

Proudly Operated by Battelle Since 1965

PNNL-SA-115353

Non-destructive Evaluation of Butt-fusion Joint Integrity in High Density Polyethylene Piping

INDUSTRY/NRC NDE TECHNICAL INFORMATION EXCHANGE PUBLIC MEETING JANUARY 21, 2016

KM DENSLOW, SL CRAWFORD, TL MORAN, MS PROWANT, RE JACOB, TS HARTMAN, RA MATHEWS, KJ NEILL AD CINSON* AND CA NOVE*

*U.S. NUCLEAR REGULATORY COMMISSION | OFFICE OF NUCLEAR REGULATORY RESEARCH

Outline

Proudly Operated by Battelle Since 1965

Introduction

- Project Test Plan Summary
 - Probes
 - Pipe
 - Technical approach
- Progress
- Conclusions
- Observations
- Future Work

Introduction

- Confirmatory research activities are funded by the U.S. Nuclear Regulatory Commission (NRC)
- PNNL is to conduct a review/assessment of NDE being proposed in ASME Code/Section III to ensure high-quality product enters service and structural integrity is maintained during service
- Focus of work:
 - Ultrasonic phased-array volumetric inspection of high-density polyethylene (HDPE) butt-fusion joints

This work is supported by the U.S. NRC – Office of Research Tony Cinson, COR and Carol Nove, delegate COR

Introduction

Summary of progress made toward completing an evaluation of the phased-array ultrasonic test (PA-UT) method for its ability to detect:

- planar flaws (represented by S/S discs/pieces)
- particulate contamination (mimicked by tungsten powder)
- cold fusion fabrication flaws (attempted in-situ fabrication)

In:

12-inch dia., DR11 HDPE thermal butt-fusion joint specimens

Using:

- 2-MHz PA-UT probes
 - operating in transmit-receive longitudinal (TRL) mode
 - at three different aperture sizes (same element size)
 - standard signal amplitude based signal analysis for flaw detection

Technical Approach and Progress

Specimen Matrix

ID No.	Pipe Number	Distance between Joints, in.	Joining Protocol	Flaw Type & Material	Flaw Size	Pre-fabrication Implanted Flaw Location
J-28	32	~ 12	ASME Code	None	None	None
RJ4/ RJ6	32	~ 12	ASME Code	Planar flaws, all discs fabricated from 0.02 mil thick S/S shim stock	2.17 mm (0.0854 in.), 1.38 mm (0.0543 in.), and ~0.8 mm (0.0315 in.)	Mid-wall and ±25% of mid-wall
RJ4/ RJ6-2	32	~ 12	ASME Code	Planar flaws, all discs fabricated from 0.02-mil thick S/S shim stock	2.17 mm (0.0854 in.), 1.38 mm (0.0543 in.), and ~0.8 mm (0.0315 in.)	Mid-wall only
RJ-8	32	~ 12	Violated ASME Code – limited to 2-minute heat soak	Planar flaws, all discs fabricated from 0.02-mil thick S/S shim stock; attempted cold fusion	2.17 mm (0.0854 in.), 1.38 mm (0.0543 in.), and ~0.8 mm (0.0315 in.)	Mid-wall only
J-29	33	~ 12	ASME Code	Coarse particulate contamination (tungsten particles)	118 micron (4.65E-3 in.) dia. (d ₅₀)	ID to OD, all quadrants
J-30	33	~ 12	ASME Code	Fine particulate contamination (tungsten particles)	26 micron (1.0E-3 in.) dia. (d ₅₀)	ID to OD, all quadrants
J-31	32	~ 12	Violated ASME Code – excess interfacial pressure applied during heat soak	Attempted cold fusion	N/A	N/A

Fabrication

- Implanted flaw types
 - None (baseline)
 - Planar flaws (S/S discs/pieces)
 - Particulate contamination (tungsten powder)
 - Attempted cold fusion (compromised heat soak)

Test Specimens: Pre-fabrication State

Specimen J-28 (baseline; no implanted flaws) Specimen RJ4/RJ6 (planar flaws) Fabrication: TR-33 Fabrication: TR-33 Print Line **Print Line** 25% away from pipe wall centerline Pipe wall centerline 25% away from pipe wall centerline 15 0.8 mm S/S piece 1.38 mm dia. S/S disc

Post-fabrication RT Verification of Implanted Metallic Flaws

- High densities of metal lends it to detection in HDPE using X-ray radiography
- Radiography performed to:
 - Verify quantity and circ. positions of S/S discs/pieces in fusion joints
 - Verify presence of tungsten powder in fusion joints
- Normal incidence and angled incidence

Example: S/S Discs/Pieces in RJ-8

PA-UT/TRL

Pacific Northwest NATIONAL LABORATORY

- Phased-array ultrasonic testing
- Transmit-receive longitudinal mode
 - 128 full aperture
 - 64- and 32-element reduced aperture
- Weld beads intact
- Both sides of the fusion joint
- Flaw/indication reporting: 3 dB above noise, within 3 mm of fusion joint

128-element aperture results

Detected RT-verified flaws from both sides of the fusion joint

	~0.8 mm S/S piece	1.38 mm S/S disc	2.17 mm S/S disc
ID	Flaw 3 ✓	Flaw 17 ✓	
	Flaw 18 ✓		
Mid-wall	Flaw 6a ✓	Flaw 2 ✓	Flaw 1 ✓
	Flaw 6b ✓	Flaw 5 ✓	Flaw 4 ✓
	Flaw 9 ✓	Flaw 11 ✓	Flaw 7 ✓
	Flaw 12 ✓	Flaw 14 ✓	Flaw 10 ✓
	Flaw 15 ✓		Flaw 13 ✓
			Flaw 16 ✓
OD		Flaw 8	

Confirmed by RT	Bold Text ✓
Not yet confirmed by RT	Standard text
Detected by PA-UT/TRL from both sides of the fusion joint (skew 0 and skew 180)	[Cell highlighted in dark green]
Detected from PA-UT/TRL from one side of the fusion joint (skew 0 or skew 180)	[Cell highlighted in light green]

RT: Tungsten Powder

- Implanted "coarse" particulate contamination
 - 118-micron PSD d50

J-29

- Pre-fab: Applied OD to ID across circumference
- Fabricated per ASME Code

- Appears PA-UT/TRL can detect at a certain concentration level
 - Require better understanding of actual concentration across wall and circumference

J-29

RT Circumferential Position	Corresponding 128E Nominal Circumferential Locations	Corresponding 64E Nominal Circumferential Locations	Corresponding 32E Nominal Circumferential Locations			
~ 50 mm (1.97 in.)	~50 mm (1.97 in.), mid-wall and near ID	~49 mm (1.93 in.), near ID				
		~56 mm (2.2 in.), near ID				
~ 240 mm (9.45 in.)	~235 mm (9.25 in.), mid-wall	~236 mm (9.29 in.), mid-wall	~ 236 mm (9.29 in.), mid-wall			
	~235 mm (9.25 in.), OD	~235 mm (9.25 in.), OD				
~ 470 mm (18.5 in.)	~467 mm (18.39 in.), mid-wall	~469 mm (18.47 in.), mid-wall				
~ 650 mm (25.59 in.)	~647 mm (25.47 in.), ID					
~ 800 mm (31.5 in.)	~790 mm (31.1 in.), mid-wall					
~ 950 mm (37.4 in.)	~954 mm (37.56 in.), mid-wall					
Detected by PA-UT/TRL from both sides of the fusion joint (skew 0 and skew 180) [Cell highlighted in dark green]						

[Cell highlighted in light green]

Detected from PA-UT/TRL from one side of the fusion joint (skew 0 or skew 180)

PA-UT/TRL Data Example: 128E Aperture

Flaws 1, 2, and 3 in RJ4/RJ6-2 with 128E Aperture from Skew 180

PA-UT/TRL Data Example: 64E Aperture

Flaws 1, 2, and 3 in RJ4/RJ6-2 with 64E Aperture from Skew 180

PA-UT/TRL Data Example: 32E Aperture

Flaws 1, 2, and 3 in RJ4/RJ6-2 with 32E Aperture from Skew 180

Other Fusion Joint Indications

- Not implanted, meets flaw/indication reporting criteria
- RJ4/RJ6-2, "Flaw 6" 137–146 mm, 128E Aperture, Skew 180

Parent Material Indications

Adjacent to fusion joint

Example: RJ-8, 128E, skew 180 ("Flaw" PM12, 392–403 mm)

21

Parent Material Indications

Proudly Operated by Battelle Since 1965

Distribution from OD to ID (128E aperture)

Observations

- PA-UT/TRL detected more fusion joint "flaws" than were implanted
 - Forensic testing necessary to characterize these indications
- Parent material indications were persistent in PA-UT/TRL data sets
 - These potentially represent another flaw source beyond those associated with fabrication
 - Examples of larger indications were provided here
 - High spatial density
 - High probability of parent material "flaws" entering the fusion joint
 - Non-metallic indications in the fusion joints may be the result of parent material "flaws" that entered the fusion joint during fabrication

Conclusions

- Butt-fusion fabrication per the TR-33 standard fusing procedure resulted in no detectable flaws using PA-UT/TRL with signalamplitude-based analysis
 - Destructive testing necessary to confirm integrity of the fusion joint
- PA-UT/TRL (signal-amplitude-based analysis) is effective at detecting planar flaws
 - Assessment of radial position sensitivity needs to be completed after RT verification of beadless specimens
 - The probability of detecting a planar flaw improves when examinations are performed on both sides of the fusion joint
 - The ability to detect planar flaws can depend on the probe aperture used, with detection ability increasing with increasing aperture size

Conclusions

PA-UT/TRL (signal-amplitude-based analysis)...

- Can detect coarse particulate contamination
 - Concentration level required to enable detection is not clear
 - Cannot detect fine particulate contamination
 - Through-wall distribution and concentration of the particles need to be understood to confirm this
 - Does not appear to be sensitive to cold fusion
 - Destructive testing necessary to confirm cold fusion was fabricated

Future Work:

Complete Planar Flaw Assessment

- Remove OD weld beads and rescan challenging areas
- Explore orthogonal NDE methods (microwave examination)
- Determine smallest possible detectable planar flaw, model in CIVA

Destructive Forensics and Testing

- Mine out and identify cause of non-disc fusion joint "flaws"
- Characterize the nature of the indication (debris, unmelted resin, void?)
- Verify joint integrity through destructive testing
- Quantifying PA-UT/TRL Blinds Spots
- Investigate Parent Material Inclusions