Serial No. 94-01 Page 1 of 4

DUKE POWER COMPANY

Request for Relief From

Inservice Inspection Requirement

Station: Oconee

Unit: 3

Requesting Department: Nuclear Generation

Reference Code: ASME Section XI, 1980 Edition, with the Winter 1980 Addenda

I. Component for which exemption is requested:

a. Name and Identification Number:

Pressurizer Nozzle To Vessel Welds

Weld NumbersItem Numbers3PZR-WP26-1B03.110.0093PZR-WP26-3B03.110.0113PZR-WP26-7B03.110.012

Pressurizer Nozzles, Inside Radius

Weld NumbersItem Numbers3PZR-WP26-1B03.120.0093PZR-WP26-3B03.120.0113PZR-WP26-7B03.120.012

Steam Generator Nozzles, Inside Radius

Weld Numbers	Item Numbers
3SGA-WG50-1	B03.140.002
3SGA-WG25	B03.140.005
3SGB-WG25	B03.140.006

Core Flood Tank Nozzle, Inside Radius

Weld NumberItem Number3-CFTB-OutletC02.022.006

Serial No. 94-01

Page 2 of 4

Reactor Vessel

<u>Weld Numbers</u> 3RPV-WR18	<u>Item Numbers</u> B01.011.003	Weld Numbers 3RPV-WR54	Item Numbers B03.090.007
3RPV-WR34	B01.021.002	3RPV-WR54	B03.090.007A
3RPV-WR19	B01.030.001	3RPV-WR54A	B03.090.008
3RPV-WR13	B03.090.001	3RPV-WR54A	B03.090.008A
3RPV-WR13	B03.090.001A	3RPV-WR12	B03.100.003
3RPV-WR13A	B03.090.002	3RPV-WR12A	B03.100.004
3RPV-WR13A	B03.090.002A	3RPV-WR12B	B03.100.005
3RPV-WR12	B03.090.003	3RPV-WR12C	B03.100.006
3RPV-WR12A	B03.090.003A	3RPV-WR54	B03.100.007
3RPV-WR12A	B03.090.004	3RPV-WR54	B03.100.007A
3RPV-WR12A	B03.090.004A	3RPV-WR54A	B03.100.008
3RPV-WR12B	B03.090.005	3RPV-WR54A	B03.100.008A
3RPV-WR12B	B03.090.005A	•	
3RPV-WR12C	B03.090.006		
3RPV-WR12C	B03.090.006A		

b. Function:

Pressurizer - Maintains the RCS pressure during operation & limits pressure changes during transients.

Steam Generator - Provides steam to the turbine.

Core Flood Tank - Core flooding tanks are provided as part of the ECCS to re-flood the core during the initial stages of a LOCA resulting from large pipe breaks.

Reactor Vessel - Contains the fission process.

c. ASME Section XI Code Class:

Pressurizer, Steam Generator and Reactor Vessel - Class 1

Core Flood Tank - Class 2

d. Construction Code and Class (If Applicable):

Pressurizer (ASME Section III, 1965 with Summer 1967 Addenda, Class 1), Steam Generator (ASME Section III, 1965 with Summer 1967 Addenda, Class 1) Core Flood Tank, (USAS - B31.7, 1967 Class II) and Reactor Vessel, (ASME Section III, 1965 with Summer 1967 Addenda, Class 1)

e. Valve Category (If Applicable):

Not Applicable

II. Reference Code Requirement that has been determined to be impractical:

Figure IWB-2500-7, Examination Category B-D, Nozzle-to-Shell or Head Weld Joints - 100 % examination coverage.

Table IWB 2500-1, Examination Category B-A, Pressure Retaining Welds in Reactor Vessel, "Note 2: Includes 100% of the weld length"

Figure IWB-2500- 8, Examination Category B-J, Pressure Retaining Welds in Piping, "Note 3: Includes 100% of the weld length"

Figure IWC-2500-4, Examination Category C-B, Nozzle-to-Shell or Head Weld Joints - Inside Radius Section

III. Basis for Requesting Relief:

The Construction Permit for Oconee was issued on November 6, 1967. 10 CFR 50.55a(g) allows for plants whose Construction Permit was issued prior to January 1, 1971 to meet the requirements of ASME Section XI to the extent practical within the limitations of design, geometry and materials of construction of the components.

Due to part geometry and actual physical barriers, obtaining examination coverage on at least 90% of the weld volume as required by ASME Section XI, 1980 Edition as modified by Code Case N-460 was not possible.

The attached examination reports document the amount of Code required examination coverage obtained. To supplement this coverage, additional non-Code examination UT techniques were used in an effort to obtain as much examination coverage as possible.

The Reactor Coolant System meets the design requirements specified in 10 CFR 50 Appendix A (addressed in Chapter 3 of Oconee's Final Safety Analysis Report) and is constructed so as to have an exceedingly low probability of a gross rupture or significant leakage throughout its design life. Additionally, the reactor containment building is designed to sustain the initial effects of gross equipment failure. Technical Specification 3.1.6 limits the amount of acceptable leakage in the reactor containment building. Specifically, Technical Specification 3.1.6.2 limits unknown reactor coolant leakage to 1 gallon per minute, if that value is exceeded, then the reactor must be brought to cold shutdown within 24 hours.

All of the welds contained in this request are located within the reactor containment building. The reactor containment building is designed to contain any leakage, so if these were to fail any release would be contained within the reactor containment building. Section 15.14 of the FSAR addresses the loss of coolant accident and documents that any releases that

Based on the above evaluations, not meeting the requirements of ASME Section XI while performing these examinations will not endanger the health and safety of the general public.

IV. Alternate Examination:

The Class 1 welds will be included in the Class 1 pressure test performed at the end of each refueling outage. The Class 2 weld on the Core Flood Tank Nozzle has been examined by means of the system pressure test as required by Paragraph IWC-5000, ASME Section XI, 1980 Edition with Winter 1980 Addenda.

The use of radiography as an alternate volumetric examination method is not possible on pressure vessel welds, due to the impracticality of using double wall technique, no location to place film, etc.). Additionally, inservice radiography on pipe welds, in some cases will not be feasible due to physical barriers that would prohibit gaining access for the placement of number bands, film, etc.

Ultrasonic examinations will continued to be performed to the maximum extent possible during future inservice inspections.

V. Implementation Schedule:

Unit 3, Refueling Outage 14 (current outage December 1993 thru February 1994).

Evaluated By:

Date

Level III Review:

Date

Component Engineering Review: Date

Date

Reviewed By:

ltem No.	Exam Category/	System Or		Area To Be		Proposed Atternate
	Figure No.	Component	Function	Examined	Reason for Request	Examination
B01.011.003	B-A Figure IWB-2500-1	Reactor Vessel	Contains the fission process	Circ. Shell Weld	Limited scan due to weld location being between nozzles, 13" below the nozzle centerline. Actual coverage obtained = 73.4%.	None
B01.021.002	B-A Figure IWB-2500-3	Reactor Vessel	Contains the fission process	Circ. Head Weld	Limited scan due to Core catcher lugs Actual coverage obtained = 43.5%.	None
B01.030.001	B-A Figure IWB-2500-4	Reactor Vessel	Contains the fission process	Shell to Flange Weld	Limited scan due to location of clad patches. Actual coverage obtained in the areas of thlese patches= 67.9%.	None
B03.090.001	B-D Figure IWB-2500-7	Reactor Vessel	Contains the fission process	Outlet Nozzle to Shell Weld	Limited scan due to part geometry (nozzle configuration). Actual coverage obtained = 47.6%.	None
B03.090.001A	B-D Figure IWB-2500-7	Reactor Vessel	Contains the fission process	Outlet Nozzle to Shell Weld	Limited scan due to part geometry (nozzle configuration). Actual coverage obtained = 47.6%.	None
803.090.002	B-D Figure IWB-2500-7	Reactor Vessel	Contains the fission process	Outlet Nozzle to Shell Weld	Limited scan due to part geometry (nozzle configuration). Actual coverage obtained = 47.6%.	None
B03.090.002A	B-D Flgure IWB-2500-7	Reactor Vessel	Contains the fission process	Outlet Nozzle to Shell Weld	Limited scan due to part geometry (nozzle configuration). Actual coverage obtained = 47.6%.	None
B03.090.003	B-D Figure IWB-2500-7	Reactor Vessel	Contains the fission process	Inlet Nozzle to Shell Weld	Limited scan due to part geometry (nozzle configuration). Actual coverage obtained = 71.7%.	None
B03.090.003A	B-D Figure IWB-2500-7	Reactor Vessel	Contains the fission process	Inlet Nozzle to Shell Weld	Limited scan due to part geometry (nozzle configuration). Actual coverage obtained = 71.7%.	None
B03.090.004	B-D Figure IWB-2500-7	Reactor Vessel	Contains the fission process	Inlet Nozzle to Shell Weld	Limited scan due to part geometry (nozzle configuration). Actual coverage obtained = 71.7%.	None
B03.090.004A	B-D Figure IWB-2500-7	Reactor Vessel	Contains the fission process	Inlet Nozzle to Shell Weld	Limited scan due to part geometry (nozzle configuration). Actual coverage obtained = 71.7%.	None
B03.090.005	B-D Figure IWB-2500-7	Reactor Vessel	Contains the fission process	Inlet Nozzle to Shell Weld	Limited scan due to part geometry (nozzle configuration). Actual coverage obtained = 71.7%.	None
B03.090.005A	B-D Figure IWB-2500-7	Reactor Vessel	Contains the fission process	Inlet Nozzle to Shell Weld	Limited scan due to part geometry (nozzle configuration). Actual coverage obtained = 71.7%.	None

	Exam		_			Proposed
ltem Noi	Category	System Of	Function	Area To Be	Reason for Request	Alternate
	Hgure No.	Component		Exaimined		Examination
B03.090.006	B-D	Reactor Vessel	Contains the fission process	Inlet Nozzle to	Limited scan due to part geometry (nozzle	None
· ·	Higure			Shell Weld	configuration). Actual coverage obtained =	
D00 000 004 A	IWB-2500-7			4	71.7%.	
B03.070.000A	B-D	Reactor Vessei	Contains the fission process	Inlet Nozzie to	Limited scan due to part geometry (nozzle	None
				Shell Wela	configuration). Actual coverage obtained =	ĺ
B03 000 007	R-D	Pagetar Vascal	Contains the fission process	L. Coro Flood		Nie z z
000.070.007	Figure	Kencini Aezei	Conidins the fission process		Limited scan due to part geometry (Core	NONÐ
	- IWB-2500-7			Shell Wold	ride) Actual coverage obtained - 87.0%	ĺ
B03.090.007A	B-D	Peactor Vessel	Contains the fission process	Core Flood	Limited scap due to part geometry (Core	Nono
	Figure			Nozzle to	Flood Nozzle is blocked by flange taper on top	NOLIA
	IWB-2500-7			Shell Weld	side) A_{ctual} coverage obtained = 87.0%	.
B03.090.008	B-D	Reactor Vessel	Contains the fission process	Core Flood	Limited scan due to part geometry (Core	None
	Flaure			Nozzle to	Flood Nozzle is blocked by flange taper on top	
,	IWB-2500-7		l .	Shell Weld	side). Actual coverage obtained = 87.9%	
B03.090.008A	B-D	Reactor Vessel	Contains the fission process	Core Flood	Limited scan due to part geometry (Core	None
	Figure			Nozzle to	Flood Nozzle is blocked by flange taper on top	
	IWB-2500-7			Shell Weld	side). Actual coverage obtained = 87.9%.	
B03.100.003	B-D	Reactor Vessel	Contains the fission process	Inlet Nozzle to	Limited scan due to part geometry (nozzle	None
	Figure			Shell Weld	configuration). Actual coverage obtained =	
	IWB-2500-7			Inside Radius	68.4%.	l
B03.100.004	B-D	Reactor Vessel	Contains the fission process	Inlet Nozzle to	Limited scan due to part geometry (nozzle	None
	Figure			Shell Weld	configuration). Actual coverage obtained =	i i
	IWB-2500-7			Inside Radius	68.4%.	
B03.100.005	B-D	Reactor Vessel	Contains the fission process	Inlet Nozzle to	Limited scan due to part geometry (nozzle	None
	Figure			Shell Weld	configuration). Actual coverage obtained = \sim	
D00 100 00/	IWB-2500-7			Inside Radius	68.4%.	
B03.100.006	B-D	Reactor Vessei	Contains the fission process	Inlet Nozzle to	Limited scan due to part geometry (nozzle	None
ļ		Í.		Shell Weld	configuration). Actual coverage obtained =	
P01 100 007	IWB-2500-7			Inside Radius	68.4%.	
B03.100.007	B-D	Reactor Vessei	Contains the tission process	Core Flood	Limited scan due to part geometry (Core	None
		ĺ		Nozzie to	Hood Nozzle is blocked by flange taper on top	
1	IVVD-2000-7	i			side). Actual coverage obtained = 50%.	
B03 100 007A		Pageter Vessel	Contains the fission process			N Line -
BUS. 100.007A	Elouro	Reactor vesser			Limited scan aue to part geometry (Core	None
	IN/R-2500-7			Sholl Inside	Flood Nozzle is blocked by lidinge taper on top	
	1000-2000-7			Dadius	side), Actual coverage obtained = 50%.	
		1		- Ruulus -	, , , , , , , , , , , , , , , , , , ,	

ltem No.	Exam Category/ Figure No.	System Or Component	Function	Area To Be Examined	Reason for Request	Proposed Alternate Examination
B03.100.008	B-D Figure IWB-2500-7	Reactor Vessel	Contains the fission process	Core Flood Nozzle to Shell Inside Radius	Limited scan due to part geometry (Core Flood Nozzle is blocked by flange taper on top side). Actual coverage obtained = 50%.	None
B03.100.008A	B-D Figure IWB-2500-7	Reactor Vessel	Contains the fission process	Core Flood Nozzle to Shell Inside Radius	Limited scan due to part geometry (Core Flood Nozzle is blocked by flange taper on top side). Actual coverage obtained = 50%.	None
B03.110.009	B-D Figure IWB2500-7	Pressurizer	Maintains the RCS pressure during operation & limits pressure changes during transients	Nozzle to vessel weld	Limited scan due to part geometry (nozzle configuration, heater bundle and lower head). Actual coverage obtained = 34,39%.	None
BO3.110.011	B-D Figure IWB2500-7	Pressurizer	Maintains the RCS pressure during operation & limits pressure changes during transients	Nozzle to vessel weld	Limited scan due to part geometry (head configuration). Actual coverage obtained = 35.5%.	None
BO3.110.012	B-D Figure IWB2500-7	Pressurizer	Maintains the RCS pressure during operation & limits pressure changes during transients	Nozzle to vessel weld	Limited scan due to part geometry ((nozzle configuration, heater bundle and lower head). Actual coverage obtained = 34,39%.	None
B03.120.009	B-D Flgure IWB2500-7	Pressurizer	Maintains the RCS pressure during operation & limits pressure changes during transients	Nozzle Inside radius	Limited scan due to part geometry (heater bundle). Actual coverage obtained = 60.6%.	None
B03.120.011	B-D Figure IWB2500-7	Pressurizer	Maintains the RCS pressure during operation & limits pressure changes during transients	Nozzle inside radius	Limited scan due to part geometry (heater bundle). Actual coverage obtained = 66.7%.	None
BO3.120.012	B-D Figure ' IWB2500-7	Pressurizer	Maintains the RCS pressure during operation & limits pressure changes during transients	Nozzle Inside radius	Limited scan due to part geometry (heater bundle). Actual coverage obtained = 60.6%.	Non o
B03.140.002	B-D Figure IWB2500-7	Steam Generator A	Provides steam to the turbine	Outlet nozzle inslde radius	Limited scan due to part geometry (support skirt). Actual coverage obtained = 80%.	None
B03.140.005	B-D Figure IWB2500-7	Steam Generator A	Provides stearn to the turbine	Inlet nozzle Inside radius	Limited scan due to part geometry (support skirt). Actual coverage obtained = 74%.	None
BO3.140.006	B-D Figure IWB2500-7	Steam Generator B	Provides steam to the turbine	Inlet nozzle inside radius	Limited scan due to part geometry (support skirt). Actual coverage obtained = 74%.	None

ltem No.	Exam Category / Figure No.	System Or Component	Function	Area To Be Examined	Feason for Request	Proposed Alternate Examination
C02.022.006	C-B Figure IWC-2500-4	Core Flood Tank B	Part of the ECCS to re-flood the core during the initial stages of a LOCA resulting from large pipe breaks	Nozzle to Shell Inside radius	Limited scan due to part geometry. Actual coverage obtained = 72%.	None

Serial No. 94-01 Attachment 20 Page 1 of 5

UNCONTROLLED

THIS COPY WILL NOT BE UPDATED

UNCONTROLLED

THIS COPY WILL NOT BE UPDATED

Serial No. 94-01 Attachment 2 Page 3 of **6**

UNCONTROLLED THIS COPY WILL NOT BE UPDATED

Serial No. 94-01 Attachment Z Page 4 of **6**

UNCONTROLLED THIS COPY WILL NOT BE UPDATED

.

· •

Serial No. 94-01 Attachment 3 Date 105 8
Limited Exam Data Sheet
Unit Unit I.D. # $3P2R-WP26-1$
Date 128-94 Item # BO3.110.009 Date Date
DETERMINING THE CHARTER TO THE OPEN Page Pa
(in percentage)
Total Cross Sectional Area $\frac{1}{1}$ x (Number of Scans) $\frac{1}{2} = \frac{672}{21}$ (% Factor)
Vessels:
Area Loss : Zone #1 <u>83.13</u>
Zone #2 <u>94.82</u>
Zone #3 $\frac{255.84}{\sqrt{22.76}}$
$\frac{101a1 \text{ Zone Loss } +53.79}{\text{Lump Sum Loss Fig. (% Factor)} (672.21 \times 100 = 64.5 \% \text{ of Loss}}$
Lump sum Loss From Other Limitations $\pm /.//$
100% - (Total Loss) $05.67 = 34.39.96$ of Coverage
(Additional% of Partial Coverage)
Qualifies for Request for Relief 🛛 Yes 🗆 No
liping:
Axial Scan(Loss)(% Factor) x 100=% of Los
Circumferential Scan Over Root Area
Axial Loss $_$ + Circ. Loss $_$ = $_$ /2= $_$ % Loss
Explain: % Loss
100% - (Total Loss)=% of Coverage
Qualifies for Request for Relief Yes No
Disposition:
By: Date:

Si	atio	on <u>(</u>	k	ONE	- <u>E</u>			Ē		Un	it_	2	_ R	ev.			File	No	.3	PZR	- W	P2(6-1	_Sł	neel	t		Of	
S	ubje	ect_		- [,		<u>1E</u> 7	3	<u> </u>	XA	m		<u></u>	177	4		By_	K) ar	NG	M	au	de	10	C)ate		-28	3.94	7
-Pi	rob	No.		\mathcal{B}	03	. 1)	0,0	09					Ch	neck	ced	By_			0					C	Date	<u></u> A	ĢE	401	r
 		Ĩ								Ĭ						·						<u> </u>	T		1				-
		5	10	m	ns	04	•																						\vdash
		, 																											
		Ø	7	E	7 E	R	m	ИC		9		F2	CI	UR		+0	TA	c	E	хA	m	A	lE	p	XN	um	b er	ol	ſ
						۰ ا			1	1	/ -					1	50				1	72	2			9	T a		
									œ.	<u>.</u> ,		8	NC.			<u> </u>					<u>(</u>	10		<u>(</u>	<u> </u>	107	<u>A</u>	-101	
		A	RE.	A	6	<u>bs</u> .	Se	. :		 	Z	u	7	D		Wa	22	<u>Ce</u>	<u> </u>	C	n	In	ŧи	e:41	12	4			-
									Ы	Re	74_		Po	R	2	10	VE	1				8	3.1	13	2	2/1	<i>l.</i>		
	•								:			ļ			-7		Ve				2	99	<i>F. 8</i>	2	S	<u>p. //</u>	¢		-
																	<u>v a</u>				L V	3	3.7	79		<i>9.11</i>	vi Iri		
																										t.			Ĺ
					1		43	33.	79	÷	6	7	2.2	<u> </u> /	X	100	2 =	6	<u>64</u> .	5	%	1	<u>o s</u>	5		<u> </u>			
		/			~					1															<u> </u>	 	1		-
			2.5.	<u>s</u> 			<u>e</u>						74	F20	<u>10 s</u>	 						<u> </u>			·		1		
				Du	<u>e</u> .	10	H	= A	rei	e	B	IN	DC	Æ				 		1.0	49	%							
	<u> </u>			Du	œ.	N	2	au	JE	z	He	AI	<u>}</u>	ļ	<u> </u>			[,0	75	%							
	 					 							ļ						/	1	//	// 	<u> </u>			<u> </u>			-
			<u> </u>			 				<u> </u>	<u> </u>					-						 					<u> </u>		
								6	4.	5	+ 1	.1	/ -	+	63	T. 6	1	2	2	$\lfloor c$	2	5							
	 					 				-													ļ			·			
								1	00	12	6	5	16	1/2	% 	=	3	4.	3		6	$\underline{\mathbb{L}}$	01	VE	R	4G	E		Ļ
						 								<u> </u>										+					
		 										<u> </u>		\vdash													-		┞
														<u> </u>			<u> </u>		<u> </u>									┟╌╴┦	
																	· ·												
							ļ			ļ			ļ																
	ļ	 			·	ļ			<u> </u>		ļ			ļ	<u> </u>		ļ	ļ	<u> </u>			<u> </u>	<u> </u>						

Sta	ation_	Ø	CON	Ee			Unit_	3	Re	∋v		File	No.	3Pe	R-W	IP26-1	_Sh	eet	0	۴
Su	bject		L_{L}	<u>m (</u>	ΈÐ	E	Xa	4m) AT	4		7) -				•			
									.		_ Ву	Ă	an	1	Adu	ler_	Da	ate 🦯	.28.9	24
Pro	ob No	•	Bai	3.110). OC	9			Ch	ecke	d By		L	/			Da	ate <u>Pa</u> g	<u>= 50</u>)F
 	<u> </u>									<u> </u>						1			· 	
						,														_
	<u></u>	$\mathcal{D}\mathcal{U}$		Z											_		+			_
		$\left \right $		10-	20				+							<u> </u>				
┝─┼	`		/;	AREI	40		055	·	+											+-
		$\left \right $		+ +		5	,				1.5	1.9			_	+	┝	0 1-		
			·					70			6.8	24.8	41	= X ()	8			373	58	11
	_			+	<u>ک</u>		<u> </u>	70		/ =	- e	1 X1.		2	<u> </u>		16.	66	58	12
┝╼╌┼╸					-4) /m			- 8		(18)	21.4	- =	(1×6	.8			,22	-se	4
				++	- 4	$\frac{3^{-1}}{1}$	č	70	+		6	2.2	+	2			10	r. 7	58	44
				+	6			70			4.1	12 X6.	8	=	r19			. 075	59	4
					2		2			- - -	-5x	2	4	X	6	÷ · ·	29	• *	59	1
							(<u> </u>	٤	1 1	• • •	2	<u> </u>		5	. 85	Sg	1
					$-\underline{\mathbf{D}}$			$\frac{c}{h}$	ω								5	85	_Sq.	4
) (-0											5	- 85	_5q	1
								$\frac{c}{1}$	5.5	× /.	.2						ۍ ا	.05	59	1
				+	C	+				-2		<i>a</i>					3	.3	_58_	X
.1								-					-11	n	Dr.			00		+
									$\left \begin{array}{c} \cdot \\ \cdot \end{array} \right $			101	HC.	<u>, HI</u>	<u>CE A</u>	012	222	<u>_0</u> _	<u>./3 5</u>	<u>}/</u>
															-	· · ·				+
	7	0 10	~	2																
			e																·	
			A	RED	01	1	220	•							-					+
							<u></u>	•			-				+					
					35	0	1 +	5	2	= 4	.7 X	3,	4.7 X	Z. 3	1.8	X/	4			<u> </u>
_					35	2	8	10		=	70	TA	/2 /	605	5		10		00	ИC.
					45	•	V	70	l	2 = 3	3. <u>7 ×</u>	35	z 3	x 2.	- ./,	x1 _	d'	15	- 39	
					\$5	2	2	10	X	4	T	070		che	5	2-1-	in	DE	- 50	
					60		/	70	s l	-	2.87	5.2	2.8	X 1.4	1.8	<u>×/</u> =	2	79	- 49 6 4	
					60		2	57		/	קד -	771				F	1/1	195	- 28	
					35	0		4			7	Ta		.05	r		10			ţ,
					35	•		$\frac{1}{2}$	(u		17	5	2	(05	5		/ m	.05		
					4/5	10		24			$\frac{1}{\tau}$	UT.	Ar	(0.5	5		10	05		
					4	tu		10	1										-+	1

serial No. 94-01 Attachment 3 DUKE POWER COMPANY Page 4 28 Form 00184 (R4-88) Station UCONEE Unit 3 Rev. File No. 3PER-WP26-1 Sheet Of Subject (IMITED EYAM DATA _ By Lary Maulik Date 1.28.94 Prob No. 303. 110.009 Date Page 60F10 ____ Checked By____ (Cont.) Zone 2 9 4 82 50 14. AREA doss TOTAC Jone 3 AREA d Coss: 350 70 1.<u>4 x 2.0 ; 1,4(coverage)</u> 27.7-1.4 26.3 2 Sq 1k. 3.50 TOTAL COSS 3.1 × 3.35 = 5.19 27.7 Sp. ne. 2 10 450 2 70 27-7- 5.19= 22,5 SQIN. 450 $\frac{70744}{4.8\times3.1} + \frac{5.7\times25}{2} = 14.565$ 27.7 2 70 5616. 60. 2 1 70 27.7-14.565= 13.14 Sq M. Ca 3.5. TOTOL COSS 27.7 SOIL CCW 350 11 27.7 59.14. CW 45и 27.7 <u>sq. //.</u> CCW 45. 27.7 Sq. 1.K. 0° 27.7 Śą. / M. TOTAL AREA of LOSS 255 84 Sq. IN.

Serial No. 94-01 Attachment 3 Page 5 of 8

PRESSURIZER SAMPLING NOZZLE ITEM # <u>BO3. 110. 009</u> I.D. # <u>3PER-WP264</u> PER SiDE -DL Nozzce Side + 6.188 x 1.35 = 23.36 5 9.1N. 188+ 6188 × 1.4 + 1.1 × 1.1 + 1.6×.2 = 10.05 59.14. $3x3.1 + \frac{7.3 \times 2.9}{2} + \frac{3.8 \times .6}{2} + \frac{3 \times 1.7}{2} = 27.7 \le 9.1 \text{K}.$ - XAM AREA = 23.36 10.05 27.7 E 3 Z Z Z 1 61.11 5 Q./N. 6.188" . Lary Mauldir Рлд*е* 70F10

Serial No. 94-01 Attachment 3 Page 6 of 8

Serial No. 94-01

Attachment 3

Page 7 of 8

Serial No. 94-01 Attachment 3 Page 8 of 8 PESSIBIZER SAMPLING NOZZE ITEN # <u>BO3. 110. 009</u> I.D. # <u>3 P2R-WP261</u> DUE TO HEATER RUNDLE 2 20_ 33.3559.14, = 672.21 × 100 = 4.96 LENGTH of WILD 28"\$ 6" LIMITED AREA = 21% & WILLO ADDITIONAL LOSS + 6.5x.5 = 6.455 - .375 = 6.08 5874. 355 1.04 = 2.4 - .22 2.18 sq 1N. (45) = 1.125 - .075 = +105 39. Nr. (60') DDITIONOL LOSS 9.31 59.1N POR HEATER BUNDLE 7.01 = 3.04 sq. 1k. (35) . Z Z $\left(\frac{Z}{2}\right)$ - .91 71 = 9.14 - 4.65 = 4.49 5 giv (45) $\frac{3.2 \times .8}{2} = 6.03$ 1.03 = 4:02 - 2.79 = 1.23 3914 (60) 8.76 39.1A 4.3 x .5 = .5. XX 60% 35°A 5.88= 21.82-13.14= 8.68 59.14, (60) 2 -6.3 = 1.4 59,111, (35) 22.5 : 5.2 SQ.14. (45) 15.28 SQ, IM Levy Maudu PAque 10 OF10

Serial No. 94.01 DUKE POWER COMPANY Attachment 4 Page lof 5 Form 00184 (R4-88) Station <u>OCONEE</u> Unit <u>3</u> Rev. File No.<u>3PCR-WP263</u> Sheet <u>Cf</u> Subject <u>LIMITED EXAM</u> DATA By Larry Maulder Date 22.94 Prob No. B.O.3.110.011 Checked By Date Bar 3 OF 7 DUMMARY: DETERMINE % FACTOR, TOTAL EXAM AREA X NUMBER of SCANS 10 61.11 Sq.14. X 11 SCANS = 672.21 FACTOR AREA of (osses: Due to Nozzce Configuration ZONE 1 83.13 5814. ZOME 2. 94.82 Sq. 1. ZOME 3 255.84 Sq. 1. 433.79 Sq. 1/2 433.79 = 672.21 × 100 = 64.5 % Loss 100-64,5 = 35.5% COVERAGE

DUKE POWER COMPANY Serial No. 94-01 Attachment 4 Page 2 of 5 Form 00184 (R4-88) Station CONEE Unit 3 Rev. File No. 3Pzr-WP26.3 Sheet Cf Subject (IMITED EYAM DATA _ By harry Thankler Date 2.2.94 Checked By____ Date PAYE 4007 rob No. 303.110.011 (CONT.) ZONE 2 TOTAC FRED of Coss 94.82 Sq 1.10. ZONE 3 AREA of Coss: 351 1 70 1.4×2.0; 1.4(coverse) 26.3 27.7-1.4 = Sq IN. 350 2 70 $\frac{TDTAL}{3.1 \times 3.35} = 5.19$ 27.7 Sq. 110. 450 1 70 2 277 - 5,19 -ZZ,5 <u>Sq IN.</u> 450 TUTAL COSS 4.8×3.1 + 5.7×2.5= 14.565 2 70 27.7 54110. 60' 1 50 2 27.7-14.565= 13.14 SqIN. 35. CW 27.7 SØILS TOTAL LOSS CCW 350 11 27.7 Sq. In. 45. CW и 27.7 Sq. 111. 45 CCW a, 27.7 Sq. 1K. 00 5 27.7 Sq. 1.N. TOTAL AREA & LOSS 255.84 <u>58.111.</u>

DUKE POWER COMPANY Serial N+. 94-01 Attachment 4 page 30f5 Form 00184 (R4-88) Unit_3_ Rev.___ File No.3Pz.R-WP26-3 Sheet____ Cf___ Station CONEC Subject (IMITED E XAM DATA By Lang Maulden Date 2:2.90 rob No. <u>B03.110.011</u> Checked By Date PAGE 5 OF 7 ZONE REA of Loss: = 1.5X.4 350 خ .375 Sq 1. 1 70 - 6.8 X.8 41 × 6.8 = 35 2 10 16.66 sq 1k. - . 4 X/.1 _ 450 5914. 10 .22 6.8 ×1.4 4.1×6.8 450 270 18.7 Sq 1.4. . G X.25 60. 110 2 0.75 50 14. - 4.1×6.8, 6.8×1.9 60-ZN 28.4 59 12 6.5X.2 6.5 × 1.6 CW 350 5.85 59 11. CCW 35 5.85 Sq. 11. 45 Ch 5.85 SQ 111 4/5-0 CCW 5.85 Sq IK. 5.5×1.2 0 0 3.3 Sq 1K. TOTAL AREA OILOSS 83.13 3911. ZONE 2 AREA of Loss: $Z = \frac{4.7 \times .3}{4.7 \times 2.3} \frac{4.7 \times 2.3}{1.8 \times 1} =$ 350 70 7.01 Sg IN. 350 1 = 8 70 TUTAL coss 10.05 SQIN. $Z = \frac{3.7 \times .35}{2} + \frac{2.3 \times 2.7}{2} + \frac{1.8 \times 1}{2}$ 450 1 70 4.65 sgin. 450 210 10.05 59/14 TOTAL 6055 2.8×.2 2.3×1.4 1.8×1 2 + 2 + 2 5g 1.14. 60 1 70 2.79 60 2 70 59/11 TUTAL (0'S S 0.05 Cu 350 TUTAL Coss 10.05 5911 CCW TOTAL LOSS 851 10.05 5914 450 CW TUTAL LOSS 5914 10.05 CCW 450 TUTAL COSS 0.05 Sq. IN-1 7.6 6 63 10.05- 03 = 10.02 59.14.

PRESSURIZER SAMPLING NOZZLE PER SIDE ITEM # <u>RO3. 110.011</u> I.D.# <u>3 P2R-WP26-3</u> ETAL AL NOZZLE SIDE 38 + 6.188 x 1.35 = 23.36 = q.1N. 6.188+ 6.188 × 1.7 + 1.1 × 1.1 + 1.6×.2 = 10.05 - g.14. $7.3X3.1 + \frac{7.3X2.9}{2} + \frac{3.8X.6}{2} + \frac{.7X1.7}{2} = 27.7 \le 9.1N.$ EXAM AREA: 23.36 10.05 27.7 Z $\left(\frac{z}{3}\right)$ $\left(\begin{array}{c} z \\ 1 \end{array} \right)$ <u>61.11 sq.1x.</u> 6.188" Larry Maulder

Page 6 of 7

Serial No. 94.01

Attachment 4

Page 4 of 5

Serial No. 94-01 Attachment 4 Page 5 of 5

PRESSURIZER SAMPLING NOZZLE 155 = 83.13 59.1N. ITEM # <u>BQ3. /10. 0//</u> I.D. # <u>3. PZR - WP26.3</u> 055 = 94.82 Sq. 1N. USS = 2 55. 84 Sq. 1.K. $\overline{\overline{z}}$ AL Z 500e 2 Sur.1 - 60·F 35° A 45°A 450 (Z) 45°P 35°A 7] Larry Moulder

Рад*е* 7 ог 7

Serial No. 94-01 Attachment 5 page lof 8
Limited Exam Data Sheet Station
DETERMINING THE CUMULATIVE TOTAL OF WELD VOLUME INSPECTED (in percentage) Total Cross Sectional Area <u>المالي</u> x (Number of Scans) // = 672.21 (% Factor)
Vessels:Area Loss :Zone #1
iping: Axial Scan(Loss)/(% Factor) x 100=% of Loss Circumferential Scan Over Root Area Yes No% of Loss Axial Loss + Circ. Loss = /2=% Loss Additional Losses (Due to hangers, restraints, etc.)% Loss Explain:
Disposition:
By: Date:

Serial No. 94-01 DUKE POWEFI COMPANY Attachment 5 Page 2 of 8 Form 00184 (A4-38) Subject <u>LIMITED</u> EXAM DATA By Lang Maulden Date 1-28-94 Prob No. <u>303. 110. 012</u> Checked By Date PAge 40F 10 Scommary. TO DETERMINE 1/5 FACTUR TOTAL EXAM AREA X NUMBER of SEDUS GV. N. 59 M. X N. 5CONS -672.21 % FACTOR Con TIBURATION AREA Losses: Due to Nozzce AREA Por Zoue 1 83.13 5014. 94.82 Sp. 14. ZONE 2 255. 84 5614. ZUNE 3 43.3.79 sq. k. 433.79 ÷ 672.21 × 100 = 64.5 % Loss LOSS DUE TO CIMITATIONS: DUE TO HEATER BUNDLE 1.04% DUE TO LOWER HEAD ,07% 1, 11% 64.5+1.11 = 65.61% LOSS 100% 65,61% = 34.39% OUVERAGE

Station	0	CO	NE	È				Uni	it	3	_ R	ev.		· .	File No. 3PZRWP26-7							Sheet			Of		
Subjec	t		<u> N</u>	nci	TE.	<u>ə</u>			XA	m	d	Dr	TA		Z	9					, 	<u></u>					
<u> </u>														By ,	L	UN	4	M	aul	lin		_ D	ate	1-0	18.9	4	
Prob N	0. <u>-</u>	₿ c	13.	//	0. (9/2	· 				Cł	neck	ed	By_			~					D	ate	Pag.	<u>£ 5</u>	01	
· · · · · · · · · · · · · · · · · · ·				.		 					ſ															T	
	- Au		1																							+	
		<u>></u>																					· .			+	
		_	Δ	DA	n	al	/	(1)	5.																		
	-+-+		17	ΛC	<u>n</u>	01	<u> </u>		5.																	+	
						2	3		/	70		7	- /	.5,	Y. 4		-						3	75			
						2	 ح		2.	7		1	- 6.	8 x	8,	4/	x	5.8	-			14	. 10	6			
						Ý	نرح			2		þ	; (4	x/.,	-	2			·		1.4	- u /	,7	50	Ĵ	
					-	4	30		2	70		1	-6.	8 x	7.4	+	4.11	(6.0				1	8.1	7	RA	Ţ	
						60	•		17	0		ŧ		63	k. 2		=					<i>r</i>		75	50		
					_	60	•		2	n		1	T	4.1	x6.	84	6.0	X	9	-		20		1	.50		
						34	50		\mathcal{C}	1	$\overline{\mathbf{b}}$	5	6	X	2	6.	5 X	1.6	2			5		3	Sa	t	
					J	3.5				e (W											ي	- 8	5	SC.		
						43	50		(c	5										1	.5		35	SA	Ĵ	
						45	~0		,	2.0	24	}										J	5.8	25	.59	T	
						Ó	٥				<u>s.</u>	X	1.2	-	4								5.5		Sa	T	
																									0		
														/	TOT	A	Ł	AR	EA	01	L	5 S S		83.	13 3	0	
2	ZON	'e		2																							
	_									ļ																	
		/	<u>4 k</u>	2E7	9	21	2	bs	: 2	<u> </u>			<u> </u>			 											
						-						 	11.0		2	(/	¥7	7	1-								
						35	ບ 	4	1 7	•	2	2	4.1	2	4	*"	2	F /	118	x /	-		7,0	1	Sø	M	
	_					35	2	-	Pi	10	<u> </u>	/ =	7	70	TA	٢,	2.	2.5				10). 0	5	_sq	4	
						<u> 45</u>			17	0	-	2=		2		¥ [•]	3	È.'	11.0	2	=	4	. 6	5	_\$¢	×	
	· _	·				*5°	}		21	70	 	<u> </u>	- 7		UTa	<u>,</u>	C	05:	1.5	¥1		10	.0	5	_59	·/	
					(0	<u> </u>		/ :	10		2	<u> </u>	2	<u> </u>	₩	2	- -	2	<u>;</u>		_2	.7	9	_\$9	;4	
						0			2	72	<u>.</u>	<u> </u>	ļ	טד	774	k	Co	2 2				10	0.0	5	_59	1	
						55				4	1	<u> </u>	<u> </u>	70	TA	C	60	55				10	<u>p.d</u>	5		9	
						55				<u>f C</u>	le			70	τ,	L	16	2.2					<u>o.d</u>	5	5	9	
<u> </u>					4	15			\Box	[h	1	<u> </u>	<u> </u>	7	bτ	Ac	10	05-	\$			10).d	15	2	9	

DUKE POWER COMPANY Attachment 5 Form 00184 (R4-88) Page 4 of 8 Station CONEE Unit 3 Rev. File No. 3Pz. R-WP26-7 Sheet Of Subject (IMITED EYAM DATA _____ By <u>Lany Maudus</u> Date <u>1-28-94</u> Prob No. 303, 110. 012 Checked By____ ____ Date PAGE 6 OF 10 Cont.) Zone 2 9 - 82 59 14. HRED of Coss TOTAC Jone 3 AREA of Coss: 350 70 1.4 x 2.0 = 1,4 (coverage) 27.7-1.4 26.3 2 Sq 1k. 770774 CO33 3.1 × 3.35 = 5.19 350 27.7 2 10 Sq. 110. 450 2 1 70 27-1-5.19= 22,5 SQIN. 707AC COSS 4.2x.3.1 + 5.7 x 25 = 14.565 450 2 70 27.7 5916. 60. TO 2 27.7-14.565= 13.14 Sq M. 35. O W 27.7 TOTOL LOSS SOIL ccw 350 15 sq. Mr. 27.7 CW 45и 27.7 sq. <u>111</u> 45. CCW Sq. (K. 27.7 0° UI. 27.7 Sq. IN. TOTAL AREA of LOSS 255 84 Sq. IN.

Serval No. 94-01 Attachment 5

page 5 of 8

PRESSURIZER SAMPLING NOZZLE DER SiDE ITEM # <u>BO3. 110.012</u> I.D. # <u>3PER-WP26.7</u> TOL Nozzie Side + 6.108 x 1.35 = 23.36 59.1N. 188+ 6.188 × 1.4 + 1.1 × 1.1 + 1.6×.2 = 10.05 5 g.14. $3X3.1 + \frac{2.3X2.9}{2} + \frac{3.8X.6}{2} + \frac{.7X1.7}{2} = 27.7 \le 9.1N.$ XAM AREA = 23.36 10.05 Z Z 23 (Z) 61.11 59.1N. 6.188" Lavy Mauldy

Pag*e*: 7*of 1*0

Serial No. 94-01 Attachment 5 Page 6 of 8

Lary Maulder

PAGE 8 OF 10

Serial No.94-01 Attachment 5 Page 7 98

PAqE 10 OF 10

Serial No. 94-01 Atlachment 6 Page 19, 4
Limited Exam Data Sheet Station
$\frac{\mathcal{R}(M_{14}) - \mathcal{R}(M_{14})}{\mathcal{R}(M_{14})} = Date - \frac{1 - 28 \cdot 97}{Date} = 1 - 28 \cdot 97 - 28 - 28 \cdot 97 - 28 \cdot$
DETERMINING THE CUMULATIVE TOTAL OF WELD VOLUME INSPECTED (in percentage) Total Cross Sectional Area $\frac{47}{147} \times (\text{Number of Scans}) = \frac{47}{147} (\% \text{ Factor})$
Vessels:Area Loss :Zone #1/A
Chroninerential Scan Over Root Area I Yes No % of Loss Axial Loss + Circ. Loss = /2= % Loss Additional Losses (Due to hangers, restraints, etc.) + % Loss Explain: Total % Loss
100% - (Total Loss)=% of Coverage Qualifies for Request for Relief □ Yes □ No
Disposition:
By: Date:

.
St Su	ati Ibje	on_ ect		COL	JÉE I M	170	ΞÐ	Ē	Xu	Un 4 <u>//</u>	: بit ر	3 DA	_ R	ev.			File	e No	<u>37</u>	Per	-W	P2	6-1	_Sł	neet	t		Of	:
Pr	ob	No	•	Ba	13.	. 12	20.	00	9				Cł	nect	 ced	By By	<u> </u>	ár	y`	11	1 <u>A</u> U	<u>de</u>	K	_ C _ C)ate Date		-28	<u>7.9</u> .	4
						1		· · · · · ·		7		·····		1								,			- p,	<i>₹9E</i>	3	OF	6
	•																							ser	ial	N	0.90	H-C	
			$\left \right\rangle$	JU	n	18	A	e?:		·													L	At	$t_{\Delta c}$	thn	ler	۔ - ا	6
																								Pa	he	2	JI	ĬĮ	
						1	F	XA	N	1		DR	=A			4	4	7	50	10	r.				p		D	[1
				1														ř—	79		1				;	<u> </u>			
							\mathcal{O}_{ℓ}	RET	<u>n</u> .	01	1	10	fr			1.	40	2	5.0	10	, ,		12	2	0 0/	1			
		-			ファ	14	100		1							//			79	./.		¹	2-		<u> </u>	μ	<u> </u>	} I	-
-			†	¥Y.		\overline{n}				$\frac{0}{1}$	1	1	R				1	7	<u> </u>			· 			. er	<u> </u>			
					<u> </u> '		12			M	ej;	EK			<u>//e</u>		12	Ζ.	59	110	•			.0	4%	<u> </u>	<u> </u>		-
-+					1		1.	171	De	<u></u>	1	1				<u> </u>	11	┢──							<u> </u>		<u> </u> !		-
\rightarrow				·	10	71.6	Ľ	14	kei	<u>q (</u>	И	LC	<u>155</u>			11	10	<i>p</i>								 			
-							-			 				 	-						<u> </u>								
		<u> </u>		<u> </u>	<u> </u>			1.				0					-		100		<u> </u>							ļ	.
_			<u> </u>				1.	16	÷	4	4	7	X	10	\mathcal{D}_{-}	2.	3.	7. 9	+ 1/2	<u>}</u>	20	25	5			ļ			
_			L			L							L				·			_					 				
			L			 		00	<u> </u>	+ :	39.	Ý	. ~		6	0.	6	%	$\left \right $	0	VE	R	1 Cu	Ē				Ar	
													1															('n
		<u> </u>																											
																	do	 						·					
												; 									 								-
								<u> </u>																					<u> </u>
-+			-					<u> </u>																					
-																													<u> </u>
															•				$\left - \right $						 	L			
-+																													
		•																							- <u>-</u>				
_															, 				ŀ										
																													Γ
																												(1
									_														,					، د	
															_					-									\vdash
																							· · · ·			┢────┤	├──┤		<u> </u>

Serial No. 94-01 Attachment 6 Page 3 of 4 PRESSURIZER SAMPLING NOZZLE INNER RADIUS ITEM # <u>BO3, 120,009</u> I.D.# <u>3PER-WP26-1</u> DITIONAL LOSS DUE TO HEATER BUNDLE 4X.5 + 1.5 x.2 = 2.75 - 1.49 = 1.26 sq. "LIMITED AREA OUT of 28"LENETH 6=28 × 100 ×1.26 = .27 5 9.1K. 60. Lass Maulder 487 50FG

Serial No. 94-01 Attachment 6 Page 4 24

rm 00184 (R4	-88)									POv	<u></u>			T											
Station_	<u>0</u> 2	ONER IMIT	- r <u>e</u> D		Ē,	Un XA	it <u>3</u> M	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	_ R ⊅_	ev 4.T.	2	<u>. </u>	File	No	3	Pz	<u>e-14</u>	<u>.</u> .2	6-5	St.	eet			Of	
											1	Bv /	\mathcal{L}) DO NI	1-	1h	<u> 11</u>	De	t	D	ate	2	.2.	94	<i>,</i>
ob No		03.1	20.	0/	1				Ch	eck	ed	By_		1	<u> </u>					Date PAGE 30F4					
																				Se	eric	<u>al</u>	No	.91	t-c
		$ 0\rangle$	IT	m	AK	$\gamma \gamma$														At	ta	ch	mer	t	7
				<u> </u>																Pa	ße	1	11	Ľ	
				E	V	n	,	Ne	ر سرد	2		_	110	19	~		10			10	Ĵ		D		
				12	11			<u>19R</u>	EP	9			70	21	5	Jul	<i>V-</i>								
			_	n	<u> </u>								/		<u> </u>										
				M	LE/	9	07	2	<u>0S</u>	2			<u> </u>	49	S	g.,	K.								
									,.																
			/	,4	9	2 ~	4,4	2	XI	00	ະ	33	<u>3.3</u>	%											
																									÷
					10	20-	- 3	2 4		-	1	6	7	%		0	011	FR	AC	E					
				i=				<u></u>									_			<u> </u>					
			<u> </u>															·						· · · ·	•
				<u> </u>																					
	·		_																						
	<u> </u>		_			ļ																			
						ļ																			
		+	-																						
		+		! 																				•	
					1																		•		
						1						•													
			_																			· .			
																····· ·									
		┼╌┼╼												-							-				
· · ·			- ·													``									.
			_			 																			
					ļ	<u> </u>																			
			ľ																						
					· · ·																			-	
				1									 _												<u> </u>
	<u>├</u>					<u> </u>							· 			<u> </u>									
														<u> </u>				—							
	┨───			<u> </u>		 																			[
	┨┨	+ +		<u> </u>		<u> </u>	<u> </u>											 			<u> </u>				ļ
																									·

Serial No. 94-91 Attachment 7 Page 20/2

Serial No. 94-01 Attachment 8 Page 1 of 4
Limited Exam Data Sheet Station <u>JCONFE</u> <u>Station Mauldun</u> Unit <u>J</u> I.D. <u># 3 Pcz-WP 26-7</u> <u>Sy Aaug Mauldun</u> Date <u>1-28-94</u> Item <u># B03. 120.012</u> <u>hecked By</u> <u>Date Page <u>3 of 6</u> DETERMINING THE CUMULATIVE TOTAL OF WELD VOLUME INSPECTED (in percentage) Total Cross Sectional Area <u>447</u> x (Number of Scans) <u>Ma</u> <u>447</u> (a) E</u>
Vessels: Area Loss : Zone #1 $\frac{N/a}{2}$ Zone #2 $\frac{N/a}{2}$ $(1NN \in R RADIUS INSPECTION)$ Total Zone Loss $\frac{N/a}{2}$ $(1NN \in R RADIUS INSPECTION)$ Total Zone Loss $\frac{N/a}{2}$ $(1NN \in R RADIUS INSPECTION)$ Total Zone Loss $\frac{N/a}{2}$ $(1NN \in R RADIUS INSPECTION)$ Total Zone Loss $\frac{N/a}{2}$ $(1NN \in R RADIUS INSPECTION)$ Total Zone Loss $\frac{N/a}{2}$ $(1NN \in R RADIUS INSPECTION)$ Total Zone Loss $\frac{N/a}{2}$ $(1NN \in R RADIUS INSPECTION)$ Total Zone Loss $\frac{N/a}{2}$ $(1NN \in R RADIUS INSPECTION)$ Total Zone Loss $\frac{N/a}{2}$ $(1NN \in R RADIUS INSPECTION)$ Total Zone Loss $\frac{N/a}{2}$ $(1NN \in R RADIUS INSPECTION)$ Total Zone Loss $\frac{N/a}{2}$ $(100 = 33.33 \% of Loss$ 100% - (Total Loss) $\underline{39.4} = 60.6 \% of Coverage$ $(Additional _ 0 \% of Request for Relief \boxtimes Yes \square No$ Iping: Axial Scan $(Loss) \ / (\% Factor) \times 100 = _ \% of Loss$ Axial Loss
100% - (Total Loss)

UIII WI04 (n4-0 Station CONEE Unit 3 Rev. File No. 3 Per WP26-7 Sheet Of Subject LIMITED EXAM DATA

 Subject
 L / MITED
 LAIN
 VAIN

 By
 By
 Maudus
 Date
 1-2894

 Prob No.
 B 03.120.012
 Checked By
 Date
 40F6

 ____ Date___4or6 Serial No 94.01 SUMMARY: Attachment 8 Page 204 EXAM AREA 4.47 Sq.1x. PREA of LOSS 1,49 SQ.14. (33.33%) ADDITIONA COSS DOLE TO HEATER BUNNACE 2759114. (6.04%)TOTAL AREA of LOSS 1.76 1.76 = 4.47 × 100 = 39.4% Lass 100-39.4 = 60.6% COVERAGE

. .

Serial No. 94-04 Attachment 8 Page 4 of 4 PRESSURIZER SAMPLING NOZZLE INNER RADIUS ITEM # BO3. 120. 012 I.D. # 3 PZR-WP26-7 SITIONAL LOSS DUE HEATER BUNDLE 10 X.5 + 1.5 X.2 = 2.75 - 1.49 = 1.26 sq. LIMITED AREA OUT of 28"LENGTH = 28 × 100 × 1.26 = .27 = q.1N. 60.

6 OF 6

Laws Mauldir

Serial No. 94-01 Attachment 9 Page 197
Limited Exam Data Sheet Station <u>COMEE</u> Station <u>Unit</u> <u>J</u> I.D. <u># 3SGA - WG50-1</u> Sy <u>Aany Maullei</u> Date <u>1-10-94</u> Item <u># B03.140.002</u>
Determining The CUMULATIVE TOTAL OF WELD VOLUME INSPECTED (in percentage) Total Cross Sectional Area $\frac{4.98}{4.98}$ x (Number of Scans) $\frac{1}{4} = \frac{1}{4}$ (% Factor)
Vessels:Area Loss :Zone #1/nZone #2/nZone #3/nZone #3/nTotal Zone Loss/n/(% Factor)/n x 100 =/n% of LossLump Sum Loss From Other Limitations +%Total Loss%100% - (Total Loss) =% of Coverage(Additional% of Partial Coverage)
Outainles for Request for Relief Yes No Piping: Axial Scan(Loss)/(% Factor) x 100=% of Loss Circumferential Scan Over Root Area Yes No% of Loss Axial Loss+ Circ. Loss=/2=% Loss Additional Losses (Due to hangers, restraints, etc.) +% Loss Explain: Total % Loss
100% - (Total Loss)=% of Coverage Qualifies for Request for Relief □ Yes □ No
Disposition:
By: Date:

SHEET YOFY

Serial. No. 94-01 Attachment 9 Page 2022 CROSS SECTIONAL AREA= 8"X.5" + 1.5"2× ~ - 1.0" × ~ ÷ 4= 4.985g.1N. SUPPORT SKIRT E of Radyus AREA NUT SCANNED 60. 2"X.5 = 1.0 sq. 1.4. 1,0" = 4.98 "× 100 = 20% 100-20 - 20% 80% COVERAGE I.D#3SGA-WG 50-1 ITEM # BO3. 140.002 Larry Mouthin 1-10.94 STEAM GENERATOR DUTLET NOZZLE

SHEET 30F4

Serial No. 94-01 Attachment 10 Page 192
Station OCONEE Limited Exam Data Sheet
V Any May Date 1.0. # SSGH-WGZS V Any May Date 1.6.94 Item # B03.140.005 Checked By Day May Mas Date 1-10-94 Page Of
DETERMINING THE CUMULATIVE TOTAL OF WELD VOLUME INSPECTED
(in percentage) Total Cross Sectional Area $\frac{M/A}{A}$ x (Number of Scans) $\frac{M/A}{A} = \frac{M/A}{A}$ (% Factor)
<u>Vessels:</u>
Area Loss : Zone #1 $\frac{N/\rho}{Zone #2}$ Zone #2 $\frac{N/\rho}{A}$
Total Zone Loss $\frac{N/A}{A}$ /(% Factor) $\frac{N/A}{A}$ x 100 = $\frac{N/A}{A}$ % of Loss
Lump Sum Loss From Other Limitations $\pm 26\%$
Total Loss 26%
(Additional $\0$ % of Partial Coverage)
Qualifies for Request for Relief 🛛 Yes 🗆 No
Axial Scan (Loss) (M. E) 100
Circumferential Scan Over Root Area \Box Yes \Box No $-$ % of Loss
Axial Loss + Circ. Loss = $/2 = \%$ Loss
Additional Losses (Due to hangers, restraints, etc.) +% Loss
10tal % Loss
100% - (Total Loss)=% of Coverage Qualifies for Request for Relief □ Yes □ No
Disposition:
By: Date:

,

(

		_
SHEET	HOR	f

Serial No. 94-01 Attachment 10 SHEET 30F4 TOTAL EXAM AREA - 7.5X.5= 4.75 1N2 TOTAL AREA NOT SCAUNED . . 5X2.5= 1.25112 TOTAL PERCENT OF LOSS 1.25-475= 263×100= 26% TOTAL LOSS of 26% .500 By: Larry Maullin 1-6.94 # 35GA- WG25 ID. # 35GH-WG25-ITEM # BO3.140.005 incer norrele INNER RADIUS EXAM VOLUME

Attachment 11 Page 102
Limited Exam Data Sheet Station
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Area Loss : Zone #1 $\underline{N_A}$ Zone #2 $\underline{N_A}$ Zone #3 $\underline{N_A}$ Total Zone Loss $\underline{M_A}$ /(% Factor) $\underline{N_B}$ x 100 = $\frac{N_A}{A}$ % of Loss
Lump Sum Loss From Other Limitations $\pm 26.\%$ Total Loss $-26.\%$ 100% - (Total Loss) $2(-74.\%)$ of Coverage (Additional $-6.\%$ of Partial Coverage) Qualifies for Request for Relief \square Yes \square No
Axial Scan (Loss)/(% Factor) x 100=% of Loss Circumferential Scan Over Root Area Yes % of Loss Axial Loss + Circ. Loss % Loss Additional Losses (Due to hangers, restraints, etc.) +% Loss Explain:
100% - (Total Loss)=% of Coverage Qualifies for Request for Relief
Disposition:
By: Date:

Serial No. 94-01 Attachment II Page SHEET 30F4 TOTAL EXAM AREA - 9.5X.5= 4.75 1N2 TOTAL AREA NOT SCAUNED . . 5X2.5= 1.25112 TOTAL PERCENT OF LOSS 1.25-4.75=.263×100= 26% 0 œ TOTAL LOSS of 26% By : Lairy Maulden 1-6-94 I.D. # 35GB-6625 ITEM # BO3.140.006 MUET MOZZLE INNER RADIUS EXAM VOLUME

	Limited Fram Data Shoot
Station	OCONEC Unit 3 ID # 305TB-00TC-T
y Jana	W Sty Date 1-13-94 Itom # COZ. OZZ. OG
hecked By _	Date Page 3 Of 4
DETERN	AINING THE CUMULATIVE TOTAL OF WELD VOLUME DISDECTED
	(in percentage)
Total Cros	Sectional Area Λ / X (Number of Scans) / / = (% Factor)
Vessels:	
Area Loss :	Zone #1
	Zone #2n/
	Zone #3
Tota	ul Zone Loss /(% Factor) x 100 =% of Loss
	Lump Sum Loss From Other Limitations + 28 %
	Total Loss <u>28</u> %
	100% - (Total Loss) $28 = 72.\%$ of Coverage
	(Additional $\underline{N}/\underline{A}$ % of Partial Coverage)
	Qualifies for Relief 🗠 Yes 🗆 No
iping:	
Axial Scan	(Loss)(% Factor) x 100= % of Loss
Circumfere	ntial Scan Over Root Area 🛛 Yes 🗖 No % of Loss
AXIAI LOSS	+ Circ. Loss = $/2 = %$ Loss
Fimilaine	Losses (Due to hangers, restraints, etc.) +% Loss
	Total % Loss
· · · · · · · · · · · · · · · · · · ·	
•	100% - (Total Loss) = % of Coverses
	Qualifies for Request for Relief Yes No
<u> </u>	
Jisposition:	

-

Sta	εđiα	n		<u>>r</u>	$1 \leq$	>				_ i]	nit_	3	F	lev.			File	No)				Sł	ieet			01	
Sul	bje	ect_	L	M	ſΤA	$\overline{\mathbf{T}}$	51		œ		Ċ	F-	T_E	3		Dis	sel	1SR	গচ	. V	1022	E	/	IR	•		. 'n e n	
					7	0-7		···· • •' •			C					By	5	me	su	Vc	A.		<u></u> p)ate	1-1	'7-	94	/
Drr	3 * 7	No	6	0	2.	01	. <i>L</i> .	$\sim \sim $	صر کار	•	_L. • K	•	C	narb	ha	R)				X		Y	lata	Poor	- 1	+0E	4
· ···		140.		<u> </u>			·-•····	<u> </u>		· <i>-</i> - ·			•••	1501		20 y _							• • • • • • • • • • • • • • • • • • •		<u> </u>		<u></u>	
·					1				1							Ĩ							1]	= ,50	2		
				L	1		1											[1	1	}				
				L	<u>+</u>	+		+	<u>+</u>			<u> </u>	1	1	<u> </u>	J 			1				 					
				[<u>+</u>			l 			1							 									
· • - -						. <u> </u>			Ļ,	1		+			 			 		A								
						+				<u> </u>		<u> </u>								<i>×</i>								
					ļ	<u> </u>	<u> </u>					+							}}									
					· ·	 	<u></u>		ļ	<u> </u>						ļ		-		<u> </u>								
						Ļ								ż	ļ			, ,	Ľ							·		.
					<u> </u>	<u> </u>	ļ			 			<u> </u>	1			ļ,											
					ĺ								ψų,	2														
													EF	-									AR	EΛ	of	=		
													Pla										Ei	2				
														1											6			
						1	1							1								1	20	v	25		v 2	- 2
						+			<u> </u>			 -	+++					l		\$				2	-		<u>× -</u>	
								<u> </u>		<u> </u>		1	+	†					 					c.				
						<u>.</u> 				$\overline{\Lambda}$	3.5					<u> </u>		 					1.5	5911				
						<u> </u>				1	$\int \frac{1}{1}$											<u>(</u>) -		10	2		~	1
						1							ļ	11						6		- O	1	X		-		1.
									1	<u> </u>			<u> -</u>	1				\					_j -					4-
							<u> </u>	<u> </u>	! 	<u> </u>		[<u> -</u>			ļ	· ·	X				_	F/1	. 22	<u>2 </u>	21		
						. <u> .</u>	<u> </u>	<u> </u>			-	<u>}</u>	<u> </u>				6	B		×/	\leq		to	th	- ^	NG	3=	_/
					<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> .</u>	1 12	$\left \right\rangle$		Ľ,		\square	Q					\downarrow	ļ				+	1,
						<u> </u>	<u> </u>			ļ		· .			 	ļ			ļ	ļļ			Ì					
					ļ		ļ	ļ	ļ	ļ		Ļ			L	ļ			 								2	:•
							<u> </u>			ļ					<u> </u>		Ĺ					Ale	5	6	ڪ	<u> </u>		
						<u> </u>		ļ											ļ 		1.37	<u>،</u> ۲	375	+	370	52.	,75	5
			· `							Ĺ												2_	Ť			~2	•	•
	•																				=	7	7	S	in	, (Loc	<
																												-
							1	1		1		1				[*	4				└── ─			+	
						<u> </u>	<u> </u>			+			+	<u>†</u>		<u>†</u>		 .		 						-+		
					ļ	+	<u> </u>			<u> </u>				<u> </u>		+							+					
-							 	<u> </u>		 	_	 	<u> </u>	 	 	<u> </u>										$\rightarrow +$		
					: 	<u> </u>	<u> </u>	<u> </u>		<u> </u>			<u> </u>	<u> </u>					ļ									æ
						_	<u> </u>	<u> </u>		ļ			L	<u> </u>		ļ				 								
					1		1	1	1	1		4	1.	1 .	1	1			1	.	1		1	1				

4

.(

į

Serial No. 94-01 Attachment 13 Page 10F8

DEFINITIONS APPLICABLE TO THE REACTOR VESSEL EXAMINATION

AGGREGATE - Combined coverage using different transducers and different directions due to problems scanning the welds.

PARTIAL AGGREGATE COVERAGE - The amount of coverage obtained had there been no physical interferences. This includes but is not limited to configuration, surface condition (i.e. clad patches), etc.

ACTUAL AGGREGATE COVERAGE - The amount of coverage obtained due to the physical interferences.

3852232

Serial No. 94-01 Attachment 13 Page Z of 8

Formula:

Aggregate Coverage =

- [(% 70° Axial + % 70° Circ) x in² NS
- + (% 60° Circ + % 45° Circ + % 0°) x Total Area
- + ($\$ 60^\circ$ + $\$ 45^\circ$) Axial x (in² Weld x 2 + in² T/2)] /
- $[in^2 NS \times 2 + in^2 Total Area \times 3 + (in^2 Weld \times 2 + in^2 T/2) \times 2]$

Notes:

Weld volumes do not include the clad region.

The Near Surface Area extends 1" into the base metal.

Angle requirements are as follows:

- 0° 100 % of Total Volume,
- 45° & 60° 100 % of Weld from 4 directions, 100 % of T/2 from 2 Circ directions, 100 % of T/2 from 1 Axial direction,
- 70° 100 % of Near Surface from 1 Axial & 1 Circ directions,

70° 100 % of Inside Radius from 1 Axial & 1 Circ directions.

The 45° is used from the Nozzle Bore to examine the Near Surface of the Nozzle-to-Shell Weld in the Axial direction. Additionally only one direction is possible from the Nozzle Bore, and the 0° (or 15°) replaces the 60°.

Serial No. 94-01 Attachment 13 Page 3:0f 8

WR19

(BOI.030.001)

Total Exam Area = 184.56 in^2 (Near Surface + Weld + T/2) Near Surface Area = 15.40 in^2 (Cross-Section) Weld Area = 24.14 in^2 (Cross-Section) T/2 Area = 160.42 in^2 (Cross-Section)

CIRC	Q°	Gets	101.06	in ² of	Total	Exam .	Area	(54.8 %)	
	60°	& 45°	Get 1	38.27	in² of	Weld 8	& T/2 Areas	(74.9 %)	
	70°	Gets	11.52	in² of	Near	Surfac	e Area	(74.8 %)	

AXIAL 70° Gets 13.14 in² of Near Surface Area (85.3)

45° Gets 122.43 in² of T/2 Area
45°-UP Gets 22.02 in² of Weld Area
45°-DOWN Gets 2.44 in² of Weld Area
45° Coverage = <u>22.02 + 2.44 + 122.43</u> = 70.4 %
24.14 + 24.14 + 160.42

60° Gets 135.74 in² of T/2 Area 60°-UP Gets 23.12 in² of Weld Area 60°-DOWN Gets 5.75 in² of Weld Area 60° Coverage = $\frac{23.12 + 5.75 + 135.74}{24.14 + 24.14 + 160.42} = 78.9 \%$

Serial No. 94-01 Attachment 13 Page 4 of 8

<u>WR19</u> (BOI.030.001)

	AXIAL			<u></u>	IRC	
70	60	45	70	60	45	0
85.3	78.9	70.4	74.8	74.9	74.9	54.8

Aggregate Coverage =

E	(85.3	+	74.8) x 15.40 + (74.9 + 74.9 + 54.8) x 184.56
+	(78.9	+	70.4) x (24.14 x 2 + 160.42)] /
[14.50	x	$2 + 184.56 \times 3 + (24.14 \times 2 + 160.42) \times 2$

Partial Aggregate Coverage = 71.4 %

(MAXIMUM COVERAGE SCANNING OVER CLAD PATCHES)

Serial No. 94-01 Attachment 13 Page 5 of 8

WR19

(B01.030.001)

Due to Clad Patches, the entire circumference of the vessel could not be scanned. One side of the vessel was completly scanned, however. On the other side, only 1/2 of an Axial scan was performed over a clad patch. The circumferential distance lost due to each patch was 8 degrees. The partial Axial scan resulted in a loss of only 4 degrees. There are 3 clad patches on each side of the vessel, one over each nozzle.

The 70° Axial, the 0° and the 45° & 60° Axial-UP lost 20 degrees of circumference (5.6 %). The Circ Scans lost 24 degrees (6.7 %). Axial-DOWN scans (from the Taper) were not affected. In the area of the clad patches, the following coverages were obtained:

AXIAL 70° Gets 3.07 in² of Near Surface Area (19.9 %)

45° Gets 49.73 in² of T/2 Area

45°-UP Gets 0.61 in² of Weld Area

45°-DOWN Gets 2.44 in² of Weld Area

 45° Coverage = <u>0.61 + 2.44 + 49.73</u> = 25.3 % 24.14 + 24.14 + 160.42

60° Gets 73.85 in² of T/2 Area

60°-UP Gets 13.42 in² of Weld Area 60°-DOWN Gets 5.75 in² of Weld Area 60° Coverage = 13.42 + 5.75 + 73.85 = 44.6 % 24.14 + 24.14 + 160.42

70° Axial Coverage = 340 x 85.3 + 20 x 19.9 / 360 = 81.7 % 60° Axial Coverage = 340 x 78.9 + 20 x 44.6 / 360 = 77.0 % 45° Axial Coverage = 340 x 70.4 + 20 x 25.3 / 360 = 67.9 %

Page 4

Serial No. 94-01 Attachment 13 Page 6 of 8

<u>WR19</u> (B01.030.001)

	<u>AXIAL</u>			CIRC						
70	60	45	70	_60_	45	0				
81.7	77.0	67.9	70.6	69.8	69.8	51.8				

Aggregate Coverage =

I	(81.7	+	70.6)	x	15.40	+	(69.8	3 +	69.8	+	51.8)	x	184.	56
÷	(77.0	÷	67.9)	x	(24.14	x	2 +	160).42)]	/			
[14.50	x	2 + 18	34.	56 x 3	+	(24.	14	x 2 ·	+ :	L60.42)	3	c 2]	

Actual Aggregate Coverage = 67.9 %

(ACTUAL COVERAGE OBTAINED DUE TO CLAD PATCHES)

Serial No.94-01 Attachment 13 Page 7 of 8

FLANGE TO SHELL WELD

(BOI.030.001)

FLANGE TO SHELL WELD AXIAL SCAN

(BDI.030.001)

WR34 (BOI. 021.002)

Total Exam	Area =	53.27 in ²	(Near Surface + Weld + T/2)
Near Surface	Area =	8.31 in ²	(Cross-Section)
Weld	Area =	7.59 in ²	(Cross-Section)
т/2	Area =	45.68 in ²	(Cross-Section)

CIRC 0° Gets 16.89 in² of Total Exam Area (31.7 %) 60° & 45° Get 35.69 in² of Weld & T/2 Areas (67.0 %) 70° Gets 5.58 in² of Near Surface Area (67.1 %)

AXIAL 70° Gets 7.24 in² of Near Surface Area (87.1 %)

45° Gets 100 % Coverage of T/2 Area
45°-UP Gets 100 % Coverage of Weld Area
45°-DOWN Gets 7.55 in² of Weld Area
45° Coverage = 7.59 + 7.55 + 45.68 = 99.9 %
7.59 + 7.59 + 45.68

60° Gets 45.59 in² of T/2 Area 60°-UP Gets 100 % of Weld Area 60°-DOWN Gets 6.28 in² of Weld Area 60° Coverage = $\frac{7.59 + 6.28 + 45.59}{7.59 + 7.59 + 45.68} = 97.7$ %

Serial No. 94-01 Attachment 14 Page Z of 5

WR34 (BOI. 021. 002)

	AXIAL		CIRC						
70	60	45	_70_	60	_45_	0_			
87.1	97.7	99.9	67.1	67.0	67.0	31.7			

Aggregate Coverage =

[(87.1	+	67.	1) x	8.31	. +	(67.0) +	67.0	0 +	31.7	7) ;	X,	53.27
+	(97.7	÷	99.	9) x	: (7.5	i9 2	K 2 +	45	.68)] /	,			
I	8.31 >	< 2	2 +	53.2	7 x 3	\$ +	(7.59) x	2 +	45.	68)	x :	2]

Partial Aggregate Coverage = 74.2 %

Serial No. 94-01 Attachment 14 Page 3 of 5

<u>WR34</u>

(BOI.021.002)

Due to the Core Catcher Lugs the entire circumference of the vessel could not be scanned. Scanning was conducted between each of the 12 lugs. Based on the configuration of the alternate head, the 0°, 70° Axial and all Circ scans obtained 15.3 degrees out of 30 (51 %). The 45° & 60° Axial scans obtained 19.5 degrees out of 30 (65 %).

Actual Coverage was as follows:

<u>WR34</u>

	AXIAL			Ç;	IRC	
70	60	45		60	45	0
44.4	63.4	64.8	34.2	34.2	34.2	16.2

Aggregate Coverage =

ľ	(44.4	÷	34.	.2)	x	8.31	+	(34	1.2	+	34.3	2 +	16.2	2)	x	53.27
+	(63.4	+	64	8)	x	(7.5	9 >	c 2	+ 4	45.	.68)],	/			
[8.31 :	x 2	2 +	53.	27	х з	+	{7.	59	x	2 +	45.	. 68)	x	2]

Actual Aggregate Coverage = 43.5 %

Serial No. 94-01 Attachment 14 Page 4 of 5

LOWER HEAD TO SHELL

(BO1.021.002)

Senal No. 94-01 Attachment 14 Page 5 of 5

LOWER HEAD TO SHELL WELD AXIAL SCAN

(Bol. 021. 002)

3852232

'n

Serial No.94-01 Attachment 15 Page 1 of 2

(BDI.011.003)

Total Exam	Area	= 183.27	in^2	(Near Surface + Weld + T/2)
Near Surface	Area	= 15.27	in²	(Cross-Section)
Weld	Area	= 24.14	in³	(Cross-Section)
T/2	Area	= 159.13	in²	(Cross-Section)

CIRC	70°	Gets	100	% Coverage of Near Surface Area	
	60°	& 45°	Get	t 100 % Coverage of Weld & T/2 Area	as
	٥°	Gets	100	% Coverage of Total Exam Area	

AXIAL	70°	Gets	100	d,	Coverage	of	Near	Surface Area
	45°	Gets	100	ę	Coverage	of	Weld	& T/2 Areas
	60°	Gets	100	Å	Coverage	of	Weld	& T/2 Areas

WR18

	AXIAL			CIRC						
70	60	45	_70	60	45	0				
100	100	100	10	0 100	100	100				

Aggregate Coverage =

[$(100 + 100) \times 15.27 + (100 + 100 + 100) \times 159.13$ + $(100 + 100) \times (24.14 \times 2 + 159.13)$] / [$15.27 \times 2 + 159.13 \times 3 + (24.14 \times 2 + 159.13) \times 2$]

Partial Aggregate Coverage = 100 %

Serial No. 94-01 Attachment 15 Page 2 of 2

<u>WR18</u> (BOI.011.003)

This weld is located between nozzles, 13" below the nozzle centerline. The nozzles themselves form obstructions to 100 % coverage.

Between Inlet Nozzles, below the Core Flood Nozzle (2 regions), 25.7 degrees out of 32.5 degrees was scanned. The weld extends out on either side of this region intersecting the Inlet Nozzleto-Shell welds.

Between each Inlet Nozzle and Outlet Nozzle (4 regions) 19.6 degrees out of 27.8 degrees was scanned. The weld extends out on either side of this region intersecting the Inlet and Outlet Nozzle-to-Shell welds. Extra coverage was lost in these regions due to the Outlet Nozzle lip.

Actual Aggregate Coverage=[25.7 / 32.5 x 2 + 19.6/27.8 x 4]/6

= 73[.].4 %

Serial No. 94-01 Attachment 16 Page 1 of 9

Nozzle Formula:

Aggregate Coverage =

[% 70° Circ x in² NS + (% 0°/15°/45° Axial

+ % 60° Circ + % 45° Circ + % 0°) x Total Area } /

 $[in^2 NS + in^2 Total Area x 4]$

Nozzle Notes:

Weld volumes do not include the clad region.

The Near Surface Area extends 1" into the base metal.

The Inside Radius Area extends 1/2" into the base metal.

Angle requirements are as follows:

0° 100 % of Total Volume,

45° & 60° 100 % of Weld from 4 directions, 100 % of T/2 from 2 Circ directions, 100 % of T/2 from 1 Axial direction,

70° 100 % of Near Surface from 1 Axial & 1 Circ directions,

70° 100 % of Inside Radius from 1 Axial & 1 Circ directions.

Only one angle direction is required from the Nozzle Bore, and coverage is estimated based on the combined extent of the 0°, $15^{\circ} \& 45^{\circ}$. Additionally, there is no near surface requirement from the Vessel ID for the Axial direction.

Serial No.94-01 Attachment 16 Page Z of 9

NDE SERVICES 3852232 3RPV-WR12 (B03.090.003 \$ 003A) 3R.PV. WRIZA (B03.090.004 \$ 004A) DV-WRIZB (B03.090.005 \$ 005A) BRPV-WRIZC (B03.090.006 \$ 006A)

VERTICAL SECTION

Total Bxam	Area =	292.94	in²	(Near Surface + Weld + T/2)
Near Surface	Area =	15.06	in²	(Cross-Section)
Weld	Area =	24.34	in²	(Cross-Section)
T/2	Area =	268.60	in²	(Cross-Section)
Inside Radius	Area =	6.83	in ²	(Cross-Section)

CIRC	0° Gets 219.74 in ² of Total Exam Area	(75.0 %)
	60° & 45° Get 219.74 in^2 of Weld & T/2 Areas	(75.0 %)
	70° Gets 100 % Coverage of Near Surface Area	
	70° Gets 5.03 in² of Inside Radius Area	(73.6 %)

0°, 15° & 45° Get 281.98 in² of Weld & T/2 Area (96.3 %) AXIAL 70° Gets 100 % Coverage of Inside Radius Area

3RPV-WR12 (B03.100.003) 3RPV-WR12A (B03.100.004) 3RPV-INRIZB (B03.100.005) 3RPV-WRIZC (B03.100.006)

3852232 NDE SERVICES 3RPV:WRIZ (B03.090.003 \$003A) 3RPV-WRIZA (B03.090.004 \$004A) V-WRIZB (B03.090.005 \$005A) 3KPV-WRIZC (B03.090.006 \$006A)

MAR 08 '94 09:46 F-722 T-349 P-018 Serial No. 94-01 Attachment 16 Page 3 of 9

WRIN

HORIZONTAL SECTION

Total Exam	Area	Ŧ	269.15	in²	(Near Surface + Weld + T/2)
Near Surface	Area	=	13.97	in²	(Cross-Section)
Weld	Area		22.72	in²	(Cross-Section)
T/2	Area	=	246.43	in²	(Cross-Section)
Inside Radius	Area	=	7.20	in²	(Cross-Section)

CIRC 0° Gets 153.64 in² of Total Exam Area (57.1 %) 60° & 45° Get 153.64 in² of Weld & T/2 Areas (57.1 %) 70° Gets 100 % Coverage of Near Surface Area 70° Gets 0 % Coverage of Inside Radius Area

AXIAL 0°, 15° & 45° Get 210.63 in² of Weld & T/2 Area (78.3 %) 70° Gets 100 % Coverage of Inside Radius Area

3RPV-WRIZ (B03.100.003) 3RPV-WRIZA (B03.100.004) 3RPV-WRIZB (B03.100.005) 3RPV-WRIZC (B03.100.005)

MAR 08 '94 09:46 F-722 T-349 P-019 NDE SERVIÇES 3852232 3RPV-WRIZ (B03.090.003 \$003A) Serval No. 94.01 3RPV-WRIZA (B03.090.004 \$004A) Attachment 16 3RPV. WR 12B (BO3.090.005 \$ 005A) Page 4 of 9 1. WRIZC (BO3.090.006 & 006A) WRIN WR12 (B03.100.003) 3RPV-WRIZA (BD3.100.004) VERTICAL SECTION 3 RPV-WRIZB (B03.100.005) 3 RPV. WRIZC (B03.100.006) CIRC AXIAL 0/15/45 70 60 45 0

Aggregate Coverage =

96.3

 $[100 \times 15.06 + (96.3 + 75.0 + 75.0 + 75.0) \times 292.94] /$ $[15.06 + 292.94 \times 4]$

Actual Aggregate Coverage = 80.6 %

100

75.0

75.0

75.0

HORIZONTAL SECTION

AXIAL		CIRC				
0/15/45	_70_	60	_45_	0		
78.3	100	57.1	57.1	57.1		

Aggregate Coverage =

 $[100 \times 13.97 + (78.3 + 57.1 + 57.1 + 57.1) \times 269.15] / [13.97 + 269.15 \times 4]$

Actual Aggregate Coverage = 62.9 %
MAR 08 '94 09:46 F-722 T-349 P-020 NDE SERVICES 3852232 3RPV-WRIZ (B03.090.003 \$ 003A) Serial No. 94-01 3RAV WRIZA (B03.090.004 4004A) Attachment 16 3RPV. WRIZB (BO3.090.005 \$ 00 5A) 3R WRIZL (BO3.090.006 \$ 006A) Page 5of 9 3 RUNIZIZ (B03.100.003) WRIN 3RPV-WRIZA (B03.100.004) 3RPV- WRIZB (B03.100.005) Nozzle-to-Shell Weld 3RPV-WR12C (B03.100.006)

Actual Average Coverage = [80.6 + 62.9] / 2 = 71.7 %

Additionally, Coverage of the Inside Radius is as follows:

Axial Coverage = [100 + 100] / 2 = 100 % Circ Coverage = [73.6 + 0] / 2 = 36.8 % Actual Average Coverage = 68.4 %

Coverage of the Nozzle-to-Pipe Weld is 100 %

Serial No.94.01 Attachment 16 Page 6 of 9

INLET NOZZLE TO SHELL WELD CIRC SCAN FROM VESSEL ID

RPV-WRIZ (B03.090.003 \$003A) 3RPV-WRIZA (B03.090.004 \$004A) 3RPV-WRIZB (B03.090.005 \$005A) 3RPV-WRIZC (B03.090.006 \$006A)

3RPI-WRIZ (B03.100.003) 3RPI-WRIZA (B03.100.004) 3RPV-WRIZB (B03.100.005) 3RPV-WRIZC (B03.100.006)

INLET NOZZLE TO SHELL WELD NEAR SURFACE FROM VESSEL ID AND INNER RADIUS CIRC SCAN FROM NOZZLE ID

RPV-WRIZ (B03.090.003 \$003A) SRPV-WRIZA (B03.090.004 \$004A) SRPV-WRIZB (B03.090.005 \$005A) SRPV-WRIZC (B03.090.006 \$006A) 3RPV-WRIZ (B03.100.003) 3RPV-WRIZA (B03.100.004) 3RPV-WRIZB (B03.100.005) 3RPV-WRIZC (B03.100.006)

INLET NOZZLE INNER RADIUS AXIAL SCAN FROM NOZZLE ID

MR12 (B03.090.003 \$003A) 3RPV-WR12 (B03.100.003) 3RPV-WR12A (B03.090.004 \$004A) 3RPV-WR12A (B03.100.004) 3RPV-WR12B (B03.090.005 \$005A) 3RPV-WR12B (B03.100.005) 3RPV-WR12C (B03.090.006 \$006A) 3RPV-WR12C (B03.100.006)

INLET NOZZLE TO SHELL WELD SCAN FROM NOZZLE ID

W-WRIZ (B03.090.003 \$003A) 3RPV-WRIZ (B03.100.003) V. WRIZA (BO3.090.004 4004A) 3RPV-WRIZA (BO3.100.004) 3RPV-WRIZB (BD3.090.005 \$ 005A) 3RPV-WRIZB (B03.100.005) 3RPV-WRIZC (B03.090.006 \$006A) 3RPV-WRIZC (B03.100.006)

Near S	Surface	Area	=	14.02	in ²	(Cross-Section)
	Weld	Area	. =	25.52	in²	(Cross-Section)
	т/2	Area	-0	275.54	in ²	(Cross-Section)
Inside	Radius	Area	#	7.26	in²	(Cross-Section)
	*					

CIRC 0° Gets 95.16 in² of Total Exam Area (31.6 %) 60° & 45° Get 136.87 in² of Weld & T/2 Areas (45.5 %) 70° Gets 11.03 in² of Near Surface Area (78.7 %) 70° Gets 100 % Coverage of Inside Radius Area

AXIAL

0°, 15° & 45° Get 295.92 in² of Weld & T/2 Area (98.3 %) 70° Gets 100 % Coverage of Inside Radius Area 3852232 NDE SERVICES BRPY-WR13 (B03.090.001 \$001A)

BRPN-WRIZA (B03.090.002 \$002A)

BRF R 13 (B03.100.001) BRPV-WRIZA (B03.100.002) F-722 T-349 P-026 MAR 08 '94 09:48

Serial No. 94-01 Attachment 17 Page Z of 8

WROUT

HORIZONTAL SECTION

Total Exam	Area	= 298.71	in²	(Near Surface + Weld + T/2
Near Surface	Area	= 13.62	in²	(Cross-Section)
Weld	Area	= 23.45	in²	(Cross-Section)
т/2	Area	= 275.26	in ²	(Cross-Section)
Inside Radius	Area	= 8.02	in²	(Cross-Section)

CIRC	0° Gets 47.69 in ² of Total Exam Area	(16.0 %)
,	60° & 45° Get 87.46 in ² of Weld & T/2 Areas	(29.3 %)
	70° Gets 11.33 in ² of Near Surface Area	(83.2 %)
•	70° Gets 6.88 in ² of Inside Radius Area	(85.8 %)

AXIAL

0°, 15° & 45° Get 247.16 in² of Weld & T/2 Area (82.7 %) 70° Gets 7.74 in² of Inside Radius Area (96.5 %)

MAR 08 '94 09:48 F-722 T-349 P-027 NDE SERVICES 3852232 3RPV-WR13 (BO3.090.001 \$001A) Serial No. 94-01 Attachment 17 3RPV-WRI3A (BO3.090.002 & DOZA) Page 3 of 8 BRP IR 13 (B03.100.001) WROUT BRH JRIJA (B03.100.002)

VERTICAL SECTION

AXIAL		<u> </u>	IRC	`
0/15/45	_70	60	45	0
98.3	78.7	45.5	45.5	31.6

Aggregate Coverage =

 $[78.7 \times 14.02 + (98.3 + 45.5 + 45.5 + 31.6) \times 301.06] /$ $[14.02 + 301.06 \times 4]$

> Actual Aggregate Coverage = 55.5 %

HORIZONTAL SECTION

AXIAL		•• •••	CIRC			
0/15/45		70	60	45	0	
82.7	•	83.2	29.3	29.3	16.0	

Aggregate Coverage =

 $[83.2 \times 13.62 + (82.7 + 29.3 + 29.3 + 16.0) \times 298.71] /$ $[13.62 + 298.71 \times 4]$

Actual Aggregate Coverage = 39.8 %

F-722 T-349 P-028 MAR 08

3RPV-WR-13 (BO3.090.001 \$001A)

Serial No. 94-01 Attachment 17 Page 4 of 8

BRPV-WRIJA (BOJ.090.002 \$002A) BRI IRIJ (BOJ.100.001) BRPV-WRIJA (BOJ.100.002)

WROUT

Nozzle-to-Shell Weld

Actual Average Coverage = [55.5 + 39.8] / 2 = 47.6 %

Additionally, Coverage of the Inside Radius is as follows:

Axial Coverage = [100 + 96.5] / 2 = 98.2 % Circ Coverage = [100 + 85.8] / 2 = 92.9 % Actual Average Coverage = 95.6 %

Coverage of the Nozzle-to-Pipe Weld is 100 %

NDE SERVICES

OUTLET NOZZLE TO SHELL WELD CIRC SCAN FROM VESSEL ID

Page 28

3RPV-WRI3A (B03.090.001 \$ 001A) 3RPV-WRI3A (B03.090.002 \$ 002A) 3RPV-WRI3 (B03.100.001) 3RPV-WRI3A (B03.100.002)

OUTLET NOZZLE TO SHELL WELD NEAR SURFACE FROM VESSEL ID AND INNER RADIUS CIRC SCAN FROM NOZZLE ID

PV-WRIZ (BOJ.090.001 2001A)
3RPV-WRIZA (BOJ.002 2002A)
3RPV-WRIZA (BOJ.100.001)
3RPV-WRIZA (BOJ.100.002)

3 3 RPV-WRISA (BO3.090.002 \$ 002A) 3RPV-WR13 (B03.100.001) 3R/DV-INRIZA (BO3.100.002)

SCAN FROM NOZZLE ID

3PPV-WRIZ (BO3.090.001 & 001A) 3PPV-WRIZA (BO3.090.002 & 002A) 3PPV-WRIZ (BO3.100.001) 3PPV-WRIZA (BO3.100.002)

3852232 NDE SERVICES 3RPV-WR 54 (BO3.090.007 \$007A) 3RPV-WR 54 (BO3.00007 \$007A) WR 54 (BO3.100.007 \$007A) WR 54A (BO3.100.008 \$008A)

F-722 T-349 P-033 MAR 08 '94 09:50

Serval No. 94-01 Attachment 18 Page 1 of 12

VERTICAL SECTION

Total Exam Area = 189.61 in^2 (Near Surface + Weld + T/2) Near Surface Area = 12.98 in^2 (Cross-Section) Weld Area = 19.01 in^2 (Cross-Section) T/2 Area = 170.60 in^2 (Cross-Section)

CIRC 0° Gets 170.69 in² of Total Exam Area (90.0 %) 60° & 45° Get 170.69 in² of Weld & T/2 Areas (90.0 %) 70° Gets 100 % Coverage of Near Surface Area

AXIAL 70° Gets 100 % Coverage of Near Surface Area

45° Gets 162.44 in² of T/2 Area
45°-IN Gets 100 % Coverage of Weld Area
45°-OUT Gets 7.92 in² of Weld Area
45° Coverage = <u>19.01 + 7.92 + 162.44</u> = 90.8 %
19.01 + 19.01 + 170.60

60° Gets 161.18 in² of T/2 Area
60°-IN Gets 100 % Coverage of Weld Area
60°-OUT Gets 5.02 in² of Weld Area
60° Coverage = <u>19.01 + 5.02 + 161.18</u> = 88.8 %
19.01 + 19.01 + 170.60

Page 32

	3852232	NDE SERVICES		F-722	T-349	P-0.
3RPV-	WR54 (B03.090.	007 \$ 007A)				
3RPV-	WR54A (B03.090	(A800 \$ 800.				-
3 W	IR 54 (B03.100.007 \$	007A)	WRCF			
3RPV-W	R54A (B03.100.008 4	-008A)				

MAR 08 '94 09:50 34

Serial No. 94-01 Attachment 18 Page Zof 12

HORIZONTAL SECTION

Total Exam Area = 222.71 in^2 (Near Surface + Weld + T/2) Near Surface Area = 15.50 in^2 (Cross-Section) Weld Area = 21.32 in^2 (Cross-Section) T/2 Area = 201.39 in^2 (Cross-Section)

CIRC 0° Gets 191.77 in² of Total Exam Area (86.1 %) 60° & 45° Get 191.77 in² of Weld & T/2 Areas (86.1 %) 70° Gets 100 % Coverage of Near Surface Area

AXIAL 70° Gets 100 % Coverage of Near Surface Area

45° Gets 199.35 in² of T/2 Area
45°-IN Gets 100 % Coverage of Weld Area
45°-OUT Gets 8.72 in² of Weld Area
45° Coverage = <u>21.32 + 8.72 + 199.35</u> = 94.0 %
21.32 + 21.32 + 201.39

60° Gets 198.96 in² of T/2 Area 60°-IN Gets 100 % Coverage of Weld Area 60°-OUT Gets 5.74 in² of Weld Area 60° Coverage = <u>23.12 + 5.74 + 198.96</u> = 93.4 % 23.12 + 23.12 + 201.39

F-722 T-349 P-035

Serial No. 94-01

Attachment 18

3RPV-WR 54 (BO3.090.007 \$ 007A) 3PDI-WR 54A (BO3.090.008 4008A) Page 3 of 12 WRCF 3 KPV-WR 54 (B03.100.007 \$ 007A) VERTICAL SECTION 3RN-WR54A (B03.100.008 \$008A)

AXIAL					C	IRC	
70	60	_45_	,	70	60	_45_	
100	88.8	90.8		100	90.0	90.0	90.0

Aggregate Coverage =

 $\{(100 + 100) \times 12.98 + (90.0 + 90.0 + 90.0) \times 189.61\}$ + $(88.8 + 90.8) \times (19.01 \times 2 + 170.60)] /$ $[12.98 \times 2 + 189.61 \times 3 + (19.01 \times 2 + 170.60) \times 2]$

Partial Aggregate Coverage = 90.2 %

HORIZONTAL SECTION

	AXIAL		••••••••••••••••••••••••••••••••••••••	CIRC					
70	60	45	70	60	_45_	0_			
100	93.4	94.0	100	86.1	86.1	86.1			

Aggregate Coverage =

 $[(100 + 100) \times 15.50 + (86.1 + 86.1 + 86.1) \times 222.71$ + $(93.4 + 94.0) \times (21.32 \times 2 + 201.39)] /$ $[15.50 \times 2 + 222.71 \times 3 + (21.32 \times 2 + 201.39) \times 2]$

> Partial Aggregate Coverage = 89.6 % Page 34

NDE SERVICES

F-722 T-349 P-036

MAR 08 '94 09:50

3RPV-INIR 54 (BO3.090.007 #007A) 3RPV-WR524A (BO3.090.008 #008A) 3RPV-WR54 (BO3.100.007 #007A) 3RPV-WR54A (BO3.100.007 #007A)

60°

Serval No.94-01 Attachment 18 Page 4 of 12

Coverage of the Core Flood Nozzle is blocked by the flange taper on the top side. 114 degrees of coverage is reduced. Coverage is also blocked on both sides by the adjacent inlet nozzles. 60 degrees of coverage is reduced on each side. Reduction in the top coverage affects the vertical section only. Reduction in the side coverage affects both the horizontal and vertical coverage.

REDUCED VERTICAL SECTION

Gets 132.28 in^2 of T/2 Area

WRCF

AXIAL

60°-IN Gets 16.16 in² of Weld Area 60°-OUT Gets 5.02 in² of Weld Area 60° Coverage = $\frac{16.16 + 5.02 + 132.28}{19.01 + 19.01 + 170.60} = 73.6$ %

AXIAL					C	IRC	
70	60	_45_	_7	0_	60	45	0
100	73.6	90.8	1	00	90.0	90.0	90.0

Aggregate Coverage =

[(100 + 100) x 12.98 + (90.0 + 90.0 + 90.0) x 189.61 + (73.6 + 90.8) x (19.01 x 2 + 170.60)] / [12.98 x 2 + 189.61 x 3 + (19.01 x 2 + 170.60) x 2]

Actual Aggregate Coverage = 87.0 %

3RPV-WR 54 (B03.090.007 \$007A) 3RPV-WR 54A (B03.090.008 \$008A) 3RPV-WR 54 (B03.100.007 \$007A) 4-WR 54A (B03.100.008 \$008A)

Serial No. 94-01 Attachment 18 Page 5 of 12

REDUCED HORIZONTAL SECTION

AXIAL

70° Gets 11.93 in² of Near Surface Area (77.0 %)

60° Gets 166.86 in² of T/2 Area 60°-IN Gets 19.83 in² of Weld Area 60°-OUT Gets 5.74 in² of Weld Area 60° Coverage = <u>19.83 + 5.74 + 166.86</u> = 78.9 % 23.12 + 23.12 + 201.39

	AXIAL		(IIII)	CIRC					
70	<u>60</u>	_45_	70	60	45	0			
77.0	78.9	94.0	100	86.1	86.1	86.1			

Aggregate Coverage =

[$(77.0 + 100) \times 15.50 + (86.1 + 86.1 + 86.1) \times 222.71$ + $(78.9 + 94.0) \times (21.32 \times 2 + 201.39)$] / [$15.50 \times 2 + 222.71 \times 3 + (21.32 \times 2 + 201.39) \times 2$]

Actual Aggregate Coverage = 86.3 %

Actual Coverage is as follows:

[Reduced Vertical (A) x 94° + Vertical (B) x 48° + Horizontal (C) x 98°

- + Reduced (Vertical + Horizontal)(D) / 2 x 120°] / 360 =
- = $87.0 \times 94^\circ + 90.2 \times 48^\circ + 89.6 \times 98^\circ + (87.0 + 86.3) \times 60^\circ/360$

Total Actual Coverage = 88.0 %

Total Actual Coverage = 88.0%

NDE SERVICES

3RPV-WR SH (B03.090.007 \$007A) 3RPV-WR SHA (B03.090.008 \$008A) -WR SH (B03.100.007 \$007A) 3RPV-WR SHA (B03.100.008 \$008A)

Serial No. 94.01 Attachment 18 Page 6 of 12

Additionally, Coverage of the Inside Radius is as follows:

WRCF

Axial Coverage = 100 % Circ Coverage = 0 % Actual Average Coverage = 50 %

Additionally, Coverage of the <u>Nozzle-to-Safe End Weld</u> is limited by the counterbore. Coverage is as follows:

Circ Coverage

Inner T/3	1.804	in²	out	of	2.587	in²	(69.7	%)
Outer T/3	.986	in^2	out	of	1.343	in ²	(73.4	%)
Axial Coverage								
Inner T/3	2.428	in²	out	of	2.587	in²	(93.9	옿)

(Limited in OUT direction only)

Actual Average Coverage = [69.7 + 69.7 + 73.4 + 73.4 + 93.9 + 100 + 100 + 100] / 8 = 85.0 %

Additionally Coverage of the Safe End-to-Pipe Weld is 100 %

CORE FLOOD NOZZLE TO SHELL WELD CIRC SCAN FROM VESSEL ID

3RPV-WRS74 (BO3.090.007 \$ 007A) 3RPV-WRS7A (BO3.090.008 \$ 008A)

3 RPV-WRS4 (B03.100.007 \$ 007A)

3RPV-WRS4A (B03.100.008 \$008A)

CORE FLOOD NOZZLE TO SHELL WELD NEAR SURFACE AND INNER RADIUS FROM VESSEL ID

3RPV-WR 54 (BD3.090.007 \$007A)

Page 39

3RPV-WRSHA (BO3.090.008 &008A) 3RPV-WR54 (BO3.100.007 &007A) 3RPV-WR54A (BO3.100.008 & 008A)

3RPV-WRS4 (BO3.090.007 \$ 007A) 3RPV-WRS4A (BO3.090.008 \$ 008A) 3RPV-WRS4 (BO3.100.007 \$ 007A) 3RPV-WRS4A (BO3.100.008 \$ 008A)

NDE SERVICES

3852232

CORE FLOOD NOZZLE TO SHELL WELD 60° AXIAL SCAN FROM VESSEL ID

PV-WR54 (BOB.090.007 \$ 007A) 3RPN-WIR54A (BO3.090.008 \$ 008A) 3RPV-WR54 (BO3.100.007 \$ 007A) 3RPV-WR54A (BO3.100.008 \$ 008A)

Page 41

MAR 08 '94 09:52

F-722 T-349 P-042

Serial No. 94-01 Attachment 18 Page 11 of 12

CORE FLOOD NOZZLE TO SAFE END WELDS FROM ID

3RPV-WR 54 (BO3.090.007 \$007A) 3RPV-WR 54A (BO3.090.008 \$008A) 3RPV-WR 54 (BO3.100.007 \$007A) 3RPV-WR 54 (BO3.100.008 \$008A)

