	ATORY INFORMATERIAL	SYSTEM (DS) 50-269/270/287
REC: - NRC	ORG: PARKER W O DUKE PWR	DOCDATE: 02/15/78 DATE RCVD: 02/21/78
	NOTARIZED: NO HE PERFORMANCE & OPERATING STA ONTH OF JAN., 1978.	COPIES RECEIVED LTR 1 ENCL 1 TUS OF THE SUBJECT
-	- UNIT 1 - UNIT 2 - UNIT 3	REVIEWER INITIAL: XRL DISTRIBUTER INITIAL:
- 法办办办办办办办办办办办办	DISTRIBUTION OF THIS MATERIAL :	IS AS FOLLOWS **************
OTES: M. CUNNINGHAM -	ALL AMENDMENTS TO FSAR AND CH	ANGES TO TECH SPECS
MONTHLY OPERATIN (DISTRIBUTION C)	NG REPORT FOR GRAY BOOK PREPAR(JDE A003)	NOITA
FOR ACTION:	BR CHIEF RELD**W/2 ENCL	
INTERNAL:	REG FILE**W/ENCL MIPC FOR ACTION**W/2 ENCL	NRC PDR**W/ENCL
EXTERNAL:	LPDR'S WALHALLA, SC**W/ENCL TIC**W/ENCL NSIC**W/ENCL BNL(NATLAB)**W/ENCL ACRS CAT B**W/O ENCL	

DISTRIBUTION: LTR 10 ENCL 10 DIZE: 1P+7P+14P

•

--

CONTROL NBR: 780520198

J.Y

DUKE POWER COMPANY

POWER BUILDING 422 South Church Street, Charlotte, N. C. 28242

WILLIAM O. PARKER, JR. VICE PRESIDENT STEAM PRODUCTION

February 15, 1978 REGULAIORY DUGALT FILE COPY "373-4083

Director Office of Management Information and Program Control U. S. Nuclear Regulatory Commission Washington, D. C. 20555

RE: Oconee Nuclear Station Docket Nos. 50-269, -270, -287

ULSA NUCIENE REQUINT OMMISSICN Hall Sudica

780520198

Dear Sir:

Please find attached information concerning the performance and operating status of the Oconee Nuclear Station for the month of January, 1978.

Very truly yours,

William Of

William O. Parker, .It

JAR:ge Attachment

cc: Mr. J. P. O'Reilly

OPERATING DATA REPORT

DOCKET NO. <u>50-269</u> DATE <u>2-15-78</u> COMPLETED BY <u>J. A. Reavis</u> TELEPHONE (704) 373-8552

·

OPERATING STATUS

1. Unit Name:Oconee Unit 1	Notes
2. Reporting Period:	Year-to-date and cumulative
3 Licensed Thermal Power (MWt): 2568	capacity factors are calcu-
4. Nameplate Rating (Gross MWe): 934	lated using a weighted aver- age for maximum dependable
5. Design Electrical Rating (Net MWe):887	capacity.
6. Maximum Dependable Capacity (Gross MWe):	
7. Maximum Dependable Capacity (Net MWe):860	

8. If Changes Occur in Capacity Ratings (Items Number 3 Through 7) Since Last Report, Give Reasons:

9. Power Level To Which Restricted, If Any (Net MWe):

10. Reasons For Restrictions, If Any: _____

· · ·	This Month	Yrto-Date	Cumulative
11. Hours In Reporting Period	744.0	744.0	<u>39865.0</u> 28483.1
 Number Of Hours Reactor Was Critical Reactor Reserve Shutdown Hours Hours Generator On-Line 	- 744.0	- 744.0	26165.7
15. Unit Reserve Shutdown Hours16. Gross Thermal Energy Generated (MWH)	<u> </u>	- 1,885,225	-
 Gross Electrical Energy Generated (MWH) Net Electrical Energy Generated (MWH) 	<u>658,850</u> <u>629,244</u> 100.0	$\frac{658,850}{629,244}$	$\frac{20,968,490}{19,806,171}$
 19. Unit Service Factor 20. Unit Availability Factor 	100.0	100.0	<u>65.7</u> 57.4
 21. Unit Capacity Factor (Using MDC Net) 22. Unit Capacity Factor (Using DER Net) 23. Unit Forced Outage Rate 	<u> </u>	95.4	<u>56.0</u> 18.2

24. Shutdowns Scheduled Over Next 6 Months (Type, Date, and Duration of Each): <u>Hydraulic Suppressor Inspection - March 20, 1978 - 24 hours</u>

COMMERCIAL OPERATION

25. If Shut Down At End Of Report Period, Estimated Date of Startup: _		
26. Units In Test Status (Prior to Commercial Operation):	Forecast	Achieved
INITIAL CRITICALITY		,
INITIAL ELECTRICITY		

This report should be furnished each month by licensees. The name and telephone number of the preparer should be provided in the designated spaces. The instructions below are provided to assist licensees in reporting the data consistently. The number of the instruction corresponds to the item number of the report format.

- 1. UNIT NAME. Self-explanatory.
- 2. **REPORTING PERIOD**. Designate the month for which the data are presented.
- 3. LICENSED THERMAL POWER (MW_t) is the maximum thermal power, expressed in megawatts, currently authorized by the Nuclear Regulatory Commission.
- 4. NAMEPLATE RATING (GROSS MW_e). The nameplate power designation of the turbine-generator in megavolt amperes (MVA) times the nameplate power factor of the turbine generator.
- 5. DESIGN ELECTRICAL RATING (NET MW_e) is the nominal net electrical output of the unit specified by the utility and used for the purpose of plant design.
- 6. MAXIMUM DEPENDABLE CAPACITY (GROSS MW_e) is the gross electrical output as measured at the output terminals of the turbine-generator during the most restrictive seasonal conditions.
- MAXIMUM DEPENDABLE CAPACITY (NET MW_e). Maximum dependable capacity (gross) less the normal station service loads.
- 8. Self-explanatory.
- 9. POWER LEVEL TO WHICH RESTRICTED, IF ANY (NET MW_e). Note that this item is applicable only if restrictions on the power level are in effect. Short-term (less than one month) limitations on power level need not be presented in this item.

Since this information is used to develop figures on capacity lost due to restrictions and because most users of the "Operating Plant Status Report" are primarily interested in energy actually fed to the distribution system, it is requested that this figure be expressed in MWe-Net in spite of the fact that the figure must be derived from MWt or percent power.

- 10. REASONS FOR RESTRICTIONS, IF ANY. If item 9 is used, item 10 should explain why. Brief narrative is acceptable. Cite references as appropriate. Indicate whether restrictions are self-imposed or are regulatory requirements. Be as specific as possible within space limitations. Plants in startup and power ascension test phase should be identified here.
- 11. HOURS IN REPORTING PERIOD. For units in power ascension at the end of the period, the gross hours from the beginning of the period or the first electrical production, whichever comes last, to the end of the period.

For units in commercial operation at the end of the period, the gross hours from the beginning of the period

or of commercial operation, whichever comes last, to the end of the period or decommissioning, whichever comes first. Adjustments in clock hours should be made in which a change from standard to daylight-savings time (or vice versa) occurs.

- 12. NUMBER OF HOURS REACTOR WAS CRITICAL. Show the total number of hours the reactor was critical during the gross hours of the reporting period.
- 13. **REACTOR RESERVE SHUTDOWN HOURS**. The total number of hours during the gross hours of reporting period that the reactor was removed from service for administrative or other reasons but was available for operation.
- 14. HOURS GENERATOR ON-LINE. Also called Service Hours. The total number of hours expressed to the nearest tenth of an hour during the gross hours of the reporting period that the unit operated with breakers closed to the station bus. These hours, plus those listed in Unit Shutdowns for the generator outage hours, should equal the gross hours in the reporting period.
- 15. UNIT RESERVE SHUTDOWN HOURS. The total number of hours expressed to the nearest tenth of an hour during the gross hours of the reporting period that the unit was removed from service for economic or similar reasons but was available for operation.
- 16. GROSS THERMAL ENERGY GENERATED (MWH). The thermal output of the nuclear steam supply system during the gross hours of the reporting period, expressed in megawatt hours (no decimals).
- 17. GROSS ELECTRICAL ENERGY GENERATED (MWH). The electrical output of the unit measured at the output terminals of the turbine-generator during the gross hours of the reporting period, expressed in megawatt hours (no decimals).
- 18. NET ELECTRICAL ENERGY GENERATED (MWH). The gross electrical output of the unit measured at the output terminals of the turbine-generator minus the normal station service loads during the gross hours of the reporting period, expressed in megawatt hours. Negative quantities should not be used. If there is no net positive value for the period, enter zero (no decimals).
- 19- For units still in the startup and power ascension test
- 23. phase, items 19-23 should not be computed. Instead, enter N/A in the current month column. These five factors should be computed starting at the time the unit is declared to be in commercial operation. The cumulative figures in the second and third columns should be based on commercial operation as a starting date.

AVERAGE DAILY UNIT POWER LEVEL

.

DOCKET NO.	50-269
UNIT	Oconee Unit l
DATE	2-15-78
	J. A. Reavis
TELEPHONE	(704) 373-8552

MONT	January, 1978		
DAY	AVERAGE DAILY POWER LEVEL (MWe-Net)	DAY	AVERAGE DAILY POWER LEVEL (MWe-Net)
1	861	17	853
2	859	18	854
3	859	19	855
4	857	20	861
5	854	21	856
6	821	22	852
7	820	23	848
8	821	24	846
9	858	25	702
10	864	26	826
11	864	27	852
12	853	28	858
13	844	29	858
14	845	30	858
15	846	31	860
16	851		

INSTRUCTIONS

On this format, list the average daily unit power level in MWe-Net for each day in the reporting month. Compute to the nearest whole megawatt.

J. A. Reavis COMPLETED BY **REPORT MONTH** January, 1978 (704) 373-8552 TELEPHONE Method of Shutting Down Reactor³ Component Cude⁵ Reason² Duration (Hours) System Code⁴ Licensee Cause & Corrective Type^l No. Date Event Action to Report # **Prevent Recurrence** No reportable reductions or shutdowns. 1 2 3 4 F: Forced Exhibit G - Instructions Method: Reason: S: Scheduled A-Equipment Failure (Explain) I-Manual for Preparation of Data **B**-Maintenance of Test Entry Sheets for Licensee 2-Manual Scram. C-Refueling Event Report (LER) File (NUREG-3-Automatic Scram. D-Regulatory Restriction E-Operator Training & License Examination 4-Other (Explain) 0161) **F-Administrative** 5 G-Operational Error (Explain) Exhibit I - Same Source (9/77) H-Other (Explain)

UNIT SHUTDOWNS AND POWER REDUCTIONS

50-269 DOCKET NO. Oconee Unit UNIT NAME 2-15-78 DATE

INSTRUCTIONS

This report should describe all plant shutdowns during the report period. In addition, it should be the source of explanation of significant dips in average power levels. Each significant reduction in power level (greater than 20% reduction in average daily power level for the preceding 24 hours) should be noted, even though the unit may not have been shut down completely¹. For such reductions in power level, the duration should be listed as zero, the method of reduction should be listed as 4 (Other), and the Cause and Corrective Action to Prevent Recurrence column should explain. The Cause and Corrective Action to Prevent Recurrence column should be used to provide any needed explanation to fully describe the circumstances of the outage or power reduction.

NUMBER. This column should indicate the sequential number assigned to each shutdown or significant reduction in power for that calendar year. When a shutdown or significant power reduction begins in one report period and ends in another, an entry should be made for both report periods to be sure all shutdowns or significant power reductions are reported. Until a unit has achieved its first power generation, no number should be assigned to each entry.

DATE. This column should indicate the date of the start of each shutdown or significant power reduction. Report as year, month, and day. August 14, 1977 would be reported as 770814. When a shutdown or significant power reduction begins in one report period and ends in another, an entry should be made for both report periods to be sure all shutdowns or significant power reductions are reported.

TYPE. Use "F" or "S" to indicate either "Forced" or "Scheduled," respectively, for each shutdown or significant power reduction. Forced shutdowns include those required to be initiated by no later than the weekend following discovery of an off-normal condition. It is recognized that some judgment is required in categorizing shutdowns in this way. In general, a forced shutdown is one that-would not have been completed in the absence of the condition for which corrective action was taken.

DURATION. Self-explanatory. When a shutdown extends beyond the end of a report period, count only the time to the end of the report period and pick up the ensuing down time in the following report periods. Report duration of outages rounded to the nearest tenth of an hour to facilitate summation. The sum of the total outage hours plus the hours the generator was on line should equal the gross hours in the reporting period.

REASON. Categorize by letter designation in accordance with the table appearing on the report form. If category H must be used, supply brief comments.

METHOD OF SHUTTING DOWN THE REACTOR OR REDUCING POWER. Categorize by number designation

in accordance with the table appearing on the report form. If category 4 must be used, supply brief comments.

LICENSEE EVENT REPORT #. Reference the applicable reportable occurrence pertaining to the outage or power reduction. Enter the first four parts (event year, sequential report number, occurrence code and report type) of the five part designation as described in Item 17 of Instructions for Preparation of Data Entry Sheets for Licensee Event Report (LER) File (NUREG-0161). This information may not be immediately evident for all such shutdowns, of course, since further investigation may be required to ascertain whether or not a reportable occurrence was involved.) If the outage or power reduction will not result in a reportable occurrence, the positive indication of this lack of correlation should be noted as not applicable (N/A).

SYSTEM CODE. The system in which the outage or power reduction originated should be noted by the two digit code of Exhibit G - Instructions for Preparation of Data Entry Sheets for Licensee Event Report (LER) File (NUREG-0161).

Systems that do not fit any existing code should be designated XX. The code ZZ should be used for those events where a system is not applicable.

COMPONENT CODE. Select the most appropriate component from Exhibit I - Instructions for Preparation of Data Entry Sheets for Licensee Event Report (LER) File (NUREG-0161). using the following critieria:

- A. If a component failed, use the component directly involved.
- B. If not a component failure, use the related component: e.g., wrong valve operated through error: list valve as component.
- C. If a chain of failures occurs, the first component to malfunction should be listed. The sequence of events, including the other components which fail, should be described under the Cause and Corrective Action to Prevent Recurrence column.

Components that do not fit any existing code should be designated XXXXXX. The code ZZZZZZ should be used for events where a component designation is not applicable.

CAUSE & CORRECTIVE ACTION TO PREVENT RECUR-RENCE. Use the column in a narrative fashion to amplify or explain the circumstances of the shutdown or power reduction. The column should include the specific cause for each shutdown or significant power reduction and the immediate and contemplated long term corrective action taken, if appropriate. This column should also be used for a description of the major safety-related corrective maintenance performed during the outage or power reduction including an identification of the critical path activity and a report of any single release of radioactivity or single radiation exposure specifically associated with the outage which accounts for more than 10 percent of the allowable annual values.

For long textual reports continue narrative on separate paper and reference the shutdown or power reduction for this narrative.

¹Note that this differs from the Edison Electric Institute (EEI) definitions of "Forced Partial Outage" and "Scheduled Partial Outage." For these terms, EEI uses a change of 30 MW as the break point. For larger power reactors, 30 MW is too small a change to warrant explanation.

DOCKET NO.: 50-269 UNIT: Oconee Unit 1 DATE: 2-15-78

NARRATIVE SUMMARY

MONTH January, 1978

Oconee Unit 1 was reduced from near rated power twice during the month of January. Power was reduced on the 7th and 8th to about 96 percent to maintain full condensate polishing flow. Power was again reduced on January 25, 1978 to about 60 percent because of feedwater pump vibration. The unit was returned to near rated power following a hold to allow for xenon stability. Information concerning personnel exposure and radioactive releases during the month will be submitted with the February, 1978 report.

- 19. UNIT SERVICE FACTOR. Compute by dividing hours the generator was on line (item 14) by the gross hours in the reporting period (item 11). Express as percent to the nearest tenth of a percent. Do not include reserve shutdown hours in the calculation.
- 20. UNIT AVAILABILITY FACTOR. Compute by dividing the unit available hours (item 14 plus item 15) by the gross hours in the reporting period (item 11). Express as percent to the nearest tenth of a percent.
- UNIT CAPACITY FACTOR (USING MDC NET). Compute by dividing net electrical energy generated (item 18) by the product of maximum dependable capacity (item 7) times the gross hours in the reporting period (item 11). Express as percent to the nearest tenth of a percent.
- 22. UNIT CAPACITY FACTOR (USING DER NET). Compute as in item 21, substituting design electrical rating (item 5) for maximum dependable capacity.
- 23. UNIT FORCED OUTAGE RATE. Compute by dividing the total forced outage hours (from the table in Unit Shutdowns and Power Reductions) by the sum of hours generator on line (item 14) plus total forced outage hours (from the table in Unit Shutdowns and Power Reductions). Express as percent to the nearest tenth of a percent.
- 24. SHUTDOWNS SCHEDULED OVER NEXT 6 MONTHS (TYPE, DATE, AND DURATION OF EACH). Include type (refueling, maintenance, other), proposed date of start of shutdown, and proposed length of shutdown. It is recognized that shutdowns may be scheduled between reports and that this item may not be all inclusive. Be as accurate as possible as of the date the report is prepared. This item is to be prepared each month and updated if appropriate until the actual shutdown occurs.
- 25. Self-explanatory.
- 26. Self-explanatory. Note, however, that this information is requested for all units in startup and power ascension test status and is not required for units already in commercial operation.

TEST STATUS is defined as that period following initial criticality during which the unit is tested at successively higher outputs, culminating with operation at full power for a sustained period and completion of warranty runs. Following this phase, the unit is generally considered by the utility to be available for commercial operation.

Date of COMMERCIAL OPERATION is defined as the date that the unit was declared by the utility owner to be available for the regular production of electricity. usually related to the satisfactory completion of qualification tests as specified in the purchase contract and to the accounting policies and practices of the utility.

OPERATING DATA REPORT

Г

DOCKET NO. <u>50-270</u> DATE <u>2-15-78</u> COMPLETED BY <u>J. A. Reavis</u> TELEPHONE <u>(704)</u> 373-8552

OPERATING STATUS

1	Unit Name:Oconee Unit 2	Notes
1. 7	Reporting Period: January, 1978	Year-to-date and cumulative
	Licensed Thermal Power (MWt): 2568	capacity factors are calcu-
4	Nameplate Rating (Gross MWe): 934	lated using a weighted
	Design Electrical Rating (Net MWe):887	average for maximum depend- able capacity.
	Maximum Dependable Capacity (Gross MWe):899	able capacity.
7.	Maximum Dependable Capacity (Net MWe):860	

8. If Changes Occur in Capacity Ratings (Items Number 3 Through 7) Since Last Report, Give Reasons:

9. Power Level To Which Restricted, If Any (Net MWe):

10. Reasons For Restrictions, If Any: ____

		· · · · ·	
	This Month	Yrto-Date	Cumulative
11. Hours In Reporting Period	744.0	744.0	29785.0
12. Number Of Hours Reactor Was Critical	383.4	383.4	20070.9
13. Reactor Reserve Shutdown Hours	_	-	
14. Hours Generator On-Line	365.3	365.3	19448.4
			_
15. Unit Reserve Shutdown Hours	906,203	906,203	45,605,078
16. Gross Thermal Energy Generated (MWH)	308,720	308,720	15,511,446
17. Gross Electrical Energy Generated (MWH)	292,097	292,097	14,701,280
18. Net Electrical Energy Generated (MWH)	49.1	49.1	65.3
19. Unit Service Factor	49.1	49.1	65.3
20. Unit Availability Factor		45.7	56.9
21. Unit Capacity Factor (Using MDC Net)	45.7	44.3	55.7
22. Unit Capacity Factor (Using DER Net)	44.3		······································
23. Unit Forced Outage Rate	27.6	27.6	23.7

24. Shutdowns Scheduled Over Next 6 Months (Type, Date, and Duration of Each):

25. If Shut Down At End Of Report Period, Estimated Date of Startup:		
26. Units In Test Status (Prior to Commercial Operation):	Forecast	Achieved
INITIAL CRITICALITY		
INITIAL ELECTRICITY		

COMMERCIAL OPERATION

INSTRUCTIONS FOR COMPLETING OPERATING DATA REPORT

This report should be furnished each month by licensees. The name and telephone number of the preparer should be provided in the designated spaces. The instructions below are provided to assist licensees in reporting the data consistently. The number of the instruction corresponds to the item number of the report format.

- 1. UNIT NAME. Self-explanatory.
- 2. **REPORTING PERIOD**. Designate the month for which the data are presented.
- 3. LICENSED THERMAL POWER (MW_t) is the maximum thermal power, expressed in megawatts, currently authorized by the Nuclear Regulatory Commission.
- 4. NAMEPLATE RATING (GROSS MW_e). The nameplate power designation of the turbine-generator in megavolt amperes (MVA) times the nameplate power factor of the turbine generator.
- 5. DESIGN ELECTRICAL RATING (NET MW_e) is the nominal net electrical output of the unit specified by the utility and used for the purpose of plant design.
- 6. MAXIMUM DEPENDABLE CAPACITY (GROSS MW_e) is the gross electrical output as measured at the output terminals of the turbine-generator during the most restrictive seasonal conditions.
- 7. MAXIMUM DEPENDABLE CAPACITY (NET MW_e). Maximum dependable capacity (gross) less the normal station service loads.
- 8. Self-explanatory.
- 9. POWER LEVEL TO WHICH RESTRICTED, IF ANY (NET MW_e). Note that this item is applicable only if restrictions on the power level are in effect. Short-term (less than one month) limitations on power level need not be presented in this item.

Since this information is used to develop figures on capacity lost due to restrictions and because most users of the "Operating Plant Status Report" are primarily interested in energy actually fed to the distribution system. it is requested that this figure be expressed in MWe-Net in spite of the fact that the figure must be derived from MWt or percent power.

- 10. **REASONS FOR RESTRICTIONS, IF ANY.** If item 9 is used, item 10 should explain why. Brief narrative is acceptable. Cite references as appropriate. Indicate whether restrictions are self-imposed or are regulatory requirements. Be as specific as possible within space limitations. Plants in startup and power ascension test phase should be identified here.
- 11. HOURS IN REPORTING PERIOD. For units in power ascension at the end of the period, the gross hours from the beginning of the period or the first electrical production, whichever comes last, to the end of the period.

For units in commercial operation at the end of the period, the gross hours from the beginning of the period

or of commercial operation, whichever comes last, to the end of the period or decommissioning, whichever comes first. Adjustments in clock hours should be made in which a change from standard to daylight-savings time (or vice versa) occurs.

- 12. NUMBER OF HOURS REACTOR WAS CRITICAL. Show the total number of hours the reactor was critical during the gross hours of the reporting period.
- 13. **REACTOR RESERVE SHUTDOWN HOURS.** The total number of hours during the gross hours of reporting period that the reactor was removed from service for administrative or other reasons but was available for operation.
- 14. HOURS GENERATOR ON-LINE. Also called Service Hours. The total number of hours expressed to the nearest tenth of an hour during the gross hours of the reporting period that the unit operated with breakers closed to the station bus. These hours, plus those listed in Unit Shutdowns for the generator outage hours, should equal the gross hours in the reporting period.
- 15. UNIT RESERVE SHUTDOWN HOURS. The total number of hours expressed to the nearest tenth of an hour during the gross hours of the reporting period that the unit was removed from service for economic or similar reasons but was available for operation.
- 16. GROSS THERMAL ENERGY GENERATED (MWH). The thermal output of the nuclear steam supply system during the gross hours of the reporting period, expressed in megawatt hours (no decimals).
- 17. GROSS ELECTRICAL ENERGY GENERATED (MWH). The electrical output of the unit measured at the output terminals of the turbine-generator during the gross hours of the reporting period, expressed in megawatt hours (no decimals).
- 18. NET ELECTRICAL ENERGY GENERATED (MWH). The gross electrical output of the unit measured at the output terminals of the turbine-generator minus the normal station service loads during the gross hours of the reporting period, expressed in megawatt hours. Negative quantities should not be used. If there is no net positive value for the period, enter zero (no decimals).
- 19- For units still in the startup and power ascension test
 23. phase, items 19-23 should not be computed. Instead, enter N/A in the current month column. These five factors should be computed starting at the time the unit is declared to be in commercial operation. The cumulative figures in the second and third columns should be based on commercial operation as a starting date.

AVERAGE DAILY UNIT POWER LEVEL

.

DOCKET NO.	50-270
UNIT	Oconee Unit 2
DATE	2-15-78
COMPLETED BY	J. A. Reavis
TELEPHONE	(704) 373-8552

MONT	H January, 1978		
DAY	AVERAGE DAILY POWER LEVEL (MWe-Net)	DAY	AVERAGE DAILY POWER LEVEL (MWe-Net)
1		17	743.
2	-	18	810
3		19	840
4		20	837
5	-	21	835
6		22	831
7		23	832
8		24	836
9	-	25	835
10	_	26	831
11	-	20	832
12	-	28	839
13		28 29	839
13	-		838
14		30	- 506
	192	31	
16		•	

INSTRUCTIONS

÷

On this format, list the average daily unit power level in MWe-Net for each day in the reporting month. Compute to the nearest whole megawatt.

(9/77)

UNIT SHUTDOWNS AND POWER REDUCTIONS

DOCKET NO UNIT NAMI DAT COMPLETED BY

DOCKET NO. UNIT NAME	50-270 <u>Oconee Unit 2</u> 2-15-78
DATE MPLETED BY TELEPHONE	<u>J. A. Reavis</u> (704) 373-8552

REPORT MONTH January, 1978

No.	Date	Type ^l	Duration (Hours)	2 uoson 2	Method of Shutting Down Reactor-3	Licensee Event Report #	System Code ⁴	Component Code ⁵	Cause & Corrective Action to Prevent Recurrence
16	78-01-01	F	132.00	A	1	77-17/03L-0	RB	CRDRVE	Replaced shorted out stator, Rod 4 Gp. 6 and removed SOAK instru- mentation in "2B" OTSG
1	78-01-09	S	239.76	A	4	77–12/ _/ L–0	HJ	HTEXCF	Repaired tube leak in "2B" OTSG (Tu. #77-25) and replaced shorted out stator - Rd 5 Gp. 2
2	78-01-31	F	6.91	A	3		RB	CRDRVE	Tripped while performing IP, due to control rod drive fuse failure.
				1					
									59 ···
F: Forced S: Scheduled		2 Reason: A-Equipment Failure (Explain) B-Maintenance of Test C-Refueling D-Regulatory Restriction E-Operator Training & License Examination F-Administrative G-Operational Error (Explain) H-Other (Explain)					3-Auto		4 Exhibit G - Instructions for Preparation of Data Entry Sheets for Licensee Event Report (LER) File (NUREG- 0161) 5 Exhibit 1 - Same Source

.

INSTRUCTIONS

This report should describe all plant shutdowns during the report period. In addition, it should be the source of explanation of significant dips in average power levels. Each significant reduction in power level (greater than 20% reduction in average daily power level for the preceding 24 hours) should be noted, even though the unit may not have been shut down completely¹. For such reductions in power level, the duration should be listed as zero, the method of reduction should be listed as 4 (Other), and the Cause and Corrective Action to Prevent Recurrence column should explain. The Cause and Corrective Action to Prevent Recurrence column should be used to provide any needed explanation to fully describe the circumstances of the outage or power reduction.

NUMBER. This column should indicate the sequential number assigned to each shutdown or significant reduction in power for that calendar year. When a shutdown or significant power reduction begins in one report period and ends in another, an entry should be made for both report periods to be sure all shutdowns or significant power reductions are reported. Until a unit has achieved its first power generation, no number should be assigned to each entry.

DATE. This column should indicate the date of the start of each shutdown or significant power reduction. Report as year, month, and day. August 14, 1977 would be reported as 770814. When a shutdown or significant power reduction begins in one report period and ends in another, an entry should be made for both report periods to be sure all shutdowns or significant power reductions are reported.

TYPE. Use "F" or "S" to indicate either "Forced" or "Scheduled," respectively, for each shutdown or significant power reduction. Forced shutdowns include those required to be initiated by no later than the weekend following discovery of an off-normal condition. It is recognized that some judgment is required in categorizing shutdowns in this way. In general, a forced shutdown is one that would not have been completed in the absence of the condition for which corrective action was taken.

DURATION. Self-explanatory. When a shutdown extends beyond the end of a report period, count only the time to the end of the report period and pick up the ensuing down time in the following report periods. Report duration of outages rounded to the nearest tenth of an hour to facilitate summation. The sum of the total outage hours plus the hours the generator was on line should equal the gross hours in the reporting period.

REASON. Categorize by letter designation in accordance with the table appearing on the report form. If category H must be used, supply brief comments.

METHOD OF SHUTTING DOWN THE REACTOR OR REDUCING POWER. Categorize by number designation

¹Note that this differs from the Edison Electric Institute (EEI) definitions of "Forced Partial Outage" and "Scheduled Partial Outage." For these terms, EEI uses a change of 30 MW as the break point. For larger power reactors, 30 MW is too small a change to warrant explanation. in accordance with the table appearing on the report form. If category 4 must be used, supply brief comments.

EIGENSEE EVENT REPORT #. Reference the applicable reportable occurrence pertaining to the outage or power reduction. Enter the first four parts (event year, sequential report number, occurrence code and report type) of the five part designation as described in Item 17 of Instructions for Preparation of Data Entry Sheets for Licensee Event Report (LER) File (NUREG-0161). This information may not be immediately evident for all such shutdowns, of course, since further investigation may be required to ascertain whether or not a reportable occurrence was involved.) If the outage or power reduction will not result in a reportable occurrence, the positive indication of this lack of correlation should be noted as not applicable (N/A).

SYSTEM CODE. The system in which the outage or power reduction originated should be noted by the two digit code of Exhibit G - Instructions for Preparation of Data Entry Sheets for Licensee Event Report (LER) File (NUREG-0161).

Systems that do not fit any existing code should be designated XX. The code ZZ should be used for those events where a system is not applicable.

COMPONENT CODE. Select the most appropriate component from Exhibit I - Instructions for Preparation of Data Entry Sheets for Licensee Event Report (LER) File (NUREG-0161). using the following critieria:

- A. If a component failed, use the component directly involved.
- B. If not a component failure, use the related component: e.g., wrong valve operated through error: list valve as component.
- C. If a chain of failures occurs, the first component to malfunction should be listed. The sequence of events, including the other components which fail, should be described under the Cause and Corrective Action to Prevent Recurrence column.

Components that do not fit any existing code should be designated XXXXXX. The code ZZZZZZ should be used for events where a component designation is not applicable.

CAUSE & CORRECTIVE ACTION TO PREVENT RECUR-RENCE. Use the column in a narrative fashion to amplify or explain the circumstances of the shutdown or power reduction. The column should include the specific cause for each shutdown or significant power reduction and the immediate and contemplated long term corrective action taken, if appropriate. This column should also be used for a description of the major safety-related corrective maintenance performed during the outage or power reduction including an identification of the critical path activity and a report of any single release of radioactivity or single radiation exposure specifically associated with the outage which accounts for more than 10 percent of the allowable annual values.

For long textual reports continue narrative on separate paper and reference the shutdown or power reduction for this narrative.

DOCKET NO.: 50-270 UNIT: Oconee Unit 2 DATE: 2-15-78

NARRATIVE SUMMARY

MONTH January, 1978

Oconee Unit 2 was shut down the beginning of the month through January 16, 1978. Work accomplished during this outage included: Replacement of two control rod drive stators, removal of 2"B" steam generator special test instrumentation, plugging 7 additional 2"B" steam generator tubes and re-plugging of 13 previously plugged 2"B" steam generator tubes. The unit was started up and placed on line on January 16th. Following the completion of refueling startup testing the unit achieved rated power on the 22nd. During routine testing on January 31, the reactor tripped due to a blown fuse in the control rod drive system. The unit was re-started and in a normal start up sequence at the end of the month. Information concerning personnel exposure and radioactive releases during the month will be submitted with the February, 1978 report.

- 19. UNIT SERVICE FACTOR. Compute by dividing hours the generator was on line (item 14) by the gross hours in the reporting period (item 11). Express as percent to the nearest tenth of a percent. Do not include reserve shutdown hours in the calculation.
- 20. UNIT AVAILABILITY FACTOR. Compute by dividing the unit available hours (item 14 plus item 15) by the gross hours in the reporting period (item 11). Express as percent to the nearest tenth of a percent.
- UNIT CAPACITY FACTOR (USING MDC NET). Compute by dividing net electrical energy generated (item 18) by the product of maximum dependable capacity (item 7) times the gross hours in the reporting period (item 11). Express as percent to the nearest tenth of a percent.
- 22. UNIT CAPACITY FACTOR (USING DER NET). Compute as in item 21, substituting design electrical rating (item 5) for maximum dependable capacity.
- 23. UNIT FORCED OUTAGE RATE. Compute by dividing the total forced outage hours (from the table in Unit Shutdowns and Power Reductions) by the sum of hours generator on line (item 14) plus total forced outage hours (from the table in Unit Shutdowns and Power Reductions). Express as percent to the nearest tenth of a percent.
- 24. SHUTDOWNS SCHEDULED OVER NEXT 6 MONTHS (TYPE, DATE, AND DURATION OF EACH). Include type (refueling, maintenance, other), proposed date of start of shutdown, and proposed length of shutdown. It is recognized that shutdowns may be scheduled between reports and that this item may not be all inclusive. Be as accurate as possible as of the date the report is prepared. This item is to be prepared each month and updated if appropriate until the actual shutdown occurs.
- 25. Self-explanatory.
- 26. Self-explanatory. Note, however, that this information is requested for all units in startup and power ascension test status and is not required for units already in commercial operation.

TEST STATUS is defined as that period following initial criticality during which the unit is tested at successively higher outputs, culminating with operation at full power for a sustained period and completion of warranty runs. Following this phase, the unit is generally considered by the utility to be available for commercial operation.

Date of **COMMERCIAL OPERATION** is defined as the date that the unit was declared by the utility owner to be available for the regular production of electricity. usually related to the satisfactory completion of qualification tests as specified in the purchase contract and to the accounting policies and practices of the utility.

1.1

OPERATING DATA REPORT

DOCKET NO. 50-287DATE 2-15-78COMPLETED BY J. A. Reavis TELEPHONE (704) 373-8552

OPERATING STATUS

1. Unit Name: <u>Oconee Unit 3</u>	Notes
2 Reporting Period: January, 1978	Year-to-date and cumulative capacity factors are calcu-
3. Licensed Thermal Power (MWt): 2000	lated using a weighted
4. Nameplate Rating (Gross MWe): 934 5. Desime Electrical Bating (Nat MWa): 887	average for maximum depend-
5. Design Electrical Rating (Net MWe):	able capacity.
6. Maximum Dependable Capacity (Gross MWe): 899	
7. Maximum Dependable Capacity (Net MWe):860	
8. If Changes Occur in Capacity Ratings (Items Number 3 Through 7) Sin	nce Last Report, Give Reasons:

9. Power Level To Which Restricted, If Any (Net MWe):

10. Reasons For Restrictions, If Any: ____

	This Month	Yrto-Date	Cumulative
1. Hours In Reporting Period	744.0	744.0	27,432.0
2. Number Of Hours Reactor Was Critical	642.4	642.4	20,807.0
3. Reactor Reserve Shutdown Hours	-	-	
4. Hours Generator On-Line	624.0	624.0	20,197.7
5. Unit Reserve Shutdown Hours	_	-	_
5. Gross Thermal Energy Generated (MWH)	1,421,574	1,421,574	46,654,894
7. Gross Electrical Energy Generated (MWH)	497,040	497,040	16,448,884
B. Net Electrical Energy Generated (MWH)	472,485	472,485	15,645,092
D. Unit Service Factor	83.9	83.9	
). Unit Availability Factor	83.9	83.9	73.6
I. Unit Capacity Factor (Using MDC Net)	73.8	73.8	65.8
2. Unit Capacity Factor (Using DER Net)	71.6	71.6	64.3
3. Unit Forced Outage Rate	16.1	16.1	14.4

24. Shutdowns Scheduled Over Next 6 Months (Type, Date, and Duration of Each):

25. If Shut Down At End Of Report Period, Estimated Date of Startup: _		
26. Units In Test Status (Prior to Commercial Operation):	Forecast	Achieved
INITIAL CRITICALITY		
INITIAL ELECTRICITY	<u> </u>	
COMMERCIAL OPERATION		

INSTRUCTIONS FOR COMPLETING OPERATING DATA REPORT

This report should be furnished each month by licensees. The name and telephone number of the preparer should be provided in the designated spaces. The instructions below are provided to assist licensees in reporting the data consistently. The number of the instruction corresponds to the item number of the report format.

- 1. UNIT NAME. Self-explanatory.
- 2. **REPORTING PERIOD**. Designate the month for which the data are presented.
- 3. LICENSED THERMAL POWER (MW_t) is the maximum thermal power, expressed in megawatts, currently authorized by the Nuclear Regulatory Commission.
- 4. NAMEPLATE RATING (GROSS MW_e). The nameplate power designation of the turbine-generator in megavolt amperes (MVA) times the nameplate power factor of the turbine generator.
- 5. DESIGN ELECTRICAL RATING (NET MW_e) is the nominal net electrical output of the unit specified by the utility and used for the purpose of plant design.
- 6. MAXIMUM DEPENDABLE CAPACITY (GROSS MW_e) is the gross electrical output as measured at the output terminals of the turbine-generator during the most restrictive seasonal conditions.
- MAXIMUM DEPENDABLE CAPACITY (NET MW_e). Maximum dependable capacity (gross) less the normal station service loads.
- 8. Self-explanatory.
- 9. POWER LEVEL TO WHICH RESTRICTED, IF ANY (NET MW_e). Note that this item is applicable only if restrictions on the power level are in effect. Short-term (less than one month) limitations on power level need not be presented in this item.

Since this information is used to develop figures on capacity lost due to restrictions and because most users of the "Operating Plant Status Report" are primarily interested in energy actually fed to the distribution system, it is requested that this figure be expressed in MWe-Net in spite of the fact that the figure must be derived from MWt or percent power.

- 10. REASONS FOR RESTRICTIONS, IF ANY. If item 9 is used, item 10 should explain why. Brief narrative is acceptable. Cite references as appropriate. Indicate whether restrictions are self-imposed or are regulatory requirements. Be as specific as possible within space limitations. Plants in startup and power ascension test phase should be identified here.
- 11. HOURS IN REPORTING PERIOD. For units in power ascension at the end of the period, the gross hours from the beginning of the period or the first electrical production, whichever comes last, to the end of the period.

For units in commercial operation at the end of the period, the gross hours from the beginning of the period or of commercial operation, whichever comes last, to the end of the period or decommissioning, whichever comes first. Adjustments in clock hours should be made in which a change from standard to daylight-savings time (or vice versa) occurs.

- 12. NUMBER OF HOURS REACTOR WAS CRITICAL. Show the total number of hours the reactor was critical during the gross hours of the reporting period.
- 13. **REACTOR RESERVE SHUTDOWN HOURS.** The total number of hours during the gross hours of reporting period that the reactor was removed from service for administrative or other reasons but was available for operation.
- 14. HOURS GENERATOR ON-LINE. Also called Service Hours. The total number of hours expressed to the nearest tenth of an hour during the gross hours of the reporting period that the unit operated with breakers closed to the station bus. These hours, plus those listed in Unit Shutdowns for the generator outage hours, should equal the gross hours in the reporting period.
- 15. UNIT RESERVE SHUTDOWN HOURS. The total number of hours expressed to the nearest tenth of an hour during the gross hours of the reporting period that the unit was removed from service for economic or similar reasons but was available for operation.
- 16. GROSS THERMAL ENERGY GENERATED (MWH). The thermal output of the nuclear steam supply system during the gross hours of the reporting period, expressed in megawatt hours (no decimals).
- 17. GROSS ELECTRICAL ENERGY GENERATED (MWH). The electrical output of the unit measured at the output terminals of the turbine-generator during the gross hours of the reporting period, expressed in megawatt hours (no decimals).
- 18. NET ELECTRICAL ENERGY GENERATED (MWH). The gross electrical output of the unit measured at the output terminals of the turbine-generator minus the normal station service loads during the gross hours of the reporting period, expressed in megawatt hours. Negative quantities should not be used. If there is no net positive value for the period, enter zero (no decimals).
- 19- For units still in the startup and power ascension test
 23. phase, items 19-23 should not be computed. Instead, enter N/A in the current month column. These five factors should be computed starting at the time the unit is declared to be in commercial operation. The cumulative figures in the second and third columns should be based on commercial operation as a starting date.

AVERAGE DAILY UNIT POWER LEVEL

DOCKET NO.	50-287				
UNIT	Oconee Unit 3				
DATE	2-15-78				
COMPLETED BY	J. A. Reavis				
TELEPHONE	(704) 373-8552				

MONT	H January, 1978		
DAY	AVERAGE DAILY POWER LEVEL (MWe-Net)	DAY	AVERAGE DAILY POWER LEVEL (MWe-Net)
1	860	17	647
2	856	18	. 648
3	859	19	634
4	845	20	519
5	813	21	47
6	809	22	
7	809	23	-
8	831	24	_
9	867	25	<u> </u>
10	870	26	229
11	864	27	692
12	862	28	809
13	857	29	854
14	667	30	866
15	635	31	862
16	647		

INSTRUCTIONS

~ .

•

On this format, list the average daily unit power level in MWe-Net for each day in the reporting month. Compute to the nearest whole megawatt.

(9/77)

UNIT SHUTDOWNS AND POWER REDUCTIONS

DOCKET UNIT N COMPLETE

ET NO.	50-287	•
NAME	Oconee Unit 3	
DATE	2-15-78	
ED BY	J. A. Reavis	
HONE	(704) 373-855	2

~

REPORT MONTH January, 1978

No.	Date	. Type ¹ Duration (Hours)	Reason ² Method of	Shutting Down Reactor ³	Licensee Event Report #	System Code ⁴	Component Code ⁵	Cause & Corrective Action to Prevent Recurrence
1	78-01÷14	F –	A	4		СВ	PUMPXB	Reduced power to 75% for 3 pump operation due to low oil level alarm on upper oil pot of 3Bl reactor coolant pump
2	78-01-21	F 119.	97 A	1		SF	VALVEX	Leak on valve CF-1 core flood tank valve repaired.
F: Forced S: Scheduled					3 mination	3-Auto		4 Exhibit G - Instructions for Preparation of Data Entry Sheets for Licensee Event Report (LER) File (NUREG- 0161) 5 Exhibit I - Same Source

INSTRUCTIONS

This report should describe all plant shutdowns during the report period. In addition, it should be the source of explanation of significant dips in average power levels. Each significant reduction in power level (greater than 20% reduction in average daily power level for the preceding 24 hours) should be noted, even though the unit may not have been shut down completely¹. For such reductions in power level, the duration should be listed as zero, the method of reduction should be listed as 4 (Other), and the Cause and Corrective Action to Prevent Recurrence column should explain. The Cause and Corrective Action to Prevent Recurrence column should be used to provide any needed explanation to fully describe the circumstances of the outage or power reduction.

NUMBER. This column should indicate the sequential number assigned to each shutdown or significant reduction in power for that calendar year. When a shutdown or significant power reduction begins in one report period and ends in another, an entry should be made for both report periods to be sure all shutdowns or significant power reductions are reported. Until a unit has achieved its first power generation, no number should be assigned to each entry.

DATE. This column should indicate the date of the start of each shutdown or significant power reduction. Report as year, month, and day. August 14, 1977 would be reported as 770814. When a shutdown or significant power reduction begins in one report period and ends in another, an entry should be made for both report periods to be sure all shutdowns or significant power reductions are reported.

TYPE. Use "F" or "S" to indicate either "Forced" or "Scheduled," respectively, for each shutdown or significant power reduction. Forced shutdowns include those required to be initiated by no later than the weekend following discovery of an off-normal condition. It is recognized that some judgment is required in categorizing shutdowns in this way. In general, a forced shutdown is one that would not have been completed in the absence of the condition for which corrective action was taken.

DURATION. Self-explanatory. When a shutdown extends beyond the end of a report period, count only the time to the end of the report period and pick up the ensuing down time in the following report periods. Report duration of outages rounded to the nearest tenth of an hour to facilitate summation. The sum of the total outage hours plus the hours the generator was on line should equal the gross hours in the reporting period.

REASON. Categorize by letter designation in accordance with the table appearing on the report form. If category H must be used, supply brief comments.

METHOD OF SHUTTING DOWN THE REACTOR OR REDUCING POWER. Categorize by number designation

¹Note that this differs from the Edison Electric Institute (EEI) definitions of "Forced Partial Outage" and "Scheduled Partial Outage." For these terms, EEI uses a change of 30 MW as the break point. For larger power reactors, 30 MW is too small a change to warrant explanation. in accordance with the table appearing on the report form. If category 4 must be used, supply brief comments.

LICENSEE EVENT REPORT #. Reference the applicable reportable occurrence pertaining to the outage or power reduction. Enter the first four parts (event year, sequential report number, occurrence code and report type) of the five part designation as described in Item 17 of Instructions for Preparation of Data Entry Sheets for Licensee Event Report (LER) File (NUREG-0161). This information may not be immediately evident for all such shutdowns, of course, since further investigation may be required to ascertain whether or not a reportable occurrence was involved.) If the outage or power reduction will not result in a reportable occurrence, the positive indication of this lack of correlation should be noted as not applicable (N/A).

SYSTEM CODE. The system in which the outage or power reduction originated should be noted by the two digit code of Exhibit G - Instructions for Preparation of Data Entry Sheets for Licensee Event Report (LER) File (NUREG-0161).

Systems that do not fit any existing code should be designated XX. The code ZZ should be used for those events where a system is not applicable.

COMPONENT CODE. Select the most appropriate component from Exhibit I - Instructions for Preparation of Data Entry Sheets for Licensee Event Report (LER) File (NUREG-0161). using the following critieria:

- A. If a component failed, use the component directly involved.
- B. If not a component failure, use the related component: e.g., wrong valve operated through error; list valve as component.
- C. If a chain of failures occurs, the first component to malfunction should be listed. The sequence of events, including the other components which fail, should be described under the Cause and Corrective Action to Prevent Recurrence column.

Components that do not fit any existing code should be designated XXXXXX. The code ZZZZZZ should be used for events where a component designation is not applicable.

CAUSE & CORRECTIVE ACTION TO PREVENT RECUR-RENCE. Use the column in a narrative fashion to amplify or explain the circumstances of the shutdown or power reduction. The column should include the specific cause for each shutdown or significant power reduction and the immediate and contemplated long term corrective action taken, if appropriate. This column should also be used for a description of the major safety-related corrective maintenance performed during the outage or power reduction including an identification of the critical path activity and a report of any single release of radioactivity or single radiation exposure specifically associated with the outage which accounts for more than 10 percent of the allowable annual values.

For long textual reports continue narrative on separate paper and reference the shutdown or power reduction for this narrative.

DOCKET NO.: 50-287 UNIT: Oconee Unit 3 DATE: 2-15-78

NARRATIVE SUMMARY

MONTH January, 1978

Oconee Unit 3 was reduced from near rated power from the 4th to the 8th to allow turbine generator moisture separator reheater drains to be directed to the main condenser and again on January 14th when reactor coolant pump 3Bl was removed from service due to a low oil level. The unit was shut down from January 21st to January 26th to repair a body to bonnet leak on core flood valve 3CF1 and add oil to reactor coolant pump 3Bl motor bearing reservoir. Following a normal start up, the unit operated at near rated power the remainder of the month. Information concerning personnel exposure and radioactive releases during the month will be submitted with the February, 1978 report.

- 19. UNIT SERVICE FACTOR. Compute by dividing hours the generator was on line (item 14) by the gross hours in the reporting period (item 11). Express as percent to the nearest tenth of a percent. Do not include reserve shutdown hours in the calculation.
- 20. UNIT AVAILABILITY FACTOR. Compute by dividing the unit available hours (item 14 plus item 15) by the gross hours in the reporting period (item 11). Express as percent to the nearest tenth of a percent.
- 21. UNIT CAPACITY FACTOR (USING MDC NET). Compute by dividing net electrical energy generated (item 18) by the product of maximum dependable capacity (item 7) times the gross hours in the reporting period (item 11). Express as percent to the nearest tenth of a percent.
- 22. UNIT CAPACITY FACTOR (USING DER NET). Compute as in item 21, substituting design electrical rating (item 5) for maximum dependable capacity.
- 23. UNIT FORCED OUTAGE RATE. Compute by dividing the total forced outage hours (from the table in Unit Shutdowns and Power Reductions) by the sum of hours generator on line (item 14) plus total forced outage hours (from the table in Unit Shutdowns and Power Reductions). Express as percent to the nearest tenth of a percent.
- 24. SHUTDOWNS SCHEDULED OVER NEXT 6 MONTHS (TYPE, DATE, AND DURATION OF EACH). Include type (refueling, maintenance, other), proposed date of start of shutdown, and proposed length of shutdown. It is recognized that shutdowns may be scheduled between reports and that this item may not be all inclusive. Be as accurate as possible as of the date the report is prepared. This item is to be prepared each month and updated if appropriate until the actual shutdown occurs.
- 25. Self-explanatory.
- 26. Self-explanatory. Note, however, that this information is requested for all units in startup and power ascension test status and is not required for units already in commercial operation.

TEST STATUS is defined as that period following initial criticality during which the unit is tested at successively higher outputs, culminating with operation at full power for a sustained period and completion of warranty runs. Following this phase, the unit is generally considered by the utility to be available for commercial operation.

Date of COMMERCIAL OPERATION is defined as the date that the unit was declared by the utility owner to be available for the regular production of electricity. usually related to the satisfactory completion of qualification tests as specified in the purchase contract and to the accounting policies and practices of the utility.