i.	• . 🤆	09/11/1	78 9
T 🚓 REGULA	TORY INFORMATION DI	STRIBUTION S	VSTEM (RIDS)
DISTRIBUTION	FOR INCOMING MATER	IAL	50-269
REC: DENTON H R NRC	ORG: PARK DUKE PW	ER W O IR	DOCDATE: 09/06/78 DATE RCVD: 09/11/78
DOCTYPE: LETTER SUBJECT: FOWARDING BAW-1493 SUPPLEMENT TO APPLI REVISIONS TO SUPPOF A CYCLE 4 LENGTH OF	NOTÁRIZED: NO ENTITLED: "OCONEE U ICANT"S LTR OF 06/26 RT THE OPERATION OF 235 PLUS-M	NIT 1, CYCLE 778 REQUESTIN UNIT 1 AT FUL	COPIES RECEIVED LTR 1 ENCL 40 5 RELOAD REPT", AND NG LIC AMEND & TECH SPEC L PWR FOR CYCLE 5 BASED ON
PLANT NAME: OCONEE -	- UNIT 1		REVIEWER INITIAL: XJM DISTRIBUTOR INITIAL: 9
*****	DISTRIBUTION OF THIS	MATERIAL IS	AS FOLLOWS ****************
NOTES: 1. M. CUNNINGHAM -	ALL AMENDMENTS TO F	SAR AND CHAN	SES TO TECH SPECS
GENERAL DISTRIBU (DISTRIBUTION CO	UTION FOR AFTER ISSU DDE A001)	ANCE OF OPER	ATING LICENSE.
FOR ACTION:	BR CHIEF ORE#4 BC**	W/7 ENCL	
INTERNAL:	REG FILE*#C ENCL I & E**W/2 ENCL HANAUER**W/ENCL AD FOR SYS & PROJ** REACTOR SAFETY BR** EEB**W/ENCL J MCGOUGH**W/ENCL	W/ENCL W/ENCL	NRC PDR**W/ENCL OELD**LTR ONLY CORE PERFORMANCE BR**W/ENCL ENGINEERING BR**W/ENCL PLANT SYSTEMS BR**W/ENCL EFFLUENT TREAT SYS**W/ENCL
EXTERNAL:	LPDR'S WALHALLA, SC**W/ TERA**W/ENCL NSIC**W/ENCL ACRS CAT B**W/16 E	ENCL.	
	•	· • •	
- (3 1 1	
		•	AAY
DISTRIBUTION: LTF SIZE: 2P+11P	R 40 ENCL 39		CONTROL NBR: 782480292
*****	******	THE END **	******

DUKE POWER COMPANY

Power Building

422 South Church Street, Charlotte, N. C. 28242

WILLIAM O. PARKER, JR. VICE PRESIDENT STEAM PRODUCTION

September 6, 1978

RECEIPTION

Mr. Harold R. Denton, Director Office of Nuclear Reactor Regulation U. S. Nuclear Regulatory Commission Washington, D. C. 20555

Attention: Mr. R. W. Reid, Chief Operating Reactors Branch #4

Re: Oconee Nuclear Station, Unit 1 Docket No. 50-269

Dear Mr. Denton:

My letter of June 26, 1978 provided an initial submittal requesting a license amendment and Technical Specification revisions to support the operation of Oconee Unit 1 at full power for Cycle 5 based on a Cycle 4 length of 235 + 10 EFPD.

Subsequently, Oconee Unit 1 was operated to approximately 250 EFPD. An analysis of the effects of this increased length of Cycle 4 on Cycle 5 was performed by B&W. Attachment 1 provides the pages of BAW-1493, "Oconee Unit 1, Cycle 5 Reload Report," which have been affected with the corrected values noted. The analysis included verification of the operating limits provided previously in my letter of June 26, 1978 which indicated that all of the figures are conservative and no changes are required, with the exception of Figure 2.3-2A. A revised Figure 2.3-2A is provided in Attachment 2. These changes to the reload report are provided now in order to facilitate review and approval of the request by the NRC. A complete smooth version of BAW-1493, Revision 2 will be submitted promptly upon receipt from Babcock and Wilcox.

In a March 20, 1978 letter, a request was submitted to increase the allowable tilt limit to 6.03% for Cycle 4. Inasmuch as Unit 1 has shut down to refuel for Cycle 5, this change is no longer required and is hereby rescinded.

REGULATORY DOCKET FILE COPY

Mr. Harold R. Denton Page 2 September 6, 1978

This submittal is considered to supplement my earlier submittal and as such no license fees are provided. As required, 40 copies of this submittal are provided.

Very truly yours, U. Taili William O. Parker, Jr.

RLG:vr Attachments

ATTACHMENT 1

Revised Pages

BAW-1493 OCONEE UNIT 1 - CYCLE 5 RELOAD REPORT

Pages

2-1 3-3 4-2 4-4 5-3 5-4 5-5 7-3

2.1

いる情報

ないないで、「ないないない」

2. OPERATING HISTORY

The reference cycle for the nuclear and thermal-hydraulic analyses of Oconee 1, cycle 5 is the currently operating cycle 4. This cycle 5 design is based on a planned cycle 4 length of 250 EFPD rather than the design length of 292 EFPD.

Cycle 5 will operate in a feed-and-bleed mode for its entire design length of 320 EFPD. Initial cycle 4 operation was in a rodded mode. However, a quadrant power tilt was detected during cycle 4 power escalation¹, and the mode of operation was converted to feed-and-bleed to provide a larger margin for cycle 4 operation.² The shuffle pattern for cycle 5 was designed to minimize the effects of any power tilts present in cycle 4. No control rod interchange is planned during cycle 5.

2-1

	8	9	10	11	12	13	14	15
	3.20	2.75	2.75	3.20	3.02	.2.75	2.79	3.02
r.	28,923	20,985	16,578	31,581	0	16,428	6,288	0
K		3.02	2.75	2.79	2.75	2.7.9	2.75	3.02
		0 ·	14,746 ՝	5,477	19,695 [,]	9,080	16,881	0
T.			2.75	2.79	2.79	2.75	3.02	3.02
-			17,841	6,247	8,787	16,404	0	0
м				2.75	2.79	2.75	3.02	
				17,846	5,346.	18,853	0	
N					2.79	2.79	3.02	
					6,227	7,549	0	
0						3.02		
Ŭ						0 .		
ъ						. C		
		·						
R								
			,					

Figure 3-2. Enrichment and Burnup Distribution for Oconee 1, Cycle 5

x.xx

XXXXX

Initial Enrichment

BOC Burnup, MWd/mtU

4.2. Fuel Rod Design

4.2.1. Cladding Collapse

Creep collapse analyses were performed for three-cycle assembly power histories as well as for batch 4D's four-cycle assembly power histories. For cycle 5, the batch 5 fuel is more limiting than all other batches except for 4D because of its previous incore exposure time. The batch 5 and 4D assembly power histories were analyzed, and the most limiting assembly from each batch was determined.

The power histories for the most limiting assemblies were used to calculate the fast neutron flux level for the energy range above 1 MeV. The collapse time for the most limiting assembly from each batch was conservatively determined to be more than 30,000 effective full-power hours (EFPH), which is longer than the maximum projected batch 5 residence time of 21,336 EFPH (three cycles) and the maximum projected batch 4D residence time of 28,349 EFPH (four cycles). The creep collapse analyses were performed based on the conditions set forth in references 4 and 5.

4.2.2. Cladding Stress

The Oconee 1 stress parameters are enveloped by a conservative fuel rod stress analysis. Since worst-case stress conditions are at BOL, the batch 4D fuel is also bounded by the fuel rod stress analysis. For design evaluation, the primary membrane stress must be less than two-thirds of the minimum specified unirradiated yield strength, and all stresses (primary and secondary) must be less than the minimum specified unirradiated yield strength. The margin is in excess of 30% in all cases. With respect to Oconee 1 fuel, the following conservatisms were used in the analysis:

- 1. Low post-densification internal pressure.
- 2. Low initial pellet density.
- 3. High system pressure.
- 4. High thermal gradient across the cladding.

The stresses reported in reference 6 for core 1 fuel represent conservative values with respect to the cycle 5 core.

4.2.3. Cladding Strain

The fuel design criteria specify a limit of 1.0% on cladding circumferential plastic strain. The pellet design is established for plastic cladding strain

Babcock & Wilcox

9/5/78

4-2

	Current	Max as burnup,	sembly MWd/mtU	Cumulative net elect. output, mWh	
Reactor	<u>cycle</u>	Incore	Disch.		
TMI-1	3	31,720	25,860	18,430,506	
ANO-1	2	28,290	17,650	14,575,320	
Rancho Seco	2	22,300	17,170	10,297,637	
Crystal River 3	1	10,430		4,936,412	
Davis-Besse 1	1	2,490	·	1,009,741	

Table 4-1. Fuel Design Parameters and Dimensions

20

1.14

	Thrice- burned FAs, <u>Batch</u> 4D	Twice- burned FAs, Batch 5	Once- burned FAs, Batch 6	Fresh FAs, Batch 7
FA type	Mark-B3	Mark-B4	Mark-B4	Mark-B4
No. of FAs	5	60	56	56
Fuel rod OD, in.	0.430	0.430	0.430	0.430
Fuel rod ID, in.	0.377	0.377	0.377	0.377
Flex. spacers, type	Spring	Spring	Spring	Spring
Rigid spacers, type	Zr-4	Zr-4	Zr-4	Zr-4
Undensif active fuel length (nom), in.	142.0	142.6	142.25	142.25
Fuel pellet initial density (nom), % TD	>94.5	93.5	94.0	94.0
Fuel pellet OD (mean specif), in.	0.3685	0.3700	0.3695	0.3695
Initial fuel enrich., wt % ²³⁵ U	3.20	2.75	2.79	3.02
BOC burnup (avg), MWd/mtU	31,049	17,524	6,965	0
Cladding collapse time, EFPH	>30,000	>30,000	>30,000	>30,000
Estimated residence time (max), EFPH	28,349	21,336	22,320	26,256

Babcock & Wilcox

1

Oconee 1, Cycle 5 Physics Parameters (a)

Cycle 4^(b)

292

9,136

19,034

<u>Cycle 5</u>(c)

320

10;014

19,055

Table 5-1.

Cycle length, EFPD

Cycle burnup, MWd/mtU

Average core burnup, EOC, MWd/mtU

Initial core loading, mtU	82.1	82.1
Critical boron, BOC (no Xe), ppm HZP, group 8 37.5% wd(d) HZP, groups 7 and 8 inserted HFP, group 8 inserted	1415 1335 1145	1426 1293
Critical boron, EOC (eq Xe), ppm HZP, group 8 37.5% wd HFP, group 8 37.5% wd	373 88	338 43
Control rod worths, HFP, BOC, % Δk/k Group 6 Group 7 Group 8 37.5% wd	1.07 0.93 0.50	1, 19 1.44 0.42
Control rod worths, HFP, EOC, % Δk/k Group 7 Group 8 37.5% wd	1.16 0.47	1, 52 0.48
<pre>Max ejected rod worth, HZP, % Δk/k^(e) BOC (N-12) EOC (N-12)</pre>	0.68 0.61	0.57
Max stuck rod worth, HZP, % Δk/k BOC (N-12) EOC (N-12)	1.74 2.02	2.17
Power deficit, HZP to HFP, % Δk/k BOC EOC	1.49	1.31
Doppler coeff, 10 ⁻⁵ (Δk/k-°F) BOC, 100% power, no Xe EOC, 100% power, eq Xe	-1.45	-1.45
Moderator coeff, HFP, 10 ⁻⁴ (Δk/k-°F) BOC (0 Xe, crit ppm, gp 8 ins) EOC (eq Xe, 17 ppm, gp 8 ins)	-1.00	-0.48
Boron worth, HFP, ppm/% Δk/k BOC (1150 ppm) EOC (17 ppm)	109	108
Xenon worth, HFP, % Δk/k BOC (4 EFPD) EOC (equilibrium)	2.60	2.62
Eff delayed neutron fraction, HFP BOC EOC	0.00593	0.00595
(a) Cycle 5 data are for the conditions The cycle 4 core conditions are iden	stated in th tified in re	his report. eference 4.
^(c) Based on 292 EFPD at 2568 MWt, cycle ^(c) Cycle 5 data are based on a "planned 250 EFPD; the cycle 4 "design" lifer	3. " cycle 4 1a ime is 292 5	ength of
d) HZP denotes hot zero power (532F T _{av} full power (579F T _{avg}).	g), HFP deno	otes hot

(e) Ejected rod worth for groups 5 through 8 inserted.

for Oconee	1, Cycle 5	
····		
. · ·	BOC, $% \Delta k/k$	EOC, $% \Delta k/k$
Available rod worth		
Total rod worth, HZP	8.85	8.76
Worth reduction due to burnup of poison material	-0.36	- 0.41
Maximum stuck rod, HZP	-2.17	-2.01
Net worth	6.32	.6,34
Less 10% uncertainty		-0.63
Total available worth	5.69	.5.71
Required rod worth	• • •	. · ·
Power deficit, HFP to HZP	1.31	2.11
Max allowable inserted rod worth	0.38	0.68
Flux redistribution	0.59	1.19
Total required worth	2.28	3.98
Shutdown margin (total available worth minus total required worth)	3.41	1.73

Table 5-2. Shutdown Margin Calculation

<u>Note</u>: Required shutdown margin is 1.00% $\Delta k/k$.

Babcock & Wilcox

Figure 5-1.	BOC (4 EFPD), Cycle 5 Two-Dimensional Relative Power
	Distribution - Full Power, Equilibrium Xenon,
	Normal Rod Positions (Group 8 Inserted)

	88	9	10	11	12	13	14	15
н	0.82	0.93	0.95	0.89	1.37	1.02	1.10	0.89
к		1.35	1.06	1.20	0.98	1.09	0.94	0.85
L			1.03	1:#23	1.02	·0 . ·94	1.17	0.69
М				108	1.22	0.89	0,93	
N					1.21	0.94	0.62	
0						0.71		
Р								
R								

x.xx

権

:

. .

}

]

j

Inserted Rod Group No. Relative Power Density Ł

Parameter	FSAR and densification report value	Predicted cycle 5 value
Doppler coeff, $\Delta k/k/^{\circ}F$		
BOC EOC	-1.17×10^{-5} -1.33×10^{-5}	-1.45×10^{-5} -1.61×10^{-5}
Moderator coeff, $\Delta k/k/^{\circ}F$:	
BOC EOC	$+0.5 \times 10^{-4}$ -3.0 × 10 ⁻⁴	-0.48×10^{-4} -2.63 x 10^{-4}
All-rod group worth, HZP % ∆k/k	10	.8.85
Initial boron conc'n, HFP, ppm	1400	1242 -
Boron reactivity worth at 70F, ppm/1% $\Delta k/k$	75	76
Max ejected rod worth, HFP, $%$ $\Delta k/k$	0.65	0.25
Dropped rod worth (HFP), $\%$ $\Delta k/k$	0.46	0.20

. .

<u>Tab</u>	le	<u>7-</u> :	L	Compari	Lson	of	Key	Parameters	for	Accident	Analysi	ls
------------	----	-------------	---	---------	------	----	-----	------------	-----	----------	---------	----

Elevation, ft	LHR limits, kW/ft
2	15.5
4	16.6
6	18.0
8	17.0
10	16.0

Table 7-2. LOCA Limits, Oconee 1, Cycle 5

ATTACHMENT 2

Revised

TECHNICAL SPECIFICATION PAGE FIGURE 2.3-2A

PROTECTIVE SYSTEM MAXIMUM ALLOWABLE SETPOINTS UNIT 1

OCONEE NUCLEAR STATION

Figure 2.3-2A