APR1400 Safety Analysis

KEPCO/KHNP Apr. 20~21. 2016

APR1400-F-A-EC-16001-NP

Contents

- Introduction
 - ✓ Safety Analysis
 - ✓ Regulatory Bases
- > APR1400 Design Features
- Design Review Status
- > Overview of Methodology and Analysis Results
 - ✓ LBLOCA/SBLOCA/LTC/Non-LOCA

1

Summary

Introduction (Safety Analysis)

- DCD Chapters for Safety Analyses
 - ✓ 15.0: Introduction Transient and Accident Analyses
 - ✓ Non-LOCA
 - 15.1: Increase in Heat Removal by the Secondary System
 - 15.2: Decrease in Heat Removal by the Secondary System
 - 15.3: Decrease in Reactor Coolant System Flow Rate
 - 15.4: Reactivity and Power Distribution Anomalies
 - 15.5: Increase in Reactor Coolant Inventory
 - 15.6: Decrease in Reactor Coolant Inventory (except for 15.6.5)
 - ✓ Loss Of Coolant Accident (LOCA)
 - 6.2.1.5 & 15.6.5: Large Break LOCA (LBLOCA)

- 15.6.5: Small Break LOCA (SBLOCA)
- 15.6.5: Long Term Cooling (LTC)

Introduction (Regulatory Bases)

- Code of Federal Regulations
 - ✓ 10 CFR 50.46*
 - Acceptance Criteria for Emergency Core Cooling Systems (ECCS) for Light Water Nuclear Power Reactors
- Regulatory Bases
 - ✓ Regulatory Guide 1.157, BE Calculations of ECCS Performance
 - Regulatory Guide 1.206, Combined License Applications for Nuclear Power Plants (LWR Edition)
 - ✓ NUREG-0800, Standard Review Plan for the Review of Safety Analysis Reports for NPP: LWR Edition – Transient and Accident Analysis
 - NUREG-1230, Compendium of ECCS Research for Realistic LOCA Analysis

3

 NUREG-5249, Quantifying Reactor Safety Margins: Application of Code Scaling, Applicability and Uncertainty Evaluation Methodology to a LBLOCA (CSAU)

* Rule making of 10CFR50.46(C) is on going

BE: Best Estimate

APR1400 Design Features

- > SIS: 4 mechanically & electrically independent trains
- Direct Vessel Injection (DVI)
- A safety injection pump and a safety injection tank (SIT-FD) are installed in each train
- All the ECC water is
 injected into the upper
 annulus of reactor
 pressure vessel
 - SIS : Safety Injection System ECC : Emergency Core Cooling

APR1400 Design Features

Fluidic Device in SIT regulates the injection flow rate and enhances removal of decay heat in early reflood phase

5

 Topical Report;
 'Fluidic Device Design' (APR1400-Z-M-TR-12003, Dec. 2012)

Design Review Status

Large Break LOCA

- ✓ Topical Report; 'Realistic Evaluation Methodology for Large-Break LOCA of the APR1400'
- ✓ 99 Audit Issues for Discussion Related to CAREM, August 2015.
- ✓ NRC Large Break LOCA Audit, January 12~14, 2016.
- ✓ Request for Additional Information (RAI) Process
- Small Break LOCA
 - ✓ Analysis Results Confirmed the Satisfaction of Acceptance Criteria
 - ✓ Application of CENPD-137P for APR1400 Proceeds
- LTC / Non-LOCA
 - ✓ Analysis Results Confirmed the Satisfaction of Acceptance Criteria
 - ✓ RAI Process

CAREM : Code Accuracy based Realistic Evaluation Model

Overview of LBLOCA Analysis

- License Information for LBLOCA
 - ✓ Topical Report Submission
 - ; 'Realistic Evaluation Methodology for Large-Break LOCA of the APR1400' (APR1400-F-A-TR-12004), Dec. 2012
 - ✓ Code Accuracy based Realistic Evaluation Model (CAREM)
 - ✓ Codes
 - RELAP5/MOD3.3K: Thermal-hydraulic analysis
 - CONTEMPT4/MOD5: Containment back pressure calculation
 - Two codes are consolidated to exchange P & M/E data

7

✓ Licensing process for CAREM is currently under way

Overview of LBLOCA Analysis

- Code & Methodology
 - ✓ RELAP5/MOD3.3K & CONTEMPT4/MOD5
 - Two codes exchange mass & energy (RELAP5) and pressure (CONTEMPT4) as boundary conditions for each other
 - ✓ CAREM developed based on the CSAU
 - Uncertainties are quantified by non-parametric statistics and SRS calculation
 - Introduce Experimental Data Covering (EDC) for confirmation of uncertainty parameters and their ranges & distributions

CSAU: Code Scaling, Applicability and Uncertainty (NUREG-5249) SRS: Simple Random Sampling EDC: Experimental Data Covering

Overview of LBLOCA Analysis

LBLOCA Analysis Results

100% Double-ended Guillotine Break in Pump Discharge Leg

10

Water Levels in Core and Downcomer

SRS Peak Cladding Temperatures

LBLOCA Analysis Results

Peak	Value, °C					
SRS Results	Highest PCT	1,000.3				
	Highest Reflood PCT	999.8				
Scale BIAS	Final BIAS Reflood PCT	1,002.9				
Results	Max. BIAS Case Reflood PCT	999.8				
	- ECC Bypass BIAS	+3.1				
	- Steam Binding BIAS	+0.0				
Final PCT (w/ BLA	1,002.9 (1)					
	Max. Cladding Oxidation	Value, %				
SRS Results	Max. Cladding Oxidation	3.85				
Scale BIAS	Final BIAS Max. Cladding Oxidation	3.86				
Evaluation Results	Max. BIAS Case Cladding Oxidation	3.85				
	- ECC Bypass BIAS	+0.01				
	- Steam Binding BIAS	+0.0				
Final Max. Claddin	g Oxidation (w/ BIAS)	3.86				

- Licensing PCT
 - = PCT95/95 + Δ PCTBias results
 - + ΔPCT additional (10 °C)
 - = 1,012.9 °C (1,855.2 °F) \leq
 - 1,204.4 °C (2,200 °F)
- The satisfaction of acceptance
 criteria is confirmed for
 APR1400 design

Overview of SBLOCA Analysis

- Small Break Loss Of Coolant Accident (SBLOCA)
 - ✓ Technical Report Submission; 'Small Break LOCA Evaluation Model' (APR1400-F-A-NR-14001), Sep. 2014
 - ✓ C-E SBLOCA Evaluation Model (CENPD-137P)
 - ✓ Codes
 - CEFLASH-4AS: T/H behavior of RCS during blowdown phase
 - COMPERC-II: T/H behavior of RCS during reflood phase
 - PARCH and STRIKIN-II: Fuel rod heat-up calculation (PCT, PLO)
 - Methodology & Codes approved by the NRC for existing US PWRs are Applied

SBLOCA Analysis Results

Peak Cladding Temperature and Oxidation Percentage

Break	Peak Cladding Temperature, °C (°F)	Maximum Cladding Oxidation, %	Maximum Core-Wide Oxidation, %
465 cm ² /PD	498 (929)	0.0017	< 0.0003
$325 \text{ cm}^2/\text{PD}$	492 (917)	0.0015	< 0.0002
93 cm ² /PD	565 (1,049)	0.0010	< 0.0001
46.5 cm ² /PD	568 (1,054)	0.0008	< 0.0002
$372 \text{ cm}^2/\text{DVI}$	624 (1,156)	0.0195	< 0.0029
93 cm ² /DVI	569 (1,056)	0.0069	< 0.0009
$46.5 \text{ cm}^2/\text{DVI}$	571 (1,059)	0.0018	< 0.0003
18.6 cm ² /DVI	616 (1,140)	0.0029	< 0.0006
27.9 cm ² /HL	568 (1,055)	0.0006	< 0.0002

ACRS Meeting (Apr.20-21. 2016)

Overview of LTC Analysis

- Long Term Cooling (LTC)
 - ✓ Technical Report Submission
 - ; 'Post-LOCA Long Term Cooling Evaluation Model' (APR1400-F-A-NR-14003), Sep. 2014
 - ✓ C-E Post-LOCA Long Term Cooling Evaluation Model (CENPD-254P-A)
 - ✓ Codes
 - CELDA: Long term depressurization and refill of the RCS
 - NATFLOW: Flowrates, pressure and temperature in primary system
 - CEPAC: SG cooldown performance
 - BORON: Transient boric acid concentration in the core
 - ✓ Adopting the Interim Method (Waterford Unit 3, ML050490396)

LTC Analysis Results

Inner Vessel Boric Acid Concentration

Overlap of Acceptable LTC Modes

Overview of Non-LOCA Analyses

- License Information for Non-LOCA
 - Technical Report Submission
 - ; 'Non-LOCA Safety Analysis Methodology of the APR1400' (APR1400-Z-A-NR-14006-P), Sep. 2014
 - ✓ CESEC-Digital Simulation of a CE NSSS (CENPD-107)
 - ✓ CENPD-188, 190, 98, 135, 161, 206, 183, CEN-214, etc.
 - ✓ Codes
 - CESEC-III: NSSS thermal hydraulic transient simulation
 - COAST: Reactor coolant flow coastdown simulation
 - STRIKIN-II: Fuel performance evaluation (temperature & enthalpy)
 - CETOP-D/TORC: Core T/H performance evaluation (DNBR)
 - HERMITE: Reactor core thermal hydraulic transient simulation

> 15.1 Increase in Heat Removal by the Secondary System (1/2)

Section	Event	Class	Acceptance Criteria	Analysis Results
			Maximum RCS pressure < 110% design pressure	< 2,750 psia
15.1.1	Decrease in Feedwater Temperature	AOO	Maximum SG pressure < 110% design pressure	< 1,320 psia
			Minimum DNBR > 95/95 DNBR Limit	Satisfied
	Increase in Feedwater Flow	AOO	Maximum RCS pressure < 110% design pressure	< 2,750 psia
15.1.2			Maximum SG pressure < 110% design pressure	< 1,320 psia
			Minimum DNBR > 95/95 DNBR Limit	Satisfied
15.1.3	Increase in Steam Flow	AOO	Maximum RCS pressure < 110% design pressure	< 2,750 psia
			Maximum SG pressure < 110% design pressure	< 1,320 psia
			Minimum DNBR > 95/95 DNBR Limit	Satisfied

AOO: Anticipated Operational Occurrence

DNBR: Departure from Nucleate Boiling Ratio

ACRS Meeting (Apr.20-21. 2016)

> 15.1 Increase in Heat Removal by the Secondary System (2/2)

Section	Event	Class	Acceptance Criteria	Analysis Results
Inadvertent Opening of a 15.1.4 Steam Generator Relief or Safety Valve			Maximum RCS pressure < 110% design pressure	< 2,750 psia
	AOO	Maximum SG pressure < 110% design pressure	< 1,320 psia	
			Minimum DNBR > 95/95 DNBR Limit	Satisfied
15.1.5	Steam System Piping Failure Inside and Outside the Containment	PA	Maximum RCS pressure < 110% design pressure	< 2,750 psia
			Maximum SG pressure < 110% design pressure	< 1,320 psia
			Radiological consequences	Satisfied

18

PA: Postulated Accident

> 15.2 Decrease in Heat Removal by the Secondary System (1/3)

Section	Event	Class	Acceptance Criteria	Analysis Results
			Maximum RCS pressure < 110% design pressure	< 2,750 psia
15.2.1	Loss of External Load	AOO	Maximum SG pressure < 110% design pressure	< 1,320 psia
			Minimum DNBR > 95/95 DNBR Limit	Satisfied
	Turbine Trip	AOO	Maximum RCS pressure < 110% design pressure	< 2,750 psia
15.2.2			Maximum SG pressure < 110% design pressure	< 1,320 psia
			Minimum DNBR > 95/95 DNBR Limit	Satisfied
15.2.3	Loss of Condenser Vacuum	AOO	Maximum RCS pressure < 110% design pressure	< 2,750 psia
			Maximum SG pressure < 110% design pressure	< 1,320 psia
			Minimum DNBR > 95/95 DNBR Limit	Satisfied

> 15.2 Decrease in Heat Removal by the Secondary System (2/3)

Section	Event	Class	Acceptance Criteria	Analysis Results
			Maximum RCS pressure < 110% design pressure	< 2,750 psia
15.2.4	Closure of the Main Steam Isolation Valve	AOO	Maximum SG pressure < 110% design pressure	< 1,320 psia
			Minimum DNBR > 95/95 DNBR Limit	Satisfied
	Loss of Nonemergency AC Power to the Station Auxiliaries	AOO	Maximum RCS pressure < 110% design pressure	< 2,750 psia
15.2.6			Maximum SG pressure < 110% design pressure	< 1,320 psia
			Minimum DNBR > 95/95 DNBR Limit	Satisfied
15.2.7	Loss of Normal Feedwater Flow	AOO	Maximum RCS pressure < 110% design pressure	< 2,750 psia
			Maximum SG pressure < 110% design pressure	< 1,320 psia
			Minimum DNBR > 95/95 DNBR Limit	Satisfied

> 15.2 Decrease in Heat Removal by the Secondary System (3/3)

Section	Event	Class	Acceptance Criteria	Analysis Results
15.2.8	Feedwater System Pipe Break Inside and Outside the Containment	PA	Maximum RCS pressure < 110% design pressure (low) < 120% design pressure (very low) Maximum SG pressure < 110% design pressure (low) < 120% design pressure (very low) Radiological consequences	< 2,750 psia < 3,000 psia < 1,320 psia < 1,440 psia Satisfied

> 15.3 Decrease in Reactor Coolant System Flow Rate

Section	Event	Class	Acceptance Criteria	Analysis Results
			Maximum RCS pressure < 110% design pressure	< 2,750 psia
15.3.1	Loss of Forced Reactor Coolant Flow	AOO	Maximum SG pressure < 110% design pressure	< 1,320 psia
			Minimum DNBR > 95/95 DNBR Limit	Satisfied
			Maximum RCS pressure < 110% design pressure	< 2,750 psia
15.3.3	Reactor Coolant Pump Rotor Seizure	PA	Maximum SG pressure < 110% design pressure	< 1,320 psia
			Radilogical consequences	Satisfied
			Maximum RCS pressure < 110% design pressure	< 2,750 psia
15.3.4	Reactor Coolant Pump Shaft Break	PA	Maximum SG pressure < 110% design pressure	< 1,320 psia
			Radilogical consequences	Satisfied

> 15.4 Reactivity and Power Distribution Anomalies (1/2)

Section	Event	Class	Acceptance Criteria	Analysis Results
	Uncontrolled Control Element Assembly Withdrawal form a	A00	Peak centerline temperature < melting point	< 20 kW/ft
15.4.1	Subcritical or Low-Power Start up Condition		Minimum DNBR > 95/95 DNBR Limit	Satisfied
15.4.2	Uncontrolled Control Element Assembly Withdrawal at Power	AOO	Peak centerline temperature < melting point	< 20 kW/ft
			Minimum DNBR > 95/95 DNBR Limit	Satisfied
15 4 2	15.4.3 Control Element Assembly Misoperation	AOO	Peak linear heat generation rate	< 20 kW/ft
13.4.3			Minimum DNBR > 95/95 DNBR Limit	Satisfied
15.4.4 Startup of an Inactive Coolant Pump		AOO	Maximum RCS pressure < 110% design pressure	< 2,750 psia
	Startup of an Inactive Reactor Coolant Pump		Maximum SG pressure < 110% design pressure	< 1,320 psia
			Minimum DNBR > 95/95 DNBR Limit	Satisfied

> 15.4 Reactivity and Power Distribution Anomalies (2/2)

Section	Event	Class	Acceptance Criteria	Analysis Results
			Maximum RCS pressure < 110% design pressure	< 2,750 psia
	Inadvertent Decrease in Boron		Maximum SG pressure < 110% design pressure	< 1,320 psia
15.4.6	Concentration in the Reactor	AOO	Minimum DNBR > 95/95 DNBR Limit	Satisfied
	Coolant System		Operator action time > 15 minutes (MODEs 1,2,3,4,5)	> 30 minutes
			Operator action time > 30 minutes (MODE 6)	Prohibit (TS3.9.7)
	Inadvertent Loading and Operation of a Fuel Assembly in an Improper Position	AOO	Maximum RCS pressure < 110% design pressure	< 2,750 psia
15.4.7			Maximum SG pressure < 110% design pressure	< 1,320 psia
			Minimum DNBR > 95/95 DNBR Limit	Satisfied
			Maximum RCS pressure < Service Limit C	Satisfied
1548	15.4.8 Spectrum of Control	РА	Maximum SG pressure < 110% design pressure	< 1,320 psia
	Accidents		Maximum fuel rod enthalpy < 230 cal/g	Satisfied
			Radilogical consequences	< well within

ACRS Meeting (Apr.20-21. 2016)

> 15.5 Increase in Reactor Coolant Inventory

Section	Event	Class	Acceptance Criteria	Analysis Results
	Inadvertent Operation of the		Maximum RCS pressure < 110% design pressure	< 2,750 psia
15.5.1 Emergency Core Cooling System that Increases the Reactor Coolant Inventory	AOO	Maximum SG pressure < 110% design pressure	< 1,320 psia	
	Reactor Coolant Inventory		Minimum DNBR > 95/95 DNBR Limit	Satisfied
15.5.2	Chemical and Volume Control System Malfunction that Increases the Reactor Coolant Inventory	AOO	Maximum RCS pressure < 110% design pressure	< 2,750 psia
			Maximum SG pressure < 110% design pressure	< 1,320 psia
			Minimum DNBR > 95/95 DNBR Limit	Satisfied

> 15.6 Decrease in Reactor Coolant Inventory

Section	Event	Class	Acceptance Criteria	Analysis Results
	Inadvertent Opening of a		Maximum RCS pressure < 110% design pressure	< 2,750 psia
15.0.1	Relief Valve	rA	Maximum SG pressure < 110% design pressure	< 1,320 psia
	Failure of Small Lines 15.6.2 Carrying Primary Coolant Outside Containment		Maximum RCS pressure < 110% design pressure	< 2,750 psia
15.6.2		AOO	Maximum SG pressure < 110% design pressure	< 1,320 psia
			Minimum DNBR > 95/95 DNBR Limit	Satisfied
			Radiological consequences	Satisfied
			Maximum RCS pressure < 110% design pressure	< 2,750 psia
15.6.3	Steam Generator Tube Failure	PA	Maximum SG pressure < 110% design pressure	< 1,320 psia
			Radiological consequences	Satisfied

Summary

- APR1400 Design Features and APR1400 Safety Analyses Design Review Status
- Safety Analyses are Conducted in Accordance with the NRC Regulations: LBLOCA/SBLOCA/LTC/Non-LOCA
- > Methodologies
 - ✓ LBLOCA: Realistic Evaluation Methodology (CAREM)
 - ✓ SBLOCA: C-E SBLOCA Evaluation Model (CENPD-137P)
 - ✓ LTC: C-E Post-LOCA Long Term Cooling Evaluation Model (CENPD-254P-A)
 - ✓ Non-LOCA: Deterministic Evaluation Methodology (CENDP-107)
- Based on the results of safety analyses, codes and methodologies are applicable to the APR1400 DCD Chapter 15
- APR1400 design is confirmed the satisfaction of acceptance criteria in Safety Analyses

