS materials needs to be examined.
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5 COMBINED EFFECTS OF THERMAL AND
NEUTRON EMBRITTLEMENT

This section is an addition to the report; it covers topics that were not included in NUREG/CR-
4513 Rev. 1. Reactor core internal components are subjected to prolonged periods of both
elevated temperatures and neutron irradiation. The thermal aging and neutron irradiation
embrittlement of CASS®-18 and wrought austenitic SSs36-47 have been investigated individually,
but the possibility of a combined interaction between the thermal and neutron embrittlement of
materials with a duplex structure is an issue associated with reactor core internal components
that has been of concern. Recent data indicate that concurrent exposure to elevated
temperatures and high neutron fluence levels could result in a combined effect, in which the
service-degraded fracture toughness would be reduced from the levels predicted independently
for either of the two mechanisms.?1.92 Furthermore, for SSs with a duplex structure, neutron
embrittlement of the ferrite phase occurs much faster than it does for the austenitic phase. The
irradiation temperature is an important factor in establishing the extent of embrittlement of the
ferrite.

As discussed earlier, the fracture toughness of unaged and unirradiated wrought SSs and
CASS materials fall in Category lll, with J,. being above 150 kJ/m2 (857 in.-Ib/in.2). Fracturing of
these materials occurs after a stable crack extension at stresses well above the yield strength.
However, neutron irradiation can degrade the fracture toughness of these materials to the level
of Category Il materials (i.e., J;c in the range of 30—150 kJ/m2 [171-857 in.-Ib/in.2]) or even
Category | materials (i.e., Jic < 30 kJ/m2 [< 171 in.-Ib/in.2]). Therefore, failure in neutron-
irradiated materials may occur without general yielding, and either EPFM or LEFM is used for
analyzing structural integrity and developing inspection guidelines for components fabricated
from CASS materials. For wrought austenitic SSs and associated welds, the effect of neutron
irradiation on the fracture toughness of these materials is estimated by defining a lower-bound
curve expressed in terms of the fracture toughness parameters, such as the J,. value or
coefficient C of the J-R curve, as a function of the neutron dose (in dpa).39:42

A list of CASS components in LWR core internals and their expected neutron dose during

60 years of service is presented in Table 6.4493 Most of the components are fabricated from
CF-8 material. The control rod guide tube (CRGT) spacer casting in Babcock & Wilcox (B&W)
PWRs is fabricated from CF-3M. In General Electric (GE) BWRs, the CRGT base and
low-pressure core injection (LPCI) coupling are fabricated from CF-3 or CF-8 materials. In the
Combustion Engineering PWR, only the core support columns are fabricated from CF-8
material.

In an earlier study at ANL (NUREG/CR-7027),47 a critical assessment of the neutron
embrittlement of wrought austenitic SSs and CASS materials was performed to establish the
effects of material parameters (e.g., composition, thermo-mechanical treatment, microstructure,
microchemistry, yield strength, stacking fault energy) and environmental parameters (e.g., water
chemistry, irradiation temperature, dose, dose rate) on neutron embrittlement.46.47 The results
were used to (a) define a threshold fluence level above which irradiation effects on the fracture
toughness of cast and wrought austenitic SSs are significant and (b) evaluate the potential for
neutron embrittlement of these materials under LWR operating conditions. The results indicated
that for the same irradiation conditions, the fracture toughness of thermally aged CASS material
is lower than that of the heat-affected zone (HAZ) of SS base materials, which, in turn, is lower
than that of solution-annealed SS base materials.
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The combined effects of thermal aging and neutron irradiation embrittlement were also
discussed.#6:47 However, the fracture toughness data available at that time were inadequate to
accurately evaluate the combined effects. The significant results from the earlier study

(i.e., NUREG/CR-7027) and some recent studies on potential combined effects of thermal and
neutron embrittlement are summarized below.

Table 6. LWR core internal components made of CASS materials and maximum neutron
dose after 60 years of service (Refs. 44,93).

60-Year
Component Material Dose (dpa)
Babcock & Wilcox (B&W) PWR
Control rod guide tube (CRGT) spacer castings CF-3M Not available
Core support shield outlet nozzle CF-8 Not available
Incore monitoring instrumentation guide tube spider CF-8 Not available
Combustion Engineering (CE) PWR
Core support columns CF-8 0.15-1.50
Control element assembly (CEA) shrouds CPF-8/CF-8 <0.15
CEA shroud base CF-8 0.15-1.05
Modified CEA shroud expansion shaft guides CF-8 <0.15
Westinghouse PWR
CRGT assembly lower flanges CF-8 1.05-1.50
Mixing devices CF-8 1.05-1.50
Upper head injection flow column base CF-8 1.05-1.50
Upper support column base CF-8 1.05-1.50
Bottom-mounted instrumentation columns cruciforms CF-8 1.50-7.50
Lower internals assembly lower support casting CF-8 <0.15
Lower internals assembly column bodies CF-8 1.50-7.50
General Electric (GE) BWR
Orificed fuel support (OFS) CF-8 >0.45
CRGT base CF-3/CF-8 <0.00015
Core spray sparger nozzle elbows CF-8 <0.15
Jet pump transition piece CF-8 >0.45
Jet pump restrainer bracket CF-8 >0.45
Jet pump inlet mixer assembly CF-8 >0.45
Jet pump inlet elbow CF-8 >0.45
Jet pump inlet nozzle CF-8 >0.45
Jet pump diffuser CF-8 >0.45
Low-pressure core injection (LPCI) coupling CF-3/CF-8 <0.75

5.1 Fracture Toughness of Irradiated Austenitic Stainless Steels

Until recently, most of the published experimental data on neutron embrittlement of austenitic
SSs had been obtained on materials irradiated in high-flux fast reactors.9499 In these studies,
the embrittlement of the materials has been characterized in terms of tensile properties, Charpy-
impact properties, and fracture toughness. The fracture toughness of structural materials is
typically characterized by (a) the initiation toughness J,. and tearing modulus T for materials that
fail after substantial plastic deformation (for EPFM analysis) and by (b) the critical stress
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intensity factor K. for materials that fail after little or no deformation (for LEFM analysis). In
some studies, the power-law J-R curve parameters, coefficient C and exponent n, are also
reported. The fracture toughness data have been obtained from compact tension (CT) or
single-edge bend [SE(B)] specimens, and, in a few cases, from chevron notch short rod
specimens. To reduce activity and facilitate handling, small specimens (e.g., =8-mm-thick,
Y-T CT) have been used in several studies. For these specimens, J values above 150 kJ/m1/2
and crack extensions beyond about 1.2 mm are above the validity limits based on ASTM
Specification E 1820-06. However, a comparison of fracture toughness data obtained on

1-T CT and small-sized CT or SE(B) specimens show comparable J-versus-Aa values, even
beyond the ASTM-defined validity limits.47.100 The small specimens yield equivalent J-R curve
data at least for materials with J;. values up to about 300 kJ/m2 and maybe even higher.

Plots of J or K. and Kj as a function of neutron dose are generally used for developing
screening criteria for neutron embrittlement. In ASTM Specification E 1820-06, J,¢ is determined
from the intersection of the best-fit power-law J-R curve with the 0.2-offset line parallel to the
blunting line. The blunting line is defined as

J = mojAa, (67)

where oy is the flow stress, Aa is the crack extension, and the constraint factor m is 2 or a value
determined from the best fit of the experimental data. However, the analysis procedures,
described in the ASTM specifications for J,. determination, are not applicable to austenitic SSs
because of their extremely high toughness, ductility, and strain-hardening ability. The main
difference concerns the expression for the crack-tip blunting line. For austenitic SSs, a value of
2 for m significantly over-predicts the crack extension due to crack blunting; therefore, it yields a
non-conservative value of J;..48.86 For austenitic SSs, a value of 4 for m better defines the
blunting line. The constraint factor, M, which relates J to the crack tip opening displacement
(CTOD) is given by the expression

J = Mo,(CTOD). (68)

The use of a higher value for M in Eqg. 67 is consistent with the expected variation of M and o¢
with strain hardening. The factor M is 1 for materials with intermediate to high strengths and low
strain hardening, and it is 2 for materials with low strengths and high strain hardening, such as
austenitic SSs. For the latter, the yield strength is approximately two-thirds of the flow stress,
and the crack extension associated with blunting is approximately one-third of CTOD.4® Thus,
for such materials, the crack tip blunting line is given by

J = Mo, (CTOD) = 2(20¢/3)(3Aa) = 4ciAa, (69)

That is, Eq. 67 with M = 4. This relationship has been used to determine J,c in most
investigations on neutron embrittlement.49.100 A value of 2 for M has also been used by some
investigators.3® The latter typically yields a higher value of J,. for Category Il materials

(i.e., with a J;c >150 kJ/cm?2). However, the difference in J,; values determined by using values
of M of 2 or 4 is insignificant for Category Il materials (i.e., with a J,; of <100 kJ/cm?2). Because,
it is primarily the cases in which the fracture toughness of irradiated austenitic SSs has been
reduced to Category Il levels that are of interest for embrittlement evaluations, the effect of
differences in the procedure to determine Ji; is likely to be insignificant.

Another factor that may influence the reported values of J; is the use of an effective yield stress
instead of the measured yield stress. The K/size criteria were developed for materials that show
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work hardening; therefore, they may not be applicable for materials irradiated to fluence levels
where, on a local level, they do not strain harden. An effective yield stress, in which the
irradiation-induced increase in yield strength is discounted by a factor of 2 for moderately
irradiated materials19! and by a factor of 3 for highly irradiated materials,192 has been proposed
to define K/size criteria for moderately to highly irradiated materials. Some studies have used
such a yield stress to determine J..190 Because J;; is a measure of fracture toughness at
instability without a significant stable crack extension, the measured yield or flow stress of the
irradiated materials seems more appropriate for J,; determinations. Nevertheless, the choice of
measured or effective yield stress is likely to have an insignificant effect on the measured J,. of
materials with poor fracture toughness.

5.1.1 Fracture Toughness J¢

The effects of neutron exposure (in dpa) on the fracture toughness of austenitic SSs at 25—
427°C (77-842°F) have been investigated for SSs irradiated up to 90 dpa at 90-450°C (194—
842°F) in fast reactors.41.48.103-112 The jrradiation and test temperatures, respectively (with a
few exceptions), were 325°C and 25°C for the data obtained by Kim et al.,*1 90-250°C and 25—
250°C for the data obtained by Alexander et al.,196 and 100-155°C and 125°C for the data
obtained by Sindelar et al.197 As discussed earlier in NRC topical reports NUREG/CR-6960100
and NUREG/CR-7027,47 the fast reactor data show substantial decrease in toughness at
exposures of 1-10 dpa, and little or no further reduction in toughness beyond 10 dpa. The
degradation in fracture properties appear to saturates at a J; value of ~30 kJ/m2 (171 in.-Ib/in.2);
that is, a Ky value of 75 MPa m¥/2 (68.2 ksi in.1/2) 47.100 |n addition, the failure mode changes
from dimple fracture to channel fracture.

The fracture toughness J,. values for wrought and cast SSs irradiated in LWR,36-48,56,94-116 gre
shown in Fig. 50. The Westinghouse data for a heat of CASS CF-8 material irradiated to about
6—12 dpa are not included in the figure, because the irradiations were carried out in a fast
reactor and the tests were conducted at RT. As discussed below, fracture toughness at reactor
temperatures is expected to be lower. The fracture toughness data trend for LWR-irradiated
materials is similar to the trend for the fast reactor data. Most of the fracture toughness J;.
values for austenitic SSs irradiated in LWRs (288-316°C [550-601°F]) fall within the scatter
band of the data obtained on materials irradiated in fast reactors, even though the LWR
irradiations were at lower temperatures. However, the extent of embrittlement and the rate of
decrease in fracture toughness vary among the various materials. Typically, for the same
irradiation conditions, the fracture toughness of thermally aged CASS material is lower than the
toughness of HAZ material, and that, in turn, is lower than the fracture toughness of solution-
annealed SSs.

The Japan Power Electric Engineering and Inspection Corp. (JAPEIC) data for Type 304 SS
irradiated to 3.0-5.3 dpa at LWR temperatures show very poor fracture toughness.3’ The Ji.
values are below the lower-bound curve for the fast reactor data. For the material irradiated to
4.5-5.3 dpa (shown as "+" in Fig. 50), 9 of 10 CT specimens showed no ductile crack extension,
and the K. values were 52.5-67.5 MPa m/2 (47.7-61.4 ksi in12).37 In Fig. 50, the lowest
fracture toughnesses with K. or K;. values in the range of 36.8—-40.3 MPa m1/2 (33.5—

36.6 ksi in.1/2) are for a Type 347 SS irradiated to 16.5 dpa in a PWR37 and for a Type 304 SS
irradiated to 7.4-8.4 dpa in a BWR.45

The material’s orientation also has a strong effect on fracture toughness. Fracture toughness

J-R tests and microstructural and microchemistry characterization have been performed on
Types 304 and 304L control-rod and top guide materials irradiated to 4.7—12.0 dpa in a BWR.
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Figure 50. Change in fracture toughness Jc as a function of neutron exposure
for LWR irradiated austenitic SSs. Dashed lines represent the scatter
band for the fast reactor data on SSs irradiated at 350-450°C (Refs. 36—
40,42-48,56,94,100).

All materials consistently show lower fracture toughness in the T-L (transverse-longitudinal)
orientation than in the L-T orientation (shown as isosceles triangles with their bases to the left or
right, respectively, for T-L and L-T orientations).3° The fracture toughness K. values are lower
than the limiting value of 55 MPa m/2 (50 ksi in.1/2) that has been proposed by industry for flaw
tolerance evaluations of irradiated austenitic SSs.38:39 The Type 304 control-rod material
irradiated to 7.4—8.4 dpa, show poor fracture toughness (Jc is 40 kJ/m2 in L-T orientation and
7.5 kd/m2 in the T-L orientation). Microstructural characterization3® show a fine distribution of
the y’ phase with sizes in a range of 2-10 nm (average of 4.4 nm), and the density is 1-3 x

1022 m-3. The y' phase is not observed in the Type 304 top guide material; it might influence the
fracture toughness of these materials. The y' phase has been observed at dose levels above

4 dpa in cold worked (CW) Type 316 SS irradiated under the PWR conditions.115

The lower fracture toughness along the T-L orientation has been attributed to the presence of
stringers consisting of long, narrow particles oriented in the rolling direction. This microstructure
results in a long, narrow quasi-cleavage structure parallel to the crack advance, thereby
accelerating the crack advance.3? The formation of the y’ phase due to changes in the
microchemistry of the material caused by neutron irradiation appears to play an important role in
the neutron embrittlement of austenitic SSs. The low J,. of this material might be considered a
special case of materials containing a high density of particles aligned in the rolling direction.
Nonetheless, these results show that irradiated austenitic SSs, particularly those with material
compositions that promote the formation of the y’ phase, can have very low fracture-toughness
values. The contributions that additional precipitate phases, voids, and cavities can make to
fracture toughness need to be further investigated.
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5.1.2 Fracture Toughness J-R Curve

Fracture toughness J-R curve data have been obtained for Types 304, 304L, and 316L SSs,
including weld HAZs, and CF-3, CF-8, and CF-8M CASS materials irradiated in LWRs up to
about 14 dpa,37-47.100 and irradiated in fast reactors to much higher dose levels. The change in
the fracture toughness J-R curve with the neutron dose for Type 304 SS irradiated under LWR
conditions and tested at reactor operating temperatures is shown in Fig. 51. The decrease in
fracture toughness is quite rapid up to about 6 dpa, and the toughness continues to decrease
moderately at higher dose levels. The effects of various parameters (e.g., material type and
heat treatment; test and irradiation temperatures; neutron energy spectrum, flux, dose) are
discussed next.
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Figure 51. Fracture toughness Ji; as a function of neutron exposure for SSs
(Refs. 45,100).

5.1.2.1 Irradiation Conditions

Fast reactor irradiations were at fluxes and temperatures higher than those typically observed in
LWRs and had a different spectrum; the irradiation temperatures were 350-427°C (662—801°F).
To accurately determine the effects of the neutron spectrum, flux, and temperature on the
fracture properties of these materials, data on the same heat of material irradiated in a fast
reactor and in an LWR to a comparable neutron dose are needed, but such data are not
available. Although the general data trends appear to be similar for fast reactor irradiations and
LWR irradiations, the tensile property data indicate that the tensile strength is higher and the
ductility is lower for the BWR-irradiated materials than for the materials irradiated in fast
reactors.47.100 However, the existing data are inadequate to determine the individual
contributions of the irradiation temperature, flux, and energy spectrum to the degradation of
fracture properties in irradiated austenitic SSs. Therefore, fast reactor data should be used only
for establishing data trends and not for establishing the extent of embrittlement.

5.1.2.2 Material Type

Most of the J-R curve data on LWR-irradiated austenitic SSs have been obtained for Type 304
and 304L SSs. Data on Type 316, 316L, 316CW, and 347 SSs are very limited. Similarly, there
have been only a few J-R curve tests on LWR-irradiated weld HAZ materials and CASS
materials. Some differences in the fracture toughness data trends appear for the various
grades of wrought austenitic SSs, but these differences may be artifacts of the limited data. For
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example, the heat-to-heat variation for a particular grade may be comparable to the apparent
differences between grades in the current data. A few select data from Fig 50 on wrought
Types 304, 316, 304L, and 316L SS, Type 304/304L HAZ material, and sensitized Type 304
SS, are plotted in Fig. 52. Note that different symbol colors are used for the low-C (green) and
high-C (orange) grades of SSs. The results indicate that the toughness of the high-C grades
decreases faster than that of the low-C grades. There is little or no effect of sensitization
treatment for high-C Type 304 SS. In addition, for the same irradiation conditions, the fracture
toughness of the weld HAZ materials is lower than that of the solution-annealed materials.
Example of fracture toughness J-R curves for irradiated, sensitized SS, SS weld HAZ material,
and CASS CF-8M material, are shown in Fig. 53. However, these results are based on very
limited data.
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Figure 52. Change in fracture toughness Ji; for a select data set as a
function of neutron exposure for LWR irradiated austenitic
SSs (Refs. 37-40,42,43,45-47,100).

The available data indicate that although the fracture toughness of unirradiated CW steels is
lower than that of unirradiated solution-annealed steels, the decrease in the toughness of CW
steels with neutron exposure is lower than and the J; at saturation is higher than those values
for irradiated solution-annealed steels.#’ However, the available data for CW steels are from
fast reactor irradiations at relatively high temperatures of 400-427°C (752—800°F). The
saturation J;. for CW SSs is likely to be lower for irradiations at LWR operating temperatures
(i.e., 290-320°C [554—608°F]) and the differences may not be significant.

Unirradiated, thermally aged CASS materials have a lower fracture toughness than do wrought
austenitic SSs, and their fracture toughness generally decreases more rapidly with neutron
exposure than does that of solution-annealed materials. However, the existing data indicate
that the saturation toughness for the CASS materials is not significantly different from that of
solution-annealed SSs; the same bounding curve for Jjc is applicable for both wrought austenitic
SSs and CASS materials. Although CF-8 or CF-3 materials are used in the construction of
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LWR core internals, in the ANL study, initially, the only data for LWR-irradiated CASS were data
on CF-8M material. The reason was that significant amounts of experimental data from several
heats of CF-3/CF-8 material are needed to accurately establish the lower-bound fracture
toughness, whereas a few tests on CF-8M material can provide the worst-case value of fracture
toughness for CF-3/CF-8 materials.

5.1.2.3 Test Temperature

The fracture toughness of unirradiated austenitic SSs is known to decrease as the test
temperature is increased. The change in the J. of irradiated SSs as a function of test
temperature is plotted in Fig. 54 for several grades of SSs and welds irradiated in LWRs and
fast reactors. The results indicate that the fracture toughness of austenitic SS welds is lower
than that of wrought SSs. For example, the J. values of a 308L weld irradiated to 0.7 dpa les
then 200 kJ/m2, and the value is slightly higher at 250°C than at RT. The results also indicate
that for wrought SSs, the fracture toughness of materials irradiated to relatively low dose

(<5 dpa) decreases with increasing test temperature in most cases. However, for steels
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irradiated to more than 12 dpa, the test temperature has little effect on fracture toughness. Note
that at neuron dose of 12 dpa, the toughness value is already low, which makes it difficult to
discern definitive trends. The data also indicate differences in the fracture morphology of highly
irradiated materials. At temperatures above 230°C (446°F), the failure mode is predominantly
channel fracture, characterized by a faceted fracture surface. It is associated with highly
localized deformation along a narrow band of slip planes, in which the initial dislocation motion
along the narrow band clears away the irradiation-induced defect structure, creating a defect-
free channel that offers less resistance to subsequent dislocation motion. The localization of the
deformation ultimately leads to channel failure.

5.1.2.4 Test Environment

Nearly all of the existing fracture toughness data have been obtained from tests in air and on
specimens that were fatigue precracked at relatively low load ratios (typically 0.1-0.2) in RT air.
However, in reactor core components, cracks are initiated primarily by SCC and have
intergranular morphology, whereas the fatigue precracks in fracture toughness tests are always
transgranular). In addition, the corrosion/oxidation reaction could influence fracture toughness.
For example, hydrogen generated from the oxidation reaction could diffuse into the material and
change the deformation behavior by changing the stacking-fault energy of the material. To
investigate potential effects of the reactor coolant environment on the fracture toughness of
austenitic SSs and CASS materials, J-R curve tests have been conducted on these materials in
a BWR normal water chemistry (NWC) environment and in low-DO, high-purity water or
simulated PWR environments.®1 The effect of the reactor coolant environment on the fracture
toughness of CASS materials was discussed earlier in Section 2.4.3.1.

The results indicate that both NWC BWR and simulated low-DO PWR environment can
decrease the fracture toughness of these materials. However, the effect may be insignificant for
materials with poor fracture toughness (i.e., Jic values of <150 kJ/m?2).46:47.91,100 For example,
the fracture toughness J-R curves for irradiated Type 304L SAW HAZ in air and water
environments are essentially identical (Fig. 55). However, for a CF-8M material aged for more
than 15 years at 350°C, the J-R curve data for specimens precracked in air at 54°C and then
tested in an shutdown water chemistry PWR environment at 54°C are significantly lower than
the data for those specimens tested in air (Fig. 24). The specimens precracked in PWR water
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at 315°C and tested in PWR water also show reduced fracture toughness, but the effect is
less.80 The significant decrease in fracture toughness is attributed to the synergism between
hydrogen embrittlement and thermal embrittlement. Similarly, J-R curve data for Type 316L gas
tungsten arc (GTA) welds indicated that the reactor coolant environment could decrease the
fracture toughness by up to 40% relative to that in air.117

The potential contribution of hydrogen-induced embrittlement has also been observed in the
thermal embrittlement study at ANL. The J-R curves for the two tests on ¥4-T CT specimens of
thermally aged and irradiated CF-8M steel in NWC BWR water are shown in Fig. 56.
Unfortunately, companion tests in air were not conducted on the irradiated material. However,
the fracture toughness J-R curve obtained for 1-T CT specimens of unirradiated, thermally aged
material are included in the figure. In the two tests in water, large load drops, accompanied by
crack extensions of up to 0.5 mm in one specimen and 1.0 mm in the other, were observed at
the onset of these crack extension. Such load drops are not typically observed during tests in
air.16 Thus, although available fracture toughness data in reactor coolant environments are
inclusive, the limited data suggest that there could be environmental effects on the fracture
toughness of CASS material and austenitic SS welds, at least for materials with moderate or
superior fracture toughness. Additional tests on irradiated CASS materials or SS welds in air
and water environments are needed to determine the possible effects of LWR coolant
environments on their fracture toughness.
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5.1.2.5 Irradiation Temperature

The available data are not adequate to establish accurately the effects of the irradiation
temperature on the fracture toughness of austenitic SSs. However, tensile data for austenitic
SSs indicate that irradiation hardening is highest, and ductility loss is at its maximum at an
irradiation temperature of ~300°C (~572°F).118 Thus, the J. values for all materials irradiated at
temperatures above 350°C (662°F) (e.g., fast reactor irradiations), particularly for neutron
exposures of more than 20 dpa, should be greater than the J,. values for materials irradiated at
temperatures of 290-320°C (554-608°F). As mentioned before, to accurately evaluate the
potential effects of irradiation temperature on the fracture properties of austenitic SSs and
CASS materials, fracture toughness data are needed for a specific heat of material irradiated in
LWRs at temperatures of 280-370°C (536—798°F).
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5.2 Lower-Bound Fracture Toughness Curve

In NUREG/CR-7027, the available fracture toughness data on wrought and cast austenitic SSs
and associated welds irradiated in fast reactors or LWRs were reviewed and evaluated to define
the lower-bound fracture toughness Ji; value or coefficient C of the J-R curve as a function of
neutron dose (in dpa).#647 The lower-bound curves represent the change in fracture toughness
parameters, such as the coefficient C of the power-law J-R curve and the corresponding Jjc
value, as a function of neutron dose. The trend curve considers the following:

(a) The threshold neutron exposure for radiation embrittlement of austenitic SSs and a
minimum fracture toughness for these materials irradiated to less than the threshold
value,

(b) The saturation neutron exposure and a saturation fracture toughness for materials
irradiated to greater than this value, and

(c) A description of the change in fracture toughness between the threshold and saturation
neutron exposures.

The change in initiation toughness Jjc of (a) wrought austenitic SSs and (b) CASS materials and
weld metals as a function of neutron exposure (dpa) is shown in Fig. 57. The change in the
lower-bound J;. value as a function of the neutron dose (dpa) is given by

Jic = 7.5 + 110 exp[-0.35(dpa)l4]. (70)

Note that the JAPEIC data on Type 304 SS only is not bounded by the lower bound curve; the
data were obtained on short rod specimens and not the standard fracture toughness CT
specimens. The lower-bound curve is defined essentially by the austenitic SS weld data. The
lower-bound curve represents the following:

(i) Threshold dose of about 0.3 dpa for neutron embrittlement,
(i) Minimum fracture toughness J;. of ~116 kJ/m?2 for neutron doses below 0.1 dpa,

(i) Saturation threshold of about 5—7 dpa beyond which the fracture toughness of these
materials appears to saturate,

(iv) Saturation fracture toughness Ji. of 7.5 kJ/mZ2 (or K. or K; of 38 MPa m%/2), and
(v) Description of the change in toughness between 0.1 and 10 dpa.

The Jic value of ~116 kJ/m2 for neutron doses below the threshold dose is appropriate for
thermally aged and unaged CASS materials and SS flux welds. A value that is higher than

116 kJ/m2 may be considered for the minimum fracture toughness J,; for wrought austenitic SSs
irradiated below the threshold dose for neutron embrittlement. However, appropriate
justification for using a higher value should be provided. The description of the change in
fracture toughness below the threshold value would also change accordingly. The saturation J,¢
value of 7.5 kJ/m?2 does not change; it is the same for wrought and cast SSs and their welds.
The K;c (MPa m¥2) values determined from the lower-bound trend curve given by Eg. 70 are
comparable to those predicted from the MRP lower-bound model proposed for PWRs42 at 0.3
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Figure 57. Change in initiation toughness Jc of (a) wrought austenitic SSs and
(b) CASS materials and weld metals as a function of neutron exposure.
The data points plotted at 0.005 dpa are for unirradiated materials (Ref. 47).

and 7.0 dpa. The MRP model bounds all the fracture toughness data from fast reactors, BWRs,
and PWRs and is given by the expression,

Kjc = 180 — 142[1-exp(—dpa)]. (71)

The existing fracture toughness J,; data at 290-320°C for CASS materials irradiated under LWR
conditions are plotted as a function of neutron dose in Fig. 58.37:41,42,80,95,98,100,109,117,119,120
Note that the fast-reactor irradiated data for a heat of CF-8 material (slashed square symbols)
are included in the figure because they have been used for evaluating neutron embrittlement of
CASS CF-8 materials in PWRs. Furthermore, the data were obtained at RT. Therefore, as
shown in Fig. 54, the actual fracture toughness of moderate to high toughness materials is
expected to be lower at reactor temperatures. The fracture toughness data obtained at ANL on
neutron irradiated CASS materials in LWR environments and the data obtained earlier on these
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Figure 58. Plots of fracture toughness Ji. values as a function of neutron dose for
(a) austenitic SS welds, (b) CASS materials, and (c) austenitic SS HAZ.
Solid line represents the lower-bound J,. values proposed in NUREG/CR-7027.
The data points plotted at 0.007 dpa are for unirradiated materials.

materials in air are listed in Table 7. Note that the recent data obtained at ANL were for CASS
materials irradiated to a neutron dose of 0.08 dpa. This irradiation level was selected to help
understand the combined effects of thermal and neutron embrittlement on SSs with a duplex
structure, consisting of both austenite and ferrite phases. It is well-established that at an
irradiation dose of about 0.1 dpa, the neutron embrittlement of the ferrite phase is essentially
complete, but the embrittlement of the austenite phase occurs at irradiation levels above a
threshold value of 0.3 dpa. In addition, data on materials irradiated to less than 0.1 dpa are
needed to accurately evaluate the possible effects of the synergism between thermal and
neutron embrittlement of CASS materials and their welds.

Equations. 70 and 71 predict a saturation fracture toughness K. of 38 MPa m¥/2, For materials
irradiated below the threshold dose for irradiation embrittlement, Eqg. 70 predicts a minimum Kj,
of about 151 MPa m?/2, but the MRP (Eg. 71) expression predicts fracture toughness values that
for some materials, such as SS weld HAZ, may be higher than the minimum toughness of the
materials in the unirradiated condition. The existing data for BWR-irradiated austenitic SSs is
not bounded by the disposition curve proposed by EPRI for BWRs. For example, at neutron
doses of <0.7 dpa, the J,; values based on the EPRI curve are higher than the minimum J,; of
some heats of wrought SSs and most thermally aged CASS with >15% ferrite.16 In addition, the
saturation K¢ of 55 MPa ml/2 at 4.5 dpa for the EPRI curve is also higher than the value of

38 MPa mY/2 previously proposed by MRP for PWRs.42 The saturation K| for the EPRI curve
was based on data for which the specimen orientation was unknown. As discussed above,
recent data indicate that fracture toughness in the transverse orientation is nearly half of that in
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Table 7 Fracture toughness J-R curve data on irradiated CASS CF-3, CF-8, and CF-8M
materials in air and LWR environments.

Material Uni.rrad.iated Ma;terial Unirradiated Materialoin Irradiated Material? i?
Grade Heat Condition in Air at 290°C Low-DO Water at 320°C Low-DO Water at 320°C
n  JickJm? C n  JickJm? C N Jic (kJ/m?)
CF-3 69 (21%) Unaged 756 0.31 700 536 0.68 320 430 0.64 204
CF-3 69 (21%) Unaged 425 0.54 266 - - - - - -
CF-3 69 (21%) Aged 296 0.51 167 353 0.66 170 362 0.85 116
CF-3 52(14%) Unaged - - - - - - 347  0.65 168
CF-3 52 (14%) Aged - - - - - - 419  0.80 161
CF-8 68 (15%) Unaged 783  0.27 753 - - >500 359 057 183
CF-8 68 (15%) Aged 396 0.51 242 395 0.58 220 372 0.62 171
CF-8 61 (13%) Aged - - - - - - 406  0.60 205
CF-8M  75(25%) Unaged 583 0.45 437 - - - 336 0.66 145
CF-8M 75 (25%) Unaged 600 0.35 493 - - - - - -
CF-8M 75 (25%) Aged 274  0.46 156 - - - 259 0.64 106
CF-8M 75 (25%) Aged 364 0.32 262 - - - - - -
CF-8M 75 (25%) Aged - - - - - - 120P  0.24 84
CF-8M 75 (25%) Aged - - - - - - 8oP 0.5 40

& All specimens were irradiated to a neutron dose of 0.08 dpa at 315°C and tested in low-DO high-purity water or
simulated PWR water at 320°C, except for the last two specimens (Heat 75), which were irradiated to 2.46 dpa at
297°C and tested at 289°C in high-purity water with 400 parts per billion (ppb) DO.

b Tested at 289°C in high-purity water containing 400 ppb DO.

the longitudinal orientation.3® Therefore, the bounding K¢ values above 4.5 dpa are likely to be
lower than 55 MPa m?/2,

A fracture toughness J-R curve may be used to analyze material behavior for loading beyond
Jic- The J-R curve is expressed in terms of the J integral and crack extension (Aa) by the power
law J = C(Aa)". At dose levels below the threshold dose for saturation (i.e., at dose levels less
than ~7 dpa), the effect of neutron irradiation on the fracture toughness of austenitic SSs can be
represented by a decrease in the coefficient C of the power-law correlation for the J-R curve
with neutron dose. The variation of the fracture toughness coefficient C as a function of neutron
dose for the data shown in Fig. 58 is plotted in Fig. 59. One curve in the figure represents the
disposition curve proposed by EPRI for BWRs,38 and the other represents a trend curve
proposed in NUREG/CR-7017 for coefficient C that bounds the existing data. For neutron dose
less than 5 dpa, the existing fracture toughness data are bounded by the following expression
for C:

C = 25 + 175 exp[-0.35(dpa)’4], (72)

and an exponent n equal to 0.37 (i.e., median value of the experimental data). The exponent n
of the power-law curve typically ranges from 0.35 to 0.70 for unirradiated materials and 0.16 to
0.65 for irradiated materials. Unlike the behavior seen for thermally aged cast austenitic SSs (in
which exponent n typically decreases with a decrease in fracture toughness),6 no obvious trend
of n with fluence is evident. Based on the material and irradiation conditions, a conservative
value of 0.3 for exponent n may be used to evaluate the neutron embrittlement of these
materials. Equation 72 yields a minimum C value of 192 kJ/m?2 (1094 in.-Ib/in.2) for materials
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irradiated to less than 0.1 dpa and a minimum C value of ~31 kJ/m2 (~177 in.-Ib/in.2) for
materials irradiated to 7 dpa.

For the data shown in Figs. 58 and 59, the J-integral values at a crack extension of 2.5 mm, J, 5,
are plotted as a function of neutron dose in Fig. 60. The solid curve in the figure represents the
Jo 5 values that bound the existing experimental data. The curve was obtained by using the
power-law J-R curve relationship, with coefficient C determined from Eq. 72 and the median
value of 0.37 for exponent n. The lower-bound curve indicates that for CASS materials
irradiated up to 0.5 dpa, the predicted J, 5 values are above the screening value of 255 kJ/m?2
(1456 in.-Ib/in.2).

Note that most of the J-R curve data for neutron irradiated SSs have been obtained on %2-T or
Y4-T CT specimens that were about 6-mm thick. Therefore, the validity of the fracture
toughness data using the small CT specimens needs to be assessed. The fracture mechanics
approach correlates the behavior of components with that of specimens by using the K
parameter. It considers that if the two cracks have the same K, then they have the same strains
and stresses in the region near the crack tip. The ASTM specifications for specimen K/size
criteria are intended to ensure that the plastic zone is small enough and K is controlling the
crack behavior. It has been often argued that since the K/size criterion was developed for
materials that show work hardening and it may not be applicable for materials that are irradiated
to fluence levels where, on a local level, they do not strain harden and exhibit strain softening.
Recent investigations have evaluated the validity of the K/size criterion for irradiated materials
by comparing the plastic strain distribution in a ¥2-T CT specimen estimated from finite element
method calculations with experimentally observed plastic deformation area.121.122 The plastic
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zone size was estimated to be 0.2-0.4 mm at K = 30 MPa m1/2,121 The results indicate that for
an austenitic SS irradiated to 3 x 1021 n/cm?2, the appropriate K range is at least 30 MPa m'/2 for
a (5.8-mm thick) CT specimen.

Figure 60 shows the results of two tests of CF-8M material thermally aged for 10,000 h at 400°C
and then irradiated to well above the threshold dose for neutron embrittlement (shown as closed
circles). The resulting J, 5 values for these two tests are bounded by the proposed lower-bound
J-R curve. As discussed above, since only CF-3/CF-8 and, in a few cases, CF-3M CASS
materials are used for designs of all BWRs and PWRs, the data for CF-8M represent the worst-
case values. Actual values for CF-3/CF-8 materials would be higher. However, there is little or
no data on LWR-irradiated CF-3 and CF-8 materials to accurately establish the lower-bound J-R
curves for these materials during service in LWRs. The only data for CF-8 material is for fast
reactor irradiation. The existing data indicate that for the same neutron dose, the embrittlement
of LWR irradiated materials is greater than that of materials irradiated in a fast reactor. In
addition, the CF-8 data are on materials irradiated at 325°C; limited data indicate that the extent
of embrittlement is greater under BWR service conditions than PWR service conditions.

5.3 Methodology for Incorporating Irradiation Effects on CASS Materials
including the Combined Effects of Thermal and Neutron Embrittlement

5.3.1 Threshold Neutron Dose for Irradiation Effects

To account for the effects of thermal aging and neutron irradiation embrittlement on the fracture
toughness of reactor core internal components, the NRC staff has proposed an aging
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management program (AMP) for license renewal.123 The program does not directly monitor for
loss of fracture toughness that is induced by either thermal or neutron irradiation embrittlement.
Instead, the impact of a loss of fracture toughness on component integrity is indirectly managed
by using visual or volumetric examination techniques to monitor for cracking in the components.
If cracking is detected in the components, a flaw tolerance evaluation is performed by using
acceptable reduced fracture toughness properties.

The AMP for PWR vessel internals follows the guidance found in EPRI report MRP-227.124 The
AMP states that a loss of fracture toughness due to thermal and/or neutron embrittlement of
CASS materials can occur as a result of exposure to neutron fluence of >101° n/cm?2 (E of

>1 MeV) (i.e., 0.015 dpa) or if CASS material is more susceptible to thermal embrittlement. A
fracture toughness value of 255 kJ/m?2 (1450 in.-Ib/in.2) at a crack extension of 2.5 mm (0.1 in.)
is used to differentiate between CASS materials that are not susceptible and those that might be
susceptible to thermal embrittlement. The screening criteria to determine the susceptibility of
CASS components to thermal aging embrittlement are outlined in Table 1.51 Based on the
review and evaluation of the current fracture toughness data of thermally aged CASS materials,
a proposed revision of the screening criteria is presented in Table. 5.

Regarding the neutron dose threshold above which the potential combined effects of thermal
and neutron embrittlement are significant and need to be evaluated, the lower-bound curve
shown in Fig. 60 indicates that for CASS materials irradiated up to 0.5 dpa, the predicted J, 5
values are above the screening value of 255 kJ/m?2 (1456 in.-Ib/in.2). If needed, the lower-bound
fracture toughness curves described above can be used to preform a flaw tolerance evaluation.
However, note that the fracture toughness of SS weld metals may be significantly lower than
this threshold value (see Fig. 57).

5.3.2 Potential Effects of Thermal and Neutron Embrittlement

The embrittlement of the ferrite phase because of neutron irradiation occurs at lower dose levels
than does embrittlement of the austenite phase. A shift in the nil-ductility transition (NDT)
temperature of up to 150°C (302°F) has been observed in pressure vessel steels irradiated to
0.07-0.15 dpa.1?> Thus, embrittlement of ferrite is expected to occur at 0.05-0.50 dpa, whereas
any significant neutron embrittlement of the austenite phase occurs only at above ~0.4 dpa

(Fig. 58-60). In recent studies at ANL, fracture toughness tests have been conducted in LWR
environments on unaged and aged heats of CF-3, CF-8, and CF-8M materials that were either
in an unirradiated condition or irradiated to a neutron dose of 0.08 dpa at 315°C in the Halden
reactor. The results are shown in Fig. 61. The ferrite contents of the CF-3, CF-8, and CF-8M
materials, determined from Hull's equivalent factors were, 21.0%, 14.9%, and 24.8%,
respectively. The results indicate that only the Ji. values are slightly lower for the aged and
irradiated materials than those that were only aged or irradiated. The values of coefficient C
and J, 5 show no effect from combined thermal and neutron embrittlement.

Similarly, the fracture toughness data for two other heats of thermally aged and irradiated CF-8
material (Heats 52 and 61, containing 14% and 13% ferrite, respectively) yield J, 5 values that
are significantly above 255 kJ/m2. Therefore, the existing data indicate little or no combined
effect from thermal and neutron irradiation. Furthermore, the fracture toughness (J, 5) values of
aged CASS CF-3 and CF-8 materials irradiated to a neutron dose of less than 0.5 dpa are
above the screening value of 255 kJ/m?2 (1456 in.-Ib/in.2) proposed by EPRI.93
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6 SUMMARY

The procedure and correlations presented earlier in NUREG/CR-4513, Rev. 1, for predicting the
Charpy-impact energy and fracture toughness J-R curve of aged CASS CF-3, CF-3M, CF-8,
and CF-8M materials from known material information have been updated by using a much
larger database. The applicability of the methodology has been extended to materials with
ferrite contents of up to 40%. In addition, for CASS materials used in the reactor core support
structure and core internal components, recommendations are provided for evaluating the
combined effects of thermal and neutron embrittlement.

As in NUREG/CR-4513 Rev. 1, the fracture toughness and tensile properties of a specific CASS
material are estimated from the extent and kinetics of thermal embrittlement. Thermal
embrittlement of CASS materials is characterized in terms of RT Charpy-impact energy. Thus,
the extent of thermal embrittlement represents the change in Charpy-impact energy. The extent
of thermal embrittlement at “saturation” (i.e., the minimum impact energy that can be achieved
for the material after long—term aging) is determined from the chemical composition of the steel
and its ferrite content. The Charpy-impact energy as a function of the time and temperature of
the reactor service is estimated from the kinetics of thermal embrittlement, which are expressed
by the activation energy for the degradation of Charpy-impact energy due to thermal aging. The
activation energy is also determined from the chemical composition of the material and ferrite
content. The initial impact energy of the unaged steel is required for these estimates. The
fracture toughness J-R curve for the material (expressed by coefficient C and exponent n) is
then obtained from correlations between the RT Charpy-impact energy and fracture toughness
parameters. A common lower-bound J-R curve for CASS materials with an unknown chemical
composition is also defined for a given grade of material, range of ferrite contents (e.g., <10%,
>10-15%, >15-20%, >20-25%, >25-30%, and >30-40%), and temperature. The method for
estimating the mechanical properties of CASS materials during reactor service is described.

For CASS materials used in the reactor core support structures and core internal components,
the available data are inadequate to definitively establish the effects of thermal and neutron
embrittlement of various CASS materials as a function of service time and temperature. The
combined effects of thermal and neutron embrittlement are estimated from the lower-bound
fracture toughness curves expressed as a function of neutron dose. The fracture toughness is
defined in terms of the coefficient C, exponent n, and J,. of the fracture toughness J-R curve.
However, the existing data are inadequate to definitively determine the combined effects of
thermal and neutron embrittlement of CASS materials. Experimental data on aged material
irradiated in LWRs to neutron doses <0.01 dpa are needed to better define such effects.

The tensile yield and flow stresses and the Ramberg/Osgood parameters for tensile strain
hardening are estimated from the flow stress of the unaged material and the kinetics of
embrittlement. The fracture toughness J,. values for aged CASS materials are then determined
from the estimated J-R curve and flow stress. Only the chemical composition, initial Charpy-
impact energy, and flow stress of the unaged material are needed for the estimates.

The significant differences between NUREG/CR-4513 Rev. 1 and this report are as follows:

(i) Embrittlement-Charpy-impact Energy: Eqgs. 18—-26 correspond to Egs. 3.2.4-3.2.12 of
Rev. 1; Egs. 21 and 24 are updated versions of Eqgs. 3.2.7 and 3.2.10, all others are the
same. For CF-8M materials, the correlation between the RT Charpy-impact energy and
material parameter ¢ was revised; the effect is significant for CF-8M materials with Ni
content of 210%.
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(ii)

(iii)

(iv)

v)

Embrittlement-Fracture Toughness J-R Curve: Eqgs. 27—44 correspond to Egs. 3.2.13—
3.2.26 of Rev. 1. Eqs. 29 and 35 are new and Eqgs. 39-44 are updated versions of
3.2.15, 16, 19, 22,23, and 26.

For CF-8M materials, the correlations between the RT Charpy-impact energy and
coefficient C of the J-R curve at RT and at 290-320°C have been extended to include
CASS materials with a ferrite content of up to 40%. The new correlations are applicable
to materials with relatively poor RT Charpy-impact energies (i.e., <35-45 J/m2). In
addition, the correlations between the RT Charpy-impact energy and exponent n of the
J-R curve at RT and at 290-320°C have been revised. Estimates of n made from using
the updated expressions are slightly lower, particularly for CF-8 materials.

Minimum Fracture Toughness of Unaged CASS Materials: Eq. 45 is the same as
Eq. 3.2.27 of Rev. 1 and Eg. 46 is an updated version of Eq. 3.2.28. The minimum
fracture toughness J-R curve for centrifugally cast CASS materials, was revised; the
coefficient C of the J-R curve was decreased from 650 to 550.

New lower-bound curves are presented for correlating the saturation RT Charpy-impact
energy and the ferrite content for CF-3, CF-3M, CF-8, and CF-8M materials. These
correlations are used to define the lower-bound J-R curves for CASS materials
containing ferrite in a specific range (e.g., <10%, >10-15%, >15-20%, >20-25%,
>25-30%, and >30-40%).

Recommendations are provided for estimating the lower-bound fracture toughness
curves for CASS materials used in the reactor core support structures and core internal
components.

These updated expressions for estimating fracture toughness of CASS materials during reactor
service have the following impact on the criteria proposed by NRC (Table 1) for determining the
susceptibility of various categories of CASS components to thermal aging embrittlement. Based
on the casting process and whether the materials contains low Mo (0.5 wt.% max.) or high Mo
(2.0-3.0 wt.%), the proposed criteria specify the ferrite content above which the material would
be susceptible to thermal embrittlement. The updated criteria are presented in Table 5.

The criteria for low-Mo CF-3 and CF-8 materials have not changed. All centrifugally cast
materials and static cast materials containing <20% ferrite are not susceptible to thermal
embrittlement. Only static cast materials containing >20% ferrite are potentially
susceptible.

The criteria for CF-8M materials depend on whether the material contains =10 wt.% Ni.

- The criterion for static cast CF-8M materials containing <10% Ni has not changed.
Static cast materials with <14% ferrite are not susceptible and with >14% ferrite are
potentially susceptible.

- The criterion for centrifugally cast CF-8M materials containing <10% Ni has been
revised. The threshold value of ferrite content has been decreased from 20% to 19%
ferrite. Centrifugally cast materials with <19% ferrite are not susceptible and with
>19% ferrite are potentially susceptible to thermal embrittlement.

- The criterion for static cast CF-8M materials containing 210% Ni has been revised.
The threshold value of ferrite content has been decreased from 14% to 11% ferrite.
Static cast materials with <11% ferrite are not susceptible and with >11% ferrite are
potentially susceptible to thermal embrittlement.
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- The criterion for centrifugally cast CF-8M materials containing 210% Ni has been
revised. The threshold value of ferrite content has been decreased from 20% to 13%
ferrite. Centrifugally cast materials with <13% ferrite are not susceptible and with
>13% ferrite are potentially susceptible to thermal embrittlement.

The methodology presented in this report is only applicable to service times that are equivalent
to 10,000 h at 400°C. This corresponds to

2125 efpy at 290°C for CF-8/CF-3 materials, and
=30 efpy at 320°C for CF-8/CF-3 and =15 efpy for CF-8M materials used within primary
pressure boundary components, and

e 215 efpy at 350°C for CF-8/CF-3 materials used in the reactor core internals.

Additional long-term aging data are needed to estimate fracture properties for longer service
times. Furthermore, this methodology may not be applicable for CF-8M materials with more
than a trace amount of Nb, particularly for materials containing >15% ferrite. The methodology
also does not consider the potential effect of reactor coolant environment on fracture toughness.
Limited data indicate significant effect of environment, particularly at low temperatures (e.g.,
shutdown water chemistry at 54°C). In addition, the existing fracture toughness data on LWR-
irradiated CF-8/CF-3 materials is inadequate to accurately establish the lower-bound J-R curves
for these materials as a function of neutron dose.
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APPENDIX B: J-R CURVE CHARACTERIZATION

The J-R curve tests were performed according to ASTM Specifications E 813-85 (Standard Test
Method for J,.. a Measure of Fracture Toughness) and E 1152-87 (Standard Test Method for
Determining J-R Curve). Compact-tension (CT) specimens, 25.4 mm (1 in.) thick with 10% side
grooves, were used for the tests. The CT specimen design is similar to the specimen of ASTM
Specification E 399, the notch region is modified in accordance with E 813 and E 5112 to permit
measurement of load-line displacement by axial extensometer. The extensometer was
mounted on razor blades that were screwed onto the specimen along the load-line.

Prior to testing, the specimens were fatigue-precracked at room temperature and at load levels
within the linear elastic range. The final ratio of the initial crack length to width (a/W) after
precracking was about 0.55. The final 1-mm (0.04-in.) crack extension was carried out at a load
range of 13 kN (2.92 kip) to 1.3 kN (0.292 kip), Kmax Was <25 MPa-m2/2 (22.6 ksi-in.1/2), After
precracking, all specimens were side-grooved by 20% of the total specimen thickness (i.e., 10%
per side), to ensure uniform crack growth during testing.

The J-R curve tests were performed on an Instron testing machine with 90 kN (20 kip) maximum
load capacity. The load and

load-line displacement data were digitized with digital voltmeters and stored on a disk for post
test analysis and correction of the test data. The single-specimen compliance procedure was
used to estimate the crack extension. Rotation and modulus corrections were applied to the
compliance data. Both deformation theory and modified forms of the J integral were evaluated
for each test.

After each test, the specimen was heated to 350°C to heat-tint the exposed fracture surface.
The specimen was then fractured at liquid nitrogen temperature. The initial (i.e., fatigue
precrack) and final (test) crack lengths were measured optically for both halves of the fractured
specimen. The crack lengths were determined by the 9/8 averaging technique (i.e., the two
near-surface measurements were averaged and the resultant value averaged with the
remaining seven measurements).

The fracture toughness Ji; values were determined in accordance with ASTM Specifications

E 813-81 and E 813-85. For the former, J,. is defined as the intersection of the blunting line
given by J = 2c; Aa, and the linear fit of the J-vs.-Aa test data between the

0.15-mm and 1.5-mm exclusion lines. The flow stress, oy, is the average of the 0.2% yield
strength and the ultimate strength. The ASTM Specification E 813-85 procedure defines J; as
the intersection of the 0.2-mm offset line with the power-law fit (of the form

J = CAa") of the test data between the exclusion lines. J-R curve tests on CASS materials
indicate that a slope of four times the flow stress (4cy) for the blunting line expresses the J-vs.-
Aa data better than the slope of 2c; that is defined in E 813-81 or E 813-85. The fracture
toughness Ji; values were determined with the 4c; slope for the blunting line and the 0.2-mm
offset line.

The tearing modulus was also evaluated for each test. The tearing modulus is given by T =
E(dJ/da)/ o, where E is the Young's modulus and oy is the flow stress. The ASTM E 813-81
value of tearing modulus is determined from the slope dJ/da of the linear fit to the J-vs.-Aa data.
For the power law curve fits, an average value of dJ/da was calculated”2? to obtain average
tearing modulus. The fracture toughness results obtained at Argonne on several experimental
and commercial heats of CASS materials aged up to 58,000 h at 290, 320, 350, 400, and
450°C, (554, 608, 662, 752, and 842°F) and for the service-aged materials from the KBR pump
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cover plate and the decommissioned Shippingport reactor valve bodies and pump volute and
impeller,A1-A7 are given in Table B1. Fracture toughness data from studies at EPRI,A13
EdF,A%-12 Framatome,A14.15 several institutions in Japan,A18.19.21.22 \\estinghouse,A25.26 and
TWI,A24 are also included. The actual fracture toughness J-R curve data (J vs. Aa) for various
grades and heats of unaged and aged CASS materials are given in Table B2. Note that for a
few test specimens, the modified-J values are listed instead of deformation-J. These J-R curves
are identified as J,, vs. Aa in Table B2, and the rest as Jq4 vs. Aa. For these tests, the Ji,
coefficient C, and exponent n, corresponding to the deformation-J and modified-J values are
listed in Table B3. The tensile test data for thermally aged CASS materials from the Argonne
study are presented in NUREG/CR-6142.A6

Data Analysis Procedure

The compliance method was used to determine the crack length during the tests. The Hudak-
Saxena calibration equation”28 was used to relate the specimen load-line elastic compliance C;j
on an unloading/loading sequence with the crack length aj. The compliance, i.e., slope (A5/AP)
of the load-line displacement-vs.-load record obtained during the unloading/loading sequence, is
given by

1
ULL:(B E.C,)+1 (B-1)

e e |

and

a,/W =1.000196 - 4.06319(U,, ) +11 .242(ULL)2
~106.043(U,, )" +464.335(U,, ) ~650.677(U,, ) (B-2)

LL

where E. is the effective elastic modulus, Be is the effective specimen thickness expressed as
B — (B — By)?/B, and W is specimen width.

Both rotation and modulus corrections are applied to the compliance data. The modulus
correction A28 js used to account for the uncertainties in testing, i.e., in the values of initial crack
length determined by compliance and measured optically. The effective modulus Ey, is
determined from

1 (W+a, " ( a_\
~-ca\wa) lw) &9
and
fL—} 2163+12219{—} 20065{3—}
—0.9925{3_;} +20.609{av—;"} —9.9314{3\,—;} , (B-4)
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where C, is initial compliance, By is effective specimen thickness, and a, is the initial physical
crack size measured optically.

To account for crack-opening displacement in CT specimens, the crack size should be
corrected for rotation.A2° The corrected compliance is calculated from

0= Sin-‘[{d?mm} /(o7 +R2)"2]— tan™ {g} , (B-5)

and

C = Cm/[{:*SinB - COSB) {gSinB - COSB}] , (B-6)

where C. and C, are the corrected and measured elastic compliance at the load line, H" is the
initial half span of load points, R is the radius of rotation of the crack centerline [(W + a)/2)], a is
the updated crack length, D is one-half of the initial distance between the displacement points
(i.e., half gage length), d,,, is the total measured load-line displacement, and 6 is the angle of
rotation of a rigid-body element about the unbroken midsection line.

The J value is calculated at any point on the load-vs.-load-line displacement record by means of
the relationship

J=d,+d,, (B-7)

where Jg is the elastic component of J and Jy, is the plastic component of J. Fora CT
specimen, at a point corresponding to the coordinates Pj and §j on the specimen load-vs.-load-
line displacement record, aj is (a, + Aq;), and the deformation J is given by

= (K‘)I(E;Dz)u 4 (B-8)

e

where, from ASTM method E 399,

P (a\ -
“07| o) | (W) &9

f{:\’) [2+L—)][o 886 + 4. 64{—) 13. 32{1)
+14. TZL_) _5. 6{3\’) ]/[1{:\’)] (B-10)
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and

I NAG A T (g 1
Jpl(i):LJpl(i-W)"{%J p("BN ‘ )JLI_{bl](ai—am)Jv (B-11)

where v is Poisson's ratio, b is the uncracked ligament, A, is the plastic component of the area
under the load-vs.-load-line displacement record, and n is a factor that accounts for the tensile
component of the load as given by

ni=2+0-522bi/W, (B-12)
and y a factor that accounts for limited crack growth as given by
v,=1+0.76b /W, (B-13)

The modified J values (i.e., Jy) are calculated from the relationship (Ref. A30)

Juy = Jy + Ao (B-14)
where
¥
AJ =AJ, + [E} Jla-a) (B-15)

According to ASTM Specification E 1152-87, the Jp-R curves are valid only for crack growth up
to 10% of the initial uncracked ligament. In addition, they show a dependence on specimen
size. The Jy-R curves have been demonstrated to be independent of specimen size and yield
valid results for larger crack growth.

Data Qualification

The various validity criteria specified in ASTM Specification E 813-85 for J. and in ASTM
Specification E 1152-87 for the J-R curve were used to qualify the results from each test. The
various criteria include maximum values of crack extension and J-integral; limits for initial
uncracked ligament, effective elastic modulus, optically measured physical crack length, and
spacing of J-Aa data points. The o criterion3! was also used to ensure that a region of J
dominance exists.

For the present investigation, most of the unaged or short-term-aged specimens yielded invalid
Jic values because of the relatively high toughness of the material. The reasons for the
discrepancies are data point spacing, shape of the final crack front, or size of the uncracked
ligament. In general, the size of the uncracked ligament or the specimen thickness was
inadequate for the unaged or short-term-aged specimens because of the relatively high
toughness of the material. The J.,a limit for the J-vs.-Aa data was ignored in most tests to
obtain a good power-law fit of the test data.

The shape of the crack front was also very irregular for most CASS materials. This may be
attributed to the coarse grain structure of the casting and differences in ferrite morphology.
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CASS materials with large columnar grains, in particular, showed significant variation in crack
length along the width of a specimen. Furthermore, the crack front always had a leading crack
near the edges of the specimen. The near-surface measurements of the final physical crack
length were often >+£1.02 mm, the maximum value allowed for data qualification.

The fracture surfaces often showed uncracked ridges or ligaments along the direction of crack
extension. The uncracked ligaments add significant error to the estimation of crack length by
compliance. Therefore, the difference between the crack extension predicted from elastic
compliance and the average measured physical crack extension is more than the maximum
value allowed by ASTM E 1152.

All tests showed significant load relaxation during the unloading/reloading cycle for estimating
crack length by elastic compliance. All unloadings were 25% of the load. The load at the end of
the unloading/reloading cycle is always lower than it was at the start of the unloading cycle. The
difference is appreciable for the room-temperature test. Therefore, the initial 20-30% of the
unloading curve were ignored in estimating crack length.
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APPENDIX C: EXPERIMENTAL AND ESTIMATED
CHARPY-IMPACT DATA FOR AGED CASS MATERIALS

The RT Charpy-impact energy of a specific heat of CASS materials as a function of aging time
and temperature can be obtained from the estimated saturation RT Charpy-impact energy,
Cysat, and the kinetics of embrittlement. The value of Cyy is estimated from Egs. 18-26
described in Section 2.4.1 of the report and the kinetics of embrittlement are estimated from
Eqgs. 11-17 described in Section 2.3 of the report. Information regarding the initial RT Charpy-
impact energy of the unaged material and the aging time and temperature is needed for these
estimations. The RT Charpy-impact energy for a specific time and temperature condition is
estimated in three steps. First, the aging time and temperature are converted to an equivalent
value of Parameter P. Next, the tanh function of the term [(P — 6)/a] is determined; two sets of
tanh function values are obtained, one using the experimental value of 6 and the second with an
assumed value of 2.9 for 6. The C,, for the specific time and temperature is then calculated
from Eqg. 13 from Section 2.3 of the report. A single value of 6 is assumed in this report.
However, the existing data suggests that 6 varies with the material composition.

A comparison of the estimated and experimental values of RT Charpy-impact energy for several
heats of CF-3, CF-8, and CF-8M CASS materials are shown in Figs. C1 and C2. These figures
are an updated version of Figs. 19 and 20 of NUREG/CR-4513 Rev. 1. The solid and dash
lines represent the estimated values using, respectively, the experimental value or assumed
value of 6.

The results indicate that the estimated values of RT Cys4 are either accurate or slightly
conservative for all grades and heats of CASS materials. The two exceptions are the static cast
CF-3 Heat 47 and static cast CF-3M Heat FD. For these two heats, the estimated values are
significantly higher than the experimental values. The reason for such a large difference for two
heats out of more than 130 heats of materials is not known. The results also indicate that the
estimates of the change in RT Charpy-impact energy for materials aged at low-temperature (i.e.,
290-320°C) are in good agreement with the experimental values for most materials and are
conservative for a few. The only exception is static cast CF-8M Heat 75. The estimates for high
temperature (i.e., 350-400°C) aged materials show good agreement for most of the materials
and are quite conservative for the rest. The exceptions are static cast CF-3 Heat 47 and the
EPRI heat, centrifugally cast CF-8 Heat P1 and CF-8M heat P4, and the static cast CF-8M

Heat FB. As discussed earlier, the agreement between the estimated and experimental values
of RT Charpy-impact energy can be further improved by using a 0 value that varies with the
material composition and ferrite content, and activation energy for thermal embrittlement that
varies with aging temperature.
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