Serial No. NA3-16-008 Docket No. 52-017

ENCLOSURE 6

5

GEH Technical Report

WG3-U71-ERD-S-0004 Revision 1

Reactor Building Structural Design Report

STRUCTURAL DESIGN REPORT

REVISION STATUS SHEET

Document Title:

Reactor Building Structural Design Report

Revision #:

1

N/A

Type: Engineering Report - Design

Safety Related **Classification Code:**

MPL No.: U71-5010

"|" Vertical Sidebar **Denotes Change**

Rev #	DOORS BL	Change Number	MM/DD/YYYY	Preparing Organization	Issue / Release Status	Verification Status
0	N/A	ECO- 0015264	11/10/2015	GEH	Issued for Use- Design	Verified
1	N/A	ECO- 0023259	03/10/2016	GEH	Issued for Use- Design	Verified
2						

MADE BY	APPROVALS	AUTH. DATE
Gary Ehlert	Tanya B. Kirby	11/10/2015
GEH	GEH	

Public Information Notice

This is a public version of WG3-U71-ERD-S-0004, Rev 1, from which the security-related information has been removed. Portions of the document that have been removed are indicated by white space within single brackets as shown here { }. The footer of each page where security-related information is withheld carries the notation "{{{Security-Related Information - Withheld Under 10 CFR 2.390}}}.

IMPORTANT NOTICE REGARDING CONTENTS OF THIS REPORT **Please Read Carefully**

The design, engineering, and other information contained in this document are furnished for the purpose(s) stated in the "Development Agreement between Virginia Electric and Power Company and the consortium of GE-Hitachi Nuclear Energy Americas LLC and Fluor Enterprises, Inc." dated April 5, 2013 as amended. The use of this information by anyone other than Virginia Electric and Power Company, or for any purpose other than that for which it is furnished by GEH is not authorized; and with respect to any unauthorized use, GEH makes no representation or warranty, express or implied, and assumes no liability as to the completeness, accuracy, or usefulness of the information contained in this document, or that its use may not infringe privately owned rights.

Copyright 2016, GE-Hitachi Nuclear Energy Americas LLC, All Rights Reserved

WG3-MA-08-004-D014-T01 Rev 0.0 04/23/2015, NA3 Project Structural Design Report Template

REVISION CHART (CONT)

Rev #	DOORS BL	Change Number	MM/DD/YYYY	Preparing Organization	Issue / Release Status	Verification Status

.

WG3-U71-ERD-S-0004 SH NO. 3 REV. 1 of 543

RECORD OF REVISION

Rev #	Description
0	Initial issue
1	Incorporate comments on Rev.0

,

TABLE OF CONTENTS

1

1. SCO	PE	.19
2. APP	LICABLE DOCUMENTS	.19
2.1	Supporting and Supplemental Documents	19
2.1.1	Supporting Documents	.19
2.1.2	Supplemental Documents	.20
2.2	Industry Codes and Standards	.20
2.3	Regulation and Regulatory Requirements	.21
2.4	References	21
3. STR	UCTURAL DESCRIPTION AND GEOMETRY	
3.1	Structural Geometry and Dimensions	
3.2	Key Structural Elements and Descriptions	21
3.3	Floor Layout and Elevations	22
3.4	Conditions of Vicinity and Support	22
3.5	Special Structural Features	22
4. STR	UCTURAL MATERIAL REQUIREMENTS	23
4.1	Concrete	23
4.2	Reinforcement	23
4.3	Structural Steel	23
4.3.1	Carbon Steel Plate and Shapes	23
4.3.2	Stainless Steel Plate	23
4.3.3	Steel Decking	24
5. STR	UCTURAL LOADS	24
5.1	Live Loads and Dead Loads	24
5.1.1	Dead Loads	24
5.1.2	Live Loads	24
5.2	Transient Loads	25
5.2.1	Pressure Loads	25
5.2.1	.1 Containment Pressure Loads	. 25
5.2.1	1.2 High Energy Line Break (HELB) Loads	. 26
5.2.2	Thermal Loads	26
5.2.2	2.1 Normal Temperatures (To)	. 26
5.2.2	2.2 Accident Temperatures (Ta)	. 26
5.2.3	Hydrodynamic Loads	27
5.2.3	3.1 Safety/Relief Valve (SRV) Loads	. 27
5.2.3	3.2 Chugging (CH) Loads	. 27
5.2.3	B.3 Condensation Oscillation (CO) Loads	. 27
5.2.3	3.4 Pool Swell	. 28
5.2.4	RPV Reactions due to Hydrodynamic Loads	28
5.3	Environmental Loads	28
5.3.1	Wind Loads	28
5.3.2	Tornado Loads	29

REV. 1

of 543

5.3.3 Sei	smic Loads	
6. STRUCTU	JRAL ANALYSIS AND DESIGN	
6.1 Gene	eral Description	
6.2 Stres	ss Analysis	
6.2.1 An	alysis Program	
6.2.2 Ana	alysis Model	
6.2.2.1	Outline of the Analysis Model	
6.2.2.2	Modeling Principles	
6.2.2.3	Modeling of the Basemat and Ground	
6.2.2.4	Modeling of the RCCV	34
6.2.2.5	Modeling of the RCCV Liner and Sleeves	
6.2.2.6	Modeling of the RB Pools and MS Tunnel Structures	
6.2.2.7	Modeling of Shear Walls	
6.2.2.8	Modeling of Floor Slabs	
6.2.2.9	Modeling of Frame Members	
6.2.2.10	Modeling of the Containment Internal Structures	
6.2.2.11	Units and Material Constants	
6.2.2.12	Boundary Conditions	
6.2.3 Me	thod of Applying Loads	37
6.2.3.1	Dead Load	
6.2.3.2	Live Load	
6.2.3.3	Pressure Load	
6.2.3.4	Thermal Load	
6.2.3.5	Hydrodynamic Loads	
6.2.3.6	Reaction Loads due to Hydrodynamic Loads	
6.2.3.7	Wind Loads	
6.2.3.8	Tornado Loads	
6.2.3.9	Seismic Loads	
6.2.4 Ana	alysis Results	47
6.3 Load	l Combinations	47
6.3.1 Co	de Requirements	47
6.3.2 Sel	ection of Design Load Combinations	47
6.3.3 Res	sult of Load Combination	49
6.4 Secti	ion Design Principles	50
6.4.1 Sec	ction Design of Reinforced Concrete Structures	50
6.4.1.1	Section Design for Flexure and Membrane Forces	50
6.4.1.2	Section Design for Membrane Compressive Forces	52
6.4.1.3	Section Design for Transverse Shear	53
6.4.2 Sec	ction Design of Steel Structures	54
6.4.2.1	Section Design for Axial Compression and Bending	54
6.4.2.2	Section Design for Axial Tension and Bending	
6.4.2.3	Section Design for Transverse Shear	
6.4.2.4	Allowable Stresses	
7. SUMMAR	AY OF RESULTS	57

7.1	Required Section	.57
7.2	Provided Section	.57
7.3	Tabulation of Allowable Stresses versus Calculated Stresses	.58
7.3.1	Reinforced Concrete Structure	.58
7.3.1.	.1 Calculations for Flexure and Membrane Forces	58
7.3.1.	2 Calculations for Membrane Compressive Forces	59
7.3.1.	.3 Calculations for Transverse Shear	60
7.3.2	Steel Structure	.60
7.4	Missile Impact Evaluations	.61
8. CON	CLUSIONS	.61
Appendix A	COMPARISON WITH DCD DATA4	197
Appendix B	IN-PLANE SHEAR CHECK FOR RB ACCORDING TO ACI 349-01 5	534
Appendix C	COMPRESSION LIMIT CHECK FOR RB ACCORDING TO ACI 349-01.5	540

LIST OF TABLES

Table 3.1-1 H	Key Dimensions of RB and FB	63
Table 3.1-2 H	Key Dimensions of RCCV	64
Table 5.1.1-1	Weights of Miscellaneous Steels and Finishing	65
Table 5.1.1-2	Miscellaneous Structures, Piping, and Commodities Attached to the RCCV	66
Table 5.1.1-3	Miscellaneous Structures, Piping, and Commodities on the Slabs	67
Table 5.1.1-4	Miscellaneous Structures, Piping, and Commodities on the RCCV Walls	68
Table 5.1.1-5	Dead Loads of Equipment, RB	69
Table 5.1.1-6	Dead Loads of Equipment, FB	70
Table 5.1.1-7	Dead Loads of Hydrostatic Loads	71
Table 5.1.2-1	Floor Live Loads	72
Table 5.1.2-2	Design Lateral Soil Pressure At-Rest	73
Table 5.2.1-1	Design Pressure Loads for Containment and IC/PCCS Pools	74
Table 5.2.1-2	Design Times for LOCAs	74
Table 5.2.2-1	Steady State Temperature Conditions	75
Table 5.2.2-2	Design Basis Accident Temperatures in Spent Fuel Pool	75
Table 5.2.4-1	RPV Reactions	76
Table 5.3.1-1	Design Wind Pressure Loads by Floor Level	77
Table 5.3.2-1	Design Pressure of Tornado Wind Load	77
Table 5.3.3-1	Effect of Containment LOCA Flooding - Standard Plant Hard Rock Site	78
Table 5.3.3-2	Design Seismic Loads for Horizontal SSE (RB and FB Walls)	79
Table 5.3.3-3	Design Seismic Loads for Horizontal SSE (RCCV)	80
Table 5.3.3-4	Design Seismic Loads for Horizontal SSE (RPV Pedestal and Vent Wall)	81
Table 5.3.3-5	Design Seismic Loads for Horizontal SSE (RSW)	82
Table 5.3.3-6	Design Seismic Loads for Horizontal SSE (RPV)	83
Table 5.3.3-7	Maximum Vertical Accelerations (RB and FB)	84
Table 5.3.3-8	Maximum Vertical Accelerations (RCCV)	84
Table 5.3.3-9	Maximum Vertical Accelerations (RPV Pedestal and Vent Wall)	85
Table 5.3.3-10	Maximum Vertical Accelerations (RSW)	85
Table 5.3.3-11	Enveloping Maximum Vertical Acceleration: RBFB Flexible Slab Oscillator	rs86
Table 5.3.3-12	Soil Pressure Due to an Earthquake	88
Table 5.3.3-13	Seismic Hydrodynamic Loads for GDCS Pool	89
Table 5.3.3-14	Seismic Hydrodynamic Loads for RPV Cavity / Dryer Separator / Fuel Buff	er
Poc	ol	89
Table 5.3.3-15	Seismic Hydrodynamic Loads for IC / PCCS Pool	90
Table 5.3.3-16	Seismic Hydrodynamic Loads for Extension Pool A	90
Table 5.3.3-17	Seismic Hydrodynamic Loads for Extension Pool B	91
Table 5.3.3-18	Seismic Hydrodynamic Loads for Spent Fuel Pool	91
Table 5.3.3-19	RPV Reactions Due to SSE	92
Table 5.3.3-20	Enveloping Maximum Horizontal Acceleration: RBFB Wall Out-of-Plane	_
Osc	cillators	92
Table 6.2.2-1	List of GA Drawings Used for Modeling	93
Table 6.2.2-2	Structural Members Considered in Analyses and Their Design	94

WG3-U71-ERD-S-0004 SH NO. 8 REV. 1 of 543

Table 6.2.2-3 T	ype of Elements Used to Model Structural Members	95
Table 6.2.2-4 L	local Coordinate Systems	96
Table 6.2.2-5 S	oil Spring Constants for the RB Analysis Model	97
Table 6.2.2-6 L	evels of Floor Slabs Connected to the RCCV Wall	97
Table 6.2.2-7 E	Dimensions of Modeled Round Openings on RCCV	98
Table 6.2.2-8 N	Aaterial and Thickness of the RCCV Liner	99
Table 6.2.2-9 A	Area of Rod Elements Used in Sleeve Models	99
Table 6.2.2-10	Dimensions of Modeled Rectangular Openings on RB Walls	99
Table 6.2.2-11	Material Constants Used in Stress Analysis	100
Table 6.2.3.2-1	Floor Live Loads	101
Table 6.2.3.3-1	Load Combinations for Design Pressure Loads	102
Table 6.2.3.4-1	Atmosphere Temperatures: Summer	103
Table 6.2.3.4-2	Atmosphere Temperatures: Winter	104
Table 6.2.3.4-3	Application of Thermal Loads: List of Indexes	105
Table 6.2.3.4-4	Thermal Loads for Shell Elements, Normal Operation: Summer	107
Table 6.2.3.4-5	Thermal Loads for Shell Elements, LOCA After 5 seconds: Summer	109
Table 6.2.3.4-6	Thermal Loads for Shell Elements, LOCA After 6 minutes: Summer	111
Table 6.2.3.4-7	Thermal Loads for Shell Elements, LOCA After 10 hours: Summer	113
Table 6.2.3.4-8	Thermal Loads for Shell Elements, LOCA After 72 hours: Summer	115
Table 6.2.3.4-9	Thermal Loads for Shell Elements, Normal Operation: Winter	117
Table 6.2.3.4-10	Thermal Loads for Shell Elements, LOCA After 5 seconds: Winter	119
Table 6.2.3.4-11	Thermal Loads for Shell Elements, LOCA After 6 minutes: Winter	121
Table 6.2.3.4-12	Thermal Loads for Shell Elements, LOCA After 10 hours: Winter	123
Table 6.2.3.4-13	Thermal Loads for Shell Elements, LOCA After 72 hours: Winter	125
Table 6.2.3.4-14	Thermal Loads for Beam Elements	127
Table 6.2.3.4-15	Thermal Loads for Rod Elements of RCCV Top Head Opening at All Sea	sons127
Table 6.2.3.4-16	Design Thermal Load Labels	128
Table 6.2.3.4-17	Thermal Loads for Shell Elements around Spent Fuel Pool, 72 hours Afte	r
DBA:	Summer	129
Table 6.2.3.4-18	Thermal Loads for Shell Elements around Spent Fuel Pool, 72 hours Afte	r
DBA:	Winter	129
Table 6.2.3.4-19	Thermal Loads for Shell Elements, LOCA After 72 hours: Winter (Case 1)130
Table 6.2.3.4-20	Thermal Loads for Shell Elements, LOCA After 72 hours: Winter (Case 2	2)132
Table 6.2.3.4-21	Thermal Loads for Shell Elements, LOCA After 72 hours: Winter (Case 3	s)134
Table 6.2.3.4-22	Thermal Loads for Shell Elements, LOCA After 72 hours: Winter (Case 4	
Table 6.2.3.7-1	Design Wind Loads (North Wind)	138
Table 6.2.3.7-2	Design Wind Loads (South Wind)	138
Table 6.2.3.7-3	Design Wind Loads (East Wind)	139
Table 6.2.3.7-4	Design Wind Loads (West Wind)	139
Table 6.2.3.8-1	Tornado Wind Loads (North Wind)	140
Table 6.2.3.8-2	Tornado Wind Loads (South Wind)	140
Table 6.2.3.8-3	Tornado Wind Loads (East Wind)	141
Table 6.2.3.8-4	Tornado Wind Loads (West Wind)	141
Table 6.2.3.8-5	Tornado Loads (Differential Pressure)	142

Table 6.2.3.9-1	Analysis Cases for Seismic Loads	143
Table 6.2.3.9-2	Seismic Wall Shear Area – X (N-S)-dir.	144
Table 6.2.3.9-3	Seismic Wall Shear Area – Y (E-W)-dir.	145
Table 6.2.3.9-4	Applied Shear Forces at Seismic Wall – X (N-S)-dir.	146
Table 6.2.3.9-5	Applied Shear Forces at Seismic Wall – Y(E-W)-dir.	147
Table 6.2.3.9-6	Applied Overturning Moment - RBFB X(N-S)-dir.	148
Table 6.2.3.9-7	Applied Overturning Moment – RBFB Y(E-W)-dir.	149
Table 6.2.3.9-8	Applied Overturning Moment – RCCV X(N-S)-dir.	150
Table 6.2.3.9-9	Applied Overturning Moment – RCCV Y(E-W)-dir.	151
Table 6.2.3.9-10	Applied Overturning Moment – RPV Pedestal X(N-S)-dir.	152
Table 6.2.3.9-11	Applied Overturning Moment – RPV Pedestal Y(E-W)-dir.	153
Table 6.2.3.9-12	Design Vertical Acceleration for Slabs	154
Table 6.2.3.9-13	Applied Shear Forces for Seismic Wall due to Torsional Moment	155
Table 6.2.3.9-14	Load Combinations for Design Seismic Loads	159
Table 6.2.3.9-15	Design Acceleration for Seismic Walls	160
Table 6.2.4-1 F	Results of NASTRAN Analysis, Dead Load	161
Table 6.2.4-2	Results of NASTRAN Analysis, Drywell Unit Pressure (1 MPa)	162
Table 6.2.4-3 F	Results of NASTRAN Analysis, Wetwell Unit Pressure (1 MPa)	163
Table 6.2.4-4 F	Results of NASTRAN Analysis, Thermal Load (Normal Operation: Wint	er) –
Load	Case: TLW0	
Table 6.2.4-5 F	Results of NASTRAN Analysis, Thermal Load (LOCA After 6 minutes:	Winter)
– Loa	d Case: TLW6	165
Table 6.2.4-6 F	Results of NASTRAN Analysis, Thermal Load (LOCA After 72 hours: V	Vinter)
-Loa	d Case: TLW8 –	166
Table 6.2.4-7 F	Results of NASTRAN Analysis, Thermal Load (LOCA After 72 hours: V	Vinter)
- Loa	d Case: TWC1 –	167
Table 6.2.4-8 F	Results of NASTRAN Analysis, Thermal Load (LOCA After 72 hours: V	Vinter)
– Loa	d Case: TWC2 –	168
Table 6.2.4-9 F	Results of NASTRAN Analysis, Thermal Load (LOCA After 72 hours: V	Vinter)
– Loa	d Case: TWC3 –	169
Table 6.2.4-10	Results of NASTRAN Analysis, Thermal Load (LOCA After 72 hours:	Winter)
– Loa	d Case: TWC4 –	170
Table 6.2.4-11	Results of NASTRAN Analysis, Site-Specific Seismic Load (Horizontal	: North
to Sou	uth Direction)	171
Table 6.2.4-12	Results of NASTRAN Analysis, Site-Specific Seismic Load (Horizontal	: East
to We	est Direction)	172
Table 6.2.4-13	Results of NASTRAN Analysis, Site-Specific Seismic Load (Vertical: U	Jpward
Direc	tion)	173
Table 6.3.1-1 I	.oad Combinations and Acceptance Criteria for Safety-Related Reinforce	ed
Conc	rete Structures	174
Table 6.3.1-2 L	load Combinations, Load Factors and Acceptance Criteria for Reinford	ed
Conc	rete Containment	175
Table 6.3.1-3 L	oad Combinations and Acceptance Criteria for Safety-Related Steel Stru	ictures176
Table 6.3.2-1	Detail Load Combinations for RB Design	177

HITACHI

WG3-U71-ERD-S-0004	SH NO. 10	
REV. 1	of 543	

Table 6.3.2-2 Detail Load Combinations for Steel Structures
Table 6.3.3-1 Combined Forces and Moments, 1.05D + 1.3L +1.3To + 1.3W: Winter – Load
ID = 4021 (Selected Load Combination RB-4)
Table 6.3.3-2 Combined Forces and Moments, LOCA After 6 minutes (1.5Pa): Winter – Load
ID = 6241 (Selected Load Combination RB-8a)
Table 6.3.3-3 Combined Forces and Moments, LOCA After 72 hours (1.5Pa): Winter – Load
ID = 6441 (Selected Load Combination RB-8b)
Table 6.3.3-4 Combined Forces and Moments, LOCA After 6 minutes + SSE: Winter – Load
ID = 7241 (Site-Specific Seismic Load Combination RB-9a)194
Table 6.3.3-5 Combined Forces and Moments, LOCA After 72 hours + SSE: Winter – Load ID
= 7441 (Site-Specific Seismic Load Combination RB-9b)199
Table 6.4.1-1 Material Constants for Stress Calculations
Table 6.4.1-2 Allowable Stress of Concrete for Membrane Plus Bending
Table 6.4.1-3 Allowable Stress of Reinforcement for Membrane Plus Bending
Table 6.4.1-4 Allowable Stress of Concrete for Membrane Compressive Forces
Table 7.3.1.1-1 Sectional Thicknesses and Rebar Ratios of RB Used in the Evaluation206
Table 7.3.1.1-3 Rebar and Concrete Stresses of RB, LOCA After 6 minutes (1.5Pa): Winter –
Load ID = 6241 (Selected Load Combination RB-8a)
Table 7.3.1.1-4 Rebar and Concrete Stresses, of RB: LOCA After 72 hours (1.5Pa): Winter –
Load ID = 6441 (Selected Load Combination RB-8b)
Table 7.3.1.1-5 Rebar and Concrete Stresses of RB, LOCA After 6 minutes + SSE: Winter –
Load ID = 7241 (Site-Specific Seismic Load Combination RB-9a)
Table 7.3.1.1-6 Rebar and Concrete Stresses of RB, LOCA After 72 hours + SSE: Winter –
Load ID = 7441 (Site-Specific Seismic Load Combination RB-9b)
Table 7.3.1.1-7 Maximum Stress Ratios for Flexure and Membrane Forces 219
Table 7.3.1.2-1 Membrane Compressive Forces of RB
Table 7.3.1.3-1 Transverse Shear of RB
Table 7.3.1.3-2Transverse Shear of RB for DCD Load Combinations223
Table 7.3.2-1 Maximum Stress Ratio of Truss Girder and Column

.

LIST OF FIGURES

Figure 3.1-1	RB and FB Concrete Outline Plan at EL -11,500	226
Figure 3.1-2	RB and FB Concrete Outline Plan at EL 4,650	227
Figure 3.1-3	RB and FB Concrete Outline Plan at EL 17,500	228
Figure 3.1-4	RB and FB Concrete Outline Plan at EL 27,000	229
Figure 3.1-5	RB Concrete Outline Plan at EL 34,000	230
Figure 3.1-6	RB and FB Concrete Outline N-S Section	231
Figure 3.1-7	RB and FB Concrete Outline E-W Section	232
Figure 3.2-1	Configuration of RCCV	233
Figure 3.2-2	Locations of Various Pools in RB and FB	234
Figure 5.1.1-1	Regions for Equipment Loads at EL -11,500	235
Figure 5.1.1-2	Regions for Equipment Loads at EL -6,400	236
Figure 5.1.1-3	Regions for Equipment Loads at EL -1,000	237
Figure 5.1.1-4	Regions for Equipment Loads at EL 4,650	238
Figure 5.1.1-5	Regions for Equipment Loads at EL 9,060	239
Figure 5.1.1-6	Regions for Equipment Loads at EL 13,570	240
Figure 5.1.1-7	Regions for Equipment Loads at EL 22,500	241
Figure 5.1.1-8	Regions for Equipment Loads at EL 27,000	242
Figure 5.1.1-9	Regions for Equipment Loads at/above EL 34,000	243
Figure 5.1.2-1	Snow Load	244
Figure 5.2.1-1	Envelopes of Transient Pressure Curves at DBA	245
Figure 5.2.1-2	Regions Where Pressure Loads are Applied in IC/PCCS Pools	246
Figure 5.2.2-1	Envelopes of Transient Temperature Curves - Inside RCCV at DBA	247
Figure 5.2.2-2	Envelopes of Transient Temperature Curves - Other Pools at DBA	248
Figure 5.2.2-3	Temperature Distributions in Upper Pools	249
Figure 5.2.3-1	Safety Relief Valve (SRV) Pressure Loads	250
Figure 5.2.3-2	Typical Event – Time Relationship for a DBA	251
Figure 5.2.3-3	Chugging (CH) Pressure Loads	252
Figure 5.2.3-4	Condensation Oscillation (CO) Pressure Loads	253
Figure 5.2.3-5	Pool Swell (PS) Pressure Loads	254
Figure 5.2.3-6	Pool Swell (PS) Pressure Concurrent with Froth Impact Loads	255
Figure 5.3.3-1	Dynamic Analysis Model	256
Figure 5.3.3-2	Position of Each Pool	257
Figure 6.2.2-1	FE Model of RB/FB (Whole View)	258
Figure 6.2.2-2	FE Model of RB/FB (Cut View)	259
Figure 6.2.2-3	FE Model of RCCV Liner	260
Figure 6.2.2-4	FE Model of RCCV Internal Structures	261
Figure 6.2.2-5	FE Model of the Basemat	262
Figure 6.2.2-6	FE Model of the Basemat inside the Containment	
Figure 6.2.2-7	FE Model of the RCCV Cylinder Wall and the Wall below RCCV	
Figure 6.2.2-8	FE Model of the RPV Pedestal Wall	
Figure 6.2.2-9	FE Model of the Top Slab	
Figure 6.2.2-10	FE Model of the Suppression Pool Floor Slab	267

Figure 6.2.2-11	FE Model of the RCCV Cylinder Wall Liner	268
Figure 6.2.2-12	FE Model of the RPV Pedestal Wall Liner	269
Figure 6.2.2-13	FE Model of the Basemat Liner (EL -10,400)	270
Figure 6.2.2-14	FE Model of the Suppression Pool Floor Slab Liner (EL 4,650)	271
Figure 6.2.2-15	FE Model of the Top Slab Liner (EL 24,600)	272
Figure 6.2.2-16	Rigid Bar Elements between Concrete and Liner	273
Figure 6.2.2-17	FE Model of Sleeve at the RCCV Top Head Opening	274
Figure 6.2.2-18	Modeled RB Pool Walls Except External Walls at EL 27,000	275
Figure 6.2.2-19	FE Model of the Pool Girders	276
Figure 6.2.2-20	Layout of Inner Walls Included in the Analysis Model at EL -11,500	277
Figure 6.2.2-21	Layout of Inner Walls Included in the Analysis Model at EL -6,400	278
Figure 6.2.2-22	Layout of Inner Walls Included in the Analysis Model at EL -1,000	279
Figure 6.2.2-23	FE Model of the External Wall (RA/FA Column Line)	280
Figure 6.2.2-24	FE Model of the External Wall (RG/FF Column Line)	281
Figure 6.2.2-25	FE Model of the External Wall (R1 Column Line)	282
Figure 6.2.2-26	FE Model of the External Wall (R7/F1 Column Line)	283
Figure 6.2.2-27	FE Model of the External Wall (F3 Column Line)	284
Figure 6.2.2-28	FE Model of the Slab at EL 4,650	285
Figure 6.2.2-29	FE Model of the Slab at EL 17,500	286
Figure 6.2.2-30	FE Model of the Slab at EL 27,000	287
Figure 6.2.2-31	FE Model of the FB Frame (FB Column Line)	288
Figure 6.2.2-32	FE Model of the FB Frame (FC Column Line)	289
Figure 6.2.2-33	FE Model of the FB Frame (FD Column Line)	290
Figure 6.2.2-34	FE Model of the FB Frame (FE Column Line)	291
Figure 6.2.2-35	FE Model of the FB Frame (F2 Column Line)	292
Figure 6.2.2-36	FE Model of the Roof Truss (R4 Column Line)	293
Figure 6.2.3.1-1	Equipment Loads at EL -11,500	294
Figure 6.2.3.1-2	Equipment Loads at EL -6,400	295
Figure 6.2.3.1-3	Equipment Loads at EL -1,000	296
Figure 6.2.3.1-4	Equipment Loads at EL 4,650	297
Figure 6.2.3.1-5	Equipment Loads at EL 9,060	298
Figure 6.2.3.1-6	Equipment Loads at EL 13,570	299
Figure 6.2.3.1-7	Equipment Loads at EL 22,500	300
Figure 6.2.3.1-8	Equipment Loads at EL 27,000	301
Figure 6.2.3.1-9	Equipment Loads at EL 34,000	302
Figure 6.2.3.1-10	Equipment Loads above EL 34,000	303
Figure 6.2.3.1-11	Hydrostatic Loads on the Basemat	304
Figure 6.2.3.1-12	P Hydrostatic Loads on the Slab at EL -1,000	305
Figure 6.2.3.1-13	B Hydrostatic Loads on the Suppression Pool Floor Liner	306
Figure 6.2.3.1-14	Hydrostatic Loads on the Slab at EL 27,000	307
Figure 6.2.3.1-15	Hydrostatic Loads on the RCCV Wall Liner	308
Figure 6.2.3.1-16	Hydrostatic Loads during LOCA Flooding on the RPV Pedestal Liner.	309
Figure 6.2.3.1-17	Hydrostatic Loads during LOCA Flooding on the RCCV Liner	310
Figure 6.2.3.1-18	B Hydrostatic Loads on the RA FA External Wall	311

Figure 6.2.3.1-19	Hydrostatic Loads on the RG/FF External Wall	312
Figure 6.2.3.1-20	Hydrostatic Loads on the R1 External Wall	313
Figure 6.2.3.1-21	Hydrostatic Loads on the R7/F1 External Wall	314
Figure 6.2.3.1-22	Hydrostatic Loads on the F3 External Wall	315
Figure 6.2.3.1-23	Hydrostatic Loads on the Inner Wall at EL -11,500 (1)	316
Figure 6.2.3.1-24	Hydrostatic Loads on the Inner Wall at EL -11,500 (2)	317
Figure 6.2.3.1-25	Hydrostatic Loads on the Inner Wall at EL -11,500 (3)	318
Figure 6.2.3.1-26	Hydrostatic Loads on the Inner Wall at EL -11,500 (4)	319
Figure 6.2.3.1-27	Hydrostatic Loads on the Pool Girder	320
Figure 6.2.3.1-28	Hydrostatic Loads on the Inner Wall at EL 27,000 (RB)	321
Figure 6.2.3.1-29	Hydrostatic Loads on the Inner Wall at EL 27,000 (RF)	322
Figure 6.2.3.1-30	Hydrostatic Loads on the Inner Wall at EL 27,000 (R2)	323
Figure 6.2.3.1-31	Hydrostatic Loads on the Inner Wall at EL 27,000 (R6)	323
Figure 6.2.3.1-32	Hydrostatic Loads on the Inner Wall at EL 27,000 (1)	324
Figure 6.2.3.1-33	Hydrostatic Loads on the Inner Wall at EL 27,000 (2)	325
Figure 6.2.3.1-34	Hydrostatic Loads during LOCA Flooding on the Basemat Liner	326
Figure 6.2.3.1-35	Hydrostatic Loads during LOCA Flooding on the Suppression Pool Lin	er 327
Figure 6.2.3.2-1	Floor Live Load Enveloped Snow Drift Load for Lower Roofs	328
Figure 6.2.3.2-2	Floor Live Load (FB EL 22,500)	329
Figure 6.2.3.2-3	Lateral Soil Pressure Load at Rest (Basemat)	330
Figure 6.2.3.2-4	Lateral Soil Pressure Load at Rest (RA/FA External Wall)	331
Figure 6.2.3.2-5	Lateral Soil Pressure Load at Rest (RG/FF External Wall)	332
Figure 6.2.3.2-6	Lateral Soil Pressure Load at Rest (R1 External Wall)	333
Figure 6.2.3.2-7	Lateral Soil Pressure Load at Rest (F3 External Wall)	334
Figure 6.2.3.3-1	Containment Pressure Loads - Drywell Unit Pressure	335
Figure 6.2.3.3-2	Containment Pressure Loads - Wetwell Unit Pressure	336
Figure 6.2.3.3-3	Containment Pressure Load (Drywell: RCCV Liner)	337
Figure 6.2.3.3-4	Containment Pressure Load (Drywell: RPV Pedestal Liner)	338
Figure 6.2.3.3-5	Containment Pressure Load (Drywell: Basemat Liner)	339
Figure 6.2.3.3-6	Containment Pressure Load (Drywell: Top Slab Liner)	340
Figure 6.2.3.3-7	Containment Pressure Load (Wetwell: RCCV Liner)	341
Figure 6.2.3.3-8	Containment Pressure Load (Wetwell: Suppression Pool Slab Liner)	342
Figure 6.2.3.3-9	Containment Pressure Load (IC/PCCS Pool: Slab at EL 27,000)	343
Figure 6.2.3.3-10	Containment Pressure Load (IC/PCCS Pool: Slab at EL 34,000)	344
Figure 6.2.3.3-11	Containment Pressure Load (IC/PCCS Pool: External Wall RA)	345
Figure 6.2.3.3-12	Containment Pressure Load (IC/PCCS Pool: External Wall RG)	346
Figure 6.2.3.3-13	Containment Pressure Load (IC/PCCS Pool: External Wall R1)	347
Figure 6.2.3.3-14	Containment Pressure Load (IC/PCCS Pool: Wall RB)	348
Figure 6.2.3.3-15	Containment Pressure Load (IC/PCCS Pool: Wall RF)	349
Figure 6.2.3.3-16	Containment Pressure Load (IC/PCCS Pool: Wall R2)	350
Figure 6.2.3.3-17	Containment Pressure Load (IC/PCCS Pool: Wall R6)	351
Figure 6.2.3.3-18	Containment Pressure Load (IC/PCCS Pool: Pool Girder)	352
Figure 6.2.3.3-19	Containment Pressure Load (IC/PCCS Pool: Wall-1)	353
Figure 6.2.3.3-20	Containment Pressure Load (IC/PCCS Pool: Wall-2)	354

Figure $6.2.3.3-21$	HELB Pressure Load (MS Tunnel: Slab at EL 17,500)
Figure 6.2.3.3-22	HELB Pressure Load (MS Tunnel: Slab at EL 27,000)
Figure 6.2.3.3-23	HELB Pressure Load (MS Tunnel: RCCV Wall)
Figure 6.2.3.3-24	HELB Pressure Load (MS Tunnel: Walls)
Figure 6.2.3.3-25	HELB Pressure Load (for RB General Rooms: R1 Wall)
Figure 6.2.3.3-26	HELB Pressure Load (for RB General Rooms: R7 Wall)
Figure 6.2.3.3-27	HELB Pressure Load (for RB General Rooms: RB Wall)
Figure 6.2.3.3-28	HELB Pressure Load (for RB General Rooms: RF Wall)
Figure 6.2.3.3-29	HELB Pressure Load (for RB General Rooms: Roof)
Figure 6.2.3.3-30	HELB Pressure Load (for FB General Rooms: F3 Wall)
Figure 6.2.3.3-31	HELB Pressure Load (for FB General Rooms: FA Wall)
Figure 6.2.3.3-32	HELB Pressure Load (for FB General Rooms: FF Wall)
Figure 6.2.3.3-33	HELB Pressure Load (for FB General Rooms: Slab at EL 22500)
Figure 6.2.3.4-1	Application of Thermal Load on the RCCV Wall (Normal Operation)
Figure 6.2.3.4-2	Application of Thermal Load on the RCCV Wall (LOCA Condition 1)369
Figure 6.2.3.4-3	Application of Thermal Load on the RCCV Wall (LOCA Condition 2)370
Figure 6.2.3.4-4	Application of Thermal Load on the RCCV Wall (LOCA Flooding Condition
3)	
Figure 6.2.3.4-5	Application of Thermal Load on the External Wall (RA/FA)
Figure 6.2.3.4-6	Application of Thermal Load on the External Wall (RG/FF)
Figure 6.2.3.4-7	Application of Thermal Load on the External Wall (RB)
Figure 6.2.3.4-8	Application of Thermal Load on the External Wall (RF)
Figure 6.2.3.4-9	Application of Thermal Load on the External Wall (R1)
Figure 6.2.3.4-10	Application of Thermal Load on the External Wall (R7/F1)
Figure 6.2.3.4-11	Application of Thermal Load on the External Wall (F3)
Figure 6.2.3.4-12	Application of Thermal Load on the Basemat
Figure 6.2.3.4-13	Application of Thermal Load on the Basemat (during LOCA Flooding)380
Figure 6.2.3.4-14	Application of Thermal Load on the Slab (EL 4,650)
Figure 6.2.3.4-15	Application of Thermal Load on the Slab (EL 17,500)
Figure 6.2.3.4-16	Application of Thermal Load on the Slab (EL 27,000)
Figure 6.2.3.4-17	Application of Thermal Load on the Slab (EL 34,000)
Figure 6.2.3.4-18	Application of Thermal Load on the Spent Fuel Pool Wall-1
Figure 6.2.3.4-19	Application of Thermal Load on the Spent Fuel Pool Wall-2
Figure 6.2.3.4-20	Application of Thermal Load on the Spent Fuel Pool Wall-3
Figure 6.2.3.4-21	Application of Thermal Load on the MS Tunnel Wall
Figure 6.2.3.4-22	Application of Thermal Load on the Pool Girder
Figure 6.2.3.4-23	Application of Thermal Load on the IC/PCCS Pool Wall-1 (1)
Figure 6.2.3.4-24	Application of Thermal Load on the IC/PCCS Pool Wall-1(2)
Figure 6.2.3.4-25	Application of Thermal Load on the IC/PCCS Pool Wall-5 (R2)
Figure 6.2.3.4-26	Application of Thermal Load on the IC/PCCS Pool Wall-6 (R6)
Figure 6.2.3.4-27	Application of Thermal Load on the RCCV Liner (Normal Operation)394
Figure 6.2.3.4-28	Application of Thermal Load on the RCCV Liner (Condition 1)
Figure 6.2.3.4-29	Application of Thermal Load on the RCCV Liner (Condition 2)
Figure 6.2.3.4-30	Application of Thermal Load on the RCCV Liner (Condition 3)

.

Figure 6.2.3.4-31 Application of Thermal Load on the Reinforced Concrete Girder and Column
(EL -11.500)
Figure 6.2.3.4-32 Application of Thermal Load on the Reinforced Concrete Girder and Column
(EL -6.400)
Figure 6.2.3.4-33 Application of Thermal Load on the Reinforced Concrete Girder and Column
(EL -1.000)
Figure 6.2.3.4-34 Application of Thermal Load on the Reinforced Concrete Girder and Column
$(EL 4,650) \dots \dots$
Figure 6.2.3.4-35 Application of Thermal Load on the Reinforced Concrete Girder and Column
Figure 6.2.3.4.36 Application of Thermal Load on the Reinforced Concrete Girder and Column
(EL 12 570)
EL 15,570)
Figure 6.2.3.5.1 Application of Hydrodynamic Load on the Suppression Pool Slab Liner (SRV
Positive) 405
Figure 6.2.3.5-3 Application of Hydrodynamic Load on the RCCV Liner (SRV: Negative) 406
Figure 6.2.3.5-5 Application of Hydrodynamic Load on the Suppression Pool Slab Liner (SRV)
Negative)
Figure 6.2.3.5-5 Application of Hydrodynamic Load on the RCCV Liner (CH Positive) 408
Figure 6.2.3.5.5 Application of Hydrodynamic Load on the Suppression Pool Slab Liner (CH
Positive)
Figure 6.2.3.5-7 Application of Hydrodynamic Load on the RCCV Liner (CH: Negative)410
Figure 6.2.3.5-8 Application of Hydrodynamic Load on the Suppression Pool Slab Liner (CH
Negative)
Figure 6.2.3.5-9 Application of Hydrodynamic Load on the RCCV Liner (CO
Positive/Negative)412
Figure 6.2.3.5-10 Application of Hydrodynamic Load on the Suppression Pool Slab Liner (CO
Positive/Negative)
Figure 6.2.3.5-11 Application of Hydrodynamic Load on the RCCV Liner (PS)414
Figure 6.2.3.5-12 Application of Hydrodynamic Load on the RPV Pedestal Liner (PS)415
Figure 6.2.3.5-13 Application of Hydrodynamic Load on the Basemat Liner (PS)416
Figure 6.2.3.5-14 Application of Hydrodynamic Load on the Suppression Pool Slab Liner (PS)417
Figure 6.2.3.5-15 Application of Hydrodynamic Load on the Top Slab Liner (PS)418
Figure 6.2.3.5-16 Application of Hydrodynamic Load on the RCCV Liner (PS: Pressure
Concurrent with Froth Impact Loads)
Figure 6.2.3.5-17 Application of Hydrodynamic Load on the RPV Pedestal Liner (PS: Pressure
Concurrent with Froth Impact Loads)
Figure 6.2.3.5-18 Application of Hydrodynamic Load on the Basemat Liner (PS: Pressure
Concurrent with Froth Impact Loads)
rigure 0.2.5.5-19 Application of Hydrodynamic Load on the Suppression Pool Siab Liner (PS: Pressure Concurrent with Froth Impact Loads)
Figure 6.2.3.5.20 Application of Hydrodynamic Load on the Ton Slah Liner (DS: Drogsure
Concurrent with Froth Impact Loads)
Figure 6.2.3.9-1 Seismic Load Directions in the Stress Analysis 424
There ends is a second breeden in the Street of the street

HITACHI

Figure 6.2.3.9-2 Calculation of Applied Shear Forces and Moments
Figure 6.2.3.9-3 Inner Walls Where Shear Force Are Applied - EL -11,500~EL-6,400426
Figure 6.2.3.9-4 Inner Walls Where Shear Force Are Applied - EL-6,400~EL-1,000
Figure 6.2.3.9-5 Inner Walls Where Shear Force Are Applied - EL-1,000~EL4,650
Figure 6.2.3.9-6 Distribution of Seismic Shear Forces
Figure 6.2.3.9-7 Method of Applying Overturning Moments
Figure 6.2.3.9-8 Application of Overturning Moments to the RCCV and Wall below RCCV431
Figure 6.2.3.9-9 Application of Overturning Moments to the RPV Pedestal
Figure 6.2.3.9-10 Application of Overturning Moments to the External Wall on R1 Column
Line
Figure 6 2.3.9-11 Application of Overturning Moments to the External Wall on R7 Column
Line 434
Figure 6.2.3.9-12 Application of Overturning Moments to the External Wall on F3 Column
Line 125
Eigure 6.2.2.0.12 Application of Quantuming Mamonta to the Evitemal Wall on BA Column
Figure 0.2.5.9-15 Application of Overturning Moments to the External wall on KA Column
Line
Figure 6.2.3.9-14 Application of Overturning Moments to the External wall on RG Column
Line
Figure 6.2.3.9-15 Application of Overturning Moments to the External Wall on RB Column
Line
Figure 6.2.3.9-16 Application of Overturning Moments to the External Wall on RF Column
Line
Figure 6.2.3.9-17 Application of Overturning Moments to the Pool Girders
Figure 6.2.3.9-18 Method of Applying Overturning Moments to the Top of RCCV441
Figure 6.2.3.9-19 Calculation Method of Input Torsional Moment
Figure 6.2.3.9-20 Calculation Method of Shear Forces due to Torsional Moment
Figure 6.2.3.9-21 Soil Pressure Due to N-S Direction Earthquake on the Basemat
Figure 6.2.3.9-22 Soil Pressure Due to N-S Direction Earthquake on the External Wall (R1
Column Line)
Figure 6.2.3.9-23 Soil Pressure Due to N-S Direction Earthquake on the External Wall (F3
Column Line)
Figure 6.2.3.9-24 Soil Pressure Due to E-W Direction Earthquake on the Basemat
Figure 6.2.3.9-25 Soil Pressure Due to E-W Direction Earthquake on the External Wall
(RA/FA Column Line)
Figure 6.2.3.9-26 Soil Pressure Due to E-W Direction Earthquake on the External Wall
(RG/FF Column Line) 449
Figure 6.2.4-1 Section Deformation for Dead Load 450
Figure 6.2.4-7 Section Deformation for Drywell Unit Pressure 451
Figure 6.2.4-3 Section Deformation for Wetwell Unit Pressure (1 MPa) 452
Figure 6.2.4.4 Section Deformation for Thermal Load (Normal Operation: Winter) 453
Figure 6.2.1.1 Section Deformation for Thermal Load (LOCA After 6 minutes: Winter) 454
Figure 6.2.1.5 Section Deformation for Thermal Load (LOCA After 72 hours: Winter)
Figure 6.2.4-7 Section Deformation for Thermal Load (LOCA Alter 72 hours: Willer)455
Figure 6.2.4.9 Section Deformation for Thermal Load (Normal Operation: Summer)
rigure 0.2.4-6 Section Deformation for Thermal Load (LOCA After 6 minutes: Summer)457

WG3-U71-ERD-S-0004	SH NC	0.17
REV. 1	of	543

Figure 6.2.4-9	Section Deformation for Thermal Load (LOCA After 72 hours: Summer)	458
Figure 6.2.4-10	Section Deformation for Seismic Load (Horizontal: North to South)	459
Figure 6.2.4-11	Section Deformation for Seismic Load (Horizontal: East to West)	460
Figure 6.2.4-12	Section Deformation for Seismic Load (Vertical: Upward)	461
Figure 6.2.4-13	Section Deformation for Soil Pressure Due to an Earthquake (N-S)	462
Figure 6.2.4-14	Section Deformation for Soil Pressure Due to an Earthquake (E-W)	463
Figure 6.2.4-15	Section Deformation for Wind Load (North Wind)	464
Figure 6.2.4-16	Section Deformation for Wind Load (South Wind)	465
Figure 6.2.4-17	Section Deformation for Wind Load (East Wind)	466
Figure 6.2.4-18	Section Deformation for Wind Load (West Wind)	467
Figure 6.2.4-19	Section Deformation for Tornado Load (North Wind)	468
Figure 6.2.4-20	Section Deformation for Tornado Load (South Wind)	469
Figure 6.2.4-21	Section Deformation for Tornado Load (East Wind)	470
Figure 6.2.4-22	Section Deformation for Tornado Load (West Wind)	471
Figure 6.2.4-23	Section Deformation for Tornado Load (Differential Pressure)	472
Figure 6.2.4-24	Elements Selected for Tabulation (Wall below RCCV)	473
Figure 6.2.4-25	Elements Selected for Tabulation (External Wall R1)	474
Figure 6.2.4-26	Elements Selected for Tabulation (External Wall R7/F1)	475
Figure 6.2.4-27	Elements Selected for Tabulation (External Wall RA FA)	476
Figure 6.2.4-28	Elements Selected for Tabulation (Basemat)	477
Figure 6.2.4-29	Elements Selected for Tabulation (Slab at EL 4,650)	478
Figure 6.2.4-30	Elements Selected for Tabulation (Slab at EL 17,500)	479
Figure 6.2.4-31	Elements Selected for Tabulation (Slab at EL 27,000)	480
Figure 6.2.4-32	Elements Selected for Tabulation (Pool Girder)	481
Figure 6.2.4-33	Elements Selected for Tabulation (MS Tunnel Wall)	482
Figure 6.2.4-34	Elements Selected for Evaluation (IC/PCCS Pool in NS Direction)	483
Figure 6.2.4-35	Force and Moment in Shell Element	484
Figure 6.4.1-1	Flow Chart of Design for Reinforced Concrete Structures	485
Figure 6.4.1-2	Calculation of Shear Strength Provided by Concrete	486
Figure 6.4.1-3	Comparison of Bending Moment-Axial Force (P-M) Interactions	487
Figure 6.4.2-1	Allowable Stress of W-shaped Members (Strong Axis Bending)	488
Figure 6.4.2-2	Allowable Stress of W-shaped Members (Weak Axis Bending)	489
Figure 6.4.2-3	Allowable Bending Stress of Box Members	490
Figure 7.1-1 R	einforcing Steel of Foundation Mat: Plan	491
Figure 7.1-2 R	einforcing Steel of Foundation Mat: Section A-A	492
Figure 7.1-3 R	einforcing Steel of IC/PCCS Pool Girder	493
Figure 7.1-4 L	ist of RB Wall and Slab Reinforcement	494
Figure 7.1-5 R	B Roof Truss Structural Steel Member	495
Figure 7.3.2-1	Elements Selected for Tabulation - RB Roof Truss and Supporting Column	n on
R4 C	Column Line	496

LIST OF ACRONYM

CB	Control Building
CH	Chugging
СО	Condensation Oscillation
DBA	Design Basis Accident
DCD	Design Control Document
DF	Diaphragm Floor
DLF	Dynamic Load Factor
DW	Drywell
ESBWR	Economic Simplified Boiling Water Reactor
EW	East-West
FB	Fuel Building
FE	Finite Element
FAPCS	Fuel and Auxiliary Pools Cooling System
FWSC	Firewater Service Complex
GDCS	Gravity-Driven Cooling System
HELB	High Energy Line Break
IC	Isolation Condenser
IC/PCCS	Isolation Condenser/Passive Core Cooling System
LOCA	Loss of Coolant Accident
MS	Main Steam
NA3	North Anna Unit 3
NI	Nuclear Island
NS	North-South
PCCS	Passive Containment Cooling System
PID	Element Property ID
PS	Pool Swell
RB	Reactor Building
RB/FB	Reactor/Fuel Building Complex
RCCV	Reinforced Concrete Containment Vessel
RG	Regulatory Guides
RPV	Reactor Pressure Vessel
RSW	Reactor Shield Wall
S/P	Suppression Pool
SRP	Standard Review Plan
SRSS	Square Root of the Sum of the Squares
SRV	Safety Relief Valve
SSE	Safe Shutdown Earthquake
SSI	Soil-Structure Interaction
VW	Vent Wall
WW	Wetwell

WG3-U71-ERD-S-0004	SH NO. 19	
REV. 1	of 543	

1. SCOPE

The objective of this report is to document the North Anna Unit 3 (NA3) site-specific structural design evaluation of the Economic Simplified Boiling Water Reactor (ESBWR) Reactor Building (RB) for the site-specific seismic load demands that exceed the seismic loads used for the standard design of the RB structure. The scope of the evaluation is the analysis and stress checks of the RB structure for site-specific seismic loads in combination with other design loads in critical seismic load combinations. The analysis is performed using the same NASTRAN model used for the standard design of the RB structure in Reference 2.1.2-e. The design loads applied to the model are the same as those considered in the standard design except for the site-specific Safe Shutdown Earthquake (SSE) loads that are obtained from Reference 2.1.2-k. The NA3 site-specific SSE loads are combined with non-seismic standard plant loads following the same standard design analysis methodology and acceptance criteria.

It should be noted that the Reinforced Concrete Containment Vessel (RCCV) is enclosed within the RB, but the design of the RCCV is out-of-scope of this report. The design results of the RCCV are described in WG3-T11-DRD-S-0001 "RCCV Structural Design Report," Reference 2.1.2-m. Stability checks are performed in WG3-U71-ERD-S-0003 "Reactor/Fuel Building Complex Stability Analysis Report," Reference 2.1.2-h.

2. APPLICABLE DOCUMENTS

2.1 Supporting and Supplemental Documents

2.1.1 Supporting Documents

		<u>MPL No.</u>
a.	26A6558, "General Civil Design Criteria", Revision 4	A40-4010
b.	26A6605, "Design Specification of Concrete Containment", Revisio	on 4
		T11-4010
c.	26A6606, "Design Specification for Reactor Building", Revision 2	U71-4010
d.	26A6608, "Design Specification for Fuel Building", Revision 2	U97-4010
e.	105E3908, "ESBWR Nuclear Island General Arrangement Drawing	", Revision 5
		A12-2010
f.	26A6649, "RB/FB Heat Transfer Analysis Report", Revision 3	U71-5060
~	aDRE Section 0000 0102 0065 R0 Deliverable to Structural Group	for Steady Stat

g. eDRF Section 0000-0102-0965 R0, Deliverable to Structural Group for Steady State Heat Transfer and Stress Analysis

2.1.2 Supplemental Documents

<u>MPL No.</u>

- a. 26A6642AL, "ESBWR Design Control Document Tier 2 Chapter 3 Appendices 3A 3F", Revision 10
- b. 26A6642AN, "ESBWR Design Control Document Tier 2 Chapter 3 Appendices 3G 3L", Revision 10
- c. DE-ES-0083, "Seismic Load Data for North Anna 3 from HGNE Analysis", Revision 0
- d. 26A6650, "ESBWR RCCV Structural Design Report", Revision 5

T11-5010

- e. 26A6651, "ESBWR Reactor Building Structural Design Report", Revision 5 U71-5010
- f. 26A6655, "ESBWR Fuel Building Structural Design Report", Revision 5

U97-5010

- g. WG3-U71-ERD-S-0001, "North Anna 3 Reactor/Fuel Building Complex Seismic Analysis Report", Revision 4
- h. WG3-U71-ERD-S-0003, "North Anna 3 Reactor/Fuel Building Complex Stability Analysis Report", Revision 1
- i. SER-DMN-011, "Benchmarking of SASSI2010 MSM Results from NA3 Site-Specific SSI Analysis", Revision 1
- j. TODI WG3-A25-TDI-S-0004, "North Anna 3 RB/FB, CB & FWSC SSI Analyses EPRI 2013 GMPE Based Inputs", Revision 0
- k. SER-DMN-019 "RB/FB Seismic Analyses Bounding Results and In-Structure Response Spectra", Revision 1
- 26A6661, "Structural Design Report for Containment Internal Structures", Revision 2, MPL No. T12-5010
- m. WG3-T11-DRD-S-0001, "North Anna 3 RCCV Structural Design Report", Revision 1
- n. WG3-U97-ERD-S-0001, "North Anna 3 FB Structural Design Report", Revision 1
- o. 26A6647, "ESBWR Reactor/Fuel Building Complex Seismic Analysis Report", Revision 7 U71-5040

2.2 Industry Codes and Standards

- a. ACI 349-01/349R-01: Code Requirements for Nuclear Safety Related Concrete Structures and Commentary
- b. ASME BPVC Sec III 2004: BPVC Section III, Division 2, Code for Concrete ASME BPVC Sec III 2004: BPVC Section III, Division 2, Code for Concrete
- c. ANSI/AISC N690-1994 (R2004) & S2: Specification for the Design, Fabrication and Erection of Steel Safety-Related Structures for Nuclear Facilities and Supplement No. 2
- d. ASCE 7-02: Minimum Design Loads for Buildings and Other Structures
- e. ASCE 4-98: Seismic Analysis of Safety-Related Nuclear Structures

2.3 Regulation and Regulatory Requirements

a. NUREG-0800 "Standard Review Plan for Review of Safety Analysis Reports for Nuclear Power Plants - LWR Edition", Revision 4

2.4 References

- a. A Review of Procedure for the Analysis and Design of Concrete Structures to Resist Missile Impact Effects, R.P. Kennedy, Holmes and Narver, Inc. (Nuclear Engineering and Design article Vol. 37 1976, pages 183-203)
- b. Topical Report, Design of Structures for Missile Impact, Bechtel Power Corp., BC-TOP-9A Revision 2, September 1974
- c. Topical Report, Tornado and Extreme Wind Design Criteria for Nuclear Power Plants, Bechtel Power Corp., BC-TOP-3A, Revision 3, August 1974

3. STRUCTURAL DESCRIPTION AND GEOMETRY

3.1 Structural Geometry and Dimensions

The RB is a safety-related and Seismic Category I structure. It shares a common basemat with the RCCV and the Fuel Building (FB). The RCCV is fully enclosed within the RB.

The RB is a rigid box-shape building, and its key dimensions are summarized in Table 3.1-1. The key dimensions of the RCCV are summarized in Table 3.1-2. Floor plans and sections of the RB are shown in Figures 3.1-1 through 3.1-7.

3.2 Key Structural Elements and Descriptions

The RB structure consists of the following areas that are not part of the containment structure.

- The basemat is a reinforced concrete slab that functions as a common foundation for the R/B including the RCCV and FB structures. Though the thickness of most of the basemat is 4.0 m, the thickness is increased to 5.1m at the inside Reactor Pressure Vesssel (RPV) pedestal and 5.5m at the bottom of the Spent Fuel Pool.
- RB super structure at and above the refueling floor, up to the support for the bridge crane, including the roof, is made of reinforced concrete floors and walls. Roof trusses and their supporting columns are made of structural steel.
- Passive Containment Cooling System (PCCS) and Isolation Condenser (IC) heat exchanger pools, the separator/dryer storage pool, the reactor cavity, the buffer pool, and including the standby liquid control pressure vessel rooms.
- Rooms at several elevation levels outside the containment but attaching to the containment structure.
- The main steam tunnel that consists of reinforced concrete walls and floor.

WG3-U71-ERD-S-0004	SH NO. 22
REV. 1	of 543

The RCCV structure boundary consists of the containment Top Slab with removable Drywell Head, the containment cylindrical wall that is also the external wall of the suppression pool, the suppression pool floor slab, the RPV pedestal that encloses the volume under the RPV, and the basemat. The RCCV and the RB structure are integrated by the pool girders at the top of the containment and by floors at EL -6,400, EL -1,000, EL 4,650, EL 9,060, EL 13,570, EL 17,500 and EL 27,000. The configuration of the RCCV is shown in Figure 3.2-1.

Figure 3.2-2 shows the locations of various pools in the RB and FB.

The NA3 site-specific seismic demands for sliding stability can be solved without shear key as shown in the NA3 RB/FB Stability Analysis Report, Reference 2.1.2-h. Therefore, shear key design is not contained in this report. The same shear keys as described in Reference 2.1.2-e are provided under the basemat for NA3.

3.3 Floor Layout and Elevations

Floor layouts and sections of the RB are shown in Figures 3.1-1 through 3.1-7. The RB is a nine-story building with rectangular-shaped floor plans. The RB structure is partially embedded with the top of basemat 16.0 meters below grade.

3.4 Conditions of Vicinity and Support

In the ESBWR NA3 site-specific design, the buildings including the RB are designed under the condition that they are supported by the foundation soil that has the following properties corresponding to the Soft Site conditions described in Reference 2.1.2-e. The soft site conditions are conservative for the NA3 rock site because softer soils lead to larger structural deformations.

- Shear wave velocity: 300 m/s
- Unit weight: $0.0196 \text{ MN/m}^3 (2.00 \text{ t/m}^3)$
- Shear modulus: $180 \text{ MN/m}^2 (1.835 \times 10^4 \text{ t/m}^2)$
- Poisson's Ratio: 0.478

3.5 Special Structural Features

The RB has the following structural features.

- The RB is rigidly connected to the RCCV with pool girders and floor slabs. Therefore, it is necessary to consider the loads applied in the RCCV, such as pressure loads and thermal loads, for the structural design of the RB structures.
- Frame members are not installed in the RB except for roof trusses and steel columns which support trusses. The roof trusses and supporting columns are located at the stories above EL 34,000.

WG3-U71-ERD-S-0004 SH NO. 23 REV. 1 of 543

4. STRUCTURAL MATERIAL REQUIREMENTS

4.1 Concrete

The specified compressive strengths, f'_c , of the concrete at 28 days, or earlier, are as follows.

- Basemat: 27.6 MPa (4,000 psi)
- Top Slab: 41.4 MPa (6,000 psi)
- Others: 34.5 MPa (5,000 psi)

4.2 Reinforcement

Reinforcing steel is deformed billet steel conforming to ASTM A-615 grade 60. Minimum yield strength, Fy, is 413.6 MPa (60,000 psi).

4.3 Structural Steel

4.3.1 Carbon Steel Plate and Shapes

Structural steel and fasteners of the RB conform to the following:

- Structural Steel: ASTM A572 Gr.50 (for Column, Girder, etc.) ASTM A36
- High strength bolts: ASTM A325 or A490
- Anchor bolts (rods): ASTM A36 or A307
- Steel floor decking: ASTM A446 with minimum fy = 228 MPa (33 ksi)
- Studs: ASTM A108
- Pipe material: ASTM A333 Gr. 1 or 6, and A312 tp 304L or 316L
- Forgings: ASTM A 350 Gr. LF1 or LF2, and A182 Type F304L/316L

Steels used for the RCCV internal structures are as follows:

- Diaphragm Floor: ASTM A572 or A709 HPS 70W
- RPV Support Bracket:ASTM A516 or A709 HPS 70W
- Vent Wall: ASTM A572 or A709 HPS 70W
- GDCS Pool ASTM A572 or A709 HPS 70W

4.3.2 Stainless Steel Plate

Stainless steel plate or clad plate conform to ASTM A-240 Type 304L.

4.3.3 Steel Decking

Steel floor and roof decks conform to ASTM A446, Grade A, galvanized.

5. STRUCTURAL LOADS

As described later in Section 6.2, stress analyses of the RB are performed using a Finite Element (FE) analysis model that includes the RB, RCCV, and FB since they are integrated into one building. Therefore, in the following subsections, the loads applied to the RB as well as the RCCV and FB are described.

5.1 Live Loads and Dead Loads

5.1.1 Dead Loads

The following four kinds of dead loads are considered in the structural design of the RB.

Structural Weight

The weight of structures such as roof, floors, walls and steel framing (columns, girders and trusses) are calculated using the following unit weights.

- reinforced concrete: 23.5 kN/m³
- plain concrete: 22.5 kN/m^3
- steel: 77.0 kN/m^3

Miscellaneous Structures, Piping, and Commodity Loads

Table 5.1.1-1 shows the weights of the miscellaneous steels including roof trusses, finishings, and various pool liners in the RB and FB. The weights of the liner inside the containment and hatch attached to the containment are shown in Table 5.1.1-2.

Tables 5.1.1-3 and 5.1.1-4 show design loads of miscellaneous structures, piping, and commodities applied to the floor slabs and RCCV wall, respectively.

Equipment Loads

Weights of equipment located on the RB and FB slabs are summarized in Tables 5.1.1-5 and 5.1.1-6, and Figures 5.1.1-1 through 5.1.1-9. Please note that the building configurations in these figures are not exactly consistent with the latest General Agreement (GA) drawings.

Pool Water Hydrostatic Loads

The vertical and lateral pressures of liquids in pools are treated as hydrostatic loads on the walls and floors of pools. Table 5.1.1-7 lists the depths of pool water and the maximum design hydrostatic loads in the various pools.

5.1.2 Live Loads

The following three kinds of live loads are considered in the structural design of the RB.

Floor Live Loads

WG3-U71-ERD-S-0004	SH NO. 25
REV. 1	of 543

Table 5.1.2-1 shows the floor live loads distributed on the RB floor slabs. Floor live loads are reduced to 0.25 of their values when used in the evaluation of seismic loads. The live load inside the RCCV is zero since the containment is inaccessible. Floor live loads at the roof are enveloping snow load.

Snow Loads

Snow load for flat roof is taken as 2.4 kN/m^2 (50 psf), uniformly. For the lower roofs, i.e., RB roof at EL 34,000 and FB roof at EL 27,500, the snow drift loads are additionally considered as shown in Figure 5.1.2-1. Their values are calculated based on ASCE 7-02, Reference 2.2-d.

Lateral Soil Pressure

The static lateral soil pressure loads, which are shown in Table 5.1.2-2, are applied to the external walls below grade. Evaluations of lateral soil pressures are described in Appendix B in Reference 2.1.2-e. The at-rest lateral pressures are for generic sites considered in the standard design and they are larger than the NA3 site-specific static lateral pressures and conservatively used for NA3.

5.2 Transient Loads

5.2.1 Pressure Loads

5.2.1.1 Containment Pressure Loads

The containment pressure loads that act on the inner surfaces of the RCCV and IC/PCCS pools during normal operation, tests, and a Loss of Coolant Accident (LOCA) are considered. Figure 5.2.1-1 show the transient curves representing the pressure envelopes for the Design Basis Accident (DBA). Figure 5.2.1-2 shows the regions where the pressure loads are applied in the IC/PCCS pools.

The following events are considered for determining the design pressure loads. Table 5.2.1-1 shows their values.

- 1. Normal operation
- 2. Test maximum internal pressure
- 3. Test maximum differential pressure
- 4. LOCA 5 seconds after DBA
- 5. LOCA 6 minutes after DBA
- 6. LOCA 10 hours after DBA
- 7. LOCA 72 hours after DBA

The pressure loads during a LOCA are defined for various times after an accident and are determined from the time history curves of temperature and pressure conditions for several parts of the RCCV. Table 5.2.1-2 gives the reasons why the above four LOCA times are selected.

5.2.1.2 High Energy Line Break (HELB) Loads

The pressure loads due to High Energy Line Break (HELB) is as follows.

•	Main Steam Tunnel :	76.0 kPag (11 psig)
•	RWCU / Shutdown Cooling Valve Rooms A thru D, RWCU / S Heat Exchanger Rooms A thru D.	Shutdown Cooling
	Corridors A thru D and Commodity Chases A thru D:	34.5 kPag (5 psig)

• All Other Rooms in RB and FB Outside Containment: 14.0 kPag (2 psig)

5.2.2 Thermal Loads

5.2.2.1 Normal Temperatures (To)

The following operational states are considered for determining the normal thermal loads. Table 5.2.2-1 shows the steady state temperature conditions for each of the following states and for each part of the RB.

1. Normal operation - Summer and Winter

The thermal loads are specified, for stress analyses, as average temperatures, Td, and temperature differences, Tg. They are in turn obtained from equivalent linearization of heat transfer analysis results. For normal temperatures, steady state heat transfer analyses are performed using the temperature conditions shown in Table 5.2.2-1.

The stress-free design temperature used in the stress analyses is 15.5 °C.

As for heat transfer analyses, refer to U71-5060 "RB FB Heat Transfer Analysis Report", Reference 2.1.1-f.

5.2.2.2 Accident Temperatures (Ta)

The following conditions are considered for defining the accident thermal loads. The conditions are determined from the time history curves of temperatures and pressures at several parts of each structure.

(1) RCCV

Figures 5.2.2-1 and 5.2.2-2 show the envelopes of transient temperatures during a LOCA.

- 1. LOCA 5 seconds after DBA, Summer and Winter
- 2. LOCA 6 minutes after DBA, Summer and Winter
- 3. LOCA 10 hours after DBA, Summer and Winter
- 4. LOCA 72 hours after DBA, Summer and Winter

The reasons why the above events are selected as the design loads are described in Table 5.2.1-2.

The structural evaluation for TRACG, GEH proprietary version of the Transient Reactor Analysis Code, calculated LOCA temperature provided in Reference 2.1.1-g is described

in Appendix E of ESBWR Reactor Building Structural Design Report, Reference 2.1.2-e, including the thermal loads for the surrounding area of the RB upper pool.

Four cases of temperature distributions in the upper pool at 72 hours after a LOCA are shown in Figure 5.2.2-3.

(2) Spent Fuel Pool

Table 5.2.2-2 shows the envelopes of transient temperatures in the spent fuel pool during a DBA.

- 1. Normal operation
- 2. DBA 72 hours after DBA due to loss of Fuel and Auxiliary Pools Cooling System (FAPCS) cooling function

Because the temperature in the spent fuel pool reaches its maximum values at this time, the above events are selected as the design loads.

Determining the accident thermal loads follows the same procedure as that described for normal thermal loads in Subsection 5.2.2.1. The only difference is that non-steady state heat transfer analyses are performed for accident temperature conditions instead of steady state analyses.

5.2.3 Hydrodynamic Loads

5.2.3.1 Safety/Relief Valve (SRV) Loads

The SRV loads are hydrodynamic loads resulting from the discharge of the safety/relief valves. Figure 5.2.3-1 shows the load values and the regions in the RCCV where the SRV loads are applied.

The SRV design loads are determined, taking their dynamic characteristics into account, by multiplying the load values by Dynamic Load Factors (DLFs), which are shown in Figure 5.2.3-1. The adequacy of DLF equal to 2.0 is confirmed by a dynamic response analysis.

5.2.3.2 Chugging (CH) Loads

The chugging loads are hydrodynamic loads that are applied to the suppression chamber during a LOCA. Figure 5.2.3-2 shows the event-time relationship during a DBA.

Figure 5.2.3-3 shows the regions where the chugging loads are applied, the load values, and the DLFs. The adequacy of DLF equal to 2.0 is confirmed by a dynamic response analysis.

5.2.3.3 Condensation Oscillation (CO) Loads

The CO loads are, like the chugging loads, hydrodynamic loads that are applied to the suppression chamber during a LOCA. Figure 5.2.3-4 shows the regions where the CO loads are applied, the load values, and the DLFs.

WG3-U71-ERD-S-0004	SH NC	0.28
REV. 1	of	543

5.2.3.4 Pool Swell

The pool swell loads are, like the CH and CO loads, hydrodynamic loads that are applied to the suppression chamber during a DBA. The peak Pool Swell (PS) dynamic pressure in the air space of the suppression pool is 350kPa (i.e., 246 kPag (36 psig)). The dynamic load factor is 1.0. These PS boundary pressures shall be applied together with a drywell pressure of 414 kPa (i.e., 310 kPag (45 psig)) such that the pressure differential between the Drywell (DW) and the Wetwell (WW) is 64 kPad (9 psid) as WW gas space is at its peak pressure during PS. The pressure distribution is shown in Figure 5.2.3-5.

Note: The unit kPa without (d) or (g) means absolute.

Containment structures shall be analyzed for the following cases involving PS pressure, froth impact and fallback drag loads.

- Case 1. PS occurs with pressures without froth impact and fallback drag loads. Containment structures are to be analyzed for PS pressure with pressure distribution shown in Figure 5.2.3-5.
- Case 2. PS occurs with pressures in conjunction with froth impact and fallback drag loads. Containment structures are to be analyzed for two cases involving PS pressure, froth impact and fallback drag loads.
 - Case 2a. WW and bubble pressures defined in Figure 5.2.3-6 together with the froth impact pressure (DLF = 1.60) acting on the bottom face of diaphragm floor and bottom face of the bottom flange of radial beams.
 - Case 2b. WW and bubble pressures defined in Figure 5.2.3-6 together with the fallback drag pressure (DLF = 1.0) acting on the top face of the bottom flange of the radial beams of the diaphragm floor.

The worst results or the enveloping values of these cases will be used as the PS values to be combined with other loads in the load combinations.

5.2.4 RPV Reactions due to Hydrodynamic Loads

Reactions of the RPV, which are applied to the RPV support bracket and the RPV stabilizer, and the GDSC pools during the SRV discharge and LOCA, are regarded as hydrodynamic loads in the RCCV design. The RPV reactions due to SRV loads and LOCA loads are shown on Table 5.2.4-1.

5.3 Environmental Loads

5.3.1 Wind Loads

Design conditions for calculating the basic wind load are as follows:

Basic wind speed (50 year recurrence interval), m/s (mph)	62.6 (140)
Importance Factors (Safety-related structures)	1.15

96)	HITACHI	WG3-U71-ERD-S-0004	SH NO. 29	
S)		REV. 1	of 543	
	Exposure Category	Exposure D		

Wind load values at each floor level are shown in Table 5.3.1-1. They are evaluated in accordance with ASCE 7-02, Reference 2.2-d, using the design conditions mentioned above. The evaluation of design wind loads is described in Appendix B in Reference 2.1.2-e.

5.3.2 Tornado Loads

Design conditions for calculating the tornado wind load are as follows:

Maximum Tornado wind speed, m/s (mph)	147.5 (330)
Maximum Rotational Speed, m/s (mph)	116.2 (260)
Maximum Translational Speed, m/s (mph)	31.3 (70)
Radius, m (ft)	45.7 (150)
Maximum Pressure Drop, kPa (psi)	16.6 (2.4)
Maximum Rate of Pressure Drop, kPa/s (psi/s)	11.7 (1.7)

Tornado load values at each floor level are shown in Table 5.3.2-1. They are evaluated in accordance with BC-TOP-3A, Reference 2.4-c, using the design conditions mentioned above. The evaluation of design tornado loads is described in Appendix B in Reference 2.1.2-e.

5.3.3 Seismic Loads

The seismic loads considered in the RB design are those generated by the site-specific SSE. They are applicable to all seismic load combinations including those for LOCA flooding inside the containment.

The design seismic loads are determined from the site-specific Soil-Structure Interaction (SSI) analysis results, which are described in Reference 2.1.2-g "North Anna 3 Reactor/Fuel Building Complex Seismic Analysis Report." Four components - two horizontal, one vertical, and one torsional - of the seismic loads are evaluated following the methodology used for the standard design of the RB in Reference 2.1.2-e. The out-of-plane loads due to horizontal SSE acceleration are considered as one of the horizontal components at walls, whose out-of-plane natural frequency is less than 50 Hz.

The analysis cases of the RB/FB seismic analyses used to form the bounding NA3 sitespecific seismic demands for this report are presented in Table 3-1 of Reference 2.1.2-k. These loads bound the effects of stiffness variation as described in Reference 2.1.2-g.

The effect of LOCA flooding is insignificant in view of Table 5.3.3-1 for comparison of structural loads at key locations of various structures in the RB/FB for standard plant at hard

rock site. As shown, the loads for flooded containment are within 7% to -9% of the loads for non-flooded containment during plant normal operation. Since NA3 site is very similar to the hard rock generic site for which the effect of containment flood during LOCA has insignificant effect on seismic responses, the bounding seismic loads included in Reference 2.1.2-k are equally applicable to load combinations with LOCA and other applicable loads for either flooded or non-flooded conditions of the containment.

The site-specific seismic design loads applied to the RB, FB, and RCCV structures are shown in the following tables. Node numbers in the tables are described in Figure 5.3.3-1.

- Horizontal seismic loads and torsion: Tables 5.3.3-2 through 5.3.3-6
- Vertical seismic loads: Tables 5.3.3-7 through 5.3.3-11
- Out-of-plane accelerations at walls: Table 5.3.3-20

The equivalent out-of-plane acceleration loads on slabs and walls are based on Tables 4.5-1 and 4.5-2 of Reference 2.1.2-k. The details of calculation of the equivalent out-of-plane acceleration loads on slabs and walls are shown in Appendix D of Reference 2.1.2-g.

The following loads are also regarded as seismic loads, and are considered in the RB design.

Soil Pressure due to an Earthquake

The design soil pressure loads due to SSE are calculated from SSI analysis results. Design loads are shown in Table 5.3.3-12. These loads are determined by enveloping the soil pressure calculated directly from SSI analysis.

Since the NA3 site-specific passive pressures required for stability evaluations in Reference 2.1.2-h are bounded by the standard design wall capacity pressures, the wall capacity evaluation is not performed.

Seismic Hydrodynamic Loads in Pools

Seismic hydrodynamic loads in pools due to SSE are considered. Tables 5.3.3-13 through 5.3.3-18 show the loads applied to walls and slabs, and the locations of pools are shown in Figure 5.3.3-2. The detail of the calculation of these seismic hydrodynamic loads is shown in Appendix A of Reference 2.1.2-k. The convective (sloshing) pressures considered in the standard plant design are conservatively used for NA3. As additional conservation, the pressure component associated with impulsive (rigid) mode is based on NA3 seismic demand or standard plant demand, whichever is larger.

RPV Reactions due to an Earthquake

RPV reactions due to an earthquake are regarded as a part of the seismic loads in the RB and RCCV design. The values are summarized in Table 5.3.3-19. The reactions are applied to the RPV support brackets.

6. STRUCTURAL ANALYSIS AND DESIGN

6.1 General Description

The structural analysis and design of the RB are performed according to the following procedure.

1. Prepare a FE model for stress analyses considering structural characteristics and materials.

As stated in Section 3.1, the RB including RCCV and the FB are integrated into one building in the ESBWR plant. Therefore, the FE model includes the RCCV, RB, and FB (RB/FB global FE model).

- 2. Perform stress analyses for the design loads described in Chapter 5, and calculate the section forces.
- 3. Select the basic and critical load combinations as the selected design load combinations for the RB design.
- 4. Combine the section forces according to the selected design load combinations mentioned in Step 3 above, which are described later in Section 6.3.
- 5. Perform structural design calculations using the section forces for the selected design load combinations.

The design/evaluation is essentially performed using ASME, Section III, Division 2. The details of the design/evaluations and the exceptions to the use of ASME, Section III, Division 2 are described in Section 6.4.1.

The design of steel structures in the RB is performed in accordance with ANSI/AISC N690-1994 "Specification for the Design, Fabrication, and Erection of Steel Safety-Related Structures for Nuclear Facilities," with the Supplements No.1 (2002) and No.2 (2004).

6.2 Stress Analysis

6.2.1 Analysis Program

The computer program used for the stress analysis calculations is NASTRAN Version 2013.0.0. It is a general purpose stress analysis program, which is technically based on the FE method. Analysis calculations are executed on Red Hat Enterprise Linux Server release 5.7 OS.

6.2.2 Analysis Model

6.2.2.1 Outline of the Analysis Model

Major structural members of the RB and the FB, which are shown in Figures 3.1-1 through 3.1-7, include the basemat, RCCV, floor slabs, external walls, shear walls, and frame members. FE models are employed considering the complexity of the structure, load conditions, and boundary conditions.

WG3-U71-ERD-S-0004	SH NO. 32
REV. 1	of 543

Figures 6.2.2-1 and 6.2.2-2 show the RB/FB global FE analysis model used for the RB design. The model includes the whole (360°) portion of the RB including the RCCV and FB taking the application of nonaxisymmetrical loads and the asymmetric layout of the FB structure into consideration.

Structures of the FB located above EL 22,500 are not included in the model, because they are Seismic Category II structures. (Refer to Figure 3.1-6.)

Besides building structures, the global FE model includes the major RCCV internal structures, i.e., the vent wall, the diaphragm floor slab, the GDCS pool, the reactor shield wall, and the RPV support brackets. In addition, steel liner plates installed at the inside surface of the RCCV are included in the model. They are shown in Figures 6.2.2-3 and 6.2.2-4.

- As described in Appendix E to Reference 2.1.2-e, the original global FE model was updated for the standard design to reflect current pool gate design and design changes in the upper pools as required to meet design acceptance criteria for stresses that result from temperature variations in the RB upper pool after a DBA. This updated standard plant model is applied for the following unit load analysis cases for NA3:
- Dead Load
- Pressure Load at Drywell, IC/PCCS Pools, HELB in MS Tunnel and WW
- Temperature Loads in RB upper pools after a LOCA shown in Figure 5.2.2-3.
- Seismic load for NA3 site-specific conditions

For other unit load cases, the original global FE model is used because these loads are not influenced by the design changes in the upper pools.

6.2.2.2 Modeling Principles

The global FE model is developed according to the following modeling principles:

- 1. The FE stress analysis model is a whole structure of the RB including the RCCV and the FB.
- 2. The following major penetrations in the RCCV are included in the model in order to take local reduction of the wall stiffness into consideration:
 - upper drywell equipment and personnel hatches
 - lower drywell equipment and personnel hatches
 - suppression chamber access hatch
 - main steam and feedwater pipe penetrations.
- 3. The analysis model is developed based on the GA drawings listed in Table 6.2.2-1.
- 4. Primary structural members, including the RCCV, basemat, pool structures, shear walls, and floor slabs are modeled so that their design section forces are adequately

evaluated. Table 6.2.2-2 lists which structural members are included in the FE model and which ones are designed using the section forces obtained by the global model analyses. Table 6.2.2-3 shows the types of finite elements used to model various structural members. It also shows the section forces each type of element can account for.

- 5. The global coordinate system of the analysis model is determined as follows:
 - Origin: The origin is on EL 0,000 at the center of the RCCV.
 - X-axis:Positive X is in the southward direction from the origin.
 - Y-axis: Positive Y is in the eastward direction from the origin.
 - Z-axis: Positive Z is in the vertically upward direction.
- 6. Table 6.2.2-4 shows the z-direction in local coordinate systems of major structures. This information is used to define the directions of applied loads, such as pressure and thermal loads.

6.2.2.3 Modeling of the Basemat and Ground

Basemat

As shown in Tables 3.1-1 and 3.1-2, the thickness of the basemat is 4.0 m in general, and is increased to 5.1 m at the RCCV portion and 5.5 m at the Spent Fuel Pool portion.

The elements are placed horizontally at the center of the basemat. The R7 column line marks the division between the RB and FB. In addition, the basemat inside the RPV pedestal is treated as a part of the RCCV.

Figure 6.2.2-5 shows the FE model of the basemat. Figure 6.2.2-6 is an enlarged figure of the basemat inside the containment. They show FE meshes, grid IDs, element IDs, and element property IDs (PIDs).

Ground

The ground is modeled with spring elements. Three independent spring elements, one vertical and two horizontal, are attached to each of the basemat grid points.

Spring constants are calculated using the soil properties shown in Section 3.4. Table 6.2.2-5 shows the vertical and horizontal spring constants per a unit area. The constants are calculated based on soil spring constants of the Sway-Rocking model for standard plant SSI analyses. These soil springs are for soft site conditions considered for the standard plant design and they are conservative for NA3 rock site because softer soils lead to larger structural deformations.

The ground is assumed to be elastic, and the basemat uplift during an earthquake is not considered in the stress analysis calculations. Uplift evaluation described in Section 5.6 of Reference 2.1.2-g demonstrates that the possible uplift of the RB/FB basemat has negligible effect on the RB/FB seismic responses that are performed on linear elastic models.

6.2.2.4 Modeling of the RCCV

RCCV Cylinder Wall

The RCCV cylinder wall is modeled with shell elements that are 2.0 m thick. The elements are placed vertically at the center of the wall, R = 19.0 m. The wall is divided, in general, into 48 elements in the circumferential direction (7.5° pitch) and into three or five elements vertically per a story. The modeled region of the RCCV wall is between the center of the suppression pool slab, EL 3,650, and the center of the Top Slab, EL 25,800. The cylindrical wall below RCCV cylinder wall, from EL -11,500 to EL 3,650 is shear wall that connects the RCCV cylinder wall and basemat.

The levels of floor slabs connected to the RCCV wall are determined as shown in Table 6.2.2-6. They are so determined that the slabs connected to the RCCV are located at their centers of thicknesses.

The major penetrations in the concrete containment are included in the model in order to take local reduction of the wall stiffness into consideration. Their dimensions and locations are shown in Table 6.2.2-7.

Figure 6.2.2-7 shows the FE model of the RCCV cylinder wall including the wall below the RCCV.

RPV Pedestal Wall

The RPV pedestal wall is modeled with shell elements that are 2.4 m thick, whereas its actual thickness is 2.5 m as shown in Table 3.1-2. The thickness is conservatively reduced considering that the concrete section is decreased by thick steel plates at the connection with the RPV support brackets.

The elements are placed vertically at the center of the cylinder wall, R = 6.8 m. The wall is divided, in general, into 48 elements in the circumferential direction (7.5° pitch) and into three elements vertically per a story. The modeled region of the RPV Pedestal wall is between the upper surface of the basemat, EL -11,500, and the center of the suppression pool slab, EL 3,650.

The openings included in the RPV pedestal model are shown in Table 6.2.2-7.

Figure 6.2.2-8 shows the FE model of the RPV pedestal wall.

Top Slab

The Top Slab is modeled with shell elements that are 2.4 m thick. The elements are placed horizontally at the center of the Top Slab, EL 25,800. Elements are, in principle, divided in X- and Y-directions considering the direction of rebar arrangements.

Figure 6.2.2-9 shows the FE model of the Top Slab.

Suppression Pool Floor Slab

The suppression pool floor slab is modeled with shell elements that are 2.0 m thick. The elements are placed horizontally at the center of the suppression pool floor slab, EL 3,650. Elements are divided in radial and circumferential directions considering the direction of

rebar arrangements.

Figure 6.2.2-10 shows the FE model of the suppression pool floor slab.

6.2.2.5 Modeling of the RCCV Liner and Sleeves

RCCV Liner

The steel liner plates that are attached to the basemat and the RCCV are modeled with shell elements. The liner elements are divided in the same way as the corresponding concrete elements.

The materials and thicknesses of the RCCV liners are summarized in Table 6.2.2-8. Figures 6.2.2-11 through 6.2.2-15 show the FE models of the liners. It should be noted that the liner plates at the following locations are the parts of the RCCV internal model described later in Subsection 6.2.2.10. Therefore, they are not shown in Figures 6.2.2-11 through 6.2.2-15.

- RCCV wall diaphragm floor slab joint
- RPV pedestal vent wall joint

Rigid bar elements connect the corresponding grid points of the liner elements and concrete elements as shown in Figure 6.2.2-16. Rigid bar elements are placed in the radial direction for the liners of the RCCV cylinder wall and the RPV pedestal. They are placed vertically for the basemat, the suppression pool slab, and the Top Slab.

Sleeves

Sleeves attached to the RCCV top head openings are modeled with rod elements. Table 6.2.2-9 shows the areas of modeled rod elements. FE models of the sleeves are shown in Figure 6.2.2-17.

6.2.2.6 Modeling of the RB Pools and MS Tunnel Structures

The pool structures in the RB include walls and slabs of the reactor cavity pool, the dryer/separator pool, the fuel buffer pool, the IC/PCCS pool, the IC/PCCS expansion pool, and the GDCS pool. The modeled pool walls, except the external walls, are shown in Figure 6.2.2-18.

The walls and slabs of the Main Steam (MS) tunnel room are included in the analysis model in order to estimate the section forces due to the HELB load in the MS tunnel room.

The pool girders, reactor well walls, pool walls, pool slabs, and the MS tunnel walls and slabs are modeled with shell elements.

FE models of the pool girders are shown in Figure 6.2.2-19.

6.2.2.7 Modeling of Shear Walls

The following walls are included in the global analysis model:

• External walls including the wall on R7/F1 column line

- Walls above EL 34,000 and on the R2 and R6 column lines
- Wall below the RCCV cylinder wall
- Inner walls indicated in Figures 6.2.2-20 through 6.2.2-22

The external walls are modeled with shell elements that are placed vertically on the center of each wall at the lowest story. The regions of the external walls which are modeled are between the top of the basemat, EL -11,500, and the top of each wall. They are divided horizontally at the same locations as those of the basemat grid points, and vertically into, in principle, three or five elements in each story. FE models of the external walls are shown in Figures 6.2.2-23 through 6.2.2-27. The considered openings are shown in Table 6.2.2-10.

The wall below the RCCV cylinder wall is shown in Figure 6.2.2-7.

The inner walls are modeled at appropriate locations. They are modeled with shell elements in the same way as the external walls.

Rigid bar elements connect the basemat and the bottom of the shear walls as described in the modeling of the RCCV liner.

6.2.2.8 Modeling of Floor Slabs

The floor slabs are modeled with shell elements which are divided in the same way as the basemat. Major large openings are included in the model.

The elements of slabs that are connected to the RCCV are placed horizontally at the levels described in the modeling of the RCCV wall. Elements of the slabs that are located above the Top Slab level are positioned at corresponding floor levels.

FE models of the major floor slabs are shown in Figures 6.2.2-28 through 6.2.2-30.

6.2.2.9 Modeling of Frame Members

Frame members included in the global stress analysis model are columns, girders, and the main trusses of the roof truss. They are modeled with bar elements.

Roof trusses and roof slabs are connected rigidly. Steel girders attached to the reinforced concrete columns, like steel girders at the FB roof, are simply supported at the ends of the girders.

Figures 6.2.2-31 through 6.2.2-36 show FE models of frame members.

6.2.2.10 Modeling of the Containment Internal Structures

The RCCV internal model is described in detail in another report, T12-5010 "Structural Design Report for Containment Internal Structures", Reference 2.1.2-1. Therefore, its outline is briefly explained here.

The vent wall and the diaphragm floor are concrete-filled structures consisting of steel plates and concrete. The infill concrete is conservatively neglected in the analysis model. Steel plates, including connecting rib plates and girders, are modeled by shell elements.

WG3-U71-ERD-S-0004	4 SH NO. 37	
REV. 1	of	543

The GDCS pool, the reactor shield wall, and the RPV support brackets are also included in the analysis model. These structures are modeled by shell elements, except the GDCS pool beams, which are modeled by beam elements. The analysis model of these structures is shown in Figure 6.2.2-4.

6.2.2.11 Units and Material Constants

Stress analyses are executed with the following SI units:

- length: m
- force: MN
- moment: MN-m
- pressure: MPa
- temperature: °C

The material constants shown in Table 6.2.2-11 are used for the stress analysis calculations.

The Young's modulus for concrete used in the thermal load analysis is reduced depending on the average temperature of each element, as described in Note 2 of Table 6.2.2-11. Young's modulus for the RCCV steel liners is set to a small value, 1/10000 of the normal value, in analysis calculations of non-thermal loads so that they do not bear any stresses.

6.2.2.12 Boundary Conditions

Because the RB/FB global FE model is a whole (360°) model, only soil springs under the basemat are used as a boundary condition.

6.2.3 Method of Applying Loads

Load application methods in the global FE analyses are described in the following subsections. However, as for the loads applied to the RCCV internal structures, their application methods are described in another report, Reference 2.1.2-l. Therefore, they are not referred to in this report, in principle.

6.2.3.1 Dead Load

Weight of Modeled Structural Members

The weights of reinforced concrete members included in the analysis model are evaluated using the GRAV feature that NASTRAN provides. It applies a downward gravity force to each element mass which is calculated from the weight density and the volume of the element.

Evaluation of the structural weights using the GRAV has one drawback, which is double counting of weights at such regions as wall-wall and wall-slab corners and edges of girders and columns. These double counts are ignored in the analysis, however, for the following reasons. Duplicated weights of corners are negligibly small compared to the total weight of the analysis model. The increased weights of girders lead to a design with larger margins.

Roof trusses and steel girders are included in the analysis model but their weights are evaluated differently. Their evaluation and the methods of applying them are explained below together with those of structural members which are not modeled.

Weights of Not-Modeled Structural Members

The weights of roof trusses, steel beams, permanent steel girders, which are included in the model, decks, and deck beams, are applied to slab elements as distributed surface loads.

The weights of finishings for slabs and external walls and the weights of liners not included in the FE model are also applied as distributed loads.

The weights of FB structures above EL 22,500, which are not included in the FE model, are applied to the nodes at the positions of columns supporting the roof slab.

Unit area loads applied to the analysis model are described in Table 5.1.1-1.

Miscellaneous Structures, Piping, and Commodities

The weights of the miscellaneous structures, piping, and commodities on the floor slabs and the containment are applied as distributed surface loads to the floor slab elements and containment wall, respectively.

Values of loads mentioned above are indicated in Tables 5.1.1-2 through 5.1.1-4.

Equipment Weights

The distributed surface loads of equipment weights are calculated from weights and areas of equipment shown in Tables 5.1.1-5 and 5.1.1-6 and Figures 5.1.1-1 through 5.1.1-9, and are applied to the floor slab elements and nodes.

The calculated equipment load values and their regions are shown in Figures 6.2.3.1-1 through 6.2.3.1-10.

The weights of crane, RB crane, refueling machine, FB crane, and fuel handling machine are transmitted via crane girders to four supporting columns around the crane as vertical force and bending moment. They are applied as nodal forces to the edge of rigid link elements that are modeled to evaluate the effect of the distance from column to the crane wheels on the girder. The crane is assumed to be positioned center of crane girders. The lifted loads are evaluated in the same manner of the crane weights, but they are applied to two columns of one side, conservatively.

Hydrostatic Loads

Hydrostatic loads due to the pool water act on the pool walls and slabs. Figures 6.2.3.1-11 through 6.2.3.1-35 show the regions where the hydrostatic pressure loads are applied, together with their values. For each element in the regions, the pressure at the center of gravity of the element is applied as a uniform pressure load.

As for the hydrostatic loads on the RCCV top head, equivalent nodal forces are applied to the grid points around the top head opening as shown in Figure 6.2.3.1-14.

WG3-U71-ERD-S-0004	SH NO. 39	
REV. 1	of	543

6.2.3.2 Live Load

Floor Live Loads

Floor live loads, except for roofs, are applied to modeled slab elements as uniformly distributed surface loads. Applied load values are described in Table 6.2.3.2-1. Floor live loads for roofs envelope the snow load as shown in Table 6.2.3.2-1 and Figure 6.2.3.2-1.

For the FB, floor live loads should be applied to the roof slab at EL 27,500. However, the FB structures above EL 22,500 are not included in the global FE model because they are Seismic Category II structures. Therefore, snow loads are applied as nodal forces to the slab at EL 22,500 as shown in Figure 6.2.3.2-2. Loads are applied to the nodes at the positions of columns supporting the roof slab.

Lateral Soil Pressure Load at Rest

The lateral soil pressure at rest is applied to the external walls below grade. The static lateral soil pressure loads are for generic sites considered in the standard design and they are larger than the NA3 site-specific static lateral pressures and conservatively used for NA3. Figures 6.2.3.2-3 through 6.2.3.2-7 show the values and regions where the soil pressure loads are applied.

For each element in the regions, a pressure at the center of gravity of the element is applied as a uniformly distributed pressure load. Soil pressure loads that act on the side of the basemat are applied as equivalent horizontal forces to nodes on the basemat edges as shown in Figure 6.2.3.2-3. Bending moments generated by differences of pressures at the top and bottom of the basemat are also applied to basemat nodes as shown in Figure 6.2.3.2-3.

Snow Loads

The snow loads are applied to the roof slab. However, since the snow load on the RB roof at EL 52,700 is less than floor live load, it is neglected.

For the RB roof at EL 34,000 and the FB roof, snow loads rather than floor live loads should be applied to the roof slab at each level as shown in Figure 6.2.3.2-1.

6.2.3.3 Pressure Load

Containment Pressure Loads

Analysis calculations are performed for two unit pressures, each 1.0 MPa, that are applied to the Drywell and WW, respectively. The corresponding regions are shown in Figures 6.2.3.3-1 and 6.2.3.3-2. Table 6.2.3.3-1 indicates the load combinations to achieve the design pressure loads based on unit pressures. The table contains the combinations for IC/PCCS pool pressure load and HELB loads in the MS tunnel, too.

Figures 6.2.3.3-3 through 6.2.3.3-6 show the regions for the Drywell unit pressure load, and Figures 6.2.3.3-7 and 6.2.3.3-8 show those for the WW unit pressure load.

IC/PCCS Pool Pressure Load

Analysis calculations are performed for a unit pressure, 1.0 MPa, applied to the IC/PCCS

WG3-U71-ERD-S-0004 SH NO. 40 REV. 1 of 543

pool and IC/PCCS expansion pools. The corresponding regions are shown in Figure 5.2.1-2.

Figures 6.2.3.3-9 through 6.2.3.3-20 show the regions where the IC/PCCS pool unit pressure loads are applied.

High Energy Line Break Loads

Analysis calculations are performed for a unit pressure, 1.0 MPa, applied to the MS tunnel and the general rooms. The HELB loads for the general rooms of the RB and the FB are considered at the walls and roofs, which comprise of the superstructure above EL 34,000 and EL 4,650 respectively, as a significant impact portion.

Figures 6.2.3.3-21 through 6.2.3.3-24 show the regions for the HELB loads for the MS tunnel. Figures 6.2.3.3-25 through 6.2.3.3-33 show the regions for the HELB loads for the general rooms.

6.2.3.4 Thermal Load

Thermal loads are determined as follows based on heat transfer analysis results, which are described in Reference 2.1.1-f, U71-5060 "RB/FB Heat Transfer Analysis Report."

Concrete Walls and Slabs

The average temperature, Td, and the surface temperature difference, Tg, that are obtained by heat transfer analyses are applied to shell elements.

For the thermal loads during a LOCA and LOCA flooding, the following three conditions are considered depending on the GDCS pools water depth. Condition 2 and 3 are performed assuming a conservative case that there is no water in the GDCS pool.

- Condition 1; GDCS pool water depth is 4410 mm
- Condition 2; GDCS pool water depth is 792 mm
- Condition 3; GDCS pool water depth is 792 mm (during LOCA flooding)

Tables 6.2.3.4-1 and 6.2.3.4-2 show atmosphere temperature. Table 6.2.3.4-3 and Figures 6.2.3.4-1 through 6.2.3.4-30 show the regions where the various thermal loads are applied to the shell elements. Tables 6.2.3.4-4 through 6.2.3.4-13 and Tables 6.2.3.4-17 and 6.2.3.4-18 summarize the thermal load values for each operational state and each region.

The thermal load values obtained from heat transfer calculation for updated upper pool temperature distribution using the conditions described in Appendix E of Reference 2.1.2-e are shown in Tables 6.2.3.4-19 through 6.2.3.4-22. These four analysis cases are summarized below:

Case 1: Maximum, temperatures in all pools are at their respective maximum values

- Case 2: Minimum, temperatures in all pools are at their respective minimum values.
- Case 3: Mixed, temperatures in individual pools are at either maximum or minimum values.

Case 4: Lower bound, temperatures in all pools are at 0°C

Tg of a shell element is positive if the surface in the positive z-direction in the local coordinate system has the higher temperature.

Beams, Girders and Columns

The frame members are modeled by bar elements.

Beams, girders and columns located inside buildings are exposed to the uniform and steady temperature of the RB/FB rooms. Therefore, the thermal loads for the elements of theses members are so determined that the average temperature Td is equal to the room temperature (summer 40 °C, winter 10 °C) and the surface temperature difference Tg is 0.0.

On the other hand, as for the reinforced concrete columns located in external walls, their thermal loads are set to be the same as those of walls with the modifications described in Table 6.2.3.4-14.

Table 6.2.3.4-14 shows the thermal loads and indexes applied to concrete girders and columns. Figures 6.2.3.4-31 through 6.2.3.4-36 show the positions and thermal load indexes of concrete girder and columns. The thermal loads for rigid link elements of steel beams and columns are set to be the same as the room temperatures.

RCCV Liner, Sleeves

The RCCV atmosphere temperature is used as average temperature, Td. In each case, the surface temperature difference, Tg, is set to be 0.0 °C. Temperature loads applied to the RCCV liners are included in Tables 6.2.3.4-4 through 6.2.3.4-13.

Table 6.2.3.4-15 shows the thermal loads applied to the sleeve at the RCCV top head opening modeled by rod elements.

Table 6.2.3.4-16 shows the load labels of the design thermal loads.

6.2.3.5 Hydrodynamic Loads

Analysis calculations are performed using the loads and the Dynamic Load Factors (DLFs) given in Figures 5.2.3-1 and 5.2.3-3 through 5.2.3-6.

Figures 6.2.3.5-1 through 6.2.3.5-20 show the values and regions to which the hydrodynamic loads are applied. Hydrodynamic loads acting on the inner surface of the RCCV are applied to the liner elements as uniformly distributed pressure loads. The pressure value applied to each element is calculated at the center of gravity of the element.

6.2.3.6 Reaction Loads due to Hydrodynamic Loads

The RPV and GDCS pool wall reactions during a LOCA are applied only to the RCCV internal structures. For details of the load application methods, refer to Reference 2.1.2-1.

6.2.3.7 Wind Loads

Loads for four wind directions, East, West, South and North wind, are considered. Tables 6.2.3.7-1 through 6.2.3.7-4 show the applied pressures.

Wind pressure loads acting on walls and slabs are applied to shell elements as uniform pressure loads. The pressure value applied to each element is calculated at the center of gravity of the element.

6.2.3.8 Tornado Loads

Analyses for the tornado wind load is performed using the same method as the design wind load.

Loads for four wind directions, East, West, South and North wind, and differential pressure loads are considered. Tables 6.2.3.8-1 through 6.2.3.8-5 show the applied pressures.

6.2.3.9 Seismic Loads

As for seismic loads, analyses are performed for the loads listed in Table 6.2.3.9-1. The seismic loads for normal operation & a LOCA condition are the same seismic loads for a LOCA flooding condition.

6.2.3.9.1 Seismic Loads for the RB, RCCV, and FB

The seismic forces applied to the analysis model are determined from the design seismic loads shown in Tables 5.3.3-1 through 5.3.3-10 and 5.3.3-19. Four components, two horizontal including out-of-plane loads to walls, one vertical, and one torsional of the seismic loads are evaluated. The directions in which they are applied are shown schematically in Figure 6.2.3.9-1.

The methods of applying the forces are described below for each of the components.

Shear Forces

Calculation methods for the shear forces applied to each story are given in Figure 6.2.3.9-2. The shear forces are applied to the RCCV, RPV pedestal, external wall, and inner seismic wall. Inner walls where seismic loads are applied are shown in Figures 6.2.3.9-3 through 6.2.3.9-5 at each story.

Shear forces are distributed to walls in a story according to the method shown in Figure 6.2.3.9-6. Tables 6.2.3.9-2 and 6.2.3.9-3 summarize the shear areas of seismic walls. Tables 6.2.3.9-4 and 6.2.3.9-5 show the shear forces applied to each wall, which are calculated according to the method shown in Figure 6.2.3.9-6.

Shear forces are applied as horizontal nodal forces to grid points as illustrated in Figure 6.2.3.9-6. Their locations are described below:

- RCCV and seismic walls: Nodal forces are applied to grid points on floor slab levels.
- RCCV internal structures: refer to Reference 2.1.2-1.

In addition to shear forces applied to seismic walls, shear forces generated in the basemat in the SSI analyses are applied to the basemat nodes as nodal horizontal forces. The forces are distributed to all basemat nodes in proportion to the tributary weights of nodes. Applied shear forces are included in Tables 6.2.3.9-4 and 6.2.3.9-5.

WG3-U71-ERD-S-0004	SH NO. 43	
REV. 1	of 543	

Overturning Moments

The overturning moment applied to each story is determined in such a way that the sum of the applied moment and the one due to shear forces applied to the stories above is equal to or larger than the design moment of the story. The moment is adjusted considering the difference between the height where the design seismic loads are defined and the height where the seismic forces are applied. The calculation method is explained in Figure 6.2.3.9-2. Tables 6.2.3.9-6 through 6.2.3.9-11 summarize the overturning moments applied to the RB seismic walls, RCCV, and RPV pedestal, respectively. Columns "m+dMq" in these tables show the values of the applied moments.

Overturning moments are applied as vertical nodal forces to grid points as illustrated in Figure 6.2.3.9-7. The locations of the nodal forces are described below and shown in Figures 6.2.3.9-8 through 6.2.3.9-17.

- RB and FB: Nodal forces are applied to grid points that are on the external walls at floor slab levels.
- RCCV: Nodal forces are applied to grid points at the floor slab levels. At the top of the RCCV, EL 27,000, the design moment needs to be applied along the perimeter of the RCCV. In order to achieve this, a negative moment, which cancels the reactions on the Top Slab, is applied at the bottom of the pool girder. Then a moment with the same magnitude is applied to grid points on the top of the RCCV. This procedure is illustrated in Figure 6.2.3.9-18.
- Pool girder: Nodal forces are applied to the grid points that are on EL 34,000 and above the RCCV.

In addition to the design overturning moments mentioned above, an additional moment is applied to the basemat in order to adjust the total overturning moment imposed on the soil by the total shear force. The basemat is modeled at the center of its thickness, and the soil spring elements are directly attached to the basemat grid points. However, because the actual ground is underneath the basemat, an overturning moment, ΔM , which is calculated by the following equation, needs to be added. Tables 6.2.3.9-6 and 6.2.3.9-7 include the calculated additional overturning moments to be applied to the basemat.

 $\Delta M = Q \times t/2$

where,

Q: total shear force at the bottom of the basemat

t: thickness of the basemat (= 4.0 m)

The additional overturning moment is applied as vertical nodal forces to the basemat grid points. The magnitude of the vertical force per unit area is assumed to be proportional to the distance from the center of the basemat. The nodal force applied to each node is then calculated by multiplying it by the tributary area of the node.

Vertical Seismic Force

The vertical accelerations are determined from the design vertical accelerations shown in Tables 5.3.3-6 through 5.3.3-10.

The maximum vertical accelerations obtained from dynamic analyses are applied to the RB/FB walls, RCCV, RPV Pedestal and basemat. On the other hand, design vertical accelerations applied to slabs are determined using the following procedure:

• Slabs on each floor level are modeled with several masses in the dynamic analysis model as shown in Figure 5.3.3-1. The equivalent vertical slab acceleration is calculated using the following equation for each floor.

$$S_{S} A_{eq} = \frac{\sum_{S} A_{i} \cdot S_{S} W_{i}}{\sum_{S} W_{i}}$$

where,

 $_{S} A_{eq}$: Equivalent slab acceleration

 $_{s}A_{i}$: Maximum acceleration of the i-th mass in the dynamic analysis results

 ${}_{S}W_{i}$: Weight of the i-th mass in the dynamic analysis model

• The total weights of the slabs are not included in the slab masses in the dynamic analysis model. Some of the weight is included in the RB/FB mass or RCCV mass. Therefore, the average slab accelerations are calculated using the following equation:

$${}_{S}A_{ave} = \frac{\left({}_{S}A_{eq} \cdot {}_{S}W_{S} + {}_{RB}A \cdot {}_{RB}W_{S} + {}_{CV}A \cdot {}_{CV}W_{S}\right)}{\left({}_{S}W_{S} + {}_{RB}W_{S} + {}_{CV}W_{S}\right)}$$

where,

 $_{RB}A$, $_{CV}A$: Maximum accelerations of the RB/FB and RCCV masses, respectively

 $_{S}W_{S}$: Summation of slab mass weights $\left(=\sum_{s}W_{i}\right)$

 $_{RB}W_{S}, _{CV}W_{S}$: Slab weights included in the RB/FB and RCCV masses, respectively

• The average accelerations, ${}_{s}A_{ave}$, shown in Table 6.2.3.9-12 is regarded as the design loads for the slabs. The accelerations are uniformly applied to all slab grid points.

Table 6.2.3.9-12 summarizes the design vertical accelerations.

For the RB/FB walls, RCCV, and RPV Pedestal, a design acceleration obtained at a given elevation is applied to a region that is limited by the centerlines of that elevation and the upper and lower elevations.

The vertical seismic forces are applied to all grid points as upward vertical nodal forces. Each nodal force is calculated by multiplying the tributary weight of the node by the vertical

WG3-U71-ERD-S-0004	SH NO. 45	
REV. 1	of	543

acceleration determined for the region containing the node. The tributary weight of the node is obtained using the load combination for the vertical seismic loads, which consists of the dead load and a quarter of the floor live load (Refer to Subsection 5.1.2).

Torsional Moments

The calculation method of input torsional moments is given in Figure 6.2.3.9-19. The total torsional moment is calculated by summing up those for the RBFB wall, the RCCV wall and the RPV pedestal. The torsional moment applied to each story is calculated by subtracting the total torsional moment for the story above from the total torsional moment for that story. The torsional moment applied to each story is determined in such a way that the sum of the applied moment and the one due to shear forces applied to the stories above is equal to or larger than the total torsional moment of the story.

The calculated torsional moments are applied to the seismic walls as in-plane shear forces. The calculation method of the shear forces due to torsional moment is described in Figure 6.2.3.9-20 and the results are summarized in Table 6.2.3.9-13. Torsional moments in the counterclockwise direction are considered to be positive.

The shear forces due to the torsional moments are applied as horizontal nodal forces to the grid points on floor slab levels. Their magnitudes are determined according to the tributary lengths of the nodes.

Out-of-Plane Force of Walls

Out-of-plane forces are considered to walls whose out-of-plane natural frequency is less than 50 Hz. The out-of-plane forces of walls are determined from the average out-of-plane wall accelerations calculated using design horizontal accelerations shown in SER-DMN-019 "RB/FB Seismic Analyses Bounding Results and In-Structure Response Spectra", Reference 2.1.2-k and the horizontal acceleration of wall's oscillators shown in Table 5.3.3-19.

The average out-of-plane wall accelerations are determined using the following procedure:

• Walls are modeled with several oscillators in the dynamic analysis model as shown in Figure 5.3.3-1 to evaluate the characteristics of out-of-plane responses of walls. An equivalent out-of-plane acceleration of all oscillators is calculated using the following equation for each wall:

$$_{W}A_{eq} = \frac{\sum_{W}A_{i}\cdot_{W}W_{i}}{\sum_{W}W_{i}}$$

where,

 $_{W}A_{eq}$: Equivalent acceleration of all oscillators

- $_{W}A_{i}$: Maximum acceleration of the i-th oscillator in the dynamic analysis results
- $_{W}W_{i}$: Weight of the i-th oscillator in the dynamic analysis model

WG3-U71-ERD-S-0004	SH NO. 46	
REV. 1	of	543

• A total weight of the wall is not included in its all oscillator in the dynamic analysis model. Some of the weight is included in the RB/FB mass. Therefore, the average out-of-plane wall accelerations are calculated using the following equation:

$${}_{W}A_{ave} = \frac{\left({}_{W}A_{eq} \cdot {}_{S}W_{W} + {}_{RB}A \cdot {}_{RB}W_{W}\right)}{\left({}_{S}W_{W} + {}_{RB}W_{W}\right)}$$

where,

- $_{RB}A$: Average maximum acceleration of top and bottom of the wall in the RB/FB stick
- $_{S}W_{W}$: Summation of wall oscillators weights $\left(=\sum_{W}W_{i}\right)$

 $_{RB}W_W$: Wall weights included in the RB/FB (except the $_{S}W_W$)

• The average accelerations, ${}_{W}A_{ave}$, shown in Table 6.2.3.9-15, are regarded as the design loads for the walls. The accelerations are uniformly applied to all wall grid points.

The out-of-plane seismic forces for walls are applied to all grid points of a wall as horizontal nodal forces. Each nodal force is calculated by multiplying the tributary weight of the node by the out-of-plane acceleration determined for the region containing the node. The tributary weight of the node is obtained using the load combination for the vertical seismic loads, which consists of the dead load and a quarter of the floor live load. (Refer to Subsection 5.1.2.)

6.2.3.9.2 Soil Pressure due to an Earthquake

Loads for two kinds of motion, N-S motion and E-W motion, are considered.

The soil pressure loads are applied to the external walls below grade. The method of applying the pressure is the same as the method for the static soil pressure, which is described in Figures 6.2.3.9-21 through 6.2.3.9-26.

6.2.3.9.3 Seismic Hydrodynamic Loads in Pools

Seismic hydrodynamic loads due to an earthquake are applied to the pool walls and slabs. Three directions of loads are considered corresponding to three directions of seismic loads, i.e., two horizontal and one vertical.

The details of the calculation of these seismic hydrodynamic loads are shown in Appendix A of Reference 2.1.2-k.

The loads are applied to shell elements as uniform pressure loads which are calculated at the centers of gravity of the elements. In the analysis for each direction, the loads in all pools are applied simultaneously.

6.2.3.9.4 RPV Reactions due to Earthquake

RPV reactions due to an earthquake are applied only to the RCCV internal structures. For details of the load application methods, refer to Reference 2.1.2-1.

6.2.3.9.5 Load Combinations for Seismic Loads

Analysis results for seismic loads mentioned above are combined in accordance with the load combinations shown in Table 6.2.3.9-14.

6.2.4 Analysis Results

Figures 6.2.4-1 through 6.2.4-23 indicate deformations of structures obtained by NASTRAN analyses for several design loads.

Tables 6.2.4-1 through 6.2.4-13 show the element forces and moments of the selected elements. The force and moment results for non-seismic load cases are obtained from Reference 2.1.2-e, while the seismic results are obtained from Reference 2.1.2-k. The locations of the selected elements are illustrated in Figures 6.2.4-24 through 6.2.4-34. The elements for tabulation are selected, in principle, from the center and both ends of wall and slab, where it is reasonably expected that the critical stresses appear based on engineering experience and judgment. Element forces and moments listed in the tables are defined with relation to the element coordinate system shown in Figure 6.2.4-35.

6.3 Load Combinations

6.3.1 Code Requirements

Reinforced Concrete Structures

The load combinations and associated load factors and acceptance criteria for reinforced concrete structures outside the containment are summarized in Table 6.3.1-1, which is in compliance with ACI 349-01 and SRP 3.8.4.

For the design of any structures which are integrated with the RCCV structures, the load combinations and associated load factors and acceptance criteria for the RCCV design are also considered. Therefore, Table 6.3.1-2, which is the load combination table for the RCCV design, is considered for the RB structures in addition to Table 6.3.1-1. Table 6.3.1-2 complies with ASME BPVC Sec III 2004.

Steel Structures

The load combinations and associated load factors and acceptance criteria for steel structures outside the containment are summarized in Table 6.3.1-3, which is in compliance with ANSI/AISC N690-1994 Code and SRP 3.8.4.

6.3.2 Selection of Design Load Combinations

Reinforced Concrete Structures

The following load combinations given in Tables 6.3.1-1 and 6.3.1-2 need not be considered, because of the reasons described for each of the load combinations.

No.	Reason
RB-C5	Stresses in the basemat and pool due to wind loads W are negligibly small, and the combination RB-C3 covers these combinations.
RB-C6	These combinations are almost identical to CV-5, CV-7, respectively.
<u></u>	This combination is almost identical to CV-11.
CV-2	Stresses in the basemat and pool due to wind loads W are negligibly small, and the combination CV-3 covers CV-2.
CV-4, 6	Stresses in the basemat and pool due to wind loads W or tornado loads Wt are negligibly small, and these combinations are not critical for their design.
CV-5	This combination is covered by CV-11.
CV-8, 9	These combinations are covered by CV-7.
CV-10	Stresses in the basemat and pool due to wind loads W are negligibly small, and the combination CV-7 covers CV-10.

Finally, the following load combinations are selected for reinforced concrete structures:

- RB-C1, RB-C2, RB-C3, RB-C4, RB-C7, CV-1, CV-3, CV-7, CV-11

Detailed design load combinations are determined in terms of load patterns for the selected load combinations. Load patterns include time of year for thermal loads, time after an accident for LOCA pressure/thermal loads, and load application patterns for hydrodynamic loads. The determined detail design combinations for the RB concrete structures are shown in Table 6.3.2-1. The acceptance criteria for the selected combinations are also included in the tables. In addition, the load combinations selected as critical combinations in Appendix 3G of the ESBWR Design Control Document (DCD) are identified in the tables.

Steel Structures

Among the load combinations listed in Table 6.3.1-3, the following combinations are negligible.

No.	Reason	
RB-S1	This combination is covered by RB-S3.	
RB-S2	This combination is covered by RB-S4.	

The detail design combinations for the steel structures are shown in Table 6.3.2-2 together with acceptance criteria.

Some remarks concerning the determination of the detailed load combinations are mentioned below:

- Two kinds of thermal loads, summer and winter, are considered. Because of the uncertainties in the thermal loads, two combinations which differ only in including the thermal load or not are always included in the detailed load combinations.
- Seismic loads include the following.
 - Seismic hydrodynamic load of the spent fuel pool water
 - RPV Reaction force due to earthquake
 - Dynamic increment of soil pressure
- Dynamic loads, i.e. seismic loads and hydrodynamic loads, are combined according to the SRSS method, as specified in Section 6.3.2 of Reference 2.1.2-m.
- As for hydrodynamic loads, SRV, CO and CH, two patterns of loadings, i.e. full positive and negative, are considered in the design.
- The following loads are considered as LOCA hydrodynamic loads depending on the elapsed time after the LOCA.

Time after LOCA	Load to be considered
5 seconds	Pool Swell + SRV
6 minutes	CO + SRV
10 hours	CH + SRV
72 hours	CH + SRV

• For the tornado loads, the following combinations are considered in accordance with SRP 3.3.2.

 $W_t = W_w$

$$W_t = W_p$$

 $W_{t} = W_{w} + 0.5 W_{p}$

where,

W_w: Tornado wind load

W_p: Tornado differential pressure load

6.3.3 Result of Load Combination

Tables 6.3.3-1 through 6.3.3-5 show the resultant combined forces and moments for the selected elements shown in Figures 6.2.4-24 through 6.2.4-34, which are calculated for several typical design load combinations selected from the load combinations listed in Table 6.3.2-1.

Section forces due to the following loads are shown independently in the tables.

- OTHR: Loads other than thermal and seismic loads
- TEMP: Thermal loads
- SEIS: Seismic loads
- HYDR: Hydrodynamic loads

Element forces and moments listed in the tables are defined with relation to the element coordinate system shown in Figure 6.2.4-35.

6.4 Section Design Principles

6.4.1 Section Design of Reinforced Concrete Structures

The design/evaluation is essentially performed using ASME, Section III, Division 2. The details of the design/evaluations and the exceptions to the use of ASME, Section III, Division 2 are described in the following Sections. The design flow chart is shown in Figure 6.4.1-1.

Section design calculations are carried out for the following section forces and it is confirmed that the results satisfy code requirements.

- Flexure and Membrane Forces
- Membrane Compressive Forces
- Transverse Shear

The evaluation method for each of the section forces is described in the following subsections.

6.4.1.1 Section Design for Flexure and Membrane Forces

Stress conditions of the RB structure sections are actually very complicated since the various forces, such as axial forces, in-plane shear, bending moments, and torsional moments, are applied simultaneously. It is difficult to estimate the section strength of the section under such a complicated stress condition by the equations which are normally used in the design calculation.

Therefore, stress calculations for flexure and membrane forces are performed by a computer program, SSDP-2D. The program has the following characteristics:

- It calculates concrete and rebar stresses under two-dimensional equilibrium conditions for six components of the section forces in a shell element two axial forces, two bending moments, in-plane shear, and torsional moment.
- It takes concrete cracks into account in the stress calculation. Cracked concrete is assumed not to bear tensile forces.
- It assumes concrete and rebars to be perfectly elastic.

WG3-U71-ERD-S-0004	SH NO. 51	
REV. 1	of 543	

- It considers the reduction of thermal stresses due to the decreased stiffness of a cracked concrete section.
- Transverse shear is generated in an element but is not considered in the equilibrium conditions. Stresses of shear ties are not calculated with SSDP-2D. The design method for transverse shear is described in Section 6.4.1.3.

In calculations with SSDP-2D, section forces including in-plane shear force, axial forces and bending moments are considered simultaneously. In SSDP-2D, the compressive stress distribution of concrete is based on the linear distribution which is proportional to the strain distribution at the section. Moment capacity based on this condition is more conservative than the moment capacity specified in ACI 349-01 which is based on the stress block for the compressive stress distribution of concrete. As permitted in Section CC-3511.1(e) of ASME, Section III, Division 2, parabolic distribution of concrete compressive stress can be used in the section analysis. Figure 6.4.1-3 compares three axial-flexural capacity curves: (1) ASME capacity with linear concrete compressive stress distribution; (2) ASME capacity with parabolic concrete compressive stress distribution; and (3) ACI 349-01. For the ASME capacities, the primary-plus-secondary allowable stresses for factored load in Tables 6.4.1-2 through 6.4.1-4 are used.

As shown in Figure 6.4.1-3, the ASME capacity with linear concrete compressive stress distribution (used in the SSDP program) is more conservative than ACI 349-01 except in the high axial force (compression) region. This is addressed in Appendix C by performing additional compression check per ACI 349-01. Additionally, in-plane shear check per ACI 349-01 is performed in Appendix B. It is also noted that the ASME capacity with parabolic concrete compressive stress distribution bounds the ACI 349-01 capacity.

As for the thermal effects, section forces due to thermal loads, which are evaluated by NASTRAN analyses using uncracked concrete stiffness, are reduced considering the depth and direction of cracking in calculations with SSDP-2D. The cracked section properties are used in the calculation only for the cracked sections. Furthermore, compatibility between strain distribution in a section and internal forces including reduced thermal stress is examined under an assumed crack condition in calculations with SSDP-2D. The calculations are continued until the compatibility of strain and internal forces are satisfied. During the iterative calculations, redistribution of internal forces and strains are considered adequately.

Table 6.4.1-1 shows the material constants used for the stress calculation. Allowable stresses specified in CC-3420 of ASME-2004 are used in the design, since they are not defined in ACI 349-01. Tables 6.4.1-2 and 6.4.1-3 show the allowable stresses of concrete and rebar.

As specified in Section 6.1 of Reference 2.1.1-c, strengths of concrete and rebars are reduced taking the effects of elevated temperatures into consideration, which are based on the averaged temperature, Td, obtained from the heat transfer analysis.

Reduction of concrete strength due to high temperature is determined based upon the average value of the following upper bound and lower bound equations:

• Lower bound reduction factor

WG3-U71-ERD-S-0004 SH NO. 52 REV. 1 of 543

 $21.1^{\circ}C(70^{\circ}F) \le T \le 121.1^{\circ}C(250^{\circ}F)$

 $121.1^{\circ}C(250^{\circ}F) \le T$

 $T \le 260.0^{\circ}C (500^{\circ}F)$

 $-\phi = 1.0 - 0.0030 (T-21.1)$

$$-\phi = 0.70 - 0.00083 (T-121.1)$$

- Upper bound reduction factor
 - $\phi = 1.0$
 - $-\phi = 1.0 0.00081 \text{ (T-260.0)}$ 260.0°C (500°F) ≤ T

Reduction of reinforcing steel strength is based upon the following equation:

• Reduction Factor

 $-\phi = 1.0 - 0.000873 \text{ (T-21.1)}$ $21.1^{\circ}\text{C} (70^{\circ}\text{F}) \le \text{T} \le 204.4^{\circ}\text{C} (400^{\circ}\text{F})$

Allowable stresses listed in Tables 6.4.1-2 and 6.4.1-3 are reduced using these factors in calculations for load combinations, including thermal loads.

6.4.1.2 Section Design for Membrane Compressive Forces

ASME-2004 specifies the allowable concrete stresses for membrane forces. It is necessary to confirm that the compressive stresses of the concrete due to membrane forces do not exceed the allowable stresses specified in CC-3420 of ASME-2004. Examinations for membrane compressive forces are also performed in the RB design in addition to examinations for flexure and membrane forces.

The principal membrane compressive stress σ_c , which is calculated by the following equation, is used for the evaluation.

$$\sigma_{c} = \frac{\sigma_{x} + \sigma_{y}}{2} - \sqrt{\left(\frac{\sigma_{x} - \sigma_{y}}{2}\right)^{2} + \tau^{2}_{xy}}$$
$$\sigma_{x} = \frac{N_{x}}{h}$$
$$\sigma_{y} = \frac{N_{y}}{h}$$
$$\tau_{xy} = \frac{N_{xy}}{h}$$

(- for compression, + for tension)

where

 N_x : x-direction axial force per unit length (tension is positive)

 N_y : y-direction axial force per unit length (tension is positive)

- N_{xy} : in-plane shear force per unit length
- *h*: element thickness

Table 6.4.1-4 shows the allowable membrane compressive stress of concrete. Reductions due to elevated temperatures described in Subsection 6.4.1.1 are applicable to these allowables.

WG3-U71-ERD-S-0004	SH NO. 53	
REV. 1	of	543

Confirmation that compressive stresses of the concrete due to membrane forces do not exceed the allowable stresses specified in Section 10.3.5 of ACI 349-01 is provided in Appendix C.

6.4.1.3 Section Design for Transverse Shear

Section design calculations for transverse shear are performed according to ACI 349-01, Chapter 11. It requires that the shear force at a section and section strength satisfy the following equation:

 $V_u \le \phi (V_c + V_s)$

where V_{u} : factored shear force at section per unit length

 V_c : nominal shear strength provided by concrete per unit length

 V_s : nominal shear strength provided by shear reinforcement per unit length

$$\phi$$
: strength reduction factor (=0.85)

The nominal shear strength provided by concrete, V_c , is calculated in accordance with Section 11.3.2 of ACI 349-01. The calculation method is shown in Figure 6.4.1-2. The nominal shear strength provided by shear reinforcement, V_s , is calculated by the following equation:

 $V_s = \rho_v f_v d$, $V_s \le 8\sqrt{f_c'} d$ (in English units)

where ρ_{v} : shear reinforcement ratio

 f_{γ} : specified yield strength of rebar

d: distance from extreme compression fiber to centroid of tension reinforcement

 f'_c : specified compressive strength of concrete

The transverse shear stress is evaluated in the direction of the maximum shear force, and the section forces for evaluation are calculated by the following equations:

$$V_{u} = \sqrt{Q_{x}^{2} + Q_{y}^{2}}$$

$$M_{u} = M_{x} \sin^{2} \theta + M_{y} \cos^{2} \theta + 2M_{xy} \sin \theta \cos \theta$$

$$N_{u} = N_{x} \sin^{2} \theta + N_{y} \cos^{2} \theta + 2N_{xy} \sin \theta \cos \theta$$

$$\theta = \tan^{-1} (Q_{x} / Q_{y})$$

In NASTRAN analyses, the transverse shear forces, i.e., Q_x and Q_y , are calculated independently in X and Y directions, respectively. The resultant transverse shear forces, i.e. the maximum transverse shear force (V_u) , is calculated with the SRSS method in order to

WG3-U71-ERD-S-0004	SH NO. 54	
REV. 1	of 543	

consider transverse shear forces in two directions simultaneously. The value, θ means the direction of the maximum shear force. The values N_u and M_u are also evaluated in the direction of the maximum shear force.

6.4.2 Section Design of Steel Structures

Section design of steel member is performed according to ANSI/AISC N690-94. Steel members, i.e., roof trusses and supporting columns, are examined by the evaluation method described in the following subsections.

The design flow of steel structures is almost the same as the flow of reinforced concrete structures which is shown in Figure 6.4.1-1. However, reductions of thermal stresses are not considered for the steel design.

6.4.2.1 Section Design for Axial Compression and Bending

Steel members subjected to both axial compression and bending stresses shall be proportioned to satisfy the following requirements:

$$\frac{f_a}{F_a} + \frac{C_{mx}f_{bx}}{\left(1 - \frac{f_a}{F'_{ex}}\right)} + \frac{C_{my}f_{by}}{\left(1 - \frac{f_a}{F'_{ey}}\right)} \le 1.0$$
(6.4.2-1)
$$\frac{f_a}{0.60F_y} + \frac{f_{bx}}{F_{bx}} + \frac{f_{by}}{F_{by}} \le 1.0$$
(6.4.2-2)

When $f_a/F_a \le 0.15$, Equation (6.4.2-3) is permitted in lieu of Equations (6.4.2-1) and (6.4.2-2):

$$\frac{f_a}{F_a} + \frac{f_{bx}}{F_{bx}} + \frac{f_{by}}{F_{by}} \le 1.0$$
(6.4.2-3)

In Equations (6.4.2-1), (6.4.2-2) and (6.4.2-3), the subscripts x and y, combined with subscripts b, m and e, indicate the axis of bending about which a particular stress or design property applies, and

 F_a = Axial compressive stress that would be permitted if axial force alone existed, ksi

 F_b = Compressive bending stress that would be permitted if bending moment alone existed, ksi

$$F'_{e} = \frac{12\pi^{2}E}{23(Kl_{b}/r_{b})^{2}}$$

= Euler stress divided by a factor of safety, ksi (In the expression for F'_{e} , l_{b} is the actual unbraced length in the plane of bending and r_{b} is the corresponding radius of gyration. K is the effective length factor in the plane of bending.)

- f_a = Computed axial stress, ksi
- f_b = Computed compressive bending stress at the point under consideration, ksi
- C_m = Coefficient whose value shall be taken as follows:
 - a. For compression members in frames subject to joint translation (sidesway), $C_m = 0.85$.
 - b. For rotationally restrained compression members in frames braced against joint translation and not subject to transverse loading between their supports in the plane of bending,

 $C_m = 0.6 - 0.4 (M_1/M_2).$

where M_1/M_2 is the ratio of the smaller to larger moments at the ends of that portion of the member unbraced in the plane of bending under consideration. M_1/M_2 is positive when the member is bent in reverse curvature, negative when bent in single curvature.

- c. For compression members in frames braced against joint translation in the plane of loading and subjected to transverse loading between their supports, the value of C_m may be determined by an analysis. However, in lieu of such analysis, the following values are permitted:
 - i. For members whose ends are restrained against rotation in the plane of bending $C_m = 0.85$
 - ii. For members whose ends are unrestrained against rotation in the plane of bending $C_m = 1.0$

6.4.2.2 Section Design for Axial Tension and Bending

Steel members subjected to both axial tension and bending stresses shall be proportioned at all points along their length to satisfy the following requirement:

$$\frac{f_a}{F_t} + \frac{f_{bx}}{F_{bx}} + \frac{f_{by}}{F_{by}} \le 1.0$$
(6.4.2-4)

where f_b is the computed bending tensile stress, f_a is the computed axial tensile stress, F_b is the allowable bending stress and F_t is the governing allowable tensile stress.

6.4.2.3 Section Design for Transverse Shear

Steel members subjected to transverse shear stress shall be proportioned to satisfy the following requirement:

<i>9</i> 6)	HITACHI	WG3-U71-ERD-S-0004	SH NO). 56
		REV. 1	of	543
$\frac{f_v}{r} \leq$	≤1.0	6	5.4.2-5)	

where f_v is the computed shear stress and F_v is the governing allowable shear stress.

6.4.2.4 Allowable Stresses

 F_{v}

6.4.2.4.1 Allowable Axial Tensile Stress

On the gross section of axially loaded tension members, the allowable stress is:

$$F_t = 0.60F_y \tag{6.4.2-6}$$

where F_y is the specified minimum yield stress of the type of steel being used, ksi.

6.4.2.4.2 Allowable Axial Compressive Stress

On the gross section of axially loaded compression members, when Kl/r, the largest effective slenderness ratio of any unbraced segment is less than C_c , the allowable stress is:

$$F_{a} = \frac{\left[1 - \frac{(Kl/r)^{2}}{2C_{c}^{2}}\right] F_{y}}{\frac{5}{3} + \frac{3(Kl/r)}{8C_{c}} - \frac{(Kl/r)^{3}}{8C_{c}^{3}}}$$
(6.4.2-7)

where

$$C_c = \sqrt{\frac{2\pi^2 E}{F_y}}$$

E = Modulus of elasticity of steel, ksi

On the gross section of axially loaded compression members, when Kl/r exceeds C_c , the allowable stress is:

$$F_a = \frac{12\pi^2 E}{23(Kl/r)^2}$$
(6.4.2-8)

6.4.2.4.3 Allowable Bending Stress of W-shaped Members (Strong Axis Bending)

The allowable stress for the strong axis bending of W-shaped members is given according to the procedure shown in Figure 6.4.2-1.

6.4.2.4.4 Allowable Bending Stress of W-shaped Members (Weak Axis Bending)

The allowable stress for the weak axis bending of W-shaped members is given according to the procedure shown in Figure 6.4.2-2.

WG3-U71-ERD-S-0004	SH NO. 57	
REV. 1	of 543	

6.4.2.4.5 Allowable Bending Stress of Box Members

The allowable bending stress of box members is given according to the procedure shown in Figure 6.4.2-3.

6.4.2.4.6 Allowable Shear Stress

For $h/t_w \leq 380/\sqrt{F_y}$, on the overall depth times the web thickness, the allowable shear stress is:

$$F_{\nu} = 0.40F_{\nu} \tag{6.4.2-9}$$

For $h/t_w > 380/\sqrt{F_y}$, the allowable shear stress on the clear distance between flanges times the web thickness is:

$$F_{\nu} = \frac{F_{y}}{2.89} (C_{\nu}) \le 0.40 F_{y} \tag{6.4.2-10}$$

where

$$C_{\nu} = \frac{45000k_{\nu}}{F_{\nu}(h/t_{w})^{2}} \text{ when } C_{\nu} \text{ is less than } 0.8$$
$$= \frac{190}{h/t_{w}} \sqrt{\frac{k_{\nu}}{F_{\nu}}} \text{ when } C_{\nu} \text{ is more than } 0.8$$

$$k_v = 4.00 + \frac{5.34}{(a/h)^2}$$
 when a/h is less than 1.0
= $5.34 + \frac{4.00}{(a/h)^2}$ when a/h is more than 1.0

 t_w = thickness of web, in.

a = clear distance between transverse stiffeners, in.

h = clear distance between flanges at the section under investigation, in.

7. SUMMARY OF RESULTS

7.1 Required Section

Figures 7.1-1 through 7.1-4 shows typical sections of the RB concrete structures.

The sections of the steel members are shown in Figure 7.1-5.

7.2 Provided Section

The sections of the RB structures that have been provided are identical to the required sections described in Section 7.1.

7.3 Tabulation of Allowable Stresses versus Calculated Stresses

7.3.1 Reinforced Concrete Structure

7.3.1.1 Calculations for Flexure and Membrane Forces

The stresses of the concrete and reinforcing steel are calculated for flexure and membrane forces. The calculations are performed for the selected design load combinations shown in Table 6.3.2-1, and it is confirmed that all values are less than their allowable stresses.

The calculation results for the selected elements shown in Figures 6.2.4-24 through 6.2.4-34 are given in this report. The thicknesses and the rebar arrangements of selected elements are shown in Table 7.3.1.1-1. The arrangement of shear tie at the exterior wall on column R7 at EL 22,500 to EL 24,600 is updated from standard design as shown in red in Table 7.3.1.1-1.

Calculated and allowable stresses are compared in Tables 7.3.1.1-2 through 7.3.1.1-6 for several load combinations.

Table 7.3.1.1-7 gives a summary of the maximum stress ratios, which are ratios of the maximum stresses to the allowable stresses.

For RB shear walls, the maximum stress of the vertical rebar is found to be 319.7 MPa (46.36 ksi) at Section 23 due to the load combination RB-9b against the allowable stress of 372.2 MPa (53.97 ksi) as shown in Table 7.3.1.1-6. The maximum stress of the horizontal rebar is found to be 246.0 MPa (35.67 ksi) at Section 22 due to the load combination RB-9b against the allowable stress of 372.2 MPa (53.97 ksi) as shown in Table 7.3.1.1-6. The maximum concrete stress is found to be -17.9 MPa (-2.60 ksi), which occurs at Section 20 due to load combination RB-8b against the allowable stress of -29.3 MPa (-4.25 ksi), as shown in Table 7.3.1.1-4.

For RB foundation mat outside containment, Section 24 is selected for the foundation mat outside the containment at the junction with the cylindrical wall below the RCCV wall. The maximum stress of the top rebar is found to be 152.3 MPa (22.08 ksi) due to the load combination RB-9a against the allowable stress of 372.2 MPa (53.97 ksi) as shown in Table 7.3.1.1-5. The maximum stress of bottom rebar is found to be 59.4 MPa (8.61 ksi) due to the load combination RB-9a against the allowable stress of 372.2 MPa (53.97 ksi), also as shown in Table 7.3.1.1-5. The maximum concrete stress is found to be -5.2 MPa (-0.75 ksi) due to load combination RB-9b against the allowable stress of -23.5 MPa (-3.41 ksi), as shown in Table 7.3.1.1-6.

For floor slabs, Sections 25 to 27 are selected for the floor slabs at elevations EL 4,650, EL 17,500 and EL 27,000 at their junction with the RCCV. The maximum rebar stress of 273.0 MPa (39.59 ksi) due to the load combination RB-8b is found at Section 26 against the allowable stress of 372.2 MPa (53.97 ksi) as shown in Table 7.3.1.1-4. The maximum concrete stress is found to be -21.4 MPa (-3.10 ksi), which occurs at Section 25 due to load combination RB-9b against the allowable stress of -29.3 MPa (-4.25 ksi), as shown in Table 7.3.1.1-6.

WG3-U71-ERD-S-0004	SH NO. 59
REV. 1	of 543

For Pool Girders, Sections 28 to 30 are examined. The maximum rebar stress of 271.6 MPa (39.38 ksi) due to the load combination RB-9b is found in the horizontal rebar at Section 29 against the allowable stress of 358.3 MPa (51.95 ksi) as shown in Table 7.3.1.1-6, whereas the maximum vertical rebar stress is found to be 252.9 MPa (24.61 ksi) due to the load combination RB-9b at Section 28 against the allowable stress of 369.8 MPa (53.62 ksi) as shown in Table 7.3.1.1-6. The maximum concrete stress is found to be -13.7 MPa (-1.99 ksi), which occurs at Section 30 due to load combination RB-9b against the allowable stress of -27.4 MPa (-3.97 ksi), as shown in Table 7.3.1.1-6.

For MS tunnel, Section 31 is selected for the MS tunnel wall and slabs. The maximum rebar stress is found to be 230.6 MPa (33.44 ksi) due to the load combination RB-9b against the allowable stress of 372.2 MPa (53.97 ksi) as shown in Table 7.3.1.1-6. The maximum concrete stress is found to be -13.6 MPa (-1.97 ksi) due to load combination RB-4 against the allowable stress of -29.3 MPa (-4.25 ksi), as shown in Table 7.3.1.1-2.

For IC/PCCS Pool, Section 32 is selected for the pool wall in the NS direction. The maximum stress of the vertical rebar is found to be 98.5 MPa (14.28 ksi) due to the load combination RB-9a against the allowable stress of 364.7 MPa (52.88 ksi) as shown in Table 7.3.1.1-5. The maximum stress of the horizontal rebar is found to be 82.6 MPa (11.98 ksi) due to the load combination RB-8b against the allowable stress of 343.4 MPa (49.79 ksi) as shown in Table 7.3.1.1-4. The maximum concrete stress is found to be -6.7 MPa (-0.97 ksi) due to load combination RB-9b against the allowable stress of -25.4 MPa (-3.68 ksi), as shown in Table 7.3.1.1-6.

7.3.1.2 Calculations for Membrane Compressive Forces

The compressive stress of concrete is calculated for membrane forces. The calculations are performed for the selected design load combinations shown in Table 6.3.2-1, and it is confirmed that the values are less than the allowable stress.

Table 7.3.1.2-1 gives a summary of the maximum compressive stresses for selected elements shown in Figures 6.2.4-24 through 6.2.4-34.

For RB shear walls, the maximum membrane compressive stress is found to be -9.942 MPa (-1.442 ksi) against the allowable stress of -25.9 MPa (-3.756 ksi) at Section 22, exterior wall at EL 4,650 to EL 6,600 as shown in Table 7.3.1.2-1.

For RB foundation mat outside containment, Section 24 is selected for the foundation mat outside the containment at the junction with the cylindrical wall below the RCCV wall. The maximum membrane compressive stress is found to be -1.855 MPa (-0.269 ksi) against the allowable stress of -16.6 MPa (-2.407 ksi) as shown in Table 7.3.1.2-1.

For floor slabs, Sections 25 to 27 are selected for the floor slabs at elevations EL 4,650, EL 17,500 and EL 27,000 at their junction with the RCCV. The maximum membrane compressive stress is found to be -14.169 MPa (-2.055 ksi) against the allowable stress of -25.9 MPa (-3.756 ksi) as shown in Table 7.3.1.2-1.

For Pool Girders, the maximum membrane compressive stress is found to be -9.962 MPa (-1.444 ksi) against the allowable stress of -25.9 MPa (-3.756 ksi) as shown in Table 7.3.1.2-

1.

For MS tunnel, Section 31 is selected for the MS tunnel wall and slabs. The maximum membrane compressive stress is found to be -1.393 MPa (-0.202 ksi) against the allowable stress of -15.5 MPa (-2.248 ksi) as shown in Table 7.3.1.2-1.

For IC/PCCS Pool, Section 32 is selected for the pool wall in the NS direction. The maximum membrane compressive stress is found to be -6.860 MPa (-0.995 ksi) against the allowable stress of -25.9 MPa (-3.756 ksi) as shown in Table 7.3.1.2-1.

7.3.1.3 Calculations for Transverse Shear

The transverse shear strength is calculated and compared with shear forces generated by design loads. The calculations are performed for the selected design load combinations shown in Table 6.3.2-1, and it is confirmed section forces are less than the shear strength of sections.

Table 7.3.1.3-1 gives a summary of the examinations for selected elements shown in Figures 6.2.4-24 through 6.2.4-34. Table 7.3.1.3-2 shows the calculation results for the load combinations selected for the DCD that are indicated in Table 6.3.1-1.

For RB shear walls, the maximum transverse shear force is found to be 4.95 MN/m (28.26 kips/in) against the shear strength of 6.61 MN/m (37.73 kips/in) at Section 20, the top of the cylindrical wall below the RCCV wall as shown in Table 7.3.1.3-2.

For the RB foundation mat outside containment, Section 24 is selected for the foundation mat outside the containment at the junction with the cylindrical wall below the RCCV wall. The maximum transverse shear force is found to be 6.34 MN/m (36.19 kips/in) against the shear strength of 15.69 MN/m (89.57 kips/in) as shown in Table 7.3.1.3-2.

For floor slabs, Sections 25 to 27 are selected for the floor slabs at elevations EL 4,650, EL 17,500 and EL 27,000 at their junction with the RCCV. The maximum transverse shear force is found to be 8.30 MN/m (47.38 kips/in) against the shear strength of 10.65 MN/m (60.81 kips/in) as shown in Table 7.3.1.3-2.

For Pool Girders, the maximum transverse shear force is found to be 1.02 MN/m (5.82 kips/in) against the shear strength of 5.58 MN/m (31.85 kips/in) as shown in Table 7.3.1.3-2.

For MS tunnel, Section 31 is selected for the MS tunnel wall and slabs. The maximum transverse shear force is found to be 0.57 MN/m (3.26 kips/in) against the shear strength of 5.74 MN/m (32.78 kips/in) as shown in Table 7.3.1.3-2.

For IC/PCCS Pool, Section 32 is selected for the pool wall in the NS direction. The maximum transverse shear force is found to be 0.23 MN/m (1.31 kips/in) against the shear strength of 2.42 MN/m (13.81 kips/in) as shown in Table 7.3.1.3-2.

7.3.2 Steel Structure

The stresses of the steel members are combined in accordance with Table 6.3.2-2, and it is confirmed that all values are less than the allowable stresses in accordance with the procedure in Subsection 6.4.2.

Table 7.3.2-1 lists the calculation results of the selected sections included in Figure 7.3.2-1. The stress ratios of the design stresses against their allowable stresses shown in the tables are the maximum ratios among all the load combinations.

7.4 Missile Impact Evaluations

Appendix A in Reference 2.1.2-e describes the design methodology and results of evaluation for exterior walls and roof slab of the Nuclear Island (NI) Seismic Category I (C-I) buildings against the tornado missile impact.

Appendix C in Reference 2.1.2-e describes the design methodology and evaluation for the effect of the impact of an automobile tornado missile on the RB structures including outer walls, roof slabs, trusses, and columns.

8. CONCLUSIONS

The site-specific stress check calculations for the RB structure are performed to evaluate the structural integrity of the RB at the NA3 site per the specifications of ACI 349-01, ASME-2004, and ANSI/AISC N690-1994, following the same methodology as that used for the standard design. The stress checks are based on the results of the global model analyses for the site-specific seismic loads combined together with the non-seismic load results from Reference 2.1.2-e according to site-specific seismic load combinations. The conclusions from the site-specific stress checks are summarized as follows:

- Reinforced concrete structures
 - The stresses of the concrete and rebar are less than the allowable stresses specified in the code.
 - The sections have enough strength to bear transverse shear forces generated by design loads.
- Steel structures
 - The stresses of steel members are less than the allowable stresses specified in the code.

Therefore, it can be concluded that the standard design of the RB structure is adequate to resist the NA3 site-specific SSE loads in combination with non-seismic standard plant loads.

The arrangement of shear ties at the exterior wall at EL 22,500 to EL 24,600 is updated from standard design to resolve the overstress for element 24211. These updates are shown in red in Table 7.3.1.1-1.

The comparisons between NA3 and the standard design are shown in Appendix A.

In addition, the following structural evaluation is performed for the RB separately:

• The stability of the RB/FB at the NA3 site is demonstrated to resist the dynamic load demand without the shear keys that are part of the standard design of the RB/FB, as

WG3-U71-ERD-S-0004	SH NO. 62
REV. 1	of 543

described in the "Reactor/Fuel Building Complex Stability Analysis Report," Reference 2.1.2-h.

Building	Dimension		Notes
Reactor Building	Story	six stories (above grade) three stories (below grade)	Grade is 16.0 m from the top of basemat
	Plan	49.0 m × 49.0 m (below EL 34.0 m) 49.0 m x 39.0 m (above EL 34.0 m)	
	Height	64.2 m	From the top of the basemat
Fuel Building	Story	one story (above grade) three stories (below grade)	(excluding the penthouse) Grade is 16.0 m from the top of basemat
	Plan	21.0 m × 49.0 m	
	Height	34.0 m	From the top of the basemat (excluding the penthouse)
Common	Thickness of Basemat	4.0 m	The thickness is increased to 5.1 m at the inside of RPV Pedestal and 5.5 m at the bottom of the Spent Fuel Pool.

Table 3.1-1Key Dimensions of RB and FB

WG3-U71-ERD-S-0004	SH NO	0. 64
REV. 1	of	543

Portion	Dimension	Notes
Foundation mat	Thickness = 5.1 m	
Containment wall	Thickness = 2.0 m	
	Inside radius = 18.0 m	
	Height = 19.95 m	From the top of the suppression pool slab to the bottom of the Top Slab
RPV pedestal	Thickness = 2.5 m	
	Inside radius = 5.6 m	
	Height = 15.05 m	From the top of the foundation mat to the top of the suppression pool slab
Top slab	Thickness = 2.4 m	
Suppression pool slab	Thickness $= 2.0 \text{ m}$	

 Table 3.1-2
 Key Dimensions of RCCV

WG3-U71-ERD-S-0004	SH NO	. 65
REV. 1	of	543

Table 5.1.1-1 Weights of Miscellaneous Steels and Finishing

Item				Weight	Note
Roof Truss (EL 49700)			3.8 kN/m ²		
Metal Deck and	Roof	Slabs		1.2 kN/m^2	
Steel Beams	Floor	Slabs		3.0 kN/m ²	Except basemat
	Slab	Roof Sl		1.8 kN/m ²	
Finishing	Siau	Floor Slabs		1.0 kN/m ²	
rinsning	Outside	Belov	w Grade	0.2 kN/m ²	
	Exterior Wall	Above Grade		1.2 kN/m ²	
	Cavity Pool		Walls	1.0 kN/m ²	
			Slabs	0.7 kN/m ²	
Various Dool Linor	Dryer/Separator Pool		Walls	1.0 kN/m ²	
			Slabs	0.7 kN/m ²	
	Fuel Buffer Pool		Walls	1.0 kN/m ²	
			Slabs	1.6 kN/m ²	
various i ooi Linei	IC/PCCS Pool & Extension Pool		Walls	1.0 kN/m ²	
			Slabs	0.7 kN/m ²	
	Spent Fuel Pool		Walls	1.0 kN/m^2	
			Slabs	1.6 kN/m ²	
	Fuel Transfer	Tube	Walls	-	Not considered
Pool			Slabs	-	Not considered
	Dryer/Sep	arator l	Pool		Not considered
Gate	Reacto	or Well		-	Not considered
	Fuel Transfer Channel Pool		_	Not considered	

(Reproduced from Reference 2.1.2-e)

Note: The values shown in this table are based on the following Design Specifications:

26A6605 Design Specification for Concrete Containment, Rev. 3

26A6606 26A6608 Design Specification for Reactor Building, Rev. 2 Design Specification for Fuel Building, Rev. 1

WG3-U71-EF	SH NO). 66	
REV. 1		of	543

Table 5.1.1-2 Miscellaneous Structures, Piping, and Commodities Attached to the RCCV

Location	Area Load (kN/m ²)	Concentrated Load (kN)	
RCCV Top Slab Liner	2.5	-	
Upper Drywell Wall Liner	2.7	-	
Suppression Chamber Wall Liner	1.6	-	
Suppression Chamber Floor Liner	1.6	-	
Lower Drywell Wall Liner	3.1	-	
Lower Drywell Floor Liner	0.6	- '	
Drywell Top Head	-	1100.0	
Upper Drywell Personnel Airlock	-	200.0	
Upper Drywell Equipment Hatch	-	110.0	
Suppression Chamber Access Hatch	-	90.0	
Lower Drywell Personnel Airlock	-	200.0	
Lower Drywell Equipment Hatch	-	110.0	

(Reproduced from Reference 2.1.2-e)

Note: The values shown in this table are based on the following Design Specifications: 26A6605 Design Specification for Concrete Containment, Rev. 3

26A6606 Design Specification for Reactor Building, Rev. 2

26A6608 Design Specification for Fuel Building, Rev. 1

WG3-U71-ERD-S-0004	SH NO	D. 67
REV. 1	of	543

Elevation	Piping Area Load (kN/m ²)		Note
(m)	RB	FB	
52.40*1	2.4	-	
34.00	2.4	-	
27.50	-	0.0	FB Roof Slab
27.00	2.4	-	
22.50	· _	2.4	
17.50	9.8	-	Diaphragm Floor
	19.6	-	Main Steam Tunnel
	2.4	-	Other Area
13.57	2.4	-	
9.06	2.4	-	
4.65	2.4	2.4	
-1.00	2.4	2.4	
-6.40	2.4	2.4	
-11.50	2.4	2.4	

Tuble bill b millebus structures, Tiping, and Commountes on the stas		Table 5.1.1-3	Miscellaneous Structures,	Piping, and	Commodities of	n the Slab
Lable 5.1.1-3 Muscellaneous Structures, Piping, and Commodities on the Slab	Table 5.1.1-3 Miscellaneous Structures, Piping, and Commodities on the Sial	D II 2443	N / II () /	Third Parts	a 1	4 011
	Twole bixit b Thebelland of a the sin	1 able 5.1.1-5	Muscellaneous Structures.	Pinng, and	Commodifies of	n the Sla

(Reproduced from Reference 2.1.2-e)

General Note: The values shown in this table are based on the following Design Specifications:

26A6605 Design Specification for Concrete Containment, Rev. 3

26A6606 Design Specification for Reactor Building, Rev. 2

26A6608 Design Specification for Fuel Building, Rev. 1

Note

*1: The difference between the modeled elevation 52.4 m and the actual elevation 52.7 m at the RB roof is negligibly small.

WG3-U71-ERD-S-0004	SH NO. 68
REV. 1	of 543

Elevation (m)	Piping Area Load (kN/m ²)	Portion
17.5~27.0	2.4	Upper Drywell
13.57~17.5	2.4	Upper Drywell
9.06~13.57	2.4	Wetwell
4.65~9.06	2.4	Wetwell
-1.00~4.65	2.4	Lower Drywell
-6.40~-1.00	2.4	Lower Drywell
-11.50~-6.4	2.4	Lower Drywell

Table 5.1.1-4Miscellaneous Structures, Piping, and Commodities on the RCCV Walls
(Reproduced from Reference 2.1.2-e)

Table 5.1.1-5 Dead Loads of Equipment, RB

Elevation	Item	Description			Weight		Area Load
(m)	No.*		unit (kN)	qt.	margin	Sum up (kN)	(kN/m^2)
-11.50	R-1	Sacrificial Concrete	-	-	-	-	36
	R-2	HCU Room A~D	643	4	0.2	3086	-
	R-3	RWCU Non-Regen Heat Exchanger	113	3	0.2	406	-
	R-4	RWCU Regen Heat Exchanger	44	2	0.2	106	1
	R-5	RWCU Pump Room A, B	216	2	0.2	518	-
	R-6	Process Sampling Monitoring Room	95	1	0.2	114	-
	R-7	RWCU Transfer Pumps Room	34	1	0.2	41	-
-6.40	R-11	RWCU Filter Demineralizers Vault A1, A2, B1, B2	284	4	0.2	1365	-
	R-12	Control Rod Drive Pump Room	236	1	0.2	284	-
	R-13	Divisional Battery Rooms	1079	4	0.2	5178	-
-1.00	R-21	Divisional I~ IV Electrical Equipment Rooms	588	4	0.2	2824	-
4.65	R-31	Quenchers	35	12	0.2	509	-
	R-32	CRD A ~ D Panel Room	490	4	0.2	2354	-
9.60	R-41	Electrical Equipment Rooms A~D	637	4	0.2	3060	-
13.57	R-51	Wetwell Access/Fan Room	118	4	0.2	565	-
27.00	R-71	Isolation Condensers Heat Exchanger Room A~D	333	4	0.2	1601	-
	R-7 2	Passive Containment Cooling Heat Exchanger Room A~F	233	6	0.2	1681	-
	R-73	Standby Liquid Control Tank Room A, B	530	2	0.2	1271	1
	R-7 4	Standby Liquid Control Tank Pump A, B	20	3	0.2	71	-
	R-75	Fuel Storage Racks	-	-	-	-	153
	R-76	Skimmer Tanks	382	2	0.2	918	-
34.00	CR-4	Refueling Machine	343	1	0.2	412	-
20.00	CR-5	Reactor Building Crane	1422	1	0.2	1706	-
39.80	CR-6	Lifted Loads	1750	1	-	1750	-
General No	eneral Note: The values shown in this table are based on the following Design Specifications:						

(Reproduced from Reference 2.1.2-e)

26A6605 Design Specification for Concrete Containment, Rev. 3

26A6606 Design Specification for Reactor Building, Rev. 2

26A6608 Design Specification for Fuel Building, Rev. 1

Note *: Refer to Figures 5.1.1-1 through 5.1.1-9.

WG3-U71-ERD-S-0004	SH NC) . 70
REV. 1	of	543

Table 5.1.1-6	Dead Loads	of Equipment,	FB
---------------	------------	---------------	----

Elevation	Item	Description	Weight			eight Area Load	
(m)	No.*		unit (kN)	qt.	margin	Sum up (kN)	(kN/m^2)
-11.50	F-1	Skimmer Tank	353	1	0.2	424	-
	F-2	Spent Fuel Racks	16239	1	0.2	19487	-
	F-3	Spent Fuel Cask	-	-	-	-	120
	F-4	Fuel and Auxiliary Pools Cooling Backwash Tank Room	353	1	0.2	424	-
	F-5	Fuel and Auxiliary Pools Cooling Heat Exchange Room	236	1	0.2	284	-
	F-6	Sump Room	95	1	0.2	114	-
	F-7	Fuel and Auxiliary Pools Cooling Transfer Pump Room	17	2	0.2	41	-
	F-8	Fuel and Auxiliary Pools Cooling Pump Room	112	1	0.2	134	-
-6.40	F-11	Fuel and Auxiliary Pools Cooling Filter/Demineralizer Vault	142	2	0.2	341	-
	F-12	FAPC Holding Pump Room	37	1	0.2	45	-
	F-13	Control Rod Drive Maintenance Area	49	1	0.2	59	_
	F-14	Control Rod Drive Maintenance Control Panel Room	38	1	0.2	46 ·	-
	F-15	Control Rod Drive Motor Test Room	98	1	0.2	118	-
-1.00	F-21	New Fuel Prep Machine Pit	12	1	0.2	15	-
4.65	CR-1	Fuel Handling Machine	343	1	0.2	412	-
12 57	CR-2	Fuel Building Crane	1079	1	0.2	1295	_
15.57	CR-3	Lifted Load	1750	1	-	1750	-
22.50	F-61a	HVAC Penthouse	112	2	0.2	269	-
I.	F-61b	HVAC Penthouse	112	2	0.2	269	-
	F-61c	HVAC Penthouse	174	2	0.2	416	-
	F-61d	HVAC Penthouse	322	2	0.2	772	-
	F-61e	HVAC Penthouse	292	2	0.2	701	-

(Reproduced from Reference 2.1.2-e)

The values shown in this table are based on the following Design Specifications: General Note:

26A6605 Design Specification for Concrete Containment, Rev. 3

26A6606Design Specification for Reactor Building, Rev. 226A6608Design Specification for Fuel Building, Rev. 1

Note *:

Refer to Figures 5.1.1-1 through 5.1.1-9

WG3-U71-ERD-S-0004	SH NC	0.71
REV. 1	of	543

Table 5.1.1-7 Dead Loads of Hydrostatic Loads

Location	Water Depth (m)	Pressure (kN/m ²)	Note
Cavity Pool	6.7	66.0	
	2.9	28.0	On the Drywell Top Head
Dryer / Separator Pool	6.7	66.0	
Fuel Buffer Pool	6.7	66.0	
IC / PCCS Pool	4.8	47.0	
IC / PCCS Expansion Pools	4.8	47.0	
GDCS Pools	6.8	67.0	
Lower Drywell	12.37	121.0	During LOCA Flooding
Suppression Deal	5.5	54.0	
Suppression root	6.55	64.0	During LOCA Flooding
Spent Fuel Pool	14.35	141.0	

(Reproduced from Reference 2.1.2-e)

WG3-U71-ERD-S-0004	SH NC). 72
REV. 1	of	543

(Reproduced from Reference 2.1.2-e)

Elevation	Area Load (kN/m ²)		Domonks
(m)	RB	FB	Kemarks
52.40*1	2.9	-	Roof
24.00	4.8	-	Indoor Slab
54.00	2.9		Roof Slab
27.50	-	2.9	FB Roof Slab of Penthouse
27.00	4.8*2	-	
	2.9	_	Main Steam Tunnel Roof
22.50	-	2.9	
17.50	4.8		
	0.0	_	Main Steam Tunnel Floor
13.57	4.8	-	
9.06	4.8	-	
4.65	4.8	4.8 ^{*2}	
-1.00	4.8	4.8	
-6.40	4.8	4.8	
-11.50	4.8	4.8	

Note

*1: The difference between the modeled elevation 52.4 m and the actual elevation 52.7 m at the RB roof is negligibly small.

*2: Live load at pool water area is zero.

Table 5.1.2-2 Design Lateral Soil Pressure At-Rest

	Soil	Pressure (kN/m ²	2)		
Elevation (m)	RB on R1 column-row Wall	FB on FA column-row Wall	Other Walls	Note	
4.65	11.0	175.4	11.0	Grade	
4.04	21.9	186.3	21.9	Water level	
-1.00	127.7	292.1	127.7		
-4.20	194.9	250.2	104.0	Bottom level of TB basemat	
-4.20	457.9	339.3	194.9		
-6.40	504.1	405.5	241.0		
-11.50	611.1	512.5	348.1		
-15.50	695.1	596.5	432.0	Bottom level of basemat	

(Reproduced from Reference 2.1.2-e)

WG3-U71-ERD-S-0004	SH NO. 7	/4
REV. 1	of 54	13

Event		Pressure (kPag)			
		Drywell	Wetwell	IC/PCCS Pool	
Normal (Dperation	9.0	9.0	34.5	
Test	maximum internal pressure	356.8	356.8	0.0	
	maximum differential pressure	310.0	32.5	0.0	
LOCA	5 seconds after DBA	(345.0)*	(250.0)*	48.3	
	6 minutes after DBA	257.0	241.0	48.3	
	10 hours after DBA	310.0	310.0	48.3	
	72 hours after DBA	310.0	310.0	48.3	

(Reproduced from Reference 2.1.2-e)

*: The pressure loads at 5 seconds are considered in the load of Pool Swell Pressure Loads.

Table 5.2.1-2Design Times for LOCAs

(Reproduced from Reference 2.1.2-e)

Selected Time	Reasons for Selection
5 seconds	Just after LOCA Combination including Pool Swell
6 minutes (0.1 hr.)	Containment temperatures reach their maximum values Combination including Condensation Oscillation
10 hours	Containment pressures reach their maximum values Combination including Chugging
72 hours	Concrete temperatures reach their maximum values Combination including Chugging

WG3-U71-ERD-S-0004	SH NO.	75
REV. 1	of s	543

Table 5.2.2-1	Steady	State	Temperature	Conditions
---------------	--------	-------	-------------	------------

Region		Temperature (°C)		Nato
		Summer	Winter	
Main Steam T	unnel	57.0	57.0	
	Drywell	57.0	57.0	
Inside Containment	GDCS pool	43.0	43.0	
Containintent	Wetwell & Suppression pool	43.0	43.0	
RB Outside Containment	RB rooms outside containment	40.0	10.0	
	Reactor Cavity pool	43.0	43.0	
	Dryer/Separator Storage pool	43.0	43.0	
	Fuel Buffer pool	43.0	43.0	
	IC/PCCCS pool	43.0	43.0	
ED	FB rooms	40.0	10.0	
ГВ	Spent Fuel Pool	48.9	48.9	
Exterior		46.1	-40.0	
Ground		15.5	15.5	

(Reproduced from Reference 2.1.2-e)

Table 5.2.2-2	Design Basis Accident	Temperatures in	1 Spent Fuel Pool
---------------	-----------------------	-----------------	-------------------

Ti	Time		
(hr.)	(sec)	(°C)	
0.00	0	48.9	
0.06	200	49.2	
0.28	1000	50.5	
0.50	1800	51.8	
1.00	3600	54.7	
5.00	18000	77.7	
8.86	31900	100.0	
10.00	36000	100.0	
20.00	72000	100.0	
72.00	259200	100.0	

(Reproduced from Reference 2.1.2-e)

Note: DBA for the spent fuel pool is due to loss of Fuel and Auxiliary Pools Cooling System (FAPCS) cooling function

WG3-U71-ERD-S-0004	SH NO. 76
REV. 1	of 543

Table 5.2.4-1 RPV Reactions

(Reproduced from Reference 2.1.2-e)

		SRV	LOCA
Vertical	(MN)	16.45	9.25
Shear	(MN)	11.63	2.878
Moment	(MNm)	75.3	28.7

WG3-U71-ERD-S-0004	ŀ	SH NO	D. 77	
REV. 1		of	543	

Heigl	Height (m)Design Wind Load (kN/m²)					
EL	Z	Windward Wall	Leeward Wall	Side Wall	Roof	
52.40 ^{*1}	47.75	3.13	-2.20	-2.82	-3.87	
34.00	29.35	2.93	-2.20	-2.82	-3.87	
27.00	22.35	2.82	-2.20	-2.82		
17.50	12.85	2.62	-2.20	-2.82		
13.57	8.92	2.50	-2.20	-2.82		
9.22	4.57	2.30	-2.20	-2.82		
9.06	4.41	2.30	-2.20	-2.82		
4.65	0.00	2.30	-2.20	-2.82		

(Re	eproduced from Reference 2.1.2-e)	

	zg	700	ft	Coef.	Wall		Roof	
	α	11.5			Windward	Leeward	Side	
Importance factor	I	1.15		G		0.	85	
Basic wind speed	V	62.59	m/s	Ср	0.8	-0.5	-0.7	-1.04
Wind directionality factor	Kd	0.85		GCpi	-0.18	0.18	0.18	0.18
Wind directionality factor	Ка	0.85		GCpi	-0.18	0.18	0.18	0.18

Note

*1: The difference between the modeled elevation 52.4 m and the actual elevation 52.7 m at the RB roof is negligibly small.

Table 5.3.2-1 Design Pressure of Tornado Wind Load

(Reproduced from Reference 2.1.2-e)

		p (kN/m ²)				
Wind Direction	Building		Roof			
		Windward	Leeward	Side		
All	RB/FB	5.6	-3.5	-4.9	-7.3	
Differential		16.5	16.5	16.5	16.5	

WG3-U71-ERD-S-0004	SH NO. 7	8
REV. 1	of 54	3

Structure	Direction	Response	RU-4*1	RU-6 ^{*2}	Difference
RSW	NS	Shear (MN) @ base	15	16	6.7%
		Moment (MN-m) @ base	165	174	5.5%
	EW	Shear (MN) @ base	15	16	6.7%
		Moment (MN-m) @ base	183	190	3.8%
	Vert.	Vertical acc (g) at top	0.58	0.57	-1.7%
Vent Wall	NS	Shear (MN) @ base	18	19	5.6%
		Moment (MN-m) @ base	160	157	-1.9%
	EW	Shear (MN) @ base	21	22	4.8%
		Moment (MN-m) @ base	187	173	-7.5%
	Vert.	Vertical acc (g) at top	0.68	0.62	-8.8%
Pedestal	NS	Shear (MN) @ base	104	104	0.0%
		Moment (MN-m) @ base	1531	1556	1.6%
	EW	Shear (MN) @ base	90	90	0.0%
		Moment (MN-m) @ base	1463	1482	1.3%
	Vert.	Vertical acc (g) at top	0.52	0.52	0.0%
RCCV	NS	Shear (MN) @ base	261	263	0.8%
		Moment (MN-m) @ base	10238	10189	-0.5%
	EW	Shear (MN) @ base	224	225	0.4%
		Moment (MN-m) @ base	10925	10885	-0.4%
	Vert.	Vertical acc (g) at top	0.65	0.68	4.6%
RB/FB	NS	Shear (MN) @ base	934	939	0.5%
		Moment (MN-m) @ base	29920	29744	-0.6%
	EW	Shear (MN) @ base	737	742	0.7%
		Moment (MN-m) @ base	28420	28263	-0.6%
	Vert.	Vertical acc (g) at top	0.86	0.89	3.5%

Table 5.5.5-1 Effect of Containinent LOCA Flooding - Standard Flant flatt Nock S	c Site
--	--------

Note *1) Non-flooded containment during normal operating condition (Tables 9.3-1, 9.3-2 and B-45 of Reference 2.1.2-0)

*2) Flooded containment after LOCA (Tables 9.5-1, 9.5-2 and B-53 of Reference 2.1.2-0)

WG3-U71-ERD-S-0004	SH NO. 79		
REV. 1	of	543	

			Shear		Moment		Calculated	Accidental	Design
Elev. (m)	Elem No.	Node No.	X-Dir.	Y-Dir.	X-Dir.	Y-Dir.	Torsion	Torsion	Torșion
()	1.01	1.01	(MN)	(MN)	(MN-m)	(MN-m)	(MN-m)	(MN-m)	(MN-m)
52.40*1	1110	110			2724	2143			
			192.2	140.0	5838	4488	1284	471	1755
34.00	1109	109			8196	5821			
			173.2	113.9	8719	6389	1938	424	2362
27.00	1108	108			9400	7162			
			396.0	259.4	9599	7958	2799	1386	4185
22.50	1107	107			11216	8328			
			436.4	291.8	11424	9227	4678	1527	6205
17.50	1106	106			12105	9408			
			438.4	343.5	12349	10195	4023	1535	5557
13.57	1105	105			12839	10255			
			450.7	363.7	13651	11216	4211	1578	5788
9.06	1104	104			13904	11338			
			454.6	383.4	15231	12506	4694	1591	6285
4.65	1103	103			9392	6302			
			454.7	360.1	10952	7759	5248	1591	6839
-1.00	1102	102			6545	4819			
			240.0	226.6	7303	5358	2718	840	3558
-6.40	1101	101			4748	3351			
-11.50		2	237.7	200.4	5053	3356	2079	832	2910

Table 5.3.3-2	Design Seismic Loads for Horizontal SSE (RB and FB Walls))
		,

Note: RB/FB Seismic Analyses Bounding Results and In-Structure Response Spectra. (Table 4.1-1 of Reference 2.1.2-k)

The node numbers in this table are described in Figure 5.3.3-1.

*1: The difference between the modeled elevation 52.4 m and the actual elevation 52.7 m at the RB roof is negligibly small.

WG3-U71-ERD-S-0004	SH NO. 80	
REV. 1	of 543	

			Shear		Mor	nent	Calculated	Accidental	Design
Elev.	Elem No.	Node No.	X-Dir.	Y-Dir.	X-Dir.	Y-Dir.	Torsion	Torsion	Torsion
			(MN)	(MN)	(MN-m)	(MN-m)	(MN-m)	(MN-m)	(MN-m)
34.00	1209	209			230	510			
			130.9	133.2	1029	1160	29	266	296
27.00	1208	208			2162	2303			
			141.1	151.9	2938	3071	1489	304	1793
17.50	1206	206			3259	3667			
			184.1	158.4	3691	3904	1591	368	1960
13.57	1205	205			3817	4203			
			207.9	173.4	4389	4491	1762	416	2178
9.06	1204	204			4481	4853		-	
			225.4	201.2	5190	5203	2062	451	2513
4.65	1203	203			5523	5470			
			109.2	125.7	5740	5824	1439	251	1691
-1.00	1202	202			6008	6066			
			67.6	68.1	5924	6035	690	136	826
-6.40	1201	201			6053	6141			
-11.50		2	70.7	55.1	5961	6127	349	141	490

 Table 5.3.3-3
 Design Seismic Loads for Horizontal SSE (RCCV)

Note: RB/FB Seismic Analyses Bounding Results and In-Structure Response Spectra. (Table 4.1-2 of Reference 2.1.2-k)

WG3-U71-ERD-S-0004	SH NO	D. 81
REV. 1	of	543

[Shear		Moment		Calculated	Accidental	Design
Elev.	Elem	Node No	X-dir.	Y-dir.	X-dir.	Y-dir.	Torsion	Torsion	Torsion
	1.0.	110.	(MN)	(MN)	(MN-m)	(MN-m)	(MN-m)	(MN-m)	(MN-m)
17.5	701	701			107	62			
:			47.9	32.4	139	107	107	40	147
14.5	702	702			139	113			
			47.1	32.4	279	204	108	39	148
11.5	703	703			280	207			
			45.8	35.1	411	301	111	38	149
8.5	704	704			411	302			
			44.7	36.5	458	338	112	37	149
7.4625	705	705			440	352			
			39.1	29.4	513	427	92	33	125
4.65	1303	706,303			667	496			
			20.5	16.9	651	502	71	16	87
2.4165	1377	377			793	614			
			32.1	31.4	754	631	86	26	112
-1.00	1302	302			691	571			
			22.1	15.7	658	555	34	18	52
-2.75	1376	376			658	555			
			21.8	16.1	594	524	34	17	52
-6.40	1301	301			555	518			
-11.50		2	29.8	22.4	553	514	21	24	45

Table 5.3.3-4	Design Seismic Loads	s for Horizontal SSE (R	RPV Pedestal and Vent	Wall)
---------------	----------------------	-------------------------	------------------------------	-------

Note: RB/FB Seismic Analyses Bounding Results and In-Structure Response Spectra. (Tables 4.1-3 and 4.1-4 of Reference 2.1.2-k)

WG3-U71-ERD-S-0004	SH NO. 82		
REV. 1	of 543		

			Shear		Mor	Moment		Accidental	Design
Elev.	Elem No.	Node No	X-dir.	Y-dir.	X-dir.	Y-dir.	Torsion	Torsion	Torsion
()	110.	1.0.	(MN)	(MN)	(MN·m)	(MN·m)	(MN-m)	(MN-m)	(MN-m)
24.18	707	707			2.5	2.2			
l			4.2	3.0	18.9	13.8	0.5	2.0	2.5
20.2	708	708			25.8	19.8			
1			20.8	11.1	113.5	59.3	1.7	9.8	11.6
15.775	709	709			116.7	61.3			
Ì			24.4	12.3	224.1	115.5	2.4	11.5	13.9
11.35	710	710			227.6	116.9			-
			27.1	13.5	331.9	169.3	3.0	12.8	15.8
7.4625	711	711			135.4	125.5			
			26.6	22.2	169.6	151.7	22.9	12.6	35.5
4.65	712	712			156.8	142.3			
			14.3	13.5	147.3	132.8	15.2	6.7	21.9
2.4165	713	713			4.0	4.0			
1.96			1.6	1.6	3.3	3.3	0.2	0.7	0.9
1.96	714	714			3.0	3.0			
-0.8		715	0.9	0.9	0.7	• 0.6	0.1	0.4	0.5

Table 5.3.3-5	Design Seismic	Loads for H	[orizontal SSE	(RSW)
---------------	----------------	-------------	----------------	-------

Note: RB/FB Seismic Analyses Bounding Results and In-Structure Response Spectra. (Table 4.1-4 of Reference 2.1.2-k)

WG3-U71-ERD-S-0004	S	H NO	D. 83	
REV. 1		of	543	

			Axial	Shear		Moment		
Elev.	Elem No	Node No	(MN)	X-dir.	Y-dir.	X-dir.	Y-dir.	
	110.			(MN)	(MN)	(MN-m)	(MN-m)	
3.215	844	845				29.9	15.6	
2.365		846	9.10	18.6	7.9	44.5	18.9	
8.453	871	815				182.7	151.9	
7.4625		711	24.75	29.8	18.8	176.6	147.4	

Table 5.3.3-6 Design Seismic Loads for Horizontal SSE (RPV)

Note: RB/FB Seismic Analyses Bounding Results and In-Structure Response Spectra. (Tables 4.1-5 and 4.1-6 of Reference 2.1.2-k)

Elev. (m)	Elev. Node (m) No.		Max. Vertical Acceleration (g)
52.4*1	110	RBFB	1.56
34.00	109	RBFB	1.20
27.00	108	RBFB	1.02
22.50	107	RBFB	0.92
17.50	106	RBFB	0.80
13.57	105	RBFB	0.72
9.06	104	RBFB	0.62
4.65	103	RBFB	0.56
-1.00	102	RBFB	0.57
-6.40	101	RBFB	0.53
-11.50	2	RBFB	0.51
-15.50	1	RBFB	0.52

Table 5.3.3-7Maximum Vertical Accelerations
(RB and FB)

Note: RB/FB Seismic Analyses Bounding Results and In-Structure Response Spectra. (Table 4.2-1 of Reference 2.1.2-k)

The node numbers in this table are described in Figure 5.3.3-1.

*1: The difference between the modeled elevation 52.4 m and the actual elevation 52.7 m at the RB roof is negligibly small.

Elev. (m)	Node No.	Stick Model	Max. Vertical Acceleration (g)
34.00	209	RCCV	1.20
27.00	208	RCCV	1.12
17.50	206	RCCV	0.91
13.57	205	RCCV	0.82
9.06	204	RCCV	0.72
4.65	203	RCCV	0.65
-1.00	202	RCCV	0.58
-6.40	201	RCCV	0.55

Note: RB/FB Seismic Analyses Bounding Results and In-Structure Response Spectra. (Table 4.2-2 of Reference 2.1.2-k)

WG3-U71-ERD-S-0004	SH NO. 85	
REV. 1	of 543	

Elev. (m)	Node No.	Stick Model	Max. Vertical Acceleration (g)
17.50	701	VW	0.82
14.50	702	VW	0.86
11.50	703	VW	0.81
8.50	704	VW	0.72
7.4625	705	VW	0.67
4.65	706, 303	Pedestal	0.69
-1.00	302	Pedestal	0.59
-6.40	301	Pedestal	0.56

Table 5.3.3-9	Maximum	Vertical Accelerations	(RPV	' Pedestal	and	Vent	Wall)	
---------------	---------	------------------------	------	------------	-----	------	-------	--

Note: RB/FB Seismic Analyses Bounding Results and In-Structure Response Spectra. (Tables 4.2-3 and 4.2-4 of Reference 2.1.2-k)

The node numbers in this table are described in Figure 5.3.3-1.

Table 5.3.3-10 Maximum Vertical Accele	erations (RSW)
--	------------	------

Elev. (m)	Node No.	Stick Model	Max. Vertical Acceleration (g)
24.18	707	RSW	1.30
20.20	708	RSW	1.23
15.775	709	RSW	0.99
11.35	710	RSW	0.78
7.4625	711	RSW	0.68
4.65	712	RSW	0.69
2.4615	713	RSW	0.64
1.96	714	RSW	0.64
-0.80	715	RSW	0.64

Note: RB/FB Seismic Analyses Bounding Results and In-Structure Response Spectra. (Table 4.2-4 of Reference 2.1.2-k)

WG3-U71-ERD-S-0004	SH NO). 8 6			
REV. 1	of	543			

Elev.	Node	Stick	Max. Vertical
(m)	No.	Model	Acceleration (g)
52.4*	9101	Oscillator	0.33
	9102	Oscillator	1.33
	9103	Oscillator	6.27
	9104	Oscillator	2.62
	9105	Oscillator	2.42
	9106	Oscillator	3.74
	9107	Oscillator	3.22
	9108	Oscillator	2.50
	9109	Oscillator	1.53
34.00	9091	Oscillator	1.61
	9092	Oscillator	1.61
	9093	Oscillator	1.12
27.00	9081	Oscillator	1.64
	9082	Oscillator	1.52
	9083	Oscillator	1.30
	9084	Oscillator	1.67
1	9085	Oscillator	1.46
	9086	Oscillator	1.12
	9087	Oscillator	1.03
22.50	9071	Oscillator	1.15
	9072	Oscillator	1.79
	9073	Oscillator	4.47
	9074	Oscillator	1.67
	9075	Oscillator	1.51
	9076	Oscillator	1.65
17.50	9061	Oscillator	3.65
	9062	Oscillator	2.62
	9063	Oscillator	1.17
	9064	Oscillator	2.56
	9065	Oscillator	1.28
	99064	Oscillator	0.99
	9066	Oscillator	1.09
	9067	Oscillator	0.91

Table 5.3.3-11	Enveloping Maximum Vertical Acceleration: RBFB Flexible S	Slab
	Oscillators	

 Note: Bounding Equivalent Out-of-plane Acceleration Loads on Slabs are shown in RB/FB Seismic Analyses Bounding Results and In-Structure Response Spectra. (Table 4.2-1 of Reference 2.1.2-k)

*: The difference between the modeled elevation 52.4 m and the actual elevation 52.7 m at the RB roof is negligibly small.

WG3-U71-ERD-S-0004	SH NO	D. 87
REV. 1	of	543

Elev.	Node	Stick	Max. Vertical
(m)	No.	Model	Acceleration (g)
13.57	9051	Oscillator	1.11
	9052	Oscillator	1.25
	9053	Oscillator	0.99
	9054	Oscillator	0.83
9.06	9041	Oscillator	1.02
	9042	Oscillator	1.26
	9043	Oscillator	0.93
	9044	Oscillator	0.80
4.65	9031	Oscillator	1.62
	9032	Oscillator	0.89
	9033	Oscillator	1.12
	9034	Oscillator	1.81
	9035	Oscillator	1.09
	9036	Oscillator	0.94
	9037	Oscillator	0.82
-1.00	9021	Oscillator	0.97
	9022	Oscillator	2.07
	9023	Oscillator	0.98
	9024	Oscillator	1.12
	9025	Oscillator	1.21
	9026	Oscillator	1.63
	9027	Oscillator	0.93
	9028	Oscillator	0.96
	9029	Oscillator	1.30
	9030	Oscillator	0.87
-6.40	9011	Oscillator	0.84
	9012	Oscillator	1.17
	9013	Oscillator	1.52
	9014	Oscillator	1.19
	9015	Oscillator	1.03

Table 5.3.3-11	Enveloping Maximum Vertical Acceleration:	RBFB Flexible Slab
	Oscillators (Continued)	

 9015
 Oscillator
 1.03

 Note: Bounding Equivalent Out-of-plane Acceleration Loads on Slabs are shown in RB/FB Seismic Analyses Bounding Results and In-Structure Response Spectra. (Table 4.2-1 of Reference 2.1.2-k)

WG3-U71-ERD-S-0004	SH NO. 88		
REV. 1	of 543		

Elevation	Soil Press	Note	
(m)	R1 and F3 Wall	RA and RG Wall	
4.65		- '	Grade
	0.56	0.45	
-1.00	0.29	0.20	
6.40	0.28	0.29	
-0.40	0.24	0.22	
-11.50			
	0.94	0.76	
-15.50	¢ ,		

Table 5.3.3-12 Soil Pressure Due to an Earthquake

WG3-U71-ERD-S-0004	SH NO. 89		
REV. 1	of 543		

L	ongitudinal I	Direction Me	otion	Transversal Direction Motion			Vertical Motion			
- v	Wall	Flo	oor	Wall		Floor		Wall		Floor
Depth	Pressure	Distance	Pressure	Depth	Pressure	Distance	Pressure	Depth	Pressure	Pressure
d/H	(kN/m ²)	x/(L/2)	(kN/m ²)	d/H	(kN/m ²)	x/(L/2)	(kN/m ²)	d/H	(kN/m ²)	(kN/m²)
0.0	9.7	0.0	0.0	0.0	9.8	0.0	0.0	0.0	0.0	
0.2	21.0	0.2	6.1	0.2	15.6	0.2	4.3	0.2	13.6	68.0
0.4	35.8	0.4	13.1	0.4	23.8	0.4	8.8	0.4	27.2	
0.6	46.6	0.6	22.2	0.6	26.1	0.6	13.7	0.6	40.8	for all
0.8	53.1	0.8	35.1	0.8	26.1	0.8	19.4	0.8	54.4	floor area
1.0	55.3	1.0	55.3	1.0	26.1	1.0	26.1	1.0	68.0	
Not	tor 1) "d	" is denth fi	om the ton	ofwater	"H" is w	ater height	of the pool	(6.8 m)		

Table 5.3.3-13 Seismic Hydrodynamic Loads for GDCS Pool

depth from the top of water. "H" is water height of the pool (6.8 m). Notes: 1)

"x" is distance from the center of the pool. "L" is width of the pool. 2)

3) Floor pressure due to vertical motion is for reference only. It is already included in vertical seismic loads for the floor.

This load is applied on the RCCV wall. Seismic hydrodynamic loads on the GDCS internal 4) structure wall are evaluated separately, taking into account flexibility of the wall.

Table 5.3.3-14 Seismic Hydrodynamic Loads for RPV Cavity / Dryer Separator / Fuel **Buffer Pool**

	NS / EV	/ Motion	Vertical Motion			
W	all	Flo	or	W	/all	Floor
Depth d/H	Pressure (kN/m ²)	Distance x/(L/2)	Pressure (kN/m ²)	Depth d/H	Pressure (kN/m ²)	Pressure (kN/m ²)
0.0	15.2	0.0	0.0	0.0	0.0	
0.2	23.1	0.2	8.0	0.2	15.2	76.2
0.4 37.0		0.4	16.7	0.4	30.5	
0.6	47.8	0.6	27.0	0.6	45.7	for all
0.8	54.5	0.8	39.9	0.8	61.0	floor area
1.0	56.7	1.0	56.7	1.0	76.2]

Notes: 1) "d" is depth from the top of water. "H" is water height of the pool (6.7 m).

2) "x" is distance from the center of the pool. "L" is width of the pool.

3) Floor pressure due to vertical motion is for reference only. It is already included in vertical seismic loads for the floor.

WG3-U71-ERD-S-0004	SH NO. 90	
REV. 1	of 543	

	NS / EV	V Motion	Vertical Motion				
W	ali	Flo	or	W	Wall		
Depth d/H	Pressure (kN/m ²)	Distance x/(L/2)	Pressure (kN/m ²)	Depth d/H	Pressure (kN/m ²)	Pressure (kN/m²)	
0.0	9.1	0.0	0.0	0.0	0.0		
0.2	13.6	0.2	4.6	0.2	10.9	54.6	
0.4	21.7	0.4	9.5	0.4	21.8		
0.6	26.7	0.6	14.8	0.6	32.8	for all	
0.8	28.2	0.8	21.0	0.8	43.7	floor area	
1.0	28.2	1.0	28.2	1.0	54.6		

Table 5.3.3-15	Seismic Hydrodynamic Loads for IC / PCCS Pool
----------------	---

Notes: 1) "d" is depth from the top of water. "H" is water height of the pool (4.8 m).

- 2) "x" is distance from the center of the pool. "L" is width of the pool.
- 3) Floor pressure due to vertical motion is for reference only. It is already included in vertical seismic loads for the floor.

NS Motion			EW Motion				Vertical Motion			
N	/all	Flo	or	ν	Wall Floor		Wall		Floor	
Depth d/H	Pressure (kN/m ²)	Distance x/(L/2)	Pressure (kN/m ²)	Depth d/H	Pressure (kN/m ²)	Distance x/(L/2)	Pressure (kN/m ²)	Depth d/H	Pressure (kN/m ²)	Pressure (kN/m²)
0.0	4.8	0.0	0.0	0.0	7.8	0.0	0.0	0.0	0.0	
0.2	16.5	0.2	1.3	0.2	12.9	0.2	3.9	0.2	10.9	54.6
0.4	28.6	0.4	2.7	0.4	20.3	0.4	8.1	0.4	21.8	
0.6	37.3	0.6	4.7	0.6	23.8	0.6	12.6	0.6	32.8	for all
0.8	42.5	0.8	12.3	0.8	24.0	0.8	17.8	0.8	43.7	floor area
1.0	44.3	1.0	44.3	1.0	24.0	1.0	24.0	1.0	54.6	

Table 5.3.3-16 Seismic Hydrodynamic Loads for Extension Pool A

Notes: 1) "d" is depth from the top of water. "H" is water height of the pool (4.8 m).

2) "x" is distance from the center of the pool. "L" is width of the pool.

3) Floor pressure due to vertical motion is for reference only. It is already included in vertical seismic loads for the floor.

WG3-U71-ERD-S-0004	SH NO. 91
REV. 1	of 543

NS Motion			EW Motion			Vertical Motion				
Wall		Flo	Floor		Wall Floor		рог	N	/all	Floor
Depth d/H	Pressure (kN/m ²)	Distance x/(L/2)	Pressure (kN/m²)	Depth d/H	Pressure (kN/m²)	Distance x/(L/2)	Pressure (kN/m²)	Depth d/H	Pressure (kN/m²)	Pressure (kN/m²)
0.0	7.8	0.0	0.0	0.0	13.7	0.0	0.0	0.0	0.0	
0.2	12.5	0.2	3.5	0.2	18.2	0.2	5.5	0.2	10.9	54.6
0.4	19.2	0.4	7.2	0.4	27.8	0.4	11.7	0.4	21.8	
0.6	21.5	0.6	11.3	0.6	35.5	0.6	19.1	0.6	32.8	for all
0.8	21.5	0.8	16.0	0.8	40.3	0.8	28.7	0.8	43.7	floor area
1.0	21.5	1.0	21.5	1.0	41.9	1.0	41.9	1.0	54.6	

Table 5.3.3-17	Seismic H	lydrody	namic Loads	for	Extension	Pool B

Notes: 1) "d" is depth from the top of water. "H" is water height of the pool (4.8 m).

- 2) "x" is distance from the center of the pool. "L" is width of the pool.
- 3) Floor pressure due to vertical motion is for reference only. It is already included in vertical seismic loads for the floor.

	NS Motion			EW Motion				Vertical Mo	tion	
W	all	FI	оог	w	all	FI	oor	· · · ·	Vall	Floor
Depth d/H	Pressure (kN/m ²)	Distance x/(L/2)	Pressure (kN/m ²)	Depth d/H	Pressure (kN/m ²)	Distance x/(L/2)	Pressure (kN/m²)	Depth d/H	Pressure (kN/m²)	Pressure (kN/m ²)
0.0	12.3	0.0	0.0	0.0	11.8	0.0	0.0	0.0	0.0	
0.2	23.6	0.2	7.4	0.2	24.2	0.2	8.5	0.2	19.7	98.5
0.4	37.8	0.4	15.2	0.4	40.0	0.4	17.5	0.4	39.4	
0.6	44.6	0.6	23.7	0.6	49.4	0.6	27.4	0.6	59.1	for all
0.8	45.2	0.8	33.6	0.8	52.2	0.8	38.7	0.8	78.8	floor area
1.0	45.2	1.0	45.2	1.0	52.2	1.0	52.2	1.0	98.5	

Table 5.3.3-18 Seismic Hydrodynamic Loads for Spent Fuel Pool

Notes: 1) "d" is depth from the top of water. "H" is water height of the pool (14.35 m).

2) "x" is distance from the center of the pool. "L" is width of the pool.

3) Floor pressure due to vertical motion is for reference only. It is already included in vertical seismic loads for the floor.

	·	Seismic
Vertical	(MN)	24.75
Shear	(MN)	29.8
Moment	(MNm)	182.7

Table 5.3.3-20 Enveloping Maximum Horizontal Acceleration: RBFB Wall Out-of-Plane Oscillators

Elev. (m)	Node No.	Stick Model	Max. Horizontal Acceleration (g)	Portion
42.00	99981	Oscillator	2.71	R1 and R7 walls
(X-dir)	99982	Oscillator	1.54	
	99986	Oscillator	0.89	
42.00	99983	Oscillator	1.86	RB and RF walls
(Y-dir)	99984	Oscillator	1.02	
	99985	Oscillator	1.00	,
	99987	Oscillator	0.59	
30.50 (X-dir)	99991	Oscillator	0.58	R1 and R7 walls
30.50 (Y-dir)	99992	Oscillator	0.56	RB and RF walls
13.57	99971	Oscillator	2.11	F3 walls
(X-dir)	99972	Oscillator	2.29	
	99973	Oscillator	1.88	
	99974	Oscillator	1.13	
	<u>999</u> 77	Oscillator	0.89	
13.57	99975	Oscillator	2.16	FA and FF walls
(Y-dir)	99976	Oscillator	0.93	
	99978	Oscillator	0.97	

Note: Bounding Equivalent Out-of-plane Acceleration Loads on Walls are shown in RB/FB Seismic Analyses Bounding Results and In-Structure Response Spectra. (Table 4.5-2 of Reference 2.1.2-k)

WG3-U71-ERD-S-0004	SH NO	. 93
REV. 1	of	543

Title	Drawing #	Revision
General Arrangement - ESBWR PLOT PLAN	105E3968 SH01	-
General Arrangement - ESBWR EL -11500	105E3908 SH01	5
General Arrangement - ESBWR EL -6400	105E3908 SH02	5
General Arrangement - ESBWR EL -1000	105E3908 SH03	5
General Arrangement - ESBWR EL 4650	105E3908 SH04	5
General Arrangement - ESBWR EL 9060	105E3908 SH05	5
General Arrangement - ESBWR EL 13570	105E3908 SH06	5
General Arrangement - ESBWR EL 17500	105E3908 SH07	5
General Arrangement - ESBWR EL 27000	105E3908 SH08	5
General Arrangement - ESBWR EL 34000	105E3908 SH09	5
General Arrangement - ESBWR SECTION "A-A"	105E3908 SH10	5
General Arrangement - ESBWR SECTION "B-B"	105E3908 SH11	5

.

WG3-U71-ERD-S-0004	SH NO	. 94
REV. 1	of	543

Structu	ıral Members	Included in Global FE Model	Designed using Global FEM Analysis Results
E	Basemat	0	0
	RCCV	0	0
	Liner	0	0
Penetr	ration Sleeve	0	
	Pool*	0	· 0
Walls	Outer Seismic Walls	0	0
	Inner Seismic Walls	0	0
	Other Walls	RB Cylindrical Wall Walls around Pools	RB Cylindrical Wall Walls around Pools
Fl	oor Slabs	ò	0
Frames	Columns	0	0
	Girders	0	0
	RB Roof Main Trusses	0	0
	RB Roof Sub-trusses		
RCCV In	ternal Structures	0	0

Table 6.2.2-2 Structural Members Considered in Analyses and Their Design

Note*: Pool includes walls and slabs of the reactor cavity pool, the dryer/separator pool, the fuel buffer pool, IC/PCCS pool, and IC/PCCS expansion pool.

WG3-U71-ERD-S-0004	SH NO. 95	
REV. 1	of 543	

Structural Members	Element Type	Forces Considered
RCCV	Thick Shell Element	Membrane Force
Basemat		In-plane Shear Force
Pool		Bending Moment
Wall		Transverse Shear Force
Slab		
Liner	Membrane Element	Membrane Force In-Plane Shear Force
Column	Bar Element	Axial Force
Girder		Bending Moment
Roof Truss		Transverse Shear Force
Penetration Sleeve	Rod Element	Axial Force

Table 6.2.2-3 Type of Elements Used to Model Structural Members

WG3-U71-ERD-S-0004	SH NO. 96	
REV. 1	of 543	

Table 6.2.2-4	Local	Coordinate	Systems
---------------	-------	------------	---------

Structure	z-direction
RCCV Wall	
RPV Pedestal	outward
External Wall	
Wall in N-S Direction	toward West
Wall in E-W Direction	toward South
Basemat	
Floor Slab	downword
Top Slab	downward
Suppression Pool Slab	

WG3-U71-ERD-S-0004	SH NO. 97
REV. 1	of 543

Loads		Soil Spring	g Constants (MN/	/m/m ²)
		Hori	Horizontal	
		NS-direction	EW-direction	
for All Loads except for Seismic Loads		. 9.107	9.654	13.66
for Seismic Loads	Horizontal	9.107	9.654	38.35
	Vertical, Torsion	9.107	9.654	13.66

Table 6.2.2-5 Soil Spring Constants for the RB Analysis Model

 Table 6.2.2-6
 Levels of Floor Slabs Connected to the RCCV Wall

Story	Elevation	Item	t (mm)	Modeled Slab Level
5F	27000	Top Slab	2400	25800
4F	17500	DF Slab	600	17200
3F	13570	Slab around Containment	1000	13070
2F	9060	Slab around Containment	1000	8560
1F	4650	Suppression Pool Floor Slab	2000	3650
B1F	-1000	Slab around Containment	1000	-1500
B2F	-6400	Slab around Containment	1000	-6900
B3F	-11500	Basemat	4000	-13500

WG3-U71-ERD-S-0004	SH NO. 98
REV. 1	of 543

Portion	Opening	Diameter (m)	Angle* (°)	X* (m)	Elevation at Center (EL m)
RPV	Lower Drywell Personnel Airlock	2.432	0	0.0	-5.350
Pedestal	Lower Drywell Equipment Hatch	2.432	180	0.0	-5.600
RCCV	Wetwell Hatch	2.032	115	0.0	14.450
	Upper Drywell Personnel Airlock	2.432	52	0.0	19.505
	Upper Drywell Equipment Hatch	2.432	307	0.0	18.570
	Main Steam Lines	1.200	0	4.2	19.150
		1.200	0 .	1.4	19.150
	×	1.200	0	-1.4	19.150
		1.200	0	-4.2	19.150
	Feed Water Lines	0.965	0	6.3	20.349
		0.965	0	6.3	20.349

Fable 6.2.2-7	Dimensions	of Modeled Rou	ind Openings on	a RCCV
----------------------	------------	----------------	-----------------	--------

Note *: See figure below

Portion	Material	Thickness (mm)
Drywell Cylinder	Carbon Steel	6.4
Wetwell Cylinder	Stainless Steel	6.4
Top Slab Flat Plate	Carbon Steel	6.4
Wetwell Floor Plate	Stainless Steel	16.0
Lower Drywell Bottom Plate	Carbon Steel	6.4

Table 6.2.2-8	Material and Thickness	of	the	RCCV	Liner
				100 C	

 Table 6.2.2-9
 Area of Rod Elements Used in Sleeve Models

Opening	Sleeve Thickness	Concrete Thickness	Area of Rod Element
	t (mm)	w (m)	Ar = tw (m ²)
Top Head	50.0	2.4	0.120

Table 6.2.2-10	Dimensions of Modeled Rectangular Openings on	RB Walls
----------------	---	-----------------

Portion	Omening	Width	height (m)	Position		
	(m)	(m)		NS	EW	
Wall below RCCV		3.0	3.5	R6	RD~RE	
Inner Wall		3.5	3.5	R7	FC~FD	
Exterior Wall	Equipment	3.0	3.0	R4~R5	RG	
	Hatch	3.0	3.0	R4~R5	RG	
	Opening	7.5	6.0	R4~R5	RF	

.

Table 6.2.2-11 Material Constants Used in Stress Analysis

(Reproduced from Reference 2.1.2-e)

		Rei	Reinforced Concrete			Steel			
		Temperature (°C)	Basemat f'c=4000psi 27.6MPa	Others f [*] c=5000psi 34.5MPa	Top Slab f'c=6000psi 41.4MPa	Carbon Steel Liner	Stainless Steel Liner	Structural Steel	Note
Young's	Thermal	<21	2.49×10^4	2.78×10^4	3.04x10 ⁴			•	Concrete:
Modulus	Loads ^{*2}	93	$1.81 \mathrm{x10}^{4}$	2.03x10 ⁴	2.22×10^4	2.00×10^5			See Notes 1 & 2.
(MPa)		204	1.62x10 ⁴	1.81x10 ⁴	1.98x10 ⁴				
	Othe	r Loads ^{*1}	2.49×10^4	2.78x10 ⁴	3.04×10^4	2.00	x10 ^{1 *3}	2.00x10 ⁵	
Poisson's Ratio		0.17		0.3					
Thermal Expansion (m/m°C)		9.90x10 ⁻⁶		1.17x10 ⁻⁵	1.52x10 ⁻⁵	1.17x10 ⁻⁵			
Wei	ght Density (MN/m3)		0.0235			0.0770		

Notes *1: Young's modulus of concrete is calculated in accordance with ACI 349-01, Section 8.5.1. $Ec = 57,000\sqrt{f'_c}$

*2: Reduction factors of Young's modulus for concrete are determined based upon the average values of the following upper bound and lower bound equations.

Lower bound:

 $\phi = 1.0 - 0.0038(T - 70)$ $70^{\circ}F \le T \le 200^{\circ}F$

= 0.50 - 0.0005(T - 200) $200^{\circ} F \le T$

Upper bound:

 $\phi = 1.0 - 0.00031(T - 70)$ $70^{\circ}F \le T \le 400^{\circ}F$

 $= 0.90 - 0.00084(T - 400) \quad 400^{\circ} F \le T$

*3: Except for the local thickened portions of the liner where the diaphragm floor, vent wall and RPV support brackets are attached. The full value of the Young's modulus is considered for these thickened liners.

WG3-U71-ERD-S-0004	SH NO.	101
REV. 1	of	543

Elevation	Area Loa	d (kN/m ²)	Domorks
(m)	RB	FB	
52.40 ^{*1}	2.9	-	RB Roof
34.00	4.8	_	Indoor Slab
	See Figure 6.2.3.2-1	-	Roof Slab
27.50	-	See Figure 6.2.3.2-1	FB Roof Slab of Penthouse
27.00	4.8 ^{*2}	-	
	2.9	-	Main Steam Tunnel Roof
22.50	-	2.9	
17.50	4.8	-	
	0.0	-	Main Steam Tunnel Floor
13.57	4.8	-	
9.06	4.8	-	
4.65	4.8	4.8 ^{*2}	
-1.00	4.8	4.8	
-6.40	4.8	4.8	
-11.50	4.8	4.8	

 Table 6.2.3.2-1
 Floor Live Loads

Note

The difference between the modeled elevation 52.4 m and the actual elevation 52.7 m at the RB roof is negligibly small. Live load at pool water area is zero. *1:

*2:

.

			Drywell ^{*1}	Wetwell ^{*1}	IC/PCCS*1	Main Steam Tunnel ^{*1}	Note
		Label	PDW	PSC	PIC	PMS	
TEST	Max.	PTL1	0.3568	0.3568	-	-	
	Diff.	PTL2	0.3100	0.0325	-	-	Max. Differential Pressure 277.5kPa
Norr	mal Operation	POL	0.0090	0.0090	0.0345	-	
LOCA	After 5 seconds	PL1	0.0000	0.0000	0.0483	-	Period-I
	After 6 minutes	PL2	0.2570	0.2410	0.0483	-	Period-II
	After 10 hours	PL3	0.3100	0.3100	0.0483	-	Period-IV
	After 72 hours	PL4	0.3100	0.3100	0.0483	· _	Period-IV
HELB		PLMS		-	-	0.0760	HELB in MS Tunnel

 Table 6.2.3.3-1
 Load Combinations for Design Pressure Loads

Note: *1: Unit pressure load, 1.0 MPa, is applied to each space in stress analyses.

WG3-U71-ERD-S-0004	SH NO.	103
REV. 1	of	543

			Atmosphere Temperature (°C)					
	Region		Normal	LOCA				
			Operation	5 sec.	6 min.	10 hr.	72 hr.	
RB	Drywell	DW	57.0	133.7	171.0	150.0	150.0	
Inside	GDCS Pool	GP	43.0	43.0	43.0	110.0	110.0	
Containment	Wetwell	WW	43.0	86.2	130.0	121.0	121.0	
	Suppression Pool	SP	43.0	43.0	110.0	110.0	110.0	
RB	RB Rooms Outside Containment	RM	40.0	40.0	40.0	40.0	40.0	
Outside	Reactor Cavity Pool	DP	43.0	43.0	43.0	43.0	43.0	
Containment	Dryer/Separator Storage Pool	DP	43.0	43.0	43.0	43.0	43.0	
	Fuel Buffer Pool	DP	43.0	43.0	43.0	43.0	43.0	
	IC/PCCS Pool	IP	43.0	43.0	70.0	110.0	110.0	
	Expansion Pool	XP	43.0	43.0	67.8	110.0	110.0	
	Mainsteam Tunnel	MT	57.0	57.0	57.0	57.0	57.0	
FB	FB Rooms	RM	40.0	40.0	40.0	40.0	40.0	
	Spent Fuel Pool ^{*2}	FP	48.9 (100.0)	48.9 (100.0)	48.9 (100.0)	48.9 (100.0)	48.9 (100.0)	
Air	1	AT	46.1	46.1	46.1	46.1	46.1	
Ground		GR	15.5	15.5	15.5	15.5	15.5	

Table 6.2.3.4-1	Atmosphere	Temperatures:	Summer
-----------------	------------	----------------------	--------

Note*1:DW: Drywell
WW: Wetwell
SP: Suppression Pool
GP: GDCS Pool
IP: IC/PCCS Pool
XP: Expansion Pool
RM: Room
FP: Spent Fuel Pool
DP: DS/Fuel Pool, Reactor Cavity
MT: Main Steam Tunnel
GR: Ground
AT: Outer Air

Note*2: Temperature in parentheses indicates temperature at 72 hours after loss of FAPCS cooling function resulting from a DBA.

WG3-U71-ERD-S-0004	SH NO.	104
REV. 1	of	543

Region			Atmosphere Temperature (°C)					
		Index ^{*1}	Normal Operation	LOCA				
				5 sec.	6 min.	10 hr.	72 hr.	
RB	Drywell	DW	57.0	133.7	171.0	150.0	150.0	
Inside	GDCS Pool	GP	43.0	43.0	43.0	110.0	110.0	
Containment	Wetwell	WW	43.0	86.2	130.0	121.0	121.0	
	Suppression Pool	SP	43.0	43.0	110.0	110.0	110.0	
RB	RB Rooms Outside Containment	RM	10.0	10.0	10.0	10.0	10.0	
Outside	Reactor Cavity Pool	DP	43.0	43.0	43.0	43.0	43.0	
Containment	Dryer/Separator Storage Pool	DP	43.0	43.0	43.0	43.0	43.0	
	Fuel Buffer Pool	DP	43.0	43.0	43.0	43.0	43.0	
	IC/PCCS Pool	IP	43.0	43.0	70.0	110.0	110.0	
	Expansion Pool	XP	43.0	43.0	67.8	110.0	110.0	
	Mainsteam Tunnel	MT	57.0	57.0	57.0	57.0	57.0	
FB	FB Rooms	RM	10.0	10.0	10.0	10.0	10.0	
	Spent Fuel Pool ^{*2}	FP	48.9 (100.0)	48.9 (100.0)	48.9 (100.0)	48.9 (100.0)	48.9 (100.0)	
Air	•	AT	-40.0	-40.0	-40.0	-40.0	-40.0	
Ground		GR	15.5	15.5	15.5	15.5	15.5	

Table 6.2.3.4-2 Atmosphere Temperatures: Winter

Note*1: DW: Drywell WW: Wetwell SP: Suppression Pool GP: GDCS Pool IP: IC/PCCS Pool XP: Expansion Pool RM: Room FP: Spent Fuel Pool DP: DS/Fuel Pool, Reactor Cavity MT: Main Steam Tunnel GR: Ground AT: Outer Air

Note*2: Temperature in parentheses indicates temperature at 72 hours after loss of FAPCS cooling function resulting from a DBA.

WG3-U71-ERD-S-0004	SH NO.	105
REV. 1	of	543

Portion	Location	Index			Note
		RCCV	RB	FB	
RCCV Shell		*	-	-	Figure 6.2.3.4-1~4
		RP1	-	-	
	RPV Pedestal	RP2	-	-	During LOCA Flooding
	Basemat	*	*	*	Figure 6.2.3.4-12~13
	Suppression Pool Slab	*	-	-	Figure 6.2.3.4-14
	Top Slab	. *	-	-	Figure 6.2.3.4-16
External Wall	Column Line RA/FA	-	*	*	Figure 6.2.3.4-5
	Column Line RB	-	*	-	Figure 6.2.3.4-7
	Column Line RF	-	*	-	Figure 6.2.3.4-8
	Column Line RG/FF	-	*	*	Figure 6.2.3.4-6
	Column Line R1	-	*	-	Figure 6.2.3.4-9
	Column Line R7/F1	-	*	*	Figure 6.2.3.4-10
	Column Line F3	-	-	*	Figure 6.2.3.4-11
Slab	EL -6400	-	SL1	SL1	
	EL -1000	-	SL1	SL1	
	EL 4650	-	*	*	Figure 6.2.3.4-13
	EL 9060	-	SL1	-	
	EL 13570	-	SL1	-	
	EL 17500	-	*	-	Figure 6.2.3.4-15
	EL 22500	-	-	SL1	
	EL 27000	-	*	-	Figure 6.2.3.4-16
	EL 34000	-	*	-	Figure 6.2.3.4-17
	EL 52400 ^{*1}	-	SL7	-	

Table 6.2.3.4-3 Application of Thermal Loads: List of Indexes

Note *: See Figures as noted in this Table.

*1: The difference between the modeled elevation 52.4 m and the actual elevation 52.7 m at the RB roof is negligibly small.

WG3-U71-ERD-S-0004	SH NO.	106
REV. 1	of	543

Portion	Location		Index	Note	
		RCCV	RB	FB	
Inner Wall	Wall1 around Spent Fuel Pool	-	-	-	Figure 6.2.3.4-18
	Wall2 around Spent Fuel Pool	-	-	-	Figure 6.2.3.4-19
	Wall3 around Spent Fuel Pool	-	-	-	Figure 6.2.3.4-20
	Wall1 around IC/PCCS Pool	-	*	-	Figure 6.2.3.4-23~24
	Wall2 around IC/PCCS Pool	-	PW3	-	
	Wall3 around IC/PCCS Pool	-	PW2	-	
	Wall4 around IC/PCCS Pool	-	PW5	-	
	Wall5 around IC/PCCS Pool	-	*	-	Figure 6.2.3.4-25
	Wall6 around IC/PCCS Pool	-	*	-	Figure 6.2.3.4-26
	Wall7 around IC/PCCS Pool	-	PW10	-	
	Other	-	IW1	IW1	
Pool Girder		-	*	-	Figure 6.2.3.4-22
Reactor Cavity Wall		-	PW1	-	
Main Steam Tunnel		-	*	-	Figure 6.2.3.4-15 Figure 6.2.3.4-16 Figure 6.2.3.4-21
Liner	Shell	*	-	-	Figure 6.2.3.4-27~30
	RPV Pedestal	RPL1	-	-	
	Basemat	MTL1	-	-	
	Suppression Pool Slab	CVL2	-	_	
	Top Slab	CVL4	-	-	

Table 6.2.3.4-3 Application of Thermal Loads: List of Indexes	(Continued)	ļ
---	-------------	---

Spent Fuel Pool Walls

Note *: See Figures as noted in this Table.

IC/PCCS Pool and Expansion Pool Walls

WG3-U71-ERD-S-0004	SH NO.	107
REV. 1	of	543

Table 6.2.3.4-4	Thermal Loads for Shell Elements,					
Normal Operation: Summer						

Location	Index*	ndex* Boundary**		Thickness	Td	Tg	Note
		1	2	(mm)	(°C)	(°C)	
Basemat	BM1	RM	GR	4000	27.07	23.15	General
	BM2	DW	GR	5100	27.47	23.94	Below lower Drywell
	BM4	DW	FL	5100	-	-	At LOCA Flooding
	BM6	FP	GR	5500	32.20	33.40	Below Spent Fuel Pool
	BM7	FP	GR	4000	32.20	33.40	Skimmer Surge Tank
RCCV Wall	CV1	RM	RM	2000	40.00	0.00	Below Grade
	CV2	SP	RM	2000	41.66	2.68	Suppression Pool
	CV3	ww	RM	2000	41.50	2.43	Wetwell Air Space
	CV4	DW	RM	2000	48.50	13.77	Drywell General
	CV5	GP	RM	2000	41.66	2.69	Drywell GDCS Pool
	CV6	DW	MT	2000	57.00	0.00	Drywell MS Tunnel
Suppression Pool Slab	SP1	SP	RM	2000	41.66	2.68	
Top Slab	TS1	DW	DP	2400	49.38	12.75	Below DSP/FP
	TS2	DW	IP	2400	49.38	12.75	Below IC/PCCS
	TS3	DW	XP	2400	49.38	12.75	Below Expansion Pool
	TS4	DW	DP	2400	50.81	12.61	Around Drywell Head
	TS5	DW	RM	2400	48.50	14.23	Below Room
RPV Pedestal	RP1	DW	RM	2400	48.50	14.23	
	RP2	FL	RM	2400	-	-	At LOCA Flooding
Pool Girder	PG1	IP	DP	1600	43.00	0.00	
	PG2	XP	DP	1600	43.00	0.00	
	PG3	DP	RM	1600	41.69	2.62	
Pool Gate Wall	PW1	DP	DP	1300	43.00	0.00	
IC/PCCS Pool Wall	PW2	IP	IP	400	43.00	0.00	
	PW4	IP	XP	600	43.00	0.00	
Expansion Pool Wall	PW6	XP	XP	1000	43.00	0.00	
	PW7	XP	XP	2000	43.00	0.00	
	PW8	XP	RM	1000	41.78	2.43	
	PW9	XP	RM	2000	41.66	2.68	
	PW10	RM	RM	1000	40.00	0.00	
	PW11	RM	RM	2000	40.00	0.00	
	PW12	IP	XP	1000	43.00	0.00	
	PW13	IP	RM	1000	41.79	2.42	
	PW14	IP	ХР	470	43.00	0.00	
Spent Fuel Pool Wall***	FP7	FP	RM	1500	45.05	7.70	
	FP8	FP	RM	1900	44.94	7.92	
	FP9	FP	RM	1750	44.97	7.85	Around Skimmer Surge Tank
	FP10	FP	RM	2000	44.91	-7.96	<u>_</u>
	FP11	FP	FP	1900	48.90	0.00	
	FP12	FP	FP	1750	48.90	0.00	Between Skimmer Surge Tanks

*: See Figures 6.2.3.4-1 through 6.2.3.4-30. **: See footnotes in Table 6.2.3.4-1. ***: The spent fuel pool is normal condition.

I

WG3-U71-ERD-S-0004	SH NO.	108
REV. 1	of	543

Location	Index*	Boun	dary**	Thickness	Td	Tg	Note
		1	2	(mm)	(°C)	(°C)	
Outer Wall	BW1	RM	GR	2000	26.47	21.94	Below Grade General
	BW4	RM	RM	2000	40.00	0.00	Below Grade Stair Case
	BW5	FP	GR	2000	32.19	33.39	Below Grade Spent Fuel Pool
	BW6	FP	GR	3600	32.20	33.39	
	GW1	RM	AT	1500	43.37	-5.14	EL 4650 ~ 27000 General
	GW2	RM	RM	1500	40.00	0.00	EL 4650 ~ 27000 Stair Case
	GW3	XP	AT	1000	44.48	-2.96	EL 27000 ~ IC/PCCS Pool
	GW5	DP	AT	3000	44.52	-3.04	
	GW6	DP	AT	3500	44.53	-3.06	
	GW7	XP	AT	1500	44.50	-3.01	
	GW8	XP	RM	1000	41.78	2.43	EL 27000 ~ Stair Case/Pool
	GW9	RM	AT	1000	43.49	-4.77	EL 27000 ~ Room
	GW10	RM	RM	1000	40.00	0.00	EL 27000 ~ Stair Case
	GW11	DP	AT	1500	44.53	-3.05	
MS Tunnel	MT1	MT	RM	1300	48.50	12.51	Wall inside Building
	MT2	MT	AT	1300	50.91	8.97	Wall outside Building
	MT4	MT	RM	1600	48.50	13.16	Slab inside Building
	MT5	MT	DP	2400	49.38	12.76	
	MT6	XP	MT	2400	49.38	-12.75	
	MT7	MT	AT	1600	51.01	9.28	Slab outside Building
	MT8	MT	AT	2400	51.17	9.76	
	MT9	MT	RM	2400	48.50	14.23	
Inner Wall	IW1	RM	RM	_	40.00	0.00	General
Slab	SL1	RM	RM	-	40.00	0.00	General
	SL2	IP	RM	1000	41.50	2.04	Below & above IC/PCCS Pool
	SL3	XP	RM	1000	41.50	2.04	
	SL4	DP	RM	1000	41.78	2.43	
	SL5	RM	AT	1000	43.49	-4.77	RB Roof at EL 34000
	SL6	XP	AT	1000	44.48	-2.96	
	SL7	RM	AT	700	43.63	-4.36	RB Roof at EL 57400
	SL8	RM	AT	700	43.63	-4.36	FB Roof at EL 22500
RCCV Liner	CVL2	-	_	_	43.00	0.00	Suppression Pool
	CVL3	-	-	-	43.00	0.00	Wetwell Air Space
	CVL4	-	-	-	57.00	0.00	Drywell General
	CVL5	-	-	-	43.00	0.00	Drywell GDCS Pool
RPV Pedestal	RPL1	-	-		57.00	0.00	
& Basemat Liner	RPL2	-	-	-	-	-	At LOCA Flooding
MAT Liner	MTL1	-		_	46.02	0.00	Lower Drywell

Table 6.2.3.4-4Thermal Loads for Shell Elements,
Normal Operation: Summer (Continued)

*: See Figures 6.2.3.4-1 through 6.2.3.4-30.

**: See footnotes in Table 6.2.3.4-1.

Location	Index*	Bound	larv**	Thickness	Td	Τα	Note
		1	2	(mm)	(°C)	(°C)	
Basemat	BM1	RM	GR	4000	27.07	23.15	General
	BM2	DW	GR	5100	27.47	23.94	Below lower Drywell
	BM4	DW	FL	5100	27.47	23.94	At LOCA Flooding
	BM6	FP	GR	5500	32.20	33.40	Below Spent Fuel Pool
	BM7	FP	GR	4000	32.20	33.40	Skimmer Surge Tank
RCCV Wall	CV1	RM	RM	2000	40.00	0.00	Below Grade
	CV2	SP	RM	2000	41.66	2.69	Suppression Pool
	CV3	ww	RM	2000	41.61	3.06	Wetwell Air Space
	CV4	DW	RM [·]	2000	48.84	15.79	Drywell General
	CV5	GP	RM	2000	41.66	2.69	Drywell GDCS Pool
	CV6	DW	MT	2000	57.33	1.97	Drywell MS Tunnel
Suppression Pool Slab	SP1	SP	RM	2000	41.66	2.68	
Top Slab	TS1	DW	DP	2400	49.72	14.76	Below DSP/FP
	TS2	DW	IP	2400	49.72	14.76	Below IC/PCCS
1	TS3	DW	XP	2400	49.72	14.76	Below Expansion Pool
	TS4	DW	DP	2400	51.23	15.08	Around Drywell Head
	TS5	DW	RM	2400	48.84	16.23	Below Room
RPV Pedestal	RP1	DW	RM	2400	48.84	16.23	
	RP2	FL.	RM	2400	48.94	16.83	At LOCA Flooding
Pool Girder	PG1	IP	DP	1600	43.00	0.00	
	PG2	XP	DP	1600	43.00	0.00	
	PG3	DP	RM	1600	41.69	2.62	
Pool Gate Wall	PW1	DP	DP	1300	43.00	0.00	
IC/PCCS Pool Wall	PW2	IP	IP	400	43.00	0.00	
	PW4	IP	XP	600	43.00	0.00	
Expansion Pool Wall	PW6	XP	XP	1000	43.00	0.00	
	PW7	XP	XP	2000	43.00	0.00	
	PW8	XP	RM	1000	41.78	2.43	
	PW9	XP	RM	2000	41.66	2.69	
	PW10	RM	RM	1000	40.00	0.00	
	PW11	RM	RM	2000	40.00	0.00	
	PW12	IP	XP	1000	43.00	0.00	
	PW13	IP	RM	1000	41.79	2.42	
	PW14	IP	XP	470	43.00	0.00	
Spent Fuel Pool Wall***	FP7	FP	RM	1500	45.05	7.70	
	FP8	FP	RM	1900	44.94	7.92	
	FP9	FP	RM	1750	44.97	7.85	Around Skimmer Surge Tank
	FP10	FP	RM	2000	44.91	-7.96	
	FP11	FP	FP	1900	48.90	0.00	
	FP12	FP	FP	1750	48.90	0.00	Between Skimmer Surge Tanks

Table 6.2.3.4-5 Thermal Loads for Shell Elements, LOCA After 5 seconds: Summer

*: See Figures 6.2.3.4-1 through 6.2.3.4-30. **: See footnotes in Table 6.2.3.4-1.

l

***: The spent fuel pool is normal condition.

WG3-U71-ERD-S-0004	SH NO.	110
REV. 1	of	543

Location	Index*	Boundary**		Thickness	Td	Tg	Note
		1	2	<u>(mm)</u>	(°C)	(°C)	
Outer Wall	BW1	RM	GR	2000	26.47	21.94	Below Grade General
	BW4	RM	RM	2000	40.00	0.00	Below Grade Stair Case
	BW5	FP	GR	2000	32.19	33.39	Below Grade Spent Fuel Pool
	BW6	FP	GR	3600	32.20	33.39	
	GW1	RM	AT	1500	43.37	-5.14	EL 4650 ~ 27000 General
	GW2	RM	RM	1500	40.00	0.00	EL 4650 ~ 27000 Stair Case
	GW3	XP	AT	1000	44.48	-2.96	EL 27000 ~ IC/PCCS Pool
	GW5	DP	AT	3000	44.52	-3.04	
	GW6	DP	AT	3500	44.53	-3.06	
`	GW7	XP	AT	1500	44.50	-3.01	
	GW8	XP	RM	1000	41.78	2.43	EL 27000 ~ Stair Case/Pool
	GW9	RM	AT	1000	43.49	-4.77	EL 27000 ~ Room
	GW10	RM	RM	1000	40.00	0.00	EL 27000 ~ Stair Case
	GW11	DP	AT	1500	44.53	-3.05	
MS Tunnel	MT1	MT	RM	1300	48.50	12.51	Wall inside Building
	MT2	MT	AT	1300	50.91	8.97	Wall outside Building
	MT4	MT	RM	1600	48.50	13.16	Slab inside Building
	MT5	MT	DP	2400	49.38	12.76	•
	MT6	XP	MT	2400	49.38	-12.75	
	MT7	MT	AT	1600	51.01	9.28	Slab outside Building
	MT8	MT	AT	2400	51.17	9.76	
	MT9	MT	RM	2400	48.50	14.23	
Inner Wall	IW1	RM	RM		40.00	0.00	General
Slab	SL1	RM	RM	-	40.00	0.00	General
	SL2	IP	RM	1000	41.50	2.05	Below & above IC/PCCS Pool
	SL3	XP	RM	1000	41.50	2.05	
	SL4	DP	RM	1000	41.78	2.43	
	SL5	RM	AT	1000	43.49	-4.77	RB Roof at EL 34000
	SL6	XP	AT	1000	44.48	-2.96	· · · · · · · · · · · · · · · · · · ·
	SL7	RM	AT	700	43.63	-4.36	RB Roof at EL 57400
	SL8	RM	AT	700	43.63	-4.36	FB Roof at EL 22500
RCCV Liner	CVL2	-	-	-	43.00	0.00	Suppression Pool
	CVL3		-	-	86.20	0.00	Wetwell Air Space
	CVL4	-		-	133.67	0.00	Drywell General
	CVL5	-	-	-	43.00	0.00	Drywell GDCS Pool
RPV Pedestal	RPL1	-	-	-	133.67	0.00	
& Basemat Liner	RPL2	-	-	-	145.00	0.00	At LOCA Flooding
MAT Liner	MTL1	-	-	_	46.02	0.00	Lower Drywell

Table 6.2.3.4-5 Thermal Loads for Shell Elements, LOCA After 5 seconds: Summer (Continued)

WG3-U71-ERD-S-0004	SH NO.	111
REV. 1	of	543

Location	Index*	Bound	lary**	Thickness	Td	Tg	Note
		1	2	(mm)	(°C)	(°Č)	
Basemat	BM1	RM	GR	4000	27.07	23.15	General
	BM2	DW	GR	5100	27.47	23.94	Below lower Drywell
	BM4	DW	FL	5100	27.47	23.94	At LOCA Flooding
	BM6	FP	GR	5500	32.20	33.40	Below Spent Fuel Pool
	BM7	FP	GR	4000	32.20	33.40	Skimmer Surge Tank
RCCV Wall	CV1	RM	RM	2000	40.00	0.00	Below Grade
	CV2	SP	RM	2000	42.20	5.89	Suppression Pool
	CV3	ww	RM	2000	42.36	7.49	Wetwell Air Space
	CV4	DW	RM	2000	49.67	20.71	Drywell General
	CV5	GP	RM	2000	41.66	2.69	Drywell GDCS Pool
	CV6	DW	MT	2000	58.16	6.84	Drywell MS Tunnel
Suppression Pool Slab	SP1	SP	RM	2000	42.14	5.53	
Top Slab	TS1	DW	DP	2400	50.40	18.79	Below DSP/FP
	TS2	DW	IP	2400	50.59	17.62	Below IC/PCCS
	TS3	DW	XP	2400	50.58	17.72	Below Expansion Pool
	TS4	DW	DP	2400	53.41	18.97	Around Drywell Head
	TS5	DW	RM	2400	49.52	20.25	Below Room
RPV Pedestal	RP1	DW	RM	2400	49.52	20.25	
	RP2	FL	RM	2400	49.29	18.91	At LOCA Flooding
Pool Girder	PG1	IP	DP	1600	43.26	1.52	
	PG2	XP	DP	1600	43.24	1.40	
	PG3	DP	RM	1600	41.69	2.62	
Pool Gate Wall	PW1	DP	DP	1300	43.00	0.00	
IC/PCCS Pool Wall	PW2	IP	IP	400	44.89	0.00	
	PW4	IP	ХР	600	44.21	0.30	
Expansion Pool Wall	PW6	XP	XP	1000	43.71	0.00	
	PW7	XP	XP	2000	43.40	0.00	
	PW8	XP	RM	1000	42.14	4.49	
	PW9	XP	RM	2000	41.86	3.87	
	PW10	RM	RM	1000	40.00	0.00	
	PW11	RM	RM	2000	40.00	0.00	
	PW12	IP	XP	1000	43.74	0.19	
	PW13	IP	RM	1000	42.17	4.69	
	PW14	IP	XP	470	44.54	0.38	
Spent Fuel Pool Wall***	FP7	FP	RM	1500	45.05	7.70	
	FP8	FP	RM	1900	44.94	7.92	
	FP9	FP	RM	1750	44.97	7.85	Around Skimmer Surge Tank
	FP10	FP	RM	2000	44.91	-7.96	<u> </u>
· ·	FP11	FP	FP	1900	48.90	0.00	
	FP12	FP	FP	1750	48.90	0.00	Between Skimmer Surge Tanks

Table 6.2.3.4-6Thermal Loads for Shell Elements,
LOCA After 6 minutes: Summer

*: See Figures 6.2.3.4-1 through 6.2.3.4-30.

**: See footnotes in Table 6.2.3.4-1.

I

***: The spent fuel pool is normal condition.

WG3-U71-ERD-S-0004	SH NO.	112
REV. 1	of	543

Location	Index*	Boundary**		Thickness	Td	Тg	Note
		1	2	(mm)	(°C)	(°C)	
Outer Wall	BW1	RM	GR	2000	26.47	21.94	Below Grade General
	BW4	RM	RM	2000	40.00	0.00	Below Grade Stair Case
	BW5	FP	GR	2000	32.19	33.39	Below Grade Spent Fuel Pool
	BW6	FP	GR	3600	32.20	33.39	
	GW1	RM	AT	1500	43.37	-5.14	EL 4650 ~ 27000 General
	GW2	RM	RM	1500	40.00	0.00	EL 4650 ~ 27000 Stair Case
	GW3	XP	AT	1000	44.83	-0.90	EL 27000 ~ IC/PCCS Pool
	GW5	DP	AT	3000	44.52	-3.04	
	GW6	DP	AT	3500	44.53	-3.06	
	GW7	XP	AT	1500	44.75	-1.54	
	GW8	XP	RM	1000	42.14	4.49	EL 27000 ~ Stair Case/Pool
	GW9	RM	AT	1000	43.49	-4.77	EL 27000 ~ Room
	GW10	RM	RM	1000	40.00	0.00	EL 27000 ~ Stair Case
	GW11	DP	AT	1500	44.53	-3.05	
MS Tunnel	MT1	MT	RM	1300	48.50	12.51	Wall inside Building
	MT2	MT	AT	1300	50.91	8.97	Wall outside Building
	MT4	MT	RM	1600	48.50	13.16	Slab inside Building
	MT5	MT	DP	2400	49.38	12.76	•
	MT6	XP	MT	2400	49.56	-11.69	
	MT7	MT	AT	1600	51.01	9.28	Slab outside Building
	MT8	MT	AT	2400	51.17	9.76	*
	MT9	MT	RM	2400	48.50	14.23	
Inner Wall	IW1	RM	RM	-	40.00	0.00	General
Slab	SL1	RM	RM	-	40.00	0.00	General
	SL2	IP	RM	1000	41.89	4.34	Below & above IC/PCCS Pool
	SL3	XP	RM	1000	41.86	4.15	
	SL4	DP	RM	1000	41.78	2.43	
	SL5	RM	AT	1000	43.49	-4.77	RB Roof at EL 34000
	SL6	XP	AT	1000	44.83	-0.90	
	SL7	RM	AT	700	43.63	-4.36	RB Roof at EL 57400
	SL8	RM	AT	700	43.63	-4.36	FB Roof at EL 22500
RCCV Liner	CVL2	-	-	-	110.00	0.00	Suppression Pool
	CVL3		-	-	130.00	0.00	Wetwell Air Space
	CVL4	-	_	-	171.00	0.00	Drywell General
	CVL5	-	-	-	43.00	0.00	Drywell GDCS Pool
RPV Pedestal	RPL1		-	-	171.00	0.00	
& Basemat Liner	RPL2	-	-	-	145.00	0.00	At LOCA Flooding
MAT Liner	MTL1	-	-		46.02	0.00	Lower Drywell

Table 6.2.3.4-6 Thermal Loads for Shell Elements, LOCA After 6 minutes: Summer (Continued)

WG3-U71-ERD-S-0004	SH NO.	113
REV. 1	of	543

Location	Index*	Bound	larv**	Thickness	Td	Та	Note
		1	2	(mm)	(°C)	(°C)	
Basemat	BM1	RM	GR	4000	27.07	23.15	General
	BM2	DW	GR	5100	27.47	23.94	Below lower Drywell
	BM4	DW	FL	5100	27.47	23.94	At LOCA Flooding
	BM6	FP	GR	5500	32.20	33.40	Below Spent Fuel Pool
	BM7	FP	GR	4000	32.20	33.40	Skimmer Surge Tank
RCCV Wall	CV1	RM	RM	2000	40.00	0.00	Below Grade
	CV2	SP	RM	2000	47.95	34.85	Suppression Pool
	CV3	WW	RM	2000	48.87	40.09	Wetwell Air Space
	CV4	DW	RM	2000	57.44	59.43	Drywell General
	CV5	GP	RM	2000	47.85	34.44	Drywell GDCS Pool
	CV6	DW	MT	2000	65.78	44.88	Drywell MS Tunnel
Suppression Pool Slab	SP1	SP	RM	2000	47.94	34.81	
Top Slab	TS1	DW	DP	2400	56.81	51.83	Below DSP/FP
	TS2	DW	IP	2400	61.94	24.80	Below IC/PCCS
	TS3	DW	XP	2400	61.85	25.20	Below Expansion Pool
	TS4	DW	DP	2400	68.65	48.56	Around Drywell Head
	TS5	DW	RM	2400	55.93	53.28	Below Room
RPV Pedestal	RP1	DW	RM	2400	55.93	53.28	
	RP2	FL	RM	2400	55.52	51.16	At LOCA Flooding
Pool Girder	PG1	IP	DP	1600	50.70	37.81	
	PG2	XP	DP	1600	50.57	37.30	
	PG3	DP	RM	1600	41.69	2.62	
Pool Gate Wall	PW1	DP	DP	1300	43.00	0.00	
IC/PCCS Pool Wall	PW2	IP	IP	400	100.11	0.00	
	PW4	IP	XP	600	83.87	0.33	
Expansion Pool Wall	PW6	XP	XP	1000	67.33	0.00	
1	PW7	XP	XP	2000	55.10	0.00	
	PW8	XP	RM	1000	53.88	54.26	
	PW9	XP	RM	2000	47.69	33.72	
	PW10	RM	RM	1000	40.00	0.00	
	PW11	RM	RM	2000	40.00	0.00	
	PW12	IP	XP	1000	67.53	0.58	
	PW13	IP	RM	1000	54.15	55.02	
1	PW14	IP	XP	470	93.68	0.12	
Spent Fuel Pool Wall***	FP7	FP	RM	1500	45.05	7.70	
	FP8	FP	RM	1900	44.94	7.92	,
	FP9	FP	RM	1750	44.97	7.85	Around Skimmer Surge Tank
	FP10	FP	RM	2000	44.91	-7.96	
	FP11	FP	FP	1900	48.90	0.00	
	FP12	FP	FP	1750	48.90	0.00	Between Skimmer Surge Tanks

Table 6.2.3.4-7Thermal Loads for Shell Elements,LOCA After 10 hours: Summer

*: See Figures 6.2.3.4-1 through 6.2.3.4-30.

**: See footnotes in Table 6.2.3.4-1.

I

***: The spent fuel pool is normal condition.

WG3-U71-ERD-S-0004	SH NO.	114
REV. 1	of	543

Location	Index*	Boundary**		Thickness	Td	Tg	Note
		1	2	(mm)	(°C)	(°C)	
Outer Wall	BW1	RM	GR	2000	26.47	21.94	Below Grade General
	BW4	RM	RM	2000	40.00	0.00	Below Grade Stair Case
	BW5	FP	GR	2000	32.19	33.39	Below Grade Spent Fuel Pool
	BW6	FP	GR	3600	32.20	33.39	
	GW1	RM	AT	1500	43.37	-5.14	EL 4650 ~ 27000 General
	GW2	RM	RM	1500	40.00	0.00	EL 4650 ~ 27000 Stair Case
	GW3	XP	AT	1000	56.57	48.87	EL 27000 ~ IC/PCCS Pool
	GW5	DP	AT	3000	44.52	-3.04	
	GW6	DP	AT	3500	44.53	-3.06	
	GW7	XP	AT	1500	52.55	36.10	
	GW8	XP	RM	1000	53.88	54.26	EL 27000 ~ Stair Case/Pool
	GW9	RM	AT	1000	43.49	-4.77	EL 27000 ~ Room
	GW10	RM	RM	1000	40.00	0.00	EL 27000 ~ Stair Case
	GW11	DP	AT	1500	44.53	-3.05	
MS Tunnel	MT1	MT	RM	1300	48.50	12.51	Wall inside Building
	MT2	MT	AT	1300	50.91	8.97	Wall outside Building
	MT4	MT	RM	1600	48.50	13.16	Slab inside Building
	MT5	MT	DP	2400	49.38	12.76	
	MT6	XP	MT	2400	54.41	13.82	
	MT7	MT	AT	1600	51.01	9.28	Slab outside Building
	MT8	MT	AT	2400	51.17	9.76	
	MT9	MT	RM	2400	48.50	14.23	
Inner Wall	IW1	RM	RM	-	40.00	0.00	General
Slab	SL1	RM	RM	-	40.00	0.00	General
	SL2	IP	RM	1000	53.88	54.83	Below & above IC/PCCS Pool
	SL3	XP	RM	1000	53.68	54.25	
	SL4	DP	RM	1000	41.78	2.43	
	SL5	RM	AT	1000	43.49	-4.77	RB Roof at EL 34000
	SL6	XP	AT	1000	56.57	48.87	
	SL7	RM	AT	700	43.63	-4.36	RB Roof at EL 57400
	SL8	RM	AT	700	43.63	-4.36	FB Roof at EL 22500
RCCV Liner	CVL2	-	-	_	110.00	0.00	Suppression Pool
	CVL3	-	-	-	121.00	0.00	Wetwell Air Space
	CVL4	-	-	-	150.00	0.00	Drywell General
	CVL5	-	-	-	110.00	0.00	Drywell GDCS Pool
RPV Pedestal	RPL1	-	-	-	150.00	0.00	· · · ·
& Basemat Liner	RPL2	-	-	-	145.00	0.00	At LOCA Flooding
MAT Liner	MTL1	-	-	-	46.02	0.00	Lower Drywell

Table 6.2.3.4-7	Thermal Loads for Shell Elements,
LOCA After	10 hours: Summer (Continued)

8	Thermal Loads for Shell Elements,

Table 6.2.3.4-8Thermal Loads for Shell ElexLOCA After 72 hours: Summer

Location	Index*	Boundary**		Thickness	Td	Tg	Note
		1	2	(mm)	(°C)	(°C)	
Basemat	BM1	RM	GR	4000	27.07	23.15	General
	BM2	DW	GR	5100	27.47	23.94	Below lower Drywell
	BM4	DW	FL	5100	27.47	23.94	At LOCA Flooding
	BM6	FP	GR	5500	32.20	33.40	Below Spent Fuel Pool
	BM7	FP	GR	4000	32.20	33.40	Skimmer Surge Tank
RCCV Wall	CV1	RM	RM	2000	40.00	0.00	Below Grade
	CV2	SP	RM	2000	58.58	63.97	Suppression Pool
	CV3	ww	RM	2000	61.28	74.05	Wetwell Air Space
	CV4	DW	RM	2000	72.43	100.39	Drywell General
	CV5	GP	RM	2000	58.55	63.96	Drywell GDCS Pool
	CV6	DW	МТ	2000	80.52	85.14	Drywell MS Tunnel
Suppression Pool Slab	SP1	SP	RM	2000	58.63	63.98	
Top Slab	TS1	DW	DP	2400	69.29	92.58	Below DSP/FP
	TS2	DW	IP	2400	83.38	35.98	Below IC/PCCS
	TS3	DW	XP	2400	83.35	36.04	Below Expansion Pool
	TS4	DW	DP	2400	91.96	79.99	Around Drywell Head
	TS5	DW	RM	2400	68.39	94.07	Below Room
RPV Pedestal	RP1	DW	RM	2400	68.39	94.07	
	RP2	FL	RM	2400	67.34	89.83	At LOCA Flooding
Pool Girder	PG1	IP	DP	1600	63.99	65.12	
	PG2	XP	DP	1600	63.95	65.09	
	PG3	DP	RM	1600	41.69	2.62	
Pool Gate Wall	PW1	DP	DP	1300	43.00	0.00	
IC/PCCS Pool Wall	PW2	IP	IP	400	110.00	0.00	
	PW4	IP	XP	600	109.81	0.00	
Expansion Pool Wall	PW6	XP	XP	1000	102.60	0.00	
· ·	PW7	XP	XP	2000	76.75	0.00	
	PW8	XP	RM	1000	73.42	63.26	
	PW9	XP	RM	2000	58.49	63.85	
	PW10	RM	RM	1000	40.00	0.00	
	PW11	RM	RM	2000	40.00	0.00	
	PW12	IP	XP	1000	102.63	0.00	
	PW13	IP	RM	1000	73.58	63.18	
	PW14	IP	XP	470	110.00	0.00	
Spent Fuel Pool Wall***	FP7	FP	RM	1500	45.05	7.70	
	FP8	FP	RM	1900	44.94	7.92	
	FP9	FP	RM	1750	44.97	7.85	Around Skimmer Surge Tank
	FP10	FP	RM	2000	44.91	-7.96	R
	FP11	FP	FP	1900	48.90	0.00	
	FP12	FP	FP	1750	48.90	0.00	Between Skimmer Surge Tanks

*: See Figures 6.2.3.4-1 through 6.2.3.4-30.

**: See footnotes in Table 6.2.3.4-1.

I

***: The spent fuel pool is normal condition.

WG3-U71-ERD-S-0004	SH NO.	116
REV. 1	of	543

Location	Index*	Boundary**		Thickness	Td	Тg	Note
		1	2	(mm)	(°C)	(°C)	
Outer Wall	BW1	RM	GR	2000	26.47	21.94	Below Grade General
	BW4	RM	RM	2000	40.00	0.00	Below Grade Stair Case
	BW5	FP	GR	2000	32.19	33.39	Below Grade Spent Fuel Pool
	BW6	FP	GR	3600	32.20	33.39	
	GW1	RM	AT	1500	43.37	-5.14	EL 4650 ~ 27000 General
	GW2	RM	RM	1500	40.00	0.00	EL 4650 ~ 27000 Stair Case
	GW3	XP	AT	1000	74.79	62.12	EL 27000 ~ IC/PCCS Pool
	GW5	DP	AT	3000	44.52	-3.04	
	GW6	DP	AT	3500	44.53	-3.06	
	GW7	XP	AT	1500	66.71	62.44	
	GW8	XP	RM	1000	73.42	63.26	EL 27000 ~ Stair Case/Pool
	GW9	RM	AT	1000	43.49	-4.77	EL 27000 ~ Room
	GW10	RM	RM	1000	40.00	0.00	EL 27000 ~ Stair Case
	GW11	DP	AT	1500	44.53	-3.05	
MS Tunnel	MT1	MT	RM	1300	48.50	12.51	Wall inside Building
	MT2	MT	AT	1300	50.91	8.97	Wall outside Building
	MT4	MT	RM	1600	48.50	13.16	Slab inside Building
	MT5	MT	DP	2400	49.38	12.76	
	MT6	XP	MT	2400	63.41	43.71	
	MT7	MT	AT	1600	51.01	9.28	Slab outside Building
	MT8	MT	AT	2400	51.17	9.76	
	MT9	MT	RM	2400	48.50	14.23	
Inner Wall	IW1	RM	RM	-	40.00	0.00	General
Slab	SL1	RM	RM	-	40.00	0.00	General
	SL2	IP	RM	1000	73.41	63.28	Below & above IC/PCCS Pool
	SL3	XP	RM	1000	73.36	63.31	
	SL4	DP	RM	1000	41.78	2.43	
	SL5	RM	AT	1000	43.49	-4.77	RB Roof at EL 34000
	SL6	XP	AT	1000	74.79	62.12	
	SL7	RM	AT	700	43.63	-4.36	RB Roof at EL 57400
	SL8	RM	AT	700	43.63	-4.36	FB Roof at EL 22500
RCCV Liner	CVL2	-	1	-	110.00	0.00	Suppression Pool
	CVL3	-	1	_	121.00	0.00	Wetwell Air Space
	CVL4	-	-	-	150.00	0.00	Drywell General
	CVL5	-	-	-	110.00	0.00	Drywell GDCS Pool
RPV Pedestal	RPL1	-	-		150.00	0.00	
& Basemat Liner	RPL2	-	-		145.00	0.00	At LOCA Flooding
MAT Liner	MTL1	-	-	-	47.08	0.00	Lower Drywell

Table 6.2.3.4-8 Thermal Loads for Shell Elements, LOCAAfter 72 hours: Summer (Continued)

WG3-U71-ERD-S-0004	SH NO.	117
REV. 1	of	543

· · · · · · · · · · · · · · · · · · ·				r			
Location	Index*	Bound	lary**	Thickness	Td	Тg	Note
		1	2	(mm)	(°C)	(°C)	
Basemat	BM1	RM	GR	4000	12.90	-5.20	General
	BM2	DW	GR	5100	27.47	23.94	Below lower Drywell
	BM4	DW	FL	5100	-	-	At LOCA Flooding
	BM6	FP	GR	5500	32.20	33.40	Below Spent Fuel Pool
	BM7	<u>FP</u>	GR	4000	32.20	33.40	Skimmer Surge Tank
RCCV Wall	CV1	RM	RM	2000	10.00	0.00	Below Grade
	CV2	SP	RM	2000	28.22	29.53	Suppression Pool
	CV3	WW	RM	2000	26.50	26.73	Wetwell Air Space
	CV4	DW	RM	2000	33.50	38.08	Drywell General
	CV5	GP	RM	2000	28.23	29.54	Drywell GDCS Pool
	CV6	DW	MT	2000	57.00	0.00	Drywell MS Tunnel
Suppression Pool Slab	SP1	SP	RM	2000	28.22	29.50	
Top Slab	TS1	DW	DP	2400	49.38	12.75	Below DSP/FP
	TS2	DW	IP	2400	49.38	12.75	Below IC/PCCS
	TS3	DW	XP	2400	49.38	12.75	Below Expansion Pool
	TS4	DW	DP	2400	50.81	12.61	Around Drywell Head
	TS5	DW	RM	2400	33.50	39.33	Below Room
RPV Pedestal	RP1	DW	RM	2400	33.50	39.33	
	RP2	FL	RM	2400	-	-	At LOCA Flooding
Pool Girder	PG1	IP	DP	1600	43.00	0.00	
	PG2	ХР	DP	1600	43.00	0.00	
	PG3	DP	RM	1600	28.60	28.80	
Pool Gate Wall	PW1	DP	DP	1300	43.00	0.00	
IC/PCCS Pool Wall	PW2	IP	IP	400	43.00	0.00	
	PW4	IP	XP	600	43.00	0.00	
Expansion Pool Wall	PW6	XP	XP	1000	43.00	0.00	
	PW7	XP	XP	2000	43.00	0.00	
	PW8	XP	RM	1000	29.63	26.71	
	PW9	XP	RM	2000	28.22	29.53	
	PW10	RM	RM	1000	10.00	0.00	<u>}</u>
	PW11	RM	RM	2000	10.00	0.00	
	PW12	IP	XP	1000	43.00	0.00	
	PW13	IP	RM	1000	29.65	26.67	
	PW/14	IP	XP	470	43.00		
Spent Fuel Pool Wall***	FP7	FP	RM	1500	32.07	33.63	
	FP8	FP	RM	1900	31.58	34.62	
	FPQ	FP	RM	1750	31 74	34 30	Around Skimmer Surge Tank
	FP10	FP	RM	2000	31 48	-34.82	
	FP11	FP	FP	1900	48 90	0.00	
	FP12	FP	FP	1750	48.90		Between Skimmer Surge Tanks

Table 6.2.3.4-9 Thermal Loads for Shell Elements, Normal Operation: Winter

*: See Figures 6.2.3.4-1 through 6.2.3.4-30. **: See footnotes in Table 6.2.3.4-1. ***: The spent fuel pool is normal condition.

WG3-U71-ERD-S-0004	SH NO.	118
REV. 1	of	543

Location	Index*	Boundary**		Thickness	Td	Tg	Note
		1	2	(mm)	(°C)	(°Č)	
Outer Wall	BW1	RM	GR	2000	13.04	-4.93	Below Grade General
	BW4	RM	RM	2000	10.00	0.00	Below Grade Stair Case
	BW5	FP	GR	2000	32.19	33.39	Below Grade Spent Fuel Pool
	BW6	FP	GR	3600	32.20	33.39	
	GW1	RM	AT	1500	-17.73	42.29	EL 4650 ~ 27000 General
	GW2	RM	RM	1500	10.00	0.00	EL 4650 ~ 27000 Stair Case
	GW3	XP	AT	1000	3.08	79.74	EL 27000 ~ IC/PCCS Pool
	GW5	DP	AT	3000	2.17	81.66	
	GW6	DP	AT	3500	1.97	82.06	
	GW7	XP	AT	1500	2.57	80.80	
	GW8	XP	RM	1000	29.63	26.71	EL 27000 ~ Stair Case/Pool
	GW9	RM	AT	1000	-18.80	39.27	EL 27000 ~ Room
	GW10	RM	RM	1000	10.00	0.00	EL 27000 ~ Stair Case
	GW11	DP	AT	1500	2.58	80.84	
MS Tunnel	MT1	MT	RM	1300	33.50	34.58	Wall inside Building
	MT2	MT	AT	1300	2.54	80.15	Wall outside Building
	MT4	ΜT	RM	1600	33.50	36.39	Slab inside Building
	MT5	MT	DP	2400	49.38	12.76	
	MT6	XP	MT	2400	49.38	-12.75	
	MT7	MT	∕ AT	1600	3.49	82.85	Slab outside Building
	MT8	MT	AT	2400	4.99	87.08	
	MT9	MT	RM	2400	33.50	39.30	
Inner Wall	IW1	RM	RM	-	10.00	0.00	General
Slab	SL1	RM	RM	-	10.00	0.00	General
	SL2	IP	RM	1000	26.49	22.45	Below & above IC/PCCS Pool
	SL3	XP	RM	1000	26.49	22.45	
	SL4	DP	RM	1000	29.62	26.76	
	SL5	RM	AT	1000	-18.80	39.27	RB Roof at EL 34000
	SL6	XP	AT	1000	3.08	79.74	
	SL7	RM	AT	700	-19.97	35.96	RB Roof at EL 57400
	SL8	RM	AT	700	-19.97	35.96	FB Roof at EL 22500
RCCV Liner	CVL2	-	-	-	43.00	0.00	Suppression Pool
	CVL3	-	1		43.00	0.00	Wetwell Air Space
	CVL4	-	-	-	57.00	0.00	Drywell General
	CVL5	-	-	_	43.00	0.00	Drywell GDCS Pool
RPV Pedestal	RPL1	-	-	-	57.00	0.00	
& Basemat Liner	RPL2	-	-	-		-	At LOCA Flooding
MAT Liner	MTL1	-	-	-	46.02	0.00	Lower Drywell

Table 6.2.3.4-9 Thermal Loads for Shell Elements, Normal Operation: Winter (Continued)

*: See Figures 6.2.3.4-1 through 6.2.3.4-30. **: See footnotes in Table 6.2.3.4-1.

i.

1

WG3-U71-ERD-S-0004	SH NO.	119
REV. 1	of	543

Table 6.2.3.4-10 Thermal Loads for Shell Elements, LOCA After 5 seconds: Winter

Location	Index*	Boundary**		Thickness	Td	Tg	Note	
		1	2	(mm)	(°C)	(°C)		
Basemat	BM1 ·	RM	GR	4000	12.90	-5.20	General	
	BM2	DW	GR	5100	27.47	23.94	Below lower Drywell	
	BM4	DW	FL	5100	27.47	23.94	At LOCA Flooding	
	BM6	FP	GR	5500	32.20	33.40	Below Spent Fuel Pool	
	BM7	FP	GR	4000	32.20	33.40	Skimmer Surge Tank	
RCCV Wall	CV1	RM	RM	2000	10.00	0.00	Below Grade	
1	CV2	SP	RM	2000	28.22	29.53	Suppression Pool	
	CV3	ww	RM	2000	26.61	27.42	Wetwell Air Space	
	CV4	DW	RM	2000	33.85	40.18	Drywell General	
	CV5	GP	RM	2000	28.23	29.54	Drywell GDCS Pool	
	CV6	DW	MT	2000	57.33	1.97	Drywell MS Tunnel	
Suppression Pool Slab	SP1	SP	RM	2000	28.22	29.50		
Top Slab	TS1	DW	DP	2400	49.72	14.76	Below DSP/FP	
	TS2	DW	IP	2400	49.72	14.76	Below IC/PCCS	
	TS3	DW	XP	2400	49.72	14.76	Below Expansion Pool	
	TS4	DW	DP	2400	51.23	15.08	Around Drywell Head	
	TS5	DW	RM	2400	33.85	41.41	Below Room	
RPV Pedestal	RP1	DW	RM	2400	33.85	41.41		
	RP2	FL ·	RM	2400	33.95	42.01	At LOCA Flooding	
Pool Girder	PG1	IP	DP	1600	43.00	0.00		
	PG2	XP	DP	1600	43.00	0.00		
	PG3	DP	RM	1600	28.60	28.80		
Pool Gate Wall	PW1	DP	DP	1300	43.00	0.00		
IC/PCCS Pool Wall	PW2	IP	IP	400	43.00	0.00		
	PW4	IP	XP	600	43.00	0.00		
Expansion Pool Wall	PW6	XP	XP	1000	43.00	0.00		
	PW7	XP	XP	2000	43.00	0.00		
	PW8	XP	RM	1000	29.63	26.71		
	PW9	XP	RM	2000	28.22	29.53		
	PW10	RM	RM	1000	10.00	0.00		
	PW11	RM	RM	2000	10.00	0.00		
	PW12	IP	XP	1000	43.00	0.00		
	PW13	IP	RM	1000	29.65	26.67		
	PW14	IP	XP	470	43.00	0.00		
Spent Fuel Pool Wall***	FP7	FP	RM	1500	32.07	33.63		
	FP8	FP	RM	1900	31.58	34.62		
	FP9	FP	RM	1750	31.74	34.30	Around Skimmer Surge Tank	
	FP10	FP	RM	2000	31.48	-34.82		
	FP11	FP	FP	1900	48.90	0.00		
	FP12	FP	FP	1750	48.90	0.00	Between Skimmer Surge Tanks	

*: See Figures 6.2.3.4-1 through 6.2.3.4-30.
**: See footnotes in Table 6.2.3.4-1.
***: The spent fuel pool is normal condition.

1

WG3-U71-ERD-S-0004	SH NO.	120
REV. 1	of	543

Location	Index*	Boundary**		Thickness	Td	Τα	Note
		1	2	(mm)	(°C)	(°C)	
Outer Wall	BW1	RM	GR	2000	13.04	-4.93	Below Grade General
	BW4	RM	RM	2000	10.00	0.00	Below Grade Stair Case
	BW5	FP	GR	2000	32.19	33.39	Below Grade Spent Fuel Pool
	BW6	FP	GR	3600	32.20	33.39	
	GW1	RM	AT	1500	-17.73	42.29	EL 4650 ~ 27000 General
	GW2	RM	RM	1500	10.00	0.00	EL 4650 ~ 27000 Stair Case
	GW3	XP	AT	1000	3.08	79.74	EL 27000 ~ IC/PCCS Pool
	GW5	DP	AT	3000	2.17	81.66	
	GW6	DP	AT	3500	1.97	82.06	
	GW7	XP	AT	1500	2.57	80.80	
	GW8	XP	RM	1000	29.63	26.71	EL 27000 ~ Stair Case/Pool
	GW9	RM	AT	1000	-18.80	39.27	EL 27000 ~ Room
	GW10	RM	RM	1000	10.00	0.00	EL 27000 ~ Stair Case
	GW11	DP	AT	1500	2.58	80.84	
MS Tunnel	MT1	MT	RM	1300	33.50	34.58	Wall inside Building
l	MT2	МТ	AT	1300	2.54	80.15	Wall outside Building
	MT4	MT	RM	1600	33.50	36.39	Slab inside Building
	MT5	MT	DP	2400	49.38	12.76	
	MT6	XP	MT	2400	49.38	-12.75	
	MT7	MT	AT	1600	3.49	82.85	Slab outside Building
	MT8	MT	AT	2400	4.99	87.08	
	MT9	MT	RM	2400	33.50	39.30	
Inner Wall	IW1	RM	RM	-	10.00	0.00	General
Slab	SL1	RM	RM	-	10.00	0.00	General
	SL2	IP	RM	1000	26.51	22.55	Below & above IC/PCCS Pool
	SL3	XP	RM	1000	26.51	22.55	
	SL4	DP	RM	1000	29.62	26.76	
	SL5	RM	AT	1000	-18.80	39.27	RB Roof at EL 34000
	SL6	XP	AT	1000	3.08	79.74	
	SL7	RM	AT	700	-19.97	35.96	RB Roof at EL 57400
_	SL8	RM	AT	700	-19.97	35.96	FB Roof at EL 22500
RCCV Liner	CVL2		-	_	43.00	0.00	Suppression Pool
	CVL3		-	-	86.20	0.00	Wetwell Air Space
	CVL4	-	-	-	133.67	0.00	Drywell General
	CVL5	-	-	-	43.00	0.00	Drywell GDCS Pool
RPV Pedestal	RPL1	-	-	-	133.67	0.00	
& Basemat Liner	RPL2	-	-	-	145.00	0.00	At LOCA Flooding
MAT Liner	MTL1	-	-	-	46.02	0.00	Lower Drywell

Table 6.2.3.4-10Thermal Loads for Shell Elements,
LOCA After 5 seconds: Winter (Continued)

WG3-U71-ERD-S-0004	SH NO.	121
	_	

REV. 1

of 543

Table 6.2.3.4-11 Thermal Loads for Shell Elements, LOCA After 6 minutes: Winter

Location	Index*	Boundary**		Thickness	Td	Тд	Note
		1	2	(mm)	(°C)	(°C)	
Basemat	BM1	RM	GR	4000	12.90	-5.20	General
	BM2	DW	GR	5100	27.47	23.94	Below lower Drywell
	BM4	DW	FL	5100	27.47	23.94	At LOCA Flooding
	BM6	FP	GR	5500	32.20	33.40	Below Spent Fuel Pool
	BM7	FP	GR	4000	32.20	33.40	Skimmer Surge Tank
RCCV Wall	_CV1	RM	RM	2000	10.00	0.00	Below Grade
	CV2	SP	RM	2000	28.77	32.74	Suppression Pool
	CV3	ww	RM	2000	27.38	31.96	Wetwell Air Space
	CV4	DW	RM	2000	34.70	45.19	Drywell General
	CV5	GP	RM	2000	28.23	29.54	Drywell GDCS Pool
	CV6	DW	MT	2000	58.16	6.84	Drywell MS Tunnel
Suppression Pool Slab	SP1	SP	RM	2000	28.70	32.35	
Top Slab	TS1	DW	DP	2400	50.40	18.79	Below DSP/FP
	TS2	DW	IP	2400	50.59	17.62	Below IC/PCCS
	TS3	DW	XP	2400	50.58	17.72	Below Expansion Pool
	TS4	DW	DP	2400	53.41	18.97	Around Drywell Head
	TS5	DW	RM	2400	34.54	45.48	Below Room
RPV Pedestal	RP1	DW	RM	2400	34.54	45.48	
	RP2	FL	RM	2400	34.31	44.14	At LOCA Flooding
Pool Girder	PG1	IP	DP	1600	43.26	1.52	
	PG2	XP	DP	1600	43.24	1.40	
	PG3	DP	RM	1600	28.60	28.80	
Pool Gate Wall	PW1	DP	DP	1300	43.00	0.00	
IC/PCCS Pool Wall	PW2	IP	IP	400	44.89	0.00	
	PW4	IP	XP	600	44.21	0.30	
Expansion Pool Wall	PW6	XP	XP	1000	43.71	0.00	
	PW7	XP	XP	2000	43.40	0.00	
	PW8	ХР	RM	1000	29.98	28.78	
	PW9	XP	RM	2000	28.42	30.72	
	PW10	RM	RM	1000	10.00	0.00	
	PW11	RM	RM	2000	10.00	0.00	
	PW12	IP	XP	1000	43.74	0.19	
	PW13	IP	RM	1000	30.04	28.93	_
	PW14	IP	XP	470	44.54	0.38	
Spent Fuel Pool Wall***	FP7	FP	RM	1500	32.07	33.63	
	FP8	FP	RM	1900	31.58	34.62	
	FP9	FP	RM	1750	31.74	34.30	Around Skimmer Surge Tank
	FP10	FP	RM	2000	31.48	-34.82	
	FP11	FP	FP	1900	48.90	0.00	· · · · · · · · · · · · · · · · · · ·
	FP12	FP	FP	1750	48.90	0.00	Between Skimmer Surge Tanks

*: See Figures 6.2.3.4-1 through 6.2.3.4-30.**: See footnotes in Table 6.2.3.4-1.

[

***: The spent fuel pool is normal condition.

WG3-U71-ERD-S-0004	SH NO.	122
REV. 1	of	543

Location	Index*	Boundary**		Thickness	Td	Tg	Note
		1	2	(mm)	(°C)	(°C)	
Outer Wall	BW1	RM	GR	2000	13.04	-4.93	Below Grade General
	BW4	RM	RM	2000	10.00	0.00	Below Grade Stair Case
	BW5	FP	GR	2000	32.19	33.39	Below Grade Spent Fuel Pool
	BW6	FP	GR	3600	32.20	33.39	
	GW1	RM	AT	1500	-17.73	42.29	EL 4650 ~ 27000 General
	GW2	RM	RM	1500	10.00	0.00	EL 4650 ~ 27000 Stair Case
	GW3	XP	AT	1000	3.43	81.80	EL 27000 ~ IC/PCCS Pool
	GW5	DP	AT	3000	2.17	81.66	
	GW6	DP	AT	3500	1.97	82.06	
	GW7	XP	AT	1500	2.81	82.27	
	GW8	XP	RM	1000	29.98	28.78	EL 27000 ~ Stair Case/Pool
	GW9	RM	AT	1000	-18.80	39.27	EL 27000 ~ Room
	GW10	RM	RM	1000	10.00	0.00	EL 27000 ~ Stair Case
	GW11	DP	AT	1500	2.58	80.84	
MS Tunnel	MT1	МТ	RM	1300	33.50	34.58	Wall inside Building
	MT2	MT	AT	1300	2.54	80.15	Wall outside Building
	MT4	MT	RM	1600	33.50	36.39	Slab inside Building
	MT5	MT	DP	2400	49.38	12.76	
	MT6	XP	MT	2400	49.56	-11.69	
	MT7	MT	AT	1600	3.49	82.85	Slab outside Building
	MT8	MT	AT	2400	4.99	87.08	
	MT9	MT	RM	2400	33.50	39.30	
Inner Wall	IW1	RM	RM	-	10.00	0.00	General
Slab	SL1	RM	RM	-	10.00	0.00	General
	SL2	IP	RM	1000	26.97	25.26	Below & above IC/PCCS Pool
	SL3	XP	RM	1000	26.94	25.08	
	SL4	DP	RM	1000	29.62	26.76	
	SL5	RM	AT	1000	-18.80	39.27	RB Roof at EL 34000
	SL6	XP	AT	1000	3.43	81.80	
	SL7	RM	AT	700	-19.97	35.96	RB Roof at EL 57400
	SL8	RM	AT	700	-19.97	35.96	FB Roof at EL 22500
RCCV Liner	CVL2	-	-	-	110.00	0.00	Suppression Pool
	CVL3	-	-	-	130.00	0.00	Wetwell Air Space
	CVL4	-	-	-	171.00	0.00	Drywell General
	CVL5	-	-	-	43.00	0.00	Drywell GDCS Pool
RPV Pedestal	RPL1	-	-	-	171.00	0.00	
& Basemat Liner	RPL2	-	-	-	145.00	0.00	At LOCA Flooding
MAT Liner	MTL1	-	-	-	46.02	0.00	Lower Drywell

Table 6.2.3.4-11 Thermal Loads for Shell Elements, LOCA After 6 minutes: Winter (Continued)

WG3-U71-ERD-S-0004	SH NO.	123
REV. 1	of	543

Table 6.2.3.4-12	Thermal Load	s for Shel	l Elements,
LOCA	After 10 hours	s: Winter	

Location	Index*	Boundary**		Thickness	Td	Tg	Note
		1	2	(mm)	(°C)	(°C)	
Basemat	BM1	RM	GR	4000	12.90	-5.20	General
	BM2	DW	GR	5100	27.47	23.94	Below lower Drywell
	BM4	DW	FL	5100	27.47	23.94	At LOCA Flooding
	BM6	FP	GR	5500	32.20	33.40	Below Spent Fuel Pool
	BM7	FP	GR	4000	32.20	33.40	Skimmer Surge Tank
RCCV Wall	CV1	RM	RM	2000	10.00	0.00	Below Grade
	CV2	SP	RM	2000	34.51	61.70	Suppression Pool
	CV3	ww	RM	2000	34.13	65.76	Wetwell Air Space
	CV4	DW	RM	2000	42.70	85.11	Drywell General
	CV5	GP	RM	2000	34.42	61.30	Drywell GDCS Pool
	CV6	DW	MT	2000	65.78	44.88	Drywell MS Tunnel
Suppression Pool Slab	SP1	SP	RM	2000	34.51	61.63	
Top Slab	TS1	DW	DP	2400	56.81	51.83	Below DSP/FP
	TS2	DW	IP	2400	61.94	24.80	Below IC/PCCS
	TS3	DW	XP	2400	61.85	25.20	Below Expansion Pool
	TS4	DW	DP	2400	68.65	48.56	Around Drywell Head
	TS5	DW	RM	2400	41.12	79.39	Below Room
RPV Pedestal	RP1	DW	RM	2400	41.12	79.39	
	RP2	FL	RM	2400	40.71	77.28	At LOCA Flooding
Pool Girder	PG1	IP	DP	1600	50.70	37.81	
	PG2	XP	DP	1600	50.57	37.30	
	PG3	DP	RM	1600	28.60	28.80	
Pool Gate Wall	PW1	DP	DP	1300	43.00	0.00	
IC/PCCS Pool Wall	PW2	IP	IP	400	100.11	0.00	
	PW4	IP	XP	600	83.87	0.33	
Expansion Pool Wall	PW6	XP	XP	1000	67.33	0.00	
	PW7	XP	XP	2000	55.10	0.00	
	PW8	XP	RM	1000	41.72	78.55	
]	PW9	XP	RM	2000	34.25	60.57	
	PW10	RM	RM	1000	10.00	0.00	
	PW11	RM	RM	2000	10.00	0.00	
	PW12	IP	XP	1000	67.53	0.58	
1	PW13	IP	RM	1000	42.01	79.27	
	PW14	IP	XP	470	93.68	0.12	
Spent Fuel Pool Wall***	FP7	FP	RM	1500	32.07	33.63	
	FP8	FP	RM	1900	31.58	34.62	
	FP9	FP	RM	1750	31.74	34.30	Around Skimmer Surge Tank
	FP10	FP	RM	2000	31.48	-34.82	*
	FP11	FP	FP	1900	48.90	0.00	
	FP12	FP	FP	1750	48.90	0.00	Between Skimmer Surge Tanks

*: See Figures 6.2.3.4-1 through 6.2.3.4-30. **: See footnotes in Table 6.2.3.4-1. ***: The spent fuel pool is normal condition.

ļ

WG3-U71-ERD-S-0004	SH NO.	124
REV. 1	of	543

Table 6.2.3.4-12 Thermal Loads for Shell Elements, LOCA After 10 hours: Winter (Continued)

Location	Index*	Boundary**		Thickness	Td	Tg	Note
		1	2	(mm)	(°C)	(°C)	
Outer Wall	BW1	RM	GR	2000	13.04	-4.93	Below Grade General
	BW4	RM	RM	2000	10.00	0.00	Below Grade Stair Case
	BW5	FP	GR	2000	32.19	33.39	Below Grade Spent Fuel Pool
	BW6	FP	GR	3600	32.20	33.39	
	GW1	RM	AT	1500	-17.73	42.29	EL 4650 ~ 27000 General
	GW2	RM	RM	1500	10.00	0.00	EL 4650 ~ 27000 Stair Case
	GW3	XP	AT	1000	15.17	131.57	EL 27000 ~ IC/PCCS Pool
	GW5	DP	AT	3000	2.17	81.66	
	GW6	DP	AT	3500	1.97	82.06	
	GW7	XP	AT	1500	10.61	119.91	
	GW8	XP	RM	1000	41.72	78.55	EL 27000 ~ Stair Case/Pool
	GW9	RM	AT	1000	-18.80	39.27	EL 27000 ~ Room
	GW10	RM	RM	1000	10.00	0.00	EL 27000 ~ Stair Case
_	GW11	DP	AT	1500	2.58	80.84	
MS Tunnel	MT1	MT	RM	1300	33.50	34.58	Wall inside Building
	MT2	MT	AT	1300	2.54	80.15	Wall outside Building
	MT4	MT	RM	1600	33.50	36.39	Slab inside Building
	MT5	MT	DP	2400	49.38	12.76	
	MT6	XP	MT	2400	54.41	13.82	
	MT7	MT	AT	1600	3.49	82.85	Slab outside Building
	MT8	MT	AT	2400	4.99	87.08	
	MT9	MT	RM	2400	33.50	39.30	
Inner Wall	IW1	RM	RM	-	10.00	0.00	General
Slab	SL1	RM	RM	-	10.00	0.00	General
	SL2	IP	RM	1000	39.78	79.05	Below & above IC/PCCS Pool
	SL3	XP	RM	1000	39.58	78.47	
	SL4	DP	RM	1000	29.62	26.76	
	SL5	RM	AT	1000	-18.80	39.27	RB Roof at EL 34000
	SL6	XP	AT	1000	15.17	131.57	
	SL7	RM	AT	700	-19.97	35.96	RB Roof at EL 57400
	SL8	RM	AT	700	-19.97	35.96	FB Roof at EL 22500
RCCV Liner	CVL2	-	-	-	110.00	0.00	Suppression Pool
	CVL3	-	-	-	121.00	0.00	Wetwell Air Space
	CVL4	-	-	_	150.00	0.00	Drywell General
	CVL5	-	-		110.00	0.00	Drywell GDCS Pool
RPV Pedestal	RPL1	-	-	_	150.00	0.00	
& Basemat Liner	RPL2	-	-	-	145.00	0.00	At LOCA Flooding
MAT Liner	MTL1	-	-	-	46.02	0.00	Lower Drywell

WG3-U71-ERD-S-0004	SH NO.	125
REV. 1	of	543

LOCA Alter 72 nouis. White								
Location	Index*	Bound	lary**	Thickness	Td	Tg	Note	
		1	2	(mm)	(°C)	(°Č)		
Basemat	BM1	RM	GR	4000	12.90	-5.20	General	
	BM2	DW	GR	5100	27.47	23.94	Below lower Drywell	
	BM4	DW	FL	5100	27.47	23.94	At LOCA Flooding	
	BM6	FP	GR	5500	32.20	33.40	Below Spent Fuel Pool	
	BM7	FP	GR	4000	32.20	33.40	Skimmer Surge Tank	
RCCV Wall	CV1	RM	RM	2000	10.00	0.00	Below Grade	
1	CV2	SP	RM	2000	45.15	90.82	Suppression Pool	
	CV3	ww	RM	2000	47.00	100.95	Wetwell Air Space	
	CV4	DW	RM	2000	58.15	127.30	Drywell General	
	CV5	GP	RM	2000	45.12	90.82	Drywell GDCS Pool	
	CV6	DW	MT	2000	80.52	85.14	Drywell MS Tunnel	
Suppression Pool Slab	SP1	SP	RM	2000	45.20	90.80	······	
Top Slab	TS1	DW	DP	2400	69.29	92.58	Below DSP/FP	
	TS2	DW	IP	2400	83.38	35.98	Below IC/PCCS	
	TS3	DW	XP	2400	83.35	36.04	Below Expansion Pool	
	TS4	DW	DP	2400	91.96	79.99	Around Drywell Head	
	TS5	DW	RM	2400	53.91	121.24	Below Room	
RPV Pedestal	RP1	DW	RM	2400	53.91	121.24		
	RP2	FL	RM	2400	52.85	117.00	At LOCA Flooding	
Pool Girder	PG1	IP	DP	1600	63.99	65.12		
	PG2	XP	DP	1600	63.95	65.09		
	PG3	DP	RM	1600	28.60	28.80		
Pool Gate Wall	PW1	DP	DP	1300	43.00	0.00		
IC/PCCS Pool Wall	PW2	IP	IP	400	110.00	0.00		
	PW4	IP	XP	600	109.81	0.00		
Expansion Pool Wall	PW6	XP	XP	1000	102.60	0.00		
	PW7	XP	XP	2000	76.75	0.00		
	PW8	XP	RM	1000	61.26	87.55		
	PW9	XP	RM	2000	45.06	90.70		
	PW10	RM	RM	1000	10.00	0.00		
	PW11	RM	RM	2000	10.00	0.00		
	PW12	IP	XP	1000	102.63	0.00		
	PW13	IP	RM	1000	61.44	87.42		
	PW14	IP	XP	470	110.00	0.00		
Spent Fuel Pool Wall***	FP7	FP	RM	1500	32.07	33.63		
	FP8	FP	RM	1900	31.58	34.62		
	FP9	FP	RM	1750	31.74	34.30	Around Skimmer Surge Tank	
	FP10	FP	RM	2000	31.48	-34.82		
	FP11	FP	FP	1900	48.90	0.00		
	FP12	FP	FP	1750	48.90	0.00	Between Skimmer Surge Tanks	

Table 6.2.3.4-13 Thermal Loads for Shell Elements, LOCA After 72 hours: Winter

*: See Figures 6.2.3.4-1 through 6.2.3.4-30. **: See footnotes in Table 6.2.3.4-1.

ł

***: The spent fuel pool is normal condition.

WG3-U71-ERD-S-0004	SH NO.	126
REV. 1	of	543

					· · · ·		
Location	Index*	Bound	dary**	Thickness	Td	Tg	Note
0.1			2	(mm)	(°C)	(°C)	Deleve Ore de Ore est
Outer Wall	BW1	<u></u>	GR	2000	13.04	-4.93	Below Grade General
	BVV4			2000	10.00	0.00	Below Grade Stair Case
	BVV5		GR	2000	32.19	33.39	Below Grade Spent Fuel Pool
	BW6		GR	3600	32.20	33.39	
	GW1		AI	1500	-17.73	42.29	EL 4650 ~ 27000 General
	GW2	RM	RM	1500	10.00	0.00	EL 4650 ~ 27000 Stair Case
	GW3	XP	AT	1000	33.31	145.06	EL 27000 ~ IC/PCCS Pool
	GW5	DP_	AT	3000	2.17	81.66	
	GW6	DP_	AT	3500	1.97	82.06	
	GW7	XP_	AT	1500	24.77	146.28	
	GW8	XP	RM	1000	61.26	87.55	EL 27000 ~ Stair Case/Pool
	GW9	RM	AT	1000	-18.80	39.27	EL 27000 ~ Room
	GW10	RM	RM	1000	10.00	0.00	EL 27000 ~ Stair Case
	GW11	DP	AT	1500	2.58	80.84	
MS Tunnel	MT1	MT	RM	1300	33.50	34.58	Wall inside Building
	_ MT2	MT	AT	1300	2.54	80.15	Wall outside Building
	MT4	MT	RM	1600	33.50	36.39	Slab inside Building
	MT5	MT_	DP	2400	49.38	12.76	
	MT6	XP	MT	2400	63.41	43.71	
	MT7	MT	AT	1600	3.49	82.85	Slab outside Building
	MT8	MT	AT	2400	4.99	87.08	
	MT9	MT	RM	2400	33.50	39.30	
Inner Wall	IW1	RM	RM	-	10.00	0.00	General
Slab	SL1	RM	RM	-	10.00	0.00	General
	SL2	IP	RM	1000	60.67	88.02	Below & above IC/PCCS Pool
	SL3	XP	RM	1000	60.63	88.06	
	SL4	DP	RM	1000	29.62	26.76	
	SL5	RM	AT	1000	-18.80	39.27	RB Roof at EL 34000
	SL6	XP	AT	1000	33.31	145.06	
	SL7	RM	AT	700	-19.97	35.96	RB Roof at EL 57400
	SL8	RM	AT	700	-19.97	35.96	FB Roof at EL 22500
RCCV Liner	CVL2	-	-	-	110.00	0.00	Suppression Pool
	CVL3	-	-	-	121.00	0.00	Wetwell Air Space
	CVL4	-	-	-	150.00	0.00	Drywell General
	CVL5	_	-	-	110.00	0.00	Drywell GDCS Pool
RPV Pedestal	RPL1		-	-	150.00	0.00	
& Basemat Liner	RPL2	-	-	-	145.00	0.00	At LOCA Flooding
MAT Liner	MTL1		-	-	47.08	0.00	Lower Drywell
RCCV Liner RPV Pedestal & Basemat Liner MAT Liner	SL8 CVL2 CVL3 CVL4 CVL5 RPL1 RPL2 MTL1		- - - - -		-19.97 110.00 121.00 150.00 110.00 150.00 145.00 47.08	35.95 0.00 0.00 0.00 0.00 0.00 0.00 0.00	PB Roof at EL 22500 Suppression Pool Wetwell Air Space Drywell General Drywell GDCS Pool At LOCA Flooding Lower Drywell

Table 6.2.3.4-13 Thermal Loads for Shell Elements, LOCA After 72 hours: Winter (Continued)

WG3-U71-ERD-S-000	04 SH NO.	127
REV. 1	of	543

Column	Index	Boundary ^{*1}					Summer		Winter		
/Girder		x1	x2	y1	y2	Td (°C)	Tg'x ^{*2} (°C)	Tg'y*2 (°C)	Td (°C)	Tg'x ^{*2} (°C)	Tg'y ^{*2} (°C)
Girder	CB1	RM	RM	RM	RM	40.00	0.00	0.00	10.00	0.00	0.00
Cloumn	CB1	RM	RM	RM	RM	40.00	0.00	0.00	10.00	0.00	0.00
	CB2	RM	RM	RM	AT	41.75	0.00	-3.18	-4.40	0.00	26.18
	CB3	RM	AT	RM	AT	43.49	-3.18	-3.18	-18.80	26.18	26.18
	CB4	RM	AT	RM	RM	41.75	-3.18	0.00	-4.40	26.18	0.00

 Table 6.2.3.4-14
 Thermal Loads for Beam Elements

*1: RM: Room AT: Outer Air *2: Tg' means effective liner gradient.

Tg'=Tg/t

Table 6.2.3.4-15Thermal Loads for Rod Elements of RCCV Top Head Opening at All
Seasons

Event	Summer & Winter
Event	Td (°C)
Normal Operation	57.00
LOCA 5sec	133.67
LOCA 6min	171.00
LOCA 10hr	150.00
LOCA 72hr	150.00

Load Label	Load Condition	Season	GDCS Condition	Spent Fuel Pool Condition
	Event			
TLS0	Normal Operation	Summer		Normal Operation
TLW0		Winter]	
TLS1	LOCA5sec	Summer	water height is 4.41m.	
TLW1		Winter]	
TLS2	LOCA6min	Summer]	
TLW2		Winter		
TLS3	LOCA10hr	Summer		
TLW3		Winter		
TLS4	LOCA72hr	Summer		
TLW4		Winter	· · ·	
TLS5	LOCA5sec	Summer	water height is 0.792 m.	1
TLW5		Winter		
TLS6	LOCA6min	Summer		
TLW6		Winter		
TLS7	LOCA10hr	Summer		
TLW7		Winter		
TLS8	LOCA72hr	Summer		
TLW8		Winter		
TFS5	LOCA5sec	Summer	LOCA Flooding	· ·
TFW5		Winter	water height is 0.792 m	
TFS6	LOCA6min	Summer		
TFW6		Winter		
TFS7	LOCA10hr	Summer		
TFW7		Winter		
TFS8	LOCA72hr	Summer		
TFW8		Winter		
TSS0	Normal Operation	Summer	water height is 0.792 m.	DBA 72hr
TSW0		Winter		
TSS8	LOCA72hr	Summer		
TSW8		Winter]	
TWC1		Winter]	
TWC2		Winter]	
TWC3		Winter]	
TWC4		Winter		

Table 6.2.3.4-16 Design Thermal Load Labels

WG3-U71-ERD-S-0004	SH NO.	129
REV. 1	of	543

Table 6.2.3.4-17Thermal Loads for Shell Elements around Spent Fuel Pool,
72 hours After DBA: Summer

Location	Index*	Boundary**		Thickness	Td	Tg	Note
		1	2	(mm) _	(°C)	(°C)	
Basemat	BM6	FP	GR	5500	36.74	56.83	Below Spent Fuel Pool
	BM7	FP	GR	4000	38.45	63.68	Skimmer Surge Tank
Spent Fuel Pool Wall***	FP7	FP	RM	1500	61.65	57.12	
	FP8	FP	RM	1900	58.10	54.97	
	FP9	FP	RM	1750	59.26	56.04	Around Skimmer Surge Tank
	FP10	FP	RM	2000	57.42	-54.16	
	FP11	FP	FP	1900	75.29	0.00	
	FP12	FP	FP	1750	77.51	0.00	Between Skimmer Surge Tanks
Outer Wall	BW5	FP	GR	2000	44.70	79.61	Below Grade Spent Fuel Pool
	BW6	FP	GR	3600	39.14	66.16	

*: See Figures 6.2.3.4-1 through 6.2.3.4-30.

**: See footnotes in Table 6.2.3.4-1.

***: The spent fuel pool is normal condition.

Table 6.2.3.4-18	Thermal Loads for Shell Elements around Spent Fuel Pool,
	72 hours After DBA: Winter

Location	Index*	Boundary**		Thickness	Td	Tg	Note
		1	2	(mm)	. (°C)	(°C)	
Basemat	BM6	FP	GR	5500	36.74	56.83	Below Spent Fuel Pool
	BM7	FP	GR	4000	38.45	63.68	Skimmer Surge Tank
Spent Fuel Pool Wall***	FP7	FP	RM	1500	48.67	83.06	
	FP8	FP	RM	1900	44.74	81.67	
	FP9	FP	RM	1750	46.02	82.49	Around Skimmer Surge Tank
	FP10	FP	RM	2000	43.99	-81.01	
	FP11	FP	FP	1900	75,29	0.00	
	FP12	FP	FP	1750	77.51	0.00	Between Skimmer Surge Tanks
Outer Wall	BW5	FP GR		2000	44.70	79.61	Below Grade Spent Fuel Pool
	BW6	FP	GR	3600	39.14	66.16	

*: See Figures 6.2.3.4-1 through 6.2.3.4-30.

**: See footnotes in Table 6.2.3.4-1.

***: The spent fuel pool is normal condition.

WG3-U71-ERD-S-0004	SH NO.	130
REV. 1	of	543

Table 6.2.3.4-19Thermal Loads for Shell Elements,
LOCA After 72 hours: Winter (Case 1)

Portion Section ** t (°C) (recum*h*C) (°C) (recum*h*C) (°C) (recum*h*C) Floor Slab EAW Side S1.1 RM RM - 100 10.0 6.00:00 0.00 10.00				Sic	le ^{*2}	Thie	ck.	Tempe	erature	Thin Fil	m Coef.	Surface	Temp.	Linea	rized T	emp.
Floor Slab E&W Side SL1 RM RM - 10.0 10.0 60E+00 10.0	Por	tion	Section ^{*1}			l t		- ee	2)	(kcal/r	n²h⁰C)	ഀ	2)		(°C)	
Floor Slab E&W Side SL4 SL1 RM RM - 1 0.0 0.00 1.00 <				1	2	(mm)	(m)	TI	T2	h1	h2	Ts1	Ts2	Tđ	Tg	Tg/t
SL2 RM AT 1000 1.0 100 1.0 1000 1.0 1000 1.0 1000 1.0 1000 1.0 1000 1.0 1000 1.0 1000 1.0 1000 1.0 1000 1.0 1000 1.0 1000 1.0 1000 1.0 1000 1.0 0.0 2.8 2.6 6.4 6.1 8.1.08 3.9.2 7.8	Floor Slab	E&W Side	SL1	RM	RM	-	-	10.0	10.0	6.0E+00	6.0E+00	10.00	10.00	10.00	0.0	0.00
SL2 RM AT 1000 10.0 10.0 0.00 0.01 0.02 0.024 0.28.0 0.93.3 92.3 EAST Side SL2E IP RM XI 1000 1.02 1.02 0.02+00 1.02+09 0.024-00 1.02+09 2.346 110.00 6.67.3 -86.5 -57.69 SLDE RM XI 1000 1.01 0.01 0.01 0.01 0.02 0.02 2.346 110.00 6.67.3 -86.5 57.69 SL10E RM XI 1000 1.01 10.01 10.01 10.00 10.00 10.00 10.00 2.826 6.946 81.1 81.08 SL10E RM XI RM 1000 1.0 10.00 10.01 10.00 2.826 6.946 81.1 81.08 SL10W RM XI 1000 1.0 10.00 1.0 10.00 1.0 1.0 1.0 1.0 1.0 1.0			SL4	RM	BP	2400	2.4	10.0	44.0	6.0E+00	1.0E+99	13.01	44.00	28.51	-31.0	-12.91
EAST Side SL2E IP RM 1000 10.0 10.0er-99 6.0E+00 1000 28.92 69.46 81.1 81.08 SL3E RM XI 1500 1.5 100 10.0 0.0E+99 3.5E+01 43.00 -66.23 -86.9 -7.99 SLDE RM XO 1500 10.0 0.0E+09 1.0E+99 1.44 43.00 28.72 28.66 110.00 1.02 3.5E+01 1.00.0 28.92 69.46 81.1 81.08 SL12E PR RM 1000 1.0 10.00 10.00 28.92 69.46 81.1 81.08 SL13E XI RM 1000 1.0 10.00 10.00 28.92 69.46 81.1 81.08 SL13E XI RM 1000 1.0 10.0 10.00 28.92 69.46 81.1 81.08 SL13E XI RM 1000 1.0 10.0 10.0 10.0			SL5	RM	AT	1000	1.0	10.0	-40.0	6.0E+00	3.5E+01	0.84	-38.43	-18.80	39,3	39.27
State RM XI 1500 10.0 6.0E+09 23.46 110.00 66.73 -86.5 -57.69 SLGE XO AT 1000 1.0 43.0 -60.70 10E+99 32.46 110.00 66.73 -86.5 -57.69 SL10E RM XS 1500 1.0 10.00 10.00 10.00 23.46 110.00 66.73 -86.5 -57.69 SL11E XS RM 1000 1.0 10.00 10.00 28.92 69.46 81.1 81.08 SL12E PP RM 10000 1.0 10.00 10.00 28.92 69.46 81.1 81.08 WEST Side SL2W PL RM 10000 1.0 10.00 10.00 28.92 69.46 81.1 81.08 SL3W RM XI 1500 1.0 10.00 15.0 10.00 10.00 28.92 69.46 81.1 81.08 57.69 51.51 <td></td> <td>EAST Side</td> <td>SL2E</td> <td>IP</td> <td>RM</td> <td>1000</td> <td>1.0</td> <td>110.0</td> <td>10.0</td> <td>1.0E+99</td> <td>6.0E+00</td> <td>110.00</td> <td>28.92</td> <td>69.46</td> <td>81.1</td> <td>81.08</td>		EAST Side	SL2E	IP	RM	1000	1.0	110.0	10.0	1.0E+99	6.0E+00	110.00	28.92	69.46	81.1	81.08
SLGE XC0 AT 1000 1.0 43.0 -40.0 10.E+99 3.5E+01 43.00 -36.81 31.0 79.8 79.81 SL9E RM XO 1500 1.5 10.0 10.0 10.00 10.00 23.46 110.00 28.72 28.6 1.9.04 SL11E XS RM 1000 1.0 10.00 10.0E+99 6.0E+00 110.00 23.46 110.00 28.92 69.46 81.1 81.08 SL12E PP RM 1000 1.0 10.00 10.00 10.00 28.92 69.46 81.1 81.08 SL13E XI RM 11000 1.0 10.00 10.00 23.46 10.00 23.7 36.5 3.76.9 37.56 3.75.9 3.75.9 3.55 1.57.9 3.55 1.57.0 10.00 10.00 23.46 10.00 28.9 69.46 81.1 81.08 SL1W XX RM 1000 <t< td=""><td></td><td></td><td>SL3E</td><td>RM</td><td>XI</td><td>1500</td><td>1.5</td><td>10.0</td><td>110.0</td><td>6.0E+00</td><td>1.0E+99</td><td>23.46</td><td>110.00</td><td>66.73</td><td>-86.5</td><td>-57.69</td></t<>			SL3E	RM	XI	1500	1.5	10.0	110.0	6.0E+00	1.0E+99	23.46	110.00	66.73	-86.5	-57.69
SL9E RM XO 1500 1.5 10.0 43.0 6.0E+09 1.44 43.00 28.72 28.6 19.04 SL10E RM XS 1500 11.00 10.00 10.0E+99 23.46 110.00 66.73 48.6 3.7.69 SL11E XS RM 1000 1.0 10.00 10.00 28.92 69.46 81.1 81.88 SL12E IP RM 1000 1.0 10.00 10.0E+99 6.0E+00 110.00 28.92 69.46 81.1 81.88 SL2W IP RM 1000 1.0 10.0 10.0E+99 6.0E+00 110.00 28.92 69.46 81.1 81.08 SL3W RM XI 1500 1.0 10.0 60E+00 110.00 28.2 69.46 81.1 81.08 SL1W RM XI 1500 1.0 10.0 10.00 28.92 69.46 81.1 81.08 83.0			SL6E	xo	AT	1000	1.0	43.0	-40.0	1.0E+99	3.5E+01	43.00	-36.81	3.10	79.8	79.81
SLIDE RM XS 1500 11.0.0 6.0E+00 1.0E+99 23.46 110.0.0 6.6E-30 9.82 6.9.46 81.1 81.08 SL11E XS RM 1000 10.0 10.0 10.0 10.0 28.92 69.46 81.1 81.08 SL13E PP RM 1000 10.0 10.0 10.0E+99 6.0E+00 110.00 28.92 69.46 81.1 81.08 WEST Side SL2W IP RM 1500 1.0 10.0 6.0E+00 110.00 6.83.0 27.9 28.6 69.46 81.1 81.08 SL10W RM XO 1500 1.5 10.0 10.0 6.0E+00 110.00 28.2 69.46 81.1 81.08 SL10W RM XO 1500 1.0 10.0 10.0 10.0 23.66 7.0 86.5 57.69 SL10W RM XO 1500 10.0 10.0 10.0	l	l t	SL9E	RM	xo	1500	1.5	10.0	43.0	6.0E+00	1.0E+99	14.44	43.00	28.72	-28.6	-19.04
SL11E XS RM 1000 10.0 10.0 10.00 28.92 69.46 81.1 81.08 SL12E PP RM 1000 10.0 10.0 10.00 28.92 69.46 81.1 81.08 WEST Side SL2W IP RM 1000 10.0 10.0 10.00 28.92 69.46 81.1 81.08 SL3W RM XI 1500 1.5 10.0 10.0 10.09 28.92 69.46 81.1 81.08 SL3W RM XI 1500 1.5 10.0 10.0 10.09 30.0 -36.81 31.0 79.81 78.0 SL9W RM XI 1000 10.0 10.0 10.09 23.64 10.00 68.45 -7.69 SL11W XR RM 1000 10.0 10.0 10.09 23.64 10.00 83.0 -30.92 69.46 81.1 81.08 81.08 81.08 81.08			SL10E	RM	XS	1500	1.5	10.0	110.0	6.0E+00	1.0E+99	23.46	110.00	66.73	-86.5	-57.69
SL12E PP RM 1000 10.0 10.0 10.00 28.92 69.46 81.1 81.08 WEST Side SL13E XI RM 1000 10 10.0 10.02 10.09 28.92 69.46 81.1 81.08 WEST Side SL2W IP RM 1000 10.0 10.0 10.02 10.02 96.02 10.00 28.92 69.46 81.1 81.08 SL3W RM XO AT 1000 10.0 10.02 0.02+99 13.44 10.00 66.73 86.5 7.57.93 SL10W RM XO 10.00 10.0 10.00 0.05 0.02+99 13.44 43.00 28.2 69.46 81.1 81.08 SL12W PR RM 1000 10.0 10.00 10.02 10.00 28.92 69.46 81.1 81.08 SL12W PR RM 1000 10.0 10.02 10.00 10.00			SL11E	XS	RM	1000	1.0	110.0	10.0	1.0E+99	6.0E+00	110.00	28.92	69.46	81.1	81.08
SL13E XI RM 1000 1.0 1100 10.0e 10.0e 28.92 69.46 81.1 81.08 WEST Side SL2W IP RM 1000 1.0 1100 0.0 10.0e+99 6.0E+00 110.00 28.92 69.46 81.1 81.08 SL3W RM XI 1500 11.0 6.0E+00 10.0e+99 23.46 110.00 66.73 86.5 -57.69 SL1W XX RM 1000 1.0 43.0 60E+00 10.0e+99 23.46 110.00 66.73 86.5 -57.69 SL1W XS RM 1000 1.0 10.00 10.0e+99 23.46 10.00 66.73 86.5 -57.69 SL1W XS RM 1000 1.0 10.00 10.0e+99 23.46 10.00 35.30 53.0 22.08 48.11 81.08 MS Tummel E&W Side MT5 MT DS 2400 2.4 <			SL12E	PP	RM	1000	1.0	110.0	10.0	1.0E+99	6 0E+00	110 00	28 92	69 46	81.1	81.08
WEST Side SL2W IP RM 1000 1.0 10.0 28.92 69.46 81.1 81.08 SL1W MT MT MT 10.0 10.0 10.0 10.0 28.92 69.46 81.1 81.08 SL1W XT RM 1000 1.0 10.0 10.0 10.0 10.0 28.92 69.46 81.1 81.08			SL13E		RM	1000	1.0	110.0	10.0	1.0E+99	6 0E+00	110.00	28.92	69.46	81.1	81.08
Bit No. 1 SL3W RM XI ISO IS		WEST Side	SL2W	IP	RM	1000	1.0	110.0	10.0	1.0E+99	6.0E+00	110.00	28.92	69.46	81.1	81.08
SL6W XO AT 1000 100 43.0 1000 1000 35.00 1000 36.81 31.0 100.0 36.81 31.0 100.0 35.00 SL9W RM XO 1500 1.5 10.0 43.0 6.0E+00 10.E+99 23.46 110.00 66.73 46.5 57.69 SL1W RX RM 1000 1.0 110.0 10.0 10.02 28.92 69.46 81.1 81.08 SL12W PP RM 1000 1.0 110.0 10.0 10.02 28.92 69.46 81.1 81.08 SL13W XI RM 1000 1.0 10.0E+99 10.00 28.92 69.46 81.1 81.08 MTS MT AT 2400 2.4 57.0 10.0 10.0E+99 10.00 28.92 69.46 81.1 81.08 MTS MT XI 2400 2.4 57.0 10.0 10.0E+99<			SL3W	RM	XI	1500	1.5	10.0	110.0	6.0E+00	1 0E+99	23.46	110.00	66 73	-86.5	-57.69
SL9W RM X0 1000 1030 1030 10300 <td></td> <td> </td> <td>SL 6W</td> <td>X0</td> <td>AT</td> <td>1000</td> <td>1.0</td> <td>43.0</td> <td>-40.0</td> <td>1.0E+99</td> <td>3.5E+01</td> <td>43.00</td> <td>-36.81</td> <td>3 10</td> <td>70.8</td> <td>79.81</td>			SL 6W	X0	AT	1000	1.0	43.0	-40.0	1.0E+99	3.5E+01	43.00	-36.81	3 10	70.8	79.81
Bar			SL9W	RM	xo	1500	1.5	10.0	43.0	6 0E+00	1 0E+99	14 44	43.00	28 72	-28.6	-19.04
SLIW X8 RM 1000 100 1000 1000 1000 1000 1000 128.92 628.40 638.30 638.30 538.30 </td <td></td> <td></td> <td>SI 10W</td> <td>RM</td> <td>XS</td> <td>1500</td> <td>1.5</td> <td>10.0</td> <td>110.0</td> <td>6 0E+00</td> <td>1.0E+99</td> <td>23.46</td> <td>110.00</td> <td>66 73</td> <td>-86.5</td> <td>-17.04</td>			SI 10W	RM	XS	1500	1.5	10.0	110.0	6 0E+00	1.0E+99	23.46	110.00	66 73	-86.5	-17.04
SL1W PK No 1000 100 100 100 100 28.22 0.9.40 81.1 81.08 MS Tunnel E&W Side MT5 MT DS 2400 2.4 57.0 110.0 10.02 28.92 69.46 81.1 81.08 MS Tunnel E&W Side MT5 MT DS 2400 2.4 57.0 110.0 10.02 28.92 69.46 81.1 81.08 MS Tunnel E&W Side MT5 MT DS 2400 2.4 57.0 10.01 10.02 92.82 69.46 81.1 81.08 MT5 MT6 MT XS 2400 2.4 57.0 10.01 10.02 92.82 69.46 81.1 81.08 WEST Side MT6W MT XS 2400 2.4 57.0 10.02 0.024.00 10.02 0.024.00 10.02 0.024.01 10.02 0.024.01 10.02 0.024.01 10.02 0.024.01			SLIIW	VS	RM	1000	1.0	110.0	10.0	1.0E+00	1.0E+00	110.00	28.02	60.46	-00.J	81.09
SL12W TR TOO TO TO <th< td=""><td></td><td></td><td>SL12W</td><td>PD</td><td>RM</td><td>1000</td><td>1.0</td><td>110.0</td><td>10.0</td><td>1.0E+99</td><td>6.0E+00</td><td>110.00</td><td>20.92</td><td>69.40</td><td>01.1 01.1</td><td>81.08</td></th<>			SL12W	PD	RM	1000	1.0	110.0	10.0	1.0E+99	6.0E+00	110.00	20.92	69.40	01.1 01.1	81.08
MS Tunnnel E&W Side MT5 MT DS 2400 2.4 57.0 11.00 10.8499 1.08499 57.00 10.00 83.50 53.00 22.08 MS MT8 MT DX 2400 2.4 57.00 11.00 10.8499 1.08499 57.00 13.00 53.00 22.08 MT8 MT AT 2400 2.4 57.00 10.00 10.8499 57.00 11.00 0.83.50 53.00 22.08 EAST Side MT6W MT XS 2400 2.4 57.00 11.00 10.8499 57.00 11.00 0.83.50 53.0 -22.08 Top Slab E&W Side TS1 DW DS 2400 2.4 150.0 110.0 0.06-60 0.02+99 17.00 110.00 18.23 3.65 15.19 TS5 DW RP 2400 2.4 150.0 110.0 6.02+00 0.866 21.40 80.00 11.72 84.84 <td></td> <td></td> <td>SL 13W</td> <td></td> <td>RM</td> <td>1000</td> <td>1.0</td> <td>110.0</td> <td>10.0</td> <td>1.05+99</td> <td>6.0E+00</td> <td>110.00</td> <td>28.92</td> <td>60.46</td> <td>01.1 01.1</td> <td>81.08</td>			SL 13W		RM	1000	1.0	110.0	10.0	1.05+99	6.0E+00	110.00	28.92	60.46	01.1 01.1	81.08
Ministrik Lik Wolke MT MT 2400 2.4 57.0 40.0 10.21279 157.00 10.30 <t< td=""><td>MS Tunnel</td><td>F&W Side</td><td>MTS</td><td>MT</td><td>DS</td><td>2400</td><td>24</td><td>57.0</td><td>110.0</td><td>1.05+00</td><td>1 0E+99</td><td>57.00</td><td>110.00</td><td>83.50</td><td>-53.0</td><td>-22.08</td></t<>	MS Tunnel	F&W Side	MTS	MT	DS	2400	24	57.0	110.0	1.05+00	1 0E+99	57.00	110.00	83.50	-53.0	-22.08
Into Into <th< td=""><td>ivis i uninci</td><td>Let W Blue</td><td>MT8</td><td>MT</td><td>AT</td><td>2400</td><td>2.4</td><td>57.0</td><td>-40.0</td><td>1.02+99</td><td>3 5E+01</td><td>57.00</td><td>-38.41</td><td>9 30</td><td>95.4</td><td>39.75</td></th<>	ivis i uninci	Let W Blue	MT8	MT	AT	2400	2.4	57.0	-40.0	1.02+99	3 5E+01	57.00	-38.41	9 30	95.4	39.75
EAST Side MTOS NT XX 2400 2.4 57.0 10.0 10.27.90 17.30 <th17.30< th=""> <th17.30< th=""> <th17.30< <="" td=""><td></td><td></td><td>MT9</td><td>MT</td><td>RM</td><td>2400</td><td>2.4</td><td>57.0</td><td>10.0</td><td>1.05+00</td><td>6.0E+00</td><td>57.00</td><td>14.16</td><td>35.58</td><td>12.8</td><td>17.85</td></th17.30<></th17.30<></th17.30<>			MT9	MT	RM	2400	2.4	57.0	10.0	1.05+00	6.0E+00	57.00	14.16	35.58	12.8	17.85
WEST Side MT6L MT XS 2400 2.4 57.0 110.0 102-99 1.02+99 1.02+99 1.02+99 57.00 110.0 83.36 65.36 -53.0 -22.08 Top Slab E&W Side TS1 DW DS 2400 2.4 150.0 110.0 6.0E+00 1.0E+99 146.46 110.00 128.23 36.5 15.19 TS5 DW RM 2400 2.4 150.0 10.0 6.0E+00 1.0E+99 146.46 110.00 128.23 36.5 15.19 TS5 DW RM 2400 2.4 150.0 110.0 6.0E+00 1.0E+99 146.46 110.00 128.23 36.5 15.19 TS2E DW IP 2400 2.4 150.0 110.0 6.0E+00 1.0E+99 146.46 110.00 128.23 36.5 15.19 TS6E DW XI 2400 2.4 150.0 110.0 6.0E+00 1.0E+99		EAST Side	MT6E	MT	XS	2400	2.4	57.0	10.0	1.05+99	1 05+00	57.00	110.00	83.50	53.0	-22.08
Top Slab E&W Side TS1 DW DS 2400 2.4 150.0 10.05 0.05+99 146.46 110.00 128.23 36.5 15.19 Top Slab E&W Side TS1 DW RW 2400 2.4 150.0 110.0 6.0E+00 1.0E+99 146.46 110.00 128.23 36.5 15.19 TS5 DW RW 2400 2.4 150.0 10.0 6.0E+00 138.60 21.40 80.00 117.2 48.84 TS7 DW BP 2400 2.4 150.0 110.0 6.0E+00 1.0E+99 146.46 110.00 128.23 36.5 15.19 TS3E DW IP 2400 2.4 150.0 110.0 6.0E+00 1.0E+99 146.46 110.00 128.23 36.5 15.19 TS3E DW IP 2400 2.4 150.0 110.0 6.0E+00 1.0E+99 146.46 110.00 128.23 36.5		WEST Side	MT6W	MT	XS XS	2400	2.4	57.0	110.0	1.0E+99	1.0E+99	57.00	110.00	83.50	52.0	-22.08
Top Sind Edw Side Tof DW DW 2400 2.4 150.0 110.0 6.0E+00 10.00 120.2 133.6 151.9 TS5 DW RM 2400 2.4 150.0 110.0 6.0E+00 138.60 21.40 80.00 117.2 48.84 TS7 DW BP 2400 2.4 150.0 110.0 6.0E+00 1.0E+99 146.46 110.00 128.23 36.5 15.19 TS3E DW NI 2400 2.4 150.0 110.0 6.0E+00 1.0E+99 146.46 110.00 128.23 36.5 15.19 TS3E DW NI 2400 2.4 150.0 110.0 6.0E+00 1.0E+99 146.46 110.00 128.23 36.5 15.19 TS3W DW RI 2400 2.4 150.0 110.0 6.0E+00 1.0E+99 146.46 110.00 128.23 36.5 15.19 TS6W DW <td>Ton Slab</td> <td>F&W Side</td> <td>TS1</td> <td>DW</td> <td>DS</td> <td>2400</td> <td>2.4</td> <td>150.0</td> <td>110.0</td> <td>6.0E±00</td> <td>1.0E+00</td> <td>146.46</td> <td>110.00</td> <td>128.23</td> <td>36.5</td> <td>15 10</td>	Ton Slab	F&W Side	TS1	DW	DS	2400	2.4	150.0	110.0	6.0E±00	1.0E+00	146.46	110.00	128.23	36.5	15 10
Fish DW RM 2400 2.4 150.0 110.0 100.10 100.30		Le W Side	TS4		RW	2400	2.4	150.0	110.0	6.0E+00	1.05+00	146.46	110.00	120.23	36.5	15.19
Pool Girder E&W Side PG3 RM DO0 2.4 150.0 140.0 10.00 10.00 10.01 <th< td=""><td></td><td> </td><td>TS5</td><td></td><td>RM</td><td>2400</td><td>2.4</td><td>150.0</td><td>10.0</td><td>6 0E+00</td><td>6.0E+00</td><td>138.60</td><td>21.40</td><td>80.00</td><td>117.2</td><td>48 84</td></th<>			TS5		RM	2400	2.4	150.0	10.0	6 0E+00	6.0E+00	138.60	21.40	80.00	117.2	48 84
EAST Side TS2E DW DI 2400 2.4 1000 6.0E+00 1.0D+99 146.46 110.00 128.23 36.5 15.19 TS3E DW XI 2400 2.4 150.0 110.0 6.0E+00 1.0E+99 146.46 110.00 128.23 36.5 15.19 TS6E DW PP 2400 2.4 150.0 110.0 6.0E+00 1.0E+99 146.46 110.00 128.23 36.5 15.19 WEST Side TS2W DW IP 2400 2.4 150.0 110.0 6.0E+00 1.0E+99 146.46 110.00 128.23 36.5 15.19 WEST Side TS2W DW IP 2400 2.4 150.0 110.0 6.0E+00 1.0E+99 146.46 110.00 128.23 36.5 15.19 TS6W DW PP 2400 2.4 150.0 110.0 6.0E+00 1.0E+99 146.46 110.00 140.2 7.05					RP	2400	2.4	150.0	44.0	6.0E+00	1 05+00	140.61	44.00	02.00	06.6	40.04
EAST Side 1322 DW II 2400 2.4 150.0 10.0 6.0E+00 1.02F/9 146.46 110.00 128.23 35.3 15.19 TSSE DW PP 2400 2.4 150.0 110.0 6.0E+00 1.0E+99 146.46 110.00 128.23 36.5 15.19 WEST Side TS2W DW IP 2400 2.4 150.0 110.0 6.0E+00 1.0E+99 146.46 110.00 128.23 36.5 15.19 WEST Side TS2W DW IP 2400 2.4 150.0 110.0 6.0E+00 1.0E+99 146.46 110.00 128.23 36.5 15.19 TS3W DW XI 2400 2.4 150.0 110.0 6.0E+00 1.0E+99 146.46 110.00 128.23 36.5 15.19 TS6W DW PP 2400 2.4 150.0 110.0 6.0E+00 1.0E+99 146.46 110.00 10.00 <td></td> <td>EAST Side</td> <td>TS2E</td> <td></td> <td>IP</td> <td>2400</td> <td>2.4</td> <td>150.0</td> <td>110.0</td> <td>6.0E+00</td> <td>1.05+00</td> <td>146.01</td> <td>110.00</td> <td>128.22</td> <td>26.5</td> <td>15 10</td>		EAST Side	TS2E		IP	2400	2.4	150.0	110.0	6.0E+00	1.05+00	146.01	110.00	128.22	26.5	15 10
TSDE DW AI 24:00 2.4 10:00 10:00 10:00 10:00 10:00 10:00 10:00 10:00 10:00 10:00 10:00 128:23 30:0 11:17 TSGE DW PP 2400 2.4 150:0 110:0 6:0E+00 1.0E+99 146:46 110:00 128:23 36:5 15:19 TS3W DW XI 2400 2.4 150:0 110:0 6:0E+00 1.0E+99 146:46 110:00 128:23 36:5 15:19 TS6W DW PP 2400 2.4 150:0 110:0 6:0E+00 1.0E+99 146:46 110:00 128:23 36:5 15:19 TS6W DW PP 2400 2.4 150:0 110:0 6:0E+00 1.0E+99 146:46 110:00 128:23 36:5 15:19 Pool Girder E&W Side PG3 RM DS 1600 1.6 110:0 10:0E+99 1.0E+99	1	LAST Side	TS2E		VI	2400	2.4	150.0	110.0	6.0E+00	1.05+00	140.40	110.00	120.23	26.5	15.19
WEST Side DW II 2400 2.4 100.0 100.	i		TSAE		DD	2400	2.4	150.0	110.0	6.0E+00	1.05+99	140.40	110.00	120.23	26.5	15.19
WEST Side IS2W DW II 2400 2.4 150.0 110.0 6.0E+09 146.46 110.00 122.53 36.3 15.19 TS3W DW XI 2400 2.4 150.0 110.0 6.0E+00 1.0E+99 146.46 110.00 128.23 36.5 15.19 Pool Girder E&W Side PG3 RM DS 1600 1.6 10.0 10.0E+09 126.23 36.5 15.19 Pool Girder E&W Side PG3 RM DS 1600 1.6 10.0 10.0E+99 124.33 44.00 29.16 -29.7 -18.55 EAST Side PG1E PP RW 1600 1.6 110.0 10.0E+99 10.00 110.00 10.00 0.0		WEST Side	TSOL		ID	2400	2.4	150.0	110.0	0.0E+00	1.05+00	140.40	110.00	120.23	26.5	15.19
Image: Problem information informating information information information information info		WEST Side	152W			2400	2.4	150.0	110.0	6.0E+00	1.0E+99	140.40	110.00	128.23	30.3	15.19
Pool Girder E&W Side PG3 RM DS 1600 1.6 10.0 6.0E+00 1.0E+99 146.46 110.00 128.23 36.5 15.19 Pool Girder E&W Side PG3 RM DS 1600 1.6 10.0 110.0 6.0E+00 1.0E+99 22.73 110.00 66.36 -87.3 -54.55 PG7 RM BP 1600 1.6 10.0 44.0 6.0E+00 1.0E+99 14.33 44.00 29.16 -29.7 -18.55 EAST Side PG1E PP RW 1600 1.6 110.0 10.0E+99 1.0E+99 110.00 110.00 0.00 0.00 PG2E XI BP 1600 1.6 110.0 110.0 1.0E+99 10E+99 110.00 110.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00			TRAW			2400	2.4	150.0	110.0	0.0E+00	1.05+99	140.40	110.00	128.23	20.5	15.19
Pool Grider Feas RMI DS 1000 1.6 10.0 10.0 6.0E+00 1.0E+99 22.73 110.00 66.36 -87.3 -34.35 PG7 RM BP 1600 1.6 10.0 44.0 6.0E+00 1.0E+99 14.33 44.00 29.16 -29.7 -18.55 EAST Side PG1E PP RW 1600 1.6 110.0 10.0e+99 1.0E+99 10.00 110.00 10.00 0.0 0.00 PG2E XI BP 1600 1.6 110.0 10.0 1.0E+99 10.00 110.00 110.00 0.0 0.00 PG4E IP DS 1600 1.6 110.0 110.0 1.0E+99 10.00 110.00 110.00 0.0	Deal Cirdae	E P.W/ Cide	DO3		De	1400	2.4	130.0	110.0	0.0E+00	1.05+99	140.40	110.00	128.23	30.5	54.55
EAST Side PG1 RMI BF 1000 1.6 10.0 44.0 6.0E+00 1.0E+99 14.35 44.00 29.16 -29.7 -18.55 EAST Side PG1E PP RW 1600 1.6 110.0 110.0 1.0E+99 10E+99 110.00 110.00 10.00 0.0 0.00 PG2E XI BP 1600 1.6 110.0 14.0 1.0E+99 10E+99 110.00 110.00 110.00 0.0 0.00 PG4E IP DS 1600 1.6 110.0 110.0 1.0E+99 10E+99 110.00 110.00 110.00 0.0<	Pool Gilder	Ea w Side	PC7		03	1600	1.0	10.0	110.0	6.0E+00	1.02+99	22.73	110.00	00.30	-8/.3	-34.33
EAST Side PGTE PP R.W 1000 1.6 110.0 10.0E+99 1.0E+99 110.00 110.00 110.00 0.00 0.00 0.00 PG2E XI BP 1600 1.6 110.0 140.0 1.0E+99 1.0E+99 110.00 110.00 110.00 0.00 0.00 PG2E XI BP 1600 1.6 110.0 110.0 1.0E+99 1.0E+99 110.00 110.00 0.00 0.00 PG4E IP DS 1600 1.6 110.0 110.0 1.0E+99 10E+99 110.00 110.00 0.00 0.00 PG5E PP DS 1600 1.6 110.0 110.0 1.0E+99 10E+99 110.00 110.00 0.00 0.00 PG6E IP BP 1600 1.6 110.0 110.0 1.0E+99 100.00 110.00 0.00 0.00 PG8E XS DS 1600 1.6 <		EASTSIde	PG7		DP	1600	1.0	10.0	44.0	6.0E+00	1.0E+99	14.33	44.00	29.16	-29.7	-18.55
PG2E XI BF 1000 1.6 110.0 44.0 1.0E+99 1.0E+99 110.00 44.00 77.00 66.0 41.25 PG4E IP DS 1600 1.6 110.0 110.0 1.0E+99 1.0E+99 110.00 110.00 110.00 0.0 0.00 PG5E PP DS 1600 1.6 110.0 110.0 1.0E+99 10E+99 110.00 110.00 0.00 0.00 PG6E IP BP 1600 1.6 110.0 110.0 1.0E+99 110.00 110.00 110.00 0.0 0.00 PG6E IP BP 1600 1.6 110.0 110.0 1.0E+99 110.00 110.0		EAST SIDE	POIE			1600	1.0	110.0	110.0	1.0E+99	1.0E+99	110.00	110.00	110.00	0.0	41.25
PG4E IP DS 1600 1.6 110.0 110.0 110.00			PG2E		Dr	1600	1.0	110.0	44.0	1.0E+99	1.02+99	110.00	44.00	77.00	00.0	41.25
PGSE PP DS 1600 1.6 110.0 10.0E+99 1.0E+99 110.00 110.00 110.00 0.00 0.00 PG6E IP BP 1600 1.6 110.0 110.0 1.0E+99 1.0E+99 110.00 110.00 110.00 0.00 0.00 PG8E XS DS 1600 1.6 110.0 110.0 1.0E+99 10E+99 110.00 110.00 0.0			PG4E	nn	00	1600	1.0	110.0	110.0	1.0E+99	1.0E+99	110.00	110.00	110.00	0.0	0.00
PG6E IP BP 1600 1.6 110.0 44.0 1.0E+99 1.0E+99 110.00 44.00 77.00 66.0 41.25 PG8E XS DS 1600 1.6 110.0 110.0 1.0E+99 1.0E+99 110.00 110.00 110.00 0.00 0.00 0.00 PG9E PP BP 1600 1.6 110.0 140.0 1.0E+99 10E+99 110.00 110.00 0.00 0.00 0.00 PG9E PP BP 1600 1.6 110.0 110.0 1.0E+99 110.00 110.00 110.00 0.00 0.00 PG1W PP RW 1600 1.6 110.0 10.0 1.0E+99 10.00 110.00 110.00 10.00 0.00 0.00 0.00 PG2W XI BP 1600 1.6 110.0 110.0 1.0E+99 110.00 110.00 110.00 10.00 0.00 0.00 0.00		[PGSE			1000	1.0	110.0	110.0	1.0E+99	1.0E+99	110.00	110.00	110.00	0.0	0.00
PG8E XS DS 1600 1.6 110.0 100.0 100.0 110.00 110.00 110.00 0.00			PUCE		DP	1600	1.0	110.0	44.0	1.0E+99	1.0E+99	110.00	44.00	77.00	66.0	41.25
PGyE Pr Br 1000 1.6 110.0 44.0 1.0E+99 110.00 44.00 77.00 66.0 41.25 WEST Side PG1W PP RW 1600 1.6 110.0 100.1 1.0E+99 110.00 110.00 110.00 110.00 110.00 110.00 100.00 100.00 0.00 0.00 PG2W XI BP 1600 1.6 110.0 144.0 1.0E+99 110.00 44.00 77.00 66.0 41.25 PG4W IP DS 1600 1.6 110.0 144.0 1.0E+99 10E+99 110.00 110.00 10.00 0.00 0.00 PG4W IP DS 1600 1.6 110.0 1.0E+99 1.0E+99 110.00 110.00 110.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00		!	PGOE		03	1600	1.0	110.0	110.0	1.0E+99	1.0E+99	110.00	110.00	110.00	0.0	11.00
WEST Side PGTW PP RW 1000 1.0 110.0 100.1 100.0 110.00 <t< td=""><td></td><td>WEGT CH</td><td>PGIN</td><td></td><td>DW</td><td>1600</td><td>1.0</td><td>110.0</td><td>44.0</td><td>1.05+99</td><td>1.00+99</td><td>110.00</td><td>44.00</td><td>//.00</td><td>0.00</td><td>41.25</td></t<>		WEGT CH	PGIN		DW	1600	1.0	110.0	44.0	1.05+99	1.00+99	110.00	44.00	//.00	0.00	41.25
PG2W AI Br 1000 1.6 110.0 44.0 1.0E+99 1.0E+99 110.00 44.00 77.00 66.0 41.25 PG4W IP DS 1600 1.6 110.0 10.0 1.0E+99 1.0E+99 110.00 110.00 10.00 0.00		WEST SIDE	POIW		L DD	1600	1.0	110.0	110.0	1.0E+99	1.0E+99	110.00	110,00	110.00	0,0	0.00
PG4W IP DS 1000 1.0. 110.0 1.0.E+99 1.0.E+99 110.00 110.00 110.00 0.00			PG2W			1600	1.0	110.0	44.0	1.0E+99	1.0E+99	110.00	44.00	77.00	66.0	41.25
PGSW PP DS 1000 1.0 110.0 1.0E+99 1.0E+99 110.00 110.00 110.00 0.00 0.00 PG6W IP BP 1600 1.6 110.0 44.0 1.0E+99 10.00 44.00 77.00 66.0 41.25 PG8W XS DS 1600 1.6 110.0 10.0E+99 100.00 110.00 10.00 0.0 0.00 PG9W PP BP 1600 1.6 110.0 44.0 1.0E+99 110.00 110.00 10.00 0.0 0.00 PG9W PP BP 1600 1.6 110.0 44.0 1.0E+99 110.00 44.00 77.00 66.0 41.25			PG5W		100	1600	1.0	110.0	110.0	1.02+99	1.0E+99	110.00	110.00	110.00	0.0	0.00
PG6w IF Di 1000 1.0 110.0 44.0 1.0E+29 110.00 44.00 77.00 66.0 41.25 PG8W XS DS 1600 1.6 110.0 10.0 1.0E+29 110.00 110.00 110.00 0.0 0.00 PG9W PP BP 1600 1.6 110.0 44.0 1.0E+29 110.00 110.00 10.00 0.0 0.00 PG9W PP BP 1600 1.6 110.0 44.0 1.0E+29 110.00 44.00 77.00 66.0 41.25		1	PGAW			1600	1.0	110.0	44.0	1.0E+99	1.0E+99	110.00	110.00	110.00	0.0	41.20
PG9W PP BP 1600 1.6 110.0 10.0 10.00 10.00 110.00 10.00 10.00 0.0 0.			PGSW	VC VC	Dr Ds	1600	1.0	110.0	110.0	1.05+99	1.05+99	110.00	110.00	110.00	0.00	41.20
			PG9W	PP	BP	1600	1.0	110.0	44.0	1.0E+99	1.0E+99	110.00	44 00	77.00	66.0	41.25

WG3-U71-ERD-S-0004	SH NO.	131
REV. 1	of	543

Table 6.2.3.4-19	Thermal Loads for Shell Elements,
LOCA After 72	hours: Winter (Case 1) Continued

[····	,		Sić	le ^{*2}	Thi	ck.	Tempe	rature	Thin Fil	im Coef.	Surface	a Temp.	Linea	arized T	emp.
Por	rtion	Section ^{*1}	1 5.0			· ·	(%	י יו רי	(kcal/	m ² h°C)	(0)	\sim		(°C)	
	non	Section	h_1	2	(mm)	(m)		<u>-7</u> - T2	h1	h2	Tsl	<u>-/ _/</u> Ts2	Td		Te/t
External Wal	E&W Side	GW1	AT	RM	1500	1.5	-40.0	10.0	3.5E+01	6.0E+00	-38.87	3.42	-17.73	-42.3	-28.20
DAGMAN (. a.		GW5	AT	BP	2440	2.4	-40.0	44.0	3.5E+01	1 0E+99	-38.65	44.00	2.68	-82.6	-33.87
	!	GW6	DS	AT	3500	3.5	110.0	-40.0	1 0E+99	3 5E+01	110.00	-18.31	35.85	148.3	42.37
	!	GW9	AT	RM	1000	10	-40.0	10.0	3 5E+01	6 0E+00	-38.43	0.84	-18.80	- 39.3	-39 27
	} '	GW10	RM	RM	1000	10	10.0	10.0	6 0E+00	6.0E+00	10.00	10.00	10.00	0.0	0.00
	۱ I	GW11	AT	RP	1500	1.5	-40.0	44.0	3 5E+01	1 0E+99	-37 82	44 00	3 09	-81.8	-54 55
	FAST Side	GW3E	HAT-	TX0	1000	10	-40.0	43.0	1 2 5E+01	1 0E+99	-36.81	43.00	3 10	-79.8	-79.81
	EAD I DIAC	GW7E	1 xs	AT	1500	1.5	110.0	-40.0	1 012+00	1.02	110.00	36 10	36.95	146 1	97.40
	!	GWIE	1 DM		1000	1.0	10.0	40.0	1.00-75	1 00+00	16.00	43.00	20.55	240.1	77.70
	WEET Side	OWOL OWOL			1000	1.0	10.0	43.0	0.00700	1.05+97	10.24	43.00	29.02	-20.0	-20.70
	WEST SING	GWSW			1000	1.0	-40.0	43.0	3.5ETUI	1.0E+99	-30.81	43.00	3.10	-/9.0	-79.01
		GW/W			1500	1.5	110.0	-40.0	1.0E+99	3.5E+01	110.00	-30.10	30.93	140.1	97.40
<u> </u>	<u> </u>	GW8W			1000	1.0	10.0	43.0	6.0E+00	1.0E+99	16.24	43.00	29.62	-26.8	-26.70
Pool Wall	E&W Side	PWIU		RM	10001	1.0	10.0	10.0	6.0E+00	6.0E+00	10.00	10.001	10.00	0.0	0.00
	!	PW11	RM	RM	2000	2.0	10.0	10.0	6.0E+00	6.0E+00	10.00	10.00	10.00	0.0	0.00
		PW19	BP	RW	1300	1.3	44.0	110.0	1.0E+99	1.0E+99	44.00	110.00	77.00	-66.0	-50.77
	EAST Side	PW1E	RW	DS	1300	1.3	110.0	110.0	1.0E+99	1.0E+99	110.00	110.00	110.00	0.0	0.00
	/	PW2E	PP	PP	400	0.4	110.0	110.0	1.0E+99	1.0E+99	110.00	110.00	110.00	0.0	0.00
	ļ	PW4E	XI	PP	1000	1.0	110.0	110.0	1.0E+99	1.0E+99	110.00	110.00	110.00	0.0	0.00
		PW6E	XI	XS	1000	1.0	110.0	110.0	1.0E+99	1.0E+99	110.00	110.00	110.00	0.0	0.00
	1 /	PW7E	XO	XI	2000	2.0	43.0	110.0	1.0E+99	1.0E+99	43.00	110.00	76.50	-67.0	-33.50
	1 !	PW8E	XI	RM	1000	1.0	110.0	10.0	1.0E+99	6.0E+00	110.00	28.92	69.46	81.1	81.08
	1 1	PW9E	RM	XS	2000	2.0	10.0	110.0	6.0E+00	1.0E+99	20.45	110.00	65.22	-89.6	-44.78
	1 1	PW12E	IP	XI	1000	1.0	110.0	110.0	1.0E+99	1.0E+99	110.00	110.00	110.00	0.0	0.00
		PW13E	IP T	RM	1000	1.0	110.0	10.0	1.0E+99	6.0E+00	110.00	28.92	69.46	81.1	81.08
	/	PW14E	XI	IP	470	0.5	110.0	110.0	1.0E+99	1.0E+99	110.00	110.00	110.00	0.0	0.00
	!	PW15E	I XI	IP	1000	1.0	110.0	110.0	1.0E+99	1.0E+99	110.00	110.00	110.00	0.0	0.00
	!	PW16E	PP	TP	400	0.4	110.0	110.0	1.0E+99	1.0E+99	110.00	110.00	110.00	0.0	0.00
	!	PW17E	xo	RM	1000	1.0	43.0	10.0	1.0E+99	6.0E+00	43.00	16.24	29.62	26.8	26.76
	!	PW18E	RM	xs	1000	1.0	10.0	110.0	6.0E+00	1 0E+99	28.92	110.00	69.46	-81.1	-81.08
	WEST Side	PWIW	RW	DS	1300	1.3	110.0	110.0	1.0E+99	1 0E+99	110.00	110.00	110.00	0.0	0.00
	"LD	PW2W	PP	PP	400	0.4	110.0	110.0	1 0E+99	1 0E+99	110.00	110.00	110.00	0.0	0.00
1		PW4W		pp	1000	10	110.0	110.0	1 0E+99	1.0E+99	110.00	110.00	110.00	0.0	0.00
		DW/6W	1 XI	TTS I	1000	1.0	110.0	110.0	1.02+99	1 00-100	110.00	110.00	110.00	0.0	0.00
		DW/7W	1 vo		10000	1.0	43.0	110.0	1.0E+90	1.02-22	1 43 00	110.00	76 50	67.0	23.50
		DW/W		DM	1000	10	45.0	10.0	1.05-55	1.05-00	43.00	110.00	60.46	-07.0	01.08
	1	PWOW DU/OW	1 DM	- NIVI	1000	1.0	110.0	10.0	1.00+22	0.0ET00	110.00	20.24	65 22	01.1	δ1.00 44.78
	1 /	DWIN			1000	2.0	10.0	110.0	0.0ET00	1.0E+00	20.45	110.00	110.00	0.0	-44.70
		PW12W	<u> </u> <u> <u> </u> <u> </u></u>		1000	1.0	110.0	110.0	1.05+77	1.0E+97	110.00	110.00	110.00	0.0	0.00
	1 1	PWIDW			10001	1.0	110.0	10.0	1.0E+97	6.0E+001	110.00	28.92	09.40	81.1	81.00
	1 1	PW14W		$\frac{1}{m}$	470	10.5		110.0	1.01+99	1.0E+99	110.00	110.00	110.00		0.00
	!	PWISW			1000	1.0	110.0	110.0	1.0E+99	1.0E+99	110.00	110.00	110.00	0.0	0.00
	!	PW16W	PP		400	0.4	110.0	110.0	1.0E+99	1.0E+99	110.00	110.00	110.00	0.0	0.00
1	'	PW17W		RM	1000	1.0	43.0	10.0	1.0E+991	6.0E+00	43.00	16.24	29.62	26.8	26.76
	1 1	PW18W	RM	1 XS '	1000	1.0 '	10.0	110.0'	6.0E+00'	1.0E+99'	28.92	110.00	69.46	-81.1	-81.08

*1: Refer to Figures E 3-1 and E 3-2 in Reference 2.1.2-e.

*2: Side

DW: Drywell

- GP: GDCS Pool
- Inner Expansion Pool XI:
- RM: Room
- RW: Reactor Well

- WW: Wetwell
- IP: IC Pool
- XO: Outer Expansion Pool

Equipment Storage Pool DS:

- Spent Fuel Pool FP:
- AT: Outside Air

- SP: Suppression Pool
- PCCS Pool PP:
- Side Expansion Pool XS:
- BP:
- MT: MS Tunnel

GR: Ground

- Buffer Pool

,

Table 6.2.3.4-20Thermal Loads for Shell Elements,
LOCA After 72 hours: Winter (Case 2)

-			Sid	le ^{*2}	Thic	ck.	Tempe	rature	Thin File	m Coef.	Surface	Temp.	Line	arized T	emp.
Por	tion	Section ^{*1}			t		(°C	C)	(kcal/r	n²h°C)	(°(C)		(°C)	
			1	2	(mm)	(m)	T1	T2	hl	h2	Ts1	Ts2	Td	Тg	Tg/t
Floor Slab	E&W Side	SL1	RM	RM	-	-	10.0	10.0	6.0E+00	6.0E+00	10.00	10.00	10,00	0.0	0.00
		SL4	RM	BP	2400	2.4	10.0	0.0	6.0E+00	1.0E+99	9.11	0.00	4.56	9.1	3.80
		SL5	RM	AT	1000	1.0	10.0	-40.0	6.0E+00	3.5E+01	0.84	-38.43	-18.80	39.3	39.27
	EAST Side	SL2E	IP	RM	1000	1.0	60.0	10.0	1.0E+99	6.0E+00	60.00	19.46	39.73	40.5	40.54
		SL3E	RM	XI	1500	1.5	10.0	0.0	6.0E+00	1.0E+99	8.65	0.00	4.33	8.7	5.77
		SL6E	XO	AT	1000	1.0	0.0	-40.0	1.0E+99	3.5E+01	0.00	-38.46	-19.23	38.5	38.46
	ļ l	SL9E	RM	XO	1500	1.5	10.0	0.0	6.0E+00	1.0E+99	8.65	0.00	4.33	8.7	5.77
		SL10E	RM	XS	1500	1.5	10.0	0.0	6.0E+00	1.0E+99	8.65	0.00	4.33	8.7	5.77
		SLIIE	XS	RM	1000	1.0	0.0	10.0	1.0E+99	6.0E+00	0.00	8.11	4.05	-8.1	-8.11
		SL12E	PP	RM	1000	1.0	100.0	10.0	1.0E+99	6.0E+00	100.00	27.03	63.51	73.0	72.97
		SL13E	XI	RM	1000	1.0	0.0	10.0	1.0E+99	6.0E+00	0.00	8.11	4.05	-8.1	-8.11
	WEST Side	SL2W	IP	RM	1000	1.0	60.0	10.0	1.0E+99	6.0E+00	60.00	19.46	39.73	40.5	40.54
		SL3W	RM	XI	1500	1.5	10.0	0.0	6.0E+00	1.0E+99	8.65	0.00	4.33	8.7	5.77
]		SL6W	XO	AT	1000	1.0	0.0	-40.0	1.0E+99	3.5E+01	0.00	-38.46	-19.23	38.5	38.46
•		SL9W	RM	XO	1500	1.5	10.0	0.0	6.0E+00	1.0E+99	8.65	0.00	4.33	8.7	5.77
]		SL10W	RM	XS	1500	1.5	10.0	0.0	6.0E+00	1.0E+99	8.65	0.00	4.33	8.7	5.77
		SLIIW	XS	RM	1000	1.0	0.0	10.0	1.0E+99	6.0E+00	0.00	8.11	4.05	-8.1	-8.11
		SL12W	PP	RM	1000	1.0	100.0	10.0	1.0E+99	6.0E+00	100.00	27.03	63.51	73.0	72.97
1		SL13W	XI	RM	1000	1.0	0.0	10.0	1.0E+99	6.0E+00	0.00	8.11	4.05	-8.1	-8.11
MS Tunnnel	E&W Side	MT5	MT	DS	2400	2.4	57.0	100.0	1.0E+99	1.0E+99	57.00	100.00	78.50	-43.0	-17.92
Slab		MT8	MT	AT	2400	2.4	57.0	-40.0	1.0E+99	3.5E+01	57.00	-38.41	9.30	95.4	39.75
		MT9	MT	RM	2400	2.4	57.0	10.0	1.0E+99	6.0E+00	57.00	14.16	35.58	42.8	17.85
	EAST Side	MT6E	MT	XS	2400	2.4	57.0	0.0	1.0E+99	1.0E+99	57.00	0.00	28.50	57.0	23.75
	WEST Side	MT6W	MT	XS	2400	2.4	57.0	0.0	1.0E+99	1.0E+99	57.00	0.00	28.50	57.0	23.75
Top Slab	E&W Side	TS1	DW	DS	2400	2.4	150.0	100.0	6.0E+00	1.0E+99	145.57	100.00	122.78	45.6	18.99
		TS4	DW	RW	2400	2.4	150.0	100.0	6.0E+00	1.0E+99	145.57	100.00	122.78	45.6	18.99
		TS5	DW	RM	2400	2.4	150.0	10.0	6.0E+00	6.0E+00	138.60	21.40	80.00	117.2	48.84
		TS7	DW	BP	2400	2.4	150.0	0.0	6.0E+00	1.0E+99	136.71	0.00	68.35	136.7	56.96
	EAST Side	TS2E	DW	IP	2400	2.4	150.0	60.0	6.0E+00	1.0E+99	142.03	60.00	101.01	82.0	34.18
		_TS3E	DW	XI	2400	2.4	150.0	0.0	6.0E+00	1.0E+99	136.71	0.00	68.35	136.7	56.96
		TS6E	DW	PP	2400	2.4	150.0	100.0	6.0E+00	1.0E+99	145.57	100.00	122.78	45.6	18.99
[WEST Side	TS2W	DW	IP	2400	2.4	150.0	60.0	6.0E+00	1.0E+99	142.03	60.00	101.01	82.0	34.18
		TS3W	DW	XI	2400	2.4	150.0	0.0	6.0E+00	1.0E+99	136.71	0.00	68.35	136.7	56.96
		TS6W	DW	PP	2400	2.4	150.0	100.0	6.0E+00	1.0E+99	145.57	100.00	122.78	45.6	18.99
Pool Girder	E&W Side	PG3	RM	DS	1600	1.6	10.0	100.0	6.0E+00	1.0E+99	21.45	100.00	60.73	-78.5	-49.09
		PG7	RM	BP	1600	1.6	10.0	0.0	6.0E+00	1.0E+99	8.73	0.00	4.36	8.7	5.45
	EAST Side	PG1E	PP	RW	1600	1.6	100.0	100.0	1.0E+99	1.0E+99	100.00	100.00	100.00	0.0	0.00
Į	Į	PG2E	XI	BP	1600	1.6	0.0	0.0	1.0E+99	1.0E+99	0.00	0.00	0.00	0.0	0.00
		PG4E	IP	DS	1600	1.6	60.0	100.0	1.0E+99	1.0E+99	60.00	100.00	80.00	-40.0	-25.00
		PG5E	PP	DS	1600	1.6	100.0	100.0	1.0E+99	1.0E+99	100.00	100.00	100.00	0.0	0.00
		PG6E	IP	BP	1600	1.6	60.0	0.0	1.0E+99	1.0E+99	60.00	0.00	30.00	60.0	37.50
		PG8E	XS	DS	1600	1.6	0.0	100.0	1.0E+99	1.0E+99	0.00	100.00	50.00	-100.0	-62.50
		PG9E	PP	BP	1600	1.6	100.0	0.0	1.0E+99	1.0E+99	100.00	0.00	50.00	100.0	62.50
	WEST Side	PGIW	PP	RW	1600	1.6	100.0	100.0	1.0E+99	1.0E+99	100.00	100.00	100.00	0.0	0.00
1		PG2W	XI	BP	1600	1.6	0.0	0.0	1.0E+99	1.0E+99	0.00	0.00	0.00	0.0	0.00
		PG4W	IP	DS	1600	1.6	60.0	100.0	1.0E+99	1.0E+99	60.00	100.00	80.00	-40.0	-25.00
1		PG5W	PP	DS	1600	1.6	100.0	100.0	1.0E+99	1.0E+99	100.00	100.00	100.00	0.0	0.00
		PG6W	IP	BP	1600	1.6	60.0	0.0	1.0E+99	1.0E+99	60.00	0.00	30.00	60.0	37.50
		PG8W	XS	DS	1600	1.6	0.0	100.0	1.0E+99	1.0E+99	0.00	100.00	50.00	-100.0	-62.50
1	1	PG9W	PP	BP	1600	1.6	100.0	0.0	1.0E+99	1.0E+99	100.00	0.00	50.00	100.0	62.50

			Side ^{*2}		Thick.		Temperature		Thin Fil	m Coef.	Surface	Temp.	Line	arized T	emp.
Por	tion	Section ^{*1}			t		(°	C)	(kcal/r	n ² h°C)	(°	C)		(°C)	
			1	2	(mm)	(m)	T1	T2	hl	h2	Tsl	Ts2	Td	Tg	Tg/t
External Wall	E&W Side	GW1	AT	RM	1500	1.5	-40.0	10.0	3.5E+01	6.0E+00	-38.87	3.42	-17.73	-42.3	-28.20
		GW5	AT	BP	2440	2.4	-40.0	0.0	3.5E+01	1.0E+99	-39.35	0.00	-19.68	-39.4	-16.13
		GW6	DS	AT	3500	3.5	100.0	-40.0	1.0E+99	3.5E+01	100.00	-38.42	30.79	138.4	39.55
		GW9	AT	RM	1000	1.0	-40.0	10.0	3.5E+01	6.0E+00	-38.43	0.84	-18.80	-39.3	-39.27
		GW10	RM	RM	1000	1.0	_ 10.0	10.0	6.0E+00	6.0E+00	10.00	10.00	10.00	0.0	0.00
		GW11	AT	BP	1500	1.5	-40.0	0.0	3.5E+01	1.0E+99	-38.96	0.00	-19.48	-39.0	-25.97
	EAST Side	GW3E	AT	XO	1000	1.0	-40.0	0.0	3.5E+01	1.0E+99	-38.46	0.00	-19.23	-38.5	-38.46
		GW7E	XS	AT	1500	1.5	0.0	-40.0	1.0E+99	3.5E+01	0.00	-38.96	-19.48	39.0	25.97
		GW8E	RM	XO	1000	1.0	10.0	0.0	6.0E+00	1.0E+99	8.11	0.00	4.05	8.1	8.11
	WEST Side	GW3W	AT	XO	1000	1.0	-40.0	0.0	3.5E+01	1.0E+99	-38.46	0.00	-19.23	-38.5	-38.46
		GW7W	XS	AT	1500	1.5	0.0	-40.0	1.0E+99	3.5E+01	0.00	-38.96	-19.48	39.0	25.97
		GW8W	RM	XO	1000	1.0	10.0	0.0	6.0E+00	1.0E+99	8.11	0.00	4.05	8,1	8.11
Pool Wall	E&W Side	PW10	RM	RM	1000	1.0	10.0	10.0	6.0E+00	6.0E+00	10.00	10.00	10.00	0.0	0.00
		PW11	RM	RM	2000	2.0	10.0	10.0	6.0E+00	6.0E+00	10.00	10.00	10.00	0.0	0.00
		PW19	BP	RW	1300	1.3	0.0	100.0	1.0E+99	1.0E+99	0.00	100.00	50.00	-100.0	-76.92
	EAST Side	PWIE	RW	DS	1300	1.3	100.0	100.0	1.0E+99	1.0E+99	100.00	100.00	100.00	0.0	0.00
		PW2E	PP	PP	400	0.4	100.0	100.0	1.0E+99	1.0E+99	100.00	100.00	100.00	0.0	0.00
		PW4E	XI	PP	1000	1.0	0.0	100.0	1.0E+99	1.0E+99	0.00	100.00	50.00	-100.0	-100.00
		PW6E	XI	XS	1000	1.0	0.0	0.0	1.0E+99	1.0E+99	0.00	0.00	0.00	0.0	0.00
		PW7E	XO	XI	2000	2.0	0.0	0.0	1.0E+99	1.0E+99	0.00	0.00	0.00	0,0	0.00
		PW8E	XI	RM	1000	1.0	0.0	10.0	1.0E+99	6.0E+00	0.00	8.11	4.05	-8,1	-8.11
		PW9E	RM	XS	2000	2.0	10.0	0.0	6.0E+00	1.0E+99	8.96	0.00	4.48	9.0	4.48
		PW12E	IP	XI	1000	1.0	60.0	0.0	1.0E+99	1.0E+99	60.00	0.00	30.00	60.0	60.00
		PW13E	IP	RM	1000	1.0	60.0	10.0	1.0E+99	6.0E+00	60.00	19.46	39.73	40.5	40.54
		PW14E	XI	IP	470	0.5	0.0	60.0	1.0E+99	1.0E+99	0.00	60.00	30.00	-60.0	-127.66
		PW15E	XI	IP	1000	1.0	0.0	60.0	1.0E+99	1.0E+99	0.00	60.00	30.00	-60,0	-60.00
		PW16E	PP	IP	400	0.4	100.0	60.0	1.0E+99	1.0E+99	100.00	60.00	80.00	40.0	100.00
		PW17E	XO	RM	1000	1.0	0.0	10.0	1.0E+99	6.0E+00	0.00	8.11	4.05	-8.1	-8.11
		PW18E	RM	XS	1000	1.0	10.0	0.0	6.0E+00	1.0E+99	8.11	0.00	4.05	8,1	8.11
	WEST Side	PW1W	RŴ	DS	1300	1.3	100.0	100.0	1.0E+99	1.0E+99	100.00	100.00	100.00	0.0	0.00
		PW2W	PP	PP	400	0.4	100.0	100.0	1.0E+99	1.0E+99	100.00	100.00	100.00	0.0	0.00
		PW4W	XI	PP	1000	1.0	0.0	100.0	1.0E+99	1.0E+99	0.00	100.00	50.00	-100.0	-100.00
		PW6W	XI	XS	1000	1.0	0.0	0.0	1.0E+99	1.0E+99	0.00	0.00	0.00	0.0	0.00
		PW7W	XO	XI	2000	2.0	0.0	0.0	1.0E+99	1.0E+99	0.00	0.00	0.00	0.0	0.00
		PW8W	XI	RM	1000	1.0	0.0	10.0	1.0E+99	6.0E+00	0.00	8.11	4.05	-8.1	-8.11
		PW9W	RM	XS	2000	2.0	10.0	0.0	6.0E+00	1.0E+99	8.96	0.00	4.48	9.0	4.48
		PW12W	IP	XI	1000	1.0	60.0	0.0	1.0E+99	1.0E+99	60.00	0.00	30.00	60.0	60.00
		PW13W	IP	RM	1000	1.0	60.0	10.0	1.0E+99	6.0E+00	60.00	19.46	39.73	40.5	40.54
		PW14W	XI	IP	470	0.5	0.0	60.0	1.0E+99	1.0E+99	0.00	60.00	30.00	-60.0	-127.66
		PW15W	XI	IP	1000	1.0	0.0	60.0	1.0E+99	1.0E+99	0,00	60.00	30.00	-60.0	-60.00
		PW16W	PP	IP	400	0.4	100.0	60.0	1.0E+99	1.0E+99	100.00	60.00	80.00	40.0	100.00
		PW17W	xo	RM	1000	1.0	0.0	10.0	1.0E+99	6.0E+00	0.00	8.11	4.05	-8.1	-8.11
		PW18W	RM	2X	1000	10	10 O	0.0	6 012-00	1 017-00	Q 11	0.00	4 05	Q 1	Q 11

Table 6.2.3.4-20Thermal Loads for Shell Elements, LOCA After 72 hours: Winter (Case 2) (Continued)

*1: Refer to Figures E 3-1 and E 3-2 in Reference 2.1.2-e.

*2: Side

DW: Drywell

GP: GDCS Pool

WW: Wetwell

IP: IC Pool XO: Outer Expansion Pool

DS:

XI: Inner Expansion Pool

- RM: Room
- RW: Reactor Well
- FP: Spent Fuel Pool
- SP: Suppression Pool
- PP: PCCS Pool
- XS: Side Expansion Pool
- **Buffer** Pool BP:
- MT: MS Tunnel

- GR: Ground
- AT: Outside Air

Equipment Storage Pool

Table 6.2.3.4-21Thermal Loads for Shell Elements,
LOCA After 72 hours: Winter (Case 3)

			Sid	le ^{*2}	Thie	sk.	Tempe	erature	Thin Fil	m Coef.	Surface	e Temp.	Line	arized T	emp.
Por	tion	Section ^{*1}			t		(°(C)	(kcal/r	n²h°C)	(°	C)		(°C)	
			1	2	(mm)	(m)	T1	T2	hl	h2	Tsl	Ts2	Td	Tg	Tg/t
Floor Slab	E&W Side	SL1	RM	RM	-	-	10.0	10.0	6.0E+00	6.0E+00	10.00	10.00	10.00	0.0	0.00
		SL4	RM	BP	2400	2.4	10.0	0.0	6.0E+00	1.0E+99	9.11	0.00	4.56	9.1	3.80
		SL5	RM	AT	1000	1.0	10.0	-40.0	6.0E+00	3.5E+01	0.84	-38.43	-18.80	39.3	39.27
	EAST Side	SL2E	IP	RM	1000	1.0	60.0	10.0	1.0E+99	6.0E+00	60.00	19.46	39.73	40.5	40.54
		SL3E	RM	XI	1500	1.5	10.0	110.0	6.0E+00	1.0E+99	23,46	110.00	66.73	-86.5	-57.69
		SL6E	xo	AT	1000	1.0	0.0	-40.0	1.0E+99	3.5E+01	0.00	-38.46	-19.23	38.5	38.46
l	l I	SL9E	RM	XO	1500	1.5	10.0	0.0	6.0E+00	1.0E+99	8.65	0.00	4,33	8.7	5.77
		SL10E	RM	XS	1500	1.5	10.0	0.0	6.0E+00	1.0E+99	8.65	0.00	4.33	8.7	5.77
		SL11E	XS	RM	1000	1.0	0.0	10.0	1.0E+99	6.0E+00	0.00	8.11	4.05	-8.1	-8.11
		SL12E	PP	RM	1000	1.0	100.0	10.0	1.0E+99	6.0E+00	100.00	27.03	63.51	73.0	72.97
1	1	SL13E	XI	RM	1000	1.0	110.0	10.0	1.0E+99	6.0E+00	110.00	28.92	69,46	81.1	81.08
	WEST Side	SL2W	IP	RM	1000	1.0	60.0	10.0	1.0E+99	6.0E+00	60.00	19.46	39.73	40.5	40.54
	1	SL3W	RM	XI	1500	1.5	10.0	110.0	6.0E+00	1.0E+99	23.46	110.00	66.73	-86.5	-57.69
		SL6W	xo	AT	1000	1.0	0.0	-40.0	1.0E+99	3.5E+01	0.00	-38.46	-19.23	38.5	38 46
		SL9W	RM	xo	1500	1.5	10.0	0.0	6 0E+00	1 0E+99	8 65	0.00	4 33	87	5 77
	1	SL10W	RM	XS	1500	15	10.0	0.0	6 0E+00	1 0E+99	8 65	0.00	4 33	87	5 77
		SLUW	xs	RM	1000	1.0	0.0	10.0	1.0E+99	6 0E+00	0.00	8 11	4.05	-81	-8 11
		SL12W	PP	RM	1000	10	100.0	10.0	1.0E+99	6 0E+00	100.00	27.03	63 51	73.0	72 97
	1	SL13W	XI	RM	1000	1.0	110.0	10.0	1.0E+99	6.0E+00	110.00	28.92	69.46	81.1	81.08
MS Tunnnel	E&W Side	MT5	MT	DS	2400	24	57.0	110.0	1.05+99	1.0E+99	57.00	110.00	83 50	-53.0	-22.08
	See in State	MT8	MT	AT	2400	24	57.0	-40.0	1.0E+99	3.5E+01	57.00	-38 41	9 30	95.4	39.75
		MT9	MT	RM	2400	2.1	57.0	10.0	1.0E+99	6.0E+00	57.00	14 16	35.58	42.8	17.85
	FAST Side	MT6F	MT	XS	2400	2.4	57.0	10.0	1.05+00	1.0E+99	57.00	0.00	28 50	57.0	23 75
	WEST Side	MT6W	MT	XS	2400	2.4	57.0	0.0	1.0E+99	1.0E+99	57.00	0.00	28.50	57.0	23.75
Ton Slah	F&W Side	TSI	DW	DS	2400	2.4	150.0	110.0	6.0E+00	1.0E+99	146.46	110.00	128.23	36.5	15.19
rop sido	Let i bide	TS4	DW	RW	2400	2.4	150.0	110.0	6.05+00	1.0E+99	146.46	110.00	128.23	36.5	15.19
		T85	DW	RM	2400	2.7	150.0	10.0	6.0E+00	6 0E+00	138 60	21.40	80.00	117.2	48.84
		T\$7	DW	RP	2400	2.4	150.0	10.0	6.05+00	1.0E+00	136.00	0.00	68 35	136.7	56.96
	EAST Side	TS2E	DW	IP	2400	2.7	150.0	60.0	6.0E+00	1.0E+00	142.03	60.00	101.01	82.0	34 18
	EAST SILL	TS2E	DW		2400	2.4	150.0	110.0	6.0E+00	1.05+99	142.03	110.00	101.01	26.5	15 10
		TSEE	DW		2400	2.4	150.0	100.0	6.0E+00	1.05+99	140.40	100.00	120.23	30,5	19.19
	WEST Side	TODE		ID.	2400	2.4	150.0	100.0	0.0E+00	1.0E+99	143.37	60.00	122.70	45.0	24 19
1	WEST SILLE	152W	DW		2400	2.4	150.0	110.0	6.0E+00	1.02+99	142.05	110.00	101.01	82.0	34.10
		_ 155W			2400	2.4	150.0	100.0	0.0E+00	1.05+99	140.40	100.00	120.23	30.5	13.19
De al Ciadan	E PAN Cide	130W			1600	2.4	150.0	100.0	6.0E+00	1.0E+99	145.57	100.00	122.78	45.0	18.99
Pool Girder	Eaw Side	PG3	RIVI		1600	1.0	10.0	110.0	6.0E+00	1.05+99	22.73	110.00	66.36	-87.3	-54.55
	EAST SH-	PG/	RIM	Br	1000	1.0	10.0	110.0	6.0E+00	1.0E+99	8./3	0.00	4.30	8./	5.45
	EAST Side	PGIE	PP	KW DD	1000	1.0	100.0	110.0	1.0E+99	1.0E+99	100.00	110.00	105.00	-10.0	-6.25
		PG2E		BP	1600	1.6	110.0	0.0	1.0E+99	1.0E+99	110.00	0.00	55.00	110.0	68.75
		PG4E		105	1600	1.6	60.0	110.0	1.0E+99	1.0E+99	60.00	110.00	85.00	-50,0	-31.25
		PGSE	PP TD		1600	1.6	100.0	110.0	1.0E+99	1.0E+99	100.00	110.00	105.00	-10.0	-6.25
		PG6E	112	BP	1600	1.6	60.0	0.0	1.0E+99	1.0E+99	60.00	0.00	30.00	60.0	37.50
		PG8E			1600	1.6	0.0	110.0	1.0E+99	1.0E+99	0.00	110.00	55.00	-110.0	-68.75
	NUTOT Of 1	PG9E	PP PP	BP	1600	1.6	100.0	0.0	1.0E+99	1.0E+99	100.00	0.00	50.00	100.0	62.50
ļ	WEST Side	PGIW		KW DD	1600	1.6	100.0	110.0	1.0E+99	1.0E+99	100.00	110.00	105.00	-10.0	-6.25
		PG2W		BP	1600	1.6	110.0	0.0	1.0E+99	1.0E+99	110.00	0.00	55.00	110.0	68.75
		PG4W	112		1600	1.6	60.0	110.0	1.0E+99	1.0E+99	60.00	110.00	85.00	-50.0	-31.25
		PGSW			1600	1.6		110.0	1.0E+99	1.0E+99	100.00	110.00	105.00	-10.0	-6.25
		PG0W			1600	1.0		110.0	1.02+99	1.02+99	00.00	0.00	30.00	60.0	37.50
		PG8W	1 AS	פת	1000	1.0	100.0	110.0	1.02+99	1.02+99	0.00	110.00	55.00	-110.0	-08.75
1	1	1 ruyw	1 22	DP	11000	1.0	1 100.0	I U.U	11.05+99	1.06+99	1 100.00	I U.UU	i 50.001	100.01	62.50

Table 6.2.3.4-21	Thermal Loads for	· Shell Elements,
LOCA After 72	hours: Winter (Case	3) (Continued)

			Sid	le ^{*2}	Thi	ck.	Tempe	erature	Thin Fil	m Coef.	Surface	e Temp.	Line	arized T	emp.
Portion		Section ^{*1}			t		(°(C)	(kcal/1	n²h°C)	(°	C)		_(°C)	
			1	2	(mm)	(m)	T1	T2	hl	h2	Tsl	Ts2	Td	Tg	Tg/t
External Wall	E&W Side	GW1	AT	RM	1500	1.5	-40.0	10.0	3.5E+01	6.0E+00	-38.87	3.42	-17.73	-42.3	-28.20
		GW5	AT	BP	2440	2.4	-40.0	0.0	3.5E+01	1.0E+99	-39.35	0.00	-19.68	-39.4	-16.13
		GW6	DS	AT	3500	3.5	110.0	-40.0	1.0E+99	3.5E+01	110.00	-38.31	35.85	148.3	42.37
		GW9	AT	RM	1000	1.0	-40.0	10.0	3.5E+01	6.0E+00	-38.43	0.84	-18.80	-39.3	-39.27
		GW10	RM	RM	1000	1.0	10.0	10.0	6.0E+00	6.0E+00	10.00	10.00	10.00	0.0	0.00
		GW11	AT	BP	1500	1.5	-40.0	0.0	3.5E+01	1.0E+99	-38.96	0.00	-19.48	-39.0	-25.97
	EAST Side	GW3E	AT	XO	1000	1.0	-40.0	0.0	3.5E+01	1.0E+99	-38.46	0.00	-19.23	-38.5	-38.46
		GW7E	XS	AT	1500	1.5	0.0	-40.0	1.0E+99	3.5E+01	0.00	-38.96	-19.48	39.0	25.97
		GW8E	RM	xo	1000	1.0	10.0	0.0	6.0E+00	1.0E+99	8.11	0.00	4.05	8.1	8.11
	WEST Side	GW3W	AT	xo	1000	1.0	-40.0	0.0	3,5E+01	1.0E+99	-38,46	0.00	-19.23	-38.5	-38.46
		GW7W	XS	AT	1500	1.5	0.0	-40.0	1.0E+99	3.5E+01	0.00	-38.96	-19.48	39.0	25.97
		GW8W	RM	xo	1000	1.0	10.0	0.0	6.0E+00	1.0E+99	8.11	0.00	4.05	8.1	8.11
Pool Wall	E&W Side	PW10	RM	RM	1000	1.0	10.0	10.0	6.0E+00	6.0E+00	10.00	10.00	10.00	0.0	0.00
		PW11	RM	RM	2000	2.0	10.0	10.0	6.0E+00	6.0E+00	10.00	10.00	10.00	0.0	0.00
		PW19	BP	RW	1300	1.3	0.0	110.0	1.0E+99	1.0E+99	0.00	110.00	55.00	-110.0	-84.62
	EAST Side	PW1E	RW	DS	1300	1.3	110.0	110.0	1.0E+99	1.0E+99	110.00	110.00	110.00	0.0	0.00
		PW2E	PP	PP	400	0.4	100.0	100.0	1.0E+99	1.0E+99	100.00	100.00	100.00	0.0	0.00
		PW4E	XI	PP	1000	1.0	110.0	100.0	1.0E+99	1.0E+99	110.00	100.00	105.00	10.0	10.00
		PW6E	XI	XS	1000	1.0	110.0	0.0	1.0E+99	1.0E+99	110.00	0.00	55.00	110.0	110.00
		PW7E	XO	XI	2000	2.0	0.0	110.0	1.0E+99	1.0E+99	0.00	110.00	55.00	-110.0	-55.00
		PW8E	XI	RM	1000	1.0	110.0	10.0	1.0E+99	6.0E+00	110.00	28.92	69.46	81.1	81.08
		PW9E	RM	XS	2000	2.0	10.0	0.0	6.0E+00	1.0E+99	8.96	0.00	4.48	9.0	4.48
		PW12E	IP	XI	1000	1.0	60.0	110.0	1.0E+99	1.0E+99	60.00	110.00	85.00	-50.0	-50.00
		PW13E	IP	RM	1000	1.0	60.0	10.0	1.0E+99	6.0E+00	60.00	19.46	39.73	40.5	40.54
		PW14E	XI	IP	470	0.5	110.0	60.0	1.0E+99	1.0E+99	110.00	60.00	85.00	50.0	106.38
		PW15E	XI	IP	1000	1.0	110.0	60.0	1.0E+99	1.0E+99	110.00	60.00	85.00	50.0	50.00
		PW16E	PP	IP	400	0.4	100.0	60.0	1.0E+99	1.0E+99	100.00	60.00	80.00	40.0	100.00
		PW17E	XO	RM	1000	1.0	0.0	10.0	1.0E+99	6.0E+00	0.00	8.11	4.05	-8.1	-8.11
		PW18E	RM	XS	1000	1.0	10.0	0.0	6.0E+00	1.0E+99	8.11	0.00	4.05	8.1	8.11
	WEST Side	PW1W	RW	DS	1300	1.3	110.0	110.0	1.0E+99	1.0E+99	110.00	110.00	110.00	0.0	0.00
		PW2W	PP	PP	400	0.4	100.0	100.0	1.0E+99	1.0E+99	100.00	100.00	100.00	0.0	0.00
ľ		PW4W	XI	PP	1000	1.0	110.0	100.0	1.0E+99	1.0E+99	110.00	100.00	105.00	10.0	10.00
		PW6W	XI	XS	1000	1.0	110.0	0.0	1.0E+99	1.0E+99	110.00	0.00	55.00	110.0	110.00
		PW7W	xo	XI	2000	2.0	0.0	110.0	1.0E+99	1.0E+99	0.00	110.00	55.00	-110.0	-55.00
		PW8W	XI	RM	1000	1.0	110.0	10.0	1.0E+99	6.0E+00	110.00	28.92	69.46	81.1	81.08
		PW9W	RM	XS	2000	2.0	10.0	0.0	6.0E+00	1.0E+99	8.96	0.00	4.48	9.0	4.48
		PW12W	IP	XI	1000	1.0	60.0	110.0	1.0E+99	1.0E+99	60.00	110.00	85.00	-50.0	-50.00
		PW13W	IP	RM	1000	1.0	60,0	10.0	1.0E+99	6.0E+00	60.00	19.46	39.73	40.5	40.54
1		PW14W	XI	IP	470	0.5	110.0	60.0	1.0E+99	1.0E+99	110.00	60.00	85.00	50.0	106.38
		PW15W	XI	IP	1000	1.0	110.0	60.0	1.0E+99	1.0E+99	110.00	60.00	85.00	50.0	50.00
		PW16W	PP	IP	400	0.4	100.0	60.0	1.0E+99	1.0E+99	100.00	60.00	80.00	40.0	100.00
1		PW17W	XO	RM	1000	1.0	0.0	10.0	1.0E+99	6.0E+00	0.00	8.11	4.05	-8.I	-8.11
1		PW18W	RM	XS	1000	1.0	10.0	0.0	6.0E+00	1.0E+99	8.11	0.00	4.05	8.1	8.11

*1: Refer to Figures E 3-1 and E 3-2 in Reference 2.1.2-e.

*2: Side

DW: Drywell

WW: Wetwell

GP: GDCS Pool XI: Inner Expansion Pool

IC Pool IP:

RM: Room

XO: Outer Expansion Pool

Equipment Storage Pool Spent Fuel Pool DS:

- RW: Reactor Well GR: Ground
- FP: AT: Outside Air
- SP: Suppression Pool

PCCS Pool PP:

- XS: Side Expansion Pool
- Buffer Pool BP:
- MT: MS Tunnel

Table 6.2.3.4-22Thermal Loads for Shell Elements,
LOCA After 72 hours: Winter (Case 4)

			Sid	le ^{*2}	Thie	ck.	Tempe	rature	Thin Fil	m Coef.	Surface	Temp.	Linea	rized Te	emp.
Por	tion	Section ^{*1}			t		(°C	5)	(kcal/r	n ² h°C)	(%	2)		(°C)	_
		Section	1	2	(mm)	(m)	T1	T2	h1	h2	Tsl	Ts2	Td	Tg	Tg/t
Floor Slab	E&W Side	SL1	RM	RM	-	-	10.0	10.0	6.0E+00	6.0E+00	10.00	10.00	10.00	0.0	0.00
		SL4	RM	BP	2400	2.4	10.0	0.0	6.0E+00	1.0E+99	9.11	0.00	4.56	9.1	3.80
		SL5	RM	AT	1000	1.0	10.0	-40.0	6.0E+00	3.5E+01	0.84	-38.43	-18.80	39.3	39,27
	EAST Side	SL2E	IP	RM	1000	1.0	0.0	10.0	1.0E+99	6.0E+00	0.00	8.11	4.05	-8.1	-8,11
1		SL3E	RM	XI	1500	1.5	10.0	0.0	6.0E+00	1.0E+99	8.65	0.00	4.33	8.7	5.77
		SL6E	xo	AT	1000	1.0	0.0	-40.0	1.0E+99	3.5E+01	0.00	-38.46	-19.23	38.5	38.46
Į –		SL9E	RM	XO	1500	1.5	10.0	0.0	6.0E+00	1.0E+99	8.65	0.00	4.33	8.7	5.77
1		SL10E	RM	XS	1500	1.5	10.0	0.0	6.0E+00	1.0E+99	8.65	0.00	4.33	8.7	5.77
		SLITE	XS	RM	1000	10	0.0	10.0	1.0E+99	6.0E+00	0.00	8.11	4.05	-8.1	-8.11
		SL12E	PP	RM	1000	10	0.0	10.0	1.0E+99	6 0E+00	0.00	8.11	4 05	-8.1	-8.11
		SL13E	xī	RM	1000	1.0	0.0	10.0	1.0E+99	6 0E+00	0.00	8 11	4 05	-81	-8.11
	WEST Side	SL2W	IP	RM	1000	1.0	0.0	10.0	1.0E+99	6 0E+00	0.00	8 11	4 05	-8.1	-8.11
		SL3W	RM	XI	1500	1.5	10.0	0.0	6 0E+00	1.0E+99	8.65	0.00	4.33	8.7	5.77
1		SL6W	xo	AT	1000	10	0.0	-40.0	1.0E+99	3.5E+01	0.00	-38 46	-19 23	38.5	38 46
		SL9W	RM	XO	1500	1.5	10.0	0.0	6 0E+00	1 0F+99	8.65	0.00	4 33	87	5 77
		SLIOW	RM	XS	1500	1.5	10.0	0.0	6.0E+00	1.0E+99	8.65	0.00	4 33	87	5 77
		SLIIW	XS	RM	1000	1.0	0.0	10.0	1.05+00	6.0E+00	0.00	8 11	4.05	-8.1	-8.11
[SL12W	PP	RM	1000	1.0	0.0	10.0	1.0E+99	6 0E+00	0.00	8 11	4.05	-8.1	-8 11
		SL12W	11 VI	RM	1000	1.0	0.0	10.0	1.0E+09	6.0E+00	0.00	8 11	4.05	-8.1	-8.11
MS Tunnnel	E&W Side	MT5	MT	DS	2400	24	57.0	0.0	1.0E+09	1.0E+99	57.00	0.00	28 50	57.0	23.75
Will I dilliner	Loc W Side	MT8	MT	AT	2400	2.4	57.0	-40.0	1.0E+09	3.5E+01	57.00	-38.41	9 30	95.4	39.75
		MTQ	MT	RM	2400	2.4	57.0	10.0	1.05+00	6.0E+00	57.00	14 16	35 58	42.8	17.85
	EAST Side	MT6E	MT	XS	2400	2.4	57.0	0.0	1.00.00	1 0E+00	57.00	0.00	28 50	57.0	23 75
	WEST Side	MT6W	MT	XS	2400	2.4	57.0	0.0	1.05+00	1.05+00	57.00	0.00	28.50	57.0	23.75
Ton Slab	E & W Side	TSI	DW		2400	2.4	150.0	0.0	6.05+00	1.02+99	126 71	0.00	68 35	136.7	56.06
100 5140	E& W Side	TS4		RW	2400	2.4	150.0	0.0	6.0E±00	1.05+99	136.71	0.00	68.35	136.7	56.96
	1	T\$5	DW	DM	2400	2.4	150.0	10.0	6.0E+00	6 0E+00	129.60	21.40	80.00	117.7	18 94
		135 T\$7			2400	2.4	150.0	10.0	6.0E±00	1.05+00	136.00	21.40	69.25	126.7	56.06
1	EASTSide	107			2400	2.4	150.0	0.0	6.0E+00	1.05100	130.71	0.00	69.25	126.7	56.06
	CAST SILLE	TS2E			2400	2.4	150.0	0.0	6.0E+00	1.05:00	130.71	0.00	60.35	126.7	56.06
		TECE			2400	2.4	150.0	0.0	0.0E+00	1.05+00	126.71	0.00	60.35	126.7	56.90
	WEET Side	TEOR			2400	2.4	150.0	0.0	0.0E+00	1.02+99	130.71	0.00	68.33	130.7	56.90
	WEST SIDE	152W			2400	2.4	150.0	0.0	0.0E+00	1.02+99	130.71	0.00	68.33	130.7	56,96
		153W			2400	2.4	150.0	0.0	6.0E+00	1.0E+99	136.71	0.00	68.35	136.7	56,90
<u> </u>		150W		PP	2400	2.4	150.0	0.0	6.0E+00	1.02+99	136.71	0.00	08.35	130.7	50.90
Pool Girder	E&W Side	PG3	RM		1000	1.6	10.0	0.0	6.0E+00	1.0E+99	8.73	0.00	4.30	8.7	5.45
	DAGE OF L	PG/	KIVI DD	BP	1600	1.6	10.0	0.0	6.0E+00	1.0E+99	8.73	0.00	4,36	8.7	5.45
Į	EAST Side	PGIE		KW DD	1600	1.6	0.0	0.0	1.0E+99	1.0E+99	0.00	0.00	0.00	0.0	0.00
		PGZE		BP	1600	1.6	0.0	0,0	1.0E+99	1.0E+99	0.00	0.00	0.00	0.0	0.00
		PG4E		DS	1600	1.6	0.0	0.0	1.0E+99	1.0E+99	0.00	0.00	0.00	0.0	0.00
		PGSE	PP	DS	1600	1.6	0.0	0.0	1.0E+99	1.0E+99	0.00	0.00	0.00	0.0	0.00
		PG6E		BP	1600	1.6	0.0	0,0	1.0E+99	1.0E+99	0.00	0.00	0.00	0.0	0.00
		PG8E		DS	1600	1.6	0.0	0.0	1.0E+99	1.0E+99	0.00	0.00	0.00	0.0	0.00
l	WIDOT OF	PG9E	PP	Rh	1600	1.6	0.0	0.0	1.0E+99	1.0E+99	0.00	0.00	0.00	0.0	0.00
	WEST Side	PGIW		KW	1600	1.6	0.0	0.0	1.0E+99	1.0E+99	0.00	0.00	0.00	0.0	0.00
		PG2W		Bb	1600	1.6	0.0	0.0	1.0E+99	1.0E+99	0.00	0.00	0.00	0.0	0.00
		PG4W			1000	1.6		0.0	1.0E+99	1.0E+99	0.00	0.00	0.00	0.0	0.00
		PGSW	<u> PP</u> -		1600	1.6	0.0	0.0	1.0E+99	1.0E+99	0.00	0.00	0.00	0.0	0.00
		PG6W		1 86	1600	1.6		0.0	1.0E+99	1.0E+99	0.00	0.00	0.00	0.0	0.00
		PG8W			1000	1.0		0.0	1.02+99	1.011+99		0.00	0.00	0.0	0.00
1	1	j ₽G9₩	1 22	∣ BP	11000	1.6	1 0.0	U.U	ין 1.0Ľ+99	1.0Ľ+99	I 0.00	1 U.UO	0.00	0.0	0.00

WG3-U71-ERD-S-0004	SH NO.	137
REV. 1	of	543

Table 6.2.3.4-22	Thermal Loads for Shell Elements,
LOCAAfter 72	hours: Winter (Case 4) (Continued)

			Sic	le ^{*2}	Thic	ck.	Tempe	rature	Thin Fil	m Coef.	Surface	: Temp.	Linea	urized T	`emp.
Por	tion	Section ^{*1}			t		. (%	C)	(kcal/r	n²h°C)	(°	C)		(°C)	
			1	2	(mm)	(m)	TI		h1	h2	Ts1	Ts2	Td	Tg	Tg/t
External Wall	E&W Side	GWI	AT	RM	1500	1.5	-40.0	10.0	3.5E+01	6.0E+00	-38.87	3.42	-17.73	-42.3	-28.20
		GW5	AT	BP	2440	2.4	-40.0	0.0	3.5E+01	1.0E+99	-39.35	0.00	-19.68	-39.4	-16.13
		GW6	DS	AT	3500	3.5	0.0	-40.0	1.0E+99	3.5E+01	0.00	-39.55	-19.77	39.5	11.30
		GW9	AT	RM	1000	1.0	-40.0	10.0	3.5E+01	6.0E+00	-38.43	0.84	-18.80	-39.3	-39.27
		GW10	RM	RM	1000	1.0	10.0	10.0	6.0E+00	6.0E+00	10.00	10.00	10.00	0.0	0.00
		GW11	AT	BP	1500	1.5	-40.0	0.0	3.5E+01	1.0E+99	-38.96	0.00	-19.48	-39.0	-25.97
	EAST Side	GW3E	AT	XO	1000	1.0	-40.0	0.0	3.5E+01	1.0E+99	-38.46	0.00	-19.23	-38.5	-38.46
		GW7E	XS	AT	1500	1.5	0.0	-40.0	1.0E+99	3.5E+01	0.00	-38.96	-19.48	39.0	25.97
		GW8E	RM	xo	1000	1.0	10.0	0.0	6.0E+00	1.0E+99	8.11	0.00	4.05	8.1	8.11
	WEST Side	GW3W	AT	XO	1000	1.0	-40.0	0.0	3.5E+01	1.0E+99	-38.46	0.00	-19.23	-38.5	-38.46
		GW7W	XS	AT	1500	1.5	0.0	-40.0	1.0E+99	3.5E+01	0.00	-38.96	-19.48	39.0	25.97
		GW8W	RM	xo	1000	1.0	10.0	0.0	6.0E+00	1.0E+99	8,11	0.00	4.05	8.1	8.11
Pool Wall	E&W Side	PW10	RM	RM	1000	1.0	10.0	10.0	6.0E+00	6.0E+00	10.00	10.00	10.00	0.0	0.00
		PW11	RM	RM	2000	2.0	10.0	10.0	6.0E+00	6.0E+00	10.00	10.00	10.00	0.0	0.00
		PW19	BP	RW	1300	1.3	0.0	0.0	1.0E+99	1.0E+99	0.00	0.00	0.00	0.0	0.00
	EAST Side	PW1E	RW	DS	1300	1.3	0.0	0.0	1.0E+99	1.0E+99	0.00	0.00	0.00	0.0	0.00
		PW2E	PP	PP	400	0.4	0.0	0.0	1.0E+99	1.0E+99	0.00	0.00	0.00	0.0	0.00
		PW4E	XI	PP	1000	1.0	0.0	0.0	1.0E+99	1.0E+99	0.00	0.00	0.00	0.0	0.00
		PW6E	XI	XS	1000	1.0	0.0	0.0	1.0E+99	1.0E+99	0.00	0.00	0.00	0.0	0.00
		PW7E	xo	XI	2000	2.0	0.0	0.0	1.0E+99	1.0E+99	0.00	0.00	0.00	0.0	0.00
		PW8E	XI	RM	1000	1.0	0.0	10.0	1.0E+99	6.0E+00	0.00	8.11	4.05	-8.1	-8.11
		PW9E	RM	XS	2000	2.0	10.0	0.0	6.0E+00	1.0E+99	8.96	0.00	4.48	9.0	4.48
		PW12E	IP	XI	1000	1.0	0.0	0.0	1.0E+99	1.0E+99	0.00	0.00	0.00	0.0	0.00
		PW13E	IP	RM	1000	1.0	0.0	10.0	1.0E+99	6.0E+00	0.00	8.11	4.05	-8.1	-8.11
	[1	PW14E	XI	IP	470	0.5	0.0	0.0	1.0E+99	1.0E+99	0.00	0.00	0.00	0.0	0.00
	j .	PW15E	XI	IP	1000	1.0	0.0	0.0	1.0E+99	1.0E+99	0.00	0,00	0.00	0.0	0.00
		PW16E	PP	IP	400	0.4	0.0	0.0	1.0E+99	1.0E+99	0.00	0.00	0.00	0.0	0.00
	1	PW17E	xo	RM	1000	1.0	0.0	10.0	1.0E+99	6.0E+00	0.00	8.11	4.05	-8.1	-8.11
		PW18E	RM	XS	1000	1.0	10,0	0.0	6.0E+00	1.0E+99	8.11	0.00	4.05	8.1	8.11
	WEST Side	PW1W	RW	DS	1300	1.3	0.0	0.0	1.0E+99	1.0E+99	0.00	0.00	0.00	0.0	0.00
		PW2W	PP	PP	400	0.4	0.0	0.0	1.0E+99	1.0E+99	0.00	0.00	0.00	0.0	0.00
		PW4W	XI	PP	1000	1.0	0.0	0.0	1.0E+99	1.0E+99	0.00	0.00	0.00	0.0	0.00
		PW6W	XI	XS	1000	1.0	0.0	0.0	1.0E+99	1.0E+99	0.00	0.00	0.00	0.0	0.00
		PW7W	xo	XI	2000	2.0	0.0	0.0	1.0E+99	1.0E+99	0.00	0.00	0.00	0.0	0.00
		PW8W	XI	RM	1000	1.0	0.0	10.0	1.0E+99	6.0E+00	0.00	8.11	4.05	-8.1	-8.11
		PW9W	RM	XS	2000	2.0	10.0	0.0	6.0E+00	1.0E+99	8.96	0.00	4,48	9.0	4.48
1		PW12W	IP	XI	1000	1.0	0.0	0.0	1.0E+99	1.0E+99	0.00	0.00	0.00	0.0	0.00
		PW13W	IP	RM	1000	1.0	0.0	10.0	1.0E+99	6.0E+00	0.00	8.11	4.05	-8.1	-8.11
!		PW14W	xī	IP	470	0.5	0.0	0.0	1.0E+99	1.0E+99	0.00	0.00	0.00	0.0	0.00
		PW15W	XI	IP	1000	1.0	0.0	0.0	1.0E+99	1.0E+99	0.00	0.00	0.00	0.0	0.00
]		PW16W	PP	IP	400	0.4	0.0	0.0	1.0E+99	1.0E+99	0.00	0.00	0.00	0.0	0.00
		PW17W	xo	RM	1000	1.0	0.0	10.0	1.0E+99	6.0E+00	0.00	8.11	4.05	-8.1	-8.11
1		PW18W	RM	XS	1000	10	10.0	0.0	6 0E+00	1.0E+99	811	0.00	4 05	81	811

*1: Refer to Figures E 3-1 and E 3-2 in Reference 2.1.2-e.

*2: Boundary

DW: Drywell

WW: Wetwell IC Pool IP:

GP:GDCS PoolXI:Inner Expansion Pool

Outer Expansion Pool XO:

RM: Room RW: Reactor Well

Equipment Storage Pool Spent Fuel Pool DS:

- FP:
- GR: Ground
- AT: Outside Air

- SP: Suppression Pool
- PCCS Pool PP:
- XS: Side Expansion Pool
- Buffer Pool BP:
- MT: MS Tunnel

WG3-U71-ERD-S-0004	SH NO.	138
REV. 1	of	543

 Table 6.2.3.7-1
 Design Wind Loads (North Wind)

				RB (MPa)	I			FB (MPa)			-
FL	EL		w	all	_	Roof	EL		Wall		Roof
		N	s	E	W			S	E	W	
Roof ~ 6FL	34000 ~ 52400 ^{*1}	0.0031	-0.0022	-0.0028	-0.0028	-0.0039					
6FL ~ 5FL	27000 ~ 34000	0.0029	-0.0022	-0.0028	-0.0028	-0.0039					
5FL~4FL*2	17500 ~ 27000	0.0028	-0.0022	-0.0028	-0.0028		17500 ~ 22500	-0.0022	-0.0028	-0.0028	-0.0039
4FL ~ 3FL	13570 ~ 17500	0.0026		-0.0028	-0.0028		13570 ~ 17500	-0.0022	-0.0028	-0.0028	
3FL ~ 2FL	9060 ~ 13570	0.0025		-0.0028	-0.0028		9060 ~ 13570	-0.0022	-0.0028	-0.0028	
$2FL \sim 1FL$	4650 ~ 9060	0.0023		-0.0028	-0.0028		4650 ~ 9060	-0.0022	-0.0028	-0.0028	

*1: The difference between the modeled elevation 52.4 m and the actual elevation 52.7 m at the RB roof is negligibly small. *2: For RB South wall from EL 22500 to EL 27000.

 Table 6.2.3.7-2
 Design Wind Loads (South Wind)

				RB (MPa)	_		FB (MPa)				
FL	EL		W	all		Roof	EL		Wall		Roof
		N	S	E	W			s	E	W	
Roof~6FL	34000 ~ 52400 ^{*1}	-0.0022	0.0031	-0.0028	-0.0028	-0.0039					
6FL ~ 5FL	27000 ~ 34000	-0.0022	0.0029	-0.0028	-0:0028	-0.0039					
5FL ~ 4FL*2	17500 ~ 27000	-0.0022	0.0028	-0.0028	-0.0028		17500 ~ 22500	0.0027	-0.0028	-0.0028	-0.0039
4FL ~ 3FL	13570 ~ 17500	-0.0022		-0.0028	-0.0028		13570 ~ 17500	0.0026	-0.0028	-0.0028	
3FL ~ 2FL	9060 ~ 13570	-0.0022		-0.0028	-0.0028		9060 ~ 13570	0.0025	-0.0028	-0.0028	
2FL ~ 1FL	4650 ~ 9060	-0.0022		-0.0028	-0.0028		4650 ~ 9060	0.0023	-0.0028	-0.0028	

Note

WG3-U71-ERD-S-0004	SH NO.	139
REV. 1	of	543

Table 6.2.3.7-3	Design	Wind Loads	(East	Wind)
-----------------	--------	------------	-------	-------

				RB (MPa)					FB (MPa)		
FL	EL		w	all		Roof	EL		Wall		Roof
		N	s	E	w			s_	Е	w	
Roof~6FL	34000 ~ 52400 ^{*1}	-0.0028	-0.0028	0.0031	-0.0022	-0.0039					
6FL ~ 5FL	27000 ~ 34000	-0.0028	-0.0028	0.0029	-0.0022	-0.0039					
5FL ~ 4FL ^{*2}	17500 ~ 27000	-0.0028	-0.0028	0.0028	-0.0022		17500 ~ 22500	-0.0028	0.0027	-0.0022	-0.0039
4FL ~ 3FL	13570 ~ 17500	-0.0028		0.0026	-0.0022		13570 ~ 17500	-0.0028	0.0026	-0.0022	
3FL~2FL	9060 ~ 13570	-0.0028		0.0025	-0.0022		9060 ~ 13570	-0.0028	0.0025	-0.0022	
2FL ~ 1FL	4650 ~ 9060	-0.0028		0.0023	-0.0022		4650 ~ 9060	-0.0028	0.0023	-0.0022	

*1: The difference between the modeled elevation 52.4 m and the actual elevation 52.7 m at the RB roof is negligibly small. *2: For RB South wall from EL 22500 to EL 27000.

			RB (MPa)				FB (MPa)				
FL	EL		W	'all		Roof	EL		Wall		Roof
		N	s	E	w			S	E	W	
Roof~6FL	34000 ~ 52400 ^{*1}	-0.0028	-0.0028	-0.0022	0.0031	-0.0039					
6FL ~ 5FL	27000 ~ 34000	-0.0028	-0.0028	-0.0022	0.0029	-0.0039	•				
5FL ~ 4FL*2	17500 ~ 27000	-0.0028	-0.0028	-0.0022	0.0028		17500 ~ 22500	-0.0028	-0.0022	0.0027	-0.0039
4FL ~ 3FL	13570 ~ 17500	-0.0028		-0.0022	0.0026		13570 ~ 17500	-0.0028	-0.0022	0.0026	
3FL ~ 2FL	9060 ~ 13570	-0.0028		-0.0022	0.0025		9060 ~ 13570	-0.0028	-0.0022	0.0025	
2FL ~ 1FL	4650 ~ 9060	-0.0028		-0.0022	0.0023		4650 ~ 9060	-0.0028	-0.0022	0.0023	

Note

WG3-U71-ERD-S-0004	SH NO.	140
REV. 1	of	543

 Table 6.2.3.8-1
 Tornado Wind Loads (North Wind)

				RB (MPa)	1			FB (MPa)			
FL	EL	w		all		Roof	EL		Wall		Roof
		N	s	E	W			s	E	w	
Roof~6FL	34000 ~ 52400 ^{*1}	0.0056	-0.0035	-0.0049	-0.0049	-0.0073					
6FL ~ 5FL	27000 ~ 34000	0.0056	-0.0035	-0.0049	-0.0049	-0.0073					
5FL ~ 4FL*2	17500 ~ 27000	0.0056	-0.0035	-0.0049	-0.0049		17500 ~ 22500	-0.0035	-0.0049	-0.0049	-0.0073
4FL ~ 3FL	13570 ~ 17500	0.0056		-0.0049	-0.0049		13570 ~ 17500	-0.0035	-0.0049	-0.0049	
3FL ~ 2FL	9060 ~ 13570	0.0056		-0.0049	-0.0049		9060 ~ 13570	-0.0035	-0.0049	-0.0049	
2FL~1FL	4650 ~ 9060	0.0056		-0.0049	-0.0049		4650 ~ 9060	-0.0035	-0.0049	-0.0049	

*1: The difference between the modeled elevation 52.4 m and the actual elevation 52.7 m at the RB roof is negligibly small. *2: For RB South wall from EL 22500 to EL 27000.

 Table 6.2.3.8-2
 Tornado Wind Loads (South Wind)

				RB (MPa)			FB (MPa)				
FL	EL		W	'all		Roof	EL		Wall		Roof
		N	S	E	w			S	E	W ·	
Roof ~ 6FL	34000 ~ 52400 ^{*1}	-0.0035	0.0056	-0.0049	-0.0049	-0.0073					
6FL ~ 5FL	27000 ~ 34000	-0.0035	0.0056	-0.0049	-0.0049	-0.0073					
$5FL \sim 4FL^{*2}$	17500 ~ 27000	-0.0035	0.0056	-0.0049	-0.0049		17500 ~ 22500	0.0056	-0.0049	-0.0049	-0.0073
4FL ~ 3FL	13570 ~ 17500	-0.0035		-0.0049	-0.0049		13570 ~ 17500	0.0056	-0.0049	-0.0049	
3FL ~ 2FL	9060 ~ 13570	-0.0035		-0.0049	-0.0049		9060 ~ 13570	0.0056	-0.0049	-0.0049	
2FL ~ 1FL	4650 ~ 9060	-0.0035		-0.0049	-0.0049		4650 ~ 9060	0.0056	-0.0049	-0.0049	

Note

WG3-U71-ERD-S-0004	SH NO.	141
REV. 1	of	543

Table 6.2.3.8-3 Tornado Wind Loads (East Wind)

	RB (MPa)						FB (MPa)				
FL EL		Wall				Roof	EL	Wall			Roof
		N	s	E	W		,	s	E	W	
Roof ~ 6FL	34000 ~ 52400 ^{•1}	-0.0049	-0.0049	0.0056	-0.0035	-0.0073					
6FL ~ 5FL	27000 ~ 34000	-0.0049	-0.0049	0.0056	-0.0035	-0.0073					
$5FL \sim 4FL^{*2}$	17500 ~ 27000	-0.0049	-0.0049	0.0056	-0.0035		17500 ~ 22500	-0.0049	0.0056	-0.0035	-0.0073
4FL ~ 3FL	13570 ~ 17500	-0.0049		0.0056	-0.0035		13570 ~ 17500	-0.0049	0.0056	-0.0035	
3FL ~ 2FL	9060 ~ 13570	-0.0049		0.0056	-0.0035		9060 ~ 13570	-0.0049	0.0056	-0.0035	
2FL ~ 1FL	4650 ~ 9060	-0.0049		0.0056	-0.0035		4650 ~ 9060	-0.0049	0.0056	-0.0035	

*1: The difference between the modeled elevation 52.4 m and the actual elevation 52.7 m at the RB roof is negligibly small. *2: For RB South wall from EL 22500 to EL 27000.

Table 6.2.3.8-4Tornado Wind Loads (West Wind)

	RB (MPa)					FB (MPa)					
FL EL		Wall			Roof	EL	Wall			Roof	
		N	s	E	W			s	E	W	
Roof~6FL	34000 ~ 52400 ^{•1}	-0.0049	-0.0049	-0.0035	0.0056	-0.0073					
6FL ~ 5FL	27000 ~ 34000	-0.0049	-0.0049	-0.0035	0.0056	-0.0073					
5FL ~ 4FL ^{•2}	17500 ~ 27000	-0.0049	-0.0049	-0.0035	0.0056		17500 ~ 22500	-0.0049	-0.0035	0.0056	-0.0073
4FL~3FL	13570 ~ 17500	-0.0049		-0.0035	0.0056		13570 ~ 17500	-0.0049	-0.0035	0.0056	
3FL~2FL	9060 ~ 13570	-0.0049		-0.0035	0.0056		9060 ~ 13570	-0.0049	-0.0035	0.0056	
2FL ~ 1FL	4650 ~ 9060	-0.0049		-0.0035	0.0056		4650 ~ 9060	-0.0049	-0.0035	0.0056	

Note

WG3-U71-ERD-S-0004	SH NO.	142
REV. 1	of	543

 Table 6.2.3.8-5
 Tornado Loads (Differential Pressure)

FL EL		RB (MPa)						FB (MPa)			
		Wall				Roof	EL	Wall			Roof
		N	Ś	E	W			s	E	W	
Roof~6FL	34000 ~ 52400 ^{*1}	0.0165	0.0165	0.0165	0.0165	0.0165					
6FL ~ 5FL	27000 ~ 34000	0.0165	0.0165	0.0165	0.0165	0.0165					
$5FL \sim 4FL^{*2}$	17500 ~ 27000	0.0165	0.0165	0.0165	0.0165		17500 ~ 22500	0.0165	0.0165	0.0165	0.0165
4FL ~ 3FL	13570 ~ 17500	0.0165		0.0165	0.0165		13570 ~ 17500	0.0165	0.0165	0.0165	
3FL ~ 2FL	9060 ~ 13570	0.0165		0.0165	0.0165		9060 ~ 13570	0.0165	0.0165	0.0165	
2FL ~ 1FL	4650 ~ 9060	0.0165		0.0165	0.0165		4650 ~ 9060	0.0165	0.0165	0.0165	

WG3-U71-ERD-S-0004	SH NO.	143
REV. 1	of	543

	Condition	Load	Load Label	Direction	Component	
	Normal Operation	Horizontal Seismic Load	EQNS	North to South	Shear Force Overturning Moment	
	& LOCA		EQEW	West to East		
		Vertical Seismic Load	EQZ	Downward	Vertical Force	
		Torsional Seismic Load	EQT	Counterclockwise	Torsional Moment	
		Soil Pressure Due to an Earthquake	SPKN	North to South and South to North at Once	Soil Pressure	
			SPKW	West to East and East to West at Once		
		Seismic hydrodynamic	ESX	North to South	Seismic hydrodynamic	
		LUau	ESŸ	West to East	riessure	
			ESZ	Downward		
	LOCA Flooding	Horizontal Seismic Load	EQNF	North to South	Shear Force Overturning Moment	
ľ	-		EQEF	West to East		
		Vertical Seismic Load	EQZF	Downward	Vertical Force	
		Torsional Seismic Load	EQTF	Counterclockwise	Torsional Moment	
		Seismic hydrodynamic	ESXF	North to South	Seismic hydrodynamic	
			ESYF	West to East		
			ESZF	Downward		
	Envelope	Horizontal Seismic Load	EONS	North to South	Out-of-Plane force	
		(Out-of-Plane ioad for walls)	EOEW	West to East		

Table 6.2.3.9-1 Analysis Cases for Seismic Loads

Note: The seismic loads for normal operation & LOCA condition are the same seismic loads for a LOCA flooding condition.

Elevation				Seism	ic Wall	Shear A	rea (m ²)						Total
(m)	RA	RG	RCCV	Pedestal	IW1	IW2	IW3	IW4	IW5	IW6	IW7	IW8	(m ²)
52.40 ^{*1} 34.00	47.0	47.0	-		-	_	-	-	-	-	-	-	94.0
34.00 27.00	47.0	47.0	-	-	-	-	-	-	-	-	-	-	94.0
27.00 22.50	47.0	47.0	119.3	-	-	-	-	-	-	-	~	-	213.3
22.50 17.50	91.5	91.5	119.3	-	-	-	-	-	_	-	-	-	302.3
17.50 13.57	91.5	91.5	119.3	-	-	-	-	-	-	-	-	-	302.3
13.57 9.06	91.5	91.5	119.3	-	-	-	-	-	-	-	-	1	302.3
9.06 4.65	91.5	91.5	119.3	-	-	-	-	-	-	-	-	-	302.3
4.65 2.42	136.0	136.0	119.3	51.2	7.4	4.2	19.4	12.2	12.9	-	-	-	498.5
2.42 -1.00	136.0	136.0	119.3	51.2	7.4	4.2	19.4	12.2	12.9	-	-	-	498.5
-1.00 -2.75	136.0	136.0	119.3	51.2	7.4	4.2	19.4	12.2	10.4	-	-	-	496.0
-2.75 -6.40	136.0	136.0	119.3	51.2	7.4	4.2	19.4	12.2	10.4	-	-	-	496.0
-6.40 -11.50	136.0	136.0	119.3	51.2	7.4	3.2	19.4	12.2	12.9	10.1	12.0	12.0	531.5

Table 6.2.3.9-2 Seismic Wall Shear Area – X (N-S)-dir.

Note

*1: The difference between the modeled elevation 52.4 m and the actual elevation 52.7 m at the RB roof is negligibly small. Locations of IW1 through IW8 are shown in Figures 6.2.3.9-3 through 6.2.3.9-5.

Elevation					Sei	smic_Wa	ll Shear .	Area (m ²	2)						Total
(m)	R1	R7	F3	RCCV	Pedestal	IW1	IW2	IW3	IW4	IW5	IW6	IW7	IW8	IW9	(m ²)
52.40 ^{*1} 34.00	38.0	38.0	-	-	-	-	-	-	-	-	-	-	-	-	76.0
34.00 27.00	75.2	75.2	-	-	-	1	I	-	-	-	-	-	-	-	150.4
27.00 22.50	70.5	70.5	-	119.3	-	-	-	-	-	1	-	-	-	-	260.3
22.50 17.50	43.5	70.5	47.0	119.3	-	-	-	-	-	-	-	-	-	1	280.3
17.50 13.57	70.5	70.5	47.0	119.3	-	-	1		-	-	-	-	-	-	307.3
13.57 9.06	70.5	70.5	47.0	119.3	-	-	-	-	-	-	-	-	-	-	307.3
9.06 4.65	70.5	70.5	47.0	119.3	-	-	-	-	-	-	1	-	-	-	307.3
4.65 2.42	94.0	94.0	94.0	119.3	51.2	31.5	4.1	2.8	-	-	_	-	-	-	491.0
2.42 -1.00	94.0	94.0	94.0	119.3	51.2	31.5	4.1	2.8	-	-	-	-	-	-	491.0
-1.00 -2.75	94.0	94.0	94.0	119.3	51.2	31.5	4.1	8.3	-	-		-	-	-	496.5
-2.75 -6.40	94.0	94.0	94.0	119.3	51.2	31.5	4.1	8.3	-		-	-	-	-	496.5
-6.40 -11.50	94.0	94.0	94.0	119.3	51.2	31.5	8.2	8.4	5.5	6.3	6.8	8.4	12.0	12.0	551.7

Table 6.2.3.9-3 Seismic Wall Shear Area – Y (E-W)-dir.

Note

*1: The difference between the modeled elevation 52.4 m and the actual elevation 52.7 m at the RB roof is negligibly small. Locations of IW1 through IW8 are shown in Figures 6.2.3.9-3 through 6.2.3.9-5.

Flevation	Design	Applied				Applied	Forces at I	Each Seism	ic Wall (MN))				
(m)	Shear Force (MN)	Force (MN)	RA	RG	RCCV	Pedestal	IW1	IW2	IW3	IW4	IW5	IW6	IW7	IW8
*152.40 34.00	192.21	192.21	96.11	96.11	1	-	-	-	-	-	-	-	-	-
34.00 27.00	304.11	111.90	55.95	55.95	-	-	-	-	-	-	-	-	-	-
27.00 22.50	537.06	232.95	51.32	51.32	130.30	-	-	-	-	-	-	-	-	-
22.50 17.50	577.43	40.37	12.22	12.22	15.93	-	-	-	-	-	-	-	-	-
17.50 13.57	622.58	45.15	13.66	13.66	17.82	-	-	-	-	-	-	-	-	-
13.57 9.06	658.62	36.04	10.91	10.91	14.22	-	-	-	-	-	-	-	-	-
9.06 4.65	680.00	21.38	6.47	6.47	8.44	-	-	-	-	-	-	-	-	-
4.65 2.42	584.43	-95.58	-26.07	-26.07	-22.88	-9.82	-1.41	-0.81	-3.71	-2.33	-2.47	-	-	-
2.42	595.94	11.51	3.14	3.14	2.75	1.18	0.17	0.10	0.45	0.28	0.30	-	-	-
-1.00 -2.75	329.76	-266.18	-72.98	-72.98	-64.03	-27.50	-3.94	-2.25	-10.38	-6.52	-5.58	-	-	-
-2.75 -6.40	329.40	-0.36	-0.10	-0.10	-0.09	-0.04	-0.01	0.00	-0.01	-0.01	-0.01	-	-	-
-6.40 -11.50	338.24	8.48	0.22	0.22	0.19	7.70	0.01	0.01	0.03	0.02	0.02	0.02	0.02	0.02
-11.50	-	215.98												

Table 6.2.3.9-4 Applied Shear Forces at Seismic Wall – X (N-S)-dir.

Note

-15.50

*1: The difference between the modeled elevation 52.4 m and the actual elevation 52.7 m at the RB roof is negligibly small. Locations of IW1 through IW8 are shown in Figures 6.2.3.9-3 through 6.2.3.9-5.

WG3-U71-ERD-S-0004SH NO. 147REV. 1of 543

Elevation	Design	Applied		Applied Forces at Each Seismic Wall (MN)												
(m)	Shear Force (MN)	Force (MN)	R1	R7	F3	RCCV	Pedestal	IW1	IW2	IW3	IW4	IW5	IW6	IW7	IW8	IW9
* ¹ 52.40 34.00	139.97	139.97	69.98	69.98	-	-	-	-	-	-	-	-	-	-	-	-
34.00 27.00	247.18	107.22	53.61	53.61	-	-	-	-	-	-	-	-	-	-	-	-
27.00 22.50	411.28	164.10	44.44	44.44	0.00	75.22	-	-	-	-	-	-	-	-	-	-
22.50 17.50	443.71	32.43	5.03	8.16	5.44	13.80	-	-	-	-	-	-	-	-	-	-
17.50 13.57	501.87	58.16	13.34	13.34	8.89	22.58	-	-	-	-	-	-	-	-	-	-
13.57 9.06	537.18	35.31	8.10	8.10	5.40	13.71	-	-	-	-	-	-	-	-	-	-
9.06 4.65	584.54	47.36	10.87	10.87	7.24	18.39	-	-	-	-	-	-	-	-	-	-
4.65 2.42	502.70	-81.84	-15.67	-15.67	-15.67	-19.89	-8.54	-5.26	-0.68	-0.46	-	-	-	-	-	-
2.42 -1.00	517.20	14.50	2.78	2.78	2.78	3.52	1.51	0.93	0.12	0.08	-	-	-	-	-	-
-1.00 -2.75	310.39	-206.81	-39.16	-39.16	-39.16	-49.71	-21.35	-13.14	-1.71	-3.44	-	-	-	-	-	-
-2.75 -6.40	310.71	0.33	0.06	0.06	0.06	0.08	0.03	0.02	0.00	0.01	-	-	-	-	-	-
-6.40 -11.50	277.96	-32.75	-7.34	-7.34	-7.34	-9.32	6.65	-2.46	-0.64	-0.66	-0.43	-0.49	-0.53	-0.66	-0.94	-0.94
-11.50 -15.50	-	181.62														

Table 6.2.3.9-5	Applied Shear Forces a	t Seismic Wall –	Y(E-W)-dir.
-----------------	------------------------	------------------	-------------

Note

*1: The difference between the modeled elevation 52.4 m and the actual elevation 52.7 m at the RB roof is negligibly small. Locations of IW1 through IW8 are shown in Figures 6.2.3.9-3 through 6.2.3.9-5

D1	Model	Story	NT- J-				RBFB Moment (X-	-dir.)			
Elev.	Elev.	Height	No	М	moment Mq	M-Mq	dM	m	Diff.	dMq	m+dMq
(11)	(m)	(m)	NO.	(MNm)	(MNm)	(MNm)	(MNm)	(MNm)	(m)	(MNm)	(MNm)
*152.40	52.05	18.05	110	2.724E+03	0.000E+00	2.724E+03	2.724E+03	2.724E+03	0.05	9.61	2.734E+03
34.00			109	5.838E+03	3.527E+03	2.311E+03					
34.00	34.00	8.20	109	8.196E+03	3.527E+03	4.669E+03	4.669E+03	1.945E+03	0.00	0.00	1.945E+03
27.00			108	8.719E+03	4.947E+03	3.772E+03					
27.00	25.80	3.30	108	9.400E+03	4.947E+03	4.453E+03	4.453E+03	-2.154E+02	1.20	267.38	5.199E+01
22.50			107	9.599E+03	6.254E+03	3.345E+03					
22.50	22.50	5.30	107	1.122E+04	6.254E+03	4.963E+03	4.963E+03	5.093E+02	0.00	0.00	5.093E+02
17.50			106	1.142E+04	8.567E+03	2.857E+03					
17.50	17.20	4.13	106	1.210E+04	8.567E+03	3.538E+03	3.538E+03	-1.424E+03	0.30	0.62	-1.424E+03
13.57			105	1.235E+04	1.038E+04	1.971E+03					
13.57	13.07	4.51	105	1.284E+04	1.038E+04	2.461E+03	2.461E+03	-1.077E+03	0.50	6.14	-1.071E+03
9.06			104	1.365E+04	1.241E+04	1.241E+03					
9.06	8.56	4.91	104	1.390E+04	1.241E+04	1.494E+03	1.494E+03	-9.670E+02	0.50	1.95	-9.651E+02
4.65			103	1.523E+04	1.464E+04	5.885E+02					
4.65	3.65	5.15	103	9.392E+03	1.464E+04	-5.250E+03	~5.250E+03	-6.745E+03	1.00	0.06	-6.745E+03
-1.00			102	1.095E+04	1.698E+04	-6.032E+03					
-1.00	-1.50	5.40	102	6.545E+03	1.698E+04	-1.044E+04	-1.044E+04	~5.189E+03	0.50	-107.34	-5.296E+03
-6.40			101	7.303E+03	1.828E+04	-1.098E+04					
-6.40	-6.90	4.60	101	4.748E+03	1.828E+04	-1.353E+04	-1.353E+04	-3.093E+03	0.50	-1.16	-3.094E+03
-11.50			2	5.053E+03	1.937E+04	-1.432E+04					
-11.50	-11.50	2.00	2								1.177E+03
-15.50			1	-	-	-	-	-	-	-	

Table 6.2.3.9-6	Applied Ov	verturning Moment	t – RBFB	X(N-S)-dir.
-----------------	------------	-------------------	----------	-------------

dM: Additional Moment

m: Input Moment Mq: Moment due to Shear

dMq: Moment Modification Considering to the Difference of the Input Level

Note

General Note: Q: Design Shear Force

M: Design Moment

*1: The difference between the modeled elevation 52.4 m and the actual elevation 52.7 m at the RB roof is negligibly small.

Plan	Model	Story	Nede]	RBFB Moment (Y-	dir.)			
(m)	Elev.	Height	Node	M	moment Mq	M-Mq	dM	m	Diff.	dMq	m+dMq
(111)	(m)	(m)		(MNm)	(MNm)	(MNm)	(MNm)	(MNm)	(m)	(MNm)	(MNm)
*152.40	52.05	18.05	110	2.143E+03	0.000E+00	2.143E+03	2.143E+03	2.143E+03	0.05	7.00	2.150E+03
34.00			109	4.488E+03	2.568E+03	1.919E+03					
34.00	34.00	8.20	109	5.821E+03	2.568E+03	3.253E+03	3.253E+03	1.110E+03	0.00	0.00	1.110E+03
27.00			108	6.389E+03	3.503E+03	2.887E+03					
27.00	25.80	3.30	108	7.162E+03	3.503E+03	3.659E+03	3.659E+03	4.060E+02	1.20	174.56	5.806E+02
22.50			107	7.958E+03	4.359E+03	3.599E+03					
22.50	22.50	5.30	107	8.328E+03	4.359E+03	3.969E+03	3.969E+03	3.100E+02	0.00	0.00	3.100E+02
17.50			106	9.227E+03	5.906E+03	3.322E+03					
17.50	17.20	4.13	106	9.408E+03	5.906E+03	3.502E+03	3.502E+03	-4.667E+02	0.30	15.50	-4.512E+02
13.57			105	1.020E+04	7.324E+03	2.871E+03					
13.57	13.07	4.51	105	1.026E+04	7.324E+03	2.931E+03	2.931E+03	-5.710E+02	0.50	10.11	-5.608E+02
9.06			104	1.122E+04	8.965E+03	2.251E+03					
9.06	8.56	4.91	104	1.134E+04	8.965E+03	2.373E+03	2.373E+03	-5.581E+02	0.50	9.81	-5.482E+02
4.65			103	1.251E+04	1.085E+04	1.659E+03					
4.65	3.65	5.15	103	6.302E+03	1.085E+04	-4.545E+03	-4.545E+03	-6.918E+03	1.00	-23.26	-6.941E+03
-1.00			102	7.759E+03	1.270E+04	-4.943E+03					
-1.00	-1.50	5.40	102	4.819E+03	1.270E+04	-7.883E+03	-7.883E+03	-3.338E+03	0.50	-66.76	-3.404E+03
-6.40			101_	5.358E+03	1.393E+04	-8.567E+03					
-6.40	-6.90	4.60	101	3.351E+03	1.393E+04	-1.057E+04	-1.057E+04	-2.692E+03	0.50	-13.07	-2.705E+03
-11.50			2	3.356E+03_	1.485E+04	-1.149E+04					
-11.50	-11.50	2.00	2								1.057E+03
-15.50			1	-	-	•	-		_	-	
(General No	te: Q: De	esign She	ar Force	dM: Addi	tional Moment					

Table 6.2.3.9-7	Applied	Overturning	Moment –	RBFB	Y(E-W)-dir.
------------------------	---------	-------------	----------	------	-------	--------

M: Design Moment Mq: Moment due to Shear m: Input Moment

dMq: Moment Modification Considering to the Difference of the Input Level

Note

*1: The difference between the modeled elevation 52.4 m and the actual elevation 52.7 m at the RB roof is negligibly small.

Elen	Model	Story	Mada			F	RCCV Mome <u>nt (</u> X	l-dir.)			
Elev.	Elev.	Height	No	M	moment Mq	M-Mq	dM	m	Diff.	dMq	m+dMq
(111)	(m)	(m)	140.	(MNm)	(MNm)	(MNm)	(MNm)	(MNm)	(m)	(MNm)	(MNm)
34.00	34.00	8.20	209	2.298E+02	0.000E+00	2.298E+02	2.298E+02	2.298E+02	0.00	0.00	2.298E+02
27.00			208	1.029E+03	1.074E+03	-4.460E+01	-				
27.00	25.80	8.60	208	2.162E+03	1.074E+03	1.088E+03	1.088E+03	8.580E+02	1.20	12.16	8.702E+02
17.50			206	2.938E+03	2.287E+03	6.509E+02					
17.50	17.20	4.13	206	3.259E+03	2.287E+03	9.719E+02	9.719E+02	-1.160E+02	0.30	12.92	-1.030E+02
13.57			205	3.691E+03	3.047E+03	6.433E+02					
13.57	13.07	4.51	205	3.817E+03	3.047E+03	7.700E+02	7.700E+02	-2.019E+02	0.50	11.88	-1.900E+02
9.06			204	4.389E+03	3.985E+03	4.037E+02					
9.06	8.56	4.91	204	4.481E+03	3.985E+03	4.961E+02	4.961E+02	-2.739E+02	0.50	8.74	-2.652E+02
4.65			203	5.190E+03	5.092E+03	9.850E+01		•			
4.65	3.65	5.15	203	5.523E+03	5.092E+03	4.315E+02	4.315E+02	-6.453E+01	1.00	-116.19	-1.807E+02
-1.00			202	5.740E+03	5.654E+03	8.605E+01					
-1.00	-1.50	5.40	202	6.008E+03	5.654E+03	3.536E+02	3.536E+02	-7.796E+01	0.50	-20.78	-9.874E+01
-6.40			201	5.924E+03	6.019E+03	-9.560E+01					
-6.40	-6.90	4.60	201	6.053E+03	6.019E+03	3.359E+01	3.359E+01	-3.200E+02	0.50	1.55	-3.184E+02
-11.50			2	5.961E+03	6.345E+03	-3.837E+02					_

 Table 6.2.3.9-8
 Applied Overturning Moment – RCCV X(N-S)-dir.

Note: Q: Design Shear Force M: Design Moment dM: Additional Moment

m: Input Moment

Mq: Moment due to Shear

E1	Model	Story	N. J.	_]	RCCV Moment (Y	<u>-</u> dir.)			
Elev.	Elev.	Height	Node	М	moment Mq	M-Mq	dM	m	Diff.	dMq	m+dMq
()	(m)	(m)	140.	(MNm)	(MNm)	(MNm)	(MNm)	(MNm)	(m)	(MNm)	(MNm)
34.00	34.00	8.20	209	5.097E+02	0.000E+00	5.097E+02	5.097E+02	5.097E+02	0.00	0.00	5.097E+02
27.00			208	1.160E+03	1.093E+03	6.738E+01					
27.00	25.80	8.60	208	2.303E+03	1.093E+03	1.210E+03	1.210E+03	7.004E+02	1.20	22.36	7.228E+02
17.50			206	3.071E+03	2.399E+03	6.722E+02					
17.50	17.20	4.13	206	3.667E+03	2.399E+03	1.268E+03	1.268E+03	5.806E+01	0.30	1.95	6.001E+01
13.57			205	3.904E+03	3.053E+03	8.512E+02	_	_			
13.57	13.07	4.51	205	4.203E+03	3.053E+03	1.150E+03	1.150E+03	-1.181E+02	0.50	7.54	-1.105E+02
9.06			204	4.491E+03	3.835E+03	6.557E+02					
9.06	8.56	4.91	204	4.853E+03	3.835E+03	1.018E+03	1.018E+03	-1.318E+02	0.50	13.87	-1.179E+02
4.65			203	5.203E+03	4.823E+03	3.799E+02					
4.65	3.65	5.15	203	5.470E+03	4.823E+03	6.472E+02	6.472E+02	-3.711E+02	1.00	-75.48	-4.466E+02
-1.00			202	5.824E+03	5.470E+03	3.541E+02					
-1.00	-1.50	5.40	202	6.066E+03	5.470E+03	5.962E+02	5.962E+02	-5.097E+01	0.50	-28.81	-7.978E+01
-6.40			201	6.035E+03	5.838E+03	1.973E+02					
-6.40	-6.90	4.60	201	6.141E+03	5.838E+03	3.037E+02	3.037E+02	-2.925E+02	0.50	-6.47	-2.989E+02
-11.50			2	6.127E+03	6.091E+03	3.594E+01					

 Table 6.2.3.9-9
 Applied Overturning Moment – RCCV Y(E-W)-dir.

Note: Q: Design Shear Force M: Design Moment Mq: Moment due to Shear dM: Additional Moment

m: Input Moment

E1	Model	Story	NT. J.			Р	edestal Moment (X-dir.)			
Elev.	Elev.	Height	Node	М	moment Mq	M-Mq	dM	m	Diff.	dMq	m+dMq
(m)	(m)	(m)	INU.	(MNm)	(MNm)	(MNm)	(MNm)	(MNm)	(m)	(MNm)	(MNm)
4.65	3.65	1.00	303	6.670E+02	0.000E+00	6.670E+02	6.670E+02	6.670E+02	1.00	20.55	6.876E+02
2.42			377	6.508E+02	4.589E+01	6.049E+02		_			-
2.42	2.65	4.15	377	7.931E+02	4.589E+01	7.472E+02	7.472E+02	8.017E+01	0.23	2.65	8.281E+01
-1.00			302	7.541E+02	1.554E+02	5.987E+02					
-1.00	-1.50	1.80	302	6.913E+02	1.554E+02	5.359E+02	5.359E+02	-2.113E+02	0.50	-4.97	-2.162E+02
-2.75			376	6.581E+02	1.942E+02	4.639E+02					
-2.75	-3.30	3.60	376	6.580E+02	1.942E+02	4.638E+02	4.638E+02	-7.210E+01	0.55	-0.20	-7.230E+01
-6.40			301	5.943E+02	2.735E+02	3.208E+02					
-6.40	-6.90	4.60	301	5.553E+02	2.735E+02	2.818E+02	2.818E+02	-1.820E+02	0.50	4.03	-1.780E+02
-11.50			2	5.535E+02	4.256E+02	1.279E+02					

 Table 6.2.3.9-10
 Applied Overturning Moment – RPV Pedestal X(N-S)-dir.

Note: Q: Design Shear Force M: Design Moment dM: Additional Moment

m: Input Moment

Mq: Moment due to Shear dMq: Mor

Elaw	Model	Story	Mada			P	edestal Moment (Y-dir.)			
(m)	Elev.	Height	Noue	М	moment Mq	M-Mq	dM	m	Diff.	dMq	m+dMq
(11)	(m)	(m)	10.	(MNm)	(MNm)	(MNm)	(MNm)	(MNm)	(m)	(MNm)	(MNm)
4.65	3.65	1.00	303	4.962E+02	0.000E+00	4.962E+02	4.962E+02	4.962E+02	1.00	16.90	5.131E+02
2.42			377	5.021E+02	3.774E+01	4.644E+02					
2.42	2.65	4.15	377	6.139E+02	3.774E+01	5.761E+02	5.761E+02	7.997E+01	0.23	7.22	8.719E+01
-1.00			302	6.309E+02	1.450E+02	4.859E+02					
-1.00	-1.50	1.80	302	5.706E+02	1.450E+02	4.256E+02	4.256E+02	-1.505E+02	0.50	7.86	-1.427E+02
-2.75			376	5.551E+02	1.726E+02	3.825E+02					
-2.75	-3.30	3.60	376	5.551E+02	1.726E+02	3.825E+02	3.825E+02	-4.306E+01	0.55	8.83	-3.423E+01
-6.40			301	5.244E+02	2.311E+02	2.933E+02					
-6.40	-6.90	4.60	301	5.184E+02	2.311E+02	2.873E+02	2.873E+02	-9.526E+01	0.50	11.19	-8.407E+01
-11.50			2	5.137E+02	3.453E+02	1.684E+02					

 Table 6.2.3.9-11
 Applied Overturning Moment – RPV Pedestal Y(E-W)-dir.

Note: Q: Design Shear Force M: Design Moment dM: Additional Moment

m: Input Moment

Mq: Moment due to Shear

Table 6.2.3.9-12	Design	Vertical	Acceleration	for	Slabs
------------------	--------	----------	--------------	-----	-------

		Weight	Oscillator				Slab We	ight W _{Si} (k	N)		W _{Si} -	$\Sigma_{s}W_{i}$ (kN)		Seism	nic Analysis R	esults	Applied	
EL	Node	W.	Acceleration	$_{SA_{i}} \times _{SW_{i}}$	SAeq	RB	/FB	RCCV	Pedestal	RB	/FB	RCCV	Pedestal	Z-di	r. Acceleration	n (g)	Acc	Portion
(m)		(kN)	«A ₁ (φ)	(kN-g)	ത	Du W	CP W	cuW	pgoW	unWe	cnWe	cyWs	pro We	npA	cvA	nco A	(9)	
	9101	29394	0.32	9541	1.51	50695	<u></u>			5180	1000	Crea a	repris	1.56		PEDA	151	RB Roof
52.4	9102	4406	1.28	5627				1										100 1000
	9103	5859	6 27	36721														
	9104	2726	2.62	7136														
	9105	186	2.42	449					1									
	9106	1211	3.52	4265														
	9107	824	3 22	2650														
	9108	909	2.50	2275														
34.00	9091	4918	1.61	7938	1.61	30344		40678		27885		29053		1.20	1.20		1 23	RB-RCCV
	9092	9165	1.61	14731	1.61									1.20	-		1.30	RCCV
27.00	9081	39043	1.60	62331	1.55	61551	18448	171322		48004	18448	69949		1.02	1 12		1 37	Top Slab
	9082	52533	1.52	79714													1.57	100 5.40
	9083	8768	1.30	11392	1.30						1						1.06	RB-RCCV
	9084	9163	1.67	15334	1.67												1.13	MS Tunnel Slab
	9085	5413	1.46	7910									! I					
22.50	9071	20024	1.15	22991	1.34	1	30394				2345		1	0.92			1.31	FB Roof
	9072	2679	1.64	4404														
	9073	707	4.47	3156														
1	9074	3442	1.53	5283														
	9075	1196	1,51	1809						1								
17.50	9061	5798	3.65	21166	3.40	26787		52884		12732		46092		0.80	0.91		1.74	MS Tunnel Slab
	9062	1465	2.40	3523													•	
	9063	9707	1.13	11017	1.18												0.94	RB-RCCV
	9064	37619	2.56	96235	2.38													
	9065	3877	1.28	4975														
	99064	4884	0.99	4817														
13.57	9051	10042	1.11	11167	1.15	26268	1295	16342		19081	1295	9154		0.72	0.82		0.89	RB-RCCV
	9052	4333	1.25	5420														
9.06	9041	11090	0.95	10531	1.04	28298		16069		20346		8117		0.62	0.72		0.79	RB-RCCV
	9042	4816	1.26	6054														
4.65	9031	11025	1.62	17900	1.66	25975	32624	56614	64383		16193	11812	48175	0.56	0.65	0.65	1.11	FB
	9032	51608	0.89	46093	0.91												0.87	RB-RCCV
	9033	32416	1.12	36403	1.12												0.82	RCCV-Pedestal
	9034	5407	1.73	9346														
	9035	5579	1.07	5966														
-1.00	9021	3655	0.97	3531	1.25	27955	37426	23803	16700	20115	29902	8894	9631	0.57	0.58	0,59	0.71	FB
1	9022	1086	1.90	2065									1					
	9023	10996	0.98	10733	1.03												0.73	RB-RCCV
	9024	5993	0.85	5107	0,87												0.72	RCCV-Pedestal
	9025	4685	1.14	5341									[
1	9026	2783	1.38	3832														
	9027	8144	0.89	7243														
-6.40	9011	3704	0,73	2705	0.80	29797	40864	23914	14176	22680	37488	13133	10513	0.53	0.55	0.56	0.61	RCCV-Pedestal
	9012	3622	0.87	3155														
	9013	4424	0.91	4012	0.99												0,66	RB-RCCV
	9014	3377	1.12	3773	1,12												0.58	FB
1	9015 1	9811	1.03	10115									I I					

Note

*1: The difference between the modeled elevation 52.4 m and the actual elevation 52.7 m at the RB roof is negligibly small.

 Table 6.2.3.9-13
 Applied Shear Forces for Seismic Wall due to Torsional Moment

Elevation	Center	of Rigid	Design	Torsion due to	Design	T-Ts	Applied							
(m)	$P_{Y}(m)$	$\mathbf{D}\mathbf{v}(\mathbf{m})$	Shear Force	Shear Force	Torsion		Torsion							
(11)	KX (III)	Ky (III)	(MN)	<u> </u>	T(MNm)	(IVIINIII)	(MNm)							
52.40*1	23.50	24.44	139.97		1754.7	1754.7	1754.7	Torsion	RA	446.5			R1	430.8
34.00								(MNm)	RG	446.5			R7	430.8
34.00	23.50	23.50	247.18	0.0	2839.6	2839.6	1085.0	Area	RA	49.0	PG	59.2	R1	49.0
27.00								(m ²)	RG	49.0	PG	59.2	R7	49.0
								Rot. Stiff.	RA	27060.3	PG	2818.5	RI	27060.3
								(m ⁴)	RG	27060.3	PG	2818.5	R7	27060.3
								Torsion	RA	257.8	PG	26.9	R1	257.8
								(MNm)	RG	257.8	PG	26.9	R7	257.8
27.00	25.76	23.50	411.28	559.4	5977.6	5418.1	2578.5	Area	RA	73.5			R1	50.1
22.50			1					(m ²)	RG	73.5			R7	73.5
								Rot. Stiff.	RA	40596.0	RCCV	86149.0	R1	33253.5
								(m ⁴)	RG	40584.7	RCCV Y	241.2	_R7	33148.6
								Torsion	RA	447.4	RCCV	949.4	R1	366.5
								(MNm)	RG	447.3	RCCV Y	2.7	R7	365.3
22.50	33.18	23.98	443.71	3610.2	7997.4	4387.2	-1030.9	Area	RA	92.2			R1	48.4
17.50								(m^2)	RG	90.1			R7	73.5
								(111)			_		F3	48.6
								Pot Stiff	RA	48844.3	RCCV	86149.0	R1	56535.6
								(m^4)	RG	51831.2	RCCV Y	11182.6	R7	14036.1
								(m)			RCCV X	28.0	_F3	65816.7
								Torgion	RA	-150.6	RCCV	-265.6	R1	-174.3
								(MNm)	RG	-159.8	RCCV Y	-34.5	R7	-43.3
											RCCV X	-0.1	F3	-202.9

Note

*1: The difference between the modeled elevation 52.4 m and the actual elevation 52.7 m at the RB roof is negligibly small.

 Table 6.2.3.9-13
 Applied Shear Forces for Seismic Wall due to Torsional Moment (Continued)

Elevation	Center of	of Rigid	Design	Torsion due to	Design	T-Ts	Applied							
(m)	Ry (m)	$\mathbf{R}\mathbf{v}(\mathbf{m})$	Shear Force	Shear Force	Torsion	(MNm)	Torsion							
(iii)	KX (III)	Ky (III)	(MN)	<i>Ts</i> (MNm)	T(MNm)		(MNm)							
17.50	30.49	23.99	501.87	2416.9	7516.9	5099.9	712.7	4 = 20	RA	92.2			R1	73.5
13.57								(m^2)	RG	90.1			R7	73.5
													F3	49.0
;								Det Culff	RA	48837.5	RCCV	86149.0	R1	68335.7
								(m^4)	RG	51838.1	RCCV Y	5832.7	R7	20030.7
								(m)			RCCV X	28.2	F3	68937.1
								Tantan	RA	99.4	RCCV	175.4	R1	139.2
								(MNm)	RG	105.6	RCCV Y	11.9	R7	40.8
											RCCV X	0.1	F3	140.4
13.57	30.49	23.82	537.18	2416.9	7966.1	5549.2	449.2	Area	RA	92.2			R1	73.5
9.06								(m^2)	RG	92.2			R7	73.5
								()					<u>F</u> 3	49.0
								Rot Stiff	RA	49547.3	RCCV	86149.0	R1	68335.5
								(m^4)	RG	52317.5	RCCV Y	5832.6	R7	20030.9
								(11)			RCCV X	12.2	F3	68937.3
								Torsion	RA	63.4	RCCV	110.2	R1	87.4
								(MNm)	RG	66.9	RCCV Y	7.5	R7	25.6
											RCCV X	0.0	F3	88.2
9.06	31.00	24.23	584.54	2690.1	8798.2	6108.1	558.9	Å reg	RA	90.8			R1	69.4
4.65								(m^2)	RG	88.9			R7	73.5
								(11)					F3	47.9
								Pot Stiff	RA	47067.7	RCCV	86149.0	R1	66693.8
								(m^4)	RG	52178.6	RCCV Y	6711.9	R7	18815.8
}								(m)			RCCV X	64.2	F3	65615.8
								Torsion	RA	76.6	RCCV	140.3	R1	108.6
!								(MNm)	RG	84.9	RCCV Y	10.9	R7	30.6
											RCCV X	0.1	F3	106.8

 Table 6.2.3.9-13
 Applied Shear Forces for Seismic Wall due to Torsional Moment (Continued)

Elevation	Center of	of Rigid	Design	Torsion due to	Design	T-Ts	Applied	1						
(m)	$P_{\mathbf{Y}}(m)$	$\mathbf{P}_{\mathbf{V}}(\mathbf{m})$	Shear Force	Shear Force	Torsion	(MNIm)	Torsion							
(111)		Ky (III)	(MN)	Ts (MNm)	<i>T</i> (MNm)		(MNm)							
4.65	36.41	24.21	502.70	5851.0	8617.3	2766.3	-3341.8	Aren	RA	163.3			R1	98.0
-1.00								(m^2)	RG	154.0			R7	137.8
								(11)				_	F3	125.1
									RA	84805.4	RCCV	86149.0	R1	129900.4
									RG	90273.1	RCCV Y	19879.5	R7	15464.4
								Rot. Stiff.			RCCV X	60.4	F3	124889.6
								(m ⁴)			pede	4739.1		
1		ļ	.						}		pede Y	8537.7		
											pede X	25.9		
									RA	-501.8	RCCV	-509.8	R1	-768.7
									RG	-534.2	RCCV Y	-117.6	R7	-91.5
								Torsion			RCCV X	-0.4	F3	0.0
								(MNm)			pede	-28.0		
											pede Y	-50.5		
											pede X	-0.2		
-1.00	36.67	24.29	310.39	5981.7	4436.6	-1545.2	-4311.4	Area	RA	160.4			R1	98.0
-6.40								(m^2)	RG	151.6			R7	140.6
4								()					F3	132.5
									RA	82738.2	RCCV	86149.0	R1	131762.7
1								}	RG	89427.1	RCCV Y	20688.6	R7	15004.7
								Rot. Stiff.			RCCV X	73.9	F3	130106.7
								(m*)			pede	4739.1		
											pede Y	8885.2		
									L		pede X	31.7		
									RA	-626.3	RCCV	-652.1	R1	-997.3
									RG	-676.9	RCCV Y	-156.6	R7	-113.6
								Torsion			RCCV X	-0.6	F3	0.0
1								(MNm)			pede	-35.9		
											pede Y	-67.3		
									1		nede X	-0.2		

 Table 6.2.3.9-13
 Applied Shear Forces for Seismic Wall due to Torsional Moment (Continued)

Elevation	Center of	of Rigid	Design	Torsion due to	Design	T-Ts	Applied							
(m)	Ry (m)	Ry (m)	Shear Force	Shear Force	Torsion	(MNm)	Torsion							
	ICA (III)	Ky (m)	(MN)	Ts (MNm)	T(MNm)	((((((((((((((((((((((((((((((((((((((((MNm)				-			
-6.40	36.23	23.82	277.96	5844.4	3445.5	-2398.9	-853.7	4 = 20	RA	171.0			R1	120.0
-11.50								(m^2)	RG	169.3			R7	151.8
								(11)					F3	146.2
									RA	91878.2	RCCV	86149.0	R1	157470.9
									RG	96045.6	RCCV Y	19321.2	R7	17618.0
								Rot. Stiff.			RCCV X	12.0	F3	147600.0
								(m ⁴)			pede	4739.1		
											pede Y	8298.0		
											pede X	5.2		
									RA	-124.7	RCCV	-116.9	R1	-213.7
									RG	-130.3	RCCV Y	-26.2	R7	-23.9
								Torsion			RCCV X	0.0	F3	0.0
								(MNm)			pede	-6.4		
											pede Y	-11.3		
								_			pede X	0.0		

 WG3-U71-ERD-S-0004
 SH NO. 159

 REV. 1
 of 543

										NAST	RAN An	alysis Lo	ad Label							
Load	Direction	Labol			Norn	hal and L	OCA					LO	CA Flood	ling			Enve	loped	Soil D	rogguro
Load	Direction	Laber	Horiz	contal	Vertical	Torsion		Sloshing		Horiz	ontal	Vertical	Torsion		Sloshing		Out-of-pl	ane Force	3011 FI	essure
			EQNS	EQEW	EQZ	EQT	ESX	ESY	ESZ	EQNF	EQEF	EQZF	EQTF	ESXF	ESYF	ESZF	EONS	EOEW	SPKN	SPKW
Seismic	N to S	EQNS	1.0				1.0								_		1.0			
Load		EQNF								1.0				1.0				1.0		
	E to W	EQEW		-1.0				-1.0									1.0			
		EQEF									-1.0				1.0			1.0		
	Upward	EQZ			-1.0				-1.0											
		EQZF										-1.0				-1.0				
	anti-clockwise	EQT				1.0														
		EQTF											1.0							
Soil	N-S	SPKN																_	1.0	
Pressure	E-W	SPKW																		1.0

Table 6.2.3.9-14 Load Combinations for Design Seismic Loads

1

EL (m)	Node ^{*1}	Weight	Oscillator Acceleration	wWixwAi	wA _{eq}	wA _{eq} x _S W _W	Wall Weight	Seismic Analysis Results	$_{RB}A \ge _{RB}W_W$	Applied Acc.	Portion
		$_{W}W_{i}$ (kN)	$_{W}A_{i}(g)$	(kN•g)	(g)	(kN•g)	$_{RB}W_{W}(kN)$	$_{RB}A$ (g)	(kN•g)	$_{w}A_{ave}(g)$	
42	99981	8.13	2.66	21.61	2.59	22.45	7.58	1.54	11.69	2.1	R1 and R7 walls
	99982	0.54	1.54	0.84							
	99986	-	-	-							
	99983	4.56	1.86	8.48	1.34	15.94	8.48	1.18	9.97	1.27	RB and RF walls
	99984	5.1	1.02	5.19							
	99985	2.28	1	2.27							
	99987	-	-	-							
30.5	99991	3.51	0.58	2.03	0.58	2.03	3.11	0.59	1.82	0.58	R1 and R7 walls
	99992	4.77	0.56	2.67	0.56	2.67	1.65	0.48	0.8	0.54	RA and RG walls
13.57	99971	8.09	2.11	17.04	2.05	22.33	8.87	0.79	6.98	1.48	F3 wall
	99972	2.38	2	4.75							
	99973	0.23	1.35	0.31							
	99974	0.21	1.04	0.22							
	99977	-	-	-							
	99975	4.93	2.16	10.66	1.98	11.44	2.69	0.62	1.67	1.55	FA and FF walls
	99976	0.86	0.92	0.79							
	99978	-	-	-							

Note

*1: Additional oscillators for cracked model are shown in red.

WG3-U71-ERD-S-0004	SH NO.	161
REV. 1	of	543

Location	Element	N _x (MN(m)	Ñ _y (MN/m)	N _{xy}	M _x (MNm/m)	M _y (MNm/m)	M _{xy} (MNm/m)	Q _x (MN/m)	Q _y (MN/m)
18 \//all	6	0.098	-7 251	0.529	_0.215	_1 591	0.013	-0.040	-0.493
Below PCCV	13	0.030	-7.251	0.529	-0.213	-7.703	0.010	-0.006	-0.400
Bottom	24	0.242	-6.204	_0.429	-0.512	-2.703	0.004	0.000	0.846
	806	0.104	6 1 2 9	-0.200	-0.040	-2.000	-0.000	0.000	-0.040
Bolow BCCV	913	0.044	-0.130	0.142	0.023	-0.030	-0.020	-0.013	-0.114
Mid Hoight	924	-0.210	-5.545	0.303	-0.020	0.040	0.010	0.013	-0.100
	1606	-0.105	-0.100	-0.192	-0.031	-0.000	0.000	-0.001	-0.203
Relow PCCV	1613	-0.002	-5.404	0.007	0.107	0.514	0.004	0.004	-0.258
Top	1674	-0.719	-5.202	0.249	0.090	0.012	0.005	0.000	-0.233
21 Exterior Mall	20011	-0.007	-0.770	-0.130	0.090	0.373	0.001	-0.000	-0.233
	20011	-0.077	-3.000	-0.512	0.000	0.423	0.012	0.000	0.101
@ EL-11.50	20023	-0.005	-1.419	-0.534	0.071	-0.320	-0.004	-0.130	-0.107
~-10.500	30010	-0.150	-2.234	0.004	-0.334	-1.013	0.013	0.001	0.432
	30020	-0.043	-1.277	-0.256	0.165	-0.053	-0.056	0.150	0.223
	40001	-0.042	-1.307	0.234	0.185	-0.051	0.001	-0.153	0.212
	40011	-0.332	-2.661	-0.013	-0.377	-2.031	-0.009	-0.001	0.489
22 Exterior Wall	22011	0.220	-3.113	0.658	-0.012	0.061	0.009	-0.017	0.059
@ EL4.65	22023	0.019	-1.551	-0.478	-0.161	-0.010	-0.019	0.102	0.012
~6.60m	32010	-0.002	-1.843	0.062	0.000	0.040	0.001	0.000	-0.022
	32020	-0.046	-2.047	-0.055	-0.060	-0.003	-0.005	-0.054	-0.008
	42001	-0.058	-2.121	-0.051	-0.077	0.004_	0.002	0.039	-0.003
	42011	-0.312	-2.280	-0.114	-0.003	0.032	-0.003	0.002	-0.014
23 Exterior Wall	24211	-0.159	-1.748	0.058	-0.064	-0.427	0.006	-0.003	-0.038
@ EL22.50	24224	-0.035	-1.012	0.272	0.025	-0.046	-0.039	-0.059	-0.035
~24.60m	34210	0.002	-0.779	0.086	-0.005	-0.070	0.002	0.004	-0.008
	34220	0.038	-0.897	-0.146	0.046	-0.031	-0.004	0.037	0.002
	44201	0.021	-1.056	-0.314	0.039	-0.015	0.011	-0.042	-0.001
24 Basemat	90140	0.249	-0.799	-0.162	-1.43/	-1.14/	2.553	-1.778	2.031
@ Wall	90182	-0.241	-0.326	-0.068	0.658	-1.083	-0.322	0.236	0.661
Below RCCV	90111	-0.385	-0.579	0.036	-0.958	0.835	-0.401	0.709	0.138
25 Slab	93140	-0.159	0.143	0.090	0.075	0.095	-0.066	0.119	-0.097
EL4.65m	93182	0.145	0.092	0.000	0.027	0.108	0.007	-0.008	-0.146
@ RCCV	93111	0.056	0.170	-0.029	0.127	0.027	0.005	-0.137	-0.004
26 Slab	96144	-0.079	0.170	0.181	0.046	0.061	-0.046	0.103	-0.081
EL17.5m	96186	0.257	-0.063	-0.023	-0.002	-0.004	-0.002	-0.003	-0.033
@ RCCV	96113	-0.070	0.514	-0.048	-0.173	0.019	-0.001	0.196	0.027
27 Slab	98472	0.386	0.059	0.126	0.294	0.487	-0.422	0.345	-0.402
EL27.0m	98514	0.146	0.113	0.032	0.043	0.188	0.035	-0.019	-0.143
@ RCCV	98424	-0.102	0.477	-0.027	1.915	0.461	0.006	-1.195	0.093
28 Pool Girder	123054	0.420	2.372	-0.765	0.050	0.044	0.046	-0.012	-0.020
@ Storage Pool	123154	1.306	-0.479	-0.607	0.072	0.028	0.088	0.008	0.011
29 Pool Girder	123062	0.397	0.548	0.257	-0.042	-0.210	0.022	0.017	-0.109
@ Cavity	123162	-1.349	0.198	0.131	-0.071	-0.046	0.012	0.081	0.026
30 Pool Girder	123067	0.402	-2.129	1.430	0.011	-0.044	-0.066	-0.097	-0.052
@ Fuel Pool	123167	0.464	-0.540	1.244	0.033	0.026	0.012	-0.024	0.006
31 MS Tunnel	150122	-0.026	0.039	0.284	0.022	0.047	0.016	-0.010	-0.043
Wall and Slab	96611	-0.013	0.313	-0.016	0.062	-0.080	-0.052	-0.073	0.018
	98614	-0.023	-0.166	-0.020	0.002	-0.526	-0.065	-0.048	0.032
32 IC/PCCS	125051	-0.097	-1.275	-0.895	0.001	-0.057	-0.002	0.002	-0.042
Pool Wall	125151	-0.106	-0.520	-0.735	-0.002	-0.007	-0.005	0.008	-0.002
in NS Direction	125055	0.046	-0.168	-0.099	-0.017	-0.104	0.003	-0.035	-0.069
	125155	-0.520	-0.112	-0.082	0.006	0.028	0.005	0.032	-0.037

Table 6.2.4-1 Results of NASTRAN Analysis, Dead Load

 WG3-U71-ERD-S-0004
 SH NO.
 162

 REV. 1
 of
 543

Table 6.2.4-2 Results of NASTRAN Analysis, Drywell Unit Pressure (1 MPa)

Location	Element	N _x (MN/m)	Ny (MN/m)	N _{xy} (MN/m)	M _x (MNm/m)	M _y (MNm/m)	M _{xy} (MNm/m)	Q _x (MN/m)	Q _y (MN/m)
18 Wall	6	-0.782	3.081	-0.494	0.535	3.112	-0.009	0.024	1.037
Below RCCV	13	-0.601	2.839	-0.131	0.565	3.223	-0.001	-0.001	1.001
Bottom	24	-0.965	3.199	0.063	0.600	3.410	-0.006	0.005	1.062
19 Wall	806	0.141	3.210	-0.420	-0.006	0.034	0.012	-0.010	0.098
Below RCCV	813	0.210	2.625	-0.115	-0.004	0.035	0.006	0.025	0.187
Mid-Height	824	0.073	3.362	0.087	0.025	-0.023	0.004	-0.001	0.177
20 Wall	1606	0.820	3.176	-0.445	-0.313	-1.804	0.002	0.000	0.507
Below RCCV	1613	0.808	2.321	-0.087	-0.315	· -1.779	-0.004	-0.001	0.534
Тор	1624	0.893	3.579	0.049	-0.315	-1.982	-0.003	0.003	0.588
21 Exterior Wall	20011	0.071	0.558	0.035	0.201	0.718	0.015	-0.013	0.211
@ EL-11.50	20023	0.012	-0.084	-0.112	-0.052	0.030	~0.003	-0.001	0.016
~-10.50m	30010	0.281	-0.185	-0.032	0.275	1.324	-0.013	-0.002	-0.276
	30020	0.101	-0.299	-0.038	-0.094	0.015	0.028	0.036	0.004
	40001	0.048	-0.243	0.191	-0.084	0.093	-0.015	-0.008	-0.014
	40011	-0.173	0.038	~0.025	0.312	1.502	0.011	-0.001	-0.323
22 Exterior Wall	22011	0.051	0.628	-0.101	0.009	0.001	0.005	0.004	-0.144
@ EL4.65	22023	-0.005	-0.271	-0.117	-0.003	0.025	-0.005	0.017	-0.006
~6.60m	32010	0.202	0.007	0.008	0.011	0.089	0.002	0.000	0.055
	32020	0.014	-0.482	0.395	0.014	0.036	-0.008	-0.005	0.026
	42001	-0.016	-0.401	0.432	0.013	0.028	-0.009	0.000	0.000
	42011	0.028	0.846	-0.056	0.019	0.010	0.008	-0.004	0.085
23 Exterior Wall	24211	0.887	0.469	-0.039	0.164	0.924	0.022	0.021	-0.547
@ EL22.50	24224	0.026	-1.421	-0.355	-0.009	0.166	0.068	0.112	0.106
~24.60m	34210	0.867	-0.063	0.043	-0.017	0.218	0.014	-0.009	0.108
	34220	0.082	-1.253	0.474	0.009	0.116	0.022	0.010	~0.007
	44201	0.015	-0.962	0.694	0.044	0.080	-0.024	0.002	-0.011
24 Basemat	90140	-0.184	0.372	0.811	3.065	2.483	3.410	0.372	-0.663
@ Wall	90182	1.621	0.055	-0.077	-0.815	4.523	0.451	-0.086	-0.661
Below RCCV	90111	0.105	0.741	-0.115	4.496	-0.686	0.507	<u>-0.674</u>	-0.062
25 Slab	93140	-0.061	0.033	0.040	0.089	0.062	-0.063	0.015	-0.018
EL4.65m	93182	0.102	-0.076	0.023	0.000	0.105	0.006	<u>-0.001</u>	-0.009
@ RCCV	93111	-0.082	0.016	0.009	0.139	0.008	0.004	<u>-0.040</u>	-0.002
26 Slab	96144	0.344	0.356	1.139	0.212	0.292	-0.200	0.047	-0.091
EL17.5m	96186	1.151	-0.565	0.134	0.037	0.398	-0.057	0.014	-0.184
@ RCCV	96113	-0.707	1.224	0.310	2,177	0.197	-0.345	-0.896	-0.091
27 Slab	98472	0.163	0.996	-0.907	-0.605	-0.974	1.234	-0.362	0.445
EL27.0m	98514	0.037	0.075	-0.055	-0.199	-1.790	-0.112	0.035	0.525
@ RCCV	98424	-0.651	2.1/4	-0.117	-5.122	-0.748	-0.373	1.644	0.136
28 Pool Girder	123054	-0.702	7.558	5.501	0.029	-0.028	-0.463	-0.088	-0.117
@ Storage Pool	123154	-2.824	1.013	4.826	-0.013	0.047	-0.605	-0.224	0.053
29 Pool Girder	123062	-0.641	-4.572	-3.810	0.138	1.124	-0.031	0.036	0.525
@ Cavity	123162	8.026	-1.931	-2.543	0.323	0.246	-0.048	-0.321	-0.086
30 Pool Girder	123067	-0.860	8.105	-7.114	-0.065	0.021	0.320	0.259	-0.060
@ Fuel Pool	123167	-2.176	1.703	-6.458	-0.046	-0.082	0.022	0.061	0.053
31 MS Tunnel	150122	0.128	-0.669	0.201	-0.004	0.075	-0.012	0.009	-0.068
Wall and Slab	96611	-0.032	0.635	-0.024	-0.062	-0.109	-0.020	0.021	0.008
2010/0000	98614	0.000	-0.192	-0.002	-0.459	-1.034	-0.154	0.139	0.047
32 IU/PUUS	125051	0.631	4.482	4.339	-0.082	0.227	0.008	-0.073	0.187
POOL Wall	125151	0.945	1.262	3.55/	-0.093	0.031	0.016		0.023
IN NS DIrection	125055	0.099	-0.466	-0.041	0.109	0.530	-0.005	0.1/4	0.329
	125155	2.945	386	-0.013	<u> </u>	0.143	-0.026	J -0.195	L 0.216

WG3-U71-ERD-S-0004	SH NO.	163
REV. 1	of	543

Table 6.2.4-3 Results of NASTRAN Analysis, Wetwell Unit Pressure (1 MPa)

Location	Element ID	N _x (MN/m)	N _y (MN/m)	N _{xy} (MN/m)	M _x (MNm/m)	M _y (MNm/m)	M _{xy} (MNm/m)	Q _x (MN/m)	Q _y (MN/m)
18 Wall	6	-0.252	0.171	-0.090	0.107	0.648	-0.004	0.008	0.198
Below RCCV	13	-0.231	-0.049	-0.048	0.134	0.745	0.000	0.001	0.225
Bottom	24	-0.284	-0.077	0.037	0.137	0.774	-0.001	0.001	0.234
19 Wall	806	0.144	0.122	0.017	0.041	0.233	0.012	0.001	-0.018
Below RCCV	813	0.188	-0.091	-0.016	0.066	0.252	0.004	0.003	0.018
Mid-Height	824	0.162	-0.098	0.038	0.047	0.251	0.000	-0.001	0.026
20 Wall	1606	1.578	0.058	0.000	-0.455	-2.620	0.000	0.002	0.845
Below RCCV	1613	1.551	-0.214	-0.015	-0.469	-2.690	-0.005	-0.002	0.913
Тор	1624	1.738	-0.224	0.026	-0.492	-2.731	0.008	-0.001	0.940
21 Exterior Wall	20011	0.139	0.542	0.021	0.087	0.330	0.007	-0.021	0.109
@ EL-11.50	20023	0.002	-0.001	-0.013	-0.026	0.041	0.000	0.014	0.020
~-10.50m	30010	0.185	0.328	0.000	0.104	0.555	-0.003	-0.002	-0.118
	30020	0.026	-0.146	-0.025	-0.046	0.045	0.013	0.002	-0.008
	40001	0.017	-0.134	0.055	-0.046	0.061	-0.010	0.002	-0.013
	40011	0.133	0.364	0.023	0.110	0.594	0.003	0.002	-0.129
22 Exterior Wall	22011	0.988	0.301	-0.104	-0.002	0.136	0.004	-0.015	0.312
@ EL4.65	22023	0.115	0.355	0,206	0.298	0.060	-0.059	-0.102	-0.014
~6.60m	32010	1.119	0.199	-0.062	-0.014	0.105	0.016	-0.001	-0.307
	32020	0.107	0.618	0.244	0.221	0.042	-0.106	0.155	0.013
	42001	0.147	0.661	-0.064	0.290	0.042	0.042	-0.106	0.021
	42011	1.034	0.248	0.149	-0.054	0.071	-0.025	0.003	-0.297
23 Exterior Wall	24211	0.425	0.464	0.000	0.033	0.221	-0.003	-0.004	-0.012
@ EL22.50	24224	0.020	0.310	-0.156	-0.041	-0.048	0.012	0.001	-0.065
~24.60m	34210	0.478	0.251	0.003	0.029	0.238	-0.017	0.003	0.047
	34220	-0.018	0.123	-0.001	-0.015	0.031	0.013	-0.030	-0.014
	44201	-0.015	0.143	0.110	-0.011	0.023	-0.011	0.030	-0.009
24 Basemat	90140	0.072	0.134	0.147	0.029	0.008	-0.426	-0.094	0.014
@ Wall	90182	0.341	0.108	0.007	-0.319	-0.040	0.060	-0.002	0.295
Below RCCV	90111	0.107	0.259	-0.015	-0.102	-0.332	0.074	0.330	0.006
25 Slab	93140	0.299	0.397	0.346	0.056	0.042	-0.051	0.002	-0.002
EL4.65m	93182	0.688	0.227	-0.055	-0.008	0.079	0.004	0.002	0.074
@ RCCV	93111	0.238	0.671	-0.130	0.058	-0.014	-0.002	0.062	-0.001
26 Slab	96144	-0.055	0.894	0.401	0.037	-0.089	0.044	0.008	0.024
EL17.5m	96186	0.831	-0.319	-0.424	0.017	-0.030	0.075	-0.023	-0.100
@ RCCV	96113	-0.517	1.364	-0.705	-0.862	-0.011	0.377	0.041	0.027
27 Slab	98472	-0.079	0.083	0.373	0.226	0.288	-0.176	0.137	-0.118
EL27.0m	98514	0.179	0.119	0.007	0.049	0.379	0.009	-0.004	-0.230
@ RCCV	98424	0.106	0.447	0.015	0.431	0.068	0.025	-0.182	-0.014
28 Pool Girder	123054	0.151	0.051	-0.045	-0.001	-0.012	0.001	0.017	-0.016
@ Storage Pool	123154	0.033	0.022	-0.047	0.005	0.007	-0.001	0.006	0.001
29 Pool Girder	123062	0.245	0.035	0.047	-0.010	-0.011	-0.001	0.017	-0.009
@ Cavity	123162	0.168	0.026	0.059	-0.001	0.003	-0.004	0.005	-0.002
30 Pool Girder	123067	0.107	-0.487	-0.009	-0.027	-0.046	-0.017	-0.022	-0.044
@ Fuel Pool	123167	0.251	-0.136	-0.046	0.006	0.008	0.000	-0.012	-0.002
31 MS Tunnel	150122	0.014	-0.089	-0.006	-0.006	0.019	0.006	0.001	-0.004
Wall and Slab	96611	-0.069	0.458	-0.055	0.003	-0.028	0.005	0.001	0.000
	98614	0.007	-0.122	0.005	-0.052	-0.095	-0.020	0.014	0.006
32 IC/PCCS	125051	0.045	-0.153	0.010	-0.009	-0.021	0.001	-0.007	-0.012
Pool Wall	125151	0.022	-0.056	-0.008	-0.006	-0.004	Ö.000	-0.005	-0.002
in NS Direction	125055	0.158	0.039	0.046	-0.001	-0.006	0.001	0.000	-0.003
	125155	0.067	0.031	0.057	0.001	0.002	0.000	0.002	-0.003

WG3-U71-ERD-S-0004	SH NO.	164
REV. 1	of	543

Table 6.2.4-4Results of NASTRAN Analysis, Thermal Load
(Normal Operation: Winter) – Load Case: TLW0

(Values obtained from Reference 2.1.2-e)

Location	Element ID	N _x (MN/m)	N _y (MN/m)	N _{xy} (MN/m)	Mi _x (MNm/m)	M _y (MNm/m)	M _{xy} (MNm/m)	Q _x (MN/m)	Q _y (MN/m)
18 Wall	6	1.253	-0.205	-0.568	0.076	0.906	-0.033	0.012	0.034
Below RCCV	13	0.384	-2.513	-0.655	0.359	2.031	-0.003	0.018	0.443
Bottom	24	0.608	-2.607	0.109	0.369	2.061	-0.004	-0.001	0.459
19 Wall	806	1.106	-0.949	0.087	0.125	0.770	0.068	-0.045	0.040
Below RCCV	813	0.616	-2.464	-0.504	0.086	0.776	-0.022	0.007	0.463
Mid-Height	824	0.476	-2.699	0.077	0.100	0.784	0.014	0.008	0.416
20 Wall	1606	6.930	-1.551	0.139	-0.385	-1.749	0.078	0.068	1.318
Below RCCV	1613	6.711	-2.791	-0.408	-0.489	-2.841	-0.003	-0.010	1.707
Тор	1624	7.196	-3.509	-0.106	-0.548	-2.794	-0.004	-0.051	1.745
21 Exterior Wall	20011	2.857	2.770	0.707	0.218	0.937	0.029	-0.143	0.275
@ EL-11.50	20023	-1.456	-1.248	1.649	1.953	3.881	0.188	0.289	0.632
~-10.50m ´	30010	0.135	2.273	-0.121	1.014	3.199	-0.017	-0.023	-0.559
	30020	-0.118	-1.019	-0.219	0.131	1.084	0.109	-0.030	-0.275
	40001	-0.158	-0.676	-0.073	0.169	1.184	-0.072	0.112	-0.307
	40011	0.784	2.397	0.042	1.004	3.271	0.007	0.011	-0.589
22 Exterior Wall	22011	1.989	2.366	-0.092	-0.078	-0.066	0.029	0.015	0.113
@ EL4.65	22023	1.813	-4.077	-2.023	-0.288	0.359	-0.041	0.709	0.422
~6.60m	32010	12.350	5.928	0.012	-2.697	-2.528	-0.002	-0.002	-0.174
	32020	0.311	4.027	2.287	-0.573	-1.830	-0.392	0.720	0.111
	42001	2.250	2.855	2.390	-0.736	-1.651	-0.048	-0.662	-0.269
	42011	10.751	3.992	0.063	-2.795	-2.458	0.078	0.067	-0.089
23 Exterior Wall	24211	2.843	1,959	-0.374	-0.012	0.038	0.010	-0.116	1.643
@ EL22.50	24224	0.119	3.714	-3.310	0.641	-0.241	-0.550	-0.622	-0.226
~24.60m	34210	13.386	4.447	-0.429	-2.795	-2.685	0.027	-0.009	-0.153
	34220	1.581	3.765	2.292	0.666	-1.618	-0.429	1.495	0.117
	44201	0.865	4,461	-0.102	0.302	-1.803	0.423	-1.817	0.106
24 Basemat	90140	1.036	1.410	1.316	1.084	0.020	-1.021	-0.512	-0.135
@ Wall	90182	1.427	0.428	0.598	-0.072	-3.082	0.173	-0.153	2.372
Below RCCV	90111	0.529	2,358	-0.001	-3.379	-0.412	0.034	2.474	0.116
25 Slab	93140	-0.743	1.592	2.634	-0.402	-0.313	0.220	-0.105	0.085
EL4.65m	93182	2.346	-2.693	-0.779	-0.292	-1.483	-0.064	0.061	1.096
@ RCCV	93111	-2.387	2,996	-0.082	-1.455	-0.268	-0.037	0.959	0.002
26 Slab	96144	0.039	2.670	2.994	-0.152	-0.132	0.104	-0.028	0.043
EL17.5m	96186	2.697	-1.893	-1.089	-0.101	-0.480	-0.033	0.018	0.387
@ RCCV	96113	-4.345	-3.845	-0.732	-3.635	-2.664	-0.140	0.735	-0.030
27 Slab	98472	-0.491	-0.852	4.524	-0.425	-0.142	-0.156	0.325	-0.431
EL27.0m	98514	-0.613	-2.381	-1.036	-0.508	-0.262	-0.053	0.047	-0.171
@ RCCV	98424	-8.688	-9.621	-1.242	0.386	-0.509	0.134	-5.159	-0.068
28 Pool Girder	123054	0.578	-3.049	1.386	2.219	2.152	0.031	-0.307	0.546
@ Storage Pool	123154	0.882	0.664	-0.264	1.850	1.112	-0.331	-0.107	0.233
29 Pool Girder	123062	-2.848	-0.161	-0.520	0.096	0.138	0.035	-0.092	0.076
@ Cavity	123162	-2.548	-0.130	-0.518	0.072	-0.199	0.056	-0.181	0.097
30 Pool Girder	123067	-3.044	-4.728	-1.664	0.540	0.402	-0.076	-0.115	0.516
@ Fuel Pool	123167	-2.836	-2.339	-2.121	0.175	-0.523	-0.229	0.021	0 153
31 MS Tunnel	150122	0.267	-0.536	1.825	1.079	3.149	-0.033	-0.584	0.414
Wall and Slab	96611	-0.243	2.761	-0.171	-1.125	-6.749	-0.368	0.367	0 185
	98614	-0.176	2.269	-0.136	-0.720	-10.191	0.037	0.428	0.100
32 IC/PCCS	125051	-0.451	-0.654	-0.268	-0.001	-0.004	0,000	-0.009	-0.006
Pool Wall	125151	-0.469	-0.568	0.470	0.025	0.055	0.011	-0.018	-0.051
in NS Direction	125055	-1.032	0.211	0.015	0.005	0.025	0.001	0.011	0.010

WG3-U71-ERD-S-0004	SH NO.	165
REV. 1	of	543

Table 6.2.4-5Results of NASTRAN Analysis, Thermal Load(LOCA After 6 minutes: Winter) – Load Case: TLW6

(Values obtained from Reference 2.1.2-e)

Location	Element	Nx	Ny	N _{xy}	Mx	My	M _{xy}	Q _x	Qy
	ID	(MN/m)	(MN/m)	(MN/m)	(MNm/m)	(MNm/m)	(MNm/m)	(MN/m)	(MN/m)
18 Wall	6	1.177	-0.473	-0.669	0.101	1.063	-0.040	0.024	0.044
Below RCCV	13	0.307	-3.027	-0.689	0.408	2.284	-0.002	0.019	0.475
Bottom	24	0.412	-3.041	0.146	0.425	2.350	0.005	-0.002	0.516
19 Wall	806	1.601	-1.332	0.182	0.235	1.292	0.083	-0.053	-0.063
Below RCCV	813	1.036	-2.990	-0.508	0.175	1.290	-0.027	0.006	0.450
Mid-Height	824	0.890	-3.046	0.126	0.176	1.306	0.019	0.010	0.396
20 Wall	1606	11.606	-2.042	0.301	-0.668	-3.250	0.099	0.085	2.306
Below RCCV	1613	11.229	-3.474	-0.425	-0.785	-4.386	-0.008	-0.014	2.714
Тор	1624	12.187	-3.970	-0.124	-0.867	-4.480	-0.001	-0.082	2.817
21 Exterior Wall	20011	3.023	3.384	0.790	0.274	1.136	0.041	-0.173	0.330
@ EL-11.50	20023	-1.459	-1.215	1.590	1.936	3.930	0.184	0.310	0.647
~-10.50m	30010	0.421	2.641	-0.135	1.081	3.585	-0.018	-0.024	-0.601
	30020	-0.090	-1.196	-0.238	0.081	1.104	0.123	-0.022	-0.270
	40001	-0.154	-0.831	0.014	0.123	1.237	-0.081	0.114	-0.310
	40011	0.865	2.785	0.044	1.075	3.674	0.007	0.012	-0.638
22 Exterior Wall	22011	3.577	2.789	-0.075	-0.128	-0.161	0.049	0.032	-0.031
@ EL4.65	22023	1.984	-3.558	-1.991	0.092	0.423	-0.047	0.570	0.405
~6.60m	32010	14.408	6.124	0.009	-2.798	-2.759	0.004	-0.008	0.040
	32020	0.445	4.720	2.524	-0.285	-1.833	-0.377	0.922	0.167
	42001	2.451	3.607	2.534	-0.371	-1.611	-0.0 <u>58</u>	-0.794	-0.254
	42011	12.432	4.405	0.143	-2.975	-2.774	0.081	0.081	0.172
23 Exterior Wall	24211	4.177	2.901	-0.313	0.092	0.628	0.014	-0.122	1.431
@ EL22.50	24224	0.340	4.642	-3.562	0.871	-0.344	-0.446	-0.824	-0.417
~24.60m	34210	15.323	4.794	-0.317	-2.778	-2.409	0.015	-0.011	0.104
	34220	1.721	4.437	2.297	0.980	-1.464	-0.240	1.609	0.013
	44201	1.001	5.209	0.300	0.668	-1.698	0.337	-1.911	0.044
24 Basemat	90140	1.052	1.448	1.374	0.756	-0.217	-0.971	-0.682	-0.069
@ Wall	90182	1.619	0.481	0.610	-0.246	-3.861	0.184	-0.141	2.769
Below RCCV	90111	0.567	2.209	-0.001	-4.129	-0.522	0.050	2.860	0.127
25 Slab	93140	-0.669	2.312	4.286	-0.515	-0.395	0.287	-0.135	0.111
EL4.65m	93182	4.229	-4.036	-1.098	-0.354	-1.829	-0.083	0.075	1.370
@ RCCV	93111	-3.602	4.956	-0.257	-1.768	-0.316	-0.047	1.178	0.000
26 Slab	96144	-0.269	4.712	6.965	-0.230	-0.125	0.167	-0.073	0.023
EL17.5m	96186	6.688	-4.125	-1.418	-0.091	-0.316	-0.048	0.016	0.347
@ RCCV	96113	-8.342	2.574	-1.682	-4.481	-2.783	-0.199	1.240	-0.059
27 Slab	98472	-0.778	-0.772	5.392	-0.313	0.031	-0.311	0.451	-0.561
EL27.0m	98514	0.397	-2.323	-1.289	-0.515	0.047	-0.042	0.045	-0.511
@ RCCV	98424	-9.063	-6.855	-1.452	1.316	-0.418	0.194	-5.559	-0.101
28 Pool Girder	123054	1.314	-2.832	1.430	2.281	2.120	0.027	-0.232	0.482
@ Storage Pool	123154	1.031	0.747	-0.407	1.925	1.145	-0.338	0.086	0.247
29 Pool Girder	123062	-1.254	-0.148	-0.719	0.101	0.323	0.027	0.057	0.172
@ Cavity	123162	-1.691	-0.032	-0.470	0.128	-0.117	-0.003	-0.151	0.085
30 Pool Girder	123067	-2.405	-6.001	-1.842	0.639	0.439	-0.117	-0.150	0.470
@ Fuel Pool	123167	-2.204	-2.669	-2.246	0.268	-0.449	-0.228	-0.011	0.180
31 MS Tunnel	150122	0.224	-0.515	1.901	1.053	3.140	-0.007	-0.584	0.364
Wall and Slab	96611	-0.447	4.103	-0.332	-1.287	-7.109	-0.423	0.426	0.209
	98614	-0.187	1.989	-0.145	-0.861	-10.477	-0.011	0.470	0.303
32 IC/PCCS	125051	-0.257	-0.976	-0.150	-0.013	-0.016	-0.001	-0.024	-0.015
Pool Wall	125151	-0.404	-0.680	0.529	0.018	0.055	0.012	-0.030	-0.051
in NS Direction	125055	-0.601	0.281	0.050	0.008	0.023	0.001	0.007	0.002
	125155	-1.201	-0.035	0.047	0.008	0.037	-0.005	-0.061	0.002

Table 6.2.4-6Results of NASTRAN Analysis, Thermal Load(LOCA After 72 hours: Winter) – Load Case: TLW8 –

(Values obtained from Reference 2.1.2-e)

Location	Element ID	N _x (MN/m)	N _y (MN/m)	N _{xy} (MN/m)	M _x (MNm/m)	M _y (MNm/m)	M _{xy} (MNm/m)	Q _x (MN/m)	Q _y (MN/m)
18 Wall	6	0.745	-0.977	-0.895	0.238	1.920	-0.053	0.044	0.293
Below RCCV	13	-0.174	-4.065	-0.782	0.604	3.357	-0.002	0.023	0.785
Bottom	24	0.101	-3.765	0.212	0.594	3.314	-0.007	-0.003	0.779
19 Wall	806	1.907	-2.149	0.225	0.307	1.688	0.090	-0.068	-0.082
Below RCCV	813	1.360	-3.986	-0.566	0.221	1.702	-0.034	0.006	0.602
Mid-Height	824	1.151	-3.732	0.198	0.224	1.729	0.027	0.015	0.502
20 Wall	1606	15.858	-3.114	0.381	-0.839	-4.009	0.124	0.101	3.042
Below RCCV	1613	15.713	-4.649	-0.420	-1.005	-5.538	-0.011	-0.016	3.612
Тор	1624	16.688	-4.842	-0.107	-1.115	-5.549	0.001	-0.106	3.698
21 Exterior Wall	20011	3.314	4.817	0.922	0.447	1.837	0.052	-0.225	0.576
@ EL-11.50	20023	-1.453	-1.169	1.549	1.890	4.020	0.180	0.322	0.683
~-10.50m	30010	0.688	3.733	-0.258	1.289	4.763	-0.022	-0.031	-0.865
	30020	-0.058	-1.477	-0.392	0.021	1.209	0.144	-0.026	-0.282
	40001	-0.090	-1.141	0.056	0.039	1.330	-0.097	0.105	-0.322
Γ	40011	1.295	3.630	. 0.051	1.243	4.654	0.011	0.015	-0.844
22 Exterior Wall	22011	5.080	4.474	-0.209	-0.175	-0.228	0.067	0.045	0.074
@ EL4.65	22023	2.211	-3.114	-2.141	0.528	0.492	-0.052	0.386	0.393
~6.60m	32010	16.739	7.724	-0.075	-2.893	-3.003	-0.001	-0.014	0.022
	32020	0.653	4.869	2.518	0.104	-1.860	-0.395	1,226	0.199
l F	42001	2.720	3.801	2.644	0.130	-1.563	-0.051	-0.998	-0.239
1	42011	14.110	5.515	0.234	-3.164	-3.046	0.073	0.090	0.169
23 Exterior Wall	24211	6.073	5.669	-0.239	0.176	0.982	0.008	-0.147	1.336
@ EL22,50	24224	1.011	5.349	-3.664	1.966	0.071	-0.637	-1.563	-0.323
~24.60m	34210	21.813	5.545	-0.581	-2.903	-2.819	0.035	-0.002	-0.128
	34220	2.794	5.432	4.414	2.629	-1.178	-0.711	2.571	0.094
1 6	44201	1,793	6.586	0.562	2.230	-1.491	0.539	-2.967	0.044
24 Basemat	90140	0.838	1.691	1.751	-0.171	-1.046	-1.095	-1.135	0.139
@ Wall	90182	1.908	0.687	0.488	-0.873	-5.527	0.260	-0.110	3.825
Below RCCV	90111	0.733	2.908	-0.011	-5.322	-1.147	0.107	3.687	0.151
25 Slab	93140	-0.383	3.018	5.804	-0.739	-0.564	0.413	-0.192	0.163
EL4.65m	93182	6.161	-5.154	-1.518	-0.481	-2.508	-0.114	0.105	1.903
@ RCCV	93111	-4.494	6.820	-0.448	-2.369	-0.414	-0.066	1.594	0.001
26 Slab	96144	0.733	5.839	8.138	-0.232	-0.178	0.174	-0.043	0.066
EL17.5m	96186	9.999	-4.559	-2.165	-0.150	-0.675	-0.057	0.023	0.638
@ RCCV	96113	-9.165	5.149	-1.811	-4.378	-2.755	-0.237	1.010	-0.100
27 Slab	98472	-3.645	-3.148	5.906	-1.729	-1.315	-0.297	0.534	-0.685
EL27.0m	98514	-2.902	-2.765	-1.440	-1.895	-1.503	-0.079	0.078	-0.381
@ RCCV	98424	-8.825	-1.775	-2.345	3.485	0.429	0.374	-5.774	-0.156
28 Pool Girder	123054	3.583	1.298	2.382	3.613	2.453	-0.343	0.113	0.317
@ Storage Pool	123154	3.638	3.575	-2.911	3.372	1.303	-0.374	-0.255	0.413
29 Pool Girder	123062	0.505	0.115	-1.385	3.836	3.893	0.008	0.034	0.188
@ Cavity	123162	1.929	0.409	-1.840	3.803	2.820	0.092	-0.288	0.644
30 Pool Girder	123067	-2.101	-7.271	-3.005	3.592	3.540	-0.636	0.317	0.815
@ Fuel Pool	123167	-0.679	-2.776	-3.132	2.749	1.834	-0.242	-0.176	0.616
31 MS Tunnel	150122	0.316	-0.711	1.797	0.940	3.101	0.011	-0.551	0.426
Wall and Slab	96611	-0.557	4.662	-0.414	-1.254	-7.116	-0.406	0.420	0.206
1 1	98614	-0.043	0.725	-0.043	-0.850	-9.922	-0.018	0.459	0.307
32 IC/PCCS	125051	-2.425	-2.173	-0.782	0.093	0.096	-0.014	0.023	0.036
Pool Wall	125151	-2.083	-1.572	1.896	0.131	0.140	0.029	0.019	-0.082
			0.000	0.400	0.040	0.007	0.004	0.047	0.044
in NS Direction	125055	-4.971	-0.309	0.162	0.019	0.097	0.004	-0.047	-0.011

Table 6.2.4-7Results of NASTRAN Analysis, Thermal Load(LOCA After 72 hours: Winter) – Load Case: TWC1 –

Location	Element	N _x (MN/m)	N _y (MN/m)	N _{xy} (MN/m)	M _x (MNm/m)	M _y (MNm/m)	M _{xy} (MNm/m)	Q _x (MN/m)	Q _y (MN/m)
18 Wall	6	0 750	-0.853	-0.897	0 196	1 921	-0.057	0.039	0 287
Below BCCV	13	-0 233	-4 144	-0.694	0.100	3 4 1 3	0.001	0.024	0.207
Bottom	24	-0 151	-3 791	0.237	0.643	3 574	-0.007	-0.003	0.879
19 Wall	806	1 995	-2 239	0.210	0.259	1.574	0.088	-0.079	-0.026
Below RCCV	813	1 447	-4 154	-0.359	0.233	1 691	-0.040	0.005	0.618
Mid-Height	824	1 060	-3.570	0.000	0.200	1 715	0.029	0.014	0.529
20 Wall	1606	15.594	-3.429	0 457	-0.786	-3 750	0.141	0.113	2,899
Below RCCV	1613	15,764	-4 938	-0.082	-0.988	-5.556	-0.015	-0.016	3.618
Top	1624	16 501	-4 321	-0.037	-1 113	-5 449	0.005	-0 111	3 665
21 Exterior Wall	20011	3.641	5 548	1 150	0.472	1 962	0.047	-0.253	0.593
@ F! -11.50	20023	-3.153	-1.860	2 673	5 5 1 5	8 484	0 242	0.308	0 766
~-10.50m	30010	0 485	3 864	-0.425	1 316	4 881	-0.020	-0.034	-0 899
	30020	-0.020	-1 613	-0.431	0.029	1 170	0 143	0.006	-0.261
	40001	-0.060	-1 238	0 166	0.062	1 318	-0.091	0.095	-0.304
	40011	1.097	3.829	0.018	1.284	4.867	0.012	0.014	-0.905
22 Exterior Wall	22011	5.314	5.116	-0.168	-0.180	-0 189	0.074	0.040	0 126
@ FI 4.65	22023	4.072	-3.635	-4 272	-0.152	0.826	0.002	1,198	0 781
1 ~6.60m	32010	16,767	8 006	-0.288	-2 886	-2 999	-0.015	-0.012	0.019
1	32020	0.547	3 903	2 128	0.032	-1 813	-0.337	1 168	0 172
	42001	2.747	2,867	2.337	0.032	-1.567	-0.029	-0.955	-0.229
	42011	15.069	6.132	0.302	-3.149	-2.907	0.066	0.093	0.102
23 Exterior Wall	24211	9.506	3.594	-0.774	-0.115	0.134	-0.026	-0.144	2,752
@ EL22.50	24224	1.013	6.451	-3.718	2.325	-0.206	-0.927	-2.005	-0.574
~24.60m	34210	24.186	5.676	-1.247	-2.969	-2.852	0.079	-0.002	-0.199
	34220	3.035	8.365	2.362	3.110	-1.351	-0.641	2.782	0.049
	44201	1.528	9.601	-2.434	2.453	-1.601	0.902	-3.330	0.092
24 Basemat	90140	1.320	1.803	1.867	0.019	-1.169	-1.505	-1.060	0.061
@ Wall	90182	1.721	0.653	0.409	-0.869	-5.630	0.355	-0.061	3.880
Below RCCV	90111	0.761	2.442	0.007	-5.450	-1.106	0.134	3.822	0.151
25 Slab	93140	-0.648	3.031	5.794	-0.772	-0.584	0.424	-0.194	0.167
EL4.65m	93182	6.162	-5.152	-1.674	-0.487	-2.535	-0.107	0.110	1.922
@ RCCV	93111	-4.359	6.745	-0.464	-2.455	-0.425	-0.069	1.657	0.001
26 Slab	96144	1.209	5.959	8.314	-0.377	-0.303	0.253	-0.056	0.120
EL17.5m	96186	10.704	-4.934	-2.716	-0.243	-1.236	-0.072	0.040	1.019
@ RCCV	96113	-8.560	9.054	-1.419	-4.722	-2.788	-0.276	1.225	-0.076
27 Slab	98472	-6.688	-5.372	14.755	-3.970	-2.975	-0.477	1.234	-1.689
EL27.0m	98514	12.327	-5.717	-3.144	-1.352	-0.396	-0.165	0.097	-0.409
@ RCCV	98424	-22.050	-2.417	-2.536	-1.455	-4.181	-0.018	-6.067	-0.162
28 Pool Girder	123054	-1.938	-2.515	1.566	5.417	5.584	0.162	-0.786	1.285
@ Storage Pool	123154	2.827	2.088	-1.845	4.580	2.974	-0.774	-0.233	0.669
29 Pool Girder	123062	-5.127	-4.093	-0.708	-0.074	0.431	0.003	-0.026	0.353
@ Cavity	123162	-3.908	-3.486	-2.637	-0.570	-0.433	0.167	-0.034	0.235
30 Pool Girder	123067	-3.820	-9.165	-4.161	-2.718	-3.315	-0.123	-0.102	0.614
@ Fuel Pool	123167	-2.808	-4.392	-4.025	-3.283	-3.669	-0.676	0.202	-0.166
31 MS Tunnel	150122	1.806	2.306	-1.160	1.215	4.263	-0.061	-0.685	-0.069
Wall and Slab	96611	-0.679	4.711	-0.495	-1.221	-6.974	-0.357	0.438	0.226
	98614	-0.780	9.698	-0.614	3.633	18.467	0.888	-1.338	-0.720
32 IC/PCCS	125051	-1.704	-1.534	-0.758	0.082	0.171	0.014	-0.047	0.053
Pool Wall	125151	-1.701	-1.207	1.885	0.196	0.283	0.076	-0.028	-0.077
in NS Direction	125055	-5.013	0.266	0.012	0.033	0.309	0.010	0.048	0.102
	125155	-5.698	-0.537	-0.141	-0.037	-0.038	-0.015	-0.287	0.230

Note: TWC1 is the same as Case 1 described in Appendix E of reference 2.1.2-e where the temperatures in all pools are at their respective maximum values

Table 6.2.4-8Results of NASTRAN Analysis, Thermal Load(LOCA After 72 hours: Winter) – Load Case: TWC2 –

Location	Element	N _x (MN/m)	N _y (MN/m)	N _{xy} (MN/m)	M _x (MNm/m)	M _y (MNm/m)	M _{xy} (MNm/m)	Q _x (MN/m)	Q _y (MN/m)
18 Wall	6	0.777	-1.002	-0.903	0.222	2.076	-0.052	0.031	0.330
Below RCCV	13	-0 134	-4 269	-0 724	0.645	3 605	-0.002	0.025	0.855
Bottom	24	-0.447	-4.334	0.242	0.722	4.014	-0.008	-0.002	1.036
19 Wall	806	1.929	-2.407	0.185	0.261	1.584	0.097	-0.079	-0.020
Below RCCV	813	1.278	-4.285	-0.364	0.220	1.678	-0.033	0.009	0.638
Mid-Height	824	0.973	-4.137	0.245	0.224	1.696	0.029	0.015	0.600
20 Wall	1606	15.526	-3.640	0.441	-0.800	-3.793	0.144	0.120	2.914
Below RCCV	1613	15.354	-5.017	-0.213	-1.004	-5.515	-0.011	-0.017	3.577
τορ	1624	16.757	-5.008	-0.058	-1.144	-5.722	0.000	-0.109	3.770
21 Exterior Wall	20011	3.731	5.662	1.177	0.526	2.180	0.050	-0.261	0.672
@ EL-11.50	20023	-3.158	-1.848	2.683	5.501	8.535	0.247	0.361	0.799
~-10.50m	30010	0.985	3.871	-0.230	1.327	4.995	-0.023	-0.035	-0.927
	30020	-0.034	-1.501	-0.202	-0.054	1.250	0.160	-0.026	-0.313
	40001	-0.144	-1.060	0.157	0.008	1.463	-0.106	0.156	-0.364
	40011	1.179	4.287	0.085	1.373	5.367	0.012	0.017	-1.044
22 Exterior Wall	22011	5.259	4.859	-0.097	-0.168	-0.136	0.075	0.038	0.174
@ EL4.65	22023	4.107	-3.219	-4.068	-0.035	0.827	-0.036	1.170	0.775
~6.60m	32010	16.212	7.215	-0.169	-2.886	-2.961	-0.002	-0.014	-0.005
	32020	0.582	5.954	2.666	0.088	-1.820	-0.375	1.205	0.191
	42001	2.797	4.972	2.460	0.101	-1.587	-0.029	-0.987	-0.231
	42011	14.879	6.153	0.377	-3.153	-2.985	0.071	0.094	0.097
23 Exterior Wall	24211	6.057	5.345	-0.424	-0.135	0.553	0.001	-0.058	2.235
@ EL22,50	24224	0.072	6.913	-3.184	0.567	-0.941	-0.286	-0.787	-0.832
~24.60m	34210	17.096	6.050	-0.862	-2.804	-1.534	0.069	-0.026	0.325
	34220	1.054	7.304	0.854	0.301	-1.721	-0.074	1.162	-0.066
	44201	0.237	8.327	-0.413	0.182	-1.883	0.118	-1.311	-0.022
24 Basemat	90140	1.994	1.965	1.875	-0.390	-1.304	-1.455	-1.129	0.142
@ Wall	90182	2.636	0.794	0.682	-1.217	-5.763	0.242	-0.072	4.038
Below RCCV	90111	0.974	2.561	0.009	-6.348	-1.511	0.121	4,362	0.181
25 Slab	93140	-0.856	3.117	5.805	-0.804	-0.601	0.438	-0.203	0.175
EL4.65m	93182	5.987	-5.139	-1.529	-0.497	-2.568	-0.116	0.109	1.951
@ RCCV	93111	-4.443	6.869	-0.473	-2.590	-0.453	-0.072	1.754	0.002
26 Slab	96144	0.609	5.632	8.346	-0.320	-0.229	0.199	-0.023	0.102
EL17.5m	96186	9.059	-6.028	-2.395	-0.171	-0.890	-0.062	0.012	0.633
@ RCCV	96113	-8.726	7.627	-1.638	-4.875	-2.871	-0.263	1.230	-0.078
27 Slab	98472	0.560	2.997	21.415	2.417	3.120	-1.205	1.317	-1.610
EL27.0m	98514	12.596	-5.530	-2.667	1.250	5.280	0.063	-0.064	-2.425
@ RCCV	98424	-27.788	-2.427	-2.353	1.092	-3.349	-0.131	-8.337	-0.308
28 Pool Girder	123054	-2.533	-12.587	0.553	5.558	5.234	0.165	0.381	0.217
@ Storage Pool	123154	-1.617	-4.773	2.290	5.684	3.025	-0.503	0.458	0.837
29 Pool Girder	123062	-7.087	-7.406	0.091	-0.429	0.232	-0.240	0.122	0.390
@ Cavity	123162	-6.089	-5.905	-3.162	-1.202	-0.494	0.073	0.108	0.172
30 Pool Girder	123067	5.357	5.116	-3.767	0.633	-0.017	-0.360	-0.406	-0.305
@ Fuel Pool	123167	0.172	-1.539	-1.800	0.764	0.265	-0.025	-0.182	-0.019
31 MS Tunnel	150122	1.438	2.753	-0.876	1.398	4.284	-0.070	-0.732	-0.264
Wall and Slab	96611	-0.586	4.311	-0.426	-1.368	-7.292	-0.409	0.488	0.246
	98614	-1.738	15.030	-1.299	3.368	16.868	0.873	-1.203	-0.642
32 IC/PCCS	125051	2.182	1.406	0.841	1.141	1.454	0.062	-0.706	0.145
Pool Wall	125151	0.820	0.470	1.675	1.267	1.459	0.112	-0.609	-0.022
in NS Direction	125055	0.876	2.406	-0.406	2.535	2.933	0.001	0.149	0.312
	125155	-1.094	1.213	0.165	2.361	2.132	-0.036	-0.297	0.357

Note: TWC2 is the same as Case 2 described in Appendix E of reference 2.1.2-e where the temperatures in all pools are at their respective minimum values

Table 6.2.4-9Results of NASTRAN Analysis, Thermal Load(LOCA After 72 hours: Winter) – Load Case: TWC3 –

Location	Element	N _x (MN/m)	N _y (MN/m)	N _{xy} (MN/m)	M _x (MNm/m)	M _y (MNm/m)	M _{xy} (MNm/m)	Q _x (MN/m)	Q _y (MN/m)
18 Wall	6	0.670	-1.048	-0.884	0.228	2 124	-0.056	0.036	0.354
Below RCCV	13	-0.306	-4 407	-0.752	0.662	3 674	-0.001	0.026	0.889
Bottom	24	-0.285	-4.247	0.242	0.695	3.877	-0.007	-0.003	0.983
19 Wall	806	1.890	-2.473	0.244	0.256	1.568	0.093	-0.079	-0.014
Below RCCV	813	1.335	-4.389	-0.414	0.228	1 677	-0.036	0.007	0.655
Mid-Height	824	0.950	-4.099	0.239	0.219	1 701	0.029	0.015	0.579
20 Wall	1606	15.501	-3.673	0.459	-0.798	-3.787	0.136	0.118	2.905
Below RCCV	1613	15.654	-5.156	-0.193	-1.006	-5.626	-0.012	-0.017	3.634
Тор	1624	16.479	-4.986	-0.042	-1.133	-5.563	0.004	-0.109	3.708
21 Exterior Wall	20011	3.738	5.777	1.168	0.527	2.192	0.048	-0.263	0.679
@ EL-11.50	20023	-3.155	-1.841	2.710	5.500	8.520	0.245	0.334	0.789
~-10.50m	30010	0.730	4.058	-0.335	1.354	5.126	-0.023	-0.036	-0.967
	30020	-0.041	-1.543	-0.341	-0.021	1.250	0.155	-0.024	-0.300
	40001	-0.093	-1.158	0.111	0.014	1.410	-0.103	0.127	-0.344
	40011	1.307	4.163	0.070	1.345	5.227	0.012	0.016	-1.006
22 Exterior Wall	22011	5.283	5.071	-0.144	-0.173	-0.135	0.076	0.039	0.187
@ EL4.65	22023	4.084	-3.312	-4.149	-0.088	0.829	-0.019	1.179	0.777
~6.60m	32010	16.572	7.841	-0.233	-2.885	-2.995	-0.009	-0.013	-0.003
	32020	0.592	5.227	2.415	0.068	-1.827	-0.358	1.193	0.181
	42001	2.758	4.202	2.357	0.077	-1.569	-0.027	-0.975	-0.229
	42011	14.894	6.046	0.372	-3.154	-2.920	0.066	0.093	0.074
23 Exterior Wall	24211	5.901	5.024	-0.316	-0.056	0.274	-0.060	-0.089	2.145
@ EL22.50	24224	0.792	6.370	-3.057	1.898	-0.441	-0.919	-1.832	-0.756
~24.60m	34210	21.464	5.958	-1.112	-2.937	-2.661	0.055	-0.015	-0.077
	34220	2.091	6.897	2.213	1.928	-1.515	-0.411	2.154	0.000
	44201	1.191	8.372	0.487	1.501	-1.692	0.512	-2.493	0.019
24 Basemat	90140	1.635	1.927	1.899	-0.398	-1.472	-1.441	-1.162	0.167
@ Wall	90182	2.138	0.785	0.554	-1.150	-6.045	0.298	-0.075	4.162
Below RCCV	90111	0.921	2.823	0.012	-6.151	-1.473	0.120	4.236	0.173
25 Slab	93140	-0.743	3.062	5.791	-0.806	-0.606	0.440	-0.202	0.176
EL4.65m	93182	6.126	-5.162	-1.596	-0.505	-2.611	-0.115	0.112	1.985
@ RCCV	93111	-4.387	6.774	-0.463	-2.578	-0.450	-0.072	1.745	0.002
26 Slab	96144	0.976	5.917	8.290	-0.370	-0.287	0.243	-0.049	0.114
EL17.5m	96186	10.139	-5.353	-2.466	-0.247	-1.241	-0.077	0.035	0.981
@ RCCV	96113	-8.614	7.958	-1.542	-4.967	-2.864	-0.274	1.328	-0.073
27 Slab	98472	-10.555	-5.730	14.877	-3.631	-2.841	-0.701	1.393	-1.882
EL27.0m	98514_	19.208	-5.647	-2.587	1.045	2.953	-0.194	0.107	-1.118
@ RCCV	98424	-26.560	-3.101	-2.068	-0.369	-4.549	-0.180	-8.003	-0.294
28 Pool Girder	123054	-0.796	-10.849	0.720	6.148	6.064	0.167	<u>0</u> .364	0.243
@ Storage Pool	123154	2.563	-3.589	1.883	6.336	3.560	-0.289	0.575	0.983
29 Pool Girder	123062	-3.492	-7.610	-0.329	0.235	0.976	-0.143	0.144	0.349
@ Cavity	123162	-2.959	-6.337	-3.847	-0.450	0.157	0.052	0.056	0.215
30 Pool Girder	123067	-1.268	-8.891	-3.861	-5.866	-6.788	0.001	-0.270	0.070
@ Fuel Pool	123167	-0.187	-3.829	-3.108	-6.192	-5.622	-0.821	0.411	-0.590
31 MS Tunnel	150122	1.442	2.7 <u>27</u>	-0.937	1.383	4.317	-0. <u>079</u>	<u>-0</u> .726	-0.235
Wall and Slab	96611	-0.607	4.325	-0.440	-1.309	-7.168	-0.388	0.469	0.239
	98614	-1.663	14.438	-1.244	3.396	16.820	0.884	-1.208	-0.639
32 IC/PCCS	125051	-1.590	-0.135	-1.056	-0.896	-0.957	0.021	-0.132	0.072
Pool Wali	125151	-1.514	-0.093	1.642	-0.781	-0.803	0.065	-0.132	-0.123
in NS Direction	125055	-5.687	0.084	-0.180	-0.145	0.088	0.019	0.049	0.095
	125155	-6.471	-0.673	-0.245	-0.209	-0.233	-0.039	-0.277	0.218

Note: TWC3 is the same as Case 3 described in Appendix E of reference 2.1.2-e where the temperatures in individual pools are at either maximum or minimum values

Table 6.2.4-10Results of NASTRAN Analysis, Thermal Load(LOCA After 72 hours: Winter) – Load Case: TWC4 –

Location	Element ID	N _× (MN/m)	N _y (MN/m)	N _{xy} (MN/m)	M _x (MNm/m)	M _y (MNm/m)	M _{xy} (MNm/m)	Q _x (MN/m)	Q _y (MN/m)
18 Wall	6	0.675	-1.178	-1.016	0.262	2.320	-0.051	0.030	0.412
Below RCCV	13	-0.242	-4.702	-0.809	0.704	3.952	-0.005	0.028	0.972
Bottom	24	-0.604	-4.755	0.250	0.774	4.320	-0.008	-0.002	1.144
19 Wall	806	1.846	-2.644	0.093	0.261	1.580	0.104	-0.080	-0.008
Below RCCV	813	1.111	-4.721	-0.446	0.212	1.667	-0.030	0.012	0.690
Mid-Height	824	0.835	-4.606	0.243	0.222	1.671	0.028	0.016	0.650
20 Wall	1606	15.533	-3.964	0.374	-0.813	-3.869	0.153	0.120	2.938
Below RCCV	1613	15.095	-5.406	-0.355	-1.031	-5.552	-0.012	-0.016	3.584
Тор	1624	16.752	-5.619	-0.068	-1.167	-5.895	-0.002	-0.104	3.825
21 Exterior Wall	20011	3.795	5.903	1.189	0.577	2.392	0.051	-0.270	0.752
@ EL-11.50	20023	-3.161	-1.832	2.700	5.482	8.575	0.250	0.388	0.824
~-10.50m	30010	1.280	4.177	-0.135	1.383	5.346	-0.027	-0.038	-1.025
	30020	-0.047	-1.423	-0.094	-0.107	1.338	0.171	-0.059	-0.354
	40001	-0.189	-0.974	0.108	-0.041	1.567	-0.119	0.190	-0.408
	40011	1.324	4.622	0.125	1.434	5.725	0.012	0.019	-1.145
22 Exterior Wall	22011	5.179	4.982	-0.111	-0.165	-0.142	0.077	0.040	0.190
@ EL4.65	22023	4.118	-2.984	-4.090	0.017	0.830	-0.042	1.153	0.774
[~6.60m	32010	16.202	7.169	-0.100	-2.889	-2.913	0.008	-0.015	-0.074
	32020	0.664	7.188	3.201	0.151	-1.847	-0.423	1.253	0.215
	42001	2.788	6.244	2.827	0.185	-1.584	-0.044	-1.022	-0.240
	42011	14.344	6.174	0.394	-3.161	-3.049	0.074	0.093	0.087
23 Exterior Wall	24211	4.557	6.000	-0.347	-0.071	0.612	0.027	-0.053	1.561
@ EL22.50	24224	0.121	7.006	-4.004	0.358	-0.926	-0.198	-0.590	-0.758
~24.60m	34210	15.370	6.254	-0.526	-2.754	-1.179	0.038	-0.021	0.478
	34220	0.813	6.354	1.257	0.023	-1.654	0.041	0.995	<u>-0.</u> 089
	44201	0.441	7.044	0.691	-0.119	-1.881	0.038	<u>-1.159</u>	-0.037
24 Basemat	90140	2.217	2.128	1.916	-0.818	-1.578	-1.423	-1.283	0.195
@ Wall	90182	3.148	0.954	0.859	-1.590	-6.404	0.183	-0.090	4.451
Below RCCV	90111	1.131	2.903	0.021	-7.036	-1.884	0.104	4.764	0.201
25 Slab	93140	-0.910	3.162	5.824	-0.837_	-0.625	0.452	0.213	0.181
EL4.65m	93182	5.932	5.098	-1.432	-0.529	-2.714	-0.128	0.114	2.071
@ RCCV	93111	-4.509	6.889	-0.465	-2.694	-0.475	-0.074	1.828	0.003
26 Slab	96144	0.330	5.674	8.334	-0.320	0.220	0.183	-0.022	0.097
EL17.5m	96186	8.414		-2.245	-0.169	-0.866	-0.064	0.009	0.591
@ RCCV	96113	-9.043	4.914	-1.906	-4.765	-2.896	-0.247	1.068	-0.101
27 Slab	98472	-0.712	2.508	15.854	2.844	3.563	-1.727	1.485	-1.701
EL27.0m	98514	8.714	-4.774	-2.722	1.284	5.685	0.103	-0.091	-2.673
@ RCCV	98424	-15.856	5.965	-3.125	15.820	11.004	0.128	-6.566	-0.270
28 Pool Girder	123054	9.857	-7.176	3.794	0.061	-0.484	-0.222	0.790	-0.570
@ Storage Pool	123154	7.646	-1.589	2.072	0.291	0.127	-0.235	0.262	0.022
29 Pool Girder	123062	11.194	0.038	-2.026	-0.395	0.719	0.207	1.138	-0.117
@ Cavity	123162	7.371	0.069	-1.416	-0.059	0.546	-0.247	0.304	0.082
30 Pool Girder	123067	7.387	-5.704	-5.204	0.309	-0.082	-0.083	-0.415	-0.377
@ Fuel Pool	123167	4.800	-1.367	-2.400	0.306	0.335	0.026	-0.128	0.066
31 MS Tunnel	150122	0.742	4.103	-0.960	1.295	3.836	0.103	-0.663	-0.248
Wall and Slab	96611	-0.506	3.602	-0.370	-1.578	-7.780	-0.504	0.546	0.261
	98614	-0.406	3.864	-0.323	2.9/1	17.180	0.787	-1.065	-0.522
32 IC/PCCS	125051	3.4/3	-2.1/1	0.893	-0.5/4	-0.630	0.049	-0.282	-0.058
in NS Direction	125151	1.753	-1.442	-0.907	-0.439	-0.226	-0.016	-0.265	-0.069
In NS Direction	125055	0.938	0.773	-0.207	0.007	-0.199	-0.001	0.298	0.181
	125155	3.393	U.481	0.012	0.006	0.149	<u> </u>	0.012	-0.083

Note: TWC4 is the same as Case 4 described in Appendix E of reference 2.1.2-e where the temperatures in all pools are at 0°C

Table 6.2.4-11Results of NASTRAN Analysis, Site-Specific Seismic Load
(Horizontal: North to South Direction)

Location	Element	N _x (MN/m)	N _y (MN/m)	N _{xy} (MN/m)	M _x (MNm/m)	M _y (MNm/m)	M _{xy} (MNm/m)	Q _x (MN/m)	Q _y (MN/m)
18 Wall	6	-0.783	-1.624	-0.038	0 162	1 122	0.025	-0.037	0.414
Below RCCV	13	0.522	1.176	-0 115	0.157	0.785	-0.009	0.013	0.205
Bottom	24	0.758	3.600	0.062	0.072	0 397	0.000	0.000	0.021
19 Wall	806	-1.220	-2.023	-0.301	-0.030	0.015	0.051	0.010	-0.010
Below RCCV	813	0.027	1.363	-0.375	-0.005	-0.018	0.029	0.005	0.063
Mid-Height	824	0.969	3.912	0.024	-0.007	-0.032	0.000	0.002	0.062
20 Wall	1606	-1.574	-2.018	-1.434	-0.048	-0.075	-0.033	0.025	-0.069
Below RCCV	1613	-0.179	1.334	-1.602	-0.080	-0.300	-0.016	0.010	0.059
Тор	1624	1.266	3.651	-0.082	-0.034	-0.254	-0.003	-0.002	0.089
21 Exterior Wall	20011	0.092	-0.658	0.266	0.593	2.400	0.008	-0.008	0.889
@ EL-11.50	20023	-0.024	-0.479	-0.045	-0.317	0.400	0.065	0.427	0.293
~-10.50m	30010	1.085	0.430	-0.564	0.100	0.568	-0.002	-0.008	-0.153
	30020	-0.001	0.896	0.105	-0.014	0.299	0.011	-0.100	-0.091
	40001	0.008	0.890	-0.267	-0.048	0.225	-0.020	0.056	-0.080
	40011	0.684	0.478	0.028	-0.005	0.031	0.001	-0.002	0.036
22 Exterior Wall	22011	-0.409	-4.278	1.316	0.110	0.748	0.071	-0.043	0.598
@ EL4.65	22023	-0.129	-3.435	0.177	-0.124	0.208	-0.115	0.282	0.131
-6.60m	32010	-0.477	0.875	-2.847	-0.010	-0.020	-0.002	-0.004	-0.012
·	32020	0.107	4,483	-1.209	0.109	0.014	-0.005	0.092	0.008
	42001	0.154	4.717	-0.785	0.135	-0.066	-0.001	-0.073	0.027
	42011	1.001	2.927	0.147	-0.032	-0.207	0.008	0.000	0.181
23 Exterior Wall	24211	-0.878	-4.111	0.148	-0.125	-0.314	-0.029	-0.002	0.740
@ EL22.50	24224	-0.319	-7.118	0.933	0.671	1.055	-0.249	0.228	1.171
~24.60m	34210	-0.945	0.276	-3.286	-0.016	-0.078	0.000	0.023	-0.028
	34220	-0.087	2.292	-0.946	-0.075	0.037	0.018	-0.060	-0.016
	44201	-0.140	2.787	-0.468	-0.044	0.034	-0.013	0.086	-0.006
24 Basemat	90140	2.760	0.669	-0.723	-2.536	-1.105	0.361	-0.675	0.793
@ Wall	90182	1.990	0.248	-0.604	-0.522	0.386	0.127	0.010	-0.090
Below RCCV	90111	0.282	1.008	-0.031	1.675	0.096	0.154	-1.230	-0.110
25 Slab	93140	-1.696	0.303	-0.213	-0.204	-0.125	0.095	-0.046	0.062
EL4.65m	93182	-0.251	-0.090	0.093	-0.006	-0.003	0.010	0.005	0.012
@ RCCV	93111	-0.141	0.204	-0.030	0.349	0.060	0.012	-0.248	0.001
26 Slab	96144	-0.554	0.255	0.093	-0.173	-0.143	0.099	-0.037	0.042
EL17.5m	96186	-0.427	-0.127	0.132	-0.003	-0.012	0.010	0.010	0.008
@ RCCV	96113	0.046	-0.904	-0.097	1.094	0.112	0.012	-0.905	-0.108
27 Slab	98472	0.655	-0.206	-0.040	-0.206	-0.213	0.071	-0.021	0.039
EL27.0m	98514	-0.509	-0.071	0.098	-0.027	0.040	0.057	0.035	-0.006
@ RCCV	98424	0.940	-1.110	0.070	-0.825	-0.252	0.087	0.954	0.076
28 Pool Girder	123054	0.078	1.309	-0.293	-0.042	-0.015	0.028	0.013	0.002
@ Storage Pool	123154	-0.864	0.481	-0.105	-0.056	-0.017	0.005	-0.009	0.001
29 Pool Girder	123062	-0.152	-0.096	0.234	-0.001	0.004	-0.008	0.001	0.005
@ Cavity	123162	-0.462	-0.123	0.274	-0.007	0.003	-0.007	-0.010	-0.001
30 Pool Girder	123067	-0.535	0.362	0.423	0.065	0.049	0.012	0.020	0.033
@ Fuel Pool	123167	-0.479	-0.107	0.751	0.025	0.023	0.001	0.004	0.005
31 MS Tunnel	150122	-0.029	0.276	-0.061	-0.060	-0.205	-0.009	0.011	-0.032
Wall and Slab	96611	-0.002	-0.057	0.005	-0.169	-0.550	-0.047	0.067	0.024
	98614	0.048	-0.362	0.037	0.174	0.743	0.063	-0.058	-0.025
32 IC/PCCS	125051	0.017	0.133	0.376	0.004	0.004	0.000	0.004	-0.010
Pool Wall	125151	-0.110	0.133	0.414	0.009	0.006	0.000	0.006	-0.003
in NS Direction	125055	-0.115	-0.023	0.460	-0.005	-0.006	0.003	-0.003	-0.003
	125155	-0.221	-0.004	0.470	0.000	0.005	0.003	0.005	-0.004

WG3-U71-ERD-S-0004	SH NO.	172
REV. 1	of	543

Table 6.2.4-12Results of NASTRAN Analysis, Site-Specific Seismic Load
(Horizontal: East to West Direction)

Location	Element	N _x	Ny (MNI/m)	N _{xy}	M _x	M _y (MNm/m)	M _{xy} (MNm/m)	Q _x (MN/m)	Q _y (MN/m)
		(10110/11)	2 1 9 9	(10110/11)	(1/(1/1/1/1))			0.033	0.385
Polow BCCV	12	-1.302	-3.100	0.325	0.103	0.904	0.007	0.035	0.303
Below RCCV		-1.290	-3.099	-0.300	0.120	0.707	0.012	-0.010	0.004
	24	-0.150	-0.330	-1.107	-0.015	-0.020	-0.009	0.014	0.000
	800	-0.523	-3.092	0.037	0.029	0.036	0.035	0.007	-0.032
Below RCCV	013	-1.029	-3.722	-0.421	0.023	0.025	0.019	0.000	0.003
	624	-0.065	-0.300	-1.001	-0.003	-0.002	-0.008	-0.004	-0.011
ZU Wall	1600	-0.300	-2.010	1.000	-0.001	0.155	0.019	0.000	0.059
	1013	-0.005	-3.209	-0.402	-0.039	-0.300	0.017	-0.003	0.113
21 Exterior Mell	1024	-0.112	-0.330	-2.000	0.003	0.020	-0.038	0.010	-0.004
	20011	0.104	0.307	1.904	0.001		-0.010	-0.021	-0.055
@ EL-11.50	20023	-0.016	-1.243	0.171	-0.115	0.079	0.040	0.155	0.095
~~10.50m	30010	-0.635	-0.216	-0.743	0.163	0.762	0.015	0.012	-0.232
	30020	-0.102	-0.927	-0.550	0.040	-0.084	-0.006	-0.008	0.045
	40001	0.061	-1.082		-0.107	-0.318	-0.001	-0,133	0.070
	40011	0.009	-0.030	-1.125	-0.020	-0.069	-0.006	-0.010	0.027
22 Exterior Vall	22011	-0.104	-1.029	3.504	-0.014	-0.010	-0.004	-0.011	-0.017
@ EL4.65	22023	-0.323	-3.988	2.727	0.085	0.080	-0.032	0.027	0.047
~6.60m	32010	-0.595	-2.880	-0.678	0.023	0.132	0.013	0.000	-0.202
	32020	-0.093	-3.812	-1.603	-0.041	0.074	0.007	-0.048	0.040
	42001	-0.085	-3.676	-2.018	-0.062	-0.030	0.010	0.029	0.012
	42011	-0.066	0.437	-3.545	-0.002	0.007	-0.012	-0.004	0.000
23 Exterior Wall	24211	-0.012	0.063	3.5/3	0.006	0.015	-0.008	0.000	0.002
@ EL22.50	24224	-0.371	-5.221	3.445	0.319	0.211	-0.015	-0.223	0.158
~24.60m	34210	-0.182	-1./40	-0.569	-0.107	-0.609	0.007	0.004	-0.191
	34220	0.115	-2.079	-1./49	-0.050	-0.100	0.006	0.013	0.009
	44201	-0.059	-2.191	-2.196	-0.016	-0.007	-0.033	0.026	-0.017
24 Basemat	90140	0.090	-0.409	- <u>1.41</u> 1	-1.245	-1.547		-1.254	1.198
@ Wall	90182	-0.890	-0.003	-0.539	-0.538	-1.570	0.223	-0.026	1.660
Below RCCV	90111	0.044	-0.185	0.345	0.059	-0.084	-0.381	0.065	0.451
25 Slab	93140	-0.082	-0.051	0.108	-0.132	-0.116	0.077	-0.040	0.028
EL4.65m	93182	-0.099	0.065	0.096	-0.093	-0.469	0.016	0.020	0.392
@ RCCV	93111	0.094	0.021	-0.148	-0.007	0.004	0.000	-0.001	-0.003
26 Slab	96144	0.080	0.194	0.113	-0.112	-0.112	0.074	-0.039	0.016
EL17.5m	96186	0.192	-0.068	0.160	-0.105	-0.544	-0.020	0.026	0.445
@ RCCV	96113	-0.018	0.110	-0.595	-0.069	-0.017	-0.045	0.043	-0.033
27 Slab	98472	0.062	0.772	0.239	-0.053	-0.060	0.025	0.055	-0.076
EL27.0m	98514	0.363	-0.183	0.348	-0.167	-1.101	0.002	0.020	0.701
@ RCCV	98424	-0.202	0.194	3.448	-0.001	-0.023	0.123	<u>-0.042</u>	-0.040
28 Pool Girder	123054	-0.250	0.289	<u>-0</u> .162	-0.197	-0.091	0.054	-0.023	
@ Storage Pool	123154	0.240	0.389	-0.563	-0.156	-0.010	0.067	-0.017	-0.004
29 Pool Girder	123062	0.197	-0.814	-0.044	-0.038	0.026	0.009	0.028	-0.001
@ Cavity	123162	0.256	0.817	-0.052	-0.027	0.002	-0.008	0.028	-0.021
30 Pool Girder	123067	0.049	-0.123	-0.097	-0.090	-0.092	-0.051	-0.014	0.075
@ Fuel Pool	123167	0.276	0.388_	0.341	-0.065	0.017	0.041	0.013	-0.008
31 MS Tunnel	150122	0.005	-0.093	0.022	0.024	0.074	0.029	-0.005	-0.158
Wall and Slab	96611	-0.017	0.048	0.029	0.012	0.055	0.047	0.000	0.054
	98614	-0.008	-0.006	0.003	-0.023	-0.092	0.262	0.023	0.011
32 IC/PCCS	125051	0.083	-0.069	0.125	0.009	0.008	0.004	0.003	-0.002
Pool Wall	125151	0.042	0.061	0.009	0.008	0.000	0.005	0.004	0.004
in NS Direction	125055	0.221	0.010	-0.058	-0.001	0.007	0.001	0.000	-0.001
	125155	0.194	-0.013		0.002	0.000	0.001	-0,004	0.007

Table 6.2.4-13Results of NASTRAN Analysis, Site-Specific Seismic Load
(Vertical: Upward Direction)

Location	Element	N _x (MN/m)	N _y (MN/m)	N _{xy} (MN/m)	M _x (MNm/m)	M _y (MNm/m)	M _{xy} (MNm/m)	Q _x (MN/m)	Q _y (MN/m)
18 Wall		0.390	-6 640	0.527	-0.361	-2 351	0.013	-0.038	-0 756
Below BCCV	13	0.501	-5 422	0.021	-0.612	-3 320	0.005	-0.006	-1 021
Bottom	24	0.458	-6.058	-0.161	-0.651	-3 531	0.006	-0.002	-1 060
19 Wall	806	-0.001	-5.924	0.178	0.001	-0.049	-0.022	0.002	-0.115
Below RCCV	813	-0.174	-5 442	0.360	-0.026	-0.047	-0.010	-0.019	-0.214
Mid-Height	824	-0.129	-6.106	-0.147	-0.033	-0.002	-0.007	0.001	-0.232
20 Wall	1606	-0.709	-5,409	0.135	0.187	1.012	0.008	-0.003	-0.344
Below RCCV	1613	-0.841	-5.281	0.271	0.181	1 101	0.007	0.000	-0.395
Тор	1624	-0.755	-5.937	-0.093	0.184	1.094	0.000	-0.006	-0.384
21 Exterior Wall	20011	-0.571	-3.328	-0.340	-0.035	0.005	0.004	0.048	0.042
@ EL-11.50	20023	0.005	-1.108	-0.390	0.106	-0.219	-0.007	-0.084	-0.134
~-10.50m	30010	-0.160	-1.781	0.051	-0.371	-1.965	0.016	0.003	0.460
	30020	-0.053	-0.988	-0.201	0.187	-0.567	-0.058	0.127	0.191
	40001	-0.049	-1.028	0.164	0.191	-0.576	0.058	-0.127	0.186
	40011	-0.323	-2.306	0.001	-0.423	-2.233	-0.011	-0.001	0.530
22 Exterior Wall	22011	0.185	-3.014	0.654	-0.007	0.056	0.001	-0.021	0.061
@ EL4.65	22023	0.005	-1.557	-0.255	-0.117	0.001	-0.014	0.078	0.015
/ ~6.60m	32010	-0.033	-1.772	0.059	0.000	0.039	0.003	0.000	-0.025
1	32020	-0.049	-1.973	-0.093	-0.063	-0.004	-0.006	-0.056	-0.009
	42001	-0.058	-2.061	-0.089	-0.081	-0.005	0.003	0.041	-0.002
	42011	-0.319	-2.366	-0.078	-0.002	0.037	-0.004	0.003	-0.020
23 Exterior Wall	24211	-0.245	-1.884	0.122	-0.082	-0.546	0.006	-0.002	-0.047
@ EL22.50	24224	-0.060	-1.302	0.460	0.055	-0.028	-0.055	-0,067	-0.007
~24.60m	34210	-0.054	-0.868	0.063	-0.009	-0.116	0.001	0.006	-0.015
	34220	0.040	-0.964	-0.213	0.053	-0.040	0.001	0.044	0.001
	44201	0.026	-1.163	-0.393	0.046	-0.021	0.010	-0.047	-0.002
24 Basemat	90140	0.292	-0.734	-0.477	-2.136	-1.628	3.174	-1,481	1.751
@ Wall	90182	-0.623	-0.317	-0.066	0.837	-2.260	-0.383	0.221	0.666
Below RCCV	90111	-0.387	-0.896	0.058	-2.068	1.015	-0.489	0.713	0.115
25 Slab	93140	-0.089	0.124	0.064	0.052	0.072	-0.045	0.102	-0.083
EL4.65m	93182	0.115	0.099	0.018	0.025	0.072	0.006	-0.007	-0.132
@ RCCV	93111	0.070	0.144	-0.026	0.101	0.028	0.004	-0.130	-0.003
26 Slab	96144	-0.171	0.227	0.164	0.028	0.034	-0.026	0.094	-0.070
EL17.5m	96186	0.258	-0.093	-0.035	-0.007	-0.053	0.003	-0.004	-0.007
@ RCCV	96113	-0.076	0.554	-0.083	-0.296	0.011	0.011	0.337	0.034
27 Slab	98472	0.381	-0.046	0.256	0.418	0.684	-0.574	0.444	-0.521
EL27.0m	98514	0.135	0.039	0.068	0.061	0.301	0.046	-0.023	-0.205
@ RCCV	98424	-0.230	0.416	-0.030	2.488	0.577	0.020	-1.510	-0.116
28 Pool Girder	123054	0.490	-3.033	-1.047	0.034	0.033	0.088	0.014	0.035
@ Storage Pool	123154	1.605	-0.550	-0.833	0.044	-0.004	0.122	0.057	-0.009
29 Pool Girder	123062	0.502	0.763	0.407	-0.053	-0.286	0.025	0.018	-0.128
@ Cavity	123162	-1.839	0.280	0.213	-0.096	-0.088	0.019	0.106	0.032
30 Pool Girder	123067	0.459	-2.959	1.895	0.005	-0.068	-0.104	-0.129	-0.023
@ Fuel Pool	123167	0.647	-0.692	1.644	0.019	-0.002	0.013	-0.045	-0.010
31 MS Tunnel	150122	-0.029	0.142	0.341	0.021	0.007	0.026	-0.015	-0.074
Wall and Slab	96611	-0.017	0.396	-0.019	0.065	-0.289	-0.103	-0.109	0.035
	98614	-0.024	-0.249	-0.021	0.016	-0.565	-0.065	-0.057	0.036
32 IC/PCCS	125051	-0.140	-1.646	-1.201	0.006	-0.074	-0.003	0.006	-0.055
Pool Wall	125151	-0.160	-0.650	-0.995	0.001	-0.011	-0.006	0.015	-0.003
in NS Direction	125055	0.057	-0.200	-0.105	-0.024	-0.137	0.004	-0.045	-0.088
	125155	-0.704	-0.139	-0.088	0.006	0.034	0.007	0.046	-0.051

WG3-U71-ERD-S-0004	SH NO. 174
REV. 1	of 543

Category	Combination*2		Load *1									Acceptance			
	No.	D	F	L	Н	Pa*3	То	Ta*3	E'	W	Wt	Ro	Ra	Y*4	Criteria *5
Normal	RB-C1	1.4	1.4	1.7	1.7	-	-	-	-	-	-	1.7	-	-	U
	RB-C2	1.05	1.05	1.3	1.3	-	1.3		-		-	1.3	-	-	U
Severe	RB-C3	1.4	1.4	1.7	1.7	-	-	-	-	1.7	-	1.7	-	-	U
Environmental	RB-C4	1.05	1.05	1.3	1.3	-	1.3	-	-	1.3	-	1.3	-	-	U
	RB-C5	1.2	1.2	-	-	-	1	-	-	1.7	-	-	-	-	U
Extreme	RB-C6	1.0	1.0	1.0	1.0	-	1.0	-	1.0	-	-	1.0	-	-	U
Environmental	RB-C7	1.0	1.0	1.0	1.0	-	1.0	-	-	-	1.0	1.0	-	-	U
Abnormal	RB-C8	1.0	1.0	1.0	1.0	1.5	-	1.0	-	-	-	-	1.0	-	U
Abnormal/Extreme Environmental	RB-C9	1.0	1.0	1.0	1.0	1.0	-	1.0	1.0	-	-	-	1.0	1.0	U

Table 6.3.1-1	Load Combinations and	Acceptance Criteria	for Safety-Related	Reinforced Concrete Structures
		1		

Note :

*1: D = Dead loads

F = Hydrostatic pressure loads

L = Live loads (For the roof, Roof Live loads or Snow loads or Rain loads each acting independently.)

H = Lateral soil pressure loads

To = Thermal loads during the normal operation

E' = Seismic loads (SSE)

W = Wind loads (basic wind)

Ro = Pipe reaction loads during the normal operation

Y = High energy pipe rupture

Pa = Pressure loads during LOCA Ta = Thermal loads during LOCA

Wt = Wind loads (tornado wind) Ra = Pipe reaction loads during LOCA

*2: For any load combination, where any load reduces the effects of other loads, the corresponding coefficient for that load shall be taken as 0.9 if it can be demonstrated that the load is always present or occurs simultaneously with the other loads. Otherwise, the coefficient for that load shall be taken as zero.

*3: Because Pa and Ta are time-dependent loads, their effects are superimposed accordingly.

- *4: Y includes Yj, Ym and Yr. The maximum value of Y including an appropriate DLF shall be used, unless an appropriate time history analysis is performed to justify otherwise.
- *5: U = Section strength required to resist design loads based on the strength design method per ACI 349-01 and in SRP 3.8.4 Section II.3.

Table 6.3.1-2Load Combinations, Load Factors and Acceptance Criteria for
Reinforced Concrete Containment

Description	No. *2		Load Conditions ^{*1}									Acceptance Criteria ^{*6}						
	_	D	L	Pt	Ро	Pa*3	Tt	То	Ta*3	E'*7	W	W'	Ro	Ra	Y*4	SRV*7	LOCA ^{•5•7}	
Service																		
Test	CV-1	1.0	1.0	1.0	-	-	1.0	-	-	-	-	-	-	-	-	-	-	S
Construction	CV-2	1.0	1.0	-	-	-		1.0	-		1.0	-	-	-	-	-	-	S
Normal	CV-3	1.0	1.0	-	1.0	-	-	1.0	-	-	-	-	1.0	-	-	1.0	-	S
Factored		<u> </u>																
Severe Environmental	CV-4	1.0	1.3	-	1.0	-	-	1.0	-	-	1.5	-	1.0	-	-	1.3	-	U
Extreme Environmental	CV-5	1.0	1.0	-	1.0	-	-	1.0	-	1.0	-	-	1.0	-	-	1.0	-	U
	CV-6	1.0	1.0	-	1.0	-	-	1.0	1	-	-	1.0	1.0	-	-	1.0	-	U
Abnormal	CV-7	1.0	1.0	-	-	1.5	-	-	1.0		-	-	-	1.0	-	1.25	Note ^{*5}	U
	CV-8	1.0	1.0	-	-	1.0	-	-	1.0	-	-	-	-	1.25	-	1.0	Note ^{*5}	U
	CV-9	1.0	1.0	1	-	1.25	-	-	1.0	-	-	-	-	1.0	-	.1.25	Note ^{*5}	U
Abnormal/Severe Environmental	CV-10	1.0	1.0	-	-	1.25	-	-	1.0	-	1.25	-	-	1.0	-	1.0	Note ^{*5}	U
Abnormal/Extreme Environmental	CV-11	1.0	1.0	-	-	1.0	-	-	1.0	1.0	-		-	1.0	1.0	1.0	Note ^{*5}	U

Notes:

*1: The loads are described in Section 6. The allowable stresses of concrete and reinforcing steel shall be in accordance with ASME Code Section III, Division 2, Subsection CC-3400 (except for tangential shear stress carried by orthogonal reinforcement which shall be limited to 4.41 MPa (639 psi) for factored load combinations). Inclined reinforcement shall not be used to resist tangential shear.

*2: For any load combination, if the effect of any load component (other than D) reduces the combined load, then the load component is deleted from the load combination.

*3: Because Pa, Ta, SRV and LOCA are time-dependent loads, their effects are superimposed accordingly.

*4: Y includes Yj, Ym and Yr.

*5: LOCA loads, CO, CHUG and PS are time-dependant loads for which DLF may be used. The sequence of occurrence is shown in Figure 5.2.3-2. The load factor for LOCA loads shall be the same as the corresponding pressure load Pa. LOCA loads shall include hydrostatic pressure (with a load factor of 1.0) due to containment flooding.

*6: S = Allowable Stress as in ASME Section III, Div. 2, Subsection CC-3430 for Service Load Combination. U = Allowable Stress as in ASME Section III, Div. 2, Subsection CC-3420 for Factored Load Combination.

*7: The peak responses of dynamic loads do not occur at the same instant. SRSS method to combine peak dynamic responses is acceptable for concrete structures.

	Combination			Acceptance									
Category	No.	D	L	Pa	То	Та	E'	W	Wt	Ro	Ra	Y ^{*1}	Criteria ^{*2}
Normal	RB-S1	1.0	1.0	-		-	-	-	-	-	-	-	S
	RB-S2	1.0	1.0	-	1.0	-	-	-	-	1.0	-	-	S (a)
Severe	RB-S3	1.0	1.0	-		-	-	1.0	-	-	-	-	S
Environmental	RB-S4	1.0	1.0	-	1.0	-	-	1.0	-	1.0	-	-	S (a)
Extreme	RB-S5	1.0	1.0	-	1.0	-	1.0	-	-	1.0	-	-	1.6S (b) (c)
Environmental	RB-S6	1.0	1.0	-	1.0	-	-	-	1.0	1.0	-	-	1.6S (b) (c)
Abnormal	RB-S7	1.0	1.0	1.0	-	1.0	I	-		-	1.0	-	1.6S (b) (c)
Abnormal/Extreme Environmental	RB-S8	1.0	1.0	1.0	-	1.0	1.0	-	-	-	1.0	1.0	1.7S (b) (c)

Table 6.3.1-3 Load Combinations and Acceptance Criteria for Safety-Related Steel Structures

Note : D = Dead loads

L = Live loads (For the roof, Roof Live loads or Snow loads or Rain loads each acting independently.)

Pa = Pressure loads during LOCA

To = Thermal loads during the normal operation

Ro = Pipe reaction loads during the normal operation

E' = Seismic loads (SSE)

W = Wind loads (basic wind)

Y = High energy pipe rupture

Ta = Thermal loads during LOCA Wt = Wind loads (tornado wind)

Ra = Pipe reaction loads during LOCA

- *1: Y includes Y_j, Y_m and Y_r. The maximum values of Y including an appropriate DLF shall be used, unless an appropriate time history analysis is performed to justify otherwise.
- *2: Allowable elastic working stress (S) is the allowable stress limit specified in Part 1 of Reference 2.2-c.
- (a) For primary plus secondary stress, the allowable limits are increased by a factor of 1.5.
- (b) Stress limit coefficient in shear shall not exceed 1.4 in members and bolts.
- (c) Stress limit coefficient where axial compression exceeds 20% of nominal allowable, shall be 1.5 for load combination 5, 6, 7, and be 1.6 for load combination 8.

 WG3-U71-ERD-S-0004
 SH NO.
 177

 REV. 1
 of
 543

Table 6.3.2-1 Detail Load Combinations for RB Design

Note *1: GDCS Pool Water Depth is 4.48 m.

*2: GDCS Pool Water Depth is 0.792 mm.

Dynamic loads, i.e. seismic loads and hydrodynamic loads, are combined according to the SRSS method, as specified in Section 6.3.2 of Reference 2.1.2-m.

Opposite signs of stresses due to the hydrodynamic load or combination of hydrodynamic and seismic load to the other loads is considered. In that case, 500 is added to the original LOAD ID.

For acceptance criteria, S = Allowable Stress as in ASME Section III, Div. 2, Subsection CC-3430 for Service Load Combination. U = Allowable Stress as in ASME Section III, Div. 2, Subsection CC-3420 for Factored Load Combination. For unit load cases which are shaded in the table, the results of the stress analysis are based on the RB/FB global FE model which is used in Appendix E of the "ESBWR Reactor Building Structural Design Report", Reference 2.1.2-e.

WG3-U71-ERD-S-0004	SH NO.	178
REV. 1	of	543

Table 6.3.2-1 Detail Load Combinations for RB Design (Continued)

Note *1: GDCS Pool Water Depth is 4.48 m.

*2: GDCS Pool Water Depth is 0.792 mm.

Dynamic loads, i.e. seismic loads and hydrodynamic loads, are combined according to the SRSS method, as specified in Section 6.3.2 of Reference 2.1.2-m.

Opposite signs of stresses due to the hydrodynamic load or combination of hydrodynamic and seismic load to the other loads is considered. In that case, 500 is added to the original LOAD ID.

For acceptance criteria, U = Allowable Stress as in ASME Section III, Div. 2, Subsection CC-3420 for Factored Load Combination.

For unit load cases which are shaded in the table, the results of the stress analysis are based on the RB/FB global FE model which is used in Appendix E of the "ESBWR Reactor Building Structural Design Report", Reference 2.1.2-e.

WG3-U71-ERD-S-0004	SH NO.	179
REV . 1	of	543

Table 6.3.2-1 Detail Load Combinations for RB Design (Continued)

Note *1: GDCS Pool Water Depth is 4.48 m

*2: GDCS Pool Water Depth is 0.792 mm.

Dynamic loads, i.e. seismic loads and hydrodynamic loads, are combined according to the SRSS method, as specified in Section 6.3.2 of Reference 2.1.2-m.

Opposite signs of stresses due to the hydrodynamic load or combination of hydrodynamic and seismic load to the other loads is considered. In that case, 500 is added to the original LOAD ID.

For acceptance criteria, U = Allowable Stress as in ASME Section III, Div. 2, Subsection CC-3420 for Factored Load Combination.

For unit load cases which are shaded in the table, the results of the stress analysis are based on the RB/FB global FE model which is used in Appendix E of the "ESBWR Reactor Building Structural Design Report", Reference 2.1.2-e.
WG3-U71-ERD-S-0004	SH NO.	180
REV. 1	of	543

 Table 6.3.2-1
 Detail Load Combinations for RB Design (Continued)

GDCS Pool Water Depth is 4.48 m.

*2: GDCS Pool Water Depth is 0.792 mm.

Dynamic loads, i.e. seismic loads and hydrodynamic loads, are combined according to the SRSS method, as specified in Section 6.3.2 of Reference 2.1.2-m.

Opposite signs of stresses due to the hydrodynamic load or combination of hydrodynamic and seismic load to the other loads is considered. In that case, 500 is added to the original LOAD ID.

For acceptance criteria, U = Allowable Stress as in ASME Section III, Div. 2, Subsection CC-3420 for Factored Load Combination.

For unit load cases which are shaded in the table, the results of the stress analysis are based on the RB/FB global FE model which is used in Appendix E of the "ESBWR Reactor Building Structural Design Report", Reference 2.1.2-e.

WG3-U71-ERD-S-0004	SH NO.	181
REV. 1	of	543

Table 6.3.2-2 Detail Load Combinations for Steel Structures

				L	ive Loa	ıd	ſ	Pressu	re Load												Therm	nal Loa	sd										P	ipe		-	I	lydrod	ynami	c Load	-			1	Wind L	oad	T	To	mado I	oad		
							LOC	A				uo		LOCA	(GDCS	S Cond	ition1)		D	.OCA ((GDCS	S Conditie	on2 ^{*2})				LOCA &	k.		SPF LOFC	F	Re	ac.			LC	DCA			Rea	action										
				Dead Load	mal Operation Pressure (Static)	5 seconds	6 minutes	r 10 hours	r 72 hours nulus Pressure	B in MS Tunnel	B in Other Room	Normal Operati	After 5 seconds		After 6 minutes	After 10 hours		After 72 hours		After 5 sec.		After 6 minutes	After 10 hours		After 72 hours			After 72 hours (both Accident)			SPF LOFCF (after 72hr.)	Seismic Load	4	During AP	SRV		PS		co	CH	Skv S+AP	co	CH	N to S	S to N	E to W	WIDE	N to S S to N	E to W	W to E	Differential Load	ance Criteria
				3	Soil	After	After	Afte	Alte	HEI	HEIH	Winter	Summer	Winter	Winter	Summer	Winter	Summer	Winter	Winter	Summer	Winter	Summor Winter	Summer	Winter	Summer	Winter	Winter	Winter	Winter	Summer	willer	ITI	JET2	Positive	Fool Swell Froth 1	Froth 2	Fall Back	Positive	Positive	đ										Tomade	Accept
				DL03	SPO SPO	ЫIJ	PL.2	FL3	AP AP	PLMS	HTOH TT ED	1LW0	ILSI	TL 81	TLW2	TLS3	TLW3	ILS4	TLW4 TLS5	TLW5	TLS6	JLW6	TLS7 TLW7	TLS8	31TW8	TSS8	TSW8	TWC1	TWC3	TWC4	TSS0	KSO	JET1	JET2	HOSI	HLPS HLP2	HLP3	HLP4	IUTH	HLCI	ISd	COL	CHL	NOW	WOS	WOE	WOW NOW	WIN	WTE	WTW	WTD	
STEEL-Construc	ion 1.0D+1.0L		1001					-	_		-	-		-	-		-	-	-	-	-			-	-			_	-		_	-	-		-	-	-	_	_	_	_	-			_	_		_			-	
STEEL-S3	1.0D+1.0L+	1.0W (Normal Operation)	1001	1.0 1	1.0	+	+	+		+	+	+-			-			-	+	+-	-			-	-		-		-		-	-	-		-	-	-	-	+			+		-		-	+	-	+	\rightarrow	+	S
		N to S Wind S to N Wind	3001 3002	1.0 1 1.0 1	1.0 1.0 1.0 1.0									-					-	-	-										-	-			-	-			-		+	+		1.0	1.0	-				-	-	S S
		E to W Wind	3003	1.0 1	1.0 1.0	2		-	-	+	-	-		_	-		_	-	\rightarrow	_	-			-			-	_	-		_	_			_	_	-			_	_	+			1	1.0	_	-		-	-	S
STEEL-S4	1.0D+1.0L+	w to E. wind 1.0To+1.0W (Normal Operation)	3004	1.0 1	1.0 1.0		+++	+	-	++	+	+-		-	-	-	-	-	+	+-	-		<u> </u>	-	-		-	-	-		-	+	+		-	-	-	-	-	-	+	+-		-	-	1.	0	-	++	\rightarrow	\rightarrow	S
51122.57	Summer	N to S Wind	4011	1.0 1	1.0 1.0	,	+-+	+		+	1	.0			-		-	-	-	+-			_	-					-		-	+			-	-	-	+ +	-	-	+	+		1.0		-	+	-	\rightarrow	\rightarrow	-	S(a)
		S to N Wind	4012	1.0 1	1.0 1.0						1	.0							-													+			-						-	1		1.0	1.0							S(a)
		E to W Wind	4013	1.0 1	1.0 1.0						1	.0																																	1	1.0						S(a)
		W to E Wind	4014	1.0 1	1.0 1.0	2		-	-		1	.0		-	-		_	-	_	_	_			-				_			_	_			_	_					_	-			_	1.0	0	-			_	S(a)
	Winter	N to S Wind	4021	1.0 1		2	+++	-	-	+	-	1.0			-		-	-			-							-			-	-			-	-	-	-	-	-	+	+		1.0	1.0	-	+	-		-	-	S(a)
		E to W Wind	4022	1.0 1	1.0 1.0		+ +	+	-	+	-	1.0		-			-	-	+	+	-	+-+		-			-	-	-	+ +	-	+	+		-		+	+ +	-+	-	+-	+	-	-	1.0	0	+	+	\rightarrow	-+	+	S(a)
		W to E Wind	4024	1.0 1	1.0 1.0							1.0							-	-	-																				-				- 1	1.	0					S(a)
STEEL-S5	SSE (Norma	(Operation)																																																		
1	Summer		5001	1.0 1	1.0 1.0			-	-		1.	.0		_			-	-	_	-	-			-							-	1.0									-	-			_							1.6S(b)(c)
	Winter		5002	1.0 1	1.0 1.0	-	+	-	-	+	+	1.0		-	-		-	-	+	+	-	+		-			-	-	-		-	1.0			-	-	-		\rightarrow	-	+-	+	-			-	+	-		-		1.6S(b)(c)
STEEL-S6	Tomado (No	rmal Operation)	5005	1.0 1	1.0 1.0	1		-	-		+	-		-	-		-	-	-	+-	-						-		-		-	1.0	-		-		-	+ +	-+	-	+-	+		-		-	+	+	+-+	-	-+'	1.65(b)(c)
	Summer	N to S Wind	6011	1.0 1	.0 1.0						1	.0							-	-	-											1					-		-		-	-			-	-	1.0	0			-	1.6S(b)(c)
		S to N Wind	6012	1.0 1	1.0 1.0						1	.0																																				1.0				1.6S(b)(c)
		E to W Wind	6013	1.0 1	1.0 1.0						1.	0					_									_									_														1.0			1.6S(b)(c)
		W to E Wind	6014	1.0 1	1.0 1.0			-	-		1	.0		-			-	_	-	-	-			_				_			-	-			_	-	-				-	-			_	-	-		-	1.0		1.6S(b)(c)
		N to S Wind+DP/2	6015	1.0 1	.0 1.0	2	+	-		+	1.	0	-		-		-	-	+	+		+		-	-		-	-	-		-	+			-				-+	-	-	-		-		-	1.0	0		-	0.5	1.6S(b)(c)
		F to W Wind+DP/2	6017	1.0 1	0 10	1		+	-	+ +	1	0		-	-		+	-	+	+	+	+	_	+	-	-	-	-	-		-	+				-	-	-	-	-	+-	+-		-		-	+	1.0	1.0	-	0.5	1.6S(b)(c)
		W to E Wind+DP/2	6018	1.0 1	.0 1.0			-			1	.0		-			-	-	+	+	-	-		-				-			-	-			-	-	-		-	-	+	+				-	+	-	1.0	1.0	0.5	1.6S(b)(c)
		Differential	6019	1.0 1	.0 1.0						1.	.0																									-				-	-			_	-		-			1.0	1.6S(b)(c)
	Winter	N to S Wind	6021	1.0 1	.0 1.0							1.0		_					_																												1.0	0			1	1.6S(b)(c)
		S to N Wind	6022	1.0 1	1.0 1.0	-		_	_	+	-	1.0		_	-			-	+	-				-	-			_			_	_			_	_	-		_	_	_	-			_		-	1.0	-	-	/	1.6S(b)(c)
		E to W Wind	6023	1.0 1	0 1.0		+ +	-	-		+	1.0		-			-	-	-	+	-			-			-	-	-		-	-					-		-	-	-	+					+	-	1.0			i.6S(b)(c)
		N to S Wind+DP/2	6024	1.0 1	0 1.0	+		+	-	+ +	+	1.0		-			-	-	+	+-	+	+-+	_	-	-		-	-	-		-	+			-	-	-	-	-	-	+	+		-		-	1.	0		1.0	0.5	1.6S(b)(c)
		S to N Wind+DP/2	6026	1.0 1	.0 1.0							1.0							-	+	-		_									+			-	-	-		-		-	+			_	-	1	1.0			0.5	1.6S(b)(c)
		E to W Wind+DP/2	6027	1.0 1	.0 1.0							1.0							-	-	-						-	-			-	-			-	-			-		-	-			-		+	110	1.0		0.5	1.6S(b)(c)
		W to E Wind+DP/2	6028	1.0 1	.0 1.0							1.0																																						1.0	0.5	1.6S(b)(c)
		Differential	6029	1.0 1	.0 1.0				_		-	1.0		_				-	_	-	_											-							_		_	_			_	_					1.0	1.6S(b)(c)
	w/o Temp	N to S Wind	6001	1.0 1	.0 1.0			-			-	-		-	-		-	-	-	-			_	-	-		-	-			-	-			-	-	-		-	-	-	-		-	_	-	1.0	0	-	-		1.6S(b)(c)
		F to W Wind	6002	1.0 1	0 10		++	-	-		+	-					+	-	+	+-	+	++		+	+ +			-			-	-			-	-	-		+	-	+	+		-	-			1.0	1.0	-	+	1.6S(b)(c)
		W to E Wind	6004	1.0 1	.0 1.0		+	+	-		+	-					-	-	+	+	+	+		-			-	-			-	+			-	-	+	-	+	-	+-	+		-			+	+-	1.0	1.0	ť	1.6S(b)(c)
		N to S Wind+DP/2	6005	1.0 1	.0 1.0									-					-	+	-	-	-	-				-			-	-			-	-	-		-	-	+	1		-		-	1.0	0	-		0.5	1.6S(b)(c)
		S to N Wind+DP/2	6006	1.0 1	.0 1.0																																											1.0			0.5	1.6S(b)(c)
1		E to W Wind+DP/2	6007	1.0 1	.0 1.0																																												1.0		0.5	1.6S(b)(c)
		W to E Wind+DP/2	6008	1.0 1	.0 1.0	-	++	-	-		-	-		-					-	+	-	+		-			-										1	1	-	-		-			-					1.0	0.5	1.6S(b)(c)
		Differential	6009	1.0 1	.0 1.0	1						_			1			_			_																1					_									1.0	1.6S(b)(c)

Note

Dynamic loads, i.e. seismic loads and hydrodynamic loads, are combined according to the SRSS method, as specified in Section 6.3.2 of Reference 2.1.2-m. Opposite signs of stresses due to the hydrodynamic load or combination of hydrodynamic and seismic load to the other loads is considered. In that case, 500 is added to the original LOAD ID.

The acceptance criteria are specified in Part 1 of Reference 2.2-c.

For unit load cases which are shaded in the table, the results of the stress analysis are based on the RB/FB global FE model which is used in Appendix E of the "ESBWR Reactor Building Structural Design Report", Reference 2.1.2-e.

WG3-U71-ERD-S-0004	SH NO.	182
REV. 1	of	543

Table 6.3.2-2 Detail Load Combinations for Steel Structures (Continued)

					1	ive Los	d	-	Press	are Load											T	hermal l	Load									Pipe			Н	lydrody	ynamic l	Load				W	ind Loa	d		Fornado	Load	
								LOC	CA				ų		LOC	A (GDC	CS Cond	lition 1*	¹)		LO	CA (GE	OCS Con	dition2*2)		1	OCA &	2	SPF	F	Reac			LO	AOCA			Rea	action								
					ad Load	Operation ure (Static)	conds	inutes	hours	hours s Pressure	MS Tunnel	Other Room	lormal Operatic		spuops c 19	ter 6 minutes	Ter 10 hours		ter 72 hours		After 5 sec.	ter 6 minutes		ter 10 hours	ter 72 hours			ter 72 hours th Accident)		PF LOFCF after 72hr.)	mic Load	During AP	SRV		Sd		00	5	4			toS	N OI	to E	to S	N of W	to E	Ferential Load Criteria
					De	Normal vil Press	fter 5 se	fter 6 m	fter 10	Annulu	ELB in	ILB in (z	-	2	An A	1	2	Y		Ì	4P	-	2	z			7 ĝ		83	Seis			=	-			SRV	PS+A	8	HO	z	E	W	Z	SI	W	ado Dif eptance
							~	~	~	<	H	H	Summer	Summer	Winter	Summer Winter	Summer	Winter	Summer	Summer	Winter	Summer	Winter Summer	Winter	Winter	Summer	Winter	Winter	Winter Winter	Summer	w mice	JETI	Positive	Pool Swe	Froth 2	Fall Back	Positive	FOSHIVE										Tom
					DLO3	SPO	PLI	PL.2	PL3	PL4 AP	PLMS	HIOH	TLS0	TLS1	IMTL	TLW2	TLS3	TLW3	TLS4	TLS5	TLW5	TLS6	TLW6	TLW7	TLW8	TSS8	TSW8	TWC1	TWC3 TWC4	TSS0	KSO	JETI	HOSI	HLPS	HLP3	HLP4	HLOI	SRN	ISd	COL	CHL	NOW	WOF	WOW	NTW	WTS	WTW	QLM
STEEL-S7	LOCA						-							-		_																						-	-				-		_			
	5 sec. After	GDCS	Summer	7001	1.0	1.0 1.0) 1.0		-	1.0	-		-	1.0	-		-	-	-	-	-	-			-	-	-	-			-	1.0 1	.0 1.0	1.0			-	1.0	0 1.0		-	-	-		-	-		1.6S(b)(c)
		Condition		7002	1.0	1.0 1.0	1.0	+	-	1.0	-		-	1.0				-	-	-	-					+	-	+		++	-	1.0 1	0 1.0	1.0	.0 1.0	1.0	-	1.0	0 1.0	+	-	-			-+		+	1.6S(b)(c
			Winter	7004	1.0	1.0 1.	1.0		-	1.0			+	1.0	1.0	-			-	-			-		-			-			-	1.0 1	.0 1.0	1.0		1.0		1.0	0 1.0			-	-			-		1.65(b)(c
				7005	1.0	1.0 1.0) 1.0			1.0					1.0																	1.0 1	.0 1.0	1	.0 1.0			1.0	0 1.0									1.6S(b)(c
				7006	1.0	1.0 1.) 1.0		-	1.0			-	_	1.0	_		-	-	-			-		-		-	-	-		-	1.0 1	.0 1.0	1.0	_	1.0		1.0	0 1.0		_	_	-			_		1.6S(b)(c)
		GDCS	Summer	7007	1.0	1.0 1.) 1.0		-	1.0			-	-		-	-	-	-	1.0)	-	-		-	-	-	-	-	-	-	1.0 1	.0 1.0	1.0	0 10		-	1.0	0 1.0		-	-	-	-	-	-		1.6S(b)(c)
		Condition	12	7008	1.0	1.0 1.0	1.0		-	1.0			-	-				-	-	1.0	3		-		-		-	-			-	1.0 1	0 1.0	1.0	.0 1.0	1.0		1.0	0 1.0		-	-	-				+	1.6S(b)(c
			Winter	7010	1.0	1.0 1.) 1.0			1.0			-	-		-			-		1.0				-		-	-			-	1.0 1	.0 1.0	1.0	-	1.0		1.0	0 1.0		-	-	-		-		++	1.65(b)(c
				7011	1.0	1.0 1.) 1.0			1.0											1.0											1.0 1	.0 1.0	1	.0 1.0			1.0	0 1.0									1.6S(b)(c
				7012	1.0	1.0 1.0	0 1.0		-	1.0	-		-	_		_		-	-	-	1.0		_		_	-	-	-	-		-	1.0 1	.0 1.0	1.0		1.0		1.0	0 1.0							-		1.6S(b)(c
			w/o Temp	7013	1.0	1.0 1.0) 1.0	+-+	-	1.0	-		-		-	-		-	-	-	-	-	-		-	-	-	-			-	1.0 1	.0 1.0	1.0	0 10		-	1.0	0 1.0		-	-	-	-	-		++	1.6S(b)(c)
				7014	1.0	1.0 1.0	1.0	+++	-+	1.0	-		-				+ +	-+	-	+-	-				-	+ +	-	+	+ + -		+	1.0 1	0 1.0	1.0	.0 1.0	1.0	-	1.0	0 1.0	+ +	-	-	-		-		++	1.6S(b)(c)
	6 min. After	GDCS	Summer	7016	1.0	1.0 1.		1.0		1.0	-		+	-		1.0		-	-	+			-					-			-	1.0 1	1.0	1.0	-	1.0	1.0	1.0	0	1.0		-	-			-	++	1.65(b)(c
		Condition	1 Winter	7017	1.0	1.0 1.)	1.0								1.0)																1.0				1.0	1.0	0	1.0					-			1.6S(b)(c
		GDCS	Summer	7018	1.0	1.0 1.)	1.0	_					_								1.0											1.0				1.0	1.0	D	1.0								1.6S(b)(c
		Condition	12 Winter	7019	1.0	1.0 1.	2	1.0	-		-		-	-		-		-	-	-		1	.0		-	-	-	-			-		1.0	-	-		1.0	1.0	0	1.0	-	-	-			-		1.6S(b)(c)
	10 hours After	CDCS	w/o Temp	7020	1.0	1.0 1.0	2	1.0	1.0		-		-	-			10	-			-		-	++		-	-	-			-		1.0	-	-		1.0	1.0	0	1.0	1.0	-			-		+	1.6S(b)(c)
	to nours After	Condition	1 Winter	7021	1.0	1.0 1.0		+ +	1.0	-	+		+	-		-	1.0	1.0	-	+	-		-	++	+	+	-	+			+		1.0	-	-	-	1	0 1.0	0	+ +	1.0	-	-		-	-	+	1.65(b)(c
		GDCS	Summer	7023	1.0	1.0 1.			1.0		-			-		-		-		-			1.0								-		1.0				1	0 1.0	D		1.0						++	1.6S(b)(c
		Condition	2 Winter	7024	1.0	1.0 1.)		1.0															1.0									1.0				1	.0 1.0	0		1.0							1.6S(b)(c
			w/o Temp	7025	1.0	1.0 1.)		1.0		-			_		_																	1.0				1	.0 1.0	0		1.0							1.6S(b)(c)
	72 hours After	GDCS	Summer	7026	1.0	1.0 1.	2	++	-	1.0	-		-				-	- 1	1.0		-				-	-	-			+ +	-	+	1.0		-		1	.0 1.0	0	+ +	1.0	-	-		-	-	+	1.6S(b)(c)
		GDCS	Summer	7027	1.0			+ +	-	1.0	-		-	-				-	1	.0	-	-	-		0		-	-			-		1.0		-		-	0 1.0	0		1.0	-	-		-	-	+	1.6S(b)(c)
		Condition	2 Winter	7029	1.0	1.0 1	í l	+++		1.0	-			-					-				-		1.0)	-	-			-		1.0		-	+ +	1	0 10	0		1.0	-	-		-			1.65(b)(c
			w/o Temp	7030	1.0	1.0 1.)			1.0															-								1.0				1	0 1.0	0		1.0	-	-					1.6S(b)(c
	LOCA &		Summer	7031	1.0	1.0 1.0)			1.0																1.0							1.0				1	.0 1.0	0		1.0							1.6S(b)(c
	LOFCF		Winter	7032	1.0	1.0 1.	2	+	-	1.0	-		-	-		_		-	-	-		_	-		_		1.0				-		1.0				1	.0 1.0	0		1.0	-	_			_		1.6S(b)(c
			Winter	7041	1.0	1.0 1.0	2	+ +	-	1.0	-	-	-	-				-	-	-	-		-		-		1	1.0			-		1.0	-	-		1	.0 1.0	0	+ +	1.0	-	-			-		1.6S(b)(c)
			Winter	7042	1.0	1.0 1.	í l	++		1.0	+		-	-		-		-	-	-			-		-		-	1.0	1.0	-	-		1.0	-			1	0 1.0	0		1.0	+	-		-	-	++	1.6S(b)(c)
			Winter	7043	1.0	1.0 1.				1.0	1							-	-	-					-			-	1.0		-		1.0	-			1	.0 1.0	0		1.0	+	-		-	-		1.6S(b)(c
SPF Loss of FAPCS	NORMAL &		Summer	7033	1.0	1.0 1.)																							1.0			1.0					1.0	0									1.6S(b)(c
cooling function	LOFCF		Winter	7034	1.0	1.0 1.																								1.	.0		1.0					1.0	0									1.6S(b)(c
	HELB in MS 1	funnel	Summer	7035	1.0	1.0 1.	2	+	-	-	1.0		1.0			-	+ +	-	-	-	-		-		-	-	-	-	-	-	-	+		-	-	-	-	-	-	-	-	-	_		-	_		1.6S(b)(c
			Winter W/o Temr	7036	1.0	1.0 1.		+-+	-		1.0		-	.0		-		-	-	-			-		-		-	-		-	-		-	-	-		-	-	-	+ +	-	-	-		-	-	+	1.6S(b)(c)
	HELB in Other	Room	Summer	7037	1.0	1.0 1.		+	-		1.0	1.0	1.0	-			-	-	-	-	-				-		-	-			-				-		-	-	-			-	-		-			1.65(b)(c
	and a sure		Winter	7039	1.0	1.0 1.				-	1	1.0	1	.0														-										-										1.6S(b)(c
1			w/o Temp	7040	1.0	1.0 1.)					1.0																																				1.6S(b)(c

Note Dynamic loads, i.e. seismic loads and hydrodynamic loads are combined according to the SRSS method, as specified in Section 6.3.2 of Reference 2.1.2-m. Opposite signs of stresses due to the hydrodynamic load or combination of hydrodynamic and seismic load to the other loads is considered. In that case, 500 is added to the original LOAD ID. The acceptance criteria are specified in Part 1 of ANSI/AISC N-690-1994-s2 (2004).

For unit load cases which are shaded in the table, the results of stress analysis are based on the RB/FB global FE model which is used in Appendix E of "ESBWR Reactor Building Structural Design Report", Reference 2.1.2-e.

WG3-U71-ERD-S-0004	SH NO.	183
REV. 1	of	543

Table 6.3.2-2 Detail Load Combinations for Steel Structures (Continued)

				Live	Load		Pre	ssure Los	d										Therr	nal Load	1		_							Pipe			Hyd	irodyna	mic Los	d			W	Wind Lo	ad	T	Tom	ado Loa	d	
						I	.OCA				ę		LOC	A (GDC	'S Condi	tion1")		LOCA	(GDCS	Condition	a2 ^{*2})			LOCA	& F	LO	PF FCF		Reac.			LOCA	A		R	leaction	£.								
			Dead Load	nal Operation	ressure (Static)	5 seconds 6 minutes	10 hours	72 hours	a in MS Tunnel	in Other Room	Normal Operatic	After 6 anomale		After 6 minutes	After 10 hours		After 72 hours	After 5 sec.		After 6 minutes	After 10 hours	After 72 hours			After 72 hours (hoth Accident)		SPF LOFCF	(after 72hr.)	Seismic Load	During AP	SRV	ļ	2	CO	H	SRV ** AD	S+AF	CH	N to S	S to N	E to W W to E	N to S	S to N	E to W	W to E Differential Load	nnce Criteria
				Non	Soil F	After After	After	After	TEH	HELB	Summer	Summer	Winter	Winter	Summer	Winter	Winter	Summer	Winter	Winter	Summer Winter	Summer	Winter	Winter	Winter	Winter	Winter Summer	Winter	1.3	JET2	Positive	Froth 1	Froth 2	Fall Back Positive	Positive	. 4	•								Tornado	Accepts
			DIO	OTI	SPO	PLJ PL2	PL3	PI4	PLMS	HTOH	TLS0	ILSI	IMTL	TLW2	TLS3	TLW3	TLW4	TLS5	TLW5	9MTL	TLW7	TLS8	TLW8 TSS8	TSW8	TWCI	TWC2	TWC4 TSS0	TSW0	KSO	JET2	ISOH	HLPS HLP2	HLP3	HLOI	HLCI	SRN	COL	CHL	NOW	WOS	WOW	NTW	WTS	WTE	QTW WIW	
STEEL-S8	LOCA (LOCA+SSE)		-		-	_	-		-		-			-			-		-		-			-		-			-	-				-	+		-		_	_	+	-		_	-	
	5 sec. After GDCS	Summer	8001 1.0	0 1.0	1.0	1.0		1	.0			1.0																	1.0 1	.0 1.0	1.0	.0				1.0 1.	.0									1.7S(b)
	Conditio	nl	8002 1.0	0 1.0	1.0	1.0		1	.0			1.0				-			_										1.0 1	.0 1.0	1.0	1.0	1.0			1.0 1.	.0			_	\square					1.7S(b)
			8003 1.0	0 1.0	1.0	1.0	-	1	.0			1.0		-		-	-		-		-		_	-		-			1.0 1	.0 1.0	1.0	.0	1	.0	+ +	1.0 1.	.0	+ +		_					_	1.7S(b)
		Winter	8004 1.0	0 1.0	1.0	1.0	-	1	.0		-		1.0	-	+ +	-	-	+ +		+ +		+		-				+	1.0 1	.0 1.0	1.0	0.0	10	-	+-+	1.0 1.	.0	+++	-	-	+	+			-	1.7S(b)
			8005 1.0	1.0	1.0	1.0	-	1	0	-	-	-	1.0	-		-			-					-		-			1.0 1	0 1.0	1.0	1.0	1.0	0	+ +	1.0 1.	0	+++		_	+ - 1	+		-	-	1.7S(b)
	CDCS	Summar	8000 1.0	1.0	1.0	1.0	-	1	0		-		1.0	-	+ +		-	1.0	-	+ +		+		-		-			1.0 1	0 1.0	1.0	0	1.	.0	+-+	1.0 1.	0	+++	-+-		+	+ -		-		1.75(b)
	Conditio	n2	8008 1.0	1.0	1.0	1.0	+	1	0				-	-			-	1.0	-		-		-						1.0 1	.0 1.0	1.0	1.0	1.0	+	+-+	1.0 1	.0	-	-		+ 1				-	1.75(b)
			8009 1.0	1.0	1.0	1.0	-	1	.0					-				1.0											1.0 1	.0 1.0	1.0	.0	1.	.0	-	1.0 1.	.0		_	_	+ +					1.7S(b)
		Winter	8010 1.0	0 1.0	1.0	1.0		1	.0									1	.0										1.0 1	.0 1.0	1.0	.0				1.0 1.	.0									1.7S(b)
			8011 1.0	0 1.0	1.0	1.0		1	.0									1	.0										1.0 1	.0 1.0	1.0	1.0	1.0			1.0 1.	.0									1.7S(b)
			8012 1.0) 1.0	1.0	1.0	-	1	.0		_	-	_	_		_	-	1	.0		-	+	_			_			1.0 1	.0 1.0	1.0	.0	1.	.0	+	1.0 1.	.0		_	_	+			_	-	1.7S(b)
		w/o Temp	8013 1.0	0 1.0	1.0	1.0	-	1	.0	-	-	-	-	-	+ +	-	-		-	+ +		+	_	-		-			1.0 1	.0 1.0	1.0	0.0		-	+ +	1.0 1.4	.0	+-+	-	-	+	+		-	-	1.7S(b)
		-	8014 1.0	0 1.0	1.0	1.0	-	1	0		-	-		-		-	-		-		-		-	-					1.0 1	0 1.0	1.0	1.0	1.0	0	+-+	1.0 1.0	.0	++	-		+	+			-	1.7S(b)
	Carlin After CDCP	Cummon or	8101 1.0	1.0	1.0	1.0		1	0		-	-	- 1	0	+ +	-				+ +		+		-					1.0 1	.0 1.0	1.0	.0	1.	11	+	1.0 1.0	1.0	++	-	-	+	+				1.75(b)
	o min. Atter ODC3	al Winter	8102 1.0	1.0	1.0	1	0	+ +	-		-	-		10		-	-		-		-		-	-		-			1.0	-	1.0	-		1.0	1	1.0	1.0		-	-	+ - 1	1		-	-	1.75(b)
	GDCS	Summer	8103 1.0	1.0	1.0	1.	0		-				-	1.0			-		1.0		-		-	-					1.0	-	1.0	-		1.0	1	1.0	1.0		-		+ - 1			_		1.75(b)
	Conditio	n2 Winter	8104 1.0) 1.0	1.0	12	0		-										-	1.0									1.0	-	1.0			1.0	,	1.0	1.0		-	_	+ 1			_		1.7S(b)
		w/o Temp	8105 1.0	0 1.0	1.0	1.0	0																						1.0		1.0			1.0	,	1.0	1.0									1.7S(b)
	10 hours After GDCS	Summer	8106 1.0	0 1.0	1.0		1.0	4							1.0														1.0		1.0				1.0	1.0		1.0								1.7S(b)
	Conditio	n1 Winter	8107 1.0	0 1.0	1.0		1.0	5								1.0													1.0		1.0				1.0	1.0		1.0								1.7S(b)
	GDCS	Summer	8108 1.0	0 1.0	1.0	_	1.0	-	-			-		-			-		-		1.0		-						1.0	-	1.0	-		-	1.0	1.0	_	1.0	_	_		-		_	-	1.7S(b)
	Conditio	n2 Winter	8109 1.0	0 1.0	1.0	_	1.0	-	_		-	-	-	-			-			+ +	1.0	+	-	-		_			1.0	-	1.0	_		-	1.0	1.0		1.0	-	_	+	+		_		1.7S(b)
	841 18 GDG6	w/o Temp	8110 1.0	0 1.0	1.0		1.0	10	-		-		-	-	-	-	0		-		-					-			1.0	-	1.0	-		-	1.0	1.0		1.0	-		+	+			-	1.7S(b)
	12 nours After GDCS	summer Ninter	8112 1.0	1.0	1.0		-	1.0	-	++	-	-		-	+ +	1	.0	+	-	+ +		+	-	-					1.0	-	1.0	-		+	1.0	1.0	+-	1.0	-+-	+	+ -	+	+ +	+	-	1.75(b)
	GDCS	Summer	8113 1.0	1.0	1.0		-	1.0	-		-	-	-	-			1.0		-		-	1.0	-						1.0	-	1.0			-	1.0	1.0	+	1.0	-	+	+ -	+		+	-	1.7S(b)
	Conditio	n2 Winter	8114 1.0	1.0	1.0			1.0					-									1	1.0						1.0		1.0			-	1.0	1.0	-	1.0								1.7S(b)
		w/o Temp	8115 1.0	0 1.0	1.0			1.0																					1.0		1.0				1.0	1.0		1.0								1.7S(b)
	LOCA &	Summer	8116 1.0	0 1.0	1.0			1.0										· · · ·					1.0	0		_			1.0		1.0				1.0	1.0		1.0								1.7S(b)
	LOFCF	Winter	8117 1.0	0 1.0	1.0	_	-	1.0			_			_		_	_							1.0					1.0	_	1.0	_		_	1.0	1.0	_	1.0	_	_	+				_	1.7S(b)
		Winter	8126 1.0	1.0	1.0	_	-	1.0	-		_		_	-		_	_		-		_		_		1.0	-			1.0	-	1.0	-		_	1.0	1.0	_	1.0	-	_	+ 1			_	-	1.7S(b)
		Winter	8127 1.0	0 1.0	1.0	_	-	1.0	-		-	-		-	+ +	-	-		-			+		-		.0		-	1.0	-	1.0			-	1.0	1.0	_	1.0	-		+	+		-	-	1.7S(b)
		Winter	8128 1.0	1.0	1.0		-	1.0	-		-	-			+ +		-				-	+		-		1.0	1.0		1.0	-	1.0			+	1.0	1.0		1.0		-	+ -	+			-	1.7S(b)
SDE Loss of EAD/20	NORMAL &	Summer	8118 1.0	1.0	1.0	+	+	1.0	-				-	-		-	-		-								1.0		1.0	-	1.0	-		+	1.0	1.0	+-	1.0	-		+ +	+		+	-	1.75(b)
cooling function	LOFCE	Winter	8119 1.0	1.0	1.0	-	-	+ +	-		-					-	-		-				-				1.0	1.0	1.0		1.0	-		-	+ +	1.0	-	-		-	+ 1	1		-		1.75(b)
	HELB in MS Tunnel	Summer	8120 1.0	1.0	1.0			++	1.0		1.0		-						-										1.0						1				-	-	17					1.75(b)
		Winter	8121 1.0	1.0	1.0		-		1.0		1	.0																	1.0							_				_	1			_		1.7S(b)
		w/o Temp	8122 1.0) 1.0	1.0				1.0																				1.0																	1.7S(b)
	HELB in Other Room	Summer	8123 1.0	1.0	1.0					1.0	1.0																		1.0					_		_								_		1.7S(b)
		Winter	8124 1.0) 1.0	1.0	_				1.0	1	.0					-		_		_					-			1.0					_		_	_	+-+	_	_					_	1.7S(b)
		w/o Temp	8125 1.0	1.0	1.0					1.0																			1.0															_		1.7S(b)

Note Dynamic loads, i.e. seismic loads and hydrodynamic loads are combined according to the SRSS method, as specified in Section 6.3.2 of Reference 2.1.2-m. Opposite signs of stresses due to the hydrodynamic load or combination of hydrodynamic and seismic load to the other loads is considered. In that case, 500 is added to the original LOAD ID. The acceptance criteria are specified in Part 1 of ANSI/AISC N-690-1994-s2 (2004). For unit load cases which are shaded in the table, the results of stress analysis are based on the RB/FB global FE model which is used in Appendix E of "ESBWR Reactor Building Structural Design Report", Reference 2.1.2-e.

WG3-U71-ERD-S-0004	SH NO.	184
REV. 1	of	543

Table 6.3.3-1Combined Forces and Moments, 1.05D + 1.3L +1.3To + 1.3W: Winter
- Load ID = 4021 (Selected Load Combination RB-4)

Location	Element		Nx	Ny	N _{xy}	M×	My	M _{×y}	Qx	Qy
	ID		(MN/m)	(MN/m)	(MN/m)	(MNm/m)	(MNm/m)	(MNm/m)	(MN/m)	(MN/m)
18 Wall	6	OTHR	-1.555	-7.620	-0.224	-0.205	-1.498	-0.004	-0.001	-0.347
Below RCCV		TEMP	1.628	-0.267		0.099	1.178	-0.043	0.016	0.044
Bottom	13	OTHR	-1.519	-5.859	-0.062	-0.552	-2.918	0.007	0.004	-0.807
		TEMP	0.500	3.267	-0.851	0.466	2.640	-0.003	0.023	0.576
	24	OTHR	-1.096	-6.372	-0.195	-0.617	-3.726	0.000	0.001	-1.250
		TEMP	0.791	-3.390	0.142	0.480	2.679	-0.006	-0.001	0.596
19 Wall	806	OTHR	-1.572	-6.384	-0.155	-0.008	-0.036	-0.031	-0.016	-0.096
Below RCCV		TEMP	1.438	-1.233	0.113	0.162	1.001	0.089	-0.059	0.052
Mid-Height	813	OTHR	-2.080	-5.697	0.108	-0.040	0.060	-0.009	-0.005	-0.081
		TEMP	0.801	-3.203	-0.655	0.112	1.009	-0.029	0.009	0.603
	824	OTHR	-2.360	-6.305	-0.077	0.117	0.440	0.012	-0.001	0.098
		TEMP	0.618	-3.509	0.100	0.129	1.019	0.019	0.011	0.540
20 Wall	1606	OTHR	-1.035	-5.717	0.046	0.046	0.276	0.030	0.007	-0.193
Below RCCV		TEMP	9.010	-2.016	0.181	-0.500	-2.273	0.101	0.089	1.713
Top	1613	OTHR	-1.243	-5.474	0.243	0.019	0.266	-0.001	-0.002	-0.194
		TEMP	8.724	-3.628	-0.531	-0.636	-3.693	-0.004	-0.014	2.219
	1624	OTHR	-0.831	-5.849	-0.015	-0.014	-0.180	0.005	-0.008	-0.001
		TEMP	9.355	-4.562	-0.137	-0.712	-3.632	-0.005	-0.066	2.268
21 Exterior Wall	20011	OTHR	-2 257	-3.859	-0.805	0.097	0.687	0.010	0.046	0 224
@ FI -11.50		TEMP	3,715	3.601	0.919	0.284	1,218	0.038	-0.186	0.357
~-10.50m	20023	OTHR	-1.511	-1 525	-0 594	-0.014	-0.246	0.000	-0.030	-0 138
10.00	20020	TEMP	-1.892	-1 622	2 144	2.538	5.046	0.020	0.376	0.100
	30010	OTHR	-1.682	-2 499	-0.260	-0.334	-1 774	0.015	0.002	1 170
	00010	TEMP	0.175	2 955	-0 157	1 319	4 158	-0.022	-0.030	-0 727
	30020	OTHR	-1 290	-1 608	-0.209	-0.698	-0.860	0.022	-0.000	0.721
	00020	TEMP	-0 154	-1 324	-0.285	0.000	1 409	0.024	-0.039	-0.357
	40001	OTHR	-1 000	-1 845	0.312	-0.424	-1 299	-0.264	0.000	0.007
	10001	TEMP	-0.205	-0.878	-0.095	0.220	1.200	_0 094	0.102	-0.398
	40011	OTHR	-1 645	-3 401	-0.032	-0.398	-2 279	-0.004	0.007	2 059
	40011	TEMP	1.019	3 116	0.054	1 305	4 252	0.004	0.007	-0.766
22 Exterior Wall	22011	OTHR	-0.236	-3 251	0 764	-0.005	0.072	0.000	-0.024	0.116
@ FI 4 65		TEMP	2 586	3.076	_0.119	-0.000	-0.086	0.012	0.024	0.110
~6.60m	22023		-0.106	-1 773	0.013	0.005	0.000	-0.065	0.020	0.147
	22020	TEMP	2 357	-5 300	-2.630	-0.374	0.010	-0.003	0.073	0.020
	32010		_0.379	-2 004	-0.001	-0.074	-0.083	0.000	0.022	0.040
	02010	TEMP	16.055	7 706	0.001	3 506	-0.000	0.000	0.001	-0.226
	32020	OTHR	-0.049	-1 922	0.010	-0.000	-0.200	-0.000	-0.000	0.220
	02020	TEMP	0.0404	5 236	2 974	-0.033	-0.070	-0.510	0.040	0.013
	42001		0.404	-2.008	2.974	0.096	-2.575	-0.309	0.930	0.054
	42001	TEMD	2.025	2 711	-0.024	-0.000	-0.111	0.050	0.000	0.004
	42011		2.925	2 726	0.052	-0.950	-2.140	-0.003	-0.000	-0.349
	42011		12.076	-2.720	-0.032	-0.035	-0.105	0.003	0.000	0.021
22 Extorior Moll	24211		0.104	5.109	0.062	-3.033	-3.190	0.101	0.088	-0.115
	24211		2 606	-1.901	0.107	-0.076		0.006		-0.059
<u>(</u> () ⊂L22.50	24224		0.027	2.04/	-0.480	-0.016	0.049	0.013	-0.150	2.136
~24.000	24224	TEMP	-0.02/	-1.1/4	4 202	0.059	-0.042	-0.043	-0.084	-0.025
	24040		0.155	4.828	-4.303	0.833	-0.313	-0.715	-0.808	-0.293
	34210		-0.021	-0.895	0.012	-0.008	-0.094	0.000	0.005	-0.008
	24000		17.402	5.781	-0.557	-3.633	-3.490	0.035	-0.012	-0.199
	34220		0.032	-0.921	-0.1/9	0.038	-0.038	-0.002	0.044	0.003
	14001		2.056	4.894	2.979	0.866	-2.104	-0.558	1.943	0.152
	44201		0.032	-1.089	-0.329	0.043	-0.016	0.013	-0.037	-0.002
	1	TEMP	1.125	5.799	-0.132	0.393	-2.344	0.550	-2.362	0.138

OTHR: Loads other than thermal loads

TEMP: Thermal loads

WG3-U71-ERD-S-0004	SH NO.	185
REV. 1	of	543

Table 6.3.3-1Combined Forces and Moments, 1.05D + 1.3L +1.3To + 1.3W: Winter- Load ID = 4021(Selected Load Combination RB-4) (Continued)

Location	ElementID		N _x	N _y	N _{xy}	M _x	M _y	M _{xy}		
04 Decement	001.00	OTUD								(10110/11)
24 Basemat	90140	TEMP	-4.095	-3.414	-0.095	-2.222	-1.166	2.690	-2.138	1.910
	00400		1.347	1.833	1.711	1.409	0.026	-1.327	-0.000	-0,175
Below RCCV	90182	OTHR	-3.752	-3.255	-0.030	0.473	-2.581	-0.113_	0.016	0.552
		TEMP	1.856	0.556	0.778	-0.094		0.225	-0.199	3.084
	90111	OTHR	-5.052	-3.312	0.003	-3.377	0.353	0.368	0.113	0.137
		TEMP	0.687	3.065	-0.002	-4.393	-0.535	0.044	3.217	0.151
25 Slab	93140	OTHR	-0.520	-0.085	0.156	0.052	0.082	-0.059	0.132	-0.109
EL4.65m		TEMP	-0.966	2.070	3.424	-0.522	-0.407	0.286	-0.137	0.110
@ RCCV	93182	OTHR	-0.133	-0.246	0.040	0.006	-0.004	0.002	-0.003	-0.048
		TEMP	3.050	-3.501	-1.013	-0.380	-1.928	-0.084	0.079	1.425
	93111	OTHR	-0.316	0.069	0.027	-0.071	-0.008	-0.004	0.014	-0.005
		TEMP	-3.104	3.895	-0.106	-1.892	-0.348	-0.048	1.246	0.002
26 Slah	96144	OTHR	-0.078	0.206	0 205	0.053	0.072	-0.058	0 128	-0.102
FI 17 5m		TEMP	0.070	3 471	3 892	-0 198	-0 171	0.000	-0.037	0.056
@ PCCV	06186		0.001	-0.067	0.002	0.100	0.045	0.100	0.007	0.000
(UNCOV	30100		2 507	2 461	1 416	-0.010	-0.045	-0.003	-0.002	-0.000
	00147		3.007	-2.401	-1.410	-0.131	-0.025	-0.042	0.023	0.003
	90113		-0.064	0.035	-0.010	-0.272	-0.009	-0.014	0.299	0.036
07 01 /	00.170		-5.649	-4.999	-0.952	-4.725	-3.463	-0.182	0.955	-0.039
27 Slab	98472	OTHR	0.464	0.091	0.124	0.299	0.497	-0.438	0.356	-0.413
EL27.0m		TEMP	-0.639	-1.108	5.881	-0.552	-0.184	-0.203	0.423	-0.561
@ RCCV	98514	OTHR	0.177	0.148	0.064	0.038	0.161	0.037	-0.021	-0.121
		TEMP	-0.797	-3.095	-1.347	-0.660	-0.340	-0.068	0.061	-0.222
	98424	OTHR	-0.093	0.490	-0.018	1.885	0.435	0.004	-1.193	-0.093
		TEMP	-11.294	-12.507	-1.614	0.502	-0.662	0.174	-6.706	-0.088
28 Pool Girder	123054	OTHR	0.377	-2.454	-0.818	0.047	0.043	0.046	-0.012	-0.023
@ Storage Pool		TEMP	0.751	-3.964	1.802	2.885	2.797	0.041	-0.399	0.710
	123154	OTHR	1.194	-0.523	-0.642	0.066	0.029	0.090	0.007	0.013
		TEMP	1.146	0.864	-0.343	2.404	1.445	-0.430	-0.139	0.303
29 Pool Girder	123062	OTHR	0.383	0.570	0.295	-0.046	-0.224	0.023	0.020	-0.116
@ Cavity		TEMP	-3.702	-0.209	-0.675	0.125	0.180	0.046	-0.120	0.099
e sam,	123162	OTHR	-1 514	0 197	0 148	-0.075	-0.052	0.013	0.086	0.028
	nuo i on	TEMP	-3 313	-0.169	-0.673	0.070	-0.259	0.073	-0.235	0.126
30 Pool Girder	123067	OTHR	0.010	-2 151	1 550	0.0019	-0.044	-0.067	-0.103	-0.051
@ Fuel Pool	120001	TEMP	-3.957	-6 147	-2 164	0.010	0.523	0.001	-0.149	0.671
	123167		0.462	-0.540	1 350	0.037	0.020	0.005	-0.143	0.071
	125107		2 607	-0.048	0.757	0.007	0.024	0.015	-0.027	0.009
	450400		-3.087	-3.040	-2.757	0.227	-0.060	-0.290	0.028	0.199
	150122		-0.024	0.022	0.303	0.026	0.001	0.018	-0.011	-0.041
vvali and Slab		TEMP	0.347	-0.696	2.372	1.402	4.093	-0.043	-0.760	0.539
	96611	OTHR	-0.010	0.302	-0.014	0.078	-0.047	-0.051	-0.081	0.016
		TEMP	-0.316	3.589	-0.223	-1.462	-8.773	-0.478	0.477	0.241
	98614	OTHR	-0.024	-0.150	-0.021	0.012	-0.568	-0.070	-0.057	0.033
		TEMP	-0.229	2.949	-0.177	-0.935	-13.249	0.048	0.556	0.370
32 IC/PCCS	125051	OTHR	-0.110	-1.373	-0.942	0.003	-0.060	-0.003	0.003	-0.045
Pool Wall		TEMP	-0.586	-0.850	-0.349	-0.001	-0.006	0.000	-0.011	-0.008
in NS Dir.	125151	OTHR	-0.131	-0.564	-0.768	-0.001	-0.008	-0.005	0.010	-0.002
		TEMP	-0.609	-0.738	0.611	0.033	0.071	0.015	-0.023	-0.067
	125055	OTHR	0.037	-0.215	-0.098	-0.019	-0.110	0.003	-0.038	-0.073
		TEMP	-1.342	0.274	0.019	0.007	0.033	0.002	0.014	0.013
	125155	OTHR	-0.573	-0.143	-0.083	0.007	0.030	0.006	0.035	-0.040
		TEMP	-1.754	-0.185	-0.039	0.003	0.036	-0.006	-0.076	0.004

OTHR: Loads other than thermal loads

TEMP: Thermal loads

WG3-U71-ERD-S-0004	SH NO.	186
REV. 1	of	543

Table 6.3.3-2Combined Forces and Moments, LOCA After 6 minutes (1.5Pa): Winter- Load ID = 6241 (Selected Load Combination RB-8a)

Location	Element		N _x	N _y (MN/m)	N _{xy}	M _x	M _y (MNm/m)	M _{xy} (MNm/m)	Q _x (MN/m)	Q _y (MN/m)
18 \Mall		ОТНО	1 521	6.036	0.265			-0.006	0.004	0.084
Below RCCV	0	TEMP	1 177	-0.030	-0.200	0.004	1.063	-0.040	0.004	0.004
Bottom	1	HYDR	1 039	2 403	0.505	0.101	1.689	0.040	0.024	0.592
Bottom	13	OTHR	-1.430	-4 578	-0.000	-0.268	-1.316	0.006	-0.005	-0.330
		TEMP	0.307	-3.027	-0.689	0.200	2 284	-0.002	0.000	0.475
		HYDR	0.829	2 427	0.515	0.223	1.312	0.006	0.011	0.454
	24	OTHR	-1 296	-4 993	-0 152	-0.307	-1 874	-0.002	0 003	-0.643
		TEMP	0.412	-3.041	0.146	0.425	2,350	-0.005	-0.002	0.516
	ļ	HYDR	0.902	2.658	0.484	0.159	1.002	0.005	0.010	0.355
19 Wall	806	OTHR	-1.092	-4.839	-0.223	0.011	0.064	-0.020	-0.014	-0.067
Below RCCV		TEMP	1.601	-1.332	0.182	0.235	1.292	0.083	-0.053	-0.063
Mid-Height		HYDR	0.305	2.384	0.674	0.023	0.125	0.031	0.004	0.037
5	813	OTHR	-1.485	-4.535	0.144	-0.014	0.141	-0.005	0.004	-0.025
	:	TEMP	1.036	-2.990	-0.508	0.175	1.290	-0.027	0.006	0.450
		HYDR	0.236	2.472	0.691	0.032	0.124	0.010	0.003	0.108
	824	OTHR	-1.775	-4.863	-0.047	0.110	0.418	0.009	-0.001	0.110
		TEMP	0.890	-3.046	0.126	0.176	1.306	0.019	0.010	0.396
		HYDR	0.259	2.709	0.633	0.018	0.131	0.014	0.002	0.067
20 Wall	1606	OTHR	-0.023	-4.224	-0.099	-0.225	-1.309	0.024	0.005	0.305
Below RCCV		TEMP	11.606	-2.042	0.301	-0.668	-3.250	0.099	0.085	2.306
Тор		HYDR	0.777	2.430	0.657	0.469	2.639	0.013	0.006	0.763
	1613	OTHR	-0.217	-4.477	0.242	-0.252	-1.315	-0.003	-0.003	0.330
		TEMP	11.229	-3.474	-0.425	-0.785	-4.386	-0.008	<u>-0.</u> 014	2.714
		HYDR	0.778	2.470	0.668	0.471	2.727	0.006	0.008	0.829
	1624	OTHR	0.186	-4.393	-0.005	-0.288	-1.754	0.006	-0.007	0.512
		TEMP	12.187	-3.970	-0.124	0.867_	-4.480	-0.001	-0.082	2.817
		HYDR	0.851	2.674	0.650	0.462	2.630	0.005	0.011	0.811
21 Exterior Wall	20011	OTHR	-1.793	-3.331	-0.710	0.177	0.937	0.018	0.035	0.302
@ EL-11.50		TEMP	3.023	3.384	0.790	0.274	1.136	0.041	-0.173	0.330
~-10.50m		HYDR	0.191	0.270	0.760	0.386	1.573	0.014	0.039	0.580
	20023	OTHR	-1.159		-0.600	-0.018	-0.238	0.012	-0.055	-0.136
			-1.459	-1.215	1.590	1.936	3.930	0.184	0.310	0.647
	00040	HYDR	0.020	0.657	0.152	0.101	0.146	0.015	0.119	0.091
	30010		-1.167	-2.337	-0.175	-0.186	-1.046	0.008	0.001	0.845
			0.421	2.641	-0.135	1.081	3.585	-0.018	-0.024	-0.601
	20020		0.580	0.260	0.326	0.183	0.969	0.003	0.007	0.246
	30020		-0.954	-1.071	-0.234	-0.552	-0.778	0.022	-0.148	0.330
			-0.090	-1.196	-0.238	0.081	1.104	0.123	-0.022	-0.270
	40004		0.044	0.862	0.222	0.037	0.180	0.008	0.062	0.050
	40001		-0./55	-1.833	0.384	-0.336	-1.076	-0.200	0.009	0.020
	Į		-0.154	-0.031	0.014	0.123	1.23/	-0.081	0.005	-0.310
	40011		1.077	0.888	0.191	0.062	0.164		0.065	0.045
1	40011		-1.3//	-3.029	-0.028	-0.224	-1.384		0.005	1.010
			0.800	2./00	0.206	0.121	0.600		0.012	-0.038
			0.433	0.497	0.360	<u> </u>	0.026	0.007	0.011	0.150

OTHR: Loads other than thermal and hydrodynamic loads

TEMP: Thermal loads

HYDR: Hydrodynamic loads

WG3-U71-ERD-S-0004	SH NO.	187
REV. 1	of	543

Table 6.3.3-2Combined Forces and Moments, LOCA After 6 minutes (1.5Pa): Winter- Load ID = 6241 (Selected Load Combination RB-8a) (Continued)

F		r				<u> </u>					
	Location	Element		N _x	Ny	N _{xy}	M _x	My (MN/state)	M _{xy}		Qy
			OTUD								
	22 Exterior Wall	22011		0.233	-2./32	0.623	-0.004	0.111	0.013	-0.025	0.153
ıl	(U) EL4.05			3.5//	2.789	-0.075	-0.128	-0.161	0.049	0.032	-0.031
1	~6.6UM			0.300	1.068	0.853	0.018	0.123	0.027	0.004	0.227
		22023		-0.054	-1.629	-0.050	0.085	0.042	-0.074	0.042	0.009
		1		1.984	-3.558	-1.991	0.092	0.423	-0.047	0.570	0.405
	1		HYUR	0.070	0.603	0.422	0.133	0.046	0.037	0.042	0.015
		32010	OTHR	0.199	-1.913	0.031	-0.019	0.017	0.007	0.000	-0.098
]	TEMP	14.408	6.124	0.009	-2.798	-2.759	0.004	-0.008	0.040
			HYDR	0.358	0.431	0.446	0.022	0.052	0.005	0.001	0.137
		32020	OTHR	0.002	-1.891	0.248	0.000	-0.029	-0.053	0.009	0.028
			TEMP	0.445	4.720	2.524	-0.285	-1.833	-0.377	0.922	0.167
			HYDR	0.038	0.558	0.293	0.087	0.009	0.016	0.066	0.007
		42001	OTHR	-0.001	-1.929	0.128	0.025	-0.061	0.059	-0.008	0.049
			TEMP	2.451	3.607	2.534	-0.371	-1.611	-0.058	-0.794	-0.254
			HYDR	0.066	0.583	0.32 <u>6</u>	0.112	0.010	0.011	0.045	0.003
		42011	OTHR	-0.116	-2.159	-0.033	-0.040	-0.091	-0.005	0.004	-0.065
			TEMP	12.432	4.405	0.143	-2.975	-2.774	0.081	0.081	0.172
			HYDR	0.217	0.756	0.529	0.042	0.042	0.012	0.006	0.127
	23 Exterior Wall	24211	OTHR	0.317	-1.469	0.076	0.003	-0.055	0.014	0.005	-0.279
	@ EL22.50		TEMP	4.177	2.901	-0.313	0.092	0.628	0.014	-0.122	1.431
	~24.60m		HYDR	0.203	0.688	0.418	0.044	0.187	0.021	0.003	0.217
1		24224	OTHR	-0.020	-1.497	0.118	0.023	-0.001	-0.012	-0.029	-0.015
			TEMP	0.340	4.642	-3.562	0.871	-0.344	-0.446	-0.824	-0.417
			HYDR	0.034	0.693	0.342	0.139	0.094	0.035	0.068	0.098
		34210	OTHR	0.546	-0.794	0.075	0.009	0.154	0.000	0.002	0.057
			TEMP	15.323	4.794	-0.317	-2.778	-2.409	0.015	-0.011	0.104
			HYDR	0.297	0.145	0.251	0.021	0.109	0.013	0.002	0.057
		34220	OTHR	0.067	-1.342	0.038	0.047	0.025	0.003	0.031	-0.003
			TEMP	1.721	4.437	2.297	0.980	-1.464	-0.240	1.609	0.013
			HYDR	0.041	0.329	0.143	0.053	0.021	0.025	0.034	0.010
		44201	OTHR	0.025	-1.389	-0.008	0.054	0.026	0.000	-0.031	-0.008
			TEMP	1.001	5.209	0.300	0.668	-1.698	0.337	-1.911	0.044
			HYDR	0.037	0.398	0.239	0.049	0.008	0.005	0.035	0.006
[24 Basemat	90140	OTHR	-3.158	-2.605	0.271	-0.751	-0.162	1.124	-1.864	1.611
1	@ Wall		TEMP	1.052	1.448	1.374	0.756	-0.217	-0.971	-0.682	-0.069
	Below RCCV		HYDR	0.719	0.518	0.569	1.410	0.998	0.310	1.000	1.030
		90182	OTHR	-2.231	-2.517	-0.056	0.089	-0.479	0.032	0.038	0.397
			TEMP	1.619	0.481	0.610	-0.246	-3.861	0.184	-0.141	2.769
			HYDR	1.338	0.255	0.263	0.800	0.527	0.217	0.279	1.123
		90111	OTHR	-3.896	-2.337	-0.038	-1.104	0.070	-0.145	0.097	0.111
			TEMP	0.567	2.209	-0.001	-4.129	-0.522	0.050	2.860	0.127
			HYDR	0.202	1.158	0.073	0.385	0.640	0.171	1.039	0.271
1	25 Slab	93140	OTHR	-0.327	0.109	0.281	0.113	0.123	-0.102	0.131	-0.111
	EL.4.65m		TEMP	-0.669	2.312	4.286	-0.515	-0.395	0.287	-0.135	0.111
	@ RCCV		HYDR	0.264	0.274	0.326	0.053	0.039	0.052	0.015	0.018
	-	93182	OTHR	0.222	-0.127	0.018	0.008	0.093	0.007	-0.004	-0.047
1	Ì		TEMP	4.229	-4.036	-1.098	-0.354	-1.829	-0.083	0.075	1.370
1		į į	HYDR	0.401	0.097	0.114	0.036	0.061	0.006	0.007	0.153
		93111	OTHR	-0.166	0.331	-0.030	0.044	-0.003	-0.001	-0.008	-0.006
			TEMP	-3.602	4.956	-0.257	-1.768	-0.316	-0.047	1.178	0.000
			HYDR	0.096	0.435	0.096	0.019	0.029	0.003	0.093	0.003

OTHR: Loads other than thermal and hydrodynamic loads

TEMP: Thermal loads

HYDR: Hydrodynamic loads

WG3-U71-ERD-S-0004	SH NO.	188
REV. 1	of	543_

Table 6.3.3-2Combined Forces and Moments, LOCA After 6 minutes (1.5Pa): Winter- Load ID = 6241 (Selected Load Combination RB-8a) (Continued)

26 Slab 96144 OTHR 0.038 0.622 0.776 0.149 0.1151 0.1171 0.1401 0.0131 0.0131 0.0131 0.0131 0.0131 0.0131 0.0131 0.0131 0.0131 0.0117 0.140 0.0122 0.0117 0.140 0.0122 0.0117 0.140 0.0123 0.023 0.023 0.023 0.023 0.021 0.038 0.029 0.338 0.099 0.082 0.050 0.019 0.021 96186 OTHR 0.995 -0.423 -0.105 0.012 0.106 0.001 -0.005 -0.121 TEMP 6.688 -4.125 -1.418 -0.091 -0.316 -0.048 0.016 0.347 HYDR 0.259 0.142 0.173 0.049 0.232 0.009 0.011 0.187 96113 OTHR -0.527 1.550 -0.152 0.289 0.072 -0.007 -0.064 0.008 EL27.0m HYDR 0.076 0.484
EL17.5m @ RCCV TEMP -0.269 4.712 6.965 -0.230 -0.125 0.167 -0.073 0.023 96186 OTHR 0.995 -0.423 -0.105 0.012 0.106 0.001 -0.005 -0.121 96186 OTHR 0.995 -0.423 -0.105 0.012 0.106 0.001 -0.005 -0.121 TEMP 6.688 -4.125 -1.418 -0.091 -0.316 -0.048 0.016 0.347 HYDR 0.259 0.142 0.173 0.049 0.232 0.009 0.011 0.187 96113 OTHR -0.527 1.550 -0.152 0.289 0.072 -0.007 -0.064 0.008 TEMP -8.342 2.574 -1.682 -4.481 -2.783 -0.199 1.240 -0.059 HYDR 0.076 0.484 0.282 0.349 0.083 0.012 0.268 0.029 27 Slab 98472 OTHR 0.594 0.
Image: Constraint of the second sec
96186 OTHR 0.995 -0.423 -0.105 0.012 0.106 0.001 -0.005 -0.121 TEMP 6.688 -4.125 -1.418 -0.091 -0.316 -0.048 0.016 0.347 HYDR 0.259 0.142 0.173 0.049 0.232 0.009 0.011 0.187 96113 OTHR -0.527 1.550 -0.152 0.289 0.072 -0.007 -0.064 0.008 TEMP -8.342 2.574 -1.682 -4.481 -2.783 -0.199 1.240 -0.059 HYDR 0.076 0.484 0.282 0.349 0.083 0.012 0.268 0.029 27 Slab 98472 OTHR 0.594 0.662 -0.127 0.118 0.163 -0.006 0.324 -0.336 EL27.0m @RCCV TEMP -0.778 -0.772 5.392 -0.313 0.031 -0.311 0.451 -0.561 @RCCV HYDR 0.140
TEMP 6.688 -4.125 -1.418 -0.091 -0.316 -0.048 0.016 0.347 HYDR 0.259 0.142 0.173 0.049 0.232 0.009 0.011 0.187 96113 OTHR -0.527 1.550 -0.152 0.289 0.072 -0.007 -0.064 0.008 TEMP -8.342 2.574 -1.682 -4.481 -2.783 -0.199 1.240 -0.059 HYDR 0.076 0.484 0.282 0.349 0.083 0.012 0.268 0.029 27 Slab 98472 OTHR 0.594 0.662 -0.127 0.118 0.163 -0.006 0.324 -0.336 EL27.0m TEMP -0.778 -0.772 5.392 -0.313 0.031 -0.311 0.451 -0.561 @ RCCV HYDR 0.140 0.069 0.211 0.086 0.112 0.056 0.069 0.071 98514 OTHR 0.367 0.519
HYDR 0.259 0.142 0.173 0.049 0.232 0.009 0.011 0.187 96113 OTHR -0.527 1.550 -0.152 0.289 0.072 -0.007 -0.064 0.008 TEMP -8.342 2.574 -1.682 -4.481 -2.783 -0.199 1.240 -0.059 HYDR 0.076 0.484 0.282 0.349 0.083 0.012 0.268 0.029 27 Slab 98472 OTHR 0.594 0.662 -0.127 0.118 0.163 -0.006 0.324 -0.336 EL27.0m TEMP -0.778 -0.772 5.392 -0.313 0.031 -0.311 0.451 -0.561 @ RCCV HYDR 0.140 0.069 0.211 0.086 0.112 0.056 0.069 0.071 98514 OTHR 0.367 0.519 0.027 -0.024 -0.399 -0.005 -0.007 -0.023 TEMP 0.397 -2.323
96113 OTHR -0.527 1.550 -0.152 0.289 0.072 -0.007 -0.064 0.008 TEMP -8.342 2.574 -1.682 -4.481 -2.783 -0.199 1.240 -0.059 HYDR 0.076 0.484 0.282 0.349 0.083 0.012 0.268 0.029 27 Slab 98472 OTHR 0.594 0.662 -0.127 0.118 0.163 -0.006 0.324 -0.336 EL27.0m TEMP -0.778 -0.772 5.392 -0.313 0.031 -0.311 0.451 -0.561 WCCV HYDR 0.140 0.069 0.211 0.086 0.112 0.056 0.069 0.071 98514 OTHR 0.367 0.519 0.027 -0.024 -0.399 -0.005 -0.007 -0.023 TEMP 0.397 -2.323 -1.289 -0.515 0.047 -0.042 0.045 -0.511
TEMP -8.342 2.574 -1.682 -4.481 -2.783 -0.199 1.240 -0.059 HYDR 0.076 0.484 0.282 0.349 0.083 0.012 0.268 0.029 27 Slab 98472 OTHR 0.594 0.662 -0.127 0.118 0.163 -0.006 0.324 -0.336 EL27.0m TEMP -0.778 -0.772 5.392 -0.313 0.031 -0.311 0.451 -0.561 WDR 0.140 0.069 0.211 0.086 0.112 0.056 0.069 0.071 98514 OTHR 0.367 0.519 0.027 -0.024 -0.399 -0.005 -0.007 -0.023 TEMP 0.397 -2.323 -1.289 -0.515 0.047 -0.042 0.045 -0.511
HYDR 0.076 0.484 0.282 0.349 0.083 0.012 0.268 0.029 27 Slab 98472 OTHR 0.594 0.662 -0.127 0.118 0.163 -0.006 0.324 -0.336 EL27.0m TEMP -0.778 -0.772 5.392 -0.313 0.031 -0.311 0.451 -0.561 @ RCCV HYDR 0.140 0.069 0.211 0.086 0.112 0.056 0.069 0.071 98514 OTHR 0.367 0.519 0.027 -0.024 -0.399 -0.005 -0.007 -0.023 TEMP 0.397 -2.323 -1.289 -0.515 0.047 -0.042 0.045 -0.511
27 Slab 98472 OTHR 0.594 0.662 -0.127 0.118 0.163 -0.006 0.324 -0.336 EL27.0m TEMP -0.778 -0.772 5.392 -0.313 0.031 -0.311 0.451 -0.561 WYDR 0.140 0.069 0.211 0.086 0.112 0.056 0.069 0.071 98514 OTHR 0.367 0.519 0.027 -0.024 -0.399 -0.005 -0.007 -0.023 TEMP 0.397 -2.323 -1.289 -0.515 0.047 -0.042 0.045 -0.511
EL27.0m TEMP -0.778 -0.772 5.392 -0.313 0.031 -0.311 0.451 -0.561 @ RCCV HYDR 0.140 0.069 0.211 0.086 0.112 0.056 0.069 0.071 98514 OTHR 0.367 0.519 0.027 -0.024 -0.399 -0.005 -0.007 -0.023 TEMP 0.397 -2.323 -1.289 -0.515 0.047 -0.042 0.045 -0.511
@ RCCV HYDR 0.140 0.069 0.211 0.086 0.112 0.056 0.069 0.071 98514 OTHR 0.367 0.519 0.027 -0.024 -0.399 -0.005 -0.007 -0.023 TEMP 0.397 -2.323 -1.289 -0.515 0.047 -0.042 0.045 -0.511
98514 OTHR 0.367 0.519 0.027 -0.024 -0.399 -0.005 -0.007 -0.023 TEMP 0.397 -2.323 -1.289 -0.515 0.047 -0.042 0.045 -0.511
TEMP 0.397 -2.323 -1.289 -0.515 0.047 -0.042 0.045 -0.511
HYDR 0.248 0.108 0.237 0.038 0.180 0.002 0.003 0.142
98424 OTHR -0.286 1.516 -0.057 0.050 0.173 -0.131 -0.585 -0.044
TEMP -9.063 -6.855 -1.452 1.316 -0.418 0.194 -5.559 -0.101
HYDR 0.068 0.218 0.135 0.326 0.135 0.021 0.220 0.014
28 Pool Girder 123054 OTHR 0.221 0.665 1.288 0.068 0.030 -0.130 -0.048 -0.057
@ Storage Pool TEMP 1.314 -2.832 1.430 2.281 2.120 0.027 -0.232 0.482
HYDR 0.169 0.213 0.180 0.014 0.011 0.008 0.016 0.018
123154 OTHR 0.285 -0.019 1.143 0.075 0.035 -0.140 -0.079 0.026
TEMP 1.031 0.747 -0.407 1.925 1.145 -0.338 -0.086 0.247
HYDR 0.305 0.042 0.174 0.020 0.013 0.023 0.009 0.001
29 Pool Girder 123062 OTHR 0.367 -1.036 -1.162 0.017 0.212 0.002 0.039 0.134
@ Cavity IEMP -1.254 -0.148 -0.719 0.101 0.323 0.027 0.057 0.172
HYDR 0.185 0.022 0.140 0.013 0.016 0.006 0.007 0.004
123162 OTHK 1.938 -0.886 -0.834 0.055 0.003 0.004 -0.033 -0.022
20 Deel Cirder 123067 OT UD 0.231 4.004 4.270 0.026 0.070 0.019 0.002
© Fuel Peol
LEMP -2.405 -0.001 -1.042 0.039 0.439 -0.117 -0.130 0.470
123167 OTHP 0.148 0.212 1265 0.066 0.058 0.032 0.024 0.003
123107 UTIT -0.140 -0.212 -1.203 -0.000 -0.037 -0.004 -0.003
HVDP 0.478 0.311 0.449 0.019 0.008 0.002 0.012 0.005
31 MS Tuppel 150122 OTHE 0.036 -0.288 0.367 0.020 0.097 0.014 -0.006 -0.067
Wall and Slab
HUNDR 0.015 0.006 0.008 0.033 0.006 0.002 0.021
96611 OTHR -0.050 0.728 -0.045 0.052 -0.095 -0.055 -0.069 0.018
TEMP -0.447 4.103 -0.332 -1.287 -7.109 -0.423 0.426 0.209
HYDR 0.009 0.075 0.012 0.044 0.101 0.018 0.015 0.008
98614 OTHR -0.017 -0.296 -0.016 -0.198 -0.998 -0.137 0.009 0.053
TEMP -0.187 1.989 -0.145 -0.861 -10.477 -0.011 0.470 0.303
HYDR 0.006 0.115 0.007 0.005 0.056 0.009 0.001 0.010

OTHR: Loads other than thermal and hydrodynamic loads

TEMP: Thermal loads

HYDR: Hydrodynamic loads

WG3-U71-ERD-S-0004	SH NO.	189
REV. 1	of	543

Table 6.3.3-2Combined Forces and Moments, LOCA After 6 minutes (1.5Pa): Winter- Load ID = 6241 (Selected Load Combination RB-8a) (Continued)

Location	Element		N _x	Ny	N _{xy}	M _x	My	M _{×y}	Qx	Q _y
Location	ID		(MN/m)	(MN/m)	(MN/m)	(MNm/m)	(MNm/m)	(MN <u>m/m</u>)	(MN/m)	(MN/m)
32 IC/PCCS	125051	OTHR	0.220	0.671	0.802	-0.044	0.018	0.002	-0.034	0.035
Pool Wall		TEMP	-0.257	-0.976	-0.150	-0.013	-0.016	-0.001	-0.024	-0.015
in NS Dir.		HYDR	0.017	0.095	0.061	0.003	0.002	0.000	0.003	0.001
	125151	OTHR	0.332	0.204	0.639	-0.056	-0.014	0.001	-0.056	0.003
		TEMP	-0.404	-0.680	0.529	0.018	0.055	0.012	-0.030	-0.051
		HYDR	0.038	0.053	0.068	0.004	0.001	0.000	0.004	0.000
	125055	OTHR	0.235	-0.007	-0.080	0.024	0.098	0.001	0.040	0.070
		TEMP	-0.601	0.281	0.050	0.008	0.023	0.001	0.007	0.002
		HYDR	0.048	0.044	0.093	0.001	0.001	0.000	0.001	0.001
	125155	OTHR	0.733	0.061	-0.062	-0.001	-0.039	-0.004	-0.030	0.038
		TEMP	-1.201	-0.035	0.047	0.008	0.037	-0.005	-0.061	0.002
		HYDR	0.073	0.017	0.100	0.001	0.001	0.000	0.002	0.001

OTHR: Loads other than thermal and hydrodynamic loads

TEMP: Thermal loads

HYDR: Hydrodynamic loads

WG3-U71-ERD-S-0004	SH NO.	190
REV. 1	of	543

Table 6.3.3-3Combined Forces and Moments, LOCA After 72 hours (1.5Pa): Winter
- Load ID = 6441 (Selected Load Combination RB-8b)

Location	Element		Nx	Ny	N _{xy}	M _x	My	M _{xy}	Q _x	Qy
Location	ID		(MN/m)	(MN/m)	(MN/m)	(MNm/m)	(MNm/m)	(MNm/m)	(MN/m)	(MN/m)
18 Wall	6	OTHR	-1.619	5.773	-0.314	0.087	0.218	-0.007	0.006	0.187
Below RCCV		TEMP	0.745	-0.977	-0.895	0.238	1.920	-0.053	0.044	0.293
Bottom		HYDR	0.772	1.667	0.389	0.220	1.254	0.003	0.011	0.440
	13	OTHR	-1.502	-4.358	-0.016	-0.209	-0.983	0.006	-0.005	-0.227
		TEMP	-0.174	-4.065	-0.782	0.604	<u>3.357</u>	-0.002	0.023	0.785
		HYDR	0.611	1.684	0.393	0.167	0.980	0.004	0.008	0.338
	24	OTHR	-1.402	-4.747	-0.143	-0.245	-1.523	-0.002	0.003	-0.534
		TEMP	0.101	-3.765	0.212	0.594	3.314	-0.007	-0.003	0.779
		HYDR	0.664	1.845	0.387	0.123	0.766	0.004	0.007	0.271
19 Wall	806	OTHR	-1.066	-4.571	-0.254	0.015	0.091	-0.017	-0.015	-0.062
Below RCCV		TEMP	1.907	-2.149	0.225	0.307	1.688	0.090	-0.068	-0.082
Mid-Height		HYDR	0.214	1.640	0.518	0.017	0.091	0.024	0.003	0.027
	813	OTHR	-1.449	-4.336	0.134	-0.007	0.170	-0.004	0.007	-0.008
		IEMP	1.360	-3.986	-0.566	0.221	1.702	-0.034	0.006	0.602
		HYDR	0.164	1.703	0.531	0.023	0.089	0.010	0.003	0.080
	824	OTHR	-1.752	4.606	-0.036	0.117	0.442	0.010	-0.002	0.126
		TEMP	1.151	-3.732	0.198	0.224	1.729	0.027	0.015	0.502
		HYDR	0.175	1.868	0.508	0.012	0.095	0.013	0.001	0.050
20 Wall	1606	OTHR	0.206	-3.965	-0.134	-0.297	-1.724	0.024	0.005	0.433
Below RCCV		TEMP	15.858	-3.114	0.381	-0.839	-4.009	0.124	0.101	3.042
• Тор		HYDR	0.627	1.658	0.505	0.343	1.917	0.009	0.006	0.564
	1613	OTHR	0.008	-4.314	0.233	-0.326	-1.735	-0.004	-0.003	0.467
		TEMP	15.713	-4.649	-0.420	-1.005	-5.538	-0.011	-0.016	3.612
		HYDR	0.620	1.694	0.502	0.340	1.957	0.004	0.008	0.601
	1624		0.43/	-4.132	0.002	-0.364	-2.194	0.007	-0.006	0.657
			16.688	-4.842	-0.107	-1.115	-5.549	0.001	-0.106	3.698
Of Estades Mall	00044		0.683	1.834	0.505	0.336	1.898	0.003		0.592
21 Exterior Vall	20011		-1.773	-3.231	-0.705	0.202	1.028	0.020	0.031	0.330
@ EL-11.50			3.314	4.817	0.922	0.447	1.837	0.052	-0.225	0.576
~-10.50m	20022		0.130	0.207	0.569	0.279	1.135	0.010	0.029	0.410
	20023		-1.100	-1.407	1 540	-0.025	-0.231	0.012	-0.004	-0.133
			-1.400	-1.109	0.114	1.690	4.020	0.100	0.022	0.003
	20010		1 1 2 5	2 219	0.114	0.074	0.109	0.011	0.091	0.008
	30010		0.609	2 722	0.177	-0.103	-0.004	0.007	0.001	0.011
	1		0.000	0.100	-0.256	0.125	4.703	-0.022	0.001	-0.605
	30020		0.410	-1 710	0.201	0.135	0.710	0.003	0.000	0.100
	50020		0.059	1 477	0.202	0.004	1 200	0.020	-0.145	0.323
			-0.030	0.601	0.161	0.021	0.126	0.006	-0.020	-0.202
	40004		0.034	-1 966	0.101	0.020			0.040	0.030
	40001		-0.749	-1.000	0.400	0.020	-1.003	0.202	0.000	-0.223
			-0.090	-1.141	0.000	0.039	0.114	-0.097	0.100	-0.322
	40011		1 277	2 020	0.140	0.040	1 202	0.000	0.047	1 479
	40011		1 205	3 620	0.020	1 2/2	-1.203	0.001	0.005	0.944
			0.230	0.242	0.001	0.002	<u>4.004</u> 0.474		0.015	-0.044
		אטזהן	0.324	0.343	0.301	L0.09Z	0.471	0.005	0.008	0.113

OTHR: Loads other than thermal and hydrodynamic loads

TEMP: Thermal loads

HYDR: Hydrodynamic loads

WG3-U71-ERD-S-0004	SH NO.	191
REV. 1	of	543

Table 6.3.3-3Combined Forces and Moments, LOCA After 72 hours (1.5Pa): Winter- Load ID = 6441 (Selected Load Combination RB-8b) (Continued)

	Location	Element		N _x	Ny (MN/m)	N _{xy} (MN/m)	M _x	M _y (MNm/m)	M _{xy} (MNm/m)	Q _x	Q _y (MN/m)
	22 Extorior Mall	22011		0 330	.2 651	0.604		0 125	0.014	-0.027	0 174
		22011		5.090	-2.031	0.004	-0.004	0.123	0.014	0.045	0.174
ı	₩ EL4.00			0.000	4.474	-0.209	-0.173	-0.220	0.007	0.043	0.156
I	~0.0011	22022		0.227	0.703	0.023	0.012	0.062	0.020	0.003	0.150
		22023		-0.043	-1.014	-0.038	0.115	0.050	-0.081	0.000	0.007
				2.211	-3.114	-2.141	0.528	0.492	-0.052	0.360	0.393
			HYDR	0.050	0.414	0.306	0.106	0.032	0.026	0.029	0.011
		32010		0.331	-1.891	0.025	-0.020	0.035	0.009	0.000	-0.125
				16.739		-0.075	-2.893	-3.003	-0.001	-0.014	0.022
			HYDR	0.268	0.301	0.334	0.019	0.042	0.004	0.001	0.100
		32020		0.015	-1.865	0.304	0.024	-0.022	-0.065	0.025	0.031
			TEMP	0.653	4.869	2.518	0.104	-1.860	-0.395	1.226	0.199
1			HYDR	0.030	0.375	0.221	0.070	0.007	0.013	0.052	0.005
		42001	OTHR	0.013	-1.892	0.155	0.056	-0.055	0.063	-0.019	0.051
		1	TEMP	2.720	3.801	2.644	0.130	-1.563	-0.051	-0.998	-0.239
			HYDR	0.050	0.394	0.243	0.090	0.007	0.009	0.036	0.002
		42011	OTHR	-0.007	-2.066	-0.022	-0.044	-0.083	-0.007	0.004	-0.089
			TEMP	14.110	5.515	0.234	-3.164	-3.046	0.073	0.090	0.169
			HYDR	0.174	0.524	0.390	0.035	0.041	0.009	0.005	0.100
	23 Exterior Wall	24211	OTHR	0.432	-1.384	0.073	0.019	0.042	0.016	0.006	-0.324
	@ EL22.50		TEMP	6.073	5.669	-0.239	0.176	0.982	0.008	-0.147	1.336
	~24.60m		HYDR	0.139	0.484	0.307	0.030	0.133	0.015	0.003	0.151
		24224	OTHR	-0.016	-1.578	0.073	0.018	0.007	-0.005	-0.020	-0.014
			TEMP	1.011	5.349	-3.664	1.966	0.071	-0.637	-1.563	-0.323
			HYDR	0.024	0.484	0.237	0.097	0.065	0.024	0.049	0.069
		34210	OTHR	0.665	-0.773	0.079	0.011	0.196	-0.001	0.001	0.070
		•	TEMP	21.813	5.545	-0.581	-2.903	-2.819	0.035	-0.002	-0.128
			HYDR	0.213	0.101	0.181	0.014	0.075	0.009	0.001	0.040
		34220	OTHR	0.072	-1 429	0.075	0.047	0.037	0.006	0.029	-0.005
		01220	TEMP	2 794	5 432	4 4 1 4	2 629	-1 178	-0.711	2.571	0.094
			HYDR	0.028	0.230	0 103	0.036	0.015	0.017	0.022	0.007
		44201		0.024	-1 451	0.059	0.057	0.035	-0.003	-0.027	-0.009
		11201	TEMP	1 793	6 586	0.562	2 230	-1 491	0.539	-2.967	0.044
				0.026	0.000	0.002	0.034	0.005	0.000	0.024	0.011
	24 Basemat	90140	OTHR	-3 166	-2 562	0.107	-0.504	0.000	0.808	-1 844	1 559
	24 Dasemar @ \/all	50140		0.838	1 601	1 751	-0.171	-1 046	-1 095	-1 135	0 139
	Below PCCV			0.500	0.380	0.435	1 016	0.711	0.265	0 709	0.100
	Delow NCCV	00182		-2.067	-2 502	-0.061	_0.009	-0.124	0.200	0.700	0.725
		30102		1 008	0.687	0.001	-0.003	-5.527	0.070	-0.110	3.825
				1.900	0.007	0.400	-0.073	-0.027	0.200	-0.110	0.705
		00111		0.900	0.101	0.195	0.370	0.440	0.179	0.203	0.795
		90111		-3.070	-2.201	-0.040	-0.757	1 1 4 7	-0.097	2 607	0.107
				0.733	2.908	-0.011	-5.322	-1.147	0.107	0.700	0.151
		004.40		0.135	0.851	0.058	0.342	0.458	0.143	0.730	0.209
	25 SIAD	93140		-0.301	0.152	0.320	0.126	0.132	-0.112	0.133	-0.113
	EL4.65M			-0.383	3.018	5.804	-0.739	-0.564	0.413	-0.192	0.163
	@ RCCV	00100		0.199	0.202	0.263	0.038	0.028	0.035		0.013
		93182		0.301	-0.109	0.015	0.007	0.109	0.008	-0.004	-0.040
				6.161	-5.154	-1.518	-0.481	-2.508	-0.114	0.105	1.903
			HYDR	0.304	0.089	0.090	0.026	0.045	0.004	0.005	0.109
		93111		-0.148	0.401	-0.042	0.061	-0.004	-0.001	-0.005	-0.006
			TEMP	-4.494	6.820	-0.448	-2.369	-0.414	-0.066	1.594	0.001
			HYDR	0.094	0.336	0.073	0.014	0.021	0.002	0.067	0.002

OTHR: Loads other than thermal and hydrodynamic loads

TEMP: Thermal loads

HYDR: Hydrodynamic loads

WG3-U71-ERD-S-0004	SH NO.	192
REV. 1	of	543

Table 6.3.3-3Combined Forces and Moments, LOCA After 72 hours (1.5Pa): Winter- Load ID = 6441 (Selected Load Combination RB-8b) (Continued)

Looption	Element		N _x	Nv	N _{xv}	Mx	My	M _{xy}	Q _x	Qy
Location	ID		(MN/m)	(MN/m)	(MN/m)	(MNm/m)	(MNm/m)	(MNm/m)	(MN/m)	(MN/m)
26 Slab	96144	OTHR	0.060	0.743	0.907	0.170	0.165	-0.128	0.145	-0.126
EL17.5m		TEMP	0.733	5.839	8.138	-0.232	-0.178	0.174	-0.043	0.066
@ RCCV		HYDR	0.059	0.024	0.247	0.068	0.056	0.034	0.013	0.015
	96186	OTHR	1.173	-0.501	-0.139	0.017	0.135	0.004	-0.006	-0.146
		TEMP	9.999	-4.559	-2.165	-0.150	-0.675	-0.057	0.023	0.638
		HYDR	0.185	0.103	0.126	0.034	0.159	0.006	0.008	0.128
	96113	OTHR	-0.637	1.788	-0.200	0.373	0.087	0.004	-0.131	0.004
		TEMP	-9.165	5.149	-1.811	-4.378	-2.755	-0.237	1.010	-0.100
		HYDR	0.059	0.334	0.201	0.240	0.058	0.009	0.185	0.020
27 Slab	98472	OTHR	0.598	0.749	-0.160	0.093	0.116	0.074	0.310	-0.312
EL27.0m		TEMP	-3.645	-3.148	5.906	-1.729	-1.315	-0.297	0.534	-0.685
@ RCCV		HYDR	0.100	0.049	0.144	0.060	0.079	0.039	0.048	0.050
	98514	OTHR	0.388	0.537	0.023	-0.035	-0.502	-0.013	-0.005	-0.005
		TEMP	-2.902	-2.765	-1.440	-1.895	-1.503	-0.079	0.078	-0.381
		HYDR	0.171	0.075	0.171	0.027	0.126	0.002	0.002	0.099
	98424	OTHR	-0.327	1.735	-0.065	-0.312	0.121	-0.158	-0.473	-0.035
		TEMP	-8.825	-1.775	-2.345	3.485	0.429	0.374	-5.774	-0.156
		HYDR	0.045	0.153	0.099	0.229	0.096	0.015	0.157	0.010
28 Pool Girder	123054	OTHR	0.181	1.271	1.721	0.070	0.026	-0.166	-0.053	-0.068
@ Storage Pool		TEMP	3.583	1.298	2.382	3.613	2.453	-0.343	0.113	0.317
		HYDR	0.115	0.149	0.128	0.009	0.008	0.005	0.012	0.012
	123154	OTHR	0.064	0.064	1.522	0.074	0.040	-0.189	-0.096	0.030
		TEMP	3.638	3.575	-2.911	3.372	1.303	-0.374	-0.255	0.413
	100000	HYDR	0.211	0.029	0.122	0.014	0.009	0.016	0.006	0.001
29 Pool Girder	123062	OTHR	0.341	-1.396	-1.460	0.027	0.300	-0.001	0.043	0.174
@ Cavity		TEMP	0.505	0.115	-1.385	3.836	3.893	0.008	0.034	0.188
		HYDR	0.127	0.014	0.099	0.009	0.011	0.004	0.005	0.003
	123162		2.594	-0.537	-1.030	0.081	0.023	0.000	-0.058	-0.029
		TEMP	1.929	0.409	-1.840	3.803	2.820	0.092	-0.288	0.644
	400007	HYDR	0.315	0.013	0.093	0.017	0.011	0.003	0.011	0.003
30 Pool Girder	123067		0.174	1.598	-1.845	-0.044	-0.074	0.042	-0.040	-0.043
			-2.101	-7.271	-3.005	3.592	3.540	-0.636	0.317	0.815
	100467		0.121	0.753	0.285	0.022	0.021	0.008	0.017	0.021
	123107		-0.295	0.333	-1.783	-0.009	-0.064	0.036	-0.080	0.002
			-0.079	-2.770	-3.132	2.749	1.834	-0.242	-0.176	0.010
24 MO Tunnel	150100		0.330	0.218	0.312	0.013	0.006	0.006	0.008	0.003
	150122		0.048	-0.350	0.382	0.019	0.105	0.014	-0.006	-0.073
vvali and Slab			0.310	-0.711	1.797	0.940	3.101	0.011	-0.551	0.426
	00011	HYDR	0.012	0.039	0.004	0.006	0.024	0.004	0.002	0.014
	96611		-0.060	0.825	-0.052	0.047	-0.107	-0.056	-0.067	0.019
			-0.557	4.662	-0.414	-1.254	-7.116	-0.406	0.420	0.206
	0004 1		0.007	0.052	0.008	0.031	0.072	0.013	0.011	0.005
	98614		-0.016	-0.324	-0.016	-0.240	-1.090	-0.151	0.022	0.057
			-0.043	0.725	-0.043	-0.850	-9.922	-0.018	0.459	0.307
L		HYDR	0.004	0.081	0.005	0.004	0.040	0.006	0.001	0.007

OTHR: Loads other than thermal and hydrodynamic loads

TEMP: Thermal loads

HYDR: Hydrodynamic loads

WG3-U71-ERD-S-0004	SH NO.	193
REV. 1	of	543

Table 6.3.3-3Combined Forces and Moments, LOCA After 72 hours (1.5Pa): Winter- Load ID = 6441 (Selected Load Combination RB-8b) (Continued)

Leastion	Element		Nx	N _v	N _{xv}	Mx	Mv	M _{xv}	Q _x	Qv
Location	ID		(MN/m)	(MN/m)	(MN/m)	(MNm/m)	(MNm/m)	(MNm/m)	(MN/m)	(MN/m)
32 IC/PCCS	125051	OTHR	0.275	1.012	1.148	-0.051	0.034	0.003	-0.041	0.049
Pool Wall		TEMP	-2.425	-2.173	-0.782	0.093	0.096	-0.014	0.023	0.036
in NS Dir.		HYDR	0.011	0.065	0.043	0.002	0.001	0.000	0.002	0.001
	125151	OTHR	0.410	0.298	0.920	-0.064	-0.011	0.002	-0.068	0.005
		TEMP	-2.083	-1.572	1.896	0.131	0.140	0.029	0.019	-0.082
		HYDR	0.026	0.037	0.048	0.003	0.001	0.000	0.003	0.000
	125055	OTHR	0.260	-0.040	-0.079	0.032	0.139	0.001	0.054	0.096
		TEMP	-4.971	-0.309	0.162	0.019	0.097	0.004	-0.047	-0.011
		HYDR	0.033	0.031	0.066	0.001	0.001	0.000	0.001	0.000
	125155	OTHR	0.974	0.033	-0.057	-0.002	-0.050	-0.006	-0.046	0.055
		TEMP	-4.973	-0.680	0.046	0.014	0.094	-0.011	-0.133	0.027
		HYDR	0.052	0.012	0.070	0.001	0.000	0.000	0.001	0.001

OTHR: Loads other than thermal and hydrodynamic loads

TEMP: Thermal loads

HYDR: Hydrodynamic loads

.

REV.1

of

543

Table 6.3.3-4 Combined Forces and Moments, LOCA After 6 minutes + SSE: Winter - Load ID = 7241 (Site-Specific Seismic Load Combination RB-9a)

				~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		LIGHG Q	0			
Location	Element ID		N _x (MN/m)	N _y (MN/m)	N _{xy} (MN/m)	M _x (MNm/m)	M _y (MNm/m)	M _{xy} (MNm/m)	Q _x (MN/m)	Q _y (MN/m)
18 Wall	6	OTHR	-1.400	-6.451	-0.191	-0.048	-0.575	-0.004	0.000	-0.074
Below RCCV		TEMP	1,177	-0.473	-0.669	0.101	1.063	-0.040	0.024	0.044
Bottom		SEIS	2.942	7.596	0.819	0.455	2.879	0.060	0.114	1.022
		HYDR	0.730	1.683	0.349	0.209	1.193	0.003	0.010	0.417
	13	OTHR	-1.324	-4.936	0.021	-0.357	-1.820	0.006	-0.005	-0.486
		TEMP	0.307	-3.027	-0.689	0.408	2.284	-0.002	0.019	0.475
		SEIS	2.990	6.667	0.680	0.657	3.767	0.017	0.025	1.312
		HYDR	0.582	1.701	0.362	0.158	0.930	0.004	0.008	0.321
	24	OTHR	-1.138	-5.397	-0.165	-0.401	-2.405	-0.001	0.002	-0.807
		TEMP	0.412	-3.041	0.146	0.425	2.350	-0.005	-0.002	0.516
		SEIS	2.106	7.069	1.196	0.659	3.721	0.015	0.022	1.154
		HYDR	0.638	1.871	0.334	0.114	0.717	0.003	0.007	0.254
19 Wall	806	OTHR	-1.128	-5.265	-0.171	0.007	0.032	-0.023	-0.013	-0.078
Below RCCV		TEMP	1.601	-1.332	0.182	0.235	1.292	0.083	-0.053	-0.063
Mid-Height		SEIS	2.715	7.082	1.180	0.103	0.122	0.103	0.064	0.143
		HYDR	0.209	1.673	0.467	0.016	0.090	0.022	0.003	0.026
	813	OTHR	-1.535	-4.861	0.161	-0.021	0.106	-0.007	0.001	-0.051
		TEMP	1.036	-2.990	-0.508	0.175	1.290	-0.027	0.006	0.450
		SEIS	2.309	6.799	0.796	0.203	0.487	0.049	0.027	0.250
		HYDR	0.162	1.735	0.485	0.023	0.089	0.007	0.002	0.076
	824	OTHR	-1.804	-5.285	-0.062	0.101	0.391	0.009	-0.001	0.084
		TEMP	0.890	-3.046	0.126	0.176	1.306	0.019	0.010	0.396
		SEIS	2.360	7.372	1.689	0.244	0.499	0.027	0.013	0.267
		HYDR	0.180	1.909	0.438	0.013	0.095	0.010	0.001	0.048
20 Wall	1606	OTHR	-0.318	-4.636	-0.041	-0.130	-0.762	0.024	0.005	0.138
Below RCCV		TEMP	11.606	-2.042	0.301	-0.668	-3.250	0.099	0.085	2.306
Тор		SEIS	2.278	6.409	2.761	0.223	1.075	0.123	0.028	0.360
		HYDR	0.573	1.710	0.449	0.335	1.886	0.009	0.005	0.547
	1613	OTHR	-0.509	-4.748	0.254	-0.155	-0.762	-0.002	-0.003	0.151
		TEMP	11.229	3.474	-0.425	-0.785	-4.386	-0.008	-0.014	2.714
		SEIS	1.605	6.417	1.899	0.240	1.485	0.033	0.018	0.592
		HYDR	0.570	1.738	0.465	0.336	1.944	0.004	0.006	0.592
	1624	OTHR	-0.137	-4.829	-0.014	-0.189	-1.171	0.006	-0.007	0.324
		TEMP	12.187	-3.970	-0.124	-0.867	-4.480	-0.001	-0.082	2.817
		SEIS	1.940	6.999	2.725	0.198	1.333	0.043	0.033	0.536
		HYDR	0.624	1.887	0.447	0.331	1.880	0.003	0.008	0.581

OTHR: Loads other than thermal, seismic and hydrodynamic loads

TEMP: Thermal loads

SEIS: Seismic loads

HYDR: Hydrodynamic loads

WG3-U71-ERD-S-0004	SH NO.	195
REV. 1	of	543

<u>г </u>	Element		N	N.	N	M	M	M	0.	O
Location	ID		(MN/m)	(MN/m)	(MN/m)	(MNm/m)	(MNm/m)	(MNm/m)	(MN/m)	(MN/m)
21 Exterior Wall	20011	OTHR	-1 819	-3 469	-0 717	0 141	0.804	0.015	0.039	0.262
@ FL-11 50		TEMP	3 023	3 384	0 790	0.274	1 136	0.041	-0 173	0.330
~-10 50m		SEIS	2 212	3 4 5 9	2 195	0.719	2 803	0.032	0.055	1 107
10100111		HYDR	0 134	0.191	0.521	0.270	1 101	0.010	0.028	0 406
	20023	OTHR	-1 161	-1 469	-0.585	-0.008	-0 247	0.013	-0.057	-0 141
	20020	TEMP	-1 459	-1 215	1 590	1 936	3 930	0.0184	0.310	0.647
		SEIS	1 327	1,953	0 794	0.532	0.597	0.101	0.629	0.404
		HYDR	0.014	0.456	0.106	0.070	0.102	0.010	0.083	0.063
	30010	OTHR	-1.224	-2.354	-0.170	-0.234	-1.284	0.011	0.002	0.895
		TEMP	0.421	2.641	-0.135	1.081	3.585	-0.018	-0.024	-0.601
		SEIS	3.058	1.953	1.026	0.436	2.379	0.029	0.027	0.869
		HYDR	0.411	0.177	0.226	0 129	0.686	0.002	0.005	0.174
	30020	OTHR	-0.970	-1 615	-0.225	-0.535	-0.786	0.017	-0 153	0.330
		TEMP	-0.090	-1.196	-0.238	0.081	1.104	0.123	-0.022	-0.270
		SEIS	0.847	1 721	1 415	0.490	0.912	0 160	0 406	0.430
		HYDR	0.030	0.605	0.155	0.026	0.126	0.006	0.044	0.039
	40001	OTHR	-0 763	-1 785	0.353	-0.320	-1 095	-0 197	0.070	0.629
	10001	TEMP	-0.154	-0.831	0.014	0.123	1.237	-0.081	0.114	-0.310
	-	SEIS	0.790	1.806	1.368	0.537	1.002	0.216	0.330	0.403
		HYDR	0.030	0.624	0.134	0.044	0.114	0.006	0.045	0.032
	40011	OTHR	-1.371	-3.077	-0.028	-0.278	-1.648	-0.002	0.005	1.572
		TEMP	0.865	2,785	0.044	1.075	3.674	0.007	0.012	-0.638
		SEIS	1.584	2.452	1.304	0.425	2,280	0.016	0.021	0.762
		HYDR	0.301	0.346	0.268	0.087	0.448	0.005	0.007	0.108
22 Exterior Wall	22011	OTHR	0.107	-2.850	0.649	-0.005	0.094	0.012	-0.024	0.133
@ EL4.65		TEMP	3.577	2.789	-0.075	-0.128	-0.161	0.049	0.032	-0.031
~6.60m	1	SEIS	1.226	5.546	4.092	0.153	0.818	0.090	0.050	0.715
		HYDR	0.217	0.746	0.584	0.012	0.084	0.019	0.003	0.159
	22023	OTHR	-0.068	-1.637	-0.059	0.049	0.031	-0.067	0.053	0.011
	1	TEMP	1.984	-3.558	-1.991	0.092	0.423	-0.047	0.570	0.405
		SEIS	0.750	5.668	3.527	0.299	0.222	0.141	0.357	0.148
		HYDR	0.049	0.415	0.288	0.097	0.032	0.026	0.029	0.010
	32010	OTHR	0.037	-1.940	0.038	-0.019	-0.007	0.005	0.000	-0.068
		TEMP	14.408	6.124	0.009	-2.798	-2.759	0.004	-0.008	0.040
		SEIS	1.206	3.569	3.077	0.057	0.356	0.022	0.004	0.219
		HYDR	0.256	0.299	0.303	0.016	0.039	0.004	0.001	0.099
	32020	OTHR	-0.012	-1.900	0.169	-0.028	-0.038	-0.040	-0.009	0.023
		TEMP	0.445	4.720	2.524	-0.285	-1.833	-0.377	0.922	0.167
		SEIS	0.525	6.282	2.371	0.441	0.184	0.173	0.243	0.069
		HYDR	0.028	0.390	0.200	0.064	0.007	0.011	0.048	0.005
	42001	OTHR	-0.017	-1.953	0.081	-0.012	-0.070	0.055	0.004	0.046
		TEMP	2.451	3.607	2.534	-0.371	-1.611	-0.058	-0.794	-0.254
		SEIS	0.379	6.366	2.517	0.289	0.162	0.239	0.354	0.049
		HYDR	0.048	0.408	0.224	0.083	0.007	0.008	0.033	0.002
	42011	OTHR	-0.245	-2.297	-0.043	-0.036	-0.101	-0.003	0.004	-0.040
		TEMP	12.432	4.405	0.143	-2.975	-2.774	0.081	0.081	0.172
		SEIS	1.202	3.902	3.709	0.069	0.408	0.038	0.048	0.184
		HYDR	0.159	0.532	0.361	0.031	0.033	0.008	0.004	0.093

OTHR: Loads other than thermal, seismic and hydrodynamic loads

TEMP: Thermal loads

SEIS: Seismic loads

HYDR: Hydrodynamic loads

WG3-U71-ERD-S-0004	SH NO.	196
REV. 1	of	543

Location	Element		Nx	Ny	N _{xy}	Mx	My	M _{×y}	Qx	Qy
Location	ID		(MN/m)	(MN/m)	(MN/m)	(MNm/m)	(MNm/m)	(MNm/m)	(MN/m)	(MN/m)
23 Exterior Wall	24211	OTHR	0.150	-1.585	0.081	-0.023	-0.200	0.012	0.003	-0.207
@ EL22.50		TEMP	4.177	2.901	-0.313	0.092	0.628	0.014	-0.122	1.431
~24.60m		SEIS	0.931	4.603	3.707	0.152	0.641	0.042	0.007	0.711
		HYDR	0.142	0.484	0.283	0.030	0.133	0.015	0.002	0.151
	24224	OTHR	-0.026	-1.353	0.185	0.028	-0.018	-0.022	-0.043	-0.022
		TEMP	0.340	4.642	-3.562	0.871	-0.344	-0.446	-0.824	-0.417
		SEIS	0.511	8.980	3.791	0.769	1.137	0.261	0.367	1.272
		HYDR	0.024	0.485	0.236	0.095	0.064	0.024	0.047	0.068
	34210	OTHR	0.361	-0.815	0.071	0.004	0.075	0.000	0.003	0.033
		TEMP	15.323	4.794	-0.317	-2.778	-2.409	0.015	-0.011	0.104
		SEIS	1.058	1.986	3.456	0.103	0.608	0.012	0.025	0.194
	1	HYDR	0.202	0.102	0.171	0.015	0.077	0.009	0.001	0.041
	34220	OTHR	0.058	-1.197	-0.027	0.047	0.006	0.000	0.033	-0.001
		TEMP	1.721	4.437	2.297	0.980	-1.464	-0.240	1.609	0.013
		SEIS	0.159	3.297	2.210	0.111	0.114	0.027	0.079	0.025
		HYDR	0.028	0.231	0.098	0.036	0.015	0.017	0.023	0.007
	44201	OTHR	0.024	-1.285	-0.109	0.049	0.012	0.004	-0.035	-0.006
		TEMP	1.001	5.209	0.300	0.668	-1.698	0.337	-1.911	0.044
		SEIS	0.167	3.795	2.479	0.068	0.041	0.040	0.109	0.024
		HYDR	0.026	0.280	0.164	0.033	0.005	0.003	0.024	0.004
24 Basemat	90140	OTHR	-3.142	-2.669	0.148	-1.147	-0.481	1.613	-1.900	1.694
@ Wall		TEMP	1.052	1.448	1.374	0.756	-0.217	-0.971	-0.682	-0.069
Below RCCV		SEIS	2.801	1.113	1.986	3.720	2.589	3.423	2.095	2.337
		HYDR	0.511	0.359	0.401	0.987	0.702	0.218	0.702	0.721
	90182	OTHR	-2.479	-2.537	-0.046	0.232	-1.054	-0.033	0.049	0.446
		TEMP	1.619	0.481	0.610	-0.246	-3.861	0.184	-0.141	2.769
		SEIS	2.544	0.415	1.472	1.264	3.140	0.509	Ō.312	2.146
		HYDR	0.940	0.180	0.184	0.566	0.378	0.154	0.197	0.791
	90111	OTHR	-3.922	-2.463	-0.021	-1.672	0.197	-0.220	0.145	0.119
		TEMP	0.567	2.209	-0.001	-4.129	-0.522	0.050	2.860	0.127
		SEIS	0.479	1.371	1.951	3.034	1.044	0.680	1.765	0.565
		HYDR	0.141	0.811	0.051	0.274	0.454	0.121	0.736	0.189

OTHR: Loads other than thermal, seismic and hydrodynamic loads

TEMP: Thermal loads

SEIS: Seismic loads

HYDR: Hydrodynamic loads

WG3-U71-ERD-S-0004	SH NO.	197
REV. 1	of	543

Location	Element		N _x	Ny	N _{xy}	Mx	My	M _{×y}	Q _x	Qy
Location	_ ID		_(MN/m)_	(MN/m)	(MN/m)	(MNm/m)	(MNm/m)	(MNm/m)	(MN/m)	(MN/m)
25 Slab	93140	OTHR	-0.355	0.056	0.234	0.095	0.110		0.129	-0.109
EL4.65m	1	TEMP	-0.669	2.312	4.286	0.515	-0.395	0.287	-0.135	0.111
@ RCCV		SEIS	1.713	0.333	0.267	0.269	0.210	0.146	0.126	0.111
		HYDR	0.182_	0.196	0.238	0.036	0.027	0.036	0.010	0.012
	93182	OTHR	0.125	-0.144	0.022	0.009	0.070	0.006	-0.004	-0.055
		TEMP	4.229	-4.036	-1.098	-0.354	-1.829	0.083	0.075	1.370
		SEIS	0.313	0.148	0.131	0.128	0.637	0.030	0.030	0.587
		HYDR	0.290	0.073	0.082	0.025	0.042	0.004	0.005	0.108
	93111	OTHR	-0.185	0.248	-0.015	0.018	-0.002	-0.001	-0.010	-0.005
		TEMP	-3.602	4.956	-0.257	-1.768	-0.316	-0.047	1.178	0.000
		SEIS	0.185	0.254	0.154	0.537	0.097	0.022	0.434	0.005
		HYDR	0.073	0.316	0.068	0.013	0.021	0.002	0.066	0.002
26 Slab	96144	OTHR	-0.003	0.471	0.581	0.117	0.124	-0.097	0.133	-0.113
EL17.5m		TEMP	-0.269	4.712	6.965	-0.230	-0.125	0.167	-0.073	0.023
@ RCCV		SEIS	0.611	0.374	0.224	0.221	0.196	0.136	0.109	0.086
		HYDR	0.056	0.021	0.228	0.068	0.057	0.034	0.013	0.015
	96186	OTHR	0.748	-0.307	-0.071	0.006	0.060	0.000	-0.004	-0.086
		TEMP	6.688	-4.125	-1.418	-0.091	-0.316	-0.048	0.016	0.347
		SEIS	0.532	0.188	0.210	0.115	0.599	0.026	0.031	0.481
		HYDR	0.176	0.097	0.118	0.035	0.162	0.006	0.008	0.130
	96113	OTHR	-0.374	1.228	-0.107	0.112	0.048	-0.008	0.047	0.016
		TEMP	-8.342	2.574	-1.682	-4.481	-2.783	-0.199	1.240	-0.059
		SEIS	0.090	1.066	0.667	1.234	0.140	0.053	1.033	0.124
	_	HYDR	0.054	0.335	0.192	0.246	0.059	0.009	0.189	0.020
27 Slab	98472	OTHR	0.538	0.462	-0.046	0.176	0.270	-0.145	0.331	-0.357
EL27.0m		TEMP	-0.778	-0.772	5.392	-0.313	0.031	-0.311	0.451	-0.561
@ RCCV		SEIS	0.794	0.877	0.373	0.464	0.714	0.577	0.448	0.527
		HYDR	0.100	0.049	0.146	0.061	0.079	0.039	0.048	0.051
	98514	OTHR	0.298	0.383	0.033	-0.004	-0.213	0.008	-0.011	-0.055
		TEMP	0.397	-2.323	-1.289	-0.515	0.047	-0.042	0.045	-0.511
		SEIS	0.669	0.096	0.371	0.189	1.155	0.076	0.047	0.772
		HYDR	0.170	0.075	0.161	0.027	0.127	0.001	0.002	0.100
	98424	OTHR	-0.221	1.168	-0.045	0.656	0.262	-0.086	-0.778	-0.060
		TEMP	-9.063	-6.855	-1.452	1.316	-0.418	0.194	-5.559	-0.101
		SEIS	1.057	1.196	3.487	2.644	0.649	0.155	1.814	0.149
		HYDR	0.047	0.148	0.092	0.231	0.096	0.014	0.157	0.010

OTHR: Loads other than thermal, seismic and hydrodynamic loads

TEMP: Thermal loads

SEIS: Seismic loads

HYDR: Hydrodynamic loads

WG3-U71-ERD-S-0004	SH NO.	198
REV. 1	of	543

	Elomont		N	N	N	R/	BØ	м	0	0
Location	ID		(MN/m)	(MN/m)	(MN/m)	(MNm/m)	(MNm/m)	(MNm/m)	(MN/m)	(MN/m)
28 Pool Girder	123054	OTHR	0.281	-0.342	0.594	0.061	0.034	-0.072	-0.036	-0.044
@ Storage Pool	120001	TEMP	1.314	-2.832	1.430	2.281	2.120	0.027	-0.232	0.482
G chinage i chi		SEIS	0.569	3.326	1 105	0.205	0.094	0.091	0.049	0.123
		HYDR	0.118	0 151	0 128	0.010	0.008	0.005	0.012	0.012
	123154	OTHR	0.616	-0 173	0.550	0.073	0.032	-0.064	-0.050	0.021
	120101	TEMP	1 031	0.747	-0.407	1 925	1 145	-0.338	-0.086	0.247
		SEIS	1.837	0.841	1 008	0.167	0.070	0.000	0.061	0.020
		HYDR	0.215	0.011	0 123	0.014	0,009	0.100	0.006	0.001
29 Pool Girder	123062	OTHR	0.376	-0.508	-0.685	-0.003	0.071	0.018	0.000	0.052
@ Cavity	TECCOL	TEMP	-1 254	-0.148	-0.719	0 101	0.323	0.027	0.057	0.172
e outiny		SEIS	0.576	1 124	0.540	0.154	0.283	0.027	0.001	0.160
		HYDR	0.010	0.015	0.096	0.104	0.200	0.040	0.000	0.003
	123162		0.120	_0 194	-0.510	0.000	-0.014	0.007	0.005	-0.005
	120102	TEMP	-1 691	-0.134	-0.510	0.013	-0.014	-0.007	-0.151	0.085
		SEIS	1 805	0.002	0.300	0.120	-0.117	-0.000	0.166	0.000
			0.318	0.071	0.309	0.277	0.119	0.000	0.100	0.007
30 Pool Girder	123067		0.010	-0.040	_0.031	-0.010	-0.061	-0.000	-0.071	-0.038
@ Fuel Pool	120007	TEMP	-2.405	-6.001	-1.842	-0.019	-0.001	-0.010	-0.071	-0.030
(gruer our			-2.403	2 004	-1.042	0.039	0.439	-0.117	-0.100	0.470
			0.700	2.994	0.297	0.100	0.097	0.102	0.127	0.170
	100167		0.124	0.755	0.207	0.021	0.020	0.008	0.0017	0.021
	123107		0.004	2 660	-0.424	0.007	-0.031	0.027	-0.004	0.001
			-2.204	-2.009	-2.240	0.206	-0.449	-0.220	-0.011	0.100
			0.932	0.009	1.027	0.005	0.104	0.007	0.074	0.028
31 MS Tuppol	150122		0.000	0.219	0.315	0.014	0.006	0.005	0.000	0.003
Mall and Slob	150122		0.010	-0.107	1 001	1.022	0.000	0.015	-0.000	-0.036
			0.224	-0.515	0.351	1.055	0.221	-0.007	-0.004	0.304
			0.043	0.340	0.301	0.009	0.221	0.044	0.020	0.109
	06611		0.013	0.039	0.004	0.000	0.024	0.004	0.002	0.014
	90011		-0.038	0.007	-0.030	1 297	-0.079	-0.000	-0.071	0.018
			-0.447	4.103	-0.332	-1.207	-7.109	-0.423	0.420	0.209
			0.034	0.440	0.040	0.103	0.020	0.129	0.120	0.071
	09614		0.007	0.055	0.008	0.031	0.072	0.013	0.011	0.006
	90014		-0.019	1 080	-0.010	-0.132	10.004	-0.114	0.0170	0.040
			-0.107	1.909	-0.145	-0.001	-10.477	-0.011	0.470	0.303
			0.049	0.404	0.040	0.100	0.962	0.293	0.007	0.053
2210/0009	125051		0.004	0.001	0.005	0.004	0.040	0.000	0.001	0.007
SZ IC/FCCS	123031	TEMP	0.114	0.010	0.234	-0.029	-0.007	0.000	-0.022	0.009
			-0.257	-0.970	-0.150	-0.013	-0.016	-0.001	-0.024	-0.015
IN NO DIF.		SEIS	0.103	1.003	1.292	0.010	0.076	0.004	0.016	0.059
	405454		0.011	0.066	0.042	0.002	0.001	0.000	0.002	0.001
	125151		0.184	-0.043	0.179	-0.038	-0.011	-0.001	-0.034	0.001
			-0.404	-0.680	0.529	0.018	0.055	0.012	-0.030	-0.051
		SEIS	0.200	0.661	1.067	0.003	0.014	0.012	0.022	0.013
	405057		0.027	0.037	0.047	0.003	0.001	0.000	0.003	0.000
	125055		0.172	-0.068	-0.087	0.010	0.031	0.002	0.015	0.024
			-0.601	0.281	0.050	0.008	0.023	0.001	0.007	0.002
		SEIS	0.266	0.203	0.532	0.033	0.140	0.006	0.051	0.096
	105.5	HYDR	0.032	0.031	0.064	0.001	0.001	0.000	0.001	0.000
	125155	OTHR	0.311	-0.003	-0.068	0.001	-0.016	-0.001	-0.009	0.013
		TEMP	-1.201	-0.035	0.047	0.008	0.037	-0.005	-0.061	0.002
		SEIS	0.766	0.139	0.461	0.019	0.042	0.009	0.051	0.058
		HYDR	0.052	0.012	0.069	0.001	0.000	0.000	0.001	0.001

OTHR: Loads other than thermal, seismic and hydrodynamic loads

TEMP: Thermal loads

SEIS: Seismic loads

HYDR: Hydrodynamic loads

WG3-U71-ERD-S-0004	SH NO.	199
REV. 1	of	543

	Element		N _x	N _y	N _{xy}	M _x	M _y	M _{xy}	Q _x	Q _y
19 14/01	UI C		(MIN/M)					(WINM/M)		
	0		-1.459	-0.270	-0.223	-0.012	-0.366	-0.005	0.001	-0.005
Below RUUV			0.745	-0.977	-0.895	0.238	1.920	-0.053	0.044	0.293
Bottom		SEIS	2.942	7.590	0.819	0.455	2.879	0.060	0.114	1.022
	10		0.564	1.225	0.276	0.162	0.924	0.002	0.008	0.323
	13		-1.372	-4.789	0.011	-0.318	-1.598	0.006	-0.005	-0.417
			-0.174	-4.005	-0.782	0.604	3.357	-0.002	0.023	0.785
		SEIS	2.990	0.007	0.680	0.657	3.767	0.017	0.025	1.312
	24		0.446	1.240	0.285	0.124	0.725	0.003	0.006	0.250
	24		-1.209	-5.232	-0.159	-0.360	-2.171	-0.001	0.003	-0.735
		SEIS	2,100	-3.765	0.212	0.659	3.314	0.015	-0.003	1.154
		HYDR	0.491	1.370	0.273	0.092	0.573	0.003	0.005	0.203
19 Wall	806	OTHR	-1 110	-5.086	-0 192	0.010	0.050	-0.021	-0.013	-0.074
Below RCCV		TEMP	1.907	-2.149	0.225	0.307	1.688	0.090	-0.068	-0.082
Mid-Height		SEIS	2.715	7.082	1.180	0.103	0.122	0.103	0.064	0.143
		HYDR	0.151	1.212	0.367	0.012	0.070	0.018	0.002	0.020
	813	OTHR	-1.511	-4.728	0.153	-0.017	0.125	-0.006	0.002	-0.040
		TEMP	1.360	-3.986	-0.566	0.221	1.702	-0.034	0.006	0.602
		SEIS	2.309	6.799	0.796	0.203	0.487	0.049	0.027	0.250
		HYDR	0.116	1.258	0.385	0.017	0.068	0.007	0.002	0.059
	824	OTHR	-1.789	-5.114	-0.055	0.106	0.407	0.009	-0.001	0.095
		TEMP	1.151	-3.732	0.198	0.224	1.729	0.027	0.015	0.502
		SEIS	2.360	7.372	1.689	0.244	0.499	0.027	0.013	0.267
		HYDR	0.127	1.390	0.359	0.009	0.073	0.009	0.001	0.038
20 Wall	1606	OTHR	-0.166	-4.464	-0.065	-0.178	-1.038	0.024	0.005	0.223
Below RCCV		TEMP	15.858	-3.114	0.381	-0.839	-4.009	0.124	0.101	3.042
Тор		SEIS	2.278	6.409	2.761	0.223	1.075	0.123	0.028	0.360
•		HYDR	0.485	1.233	0.351	0.259	1.447	0.006	0.005	0.427
	1613	OTHR	-0.359	-4.640	0.249	-0.204	-1.042	-0.003	-0.003	0.243
		TEMP	15.713	-4.649	-0.420	-1.005	-5.538	-0.011	-0.016	3.612
		SEIS	1.605	6.417	1.899	0.240	1.485	0.033	0.018	0.592
		HYDR	0.476	1.260	0.360	0.256	1.476	0.003	0.006	0.454
	1624	OTHR	0.030	-4.654	-0.010	-0.239	-1.464	0.006	-0.007	0.420
		TEMP	16.688	-4.842	-0.107	-1.115	-5.549	0.001	-0.106	3.698
		SEIS	1.940	6.999	2.725	0.198	1.333	0.043	0.033	0.536
		HYDR	0.524	1.371	0.354	0.254	1.436	0.003	0.008	0.449

OTHR: Loads other than thermal, seismic and hydrodynamic loads

TEMP: Thermal loads

SEIS: Seismic loads

HYDR: Hydrodynamic loads

WG3-U71-ERD-S-0004	SH NO.	200
REV. 1	of	543

									-	
	Element		N _x	N _y	N _{xy}	M _x	My (MN/m/ma)	M _{xy}	Q _x	Q _y
01 Exterior Mall		OTUD								
	20011		-1.805	-3.402	-0.714	0.158	0.805	0.016	0.037	0.280
@ EL-11.50			3.314	4.017	0.922	0.447	1.037	0.052	-0.225	0.576
~-10.50m		SEIS	2.212	3.459	2.195	0.719	2.803	0.032	0.055	1.107
	00000	HYDR	0.099	0.152	0.412	0.204	0.828	0.007	0.021	0.305
	20023		-1.160	-1.4/4	-0.591	-0.013	-0.242	0.012	-0.056	-0.139
			-1.453	-1.169	1.549	1.890	4.020	0.180	0.322	0.683
		SEIS	1.327	1.953	0.794	0.532	0.597	0.101	0.629	0.404
		HYDR	0.011	0.336	0.082	0.053	0.078	0.008	0.064	0.048
	30010		-1.196	-2.341	-0.172	-0.212	-1.176	0.010	0.001	0.872
	1	TEMP	0.688	3.733	-0.258	1.289	4.763	-0.022	-0.031	-0.865
		SEIS	3.058	1.953	1.026	0.436	2.379	0.029	0.027	0.869
	L	HYDR	0.304	0.132	0.184	0.100	0.526	0.002	0.004	0.133
	30020	OTHR	-0.963	-1.641	-0.229	-0.543	-0.782	0.019	-0.151	0.330
		TEMP	-0.058	-1.477	-0.392	0.021	1.209	0.144	-0.026	-0.282
		SEIS	0.847	1.721	1.415	0.490	0.912	0.160	0.406	0.430
		HYDR	0.024	0.444	0.117	0.021	0.092	0.004	0.033	0.028
	40001	OTHR	-0.760	-1.807	0.367	-0.327	-1.086	-0.198	0.069	0.628
		TEMP	-0.090	-1.141	0.056	0.039	1.330	-0.097	0.105	-0.322
		SEIS	0.790	1.806	1.368	0.537	1.002	0.216	0.330	0.403
		HYDR	0.024	0.458	0.102	0.034	0.083	0.005	0.034	0.022
	40011	OTHR	-1.371	-3.050	-0.027	-0.253	-1.527	-0.001	0.005	1.546
		TEMP	1.295	3.630	0.051	1.243	4.654	0.011	0.015	-0.844
		SEIS	1.584	2.452	1.304	0.425	2.280	0.016	0.021	0.762
		HYDR	0.232	0.250	0.214	0.069	0.354	0.003	0.006	0.085
22 Exterior Wall	22011	OTHR	0.178	-2.796	0.636	-0.005	0.104	0.012	-0.025	0.147
@ EL4.65		TEMP	5.080	4.474	-0.209	-0.175	-0.228	0.067	0.045	0.074
~6.60m		SEIS	1.226	5.546	4.092	0.153	0.818	0.090	0.050	0.715
		HYDR	0.173	0.555	0.436	0.009	0.057	0.014	0.002	0.115
	22023	OTHR	-0.060	-1.627	-0.051	0.070	0.037	-0.071	0.046	0.010
		TEMP	2.211	-3.114	-2.141	0.528	0.492	-0.052	0.386	0.393
		SEIS	0.750	5.668	3.527	0.299	0.222	0.141	0.357	0.148
		HYDR	0.037	0.295	0.213	0.080	0.023	0.019	0.022	0.008
	32010	OTHR	0.125	-1.926	0.034	-0.019	0.005	0.006	0.000	-0.086
		TEMP	16.739	7.724	-0.075	-2.893	-3.003	-0.001	-0.014	0.022
		SEIS	1.206	3.569	3.077	0.057	0.356	0.022	0.004	0.219
		HYDR	0.201	0.217	0.231	0.014	0.033	0.003	0.001	0.076
	32020	OTHR	-0.004	-1.883	0.207	-0.013	-0.034	-0.047	0.001	0.025
		TEMP	0.653	4.869	2.518	0.104	-1.860	-0.395	1.226	0.199
		SEIS	0.525	6.282	2.371	0.441	0.184	0,173	0.243	0.069
		HYDR	0.023	0.275	0.154	0.054	0.005	0.010	0.040	0.004
	42001	OTHR	-0.007	-1.928	0.099	0.009	-0.065	0.058	-0.003	0.048
		TEMP	2,720	3.801	2.644	0.130	-1.563	-0.051	-0.998	-0.239
		SEIS	0.379	6.366	2.517	0.289	0.162	0.239	0.354	0.049
		HYDR	0.039	0.291	0.171	0.069	0.005	0.006	0.028	0 002
	42011	OTHR	-0.172	-2.235	-0.036	-0.039	-0.095	-0.004	0.004	-0.056
		TEMP	14.110	5.515	0.234	-3.164	-3.046	0.073	0.090	0 169
		SEIS	1.202	3.902	3,709	0.069	0.408	0.038	0.048	0 184
		HYDR	0.134	0.389	0.271	0.027	0.032	0.007	0.004	0.077

OTHR: Loads other than thermal, seismic and hydrodynamic loads

TEMP: Thermal loads

SEIS: Seismic loads

HYDR: Hydrodynamic loads

WG3-U71-ERD-S-0004	SH NO.	201
REV. 1	of	543

	Element		N _x	Ny	N _{xy}	Mx	My	M _{xy}	Qx	Qy
	ID		(MN/m)	(MN/m)	(MN/m)	(MNm/m)	(MNm/m)	(MNm/m)	(MN/m)	(MN/m)
23 Exterior Wall	24211	OTHR	0.226	-1.528	0.079	-0.012	-0.136	0.013	0.004	-0.237
@ EL22.50		TEMP	6.073	5.669	-0.239	0.176	0.982	0.008	-0.147	1.336
~24.60m		SEIS	0.931	4.603	3.707	0.152	0.641	0.042	0.007	0.711
		HYDR	0.102	0.359	0.211	0.022	0.100	0.011	0.002	0.109
	24224	OTHR	-0.023	-1.406	0.156	0.025	-0.013	-0.017	-0.037	-0.021
		TEMP	1.011	5.349	-3.664	1.966	0.071	-0.637	-1.563	-0.323
		SEIS	0.511	8.980	3.791	0.769	1.137	0.261	0.367	1.272
		HYDR	0.017	0.354	0.169	0.068	0.046	0.018	0.034	0.049
	34210	OTHR	0.440	-0.801	0.073	0.005	0.103	0.000	0.002	0.042
		TEMP	21.813	5.545	-0.581	-2.903	-2.819	0.035	-0.002	-0.128
		SEIS	1.058	1.986	3.456	0.103	0.608	0.012	0.025	0.194
		HYDR	0.147	0.074	0.125	0.010	0.055	0.006	0.001	0.030
	34220	OTHR	0.061	-1.255	-0.002	0.046	0.014	0.002	0.032	-0.002
		TEMP	2.794	5.432	4.414	2.629	-1.178	-0.711	2.571	0.094
		SEIS	0.159	3.297	2.210	0.111	0.114	0.027	0.079	0.025
		HYDR	0.020	0.170	0.072	0.025	0.010	0.012	0.016	0.005
	44201	OTHR	0.024	-1.326	-0.064	0.050	0.018	0.002	-0.032	-0.007
		TEMP	1.793	6.586	0.562	2.230	-1.491	0.539	-2.967	0.044
		SEIS	0.167	3.795	2.479	0.068	0.041	0.040	0.109	0.024
		HYDR	0.018	0.206	0.118	0.023	0.004	0.003	0.017	0.003
24 Basemat	90140	OTHR	-3.147	-2.640	0.202	-0.982	-0.349	1.403	-1.887	1.660
@ Wall		TEMP	0.838	1.691	1.751	-0.171	-1.046	-1.095	-1.135	0.139
Below RCCV		SEIS	2.801	1.113	1.986	3.720	2.589	3.423	2.095	2.337
		HYDR	0.384	0.272	0.318	0.741	0.524	0.189	0.522	0.533
	90182	OTHR	-2.369	-2.527	-0.049	0.166	-0.817	-0.005	0.044	0.431
		TEMP	1.908	0.687	0.488	-0.873	-5.527	0.260	-0.110	3.825
		SEIS	2.544	0.415	1.472	1.264	3.140	0.509	0.312	2.146
		HYDR	0.703	0.135	0.141	0.425	0.324	0.130	0.153	0.588
	90111	OTHR	-3.909	-2.406	-0.028	-1.440	0.138	-0.188	0.132	0.116
		TEMP	0.733	2.908	-0.011	-5.322	-1.147	0.107	3.687	0.151
		SEIS	0.479	1.371	1.951	3.034	1.044	0.680	1.765	0.565
		HYDR	0.099	0.619	0.041	0.248	0.342	0.104	0.550	0.150

OTHR: Loads other than thermal, seismic and hydrodynamic loads

TEMP: Thermal loads

SEIS: Seismic loads

HYDR: Hydrodynamic loads

WG3-U71-ERD-S-0004	SH NO.	202
REV. 1	of	543

Location	Element		Nx	Ny	N _{xy}	Mx	M _y	M _{xy}	Q _x	Qy
05 Oleh	ID 00140	OTUR	(MN/m)	(MN/m)	(MN/m)	(MNm/m)	(IVINm/m)		(IVIIN/M)	
20 SIAD	93140		-0.338	2.046	0.260	0.720	0.116	-0.095	0.130	-0.110
			-0.383	3.018	0.004	-0.739	-0.504	0.413	-0.192	0.103
			0.144	0.333	0.201	0.269	0.210	0.140	0.120	
	02102		0.141	0.100	0.201	0.027	0.019	0.020	0.008	0.009
	93102		0.170	-0.133	1.519	0.009	2 509	0.007	-0.004	1 003
			0.101	-0.104	-1.518	0.128	-2.508	0.030	0.103	0.587
			0.313	0.040	0.101	0.120	0.031	0.000	0.000	0.007
	03111		-0.173	0.005	0.000	0.013	-0.001	-0.003	-0.004	-0.000
	35111	TEMP	-4 104	6.820	-0.024	-2 369	-0.003	-0.066	1 594	0.003
		SEIS	0.185	0.254	0.154	0.537	0.097	0.022	0.434	0.005
		HYDR	0.073	0.256	0.054	0.010	0.016	0.001	0.051	0.002
26 Slab	96144	OTHR	0.012	0.551	0.669	0.131	0.133	-0.104	0.136	-0.116
EL17.5m		TEMP	0.733	5.839	8.138	-0.232	-0.178	0.174	-0.043	0.066
@ RCCV		SEIS	0.611	0.374	0.224	0.221	0.196	0.136	0.109	0.086
-		HYDR	0.042	0.018	0.169	0.049	0.040	0.024	0.009	0.010
	96186	OTHR	0.866	-0.359	-0.094	0.009	0.079	0.002	-0.005	-0.103
		TEMP	9.999	-4.559	-2.165	-0.150	-0.675	-0.057	0.023	0.638
1		SEIS	0.532	0.188	0.210	0.115	0.599	0.026	0.031	0.481
		HYDR	0.127	0.072	0.088	0.025	0.116	0.004	0.006	0.093
	96113	OTHR	-0.447	1.387	-0.140	0.168	0.057	0.000	0.002	0.013
		TEMP	-9.165	5.149	- <u>1.811</u>	-4.378	-2.755	-0.237	1.010	-0.100
		SEIS	0.090	1.066	0.667	1.234	0.140	0.053	1.033	0.124
		HYDR	0.043	0.239	0.139	0.179	0.044	0.006	0.138	0.015
27 Slab	98472	OTHR	0.541	0.521	-0.068	0.159	0.239	-0.092	0.321	-0.342
EL27.0m		TEMP	-3.645	-3.148	5.906	-1.729	-1.315	-0.297	0.534	-0.685
@ RCCV		SEIS	0.794	0.877	0.373	0.464	0.714	0.577	0.448	0.527
		HYDR	0.075	0.036	0.103	0.045	0.059	0.029	0.035	0.038
	98514	OTHR	0.312	0.396	0.031	-0.011	-0.282	0.003	-0.010	-0.043
		TEMP	-2.902	-2.765	-1.440	1.895_	-1.503	-0.079	0.078	-0.381
		SEIS	0.669	0.096	0.371	0.189	1.155	0.076	0.047	0.772
		HYDR	0.121	0.054	0.118	0.020	0.094	0.001	0.001	0.074
	98424	OTHR	-0.248	<u>1.3</u> 15		0.415	0.227	0.104	-0.703	-0.054
		TEMP	-8.825	1.775	<u>-2.345</u>	3.485	0.429	0.374	5.774	-0.156
		SEIS	1.057	1.196	3.487	2.644	0.649	0.155	1.814	0.149
	1	HYDR	0.033	0.106	0.068	0.172	0.073	0.010	0.118	0.007

OTHR: Loads other than thermal, seismic and hydrodynamic loads

TEMP: Thermal loads

SEIS: Seismic loads

HYDR: Hydrodynamic loads

WG3-U71-ERD-S-0004	SH NO. 203	,
REV. 1	of 543	,

Location	Element		N _x	Ny	N _{xy}	M _x	My	M _{xy}	Q _x	Q _y
20 Deel Cirdee				(IVIN/m)	(MIN/M)	(MINm/m)	(MNm/m)	(MINm/m)	(WIN/m)	
28 Pool Girder	123054	TEMP	0.254	0.062	0.883	0.063	0.032	-0.096	-0.040	-0.052
@ Storage Pool			3.583	1.298	2.382	3.613	2.453	-0.343	0.113	0.317
			0.569	3.320	1.105	0.205	0.094	0.091	0.049	0.123
	400454		0.065		0.096	0.007	0.006	0.004	0.000	0.009
,	123154		0.469	-0.110	0.803	0.073	0.035	-0.096	-0.061	0.024
				3.5/5	-2.911	3.372	1.303	-0.374	-0.255	0.413
			0.157	0.041	1.008	0.107	0.070	0.150	0.001	0.020
20 Deel Cirder	102060		0.157	0.021	0.091	0.010	0.007	0.011	0.004	0.001
29 POOl Gilder	123062		0.359	-0.740	-0.004	0.004	0.130	0.007	0.034	0.079
@ Cavity			0.505	0.115	-1.385	3.830	3.893	0.008	0.034	0.160
			0.576	1.124	0.540	0.154	0.283	0.046	0.080	0.160
	400400	ATUR	0.088	0.010	0.070	0.006	0.008	0.003	0.003	0.002
	123162		1.266	-0.294	0.641	0.030	-0.001	0.004	0.012	-0.011
			1.929	0.409	-1.840	3.803	2.820	0.092	-0.288	0.644
		SEIS	1.895	0.871	0.309	0.277	0.119	0.030	0.166	0.037
	400007	HYDR	0.233	0.010	0.066	0.012	0.008	0.002	0.008	0.002
30 Pool Girder	123067		0.253	0.356	-0.750	-0.024	-0.063	0.006	-0.059	-0.044
@ Fuel Pool			-2.101	-7.271	-3.005	3.592	3.540	-0.636	0.317	0.815
		SEIS	0.766	2.994	1.977	0.106	0.097	0.102	0.127	0.170
	100107	HYDR	0.090	0.556	0.209	0.015	0.014	0.006	0.012	0.015
	123167		-0.044	0.041	-0.769	0.005	-0.035	0.028	-0.062	0.004
			-0.679	-2.776	-3.132	2.749	1.834	-0.242	-0.176	0.616
		SEIS	0.932	0.809	1.827	0.065	0.104	0.067	0.074	0.028
	150400	HYDR	0.249	0.161	0.229	0.010	0.004	0.004	0.006	0.002
31 MS Tunnel	150122		0.024	-0.229	0.352	0.021	0.090	0.015	-0.007	-0.062
Wall and Slab		IEMP	0.316	-0.711	1.797	0.940	3.101	0.011	-0.551	0.426
		SEIS	0.043	0.340	0.351	0.069	0.221	0.044	0.020	0.189
	00044	HYDR	0.009	0.029	0.003	0.004	0.018	0.003	0.001	0.010
	96611	OTHR	-0.044	0.652	-0.040	0.056	-0.087	-0.054	-0.070	0.018
			-0.557	4.662	-0.414	-1.254	-7.116	-0.406	0.420	0.206
		SEIS	0.034	0.440	0.046	0.183	0.626	0.129	0.128	0.071
	00011	HYDR	0.005	0.039	0.006	0.023	0.054	0.009	0.008	0.004
	98614		-0.019	-0.264	-0.018	-0.160	-0.915	-0.124	-0.002	0.049
			-0.043	0.725	-0.043	-0.850	-9.922	-0.018	0.459	0.307
		SEIS	0.049	0.404	0.040	0.188	0.962	0.293	0.087	0.053
00.10/00.00	405054	HYDR	0.003	0.061	0.003	0.003	0.030	0.004	0.001	0.005
32 IC/PCUS	125051		0.151	0.243	0.405	-0.034	0.004	0.001	-0.026	0.018
Pool vvali			-2.425	-2.173	-0.782	0.093	0.096	-0.014	0.023	0.036
IN NS DIr.		SEIS	0.163	1.653	1.292	0.010	0.076	0.004	0.016	0.059
	405454		0.008	0.048	0.031	0.001	0.001	0.000	0.002	0.001
	125151		0.235	0.020	0.367	-0.043	-0.010	0.000	-0.042	0.002
			-2.083	-1.5/2	1.890	0.131	0.140	0.029	0.019	-0.082
		SEIS	0.200	0.661	1.067	0.003	0.014	0.012	0.022	0.013
	125055		0.020	0.027	0.035	0.002	0.001	0.000	0.002	0.000
	120000		0.100	-0.090	-0.080	0.010	0.008	0.002	0.024	0.041
			-4.9/1	-0.309	0.102	0.019	0.097	0.004	-0.047	-0.011
		JUNDE	0.200	0.203	0.032	0.033	0.140	0.006		0.096
	105155		0.023	0.022	0.04/	0.000	0.000	0.000	0.000	0.000
	120100		4.072	-0.022	0.046	0.001	-0.024	-0.002	-0.020	0.024
			-4.9/3	-0.000	0.046	0.014	0.094	-0.011	-0.133	0.027
			0.700	0.139	0.401	0.019	0.042	0.009	0.051	0.000
		אטווין	0.039	0.008	0.000	0.000	0.000	0.000	0.001	0.000

OTHR: Loads other than thermal, seismic and hydrodynamic loads

TEMP: Thermal loads

SEIS: Seismic loads

HYDR: Hydrodynamic loads

Material	Property	Value			
Concrete	Compressive strength, f_c '	Basemat	27.6 MPa		
		Top Slab	41.1 MPa		
		Others	34.5 MPa		
	Young's modulus	Basemat	2.49×10⁴ MPa		
		Top Slab	3.04×10⁴ MPa		
		Others	2.78×10⁴ MPa		
	Poisson's ratio		0.17		
Reinforcement	Yield stress, f_{γ}		413.6 MPa		
	Young's modulus		2.00×10⁵ MPa		

Table 6.4.1-1 Material Constants for Stress Calculations

Table 6.4.1-2 Allowable Stress of Concrete for Membrane Plus Bending

Load Category	Load Condition	Allowable Compressive Stress (MPa)			
Factored	Primary	Basemat	20.7	(0.75 f _c ')	
		Top Slab	31.1		
		Others	25.9		
	Primary plus secondary	Basemat	23.5	(0.85 f _c ')	
		Top Slab	35.2		
		Others	29.3	_	
Service	Primary	Basemat	12.4	(0.45 f _c ')	
		Top Slab	18.6		
		Others	15.5		
	Primary plus secondary	Basemat	16.6	(0.60 f _c ')	
		Top Slab	24.8		
		Others	20.7		

WG3-U71-ERD-S-0004	SH NO.	205
REV. 1	of	543

	Load Category	Load Condition	Allowable Stress (MPa)
Tension	Factored	Primary	372.2 (0.90 f _y)
		Primary plus secondary	
	Service	SIT	310.2 (0.75 f _y)
		Primary plus secondary	273.0 (0.66 f _y)
		Other	206.8 (0.50 f _y)
Compression	Factored	Primary	372.2 (0.90 f _y)
		Primary plus secondary	
	Service	SIT	273.0 (0.66 f _y)
		Primary plus secondary	
		Other	206.8 $(0.50 f_y)$

Table 6.4.1-3	Allowable Stress	of Reinforcemen	t for Membrane	Plus Bending
---------------	------------------	-----------------	----------------	--------------

Table 6.4.1-4 Allowable Stress of Concrete for Membrane Compressive Forces

Load Category	Load Condition	Allowab	Allowable Compressive Stress (MPa)			
Factored	Primary	Basemat	16.6	(0.60 f _c ')		
		Top Slab	24.8			
		Others	20.7			
	Primary plus secondary	Basemat	20.7	(0.75 f _c ')		
		Top Slab	31.0			
		Others	25.9			
Service	Primary	Basemat	8.3	(0.30 f _c ')		
		Top Slab	12.4			
		Others	10.4			
	Primary plus secondary	Basemat	12.4	(0.45 f _c ')		
		Top Slab	18.6			
		Others	15.5			

WG3-U71-ERD-S-0004	SH NO.	206
REV. 1	of	543

	Primary Reinforcement							Shear Tio		
1 4	Element T		Direction 1		Direction 2		2*1	Shear he		
Location	ID	ness (m)	Position	Arrangement ^{*2}	Ratio (%)	Arrangement ^{*2}	Ratio (%)	Arrangement	Ratio (%)	
18 Wali	6		Inside	2-#18@300	0.860	3-#18@0.9°	1.297			
Below RCCV Bottom	13 24	2.0	Outside	3-#18@300	1.290	3-#18@0.9° +1-#18@0.9°	1.729	#9@0.9°x300	0.721	
19 Wall Below	806	20	Inside	2-#18@300	0.860	3-#18@0.9°	1.297	#0@1 2ºv600	0 270	
Mid-Height	824	2.0	Outside	3-#18@300	1.290	3-#18@0.9°	1.297	#9001.2 X000	0.270	
20 Wall	1606		Inside	2-#18@300	0.860	3-#18@0.9°	1.297			
Below RCCV	1613 1624	2.0	Outside	3-#18@300	1.290	3-#18@0.9° +1-#18@1.8°	1.513	#9@1.2°x300	0.540	
21 Exterior Wall @ EL-11.50	20011	2.0	Inside	4-#11@200 +1-#11@400	1.132	5-#11@200 (+1-#11@200)	1.510	#7@400~200	0.484	
to -10.50m	20011	2.0	Outside	4-#11@200 +1-#11@400	1.132	5-#11@200 (+2-#11@200)	1.761	#7@400x200	0.404	
	20023	2.0	Inside	4-#11@200 +1-#11@400	1.132	5-#11@200 (+1-#11@200)	1.510	#7@400~200	0 494	
	20023	2.0	Outside	4-#11@200 +1-#11@400	1.132	5-#11@200	1.258	#7@400x200	0.404	
	30010	2.0	Inside	1-#11@100 +3-#11@200	1.258	2-#11@100 +2-#11@200	1.510	6@300v300	0 740	
	30020	30020	2.0	Outside	2-#11@100 +2-#11@200	1.510	3-#11@100 +1-#11@200	1.761	0@200x200	0.710
	40001	20	Inside	1-#11@100 +3-#11@200	1.258	2-#11@100 +2-#11@200	1.510	6@200x200	0 710	
	40011	40011		2-#11@100 +2-#11@200	1.510	2-#11@100 +2-#11@200	1.510	002007200	0.710	
22 Exterior Wall @ EL4.65	22011	15	Inside	3-#11@200 +1-#11@400	1.174	4-#11@200 (+1-#11@200)	1.677	#7@400~200	0 494	
to 6.60m	22011	1.5	Outside	3-#11@200 +1-#11@400	1.174	4-#11@200 (+1-#11@200)	1.677	#7@400x200	0.464	
	22022	1 5	Inside	3-#11@200 +1-#11@400	1.174	4-#11@200	1.342	#7@400~200	0.49.4	
	22023 1.5	1.5	Outside	3-#11@200 +1-#11@400	1.174	4-#11@200	1.342	#7@400x200	0.484	
	22010	1 6	Inside	3-#11@200	1.006	3-#11@200	1.006	#0.00	0.477	
	32010	0.1	Outside	3-#11@200 (+2-#11@200)	1.677	3-#11@200 (+2-#11@200)	1.677	#6@400x400	0.177	
	32020	15	Inside	3-#11@200	1.006	3-#11@200	1.006	#6@400-400	0 177	
	52020	020 1.5	Outside	3-#11@200	1.006	3-#11@200	1.006	#0@400x400	0.177	
	42001	1.5	Inside	3-#11@200	1.006	3-#11@200	1.006	#7@400x400	0.242	
			Outside	4-#11@200	1.342	4-#11@200	1.342			
Note *1: Wall Be	elow RCCV	/ Di	rection 1:	Hoop		Direction 2: Ve	rtical			

Table 7.3.1.1-1 Sectional Thicknesses and Rebar Ratios of RB Used in the Evaluation

Direction 1: Hoop Direction 1: Horizontal Exterior Wall

Direction 2: Vertical

Note *2: Rebar in parenthesis indicates additional bars locally required.

Direction 2: Vertical

WG3-U71-ERD-S-0004	SH NO.	207
REV. 1	of	543

Table 7.3.1.1-1Sectional Thicknesses and Rebar Ratios of RB Used in the Evaluation
(Continued)

			Primary Reinforcement					Shear Tio			
Elemen		Location	Element	Thick-		Direction	1 ^{•1}	Direction	2 ^{*1}	Silear	
Location	ID	(m)	Position	Arrangement ²	Ratio (%)	Arrangement ^{*2}	Ratio (%)	Arrangement	Ratio (%)		
22 Exterior Wall @ EL4.65	40044	4.5	Inside	3-#11@200	1.006	3-#11@200	1.006	WZ C 400 400	0.040		
to 6.60m	42011	1.5	Outside	4-#11@200 (+1-#11@200)	1.677	4-#11@200 (+1-#11@200)	1.677	#/@400x400	0.242		
23 Exterior Wall @ EL22.50	24211	1 5	Inside	3-#11@200 +1-#11@400	1.174	4-#11@200 (+1-#11@200)	1.677	#7@200.4200	0.069		
to 24.60m	24211	1.5	Outside	3-#11@200 +1-#11@400	1.174	4-#11@200	1.342	#/@200x200	0.900		
			Inside	3-#11@200 +1-#11@400	1.174	4-#11@200 (+1-#11@200)	1.677				
	24224	1.5	Outside	3-#11@200 +1-#11@400	1.174	4-#11@200 (+1-#11@200)	1.677	#7@200x200	0.968		
	04040	4.5	Inside	3-#11@200	1.006	3-#11@200	1.006	#0.0 400 400	0.477		
342	34210	1.5	Outside	3-#11@200 (+2-#11@200)	1.677	3-#11@200 (+2-#11@200)	1.677	-#6@400x400	0.177		
	24220	15	Inside	3-#11@200	1.006	3-#11@200	1.006	#6@2002200	0 710		
	34220	1.5	Outside	3-#11@200	1.006	3-#11@200	1.006	#0@200x200	0.710		
	44201	15	Inside	3-#11@200	1.006	3-#11@200	1.006	#7@200x200	0.968		
	44201	1.0	Outside	4-#11@200	1.342	4-#11@200	1.342	#7.@200x200	0.000		
24 Basemat @ Wall	asemat 90140 @ Wall 00182	4.0	Тор	5-#11@0.9°	0.401	4-#11@200 +1-#11@400	0.566	#11@0 9×400	0.801		
Below RCCV	90102	4.0	Bottom	5-#11@200	0.629	5-#11@200	0.629	#11@0.37400	0.001		
25 Slab EL4.65m	93140	10	Тор	2-#11@200	1.006	2-#11@200	1.006	#5@200~200	0 500		
@ RCCV	93102	1.0	Bottom	2-#11@200	1.006	2-#11@200	1.006	#3@200x200	0.000		
26 Slab EL17.5m	96144	1.0	Тор	2-#11@200	1.006	2-#11@200	1.006	#5@2002200	0 500		
@ RCCV	96186	1.0	Bottom	2-#11@200	1.006	2-#11@200	1.006	#3@200x200	0.500		
	06112	1.6	Тор	2-#11@200	0.629	2-#11@200	0.629	#5@200x200	0.500		
	30113	1.0	Bottom	3-#11@200	0.944	3-#11@200	0.944	#J@200X200	0.000		

 Note:
 Updated reinforcement arrangements from standard design are shown in red.

 Note *1:
 Exterior Wall
 Direction 1: Horizontal
 Direction

Direction 1: N-S

Direction 2: Vertical

Direction 2: E-W

Basemat Direction 1: Top; Radial; Bottom; N-S

Slab/MS Tunnel Slab

Note *2: Rebar in parenthesis indicates additional bars locally required.

Direction 2: Top: Circumferential; Bottom; E-W

1

WG3-U71-ERD-S-0004	SH NO.	208
REV. 1	of	543

Table 7.3.1.1-1Sectional Thicknesses and Rebar Ratios of RB Used in the Evaluation
(Continued)

			Primary Reinforcement					Shear Tie		
Loostion	Element	Thickness		Directio	on 1 ^{*1}	Direction	ι 2 ^{*1}	Snear Tie		
Location	!D	(m)	Position	Arrangement ^{*2}	Ratio (%)	Arrangement ^{*2}	Ratio (%)	Arrangement	Ratio (%)	
27 Slab EL27.0m	98472		Тор	3-#11@200 (+2-#11@200)	1.677	3-#11@200 (+2-#11@200)	1.677	# 7 ,0000,000		
@ RCCV	98514	1.5	Bottom	3-#11@200 (+3-#11@200)	2.013	3-#11@200 (+3-#11@200)	2.013	#7@200x200	0.968	
	98424	24	Тор	4-#11@200 (+2-#11@200)	1.258	4-#11@200 (+2-#11@200)	1.258	#7@200v200	0.968	
	30424	2.7	Bottom	4-#11@200 (+1-#11@200)	1.048	4-#11@200 (+1-#11@200)	1.048	#7@200x200	0.900	
28 Pool Girder @ Storage	123054	16	Inside	3-#11@200	0.944	3-#11@200	0.944	#7@400×200	0 484	
Pool	123154	1.0	Outside	3-#11@200 (+1-#11@200)	1.258	3-#11@200	0.944	#7@400A200		
29 Pool Girder @ Cavity	123062	16	Inside	3-#11@200	0.944	3-#11@200	0.944	#7@400x400	0 242	
	123162	1.0	Outside	3-#11@200	0.944	3-#11@200	0.944		0.2 4 2	
30 Pool Girder @ Fuel Pool	123067	10	Inside	3-#11@200 (+1-#11@200)	1.258	3-#11@200 (+1-#11@200)	1.258		0.404	
	123167	1.0	Outside	3-#11@200	0.944	3-#11@200	0.944	#7@400x200	0.484	
31 MS Tunnel Wall and Slab	150122	12	Inside	2-#11@200	0.774	2-#11@200	0.774	#6@400~400	0 177	
	130122	1.0	Outside	2-#11@200 +1-#11@400	0.968	2-#11@200 +1-#11@400	0.968	#0@400x400	0.177	
	96611	16	Тор	2-#11@200	0.629	2-#11@200	0.629	#5@200v200	0 500	
	50011	1.0	Bottom	3-#11@200	0.944	3-#11@200	0.944	#3@200A200	0.000	
	98614	24	Тор	4-#11@200	0.839	4-#11@200	0.839	-#5@200v200	0.500	
		2.4	Bottom	3-#11@200	0.629	3-#11@200	0.629	#5@200x200	0.000	
32 IC/PCCS Pool Wall in NS Dir	125051 125151	10	Inside	1-#11@200 +1-#11@400	0.755	1-#11@200 +1-#11@400	0.755	#5@400x200	0.050	
in NS Dir.	125055 125155	NS DIF. 125055 125155	1.0	Outside	2-#11@200	1.006	2-#11@200 (+1-#11@400)	1.258	#J@+UUX2UU	0.200

Note *1: Slab/MS Tunnel Slab Direction 1: N-S Pool Girder Direction 1: Hori

Direction 1: Horizontal Direction 1: Horizontal Direction 2: E-W Direction 2: Vertical

Direction 2: Vertical

MS Tunnel Wall Direction 1: Horizontal Note *2: Rebar in parenthesis indicates additional bars locally required.

WG3-U71-ERD-S-0004	SH NO. 209	
REV. 1	of 543	

Table 7.3.1.1-2 Rebar and Concrete Stresses of RB, 1.05D + 1.3L + 1.3To + 1.3W: Winter - Load ID = 4021 (Selected Load Combination RB-4)

		Concrete St	te Stress (MPa) Primary Reinforcement Stress (MPa)			Concrete Stress (MPa) Primary Reinforcement Stress (MPa)				
Location	Element				Calci	lated	ated			
Location	ID	Calculated	Allowable	lowable Direction 1 Direction 1		Direction 1 Direction 2		Allowable		
				in/Top	Out/Bottom	In/Top	Out/Bottom			
18 Wall	6	-3.6	-29.3	2.6	3.4	-24.0		372.2		
Below RCCV	13	-4.0	-29.3	0.5	1.0	-27.0	-24.6	372.2		
Bottom	24	-5.1	-29.3	3.2	3.1	- <u>33.1</u>	-22.9	372.2		
19 Wall Below	806	-4.5	-29.3	2.7	3.3	-17.9	-27.7	372.2		
Below RCCV	813	-5.2	-29.3	-0.7	0.7	-20.6	31.7	372.2		
Mid-Height	824	-6.1	-29.3	-1.1	-1.0	-21.3	-36.0	372.2		
20 Wall	1606	-5.8	-29.3	16.8	18.3	-33.7	-12.9	372.2		
Below RCCV	1613	<u>-8.</u> 2	-29.3	13.9	17.0	-45.8	-8.9	372.2		
Тор	1624	-9.3	-29.3	18.3	23.3	-51.4	-11. <u>3</u>	372.2		
21 Exterior Wall	20011	-1.6	-29.3	4.5	0.7	6.0	-7.5	372.2		
@ EL-11.50	20023	-5.9	-29.3	14.7	-16.8	23.6	-20.7	372.2		
~-10.50m	30010	-1.6	-29.3	0.0	-8.8	1.1	-1.4	372.2		
	30020	-1.9	-29.3	-7.1	1.0	-4.5	-11.1	372.2		
	40001	-1.7	-29.3	-4.0	-0.9	-6.0	-9.0	372.2		
	40011	-1.1	-29.3	0.2	-4.0	3.1	-5.3	372.2		
22 Exterior Wall	22011	-1.2	-29.3	31.4	26.7	12.2	6.8	372.2		
@ EL4.65	22023	-5.0	-29.3	13.2	13.5	-13.0	-38.2	372.2		
~6.60m	32010	-0.7	-29.3	25.0	90.5	-4.2	10.8	372.2		
	32020	-3.9	-29.3	4.7	44.8	-7.6	51.1	372.2		
	42001	-3.4	-29.3	7.8	32.7	-10.4	27.4	372.2		
	42011	-2.6	-29.3	30.6	83.4	-12.1	13.0	372.2		
23 Exterior Wall	24211	-1.9	-29.3	8.9	17.6	-4.9	8.4	372.2		
@ EL22.50	24224	-2.4	-29.3	31.2	-0.4	9.2	9.5	372.2		
~24.60m	34210	-3.3	-29.3	35.1	104.6	-6.0	43.5	372.2		
	34220	-0.6	-29.3	44.6	-12.1	-9.1	33.0	372.2		
	44201	-0.5	-29.3	53.1	33.9	6.8	71.8	372.2		
24 Basemat	90140	-1.7	-23.5	-11.4	-3.2	1.6	0.0	372.2		
@ Wall	90182	-2.4	-23.5	-12.5	-4.6	-0.9	8.4	372.2		
Below RCCV	90111	-3.1	-23.5	-18.6	6.7	3.0	-1.0	372.2		
25 Slab	93140	-7.0	-29.3	26.6	70.8	62.6	87.9	372.2		
EL4.65m	93182	-11.1	-29.3	19.1	19.9	-48.7	41.1	372.2		
@ RCCV	93111	-11.0	-29.3	-47.1	48.6	33.2	37.3	372.2		
26 Slab	96144	-4.3	-29.3	69.4	83.6	90.8	97.9	372.2		
EL17.5m	96186	-5.5	-29.3	30.0	58.6	-36.7	28.6	372.2		
@ RCCV	96113	-11.1	-29.3	-46.8	76.6	-30.4	56.1	372.2		
27 Slab	98472	-7.6	-29.3	58.2	68.0	60.9	52.9	372.2		
EL27.0m	98514	-2.7	-29.3	-3.9	13.1	-11.2	-4.5	372.2		
@ RCCV	98424	-6.7	-29.3	-15.9	-36.4	-30.0	-24.5	372.2		

Note: Negative value means compression. Note *: Wall Below RCCV Direction Direction1: Hoop,

Basemat

Exterior Wall Slab/MS Tunnel Slab Pool Girder

MS Tunnel Wall

Direction1: Horizontal, Direction1: N-S, Direction1: Horizontal, Direction1: Horizontal,

Direction2: Vertical Direction2: Vertical Direction2: E-W Direction2: Vertical

Direction2: Vertical

Ι

WG3-U71-ERD-S-0004	SH NO.	210
REV. 1	of	543

Table 7.3.1.1-2 Rebar and Concrete Stresses of RB, 1.05D + 1.3L +1.3To + 1.3W: Winter - Load ID = 4021 (Selected Load Combination RB-4) (Continued)

	Concrete Stress (MPa) Primary Reinfor					inforceme	nforcement Stress (MPa)		
Location	Element				Calcu	lated			
Location	ID	Calculated	Allowable	Di	rection 1	Di	Allowable		
				In/Top	Out/Bottom	ln/Top	Out/Bottom		
28 Pool Girder	123054	-8.7	-29.3	9.8	61.7	-43.0	-3.4	372.2	
@ Storage Pool	123154	-3.4	-29.3	20.4	96.0	4.7	66.4	372.2	
29 Pool Girder	123062	-1.9	-29.3	-13.2	-12.5	33.1	8.2	372.2	
@ Cavity	123162	-2.7	-29.3	-19.2	-18.8	15.9	3.7	372.2	
30 Pool Girder	123067	-5.7	-29.3	-14.1	-3.6	-33.9	-26.1	372.2	
@ Fuel Pool	123167	-4.0	-29.3	-13.4	-7.4	-6.5	-17.7	372.2	
31 MS Tunnel	150122	-13.6	-29.3	14.0	169.7	-22.9	220.5	372.2	
Wall and Slab	96611	-8.6	-29.3	1.4	5.1	-21.1	194.3	372.2	
	98614	-6.4	-29.3	2.8	2.6	-3.7	152.0	372.2	
32 IC/PCCS	125051	-3.1	-29.3	21.4	15.7	3.4	-8.1	372.2	
Pool Wall	125151	-1.6	-29.3	-4.0	-3.0	-9.0	-6.0	372.2	
in NS Dir.	125055	-1.3	-29.3	-7.9	-8.3	11.2	-0.4	372.2	
	125155	-2.2	-29.3	-14.7	-14.4	-1.1	1.6	372.2	

Note: Negative value means compression. Note *: Wall Below RCCV Direction

 *: Wall Below RCCV Exterior Wall Slab/MS Tunnel Slab Pool Girder MS Tunnel Wall Basemat ression. Direction1: Hoop, Direction1: Horizontal, Direction1: N-S, Direction1: Horizontal, Direction1: Horizontal,

Direction2: Vertical Direction2: Vertical Direction2: E-W Direction2: Vertical Direction2: Vertical

WG3-U71-ERD-S-0004	SH NO.	211
REV. 1	of	543

Table 7.3.1.1-3Rebar and Concrete Stresses of RB, LOCA After 6 minutes (1.5Pa):Winter - Load ID = 6241 (Selected Load Combination RB-8a)

		Concrete St	ncrete Stress (MPa) Primary Reinforcement Stress (MP			ent Stress (MPa)		
Location	Element				Calculated			
Location	ID	Calculated	Allowable	Di	rection 1	Di	rection 2	Allowable
				In/Top	Out/Bottom	In/Top	Out/Bottom	
18 Wall	6	-6.9	-29.3	8.0	20.8	-15.5	-38.1	372.2
Below RCCV	13	-6.9	-29.3	-1.6	-2.0	<u>-16.4</u>	-39.3	372.2
Bottom	24	-6.1	-29.3	2.5	2.5	-22.2	-37.3	372.2
19 Wall Below	806	-5.6		13.8	6.1	-17.9	33.1	372.2
Below RCCV	813	6.3	-29.3	2.0	2.7	-21.8	-37.6	372.2
Mid-Height	824	-6.9		1.2	1.2	<u>-2</u> 2.0	-40.7	372.2
20 Wall	1606	-15.9	-29.3	34.2	81.8	-63.3	41.3	372.2
Below RCCV	1613	-17.0	-29.3	31.6	78.3	-73.0	44.6	372.2
Тор	1624	-16.6	-29.3	41.2	91.5	-81.1	45.0	372.2
21 Exterior Wall	20011	-5.3	-29.3	32.5	20.9	51.6	-16.6	372.2
@ EL-11.50	20023	-4.9	-28.9	10.2	-13.6	15.9	-19.6	368.9
~-10.50m	30010	-2.8	-29.3	5.9	-7.1	24.0	-9.7	372.2
	30020	-2.2	-29.3	-5.6	2.9	-7.3	-13.2	372.2
	40001	-2.1	-29.3	-3.5	1.0	-8.0	-12.0	372.2
	40011	-2.3	-29.3	6.3	-4.5	9.6	-10.9	372.2
22 Exterior Wall	22011	-2.6	-29.3	80.4	66.5	27.9	21.6	372.2
@ EL4.65	22023	-5.0	-29.3	44.0	11.3	-9.4	-25.2	372.2
~6.60m	32010	-0.7	-29.3	71.5	111.0	30.6	63.9	372.2
	32020	-3.5	-29.3	9.2	40.8	-9.7	45.1	372.2
	42001	-2.8	-29.3	10.9	31.1	-12.1	34.3	372.2
	42011	-4.5	-29.3	35.5	91.4	-15.7	44.3	372.2
23 Exterior Wall	24211	-0.8	-29.3	61.8	41.3	47.2	7.5	372.2
@ EL22.50	24224	-2.0	-29.3	27.0	13.1	4.3	18.7	372.2
~24.60m	34210	-0.4	-29.3	92.4	165.9	22.2	114.3	372.2
	34220	-2.9	-29.3	39.8	-12.1	-16.7	33.2	372.2
_	44201	-0.6	-29.3	50.6	4.0	-16.7	39.9	372.2
24 Basemat	90140	-1.4	-23.5	-9.3	-8.1	1.6	-2.9	372.2
@ Wall	90182	-1.8	-23.5	-9.5	23.1	6.2	5.1	372.2
Below RCCV	90111	-2.4	-23.5	-13.8	3.9	32.1	10.5	372.2
25 Slab	93140	-8.7	-29.3	81.5	120.6	124.2	151.8	372.2
EL4.65m	93182	-11.9	-29.3	60.7	72.5	-57.5	28.3	372.2
@ RCCV	93111	-11.0	-29.3	-52.5	28.8	72.7	84.2	372.2
26 Slab	96144	-9.9	-29.3	199.6	217.6	268.0	208.8	372.2
EL17.5m	96186	-7.0	-29.3	114.4	130.8	-26.9	-23.7	372.2
@ RCCV	96113	-13.6	-28.8	-87.9	28.6	83.6	115.1	368.2
27 Slab	98472	-5.7	-29.1	66.3	53.0	71.1	51.0	370.3
EL27.0m	98514	-2.6	-29.1	16.8	33.1	-6.5	18.8	370.3
@ RCCV	98424	-5.2	-28.1	-18.6	-30.7	-13.6	-8.6	363.0

Note: Negative value means compression. Note *: Wall Below RCCV Directio

Wall Below RCCV Exterior Wall Slab/MS Tunnel Slab Pool Girder MS Tunnel Wall Basemat Direction1: Hoop, Direction1: Horizontal, Direction1: N-S, Direction1: Horizontal, Direction1: Horizontal, Direction2: Vertical Direction2: Vertical Direction2: E-W Direction2: Vertical Direction2: Vertical

Direction1: Top; Radial, Bottom; N-S, Direction2: Top; Circumferential, Bottom; E-W

.

WG3-U71-ERD-S-0004	SH NO.	212
REV. 1	of	543

Table 7.3.1.1-3Rebar and Concrete Stresses of RB, LOCA After 6 minutes (1.5Pa):Winter – Load ID = 6241 (Selected Load Combination RB-8a) (Continued)

		Concrete St	ress (MPa)	Primary Reinforcement Stress (MPa)				
Location	Element							
Lucation	lD	Calculated	Allowable	Di	rection 1	Di	rection 2	Allowable
				in/Top	Out/Bottom	ln/Top	Out/Bottom	
28 Pool Girder	123054	-6.8	-29.0	26.7	123.4	-0.9	111.8	369.8
@ Storage Pool	123154	-3.0	-29.0	45.6	68.3	45.8	57.6	369.8
29 Pool Girder	123062	-2.7	-28.4	28.2	49.9	9.8	53.3	365.0
@ Cavity	123162	-1.9	-28.4	87.7	99.7	55.1	46.6	365.0
30 Pool Girder	123067	-5.2	-28.4	-2.3	20.4	-17.7	12.4	365.0
@ Fuel Pool	123167	-5.6	-28.4	35.8	31.2	52.0	17.8	365.0
31 MS Tunnel	150122	-11.4	-29.3	14.7	142.2	-21.4	174.5	372.2
Wall and Slab	96611	-6.7	-29.3	-1.9	6.3	-9.3	189.6	372.2
	98614	-6.3	-29.3	2.1	11.0	-6.6	138.8	372.2
32 IC/PCCS	125051	-1.8	-28.3	75.4	43.9	80.0	51.3	364.7
Pool Wall	125151	-2.5	-28.3	74.0	42.6	54.8	34.6	364.7
in NS Dir.	125055	-0.9	-28.3	-2.4	2.2	1.4	20.6	364.7
	125155	-0.7	-28.3	-2.3	-2.7	14.3	2.4	364.7

Note: Negative value means compression. Note *: Wall Below RCCV Direction

*: Wall Below RCCV Exterior Wall Slab/MS Tunnel Slab Pool Girder MS Tunnel Wall Basemat Direction1: Hoop, Direction1: Horizontal, Direction1: N-S, Direction1: Horizontal,

Direction1: Horizontal,

Direction2: Vertical Direction2: Vertical Direction2: E-W Direction2: Vertical

Direction2: Vertical

WG3-U71-ERD-S-0004	SH NO.	213
REV. 1	of	543

Table 7.3.1.1-4 Rebar and Concrete Stresses, of RB: LOCA After 72 hours (1.5Pa): Winter – Load ID = 6441 (Selected Load Combination RB-8b)

	Concrete St	tress (MPa)						
Location	Element				Calcu	lated	_	
Location	D	Calculated	Allowable	Di	rection 1	Di	rection 2	Allowable
				In/Top	Out/Bottom	In/Top	Out/Bottom	
18 Wali	6	-7.7	-29.3	-0.5	2.7	-9.8	-40.6	372.2
Below RCCV	13	-8.2	-29.3	-2.0	-3.0	-11.7	-44.6	372.2
Bottom	24	-7.3	-29.3	1.3	-2.3	-15.7	41.5	372.2
19 Wall Below	806	-6.1	-29.3	12.4	6.6	-14.4	-34.6	372.2
Below RCCV	813	-6.8	-29.3	2.5	4.6	-19.9	-39.9	372.2
Mid-Height	824	-7.3	-29.3	1.6	2.7	-18.7	-41.6	372.2
20 Wall	1606	-14.1	-29.3	52.6	97.2	-68.0	47.9	372.2
Below RCCV	1613	-16.7	-29.3	46.4	94.3	-81.0	51.5	372.2
Тор	1624	-17.9	-29.3	62.2	107.8	-82.3	54.7	372.2
21 Exterior Wall	20011	-4.7	-29.3	37.8	8.3	54.8	-13.1	372.2
@ EL-11.50	20023	-4.7	-28.9	8.4	-13.4	14.3	-18.8	368.9
~-10.50m	30010	-2.8	-29.3	6.3	-5.6	29.2	-9.2	372.2
	30020	-2.4	-29.3	-5.8	4.0	-7.2	-13.5	372.2
	40001	-2.2	-29.3	-3.8	2.4	-7.9	-12.5	372.2
	40011	-2.2	-29.3	7.0	-2.7	14.1	-9.4	372.2
22 Exterior Wall	22011	-1.9	-29.3	110.3	93.1	68.3	65.9	372.2
@ EL4.65	22023	-4.6	-29.3	45.5	9.7	-6.2	-22.3	372.2
~6.60m	32010	-0.6	-29.3	77.9	137.7	-2.9	63.7	372.2
	32020	-4.1	-29.3	18.4	18.7	-14.6	42.4	372.2
	42001	-1.9	-29.3	32.8	12.3	-4.2	22.6	372.2
	42011	-3.6	-29.3	37.6	96.0	-8.6	40.5	372.2
23 Exterior Wall	24211	-0.6	-29.3	90.1	59.1	71.0	15.2	372.2
@ EL22.50	24224	-3.2	-29.3	60.7	-10.1	23.0	19.0	372.2
~24.60m	34210	-0.3	-29.3	121.8	219.3	31.2	157.0	372.2
	34220	-2.4	-29.3	75.3	-20.3	-16.2	38.7	372.2
	44201	-0.4	-29.3	. 84.8	2.1	21.1	49.5	372.2
24 Basemat	90140	-1.8	-23.5	-11.9	4.5	1.1	7.5	372.2
@ Wall	90182	-1.8	-23.5	-9.0	6.7	18.9	5.9	372.2
Below RCCV	90111	-2.4	-23.5	-13.8	4.7	18.5	9.8	372.2
25 Slab	93140	-11.1	-29.3	115.0	175.0	150.3	198.1	372.2
EL4.65m	93182	-15.5	-29.3	76.2	85.5	-73.2	41.7	372.2
@ RCCV	93111	-14.1	-29.3	-65.5	43.1	87.0	95.9	372.2
26 Slab	96144	-9,8	-29.3	206.7	216.9	273.0	269.0	372.2
EL17.5m	96186	-8.8	-29.3	143.8	164.4	-33.5	14.9	372.2
@ RCCV	96113	-13.9	-28.8	-88.5	19.9	103.1	128.6	368.2
27 Slab	98472	-7.1	-27.6	6.8	58.5	18.4	56.7	359.4
EL27.0m	98514	-7.1	-27.6	-21.0	34.8	-22.1	43.8	359.4
@ RCCV	98424	-6.4	-28.1	6.2	-43.6	64.9	31.9	363.0

Note: Negative value means compression. Note *: Wall Below RCCV

Basemat

Exterior Wall Slab/MS Tunnel Slab Pool Girder MS Tunnel Wall

Direction1: Hoop, Direction1: Horizontal, Direction1: N-S, Direction1: Horizontal,

Direction1: Horizontal,

Direction2: Vertical Direction2: Vertical Direction2: E-W Direction2: Vertical

Direction2: Vertical

Table 7.3.1.1-4Rebar and Concrete Stresses of RB, LOCAAfter 72 hours (1.5Pa): Winter- Load ID = 6441 (Selected Load Combination RB-8b) (Continued)

		Concrete St	ress (MPa)	Primary Reinforcement Stress (MPa)					
Element					Calcu	lated			
Location	ID	Calculated	Allowable	Di	rection 1	Di	rection 2	Allowable	
				In/Top	Out/Bottom	in/Top	Out/Bottom		
28 Pool Girder	123054	-7.6	-29.0	19.7	167.8	41.1	197.0	369.8	
@ Storage Pool	123154	-3.9	-29.0	63.7	73.4	73.4	62.6	369.8	
29 Pool Girder	123062	-13.6	-27.4	34.8	207.5	-3.8	190.6	358.3	
@ Cavity	123162	-9.5	-27.4	60.8	255.4	11.2	180.2	358.3	
30 Pool Girder	123067	-11.3	-27.4	13.1	126.5	-24.0	114.1	358.3	
@ Fuel Pool	123167	-6.8	-27.4	22.9	138.3	16.3	113.9	358.3	
31 MS Tunnel	150122	-11.7	-29.3	16.4	133.9	-25.6	166.0	372.2	
Wall and Slab	96611	-6.4	-29.3	-2.2	3.3	-6.8	192.5	372.2	
	98614	-6.7	-29.3	2.3	5.7	-10.0	127.0	372.2	
32 IC/PCCS	125051	-2.6	-25.4	-13.4	-11.9	-8.5	-3.0	343.4	
Pool Wall	125151	-5.7	-25.4	82.6	60.7	85.1	61.8	343.4	
in NS Dir.	125055	-4.7	-25.4	-30.6	-29.2	-0.8	23.5	343.4	
	125155	-37	-25.4	-25.3	-25.0	_11	0.8	343.4	

Note: Negative value means compression.

Note *: Wall Below RCCV Exterior Wall Slab/MS Tunnel Slab Pool Girder MS Tunnel Wall

Basemat

Direction1: Hoop, Direction1: Hoop, Direction1: Horizontal, Direction1: N-S, Direction1: Horizontal, Direction1: Horizontal, Direction1: Top: Badial

Direction2: Vertical Direction2: Vertical Direction2: E-W Direction2: Vertical Direction2: Vertical

WG3-U71-ERD-S-0004	SH NO. 2	15
REV. 1	of 54	43

Table 7.3.1.1-5 Rebar and Concrete Stresses of RB, LOCA After 6 minutes + SSE: Winter – Load ID = 7241 (Site-Specific Seismic Load Combination RB-9a)

Concrete S		Concrete St	ress (MPa)) Primary Reinforcement Stress (MP				
Location	Element		_		Calcu	lated	-	
Loodion	ID	Calculated	Allowable	Di	rection 1	Di	rection 2	Allowable
				_in/Top	Out/Bottom	in/Top	Out/Bottom	
18 Wall	6	-10.3	-29.3	51.7	65.3	-22.1	<u>69.4</u>	372.2
Below RCCV	13	-11.3	-29.3	25.6	57.2	-26.5	-62.3	372.2
Bottom	24	-10.8	-29.3	39.4	40.6	85.5	-30.0	372.2
19 Wall Below	806	-7.8	-29.3	_ 95.6	47.8	58.6		372.2
Below RCCV	813	-8.8	-29.3	59.3	40.6	38.0	-53.0	372.2
Mid-Height	824	-9.8	-29.3	79.6	48.0	71.2	-57.5	372.2
20 Wall	1606	-12.3	-29.3	87.4	<u> </u>	-80.6	80.1	372.2
Below RCCV	1613	-14.7	-29.3	56.4	93.8	-92.2	50.8	372.2
Тор	1624	-15.5	-29.3	83.9	115.7	-98.4	84.9	372.2
21 Exterior Wall	20011	-8.6	-29.3	67.5	109.8	53.1	113.7	372.2
@ EL-11.50	20023	-6.3	-28.9	12.8	-19.5	20.4	-25.3	368.9
~-10.50m	30010	-5.6	-29.3	55.6	46.2	34.2	76.5	372.2
	30020	-3.9	-29.3	-11.7	10.7	-7.6	-18.6	372.2
	40001	-4.1	-29.3	21.0	8.4	-6.3	23.2	372.2
	40011	-5.7	-29.3	42.4	42.6	26.6	92.9	372.2
22 Exterior Wall	22011	-8.6	-29.3	152.6	142.2	255.4	135.4	372.2
@ EL4.65	22023	-8.9	-29.3	124.6	56.7	70.0	47.0	372.2
~6.60m	32010	-4.3	-29.3	175.1	199.8	158.3	236.9	372.2
	32020	-7.4	-29.3	112.0	91.6	190.9	270.6	372.2
	42001	-7.4	-29.3	120.2	68.4	209.2	219.0	372.2
	42011	-6.5	-29.3	111.8	150.8	182.2	160.9	372.2
23 Exterior Wall	24211	-5.6	-29.3	188.4	126.0	227.1	119.9	372.2
@ EL22.50	24224	-10.8	-29.3	137.2	135.3	298.7	155.4	372.2
~24.60m	34210	-4.8	-29.3	168.4	213.0	107.6	188.6	372.2
	34220	-3.7	-29.3	108.0	73.6	138.0	172.5	372.2
	44201	-4.0	-29.3	129.3	91.1	151.8	196.1	372.2
24 Basemat	90140	-4.8	-23.5	152.3	-2.9	25.1	9.7	372.2
@ Wall	90182	-3.8	-23.5	25.2	59.4	45.5	33.0	372.2
Below RCCV	90111	-4.3	-23.5	-21.8	27.9	44.1	54.2	372.2
25 Slab	93140	-10.5	-29.3	114.3	142.3	103.9	156.3	372.2
EL4.65m	93182	-17.5	-29.3	42.2	84.3	-73.2	91.6	372.2
@ RCCV	93111	-16.2	-29.3	-67.4	85.8	55.9	90.2	372.2
26 Slab	96144	-10.8	-29.3	204.2	192.4	217.6	230.0	372.2
EL17.5m	96186	-9.0	-29.3	103.8	149.1	-41.3	-35.7	372.2
@ RCCV	96113	-15.6	-28.8	-107.0	75.4	94.9	135.1	
27 Slab	98472	-9.6	-29.1	77.7	61.6	61.5	60.3	370.3
EL27.0m	98514	-4.9	-29.1	18.4	45.4	-18.7	36.9	370.3
@ RCCV	98424	-8.8	-28.1	-23.4	-46.4	-20.3	-11.3	363.0

Note: Negative value means compression.

Note *: Wall Below RCCV Exterior Wall Slab/MS Tunnel Slab Pool Girder MS Tunnel Wall Basemat Direction1: Hoop, Direction1: Horizontal, Direction1: N-S, Direction1: Horizontal, Direction1: Horizontal,

Direction2: Vertical Direction2: Vertical Direction2: E-W Direction2: Vertical Direction2: Vertical

Direction1: Top; Radial, Bottom; N-S, Direction2: Top; Circumferential, Bottom; E-W

1

l

WG3-U71-ERD-S-0004	SH NO.	216
REV. 1	of	543

Table 7.3.1.1-5 Rebar and Concrete Stresses of RB, LOCA After 6 minutes + SSE: Winter - Load ID = 7241 (Site-Specific Seismic Load Combination RB-9a) (Continued)

Element		Concrete St	ress (MPa)	Primary Reinforcement Stress (MPa)					
Location	Element								
Location	ID	Calculated	Allowable	Di	rection 1	Di	Allowable		
				In/Top	Out/Bottom	In/Top	Out/Bottom		
28 Pool Girder	123054	-8.9	-29.0	23.8	112.9	-30.5	123.2	369.8	
@ Storage Pool	123154	-3.2	-29.0	92.4	134.7	75.3	99.2	369.8	
29 Pool Girder	123062	-3.4	-28.4	34.2	35.9	45.7	38.8	365.0	
@ Cavity	123162	-2.1	-28.4	96.8	63.2	40.7	53.8	365.0	
30 Pool Girder	123067	-7.4	-28.4	-4.1	28.9	-35.3	-12.2	365.0	
@ Fuel Pool	123167	-6.7	-28.4	28.4	41.4	48.2	17.9	365.0	
31 MS Tunnel	150122	-12.5	-29.3	17.6	164.2	-22.6	195.8	372.2	
Wall and Slab	96611	-8.9	-29.3	-2.0	23.4	-13.7	226.8	372.2	
	98614	-7.9	-29.3	4.0	27.6	-6.0	178.5	372.2	
32 IC/PCCS	125051	-3.8	-28.3	79.5	47.4	98.5	74.8	364.7	
Pool Wall	125151	-3.8	-28.3	75.9	46.0	47.2	30.6	364.7	
in NS Dir.	125055	-1.6	-28.3	27.2	17.8	37.0	47.8	364.7	
	125155	-1.8	-28.3	22.9	14.4	39.4	15.3	364.7	

Note: Negative value means compression. Note *: Wall Below RCCV Direction

Exterior Wall Slab/MS Tunnel Slab Pool Girder MS Tunnel Wall Basemat

Direction1: Hoop, Direction1: Horizontal, Direction1: N-S, Direction1: Horizontal, Direction1: Horizontal,

Direction2: Vertical Direction2: Vertical Direction2: E-W Direction2: Vertical Direction2: Vertical

Direction1: Top; Radial, Bottom; N-S, Direction2: Top; Circumferential, Bottom; E-W

WG3-U71-ERD-S-0004	SH NO.	217
REV. 1	of	543

Table 7.3.1.1-6Rebar and Concrete Stresses of RB, LOCA After 72 hours + SSE: Winter- Load ID = 7441 (Site-Specific Seismic Load Combination RB-9b)

		Concrete St	tress (MPa)	Primary Reinforcement Stress (MPa)						
Location	Element				Calcu	lated				
Location	ID	Calculated	Allowable	Di	rection 1	Di	rection 2	Allowable		
				In/Top	Out/Bottom	In/Top	Out/Bottom			
18 Wall	6	-11.6	-29.3	37.8	57.6	-17.6	-64.0	372.2		
Below RCCV	13	-13.1	-29.3	24.3	40.2	-18.1	-70.5	372.2		
Bottom	24	-12.5	-29.3	20.3	50.6	-19.8	-69.2	372.2		
19 Wall Below	806	-8.5	-29.3	96.4	47.3	54.7	-54.1	372.2		
Below RCCV	813	-9.7	-29.3	61.3	46.4	-34.0	-57.6	372.2		
Mid-Height	824	-10.5	-29.3	82.1	45.6	74.1	-60.9	372.2		
20 Wall	1606	-13.4	-29.3	107.1	134.1	-85.0	95.2	372.2		
Below RCCV	1613	-16.2	-29.3	76.8	111.6	-98.5	61.3	372.2		
Тор	1624	-16.7	-29.3	104.2	134.0	-103.6	101.6	372.2		
21 Exterior Wall	20011	-8.2	-29.3	116.6	40.7	65.7	104.4	372.2		
@ EL-11.50	20023	-6.2	-28.9	11.6	-19.4	20.8	-25.1	368.9		
~-10.50m	30010	-5.6	-29.3	58.2	48.0	38.5	76.7	372.2		
	30020	-4.2	-29.3	-12.0	11.1	-7.5	-18.0	372.2		
	40001	-4.3	-29.3	18.0	11.1	-6.8	-17.8	372.2		
	40011	-5.9	-29.3	43.2	47.8	31.6	91.4	372.2		
22 Exterior Wall	22011	-7.0	-29.3	246.0	202.2	235.8	303.4	372.2		
@ EL4.65	22023	-8.7	-29.3	131.6	56.8	85.0	54.4	372.2		
~6.60m	32010	-4.6	-29.3	186.7	231.6	135.2	221.2	372.2		
	32020	-5.3	-29.3	56.2	122.7	198.5	280.1	372.2		
	42001	-7.4	-29.3	102.2	85.9	206.6	216.1	372.2		
	42011	-6.3	-29.3	124.3	160.9	196.0	163.9	372.2		
23 Exterior Wall	24211	-5.7	-29.3	244.4	148.0	259.4	123.7	372.2		
@ EL22.50	24224	-10.2	-29.3	146.8	106.0	319.7	132.2	372.2		
~24.60m	34210	-4.8	-29.3	191.9	237.1	106.8	232.9	372.2		
	34220	-5.3	-29.3	133.5	21.5	146.4	139.7	372.2		
	44201	-3.9	-29.3	185.3	57.8	193.6	194.8	372.2		
24 Basemat	90140	-5.2	-23.5	115.0	3.2	4.8	-8.3	372.2		
@ Wall	90182	-3.9	-23.5	23.0	32.9	87.2	39.5	372.2		
Below RCCV	90111	-4.5	-23.5	24.6	37.0	74.5	27.4	372.2		
25 Slab	93140	-13.1	-29.3	144.1	195.2	147.9	204.7	372.2		
EL4.65m	93182	-21.4	-29.3	60.4	100.5	-89.1	108.2	372.2		
@ RCCV	93111	-19.4	-29.3	-80.8	101.4	70.8	104.6	372.2		
26 Slab	96144	-10.9	-29.3	211.9	245.0	256.7	266.9	372.2		
EL17.5m	96186	-11.0	-29.3	130.2	187.1	-52.3	40.1	372.2		
@ RCCV	96113	-16.4	-28.8	-110.3	63.4	115.2	151.9	368.2		
27 Slab	98472	-9.7	-27.6	57.0	84.3	77.8	85.8	359.4		
EL27.0m	98514	-9.8	-27.6	-21.9	34.9	-31.4	64.2	359.4		
@ RCCV	98424	-9.3	-28.1	106.9	-73.3	175.0	64.4	363.0		

Note: Negative value means compression.

Note *: Wall Below RCCV Exterior Wall Slab/MS Tunnel Slab Pool Girder MS Tunnel Wall Basemat Direction1: Hoop, Direction1: Horizontal, Direction1: N-S, Direction1: Horizontal, Direction1: Horizontal, Direction1: Top: Padial Bo

Direction2: Vertical Direction2: Vertical Direction2: E-W Direction2: Vertical

Direction2: Vertical

Direction1: Top; Radial, Bottom; N-S, Direction2: Top; Circumferential, Bottom; E-W

WG3-U71-ERD-S-0004	SH NO.	218
REV. 1	of	543

Table 7.3.1.1-6 Rebar and Concrete Stresses of RB, LOCA After 6 minutes + SSE: Winter - Load ID = 7441 (Site-Specific Seismic Load Combination RB-9b) (Continued)

		Concrete St	ress (MPa)		ent Stress (MPa)			
Logation	Element							
Location	ID	Calculated	Allowable	Di	rection 1	Di	Allowable	
				In/Top	Out/Bottom	In/Top	Out/Bottom	
28 Pool Girder	123054	-7.1	-29.0	53.2	171.9	119.9	252.9	369.8
② Storage Pool	123154	-3.7	-29.0	76.1	161.8	84.3	114.3	369.8
29 Pool Girder	123062	-13.3	-27.4	35.8	222.8	7.5	187.8	358.3
@ Cavity	123162	-10.0	-27.4	59.2	271.6	9.0	158.0	358.3
30 Pool Girder	123067	-13.7	-27.4	3.8	103.3	-47.5	58.6	358.3
@ Fuel Pool	123167	-7.7	-27.4	21.0	136.4	9.6	111.1	358.3
31 MS Tunnel	150122	-12.8	-29.3	19.2	156.0	-26.7	187.4	372.2
Wall and Slab	96611	-8.7	-29.3	-2.3	21.2	-11.6	230.6	372.2
	98614	-8.1	-29.3	4.1	11.2	-13.4	144.4	372.2
32 IC/PCCS	125051	-5.2	-25.4	-13.3	-11.0	-24.4	-16.3	343.4
Pool Wall	125151	-6.7	-25.4	75.9	59.2	68.2	51.8	343.4
in NS Dir.	125055	-5.1	-25.4	-32.5	-30.2	7.1	21.4	343.4
	125155	-5.0	-25.4	-33.3	-32.2	-2.5	2.1	343.4

Note: Negative value means compression.

Note *: Wall Below RCCV Exterior Wall Slab/MS Tunnel Slab Pool Girder MS Tunnel Wall Basemat

Direction1: Hoop, Direction1: Horizontal, Direction1: N-S, Direction1: Horizontal, Direction1: Horizontal,

Direction2: Vertical Direction2: Vertical Direction2: E-W Direction2: Vertical

Direction2: Vertical

Direction1: Top; Radial, Bottom; N-S, Direction2: Top; Circumferential, Bottom; E-W

WG3-U71-ERD-S-0004	SH NO.	219
REV. 1	of	543

		Concrete		oncrete Primary Reinforcement							
Location	Element				Direc	tion 1			Direc	tion 2	
Location	ID	σ/σa		Ir	n/Top	Out	/Bottom	Ir	л/Тор	Out/Bottom	
				σ/σ _a	Load ID	σ/σ _a	Load ID	σ/σ _a	Load ID	σ/σ _a	Load ID
18 Wall	6	0.433	7501	0.249	7721	0.182	7641	0.250	7851	0.203	7621
Below RCCV	13	0.518	7501	0.206	8081	0.157	7721	0.250	7851	0.250	7661
Bottom	24	0.568	7501	0.202	7992	0.172	7672	0.252	7642	0.241	7671
19 Wall	806	0.298	8514	0.284	8021	0.189	7673	0.209	7671	0.183	7651
Below RCCV	813	0.339	8514	0.177	9011	0.132	9011	0.120	7651	0.206	7651
Mid-Height	824	0.367	8514	0.223	7921	0.140	7651	0.200	7971	0.237	7651
20 Wall	1606	0.542	6241	0.383	7701	0.364	7471	0.380	7701	0.264	7971
Below RCCV	1613	0.625	6341	0.263	7651	0.302	7471	0.335	7701	0.210	8061
Тор	1624	0.639	8507	0.378	7751	0.363	7471	0.380	7602	0.289	8001
21 Exterior Wall	20011	0.338	7251	0.391	8514	0.298	7821	0.568	8514	0.314	7721
@ EL-11.50	20023	0.467	7492	0.214	7492	0.099	7491	0.228	7992	0.097	7492
~-10.50m	30010	0.302	7501	0.183	9014	0.196	7961	0.209	7961	0.213	7921
	30020	0.192	7211	0.048	8061	0.111	7261	0.061	7601	0.157	2511
	40001	0.284	7481	0.078	8001	0.170	7461	0.074	7481	0.209	2511
	40011	0.338	7501	0.122	7971	0.143	8011	0.176	7961	0.271	9011
22 Exterior Wall	22011	0.388	7561	0.728	8513	0.591	8513	0.723	7871	0.827	8511
@ EL4.65	22023	0.391	8511	0.367	8001	0.345	7701	0.487	7601	0.526	7601
~6.60m	32010	0.235	7131	0.552	7482	0.635	8514	0.525	7173	0.714	8511
	32020	0.257	7371	0.429	7431	0.375	9012	0.719	7831	0.802	7411
	42001	0.269	7201	0.385	7751	0.253	7991	0.698	9012	0.677	7113
	42011	0.260	7501	0.504	8511	0.518	8511	0.571	9014	0.616	8511
23 Exterior Wall	24211	0.336	7501	0.662	7461	0.571	8511	0.725	7461	0.630	8513
@ EL22.50	24224	0.436	7961	0.699	7481	0.451	7601	0.878	7632	0.848	8512
~24.60m	34210	0.231	5026	0.655	7482	0.909	7482	0.520	8514	0.854	7482
	34220	0.195	7482	0.491	8511	0.250	8512	0.484	7261	0.617	8511
	44201	0.230	8502	0.498	7441	0.312	7581	0.545	7461	0.571	7581
Note *: Wall Belov Exterior W	v RCCV D	irection1 irection1	: Hoop, ; Horizor	ntal.	Direction2	2 : Vertica 2 : Vertica	al al				

Table 7.3.1.1-7 Maximum Stress Ratios for Flexure and Membrane Forces

		11201	0.200	0002	0.100	1
e *:	Wall Below	RCCVD	irection1	: Hoop,		
	Exterior W	all D	irection1	: Horizor	ntal,	
	Slab	D	irection1	: N-S,		
	Pool Girde	r D	irection1	: Horizor	ntal,	
	MS Tunnel	Wall D	irection1	: Horizor	ntal,	
	MS Tunne	Slab D	irection1	: N-S,		
			المامصمات			

Direction2 : E-W Direction2 : Vertical Direction2 : Vertical

Direction2 : E-W

 σ and σ_a are calculated and allowable stress.

WG3-U71-ERD-S-0004	SH NO.	220
REV. 1	of	543

Concrete Primary Reinforcement												
Location	Element				Direc	tion 1			Direc	tion 2		
Location	ID	σ/σ_		lr	In/Top		Out/Bottom		In/Top		Out/Bottom	
			10	σ/σ _a	Load ID	σ/σ _a	Load ID	σ/σ _a	Load ID	ơ/ơa	Load ID	
24 Basemat	90140	0.500	7571	0.474	7671	0.383	7672	0.157	7172	0.250	2515	
@ Wall	90182	0.244	7491	0.100	7601	0.181	7921	0.254	9014	0.166	7491	
Below RCCV	90111	0.237	7571	0.077	7672	0.141	7581	0.214	7841	0.150	7821	
25 Slab	93140	0.478	8514	0.427	7811	0.524	7941	0.406	6421	0.554	8514	
EL4.65m	93182	0.741	8514	0.205	6441	0.270	8511	0.257	7351	0.326	8514	
@ RCCV	93111	0.689	8514	0.218	7602	0.320	8514	0.235	8507	0.283	8514	
26 Slab	96144	0.412	8511	0.600	6971	0.705	8514	0.757	8508	0.773	8507	
EL17.5m	96186	0.483	8513	0.442	7431	0.550	8511	0.256	7103	0.240	8511	
@ RCCV	96113	0.588	8513	0.428	7102	0.365	7521	0.440	7103	0.442	8511	
27 Slab	98472	0.890	8512	0.869	8512	0.518	8511	0.875	8512	0.514	8511	
EL27.0m	98514	0.668	8513	0.402	8513	0.291	8511	0.313	8514	0.216	7331	
@ RCCV	98424	0.844	8514	0.685	7501	0.436	7851	0.720	8514	0.404	8511	
28 Pool Girder	123054	0.669	8512	0.327	8507	0.631	8501	0.531	7481	0.721	9011	
@ Storage Pool	123154	0.455	8512	0.385	8514	0.724	8513	0.306	7431	0.385	8505	
29 Pool Girder	123062	0.464	6971	0.295	8514	0.602	7421	0.298	7501	0.514	6421	
@ Cavity	123162	0.365	7461	0.432	7131	0.735	7481	0.165	6142	0.486	6421	
30 Pool Girder	123067	0.888	8513	0.805	8506	0.554	6431	0.725	9005	0.512	6911	
@ Fuel Pool	123167	0.601	8505	0.772	9005	0.479	6445	0.676	8505	0.431	6431	
31 MS Tunnel	150122	0.517	2021	0.064	7501	0.491	2521	0.072	7421	0.709	7521	
Wall and Slab	96611	0.383	7521	0.155	7101	0.143	7521	0.155	7851	0.651	7521	
	98614	0.284	7371	0.058	8514	0.120	7521	0.498	8511	0.480	7173	
32 IC/PCCS	125051	0.272	9005	0.544	8505	0.628	8512	0.748	8513	0.773	8512	
Pool Wall	125151	0.292	9012	0.520	8513	0.609	8512	0.610	8505	0.605	8512	
in NS Dir.	125055	0.340	8512	0.380	8514	0.458	8512	0.408	8514	0.483	8512	
	125155	0.287	9003	0.377	8514	0.473	8512	0.276	8514	0.310	8512	

Table 7.3.1.1-7 Maximum Stress Ratios for Flexure and Membrane Forces (Continued)

Note *: Wall Below RCCV Direction1 : Hoop, Exterior Wall Direction1 : Horizontal, Slab Direction1 : N-S, Pool Girder Direction1 : Horizontal, MS Tunnel Wall Direction1 : Horizontal, MS Tunnel Slab Direction1 : N-S, σ and σ_a are calculated and allowable stress. Direction2 : Vertical Direction2 : Vertical Direction2 : E-W Direction2 : Vertical Direction2 : Vertical Direction2 : E-W

WG3-U71-ERD-S-0004 SH NO. 221 **REV.** 1

of 543

1

ID 6 13 24 806 813 824 1606 1613 1624 20021 30010 30020 40001 40011 22041	ID 2001 2001 2001 2001 8514 2001 8514 2001 8514 8514 7501 7491 7561	N _x -1.563 -1.451 -1.218 -1.288 -2.711 -1.949 -1.332 3.797 4.784 -4.083	Ny -8.189 -6.579 -7.262 -7.032 -16.363 -7.215 -6.426 -16.590	N _{xy} -0.217 0.270 -0.348 -0.299 -1.177 -0.307	h (m) 2.0 2.0 2.0 2.0 2.0	σ _x -0.782 -0.726 -0.609 -0.644 -1.356	σ _y -4.095 -3.290 -3.631 -3.516	τ _{xy} -0.109 0.135 -0.174 -0.150	σ _c -4.098 -3.297 -3.641 -3.524	Stress σ _a (MPa) -10.4 -10.4 -10.4 -10.4	σ _c /σ _z 0.396 0.319 0.352
6 13 24 806 813 824 1606 1613 1624 20021 20023 30010 30020 40001 40011	2001 2001 2001 8514 2001 2001 8514 8514 8514 7501 7491 7561	-1.563 -1.451 -1.218 -1.288 -2.711 -1.949 -1.332 3.797 4.784 -4.083	-8.189 -6.579 -7.262 -7.032 -16.363 -7.215 -6.426 -16.590	-0.217 0.270 -0.348 -0.299 -1.177 -0.307	2.0 2.0 2.0 2.0 2.0	-0.782 -0.726 -0.609 -0.644 -1.356	-4.095 -3.290 -3.631 -3.516	-0.109 0.135 -0.174 -0.150	-4.098 -3.297 -3.641 -3.524	-10.4 -10.4 -10.4 -10.4 -10.4	0.396 0.319 0.352
13 24 806 813 824 1606 1613 1624 20011 20023 30010 30020 40011 22041	2001 2001 2001 8514 2001 2001 8514 8514 7501 7491 7561	-1.451 -1.218 -1.288 -2.711 -1.949 -1.332 3.797 4.784 -4.083	-6.579 -7.262 -7.032 -16.363 -7.215 -6.426 -16.590	0.270 -0.348 -0.299 -1.177 -0.307	2.0 2.0 2.0 2.0	-0.726 -0.609 -0.644 -1.356	-3.290 -3.631 -3.516	0.135 -0.174 -0.150	-3.297 -3.641 -3.524	-10.4 -10.4 -10.4	0.319
24 806 813 824 1606 1613 1624 20011 20023 30010 30020 40001 40001 40011 22011	2001 2001 8514 2001 2001 8514 8514 7501 7491 7561	-1.218 -1.288 -2.711 -1.949 -1.332 3.797 4.784 -4.083	-7.262 -7.032 -16.363 -7.215 -6.426 -16.590	-0.348 -0.299 -1.177 -0.307	2.0 2.0 2.0	-0.609 -0.644 -1.356	-3.631 -3.516	-0.174 -0.150	-3.641 -3.524	-10.4 -10.4	0.35
806 813 824 1606 1613 1624 20011 20023 30010 30020 40001 40011 22011	2001 8514 2001 2001 8514 8514 7501 7491 7561	-1.288 -2.711 -1.949 -1.332 3.797 4.784 -4.083	-7.032 -16.363 -7.215 -6.426 -16.590	-0.299 -1.177 -0.307	2.0 2.0	-0.644	-3.516	-0.150	-3.524	-10.4	
813 824 1606 1613 1624 20011 20023 30010 30020 40001 40001 40011 22011	8514 2001 2001 8514 8514 7501 7491 7561	-2.711 -1.949 -1.332 3.797 4.784 -4.083	-16.363 -7.215 -6.426 -16.590	-1.177	2.0	-1.356					0.34
824 1606 1613 1624 20011 20023 30010 30020 40001 40001 40011 22011	2001 2001 8514 8514 7501 7491 7561	-1.949 -1.332 3.797 4.784 -4.083	-7.215 -6.426 -16.590	-0.307		1.000	I -8.182	-0.589	-8,232	-25.9	0.31
1606 1613 1624 20011 20023 30010 30020 40001 40011 22011	2001 8514 8514 7501 7491 7561	-1.332 3.797 4.784 -4.083	-6.426	0.054	2.0	-0.975	-3,607	-0.154	-3,616	-10.4	0.34
1613 1624 20011 20023 30010 30020 40001 40011 22011	8514 8514 7501 7491 7561	3.797 4.784 -4.083	-16.590	i 0.251	2.0	-0.666	-3.213	0.125	-3.219	-10.4	0.31
1624 20011 20023 30010 30020 40001 40011 22011	8514 7501 7491 7561	4.784		2.179	2.0	1,899	-8,295	1.089	-8.410	-25.9	0.32
20011 20023 30010 30020 40001 40011 22011	7501 7491 7561	-4.083	-17.402	-2.777	2.0	2.392	-8,701	-1.389	-8,872	-25.9	0.34
20023 30010 30020 40001 40011 22011	7491 7561		-7.207	-2.927	2.0	-2.042	-3.604	-1.463	-4.482	-20.7	0.21
30010 30020 40001 40011 22011	7561	-6,833	-6,195	3,372	2.0	-3,417	-3,098	1,686	-4.951	-25.9	0.19
30020 40001 40011 22011		-4.398	-4.341	-1.189	2.0	-2.199	-2.171	-0.594	-2.779	-20.7	0.13
40001 40011 22011	8511	-1.819	-5.030	-2.079	2.0	-0.909	-2.515	-1.040	-3.026	-25.9	0.11
40011	7251	-1.549	-3.724	1.731	2.0	-0.774	-1.862	0.866	-2.340	-20.7	0.11
22011	2001	-1.512	-3.352	-0.161	2.0	-0.756	-1.676	-0.081	-1.683	-10.4	0.16
66011	7501	-1.371	-8.634	4,792	1.5	-0.914	-5.756	3.195	-7.343	-20.7	0.35
22023	7492	-0.844	-12.174	-6.207	1.5	-0.563	-8.116	-4.138	-9.942	-25.9	0.38
32010	7501	-1.492	-5.565	3.134	1.5	-0.995	-3.710	2.090	-4.845	-20.7	0.23
32020	7251	-0.538	-8.214	2.536	1.5	-0.358	-5.476	1.690	-5.984	-20.7	0.28
42001	7251	-0.399	-8.353	2.597	1.5	-0.266	-5.569	1.731	-6.084	-20.7	0.29
42011	7501	-1.665	-6.683	-3 737	1.5	-1 110	-4 455	-2 491	-5.783	-20.7	0.27
24211	7561	-1 136	-6.516	3 804	1.5	-0.757	-4 344	2 536	-5.657	-20.7	0.27
24224	7301	-0.534	-10 393	3 951	1.5	-0.356	-6.929	2.634	-7 854	-20.7	0.37
34210	7561	-1.067	-2 848	3 519	1.5	-0.712	-1 899	2 346	-3 725	-20.7	0.18
34220	7351	0.222	-4 563	2 222	1.5	0.148	-3.042	-1 481	-3.624	-20.7	0.17
44201	7251	0.193	-5.099	-2 604	1.5	0.128	-3 399	-1 736	-4 110	-20.7	0.19
90140	7151	-6 079	-3 769	2 214	4.0	-1 520	-0.942	0.554	-1.855	-16.6	0.11
90182	2001	-3 496	-2.684	-0.125	4.0	-0.874	-0.671	-0.031	-0.879	-8.3	0.10
90111	2001	-4 049	-3.155	0.037	4.0	-1.012	-0.789	0.009	-1.013	-8.3	0.12
93140	8514	-2.967	0.452	3.622	1.0	-2.967	0.452	3.622	-5.263	-25.9	0.20
93182	8511	1.567	-4.979	-0.427	1.0	1.567	-4.979	-0.427	-5.007	-25.9	0.19
93111	7421	-4.428	1.759	-0.287	1.0	-4.428	1.759	-0.287	-4.441	-25.9	0.17
96144	8508	0.111	0.762	4.690	1.0	0.111	0.762	4.690	-4.265	-25.9	0.16
96186	8514	2.343	-6.951	-2.172	1.0	2.343	-6.951	-2.172	-7.434	-25.9	0.28
96113	6483	-9.995	2.744	-1.583	1.6	-6.247	1.715	-0.989	-6.368	-25.9	0.24
98472	8513	-10.808	-6.087	12,587	1.5	-7,205	-4.058	8.391	-14,169	-25.9	0.54
98514	8511	4.015	-5.431	-2.348	1.5	2 676	-3.621	-1.566	-3,989	-25.9	0.15
98424	8512	-29.098	2.108	-5.888	2.4	-12.124	0.878	-2.453	-12.572	-25.9	0.48
123054	8512	-1.321	-15.008	2.545	1.6	-0.826	-9.380	1.591	-9.666	-25.9	0.37
123154	8512	-2 825	-5 733	4 099	1.6	-1 766	-3 583	2 562	-5 393	-25.9	0.20
123062	8513	-3 715	-9 482	-1 757	1.6	-2 322	-5.926	-1 098	-6 235	-25.9	0.24
123162	8513	-3 415	-7 503	-4 804	16	-2 134	-4 689	-3.002	-6.674	-25.9	0.25
123067	8511	-4 292	-11 854	-6.899	1.0	-2.683	-7 409	-4 312	-9.962	-25.9	0.38
123167	8511	-3.818	-5 177	-6.491	1.6	-2.386	-3 236	-4.057	-6.890	-25.9	0.00
150122	2021	-0.027	-0.558	1 4 9 4	1.0	-0.021	-0.429	1 150	1 393	-15.5	0.00
96611	8511	-0.027	2 325	-0.083	1.5	-0.464	1 453	-0.052	-0.465	-25.9	0.00
98614	8512	-1 805	2 572	-0.676	24	-0.752	1 072	-0.282	-0.795	-25.9	0.0
125051	7501	-0.260	2.312	-0.070	2.9	-0.132	1.072	-0.202	-0.133	-20,0	0.0
12,000	1001			7101	1 1 4	L _O 260 - 3	_2 051	7 101	_4 177	I _207	
125151	7444	-2.049	-2.951	-2.191	1.0	-0.260	-2.951	-2.191	-4.177	-20.7	0.20
125151	7441	-2.048	-2.951 -2.214	-2.191 3.305	1.0	-0.260	-2.951 -2.214	-2.191 3.305	-4.177 -5.437	-20.7 -25.9	0.20
3349999999999999999111111111111111	4210 4220 4201 0140 0182 0111 3182 0111 3182 33111 6144 66186 66113 88472 88514 88514 23054 23054 23354 23354 23362 23367 23367 50122 236611 286614 25051	4210 7561 4220 7351 4201 7251 0140 7151 0182 2001 0111 2001 03140 8514 03141 7421 6144 8508 6186 8514 6113 6483 88472 8513 23054 8512 23054 8512 23062 8513 23162 8513 23067 8511 23067 8511 23167 8511 23661 8513 23067 8511 23661 8511 23661 8511 20611 8511 8614 8512 25051 7501	4210 7561 -1.067 4220 7351 0.222 4201 7251 0.193 0140 7151 -6.079 0182 2001 -3.496 0111 2001 -4.049 3140 8514 -2.967 3182 8511 1.567 3111 7421 -4.428 6144 8508 0.111 6186 8514 2.343 6113 6483 -9.995 8472 8513 -10.808 8514 8512 -29.098 23054 8512 -1.321 23154 8512 -2.825 23062 8513 -3.715 23162 8511 -4.292 23167 8511 -4.292 23167 8511 -3.818 50122 2021 -0.027 96611 8511 -0.742 98614 8512 -1.805 6572	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Table 7.3.1.2-1 Membrane Compressive Forces of RB

Location	Element	Load	d	p _v		Shear For	<u>ce (MN/m)</u>	_	V IAV
Location	ID	ID	(m)	(%)	V.	V _c	Vs	φVn	ν _u /ψν _n
18 Wall	6	7461	1.62	0.721	2.16	4.96	4.84	8.33	0.259
Below RCCV	13	7461	1.62	0.721	2.24	4.82	4.84	8.21	0.273
Bottom	24	7501	1.59	0.721	2.30	4.63	4.73	7.95	0.289
19 Wall Below	806	7992	1.57	0.270	0.12	0.15	1.75	1.61	0.077
Below RCCV	813	8514	1.57	0 270	0.91	4.86	1.75	5.62	0 162
Mid-Height	824	8514	1.57	0.270	1 02	5.00	1 75	5 74	0.177
20 Wall	1606	6421	1.57	0.540	4.05	4 00	3 50	637	0.635
Below RCCV	1613	6471	1.57	0.540	4.68	4 24	3 50	6.57	0.000
Ton	1624	8507	1.57	0.540	5.07	4.27	3.50	6.69	0.712
21 Exterior Wall	20011	8512	1.57	0.340	1.97	0.64	3.00	3.33	0.759
	20011	0512	1.00	0.404	1.07	1 05	3.15	3.3Z	0.302
2 10 50m	20023	7511	1.00	0.404	1.40	1.00	3.15	4.20	0.342
~-10.5011	30010	7511	1.00	0.710	1.03	2.33	4.93	0.17	0.265
	30020	7511	1.69	0.710	1.20	3.52	4.96	7.21	0.166
	40001	/5/1	1.70	0.710	1.44	2.08	4.98	6.00	0.239
	40011	7501	1.69	0.710	2.46	3.91	4.97	7.55	0.325
22 Exterior Wall	22011	8514	1.15	0.484	1.00	0.00	2.31	1.96	0.513
@ EL4.65	22023	9014	1.16	0.484	0.71	1.10	2.33	2.92	0.242
~6.60m	32010	8514	1.09	0.177	0.36	0.00	0.80	0.68	0.524
	32020	6435	1.25	0.177	0.25	0.29	0.91	1.02	0.242
	42001	7411	1.25	0.242	0.84	0.85	1.25	1.79	0.468
	42011	7711	1.09	0.242	0.29	0.27	1.09	1.16	0.252
23 Exterior Wall	24211	8511	1.09	0.968	2.78	0.00	4.25	3.61	0.771
@ EL22.50	24224	7211	1.10	0.484	1.79	0.00	2.21	1.88	0.954
~24.60m	34210	8512	1.09	0.177	0.52	0.00	0.80	0.68	0.761
	34220	8503	1.26	0.710	1.21	0.94	3.69	3.93	0.308
	44201	4021	1.26	0.968	2.40	0.95	4.89	4.96	0.483
24 Basemat	90140	7571	3.53	0.801	6.36	4.46	11.69	13.73	0.463
@ Wall	90182	7331	3.51	0.801	5.34	5.96	11.63	14.95	0.357
Below RCCV	90111	8514	3.55	0.801	5.12	6.17	11.76	15.24	0.336
25 Slab	93140	8514	0.80	0.500	0.30	0.22	1.65	1.59	0.192
EL4.65m	93182	8514	0.80	0.500	2.30	1.36	1.65	2.56	0.899
@ RCCV	93111	8514	0.80	0.500	1.97	1.24	1.65	2.46	0.800
26 Slab	96144	7103	0.80	0.500	0.32	0.82	1.65	2.10	0.000
Fl 17.5m	96186	8511	0.80	0.500	1 41	2.18	1.65	3.25	0.100
@ RCCV	96113	7492	1.34	0.500	1.75	1 59	2 76	3.69	0.462
27 Slah	98472	8513	1.04	0.000	3.50	4.56	4.73	7.00	0.443
El 27 0m	98514	8514	1.21	0.000	3.40	1.88	4.73	5.61	0.440
	08424	8512	1.21	0.900	10.86	7.00	7.62	12 42	0.023
28 Pool Girder	123054	0012	1.35	0.300	1 25	1.00	2.50	2.42	0.074
Storage Pool	123054	9011	1.25	0.404	1.20	1.33	2.50	3.20	0.302
20 Deal Cirder	123104	7261	1.20	0.404	0.94	1.40	2.50	3.32	0.204
29 FOOI Gilder	123002	7301	1.20	0.242	0.43	1.30	1.25	2.17	0.200
	123102	7331	1.23	0.242	0.30	0.33	1.23	1.32	0.224
30 Pool Girder	123067	7441	1.28	0.484	1.02	4.00	2.57	5.58	0.182
	12316/	8513	1.24	0.484	0.75	0.98	2.48	2.94	0.254
31 MS Tunnel	150122	8512	1.06	0.177	0.53	0.73	0.78	1.28	0.416
Wall and Slab	96611	8514	1.34	0.500	0.62	1.65	2.76	3.75	0.166
	98614	8511	1.95	0.500	1.44	3.51	4.04	6.41	0.224
32 IC/PCCS	125051	8512	0.81	0.250	0.28	0.82	0.83	1.41	0.201
Pool Wall	125151	8513	0.82	0.250	0.24	0.49	0.85	1.13	0.209
in NS Direction	125055	<u>8</u> 514	0.80	0.250	0.34	0.65	0.83	1.25	0.275
l	125155	8512	0.79	0.250	0.29	0.71	0.82	1.30	0.221

Table 7.3.1.3-1Transverse Shear of RB

WG3-U71-ERD-S-0004 SH NO. 223 REV. 1 of 543

Element Load Load Shear Force (MN/m) d p, Location $V_u/\phi V_n$ \overline{V}_{u} ID ID ID (m) (%) V_{c} V. φV, 18 Wall 7741 0.209 6 RB-9a 1.59 0.721 1.08 1.35 4.73 5.17 Below RCCV 13 7741 RB-9a 1.59 0.721 1.34 1.97 4.73 5.70 0.235 Bottom 24 7941 RB-9b 1.59 0.721 1.13 2.35 4.73 6.02 0.187 19 Wall Below 806 7441 RB-9b 1.57 0.270 0.32 4.56 1.75 5.37 0.060 Below RCCV 813 7441 RB-9b 1.57 0.270 0.82 4.85 1.75 5.62 0.146 Mid-Height 824 7441 RB-9b 1.57 0.270 0.87 4.91 1.75 5.66 0.153 20 Wall 1606 6441 RB-8b 1.57 0.540 4.04 4.02 3.50 6.39 0.632 Below RCCV 1613 6441 RB-8b 1.57 0.540 4.68 4.26 3.50 6.59 0.710 4.28 3.50 1624 6441 RB-8b 1.57 0.540 4.95 6.61 0.749 Тор 21 Exterior Wall 20011 7441 RB-9b 1.63 0.484 1.79 2.74 3.27 5.11 0.351 @ EL-11.50 7441 RB-9b 1.58 0.484 20023 1.31 3.15 3.16 5.37 0.243 ~-10.50m 30010 7241 RB-9a 1.69 0.710 1.37 2.78 4.97 6.59 0.208 7241 30020 RB-9a 1.71 0.710 0.76 3.16 5.02 6.95 0.109 40001 7241 RB-9a 1.71 0.710 0.89 3.29 5.01 7.05 0.126 40011 7241 RB-9a 1.69 0.710 1.81 3.50 4.97 7.20 0.252 22011 22 Exterior Wall 7441 RB-9b 1.15 0.484 0.93 0.00 2.31 1.96 0.475 @ EL4.65 22023 7241 RB-9a 1.18 0.484 0.73 3.55 2.36 5.02 0.146 0.80 ~6 60m 32010 7241 RB-9a 1.09 0.177 0.29 0.05 0.72 0.401 32020 7941 0.177 0.25 RB-9b 1.26 0.29 0.92 1.03 0.239 7241 42001 RB-9a 1.19 0.242 0.52 0.80 1.19 1.69 0.310 42011 7941 RB-9b 1.09 0.242 0.20 0.23 1.09 1.13 0.177 23 Exterior Wall 24211 7241 RB-9a 1.05 0.968 1.34 0.06 4.10 3.53 0.379 @ EL22.50 24224 7941 RB-9b 1.05 0.484 1.21 0.00 2.11 1.79 0.677 ~24.60m 34210 7241 RB-9a 1.09 0.177 0.27 0.57 0.80 1.16 0.234 34220 4021 RB-4 1.26 0.46 3.69 4.08 0.710 1.11 0.113 44201 4021 RB-4 1.26 0.968 2.40 0.95 4.89 4.96 0.483 24 Basemat 7441 RB-9b 3.53 6.75 15.69 0.404 90140 0.801 6.34 11.70 @ Wall 90182 7441 RB-9b 3.51 0.801 5.22 11.63 14.88 0.351 5.88 Below RCCV 90111 7441 RB-9b 3.55 0.801 4.42 11.76 15.31 6.25 0.289 25 Slab 93140 7441 0.500 0.29 RB-9b 0.80 0.17 1.65 1.55 0.188 7441 2.76 EL4.65m 93182 2.25 RB-9b 0.80 0.500 1.60 1.65 0.815 @ RCCV 93111 7441 RB-9b 0.80 0.500 1.86 1.45 1.65 2.63 0.707 26 Slab 7441 96144 RB-9b 0.80 0.500 0.32 1.91 1.65 3.03 0.105 EL17.5m 96186 7441 RB-9b 0.80 0.500 1.03 2.13 1.65 3.21 0.319 2.76 7241 0.500 2.29 3.65 @ RCCV 96113 RB-9a 1.34 5.45 0.420 27 Slab 98472 7441 RB-9b 1.21 0.968 2.03 3.30 4.73 6.83 0.297 EL27.0m 98514 7441 RB-9b 1.21 0.968 1.21 1.63 4.73 5.41 0.223 @ RCCV 98424 7441 RB-9b 1.95 0.968 8.30 4.91 7.62 10.65 0.779 28 Pool Girder 123054 4021 RB-4 1.25 0.484 0.71 3.00 2.50 4.68 0.151 123154 7441 RB-9b 1.25 0.484 0.25 0.30 2.50 2.38 0.107 @ Storage Pool 29 Pool Girder 7241 0.242 0.41 1.25 3.27 123062 RB-9a 1.24 2.60 0.127 @ Cavity 123162 7441 RB-9b 1.21 0.242 0.19 0.22 1.21 1.22 0.154 30 Pool Girder 123067 7441 RB-9b 1.28 0.484 1.02 4.00 2.57 5.58 0.182 7441 1.28 0.484 0.72 2.56 3.07 @ Fuel Pool 123167 RB-9b 1.05 0.234 31 MS Tunnel 150122 7441 RB-9b 1.04 0.177 0.55 1.10 0.76 1.58 0.351 Wall and Slab 96611 7241 RB-9a 1.34 0.500 0.50 1.66 2.76 3.75 0.134 98614 7241 RB-9a 2.14 0.500 0.57 2 34 4.42 0 100 5.74 32 IC/PCCS 125051 7741 RB-9a 0.79 0.250 0.06 0.07 0.81 0.75 0.075 Pool Wall 7441 RB-9b 0.250 0.10 0.12 0.130 125151 0.79 0.82 0.80 in NS Direction 125055 7741 RB-9a 0.80 0.250 0.08 0.09 0.83 0.78 0.100 7441 RB-9b 125155 0.81 0.250 0.23 0.83 2.42 2.01 0.096

Table 7.3.1.3-2 Transverse Shear of RB for DCD Load Combinations

Table 7.3.2-1 Maximum Stress Ratio of Truss Girder and Column

Member Nam	e:	TRUS	S R4 upp	er							
Section ID		4		Sectio	n Type :	Н		CBA	R ID :	602201	
Flange PL :		600 x 66		We	bPL:	468 x 50			i	- edge	
Maximum		Load		Design Lo	ad		Stress		All	owable Str	ess
Ratio		ID		(MN,MN	n)		(MPa)			(MPa)	
			P	М	V	f _{ac} ,f _{at}	f _{bc} ,f _{bt}	fv	F _{ac} ,F _{at}	F _{bc} ,F _{bt}	Fv
fac/Fac+fbc/Fbc	0.451	5002	-3.67	-2.06		-35.7	-101.2		290.8	364.0	
fat/Fat+fbt/Fbt	0.309	5003	0.88	-2.09		8.5	-103.0		330.9	364.0	
f _v /F _v	0.088	8113			-0.51			-17.1			193.1

Member Nam	e :	TRUSS	SR4 upp	er							
Section ID :		4		Sectio	n Type :	Н		CBA	R ID :	602206	
Flange PL :		600 x 66		We	b PL :	468 x 50			j	- edge	
Maximum		Load		Design Lo	bad		Stress		Allo	owable Str	ess
Ratio		ID	Design Load (MN,MNm)				(MPa)			(MPa)	
			Р	M	V	f _{ac} ,f _{at}	f _{bc} ,f _{bt}	f _v	Fac,Fat	F _{bc} ,F _{bt}	Fv
$f_{ac}/F_{ac}+f_{bc}/F_{bc}$	0.394	8127	-6.01	0.87		-58.5	42.8		311.8	386.8	
f _{at} /F _{at} +f _{bt} /F _{bt}	0.048	8625	0.55	-0.26		5.3	-12.8		351.6	386.8	
f _v /F _v	0.005	8113			0.03			0.9			193.1

Member Nam	e :	TRUS	SR4 low	er							
Section ID :		4		Sectio	n Type :	Н		CBA	R ID :	603201	
Flange PL :		600 x 66		We	b PL :	468 x 50			i	- edge	
Maximum		Load		Design Lo	ad		Stress		Alle	owable Str	ess
Ratio		ID		(MN,MN	n)		(MPa)			(MPa)	
			Р	м	V	f _{ac} ,f _{at}	f _{bc} ,f _{bt}	fv	F _{ac} ,F _{at}	F _{bc} ,F _{bt}	Fv
fac/Fac+fbc/Fbc	0.565	5002	-2.39	-3.04		-23.3	-149.6		262.2	330.9	
f _{at} /F _{at} +f _{bt} /F _{bt}	0.482	5001	0.84	-3.08		8.1	-151.3		330.9	330.9	
f _v /F _v	0.103	5001			-0.60			-19.9			193.1

Member Nam	e:	TRUS	S R4 low	ər							
Section ID :		4		Sectio	n Type :	н		CBA	RID:	603206	
Flange PL :		600 x 66		We	b PL :	468 x 50			j	- edge	
Maximum		Load	E	esign Lo	ad		Stress		Alle	owable Stre	ess
Ratio		ID		(MN,MNr	n)		(MPa)			(MPa)	
			Р	M	V	f _{ac} ,f _{at}	f _{bc} ,f _{bt}	fv	F _{ac} ,F _{at}	F _{bc} ,F _{bt}	Fv
f _{ac} /F _{ac} +f _{bc} /F _{bc}	0.353	8624	-6.80	-0.25		-66.3	-12.4		283.9	386.8	
f _{at} /F _{at} +f _{bt} /F _{bt}	0.679	5001	18.88	0.91		184.0	44.7		330.9	364.0	
f _v /F _v	0.006	5002			-0.03			-1.1			193.1

Member Nam	e :	TRUSS	R4 diagor	nal							-
Section ID :		1		Sectio	on Type :	Н		CBA	R ID :	605201	
Flange PL :		600 x 32		We	b PL :	536 x 32			i	- edge	
Maximum		Load	D	esign Li	oad		Stress		All	owable Stre	ess
Ratio		ID	(MN,MN	m)		(MPa)			(MPa)	
			Р	М		f _{ac} ,f _{at}	f _{bc} ,f _{bt}	fv	F _{ac} ,F _{at}	F _{bc} ,F _{bt}	Fv
fac/Fac+fbc/Fbc	0.630	8114	-7.24	0.00		-130.4	0.0		295.5	385.3	
f _{at} /F _{at} +f _{bt} /F _{bt}	0.131	8625	2.57	0.00	1	46.2	0.0		351.6	385.3	
f _v /F _v											

Table 7.3.2-1 Maximum Stress Ratio of Truss Girder and Column (Continued)

Member Nam	e:	TRUSS	R4 diagor	nal							
Section ID :		3		Section	on Type :	Н		CBA	R ID :	605206	
Flange PL :		400 x 25		We	b PL :	350 x 25			j	- edge	
Maximum		Load	D	esign L	oad		Stress		Alle	owable Stre	ess
Ratio		ID	(MN,MN	m)		(MPa)			(MPa)	
			Р	М	V	f _{ac} ,f _{at}	f _{bc} ,f _{bt}	fv	F _{ac} ,F _{at}	F _{bc} ,F _{bt}	Fv
$f_{ac}/F_{ac}+f_{bc}/F_{bc}$	0.114	8624	-0.68	0.00		-23.6	0.0		272.5	351.6	
f _{at} /F _{at} +f _{bt} /F _{bt}	0.165	5001	1.57	0.00		54.5	0.0		330.9	330.9	
f _v /F _v											

Member Nam	e :	TRUS	S R4 post	t				••			
Section ID :		5		Sectio	on Type :	2L		CBA	R ID :	604204	
Flange PL :		203 x 22		We	bPL:	159 x 22			i	- edge	
Maximum		Load	D	esign L	oad		Stress		Alle	owable Stre	ess
Ratio		ID	(MN,MN	m)		(MPa)			(MPa)	
			Р	М	V	f _{ac} ,f _{at}	f _{bc} ,f _{bt}	fv	F _{ac} ,F _{at}	F _{bc} ,F _{bt}	Fv
f _{ac} /F _{ac} +f _{bc} /F _{bc}	0.655	8113	-2.29	0.00		-135.6	0.0		330.6	386.8	
f _{at} /F _{at} +f _{bt} /F _{bt}	0.166	8624	0.99	0.00		58.5	0.0		351.6	386.8	
f _v /F _v											

Member Nam	e:	R4-F	RB column	1							
Section ID :		60		Sectio	n Type :	Н		CBA	R ID :	600201	
Flange PL :		800 x 88		We	b PL :	624 x 75			i	- edge	
Maximum		Load	D	esign Lo	ad		Stress		Alle	owable Str	ess
Ratio		ID	(MN,MNr	n)		(MPa)			(MPa)	
			Р	M	V	f _{ac} ,f _{at}	f _{bc} ,f _{bt}	f _v	F _{ac} ,F _{at}	F _{bc} ,F _{bt}	F _v
f _{ac} /F _{ac} +f _{bc} /F _{bc}	0.623	8114	-19.61	2.02	_	-104.5	41.5		327.2	351.6	
f _{at} /F _{at} +f _{bt} /F _{bt}	0.058	8615	0.59	-0.84		3.2	-17.3		351.6	351.6	
f _v /F _v	0.025	8123			0.29			4.9			193.1

Member Nam	e:	R4-F	RB column								
Section ID :		6		Sectio	n Type :	Н		CBAI	R ID :	600209	
Flange PL :		800 x 88		We	bPL:	624 x 50			j	- edge	
Maximum		Load	D	esign Lo	ad		Stress		Alle	owable Stre	ess
Ratio		ID	(MN,MNr	n)		(MPa)			(MPa)	
			Р	м	V	f _{ac} ,f _{at}	f _{bc} ,f _{bt}	f _v	F _{ac} ,F _{at}	F _{bc} ,F _{bt}	Fv
f _{ac} /F _{ac} +f _{bc} /F _{bc}	0.627	5002	-11.61	-4.71		-67.5	-99.3		306.9	330.9	
f _{at} /F _{at} +f _{bt} /F _{bt}	0.067	8625	0.81	0.90		4.7	19.0		351.6	351.6	
f _v /F _v	0.077	5002			0.60			14.9			193.1

Member Nam	e:	R4-F	RF column								
Section ID :		60		Sectio	n Type :	Н		CBA	R ID :	601201	
Flange PL :		800 x 88		We	b PL :	624 x 75			i	- edge	
Maximum		Load	D	esign Lo	ad		Stress		Alle	owable Str	ess
Ratio		ID	(MN,MNr	n)		(MPa)			(MPa)	
			Р	M	V	f _{ac} ,f _{at}	f _{bc} ,f _{bt}	fv	Fac,Fat	F _{bc} ,F _{bt}	Fv
$f_{ac}/F_{ac}+f_{bc}/F_{bc}$	0.895	8114	-26.63	-3.57		-142.0	-73.4		327.2	351.6	
f _{at} /F _{at} +f _{bt} /F _{bt}	0.101	5503	4.26	0.52		22.7	10.7		330.9	330.9	
f _v /F _v	0.067	8127			-0.78			-13.0			193.1

	WG3-U71-ERD-S-0004 REV. 1	SH NO. 226 of 543
ſ		٦
1		\

Figure 3.1-1 RB and FB Concrete Outline Plan at EL -11,500

Figure 3.1-2 RB and FB Concrete Outline Plan at EL 4,650

🛞 HITACHI	WG3-U71-ERD-S-0004	SH NO. 228	
	REV. 1	of 543	

.

Figure 3.1-3 RB and FB Concrete Outline Plan at EL 17,500

WGAUTJERDS-0004 SINO. 22 REV.1 of 54
RFV.1 of 50 { }
{ }

Figure 3.1-4 RB and FB Concrete Outline Plan at EL 27,000

WG3-U71-ERD-S-0004 REV. 1	SH NO. 230 of 543
· · · · · · · · · · · · · · · · · · ·	}

Figure 3.1-5 RB Concrete Outline Plan at EL 34,000

HITACHI		WG3-U71-ERD-S-0004	SH NO. 23
		REV. 1	of 54

Figure 3.1-6 RB and FB Concrete Outline N-S Section

	WG3-U71-ERD-S-0004 SH NO. 232 REV. 1 of 543
ſ	
4	

Figure 3.1-7 RB and FB Concrete Outline E-W Section
{{{Contains Security-Related Information – Withheld Under 10 CFR 2.390.}}}

WG3-U71-ERD-S-0004 SH NO. 233 REV. 1 of 543

Figure 3.2-1 Configuration of RCCV

Figure 3.2-2 Locations of Various Pools in RB and FB

Figure 5.1.1-2 Regions for Equipment Loads at EL -6,400

Figure 5.1.1-3 Regions for Equipment Loads at EL -1,000

Figure 5.1.1-4 Regions for Equipment Loads at EL 4,650

Figure 5.1.1-6 Regions for Equipment Loads at EL 13,570

Figure 5.1.1-7 Regions for Equipment Loads at EL 22,500

Figure 5.1.1-8 Regions for Equipment Loads at EL 27,000

Figure 5.1.1-9 Regions for Equipment Loads at/above EL 34,000

WG3-U71-ERD-S-0004 SH NO. 244 REV. 1 of 543

Figure 5.1.2-1 Snow Load

Figure 5.2.1-1 Envelopes of Transient Pressure Curves at DBA

Figure 5.2.1-2 Regions Where Pressure Loads are Applied in IC/PCCS Pools

Figure 5.2.2-1 Envelopes of Transient Temperature Curves - Inside RCCV at DBA

Figure 5.2.2-2 Envelopes of Transient Temperature Curves – Other Pools at DBA

WG3-U71-ERD-S-0004 SH NO. 249 REV. 1 of 543

Figure 5.2.2-3 Temperature Distributions in Upper Pools

WG3-U71-ERD-S-0004	SH NO.	250
REV. 1	of	543

Figure 5.2.3-1 Safety Relief Valve (SRV) Pressure Loads

WG3-U71-ERD-S-0004 SH NO. 251 REV. 1 of 543

Figure 5.2.3-2 Typical Event – Time Relationship for a DBA

CH Peak Positive Pressure = 91 kPag CH Peak Negative Pressure = -66 kPag Dynamic Load Factor (DLF) = 2.0

Figure 5.2.3-4 Condensation Oscillation (CO) Pressure Loads

WG3-U71-ERD-S-0004 SH NO. 254 REV. 1 of 543

Figure 5.2.3-5 Pool Swell (PS) Pressure Loads

WG3-U71-ERD-S-0004 SH NO. 255 REV. 1 of 543

2. The differential pressure between the DW and WW is 88 kPad as wetwell gas space is at its peak pressure during pool swell.

Figure 5.2.3-6 Pool Swell (PS) Pressure Concurrent with Froth Impact Loads

Figure 5.3.3-2 Position of Each Pool

WG3-U71-ERD-S-0004 SH NO. 258 REV. 1 of 543

Figure 6.2.2-1 FE Model of RB/FB (Whole View)

Figure 6.2.2-2 FE Model of RB/FB (Cut View)

WG3-U71-ERD-S-0004 SH NO. 260 REV. 1 of 543

WG3-U71-ERD-S-0004 SH NO. 261 REV. 1 of 543

Figure 6.2.2-4 FE Model of RCCV Internal Structures

B HITACHI	WG3-U71-ERD-S-0004 REV. 1	SH NO. 262 of 543
۲. Ender State St		}
		J
Figure 6.2.2.5 FF Model of the Basemet		

{{{Contains Security-Related Information - Withheld Under 10 CFR 2.390.}}}

-

НІТАСНІ	WG3-U71-ERD-S-0004 REV. 1	SH NO. 263 of 543
		·
ſ		ר
1		`

.

Figure 6.2.2-6 FE Model of the Basemat inside the Containment

ЭВ НІТАСНІ	WG3-U71-ERD-S-0004	SH NO. 264
	REV. 1	of 543
	·	
	, · · · · · · · · · · · · · · · · · · ·	
ſ		ר
{		}
l		J

Figure 6.2.2-7 FE Model of the RCCV Cylinder Wall and the Wall below RCCV

	WG3-U71-ERD-S-0004 REV. 1	SH NO. 265 of 543
	-	
· · · · · · · · · · · · · · · · · · ·		
<i>{</i>		J
ι		5

Figure 6.2.2-8 FE Model of the RPV Pedestal Wall

B HITACHI	WG3-U71-ERD-S-0004 REV. 1	SH NO. 266 of 543
{		}

.

.

Figure 6.2.2-9 FE Model of the Top Slab

WG3-U71-ERD-S-0004	SH NO. 267
REV. 1	of 543
	_
	ור
	5
	J

Figure 6.2.2-10 FE Model of the Suppression Pool Floor Slab

Ю нітасні	WG3-U71-ERD-S-0004 SH NO. 268 REV. 1 of 543
{	}
	J

.

Figure 6.2.2-11 FE Model of the RCCV Cylinder Wall Liner

WG3-U71-ERD-S-0004 REV. 1	SH NO. 269 of 543
	}

Figure 6.2.2-12 FE Model of the RPV Pedestal Wall Liner

Figure 6.2.2-13 FE Model of the Basemat Liner (EL -10,400)

Figure 6.2.2-14 FE Model of the Suppression Pool Floor Slab Liner (EL 4,650)

Figure 6.2.2-15 FE Model of the Top Slab Liner (EL 24,600)

.

Figure 6.2.2-16 Rigid Bar Elements between Concrete and Liner

Figure 6.2.2-17 FE Model of Sleeve at the RCCV Top Head Opening

WG3-U71-ERD-S-0004 SH NO. 275 REV. 1 of 543

Figure 6.2.2-18 Modeled RB Pool Walls Except External Walls at EL 27,000

 WG3-U71-ERD-S-0004
 SH NO. 276

 REV. 1
 of 543

Figure 6.2.2-19 FE Model of the Pool Girders

WG3-U71-ERD-S-0004	SH NO.	277
REV. 1	of	543

Figure 6.2.2-20 Layout of Inner Walls Included in the Analysis Model at EL -11,500

WG3-U71-ERD-S-0004	SH NO. 2	278
REV. 1	of 5	543

Figure 6.2.2-21 Layout of Inner Walls Included in the Analysis Model at EL -6,400

Ş

WG3-U71-ERD-S-0004	SH NO.	279
REV. 1	of	543

Figure 6.2.2-22 Layout of Inner Walls Included in the Analysis Model at EL -1,000

	((B)	(B)			ଞ			(F)		(9			(<u>भ</u>					æ	9			(6	Ð					
	- EF-11'8										<u> </u>	Ē	Ē								F			A		1	→ ×				
			≞∤≞		<u>_ </u>			-		┞		╢╸	<u> </u> -		╧╢╸	<u> -</u>	ι.= 		╸║╸	╧┟┍╼╸	╠╸	l-		• •	<u> -</u>	ż					
	6 9 -13										[<u>-</u>									· (* - [-	1	[•				-					
									$\frac{1}{1}$	╠═┥		╎╸╽														4					
		-¦r_r[<u>п</u> п						- <u> </u>		<u> </u>		[-					# a							
	EL-1.5			1 T					- -	Ē										Ē	Ē					1					
			-							<u> </u>						i i i i				_	i -	<u> </u>		-							
			n [n	[n [n		n [4			د هـ	[<u></u>		[#.		<u>ه ا م</u>	[=	<u>لہ</u>	ן ו [= [l [=										
	EF 3'62											Ē																			
									╞		<u>د</u>	1-									μ- ["					n					
	95'8 TE								╞	┟╴	<u>ر -</u>	+				÷					μ			- 1- -		-					
					a [a		• [•		- [=	[-						La.			. [.	T	[=	- -	[= [n. [n.							
	10 cl 11		a [a		A .		6 (7		[_							[# [R [.							
	2061 13		a (a		n [n		n [a	-			[<u> </u>				a a			[R [a. a 		[#.		l≖ [• [•							
	·																							- [# -							
	22113									F						11					ŢŢ					}					
					· .		<u> </u>		<u>ا</u>		<u> </u>				• [•						Ľ					ļ					
			~ [^		a a		<u> </u>			<u>!-</u>	-	-	-	-	• •			[*][<u> </u> •	-	[•][<u> </u>	ļ	J					
			• •		a a		<u> </u>		<u> </u>		11-		-	•	• =	-															
	EFSEE	-	a [=														[* ·														
		-	n [n	[- [a [a		-1-				1																				
			- [-		- -		•	-	[•			Γ			-																
			- [-												- [-																
	- <u> </u>		a [2	<u> [=][</u> •	n [n	[= [=		_ =	_	-	1-	F	_	-	• [•	-	-														
									-																			 			
C+C 10	I TATI																														
097 ON US +000-5-																												JH	IDATI	н	2P)
	MC37111 EDL																														I and a second s

Figure 6.2.2-23 FE Model of the External Wall (RA/FA Column Line)

	(j) (j) (j)	a a b
	╵╢╶╖╢╶╖╢╶╖╢┍╢┍╢┍╢┍╢┍╢╼╢╼╢┶╢┶╢╼╢╼╢┍╖╟╼╢╼╢┍╢┍╢╺╢ ╔╗┠╼╖┟╼╖╵┈╖╎╖╢╶╢╶╢╶╢╶╢╶╢╶╢╶╢╶╢╶╢╺╢╺╢	
	┑┥╴┈┧╴╸┤╴╸╎╴╵╎╸╎╴╸╎╴╸╎╴╸╎╴╸╎╴╸╎╴╸╎╴╸╎╴╸╎╸╎╸╸╎╺╸╎╺╸╎╴╸╎ ╤┑┠╼═┑┠══╖┝═╗┝═╗┝═╢┍╗┝═╖┝═╗┝═╗┠═╗┠═╗╘═╗╘═╗╘═╗╘═╗┝═╖┝═╖┝	╵╵╽╴╸╎└╸╎╹╸╎╸╎╸╽╸╽╸╎╴╷╵╸
	┑╎┈╎┈╎┈╎┈╎┈╎┈╎┈╎┈╎┈╎┈╎┈╎┈╎┈╎┈╎┈╎┈╎┈╎┈╎┈	┘╎┍╾╵└╺╴╷व╷┍╸╎╸╎╸╎╸╎╡╷╡╸
	╶╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴	╾┥┶╼┥┥┷┙┥╼┤╾┥┶╸┥
	╸╻┤╴ݞ╷┤╴┑╎╴╸╷╎╴╖╎╶╢╶╢╶╢╶╢╶╵╎╶╵╎╶╵╎╶╵╎╴┑╎╼┤╶┑╎╺╎╴┑╎╺╶╎╶┑╎╺╎ ═┑┟╌╾┑┟╼═╸┢══┥╘═┥╘═┑┝═╗┝═┑┝═┑┝═┑┝═┑┝═┑┝═┑┝═┑┝═┑┝═┑┝═┑┝═┑┝═┑┝═	
	╵┙╴┈┙┍┈╿┈╴╿┈╷╿┈╷╿┈╎╹╵╵╎╴╎╴╹┙┍┈╿╾╸┝╾┑┝╾┝╾┝╾┝╸┝╸┝╸	╵╎╏┈╎と┈╎╓╷╎╨╎╨╎╨╎╨╎╹ ┶┽╤╾┥╤╾╸┥╤╡╤╛╒╧╿╤╝┍╧╹
	┤└┍╸╎┖╸╎┖╸╎┖╸╎┖╸╎┖╸╎┖╸╎┖╸	· │ └ ┺ │ └ ┺ │ └┺ │ └┺ │ └┺ │ └┺ │ └┺ │
	UVC 13	
	м	
33-U71-ERD-S-0004 SHN		

Figure 6.2.2-24 FE Model of the External Wall (RG/FF Column Line)

t

.

Figure 6.2.2-25 FE Model of the External Wall (R1 Column Line)

HITACHI

WG3-U71-ERD-S-0004 SH NO. 282 🛞 HITACHI

WG3-U71-ERD-S-0004 SH NO. 283 REV. 1 of 543

Figure 6.2.2-26 FE Model of the External Wall (R7/F1 Column Line)

🥵 нітасні

١.

.

WG3-U71-ERD-S-0004 SH NO. 284 REV. 1 of 543

																								51.205	
			•	<u> </u>	1	-1		•	•	*		1	-1	•1		•	*	1	_v 1					<u> - C 223</u>	
	•1	•1	. . 1	-1	<u> </u>	 •1	-1	- 1		-1		-1		-1	1	•1	. . 1	-1		<u> </u>	-1			-	
		<u> </u>	. <u> </u>	<u> </u>	<u></u>				• 1	/ 1	 1	/ 1	<u></u>		 1	<u> </u>				<u> </u>					
	• 1	• 1	• 1		-1	•1	<u></u>	•]	• 1	-1	• 1	-1	•	• 1	• 1	w]	w]		•1	_ 1	-1			- <u></u>	
	- 1	•1	•1	_∎1	• 1	-1	∎ 1	• 1	• 1	-1	= 1	-1	-1	-1	-1	-1	w 1	v 1	•1	1	• 1	w1	w 1	-	
		 1		w1	 1		<u></u>	•1			<u> </u>			-1	<u></u> 1	<u> </u>	<u> </u>		1			1		-	
	. 1	 1	 1	 1	 1			• 1		 1	 1	 1	<u>، ایس</u> 11 هر	 1	ں۔۔۔۔ 1 ہو	 1	 1	 1	 1		. <u> </u>	 1	 1	<u>EL 13.07</u>	
		<u> </u>		 1	<u> </u>	1							<u></u>			- <u></u>		<u> </u>		 1			<u> </u>	-	
		<u> </u>		<u> </u>	<u> </u>				•		¥	<u> </u>	<u> </u>	<u> </u>	<u> </u>					<u> </u>				-	
	<u> </u>		<u> </u>	<u> </u>	<u> </u>	_			*	<u> </u>		<u> </u>	╧┥				<u> </u>	<u> </u>		<u> </u>	_	_		_ <u>EL 8.56</u>	
	_	<u> </u>]	<u> </u>	<u> </u>	_ 1	-	<u> </u>	- 1	<u> </u>	1	<u> </u>	<u> </u>	•1	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	_	
	_ 1	-1	•1	_1	•1	-1	<u>_</u> 1	• 1	• • 1	-1		<u> </u>	<u>_</u>]	•1	1	•	<u> </u>		_ 1	-1	1	1	•1	-	
		•1		<u>_</u>		_ = 1	<u></u>	• 1	1		1	-	<u>_</u>	-1	_ w]	_ w]	. <u>w</u> 1]	_ <u>_</u> 1	-1	•]	_ v]	~]	- EL 3.65	
	_]		_=]	<u>_</u> =1	1	_=1	_=1	a 1		_=1	_=1	<u>_</u> 1	_ 1 _	*]	_ v]	_ a]	_=1	_=1]	_*1	1]		~	
•	•1	-1	- 1	-1	•1	-1	=1	¥ 1	-	5	¥ 1	" 1	-1	-1	u]	a		8	" 1	" 1	•	" 1	•1		
	-1	-1	. <u> </u>	-1	 1		w 1	•1	•	v 1	-1	-1	-1	-1		1	<u> </u>	•1		-1	-1	- 1	-1	-	
			<u></u>	<u></u> .	<u> </u>		'''''''''	1		1	 1			1		1	'					 1		<u>EL-1.5</u>	
		_ 			_ _	_		<u> </u>		1			╝.	<u> </u>	<u> </u>		<u> </u>		<u> </u>	<u> </u>				•	
	<u> </u>	<u>_</u>]	_1	-1	= 1	=	=	•	•	•	•]	<u> </u>	<u>"</u>].	•	-1	<u> </u>	_	1	•	<u> </u>	_	_	<u> </u>		
		1	- 1	-1	" 1	-1	=1	- 1	- 1		- 1	-1		~ 1	- 1	•1	•1	-1	-1		-∎1	•1	• 1	-	
	<u> </u>			 1	 _ 1	1		, 1	 , 1			<u></u>	<u></u>		 1		 1] 1	 1	 1	 1	 1	<u>EL_6.9</u>	
·		<u> </u>	<u> </u>	<u> </u>	Ľ,		╞═╧┥╴					Į.,	<u>_</u>		<u> </u>	<u> </u>		_	ᆜ	<u>ب</u>	<u> </u>	<u> </u>	<u> </u>	-	
z t]	<u>_</u>][<u> </u>	<u> </u>	<u> </u>	_		Ύ	•	<u> </u>	_ _]	N I	<u>_</u>][_	<u> </u>	<u> </u>	¥]]]]		<u> </u>	_	_ _]	_	
Ly	 1	_1]	<u>_</u> 1[1	_* 1	=1	w]	. 1	_ _1	-1	1	1	<u>-1</u>	<u> </u>	J_	_u]	<u></u> 1	<u> </u>	<u>_</u> 1[<u> </u>	-1	_]	- <u>EL -11,5</u>	
(F	E)			(FF	0			(FI	D				FC)				Ē	в				Ē	A)	
(<i>.</i>			C	2			Ċ	2				G	, ,				Ċ	2				Ċ	2	

Figure 6.2.2-27 FE Model of the External Wall (F3 Column Line)

Figure 6.2.2-28 FE Model of the Slab at EL 4,650

Figure 6.2.2-29 FE Model of the Slab at EL 17,500

 WG3-U71-ERD-S-0004
 SH NO. 287

 REV. 1
 of 543

Figure 6.2.2-30 FE Model of the Slab at EL 27,000

Figure 6.2.2-31 FE Model of the FB Frame (FB Column Line)

.

Figure 6.2.2-32 FE Model of the FB Frame (FC Column Line)

Figure 6.2.2-33 FE Model of the FB Frame (FD Column Line)

Figure 6.2.2-34 FE Model of the FB Frame (FE Column Line)

Figure 6.2.2-35 FE Model of the FB Frame (F2 Column Line)

-

Figure 6.2.2-36 FE Model of the Roof Truss (R4 Column Line)

WG3-U71-ERD-S-0004	SH	NO.	294	
REV. 1		of	543	-

Figure 6.2.3.1-1 Equipment Loads at EL -11,500

WG3-U71-ERD-S-0004	SH NO.	295
REV. 1	of	543

Figure 6.2.3.1-2 Equipment Loads at EL -6,400

WG3-U71-ERD-S-0004	SH NO. 296	
REV. 1	of 543	

Figure 6.2.3.1-3 Equipment Loads at EL -1,000

{{{Contains Security-Related Information – Withheld Under 10 CFR 2.390.}}}

.

WG3-U71-ERD-S-0004	SH NO.	297
REV. 1	of	543

Figure 6.2.3.1-4 Equipment Loads at EL 4,650

WG3-U71-ERD-S-0004	SH NO. 29	8
REV. 1	of 54	3

Figure 6.2.3.1-5 Equipment Loads at EL 9,060

WG3-U71-ERD-S-0004	SH NO.	299
REV. 1	· of	543

ζ

Figure 6.2.3.1-6 Equipment Loads at EL 13,570

WG3-U71-ERD-S-0004	SH NO.	300
REV. 1	of	543

Figure 6.2.3.1-7 Equipment Loads at EL 22,500

{

WG3-U71-ERD-S-0004	SH NO.	301
REV. 1	of	543

Figure 6.2.3.1-8 Equipment Loads at EL 27,000

WG3-U71-ERD-S-0004	SH NO.	302
REV. 1	of	543

Figure 6.2.3.1-9 Equipment Loads at EL 34,000

HITACHI	WG3-U71-ERD-S-0004	SH NO. 303
	REV. 1	of 543

}

Figure 6.2.3.1-10 Equipment Loads above EL 34,000

{

{

WG3-U71-ERD-S-0004	SH NO.	304
REV. 1	of	543

Figure 6.2.3.1-11 Hydrostatic Loads on the Basemat

WG3-U71-ERD-S-0004	SH NO.	305
REV. 1	of	543

1

Figure 6.2.3.1-12 Hydrostatic Loads on the Slab at EL -1,000

١

WG3-U71-ERD-S-0004	SH NO.	306
REV. 1	of	543

Figure 6.2.3.1-13 Hydrostatic Loads on the Suppression Pool Floor Liner

WG3-U71-ERD-S-0004	SH NO.	307
REV. 1	of	543

١

Figure 6.2.3.1-14 Hydrostatic Loads on the Slab at EL 27,000

Figure 6.2.3.1-15 Hydrostatic Loads on the RCCV Wall Liner

Figure 6.2.3.1-16 Hydrostatic Loads during LOCA Flooding on the RPV Pedestal Liner

Figure 6.2.3.1-17 Hydrostatic Loads during LOCA Flooding on the RCCV Liner

WG3-U71-ERD-S-0004 SH NO. 311

REV. 1

of 543

Figure 6.2.3.1-18 Hydrostatic Loads on the RA FA External Wall

Figure 6.2.3.1-19 Hydrostatic Loads on the RG/FF External Wall

Figure 6.2.3.1-20 Hydrostatic Loads on the R1 External Wall

Figure 6.2.3.1-21 Hydrostatic Loads on the R7/F1 External Wall

REV. 1

of 543

Figure 6.2.3.1-22 Hydrostatic Loads on the F3 External Wall

Figure 6.2.3.1-23 Hydrostatic Loads on the Inner Wall at EL -11,500 (1)

Figure 6.2.3.1-24 Hydrostatic Loads on the Inner Wall at EL -11,500 (2)

Figure 6.2.3.1-25 Hydrostatic Loads on the Inner Wall at EL -11,500 (3)

Figure 6.2.3.1-26 Hydrostatic Loads on the Inner Wall at EL -11,500 (4)

Figure 6.2.3.1-27 Hydrostatic Loads on the Pool Girder

Figure 6.2.3.1-28 Hydrostatic Loads on the Inner Wall at EL 27,000 (RB)

Figure 6.2.3.1-29 Hydrostatic Loads on the Inner Wall at EL 27,000 (RF)

Figure 6.2.3.1-30 Hydrostatic Loads on the Inner Wall at EL 27,000 (R2)

Figure 6.2.3.1-31 Hydrostatic Loads on the Inner Wall at EL 27,000 (R6)

Figure 6.2.3.1-32 Hydrostatic Loads on the Inner Wall at EL 27,000 (1)

Figure 6.2.3.1-33 Hydrostatic Loads on the Inner Wall at EL 27,000 (2)

WG3-U71-ERD-S-0004	SH NO.	326
REV. 1	of	543

Figure 6.2.3.1-34 Hydrostatic Loads during LOCA Flooding on the Basemat Liner

WG3-U71-ERD-S-0004	SH NO.	327
REV. 1	of	543

Figure 6.2.3.1-35 Hydrostatic Loads during LOCA Flooding on the Suppression Pool Liner

WG3-U71-ERD-S-0004 SH NO. 328 REV. 1 of 543

Figure 6.2.3.2-1 Floor Live Load Enveloped Snow Drift Load for Lower Roofs

Figure 6.2.3.2-2 Floor Live Load (FB EL 22,500)

١

1				
	HITACHI	WG3-U71-ERD-S-0004 REV. 1	SH NO. 330 of 543	
	{		}	

.

N

Figure 6.2.3.2-3 Lateral Soil Pressure Load at Rest (Basemat)

REV. 1

Figure 6.2.3.2-4 Lateral Soil Pressure Load at Rest (RA/FA External Wall)

WG3-U71-ERD-S-0004 SH NO. 332 REV. 1 of 543

Figure 6.2.3.2-5 Lateral Soil Pressure Load at Rest (RG/FF External Wall)

REV. 1

Figure 6.2.3.2-6 Lateral Soil Pressure Load at Rest (R1 External Wall)

REV. 1

Figure 6.2.3.2-7 Lateral Soil Pressure Load at Rest (F3 External Wall)

Figure 6.2.3.3-1 Containment Pressure Loads - Drywell Unit Pressure

Figure 6.2.3.3-2 Containment Pressure Loads - Wetwell Unit Pressure

Figure 6.2.3.3-3 Containment Pressure Load (Drywell: RCCV Liner)

Figure 6.2.3.3-4 Containment Pressure Load (Drywell: RPV Pedestal Liner)

Figure 6.2.3.3-5 Containment Pressure Load (Drywell: Basemat Liner)

Figure 6.2.3.3-6 Containment Pressure Load (Drywell: Top Slab Liner)

Figure 6.2.3.3-7 Containment Pressure Load (Wetwell: RCCV Liner)

Figure 6.2.3.3-8 Containment Pressure Load (Wetwell: Suppression Pool Slab Liner)

Figure 6.2.3.3-9 Containment Pressure Load (IC/PCCS Pool: Slab at EL 27,000)

Figure 6.2.3.3-10 Containment Pressure Load (IC/PCCS Pool: Slab at EL 34,000)

Figure 6.2.3.3-11 Containment Pressure Load (IC/PCCS Pool: External Wall RA)

Figure 6.2.3.3-12 Containment Pressure Load (IC/PCCS Pool: External Wall RG)

REV. 1

Figure 6.2.3.3-13 Containment Pressure Load (IC/PCCS Pool: External Wall R1)

REV. 1

Figure 6.2.3.3-14 Containment Pressure Load (IC/PCCS Pool: Wall RB)

REV. 1

Figure 6.2.3.3-15 Containment Pressure Load (IC/PCCS Pool: Wall RF)

Figure 6.2.3.3-16 Containment Pressure Load (IC/PCCS Pool: Wall R2)

Figure 6.2.3.3-17 Containment Pressure Load (IC/PCCS Pool: Wall R6)

 WG3-U71-ERD-S-0004
 SH NO. 352

 REV. 1
 of 543

Figure 6.2.3.3-18 Containment Pressure Load (IC/PCCS Pool: Pool Girder)

 Figure 6.2.3.3-19
 Containment Pressure Load (IC/PCCS Pool: Wall-1)

)

Figure 6.2.3.3-20 Containment Pressure Load (IC/PCCS Pool: Wall-2)

Figure 6.2.3.3-21 HELB Pressure Load (MS Tunnel: Slab at EL 17,500)

Figure 6.2.3.3-22 HELB Pressure Load (MS Tunnel: Slab at EL 27,000)

REV. 1

Figure 6.2.3.3-23 HELB Pressure Load (MS Tunnel: RCCV Wall)

Figure 6.2.3.3-24 HELB Pressure Load (MS Tunnel: Walls)

WG3-U71-ERD-S-0004 SH NO. 359 of 543

REV. 1

Figure 6.2.3.3-26 HELB Pressure Load (for RB General Rooms: R7 Wall)

Figure 6.2.3.3-27 HELB Pressure Load (for RB General Rooms: RB Wall)

Figure 6.2.3.3-28 HELB Pressure Load (for RB General Rooms: RF Wall)

WG3-U71-ERD-S-0004 SH NO. 363 REV. 1 of 543

Figure 6.2.3.3-29 HELB Pressure Load (for RB General Rooms: Roof)

 WG3-U71-ERD-S-0004
 SH NO. 364

 REV. 1
 of 543

Figure 6.2.3.3-30 HELB Pressure Load (for FB General Rooms: F3 Wall)

5

WG3-U71-ERD-S-0004 SH NO. 365

REV. 1

of 543

Figure 6.2.3.3-31 HELB Pressure Load (for FB General Rooms: FA Wall)

WG3-U71-ERD-S-0004 SH NO. 366 REV. 1 of 543

Figure 6.2.3.3-32 HELB Pressure Load (for FB General Rooms: FF Wall)

Figure 6.2.3.3-33 HELB Pressure Load (for FB General Rooms: Slab at EL 22500)

Figure 6.2.3.4-1 Application of Thermal Load on the RCCV Wall (Normal Operation)

Figure 6.2.3.4-2 Application of Thermal Load on the RCCV Wall (LOCA Condition 1)

Figure 6.2.3.4-3 Application of Thermal Load on the RCCV Wall (LOCA Condition 2)

Figure 6.2.3.4-4 Application of Thermal Load on the RCCV Wall (LOCA Flooding Condition 3)

Figure 6.2.3.4-5 Application of Thermal Load on the External Wall (RA/FA)

Figure 6.2.3.4-6 Application of Thermal Load on the External Wall (RG/FF)

Figure 6.2.3.4-7 Application of Thermal Load on the External Wall (RB)

Figure 6.2.3.4-8 Application of Thermal Load on the External Wall (RF)

,

Figure 6.2.3.4-9 Application of Thermal Load on the External Wall (R1)

Figure 6.2.3.4-10 Application of Thermal Load on the External Wall (R7/F1)

Figure 6.2.3.4-11 Application of Thermal Load on the External Wall (F3)

Figure 6.2.3.4-12 Application of Thermal Load on the Basemat

Figure 6.2.3.4-13 Application of Thermal Load on the Basemat (during LOCA Flooding)

WG3-U71-ERD-S-0004 SH NO. 381 REV. 1 of 543

Figure 6.2.3.4-15 Application of Thermal Load on the Slab (EL 17,500)

Figure 6.2.3.4-16 Application of Thermal Load on the Slab (EL 27,000)

Figure 6.2.3.4-17 Application of Thermal Load on the Slab (EL 34,000)

WG3-U71-ERD-S-0004 SH NO. 385 **REV.** 1

of 543

Figure 6.2.3.4-18 Application of Thermal Load on the Spent Fuel Pool Wall-1

Figure 6.2.3.4-19Application of Thermal Load on the Spent Fuel Pool Wall-2

Figure 6.2.3.4-20 Application of Thermal Load on the Spent Fuel Pool Wall-3

Figure 6.2.3.4-21 Application of Thermal Load on the MS Tunnel Wall

Figure 6.2.3.4-22 Application of Thermal Load on the Pool Girder

Figure 6.2.3.4-23 Application of Thermal Load on the IC/PCCS Pool Wall-1 (1)

Figure 6.2.3.4-24 Application of Thermal Load on the IC/PCCS Pool Wall-1(2)

Figure 6.2.3.4-25 Application of Thermal Load on the IC/PCCS Pool Wall-5 (R2)

Figure 6.2.3.4-26 Application of Thermal Load on the IC/PCCS Pool Wall-6 (R6)

Figure 6.2.3.4-27 Application of Thermal Load on the RCCV Liner (Normal Operation)

Figure 6.2.3.4-28 Application of Thermal Load on the RCCV Liner (Condition 1)

Figure 6.2.3.4-29 Application of Thermal Load on the RCCV Liner (Condition 2)

 \langle

Figure 6.2.3.4-30 Application of Thermal Load on the RCCV Liner (Condition 3)

REV. 1

Figure 6.2.3.4-31 Application of Thermal Load on the Reinforced Concrete Girder and Column (EL -11.500)

REV. 1

Figure 6.2.3.4-32 Application of Thermal Load on the Reinforced Concrete Girder and Column (EL -6.400)

Figure 6.2.3.4-33 Application of Thermal Load on the Reinforced Concrete Girder and Column (EL -1.000)

Figure 6.2.3.4-34 Application of Thermal Load on the Reinforced Concrete Girder and Column (EL 4,650)

Figure 6.2.3.4-35 Application of Thermal Load on the Reinforced Concrete Girder and Column (EL 9,060)

WG3-U71-ERD-S-0004 SH NO. 403

REV. 1

Figure 6.2.3.4-36 Application of Thermal Load on the Reinforced Concrete Girder and Column (EL 13,570)

Figure 6.2.3.5-1 Application of Hydrodynamic Load on the RCCV Liner (SRV Positive)

Figure 6.2.3.5-2 Application of Hydrodynamic Load on the Suppression Pool Slab Liner (SRV Positive)

Figure 6.2.3.5-3 Application of Hydrodynamic Load on the RCCV Liner (SRV; Negative)

Figure 6.2.3.5-5 Application of Hydrodynamic Load on the RCCV Liner (CH Positive)

Figure 6.2.3.5-6 Application of Hydrodynamic Load on the Suppression Pool Slab Liner (CH Positive)

Figure 6.2.3.5-7 Application of Hydrodynamic Load on the RCCV Liner (CH; Negative)

Figure 6.2.3.5-8 Application of Hydrodynamic Load on the Suppression Pool Slab Liner (CH Negative)

Figure 6.2.3.5-9 Application of Hydrodynamic Load on the RCCV Liner (CO Positive/Negative)

Figure 6.2.3.5-11 Application of Hydrodynamic Load on the RCCV Liner (PS)

Figure 6.2.3.5-12 Application of Hydrodynamic Load on the RPV Pedestal Liner (PS)

Figure 6.2.3.5-13 Application of Hydrodynamic Load on the Basemat Liner (PS)

Figure 6.2.3.5-14 Application of Hydrodynamic Load on the Suppression Pool Slab Liner (PS)

Figure 6.2.3.5-15 Application of Hydrodynamic Load on the Top Slab Liner (PS)

Figure 6.2.3.5-16 Application of Hydrodynamic Load on the RCCV Liner (PS: Pressure Concurrent with Froth Impact Loads)

Figure 6.2.3.5-17 Application of Hydrodynamic Load on the RPV Pedestal Liner (PS: Pressure Concurrent with Froth Impact Loads)

Figure 6.2.3.5-18 Application of Hydrodynamic Load on the Basemat Liner (PS: Pressure Concurrent with Froth Impact Loads)

Figure 6.2.3.5-19 Application of Hydrodynamic Load on the Suppression Pool Slab Liner (PS: Pressure Concurrent with Froth Impact Loads)

Figure 6.2.3.5-20 Application of Hydrodynamic Load on the Top Slab Liner (PS: Pressure Concurrent with Froth Impact Loads)

Figure 6.2.3.9-1 Seismic Load Directions in the Stress Analysis

Figure 6.2.3.9-2 Calculation of Applied Shear Forces and Moments

WG3-U71-ERD-S-0004 SH NO. 426 REV. 1 of 543

Figure 6.2.3.9-3 Inner Walls Where Shear Force Are Applied - EL -11,500~EL-6,400

WG3-U71-ERD-S-0004 SH NO. 427

REV. 1

Figure 6.2.3.9-4 Inner Walls Where Shear Force Are Applied - EL-6,400~EL-1,000

WG3-U71-ERD-S-0004 SH NO. 428 REV. 1 of 543

Figure 6.2.3.9-5 Inner Walls Where Shear Force Are Applied - EL-1,000~EL4,650

WG3-U71-ERD-S-0004 SH NO. 429 REV. 1 of 543

Figure 6.2.3.9-6 Distribution of Seismic Shear Forces

Figure 6.2.3.9-7 Method of Applying Overturning Moments

WG3-U71-ERD-S-0004 SH NO. 431

REV. 1

Figure 6.2.3.9-8 Application of Overturning Moments to the RCCV and Wall below RCCV

REV. 1

Figure 6.2.3.9-9 Application of Overturning Moments to the RPV Pedestal

Figure 6.2.3.9-10 Application of Overturning Moments to the External Wall on R1 Column Line

Figure 6.2.3.9-11 Application of Overturning Moments to the External Wall on R7 Column Line

REV. 1

Figure 6.2.3.9-12 Application of Overturning Moments to the External Wall on F3 Column Line

Figure 6.2.3.9-13 Application of Overturning Moments to the External Wall on RA Column Line

REV. 1

Figure 6.2.3.9-14 Application of Overturning Moments to the External Wall on RG Column Line

REV. 1

Figure 6.2.3.9-15 Application of Overturning Moments to the External Wall on RB Column Line

REV. 1

Figure 6.2.3.9-16 Application of Overturning Moments to the External Wall on RF Column Line

 WG3-U71-ERD-S-0004
 SH NO. 440

 REV. 1
 of 543

Figure 6.2.3.9-17 Application of Overturning Moments to the Pool Girders

WG3-U71-ERD-S-0004 SH NO. 441 REV. 1 of 543

Figure 6.2.3.9-18 Method of Applying Overturning Moments to the Top of RCCV

Figure 6.2.3.9-19 Calculation Method of Input Torsional Moment

WG3-U71-ERD-S-0004 SH NO. 443 REV. 1 of 543

Figure 6.2.3.9-20 Calculation Method of Shear Forces due to Torsional Moment

Figure 6.2.3.9-21 Soil Pressure Due to N-S Direction Earthquake on the Basemat

{{{Contains Security-Related Information – Withheld Under 10 CFR 2.390.}}}

WG3-U71-ERD-S-0004 SH NO. 445 REV. 1 of 543

Figure 6.2.3.9-22 Soil Pressure Due to N-S Direction Earthquake on the External Wall (R1 Column Line)

Figure 6.2.3.9-23 Soil Pressure Due to N-S Direction Earthquake on the External Wall (F3 Column Line)

Figure 6.2.3.9-24 Soil Pressure Due to E-W Direction Earthquake on the Basemat

{{{Contains Security-Related Information – Withheld Under 10 CFR 2.390.}}}

Figure 6.2.3.9-25 Soil Pressure Due to E-W Direction Earthquake on the External Wall (RA/FA Column Line)

REV. 1

of 543

Figure 6.2.3.9-26 Soil Pressure Due to E-W Direction Earthquake on the External Wall (RG/FF Column Line)

.

Figure 6.2.4-1 Section Deformation for Dead Load

 WG3-U71-ERD-S-0004
 SH NO. 451

 REV. 1
 of 543

Figure 6.2.4-2 Section Deformation for Drywell Unit Pressure

Figure 6.2.4-3 Section Deformation for Wetwell Unit Pressure (1 MPa)

Figure 6.2.4-4 Section Deformation for Thermal Load (Normal Operation: Winter)

.

• .

Figure 6.2.4-5 Section Deformation for Thermal Load (LOCA After 6 minutes: Winter)

Figure 6.2.4-6 Section Deformation for Thermal Load (LOCA After 72 hours: Winter)

Figure 6.2.4-7 Section Deformation for Thermal Load (Normal Operation: Summer)

.

.

Figure 6.2.4-8 Section Deformation for Thermal Load (LOCA After 6 minutes: Summer)

 WG3-U71-ERD-S-0004
 SH NO. 458

 REV. 1
 of 543

Figure 6.2.4-9 Section Deformation for Thermal Load (LOCA After 72 hours: Summer)

Figure 6.2.4-10 Section Deformation for Seismic Load (Horizontal: North to South)

Figure 6.2.4-11 Section Deformation for Seismic Load (Horizontal: East to West)

Figure 6.2.4-12 Section Deformation for Seismic Load (Vertical: Upward)

Figure 6.2.4-13 Section Deformation for Soil Pressure Due to an Earthquake (N-S)

Figure 6.2.4-14 Section Deformation for Soil Pressure Due to an Earthquake (E-W)

Figure 6.2.4-15 Section Deformation for Wind Load (North Wind)

.

Figure 6.2.4-16 Section Deformation for Wind Load (South Wind)

Figure 6.2.4-17 Section Deformation for Wind Load (East Wind)

Figure 6.2.4-18 Section Deformation for Wind Load (West Wind)

Figure 6.2.4-19 Section Deformation for Tornado Load (North Wind)

Figure 6.2.4-20 Section Deformation for Tornado Load (South Wind)

Figure 6.2.4-21 Section Deformation for Tornado Load (East Wind)

Figure 6.2.4-22 Section Deformation for Tornado Load (West Wind)

Figure 6.2.4-23 Section Deformation for Tornado Load (Differential Pressure)

WG3-U71-ERD-S-0004 SH NO. 473

REV. 1

Figure 6.2.4-24 Elements Selected for Tabulation (Wall below RCCV)

REV. 1

Figure 6.2.4-25 Elements Selected for Tabulation (External Wall R1)

WG3-U71-ERD-S-0004 SH NO. 475

REV. 1

Figure 6.2.4-26 Elements Selected for Tabulation (External Wall R7/F1)

WG3-U71-ERD-S-0004 SH NO. 476

REV. 1

Figure 6.2.4-27 Elements Selected for Tabulation (External Wall RA FA)

.

WG3-U71-ERD-S-0004 SH NO. 477

REV. 1

Figure 6.2.4-28 Elements Selected for Tabulation (Basemat)

WG3-U71-ERD-S-0004 SH NO. 478 REV. 1 of 543

Figure 6.2.4-29 Elements Selected for Tabulation (Slab at EL 4,650)

 WG3-U71-ERD-S-0004
 SH NO. 479

 REV. 1
 of 543

Figure 6.2.4-30 Elements Selected for Tabulation (Slab at EL 17,500)

WG3-U71-ERD-S-0004 SH NO. 480 REV. 1 of 543

Figure 6.2.4-31 Elements Selected for Tabulation (Slab at EL 27,000)

WG3-U71-ERD-S-0004 SH NO. 481

REV. 1

Figure 6.2.4-32 Elements Selected for Tabulation (Pool Girder)

Figure 6.2.4-33 Elements Selected for Tabulation (MS Tunnel Wall)

.

Figure 6.2.4-34 Elements Selected for Evaluation (IC/PCCS Pool in NS Direction)

WG3-U71-ERD-S-0004 SH NO. 484 REV. 1 of 543

Figure 6.2.4-35 Force and Moment in Shell Element

Figure 6.4.1-2 Calculation of Shear Strength Provided by Concrete

Figure 6.4.1-3 Comparison of Bending Moment-Axial Force (P-M) Interactions

Figure 6.4.2-1 Allowable Stress of W-shaped Members (Strong Axis Bending)

۰,

Figure 6.4.2-2 Allowable Stress of W-shaped Members (Weak Axis Bending)

Figure 6.4.2-3 Allowable Bending Stress of Box Members

🛞 HITACHI

WG3-U71-ERD-S-0004 SH NO. 491

Figure 7.1-2 Reinforcing Steel of Foundation Mat: Section A-A

Figure 7.1-3 Reinforcing Steel of IC/PCCS Pool Girder

🛞 нітасні

WG3-U71-ERD-S-0004 SH NO. 493

В нітасні	WG3-U71-ERD-S-0004 REV. 1	SH NO. 494 of 543
{		

Figure 7.1-4 List of RB Wall and Slab Reinforcement

{{{Contains Security-Related Information - Withheld Under 10 CFR 2.390.}}}

WG3-U71-ERD-S-0004 SH NO. 495 REV. 1 of 543

RE RD RF RC RB 37000 9500 9000 9000 9500 6200 6100 6200 6200 : 6200 6100 TOP OF STEEL GIRDER EL 51885 (HIGH PNT) 100 100 800, 1800 TOP OF TRUSS GIRDER EL 52000 (LOW PNT) FLOOR EL 52700 CH1 P1 V P1 3 5 \$ ∥_{Р1}У∕ \$ 4 **\$**2 ∿ 8 P1√ BOT OF TRUSS GIRDER EL 48000 (LOW PNT) CH2 TRUS GIRDER "STG1" ELEVATION STRUCTURAL STEEL MEMBER SCHEDULE WELDED PL NUMBER ID NO. MEMBER FLG. PL WEB PL ũ TRUSS GIRDER "STG1" CH1 600x60 480x60 480x60 CH2 600x60 L1 600x38 524x38 . L2 600x38 424x25 400x25 L3 350x25 P1 2L8x8x7/8 COLUMN SC1 800x90 620x50 BOT OF BASEPLATE FLOOR EL 34000

Figure 7.1-5 RB Roof Truss Structural Steel Member

Figure 7.3.2-1 Elements Selected for Tabulation - RB Roof Truss and Supporting Column on R4 Column Line

APPENDIX A

,

COMPARISON WITH DCD DATA

,

WG3-U71-ERD-S-0004	SH NO.	498
REV. 1	of	543

List of Tables

Table A.1-1 Design Seismic Shear Loads for Horizontal	499
Table A.1-2 Design Seismic Moment Loads for Horizontal	504
Table A.1-3 Design Seismic Torsion Loads for Horizontal	509
Table A.1-4 Vertical Acceleration	513
Table A.1-5 Soil Pressure Due to an Earthquake	517
Table A.1-6 Seismic Hydrodynamic Loads for GDCS Pool	518
Table A.1-7 Seismic Hydrodynamic Loads for RPV Cavity / Dryer Separator / Fuel H	Buffer Pool519
Table A.1-8 Seismic Hydrodynamic Loads for IC / PCCS Pool	520
Table A.1-9 Seismic Hydrodynamic Loads for Extension Pool A	521
Table A.1-10 Seismic Hydrodynamic Loads for Extension Pool B	522
Table A.1-11 Seismic Hydrodynamic Loads for Spent Fuel Pool	523
Table A.2-1 Maximum Stress Ratios for Flexure and Membrane Forces: RB	524
Table A.2-2 Maximum Stress Ratios for Membrane Compressive Forces: RB	528
Table A.2-3 Calculation Results for Maximum Transverse Shear: RB	532

List of Figures

None

.

Table A.1-1 Design Seismic Shear Loads for Horizontal

(a) RB/FB

Elev.	Elem	Node	NS-direction EW-direction			n		
(m)	No.	No.	NA3	DCD	Ratio	NA3	DCD	Ratio
			(MN)	(MN)	(NA3/DCD)	(MN)	(MN)	(NA3/DCD)
52.40*	1110	110	192.2	151.9	1.27	140.0	158.2	0.89
		109	192.2	151.9	1.27	140.0	158.2	0.89
34.00	1109	109	173.2	191.7	0.90	113.9	153.0	0.74
		108	173.2	191.7	0.90	113.9	153.0	0.74
27.00	1108	108	396.0	425.4	0.93	259.4	400.7	0.65
		107	396.0	425.4	0.93	259.4	400.7	0.65
22.50	1107	107	436.4	483.7	0.90	291.8	464.0	0.63
		106	436.4	483.7	0.90	291.8	464.0	0.63
17.50	1106	106	438.4	532.9	0.82	343.5	555.4	0.62
		105	438.4	532.9	0.82	343.5	555.4	0.62
13.57	1105	105	450.7	569.2	0.79	363.7	599.9	0.61
		104	450.7	569.2	0.79	363.7	599.9	0.61
9.06	1104	104	454.6	610.1	0.75	383.4	654.3	0.59
		103	454.6	610.1	0.75	383.4	654.3	0.59
4.65	1103	103	454.7	839.8	0.54	360.1	872.2	0.41
		102	454.7	839.8	0.54	360.1	872.2	0.41
-1.00	1102	102	240.0	871.4	0.28	226.6	938.5	0.24
		101	240.0	871.4	0.28	226.6	938.5	0.24
-6.40	1101	101	237.7	933.6	0.25	200.4	1029.7	0.19
-11.50		2	237.7	933.6	0.25	200.4	1029.7	0.19

*: The difference between the modeled elevation 52.4 m and the actual elevation 52.7 m at the RB roof is negligibly small.

L

(b) RCCV

Elev.	Elem	Node	NS-direction EW-direction			on		
(m)	No.	No.	NA3	DCD	Ratio	NA3	DCD	Ratio
			(MN)	(MN)	(NA3/DCD)	(MN)	(MN)	(NA3/DCD)
34	1209	209	130.9	137.0	0.96	133.2	183.2	0.73
		208	130.9	137.0	0.96	133.2	183.2	0.73
27	1208	208	141.1	164.9	0.86	151.9	248.5	0.61
		206	141.1	164.9	0.86	151.9	248.5	0.61
17.5	1206	206	184.1	230.2	0.80	158.4	290.2	0.55
		205	184.1	230.2	0.80	158.4	290.2	0.55
13.57	1205	205	207.9	263.4	0.79	173.4	326.2	0.53
		204	207.9	263.4	0.79	173.4	326.2	0.53
9.06	1204	204	225.4	304.2	0.74	201.2	365.8	0.55
		203	225.4	304.2	0.74	201.2	365.8	0.55
4.65	1203	203	109.2	227.3	0.48	125.7	289.4	0.43
		202	109.2	227.3	0.48	125.7	289.4	0.43
-1	1202	202	67.6	272.4	0.25	68.1	330.6	0.21
		201	67.6	272.4	0.25	68.1	330.6	0.21
-6.4	1201	201	70.7	261.7	0.27	55.1	303.5	0.18
-11.5		2	70.7	261.7	0.27	55.1	303.5	0.18

Elev.	Elem	Node	NS-direction EW-direction			on		
(m)	No.	No.	NA3	DCD	Ratio	NA3	DCD	Ratio
			(MN)	(MN)	(NA3/DCD)	(MN)	· (MN)_	(NA3/DCD)
17.5	701	701	47.9	35.0	1.37	32.4	37.0	0.88
		702	47.9	35.0	1.37	32.4	37.0	0.88
14.5	702	702	47.1	36.4	1.29	32.4	39.3	0.83
		703	47.1	36.4	1.29	32.4	39.3	0.83
11.5	703	703	45.8	37.0	1.24	35.1	41.8	0.84
		704	45.8	37.0	1.24	35.1	41.8	0.84
8.5	704	704	44.7	37.8	1.18	36.5	44.7	0.82
		705	44.7	37.8	1.18	36.5	44.7	0.82
7.4625	705	705	39.1	40.7	0.96	29.4	40.5	0.72
		706	39.1	40.7	0.96	29.4	40.5	0.72
4.65	1303	303	20.5	32.8	0.63	16.9	44.8	0.38
		377	20.5	32.8	0.63	16.9	44.8	0.38
2.4165	1377	377	32.1	48.1	0.67	31.4	66.3	0.47
		302	32.1	48.1	0.67	31.4	66.3	0.47
-1	1302	302	22.1	65.6	0.34	15.7	81.4	0.19
		376	22.1	65.6	0.34	15.7	81.4	0.19
-2.75	1376	376	21.8	66.0	0.33	16.1	81.7	0.20
		301	21.8	66.0	0.33	16.1	81.7	0.20
-6.4	1301	301	29.8	104.4	0.29	22.4	121.2	0.18
-11.5		2	29.8	104.4	0.29	22.4	121.2	0.18

(c) RPV Pedestal and Vent Wall

(d) RSW

Elev.	Elem	Node		NS-direction EW-direction			n	
(m)	No.	No.	NA3	DCD	Ratio	NA3	DCD	Ratio
			(MN)	(MN)	(NA3/DCD)	(MN)	(MN)	(NA3/DCD)
24.18	707	707	4.2	3.0	1.44	3.0	2.7	1.09
		708	4.2	3.0	1.44 ·	3.0	2.7	1.09
20.2	708	708	20.8	14.6	1.43	11.1	12.3	0.95
		709	20.8	14.6	1.43	11.1	12.3	0.95
15.775	709	709	24.4	17.3	1.41	12.3	14.4	0.90
		710	24.4	17.3	1.41	12.3	14.4	0.90
11.35	710	710	27.1	19.9	1.36	13.5	16.6	0.85
		711	27.1	19.9	1.36	13.5	16.6	0.85
7.4625	711	711	26.6	41.1	0.65	22.2	35.6	0.62
		712	26.6	41.1	0.65	22.2	35.6	0.62
4.65	712	712	14.3	14.3	1.00	13.5	19.5	0.69
		713	14.3	14.3	1.00	13.5	19.5	0.69
2.4165	713	713	1.6	1.5	1.03	1.6	1.3	1.29
		714	1.6	1.5	1.03	1.6	1.3	1.29
1.96	714	714	0.9	0.9	1.15	0.9	0.7	1.31
-0.8		715	0.9	0.9	1.15	0.9	0.7	1.31

(e) RPV

Elev.	Elem	Node	NS-direction				EW-directio	n
(m)	No.	No.	NA3	DCD	Ratio	NA3	DCD	Ratio
			(MN)	(MN) .	(NA3/DCD)	(MN)	(MN)	(NA3/DCD)
3.215	844	845	18.6	7.2	2.59	7.9	7.0	1.13
2.365		846	18.6	7.2	2.59	7.9	7.0	1.13
8.453	871	815	29.8	18.6	1.60	18.8	17.9	1.05
7.4625		711	29.8	18.6	1.60	18.8	17.9	1.05

Table A.1-2 Design Seismic Moment Loads for Horizontal

NS-direction **EW-direction** Elev. Elem Node DCD DCD No. No. NA3 Ratio NA3 Ratio (m) (MN-m) (MN-m) (NA3/DCD) (MN-m) (MN-m)(NA3/DCD) 52.4* 1110 110 2724 1642 1.66 2143 1808 1.19 4303 4488 5838 1.36 4465 1.01 34 1109 109 8196 5585 1.47 5821 5522 1.05 8719 6477 1.35 6389 6317 1.01 27 1108 108 7685 1.01 9400 1.22 7162 7106 9599 8964 1.07 7958 8596 0.93 1107 22.5 107 11216 9905 1.13 8328 9193 0.91 11424 1.00 9227 11297 0.82 11464 17.5 1106 106 12105 12386 0.98 9408 11935 0.79 12349 13778 0.90 13867 10195 0.74 13.57 1105 105 12839 14298 0.90 10255 14377 0.71 13651 16593 0.82 11216 16740 0.67 9.06 1104 104 13904 16966 0.82 11338 17191 0.66 15231 19378 0.79 12506 19672 0.64 4.65 1103 103 9392 19064 0.49 6302 20192 0.31 10952 7759 24272 0.32 23163 0.47 1102 102 -1 6545 23673 0.28 4819 24948 0.19 29263 7303 27655 0.26 5358 0.18 101 -6.4 1101 4748 28126 0.17 3351 30038 0.11 -11.5 2 5053 32235 0.16 3356 35275 0.10

(a) RB/FB

*: The difference between the modeled elevation 52.4 m and the actual elevation 52.7 m at the RB roof is negligibly small.

(b) RCCV

Elev.	Elem	Node		NS-directio	n		EW-directio	on
(m)	No.	No.	NA3	DCD	Ratio	NA3	DCD	Ratio
			(MN-m)	(MN-m)	(NA3/DCD)	(MN-m)	(MN-m)	(NA3/DCD)
34	1209	209	230	195	1.18	510	581	0.88
		208	1029	1057	0.97	1160	1496	0.78
27	1208	208	2162	1708	1.27	2303	2532	0.91
		206	2938	2959	0.99	3071	4368	0.70
17.5	1206	206	3259	3315	0.98	3667	4715	0.78
		205	3691	4147	0.89	3904	5761	0.68
13.57	1205	205	3817	4327	0.88	4203	5949	0.71
		204	4389	5404	0.81	4491	7264	0.62
9.06	1204	204	4481	5628	0.80	4853	7519	0.65
		203	5190	6785	0.76	5203	8909	0.58
4.65	1203	203	5523	6992	0.79	5470	9171	0.60
		202	5740	7958	0.72	5824	10581	0.55
-1	1202	202	6008	8076	0.74	6066	10738	0.56
		201	5924	9417	0.63	6035	12523	0.48
-6.4	1201	201	6053	9534	0.63	6141	12651	0.49
-11.5		2	5961	10836	0.55	6127	14200	0.43

Elev.	Elem	Node	NS-direction EW-direction				on	
(m)	No.	No.	NA3	DCD	Ratio	NA3	DCD	Ratio
			(MN-m)	(MN-m)	(NA3/DCD)	(MN-m)	(MN-m)	(NA3/DCD)
17.5	701	701	107	78	1.37	62	85	0.73
		702	139	114	1.22	107	136	0.79
14.5	702	702	139	119	1.17	113	148	0.76
		703	279	226	1.24	204	260	0.78
11.5	703	703	280	229	1.22	207	269	0.77
		704	411	340	1.21	301	390	0.77
8.5	704	704	411	341	1.20	302	396	0.76
		705	458	379	1.21	338	438	0.77
7.4625	705	705	. 440	359	1.23	352	438	0.80
		706	513	456	1.13	427	525	0.81
4.65	1303	303	667	581	1.15	496	621	0.80
		377	651	599	1.09	502	667	0.75
2.4165	1377	377	793	732	1.08	614	817	0.75
		302	754	778	0.97	631	922	0.68
-1	1302	302	691	839	0.82	571	959	0.59
		376	658	928	0.71	555	1050	0.53
-2.75	1376	376	658	928	0.71	555	1050	0.53
		301	594	1116	0.53	524	1330	0.39
-6.4	1301	301	555	1149	0.48	518	1346	0.39
-11.5		2	553	1655	0.33	514	1963	0.26

(c) RPV Pedestal and Vent Wall

(d) RSW

Elev.	Elem	Node		NS-directio	n	_	EW-directio	n
(m)	No.	No.	NA3	DCD	Ratio	NA3	DCD	Ratio
			(MN-m)	(MN-m)	(NA3/DCD)	(MN-m)	(MN-m)	(NA3/DCD)
24.18	707	707	2.5	2.1	1.19	2.2	1.7	1.29
		708	18.9	13.2	1.43	13.8	12.4	1.11
20.2	708	708	25.8	18.4	1.40	19.8	16.8	1.18
		709	113.5	79.0	1.44	59.3	68.4	0.87
15.775	709	709	116.7	81.9	1.42	61.3	71.0	0.86
		710	224.1	158.4	1.41	115.5	133.6	0.86
11.35	710	710	227.6	159.1	1.43	116.9	136.4	0.86
		711	331.9	236.2	1.41	169.3	198.7	0.85
7.4625	711	711	135.4	197.0	0.69	125.5	183.6	0.68
		712	169.6	292.4	0.58	151.7	251.3	0.60
4.65	712	712	156.8	125.1	1.25	142.3	133.0	1.07
		713	147.3	133.0	1.11	132.8	150.9	0.88
2.4165	713	713	4.0	3.6	1.11	4.0	3.2	1.25
		714	3.3	2.9	1.14	3.3	2.7	1.22
1.96	714	714	3.0	2.7	1.11	3.0	2.4	1.25
-0.8		715	0.7	0.5	1.40	0.6	0.5	1.20

(e) RPV

Γ	Elev.	Elem	Node	NS-direction			EW-direction			
	(m)	No.	No.	NA3	DCD	Ratio	NA3	DCD	Ratio	
				(MN-m)	(MN-m)	(NA3/DCD)	(MN-m)	(MN-m)	(NA3/DCD)	
Γ	3.215	844	845	29.9	16.2	1.85	15.6	14.3	1.09	
	2.365		846	44.5	21.3	2.09	18.9	17.3	1.09	
ſ	8.453	871	815	182.7	143.8	1.27	151.9	135.5	1.12	
	7.4625		711	176.6	141.3	1.25	_147.4	136.8	1.08	

Table A.1-3 Design Seismic Torsion Loads for Horizontal

(a) RB/FB

Elev.	Elem	Node	C	alculated To	rsion	A	ccidental To	rsion	Design Torsion		
(m)	No.	No.	NA3	DCD	Ratio	NA3	DCD	Ratio	NA3	DCD	Ratio
			(MN-m)	(MN-m)	(NA3/DCD)	(MN-m)	(MN-m)	(NA3/DCD)	(MN-m)	(MN-m)	(NA3/DCD)
52.4*	1110	110	1284	1379	0.93	471	388	1.22	1755	1766	0.99
			1284	1379	0.93	471	388	1.22	1755	1766	0.99
34	1109	109	1938	2405	0.81	424	470	0.90	2362	2874	0.82
			1938	2405	0.81	424	470	0.90	2362	2874	0.82
27	1108	108	2799	3329	0.84	1386	1489	0.93	4185	4822	0.87
			2799	3329	0.84	1386	1489	0.93	4185	4822	0.87
22.5	1107	107	4678	6093	0.77	1527	1693	0.90	6205	7786	0.80
			4678	6093	0.77	1527	1693	0.90	6205	7786	0.80
17.5	1106	106	4023	5068	0.79	1535	1944	0.79	5557	7012	0.79
			4023	5068	0.79	1535	1944	0.79	5557	7012	0.79
13.57	1105	105	4211	5245	0.80	1578	2100	0.75	5788	7344	0.79
			4211	5245	0.80	1578	2100	0.75	5788	7344	0.79
9.06	1104	104	4694	5985	0.78	1591	2290	0.69	6285	8275	0.76
			4694	5985	0.78	1591	2290	0.69	6285	8275	0.76
4.65	1103	103	5248	11425	0.46	1591	3053	0.52	6839	14478	0.47
			5248	11425	0.46	1591	3053	0.52	6839	14478	0.47
-1	1102	102	2718	11523	0.24	840	3285	0.26	3558	14808	0.24
			2718	11523	0.24	840	3285	0.26	3558	14808	0.24
-6.4	1101	101	2079	11690	0.18	832	3604	0.23	2910	15294	0.19
-11.5		2	2079	11690	0.18	832	3604	0.23	2910	15294	0.19

*: The difference between the modeled elevation 52.4 m and the actual elevation 52.7 m at the RB roof is negligibly small.

(b) RCCV

Elev.	Elem	Node	Ca	alculated To	rsion	Ac	ccidental To	rsion	I	Design Torsi	on
(m)	No.	No.	NA3	DCD	Ratio	NA3	DCD	Ratio	NA3	DCD	Ratio
			(MN-m)	(MN-m)	(NA3/DCD)	(MN-m)	(MN-m)	(NA3/DCD)	(MN-m)	(MN-m)	(NA3/DCD)
34	1209	209	29	36	0.81	266	366	0.73	296	402	0.73
		208	29	36	0.81	266	366	0.73	296	402	0.73
27	1208	208	1489	1814	0.82	304	497	0.61	1793	2311	0.78
		206	1489	1814	0.82	304	497	0.61	1793	2311	0.78
17.5	1206	206	1591	1982	0.80	368	580	0.63	1960	2562	0.76
		205	1591	1982	0.80	368	580	0.63	1960	2562	0.76
13.57	1205	205	1762	2186	0.81	416	652	0.64	2178	2838	0.77
		204	1762	2186	0.81	416	652	0.64	2178	2838	0.77
9.06	1204	204	2062	2616	0.79	451	732	0.62	2513	3348	0.75
		203	2062	2616	0.79	451	732	0.62	2513	3348	0.75
4.65	1203	203	1439	2870	0.50	251	579	0.43	1691	3449	0.49
		202	1439	2870	0.50	251	579	0.43	1691	3449	0.49
-1	1202	202	690	2926	0.24	136	661	0.21	826	3587	0.23
		201	690	2926	0.24	136	661	0.21	826	3587	0.23
-6.4	1201	201	349	1962	0.18	141	607	0.23	490	2569	0.19
-11.5		2	349	1962	0.18	141	607	0.23	490	2569	0.19

Elev.	Elem	Node	Ca	alculated To	rsion	Ac	cidental Tor	rsion	Design Torsion		
(m)	No.	No.	NA3	DCD	Ratio	NA3	DCD	Ratio	NA3	DCD	Ratio
			(MN-m)	(MN-m)	(NA3/DCD)	(MN-m)	(MN-m)	(NA3/DCD)	(MN-m)	(MN-m)	(NA3/DCD)
17.5	701	701	107	73	1.47	40	12	3.38	147	85	1.74
		702	107	73	1.47	40	12	3.38	147	85	1.74
14.5	702	702	108	75	1.44	39	13	3.09	148	88	1.68
		703	108	75	1.44	39	13	3.09	148	88	1.68
11.5	703	703	111	77	1.44	38	14	2.76	149	91	1.64
		704	111	77	1.44	38	14	2.76	149	91	1.64
8.5	704	704	112	78	1.44	37	15	2.53	149	93	1.61
		705	112	78	1.44	37	15	2.53	149	93	1.61
7.4625	705	705	92	59	1.56	33	13	2.53	125	72	1.74
		706	92	59	1.56	33	13	2.53	125	72	1.74
4.65	1303	303	71	142	0.50	16	36	0.46	87	177	0.49
		377	71	142	0.50	16	36	0.46	87	177	0.49
2.4165	1377	377	86	172	0.50	26	53	0.48	112	225	0.50
		302	86	172	0.50	26	53	0.48	112	225	0.50
-1	1302	302	34	146	0.23	18	65	0.27	52	211	0.25
		376	34	146	0.23	18	65	0.27	52	211	0.25
-2.75	1376	376	34	146	0.23	17	65	0.27	52	212	0.25
		301	34	146	0.23	17	65	0.27	52	212	0.25
-6.4	1301	301	21	118	0.18	24	97	0.25	45	215	0.21
-11.5		2	21	118	0.18	24	97	0.25	45	215	0.21

(c) RPV Pedestal and Vent Wall

(d) RSW

Elev.	Elem	Node	C	alculated To	rsion	A	ccidental To	rsion	I	Design Torsi	on
(m)	No.	No.	NA3	DCD	Ratio	NA3	DCD	Ratio	NA3	DCD	Ratio
			(MN-m)	(MN-m)	(NA3/DCD)	(MN-m)	(MN-m)	(NA3/DCD)	(MN-m)	(MN-m)	(NA3/DCD)
24.18	707	707	0.5	0.4	1.25	2.0	1.4	1.38	2.5	1.8	1.40
		708	0.5	0.4	1.25	2.0	1.4	1.38	2.5	1.8	1.40
20.2	708	708	1.7	1.4	1.21	9.8	6.9	1.43	11.6	8.3	1.39
		709	1.7	1.4	1.21	9.8	6.9	1.43	11.6	8.3	1.39
15.775	709	709	2.4	1.9	1.26	11.5	8.2	1.41	13.9	10.1	1.38
		710	2.4	1.9	1.26	11.5	8.2	1.41	13.9	10.1	1.38
11.35	· 710	710	3.0	2.4	1.25	12.8	9.4	1.36	15.8	11.8	1.34
		711	3.0	2.4	1.25	12.8	9.4	1.36	15.8	11.8	1.34
7.4625	711	711	22.9	22.0	1.04	12.6	19.4	0.65	35.5	41.4	0.86
		712	22.9	22.0	1.04	12.6	19.4	0.65	35.5	41.4	0.86
4.65	712	712	15.2	30.3	0.50	6.7	9.2	0.73	21.9	39.5	0.56
		713	15.2	30.3	0.50	6.7	9.2	0.73	21.9	39.5	0.56
2.4165	713	713	0.2	0.2	1.00	0.7	0.7	1.03	0.9	0.9	0.98
	_	714	0.2	0.2	1.00	0.7	0.7	1.03	0.9	0.9	0.98
1.96	714	714	0.1	0.1	1.00	0.4	0.4	1.05	0.5	0.5	1.09
-0.8		715	0.1	0.1 ·	1.00	0.4	0.4	1.05	0.5	0.5	1.09

٠,

.

WG3-U71-ERD-S-0004	SH NO.	513
REV. 1	of	543

Table A.1-4 Vertical Acceleration

(a) RB/FB

Elev.	Node	Stick	NA3	DCD	Ratio
(m)	No.	Model	(g)	(g)	(NA3/DCD)
52.4*	110	RBFB	1.56	1.25	1.25
34	109	RBFB	1.20	0.83	1.45
27	108	RBFB	1.02	0.73	1.40
22.5	107	RBFB	0.92	0.73	1.26
17.5	106	RBFB	0.80	0.73	1.10
13.57	105	RBFB	0.72	0.74	0.97
9.06	104	RBFB	0.62	0.73	0.85
4.65	103	RBFB	0.56	0.78	0.72
-1	102	RBFB	0.57	0.76	0.75
-6.4	101	RBFB	0.53	0.68	0.78
-11.5	2	RBFB	0.51	0.63	0.81
-15.5	1	RBFB	0.52	0.51	1.02

*: The difference between the modeled elevation 52.4 m and the actual elevation 52.7 m at the RB roof is negligibly small.

(b) RCCV

Elev.	Node	Stick	NA3	DCD	Ratio
(m)	No.	Model	(g)	(g)	(NA3/DCD)
34	209	RCCV	1.20	0.90	1.33
27	208	RCCV	1.12	0.88	1.27
17.5	206	RCCV	0.91	0.73	1.25
13.57	205	RCCV	0.82	0.78	1.05
9.06	204	RCCV	0.72	0.65	1.11
4.65	203	RCCV	0.65	0.69	0.94
-1	202	RCCV	0.58	0.59	0.98
-6.4	201	RCCV	0.55	0.59	0.93

WG3-U71-ERD-S-0004	SH NO.	514
REV. 1	of	543

Table A.1-4 Vertical Acceleration (Continued)

Elev.	Node	Stick	NA3	DCD	Ratio
(m)	No.	Model	(g)	(g)	(NA3/DCD)
17.5	701	VW	0.82	1.10	0.75
14.5	702	VW	0.86	1.04	0.83
11.5	703	VW	0.81	0.92	0.88
8.5	704	VW	0.72	0.77	0.93
7.4625	·705	VW	0.67	0.70	0.95
4.65	706, 303	Pedestal	0.69	0.67	1.02
-1	302	Pedestal	0.59	0.59	1.01
-6.4	301	Pedestal	0.56	0.50	1.11

(c) RPV Pedestal and Vent Wall

(d) RSW

Elev.	Node	Stick	NA3	DCD	Ratio
(m)	No.	Model	(g)	(g)	(NA3/DCD)
24.18	707	RSW	1.30	0.97	1.35
20.2	708	RSW	1.23	0.94	1.31
15.775	709	RSW	0.99	0.84	1.18
11.35	710	RSW	0.78	0.76	1.02
7.4625	711	RSW	0.68	0.70	0.96
4.65	712	RSW	0.69	0.67	1.02
2.4615	713	RSW	0.64	0.64	1.00
1.96	714	RSW	0.64	0.64	1.00
-0.8	715	RSW	0.64	0.65	0.99

WG3-U71-ERD-S-0004	SH NO.	515
REV. 1	of	543

Table A.1-4 Vertical Acceleration (Continued)

Elev.	Node	Stick	NA3	DCD	Ratio
(m)	No.	Model	(g)	(g)	(NA3/DCD)
52.4*	9101	Oscillator	0.33	1.20	0.28
	9102	Oscillator	1.33	1.82	0.73
	9103	Oscillator	6.27	3.14	2.00
	9104	Oscillator	2.62	2.26	1.16
	9105	Oscillator	2.42	2.32	1.04
	9106	Oscillator	3.74	2.99	1.25
	9107	Oscillator	3.22	2.80	1.15
	9108	Oscillator	2.50	2.61	0.96
	9109	Oscillator	1.53		
34.00	9091	Oscillator	1.61	1.29	1.25
	9092	Oscillator	1.61	1.06	1.52
	9093	Oscillator	1.12		
27.00	9081	Oscillator	1.64	1.16	1.41
	9082	Oscillator	1.52	0.99	1.54
	9083	Oscillator	1.30	1.09	1.19
	9084	Oscillator	1.67	1.31	1.27
	9085	Oscillator	1.46	0.97	1.51
	9086	Oscillator	1.12		
	9087	Oscillator	1.03		
22.50	9071	Oscillator	1.15	1.60	0.72
	9072	Oscillator	1.79	1.31	1.37
	9073	Oscillator	4.47	2.03	2.20
	9074	Oscillator	1.67	1.31	1.27
	9075	Oscillator	1.51	1.16	1.30
	9076	Oscillator	1.65		
17.50	9061	Oscillator	3.65	1.79	2.04
	9062	Oscillator	2.62	1.49	1.76
	9063	Oscillator	1.17	0.82	1.43
	9064	Oscillator	2.56	1.84	1.39
	9065	Oscillator	1.28	1.42	0.90
	99064	Oscillator	0.99	1.07	0.93
	9066	Oscillator	1.09		
	9067	Oscillator	0.91		

(e) Slab Oscillator

*: The difference between the modeled elevation 52.4 m and the actual elevation 52.7 m at the RB roof is negligibly small.

 WG3-U71-ERD-S-0004
 SH NO.
 516

 REV. 1
 of
 543

Table A.1-4 Vertical Acceleration (Continued)

Elev.	Node	Stick	NA3	DCD	Ratio
(m)	No.	Model	(g)	(g)	(NA3/DCD)
13.57	9051	Oscillator	1.11	0.81	1.37
	9052	Oscillator	1.25	1.46	0.86
	9053	Oscillator	0.99		
	9054	Oscillator	0.83		
9.06	9041	Oscillator	1.02	0.88	1.16
	9042	Oscillator	1.26	1.42	0.89
	9043	Oscillator	0.93		
	9044	Oscillator	0.80		
4.65	9031	Oscillator	1.62	1.17	1.38
	9032	Oscillator	0.89	0.97	0.92
	9033	Oscillator	1.12	1.02	1.10
	9034	Oscillator	1.81	1.51	1.20
	9035	Oscillator	1.09	1.38	0.79
	9036	Oscillator	0.94	·	
	9037	Oscillator	0.82		
-1.00	9021	Oscillator	. 0.97	1.12	0.87
	9022	Oscillator	2.07	1.45	1.43
	9023	Oscillator	0.98	1.01	0.97
	9024	Oscillator	1.12	0.89	1.26
	9025	Oscillator	1.21	1.34	0.90
	9026	Oscillator	1.63	1.57	1.04
	9027	Oscillator	0.93	0.88	1.06
	9028	Oscillator	0.96		
	9029	Oscillator	1.30		
	9030	Oscillator	0.87		
-6.40	9011	Oscillator	0.84	0.92	0.91
	9012	Oscillator	1.17	0.92	1.27
	9013	Oscillator	1.52	1.35	1.13
	9014	Oscillator	1.19		
	9015	Oscillator	1.03		

(e) Slab Oscillator

WG3-U71-ERD-S-0004	SH NO.	517
REV. 1	of	543

Elevation	R1 and F3 Wall			R	Note		
(m)	NA3 (MPa)	DCD (MPa)	Ratio (NA3/DCD)	NA3 (MPa)	DCD (MPa)	Ratio (NA3/DCD)	
4.65	т						Grade
	0.56	0.30	1.87	0.45	0.33	1.36	0
-1	0.28	0.20	0.07	0.20	0.20	1.00	
-64	0.20	0.29	0.97	0.29	0.29	1.00	
	0.24	0.25	0.96	0.22	0.23	0.96	
-11.5							
15.5	0.94	0.29	3.24	0.76	0.26	2.92	
-15.5			andres ^{andre} s and		Alleria, en di Standard frankriger Alleria de al		

Table A.1-5 Soil Pressure Due to an Earthquake

Table A.1-6 Seismic Hydrodynamic Loads for GDCS Pool

Wall					Fl	oor	
Danth	Pressure			Dietonee		Pressure	
Depth	NA3	DCD	Ratio	Distance	NA3	DCD	Ratio
d/H	_ (kN/m ²)	(kN/m ²)	(NA3/DCD)	x/(L/2)	(kN/m ²)	(kN/m ²)	(NA3/DCD)
0.0	9.7	9.7	1.00	0.0	0.0	0.0	
0.2	21.0	21.0	1.00	0.2	6.1	6.1	1.00
0.4	35.8	35.8	1.00	0.4	13.1	13.1	1.00
0.6	46.6	46.6	1.00	0.6	22.2	22.2	1.00
0.8	53.1	53.1	1.00	0.8	35.1	35.1	1.00
1.0	55.3	55.3	1.00	1.0	55.3	55.3	1.00

(a) Longitudinal Direction Motion

(b) Transversal Direction Motion

Wall					Flo	por			
Donth	Pressure			Distance		Pressure			
Depth	NA3	DCD	Ratio	Distance	NA3	DCD	Ratio		
d/H	(kN/m ²)	(kN/m ²)	(NA3/DCD)	x/(L/2)	(kN/m ²)	(kN/m ²)	(NA3/DCD)		
0.0	9.8	9.8	1.00	0.0	0.0	0.0			
0.2	15.6	15.6	1.00	0.2	4.3	4.3	1.00		
0.4	23.8	23.8	1.00	0.4	8.8	,8.8	1.00		
0.6	26.1	26.1	1.00	0.6	13.7	13.7	1.00		
0.8	26.1	26.1	1.00	0.8	19.4	19.4	1.00		
1.0	26.1	26.1	1.00	1.0	26.1	26.1	1.00		

(c) Vertical Motion

Wali					Floor	
Denth	Pressure					
d/H	NA3 (kN/m ²)	DCD (kN/m ²)	Ratio (NA3/DCD)	NA3 (kN/m ²)	DCD (kN/m ²)	Ratio (NA3/DCD)
0.0	0:0	0.0				
0.2	13.6	10.7	1.27	68.0	53.4	1.27
0.4	27.2	21.3	1.27			
0.6	40.8	32.0	1.27	for all	for all	
0.8	54.4	42.7	1.27	floor area	floor area	
1.0	68.0	53.4	1.27			

 "d" is depth from the top of water. "H" is water height of the pool.
 "x" is distance from the center of the pool. "L" is width of the pool. Note:

WG3-U71-ERD-S-0004	SH NO.	519
REV. 1	of	543

Table A.1-7 Seismic Hydrodynamic Loads for RPV Cavity / Dryer Separator / Fuel Buffer Pool

Wall				Floor			
Donth		Pressure		Distance		Pressure	
Deptil	NA3	DCD	Ratio	Distance	NA3	DCD	Ratio
d/H	(kN/m^2)	(kN/m ²)	(NA3/DCD)	x/(L/2)	(kN/m²)	(kN/m²)	(NA3/DCD)
0.0	15.2	15.2	1.00	0.0	0.0	0.0	
0.2	23.1	23.1	1.00	0.2	8.0	8.0	1.00
0.4	37.0	37.0	1.00	0.4	16.7	16.7	1.00
0.6	47.8	47.8	1.00	0.6	27.0	27.0	1.00
0.8	54.5	54.5	1.00	0.8	39.9	39.9	1.00
1.0	56.7	56.7	1.00	1.0	56.7	56.7	1.00

(a) NS / EW Motion

(b) Vertical Motion

	N	all		Floor		
Depth		Pressure				
	NA3	DCD	Ratio	NA3	DCD	Ratio
a/H	_(KN/m ⁻)	<u>(K</u> N/m ⁻)	(NA3/DCD)	(KN/m ⁻)	(KN/m ⁻)	(NA3/DCD)
0.0	0.0	0.0				
0.2	15.2	11.7	1.30	76.2	58.5	1.30
0.4	30.5	23.4	1.30)	
0.6	45.7	35.1	1.30	for all	for all	
0.8	61.0	46.8	1.30	floor area	floor area	
1.0	76.2	58.5	1.30			

 "d" is depth from the top of water. "H" is water height of the pool.
 "x" is distance from the center of the pool. "L" is width of the pool. Note:

Table A.1-8 Seismic Hydrodynamic Loads for IC / PCCS Pool

Wall				Floor			
Denth	Pressure			Distance	Pressure		
Depth	NA3	DCD	Ratio	Distance	NA3	DCD	Ratio
d/H	(kN/m ²)	(kN/m ²) _	(NA3/DCD)	x/(L/2)	(kN/m ²)	(kN/m²)	(NA3/DCD)
0.0	9.1	9.1	1.00	0.0	0.0	0.0	
0.2	13.6	13.6	1.00	0.2	4.6	4.6	1.00
0.4	21.7	21.7	1.00	0.4	9.5	9.5	1.00
0.6	26.7	26.7	1.00	0.6	14.8	14.8	1.00
0.8	28.2	28.2	1.00	0.8	21.0	21.0	1.00
1.0	28.2	28.2	1.00	1.0	28.2	28.2	1.00

(a) NS / EW Motion

(b) Vertical Motion

	W	all	Floor			
Denth		Pressure				
d/H	NA3 (kN/m ²)	DCD (kN/m ²)	Ratio (NA3/DCD)	NA3 (kN/m ²)	DCD (kN/m ²)	Ratio (NA3/DCD)
0.0	0.0	0.0				
0.2	10.9	8.4	1.30	54.6	41.9	1.30
0.4	21.8	16.8	1.30			Í
0.6	32.8	25.1	1.30	for all	for all	
0.8	43.7	33.5	1.30	floor area	floor area	
1.0	54.6	41.9	1.30			1

 "d" is depth from the top of water. "H" is water height of the pool.
 "x" is distance from the center of the pool. "L" is width of the pool. Note:

WG3-U71-ERD-S-0004	SH NO.	521
REV. 1	of	543

Table A.1-9 Seismic Hydrodynamic Loads for Extension Pool A

Wall					Fle	oor	
Dopth		Pressure		Distance	Pressure		
Deptin	NA3	DCD	Ratio	Distance	NA3	DCD	Ratio
d/H	(kN/m ²)	(kN/m ²)	(NA3/DCD)	x/(L/2)	(kN/m ²)	(kN/m ²)	(NA3/DCD)
0.0	4.8	4.8	1.00	0.0	0.0	0.0	
0.2	16.5	16.5	1.00	0.2	1.3	1.3	1.00
0.4	28.6	28.6	1.00	0.4	2.7	2.7	1.00
0.6	37.3	37.3	1.00	0.6	4.7	4.7	1.00
0.8	42.5	42.5	1.00	0.8	12.3	12.3	1.00
1.0	44.3	44.3	1.00	_ 1.0	44.3	44.3	1.00

(a) NS Motion

(b) EW Motion

	W	all	-	Floor			
Donth	Pressure			Distance	Pressure		
Depth	NA3	DCD	Ratio	Distance	NA3	DCD	Ratio
d/H	(kN/m ²)	(kN/m²)	(NA3/DCD)	x/(L/2)	(kN/m ²)	(kN/m ²)	(NA3/DCD)
0.0	7.8	7.8	1.00	0.0	0.0	0.0	
0.2	12.9	12.9	1.00	0.2	3.9	3.9	1.00
0.4	20.3	20.3	1.00	0.4	8.1	8.1	1.00
0.6	23.8	23.8	1.00	0.6	12.6	12.6	1.00
0.8	24.0	24.0	1.00	0.8	17.8	17.8	1.00
1.0	24.0	24.0	1.00	1.0	24.0	24.0	1.00

(c) Vertical Motion

	W	all		Floor		
Denth	Pressure					
Depair	NA3	DCD	Ratio	NA3	DCD	Ratio
d/H	(kN/m²)	(kN/m²)	(NA3/DCD)	(kN/m ²)	(kN/m ²)	(NA3/DCD)
0.0	0.0	0.0				
0.2	10.9	8.4	1.30	54.6	41.9	1.30
0.4	21.8	16.8	1.30			
0.6	32.8	25.1	1.30	for all	for all	
0.8	43.7	33.5	1.30	floor area	floor area	
1.0	54.6	41.9	1.30			

Note: 1) "d" is depth from the top of water. "H" is water height of the pool. 2) "x" is distance from the center of the pool. "L" is width of the pool.

WG3-U71-ERD-S-0004	SH NO.	522
REV. 1	of	543

Table A.1-10 Seismic Hydrodynamic Loads for Extension Pool B

Wall				Floor				
Depth		Pressure		Distance		Pressure		
Depti	NA3	DCD	Ratio	Distance	NA3	DCD	Ratio	
d/H	(kN/m ²)	(kN/m ²)	(NA3/DCD)	x/(L/2)	(kN/m ²)	(kN/m²)	(NA3/DCD)	
0.0	7.8	7.8	1.00	0.0	0.0	0.0		
0.2	12.5	12.5	1.00	0.2	3.5	3.5	1.00	
0.4	19.2	19.2	1.00	0.4	7.2	7.2	1.00	
0.6	21.5	21.5	1.00	0.6	11.3	11.3	1.00	
0.8	21.5	21.5	1.00	0.8	16.0	16.0	1.00	
1.0	21.5	21.5	1.00	1.0	21.5	21.5	1.00	

(a) NS Motion

(b) EW Motion

Wall				Floor			
Depth	Pressure			Distance	Pressure		
Debru	NA3	DCD	Ratio	Distance	NA3	DCD	Ratio
d/ <u>H</u>	(kN/m²)	(kN/m ²)	(NA3/DCD)	x/(L/2)	(kN/m²)	(kN/m ²)	(NA3/DCD)
0.0	13.7	13.7	1.00	0.0	0.0	0.0	
0.2	18.2	18.2	1.00	0.2	5.5	5.5	1.00
0.4	27.8	27.8	1.00	0.4	11.7	11.7	1.00
0.6	35.5	35.5	1.00	0.6	19.1	19.1	1.00
0.8	40.3	40.3	1.00	0.8	28.7	28.7	1.00
1.0	41.9	41.9	1.00	1.0	41.9	41.9	1.00

(c) Vertical Motion

	. W	/all		Floor		
Dopth		Pressure				
	NA3	DCD	Ratio	NA3	DCD	Ratio
d/H	(kN/m ²)	(kN/m²)	(NA3/DCD)	(kN/m ²)	(kN/m²)	(NA3/DCD)
0.0	0.0	0.0				
0.2	10.9	8.4	1.30	54.6	41.9	1.30
0.4	21.8	16.8	1.30		1	
0.6	32.8	25.1	1.30	for all	for all	
0.8	43.7	33.5	1.30	floor area	floor area	
1.0	54.6	41.9	1.30			

Note:

"d" is depth from the top of water. "H" is water height of the pool.
 "x" is distance from the center of the pool. "L" is width of the pool.

WG3-U71-ERD-S-0004	SH NO.	523
REV. 1	of	543

Table A.1-11 Seismic Hydrodynamic Loads for Spent Fuel Pool

Wall					Flo	oor	
Dopth		Pressure		Distance		Pressure	
Debru	NA3	DCD	Ratio	Distance	NA3	DCD	Ratio
d/H	(kN/m ²)	<u>(k</u> N/m ²)	(NA3/DCD)	x/(L/2)	(kN/m ²)	(kN/m ²)	(NA3/DCD)
0.0	12.3	12.3	1.00	0.0	0.0	0.0	
0.2	_23.6	22.6	1.04	0.2	7.4	7.1	1.04
0.4	37.8	36.1	1.05	0.4	15.2	14.5	1.05
0.6	44.6	42.6	1.05	0.6	23.7	22.7	1.05
0.8	45.2	43.2	1.05	0.8	33.6	32.1	1.05
1.0	45.2	43.2	1.05	1.0	45.2	43.2	1.05

(a) NS Motion

(b) EW Motion

	Ŵ	all			Flo	oor	
Depth		Pressure		Distanco		Pressure	
Deptil	NA3	DCD	Ratio	Distance	NA3	DCD	Ratio
d/H	(kN/m²)	(kN/m²)	(NA3/DCD)	x/(L/2)	(kN/m²)	(kN/m ²)	(NA3/DCD)
0.0	11.8	11.8	1.00	0.0	0.0	0.0	
0.2	24.2	23.2	1.04	0.2	8.5	8.2	1.04
0.4	40.0	38.2	1.05	0.4	17.5	16.7	1.05
0.6	49.4	47.2	1.05	0.6	27.4	26.2	1.05
0.8	52.2	49.8	1.05	0.8	38.7	37.0	1.05
1.0	52.2	49.8	1.05	1.0	52.2	49.8	1.05

(c) Vertical Motion

	W	/all			Floor	
Denth		Pressure				
Dopar	NA3	DCD	Ratio	NA3	DCD	Ratio
d/H	(kN/m ²)	(kN/m²)	(NA3/DCD)	(kN/m²)	(kN/m ²)	(NA3/DCD)
0.0	0.0	0.0				
0.2	19.7	19.7	1.00	98.5	98.5	1.00
0.4	39.4	39.4	1.00			
0.6	59.1	59.1	1.00	for all	for all	
0.8	78.8	78.8	1.00	floor area	floor area	
1.0	98.5	98.5	1.00			

Note: 1) "d" is depth from the top of water. "H" is water height of the pool. 2) "x" is distance from the center of the pool. "L" is width of the pool.

		Concrete							
Location	Element ID	ľ	NA3	I	DCD	Ratio (NA3/DCD)			
	_	σ/σs	Load ID	σ/σ _s	Load ID				
18 Wali	6	0.433	7501	0.767	7501	0.57			
Below RCCV	13	0.518	7501	0.692	7501	0.75			
Bottom	24	0.568	7501	0.696	7501	0.82			
19 Wall	806	0.298	8514	0.373	7441	0.80			
Below RCCV	813	0.339	8514	0.417	7441	0.81			
Mid-Height	824	0.367	8514	0.463	7421	0.79			
20 Wall	1606	0.542	6241	0.542	6241	1.00			
Below RCCV	1613	0.625	6341	0.871	7471	0.72			
Тор	1624	0.639	8507	0.616	6471	1.04			
21 Exterior Wall	20011	0.338	7251	0.817	7301	0.41			
@ EL-11.50	20023	0.467	7492	0.550	7492	0.85			
~-10.50m	30010	0.302	7501	0.523	7501	0.58			
	30020	0.192	7211	0.255	7571	0.75			
	40001	0.284	7481	0.393	7431	0.72			
	40011	0.338	7501	0.497	7501	0.68			
22 Exterior Wall	22011	0.388	7561	0.489	7211	0.79			
@ EL4.65	22023	0.391	8511	0.384	7492	1.02			
~6.60m	32010	0.235	7131	0.278	7201	0.85			
	32020	0.257	7371	0.262	7301	0.98			
1	42001	0.269	7201	0.283	7301	0.95			
	42011	0.260	7501	0.333	7201	0.78			
23 Exterior Wall	24211	0.336	7501	0.373	7201	0.90			
@ EL22.50	24224	0.436	7961	0.382	7581	1.14			
~24.60m	34210	0.231	5026	0.217	4022	1.07			
	34220	0.195	7482	0.229	7441	0.85			
	44201	0.230	8502	0.213	7561	1.08			

Table A.2-1 Maximum Stress Ratios for Flexure and Membrane Forces: RB

Table A.2-1 Maximum Stress Ratios for Flexure and Membrane Forces: RB (Continued)

				Conc	rete	
Location	Element ID	. 1	NA3	I	DCD	Ratio (NA3/DCD)
		σ/σs	Load ID	σ/σs	Load ID	
24 Basemat	90140	0.500	7571	0.570	7511	0.88
@ Wall	90182	0.244	7491	0.257	7491	0.95
Below RCCV	90111	0.237	7571	0.233	7491	1.02
25 Slab	93140	0.478	8514	0.491	7482	0.97
EL4.65m	93182	0.741	8514	0.690	7441	1.07
@ RCCV	93111	0.689	8514	0.612	7441	1.13
26 Slab	96144	0.412	8511	0.409	7482	1.01
EL17.5m	96186	0.483	8513	0.397	7133	1.22
@ RCCV	96113	0.588	8513	0.524	7482	1.12
27 Slab	98472	0.890	8512	0.566	6001	1.57
EL27.0m	98514	0.668	8513	0.200	6001	3.34
@ RCCV	98424	0.844	8514	0.600	6001	1.41
28 Pool Girder	123054	0.669	8512	0.595	6001	1.13
@ Storage Pool	123154	0.455	8512	0.211	6001	2.16
29 Pool Girder	123062	0.464	6971	0.212	6001	2.19
@ Cavity	123162	0.365	7461	0.201	6001	1.82
30 Pool Girder	123067	0.888	8513	0.514	6001	1.73
@ Fuel Pool	123167	0.601	8505	0.494	6001	1.22
31 MS Tunnel	150122	0.517	2021	0.516	2021	1.00
Wall and Slab	96611	0.383	7521	0.361	7521	1.06
	98614	0.284	7371	0.269	7341	1.05
32 IC/PCCS	125051	0.272	9005	0.097	6001	2.80
Pool Wall	125151	0.292	9012	0.212	6001	1.38
in NS Dir.	125055	0.340	8512	0.187	6001	1.82
	125155	0.287	9003	0.173	6001	1.66

_		Primary Reinforcement																			
						Direc	tion 1									Direc	tion 2				
Location	Element			ln/Top				(Dut/Botto	m				In/Top	1				Out/Botte	om	
	םו	1	NA3	I	DCD	Ratio	I	NA3	[DCD	Ratio	1	NA3	1	DCD	Ratio	1	NA3		DCD	Ratio
		σ/σα	Load ID	σ/σα	Load ID	(NA3 /DCD)	σ/σ _α	Load ID	σ/σα	Load ID	(NA3 /DCD)	σ/σα	Load ID	σ/σα	Load ID	(NA3 /DCD)	σ/σα	Load ID	σ/σα	Load ID	(NA3 /DCD)
18 Wall	6	0.433	7501	0.767	7501	0.57	0.249	7721	0.885	7992	0.28	0.182	7641	0.622	7641	0.29	0.250	7851	0.918	7801	0.27
Below RCCV	13	0.518	7501	0.692	7501	0.75	0.206	8081	0.607	7801	0.34	0.157	7721	0.433	7622	0.36	0.250	7851	0.674	7801	0.37
Bottom	24	0.568	7501	0.696	7501	0.82	0.202	7992	0.630	7601	0.32	0.172	7672	0.452	7621	0.38	0.252	7642	0.598	7641	0.42
19 Wall	806	0.298	8514	0.373	7441	0.80	0.284	8021	0.753	8081	0.38	0.189	7673	0.458	8021	0.41	0.209	7671	0.580	8001	0.36
Below RCCV	813	0,339	8514	0.417	7441	0.81	0.177	9011	0.578	7821	0.31	0.132	9011	0.363	7982	0.36	0.120	7651	0.540	7611	0.22
Mid-Height	824	0.367	8514	0.463	7421	0.79	0.223	7921	0.737	7621	0.30	0.140	7651	0.447	7621	0.31	0.200	7971	0.585	7801	0.34
20 Wall	1606	0.542	6241	0.542	6241	1.00	0.383	7701	0.701	7601	0.55	0.364	7471	0.521	7421	0.70	0.380	7701	0.738	7602	0.51
Below RCCV	1613	0.625	6341	0.871	7471	0.72	0.263	7651	0.533	7601	0.49	0.302	7471	0.393	7421	0.77	0.335	7701	0.673	7602	0.50
Тор	1624	0.639	8507	0.616	6471	1.04	0.378	7751	0.693	7701	0.55	0.363	7471	0.510	7441	0.71	0.380	7602 [′]	0.698	7602	0.54
21 Exterior Wall	20011	0.338	7251	0.817	7301	0.41	0.391	8514	0.906	7482	0.43	0.298	7821	0.832	7841	0.36	0.568	8514	0.912	7482	0.62
@ EL-11.50	20023	0.467	7492	0.550	7492	0.85	0.214	7492	0.264	7492	0.81	0.099	7491	0.169	8001	0.58	0.228	7992	0.334	7992	0.68
~-10.50m	30010	0.302	7501	0.523	7501	0.58	0,183	9014	0.570	7931	0.32	0.196	7961	0.582	7941	0.34	0.209	7961	0.813	7981	0.26
	30020	0.192	7211	0.255	7571	0.75	0.048	8061	0.087	7601	0.55	0.111	7261	0.168	7981	0.66	0.061	7601	0.300	7601	0.20
	40001	0.284	7481	0.393	7431	0.72	0.078	8001	0.174	7992	0.45	0.170	7461	0.276	7411	0.61	0.074	7481	0.371	7601	0.20
	40011	0.338	7501	0.497	7501	0.68	0.122	7971	0.667	7921	0.18	0.143	8011	0.735	7982	0.19	0.176	7961	0.816	7931	0.22
22 Exterior Wall	22011	0.388	7561	0.489	7211	0.79	0.728	8513	0.970	7482	0.75	0.591	8513	0.748	7482	0.79	0.723	7871	0.905	7821	0.80
@ EL4.65	22023	0.391	8511	0.384	7492	1.02	0.367	8001	0.414	8001	0.89	0.345	7701	0.434	7701	0.79	0.487	7601	0.643	8001	0.76
~6.60m	32010	0.235	7131	0.278	7201	0.85	0.552	7482	0.812	7441	0.68	0.635	8514	0.737	7482	0.86	0.525	7173	0.893	7321	0.59
	32020	0.257	7371	0.262	7301	0.98	0.429	7431	0.518	7411	0.83	0.375	9012	0.435	7982	0.86	0.719	7831	0.767	7811	0.94
	42001	0.269	7201	0.283	7301	0.95	0.385	7751	0.489	7411	0.79	0.253	7991	0.346	7801	0.73	0.698	9012	0.673	7631	1.04
	42011	0.260	7501	0.333	7201	0.78	0.504	8511	0.684	7801	0.74	0.518	8511	0.505	7421	1.02	0.571	9014	0.800	7831	0.71
23 Exterior Wall	24211	0.336	7501	0.373	7201	0.90	0.662	7461	0.901	7481	0.74	0.571	8511	0.554	7241	1.03	0.725	7461	0.853	7481	0.85
@ EL22.50	24224	0.436	7961	0.382	7581	1.14	0.699	7481	0.702	7461	1.00	0.451	7601	0.493	7612	0.92	0.878	7632	0.843	7613	1.04
~24.60m	34210	0.231	5026	0.217	4022	1.07	0.655	7482	0.815	7482	0.80	0.909	7482	0.907	7482	1.00	0.520	8514	0.534	7371	0.97
	34220	0.195	7482	0.229	7441	0.85	0.491	8511	0.433	7941	1.13	0.250	8512	0.317	8081	0.79	0.484	7261	0.466	7991	1.04
	44201	0.230	8502	0.213	7561	1.08	0.498	7441	0.562	7441	0.89	0.312	7581	0.369	7581	0.84	0.545	7461	0.566	7431	0.96
Note *: Wa	II Below	RCCV	Direction	11 : Ho		D	irection	n2 : Vertic	al												
Ext	erior Wal		Direction	11 : Hor	izontal.	D	irectior	2 : Vertic	al												
Sla	b		Direction	11 : N-S	S.	D	irectior	12 : E-W													

Direction2 : Vertical

Direction2 : Vertical

Direction2 : E-W

Table A.2-1 Maximum Stress Ratios for Flexure and Membrane Forces: RB (Continued)

 σ and σ_a are calculated and allowable stress.

Direction1 : Horizontal,

Direction1 : Horizontal,

Direction1 : N-S,

Pool Girder

.

MS Tunnel Wall

MS Tunnel Slab

WG3-U71-ERD-S-0004 SH NO. 527 REV. 1 of 543

			Primary Reinforcement																		
			Direction 1 Direction 2 Direction 2																		
Location	Element			In/Top				(Out/Botto	m			-	In/Top				(Out/Botto	m	
	UI ID	N	IA3	0	CD	Ratio	2	IA3	1	DCD	Ratio	1	IA3	T	CD	Ratio	1	NA3	t	DCD	Ratio
		σ/σα	Load ID	σ/σα	Load ID	(NA3 /DCD)	σίσα	Load ID	σ/σα	Load ID	(NA3 /DCD)	σ/σ _α	Load ID	σ/σ _α	Load ID	(NA3 /DCD)	σ/σ _α	Load ID	σ/σ _α	Load ID	(NA3 /DCD)
24 Basemat	90140	0.500	7571	0.570	7511	0.88	0.474	7671	0.889	7721	0.53	0.383	7672	0.411	7501	0.93	0.157	7172	0.391	7143	0.40
@ Wall	90182	0.244	7491	0,257	7491	0,95	0,100	7601	0.293	7601	0.34	0,181	7921	0.377	7921	0.48	0.254	9014	0,533	7941	0.48
Below RCCV	90111	0.237	7571	0.233	7491	1.02	0,077	7672	0,195	7603	0.40	0.141	7581	0,236	8081	0.60	0,214	7841	0.496	7841	0.43
25 Slab	93140	0.478	8514	0.491	7482	0.97	0.427	7811	0.639	7811	0.67	0.524	7941	0.450	7941	1.17	0.406	6421	0.526	6421	0.77
EL4.65m	93182	0.741	8514	0.690	7441	1.07	0.205	6441	0.319	7231	0.64	0.270	8511	0.375	7441	0.72	0.257	7351	0.326	7301	0.79
@ RCCV	93111	0.689	8514	0.612	7441	1.13	0.218	7602	0.232	7441	0.94	0.320	8514	0.410	7482	0.78	0.235	8507	0.261	6421	0.90
26 Slab	96144	0.412	8511	0.409	7482	1.01	0.600	6971	0.741	6345	0.81	0.705	8514	0.565	7482	1.25	0.757	8508	0.930	6441	0.81
EL17.5m	96186	0.483	8513	0.397	7133	1.22	0.442	7431	0.643	7431	0.69	0.550	8511	0.525	7482	1.05	0.256	7103	0.297	8001	0.86
@ RCCV	96113	0.588	8513	0.524	7482	1.12	0.428	7102	0.320	7102	1.33	0.365	7521	0.265	7521	1.38	0.440	7103	0.439	7481	1.00
27 Slab	98472	0.890	8512	0.566	6001	1.57	0.869	8512	0.450	6001	1.93	0.518	8511	0.060	6001	8.64	0.875	8512	0.440	6001	1.99
EL27.0m	98514	0.668	8513	0.200	6001	3.34	0.402	8513	0.260	6001	1.54	0.291	8511	0.160	6001	1.82	0.313	8514	0.030	6001	10.42
@ RCCV	98424	0.844	8514	0,600	6001	1.41	0.685	7501	0.000	6001	1.00	0.436	7851	0.240	6001	1.82	0.720	8514	0.150	6001	4.80
28 Pool Girder	123054	0.669	8512	0.595	6001	1.13	0.327	8507	0.010	6001	32.66	0.631	8501	0.550	6001	1.15	0.531	7481	0.040	6001	13.28
@ Storage Pool	123154	0.455	8512	0.211	6001	2.16	0.385	8514	0.040	6001	9.64	0.724	8513	0.350	6001	2.07	0.306	7431	0.070	6001	4.37
29 Pool Girder	123062	0.464	6971	0.212	6001	2.19	0.295	8514	0.040	6001	7.38	0.602	7421	0.050	6001	12.03	0.298	7501	0.070	6001	4.26
@ Cavity	123162	0.365	7461	0.201	6001	1.82	0.432	7131	0.320	6001	1.35	0.735	7481	0.290	6001	2.53	0.165	6142	0.160	6001	1.03
30 Pool Girder	123067	0,888	8513	0.514	6001	1.73	0,805	8506	0,310	6001	2.60	0.554	6431	0.010	6001	55.40	0.725	9005	0.310	6001	2.34
@ Fuel Pool	123167	0.601	8505	0.494	6001	1.22	0.772	9005	0.390	6001	1.98	0.479	6445	0.020	6001	23.97	0.676	8505	0.410	6001	1.65
31 MS Tunnel	150122	0.517	2021	0.516	2021	1.00	0.064	7501	0.053	6501	1.21	0.491	2521	0.491	2521	1.00	0.072	7421	0.071	7421	1.02
Wall and Slab	96611	0.383	7521	0.361	7521	1.06	0.155	7101	0.227	7501	0.68	0.143	7521	0.131	7521	1.09	0.155	7851	0.117	7801	1.33
	98614	0.284	7371	0.269	7341	1.05	0.058	8514	0.073	7991	0.79	0.120	7521	0.123	7521	0.97	0.498	8511	0.050	7602	9.94
32 IC/PCCS	125051	0.544	8505	0.220	6001	2.47	0.628	8512	0.170	6001	3.70	0.748	8513	0.270	6001	2.77	0.773	8512	0.230	6001	3.36
Pool Wall	125151	0.520	8513	0.260	6001	2.00	0.609	8512	0.220	6001	2.77	0.610	8505	0.270	6001	2.26	0.605	8512	0.220	6001	2.75
in NS Dir.	125055	0.380	8514	0.090	6001	4.22	0.458	8512	0.090	6001	5.09	0.408	8514	0.010	6001	40.84	0.483	8512	0.110	6001	4.39
	125155	0.377	8514	0.090	6001	4.19	0.473	8512	0.090	6001	5.25	0.276	8514	0.010	6001	27.62	0.310	8512	0.000	6001	1.00
Note *: Wall	Below R	CCV [Direction1	I : Hoop	э,	Dir	ection2	: Vertica	1												
Evte	rior Wall	Г	Direction 1	L • Horiz	zontal	Din	action?	 Vertica 	1												

Table A.2-1 Maximum Stress Ratios for Flexure and Membrane Forces: RB (Continued)

e *:	Wall Below RCCV	Direction1 : Hoop,	Direction2 : Vertical
	Exterior Wall	Direction1 : Horizontal,	Direction2 : Vertical
	Slab	Direction1 : N-S,	Direction2 : E-W
	Pool Girder	Direction1 : Horizontal,	Direction2 : Vertical
	MS Tunnel Wall	Direction1 : Horizontal,	Direction2 : Vertical
	MS Tunnel Slab	Direction1 : N-S,	Direction2 : E-W
	σ and σ_2 are calculated	ated and allowable stress.	

Ι

.

		T 1.1.1	ickness DCD Ratio (Datia (N)						
Location	Element	Inickness	Load	Calculat	ted Concr	rete Stres	s (MPa)	Land	Calcula	ited Concr	ete Stres	s (MPa)		Ratio (IN	(3/000)	
Location	ID	(m)	ID	σ _x (MPa)	σ _y (MPa)	τ _{xy} (MPa)	σ _c (MPa)	ID	σ _x (MPa)	σ _y (MPa)	τ _{xy} (MPa)	σ _c (MPa)	σχ	σy	τ _{xy}	σ
18 Wall	6	2.0	2001	-0.782	-4.095	-0.109	-4.098	7561	-3.918	-10.104	-2.879	-11.237	0.20	0.41	0.04	0.36
Below RCCV	13	2.0	2001	-0.726	-3.290	0.135	-3.297	7501	-3.154	-8.716	2.071	-9.402	0.23	0.38	0.07	0.35
Bottom	24	2.0	2001	-0.609	-3.631	-0.174	-3.641	7561	-2.150	-7.952	-3.331	-9.469	0.28	0.46	0.05	0.38
19 Wall	806	2.0	2001	-0.644	-3.516	-0.150	-3.524	7561	-2.205	-8.187	-3.260	-9.620	0.29	0.43	0.05	0.37
Below RCCV	813	2.0	8514	-1.356_	-8.182	-0.589	-8.232	7501	-2.345	-8.124	2.576	-9,106	0.58	1.01	-0.23	0,90
Mid-Height	824	2.0	2001	-0.975	-3.607	-0.154	-3.616	7561	-2.057	-7.647	-3,866	-9,623	0.47	0.47	0.04	0.38
20 Wall	1606	2.0	2001	-0.666	-3.213	0.125	-3.219	7501	-1.489	-6.574	3.575	-8.419	0.45	0.49	0.04	0.38
Below RCCV	1613	2.0	8514	1.899	-8.295	1.089	-8.410	7501	-1.255	-7.091	2.647	-8.113	-1.51	1.17	0.41	1.04
Тор	1624	2.0	8514	2.392	-8.701	-1.389	-8.872	7561	-1.069	-6.815	-3.822	-8.723	-2.24	1.28	0.36	1.02
21 Exterior Wall	20011	2.0	7501	-2.042	-3.604	-1.463	-4.482	7501	-2.017	-3.697	-5,300	-8,223	1.01	0.97	0.28	0.54
@ EL-11.50	20023	2.0	7491	-3.417	-3.098	1.686	-4.951	7491	-3.185	-4.946	1.959	-6.214	1.07	0.63	0.86	0.80
~-10.50m	30010	2.0	7561	-2.199	-2.171	-0.594	-2.779	7561	-2.825	-3.872	-1.958	-5.375	0.78	0.56	0.30	0.52
	30020	2.0	8511	-0.909	-2.515	-1.040_	-3.026	7301	-0.861	-2.873	-0.907	-3.221	1.06	0.88	1.15	0.94
	40001	2.0	7251	-0.774	-1.862	0.866	-2.340	7301	-0.686	-3.033	0.844	-3.305	1.13	0.61	1.03	0.71
	40011	2.0	2001	-0.756	-1.676	-0.081	-1.683	7501	-2.490	-3.869	-2.216	-5.500	0.30	0.43	0.04	0.31
22 Exterior Wall	22011	1.5	7501	-0.914	-5.756	3.195	-7.343	7501	-1.027	-7.448	5.293	-10.428	0.89	0.77	0.60	0.70
@ EL4.65	22023	1.5	7492	-0,563	-8.116	-4.138	-9.942	7492	-0.323	-9.243	-4.533	-11.143	1.74	0.88	0.91	0.89
~6.60m	32010	1.5	7501	-0.995	-3.710	2.090	-4.845	7501	-1.143	-4.577	2.972	-6,292	0.87	0.81	0.70	0.77
	32020	1.5	7251	-0,358	-5.476	1.690	-5.984	7301	-0.178	-4.772	2.497	-5.868	2.01	1.15	0.68	1.02
	42001	1.5	7251	-0.266	-5.569	1.731	-6.084	7201	-0.164	-4.795	2.513	-5.896	1.62	1.16	0.69	1.03
	42011	1.5	7501	-1.110	-4.455	-2.491	-5.783	7501	-0,937	-4.398	-3.997	-7.022	1.18	1.01	0,62	0.82
23 Exterior Wall	24211	1.5	7561	-0.757	-4.344	2.536	-5.657	7561	-0.857	-4.677	3.931	-7.137	0.88	0.93	0.65	0.79
@ EL22.50	24224	1.5	7301	-0.356	-6.929	2.634	-7.854	7301	-0.278	-6.902	2.982	-8.047	1.28	1.00	0.88	0.98
~24.60m	34210	1.5	7561	-0.712	-1.899	2.346	-3.725	7561	-0.865	-1.814	2.591	-3.974	0.82	1.05	0.91	0.94
	34220	1.5	7351	0.148	-3.042	-1.481	-3.624	7301	0.157	-2.515	-1.984	-3.571	0.94	1.21	0.75	1.01
	44201	1.5	7251	0.128	-3.399	-1.736	-4.110	7561	0.140	-2.597	-2.447	-4.032	0,92	1.31	0.71	1.02

Table A.2-2 Maximum Stress Ratios for Membrane Compressive Forces: RB

.

WG3-U71-ERD-S-0004	SH NO.	529
REV. 1	of	543

Thickness NA3 DCD								.	Datio (N	A2/DCD)						
Location	Element	LUCKNESS		Calcula	ted Conc	rete Stres	ss (MPa)		Calcula	ted Conc	rete Stres	ss (MPa)	"	tatio (N	43/000)	
	ID	(m)	Load ID	σ _x (MPa)	σ _y (MPa)	τ _{xy} (MPa)	σ _c (MPa)	Load ID	σ _x (MPa)	σ _y (MPa)	τ _{xy} (MPa)	σ _c (MPa)	σχ	σy	τ _{xy}	σc
24 Basemat	90140	4.0	7151	-1.520	-0.942	0.554	-1.855	7102	-1.073	-1.944	0.986	-2.587	1.42	0.48	0.56	0.72
@ Wall	90182	4.0	2001	-0.874	-0.671	-0.031	-0.879	7501	-2.382	-0.901	-0.414	-2.490	0.37	0.75	0.08	0.35
Below RCCV	90111	4.0	2001	-1.012	-0.789	0.009	-1.013	7561	-1.296	-2.191	0.247	-2.254	0.78	0.36	0.04	0.45
25 Slab	93140	1.0	8514	2.967	0.452	3.622	-5,263	7482	-3.388	0.551	3.561	-5.488	0.88	0.82	1.02	0.96
EL4.65m	93182	1.0	8511	1,567	-4.979	-0.427	-5.007	7421	2.108	-5.472	-0.717	-5.540	0.74	0.91	0.60	0.90
@ RCCV	93111	1.0	_7421	-4.428	1.759	-0.287	-4.441	7421	-4.862	2.024	-0.343	-4.879	0.91	0.87	0.84	0.91
26 Slab	96144	1.0	8508	0.111	0.762	4.690	-4.265	7241	-0.852	0.797	4.149	-4.258	-0.13	0.96	1.13	1.00
EL17.5m	96186	1.0	8514	2.343	-6.951	-2.172	-7.434	7271	2.808	-5.664	-1.755	-6.014	0.83	1.23	1.24	1.24
@ RCCV	96113	1.6	_6483	-6.247	1.715	-0.989	-6.368	7482	-6.240	1.993	-1.143	-6.396	1.00	0.86	0.87	1.00
27 Slab	98472	1.5	8513	-7.205	-4.058	8.391	-14.169	7003	-7.459	-4.269	8.549	-14.560	0.97	0.95	0.98	0.97
EL27.0m	98514	1.5	8511	2.676	-3.621	-1.566	-3.989	7001	2.714	-3.750	-1.635	-4.140	0.99	0.97	0.96	0.96
@ RCCV	98424	2.4	8512	-12.124	0.878	-2,453	-12.572	7002	-11.003	-1.373	-3.491	-12.136	1.10	-0.64	0.70	1.04
28 Pool Girder	123054	1.6	8512	-0.826	-9.380	1.591	-9.666	7002	-0.789	-8,983	1.450	-9.232	1.05	1.04	1.10	1.05
@ Storage Pool	123154	1.6	8512	-1.766	-3.583	2.562	-5.393	7002	-1.752	-3.509	2.530	-5.309	1.01	1.02	1.01	1.02
29 Pool Girder	123062	1.6	8513	-2.322	-5.926	-1.098	-6.235	7003	-2.351	-5.915	-1.032	-6.192	0.99	1.00	1.06	1.01
@ Cavity	123162	1.6	8513	-2.134	-4.689	-3.002	-6,674	7003	-1.964	-4.725	-2.980	-6.629	1.09	0.99	1.01	1.01
30 Pool Girder	123067	1.6	8511	-2.683	-7.409	-4.312	-9.962	7001	-2.754	-7.355	-4.082	-9.740	0.97	1.01	1.06	1.02
@ Fuel Pool	123167	1.6	<u>8511</u>	-2,386	-3.236	-4.057	-6,890	7142	-2.449	-2.151	-2.916	-5.220	0.97	1.50	1.39	1.32
31 MS Tunnel	150122	1.3	2021	-0.021	-0.429	1.150	1.393	2021	-0.020	-0.425	1.147	-1.388	1.02	1.01	1.00	1.00
Wall and Slab	96611	1.6	8511	-0.464	1.453	-0.052	-0.465	7421	-0,412	1.453	-0.069	-0.415	1.13	1.00	0.75	1.12
	98614	2.4	8512	-0.752	1.072	-0.282	-0.795	7481	0.025	-0.518	0.026	-0.519	-30.60	-2.07	-10.74	1.53
32 IC/PCCS	125051	1.0	7501	-0.260	-2.951	-2.191	<u>-4</u> .177	7004	0.673	-3.220	2,227	-4.231	-0.39	0.92	-0.98	0.99
Pool Wali	125151	1.0	7441	-2.048	-2.214	3.305	-5.437	7001	-1.707	-1.762	2.841	4.576	1.20	1.26	1.16	1.19
in NS Dir.	125055	1.0	8513	-5.767	-0.210	-0.799	-5.879	7003	-5.873	-0.161	-0.758	-5.972	0.98	1.31	1.05	0.98
	125155	1.0	8513	-6,767	-0.414	-0.774	-6.860	7003	-6.723	-0.380	-0.731	-6.807	1.01	<u>] 1.09</u>	1.06	1.01

Table A.2-2 Maximum Stress Ratios for Membrane Compressive Forces: RB (Continued)

Flement Thickness NA3 DCD Allowable Allowable							Ratio		
	Element	Inickness		Allowable			Allowable		(NA3/DCD)
Location	ID	(m)	Load ID	Stress	ರ,/ರ್ಶ	Load ID	Stress	σνσ	
		(m)		σ _a (MPa)			σ, (MPa)		
18 Wall	6	2.0	2001	-10.4	0.396	7561	-20.7	0.543	0.729
Below RCCV	13	2.0	2001	-10.4	0.319	7501	-20.7	0.454	0,701
Bottom	24	2.0	2001	-10.4	0.352	7561	-20.7	0.457	0.769
19 Wali	806	2.0	2001	-10.4	0.340	7561	-20.7	0.465	0.733
Below RCCV	813	2.0	8514	-25.9	0.318	7501	-20.7	0.440	0.723
Mid-Height	824	2.0	2001	-10.4	0.349	7561	-20.7	0.465	0.752
20 Wall	1606	2.0	2001	-10.4	0.311	7501	-20.7	0.407	0.765
Below RCCV	1613	2.0	8514	-25.9	0.325	7501	-20.7	0.392	0.829
Тор	1624	2.0	8514	-25.9	0.343	7561	-20.7	0.421	0.814
21 Exterior Wall	20011	2.0	7501	-20.7	0.217	7501	-20.7	0.397	0.545
@ EL11.50	20023	2.0	7491	-25.9	0.191	7491	-25,9	0.240	0,797
~10.50m	30010	2.0	7561	-20.7	0.134	7561	-20.7	0.260	0.517
	30020	2.0	8511	-25.9	0.117	7301	-20.7	0.156	0.751
	40001	2.0	7251	-20.7	0.113	7301	-20.7	0.160	0.708
	40011	2.0	2001	-10.4	0.163	7501	-20.7	0.266	0.612
22 Exterior Wall	22011	1.5	7501	-20.7	0.355	7501	-20.7	0.504	0.704
@ EL4.65	22023	1.5	7492	-25.9	0.384	7492	-25.9	0.431	0,892
~6.60m	32010	1.5	7501	-20.7	0.234	7501	-20.7	0.304	0.770
	32020	1.5	7251	-20.7	0.289	7301	-20.7	0.283	1.020
	42001	1.5	7251	-20.7	0.294	7201	-20.7	0.285	1.032
	42011	1.5	7501	-20.7	0.279	7501	-20.7	0.339	0.824
23 Exterior Wall	24211	1.5	7561	-20.7	0.273	7561	-20.7	0.345	0.793
@ EL22.50	24224	1.5	7301	-20.7	0.379	7301	-20.7	0.389	0.976
~24.60m	34210	1.5	7561	-20.7	0.180	7561	-20.7	0.192	0.938
	34220	1.5	7351	-20.7	0.175	7301	-20.7	0.173	1.015
	44201	1.5	7251	-20.7	0,199	7561	-20.7	0.195	1.019

Table A.2-2 Maximum Stress Ratios for Membrane Compressive Forces: RB (Continued)

		Thickness		NA3			Ratio		
Logation	Element	hickness		Allowable			Allowable		(NA3/DCD)
Location	ID	(m)	Load ID	Stress	σ_c/σ_a	Load ID	Stress	σ_c/σ_a	
		(11)		σ _a (MPa)			σ <u>, (MP</u> a)		
24 Basemat	90140	4.0	7151	-16.6	0.112	7102	-16.6	0.156	0.717
@ Wall	90182	4.0	2001	-8.3	0.106	7501	-16.6	0.150	0.706
Below RCCV	90111	4.0	2001	-8.3	0.122	7561	-16.6	0.136	0.898
25 Slab	93140	1.0	8514	-25.9	0.203	7482	-25.9	0.212	0.959
EL4.65m	93182	1.0	8511	-25.9	0.193	7421	-25.9	0.214	0.904
@ RCCV	93111	1.0	7421	-25.9	0.172	7421	-25.9	0.189	0.910
26 Slab	96144	1.0	8508	-25.9	0.165	7241	-25.9	0.165	1.002
EL17.5m	96186	1.0	8514	-25.9	0.287	7271	-25.9	0.232	1.236
@ RCCV	96113	1.6	6483	-25.9	0.246	7482	-25.9	0.247	0.996
27 Slab	98472	1.5	8513	-25.9	0.548	7003	-25.9	0.563	0.973
EL27.0m	98514	1.5	8511	-25.9	0.154	7001	-25.9	0,160	0.963
@ RCCV	98424	2.4	8512	-25.9	0.486	7002	-25.9	0.469	1.036
28 Pool Girder	123054	1.6	8512	-25.9	0.374	7002	-25.9	0.357	1.046
@ Storage Pool	123154	1.6	8512	-25.9	0.208	7002	-25.9	0.205	1.017
29 Pool Girder	123062	1.6	8513	-25.9	0.241	7003	-25.9	0.239	1.008
@ Cavity	123162	1.6	8513	-25.9	0.258	7003	-25.9	0.256	1.008
30 Pool Girder	123067	1.6	8511	-25.9	0.385	7001	-25.9	0.376	1.024
@ Fuel Pool	123167	1.6	8511	-25.9	0.266	7001	-25.9	0.267	0.997
31 MS Tunnel	150122	1.3	2021	-15.5	0.090	2021	-15.5	0.089	1.004
Wall and Slab	96611	1.6	8511	-25.9	0.018	7421	-25.9	0.016	1.122
	98614	2.4	8512	-25.9	0.031	7481	-25.9	0.020	1.530
32 IC/PCCS	125051	1.0	7501	-20.7	0.202	7004	-25.9	0.164	1.230
Pool Wall	125151	1.0	7441	-25.9	0.210	7001	-25.9	0.177	1.187
in NS Dir.	125055	1.0	8513	-25.9	0.227	7003	-25.9	0.231	0.984
	125155	1.0	8513	-25.9	0.265	7003	-25.9	0.263	1.008

Table A.2-2 Maximum Stress Ratios for Membrane Compressive Forces: RB (Continued)

Table A.2-3 Calculation Results for Maximum Transverse Shear: RI
--

Landian			NA3			DCD	-	NA3				DCD				Ratio (NA3/DCD)						
Location	Element	Load	d	p _v	Load	d	p _v	SI	hear Fo	rce (MN/	'm)		S	hear Fo	rce (MN/	m)		Shear Force			<u> </u>	
	ID	ID	(m)	(%)	D	(m)	(%)	Vu	V _c	V _s	φVn	Vu/φVn	Vu	V _c	V _s	φV _n	V _u /φV _n	V _u	V _c	V _s	φVn	Vu∕φVn
18 Wall	6	7461	1.62	0.721	7642	1.59	0.721	2.16	4,96	4.84	8.33	0.259	2.72	0.00	4.73	4.02	0.677	0.79	1.00	1.02	2.07	0.38
Below RCCV	13	7461	1.62	0,721	7623	1.59	0.721	2.24	4.82	4.84	8.21	0.273	2.08	0.43	4.73	4.39	0,474	1,08	11.24	1.02	1.87	0.58
Bottom	24	7501	1.59	0.721	7611	1.62	0.721	2.30	4.63	4.73	7.95	0.289	0.94	0.52	4.83	4.55	0.207	2.44	8.92	0.98	1.75	1.40
19 Wall Below	806	7992	1.57	0.270	7601	1.55	0.270	0.12	0.15	1.75	1.61	0.077	0.19	0.22	1.73	1.66	0.115	0.65	0.65	1.02	0.97	0.67
Below RCCV	813	8514	1.57	0.270	7603	1.54	0.270	0.91	4.86	1.75	5.62	0.162	0.34	0.00	1.71	1.46	0.230	2.70	1.00	1.02	3,86	0.70
Mid-Height	824	8514	1.57	0.270	7601	1.54	0.270	1.02	5.00	1.75	5.74	0.177	0.19	0.22	1.72	1.65	0.114	5.38	22,52	1.02	3.47	1.55
20 Wall	1606	6421	1.57	0.540	7921	1.57	0.540	4.05	4.00	3.50	6.37	0.635	2.69	1.43	3.50	4.18	0.642	1.51	2.80	1.00	1.52	0.99
Below RCCV	1613	6471	1.57	0,540	7821	1.57	0.540	4.68	4.24	3.50	6.57	0.712	2.32	1.36	3.50	4.13	0.562	2.02	3.12	1.00	1.59	1.27
Тор	1624	8507	1.57	0.540	7941	1.57	0.540	5.07	4.37	3,50	6.69	0.759	3.41	2.34	3.50	4.96	0.689	1.49	1.87	1.00	1.35	1.10
21 Exterior Wall	20011	8512	1.63	0.484	7441	1.63	0.484	1.87	0.64	3.27	3.32	0.562	3.81	1.96	3.27	4.44	0.856	0.49	0.33	1.00	0.75	0.66
@ EL-11.50	20023	8514	1.58	0.484	7441	1.59	0.484	1.46	1.85	3.15	4.25	0.342	2.06	3.31	3.18	5.52	0.373	0.71	0.56	0.99	0.77	0.92
~-10.50m	30010	7511	1.68	0.710	7941	1.65	0.177	1.63	2.33	4.93	6.17	0.265	0.83	0.59	1.21	1.53	0.543	1.97	3.93	4.08	4.03	0.49
	30020	7511	1.69	0.710	7241	1.69	0.177	1.20	3.52	4.96	7.21	0.166	0.82	3.26	1.24	3.82	0.214	1.46	1.08	4.01	1.89	0.77
	40001	7571	1.70	0.710	7241	1.73	0.177	1.44	2.08	4.98	6.00	0.239	1.07	3.52	1.27	4.07	0.262	1.35	0.59	3.93	1.47	0.91
	40011	7501	1.69	0.710	7741	1.73	0.177	2.46	3.91	4.97	7.55	0.325	0.16	0.19	1.27	1.24	0.128	15.49	20.87	3,92	6.10	2.54
22 Exterior Wall	22011	8514	1.15	0.484	7441	1.19	0.484	1.00	0.00	2.31	1.96	0.513	1.11	0.00	2.38	2.02	0.549	0.90	1.00	0.97	_0.97	0.93
@ EL4.65	22023	9014	1.16	0.484	7241	1.18	0.484	0.71	1.10	2.33	2.92	0.242	0.75	3.71	2.36	5.16	0.146	0.94	0.30	0.99	0.57	1.66
~6.60m	32010	8514	1.09	0.177	7441	1.24	0.177	0.36	0.00	0.80	0.68	0.524	0.33	0.00	0.91	0.77	0.424	1.09	1.00	0.88	0.88	1.24
	32020	6435	1.25	0.177	6241	1.24	0.177	0.25	0.29	0.91	1.02	0.242	0.11	0.13	0.90	0.88	0.123	2.30	2.30	1.01	1.17	1.96
	42001	7411	1.25	0.242	4021	1.19	0.242	0.84	0.85	1.25	1.79	0.468	0.18	0.21	1.19	1.19	0.150	4.71	4.06	<u>1</u> .06	1.51	3.13
	42011	7711	1.09	0.242	4021	1.22	0.242	0.29	0.27	1.09	1.16	0.252	0.03	0.04	1.22	1.07	0.031	8.92	6.99	0.90	1.09	8.21
23 Exterior Wall	24211	8511	1.09	0.968	7241	1.15	0.484	_2.78	0.00	4.25	3.61	0.771	1.50	0.00	2.30	1.96	0.769	1.85	1.00	1.85	1.85	1.00
@ EL22.50	24224	7211	1.10	0.484	7441	1.19	0.968	1.79	0.00	2.21	1.88	0.954	1.30	0.02	4.65	3.97	0.327	1.38	0.00	0.47	0.47	2.91
~24.60m	34210	8512	1.09	0.177	7441	1.24	0.177	0.52	0.00	0.80	0.68	0.761	0.26	0.00	0.91	0.77	0.340	1.97	1.00	0.88	0.88	2.24
	34220	8503	1.26	0.710	6241	1.26	0.710	1.21	0.94	3,69	3.93	0,308	0.24	0.28	3.69	3.37	0.070	5.14	3.40	1.00	1.17	4.40
	_44201	4021	_1.26	0.968	4021	1.26	0.968	2.40	0.95	4.89	4.96	0.483	2.41	0.95	4.89	4.96	0.485	1.00	1.00	1.00	1.00	1.00
24 Basemat	90140	7571	3,53	0.801	7441	3.53	0.801	_6.36	4.46	11.69	13.73	0.463	10.74	7.16	11.69	16.03	0.670	0.59	_0.62	_1.00	0.86	0.69
@ Wall	90182	7331	3,51	0.801	7441	3,51	0.801	5.34	5,96	11.63	14.95	0.357	7.41	6.13	11.64	15.10	0.491	0.72	0.97	1.00	0.99	0.73
Below RCCV	90111	8514	3.55	0.801	7941	3.37	0.801	5.12	6.17	11.76	15.24	0.336	2.64	1.67	11.15	10.90	0.242	1.94	3.70	1.05	1.40	1.39
25 Slab	93140	8514	0.80	0.500	7441	1.00	0.500	0.30	0.22	1.65	1.59	0.192	0.37	0.27	2.07	1.99	_ 0.184	0.83	0.81	0.80	0.80	1.04
EL4.65m	93182	8514	0.80	0.500	7441	1.00	0.500	2.30	1.36	1.65	2.56	0.899	2.54	1.57	2.07	3.09	0.822	0.90	0.86	0.80	0.83	1.09
@ RCCV	93111	8514	0.80	0.500	7441	1.00	0.500	1.97	1.24	1.65	2.46	0,800	1.84	1.57	2.07	3.09	0.594	1.07	0.79	0.80	0.80	1.35
26 Slab	96144	7103	0.80	0.500	7741	0.80	0.500	0.32	0.82	1.65	2.10	0.153	0.07	0.08	1.65	1.47	0.046	4.73	10.18	1.00	1.43	3.31
EL17.5m	96186	8511	0.80	0.500	7441	1.00	0.500	1.41	2.18	1.65	3.25	0.432	1.15	2.68	2.07	4.03	0.286	1.22	0.81	0.80	0.81	1.51
@ RCCV	96113	7492	1.34	0.500	4021	1.34	0.500	1.75	1.59	2.76	3.69	0.474	0.82	1.54	2.76	3.66	0.225	2.13	1.03	1.00	1.01	2.11
27 Slab	98472	8513	1.21	0.968	7504	1.21	0.968	3.50	4.56	4.73	7.90	0.443	1.41	0.58	4.72	4.50	0.314	2.48	7.87	1.00	1.76	1.41
EL27.0m	98514	8514	1.21	0.968	7004	1.21	0.968	3.49	1.88	4.72	5.61	0.623	3.50	1.95	4.72	5.67	0.617	1.00	0.96	1.00	0.99	1.01
@ RCCV	98424	8512	1.95	0.968	7002	2.11	0.968	10.86	7,00	7.62	12.42	0.874	10.27	7.08	8.23	13.01	0.789	1.06	0.99	0.93	0.95	1.11

 WG3-U71-ERD-S-0004
 SH NO.
 533

 REV. 1
 of
 543

.

		· — ·	NA3		DCD					NA3			1		DCD			Ratio (NA3/DCD)				
Location	Element	Load	d	p _v	Load d p _v		SI	Shear Force (MN/m)			Shear Force (MN/m)			N/ ///	Shear Force				N IN			
	ID	ID	(m)	(%)	D	(m)	(%)	V _u	V _c	Vs	φVn	ν _u /φν _n	Vų	Vc	Vs	φVn	ν _u /φν _n	Vu	Vc	Vs	φVn	ν _u /φν _n
28 Pool Girder	123054	9011	1.25	0.484	7501	1.25	0.484	1.25	1.35	2.50	3.28	0.382	1.20	1.41	2,50	3.32	0.362	1.04	0.96	1.00	0.99	1.06
@ Storage Pool	123154	8503	1.25	0.484	6002	1.25	0.484	0.94	1.40	2.50	3.32	0.284	0.94	1.38	2.50	3.30	0.285	1.00	1.01	1.00	1.01	1.00
29 Pool Girder	123062	7361	1.25	0.242	7504	1.22	0.242	0.43	1.30	1.25	2.17	0.200	0.12	0.14	1.22	1.15	0.101	3.61	9.30	1.02	1.88	1.98
@ Cavity	123162	7331	1.23	0.242	6004	1.23	0.242	0.30	0.33	1.23	1.32	0.224	0.05	0.06	1.23	1.10	0.044	5.90	5.45	1.00	1.20	5.08
30 Pool Girder	123067	7441	1.28	0.484	7502	1.24	0.484	1.02	4.00	2.57	5.58	0,182	0,10	0.12	2.49	2.21	0.046	10.17	33.35	1.03	2.53	3.96
@ Fuel Pool	123167	8513	1.24	0.484	6001	1.27	0.484	0.75	0.98	2.48	2.94	0.254	0.21	0.25	2.55	2.38	0.089	3.55	3,93	0.97	1.24	2.85
31 MS Tunnel	150122	8512	1.06	0.177	7741	1.04	0.177	0.53	0.73	0.78	1.28	0.416	0.04	0.04	0.76	0.68	0.053	14.81	17.45	1.02	1.87	7.92
Wall and Slab	96611	8514	1.34	0.500	7241	1.34	0.500	0.62	1.65	2.76	3.75	0.166	0.47	1.60	2.76	3.70	0.126	1.33	1.03	_ 1.00	1.01	1.32
	98614	8511	1.95	0.500	7941	2.14	0.500	1.44	3.51	4.04	6.41	0.224	0.23	0.27	4.42	3,99	0.058	6.18	12.84	0.91	1.61	3.84
32 IC/PCCS	125051	8512	0.81	0.250	7004	0.81	0.250	0.28	0.82	0.83	1.41	0.201	0.12	0.14	0,84	0,83	0.139	2.35	5.86	0,99	1.69	1.44
Pool Wall	125151	8513	0.82	0.250	6001	0.80	0.250	0.24	0.49	0.85	1.13	0.209	0.12	0.14	0,83	0,83	0.148	1.98	3.47	1.02	1.37	1.42
in NS Direction	125055	8514	0.80	0.250	7502	0.79	0.250	0.34	0.65	0.83	1.25	0.275	0.08	0.10	0.82	0.78	0.105	4.30	6.48	1.01	1.61	2.62
	125155	8512	0.79	0.250	6004	0.83	0.250	0.29	0.71	0.82	1.30	0.221	0.05	0.06	0.86	0.78	0.061	5.75	11.88	0.95	1.67	3.62

Table A.2-3 Calculation Results for Maximum Transverse Shear: RB (Continued)

WG3-U71-ERD-S-0004 SH NO. 534 REV. 1 of 543

APPENDIX B

IN-PLANE SHEAR CHECK FOR RB ACCORDING TO ACI 349-01

Table of Contents

•••••••••••••••••••••••••••••••••••••••
•

List of Tables

Table B-1 Maximum Stress Ratios for In-Plane Shear Check	
Table B-2 In-Plane Shear Check for Entire Wall	

List of Figures

B.1 SCOPE

This appendix describes In-plane Shear Check for the RB according to ACI 349-01.

B.2 IN-PLANE SHEAR CHECK

According to ACI 349-01 Section 21.6.5.2, the maximum shear strength of a horizontal wall segment per unit length is calculated as follows:

$$Vn = \left(2\sqrt{f_c'} + \rho_n f_y\right)h \qquad (\text{lb/in})$$

Where, h is wall thickness.

Shear strength calculated above shall not be taken greater than the following equation specified in ACI 349-01 Section 21.6.5.6.

$$Vn_{\rm max} = 8\sqrt{f_c'}h$$
 (lb/in)

Although $10\sqrt{f_c}h$ is used for the strength of individual wall piers according to Sections 21.6.5.6 and 21.6.5.7 of ACI 349-01, the capacity $8\sqrt{f_c}h$ for combined strength of wall piers on a wall line according to Section 21.6.5.6 of ACI 349-01 is conservatively used.

The reduction of thermal stresses due to the decreased stiffness of a cracked concrete section is considered as described in Section 6.4.1.1.

B.3 CONCLUSION

The results of in-plane shear check for the selected elements are shown in Table B-1. For Element 22023 in the exterior wall, the element shear demand N_{xy} is larger than the allowable shear strength evaluated above.

Since ACI 349-01 in-plane shear stress check for walls is developed for the entire wall and not meant for local checks, the stress check by looking at the entire walls as highlighted in Figure B-1 is performed instead of the stress check on one element.

The results of in-plane shear check on the entire walls are shown in Table B-2 and in-plane shear stresses are confirmed to be lower than the allowable stress.

REV. 1

of 543

Location	Element ID	Load Case	N _{xy} (MN/m)	Thickness <i>h</i> (m)	Primary Reinforce -ment Ratio	Allowable Shear Strength $\phi Vn = \phi 8 f_c^{0.5} h$ (MN/m)	N _{xy} ∕øVn
18 Wall	6	8514	2.065	2.0	2.150%	6.630	0.311
Below RCCV	13	7471	1.540	2.0	2.150%	6.630	0.232
Bottom	24	7491	1.463	2.0	2.150%	6.630	0.221
19 Wall	806	7251	1.458	2.0	2.150%	6.630	0.220
Below RCCV	813	7271	1.340	2.0	2.150%	6.630	0.202
Mid-Height	824	8512	1.916	2.0	2.150%	6.630	0.289
20 Wall	1606	7492	2.915	2.0	2.150%	6.630	0.440
Below RCCV	1613	7491	2.410	2.0	2.150%	6.630	0.363
Тор	1624	7492	2.821	2.0	2.150%	6.630	0.425
21 Exterior Wall	20011	7251	2.974	2.0	2.264%	6.630	0.449
@ EL-11.50	20023	7491	3.372	2.0	2.264%	6.630	0.509
~-10.50m	30010	8511	1.329	2.0	2.768%	6.630	0.200
	30020	8511	2.079	2.0	2.768%	6.630	0.314
	40001	7461	2.051	2.0	2.768%	6.630	0.309
	40011	7201	1.359	2.0	2.768%	6.630	0.205
22 Exterior Wall	22011	7511	4.965	1.5	2.348%	4.973	0.998
@ EL4.65	22023	7492	6.207	1.5	2.348%	4.973	1.248
~6.60m	32010	7161	3.294	1.5	2.683%	4.973	0.662
	32020	7123	3.042	1.5	2.012%	4.973	0.612
	42001	7511	2.990	1.5	2.348%	4.973	0.601
	42011	7163	3.797	1.5	2.683%	4.973	0.764
23 Exterior Wall	24211	7571	3.818	1.5	2.348%	4.973	0.768
@ EL22.50	24224	7421	4.595	1.5	2.348%	4.973	0.924
~24.60m	34210	7211	3.545	1.5	2.683%	4.973	0.713
	34220	7471	2.912	1.5	2.012%	4.973	0.586
	44201	7561	2.791	1.5	2.348%	4.973	0.561
32 IC/PCCS	125051	8514	2.557	1.0	1.761%	3.315	0.771
Pool Wall	125151	7441	3.305	1.0	1.761%	3.315	0.997
in NS Dir.	125055	7461	0.585	1.0	1.761%	3.315	0.176
	125155	7411	0.495	1.0	1.761%	3.315	0.149

Table B-1 Maximum Stress Ratios for In-Plane Shear Check

Ī	Critical	Location	Element	Element	Element	Shear	Shear	Element	Element	Total	Average	Allowable	τ / τ_a
	Load			Length	Thick-	Area	Area	Shear	Shear	Shear	Shear	Shear	
	Case				ness	of	of Wall	Force in	Force	Force	Stress	Stress	
						Element		Unit					
τİ.					-			Length	~			×	
4				Li	lj -	A	As	Qi	Q	Qt	τ	τ _a	
Ļ				(m)	(m)	(m²)	(m²)	(MN/m)	(MN)	(MN)	(MN/m^2)	(MN/m^2)	
	7251	Exterior	22001	2.50	1.50	3.75		3.677	9.193				
		Wall	22002	2.00	1.50	3.00		3.970	7.940				
		@EL	22003	2.30	1.50	3.45		4.061	9.340				
		4.65	22004	1.60	1.50	2.40		4.113	6.581				
		~6.60m	22005	2.30	1.50	3.45		4.036	9.283				
			22006	2.20	1.50	3.30		3.917	8.617				
			22007	1.60	1.50	2.40		3.622	5.795				
			22008	2.80	1.50	4.20		3.523	9.868				
			22009	2.60	1.50	3.90		4.697	12.208				
			22010	1.50	1.50	2.25		5.367	8.051				
			22011	2.10	1.50	3.15		4.785	10.049				
			22012	1.40	1.50	2.10		4.076	5.706				
			22013	1.40	1.50	2.10		3.978	5.569				
			22014	2.05	1.50	3.08		4.217	8.645				
			22015	2.05	1.50	3.08		4.053	8.309				
			22016	2.10	1.50	3.15		3.633	7.629				
			22017	2.00	1.50	3.00		3.686	7.372				
			22018	2.05	1.50	3.08		3.860	7.913				*
			22019	1.80	1.50	2.70		4.748	8.546				
			22020	1.85	1.50	2.78		4.371	8.086				
			22021	2.30	1.50	3.45		4.330	9,959				
			22022	2.00	1.50	3.00		3.832	7,664				
		_	22023	2.50	1.50	3.75	70.50	3.471	8.678	191.000	2.709	3.315	0.817

Table B-2 In-Plane Shear Check for Entire Wall

Figure B-1 Selected Elements for In-plane Shear Check on Entire Wall

 WG3-U71-ERD-S-0004
 SH NO.
 540

 REV. 1
 of
 543

APPENDIX C

COMPRESSION LIMIT CHECK FOR RB ACCORDING TO ACI 349-01

WG3-U71-ERD-S-0004 SH NO. 541 REV. 1 of 543

Table of Contents

C.1	SCOPE	542
C.2	MEMBRANE COMPRESSIVE FORCE CHECK	542
C.3	CONCLUSION	542

List of Tables

List of Figures

None

C.1 SCOPE

I

This appendix describes Membrane Compressive Force Check for the RB according to ACI 349-01.

C.2 MEMBRANE COMPRESSIVE FORCE CHECK

According to ACI 349-01 Section 10.3.5.2, design axial load strength of compression members shall not be taken greater than the following:

$$\phi P_{n(\text{max})} = 0.80 \phi \left[0.85 f_c' (A_g - A_{st}) + f_y A_{st} \right]$$

Where, Ag and Ast are gross area and total cross-sectional area of reinforcement of section.

C.3 CONCLUSION

The results of compression force check are shown in Table C-1. It is confirmed that the calculated compression force are less than the allowable compression force evaluated based on the above strength.

WG3-U71-ERD-S-0004	SH NO.	543
REV. 1	of	543

	Element ID	Load ID	Section Forces (MN/m)		Thick -ness	Calculated Concrete Stress (MPa)				Allowable		
Location			Nx	Ny	N _{xy}	h (m)	σχ	σy	τ _{xy}	σ	Stress	σ _c /σ _a
18 Wall	6	7511	-9.007	-15.344	1.483	2.0	-4.503	-7 672	0 742	-7.837	-21.0	0.372
Below RCCV	13	8514	-4.543	-16.272	-1.536	2.0	-2.272	-8.136	-0.768	-8.235	-21.0	0.391
Bottom	24	8514	-3,941	-17.188	1.318	2.0	-1.971	-8.594	0.659	-8,659	-21.0	0.411
19 Wall	806	8514	2.754	-14,914	-1.406	2.0	1.377	-7.457	-0.703	-7.513	-21.0	0.357
Below RCCV	813	8514	-2.711	-16.363	-1.177	2.0	-1.356	-8.182	-0.589	-8.232	-21.0	0.391
Mid-Height	824	8514	-3,317	-17.222	1.914	2.0	-1.658	-8.611	0.957	-8.740	-21.0	0.415
20 Wali	1606	8514	4.675	-14.954	-2.829	2.0	2.337	-7.477	-1.414	-7.677	-21.0	0.365
Below RCCV	1613	8514	3.797	-16.590	2.179	2.0	1.899	-8.295	1.089	-8,410	-21.0	0,400
Тор	1624	8514	4.784	-17.402	-2.777	2.0	2,392	-8.701	-1.389	-8.872	-21.0	0.422
21 Exterior Wall	20011	7571	-8.686	-6.792	-2.505	2.0	-4.343	-3,396	-1.252	-5.209	-21.3	0.245
@ EL-11.50	20023	7491	-6,833	-6.195	3.372	2.0	-3.417	-3.098	1.686	-4,951	-21.3	0.233
~-10,50m	30010	7561	-4.398	-4.341	-1.189	2.0	-2.199	-2.171	-0.594	-2.779	-22.4	0.124
	30020	8511	-1.819	-5.030	-2.079	2.0	-0,909	-2.515	-1.040	-3.026	-22.4	0.135
	40001	8511	-1.600	-4,909	1.906	2.0	-0.800	-2.455	0.953	-2.889	-22.4	0.129
	40011	7501	-2.912	-5.665	-1.326	2.0	-1.456	-2.833	-0.663	-3.100	-22.4	0.139
22 Exterior Wall	22011	7511	-1.362	-9 224	4 965	15	-0.908	-6 149	3 310	-7 750	-21.5	0.361
@ EL4.65	22023	7492	-0.844	-12 174	-6 207	1.5	-0.563	-8 116	-4 138	-9.942	-21.5	0.463
~6.60m	32010	7501	-1 492	-5 565	3 134	1.5	-0.995	-3 710	2 090	-4 845	-22.2	0.218
	32020	7251	-0.538	-8.214	2,536	1.5	-0.358	5 476	1.690	-5.984	-20.8	0.288
	42001	7251	-0.399	-8.353	2,597	1.5	-0.266	-5 569	1 731	-6.084	-21.5	0.283
	42011	7501	-1.665	-6 683	-3.737	1.5	-1.110	-4 455	-2 491	-5.783	-22.2	0.261
23 Exterior Wall	24211	7561	-1.136	-6.516	3 804	1.5	-0.757	-4 344	2.536	-5.657	-21.5	0.263
@ FI 22 50	24224	7301	-0 534	-10 393	3 951	1.5	-0.356	-6.929	2.634	-7 854	-21.5	0.366
~24.60m	34210	7561	-1.067	-2 848	3 519	1.5	-0 712	-1 899	2.346	-3 725	-22.2	0.168
21.00	34220	7351	0.222	-4 563	-2 222	1.5	0.148	-3.042	-1 481	-3 624	-20.8	0.100
	44201	7251	0.193	-5.099	-2 604	1.5	0.128	-3.399	-1 736	-4 110	-21.5	0.191
24 Basemat	90140	7471	-5.494	-2 575	3.677	4.0	-1.374	-0.644	0.919	-1.998	-15.4	0.130
@ Wali	90182	7501	-5.535	-2 994	-1.500	4.0	-1.384	-0.748	-0.375	-1.558	-15.4	0.101
Below RCCV	90111	2500	-6.661	-4 652	0.034	4.0	-1.665	-1 163	0 009	-1.665	-15.4	0.108
25 Slah	93140	8514	-2.967	0.452	3 622	1.0	-2.967	0.452	3 622	-5 263	-20.8	0.254
FI 4 65m	93182	8511	1.567	-4 979	-0.427	1.0	1.567	-4 979	-0.427	-5.007	-20.8	0.241
@ RCCV	93111	7421	-4 428	1 759	-0.287	1.0	-4 428	1 759	-0.287	-4 441	-20.8	0.214
26 Slab	96144	8508	0.111	0.762	4 690	1.0	0.111	0 762	4 690	-4 265	-20.8	0.206
EL17.5m	96186	8514	2.343	-6.951	-2 172	1.0	2.343	-6.951	-2 172	-7 434	-20.8	0.358
@ RCCV	96113	6483	-9.995	2.744	-1.583	1.6	-6.247	1.715	-0.989	-6.368	-19.8	0.321
27 Slab	98472	8513	-10.808	-6 087	12.587	1.5	-7.205	-4 058	8 391	-14 169	-24.4	0.582
E1.27.0m	98514	8511	4.015	-5 431	-2 348	15	2 676	-3 621	-1 566	-3 989	-24.4	0 164
@ RCCV	98424	8512	-29.098	2,108	-5.888	2.4	-12 124	0.878	-2 453	-12 572	-21.4	0.588
28 Pool Girder	123054	8512	-1.321	-15 008	2 545	16	-0.826	-9.380	1 591	-9 666	-20.5	0.472
@ Storage Pool	123154	8512	-2 825	-5 733	4 099	1.6	-1 766	-3 583	2 562	-5 393	-20.5	0.263
29 Pool Girder	123062	8513	-3 715	-9 482	-1 757	1.6	-2 322	-5.926	-1 098	-6 235	-20.5	0.304
@ Cavity	123162	8513	-3 415	-7 503	-4 804	1.6	-2 134	-4 689	-3.002	-6 674	-20.5	0.326
30 Pool Girder	123067	8511	-4,292	-11.854	-6.899	16	-2.683	-7 409	-4.312	-9,962	-21.2	0.471
@ Fuel Pool	123167	8511	-3.818	-5 177	-6 491	1.0	-2.386	-3 236	-4 057	-6.890	-21.2	0.326
31 MS Tunnel	150122	7421	0.068	-1 290	1 926	13	0.053	-0.992	1 482	-2 041	-20.2	0.020
Wall and Slab	96611	8511	-0.742	2,325	-0.083	1.5	-0 464	1 4 53	-0.052	-0 465	-19.8	0.023
	98614	8512	-1 805	2 572	-0.676	24	-0 752	1.400	-0.282	-0 795	-19.6	0.020
32 IC/PCCS	125051	7521	-0.522	-3.605	-2.459	10	-0.702	-3.605	-2 450	-4.966	-18.0	0.041
Pool W/all	125151	7441	-2.048	-2 214	3 305	1.0	-2.048	-2.000	3 305	-5 437	-18.0	0.273
in NS Dir	125055	8513	-5 767	-0 210	_0.700	1.0	-5 767	-0.210	_0.700	-5 870	-18.0	0.301
	125155	8513	-6 767	-0.414	-0 774	1.0	-6 767	-0.414	-0.774	-6.860	-18.0	0.320

Table C-1 Membrane Compressive Stress Check According to ACI 349-01