

Phase 2b Finite Element Round Robin Results Technical Letter Report

Michael Benson

U.S. Nuclear Regulatory Commission Office of Nuclear Regulatory Research

December 2015

Executive Summary

Weld residual stress (WRS) results from high thermal gradients, structural constraint, and thermal expansion mismatches of adjacent dissimilar materials during the welding process. These stresses remain present in the finished component even if no external loads are applied. WRS is known to be a significant driving force for subcritical crack growth mechanisms, such as primary water stress corrosion cracking and fatigue. It is important, therefore, to understand the capabilities and limitations of analytical prediction of WRS in safety-related nuclear components. As such, the U.S. Nuclear Regulatory Commission (NRC) and the Electric Power Research Institute (EPRI) undertook a cooperative research program under the auspices of a Memorandum of Understanding to compare finite element predictions of WRS to experimentally measured values. These studies involved measurements on both small-scale specimens (Phase 1) and full-scale mock-ups and ex-plant components (Phases 2a, 3 and 4). The results of this previous work showed a need to decrease analyst-to-analyst uncertainty in the predicted residual stress profiles. The subject of this document is the Phase 2b study, where the NRC built a new mockup of a pressurizer surge line nozzle and coordinated a double-blind finite element modeling study. The participants of the study did not have access to the measurement data. The objectives of the Phase 2b study were to:

- Determine if appropriate modeling guidance could be developed to reduce the previously-observed analyst-to-analyst uncertainty, and
- Develop acceptance criteria for comparing modeling predictions to measurement results

This document reports both raw and processed WRS data from the Phase 2b study. Data processing steps, which were needed to facilitate direct comparisons among the various data sources, included sorting, interpolating, and normalizing. The raw data is presented in both graphic and tabular format.

The measurement data included four deep hole drilling measurements and one contour measurement. The five measurements all showed similar through-wall trends for a given stress component, though the contour hoop stress data demonstrated less through-wall variation than the hole drilling data. At certain regions through the pipe wall, the contour data and hole drilling data lacked agreement in stress magnitude (see Section 3.1).

The modeling data is presented as axial and hoop stress versus through-wall position. While no quantitative evaluation of the data is offered in this document, qualitatively the Phase 2b modeling data still exhibited significant scatter. Outliers may be present in the Phase 2b round robin data set. Assessing and dispositioning modeling outliers is left for future work.

Finally, the measurement and modeling WRS profiles obtained in this study were used as inputs to flaw growth calculations. Similar analyses often form the basis of industry relief requests. The flaw growth calculations showed that time-to-leakage is sensitive to relatively small differences in predicted WRS. Since stress intensity factor is a function of flaw geometry and loading assumptions, both these factors must be considered in explaining flaw growth results. Future efforts will focus on understanding how subtle differences in WRS prediction affect flaw growth analyses.

This report is only a summary review of the data obtained during the Phase 2b round robin study. For future work, NRC staff will apply quantitative analysis tools to understand measurement and modeling uncertainty. This activity will aid the NRC in establishing acceptance criteria and, ultimately, guidance on WRS finite element analysis.

Table of Contents

Exe	ecutiv	e Summary	i			
Tal	ole of	Contents	ii			
Lis	of Fi	gures	iii			
Lis	t of Ta	ables	iv			
1.	1. Introduction					
2.	Phas	Phase 2b Round Robin Study				
	2.1	Mock-Up Fabrication	2			
	2.2	Round Robin Participants	3			
	2.3	Weld Residual Stress Measurements	4			
	2.4	Modeling Guidance	6			
3.	Results					
	3.1	Measurement Results	8			
	3.2	Modeling Results	12			
	3.3	Flaw Growth Calculations	15			
4.	Sum	mary and Future Work	21			
Re	erend	ces	22			
Ap	pendix	A: Phase 2b Mockup Fabrication Report	23			
Ap	bendix	x B: Round Robin Problem Statement	24			
Ap	pendix	x C: Raw Measurement and Modeling Tabular Data	25			
Ap	pendix	x D: Comprehensive Flaw Growth Calculations	52			

List of Figures

Figure 1: Phase 2b Mock-Up Geometry (Dimensions in in. [mm])	2
Figure 2: Participating Organizations	3
Figure 3: Deep Hole Drilling Measurement Setup	4
Figure 4: First Section Cut	5
Figure 5: Section Cuts 2 and 3	5
Figure 6: Specimen for Contour Measurement	6
Figure 7: Hole Drilling Data: a) 22°, b) 112°, c) 202°, d) 292°	9
Figure 8: Axial Stress Contour Data: a) contours, b) path data	10
Figure 9: Hoop Stress Contour Data: a) contours, b) path data	11
Figure 10: Modified Measurement Data: a) axial, b) hoop	12
Figure 11: Example Mesh	13
Figure 12: Isotropic Hardening Model Results: a) axial, b) hoop	13
Figure 13: Kinematic Hardening Model Results: a) axial, b) hoop	14
Figure 14: Normalized Isotropic Hardening Results: a) axial, b) hoop	14
Figure 15: Normalized Kinematic Hardening Results: a) axial, b) hoop	15
Figure 16: Flaw Geometry	16
Figure 17: Stress Intensity Factor	17
Figure 18: Flaw Growth	17
Figure 19: Stress Intensity Factor (Sensitivity Study)	18
Figure 20: Flaw Growth (Sensitivity Study)	19
Figure 21: SIF against a/t	19
Figure 22: K ₉₀ for Operating Loads Only	20
Figure 23: Flaw Growth for Operating Loads Only	20

List of Tables

Table 1: Mock-up Fabrication Steps	3
Table 2: Model Guidance	7
Table 3: Flaw Growth Inputs	.15

1. Introduction

This report documents the results of the Phase 2b finite element round robin study. The previous research for this program, which motivated the need for Phase 2b, is documented in References [1-2]. In particular, this study is a follow on to the Phase 2a round robin effort, where a similar pressurizer surge line nozzle mock-up was studied. This work showed that, while on average finite element models provided reasonable predictions of the weld residual stress (WRS) measurements, there was significant analyst-to-analyst variability. It also provided an idea of which modeling parameters appreciably affected modeling uncertainty (e.g., hardening law) and which did not (e.g., weld bead shape). Uncertainty in WRS predictions can affect flaw growth calculations that sometimes form the basis for regulatory relief requests regarding inspection and repair/replacement activities at nuclear power plants. There was a need to perform a second double-blind round robin study to:

- Determine if model uncertainty can be reduced by formulating effective modeling guidance
- Inform formulation of appropriate acceptance criteria for weld residual stress predictions

While this document only presents results, the data contained herein will support NRC decisionmaking on a number of technical issues. Ultimately, the NRC will issue guidance on developing WRS inputs for regulatory purposes. To reach that goal, rigorous statistical methods must be applied to the Phase 2b data. These methods will allow for uncertainty quantification of both the measurements and the modeling data. After uncertainty quantification and comparison of measurement and modeling data, the NRC staff can make judgments about acceptance criteria for WRS modeling. The modeling guidance resulting from this work will be published in two forms: the American Society of Mechanical Engineers Boiler and Pressure Vessel Code (ASME Code) and an NRC NUREG. ASME Code guidance is developed in a consensus manner with both NRC and industry representatives.

The remainder of this document is dedicated to introducing results of the Phase 2b round robin study. Chapter 2 describes the round robin in detail, including mock-up fabrication and experimental setup. Chapter 3 presents the WRS results from Phase 2b and flaw growth calculations based upon those results. The raw WRS results are presented in tabular form in Appendix C. Chapter 4 describes future work for this research program.

2. Phase 2b Round Robin Study

The Phase 2b study involved measurements and modeling of a pressurizer surge line mock-up. The measurements were carried out prior to initiating the modeling round robin study, and the measurement data were kept secret until the analysts submitted their model results. This section details mock-up fabrication, WRS measurement, and modeling guidance development.

2.1 Mock-Up Fabrication

The geometry chosen for the Phase 2b round robin study was representative of a pressurizer surge nozzle. The overall geometry of the mock-up is shown in Figure 1.

Figure 1: Phase 2b Mock-Up Geometry (Dimensions in in. [mm])

Detailed fabrication information, including welding parameters and bead map drawings, is found in Appendix A. The fabrication process consisted of the steps shown in Table 1.

Step	Description	Purpose
1	A36 flange welded to SA182 nozzle	Simulates nozzle stiffness in service; not modeled
2	Alloy 82 buttering applied to nozzle	Allows for post-weld heat treat of low alloy steel and prepares dissimilar metal weld
3	Post weld heat treatment	Tempers martensite in low alloy steel and relieves residual stress
4	Buttered nozzle welded to F316L safe end with Alloy 182 filler metal	Simulates shop weld
5	Backchip and reweld	Simulates repair weld at inner diameter
6	Weld crown machine	Weld crowns from steps 4 and 5 removed
7	Safe end welded to TP316 pipe	Simulates field closure weld

Table 1: Mock-up Fabrication Steps

The fabricators of the mock-up collected the following data during the welding process (also found in Appendix A).

- Thermocouple measurements for Steps 4, 5, and 7.
- Laser profilometry for Steps 4, 5, and 7.

2.2 Round Robin Participants

Ten participants submitted finite element model results to the round robin study, and the organizations that contributed to these submissions are shown in Figure 2. These participants represent a cross section of international industry, government, academic, and private contractor organizations. Some of these participants volunteered their services to this effort.

Figure 2: Participating Organizations

2.3 Weld Residual Stress Measurements

The residual stress measurements were performed by VEQTER, Ltd. in Bristol, UK and Hill Engineering, LLC in Rancho Cordova, CA. Two sets of measurements were carried out: hole drilling and contour (see Section 2.2.2 of [1] for more details). The hole drilling measurements consisted of a combination of deep hole drilling (DHD) and incremental deep hole drilling. The experimental setup of the hole drilling measurements, which provide hoop, axial, and shear stresses through the wall thickness, is shown in Figure 3. Four hole drilling measurements were taken at the dissimilar metal weld centerline starting at location B shown in Figure 3. Location B was located 22° from Location A, which is the weld start location. The other three measurements were made 90° apart from one another. Care was taken to avoid weld start/stop locations around the circumference. The hole drilling measurements were performed prior to the destructive contour measurements.

Figure 3: Deep Hole Drilling Measurement Setup

The contour measurements required a series of sectioning cuts. The first cut removed the thick part of the nozzle and a majority of the stainless steel pipe (section cut 1 in Figure 4). The next cut was a radial cut through the length on one side of the mock-up, as shown in Figure 5 as section cut 2. Finally, the specimen depicted in Figure 6 was cut out with section cuts 3. Figure 6 also shows a slitting measurement. The slitting measurement provided data only through half the wall thickness and is not discussed further here. Axial and hoop stresses were determined by two final cuts, as shown in Figure 6. A laser profilometer determined the displacements on the two surfaces resulting from the final contour method cuts. The calculation of residual stress accounted for the release of strain that occurred in each cutting operation.

Figure 5: Section Cuts 2 and 3

Figure 6: Specimen for Contour Measurement

2.4 Modeling Guidance

The written problem statement provided to the round robin participants is shown in Appendix B. This guidance was based upon modeling experience gained in previous work [1-4] and is summarized in Table 2. Participant deviation from the guidance, if applicable, was described by participants upon submission of their results.

Modeling Topic	Guidance Description
Hardening Law	Participants to complete two models: one assuming isotropic hardening, one assuming kinematic hardening. Material properties for each hardening law provided to the participants.
Weld Bead Geometry	Participants should model the specified number of weld passes and layers provided in the problem statement. Precise use of profilometry data was not required. Participants can use trapezoidal beads of approximately equal area.
Thermal Model Tuning	Material properties for heat transfer calculation provided to the particpants. Participants free to choose heat input model. Precise tuning of thermal model to thermocouple data optional, due to weak sensitivity on heat input. Participants should tune thermal model to approximate expected melt zone area. No guidance provided on interpass temperature.
Structural Boundary Conditions	Mock-up was not extensively constrained during fabrication. Participants should fix one single node (located away from welding areas) from displacement along the axial direction of the pipe.
Material Properties	Material properties for both the heat transfer and static stress analysis were provided to the particpants.
Post Processing	Particpants requested to define a path through the centerline of the dissimilar metal weld and extract data at 26 equally-spaced points along the path, including the inner and outer surfaces.
Pass Lumping and Bead Sequence	Participants requested not to lump weld beads. Participants requested to model the bead sequence specified in the problem statement.
Miscellaneous	Fine mesh of linear elements recommended. Mesh size of approximately 1.25 mm square in weld beads recommended. No triangular elements. Mesh density may coarsen away from weld areas.

3. Results

This section reports the basic set of results from the Phase 2b finite element round robin study. The results are first reported exactly as they were received from the measurement vendors and modelers. The data is then reported after sorting and interpolation, which was required for comparison purposes. When reporting modeling data, isotropic and kinematic hardening models are separated for the purposes of this report. Finally, flaw growth calculations are presented for reported residual stress profiles. The measurements and modeling results are not compared in this report, and no comment is made as to the validity of modeling results. All actions remaining for future work in this program are documented in Section 4.

3.1 Measurement Results

Figure 7 shows the raw hole drilling data for each of the four measurement locations around the circumference of the mock-up. The raw hole drilling data through the weld centerline are reported as a function of distance from the outer diameter (OD) surface, due to the nature of the hole drilling experiment (see Figure 3). The shear stress is approximately zero, indicating that the axial and hoop stresses are principal stresses. The axial and hoop stresses show a similar trend of tension at the OD and compression at the mid-thickness location. The axial stresses are more compressive at the inner diameter (ID) than the hoop stresses.

Figure 7: Hole Drilling Data: a) 22°, b) 112°, c) 202°, d) 292°

The raw contour data is shown in Figure 8 and Figure 9. The path data from the contour measurements were reported as a function of distance from the ID, in contrast to the hole drilling measurements. The axial stress contour data was determined on a plane through the centerline of the weld, and the stress variation around the circumference of the weld could be observed (Figure 8b). The hoop stress data was obtained along a plane through the pipe axis, and the axial variation of the through-wall stress profile was observed (Figure 9b). The raw measurement data is reported in tabular form in Appendix C.

Figure 8: Axial Stress Contour Data: a) contours, b) path data

Figure 9: Hoop Stress Contour Data: a) contours, b) path data

Comparison of these data sets with each other (and, in future, with the modeling results) requires sorting, linear interpolation, and normalization of the through-wall position with respect to the thickness of the pipe. Each measurement shows stress data to slightly different through-wall positions x (e.g., 36.8 mm from the OD for one hole drilling measurement and 37.0 mm from the ID for the contour measurement). The nominal thickness of the weld, according to fabrication drawings, was 37.8 mm. For the purpose of comparison, the through-wall position was normalized with respect to the final position reported in each individual measurement (x/t). In addition, comparison of the two data sets requires contour data along the weld centerline. As such, the axial stress data in Figure 8b were averaged, and only the mid weld hoop stress data in Figure 9b were considered for this purpose. The measurement data after sorting ID to OD, interpolating, and normalizing are shown in Figure 10.

Figure 10: Modified Measurement Data: a) axial, b) hoop

While all the measurement data showed similar through-wall trends, the contour data exhibited some different features than the hole drilling data. For axial stresses, the average contour data showed higher-magnitude compressive stresses for $0 \le x/t \le 0.35$ and lower-magnitude tensile stresses for $0.7 \le x/t \le 0.9$. For hoop stresses, the contour method showed less through-wall variation than the hole drilling measurements and higher compression near the ID.

3.2 Modeling Results

An example mesh from one of the finite element round robin participants is shown in Figure 11. The participants extracted the data at a path going through the weld centerline. The figure also illustrates major geometry features that were modeled by the participants.

Figure 11: Example Mesh

Figure 12 and Figure 13 show the isotropic and kinematic hardening results, respectively. In general, the predictions based upon the nonlinear kinematic hardening rule show less variation through the wall thickness than the isotropic predictions. The raw modeling data is reported in tabular form in Appendix C.

Figure 13: Kinematic Hardening Model Results: a) axial, b) hoop

Figure 14 and Figure 15 show the data after normalization and interpolation. Like the measurements, the individual thicknesses reported by the analysts were used for normalization. The processed data as shown in Figure 14 and Figure 15 is a convenient form for future data analysis. Through interpolation of the measurement and modeling data points, one-to-one comparisons can be made between the two data sets.

Figure 14: Normalized Isotropic Hardening Results: a) axial, b) hoop

Figure 15: Normalized Kinematic Hardening Results: a) axial, b) hoop

3.3 Flaw Growth Calculations

This section, along with Appendix D, reports results of flaw growth calculations that are based upon reported residual stress profiles in Sections 3.1 and 3.2. The assumed subcritical cracking mechanism for these calculations was stress corrosion cracking. Similar calculations often form the basis for industry requests for temporary regulatory relief from examination and repair/replacement requirements. In the future, these results may be used to inform acceptance criteria for WRS determined by finite element modeling. In addition to the reported WRS, the inputs to the flaw growth calculations are shown in Table 3.

OD [mm]	<i>t</i> [mm]	Weld Width [mm]	<i>a</i> ₀ [mm]	$2c_{0}$ [mm]	<i>T</i> [°C]	p [MPa]	σ_m [MPa]	σ_b [MPa]
381	36.07	26.48	3.607	7.214	315.6	15.5	60	100
OD – outer diameter $2c_0$ – initial flaw length		<i>t</i> – pipe wall thickness <i>T</i> – operating temperature		a_0 – initial flaw depth p – operating pressure				

 σ_m – operating membrane loads

 σ_b – operating bending loads

The pipe geometry inputs were chosen to be consistent with the mock-up geometry shown in Figure 1. The weld width input is only relevant for axial crack growth. The loading inputs were based upon typical loads expected in a pressurizer surge line nozzle. Results are also presented for σ_m = 35 MPa, as a sensitivity study. The membrane and bending loads constitute mode I loading for circumferential flaws only. The internal pressure load leads to mode I loading for both axial and circumferential flaws.

The stress intensity factor (SIF) solutions for this work drew upon weight function and influence function methods [5-8]. The total SIF was considered to be the sum of the bending load contribution and contributions from all other load sources. The SIF was calculated for both the deepest point of the flaw (K_{90}) and the surface point (K_0), as demonstrated in Figure 16 for a circumferential semi-elliptical surface flaw in a cylinder. The depth and length of the flaw were grown independently. After calculating SIF, the flaw growth rate due to stress corrosion

cracking was determined according to [10]. The SIF contribution from bending was accounted for by influence coefficients developed for global bending loads [5].

Figure 16: Flaw Geometry

Use of the Universal Weight Function Method (UWFM) to calculate SIF [7] negates the need to fit a polynomial to the assumed through-wall stress profile. Therefore, the stress input for the loads other than global bending was a vector of discrete stress magnitudes, σ_i , corresponding to through-wall radial positions, r_i [6-8]. Past work has shown that obtaining reasonable fits to WRS profiles can be challenging and that use of UWFM can increase accuracy in certain cases [8]. Finally, the methods employed here applied simple mathematical rules to account for axial cracks constrained from growing in the length dimension by the weld width [9], since the base material is not susceptible to primary water stress corrosion cracking (see Section D.2.1 for additional discussion).

This section will focus on depth growth of a circumferential flaw based upon the axial WRS measurements. Appendix D contains comprehensive flaw growth results, including length growth curves and other residual stress cases. The residual stress input for this calculation is shown in Figure 10a. Figure 17 shows K_{90} as a function of time for this case. The resulting flaw growth is shown in Figure 18.

Figure 18 shows that variations in residual stress input significantly affect flaw growth calculations. The similar trends in the measurement data lead to similarities in crack growth behavior at early times. Even so, differences in assumed residual stress magnitude can mean the difference between crack arrest and through-wall growth.

The initial K_{90} value depends upon the residual stress magnitude at the assumed initial flaw depth (x/t=0.1, in this case). Figure 10a shows that the DHD 112° measurement is slightly higher than all the others at x/t=0.1. The interpolated values of axial WRS of the respective curves in Figure 10 are -85, -79 (for the DHD 112° case), -89, -88, and -147 MPa. As a result of these differences, the DHD 112° case demonstrated the fastest through-wall growth at approximately 500 months.

The DHD 22°, DHD 202°, and Average Contour curves all demonstrated crack arrest, while the remaining DHD curves showed relatively slow through-wall growth in 40-50 years. In particular, the K_{90} value for DHD 22° and DHD 202° dropped below 2 MPa-m^{0.5} at 300 months and did not rise above this value for 720 months. The DHD 112° and DHD 292° cases, however, did not drop below 2 MPa-m^{0.5} at 300 months (where the crack was under the influence of the large compressive residual stresses around mid-thickness). This behavior allowed for greater crack growth for 200 months < τ < 400 months (where τ is time). Therefore, the crack reached the tensile zone beginning at x/t = 0.65 earlier in time for these two cases and grew through wall rapidly.

The cause for the difference in K_{90} behavior at 300 months, however, may not be readily apparent from inspection of the WRS input (Figure 10a) alone. SIF also depends upon flaw aspect ratio, which may be affected by differences in residual stress near the ID, especially when growing the depth and length of the flaw independently. These issues will be further explored in future work.

As a sensitivity study, the flaw growth calculations were repeated with σ_m = 35 MPa, as shown in Figure 19 and Figure 20. The lower operating loads caused the SIF magnitudes to noticeably decrease throughout the time period analyzed. With the decreased loads, the analyses showed crack arrest for each residual stress case.

The results in Figure 17 can also be presented as a function of a/t, rather than as a function of time. This plot is shown in Figure 21. The plots in Figure 21 exhibit similar trends as in Figure 17. A kink in the curves shows up around mid-wall thickness. This kink is a result of the slow growth of the flaw in the compressive region of the WRS curve near x/t=0.5.

For comparison purposes, the flaw growth calculation was repeated with operating loads only. Figure 22 and Figure 23 show K_{90} and a/t, respectively, with the residual stress magnitude set to zero through the wall thickness. In this case, with no compressive residual stresses to counteract the operating loads, K_{90} increased continuously as a result of the increasing flaw size. As a result, the flaw grew through wall in approximately 100 months with a continuously increasing growth rate.

In the future, flaw growth calculations based upon the round robin WRS data may inform judgments about acceptance criteria for residual stress predictions. When making those judgments, it is important to consider how these calculations are typically applied in the nuclear industry. For instance, analyzing dispersion in flaw growth may be more appropriate for shorter time frames than the 720 months shown in Figure 18. Future work may also involve developing a more detailed understanding of how small differences in WRS affect flaw growth curves.

4. Summary and Future Work

This document reported the WRS measurement and modeling results of the Phase 2b round robin study. This work is part of a larger NRC/EPRI research program, conducted under a Memorandum of Understanding, assessing current capabilities to numerically predict WRS in safety-related nuclear components. The measurement data included four hole drilling measurements and two contour measurements.

The modeling data was provided by 10 international participants, according to a set of modeling guidelines that was distributed to each analyst. The round robin study was double-blind, such that the modeling data and measurement data were independently developed. The raw measurement and modeling data were sorted, interpolated, and normalized to facilitate future comparisons and analyses.

Section 3.3 and Appendix D of this report presented flaw growth calculations based upon the measured and predicted WRS profiles. These calculations showed that times-to-leakage are significantly affected by subtle differences in the assumed residual stress profile. Flaw shape effects may be causing the observed sensitivity. Future work will explore this topic in more detail.

As of publication of this document, the NRC is developing quantitative tools to assess measurement and modeling uncertainty. This will allow more informed comparisons of measurement and modeling data than what has been reported in the past work [1-2]. NRC staff will then decide upon appropriate WRS guidance and associated acceptance criteria. Furthermore, WRS input guidance will be developed in parallel in the ASME Code process, where NRC staff will be involved alongside industry representatives. NRC will publish a NUREG documenting the final conclusions.

References

- U.S. Nuclear Regulatory Commission, NUREG-2162, "Weld Residual Stress Finite Element Analysis Validation: Part 1 – Data Development Effort," March 2014 (ML14087A118).
- Èlectric Power Research Institute, MRP-316, "Materials Reliability Program: Finite Element Model Validation for Dissimilar Metal Butt Welds," December 2011 (1022861).
- M. L. Benson, F. W. Brust, R. E. Kurth, and J. E. Broussard, "Weld Residual Stress Inputs for a Probabilistic Fracture Mechanics Code," PVP2014-28030, Proceedings of the 2014 ASME Pressure Vessels and Piping Conference, July 20-24, Anaheim, CA, USA.
- 4. Electric Power Research Institute, MRP-317, "Materials Reliability Program: Welding Residual Stress Dissimilar Metal Butt Weld Finite Element Modeling Handbook," December 2011 (1022862).
- 5. API 579-1/ASME FFS-1, <u>Fitness-for-Service</u>, API Publishing Services, Washington, DC, 2007.
- 6. R. C. Cipolla and D. R. Lee, "Technical Basis for Equations for Stress Intensity Factor Coefficients in ASME Section XI Appendix A," PVP2004-2708, Proceedings of the 2004 ASME Pressure Vessels and Piping Conference, July 25-29, San Diego, CA, USA.
- S. X. Xu, D. A. Scarth, and R. C. Cipolla, "Technical Basis for Proposed Weight Function Method for Calculation of Stress Intensity Factor for Surface Flaws in ASME Section XI Appendix A," PVP2011-57911, Proceedings of the 2011 ASME Pressure Vessels and Piping Conference, July 17-21, Baltimore, MD, USA.
- 8. D.-J. Shim, M. Kerr, and S. Xu, "Effect of Weld Residual Stress Fitting on Stress Intensity Factor for Circumferential Surface Cracks in Pipe," PVP2012-78180, Proceedings of the ASME 2012 Pressure Vessels & Piping Conference, July 15-19, Toronto, Ontario, CANADA.
- D. Rudland, D. J. Shim, and S. Xu, "Simulating Natural Axial Crack Growth in Dissimilar Metal Welds due to Primary Water Stress Corrosion Cracking," PVP2013-97188, Proceedings of the ASME 2013 Pressure Vessels and Piping Conference, July 14-18, Paris, France.
- 10. Electric Power Research Institute, MRP-115, "Materials Reliability Program: Crack Growth Rates for Evaluating Primary Water Stress Corrosion Cracking of Alloy 82, 182, and 132 Welds (MRP-115)," November 2004 (1006696).

Appendix A: Phase 2b Mockup Fabrication Report

This Appendix contains an excerpt of the fabrication report for the Phase 2b mockup. The relevant material begins with Section 2.3: WOM Mock-Up. The full report may be found in the NRC ADAMS system under accession number ML16042A325.

The safe end to stainless steel pipe weld was radiographically inspected for quality. The radiographic inspection showed some signs of scattered, small diameter porosity which were not considered rejectable indications. The digital radiographs are not included in this report but will be submitted to PNNL as a separate file upon completion of this program.

After completion of this weld the IWRS mock up was returned for additional stress analysis.

2.3 WOM Mock-Up

The WOM mock-up also consisted of several welds. Each weld is discussed in detail below. During fabrication of the initial WOM mock-up, RT results indicated porosity in the weld greater than would be representative of an ASME Section III component, and it was decided that the safe end to nozzle weld including the nozzle buttering weld needed to be repeated. This report details the fabrication of the mockup per the revised drawings located in Appendix B. The mock-up was sectioned per drawing CG482478-400 by water jet cutting to remove both the buttering passes as well as the actual safe end weld. This mock-up was then re-machined per drawing CG482478-401. Fabrication of the mockup continued at the nozzle buttering stage. These welds will be discussed starting in Section 2.3.2 of this document.

2.3.1 Stiffening Weldment

The stiffening weldment consisted of an external fillet weld and an internal groove weld. The external fillet weld was deposited between the A36 steel flange and the SA182 (chrome moly) forged nozzle. The internal groove weld required three different welding procedures due to the presence of an internal stainless steel liner on the carbon steel nozzle. The welding procedures were a combination of pre-qualified welding procedures from AWS D1.1⁽³⁾ and are provided in Appendix C.

The welds were deposited with the GMAW process using spray transfer. The fillet weld portion of the stiffening weldment was deposited manually with the flange/nozzle assembly in a fixed position. The internal groove welds was deposited by setting the torch in a fixed position and rotating the flange/nozzle assembly in the 1G welding position underneath the welding arc, using a positioner (Figure 22). The flange/nozzle assembly was preheated to 400°F (205°C) prior to welding with the temperature being maintained until the weld was completed.

³ Structural Welding Code – Steel, AWS D1.1/D1.1M:2008, American Welding Society, Miami, FL, 2008.

Figure 22. Welding of the Stiffener Plate on the WOM

2.3.2 Nozzle Buttering

The nozzle butter was deposited on the end of the nozzle opposite the flange. The butter was deposited using the GTAW with 0.045-in. (1.2-mm)-diameter Inconel 82 welding wire. The welding torch was set in a fixed position and the flange/nozzle assembly was rotated underneath the welding arc using a positioner (Figure 23). The positioner was tilted so the weld would be deposited in the flat position. The welding procedure that was used to deposit the butter layers was previously developed and is provided in Appendix D. The circumference of the mock-up was divided into eight segments of 45 degrees each labeled A through G. This was done to document the start/stop areas as well as any defects or repairs which might be required. All starts (except one) were done at the 90 degree locations (A, C, E, and G).

Figure 23. Set-Up for Nozzle Buttering Welds on WOM

The first layer of the butter was preheated to 400°F (205°C), the second layer of the butter was preheated to 200°F (93°C). The remaining layers were deposited with no required minimum preheat.

The first welding pass was placed at the ID sleeve interface such that it would tie the stainless steel sleeve to the carbon steel nozzle. During the welding of this pass several indications of porosity/contamination were noticeable in the weld (Figure 24). It was noted that the most likely cause of the porosity/contamination was due to the years of corrosion and contamination build up at the interface between the stainless steel sleeve and the nozzle ID. There was a concern that the porosity from the first pass would permeate through subsequent butter layer passes if it was not repaired or eliminated. A plan was formulated to grind out the porosity/contaminates (Figure 25) such that no surface porosity was visually apparent and manually repair weld the area using GTAW. The repair was completed and the welding on the WOM mockup continued. Each weld layer was completed using a continuous step over index which would provide one complete layer with only one start and one stop. This weld (layer) would amount to between 3 and 5 complete revolutions of the part. Subsequent layers were started from the WOM mockup's OD and welded until the last rotation of the torch deposited a weld which overlapped the ID bead by no more than one-quarter of a bead width. This process continued until the minimum thickness of the butter layer had been reached (per drawing CG482478-402) and with minimum overlap of the ID bead.

Figure 24. Photo Showing Porosity Indications in WOM Butter Weld

Figure 25. Photo of Rejected Area on WOM Buttering after Grinding

A total of 17 layers were deposited in 29 passes and shown in Figure 26. The welding parameters are listed in Table 8. The completed nozzle butter weld exceeded the final dimension requirements outlined in Battelle Drawing CG482478-204.

Figure 26. Photo Showing Completed Butter Weld on the WOM Nozzle

Parameter	Edge Beads	Standard Beads	ID Weld Beads	ID Groove Welds
Current	220	240	240	240
Voltage	11.5	11.5	11.5	11.5
Wire Feed Speed	60	80	80	80
Travel Speed	5.5 to 6.5 ipm			

Table 8. Welding Parameters for WOM Butter Welds

After completion of the butter layer, the ID bead at the sleeve/nozzle interface and the ID surface of the butter layer were ground clean **Error! Reference source not found.** A small groove was ground at the location of the sleeve/nozzle interface to help eliminate some of the previously deposited porosity. After the ID grinding had been completed, the surface was dye penetrant inspected to assure no defects remained on the ID surface. If indications were present then these areas were ground again and an additional dye penetrant was performed (Figure 28). After the surface was free from indications it was wiped clean with solvent and prepared for welding. An ID welder (Figure 29) deposited weld metal on the ID of the butter to allow for proper machining of the safe-end weld joint. Welds started to the inboard side and

stepped outward (towards open end of the nozzle) taking care not to weld at the sleeve/nozzle interface. A total of four full or partial layers were completed on the nozzle ID to assure adequate material was present for proper maching. Two short autogenous passes were done to repair two areas of over/under fill, which completed the nozzle buttering operation. Figure 30 shows the completed weld ID.

Figure 27. Photo Showing ID Grinding and Groove on the WOM Buttering

Figure 28. Photo of Dye Penetrant Test on the WOM Buttering

Figure 29. Photo of the ID Welding Torch on the WOM Buttering

Figure 30. Completed WOM ID Butter Weld

An RT of the butter weld was performed. Some small diameter porosity indications were detected; however, the indications were not considered rejectable. The digital radiographs are not included in this report but will be submitted to PNNL as a separate file upon completion of this program.

Temperature profiles were recorded during welding by attaching thermocouples to the ID and OD of the nozzle. There were three thermocouples at each location for a total of six thermocouples (Figure 31 and Figure 32). The thermocouples were located 0.25-in. (6.4-mm) from the edge of the machined bevel with 0.25-in. (6.4-mm) spacing between the thermocouples. The thermocouples were located at 2 inches past the "C" location mark (Figure 33). The thermocouple identification and locations are as follows:

- TC 1 Located on the OD 0.25-in. (6.4-mm) from the nozzle edge
- TC 2 Located on the OD 0.25-in. (6.4-mm) from TC1
- TC 3 Located on the OD 0.25-in. (6.4-mm) from TC2
- TC 4 Located on the ID 0.25-in. (6.4-mm) from the nozzle edge
- TC 5 Located on the ID 0.25-in. (6.4-mm) from TC4
- TC 6 Located on the ID 0.25-in. (6.4-mm) from TC5.

Figure 31. Thermocouple Locations on the OD of WOM Safe End Weld

Figure 32. Thermocouple Locations on the ID of the WOM Safe End for Weld Buttering

Figure 33. Location of Thermocouples relative to Mockup Lettering Grid

The temperature data is not included in this report but will be submitted to PNNL as a separate file entitled "WOM Mock-Up Buttering TC Data." The recording of the temperature data was stopped after butter pass 26 as a result of welding not significantly increasing the temperature at the thermocouple locations. However, temperature data was again collected for the ID weld passes needed to complete the buttering process since those welds did result in a significant increase in the material temperature.

The nozzle butter weld was videotaped for record. Digital copies of all weld videos will be submitted to PNNL upon completion of this program.

Upon completion of the weld and radiographic inspection, the assembly was delivered to Battelle for post-weld heat treatment. The PWHT was to stress relieve the stiffening weldment as well as the nozzle butter weld prior to the subsequent machining operation and safe end weld.

2.3.3 Safe End Weld

The safe end weld joint was a full penetration V-groove described in Battelle Drawing CG482478-403. The final machined depth of the joint was 1.22-in. (31.2-mm). The safe end weld was deposited with the SMAW process using 1/8-in. and 5/32-in. diameter Inco 182 filler metal. These welds were welded at an approximate linear travel speed of 4 - 6 ipm. The safe end SMAW procedure is located in Appendix H. The safe end weld was made in the 1G

position. A total of 24 passes were required to fill the OD portion of the safe end weld. Typical welding parameters are shown in Table 9. The bead locations are provided in Figure 34.

Table 9. Welding Parameters for Safe End Welds using Inco 182

Diameter	Current	Voltage		
1/8"	105 Amps	25 Volts		
5/32"	130 Amps	25 Volts		

Figure 34. Bead Locations for OD Safe End Welds

Temperature profiles were recorded during welding by attaching thermocouples to the ID and OD of the nozzle. The numbering system for the thermocouples was as follows:

- TC 1 Located on OD, 0.25-in. (6.4-mm) from the nozzle edge
- TC 2 Located on OD, 0.25-in. (6.4-mm) from TC1
- TC 3 Located on OD, 0.25-in. (6.4-mm) from TC2
- TC 4 Located on OD, 0.25-in. (6.4-mm) from the nozzle edge and 45 deg. from TC1
- TC 5 Located on OD, 0.25-in. (6.4-mm) from the nozzle edge and 45 deg. from TC4
- TC 6 Located on ID, 0.25-in. (6.4-mm) from the nozzle edge
- TC 7 Located on ID, 0.25-in. (6.4-mm) from TC 6
- TC 8 Located on ID, 0.25-in. (6.4-mm) from TC7
- TC 9 Located on ID, 0.25-in. (6.4-mm) from the nozzle edge and 45 deg. from TC6
- TC 10 Located on ID, 0.25-in. (6.4-mm) from the nozzle edge and 45 deg. from TC9

All the temperature data is not included in this report but will be submitted to PNNL as a separate excel file entitled "WOM-2 Mock-Up Safe End TC Data."

Measurements were taken during welding to record the associated welding distortion, as described in the IWRS mock-up section, and are shown in Table 10. Distortion measurements were made after the safe end and nozzle were tacked together, after the root pass was deposited, after the hot pass was deposited, and after pass 3, (the first SMAW weld) and at 25, 50, 75, and 100% joint fill. The temperature of the assembly during the distortion measurements was kept below 150°F (66°C) to assure that most of the thermal shrinkage had occurred.

Туре	Location	Pass				Distance from Mockup OD			
						0.9705	0.6455	0.3205	0.0000
			1	2	3				
		0	Root	HP	SMAW	25%	50%	75%	100%
Depth	А	1.2955	1.2920	1.2655	1.1985	0.9405	0.6195	0.2940	n/a
Depth	E +1"	1.3050	1.3010	1.2630	1.2390	0.9895	0.6615	0.3030	n/a
Depth	Ι	1.3090	1.2995	1.2585	1.1605	0.9295	0.6150	0.2245	n/a
Depth	М	1.3090	1.2890	1.2650	1.1805	0.9445	0.5640	0.2530	n/a
Width	А	2.9435	2.9230	2.9130	2.9350	2.8080	2.7665	2.7380	2.7370
	С	2.9310	2.9020	2.8970	2.8885	2.8070	2.7720	2.7270	2.7290
	Е	2.9410	2.9150	2.9110	2.8880	2.8170	2.7510	2.7280	2.7240
	G	2.9450	2.8845	2.8720	2.8870	2.8130	2.7560	2.7430	2.7350
	Ι	2.9755	2.9440	2.9335	2.9255	2.8435	2.7830	2.7585	2.7555
	K	2.9975	2.9705	2.9685	2.9485	2.8655	2.8110	2.7850	2.7835
	М	2.9810	2.9610	2.9165	2.9320	2.8555	2.8035	2.7820	2.7755
	0	2.9875	2.9710	2.9610	2.9440	2.8660	2.8095	2.7855	2.7760

 Table 10.
 Distortion Measurements for the WOM Safe End Weld

Laser profilometry was conducted on the safe end weld to map the bead location. An illustration of the laser scanning data is shown in Figure 35. All the laser profilometry data is not included in this report but will be submitted to PNNL as a separate file entitled "WOM-2 Mock-Up Safe End Laser Scans."

Figure 35. Laser Scan Data from WOM Safe End Weld

The safe end weld was videotaped for record. Digital copies of all weld videos will be submitted to PNNL upon completion of this program.

2.3.4 Back Weld

The back weld joint has a V-preparation which was machined into the previously deposited safe end weld and is described in Battelle Drawing CG482478-406. The back weld was deposited with the SMAW process using 1/8-in. and 5/32-in. diameter Inco 182 filler metal. The back weld groove was rotated using a positioner such that it would be a 1G weld. There was a total of 15 passes needed to complete the back weld. The bead locations are provided in Figure 36. The welding procedure that was used to deposit the safe end weld was also used to deposit the back weld (Appendix H).

Figure 36. Weld Bead Map of the WOM Safe End Back Weld

Temperature profiles were recorded during the back weld by attaching thermocouples to the ID and OD of the safe end side of the mock up. There were a total of ten thermocouples used to monitor the temperature of the back weld. The thermocouple ID and locations are as follows:

- TC 1 Located on OD, 0.25-in. (6.4-mm) from the nozzle edge
- TC 2 Located on OD, 0.25-in. (6.4-mm) from TC1
- TC 3 Located on OD, 0.25-in. (6.4-mm) from TC2
- TC 4 Located on OD, 0.25-in. (6.4-mm) from the nozzle edge and 45 deg. from TC1
- TC 5 Located on OD, 0.25-in. (6.4-mm) from the nozzle edge and 45 deg. from TC4
- TC 6 Located on ID, 0.25-in. (6.4-mm) from the nozzle edge
- TC 7 Located on ID, 0.25-in. (6.4-mm) from TC 6
- TC 8 Located on ID, 0.25-in. (6.4-mm) from TC7
- TC 9 Located on ID, 0.25-in. (6.4-mm) from the nozzle edge and 45 deg. from TC6
- TC 10 Located on ID, 0.25-in. (6.4-mm) from the nozzle edge and 45 deg. from TC9

The temperature profile of back weld pass 1 is shown in Figure 37. All the temperature data is not included in this report but will be submitted to PNNL as a separate excel file entitled "WOM-2 Mock-Up Back Weld TC Data."

Temperature Safe End ID Weld

Figure 37. Temperature Profile of the WOM Safe End Back Weld

Measurements were taken before welding began and again after all welding was completed to record the associated welding distortion. The same punch marks that were used to measure distortion during the safe end weld were used to measure distortion caused by the back weld. Note that these measurements were taken on the OD of the mock up. These distortion measurements should be substantially less then on the OD weld in part due to the distance involved from the point of welding to the point of measurement. The temperature of the assembly during the distortion measurements was kept below 150°F (66°C) to assure most of the thermal shrinkage had occurred. The distortion measurements are shown in Table 11.

 Table 11.
 Distortion Measurements for the WOM Safe End Back Weld

Location	Before	After		
	Welding	Welding		
Α	2.7320	2.7435		
С	2.7250	2.7390		
E	2.7180	2.7275		
G	2.7350	2.7315		
I	2.7585	2.7620		
K	2.7930	2.7905		
М	2.7745	2.7730		
0	2.7750	2.7865		

Laser profilometry was conducted on the back weld to map the bead location using the same equipment that was used during the measuring of the safe end weld. A typical laser scans for pass 2 is shown in Figure 38. It is important to note that when scanning the joint the laser could not intersect the surface perpendicularly due to the mock-up constraints. For this reason Figure 38 appears skewed. All the laser profilometry data is not included in this report but will be submitted to PNNL as a separate file entitled "WOM-2 Mock-Up Safe End Back Weld Laser Scans."

Figure 38. Laser scan of WOM Safe End Back Weld

The safe end back weld was videotaped for record. Digital copies of all weld videos will be submitted to PNNL upon completion of this program.

Both the safe end weld and the back weld were radiographically inspected for quality. The radiographic inspection showed some signs of scattered, small diameter porosity which were not considered rejectable indications. The digital radiographs are not included in this report but will be submitted to PNNL as a separate file upon completion of this program.

2.3.5 Safe End to Stainless Pipe Weld

After machining the safe end back weld the mock-up was returned to EWI for completion of the final weld. This weld was the safe end to stainless steel pipe weld. This weld was performed per Battelle Drawing CG482478-414 which is attached in Appendix B. For this weld the safe end was welded to the stainless steel pipe section by first doing a manual GTAW root weld followed by a manual GTAW hot pass weld. These two passes were done in the 2G position. The balance of the welding was done using the SMAW process in the 1G position. The safe

end to stainless steel pipe welding procedure is located in Appendix G. . The parameters for welding the IWRS mockup were repeated for the WOM and are listed in Table 6.

Distortion measurements, laser scans and temperature data were taken before and during the welding of the safe end to stainless pipe weld Figure 39 shows locations of some of the thermocouples. Figure 40 shows a typical temperature profile from one of the welds. Figure 41 through Figure 43 shows the GTAW root pass, a typical SMAW pass and the completed weld respectively. Figure 44 shows the weld pass map. Measurements for distortion are shown in Table 12.

Figure 39. Location of Thermocouples on the WOM Safe End to Stainless Pipe Weld

Figure 40. Typical Temperature Profile for the WOM Safe End to Stainless Pipe Weld

Figure 41. Photograph of the GTAW Root Pass of the WOM Safe End to Stainless Pipe Weld

Figure 42. Photograph of a Typical SMAW Weld on the WOM Safe End to Stainless Pipe Weld

Figure 43. Photograph of the Completed WOM Safe End to Stainless Pipe Weld

Figure 44. Weld Pass Map for WOM Safe End to Stainless Pipe Weld

Table									
		Pass				Distance from Mock Up OD			
						1.069	.713	.357	0
Туре	Loc.	0	1 Root	2 HP	3 SMAW	25%	50%	75%	100%
Depth	А	1.6125	1.5995	1.5730	1.4360	.9965	.6575	.384	
Depth	Е	1.5775	1.5730	1.5480	1.4405	1.0265	.7055	.3935	
Depth	Ι	1.5790	1.5745	1.5540	1.4120	1.0225	.7205	.4430	
Depth	М	1.5880	1.5875	1.5785	1.4350	1.0465	.7120	.4135	
Width	А	3.3330	3.3230	3.3080	3.2730	3.1945	3.1595	3.1525	3.1505
	С	3.3530	3.3380	3.3275	3.2770	3.2085	3.1815	3.1740	3.1525
	Е	3.3220	3.3075	3.2960	3.2615	3.1740	3.1460	3.1375	3.1325
	G	3.4090	3.3960	3.3830	3.3470	3.2490	3.2220	3.2155	3.2200
	Ι	3.3660	3.3595	3.3370	3.3055	3.2220	3.1930	3.1830	3.1755
	Κ	3.3830	3.3680	3.3590	3.3215	3.2340	3.2050	3.1985	3.1890
	М	3.3630	3.3500	3.3365	3.3020	3.2180	3.1815	3.1730	3.1720
	0	3.3440	3.3310	3.3165	3.2805	3.1945	3.1715	3.1610	3.1530

 Table 12.
 Measurements for WOM Safe End to Stainless Steel Pipe Weld

Appendix A

International Weld Residual Stress Mock-Up

Battelle Drawings CG482478-199 thru CR482478-213

Appendix B

Weld Overlay Residual Stress Mock-Up

Battelle Drawings CG482478-400 thru CR482478-414

Appendix C

Stiffening Weldment Welding Procedures

ompany Name Edison Welding I		on IX, ASME E	Boiler and Press	sure Vessel Code)	- /
	nstitute		By Da	vid Link	
/elding Procedure 511 pecification No.	08-WPS1	Dat e	06/15/2009	Supporting PQR No.(s)	N/A
ev. No. 0	Date	06/15/2009		,	
/elding Process(es) Gas Metal Are	c Welding (GN	IAW)	Type(s)	Semi-automatic (Automatic, Manual, Mac	chine, or Semi-Auto)
Joints (QW-402)				Details	
Joint Design Vee Groove, par	tial Penetratio	n			
Backing (No (Yes)) X				
Backing Material (Type)					
(F	Refer to both backir	ng and retainers)			
Metal Nonfusing Nonmetallic Other	Metal				
*BASE METALS (QW-403)					
P-No. <u>1</u> Group No		to P-No. 3		Group No.	
OR					
Specification Type and Grade					
to Specification Type and Grade					
OR					
Chem. Analysis and Mech. Prop.					
to Chem. Analysis and Mech. Prop.					
Thickness Range:					
Base Metal: Groove .500	" nominal		Fillet		
Other					
^FILLER METALS (QW-404)					
Spec. No. (SFA)	ER805-D2				
AWS No. (Class)	A 5.28				
F-NO.	11				
Size of Filler Metals	045"				
Weld Metal Thickness Rongo	.040				
Groovo	500" nomi	nal			
Fillet		nal			
Flectrode-Flux (Class)	N/A				
Flux Trade Name					
I IUA I I AUG INAILIG					
Consumable Insort	Ν/Δ				
Consumable Insert	N/A				

				QV	V-482 (Back)				
				,	WPS No.	51108-W	VPS1	Rev. 0	
POSITION	IS (QW-405))			POSTWELD	HEAT TR	EATMENT	(QW-407)	
Position(s)	of Groove	1G			Temperature	Range	N/A	()	
Welding						_			
Progressio	on: Up <u>N</u>	/A Down	N/A		Time Range	N/A			
Position(s)	of Fillet	N/A		-					
					GAS (QW-40	8)	_		
PREHEAT	(QW-406)	100 5				0	Р	ercent Comp	osition
Preneat 16	emp. M	In. <u>400 F</u>			Chieldin	Gase	S	(IVIIXture)	Flow Rate
Interpass 7	Temp. M	ax. 500 F			Shielain a	Ar/Co2	2 9	0%/10%	30-40 CFH
Preheat M	aintenance	N/A			5 Trailing	N/A			
(Continuous o	or special heating	g where applicable s	hould be		Dealling	N1/A			
recorded)					Backing	N/A			
ELECTRIC	CAL CHARA	CTERISTICS (QW-409)						
Current AC	C or DC	<u>рс Р</u>	olarity	EP					
Amps (Rar	nge) <u>2</u>	<u>50-325</u> V	olts (Rang	e) <u>29-</u>	31				
(Amps and	d volts range	should be reco	orded for e	ach electr	ode size, pos	ition, and	thickness,	etc. This info	ormation may be
listed in a t	tabular form	similar to that s	shown belo	ow.)					
Tungsten I	Electrode Siz	ze and Type	N/A		/6	uro tupaston	2% thoristor	t oto)	
Mode of M	letal Transfe	r for GMAW	Sprav		(F	ure tungsteri	, 2 /0 thomatec	1, 610.)	
					(S	pray arc, sho	rt circuiting ar	c, etc.)	
Electrode	Wire Feed S	peed Range	400-450						
TECHNIQ	UE (QW-410))							
Sting or W	eave Bead	Stringer							
Orifice or 0	Gas Cup Siz	e .750"							
Initial and	Interpass Cl	eaning (brushin	g, grinding	, etc.)	SS wire brus	h and ace	tone		
Method of	Back Gougi	ng N/A	0.0	· · · <u>-</u>					
Oscillation	N/A	<u> </u>							
Contact Tu	ube to Work	Distance .5	00"750"						
Multiple or	Single Pass	s (per side)	Multiple						
Multiple or	Single Elec	trodes Si	ngle						
Travel Spe	ed (range)	12 - 15 IPN	I						
Peening	N/A								
Other Pa	art Rotated	under fixed torc	h						
									
		Filler Me	etal	C	urrent		Tagend		
Weld				Type	Amn	Volt	I ravel Speed	Other Comment	(e.g., Remarks, s. Hot Wire Addition
Layer(s)	Process	Class	Dia.	Polar.	Range	Range	Range	Technique	e, Torch Angle, etc.)
						-	12-15		
All	GMAW	ER80S-D2	.045"	DCEP	250-325	29-31	IPM	W	/FS 400-450

(See QW-	200.1, Secti	ion IX, ASM	IE Boiler and F	Pressure Vessel Cod	e)
ompany Name <u>Edison Welding In</u>	stitute		By D	avid Link	
elding Procedure 51108-WP becification No.	S2	Date	06/15/2009	Supporting PQ No.(s)	R N/A
evision No. 0	Date	06/15/200	09		
				•	
elding Process(es) Gas Metal Ar	c Welding (GMAW)	lype(s)	Automatic (Automatic, Ma	anual, Machine, or Semi-Auto)
Joints (QW-402)				Details	
Joint Design _ Fillet, Partial Penetra	tion				
Backing (Yes) (No)	Х				
Backing Material (Type)					
(Refer to	both backing ar	nd retainers)			
Metal Nonfusing Me	etal				
Nonmetallic Other					
*BASE METALS (QW-403)					
P-No. <u>1</u> Group No		to P-No.	3	Group No.	
OR					
Specification Type and Grade					
to Specification Type and Grade					
OR					
Chem. Analysis and Mech. Prop.					
to Chem. Analysis and Mech. Prop.					
Thickness Range:					
Base Metal: Groove			Fill	et 1.000"	
Other					
*FILLER METALS (QW-404)					
Spec. No. (SFA)	ER80S	S-D2			
AWS No. (Class)	A 5.28				
F-No.	6				
A-No.	11				
Size of Filler Metals	.045"				
Weld Metal Thickness Range:					
Groove	N/A				
Fillet	1.000"				
Electrode-Flux (Class)	N/A				
Elux Trodo Nomo	N/A		l l		
Flux frage Name					
Consumable Insert	N/A				

				QW	-482 (Back) WPS No.	51108-V	VPS2	Rev.	0
POSITION	NS (QW-405	;)			POSTWEID		EATMENT	- (QW-407)	
Position(s) of Groove	2F			Temperature	Range	N/A	(001 401)	
Welding	,					<u> </u>			
Progressi	on: Up	N/A	Down N	N/A	Time Range	N/A			
Position(s) of Fillet	Horizontal							
					GAS (QW-40)8)			
PREHEA	T (QW-406)						Pe	ercent Comp	position
Preheat T	emp. M	lin. 400 F				Gase	S	(Mixture)	Flow Rate
Interpass	Temp. M	lax. <u>500 F</u>			Shielding	Ar/Co2	2 9	0%/10%	30-40 CFH
Preheat M	laintenance	N/A			Trailing	N/A			
(Continuous	or special heatin	g where applicable	should be reco	orded)	Backing	N/A			
ELECTRI	CAL CHARA	CTERISTICS	(QW-409)						
Current A	C or		,						
DC	D	00	Polarity	EP					
Amps (Ra	nge) <u>2</u>	50-325	Volts (Rang	ge) <u>29-</u>	31				
(Amps an	d volts range	e should be rec	orded for e	each electro	ode size, posit	ion, and th	ickness, e	tc. This info	ormation may be
noted in a			Shown ber	SW .)					
Tungsten	Electrode S	ize and Type	N/A						
0					(P	ure tungsten,	2% thoriated,	etc.)	
Mode of N	Aetal Transfe	er for GMAW	Spray		(St	orav arc short	circuiting arc	etc.)	
Electrode	Wire Feed S	Speed Range	400-45	50	(0)	siay aro, onore	onouning are	, 010.)	
TECHNIC	QUE (QW-41	0)							
Sting or W	Veave Bead	Stringe	r						
Orifice or	Gas Cup Siz	ze <u>.750"</u>							
Initial and	Interpass C	leaning (brush	ng, grinding	g, etc.)	SS wire brush	and aceto	ne		
Method of	Back Goug	ing <u>N/A</u>							
Oscillation	n <u>N/A</u>								
Contact T	ube to Work	Distance .5	00"750"						
Multiple o	r Single Pas	s (per side)	Multiple						
Multiple o	r Single Elec	ctrodes Sing	gle						
Travel Sp	eed (range)	12 - 15 IPM							
Peening	N/A								
Other F	Part Rotated	under fixed tor	ch						
		Filler M	etal	C	urrent				
						1	Travel	Othe	r (e.g., Remarks,
Weld				Туре	Amp	Volt	Speed	Commen	ts, Hot Wire Addition,
Layer(s)	Process	Class	Dia.	Polar.	Range	Range	Range	Techniqu	ie, Torch Angle, etc.)
ДШ	GMAW/	EB808-D2	045"	DOEP	250-325	29-21	12-15 IPM	V	VES 400-450
	GINAW		.0+0	DUEP	200-020	23-31	11 111	V	10400-400

mpany Name Edison Welding Institu	te	By St	eve Manring	
elding Procedure 51108-WPS ecification No.	G-3 Date 6-	15-2009	Supporting PQR N/A No.(s)	
evision No. 0	Date 6-15-2009			
elding Process(es) <u>Gas Metal Arc V</u>	Velding (GMAW)	Type(s)	Semi-automatic (Automatic, Manual, Machine, c	r Semi-Auto)
Joints (QW-402)			Details	
Joint Design Vee Groove Partial P	enetration			
Backing (No) (Yes)	x			
Backing Material (Type)				
(Refer to	both backing and retainers)			
Metal Nonfusing Meta	al			
Nonmetallic Other				
*BASE METALS (QW-403)				
P-No. <u>1</u> Group No	to P-No.	1	Group No.	
OR LO L				
Specification Type and Grade /	4-36			
to Specification Type and Grade A	(105			
UR Cham Analysis and Mash Bran				
to Chem Analysis and Mech. Frop.				
Thickness Pange:				
Base Metal: Groove 500" r	ominal	Fi	llet N/A	
Other				
Other				
*FILLER METALS (QW-404)				
*FILLER METALS (QW-404) Spec. No. (SFA)	ER70S-6			
*FILLER METALS (QW-404) Spec. No. (SFA) AWS No. (Class)	 			
Vther *FILLER METALS (QW-404) Spec. No. (SFA) AWS No. (Class) F-No.	ER70S-6 _A 5.18 _6			
Other *FILLER METALS (QW-404) Spec. No. (SFA) AWS No. (Class) F-No. A-No.	ER70S-6 A 5.18 6 1			
Other *FILLER METALS (QW-404) Spec. No. (SFA) AWS No. (Class) F-No. A-No. Size of Filler Metals	ER70S-6 A 5.18 6 1 0.045"			
Other *FILLER METALS (QW-404) Spec. No. (SFA) AWS No. (Class) F-No. A-No. Size of Filler Metals Weld Metal Thickness Range:	ER70S-6 A 5.18 6 1 0.045"			
Other *FILLER METALS (QW-404) Spec. No. (SFA) AWS No. (Class) F-No. A-No. Size of Filler Metals Weld Metal Thickness Range: Groove	ER70S-6 A 5.18 6 1 0.045" 0.500" nominal			
Other *FILLER METALS (QW-404) Spec. No. (SFA) AWS No. (Class) F-No. A-No. Size of Filler Metals Weld Metal Thickness Range: Groove Fillet	ER70S-6 A 5.18 6 1 0.045" 0.500" nominal N/A			
Other *FILLER METALS (QW-404) Spec. No. (SFA) AWS No. (Class) F-No. A-No. Size of Filler Metals Weld Metal Thickness Range: Groove Fillet Electrode-Flux (Class)	ER70S-6 A 5.18 6 1 0.045" 0.500" nominal N/A N/A			
Other *FILLER METALS (QW-404) Spec. No. (SFA) AWS No. (Class) F-No. A-No. Size of Filler Metals Weld Metal Thickness Range: Groove Fillet Electrode-Flux (Class) Flux Trade Name	ER70S-6 A 5.18 6 1 0.045" 0.500" nominal N/A N/A N/A			
Other *FILLER METALS (QW-404) Spec. No. (SFA) AWS No. (Class) F-No. A-No. Size of Filler Metals Weld Metal Thickness Range: Groove Fillet Electrode-Flux (Class) Flux Trade Name Consumable Insert	ER70S-6 A 5.18 6 1 0.045" 0.500" nominal N/A N/A N/A N/A			

					QW-482 (Bac	k)			
					WPS N	No	51108-WPS-3	Rev.	0
POSITION	IS (QW-405)			POST	WELD HE	AT TREATME	NT (QW-407)	
Position(s)) of Groove	1G			Tempe	erature Ra	ange <u>N/A</u>		
Welding	n lin	NI/A	Down	ΝΙ/Δ	Time F	Pange	NI/A		
Position(s)) of Fillet		Down	<u> 11/7</u>		vange .	IN/A		
1 0311011(3)) of t mot	11/7			GAS (<u> </u>			
PREHEAT	(QW-406)					Q11 400)		Percent Compo	sition
11(21)2/(1	(u tt 100)	225 F for F	Pass 1, 200) F for				oroone oompo	
Preheat Te	emp. Min.	Pass 2 & 3	, RT rema	inder	_		Gases	(Mixture)	Flow Rate
Interpass	Temp. I	Max. 500F	-		Shieldi	ing	Ar/CO2	90/10	30-40 CFH
Preheat M	laintenance	N/A			Trailing	g <u>.</u>	N/A		
(Continuous c	or special heatin	g where applicab	ole should be i	recorded)	Backin	g.	N/A	. <u> </u>	
ELECTRIC	CAL CHARA	CTERISTIC	S (QW-409	9)					
Current AC	C or DC	DC	Polarit	y <u>EP</u>		_			
Amps (Ra	nge)	250 - 325	Volts (Range)	29 - 31	_			
(Amps and	d volts range	e should be r	ecorded fo	or each ele	ctrode size, po	osition, an	nd thickness, e	tc. This informa	ation may be
listed in a	tabular form	similar to the	at shown b	pelow.)					
Tungsten	Electrode Si	ze and Type	N/A			(Pure tungs	ten. 2% thoriated.	etc.)	
Mode of M	letal Transfe	er for GMAW	Spray	/		(,,	,	
						(Spray arc, s	short circuiting arc,	etc.)	
Electrode	Wire Feed S	speed Range	e <u>400</u> -	- 500 ipm					
TECHNIQ	UE (QW-41	0)							
•	loovo Bood	Stringor							
Sting or W	leave beau	Sunger							
Sting or W Orifice or 0	Gas Cup Siz	e <u>0.750</u>)"						
Sting or W Orifice or (Initial and	Gas Cup Siz	e <u>0.750</u> leaning (brus)" shing, grind	ding, etc.)	SS wire B	rush			
Sting or W Orifice or 0 Initial and Method of	Gas Cup Siz Interpass Cl Back Gougi	e <u>0.750</u> leaning (brus)" shing, grino	ding, etc.)	SS wire B	rush			
Sting or W Orifice or 0 Initial and Method of Oscillation	Gas Cup Siz Interpass Cl Back Gougi <u>N/A</u>	e leaning (brus)" shing, grino	ding, etc.)	_SS wire B	rush			
Sting or W Orifice or (Initial and Method of Oscillation Contact Tu	Gas Cup Siz Interpass Cl Back Gougi <u>N/A</u> ube to Work	ing N/A)" shing, grind 	ding, etc.) 750 inches	SS wire B	rush			
Sting or W Orifice or (Initial and Method of Oscillation Contact Tu Multiple or	Gas Cup Siz Interpass Cl Back Gougi MA Ube to Work r Single Pase	2e0.750 leaning (brus ingN/A Distance s (per side))" shing, grino 0.500 – 0. Multiple	ding, etc.) 750 inches	SS wire B	rush			
Sting or W Orifice or (Initial and Method of Oscillation Contact Tu Multiple or Multiple or	Gas Cup Siz Interpass Cl Back Gougi <u>N/A</u> ube to Work r Single Pass r Single Elec	2e leaning (brus ing Distance s (per side) ctrodes)" Shing, grind 0.500 – 0. Multiple Single	ding, etc.) 750 inches	SS wire B	rush			
Sting or W Orifice or (Initial and Method of Oscillation Contact Tu Multiple or Travel Spe	Gas Cup Siz Interpass Cl Back Gougi M <u>N/A</u> ube to Work r Single Pase r Single Elec eed (range)	2e 2e)" Shing, grind 0.500 – 0. Multiple Single 5 ipm	ding, etc.) 750 inches	SS wire B	rush			
Sting or W Orifice or (Initial and Method of Oscillation Contact To Multiple or Multiple or Travel Spe Peening	Gas Cup Siz Interpass Cl Back Gougi M/A ube to Work r Single Pass r Single Elec eed (range) N/A	2e <u>0.750</u> leaning (brus ing <u>N/A</u> Distance _ s (per side) ctrodes <u>\$</u> <u>12 - 1</u>	o" shing, grind 0.500 – 0. <u>Multiple</u> Single 5 ipm	ding, etc.) 750 inches	<u>SS wire B</u>	rush			
Sting or W Orifice or (Initial and Method of Oscillation Contact Tu Multiple or Multiple or Travel Spe Peening Other P	Gas Cup Siz Interpass Cl Back Gougi M/A ube to Work r Single Pass r Single Elec eed (range) N/A rart rotated u	2e 0.750 leaning (brus ing N/A Distance s (per side) ctrodes S 	n n n n n n n n n n n n n n n n n n n	ding, etc.) 750 inches	SS wire B	rush			
Sting or W Orifice or (Initial and Method of Oscillation Contact Tu Multiple or Travel Spe Peening Other P	Gas Cup Siz Interpass Cl Back Gougi MA ube to Work r Single Pass r Single Elec eed (range) N/A art rotated u	2e <u>0.750</u> leaning (brus ing <u>N/A</u> Distance <u></u> s (per side) trodes <u>S</u> <u>12 – 1</u> under fixed to	o" Shing, grind 0.500 – 0. Multiple Single 15 ipm orch	ding, etc.) 750 inches	SS wire B	rush			
Sting or W Orifice or (Initial and Method of Oscillation Contact Tu Multiple or Multiple or Travel Spe Peening Other _P	Gas Cup Siz Interpass Cl Back Gougi M/A ube to Work r Single Pass r Single Elec eed (range) N/A art rotated u	2e 0.750 leaning (brus ing N/A Distance _ s (per side) trodes S 12 - 1	o" hing, grind 0.500 – 0. Multiple Single 5 ipm orch	ding, etc.) 750 inches	<u>SS wire B</u>	rush			
Sting or W Orifice or (Initial and Method of Oscillation Contact Tu Multiple or Multiple or Travel Spe Peening Other P	Gas Cup Siz Interpass Cl Back Gougi M/A ube to Work r Single Pass r Single Elec eed (range) N/A r trotated u	ze <u>0.750</u> leaning (brus ing <u>N/A</u> Distance <u></u> s (per side) trodes <u>S</u> <u>12 – 1</u> under fixed to	0.500 – 0. Multiple Single brch	ding, etc.) 750 inches	S wire B	rush			
Sting or W Orifice or (Initial and Method of Oscillation Contact Tu Multiple or Travel Spe Peening Other P	Gas Cup Siz Interpass Cl Back Gougi M/A ube to Work r Single Pase r Single Elect eed (range) N/A rart rotated u		o.500 – 0. Multiple Single 5 ipm orch	ding, etc.) 750 inches	S wire B	rush	Travel	Other (e	.g., Remarks,
Sting or W Orifice or (Initial and Method of Oscillation Contact Tu Multiple or Travel Spe Peening Other P	Gas Cup Siz Interpass Cl Back Gougi M/A ube to Work r Single Pass r Single Elect eed (range) N/A Part rotated u		orch	ding, etc.) 750 inches	SS wire B	Volt	Travel	Other (e Comments, H	.g., Remarks, Hot Wire Addition,
Sting or W Orifice or (Initial and Method of Oscillation Contact Tu Multiple or Multiple or Travel Spe Peening Other P 	Gas Cup Siz Interpass Cl Back Gougi M/A ube to Work r Single Pass r Single Elec eed (range) N/A art rotated u		orch	ding, etc.) 750 inches	SS wire B	rush Volt Range	Travel Speed Range	Other (e Comments, F Technique, 1	.g., Remarks, -lot Wire Addition, Forch Angle, etc.)

- ·· · · · · · · · · ·		ION IA, ASIVIE E			ure Vessel Code)	
ompany Name Edison Welding	Institute			By <u>St</u>	eve Manring	
elding Procedure 51108- becification No.	-WPS-4	Date	6-15-2	009	Supporting PQR No.(s)	N/A
evision No. 0	Date	e <u>6-15-2009</u>				
elding Process(es) Gas Metal Ar	c Welding (GI	MAW)		Type(s)	Semi-automatic	aina ar Sami Auta)
						line, or Semi-Auto)
Joint Design Fillet					Details	
Backing (Yes) (No) X					
Backing Material (Type) N/A	<i>,</i> <u>, </u>					
(Refer	to both backing a	nd retainers)	-			
🗌 Metal 🛛 🗌 Nonfusing M	letal					
Nonmetallic Other						
*BASE METALS (QW-403)						
P-No. <u>1</u> Group No.		to P-No.	1	G	roup No.	
OR						
Specification Type and Grade						
to Specification Type and Grade						
OR						
Chem. Analysis and Mech. Prop.						
to Chem. Analysis and Mech. Prop.						
, , , , , , , , , , , , , , , , , , , ,						
Thickness Range:						
Thickness Range: Base Metal: Groove N/A				Fillet 1	.000"	
Thickness Range: Base Metal: Groove <u>N/A</u> Other				Fillet 1	.000"	
Thickness Range: Base Metal: Groove <u>N/A</u> Other				Fillet 1	.000"	
Thickness Range: Base Metal: Groove <u>N/A</u> Other				Fillet 1	.000"	
Thickness Range: Base Metal: Groove <u>N/A</u> Other *FILLER METALS (QW-404) Spec. No. (SFA)	ER70S-6			Fillet <u>1</u>	.000"	
Thickness Range: Base Metal: Groove N/A Other *FILLER METALS (QW-404) Spec. No. (SFA) AWS No. (Class)				Fillet _1	.000"	
Thickness Range: Base Metal: Groove N/A Other *FILLER METALS (QW-404) Spec. No. (SFA) AWS No. (Class) F-No.	<u>ER70S-6</u> <u>A 5.18</u> 6			Fillet _1	.000"	
Thickness Range: Base Metal: Groove N/A Other *FILLER METALS (QW-404) Spec. No. (SFA) AWS No. (Class) F-No. A-No.	ER70S-6 <u>A 5.18</u> 6 1			Fillet _1	.000"	
Thickness Range: Base Metal: Groove <u>N/A</u> Other *FILLER METALS (QW-404) Spec. No. (SFA) AWS No. (Class) F-No. A-No. Size of Filler Metals	ER70S-6 <u>A 5.18</u> 6 1 0.045"			Fillet _1	.000"	
Thickness Range: Base Metal: Groove N/A Other *FILLER METALS (QW-404) Spec. No. (SFA) AWS No. (Class) F-No. A-No. Size of Filler Metals Weld Metal Thickness Range:	ER70S-6 A 5.18 6 1 0.045"			Fillet _ 1	.000"	
Thickness Range: Base Metal: Groove N/A Other *FILLER METALS (QW-404) Spec. No. (SFA) AWS No. (Class) F-No. A-No. Size of Filler Metals Weld Metal Thickness Range: Groove	ER70S-6 A 5.18 6 1 0.045"			Fillet _1	.000"	
Thickness Range: Base Metal: Groove N/A Other *FILLER METALS (QW-404) Spec. No. (SFA) AWS No. (Class) F-No. A-No. Size of Filler Metals Weld Metal Thickness Range: Groove Fillet	ER70S-6 A 5.18 6 1 0.045" N/A 1.000"			Fillet _1	.000"	
Thickness Range: Base Metal: Groove <u>N/A</u> Other *FILLER METALS (QW-404) Spec. No. (SFA) AWS No. (Class) F-No. A-No. Size of Filler Metals Weld Metal Thickness Range: Groove Fillet Electrode-Flux (Class)	ER70S-6 A 5.18 6 1 0.045" N/A 1.000" N/A			Fillet _1	.000"	
Thickness Range: Base Metal: Groove <u>N/A</u> Other *FILLER METALS (QW-404) Spec. No. (SFA) AWS No. (Class) F-No. A-No. Size of Filler Metals Weld Metal Thickness Range: Groove Fillet Electrode-Flux (Class) Elux Trade Name	ER70S-6 A 5.18 6 1 0.045" N/A 1.000" N/A N/A			Fillet _1	.000"	
Thickness Range: Base Metal: Groove <u>N/A</u> Other *FILLER METALS (QW-404) Spec. No. (SFA) AWS No. (Class) F-No. A-No. Size of Filler Metals Weld Metal Thickness Range: Groove Fillet Electrode-Flux (Class) Flux Trade Name Consumable Inscrt	ER70S-6 A 5.18 6 1 0.045" N/A 1.000" N/A N/A N/A			Fillet _ 1	.000"	
Thickness Range: Base Metal: Groove N/A Other *FILLER METALS (QW-404) Spec. No. (SFA) AWS No. (Class) F-No. A-No. Size of Filler Metals Weld Metal Thickness Range: Groove Fillet Electrode-Flux (Class) Flux Trade Name Consumable Insert	ER70S-6 A 5.18 6 1 0.045" N/A 1.000" N/A N/A N/A N/A			Fillet _ 1		

				Q	W-482 (Back)			
					WPS No	b. <u>5</u>	1108-WPS-4	Rev.	0
POSITION	IS (QW-405)			POSTW	ELD HEA	T TREATME	NT (QW-407)	
Position(s)	of Groove	2F			Tempera	ature Ran	ge <u>N/A</u>		
Welding	سال	N1/A	Davia	N1/A	Time De		N1/A		
Progressio	on: Up	<u>N/A</u>	Down	N/A		inge	N/A		
Position(s)	of Fillet	Horizontai				AL 400)			
					_ GAS (Q	vv-408)			
PRENEAT	(QVV-406)	225 E for P	255 1 200	E for				Percent Compo	Shion
Preheat Te	emp. Min.	Pass 2 & 3	, RT remaii	nder			Gases	(Mixture)	Flow Rate
Interpass 7	Гетр Ма:	x. 500F	-		Shieldin	g /	Ar/CO2	90/10	30-40 CFH
Preheat Ma	aintenance	N/A			Trailing	- <u> </u>	N/A		
(Continuous o	r special heating	g where applicab	le should be re	ecorded)	Backing		N/A		
				,					
ELECTRIC	CAL CHARA		5 (QW-409)					
Current AC	or DC <u>I</u>		Polarity	<u>EP</u>					
Amps (Rar	nge) <u>2</u>	250 - 325	Volts (F	Range) 2	29 - 31				
(Amps and	l volts range	should be re	ecorded for	each elec	trode size, pos	sition, and	thickness, e	tc. This inform	ation may be
iisteu iii a t		Similar to the		510 .)					
Tunasten F	Electrode Si	ze and Type	N/A						
i ungoton i						(Pure tungste	en, 2% thoriated,	etc.)	
Mode of M	etal Transfe	er for GMAW	Spra	У		Contact and all	aut alreviting are		
Electrode \	Wire Feed S	Speed Range	400 -	- 500 inm		Spray arc, sr	ion circulting arc	, etc.)	
2100010000		peeu runge		ooo ipiii					
TECHNIQ	UE (QW-410	D)							
Sting or W	eave Bead	Stringer							
Orifice or C	Gas Cup Siz	e 0.750"							
Initial and I	Interpass Cl	eaning (brus	hing, grindi	ng, etc.)	SS wire Bru	sh			
Method of	Back Gougi	ng N/A							
Oscillation	N/A								
Contact Tu	ube to Work	Distance	0.500 – 0.7	'50 inch					
Multiple or	Single Pass	s (per side)	Multiple	9					
Multiple or	Single Elec	trodes Sir	ngle						
Travel Spe	ed (range)	12 – 15 ip	m						
Peening	N/A								
Other Pa	art Rotated	under fixed to	orch						
		Filler N	Vetal	С	urrent				
							Travel	Other (e	.g., Remarks
Weld				Туре	Amp	Volt	Speed	Comments, I	Hot Wire Addition,
Layer(s)	Process	Class	Dia.	Polar.	Range	Range	Range	Technique,	Forch Angle, etc.)
<u></u>	014004		0.045"	DOTO	050 005		12 – 15		400 450
All	GMAW	ER/0S-6	0.045″	DCEP	250 – 325	29 - 31	IPM	WFS	400 - 450

	nstitute		Ву	Ste	ve Manring	
ding Procedure 51108-V cification No.	VPS-5	Date	6-15-200	9	Supporting PQR No.(s)	N/A
vision No. 0	Date	6-15-2009				
ding Process(es) Gas Metal Arc	Welding (GMA)	W)	Ту	pe(s)	Semi-Automatic (Automatic, Manual, Mach	nine, or Semi-Auto)
Joints (QW-402)					Details	. ,
Joint Design Vee Groove						
Backing (Yes) (No)	X					
Backing Material (Type)						
	(Refer to both backi	ing and retainers	5)			
Metal Nonfusing Me	ətal					
🗌 Nonmetallic 🔲 Other						
*BASE METALS (QW-403)						
P-No. <u>1</u> Group No	t	to P-No.	8	Gı	roup No.	
OR						
Specification Type and Grade						
to Specification Type and Grade						
OR						
Chem. Analysis and Mech. Prop.						
to Chem. Analysis and Mech. Prop.						
Thislusses Deves						
i nickness Range:						
Base Metal: Groove 0.25	0"		Fi	llet N	I/A	
Base Metal: Groove 0.25 Welded 1 entire layer in 9 Other ER308L	0" groove of 309L	to complete	Fi ly cover the	llet <u>N</u> Carbo	I/A n Steel base metals. Ba	lance will use
*FILLER METALS (QW-404)	0" groove of 309L	to complete	Fi ly cover the	llet <u>N</u> Carbo	I/A n Steel base metals. Ba	lance will use
*FILLER METALS (QW-404) Spec. No. (SFA)	0" groove of 309L 	to complete	Fi	llet <u>N</u> Carbo	I/A n Steel base metals. Ba	lance will use
*FILLER METALS (QW-404) Spec. No. (SFA) AWS No. (Class)	0" groove of 309L 	to complete	Fil	llet <u>N</u> Carbo	I/A n Steel base metals. Ba	lance will use
FILLER METALS (QW-404) Spec. No. (Class) F-No.	0" groove of 309L 	to complete	Fi	llet <u>N</u> Carbo	I/A n Steel base metals. Ba	lance will use
*FILLER METALS (QW-404) Spec. No. (SFA) AWS No. (Class) F-No. A-No	0" groove of 309L 	to complete	Fi	llet <u>N</u> Carbo	I/A n Steel base metals. Ba	lance will use
*FILLER METALS (QW-404) Spec. No. (SFA) AWS No. (Class) F-No. Size of Filler Metals	0" groove of 309L ER309L A 5.9 6 0 045"	to complete	Fi	llet <u>N</u> Carbo	I/A n Steel base metals. Ba	lance will use
*FILLER METALS (QW-404) Spec. No. (SFA) AWS No. (Class) F-No. Size of Filler Metals Weld Metal Thickness Bange:	0" groove of 309L ER309L A 5.9 6 0.045"	to complete	Fi	llet <u>N</u> Carbo	I/A n Steel base metals. Ba	lance will use
FILLER METALS (QW-404) Spec. No. (SFA) AWS No. (Class) F-No. Size of Filler Metals Weld Metal Thickness Range:	0" groove of 309L ER309L A 5.9 6 0.045"	to complete	Fi	llet <u>N</u> Carbo	I/A n Steel base metals. Ba	lance will use
FILLER METALS (QW-404) Spec. No. (SFA) AWS No. (Class) F-No. Size of Filler Metals Weld Metal Thickness Range: Groove	0" groove of 309L ER309L A 5.9 6 0.045" 0.250"	to complete	Fi	llet <u>N</u> Carbo	I/A n Steel base metals. Ba	lance will use
*FILLER METALS (QW-404) Spec. No. (SFA) AWS No. (Class) F-No. Size of Filler Metals Weld Metal Thickness Range: Groove Fillet	0" groove of 309L ER309L A 5.9 6 0.045" 0.250" N/A N/A	to complete	Fi	llet <u>N</u> cCarbo	I/A n Steel base metals. Ba	lance will use
*FILLER METALS (QW-404) Spec. No. (SFA) AWS No. (Class) F-No. A-No. Size of Filler Metals Weld Metal Thickness Range: Groove Fillet Electrode-Flux (Class)	0" groove of 309L ER309L A 5.9 6 0.045" 0.250" N/A N/A N/A	to complete	Fi	llet <u>N</u> Carbo	I/A n Steel base metals. Ba	lance will use
*FILLER METALS (QW-404) Spec. No. (SFA) AWS No. (Class) F-No. A-No. Size of Filler Metals Weld Metal Thickness Range: Groove Fillet Electrode-Flux (Class) Flux Trade Name	0" groove of 309L ER309L A 5.9 6 0.045" 0.250" N/A N/A N/A N/A	to complete	Fi	llet <u>N</u> Carbo	I/A n Steel base metals. Ba	lance will use
Thickness Range: Base Metal: Groove 0.25 Welded 1 entire layer in g Other ER308L *FILLER METALS (QW-404) Spec. No. (SFA) AWS No. (Class) F-No. A-No. Size of Filler Metals Weld Metal Thickness Range: Groove Fillet Electrode-Flux (Class) Flux Trade Name Consumable Insert Otic	0" groove of 309L ER309L A 5.9 6 0.045" 0.250" N/A N/A N/A N/A N/A N/A	to complete	Fi	llet <u>N</u> Carbo	I/A n Steel base metals. Ba	lance will use

WPS No. 51108-WPS-5 Rev. 0 POSITIONS (QW-405) POSTWELD HEAT TREATMENT (QW-407) Temperature Range NA Welding NA Down NA Temperature Range NA Position(s) of Fillet NA Down NA Percent Composition Presental Temp. Min. 225 F Sielding Ar 100 30-40 CF Preheat Maintenance N/A SooF Trailing Ar 100 30-40 CF Preheat Maintenance N/A Sielding Ar 100 30-40 CF Communus or special heating where applicable should be recorded) Backing NA Sielding Ar 100 30-40 CF ELECTRICAL CHARACTERISTICS (QW-409) Current AC or DC DC Polarity EP Amps (Range) 250-325 Volts (Range) 29-31 (Arma sec.) Main Tungsten Electrode Size and Type N/A (Pure tungsten, 2% choitated, etc.) Mode of Metal Transfer for GMAW Spray (Brew sec. short dicaling arc, etc.) Sting or Weave Bead Stringer Ortfice or Gas Cup Size 0.750' Ortfice or Gas Cup Size 0.750' Initial and Interpass Cleaning (brushing, grinding, etc.) SS wire Brush Method of Back Gouging NA </th <th></th> <th></th> <th></th> <th></th> <th></th> <th>QW-482 (Ba</th> <th>ack)</th> <th></th> <th></th> <th></th>						QW-482 (Ba	ack)			
POSTIVELD HEAT TREATMENT (QW-405) Position(s) of Groove 1G Welding N/A Progression: Up Up N/A Position(s) of Fillet N/A Prestion(s) of Fillet N/A Continuous or special heating where applicable should be recorded; Gas (QW-408) ELECTRICAL CHARACTERISTICS (QW-409) Electrical Characteristrics (QW-409) Current AC or DC DC Polarity (Amps and volts range should be recorded for each electrode size, position, and thickness, etc. This information may be listed in a tabular form similar to that shown below.) Turgsten Electrode Size and Type Trugsten Electrode Size and Type N/A (Pure Langsten, 2% thoritaled, etc.) Mode of Metal Transfer for GMAW Spray (Spray arc, short orculing arc, etc.) Electrode Wire Feed Speed Range 0.0.500 – 0.750 inch (Spray arc, short orculing arc, etc.) Initial and Interpass Cleaning (brushing, grinding, etc.) SS wire Brush Corneent, Hot Wire Addition <td></td> <td></td> <td></td> <td></td> <td></td> <td>WPS</td> <td>S No</td> <td>51108-WPS-5</td> <td> Rev. (</td> <td>)</td>						WPS	S No	51108-WPS-5	Rev. ()
Position(s) of Groove 1G Welding Progression: Up N/A Down N/A Position(s) of Filtet N/A PREHEAT (QW-406) Percent Composition Preheat Temp. Max. 500F SoloF Preheat Temp. Max. 500F SoloF Preheat Temp. Max. (Continuous or special heating where applicable should be recorded) Backing Arr 100 200 Current AC or DC DC Polarity EP Amps Range) 250-325 Volts range should be recorded for each electrode size, position, and thickness, etc. This information may be listed in a tabular form similar to that shown below.) Tungsten Electrode Size and Type N/A (Amps and volts range should be recorded for each electrode size, position, and thickness, etc. This information may be listed in a tabular form similar to that shown below.) Tungsten Electrode Size and Type N/A (Pure tungsten, 2% thotated, etc.) Mode of Metal Transfer for GMAW Spray (Spray arc. electrodiviling arc. etc.) Electrode Wire Feed Speed Range 0.0500 - 0.750 inch Other (e.g., Remarks, Casyet and the torch coccon and	POSITIO	NS (QW-405	5)			POS	STWELD HE	AT TREATME	NT (QW-407)	
Weiding N/A Down N/A Progression: Up N/A Down N/A Position(s) of Fillet N/A CAS (QW-408) Percent Composition Preheat Temp. Min. 225 F Gases (Mixture) Flow Rating N/A Interpass Temp. Max. 500F Shielding Ar 100 30-40 CFr Trailing N/A M/A Max Max Max Max Max Continuous or special heating where applicable should be recorded ELECTRICAL CHARACTERISTICS (QW-409) Backing N/A Max	Position(s) of Groove	1G			Tem	perature Ra	ange <u>N/A</u>		
Progression. N/A Down N/A Position(s) of Fillet N/A GAS (QW-408) Percent Composition PREHEAT (QW-406) Percent Termp. Min. 225 F Gases (Mixture) Flow Ratt Interpass Temp. Max. 500F Trailing N/A 00 30-40 CFF Preheat Maintenance N/A Image: State Stat	Welding	<u></u>								
Position(s) of Fillet N/A GAS (QW-408) Percent Composition Preheat Temp. Min. 225 F Interpass Temp. Max. 500F Preheat Maintenance N/A Shielding Ar (Continuous or special heating where applicable should be recorded) Backing N/A	Up	011.	N/A	Dow	/n N/A	Time	e Range	N/A		
PREHEAT (QW-406) Percent Composition Preheat Temp. Min. 225 F Interpass Temp. Max. SOOF Shielding Preheat Temp. Max. Soof Shielding Ar 100 Soof Trailing N/A Shielding Continuous or special heating where applicable should be recorded) Backing ELECTRICAL CHARACTERISTICS (QW-409) Current AC or DC Current AC or DC DC Polarity EP Amps (Range) 250-325 Volts (Range) 29-31 (Amps and volts range should be recorded for each electrode size, position, and thickness, etc. This information may be lister in a tabular form similar to that shown below.) Tungsten Electrode Size and Type N/A (Pure tungsten, 2% therited, etc.) Mode of Metal Transfer for GMAW Spray (Spray arc, short circuiting arc, etc.) Electrode Wire Feed Speed Range 400 – 500 ipm (Spray arc, short circuiting arc, etc.) TECHNIQUE (QW-410) Sting or Weave Bead Stinger Stinger Orifice or Gas Cup Size 0.500 – 0.750 inch Multiple Multiple <	Position(s) of Fillet	N/A	-			0			
PREHEAT (QW-406) Percent Composition Preheat Temp. Min. 225 F Interpass Temp. Max. SoOF		,				GAS	6 (QW-408)			
Preheat Temp. Min. 225 F Gases (Mixture) Flow Rate Interpass Temp. Max. 500F Trailing N/A 100 30-40 CFF Preheat Maintenance N/A Trailing N/A 100 30-40 CFF Continuous or special heating where applicable should be recorded! Backing N/A	PREHEA	T (QW-406)							Percent Compos	sition
Interpass Temp. Max. 500F Shielding Ar 100 30-40 CFF Preheat Maintenance NA Image: Shielding NA Image: Shielding Ar 100 30-40 CFF Continuous or special heating where aplicable should be recorded) Backing NA Image: Shielding Image: Shielding Image: Shielding Ar Image: Shielding Image: Shi	Preheat T	emp. N	/lin 225 F					Gases	(Mixture)	Flow Rate
Preheat Maintenance N/A Trailing N/A (Continuous or special heating where applicable should be recorded) Backing N/A ELECTRICAL CHARACTERISTICS (QW-409) Current AC or DC DC Polarity EP Amps (Range) 250 - 325 Volts (Range) 29 - 31 (Amps and volts range should be recorded for each electrode size, position, and thickness, etc. This information may be listed in a tabular form similar to that shown below.) Tungsten Electrode Size and Type N/A Mode of Metal Transfer for GMAW Spray (Spray are, short circuiting arc, etc.) Electrode Wire Feed Speed Range 400 - 500 ipm (Spray are, short circuiting arc, etc.) TeCHNIQUE (QW-410) Stringer (Spray are, short circuiting arc, etc.) Sting or Weave Bead Stringer Stringer Orifice or Gas Cup Size 0.750" Initial and Interpass Cleaning (brushing, grinding, etc.) SS wire Brush Method of Back Gouging N/A	Interpass	Temp. M	ax. 500F			Shie	lding	Ar	100	30-40 CFH
Image: transmission of the second s	Preheat N	laintenance	N/A			Trail	ling	N/A		
ELECTRICAL CHARACTERISTICS (QW-409) Current AC or DC DC Polarity EP Amps (Range) 250 - 325 Volts (Range) 29 - 31 (Amps and volts range should be recorded for each electrode size, position, and thickness, etc. This information may be lister in a tabular form similar to that shown below.) Image: Comparison of the system of t	(Continuous	or special heatir	ng where applica	ble should be	e recorded)	Bac	king	N/A		
Current AC or DC DC Polarity EP Amps (Range) 250 - 325 Volts (Range) 29 - 31 (Amps and volts range should be recorded for each electrode size, position, and thickness, etc. This information may be lister in a tabular form similar to that shown below.) Tungsten Electrode Size and Type N/A Tungsten Electrode Size and Type N/A (Pure tungsten, 2% thoristed, etc.) Mode of Metal Transfer for GMAW Spray (Spray arc, short circuiting arc, etc.) Electrode Wire Feed Speed Range 400 - 500 ipm (Spray arc, short circuiting arc, etc.) TECHNIQUE (QW-410) Stinger Orifice or Gas Cup Size 0.750" Initial and Interpass Cleaning (brushing, grinding, etc.) SS wire Brush Stinger Method of Back Gouging N/A Oscillation N/A Contact Tube to Work Distance 0.500 - 0.750 inch Multiple Multiple or Single Pass (per side) Multiple Multiple Travel Other (e.g., Remarks, Comments, Hot Wire Addition Travel Speed (range) 12 - 15 ipm Peening N/A Volt Speed Range Comments, Hot Wire Addition Technique, Torch Angle, etc. Weld Process Class Dia. Polar, Range	ELECTRI	CAL CHAR	ACTERISTIC	CS (QW-40	09)					
Amps (Range) 250-325 Volts (Range) 29-31 (Amps and volts range should be recorded for each electrode size, position, and thickness, etc. This information may be listed in a tabular form similar to that shown below.) Tungsten Electrode Size and Type N/A (Pure tungsten, 2% thoriated, etc.) Mode of Metal Transfer for GMAW Spray (Spray arc, short circuiting arc, etc.) Electrode Wire Feed Speed Range 400 – 500 ipm TECHNIQUE (QW-410) Sting or Weave Bead Stringer Orifice or Gas Cup Size 0.750" Initial and Interpass Cleaning (brushing, grinding, etc.) SS wire Brush Method of Back Gouging N/A Oscillation N/A Contact Tube to Work Distance 0.500 – 0.750 inch Multiple or Single Electrodes Single Travel Speed (range) 12 – 15 ipm Peening N/A Other (e.g., Remarks, Comments, Hot Wire Addition Technique, Torch Angle, etc.) Weld Process Class Dia. Polar. Range Range Range Range Range Range Range Range Range Range Comments, Hot Wire Additi	Current A	C or DC	DC	Pola	arity <u> </u>	P				
(Amps and volts range should be recorded for each electrode size, position, and thickness, etc. This information may be lister in a tabular form similar to that shown below.) Tungsten Electrode Size and Type N/A (Pure tungsten, 2% thoriated, etc.) Mode of Metal Transfer for GMAW Spray (Spray arc, short circuiting arc, etc.) Electrode Wire Feed Speed Range 400 – 500 ipm TECHNIQUE (QW-410) Sting or Weave Bead Stringer Orifice or Gas Cup Size 0.750° Initial and Interpass Cleaning (brushing, grinding, etc.) SS wire Brush Method of Back Gouging N/A Contact Tube to Work Distance 0.500 – 0.750 inch Multiple or Single Electrodes Single Travel Speed (range) 12 – 15 ipm Peening N/A Other Park Rotated under fixed torch Veld Process Dia. Weld Process Dia. Polar. All GMAW EB309 0.045" DCEP 280 – 31 12 – 15	Amps (Ra	inge)	250 - 325	Volt	s (Range)	29 - 31				
in a tabular form similar to that shown below.) Tungsten Electrode Size and Type N/A (Pure tungsten, 2% thoriated, etc.) Mode of Metal Transfer for GMAW Spray (Spray arc, short circuiting arc, etc.) Electrode Wire Feed Speed Range 400 – 500 ipm TECHNIQUE (QW-410) Sting or Weave Bead Stringer Orifice or Gas Cup Size 0.750" Initial and Interpass Cleaning (brushing, grinding, etc.) SS wire Brush Method of Back Gouging N/A Oscillation N/A Contact Tube to Work Distance 0.500 – 0.750 inch Multiple or Single Pass (per side) Multiple Multiple or Single Electrodes Single Travel Speed (range) 12 – 15 ipm Peening N/A Other Part Rotated under fixed torch	(Amps an	d volts rang	e should be	recorded f	for each e	ectrode size, p	position, and	d thickness, etc	. This information	on may be listed
N/A (Pure tungsten, 2% thoriated, etc.) Mode of Metal Transfer for GMAW Spray (Spray arc, short circuiting arc, etc.) Electrode Wire Feed Speed Range 400 – 500 ipm TECHNIQUE (QW-410) Stringer Orifice or Gas Cup Size	in a tabula	ar form simil	ar to that sho	own below	<i>ı</i> .)					
Upper value, short circularing arc, etc.) Electrode Wire Feed Speed Range	Mode of M	letal Transf	er for GMAW	/ Spray	/		(Pure lungsle	en, 2% inonaled, en	c)	
TECHNIQUE (QW-410) Sting or Weave Bead Stringer Orifice or Gas Cup Size 0.750" Initial and Interpass Cleaning (brushing, grinding, etc.) SS wire Brush Method of Back Gouging N/A Oscillation N/A Contact Tube to Work Distance 0.500 – 0.750 inch Multiple or Single Pass (per side) Multiple Multiple or Single Electrodes Single Travel Speed (range) 12 – 15 ipm Peening N/A Other Part Rotated under fixed torch	Electrode	Wire Feed	Speed Rang	e <u>400</u> -	- 500 ipm		(Splay alc, si	for circulting arc, er		
Sting or Weave Bead Stringer Orifice or Gas Cup Size 0.750" Initial and Interpass Cleaning (brushing, grinding, etc.) SS wire Brush Method of Back Gouging N/A Oscillation N/A Contact Tube to Work Distance 0.500 – 0.750 inch Multiple or Single Pass (per side) Multiple Multiple or Single Electrodes Single Travel Speed (range) 12 – 15 ipm Peening N/A Other Part Rotated under fixed torch Travel Speed (range) Filler Metal Current Veld Travel Speed Class Dia. Polar. Range Range	TECHNIC	UE (QW-41	0)							
Orifice or Gas Cup Size 0.750" Initial and Interpass Cleaning (brushing, grinding, etc.) SS wire Brush Method of Back Gouging N/A Oscillation N/A Oscillation N/A Contact Tube to Work Distance 0.500 – 0.750 inch Multiple or Single Pass (per side) Multiple Multiple or Single Electrodes Single Travel Speed (range) 12 – 15 ipm Peening N/A Other Part Rotated under fixed torch Travel Speed (range) Filler Metal Current Filler Metal Current Veld Speed Comments, Hot Wire Addition Type Amp Volt Speed Range Range Range 12 – 15 Mut CMAW EB300L 0.045" DCEP 250 – 325 12 – 15 IPM	Sting or V	Veave Bead	Stringer							
Initial and Interpass Cleaning (brushing, grinding, etc.) SS wire Brush Method of Back Gouging N/A Oscillation N/A Contact Tube to Work Distance 0.500 – 0.750 inch Multiple or Single Pass (per side) Multiple Multiple or Single Electrodes Single Travel Speed (range) 12 – 15 ipm Peening N/A Other Part Rotated under fixed torch Travel Weld Filler Metal Layer(s) Process Class Dia. Polar. Range Range Range Range Range Range 12 – 15 WEIA Current Travel Speed Class Dia. Polar. Range Range Range Range 12 – 15 Muttiple CER 250 – 235 29 – 231	Orifice or	Gas Cup Si	ze 0.75	50"						
Method of Back Gouging N/A Oscillation N/A Contact Tube to Work Distance 0.500 – 0.750 inch Multiple or Single Pass (per side) Multiple Multiple or Single Electrodes Single Travel Speed (range) 12 – 15 ipm Peening N/A Other Part Rotated under fixed torch Travel Filler Metal Current Veld Filler Metal Current Veld Process Class Dia. Polar. Range Range Range All GMAW EB3091 0.045" DCEP 250 – 325 29 – 31 JPM	Initial and	Interpass C	leaning (bru	shing, grir	nding, etc.) SS wire	Brush			
OscillationN/A Contact Tube to Work Distance0.500 – 0.750 inch Multiple or Single Pass (per side)Multiple Multiple or Single ElectrodesSingle Travel Speed (range)12 – 15 ipm PeeningN/A OtherPart Rotated under fixed torch	Method of	f Back Goug	jing <u>N/A</u>							
Contact Tube to Work Distance0.500 – 0.750 inch Multiple or Single Pass (per side) Multiple Multiple or Single Electrodes Single Travel Speed (range) 12 – 15 ipm Peening N/A Other Part Rotated under fixed torch Travel Filler Metal Current Veld Filler Metal Current Veld Process Class Dia. Polar. Range Range Comments, Hot Wire Addition All GMAW EB3091 0.045" DCEP 250 – 325 29 – 31 IPM	Oscillation	ח N/A								
Multiple or Single Pass (per side) Multiple Multiple or Single Electrodes Single Travel Speed (range) 12 – 15 ipm Peening N/A Other Part Rotated under fixed torch Travel Filler Metal Current Travel Weld Filler Metal Layer(s) Process Class Dia. Polar. Range Range Range 12 – 15 All GMAW ER309I 0.045"	Contact T	ube to Work	C Distance	0.500 -	0.750 inc	h				
Multiple or Single Electrodes Single Travel Speed (range) 12 – 15 ipm Peening N/A Other Part Rotated under fixed torch Filler Metal Current Travel Other Part Rotated under fixed torch Travel Other Filler Metal Current Travel Other (e.g., Remarks, Comments, Hot Wire Addition Layer(s) Process Class Dia. Polar. Range Range Range Range 12 – 15 All GMAW ER309L 0.045" DCEP 250 – 325 29 – 31 IPM WES 400, 450	Multiple o	r Single Pas	ss (per side)	Multipl	е					
Travel Speed (range) 12 – 15 ipm Peening N/A Other Part Rotated under fixed torch Weld Filler Metal Current Weld Type Amp Volt Speed Other (e.g., Remarks, Comments, Hot Wire Addition Technique, Torch Angle, etc. All GMAW ER3091 0.045" DCER 250 – 325 29 – 31 12 – 15	Multiple o	r Single Ele	ctrodes S	ingle						
Peening N/A Other Part Rotated under fixed torch	Travel Sp	eed (range)	12 – 1	5 ipm						
Other Part Rotated under fixed torch Weld Filler Metal Current Weld Type Amp Volt Layer(s) Process Class Dia. Polar. Range Range Comments, Hot Wire Addition All GMAW EB309L 0.045" DCEB 250 – 325 29 – 31 12 – 15	Peening	N/A								
Weld Filler Metal Current Layer(s) Process Class Dia. All GMAW EB3091 0.045" DCEP 250 = 325 29 = 31 IPM VIES 400 450	Other F	Part Rotated	under fixed	torch						
Weld Filler Metal Current Layer(s) Process Class Dia. All GMAW EB3091 0.045" DCEP 250 = 325 29 = 31 IPM Volt IPM Volt Range I29 = 31 IPM VIES 400 450										
Weld Filler Metal Current Travel Other (e.g., Remarks, Comments, Hot Wire Addition Weld Process Class Dia. Polar. Range Range Range Technique, Torch Angle, etc. All GMAW ER3091 0.045" DCER 250 – 325 29 – 31 IPM W/ES 400, 450					1			-		
Weld Layer(s) Process Class Dia. Type Polar. Amp Polar. Volt Range Travel Range Other (e.g., Remarks, Comments, Hot Wire Addition Technique, Torch Angle, etc. All GMAW ER309L 0.045" DCER 250 – 325 29 – 31 12 – 15			Filler N	letal	C	urrent				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Weld	Process	Class	Dia	Type Polar	Amp Bange	Volt Range	Travel Speed Range	Other (e.g Comments, H	g., Remarks, ot Wire Addition, orch Angle etc.)
		GMAW	FR309	0.045"		250 - 325	29 - 31	12 – 15 IPM	WFS 2	100 - 450

	stitute	Bv	Steve Manring
elding Procedure 51108-W	/PS-6 Date	6-15-2009	Supporting PQR N/A No.(s)
evision No. 0	Date 6-15-2009		
		_	
elding Process(es) Gas Metal Arc	c Welding (GMAW)	Туре	e(s) <u>Semi-Automatic</u> (Automatic, Manual, Machine, or Semi-Auto)
Joints (QW-402)			Details
Joint Design Vee Groove			
Backing (Yes) (No)	X		
Backing Material (Type)	r to both backing and rotainars)	_	
(itele	to both backing and retainers)		
I			
Metal Nonfusing Me	etal		
Nonnetalle			
*BASE METALS (QW-403)			
P-No. 3 Group No.	to P-No.	8	Group No.
 OR			·
Specification Type and Grade			
to Specification Type and Grade			
UK			
OR Chem. Analysis and Mech. Prop.			
OK Chem. Analysis and Mech. Prop. to Chem. Analysis and Mech. Prop.			
OK Chem. Analysis and Mech. Prop. to Chem. Analysis and Mech. Prop. Thickness Range:			
OK Chem. Analysis and Mech. Prop. to Chem. Analysis and Mech. Prop. Thickness Range: Base Metal: Groove <u>0.2</u>	250"	F	
OK Chem. Analysis and Mech. Prop. to Chem. Analysis and Mech. Prop. Thickness Range: Base Metal: Groove <u>0.2</u> Welded 1 entire layer in g	250" groove of 309L to complete	F	Fillet <u>N/A</u> arbon Steel base metals (WPS-5). Balance will
OK Chem. Analysis and Mech. Prop. to Chem. Analysis and Mech. Prop. Thickness Range: Base Metal: Groove <u>0.2</u> Welded 1 entire layer in g Other <u>use ER308L (WPS-6)</u>	250" groove of 309L to complete	F	illet <u>N/A</u> arbon Steel base metals (WPS-5). Balance will
OK Chem. Analysis and Mech. Prop. to Chem. Analysis and Mech. Prop. Thickness Range: Base Metal: Groove <u>0.2</u> Welded 1 entire layer in g Other <u>use ER308L (WPS-6)</u>	250" groove of 309L to complete	_ F y cover the Ca	Fillet <u>N/A</u> arbon Steel base metals (WPS-5). Balance will
Chem. Analysis and Mech. Prop. to Chem. Analysis and Mech. Prop. Thickness Range: Base Metal: Groove <u>0.2</u> Welded 1 entire layer in (Other <u>use ER308L (WPS-6)</u> *FILLER METALS (QW-404)	250" groove of 309L to complete	_ F y cover the Ca	Fillet <u>N/A</u> arbon Steel base metals (WPS-5). Balance will
OK Chem. Analysis and Mech. Prop. to Chem. Analysis and Mech. Prop. Thickness Range: Base Metal: Groove <u>0.2</u> Welded 1 entire layer in g Other <u>use ER308L (WPS-6)</u> *FILLER METALS (QW-404) Spec. No. (SFA)	 groove of 309L to complete 	- F y cover the Ca	Fillet <u>N/A</u> arbon Steel base metals (WPS-5). Balance will
Chem. Analysis and Mech. Prop. to Chem. Analysis and Mech. Prop. Thickness Range: Base Metal: Groove <u>0.2</u> Welded 1 entire layer in (Other <u>use ER308L (WPS-6)</u> *FILLER METALS (QW-404) Spec. No. (SFA) AWS No. (Class)	 groove of 309L to complete 	- F y cover the Ca	illet <u>N/A</u> arbon Steel base metals (WPS-5). Balance will
OK Chem. Analysis and Mech. Prop. to Chem. Analysis and Mech. Prop. Thickness Range: Base Metal: Groove <u>0.2</u> Welded 1 entire layer in <u>C</u> Other <u>use ER308L (WPS-6)</u> *FILLER METALS (QW-404) Spec. No. (SFA) AWS No. (Class) F-No.	250" groove of 309L to complete <u>ER309L</u> <u>A 5.9</u> <u>6</u>	- F y cover the Ca	Fillet <u>N/A</u> arbon Steel base metals (WPS-5). Balance will
Chem. Analysis and Mech. Prop. to Chem. Analysis and Mech. Prop. Thickness Range: Base Metal: Groove <u>0.2</u> Welded 1 entire layer in (Other <u>use ER308L (WPS-6)</u> *FILLER METALS (QW-404) Spec. No. (SFA) AWS No. (Class) F-No. A-No.	250" groove of 309L to complete <u>ER309L</u> <u>A 5.9</u> 6	_ F y cover the Ca	Fillet <u>N/A</u> arbon Steel base metals (WPS-5). Balance will
Chem. Analysis and Mech. Prop. to Chem. Analysis and Mech. Prop. Thickness Range: Base Metal: Groove <u>0.2</u> Welded 1 entire layer in g Other <u>use ER308L (WPS-6)</u> *FILLER METALS (QW-404) Spec. No. (SFA) AWS No. (Class) F-No. A-No. Size of Filler Metals	ER309L A 5.9 0.045"	- F y cover the Ca	Fillet <u>N/A</u> arbon Steel base metals (WPS-5). Balance will
Chem. Analysis and Mech. Prop. to Chem. Analysis and Mech. Prop. Thickness Range: Base Metal: Groove <u>0.2</u> Welded 1 entire layer in g Other <u>use ER308L (WPS-6)</u> *FILLER METALS (QW-404) Spec. No. (SFA) AWS No. (Class) F-No. A-No. Size of Filler Metals Weld Metal Thickness Range:	ER309L A 5.9 0.045"	- F y cover the Ca	Fillet <u>N/A</u> arbon Steel base metals (WPS-5). Balance will
Chem. Analysis and Mech. Prop. to Chem. Analysis and Mech. Prop. Thickness Range: Base Metal: Groove <u>0.2</u> Welded 1 entire layer in (Other <u>use ER308L (WPS-6)</u> *FILLER METALS (QW-404) Spec. No. (SFA) AWS No. (Class) F-No. A-No. Size of Filler Metals Weld Metal Thickness Range: Groove	ER309L A 5.9 0.045"	- F y cover the Ca	Fillet <u>N/A</u> arbon Steel base metals (WPS-5). Balance will
Chem. Analysis and Mech. Prop. to Chem. Analysis and Mech. Prop. Thickness Range: Base Metal: Groove <u>0.2</u> Welded 1 entire layer in g Other <u>use ER308L (WPS-6)</u> *FILLER METALS (QW-404) Spec. No. (SFA) AWS No. (Class) F-No. A-No. Size of Filler Metals Weld Metal Thickness Range: Groove Fillet	ER309L 6 0.045" 0.250" N/A N/A	- F y cover the Ca	Fillet <u>N/A</u> arbon Steel base metals (WPS-5). Balance will
Chem. Analysis and Mech. Prop. to Chem. Analysis and Mech. Prop. Thickness Range: Base Metal: Groove <u>0.2</u> Welded 1 entire layer in <u>Q</u> Other <u>use ER308L (WPS-6)</u> *FILLER METALS (QW-404) Spec. No. (SFA) AWS No. (Class) F-No. A-No. Size of Filler Metals Weld Metal Thickness Range: Groove Fillet Electrode-Flux (Class)	ER309L 6 0.045" 0.250" N/A N/A N/A	- F y cover the Ca	FilletAarbon Steel base metals (WPS-5). Balance will
Chem. Analysis and Mech. Prop. to Chem. Analysis and Mech. Prop. Thickness Range: Base Metal: Groove <u>0.2</u> Welded 1 entire layer in (Other <u>use ER308L (WPS-6)</u> *FILLER METALS (QW-404) Spec. No. (SFA) AWS No. (Class) F-No. A-No. Size of Filler Metals Weld Metal Thickness Range: Groove Fillet Electrode-Flux (Class) Flux Trade Name	ER309L A 5.9 6 0.045" 0.250" N/A N/A N/A N/A	- F y cover the Ca	Fillet <u>N/A</u> arbon Steel base metals (WPS-5). Balance will
Chem. Analysis and Mech. Prop. to Chem. Analysis and Mech. Prop. Thickness Range: Base Metal: Groove <u>0.2</u> Welded 1 entire layer in g Other <u>use ER308L (WPS-6)</u> *FILLER METALS (QW-404) Spec. No. (SFA) AWS No. (Class) F-No. A-No. Size of Filler Metals Weld Metal Thickness Range: Groove Fillet Electrode-Flux (Class) Flux Trade Name Consumable Insert	ER309L A 5.9 6 0.045" 0.250" N/A N/A N/A N/A N/A N/A	- F y cover the Ca	Fillet <u>N/A</u> arbon Steel base metals (WPS-5). Balance will

					QW-482 (Bad	ck)			
					WPS N	lo. <u>5</u> 1	108-WPS-6	Rev. <u>0</u>	
POSITION	NS (QW-405)				POST	NELD HEA	T TREATME	NT (QW-407)	
Position(s) of Groove	1G			Tempe	rature Rang	ge <u>N/A</u>		
Welding									
Progressio	on:	NI/A	Down	NI/A	Time	longo	NI/A		
Op Desition (s) of Fillot		Down	N/A		ange _	N/A		
POSILION(S) OI FIIIel	IN/A							
					GAS (0	200-400)		Doroont Compos	vition
	(QVV-406)	~ 400	-				Casas	(Mixture)	
Interneous	emp. ivii Tomo Ma	n. <u>400</u>	<u>г</u>			~~	Gases	(Mixture)	
Dreheat	Temp. Ivia	ax. <u>500r</u>	-		Shieldi	ng _		100	30-40 CFH
Preneat IV	laintenance	N/A					N/A		
(Continuous o	or special heating	where applicat	ole should be	recorded)	Backin	g _	N/A		
ELECTRIC	CAL CHARA	CTERISTIC	S (QW-40	9)					
Current A	C or DC D	C	Polarit	y <u>EP</u>		_			
Amps (Ra	nge) <u>250</u>) - 325	Volts (Range)	29 - 31	_			
(Amps and in a tabula	d volts range ar form simila	should be r r to that sho	ecorded for which below	or each ele .)	ectrode size, p	osition, and	thickness, e	etc. This informat	ion may be listed
Tungsten	Electrode Siz	e and Type	N/A			(Puro tupasto	n 2% thoristod	oto)	
Mode of M	letal Transfe	r for GMAW	Sprav	v		(i ure tungate	n, 270 inonateu,	610.)	
			<u></u>	/		(Spray arc, sh	ort circuiting arc,	etc.)	
Electrode	Wire Feed S	peed Range	- 400 -	- 500 inm					
		-		500 ipin					
TECHNIQ	UE (QW-410)		300 ipin					
TECHNIQ Sting or W	UE (QW-410) Stringer							
TECHNIQ Sting or W Orifice or (UE (QW-410 /eave Bead Gas Cup Size) Stringer e 0.750	"						
TECHNIQ Sting or W Orifice or 0	UE (QW-410 /eave Bead Gas Cup Size) Stringer e <u>0.750</u>	"	ding. etc.)	SS wire	Brush			
TECHNIQ Sting or W Orifice or (Initial and Method of	UE (QW-410 /eave Bead Gas Cup Size Interpass Cle) Stringer eaning (brus	" shing, grin	ding, etc.)	_SS wire	Brush			
TECHNIQ Sting or W Orifice or 0 Initial and Method of Oscillation	UE (QW-410 /eave Bead Gas Cup Size Interpass Cle Back Gougir) Stringer e 0.750 eaning (brus	" shing, grin	ding, etc.)	_SS wire	Brush			
TECHNIQ Sting or W Orifice or O Initial and Method of Oscillation	UE (QW-410 /eave Bead Gas Cup Size Interpass Cle Back Gougir N/A) Stringer e <u>0.750</u> eaning (brus ng <u>N/4</u> Distance	" shing, grin	ding, etc.)	SS wire	Brush			
TECHNIQ Sting or W Orifice or 0 Initial and Method of Oscillation Contact Tr	UE (QW-410 /eave Bead Gas Cup Size Interpass Cle Back Gougir N/A ube to Work) Stringer e	" shing, grin <u>0.500</u>	ding, etc.)	SS wire	Brush			
TECHNIQ Sting or W Orifice or 0 Initial and Method of Oscillation Contact To Multiple or	UE (QW-410 /eave Bead Gas Cup Size Interpass Cle Back Gougin N/A ube to Work r Single Pass) <u>Stringer</u> e <u>0.750</u> eaning (brus ng <u>N//</u> Distance (per side)	" shing, grin A 0.500 Mult	ding, etc.) 0 – 0.750 ir	<u>SS wire</u>	Brush			
TECHNIQ Sting or W Orifice or o Initial and Method of Oscillation Contact To Multiple or Multiple or	UE (QW-410 /eave Bead Gas Cup Size Back Gougir N/A ube to Work r Single Pass r Single Elect) Stringer e 0.750 eaning (brus ng <u>N//</u> Distance (per side) rodes <u>S</u>	" shing, grin A 	ding, etc.)) – 0.750 ir liple	_SS wire	Brush			
TECHNIQ Sting or W Orifice or 0 Initial and Method of Oscillation Contact To Multiple or Multiple or Travel Spe	UE (QW-410 /eave Bead Gas Cup Size Back Gougir MA ube to Work r Single Pass r Single Elect eed (range)) Stringer e 0.750 eaning (brus ng <u>N//</u> Distance (per side) rodes <u>Si</u> <u>12 -</u>	" shing, grin 4 0.500 ingle 	ding, etc.) 0 – 0.750 ir tiple	_SS wire	Brush			
TECHNIQ Sting or W Orifice or of Initial and Method of Oscillation Contact Tr Multiple or Multiple or Travel Spe Peening	UE (QW-410 /eave Bead Gas Cup Size Back Gougir MA ube to Work r Single Pass r Single Elect eed (range) N/A) <u>Stringer</u> e <u>0.750</u> eaning (brus ng <u>N//</u> Distance (per side) rodes <u>Si</u> <u>12 -</u>	" shing, grin 4 	ding, etc.) 0 – 0.750 ir tiple	_SS wire	Brush			
TECHNIQ Sting or W Orifice or 0 Initial and Method of Oscillation Contact Tr Multiple or Multiple or Travel Spe Peening Other <u>P</u>	UE (QW-410 /eave Bead Gas Cup Size Back Gougir MA ube to Work r Single Pass r Single Elect eed (range) N/A eart Rotated u) Stringer eaning (brus ng <u>N/4</u> Distance (per side) rodes <u>Si</u> 	" shing, grin - 0.500 	ding, etc.) 0 – 0.750 ir tiple	<u>SS wire</u>	Brush			
TECHNIQ Sting or W Orifice or C Initial and Method of Oscillation Contact Tr Multiple or Multiple or Travel Spe Peening Other <u>P</u>	UE (QW-410 /eave Bead Gas Cup Size Back Gougir MA ube to Work r Single Pass r Single Elect eed (range) N/A 2art Rotated u) Stringer e 0.750 eaning (brus ng <u>N//</u> Distance (per side) rodes <u>Si</u> <u>12 -</u> under fixed t	" shing, grin 4 0.500 	ding, etc.)) – 0.750 ir iiple	SS wire	Brush			
TECHNIQ Sting or W Orifice or C Initial and Method of Oscillation Contact Tr Multiple or Multiple or Travel Spe Peening Other	UE (QW-410 /eave Bead Gas Cup Size Back Gougir MA ube to Work r Single Pass r Single Elect eed (range) N/A 2art Rotated u) Stringer 0.750 eaning (brus ng <u>N/4</u> Distance (per side) rodes <u>Si 12 - Inder fixed t Filler N</u>	" shing, grin A 	ding, etc.) 0 – 0.750 ir tiple	SS wire	Brush			
TECHNIQ Sting or W Orifice or C Initial and Method of Oscillation Contact Tr Multiple or Multiple or Multiple or Travel Spe Peening Other P	UE (QW-410 /eave Bead Gas Cup Size Back Gougir MA ube to Work f r Single Pass r Single Pass r Single Elect eed (range) N/A Part Rotated u) Stringer a Stringer a Stringer b Stringer	" shing, grin - 0.500 Mult ingle - 15 ipm orch Metal	ding, etc.) 0 – 0.750 ir tiple	SS wire	Brush	Travel	Other (e.c	
TECHNIQ Sting or W Orifice or 1 Initial and Method of Oscillation Contact Tr Multiple or Multiple or Travel Spe Peening Other P	UE (QW-410 /eave Bead Gas Cup Size Back Gougir M N/A ube to Work r Single Pass r Single Elect eed (range) N/A art Rotated u) Stringer Distance (per side) rodes S	" shing, grin A 0.500 	ding, etc.)) – 0.750 ir tiple C Type	SS wire	Brush	Travel	Other (e.c Comments, H	J., Remarks, ot Wire Addition,
TECHNIQ Sting or W Orifice or U Initial and Method of Oscillation Contact Tu Multiple or Multiple or Travel Spe Peening Other P 	UE (QW-410 /eave Bead Gas Cup Size Interpass Cle Back Gougir N/A ube to Work I r Single Pass r Single Elect eed (range) N/A Part Rotated u) Stringer 0.750 eaning (brus ng <u>N/4</u> Distance (per side) rodes <u>Si 12 -</u> Inder fixed t Filler N Class	" shing, grin O.500 O.500 O.500 Orch Orch Orch Dia.	ding, etc.)) – 0.750 ir tiple 	SS wire	Brush	Travel Speed Range	Other (e.c Comments, H Technique, To	g., Remarks, ot Wire Addition, orch Angle, etc.)

QW-482 SUGGEST (See QW-	ED FORMA 200.1, Secti	T FOR WELD on IX, ASME	ING PR Boiler	OCEI	DURE SPECIFICATIONS (WPS) ressure Vessel Code)
Company Edison Welding Instit Name	ute	·		Ву	Steve Manring
Welding Procedure 51108-W Specification No.	PS-7	Date	6-15-	2009	Supporting PQR N/A No.(s)
Revision 0 No.	Date	6-15-2009		_	
Welding Process(es) Gas Metal Arc V	Velding (GM	AW)		Туре	e(s) Semi-Automatic
loints $(OW 402)$					
Joint Design Vee Groove, Partial F	enetration				Details
Backing Yes) (No)	No	-			
Backing Material (Type)					
(Refer to	both backing ar	d retainers)	-		
Metal Nonfusing Me	tal				
Nonmetallic Other					
*BASE METALS (QW-403)					
P-No. 8 Group No.		to P-No.	8		Group No.
OR					
Specification Type and Grade					
to Specification Type and Grade					
OR					
Chem. Analysis and Mech. Prop.					
to Chem. Analysis and Mech. Prop.					
Thickness Range:					
Base Metal: Groove 0	.250"			Fille	ot N/A
Other Welded balance with ER	308L				
*FILLER METALS (QW-404)					
Spec. No. (SFA)	ER308L				
AWS No. (Class)	A 5.9				
F-No.	6				
A-No.					
Size of Filler Metals	0.045"				
Weld Metal Thickness Range:					
Groove	0.250"				
Fillet	N/A				
Electrode-Flux (Class)	N/A				
Flux Trade Name	N/A				
Consumable Insert	N/A				
Other	N/A				
*Each base metal-filler metal combination should	be recorded indi	vidually.		2 L au D	New Day 2000 Frieffold NU 07007 2000

					QW-482 (Ba WPS N	ck) lo. 511	08-WPS-7	Rev. 0	
POSITION	IS (0W-405	5)			POSTV			NT (OW-407)	
Position(s)) of Groove	" 1G			Tempe	rature Ranc	ie N/A	(((((((((((((((((((((((((((((((((((((((
Welding	, e. e. e. e. e								
Progressio	on: Up	N/A	Dowr	n N/A	Time R	ange <u>N</u> /	A		
Position(s)) of Fillet	N/A							
					GAS (C	QW-408)			
PREHEAT	r (QW-406)						F	Percent Compo	sition
Preheat Te	emp. N	Min. RT			_	(Gases	(Mixture)	Flow Rate
Interpass -	Temp. N	lax. <u>500</u> l	=		Shieldi	ng <u>Ar</u>		100	30-40 CFH
Preheat M	laintenance	N/A			Trailing	N/	A		
(Continuous c	or special heatir	ng where applic	able should b	e recorded)	Backing	g <u>N</u> /	A		
				00)					
		101 EKISTI 10	UN-44 (UN-4) Polor	us) itv ED					
	nge) 25	0 - 325	Volto	(Ranco)	20 - 21				
Amps (Ra	19e = 25	o chould ha	vuits	(Range)	29-31	position on	d thicknoor	oto. This inform	action may be
listed in a	tabular form	n similar to t	hat shown	below.)	ectrode size,	position, an	a inickness,	etc. This morn	nation may be
				,					
Tungsten	Electrode S	ize and Typ	e	N/A					
Ū		51				(Pure tung	gsten, 2% thoriate	ed, etc.)	
Mode of N	letal Transfe	er for GMA	N	Spray		(Spray arc	short circuiting	arc etc.)	
Flectrode	Wire Feed S	Speed Ran	ne -	400 – 500	ipm	(Opray arc	, short circulting a	arc, etc.)	
TECHNIQ	UE (QW-41	0)							
Sting or W	leave Bead	String	er						
Orifice or (Gas Cup Siz	ze <u>0.</u>	750"						
Initial and	Interpass C	leaning (br	ushing, grii	nding, etc.) SS wire	e Brush			
Method of	Back Goug	ing <u>N</u>	N/A						
Oscillation	N/A								
Contact Tu	ube to Work	Distance	0.500	– 0.750 ind	ch				
Multiple or	r Single Pas	s (per side)	Multipl	е					
Multiple or	r Single Elec	ctrodes	Single						
Travel Spe	eed (range)	12	2 – 15 ipm						
Peening	N/A								
Other P	art Rotated	under fixed	l torch						
_									
	1								
		Filler	Metal	C	urrent	4			_
\ M /cld				T	A		Travel	Other (e	e.g., Remarks,
vveid Laver(s)	Process	Class	Dia	l ype Polar	Amp Range	Range	Speed	Technique	Torch Angle, etc.)
		0.000			c.igo		12 – 15		
A 11	GMAW	ER308I	0.045"	DCEP	250 - 325	29 - 31	IPM	WFS	3 400 - 450

Appendix D

Nozzle Buttering Welding Procedure

QW-482 SU (S	GGESTED FORMA ee QW-200.1, Section	T FOR WELD on IX, ASME	ING PROCEDUR Boiler and Press	E SPECIFICATIONS (WPS) sure Vessel Code)
Company Name _Edison Welding Institut	e		By St	eve Manring
Welding Procedure Specification 51 No.	108-WPS-8	Date	6-15-2009	Supporting PQR No.(s) N/A
Revision No. 0	Date	6-15-2009		
Welding Process(es) Gas Tungsten Arc	Welding (GTAW)		Type(s)	Machine
			Type(3)	(Automatic, Manual, Machine, or Semi-Auto)
Joints (QW-402)				Details
Joint Design Bead on Pipe				
Backing (Yes) Yes	(No) No			
Backing Material (Type) SA105				
(Re	efer to both backing and ret	ainers)		
Metal Nonfusing N	letal			
Nonmetallic U Other				
*BASE METALS (OW-403)				
P-No. 1 Group No.		to P-No.	N/A	Group No.
OR OR		<u> </u>	<u></u>	<u> </u>
Specification Type and Grade				
to Specification Type and Grade	-			
OR				
Chem. Analysis and Mech. Prop.				
to Chem. Analysis and Mech. Prop.				
Thickness Range:				
Base			— ———————————————————————————————————	N/4
Metal: Groove <u>N/A</u>			Fillet	N/A
Other Butter mickness 1 /4	ninimum			
*FILLER METALS (QW-404)				
Spec. No. (SFA)	ERNiCr-3			
AWS No. (Class)	A 5.9			
F-No.	43			
A-No.				
Size of Filler Metals	0.045"			
Weld Metal Thickness Range:				
	1 ¼" minimum But	ter layer		
Groove	N/A			
Fillet	N/A			
Electrode-Flux (Class)	N/A			
Flux Trade Name	N/A			
Consumable Insert	N/A			
Other	N/A			
*Each base metal-filler metal combination should be	recorded individually.			
This form (E0	0006) may be obtained fror	m the Order Dept.,	ASME, 22 Law Drive,	Box 2300, Fairfield, NJ 07007-2300

					QW-482 (Ba	ck)			
					WPS	No. 5110	08-WPS-8	Rev()
POSITION	S (QW-405)				POST	WELD HEAT	TREATMENT ((QW-407)	
Position(s)	of Groove	N/A, Flat			Temp	erature Range	e N/A		
Welding Pr	ogression:	Up <u>N/A</u>	Dow	n N/A	Time	Range <u>N</u>	/A		
Position(s)	of Fillet								
					GAS	(QW-408)			
PREHEAT	(QW-406)							Percent Compo	sition
Preheat Te	emp. Min	225 F for . <u>3, RT rem</u>	Pass 1, 200l nainder	F for Pass 2 &			Gases	(Mixture)	Flow Rate
Interpass T	emp. Max	. <u>500</u> F			Shield	ding <u>A</u>	rgon	100%	30-40 CFH
Preheat Ma	aintenance	N/A			Trailir	ng <u>N</u>	/A		
(Continuous o	r special heating	where applicable	should be record	ed)	Backi	ng <u>N</u>	/A		
ELECTRIC	AL CHARA	CTERISTICS ((QW-409)						
Current AC	or DC D	C	Pola	rity En		_			
Amps (Rar	nge) 17	75 - 225	Volt	s (Range)	9.2 – 11.2	-			
similar to th	hat shown be	elow.)		si electiode s	ize, position, a	nu unickness,		Iation may be its	
Tunasten F	Electrode Siz	and Type	1/8" dia 2%	6 Ce with a 22	dea included	angle and a 0	12 - 03" flat		
rungotorr			1/0 010 27			(Pure tungsten,	2% thoriated, etc.)		
Mode of M	etal Transfe	r for GMAW	N/A			(O			
Electrode \	Niro Food S	need Range	70 - 90 inn	`		(Spray arc, short	circuiting arc, etc.)		
Electrode		peed italige	<u>10 00 pri</u>	•					
TECHNIQU	JE (QW-410)							
Sting or W	eave Bead	Stringer							
Orifice or C	Bas Cup Size	e#12 (0.75	50")						
Initial and I	nterpass Cle	eaning (brushi	ng, grinding,	etc.) SS wi	ire Brush				
Method of	Back Gougii	ng <u>N/A</u>							
Oscillation	N/A								
Contact Tu	be to Work	Distance	N/A						
Multiple or	Single Pass	(per side)	Multiple						
Multiple or	Single Elect	rodes Sin	gle						
Travel Spe	ed (range)	5.8 – 6.8 ipm	1						
Peening	N/A								
Other Pa	art Rotated u	under fixed tor	ch						
	1			1		1	1	1	
		Filler N	Vetal	Cu	rrent	-			
10/-1-1				-		\/-lt	Travel	Other (e.g.,	Remarks, Comments,
vveld l aver(s)	Process	Class	Dia	l ype Polar	Amp Range	Volt Range	Speed	Hot Wire Add	mon, recnnique, rorch
	CTANA	EDNICER	0.045"		175 005	0.0 44.0	5.8 - 6.8		2 70 00 inm
	GIAW		0.040	DOEN	175-225	3.2 - 11.Z	11-111	VVE	5 7 0 – 30 ipili

QW-482 SU (5	JGGESTED FORMAT FOR WELDI See QW-200.1, Section IX, ASME E	NG PROCEDURE Boiler and Pressu	E SPECIFICATIONS (WPS) ure Vessel Code)
Company Name _ Edison Welding Insti	tute	By Stev	ve Manring
Welding Procedure Specification No. 5	51108-WPS-9 Date	6-15-2009	Supporting PQR No.(s) N/A
Revision No. 0	Date 6-15-2009		
Welding Process(es) Gas Tungsten	Arc Welding (GTAW)	Type(s)	Machine
			(Automatic, Manual, Machine, or Semi-Auto)
Joints (QW-402)			Details
Joint Design Bead on Pipe			
Backing (Yes)	(No) <u>No</u>		
Backing Material (Type)	Refer to both backing and retainers)		
(
	4-4-1		
	vietai		
*BASE METALS (QW-403)			
P-No. 3 Group No.	to P-No. N	I/A	Group No.
OR			
Specification Type and Grade			
to Specification Type and Grade			
OR			
Chem. Analysis and Mech. Prop.			
to Chem. Analysis and Mech. Prop.			
Thickness Range:			
Base			
Metal: Groove <u>N/A</u>		Fillet	Ν/Α
Other Butter Thickness 1 1/4 "	minimum		
FILLER METALS (QW-404)			
AWS No. (Class)	A 5.14		
F-INO.	43		
A-NO. Size of Filler Metale	0.045"		
Size of Filler Metals	1.1/" minimum Butter lever		
Groovo			
Fillot	N/A		
Fillet	N/A		
Electrode-Flux (Class)	N/A		
	N/A		
Other	N/A		
⁻Each base metal-filler metal combination should b This form (E	e recorded individually. 00006) may be obtained from the Order Dept., <i>i</i>	ASME, 22 Law Drive, B	ox 2300, Fairfield, NJ 07007-2300

				QV	V-482 (Back)				
					WPS No.	51108-\	VPS-9	Rev. 0	
POSITIONS	S (QW-405)				POSTWE	LD HEAT TR	EATMENT (QV	V-407)	
Position(s) of	of Groove	N/A, Flat			Temperat	ure Range	N/A		
Welding Pro	gression: Up	N/A	Down	N/A	Time Rar	ige <u>N/A</u>			
Position(s) of	of Fillet								
					GAS (QV	/-408)			
PREHEAT (QW-406)						Pe	rcent Composit	ion
Preheat Ter	np. Min.	400 F Pass Balance	1, 400F Pass	2 & 3, RT	_	G	ases	(Mixture)	Flow Rate
Interpass Te	emp. Max.	500F			Shielding	Argor	<u> </u>	100%	30-40 CFH
Preheat Ma	intenance	N/A			Trailing	N/A			
(Continuous or :	special heating who	ere applicable shoul	d be recorded)		Backing	N/A			
ELECTRIC/	AL CHARACTI	ERISTICS (QW	/-409)						
Current AC	or DC DC	, · ·	Polarity	En					
Amps (Rang	ge) 175	- 225	Volts (R	ange) 9.2 -	- 11.2				
Tungsten El	ectrode Size a	and Type 1	/8" dia 2% Ce	e with a 22 de	g included ang	le and a .02 -	.03" flat oriated, etc.)		
Mode of Me	tal Transfer fo	r GMAW	I/A		(***		,,		
					(Sp	ray arc, short circu	iting arc, etc.)		
Electrode W	/ire Feed Spee	ed Range 7	'0 - 90 ipm						
TECHNIQU	E (QW-410)								
Sting or We	ave Bead	Stringer							
Orifice or Ga	as Cup Size	#12 (0.750")							
Initial and In	iterpass Clean	ing (brushing, g	grinding, etc.)	SS wire E	Brush				
Method of E	ack Gouging	N/A							
Oscillation	N/A								
Contact Tub	e to Work Dis	tance <u>N</u>	N/A						
	Single Pass (p	erside) Mult	tiple						
Multiple or S	• "								
Multiple or S Multiple or S	Single Electroc	les <u>Single</u>							
Multiple or \$ Multiple or \$ Travel Spee	Single Electroc	les <u>Single</u> 5.8 – 6.8 ipm							
Multiple or \$ Multiple or \$ Travel Spee Peening	Single Electroc ed (range)	les <u>Single</u> 5.8 – 6.8 ipm							
Multiple or \$ Multiple or \$ Travel Spee Peening Other	Single Electroc ed (range) N/A rt Rotated und	les <u>Single</u> 5.8 – 6.8 ipm er fixed torch							
Multiple or \$ Multiple or \$ Travel Spee Peening Other	Single Electroc d (range) N/A rt Rotated und	les <u>Single</u> 5.8 – 6.8 ipm er fixed torch							
Multiple or § Multiple or § Travel Spee Peening OtherPa	Single Electroc ed (range) N/A rt Rotated und	les <u>Single</u> 5.8 – 6.8 ipm er fixed torch							
Multiple or § Multiple or § Travel Spee Peening Other Pa	Single Electroc ed (range) N/A rt Rotated und	les <u>Single</u> 5.8 – 6.8 ipm er fixed torch Filler N	Aetal	Cur	rent				
Multiple or § Multiple or § Travel Spee Peening _ Other Pa	Single Electroc ed (range) N/A rt Rotated und	les <u>Single</u> 5.8 – 6.8 ipm er fixed torch Filler N	Netal	Cur	rent		Travel	Other (e.g., Remarks,
Multiple or \$ Multiple or \$ Travel Spee Peening _ Other Pa	Single Electroc ed (range) N/A rt Rotated und	les <u>Single</u> 5.8 – 6.8 ipm er fixed torch Filler N	Aetal Dia	Cur	rent	Volt	Travel	Other (Comments,	e.g., Remarks, Hot Wire Addition,
Multiple or \$ Multiple or \$ Travel Spee Peening _ Other Pa Weld Layer(s)	Single Electroc ed (range) N/A rt Rotated und Process	les <u>Single</u> 5.8 – 6.8 ipm er fixed torch Filler N Class	Aetal Dia.	Cur Type Polar.	rent Amp Range	Volt Range	Travel Speed Range	Other (Comments, Technique,	e.g., Remarks, Hot Wire Addition, , Torch Angle, etc.)

Appendix E

Butter Weld Penetrant Inspection Report

LIQUID PENETRANT EXAMINATION REPORT

ENGINEER	ENGINEER		JOB NUMBER	L .	DATE			
Matt Borin	g		51108GTH		June 24, 200	9		
ITEM DESC	RIPTION / DR	AWING NO.	PROCEDURE	NO.	REPORT NO.			
Weld Neck	Flange (Wel	d Build Up)	REF: ASTM E	1417-05	51108GTH /	LPT-1		
PEN TYPE SKL-SP1	BATCH NO. 04G019	DEV. TYPE SKD-S2	BATCH NO. 05J06K 05708	CLEAN TYPE SKC-S	BATCH NO. 05H06K 035199	ACCEPTANCE CRITERIA REF: ASTM E 1417-05 Paragraph 7.6.2		
DWELL TIM	1E	DEVELOPIN	G TIME	DRYING TIME	000177	POST CLEANING		
20 MINUTES	5	10 MINUTES		5 MINUTES Yes		Yes		
IDENTIFICA LOCATION	TION/	ACCEPT	REJECT	DEFECT	REMARKS			
Weld build Neck Flang	up on Weld e	Accept			OD area betw rounded indic to be non rele irregularities excess penetr	veen section P & M had cations that were determined evant. This was due to surface preventing proper removal of ant at the toe of a weld pass.		
SKETCH - SH	IOW LOCATIO	N		(USI	E ADDITIONAL	SHEETS AS REQUIRED)		
	<u>No acce</u> per AST	ot / reject ci 'M Standar	riteria was p d Practice E	rovided so ev 1417-05, Par	aluation wa agraph 7.6.	<u>s done</u> 2.		

LIQUID PENETRANT EXAMINATION REPORT

LIQUID PENETRANT EXAMINATION REPORT

SEE ADDITIONAL SHEETS DEFECT CODE	
LA = LAMINATION IF = RI = ROUNDED INDICATION LI =	INCOMPLETE FUSION $S = SLAG$ $P = POROSITY$ LINEAR INDICATION $C = CRACKS$ OTHER = SPECIFY
EXAMINATION PERFORMED BY: PERRY WHITE	EVALUATOR: PERRY WHITE (ASNT NDT LEVEL III CERT. # 139980)
	6/24/09

Appendix F

Safe End and Back Weld Welding Procedure

QW-482 S (UGGESTED FORMA See QW-200.1, Section	T FOR WELD on IX, ASME	ING PROCEDUR Boiler and Press	E SPECIFICATIONS (WPS) ure Vessel Code)
Company Name <u>Edison Welding Instit</u>	ute		By Ste	eve Manring
Velding Procedure Specification No.	51108-WPS-10 Date	Date 6-15-2009	6-15-2009	Supporting PQR No.(s) N/A
	200	0 10 2000		
/elding Process(es) Gas Tungsten Al	c Welding (GTAW)		Type(s)	Machine (Automatic, Manual, Machine, or Semi-Auto)
Joints (QW-402)				Details
Joint Design Double Sided Groov	ve Weld			
Backing (Yes) <u>x</u>	(No)			
Backing Material (Type) P8 and P4	3			
(Refer to both backing and ret	ainers)		
Metal Nonfusing	Metal			
□ Nonmetallic □ Other				
*BASE METALS (QW-403)				
P-No. 8 Group No.		to P-No.	3	Group No.
OR				
Specification Type and Grade				
to Specification Type and Grade				
OR				
Chem. Analysis and Mech. Prop.				
to Chem. Analysis and Mech. Prop.				
Thickness Range:				
Base Metal: Groove	1"		Fillet	N/A
Other				
*FILLER METALS (QW-404)				
Spec. No. (SFA)	ERNICr-3			
AWS No. (Class)	A 5.14			
F-No.	43			
A-No.				
Size of Filler Metals	0.045"			
Weld Metal Thickness Range:				
Groove	1"			
Fillet	<u>N/A</u>			
Electrode-Flux (Class)	N/A			
Flux Trade Name	N/A			
Consumable Insert	N/A			
Other	N/A			
1				

				ເ	QW-482 (Back))				
					WPS N	o. <u>51108</u>	-WPS-10	Rev. 0		
POSITIONS	S (QW-405)				POSTV	VELD HEAT T	REATMENT (QV	√- 407)		
Position(s)	of Groove	1G			Temper	ature Range				
Welding Pro	ogression: Up	N/A	Down	N/A	Time Ra	Time Range				
Position(s)	of Fillet N/A	۱								
					GAS (C	łW-408)				
PREHEAT ((QW-406)						Per	cent Composi	tion	
Preheat Ter	mp. Min.	RT				(Gases	(Mixture)	Flow Rate	
Interpass Te	emp. Max.	500F			Shieldir	ng <u>Ar/H</u>	le7	5/25	30-40 CFH	
Preheat Ma	intenance	N/A			Trailing	N/A				
(Continuous or	special heating wh	ere applicable shoul	d be recorded)		Backing	J Ar	1	00	10-30 CFH	
ELECTRICAL CHARACTERISTICS (QW-409)										
Current AC	or DC DC		Polarity	En						
Amps (Rang	ge) <u>75</u> -	- 260 *	Volts (R	lange) <u>9.5</u>	5 – 10.3					
(Amps and similar to the	volts range sh at shown belo	ould be recorde w.)	ed for each ele	ectrode size,	, position, and	thickness, etc.	. This information	∩ may be liste	d in a tabular form	
Tungsten E	lectrode Size a	and Type _1	1/8" dia 2% C	e with a 22 d	leg included ar	ngle and a .02	03" flat			
Mode of Mo	atal Transfor fo		ν/Δ		(Pure tungsten, 2%	thoriated, etc.)			
	ala transfer to		V/A		(!	Spray arc, short cir	cuiting arc, etc.)			
Electrode W	/ire Feed Spee	ed Range 2	20 - 90 ipm							
TECHNIQU	E (QW-410)									
Sting or We	ave Bead	Stringer								
Orifice or G	as Cup Size	#12 (0.750")								
Initial and Ir	nterpass Clear	ning (brushing, g	grinding, etc.)) SS wire	Brush					
Method of E	Back Gouging	Machined ba	ack side groo [,]	ve						
Oscillation	N/A									
Contact Tub	be to Work Dis	tance N	/A							
Multiple or S	Single Pass (p	er side) Mul	tiple							
Multiple or S	Single Electro	des Single								
Travel Spee	ed (range)	mai 8.6 – 8.5								
Peenina	N/A									
Other Pa	rt Rotated und	ler fixed torch								
		Filler M	Vetal	Cu	urrent					
								Other	(e.g., Remarks,	
Weld Layer(s)	Process	Class	Dia.	Type Polar.	Amp Range	Volt Range	Travel Speed Range	Comments Technique	, Hot Wire Addition, , Torch Angle, etc.)	
1	GTAW	ERNiCr-3	0.045"	DCEN	125 – 175	9.5 – 10	5 – 7 IPM	WFS	3 15 – 25 IPM	
2	GTAW	ERNiCr-3	0.045"	DCEN	150 – 100	9.5 – 10	5 – 7 IPM	WFS	3 25 – 35 IPM	
3-4	GTAW	ERNiCr-3	0.045"	DCEN	210 - 230	9.5 – 11	5 – 7 IPM	WFS	3 60 – 85 IPM	
Balance	GTAW	ERNiCr-3	0.045"	DCEN	160 – 220	9.5 – 10.5	5.5 – 6.5 IPM	WFS	3 85 – 95 IPM	

Appendix G

Safe End to Stainless Steel Pipe Weld Procedure

	(See QW-200.1, Section	JII IA, ASIME E	Boiler and Press	ure Vessel Code)
mpany Name Edison Welding Insti	tute		By <u>Ste</u>	eve Manring
elding Procedure Specification No.	51108-WPS-12	Date	6-15-2009	Supporting PQR No.(s) N/A
evision No. 0	Date	6-15-2009		
elding Process(es) Shielded Metal	Arc Welding (SMAW)		Type(s)	Manual (Automatic, Manual, Machine, or Semi-Auto)
Joints (QW-402)				Details
Joint Design Vee Groove. 15 de	earee extended land			
Backing (Yes) X	(No)			
Backing Material (Type) 308L	· · /			
	(Refer to both backing and ret	ainers)		
Metal Nonfusing	g Metal			
□ Nonmetallic □ Other				
*BASE METALS (QW-403)				
P-No. 8 Group No).	to P-No. 8	5	Group No.
UR Specification Type and Crade				
to Specification Type and Grade				
to Specification Type and Grade				
OR Chem Analysis and Mech Pron				
OR Chem. Analysis and Mech. Prop. to Chem. Analysis and Mech. Prop.				
OR Chem. Analysis and Mech. Prop. to Chem. Analysis and Mech. Prop. Thickness Range:				
OR Chem. Analysis and Mech. Prop. to Chem. Analysis and Mech. Prop. Thickness Range: Base Metal: Groove 1" r	nonimal		Fillet	N/A
OR Chem. Analysis and Mech. Prop. to Chem. Analysis and Mech. Prop. Thickness Range: Base Metal: Groove <u>1" r</u> Other	nonimal		Fillet	N/A
OR Chem. Analysis and Mech. Prop. to Chem. Analysis and Mech. Prop. Thickness Range: Base Metal: Groove <u>1" r</u> Other	nonimal		Fillet	_ N/A
OR Chem. Analysis and Mech. Prop. to Chem. Analysis and Mech. Prop. Thickness Range: Base Metal: Groove <u>1" r</u> Other *FILLER METALS (QW-404)	nonimal		Fillet	N/A
OR Chem. Analysis and Mech. Prop. to Chem. Analysis and Mech. Prop. Thickness Range: Base Metal: Groove <u>1" r</u> Other *FILLER METALS (QW-404) Spec. No. (SFA)	nonimal		Fillet	N/A
OR Chem. Analysis and Mech. Prop. to Chem. Analysis and Mech. Prop. Thickness Range: Base Metal: Groove <u>1" r</u> Other *FILLER METALS (QW-404) Spec. No. (SFA) AWS No. (Class)	nonimal 		Fillet	N/A
OR Chem. Analysis and Mech. Prop. to Chem. Analysis and Mech. Prop. Thickness Range: Base Metal: Groove <u>1" r</u> Other *FILLER METALS (QW-404) Spec. No. (SFA) AWS No. (Class) F-No.	nonimal 		Fillet	_ N/A
OR Chem. Analysis and Mech. Prop. to Chem. Analysis and Mech. Prop. Thickness Range: Base Metal: Groove <u>1" r</u> Other *FILLER METALS (QW-404) Spec. No. (SFA) AWS No. (Class) F-No. A-No.	nonimal 		Fillet	_ N/A
OR Chem. Analysis and Mech. Prop. to Chem. Analysis and Mech. Prop. Thickness Range: Base Metal: Groove <u>1" r</u> Other *FILLER METALS (QW-404) Spec. No. (SFA) AWS No. (Class) F-No. A-No. Size of Filler Metals	E308L A 5.4 6 1/8 – 5/32"		Fillet	N/A
OR Chem. Analysis and Mech. Prop. to Chem. Analysis and Mech. Prop. Thickness Range: Base Metal: Groove <u>1" r</u> Other *FILLER METALS (QW-404) Spec. No. (SFA) AWS No. (Class) F-No. A-No. Size of Filler Metals Weld Metal Thickness Range:	E308L A 5.4 6 1/8 – 5/32"		Fillet	N/A
OR Chem. Analysis and Mech. Prop. to Chem. Analysis and Mech. Prop. Thickness Range: Base Metal: Groove <u>1" r</u> Other *FILLER METALS (QW-404) Spec. No. (SFA) AWS No. (Class) F-No. A-No. Size of Filler Metals Weld Metal Thickness Range: Groove	nonimal E308L A 5.4 6 1/8 – 5/32" 1" minimum		Fillet	_N/A
OR Chem. Analysis and Mech. Prop. to Chem. Analysis and Mech. Prop. Thickness Range: Base Metal: Groove <u>1" r</u> Other *FILLER METALS (QW-404) Spec. No. (SFA) AWS No. (Class) F-No. A-No. Size of Filler Metals Weld Metal Thickness Range: Groove Fillet	nonimal 		Fillet	N/A
OR Chem. Analysis and Mech. Prop. to Chem. Analysis and Mech. Prop. Thickness Range: Base Metal: Groove <u>1" r</u> Other *FILLER METALS (QW-404) Spec. No. (SFA) AWS No. (Class) F-No. A-No. Size of Filler Metals Weld Metal Thickness Range: Groove Fillet Electrode-Flux (Class)	E308L A 5.4 6 1/8 – 5/32" 1" minimum N/A N/A		Fillet	N/A
OR Chem. Analysis and Mech. Prop. to Chem. Analysis and Mech. Prop. Thickness Range: Base Metal: Groove <u>1" r</u> Other *FILLER METALS (QW-404) Spec. No. (SFA) AWS No. (Class) F-No. A-No. Size of Filler Metals Weld Metal Thickness Range: Groove Fillet Electrode-Flux (Class) Flux Trade Name	E308L A 5.4 6 1/8 – 5/32" 1" minimum N/A N/A N/A		Fillet	N/A
OR Chem. Analysis and Mech. Prop. to Chem. Analysis and Mech. Prop. Thickness Range: Base Metal: Groove <u>1" r</u> Other *FILLER METALS (QW-404) Spec. No. (SFA) AWS No. (Class) F-No. A-No. Size of Filler Metals Weld Metal Thickness Range: Groove Fillet Electrode-Flux (Class) Flux Trade Name Consumable Insert	E308L A 5.4 6 1/8 – 5/32" 1" minimum N/A N/A N/A N/A N/A		Fillet	N/A

				QV	V-482 (Back)				
					WPS No.	51108-	WPS-12	Rev. <u>C</u>)
POSITIONS	S (QW-405)				POSTWE	LD HEAT TR	EATMENT (Q)	N-407)	
Position(s)	of Groove	1G			Temperat	ure Range			
Welding Pro	gression: Up	N/A	Down	N/A	Time Rar	ige			
Position(s)	of Fillet				_				
					GAS (QW	/-408)			
PREHEAT (QW-406)						Pe	rcent Compos	sition
Preheat Ter	np. Min.	RT			_	G	ases	(Mixture)	Flow Rate
Interpass Te	emp. Max.	500F			Shielding	Ar		100	30 – 40 CFH
Preheat Ma	intenance I	N/A			Trailing	N/A			
(Continuous or	special heating whe	ere applicable shou	uld be recorded)		Backing	N/A			
ELECTRIC	AL CHARACTE	ERISTICS (QV	V-409)						
Current AC	or DC DC		Polarity	EP					
Amps (Rang	ge) <u>110</u>	-150	Volts (R	ange) <u>23-2</u>	7				
tabular form	a thickness, et similar to that	c. This inform shown below.	iation may be .)	listed in a					
Tungsten E	ectrode Size a	ind Type			(Pu	re tungsten, 2% t	horiated, etc.)		
Mode of Me	tal Transfer fo	r GMAW	N/A			-			
Electrode W	/ire Feed Spee	d Range			(Oþ	ay arc, short circ	aning arc, etc.)		
TECHNIQU	E (QW-410)								
Sting or We	ave Bead	Stringer							
Orifice or G	as Cup Size								
Initial and Ir	iterpass Clean	ing (brushing,	grinding, etc.)	SS wire E	Brush				
Method of E	ack Gouging	N/A							
Oscillation	N/A								
Contact Tut	e to Work Dis		N/A						
Multiple or S	Single Pass (pe	er side) <u>Mu</u>	Itiple						
Multiple or S	Single Electrod	es <u>Single</u>							
Travel Spee	ed (range)	1-6 IPM							
Peening	IN/A								
Other Pa	IT ROTATED								
		— …	Matal	2					
		Filler		Cur	rent		Tanadal	0.1	
Weld	Process	Class	Diamotor	Type	Amp Rango	Volt	Speed Bange	Comment	s, Hot Wire Addition,
Δην	SMAW/	ESUBI	1/2"		110-120	23-27		reciniqu	
Δηγ	SMAW	ESUGE	5/20"		140.150	23-21			
Ану	SIVIAVV	ESUGL	5/32	DUEP	140-150	23-21	4-0 IPIVI	1	

(See QW-200.1, Section IX, ASMI	E Boiler and Press	ure Vessel Code)
ompany Name Edison Welding Instit	ute	By Ste	eve Manring
elding Procedure Specification No.	51108-WPS-13 Dat	e <u>6-15-2009</u>	Supporting PQR No.(s) <u>N/A</u>
evision No. 0	Date 6-15-2009	9	
/elding Process(es) Gas Tungsten A	rc Welding (GTAW)	Type(s)	Machine (Automatic Manual Machine or Semi-Auto)
Joints (OW-402)			Details
Joint Design Vee Groove, 15 de	aree extended land		Dotails
Backing (Yes)	(No) X		
Backing Material (Type)			
	Refer to both backing and retainers)		
Metal Nonfusing	Metal		
Nonmetallic Other			
	to P-No	8	Group No
		0	Cloup No
Specification Type and Grade			
to Specification Type and Grade			
OR			
Chem. Analysis and Mech. Prop.			
to Chem. Analysis and Mech. Prop.			
Thickness Range:			
Base Metal: Groove <u>1" r</u>	onimal	Fillet	N/A
Other			
Spec No. (SEA)	ER308		
	A5 9		
AWS No. (Class)	7.0.0		
AWS No. (Class) F-No	6		
AWS No. (Class) F-No. A-No.	6		
AWS No. (Class) F-No. A-No. Size of Filler Metals	6		
AWS No. (Class) F-No. A-No. Size of Filler Metals Weld Metal Thickness Range:	6 0.045"		
AWS No. (Class) F-No. A-No. Size of Filler Metals Weld Metal Thickness Range: Groove	6 0.045" ¼"		
AWS No. (Class) F-No. A-No. Size of Filler Metals Weld Metal Thickness Range: Groove Fillet	6 0.045" ¼" N/A		
AWS No. (Class) F-No. A-No. Size of Filler Metals Weld Metal Thickness Range: Groove Fillet Electrode-Flux (Class)	6 0.045" <u>1/4</u> " N/A N/A		
AWS No. (Class) F-No. A-No. Size of Filler Metals Weld Metal Thickness Range: Groove Fillet Electrode-Flux (Class) Flux Trade Name	6 0.045" /4" N/A N/A N/A N/A		
AWS No. (Class) F-No. A-No. Size of Filler Metals Weld Metal Thickness Range: Groove Fillet Electrode-Flux (Class) Flux Trade Name Consumable Insert	6 0.045" /⁄/" N/A N/A N/A N/A N/A		
AWS No. (Class) F-No. A-No. Size of Filler Metals Weld Metal Thickness Range: Groove Fillet Electrode-Flux (Class) Flux Trade Name Consumable Insert Other	6 0.045" <u>¼</u> " N/A N/A N/A N/A N/A		

				C	W-482 (Back) WPS N) o. 51108	-WPS-13	Rev. 0				
POSITIONS (QW-405) Position(s) of Groove 1G Welding Progression: Up N/A Down N/A						POSTWELD HEAT TREATMENT (QW-407) Temperature Range Time Range						
Position(s)					GAS (C	N/-408)						
ρρεμεδτ	(0)//-406)				GAS (C	(00-400)	Por	cent Composition				
Preheat Ter	mp. Min.				Gases (Mixture) Flow Rate							
Interpass T	emp. Max.	500F				ng Ar/H	le 7:	5/25 30 – 40 CFH				
Preheat Ma	intenance	N/A			Trailing	N/A						
(Continuous or	special heating wh	ere applicable shoul	d be recorded)		Backing	g Ar	10	00 10 – 20 CFH				
ELECTRIC Current AC Amps (Ran (Amps and position, an tabular form	AL CHARACT or DC <u>DC</u> ge) <u>75 -</u> volts range sh d thickness, e a similar to tha	ERISTICS (QW - 260 * ould be recorde tc. This informa t shown below.)	7-409) Polarity Volts (R ed for each el ation may be	<u>EN</u> ange) <u>9.5</u> ectrode size, listed in a	<u>- 10.3</u> , Pulsed	and Non Puls	ed Current, See ir	nformation below.				
			(0)" I' 00(0									
I ungsten E	lectrode Size a	and Type 1	/8" dia 2% C	e with a 22 d	leg included ar	Pure tungsten, 2%	03" flat thoriated, etc.)					
Mode of Me	tal Transfer fo	or GMAW	I/A									
Electrode W	/ire Feed Spee	ed Range 2	20 - 90 ipm		(5	Spray arc, short cir	cuiting arc, etc.)					
TECHNIQU	E (QW-410)											
Sting or We	ave Bead	Stringer										
Orifice or G	as Cup Size	#12 (0.750")										
Initial and Ir	nterpass Clear	ning (brushing,	grinding, etc.)	SS wire	Brush							
Method of E	Back Gouging	N/A										
Oscillation	N/A											
Contact Tul	be to Work Dis	stance	N/A									
Multiple or \$	Single Pass (p	erside) <u>Mul</u>	tiple									
Multiple or S	Single Electro	des <u>Single</u>										
Travel Spee	ed (range)	5.8 – 6.8 ipm										
Other Po	rt Rotated upo	her fixed torch										
		Filler Metal Current										
Weld Layer(s)	Process	Class	Dia.	Type Polar.	Amp Range	Volt Range	Travel Speed Range	Other (e.g., Remarks, Comments, Hot Wire Addition, Technique, Torch Angle, etc.)				
1	GTAW	ERNiCr-3	0.045"	DCEN	125 – 175	9.5 – 10	5 - 7 IPM	WFS 15 – 25 IPM				
2	GTAW	ERNiCr-3	0.045"	DCEN	150 – 100	9.5 – 10	5 – 7 IPM	WFS 25 – 35 IPM				
3-4	GTAW	ERNiCr-3	0.045"	DCEN	210 – 230	9.5 – 11	5 – 7 IPM	WFS 60 – 85 IPM				
Balance	GTAW	ERNiCr-3	0.045"	DCEN	260 - 220	9.5 – 10.5	5.5 – 6.5 IPM	WFS 85 – 95 IPM				
Сар	GTAW	ERNiCr-3	0.045"	DCEN	210 – 230	9.5 - 10	6 – 6.5 IPM	WFS 80 – 90 IPM				

Appendix H

Safe End Inco 182 SMAW Groove Weld Procedure

QW-482	SUGGESTED FORMAT (See QW-200.1, Section	FOR WELDING	PROCEDUF er and Press	RE SPECIFICATIONS (WPS) sure Vessel Code)	
Company Name _Edison Welding Inst	itute	·	By St	eve Manring	
Welding Procedure Specification No.	51108-WPS-11	Date 6-	15-2009	Supporting PQR No.(s)	N/A
Revision No. 0	Date	6-15-2009			
Welding Process(es) Shielded M	etal Arc Welding (SMAW	V)	Type(s)	Manual	
				(Automatic, Manual, Machir	ne, or Semi-Auto)
Joints (QW-402)				Details	
Joint Design <u>Double Sided Groc</u>					
Backing (Yes) Yes	(NO)				
Backing Material (Type) P-No al	(Refer to both backing and reta	iners)			
	Metal				
	metal				
*BASE METALS (QW-403)					
P-No. 8 Group No.).	to P-No. 43		Group No.	
OR				·	
Specification Type and Grade					
to Specification Type and Grade					
OR					
Chem. Analysis and Mech. Prop.					
to Chem. Analysis and Mech. Prop.					
Thickness Range:					
Base Metal: Groove	1" nonimal		Fillet	N/A	
Other					
*FILLER METALS (QW-404)					
Spec. No. (SFA)	ENiCrFe-3				
AWS No. (Class)	A 5.11				
F-No.	43				
A-No.					
Size of Filler Metals	1/8 – 5/32"				
Weld Metal Thickness Range					
Groove	1" minimum				
Fillet	N/A				
Electrode-Flux (Class)	N/A				
Flux Trade Name	N/A				
Consumable Insert	N/A				
Other	N/A				

				QV	V-482 (Back)				
					WPS No.	51108-	WPS-11	Rev. 0	
POSITIONS	IONS (QW-405) POSTWELD HEAT TREATMENT (QW-407)								
Position(s)	of Groove	1G			Temperature Range				
Welding Pro	ogression: Up	N/A	Down	N/A	Time Range				
Position(s)	of Fillet								
					GAS (QV	/-408)			
PREHEAT	(QW-406)						Pe	rcent Compositior	า
Preheat Ter	mp. Min.	RT				G	ases	(Mixture)	Flow Rate
Interpass T	emp. Max.	500F			Shielding	N/A			
Preheat Ma	intenance	N/A			Trailing	N/A			
(Continuous or	special heating wh	ere applicable should	be recorded)		Backing	N/A			
	AL CHARACT	FRISTICS (OW)	-409)						
Current AC	or DC DC	2.101100 (QW	Polarity	FP					
Amps (Ran	ge) 100)-140	Volts (R	ange) 23-2	7				
(Amns and	volts range sh	ould be recorde	d for each el	ectrode size r	osition and th	ickness etc	This information	on may be listed in	a tabular form
similar to th	at shown belo	w.)		0001000 0120, p	booldon, and a			on may be noted in	
Tungsten E	lectrode Size a	and Type <u>N</u>	/A						
			1.0		(Pt	ire tungsten, 2% t	horiated, etc.)		
INIODE OF INIC	etal Transfer to	or GMAW N	/A		(Sp	ray arc, short circu	uiting arc, etc.)		
Electrode V	Vire Feed Spee	ed Range N	/A			•			
TEOLINIIOU									
	E (QVV-410)	0							
Sting or We	ave Bead	Stringer							
Orifice or G	as Cup Size	<u>N/A</u>							
Initial and Ir	nterpass Clear	ning (brushing, g	rinding, etc.)) <u>SS wire E</u>	Brush				
Method of E	Back Gouging	The back gro	ove was ma	chined					
Oscillation	N/A								
Contact Tul	be to Work Dis	stance <u>N/</u>	A						
Multiple or \$	Single Pass (p	er side) <u>Mult</u>	ple						
Multiple or S	Single Electroo	des Single							
Travel Spee	ed (range)	2 – 4 IPM							<u> </u>
Peening	N/A								
Other Pa	rt Rotated								
		Filler M	Cur	rent	nt				
				_			Travel	Other (e.g	g., Remarks,
Weld	Process	Close	Dia	Type	Amp	Volt Rango	Speed	Comments, H	ot Wire Addition,
	CMANA		1/9"		100 110	22.27			oron Angle, etc.)
Any	SMAM	ENICIEC 2	1/0		100-110	23-21			
Any	SIVIAW	LINICITE-3	0/32	DUEF	120-120	23-21	2 - 4 15 101		

Appendix B: Round Robin Problem Statement

This guidance was provided to the analysts with the intent of reducing previously-observed scatter in WRS predictions.

Weld Residual Stress Round Robin Problem Statement:

Phase 2b of the NRC/EPRI WRS Validation Program

Version 3.0 October 25, 2013

US Nuclear Regulatory Commission Office of Nuclear Regulatory Research Division of Engineering Component Integrity Branch

Introdu	lction	. 1
Geome	etry	. 1
2.1	Óverall	. 1
2.2	Nozzle	. 2
2.3	Nozzle Buttering	. 2
2.4	Nozzle to Safe End DM Weld	. 3
2.5	Groove Machining and Back Weld/Weld Crown Machining	. 4
2.6	Pipe and Closure Weld	. 5
Model	Guidance	. 5
3.1	Hardening Law	. 5
3.2	Weld Bead Geometry Definition	. 6
3.3	Thermal Model Tuning	. 6
3.4	Structural Boundary Conditions	. 7
3.5	Material Properties	. 8
3.6	Post Processing	. 8
3.7	Pass Lumping and Bead Sequence	. 8
3.8	Miscellaneous	. 9
Report	ing	. 9
Measu	rement Description	. 9
5.1	Hole Drilling Measurements	10
5.2	Contour and Slitting Measurements	11
	Introdu Geome 2.1 2.2 2.3 2.4 2.5 2.6 Model 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 Report Measu 5.1 5.2	Introduction Geometry 2.1 Overall 2.2 Nozzle 2.3 Nozzle Buttering 2.4 Nozzle to Safe End DM Weld 2.5 Groove Machining and Back Weld/Weld Crown Machining 2.6 Pipe and Closure Weld Model Guidance

Note to participants: please read the entire problem statement, including the participant guestionnaire, before beginning.

1 Introduction

Weld residual stress (WRS) has been identified as an important driver for primary water stress corrosion cracking, which is observed in nuclear power plant safety-related components. As a result, the U.S. Nuclear Regulatory Commission (NRC) and the Electric Power Research Institute (EPRI) initiated the WRS Validation Program. This research effort, performed under an addendum to the ongoing Memorandum of Understanding between NRC and EPRI, was aimed at validating 2-D axisymmetric finite element (FE) models for WRS prediction and quantifying associated modeling uncertainty.

Four phases of the program have been completed, including measurement and modeling of WRS in prototype nozzle-to-pipe dissimilar metal welds. These studies were double-blind, in that the modelers and measurement personnel did not have access to each other's results. Phase 2a, in particular, consisted of an international round robin modeling study with 19 participants. That study showed that significant analyst-to-analyst scatter exists in the results. The observed scatter was driven by choice of hardening law to some degree, indicating that guidance on hardening law use is necessary to develop reliable numerical procedures for WRS prediction.

The aim of the present study is to determine if the previously-observed scatter can be reduced by providing analysts with additional guidance on model development. Guidance was developed as a part of the previous phases of the WRS Program. EPRI published MRP-317 that discusses various model attributes and best practices for reliable, consistent results. Additional WRS FE work was performed as part of development of the Extremely Low Probability of Rupture (xLPR) version 2.0 code. Three independent modelers were able to obtain much more consistent results than was observed in the Phase 2a work. The modeling recommendations developed from this previous work will be applied here.

2 Geometry

2.1 Overall

The overall geometry for the Phase 2b mock-up is shown in Figure 1. All fabrication drawings for this mock-up are found in Appendix A. *Note that the drawing dimensions in Appendix A are provided in English units*, but can be easily converted to SI units (1 inch = 25.4 mm). Figure A-1 provides relevant mockup dimensions. The nozzle was attached to a steel plate to represent the stiffness of the nozzle in service. The welds between the stiffening plate and the nozzle are detailed in the Appendix A drawings, but will not be analyzed in this effort. The mockup consists of a carbon steel nozzle, Alloy 182 butter layer on the nozzle, an Alloy 182 dissimilar metal (DM) weld between the butter and the stainless steel safe end, and a stainless steel weld between the safe end and the stainless steel pipe. A groove was machined at the ID surface of the DM weld, followed by a back weld to mimic a 360° repair. The exact process is described in chronological sequence in the following paragraphs. Further details on the welding process are found in the report named "EWI Report.pdf," beginning with Section 2.3, "WOM Mock-Up."

Figure 1 Overall mock-up geometry

2.2 Nozzle

The A36 steel stiffening plate and SA105 low alloy steel nozzle may be treated as one piece for the purposes of this study. The geometry of the stiffening plate is shown in Figure A-2. The dimensions needed to completely define the nozzle geometry, including the bevel for the butter surface, are shown in Figures A-1 and A-3. There is a layer of cladding present on the nozzle inner surface. The cladding process is not to be modeled for this work. Participants instead are requested to include the cladding layer with assigned stainless steel material properties.

2.3 Nozzle Buttering

The schematic bead map for the butter, which is based upon consultation with the mockup fabricator, is shown in Figure 2. The geometry is shown in Figure A-4. Laser profilometry is not available for the butter operation. Participants are requested to model trapezoidal weld beads of approximately equal area, consistent with Figures A-4 and 2. After deposition, the butter was postweld heat treated at 890 K for 10 800 s. Then, the butter was machined according to the geometry detailed in Figure A-5, before performing the DM weld to the safe end. The weld parameters used for the buttering are listed in Table 1.

Protecting People and the Environment

Figure 2 Bead map of butter (not to scale)

Table 1 Weld parameters for butter

Current	240 A
Voltage	11.5 V
Travel Speed	2.3 mm/s

2.4 Nozzle to Safe End DM Weld

The relevant dimensions for the safe end are defined in Figures A-1 and A-6. The DM weld was formed with 24 passes of Alloy 182 filler metal deposited in the order shown in Figure 3.

Figure 3 Bead map of DM weld

Laser profilometry of the DM weld is contained in the file "DM Weld Laser Profile.xlsx." Table 2 shows the weld parameters for the DM weld.

Table 2 Weld parameters for DM Weld and back weld

Current	130 A
Voltage	25 V
Travel Speed	2.3 mm/s

2.5 Groove Machining and Back Weld/Weld Crown Machining

To approximate a 360° repair operation, a groove was machined at the inner diameter location according to the geometry in Figure A-7. The back weld was performed in the sequence shown in Figure 4 with Alloy 182 filler metal.

Figure 4 Bead map of back weld

The weld parameters for the back weld are the same as those used for the DM weld (Table 2). Geometry for the back weld is defined in Figure A-8. After the back weld was complete, it was machined to the dimensions shown in Figure A-9. Figure A-9 also indicates machining of the weld crown. Profilometry for the back weld is found in "Back Weld Laser Profile.xlsx."

2.6 Pipe and Closure Weld

The stainless steel weld consisted of SFA 5.4 weld metal. The geometry of the stainless steel pipe is shown in Figure A-10. The weld bead map of the closure weld is shown in Figure 5.

Figure 5 Bead map of closure weld

Table 3 lists the weld current, voltage, and travel speed for the closure weld.

Current	125 A
Voltage	26 V
Travel Speed	1.7 mm/s

Table 3 Weld Parameters for closure weld

3 Model Guidance

MRP-317 offers guidance on a number of WRS FE modeling issues, including weld bead geometry definition, element selection, and structural boundary conditions. Some of the guidance in MRP-317 is adopted here. Since the purpose of the round robin study is to determine if modeling uncertainty is reduced by following certain procedures, the participants are requested to follow these guidelines.

3.1 Hardening Law

Choice of hardening law is known to be a significant driver of uncertainty in WRS predictions. Models with the isotropic hardening assumption tend to predict larger stress magnitudes than models with the kinematic hardening assumption. While the mixed hardening law provides the most physically accurate description of material behavior, the testing required to develop the material parameters is resource-intensive. For the purposes of this study, participants are requested to provide two sets of results: one with the isotropic hardening assumption and one with the nonlinear kinematic hardening assumption. Participants are to use the provided Abaqus material input files, named "materials_ISO.inp" and "materials_nlinKIN.inp."

Comparable ANSYS input files are also provided: "ANSYS_materials_ISO.inp" and "ANSYS_materials_NLKN.inp."

3.2 Weld Bead Geometry Definition

Participants should endeavor to model the number of passes shown in Figures 2-5. Studies in MRP-317 demonstrated that modeling the precise bead shape, as provided by laser profilometry, may not add greatly to the solution accuracy. Trapezoidal beads of approximately the same area are sufficient to obtain reasonable results for welds of this size. Laser profilometry data for the DM weld, the back weld, and the stainless steel closure weld are provided to the participants for reference, as discussed in Section 2. These data are provided to help inform the participants' choice of bead geometry.

The schematic in Figure 2 is less certain than Figures 3-5 (and the associated laser profilometry), so analysts may use judgment when sketching the butter geometry. The sequence for each layer should, however, start at the outer diameter and work toward the inner diameter with 17 total layers. The postweld heat treatment should be modeled prior to the butter machining operation.

3.3 Thermal Model Tuning

Material properties for the thermal model are provided in "materials_heat.inp" and "ANSYS_materials_heat.inp." Participants are free to choose the heat input model, but some method to tune the model should be prescribed. In the Phase 2a study, participants completed three models: one without thermocouple or material property data, one with provided thermocouple data but no material property data, and one with prescribed thermocouple and material property data. Surprisingly, providing the participants with measured transient temperatures did not reduce modeling uncertainty (note: nor did providing a consistent set of material properties). This result suggests that, provided that the thermal model is calibrated to reasonably approximate the expected melt zone, the results are only weakly sensitive to heat input. Sensitivity studies on heat input support this conclusion, as well. While tuning of the thermal model to match thermocouple data is not required, the transient temperature data will be made available upon request. Analysts should ensure that a reasonable area around the weld bead reaches the annealing temperature, 1500 K. An example of a reasonable melt zone around a highlighted weld pass is provided in Figure 6.

Figure 6 Simulated melt zone around a weld pass

3.4 Structural Boundary Conditions

Boundary conditions should always represent the physical situation being modeled. MRP-317 indicates that nuclear piping welds are typically not constrained to prevent displacement during welding. The mockup being modeled in this study was not constrained during fabrication. Therefore, minimal boundary conditions are appropriate for this model. Participants are requested to fix one single node against displacement along the axial direction of the pipe, as shown in Figure 7. Axisymmetric finite element models are the primary focus of this study, but participants may submit a 3-D analysis if desired (note: one participant in the Phase 2a round robin submitted a 3-D analysis).

Figure 7 Structural boundary condition

3.5 Material Properties

All material properties are provided to the participants in the form of input decks, as described in Sections 3.1 and 3.3. The files contain density, latent heat, conductivity, and specific heat of Alloy 82, stainless steel, and carbon steel. These properties are appropriate for the thermal analysis. The mechanical properties for the structural analyses are provided for both hardening law cases.

3.6 Post Processing

During work on xLPR v2.0, NRC and EPRI determined that a consistent method for extracting results from the FE output database is important for minimizing uncertainty. A prescribed extraction method will also minimize data massaging performed on participant results for comparison purposes. Therefore, participants are requested to define one path through the thickness, such that the starting point is on the inner diameter (inner diameter of fill-in weld after machining), the final point is on the as-machined outer diameter (note: the weld crown should be machined as indicated in Figure A-9), and there are 24 equally-spaced points along the path in between. Axial and hoop stresses are requested both prior to the stainless steel closure weld and after the stainless steel closure weld. All data should be extracted at room temperature, since all residual stress measurements were performed at room temperature.

3.7 Pass Lumping and Bead Sequence

Combining multiple passes into one is a common practice to facilitate computational efficiency. Results from an MRP-317 study on bead lumping are shown in Figure 8. The results without bead lumping are shown with maroon square and blue diamond points for axial and hoop stresses, respectively. Two cases of bead lumping are shown as dotted and dashed lines. The study shows that significant differences can result from different bead lumping assumptions, even to the extent of one case predicting tensile stresses and the other predicting compressive stresses. Each participant performing bead lumping under diverse assumptions will likely lead to unnecessary uncertainty in the results. Therefore, participants are requested to refrain from bead lumping. The sequencing should follow Figures 3-5 exactly. Given the uncertainty in the

Protecting People and the Environment

fabrication of the butter, participants should follow Figure 2 as closely as possible (see Section 3.2).

Figure 8 Effect of bead lumping assumptions

3.8 Miscellaneous

According to MRP-317, a fine mesh of linear elements is recommended for these analyses over quadratic elements. Approximate mesh size for the weld passes should be 1.25 mm square, with no triangular elements included in the mesh. This mesh size corresponds to roughly 20-25 elements per weld pass. The mesh should be allowed to coarsen away from the weld passes for computational efficiency.

4 Reporting

Participants should provide the extracted hoop and axial stresses (see Section 3.6), along with screenshots of associated contour plots in the vicinity of the DM and closure welds. These data are requested both before and after completion of the closure weld. Participants should fill out and submit the attached questionnaire, "Participant Questionnaire.docx." The questionnaire is designed to document the extent to which the model guidance was followed for each participant. Any deviations from this guidance should be explained in 2-3 sentences in the questionnaire. Participants should also include a spreadsheet or text file of all node locations and associated nodally-averaged stresses (all six components of the stress tensor). The extracted data may be provided in an Excel spreadsheet or a text file, with data columns labeled for proper interpretation of the data.

5 Measurement Description

This section provides the participants with a brief description of the measurement activities on the Phase 2b mockup. This discussion is not intended as a comprehensive treatment of the techniques applied. Three sets of measurements were performed: hole drilling, contour, and

slitting measurements. Each of these residual stress measurement techniques rely upon mechanical strain relief.

5.1 Hole Drilling Measurements

The hole drilling measurements consisted of a combination of incremental center hole drilling near the outer diameter surface and deep hole drilling/incremental deep hole drilling through the thickness. The incremental deep hole drilling technique was considered more appropriate in areas were the WRS was expected to approach the material yield strength. Four hole drilling measurements were made, roughly 90° apart from one another. The measurement locations were carefully chosen to avoid weld start/stop locations. Figures 9 and 10 show the experimental setup. Hoop and axial stresses along the linear drilling path through the center of the DM weld were measured with this experiment.

Figure 9 Incremental center hole drilling setup with strain gauges

Figure 10 Deep hole drilling setup

5.2 Contour and Slitting Measurements

These measurements were performed after the hole drilling measurements. They involve a series of sectioning cuts. Figure 11 illustrates the first three cuts:

- 1. Removal of the thick nozzle section and the stainless steel pipe.
- 2. A radial cut to relieve the through-wall bending moment.
- 3. Radial cuts to remove the 90° section that forms the measurement piece.

Figure 11 Three cuts prior to the contour and slitting measurements

Two cut surfaces were required for the contour measurements: one for measuring hoop stress, one for measuring axial stress. The contour measurements provided stress data distributed over an area. The slitting method measured axial stress along a linear path through the center of the DM weld. These cuts are illustrated in Figure 12.

Figure 12 Measurement cutting planes

Appendix C: Raw Measurement and Modeling Tabular Data

This appendix shows raw tabular data of all measurement and modeling activities presented in this report.

Depth from OD			
[mm]	Axial [MPa]	Hoop [MPa]	Shear [MPa]
1	297.6	205.5	10.8
1.2	307	213	10.2
1.4	311.3	219.8	10.6
3.8	370.8	271.9	14.4
6.2	379.6	296.1	-7.2
9.2	391.4	348.4	2.2
13	49.7	162.8	-24.3
14.6	-140.8	10.6	-13.4
14.8	-154.3	-24.2	-20.1
15	-177.9	-25.7	-12.5
15.2	-189.6	-30.7	-15.2
15.4	-190.2	-32.5	-18.4
15.6	-205.5	-54.2	-8.6
15.8	-211.2	-64.9	-12.9
16	-224.8	-74	-10.7
16.2	-222.1	-82.7	-8.3
16.4	-228.7	-81.1	-7.4
16.6	-236.3	-90.9	-7.5
16.8	-236.2	-95.7	-11
17	-257.8	-97.6	-7.7
17.2	-253.3	-95.3	-11.3
17.4	-264.4	-100.7	-11.3
17.6	-265.5	-101.1	-7.5
17.8	-265.5	-107.4	-8.7
18	-266.5	-116.3	-9.5
18.2	-274.8	-112.3	-8.5
18.4	-270.3	-118.3	-5.4
18.6	-271.7	-107.2	-9.3
18.8	-272.5	-109	-10.5
19	-271.4	-110.7	-10.6
19.2	-272.8	-107.2	-11.4
19.4	-275.4	-105.7	-13
19.6	-268.2	-104.4	-17.3
19.8	-290.6	-97.9	-23.8
20	-315.4	-86	-12
20.2	-289.6	-93.2	-3.6
20.4	-283.7	-87.6	-9.5
20.6	-279.1	-86.9	-14.6
20.8	-256.8	-75.7	-17.5
21	-273	-69.7	-7
21.2	-273	-58.7	-7.9

Table C-1: Hole Drilling Data, 22° Location

21.4	-256.1	-49.7	0.5
21.6	-252.4	-32.3	-8.8
21.8	-257.5	-33.5	-7.7
22	-251.7	-16.2	-6.3
22.2	-254.2	-5.6	-6.6
22.4	-245	-4.4	-10.3
22.6	-266.6	-7.7	-4.7
22.8	-228.6	33.1	-0.1
23	-213.4	32.6	-9
23.2	-218.9	49.2	-4.9
23.4	-231.7	47.6	0.2
23.6	-206.7	94.1	-4.8
23.8	-199.8	99.7	-0.2
24	-182.1	113.4	0.1
24.2	-177.1	124	-2.8
24.4	-167.3	139.9	-3.7
24.6	-148.7	165.7	-7.1
24.8	-145.1	162.3	-5.5
25	-134.5	174.5	-6
25.2	-108.2	204.6	-5.2
25.4	-93.7	220	-5.2
25.6	-86.3	225.3	-2.8
25.8	-70.8	208.1	-1
26	-57.9	230.4	-8.5
26.2	-44.4	241.2	-7.9
26.4	-34.1	240.6	-10
26.6	-21.9	244.1	-11.4
26.8	-24.8	245.9	-12.9
27	-27	264.2	-12.6
27.2	2.2	261.4	-12.2
27.4	17.1	258.9	-13.9
27.6	31	251.4	-4
27.8	28.6	253.3	-14.6
28	24.9	240.4	-9.7
28.2	30.5	222.5	-17
28.4	21.5	208.4	-21.2
28.6	25.6	201.1	-21.6
28.8	25.1	202.1	-20.5
29	24	184.1	-19.5
29.2	16.7	174.6	-26.2
29.4	6.1	171.4	-26.8
29.6	0.2	164.5	-30.5
29.8	-10.4	135	-23.7
30	-0.1	145.3	-20
30.2	-2.1	125.6	-19.9
30.4	-31.1	102.1	-28
30.6	-26.4	98.1	-30.6
30.8	-41.2	93.9	-28.3
31	-33.4	90.5	-26.1

31.2	-39.1	83.4	-31.6
31.4	-46.2	82.5	-28.6
31.6	-36.8	78.2	-22.9
31.8	-45.9	63.8	-23.1
32	-51.3	73.2	-26.3
32.2	-56.4	67.5	-33.9
32.4	-64.3	61	-35
32.6	-63.5	54.9	-33.9
32.8	-66.7	45.8	-33.2
33	-78.3	38.1	-34.7
33.2	-84.5	35.7	-33.3
33.4	-92.4	31	-35
33.6	-99.4	24.9	-36.7
33.8	-104.3	19.2	-35.9
34	-107.6	21.2	-37.2
34.2	-103.9	25.3	-34
34.4	-111.1	18.9	-31.6
34.6	-111.7	15	-36.8
34.8	-115.5	10.7	-33.8
35	-103.3	17.8	-32.5
35.2	-136.2	-11	-30.1
35.4	-137.4	-11.1	-30.9
35.6	-138.5	-15	-28.4
35.8	-162.3	-28.7	-24.1
36	-149.7	-23.8	-26.2
36.2	-172.8	-38.6	-22.3
36.4	-168.9	-51	-25.9
36.6	-186.1	-64.9	-20.2
36.8	-179.1	-53.7	-12

Depth from OD			
[mm]	Axial [MPa]	Hoop [MPa]	Shear [MPa]
1	308.5	161.3	5.6
1.2	323.4	185.4	6.7
1.4	332.9	203.5	7.6
1.6	336.4	216.1	8
4	359.5	264.7	11.9
6.8	395.7	330.9	14.8
9.6	291.8	284.3	24
12.6	55.7	122.8	-7 7
14.6	-136.7	-46 7	-4 9
14.8	-157 1	-55.2	-4.2
15	_155	-60.9	_4 5
15.2	-184.4	-84 5	-6.8
15.2	_105.4	-90.8	-0.0
15.4	108.7	-90.8	-0
15.0	-190.7	-94.2	-0.9
15.8	-214.3	-101.7	-9.5
16.2	-221.1	-104.7	-0.0
10.2	-220.9	-109.5	-10.0
10.4	-224	-110.4	-10.5
	-245.6	-115	-12.2
10.8	-250.1	-125.2	-20
17	-250.5	-120.4	-16
17.2	-253.1	-117.5	-16.8
17.4	-251.7	-124.8	-11.5
17.6	-251.6	-128.8	-13.1
17.8	-251.3	-128.2	-11.9
18	-243.1	-120.6	-12.1
18.2	-245.8	-120.9	-12.5
18.4	-241.1	-119.6	-11.3
18.6	-235.3	-115.7	-9
18.8	-235.7	-116.5	-8.1
19	-237.2	-111.6	-9.3
19.2	-236.6	-109.9	-9.2
19.4	-235	-109.1	-7.5
19.6	-233.2	-104.9	-6.6
19.8	-228.2	-103.7	-8
20	-223.8	-94.1	-4.7
20.2	-227.2	-91.1	-6
20.4	-229.6	-87.7	-4.9
20.6	-233.7	-91.1	-13.4
20.8	-230.4	-73.1	-4.9
21	-212.3	-55.8	7.6
21.2	-229.9	-60.4	-6.8
21.4	-227.3	-51.5	-6.5
21.6	-227.5	-46	-6.8
21.8	-225.6	-36.5	-6.7
22	-222	-31.3	-5

Table C-2: Hole Drilling Data, 112° Location

22.2	-212.1	-15.8	-4.9
22.4	-202.4	-2.5	-2.5
22.6	-198.1	7.9	-0.3
22.8	-185.4	21.3	-0.4
23	-173.9	36.1	0
23.2	-173.9	44.8	1.4
23.4	-175.7	51.5	1.2
23.6	-168.3	63.8	1.8
23.8	-161.4	78.9	3.6
24	-158	93.6	2.7
24.2	-157.7	93.9	2.9
24.4	-140.1	111.2	0.9
24.6	-137.1	124.4	-0.2
24.8	-122.2	141.9	-0.4
25	-118.4	147.9	-0.4
25.2	-108.5	163.8	-0.7
25.4	-103.8	170.2	-2.3
25.6	-97.4	172.7	-4.2
25.8	-98	172.6	-6.3
26	-82.3	181.4	-5
26.2	-70.7	193.2	-10.2
26.4	-49	205.6	-9.2
26.6	-32.7	218.3	-10.7
26.8	-26	220.8	-11.5
27	-21.1	212.5	-13.2
27.2	-17.4	209.7	-14.1
27.4	-4.2	213.3	-16.4
27.6	4.6	212.6	-17
27.8	11.7	209.5	-18.7
28	15.6	203.3	-19.4
28.2	17.1	200.6	-23.4
28.4	23.7	194.1	-27.2
28.6	22.1	204.7	-38
28.8	19.6	177.4	-26.7
29	24.5	171.6	-28.4
29.2	21.6	162.8	-31.6
29.4	15.2	151	-28.8
29.6	9.9	143.4	-28.7
29.8	10.7	140.9	-32.4
30	5.5	128.7	-31.1
30.2	-17.3	125	-38.4
30.4	-3.2	116.2	-32.3
30.6	-22.4	102.5	-35.9
30.8	-23.3	102.3	-39.4
31	-23.4	102.3	-41.6
31.2	-9.2	106.5	-45./
31.4	-23.3	8/./	-38.2
31.0	-30.2	13.1	-41
31.8	-38.9	65.5	-41.1

32	-41.3	59.1	-44.3
32.2	-48.3	60.1	-44.4
32.4	-54.6	52.6	-41.3
32.6	-64.8	51.9	-43.8
32.8	-72.8	45.7	-48.6
33	-76.5	33	-51.1
33.2	-74.8	36.2	-50.4
33.4	-82.3	30.7	-48.1
33.6	-92	18.4	-47.3
33.8	-84.3	12.7	-57
34	-84	13.7	-40.5
34.2	-82.4	13.9	-39.2
34.4	-87.3	12.7	-33.4
34.6	-89.2	13.1	-35.6
34.8	-90.4	15.3	-32.8
35	-93.9	12	-34.5
35.2	-88.5	20	-31
35.4	-89	22.4	-27.4
35.6	-82.1	22.7	-30.3
35.8	-100.9	-2.4	-27.1
36	-96.7	-6.6	-23.6
36.2	-96.8	-1.1	-24.4
36.4	-112.8	-14.9	-21.2
36.6	-105.9	-14.3	-23.2
36.8	-124.8	-50.6	-18.4
37	-140.5	-60.1	-22
37.2	-155.5	-84.7	-33.6

Depth from OD			
[mm]	Axial [MPa]	Hoop [MPa]	Shear [MPa]
0.004	-82.7	87.3	-417.1
0.012	77.1	-25.7	-170.8
0.02	297.4	-3.1	-40.9
0.028	433.2	25.8	35.5
0.036	506.3	49.1	76.8
0.044	534.6	62.8	92.5
0.056	528.6	66	90.7
0.072	500.3	57.4	82
0.088	441 5	43.4	54.6
0 104	382.7	25	27.5
0.12	312.4	65	
0.12	245.6	-10.1	
0.176	106.0	-10:1	71 1
0.170	162.9	-20.9	-7 1.1
0.224	160	-24.4	-02.1
0.230	160	-17.5	-01.3
0.288	185	-2.3	-03.4
0.32	234.5	22.3	-35.4
0.384	317	50.7	17.4
0.448	3/1.4	76.9	44.5
0.512	405.8	93.2	53.4
1	337.9	235.2	26.4
1.2	347.8	253.2	29.9
1.4	350.5	264.5	29.9
3.6	355.8	259.7	7.3
6.4	394.6	345.4	4.1
9.4	296.8	299.8	9.7
12.8	18	129.5	-1.9
14.6	-167.3	-14.7	-3.1
14.8	-179.8	-28.8	-4.7
15	-182.5	-46.1	-7.5
15.2	-183.1	-57.8	-8.6
15.4	-192.6	-46.5	-7.4
15.6	-210.5	-52.4	5
15.8	-207.6	-64.7	-7.6
16	-205.5	-70.6	-8.4
16.2	-209.4	-73.3	-6.6
16.4	-225.2	-86.4	0.2
16.6	-243.8	-108.6	-8.5
16.8	-251.4	-115.4	-4.7
17	-257.6	-119.3	-5.8
17.2	-236.3	-103	-6.2
17.4	-239.7	-99.7	-3.7
17.6	-259.1	-114.4	-12.2
17.8	-254 7	-111.3	-2 1
18	-256.8	-109.5	-2.3
18.2	-260.9	-107.9	-0.3

Table C-3: Hole Drilling Data, 202° Location

18.4	-254.8	-98.4	2.2
18.6	-258.1	-101.4	2
18.8	-257.8	-79	2
19	-254.7	-78.7	3.6
19.2	-252.7	-70.5	-0.7
19.4	-249.8	-67.4	0.2
19.6	-258.7	-49.4	-9.2
19.8	-237.9	-44.4	-3.3
20	-236.3	-40.9	1.1
20.2	-242.5	-43	-1.5
20.4	-256.3	-44.1	-1.4
20.6	-249.7	-37.7	-0.2
20.8	-253.3	-43.8	-3
21	-243.9	-29.7	-1.9
21.2	-254.7	-15.5	2.3
21.4	-253.2	-11	3.1
21.6	-247.6	-5.9	3.2
21.8	-239.1	7.6	3.5
22	-227.1	20.7	2.9
22.2	-221.8	27.1	4.2
22.4	-208.2	40.6	1.8
22.6	-208.3	47.4	1.3
22.8	-205.6	55	2.4
23	-204.7	57.5	4.4
23.2	-201.1	59.7	5
23.4	-193	73.9	5.5
23.6	-185	73.9	2.2
23.8	-175.2	86.2	4.7
24	-167.1	95.8	7.5
24.2	-159.7	104.1	4.9
24.4	-148.9	110.8	5.5
24.6	-139.7	122.5	6.8
24.8	-132.4	124.8	3.5
25	-111	138	1.3
25.2	-102.1	147.8	-4
25.4	-92.7	152.4	-4.3
25.6	-83.2	161	-5.7
25.8	-71.9	158.7	-10.8
26	-63.8	163.6	-12.9
26.2	-45.5	178.8	-11.2
26.4	-37.5	179.2	-10.8
26.6	-32.6	1/8.8	-14.2
26.8	-21	181.3	-14.1
2/	-/.4	193.8	-11./
27.2	-3.9	185.6	-10.4
27.4	-5.3	184.7	-15.9
27.6	-U.1	180.6	-19.2
21.8	-4.4	1//.1	-21.5
28	8.2	1/9	-18.9

28.2	13	180.8	-21.7
28.4	11.5	171.3	-23.8
28.6	-2.8	159.4	-24.3
28.8	-4.9	153	-27.3
29	-7.9	149.3	-31.1
29.2	-4.4	152.5	-27.7
29.4	1.6	153.3	-31.3
29.6	-17.1	148.6	-26
29.8	-10.9	137.3	-29.6
30	-11.8	138.4	-28.6
30.2	-10.4	137.7	-28.1
30.4	-25.7	121	-28.1
30.6	-22.6	113.6	-27
30.8	-33.5	107.8	-30.3
31	-31.1	107	-26.4
31.2	-34.1	104.7	-28.2
31.4	-36.9	96.3	-27.4
31.6	-45.6	82.7	-26.6
31.8	-50	81.5	-29.7
32	-55.7	76.1	-28
32.2	-68.8	61.3	-23.6
32.4	-85	60.7	-26.3
32.6	-70.6	52.9	-29.3
32.8	-79.2	46.1	-29.5
33	-85.6	41	-28.8
33.2	-91.8	34.8	-27.8
33.4	-94.3	29.6	-30.1
33.6	-96	25.2	-28.4
33.8	-100	21.3	-34.4
34	-102.2	22.9	-27.8
34.2	-104.6	23.2	-27.2
34.4	-104.4	18.9	-25.9
34.6	-104.7	11	-32.9
34.8	-106.2	-2.1	-41.6
35	-99.8	8.5	-31.8
35.2	-109	0.9	-30.2
35.4	-114.5	-3.7	-32
35.6	-117.9	-8.2	-32.1
35.8	-127.7	-18.1	-31.8
36	-128.7	-23.2	-30.4
36.2	-138.1	-29.9	-30.8
36.4	-153.9	-44.9	-29.5
36.6	-169.3	-61.8	-31.1
36.8	-195.7	-65	-29.5
37	-189.5	-73.5	-32.3

Depth from OD			
[mm]	Axial [MPa]	Hoop [MPa]	Shear [MPa]
0.004	298.1	-225.6	256
0.012	151.7	-121.6	58.5
0.02	125.1	-107.4	-13.9
0.028	113.4	-91.1	-24.2
0.036	113.6	-75	-12.8
0.044	123.8	-62	3.7
0.056	139.5	-51	17.6
0.072	152.5	_39.9	22.3
0.072	164.6	32.6	27.4
0.000	174.1	-52.0	30.7
0.104	172.2	-20.3	34.6
0.12	1/2.2	-22.3	34.0
0.144	100.7	-20.8	42.1
0.176	154.1	-21.4	53.4
0.224	132	-20	66.4
0.256	112.3	-21.6	84.5
0.288	92	-22.8	101.7
0.32	79.5	-23.8	119.6
0.384	84.5	-17.5	135.9
0.448	105.3	-3.7	145.6
0.512	157.7	28.6	152.2
1	354.7	185.6	3.8
1.2	378.4	209.6	6.1
1.4	389.3	219.5	8.1
3.4	388.4	254.4	7.8
5.4	386.6	303.9	2.4
7.2	404.3	334	12.8
9.6	339.4	300	6.6
12.8	28.9	30.7	14.6
14.4	-171.1	-50.4	-9.5
14.6	-179.5	-58	-8.8
14.8	-182.9	-62.3	-5.7
15	-186.7	-56.5	-6.7
15.2	-186.6	-56.3	-4.6
15.4	-204.4	-76.4	-5.4
15.6	-209.6	-85.9	-5.9
15.8	-221.5	-94.1	-6.3
16	-220.7	-91.7	-10.8
16.2	-233.8	-101 7	-9.3
16.4	-237.5	-95.4	-6.3
16.6	-229.6	-102.5	-6
16.8	-239.9	_117	-4 7
17	-245 7	_116 3	-6.5
17 2	_247 0	_118 3	_2 8
17.4		-105 5	_4 4
17.5	_275.2		
17.8	-236.8	_02.5	
17.0	-200.0	-32.5	-1.0

Table C-4: Hole Drilling Data, 292° Location

18	-236.5	-91	-0.4
18.2	-238.9	-88.4	1.8
18.4	-239.9	-90.7	2.5
18.6	-229	-80.1	4.4
18.8	-239.4	-82.5	4.8
19	-229.1	-72.1	10
19.2	-226.4	-63.2	9.2
19.4	-210.7	-58.6	13.9
19.6	-203.4	-37.7	13.8
19.8	-207	-35.6	13.5
20	-211.4	-43.4	12.9
20.2	-205.4	-35.4	11.8
20.4	-193	-18.1	18.4
20.6	-199.1	-9.1	15.3
20.8	-195.8	-3.5	14
21	-190.1	15.4	12.6
21.2	-185.6	12.2	12.5
21.4	-192.1	18.7	12.7
21.6	-192.5	25.9	10.1
21.8	-206.2	21.8	10.8
22	-216.4	27.7	11.8
22.2	-168.8	62.5	9.5
22.4	-152.2	86	11.1
22.6	-151.6	96.7	7
22.8	-149.2	109.2	5.4
23	-149.1	105.1	4.3
23.2	-135.7	115.9	10.1
23.4	-122	136.8	2.2
23.6	-120.9	145.3	4.8
23.8	-109.5	158.7	2
24	-89.7	172.2	3.8
24.2	-75	181.9	-0.7
24.4	-77.8	194	4
24.6	-87.6	190	-2
24.8	-68.9	210.4	-1
25	-58.7	213.5	-4./
25.2	-63.9	205.9	-5.5
25.4	-64.3	189.8	-5.4
25.6	-71.2	192.2	-6
25.8	-64.5	198.6	-10.3
26	-56.3	205.5	-9
20.2	-52	209.6	-10.8
20.4	-48.3	210.2	-11.0
20.0	-45.9	200.2	-12.2
20.ŏ	-39.9	199.7	-12.8
	-41.9	100.0	-10.0
21.2	-30.1	191.3	-10.9
27.6	-21.4	100	-19.0
27.0	-14.5	192.1	-22.4

27.8	-21	175.4	-23.6
28	-25.8	169.5	-30
28.2	-20.8	149.8	-32.8
28.4	-26.4	137.8	-30
28.6	-37.3	117.7	-33.4
28.8	-35.8	119	-32.8
29	-31.1	113.3	-32.4
29.2	-20.8	123.9	-33.1
29.4	-22.5	139	-37.4
29.6	-29.4	109.4	-33.4
29.8	-22.6	108.2	-32.6
30	-33.5	102	-33
30.2	-26.1	100.1	-32.8
30.4	-26.2	95.7	-30.6
30.6	-43	81.9	-31.2
30.8	-37	87.3	-27.7
31	-24.8	94.3	-27.7
31.2	-31.1	82.6	-30.5
31.4	-47.3	67.7	-28.1
31.6	-47.2	59.7	-30.8
31.8	-55.9	51.5	-30.9
32	-65.7	42.9	-33
32.2	-67.9	40	-32.6
32.4	-71.7	36.1	-30.3
32.6	-70.6	38.3	-31.1
32.8	-79.2	32.5	-31.3
33	-82.1	37.1	-27.8
33.2	-81.4	36.9	-27.9
33.4	-85.8	32.4	-34
33.6	-97.7	25.4	-31
33.8	-100.2	20.4	-30.2
34	-101.1	17.1	-29.9
34.2	-102.5	14	-30.7
34.4	-104	13.3	-28.2
34.6	-91.6	28.6	-30.9
34.8	-84.2	38.8	-28
35	-77.4	29.1	-23.5
35.2	-100.3	13.8	-26
35.4	-103.5	5.1	-24.9
35.6	-116.6	-3.3	-21.1
35.8	-114.3	0.1	-22.2
36	-117.5	-7.3	-23
36.2	-126.7	-17.8	-21.8
36.4	-131.9	-25.4	-19.4
36.6	-131.4	-33.1	-19.8
36.8	-150.3	-47	-19.5
37	-166.1	-59.8	-18.2

	mid weld -10 mm	mid weld -5 mm	mid weld	mid weld +5 mm	mid weld +10 mm
Depth from ID					
[mm]	Stress [MPa]	Stress [MPa]	Stress [MPa]	Stress [MPa]	Stress [MPa]
0.0	••••••••••••••••••••••••••••••••••••••				
1.0	-198.6	-220.5	-221.0	-192.8	-136.4
2.0	-98.9	-98.8	-90.1	-68.9	-39.8
3.0	-46.9	-26.6	-3.2	21.0	39.9
4.0	-16.3	19.6	56.1	86.7	103.4
5.0	1.3	49.8	100.4	135.2	149.6
6.0	12.0	69.2	125.6	167.9	182.2
7.0	19.1	80.2	141.5	186.9	200.0
8.0	20.3	90.1	147.6	192.4	205.2
9.0	17.9	94.3	146.5	189.2	198.8
10.0	14.2	89.4	139.6	178.8	183.3
11.0	9.1	81.6	128.3	161.9	162.5
12.0	3.4	71.6	114.1	141.6	137.4
13.0	-3.7	60.2	98.2	119.0	110.2
14.0	-10.9	47.5	81.9	96.6	82.0
15.0	-18.6	34.2	65.4	75.3	57.8
16.0	-26.3	21.4	50.4	57.3	36.8
17.0	-34.4	9.6	37.7	42.8	21.1
18.0	-42.0	-0.4	27.9	32.9	11.5
19.0	-49.1	-8.1	20.9	27.9	8.3
20.0	-55.3	-13.7	18.5	29.9	14.3
21.0	-60.2	-16.9	19.9	36.7	25.6
22.0	-63.4	-17.3	25.2	49.1	43.2
23.0	-63.8	-15.2	34.0	66.2	65.2
24.0	-62.5	-10.2	46.1	86.7	93.2
25.0	-57.8	-2.5	61.3	110.4	122.8
26.0	-49.9	9.2	78.9	135.3	152.5
27.0	-38.4	22.9	98.4	159.5	181.9
28.0	-23.4	39.3	118.1	183.7	208.0
29.0	-5.0	57.5	137.7	205.2	229.6
30.0	16.6	76.8	155.7	221.5	244.6
31.0	39.4	95.8	171.4	232.9	252.5
32.0	62.0	113.9	182.6	235.9	252.3
33.0	82.2	128.9	188.1	232.1	242.7
34.0	95.9	136.2	185.6	220.7	226.1
35.0	99.2	131.0	172.6	200.3	205.5
36.0	79.3	105.7	141.7	173.3	187.8
37.0	7.5	28.5	78.6	141.2	194.7

Table C-5: Contour Data, Hoop Stress

	mid weld -10 mm	mid weld -5 mm	mid weld	mid weld +5 mm	mid weld +10 mm
Depth					
from ID					
[mm]	Stress [MPa]	Stress [MPa]	Stress [MPa]	Stress [MPa]	Stress [MPa]
0.0					
1.0	-293.5	-275.6	-249.1	-216.2	-281.9
2.0	-250.7	-236.0	-177.8	-189.0	-245.6
3.0	-206.3	-200.0	-138.3	-166.7	-216.0
4.0	-166.4	-168.7	-115.9	-148.9	-192.0
5.0	-130.7	-142.2	-103.6	-134.9	-172.4
6.0	-103.8	-122.2	-99.1	-125.1	-159.8
7.0	-85.7	-108.5	-99.8	-120.2	-152.0
8.0	-75.7	-101.4	-104.3	-118.8	-150.2
9.0	-74.1	-101.6	-111.7	-121.7	-152.8
10.0	-78.2	-106.5	-120.8	-128.0	-156.4
11.0	-92.9	-116.9	-130.2	-136.2	-170.0
12.0	-113.0	-131.0	-140.4	-146.8	-182.9
13.0	-137.9	-147.3	-149.8	-158.1	-199.4
14.0	-163.6	-164.3	-158.1	-168.8	-214.1
15.0	-187.4	-180.3	-164.0	-178.0	-224.9
16.0	-211.3	-193.2	-166.8	-184.5	-235.1
17.0	-227.6	-201.7	-166.1	-186.9	-239.0
18.0	-237.9	-204.7	-161.3	-184.8	-236.4
19.0	-241.9	-200.7	-151.8	-177.2	-230.1
20.0	-235.1	-189.1	-137.6	-163.9	-214.5
21.0	-218.7	-169.3	-117.7	-144.1	-191.8
22.0	-193.2	-141.3	-92.8	-118.2	-163.4
23.0	-157.2	-105.6	-62.1	-86.2	-127.2
24.0	-113.2	-62.6	-25.9	-49.2	-85.4
25.0	-61.6	-13.9	15.1	-6.9	-38.0
26.0	-5.2	39.2	60.5	39.0	12.4
27.0	54.5	95.1	109.4	87.6	65.7
28.0	115.1	152.2	161.0	138.1	119.8
29.0	171.6	207.7	214.2	188.6	171.1
30.0	223.4	259.5	266.6	237.5	219.7
31.0	265.6	306.0	316.5	284.0	264.0
32.0	296.5	345.0	361.3	325.6	301.9
33.0	316.4	374.8	397.9	362.3	332.7
34.0	321.8	393.8	422.8	392.3	355.2
35.0	316.3	398.3	427.8	412.8	369.7
36.0	305.9	385.8	401.5	420.3	377.6
37.0	307.8	344.0	311.4	406.1	382.1

Table C-6: Contour Data, Axial Stress

Depth from ID [mm]	Axial ISO [MPa]	Hoop ISO [MPa]	Axial KIN [MPa]	Hoop KIN [MPa]
0.00	-330	-124	-143	-54
1.51	-297	-28	-148	-47
3.03	-211	38	-149	-42
4.54	-180	53	-153	-63
6.05	-137	73	-184	-86
7.57	-84	254	-195	-72
9.08	-166	219	-201	-90
10.59	-153	136	-152	-64
12.11	-210	149	-169	-64
13.62	-235	126	-142	-54
15.13	-340	-55	-113	-60
16.65	-326	-203	-96	-34
18.16	-430	-310	-87	-42
19.67	-330	-202	-81	-63
21.18	-213	-232	-52	-78
22.70	-151	-106	-49	-107
24.21	6	16	-4	-107
25.72	93	68	40	-89
27.24	212	190	92	-54
28.75	332	335	159	-3
30.26	442	390	216	51
31.78	471	308	249	102
33.29	548	279	280	153
34.80	451	167	296	167

Table C-7: Participant Modeling Data (1 of 10)

Depth from ID [mm]	Axial ISO [MPa]	Hoop ISO [MPa]	Axial KIN [MPa]	Hoop KIN [MPa]
0.00	-157	65	-71	6
1.65	-58	195	-53	47
3.29	3	285	-65	21
4.94	8	255	-68	4
6.58	-25	249	-64	-4
8.23	19	318	-53	-7
9.87	-3	231	-51	-10
11.52	-36	185	-65	-18
13.16	-120	164	-71	-20
14.81	-193	160	-61	-11
16.45	-208	96	-55	-2
18.10	-277	53	-54	3
19.75	-232	22	-55	3
21.39	-162	94	-54	-1
23.04	-142	72	-50	-9
24.68	-75	136	-40	-17
26.33	-49	133	-25	-21
27.97	11	189	2	-12
29.62	135	285	42	11
31.26	241	343	94	44
32.91	309	395	144	70
34.55	349	365	183	73
36.20	295	228	224	61
37.85	277	169	260	47

Table C-8: Participant Modeling Data (2 of 10)

Depth from ID [mm]	Axial ISO [MPa]	Hoop ISO [MPa]	Axial KIN [MPa]	Hoop KIN [MPa]
0.00	-270	-75	-131	-90
1.63	-250	-66	-127	-82
3.25	-181	54	-138	-81
4.88	-155	98	-138	-90
6.51	-116	181	-144	-89
8.13	-92	206	-124	-67
9.76	-115	272	-147	-78
11.39	-139	259	-120	-64
13.02	-178	203	-117	-61
14.64	-195	225	-96	-49
16.27	-282	125	-85	-48
17.90	-338	-6	-60	-47
19.52	-391	-127	-68	-50
21.15	-299	-178	-47	-79
22.78	-223	-141	-51	-90
24.40	-77	-15	-1	-94
26.03	82	80	49	-81
27.66	239	196	87	-76
29.29	385	312	125	-50
30.91	467	222	178	0
32.54	525	209	221	56
34.17	473	162	260	103
35.79	418	111	276	119
37.42	402	111	276	144

Table C-9: Participant Modeling Data (3 of 10)

Depth from ID [mm]	Axial ISO [MPa]	Hoop ISO [MPa]	Axial KIN [MPa]	Hoop KIN [MPa]
0.00	-196	-25	-174	-62
1.51	-151	166	-159	-51
3.03	-128	241	-148	-44
4.54	-180	159	-141	-41
6.06	-138	246	-135	-39
7.57	-161	218	-127	-30
9.08	-108	288	-112	-16
10.60	-76	269	-93	-16
12.11	-75	299	-87	-2
13.63	-48	273	-82	12
15.14	-126	256	-72	24
16.65	-231	163	-71	20
18.17	-307	32	-76	0
19.68	-349	-87	-85	-30
21.19	-337	-134	-55	-26
22.71	-281	-91	-5	-44
24.22	-154	27	35	-25
25.74	-2	154	45	-42
27.25	110	258	58	-54
28.76	157	166	84	-46
30.28	274	277	118	-31
31.79	354	210	163	-16
33.30	488	277	207	7
34.82	515	181	236	42
36.33	494	170	255	71
37.85	479	166	265	88

Table C-10: Participant Modeling Data (4 of 10)

Depth from ID [mm]	Axial ISO [MPa]	Hoop ISO [MPa]	Axial KIN [MPa]	Hoop KIN [MPa]
0.00	-409	-340	-146	-123
1.51	-409	-345	-147	-122
3.03	-358	-256	-140	-120
4.54	-282	-150	-134	-124
6.06	-192	7	-136	-109
7.57	-154	39	-179	-147
9.09	-167	74	-175	-154
10.60	-91	22	-179	-173
12.12	-34	41	-171	-194
13.63	-22	93	-142	-191
15.15	-55	108	-84	-178
16.66	-169	-5	-31	-154
18.18	-251	-141	-24	-156
19.69	-318	-252	2	-163
21.20	-271	-242	5	-173
22.72	-174	-147	23	-163
24.23	-46	-56	31	-157
25.75	71	-33	66	-131
27.26	195	56	84	-116
28.78	306	19	130	-73
30.29	421	96	147	-56
31.81	388	12	171	-29
33.32	505	93	205	10
34.84	409	20	221	38
36.35	382	17	239	64
37.87	378	31	251	84

Table C-11: Participant Modeling Data (5 of 10)

Depth from ID [mm]	Axial ISO [MPa]	Hoop ISO [MPa]	Axial KIN [MPa]	Hoop KIN [MPa]
0.00	-154	81	-86	82
1.71	-206	33	-144	44
3.58	-91	308	-93	46
5.23	-146	227	-114	33
6.80	-158	185	-108	28
8.36	-213	138	-105	33
9.90	-144	31	-103	40
11.47	-70	102	-120	35
13.03	-107	122	-135	10
14.52	-112	24	-114	14
15.78	-170	21	-115	25
17.00	-317	-95	-140	14
17.38	-340	-122	-145	8
18.42	-390	-187	-154	-3
19.81	-358	-186	-156	-24
21.19	-305	-197	-158	-51
21.27	-303	-200	-158	-52
22.66	-269	-254	-146	-62
23.95	-215	-129	-151	-84
25.27	-211	-97	-105	-51
26.57	-183	-119	-77	-29
27.28	-192	-109	-84	-39
27.88	-198	-86	-91	-47
29.27	-116	32	-92	-58
29.82	-64	81	-85	-54
30.54	14	148	-74	-45
31.70	104	232	-47	-20
32.67	83	190	-5	31
33.59	90	129	42	75
34.69	103	129	109	127
35.85	123	169	162	165
35.90	126	173	162	165
37.02	168	257	175	151
38.23	280	348	195	155
39.45	442	457	214	168
40.69	498	483	243	198
41.95	526	477	284	238
43.24	489	396	313	269
44.56	420	292	340	308
45.92	394	215	306	263
47.31	380	135	253	152

Table C-12: Participant Modeling Data (6 of 10)

Depth from ID [mm]	Axial ISO [MPa]	Hoop ISO [MPa]	Axial KIN [MPa]	Hoop KIN [MPa]
0.0	-59	238	43	240
1.6	78	447	37	242
3.3	120	501	21	219
4.9	99	480	9	206
6.6	74	546	13	201
8.2	81	563	16	206
9.9	26	513	18	207
11.5	-4	451	5	188
13.2	-258	151	-1	181
14.8	-380	64	-15	179
16.5	-320	63	-51	162
18.1	-239	88	-85	133
19.7	-183	122	-106	105
21.4	-133	178	-115	76
23.0	-110	227	-106	62
24.7	-118	254	-89	68
26.3	-44	341	-72	79
28.0	96	404	-49	97
29.6	228	483	-15	125
31.3	224	471	44	179
32.9	224	522	117	255
34.6	161	459	152	277
36.2	177	211	154	229
37.8	279	157	148	200

Table C-13: Participant Modeling Data (7 of 10)
Depth from ID [mm]	Axial ISO [MPa]	Hoop ISO [MPa]	Axial KIN [MPa]	Hoop KIN [MPa]
0.00	-289	-90	-137	-47
1.50	-243	-6	-125	-29
3.01	-79	156	-126	-36
4.51	21	255	-121	-43
6.01	7	276	-103	-39
7.52	-45	276	-95	-26
9.02	-52	312	-94	-19
10.52	32	273	-72	-4
12.03	-28	160	-58	-17
13.53	-129	202	-43	0
15.04	-180	74	-59	12
16.54	-422	-123	-76	7
18.04	-360	-201	-116	-23
19.55	-394	-173	-79	-26
21.05	-320	-152	-88	-58
22.55	-234	-9	-61	-68
24.06	-163	-10	-57	-79
25.56	-6	152	-5	-66
27.06	59	157	16	-51
28.57	162	193	75	-15
30.07	260	179	124	13
31.57	403	257	156	30
33.08	438	221	213	56
34.58	455	226	254	74
36.08	412	147	278	96
37.59	443	161	290	113

Table C-14: Participant Modeling Data (8 of 10)

Depth from ID [mm]	Axial ISO [MPa]	Hoop ISO [MPa]	Axial KIN [MPa]	Hoop KIN [MPa]
0.00	-99	107	-186	-165
0.38	-73	147	-136	-110
0.76	-76	153	-113	-81
1.14	-105	125	-117	-79
1.51	-140	99	-129	-86
1.89	-166	86	-138	-91
2.27	-187	65	-147	-98
2.65	-202	45	-154	-104
3.03	-226	18	-162	-109
3.41	-245	-12	-168	-114
3.78	-252	-23	-172	-118
4.16	-233	22	-176	-122
4.54	-188	113	-179	-129
4.92	-173	145	-181	-133
5.30	-189	114	-181	-137
5.68	-203	90	-182	-140
6.06	-208	80	-183	-142
6.43	-219	59	-181	-144
6.81	-219	65	-179	-145
7.19	-216	65	-177	-145
7.57	-240	-7	-175	-145
7.95	-203	24	-173	-144
8.33	-117	181	-170	-142
8.71	-100	244	-166	-140
9.08	-122	223	-161	-136
9.46	-99	190	-156	-131
9.84	-107	146	-151	-126
10.22	-123	106	-145	-120
10.60	-106	108	-140	-115
10.98	-64	143	-135	-109
11.35	-40	171	-131	-104
11.73	-28	194	-128	-99
12.11	-25	219	-126	-93
12.49	-25	242	-124	-88
12.87	-41	231	-122	-83
13.25	-63	204	-120	-79
13.63	-77	178	-119	-75
14.00	-93	154	-119	-72
14.38	-133	149	-120	-70
14.76	-184	145	-122	-67
15.14	-255	150	-127	-65
15.52	-276	120	-132	-65
15.90	-297	84	-138	-65
16.27	-319	45	-142	-65
16.65	-340	5	-134	-67
17.03	-357	-40	-123	-69
17.41	-377	-85	-108	-70

Table C-15: Participant Modeling Data (9 of 10)

17.79	-399	-117	-96	-71
18.17	-430	-129	-88	-72
18.55	-457	-133	-84	-76
18.92	-453	-150	-82	-81
19.30	-426	-176	-81	-87
19.68	-412	-192	-72	-84
20.06	-403	-208	-60	-79
20.44	-394	-224	-46	-71
20.82	-391	-205	-36	-69
21.19	-378	-174	-28	-68
21.57	-359	-130	-23	-69
21.95	-322	-118	-18	-72
22.33	-285	-112	-11	-74
22.71	-250	-96	-5	-76
23.09	-222	-54	1	-80
23.47	-197	-4	6	-85
23.84	-171	45	10	-93
24.22	-142	66	14	-99
24.60	-117	62	19	-104
24.98	-95	52	24	-107
25.36	-55	60	32	-106
25.74	-6	87	41	-104
26.12	42	135	49	-101
26.49	91	197	59	-97
26.87	133	245	68	-92
27.25	169	244	78	-87
27.63	209	252	88	-81
28.01	248	275	98	-75
28.39	276	262	109	-68
28.76	280	191	120	-61
29.14	275	145	131	-53
29.52	303	175	142	-46
29.90	345	205	155	-37
30.28	393	230	168	-27
30.66	446	265	181	-17
31.04	519	321	197	-5
31.41	564	341	207	5
31.79	580	312	219	18
32.17	543	235	230	33
32.55	519	197	239	47
32.93	531	205	249	61
33.31	566	237	258	75
33.68	597	261	267	89
34.06	626	282	278	104
34.44	590	244	286	116
34.82	516	184	293	128
35.20	458	140	297	136
35.58	448	135	300	142
35.96	445	139	305	150

36.33	444	135	308	157
36.71	447	140	309	161
37.09	463	162	320	180
37.47	444	141	316	175
37.85	367	50	281	119

Depth from ID [mm]	Axial ISO [MPa]	Hoop ISO [MPa]	Axial KIN [MPa]	Hoop KIN [MPa]
0.00	-217	-50	-137	47
1.19	-199	-39	-117	57
1.77	-202	-10	-93	69
2.33	-182	104	-85	70
2.89	-150	177	-85	62
3.74	-123	187	-84	54
4.59	-45	256	-85	45
5.26	-6	322	-85	39
5.68	16	367	-85	35
6.10	35	379	-87	31
6.86	43	391	-84	27
7.80	38	410	-79	24
8.38	26	410	-77	23
8.97	22	393	-75	22
9.56	23	382	-74	22
10.46	35	365	-73	21
11.36	1	336	-75	15
12.26	-58	295	-74	9
13.16	-115	262	-75	11
14.06	-201	221	-79	19
14.96	-295	141	-87	25
15.86	-378	25	-107	12
16.76	-440	-66	-136	-19
17.66	-435	-121	-144	-32
18.56	-443	-173	-119	-34
19.46	-463	-197	-114	-53
20.36	-444	-200	-113	-75
21.26	-413	-189	-108	-85
22.16	-379	-130	-99	-90
23.06	-321	-80	-91	-93
23.96	-245	-21	-80	-90
24.86	-146	81	-65	-81
25.76	-35	169	-46	-68
26.66	70	237	-23	-51
27.56	163	298	4	-28
28.46	245	353	34	-1
29.13	311	387	61	23
29.81	331	345	90	47
30.48	359	317	122	77
31.16	438	379	160	111
32.06	528	405	206	147
32.96	584	390	254	181
33.86	539	260	298	206
34.76	469	178	312	213
35.66	454	168	316	209
36.56	447	163	323	202
37.20	443	159	329	198

Table C-16: Participant Modeling Data (10 of 10)

37.85	440	155	332	196

Appendix D: Comprehensive Flaw Growth Calculations

This appendix provides all of the results of flaw growth calculations associated with the Phase 2b study. Table 3 shows all inputs to these calculations, save the WRS inputs (which vary). The WRS inputs for each set of calculations are shown in this appendix. Section D.1 shows circumferential crack growth, while Section D.2 shows axial crack growth. Section 3.3 provides a discussion of this work for one example case. With the exception of Section D.2.1, no further technical discussion is offered here. Regarding the modeling WRS data, flaw growth calculations are presented for WRS calculated from isotropic hardening models, kinematic hardening models, and the average WRS of the two hardening models.

D.1 Circumferential Crack Growth

D.1.1 Operating Loads Only

The residual stress magnitude was set to zero through the wall thickness for this calculation. Figures D-1 and D-2 show K_{90} and the depth growth normalized to the wall thickness, respectively. Figures D-3 and D-4 show K_0 and the length growth normalized to the circumference, respectively.

D.1.2 Measurement WRS

Figure D-5 shows the residual stress input for this set of calculations. Figures D-6 and D-7 show K_{90} and the depth growth normalized to the wall thickness, respectively. Figures D-8 and D-9 show K_0 and the length growth normalized to the circumference, respectively.

Figure D-5: Residual Stress Input

Figures D-10 and D-11 replot Figures D-6 and D-8 as a function of *alt*, respectively.

Figure D-10: Stress Intensity Factor at the Deepest Point

Figure D-11: Stress Intensity Factor at the Surface Point

D.1.3 Modeling WRS: Isotropic Hardening

Figure D-12 shows the residual stress input for this set of calculations. Figures D-13 and D-14 show K_{90} and the depth growth normalized to the wall thickness, respectively. Figures D-15 and D-16 show K_0 and the length growth normalized to the circumference, respectively.

Figure D-13: Stress Intensity Factor at the Deepest Point

Figure D-15: Stress Intensity Factor at the Surface Point

Figures D-17 and D-18 replot Figures D-13 and D-15 as a function of *a*/*t*, respectively.

Figure D-17: Stress Intensity Factor at the Surface Point

Figure D-18: Stress Intensity Factor at the Deepest Point

D.1.4 Modeling WRS: Kinematic Hardening

Figure D-19 shows the residual stress input for this set of calculations. Figures D-20 and D-21 show K_{90} and the depth growth normalized to the wall thickness, respectively. Figures D-22 and D-23 show K_0 and the length growth normalized to the circumference, respectively.

Figure D-19: Residual Stress Input

Figures D-24 and D-25 replot Figures D-20 and D-22 as a function of *a*/*t*, respectively.

Figure D-24: Stress Intensity Factor at the Surface Point

Figure D-25: Stress Intensity Factor at the Deepest Point

D.1.5 Modeling WRS: Average Hardening

Figure D-26 shows the residual stress input for this set of calculations. Figures D-27 and D-28 show K_{90} and the depth growth normalized to the wall thickness, respectively. Figures D-29 and D-30 show K_0 and the length growth normalized to the circumference, respectively.

Figure D-29: Stress Intensity Factor at the Surface Point

Figures D-31 and D-32 replot Figures D-27 and D-29 as a function of a/t, respectively.

Figure D-31: Stress Intensity Factor at the Surface Point

Figure D-32: Stress Intensity Factor at the Surface Point

D.2 Axial Crack Growth

D.2.1 Operating Loads Only

The residual stress magnitude was set to zero through the wall thickness for this calculation. Figures D-33 and D-34 show K_{90} and the depth growth normalized to the wall thickness, respectively. Figures D-35 and D-36 show K_0 and the length growth normalized to the weld width, respectively.

This case demonstrates the methodology for treating axial cracks, as first mentioned in Section 3.3. When the length of an axial crack becomes equal to the weld width (at approximately 100 months in Figure D-36), the crack length can no longer increase since the material outside the weld is not susceptible to stress corrosion cracking. If the crack continues to grow in the depth direction after this point (as is the case here, see Figure D-34), the aspect ratio of the flaw may become a/c < 1. This situation can lead to unrealistic predictions of stress intensity factor, as is discussed in [9]. To correct for this potential error, Reference [9] recommended rules lead to closer prediction of Advanced Finite Element natural flaw growth simulations. As demonstrated in Figure D-33, this methodology caused K_{90} to slightly decrease at 100 months. The near constant K_{90} between 100-200 months led to a roughly linear increase in crack depth (Figure D-34), before K_{90} began to increase again after 200 months.

Figure D-34: Depth Growth for No Residual Stress

D.2.2 Measurement WRS

Figure D-37 shows the residual stress input for this set of calculations. Figures D-38 and D-39 show K_{90} and the depth growth normalized to the wall thickness, respectively. Figures D-40 and D-41 show K_0 and the length growth normalized to the weld width, respectively.

Figure D-38: Stress Intensity Factor at the Deepest Point

Figure D-40: Stress Intensity Factor at the Surface Point

Figures D-42 and D-43 replot Figures D-38 and D-40 as a function of *alt*, respectively.

Figure D-42: Stress Intensity Factor at the Deepest Point

Figure D-43: Stress Intensity Factor at the Surface Point

D.2.3 Modeling WRS: Isotropic Hardening

Figure D-44 shows the residual stress input for this set of calculations. Figures D-45 and D-46 show K_{90} and the depth growth normalized to the wall thickness, respectively. Figures D-47 and D-48 show K_0 and the length growth normalized to the weld width, respectively.

Figure D-44: Residual Stress Input

Figure D-47: Stress Intensity Factor at the Surface Point

Figures D-49 and D-50 replot Figures D-45 and D-47 as a function of *alt*, respectively.

Figure D-49: Stress Intensity Factor at the Surface Point

Figure D-50: Stress Intensity Factor at the Deepest Point

D.2.4 Modeling WRS: Kinematic Hardening

Figure D-51 shows the residual stress input for this set of calculations. Figures D-52 and D-53 show K_{90} and the depth growth normalized to the wall thickness, respectively. Figures D-54 and D-55 show K_0 and the length growth normalized to the weld width, respectively.

Figure D-52: Stress Intensity Factor at the Deepest Point

Figure D-54: Stress Intensity Factor at the Surface Point

Figures D-56 and D-57 replot Figures D-52 and D-54 as a function of *a*/*t*, respectively.

Figure D-56: Stress Intensity Factor at the Deepest Point

Figure D-57: Stress Intensity Factor at the Surface Point

D.2.5 Modeling WRS: Average Hardening

Figure D-58 shows the residual stress input for this set of calculations. Figures D-59 and D-60 show K_{90} and the depth growth normalized to the wall thickness, respectively. Figures D-61 and D-62 show K_0 and the length growth normalized to the weld width, respectively.

Figures D-63 and D-64 replot Figures D-59 and D-61 as a function of *a*/*t*, respectively.

