Official Transcript of Proceedings

NUCLEAR REGULATORY COMMISSION

Title:Advisory Committee on Reactor Safeguards
Power Uprates Subcommittee: Open Session

Docket Number: (n/a)

Location: Rockville, Maryland

Date: Wednesday, December 2, 2015

Work Order No.: NRC-2068

Pages 1-110

NEAL R. GROSS AND CO., INC. Court Reporters and Transcribers 1323 Rhode Island Avenue, N.W. Washington, D.C. 20005 (202) 234-4433

1 UNITED STATES OF AMERICA NUCLEAR REGULATORY COMMISSION + + + + +ADVISORY COMMITTEE ON REACTOR SAFEGUARDS (ACRS) + + + + +POWER UPRATES SUBCOMMITTEE + + + + +OPEN SESSION + + + + +WEDNESDAY DECEMBER 2, 2015 + + + + +ROCKVILLE, MARYLAND + + + + +The Subcommittee met at the Nuclear Regulatory Commission, Two White Flint North, Room T2B1, 11545 Rockville Pike, at 8:31 a.m., Joy Rempe, Chairman, presiding. COMMITTEE MEMBERS: JOY REMPE, Chairman JOHN W. STETKAR, Member RONALD G. BALLINGER, Member DENNIS C. BLEY, Member MICHAEL L. CORRADINI, Member

DANA A. POWERS, Member

PETER C. RICCARDELLA, Member

STEPHEN P. SCHULTZ, Member

GORDON R. SKILLMAN, Member

ACRS CONSULTANT:

KORD SMITH*

DESIGNATED FEDERAL OFFICIAL:

WEIDONG WANG

ALSO PRESENT:

KEVIN BORTON, Exelon

DOUG BROADDUS, NRR

ANTHONY HIGHTOWER, Exelon

MOLLY KEEFE, NRR

JIM KOVALCHICK, Exelon

MARVIN LEWIS, Public Participant*

JOSE MARCH-LEUBA, ORNL

JOHN McCLINTOCK, Exelon

PAT NAVIN, Exelon

ANDREW OLSON, Exelon

ALEX PSAROS, Exelon

DIEGO SAENZ, NRR

*Present via telephone

CONTENTS

Page

3

ACRS Opening Remarks4
Staff Opening Remarks6
Introduction by Rick Ennis15
MELLLA+ Overview
Introductions23
PBAPS Station History/Overview27
MELLLA+ Design and Analyses47
MELLLA+ Operator Procedures and Training52
Public Comments

	4
1	PROCEEDINGS
2	8:31 a.m.
3	CHAIRMAN REMPE: This meeting will now
4	come to order. Thank you. This is a meeting of the
5	Power Uprates Subcommittee, a standing Subcommittee
6	of the Advisory Committee on Reactor Safeguards.
7	I'm Joy Rempe, the Chairman of the
8	Subcommittee. ACRS Members in attendance are Pete
9	Riccardella, Ron Ballinger, John Stetkar, Dana
10	Powers, Stephen Schultz and Gordan Skillman and
11	Sanjoy Banerjee.
12	We also will be joined shortly, we hope
13	by Mike Corradini and our consultant, Professor Kord
14	Smith, who will come in through a phone line.
15	Weidong Wang of the ACRS Staff is the designed
16	Federal Official for this meeting.
17	In this meeting, the Subcommittee will
18	review the Peach Bottom Atomic Power Station Units
19	Two and Three Operating License Amendment Request or
20	LAR, to allow plant operation in the expanded
21	maximum extended load light limit analysis plus or
22	MELLLA+ domain.
23	We're going to hear presentations from
24	the NRC Staff and representatives from the licensee,
25	Exelon Generation Company, LLC. We did not receive
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	5
1	written comments and requests for time to make oral
2	statements from a member of the public regarding
3	today's meeting.
4	Part of the presentations by the
5	licensee and the NRC Staff will be closed in order
6	to discuss information that's proprietary to the
7	licensee and its contractors, pursuant to 5 USC
8	55(2)(b)(c)(4).
9	Attendance at these portions of the
10	meeting that deals with such information will be
11	limited to the NRC Staff, the NRC consultants,
12	Exelon Generation Company, LLC, and those
13	individuals and organizations who have entered into
14	appropriate confidentiality agreements with them.
15	Consequently, we'll need to confirm that
16	we have only eligible observers and participants in
17	the room for the closed portions of this meeting.
18	This is the fourth LAR that our
19	Subcommittee has had the opportunity to review
20	related to the MELLLA+ applications. And today
21	we're going to gather information, analyze relevant
22	issues and facts, and formulate proposed positions
23	and actions as appropriate for this LAR.
24	As a heads up to my colleagues
25	participating in this Subcommittee meeting, I'm
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	6
1	going to be requesting at the end of our meeting,
2	that each of you provide your opinion on whether
3	this fourth LAR warrants deliberation by the full
4	Committee at a future meeting.
5	The rules for participation in today's
6	meeting have been announced as part of the notice
7	that was previously published in the Federal
8	Register. A transcript of the meeting is being kept
9	and will be made available as stated in the Federal
10	Register Notice.
11	Therefore, we request that participants
12	in this meeting use the microphones located
13	throughout the meeting when addressing the
14	Subcommittee. The participants should first
15	identify themselves and speak with sufficient
16	clarity and volume so they may be readily heard and
17	recorded on this transcript.
18	And we'll now proceed with the meeting.
19	And I'd like to start by calling up the NRR Staff.
20	And Doug Broaddus will start us, right?
21	MR. BROADDUS: Thank you. And good
22	morning. I am Doug Broaddus. I am the Chief of the
23	Plant Licensing Branch 1-2, and the Division of
24	Operating Reactor Licensing in NRR.
25	The NRC staff appreciates the
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	7
1	opportunity to brief the ACRS Subcommittee today on
2	the LAR for Peach Bottom Units Two and Three to
3	operate in the MELLLA+ domain.
4	The request would change the Peach
5	Bottom technical specifications from the currently
6	licensed MELLLA domain to allow operation in an
7	expanded MELLLA+ domain under the previously
8	approved extended power uprate, or EPU, conditions
9	of 3,951 megawatts thermal ready core power.
10	The expanded MELLLA+ operating domain is
11	intended to increase operating flexibility by
12	allowing control of reactivity at maximum power by
13	changing flow rather then by control rod insertion
14	and control.
15	The proposed amendment would allow
16	recirculation of core flow to operate within a wider
17	window then under the current MELLLA conditions to a
18	core flow as low as 83 percent under MELLLA+.
19	At this meeting, Exelon, who owns and
20	operates the Peach Bottom Boiling Water Reactor
21	Units, will provide a presentation on their
22	application. And the NRC Staff will present the
23	results of our review and assessment of the
24	application. Next slide.
25	I want to take this opportunity to
	NEAL R. GROSS

(202) 234-4433

	8
1	recognize and thank the NRC Technical Staff, who are
2	here today. For their support and for performing a
3	thorough review of Exelon's application.
4	Which is, as you said, the fourth of
5	such reviews involving the implementation of
6	MELLLA+. Staff's previously reviewed and presented
7	to ACRS on MELLLA+, amendments from Monticello,
8	Grand Gulf and Nine Mile Point Unit 2.
9	Consistent with these previous
10	applications, Exelon defined the scope of the
11	evaluations required to support operation at Peach
12	Bottom in the MELLLA+ domain based upon the NRC
13	approved GE-Hitachi MELLLA+ topical report. Next
14	slide.
15	So the Peach Bottom application as well
16	as the results of the NRC Staff's review is similar
17	in many respects to the prior MELLLA+ applications.
18	The NRC Staff presentations today will provide
19	comparisons between Peach Bottom and these other
20	plants for some of the key parameters associated
21	with MELLLA+ implementation.
22	And we appreciate the Subcommittee
23	considering whether continued ACRS review of these
24	MELLLA+ applications is warranted. And we look
25	forward to your feedback on that.
	NEAL R. GROSS

(202) 234-4433

	9
1	CHAIRMAN REMPE: Just to be clear, the
2	discussion will focus on whether we will want to
3	bring this one, not in general all MELLLA+
4	applications today. Okay?
5	MR. BROADDUS: Sorry. All right, yes.
6	The NRC Staff's safety evaluation that was
7	previously provided to ACRS documents are a re
8	the documents are a review of the Peach Bottom
9	application. And contains no open items.
10	Based on a thorough technical review,
11	the NRC Staff has determined that operation of Peach
12	Bottom Units Two and Three in the MELLLA+ domain as
13	proposed in Exelon's application, maintains
14	compliant safety while providing additional
15	operational flexibility. And satisfies all
16	regulatory criteria.
17	This concludes my opening remarks.
18	Unless there are any questions, I would like to turn
19	it over to Rick Ennis, the NRC Senior Project
20	Manager for Peach Bottom Units Two and Three, who
21	will provide some additional details on the MELLLA+
22	LAR as well as the presentations you'll hear today.
23	MEMBER POWERS: I perhaps have, or ask a
24	question that may not be very clear, or may be for
25	Rick rather then you. But, I'll pose it to both.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	10
1	And you can sit both can answer it.
2	You can answer it perhaps when we meet with the full
3	Committee.
4	The depth is these MELLLA+ reviews
5	have taken some substantial amount of time to do.
6	And they've been done very well. I have I make
7	no fault on the work that the Staff or either the
8	work of the licensee.
9	But my question is, do you in the course
10	of this work identify tools or technology that would
11	substantially facilitate the review if you added
12	available? And I think that's a hard question to
13	ask because I'm asking you for, is there something
14	that doesn't exist that should exist.
15	But, I'm wondering if you could speak to
16	that issue of is the Staff could the Staff be
17	aided substantially by any technology improvements
18	available to it?
19	MR. ENNIS: My name is Rick Ennis. I'm
20	the Project Manager for Peach Bottom.
21	As far as the at the time of the
22	review, had this review not had to go through ACRS,
23	it would have been about a year review. Maybe a
24	little bit longer which is typical of some of the
25	normal license amendments we've had.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	11
1	So, it's not as extensive as like an
2	extended power uprates.
3	MEMBER POWERS: Yes.
4	MR. ENNIS: With that being said, in
5	putting together the safety evaluation, we've had
6	some discussions with NRR that it might be
7	advantageous to have some sort of review standards
8	similar to the extended power uprates. So, I'll
9	talk about a little bit of that during the my
10	opening remarks.
11	But, I think that would help facilitate
12	the review. And I think had the safety evaluation
13	been formatted so it was more consistent with the
14	GE-Hitachi topical report that it would have been
15	easier to get through and maybe done a little bit
16	quicker.
17	MEMBER POWERS: Yes, that is this is
18	worthwhile things to bring up in the full Committee
19	by the way. And I would be explicit in that when
20	you talk to the full Committee.
21	But I'm mostly interested in the
22	technologies, which include computer codes,
23	expertise, any range of things that would be of
24	assistance. And now that you've gone through four
25	and each had its own peculiarities and methodologies
	NEAL R. GROSS

(202) 234-4433

	12
1	and whatnot, I would appreciate it if you'd give
2	that some thought.
3	MR. ENNIS: Okay.
4	MEMBER POWERS: And if you could comment
5	perhaps when you meet the full Committee, on are
6	there technological improvements? For the
7	technology available to the Agency and I interpret
8	that very broadly.
9	Computer codes, computational platforms,
10	expertise, whatever you think, that would facilitate
11	the review. Now I don't discount the things that
12	you bring up. Those are very important.
13	And I would bring those up explicitly.
14	But I would very much appreciate because it seems to
15	me that a year is bit long for this kind of thing.
16	If we could use technology to reduce
17	that down to a few months, we should leap at the
18	opportunity to do that. Now, maybe we can't. Maybe
19	you can't identify anything.
20	But I would appreciate your thoughts.
21	MR. ENNIS: I think we have a comment
22	from the Technical Staff.
23	MR. SAENZ: This is Diego Saenz from the
24	Reactor Systems Branch. So what the at the
25	September 21 Thermohydraulic Subcommittee meeting,
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	13
1	we talked about some of the challenges we had.
2	And there some quite frankly, some of
3	it is understanding the phenomena.
4	MEMBER POWERS: Um-hum.
5	MR. SAENZ: So, we have a user need to
6	get testing data that would aid us in truly
7	understanding the phenomena. So, that's part of
8	what we're doing going forward.
9	And we think that will aid these
10	reviews. There's also an effort that we're
11	undertaking to develop the capability to do trace
12	confirmatory calculations as these reviews go
13	forward.
14	So, we think that those will aid these
15	reviews.
16	MEMBER POWERS: I would really like to
17	see you comment on that explicitly at some point. I
18	don't know whether it's this meeting, which is kind
19	of fixed in its end time, or the full Committee
20	meeting, or even privately.
21	Because I think it's important for us to
22	understand that.
23	MR. BROADDUS: Thank you, Dr. Powers.
24	MR. ENNIS: Good morning, my name is
25	Rick Ennis. And I'm the NRC Project Manager for
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

```
(202) 234-4433
```

	14
1	Peach Bottom in the Office of NRR in the
2	MEMBER BANERJEE: It's so difficult.
3	Are you thinking of presenting to either the full
4	Committee, or to one of the Subcommittees the
5	program that you envision going forward to deal with
6	some of the issues that have recently arisen with
7	regard to say FSI, things like that?
8	We hear about it, but we don't sort of
9	have any anything on record, you know, like
10	explicitly what you're doing. I know for example
11	you're planning some tests in the Call Sign
12	facility, right?
13	What is the scope of those tests? And
14	then are we doing any fundamental work to try to
15	understand these very complicated phenomena and
16	simpler geometries and things?
17	How is this program all being put
18	together? It would be very helpful to know that.
19	MR. SAENZ: So, again, this is Diego
20	Saenz. At this time we have no plan to present
21	today here to ACRS.
22	But if requested, we've always been
23	happy to present information today here as ACRS
24	requested.
25	CHAIRMAN REMPE: I think actually that
	NEAL R. GROSS

(202) 234-4433

	15
1	that's something that let's save until the end of
2	the day about what to do in moving forward. Because
3	I read through the transcript.
4	Unfortunately I missed the September
5	Subcommittee meeting where you did discuss those
6	tests.
7	MR. SAENZ: Um-hum.
8	CHAIRMAN REMPE: And I think that that
9	is a very good topic that should be brought. The
10	test program, some of the insights, there's
11	different vendor methodologies.
12	And so it's a thermohydraulic's type of
13	discussion. And I think that would be very good for
14	a full Committee meeting.
15	And maybe whether there needs to be a
16	Subcommittee meeting again before that or not, is
17	something that we can discuss later.
18	But, to make sure that we cover the
19	topics relevant to Peach Bottom, let's
20	MEMBER BANERJEE: Yes, just let's table
21	it now and we'll bring it up.
22	CHAIRMAN REMPE: Right.
23	MR. SAENZ: Okay.
24	MEMBER BANERJEE: Because some of your
25	sensitivity studies here depend on the discussions
	NEAL R. GROSS

(202) 234-4433

	16
1	we've had in the Thermohydraulics Subcommittee
2	meeting.
3	MR. SAENZ: Absolutely.
4	MR. ENNIS: Today you'll hear
5	presentations from the NRC Staff and Exelon
6	regarding proposed MELLLA+ for Peach Bottom Units
7	Two and Three. I'll present some background
8	information regarding the Staff's review and then
9	I'll discuss the agenda for today's meeting.
10	Throughout the meeting, you may hear
11	references to the SAR. The SAR is a Safety Analysis
12	Report which summarizes the results of the
13	evaluations performed by GE-Hitachi for Exelon to
14	justify the proposed MELLLA+.
15	A proprietary version of the SAR is
16	included as Attachment Four to the application dated
17	September 4, 2014. And a nonproprietary version is
18	included as Attachment Five to the application.
19	The format of the SAR closely follows
20	the format of the NRC approved GE-Hitachi MELLLA+
21	topic report. And the SAR provides the Peach Bottom
22	disposition of the MELLLA+ topical report technical
23	review areas either by confirming the applicability
24	of the generic assessments or providing plant
25	specific evaluations.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	17
1	With respect to the format of the NRC
2	Staff's draft Safety Evaluation, Section 3.2
3	provides a review of the technical review areas that
4	were generically dispositioned. And Section 3.3
5	provides the review of the areas that were
6	dispositioned on a plant specific basis.
7	As I had mentioned in the discussion
8	with Dr. Powers, we did use the Review Standard 001.
9	Which NRC uses for extended power uprates.
10	And although the MELLLA+ amendment is
11	not an EPU, we have found in the past that some
12	topics lend themselves to using that review
13	standard. And Section 3.4 of the SE provides our
14	review of various topics using the Review Standard.
15	There are also a number of NRC approved
16	topical reports that support the proposed MELLLA+.
17	And Section 3.5 of the Safety Evaluation provides
18	our evaluations against the limitations and
19	conditions in those topical reports.
20	Section 3.6 of the Safety Evaluation
21	talks about the NRC Staff's evaluation of guarding
22	the TRACG Code Models for ATWS instability events.
23	Section 4 talks about the license and tech spec
24	changes as part of the requested license amendment.
25	And in addition Appendix 8 to the Safety
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	18
1	Evaluation, talks about the licensees response to
2	Reactor Systems Branch request for additional
3	information questions. And the Staff's evaluation
4	of the licensee's response.
5	Some of the details of the Staff's
6	review are, well, after the application was
7	submitted in September 2014, consistent with what we
8	normally do for a licensed member request, we
9	perform an acceptance review.
10	And mid-October 2014, the Staff accepted
11	the application for review. Determining that it
12	provided sufficient detail to provide the technical
13	review.
14	The key technical areas during this
15	review consistent with some of the previous MELLLA+
16	license member requests were in the reactor systems
17	and human factors branches reviews. This particular
18	review was pretty straightforward.
19	We had 40 requests for additional
20	information, RAI questions that were asked. These
21	questions resulted in seven supplements to the
22	application being submitted.
23	To give you some perspective on the
24	request for information questions we asked, this
25	graphic what happened here? Okay, we lost
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	19
1	something in the translation.
2	Okay. Anyway, about half the questions
3	were in the reactor systems part of the review. But
4	a third of the questions were in human factors. And
5	the rest were from the other branches that were
6	involved.
7	Consistent with the focus areas of our
8	review, the Staff performed two audits. The first
9	audit in May 2015 was at the Peach Bottom site.
10	And that focused on the time critical
11	operator actions. Details of the issues that were
12	discussed during the audit are contained in Section
13	3.310 if the Staff Safety Evaluation.
14	The second audit was August 31 to
15	September 2, 2015 at GE-Hitachi in Wilmington, North
16	Carolina. And that audit focused on sensitivity
17	calcs and methodologies for ATWS with instability
18	events using TRACG.
19	Those issues are discussed in Appendix A
20	under RAI, SRXB RAI-18. And our presentations today
21	will closely align with the technical focus areas
22	discussed by the RAIs and the audits.
23	MEMBER SCHULTZ: Rick, before you go
24	forward. Could you describe qualitatively if you
25	would, the some comparison of this review versus
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	20
1	the other three that have been done?
2	You've gone through quickly. And you
3	did indicate that this was a straightforward review.
4	MR. ENNIS: Right.
5	MEMBER SCHULTZ: Some of the previous
6	ones were not so straightforward. So, could you
7	provide a qualitative comparison on that?
8	Thinking about the RAIs in particular.
9	And the Staff's interaction with the licensee?
10	MR. ENNIS: Okay. As I mentioned for
11	Peach Bottom, the RAIs resulted in seven
12	supplements. Nine Mile Point had nine supplements.
13	Monticello had 16. And Grand Gulf had 20.
14	So, I think we're learning from our
15	reviews as well as our discussions with ACRS. And
16	we're focusing areas on some of these technical
17	areas that we know that are a concern.
18	So, I think we're getting better at
19	these reviews. And when we do get into the
20	technical area in the closed session, we will have
21	some side by side comparisons on some of the
22	parameters for each of the reviews.
23	MEMBER SCHULTZ: Okay. Thanks.
24	MR. ENNIS: With respect to the agenda
25	for today, during the open session, Exelon is going
	NEAL R. GROSS

(202) 234-4433

	21
1	to provide an overview of the MELLLA+. This
2	discussion will include an overview and history of
3	some of the key design issues pertaining to Peach
4	Bottom.
5	An overview of the MELLLA+, the design
6	and analysis supporting the proposed change. And a
7	discussion on operating reactor procedures and
8	operating training, including time critical operator
9	actions.
10	Following the break, we'll have to go
11	into a closed session due to the proprietary nature
12	of the information that will be discussed. During
13	the closed session, Exelon will start out with a
14	presentation regarding the MELLLA+ analysis.
15	And then the Staff and one of our
16	contractors will give a presentation that will focus
17	on the reactor systems and human factors reviews.
18	And unless there are any questions, I would like to
19	turn it over to Exelon.
20	MEMBER BANERJEE: Was the minimum set at
21	83 percent flow?
22	MR. ENNIS: I think we'll get into that
23	during the technical discussion.
24	MEMBER BANERJEE: Okay. It wasn't by
25	accident?
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	22
1	MR. ENNIS: I think Exelon will discuss
2	that during their discussion.
3	MEMBER BANERJEE: Okay.
4	CHAIRMAN REMPE: While we're
5	transitioning, I want to check again. Kord, are you
6	able to speak on are you on the line? And it's
7	open so you can actually talk?
8	MR. SMITH: It's the same as the speaker
9	is actually they're not able to respond.
10	CHAIRMAN REMPE: Okay. Thank you.
11	Kord, Mike wants me to remind you that it works
12	better if you're on a land line versus a speaker
13	phone or other options, okay?
14	MR. SMITH: Other option.
15	CHAIRMAN REMPE: Okay. Thank you.
16	MR. SMITH: I'm on a land line. I just
17	have to take it off speaker. Is that better?
18	CHAIRMAN REMPE: Yes.
19	MR. SMITH: Okay.
20	MR. BORTON: Good morning. My name is
21	Kevin Borton. I'm the Licensing Manager for Power
22	Uprates.
23	What I'll do, is I'll do a quick
24	introduction of our team so we'll get that out of
25	the way. Here at the head table we have Pat Navin,
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	23
1	which is our Plant Manager at Peach Bottom.
2	Andy Olson, who is from Corporate Fuels.
3	And Jim Kovalchick to my far right, which is our
4	Peach Bottom Operations Manager.
5	Moving to slide four, on the side table,
6	we have with us today John Rommel, the Engineering
7	Director for Exelon Power Uprates. Jim Armstrong,
8	Reg Assurance Manager from Peach Bottom.
9	James Tusar, Nuclear Fuels Manager at
10	corporate. Alex Psaros who is our Reactor
11	Engineering Manager at Peach Bottom.
12	And John McClintock from Operations
13	Training. We also had Tony Hightower, which is an
14	Operator that had worked on the project and has
15	since moved onto a new a job up at Limerick.
16	And from GE in our audience here, we
17	have Bruce Hagemeir, a Project Manager for MELLLA+
18	from GE-Hitachi. Sean Lamb and Mike Cook, who are
19	the Technical Leads from GEH as well.
20	So, the next slide is our presentation
21	objectives. The objectives here to is to present
22	our need for MELLLA+. Provide the key aspects of
23	our submittal and demonstrate our readiness.
24	We've added the last bullet there. And
25	asking for support for that January 2016
	NEAL R. GROSS

(202) 234-4433

	24
1	implementation which we spoke about at the beginning
2	of the meeting.
3	CHAIRMAN REMPE: Elaborate a little bit
4	about that. Because all I mentioned is what we I
5	didn't really elaborate on it.
6	I just mentioned that we need to decide
7	what we want to do to go forward.
8	MR. BORTON: Okay. So first of all, I
9	appreciate you making the accommodations for us to
10	present this week. I know it had to be shifted
11	around in order to do that.
12	Because you're considering a need for a
13	full Committee review based on the previous reviews,
14	what I found at our Peach Bottom review, I want to
15	expand a little bit on the impact specific to Peach
16	Bottom.
17	We asked for the approval from the NRC
18	to be
19	MEMBER CORRADINI: Your things not on.
20	You need the little green light or else the recorder
21	is going to go crazy.
22	MR. BORTON: Got it. Okay. Much
23	better?
24	CHAIRMAN REMPE: I was going to tell you
25	I present the update to technology. I'm sorry.
	NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. (202) 234-4433 WASHINGTON, D.C. 20005-3701 (202) 234-4433

	25
1	MEMBER CORRADINI: Well, we've changed
2	it. Let's not say update.
3	CHAIRMAN REMPE: Okay.
4	MR. BORTON: All right. So, is this
5	better?
6	CHAIRMAN REMPE: Yes.
7	MR. BORTON: Okay. What we did was we
8	asked for a September 2015 approval from the NRC
9	when we put our submittal in back in 2014. And as
10	such, our current Unit Two Core was designed for
11	MELLLA+.
12	And at this point, we're a little bit
13	more then halfway through our cycle. So, there are
14	some impacts in loss benefits that would impact us
15	if we would go beyond January with our
16	implementation.
17	Those impacts are because of the low
18	core flows and high power, it makes testing
19	difficult due to the thermal margins at this point.
20	Anything past January.
21	Our small operations window increases
22	the rod pattern adjustments that are necessary.
23	Which also puts a reactivity management challenge
24	for our operators.
25	And operating without MELLLA+ in the
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	26
1	higher core flows results in increased APRN noise as
2	well. And of course frequent low drops decreases
3	our capacity factor as well.
4	So, those are some of the things that
5	we've a little anxious about with the reviews. And
6	because of the type of reviews and some of the other
7	audits that we had to perform, has pushed us up
8	against this window.
9	So, we'll have to also consider, at this
10	point, whether or not we would pursue implementing
11	Unit Two in 2015 or early 2016. Rather, we may feel
12	it necessary to delay this until 2016, after our
13	refueling outage in the fall.
14	So, there are some loss benefits here
15	and some impacts to our operators. And I just
16	wanted to let the Committee also weigh that in with
17	the other factors.
18	The fact that we put our application in.
19	We met the limits and conditions of the topical
20	report.
21	And we feel that the previous reviews do
22	bound the review necessary for Peach Bottom as well.
23	Okay. We can move onto the next slide.
24	As Rick stated earlier, our agenda today
25	is to give a history of the plant that brings us up
	NEAL R. GROSS

(202) 234-4433

	27
1	to MELLLA+ with a project overview. We'll touch on
2	that design and analysis that we've heard from the
3	previous submittals that we think that you're
4	interested in, including the operator reactions and
5	training.
6	So, we'll start with Pat Navin, with the
7	station overview.
8	MR. NAVIN: Good morning. My name is
9	Pat Navin. I am the Plant Manager at Peach Bottom.
10	I started my career at Peach Bottom 31
11	years ago after receiving an Engineering Degree from
12	Drexel University. And had various aspects of the
13	operation at Peach Bottom in the course of my career
14	in engineering.
15	Extensive time in operations and work
16	management, including operations experience as a
17	four years on shift as a Shift Technical Advisor.
18	Ten years on shift as a Senior Reactor Operator, and
19	three years as the Site Operations Director.
20	And then also had a place and one year
21	assignment as the Corporate Operations Director for
22	the Exelon Fleet. And following that, became the
23	Peach Bottom Plant Manager just over three years
24	ago.
25	So, seen a been again, seen a lot of
	NEAL R. GROSS

(202) 234-4433

	28
1	changes over the course of my time at Peach Bottom.
2	And very proud of a lot the number of
3	accomplishments we've accomplished at Peach Bottom.
4	We'll talk a little bit about that
5	around extended power uprate, which we recently
6	completed. First of all, I want to say thank you
7	for the opportunity to per for our team to
8	present and answer any questions you may have
9	regarding the Peach Bottom MELLLA+ LAR.
10	Kevin will discuss during his portion of
11	the presentation how important this change is to us.
12	Especially the flexibility and procession it will
13	provide for the Operators.
14	Especially, we're talking about the
15	timing here, as we move into the second half of the
16	operating cycle for Unit Two. Which just completed
17	its first year of operation after our completion of
18	the power uprate project for the Units.
19	In order to provide the foundation for
20	the rest of the presentation and your questions, I'd
21	like to provide a brief overview of the plant's
22	history leading up to this change. So, the station
23	overview, it's a duel unit, the General Electric
24	BWR-4, Mark I containment.
25	The containment design pressure is 56
	NEAL R. GROSS

(202) 234-4433

	29
1	psig. Did begin commercial operation in 1974. The
2	original licensed thermal power radial was three
3	times I'm sorry? Excuse me?
4	CHAIRMAN REMPE: Just a second. The
5	noise from the phone lines is a bit loud. Could
6	everyone please put their phones on mute?
7	I apologize, but I think it will make
8	your life better. Thank you.
9	MR. NAVIN: Okay. Okay, very good.
10	Okay. Again commercial operation in 1974. Again,
11	original license thermal power was 3,293 megawatts
12	thermal.
13	With the extended power uprate
14	MEMBER STETKAR: Excuse me, sir?
15	MR. NAVIN: Yes?
16	MEMBER STETKAR: If you're out there on
17	the line, put your phone on mute. It's star six.
18	Just please do it.
19	We're hearing background talk coming in.
20	And it's really disrupting our meeting here.
21	So, if you're out there, put your phone
22	on mute please.
23	MR. NAVIN: Okay. All right. Thank
24	you. Okay. So, we did just complete, we had the
25	license amendment approval for extended power
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	30
1	operation that has raised our licensed thermal power
2	to 3,951 megawatts thermal. That was approved in
3	2014.
4	Unit Two, we completed the modifications
5	on Unit Two in the fall of last year. Actually a
6	year ago today, Unit Two came online following the
7	completion of those modifications.
8	And it's been running safely and
9	reliably for 365 days since we've completed those
10	activities on Unit Two. Unit Three, those
11	modifications also are complete.
12	We currently are in power ascension.
13	The testing associated with the extended power
14	uprate modifications at 96 percent power currently.
15	So, we are going through the final
16	reviews and approvals to continue to operate. To
17	move up to 100 percent power on Unit Three. And we
18	expect to achieve that most likely in the next two
19	weeks.
20	MEMBER CORRADINI: So, just a question
21	about kind of performance statistics. So, I was
22	reading, I want to make sure I understand.
23	It's only at the end of life can you
24	achieve that high flow rate because of change in
25	flux shape and pressure drop? And an early or a
	NEAL R. GROSS

(202) 234-4433

	31
1	beginning of cycle, you can't get to 110. What can
2	you get to?
3	MR. NAVIN: For a core flow?
4	MEMBER CORRADINI: Yes.
5	MR. OLSON: Actually, I'll be discussion
6	that shortly.
7	MEMBER CORRADINI: Okay fine. All
8	right, fine. Thank you, thank you.
9	MR. NAVIN: Okay. With the extended
10	power uprate, there were significant upgrades to the
11	plant. Which I believe this Committee had an
12	opportunity to go through some of that previously.
13	It includes an improved steam dryer
14	design, significant modifications to the generation
15	balance of plant equipment. And also of note for
16	this discussion today, enriched boron.
17	That significantly has improved our
18	standby liquid control system response for an ATWS
19	condition. And the ability to more promptly
20	suppress power and mitigate the potential
21	implications of an ATWS event.
22	Additionally, we put significant effort
23	into the elimination of the containment over
24	pressure credit. This was a very significant
25	modification for the station to undertake.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	32
1	And it has improved notable margin
2	improvement in our ability to remove heat from the
3	containment. It also provides and allows an
4	additional flexibility for the Operators with the
5	changes reimplemented associated with that.
6	Both Units are on a 24-month operating
7	cycle. Both Units are now 100 percent GNF2 fuel in
8	the cores.
9	We have three steam-drive reactor feed
10	pumps on each Unit. And we are licensed for an
11	increased core flow up to 110 percent.
12	MEMBER STETKAR: Well, just out of
13	curiosity. I unfortunately have to plead ignorance
14	because I didn't read all of the material.
15	What did you do to eliminate the cap
16	credit?
17	MR. NAVIN: Well, we put in a say a
18	very extensive Peach Bottom design has four RHR
19	residual heat removal pumps per Unit. Each one has
20	a dedicated heat exchanger associated with it.
21	We put in cross side pipes to allow us
22	to cross connect. One RHR pump can go into
23	essentially two heat exchangers.
24	MEMBER STETKAR: Okay. Good.
25	MR. NAVIN: To improve heat removal
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

33 1 capability without impacting diesel generator 2 loading. it's hardware 3 MEMBER STETKAR: So 4 modifications, --5 MR. NAVIN: That's correct. 6 MEMBER STETKAR: Not just pencil 7 sharpening. 8 MR. NAVIN: Yes. 9 MEMBER STETKAR: Thank you. 10 MR. NAVIN: That's right. 11 MEMBER BANERJEE: And this was done 12 during your EPU, right? MR. NAVIN: That's correct. Right. 13 MEMBER BANERJEE: I remember that. 14 15 MR. NAVIN: And it was a very extensive 16 amount of work. We put in single failure criteria and a lot of the different things that we had to do 17 18 with redundant power supplies and et cetera. 19 So, it was a very extensive amount of 20 Okay, next slide. work. 21 Peach Bottom history. Again, the 22 original license power as I mentioned, 3,293. There 23 were two previous uprates. 24 A stretch power uprate, which was a 5 25 percent uprate in the 1994/1995. And then also an

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

```
(202) 234-4433
```

	34
1	MUR uprate, was a 1.6 percent increase in 2002 on
2	each Unit.
3	We did get the licensing amendment for
4	MELLLA operating domain, operations in MELLLA
5	operating domain back in 1995. That was associated
6	with our stretch power uprate project.
7	And also received a renewed operating
8	license back in 2003. And we did enter into the
9	extended operation on both units. And currently
10	licensed to operate through 2034.
11	We did implement the Option Three
12	Stability Solution. Which is the auto suppression
13	trip back in 2005. As I mentioned, GNF2 first
14	introduced in 2010.
15	And now all both all cores both
16	cores are fully implemented with GNF2. And the
17	extended power uprate project again, license
18	amendment approvals and, you know, currently in
19	power ascension as I discussed on Unit Three.
20	And I will say, additional history, you
21	know, at Peach Bottom, very focused on operating the
22	power plant safely, precisely. INPO ratings we have
23	four consecutive INPO One ratings.
24	We have not had an automatic scram at
25	Peach Bottom either Unit in over ten years. So,
	NEAL R. GROSS

(202) 234-4433

	35
1	we've taken a lot of efforts to make sure the plant
2	is running reliably, safely and an extensive amount
3	of work put into this extended power uprate to
4	ensure that we'll maintain that.
5	Before I turn it over to Kevin and the
6	rest of the team, I just want to leave you with our
7	goal today. Which is to make sure all your
8	questions are answered regarding the MELLLA+
9	application.
10	And ensure that you have the sense of
11	confidence that we will implement this change very
12	safely, very precisely. And I'll point to our
13	extended power uprate project that we just
14	completed.
15	It was done with a very strong
16	engineering design basis. A very strong alliance
17	with operations and our training departments to make
18	sure that that project was done very well, very high
19	quality, and implemented with absolute safety.
20	And we're seeing results of that today
21	at Peach Bottom.
22	MEMBER SKILLMAN: Pat, let me ask this.
23	You mentioned the benefit of the enriched boron for
24	the power uprate. In making that comment, were you
25	referring to the analytical benefit?
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	36
1	Or were you referring to actually
2	testing and demonstrating the benefit?
3	MR. NAVIN: Well, it's tested on our
4	simulator. I mean, we did not inject it into the
5	reactor. I mean, it's analytical.
6	But the Operators can attest to the
7	simulator changes on the simulator, ATWS
8	response, and how that affects their response in an
9	ATWS event.
10	MEMBER SKILLMAN: Simulator and
11	analytical?
12	MR. NAVIN: Correct. Yes, sir.
13	MEMBER SKILLMAN: Okay. Thank you.
14	MR. NAVIN: Okay.
15	CHAIRMAN REMPE: Because we weren't
16	given the slides in advance, I may be asking this
17	out of order. But at some point will you discuss
18	when you did the EPUs and what happened with the
19	measurements on the steam dryer? And how things
20	compared to what was predicted?
21	MR. BORTON: We could probably touch on
22	that at the end.
23	CHAIRMAN REMPE: Okay. Thank you.
24	MR. BORTON: Yes. Okay, Kevin Borton
25	again here. I want to go over the benefits starting
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	37
1	on slide 10, gained from this change.
2	And the major benefit is to provide the
3	Peach Bottom Operators with the ability to control
4	power using core flow versus moving rods. This is -
5	- reduces the number of times that are required to
6	maneuver the reactor, especially during end of
7	cycle.
8	And the DSS-CD also provides for earlier
9	detection in instability due to its sensitivity
10	speed and the alarms that we're installing. And
11	finally, the station capacity factor will increase
12	due to the reduced number of down powers that we
13	anticipate with this as well. Next slide.
14	And just to expand on this a little bit
15	more, slide 11 is our proposed power to flow map.
16	As you can see, the blue dotted line at 3,514
17	megawatt thermal, was our pre-EPU operating window
18	at 100 percent.
19	You could also see that the window was
20	reduced at EPU represented five points D to F at
21	3,951 megawatt thermal. So the new MELLLA boundary
22	is showing in the highlighted green lines where the
23	100 percent window now is expanded once again from J
24	to F right above it.
25	MEMBER CORRADINI: So, just for my
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	38
1	understanding, when you were at your EPU condition,
2	but not using MELLLA+, what would be the path you
3	trace on this power flow map to make a maneuver?
4	I think I know. But I'm not really
5	sure. So, I'm curious. You come down at Point D to
6	a lower power and then come over? Or do you
7	actually follow the old MELLLA line down?
8	MR. BORTON: For rod pattern adjustment?
9	Do you want
10	MEMBER CORRADINI: Well, on this plot,
11	how does power and flow change with rod
12	manipulations?
13	MR. BORTON: Okay. We'll call on our
14	Reactor Engineer.
15	MEMBER CORRADINI: I'm not enough of a
16	BWR person to appreciate this.
17	MR. PSAROS: I'm Alex Psaros, Reactor
18	Engineering Manager. Is this on?
19	MEMBER CORRADINI: Okay, you have to be
20	closer. Get closer. Have a seat.
21	CHAIRMAN REMPE: And say your name
22	again, please.
23	MR. PSAROS: Alex Psaros, Reactor
24	Engineering Manager. For maneuver from 100 percent,
25	we'd insert rods first and come straight down.
	NEAL R. GROSS

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	39
1	MEMBER CORRADINI: Okay.
2	MR. PSAROS: And then maneuver.
3	MEMBER CORRADINI: And then you'd come
4	down to lower flow or do whatever you have to do?
5	MR. PSAROS: That's correct. That's
6	correct, lower flow. By inserting rods, we're
7	giving ourselves margin to the MELLLA boundary.
8	MEMBER CORRADINI: You don't ever
9	we'll take it whatever time of life you can do. You
10	don't ever go to increase flow and come down that
11	way?
12	MR. PSAROS: Within the cycle we would
13	run up core flow.
14	MEMBER CORRADINI: Okay. So you would
15	have that extra margin at end of cycle to maneuver
16	through?
17	MR. PSAROS: That's correct.
18	MEMBER CORRADINI: Okay. Thank you.
19	MR. NAVIN: But for full power, we would
20	not be able to raise core flow. Because we'd
21	already be in a situation where by raising core
22	flow, it would raise power.
23	So, you would have to insert core rods -
24	_
25	MEMBER CORRADINI: You would have to
	NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. (202) 234-4433 WASHINGTON, D.C. 20005-3701 (202) 234-4433

	40
1	come down and then come over to create mar or
2	create flexibility on both sides. Okay.
3	MR. NAVIN: That's correct.
4	MR. PSAROS: That's right. You have to
5	insert rods and come straight down.
6	MEMBER CORRADINI: Got it. Okay, thank
7	you.
8	CHAIRMAN REMPE: So this slide is a good
9	place, I think answer Sanjoy's question about why
10	you picked your particular MELLLA+ region, because
11	we do see differences in what comes before us. And
12	if you why'd you pick 83 percent?
13	MR. BORTON: So, we're actually going to
14	have Tony Hightower discuss that.
15	CHAIRMAN REMPE: Oh, later? All right.
16	MR. BORTON: No, right now.
17	MR. HIGHTOWER: So, this is Tony
18	Hightower, Peach Bottom Operations. The 83 percent
19	as the lower limit of our envelope restores the
20	envelope that we have prior to the changes for EPU.
21	If this graphic shows it pretty
22	clearly. If you look at the point labeled J and
23	take a line straight down to where that blue dotted
24	line intersects, that's that is essentially the
25	same point. So, 83 percent.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	41
1	MEMBER CORRADINI: So, can I say it to
2	you differently? There wasn't a technical reason on
3	fun multi-phase flow stuff. It was just that from a
4	procedural standpoint, if you stayed graphically the
5	same way, a lot of your procedures would just
6	naturally translate up.
7	MR. HIGHTOWER: Correct.
8	MEMBER CORRADINI: Or actually both.
9	MR. HIGHTOWER: Yes.
10	MEMBER CORRADINI: Both.
11	MR. BORTON: That won't go to into our
12	fuel's person, it's on the other side.
13	MEMBER CORRADINI: Okay. Fine.
14	MR. HIGHTOWER: So, yes, from an
15	operations perspective, it was similar.
16	MEMBER CORRADINI: Okay.
17	MR. OLSON: Andy Olson, Nuclear Fuel
18	Safety Analysis. So, the selection of the point is
19	a balance between operational considerations and
20	analytical considerations.
21	The MELLLA+ LTR genetically allows the
22	values as low as 80 percent flow. Our vendor
23	initially proposed a value of 85 percent flow to us.
24	To take into consideration the impact of
25	the lower flow rates on the rod line and the
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	42
1	implications to ATWS results. There is a balance.
2	The lower you come in flow, the higher
3	rod line that you're on. And it's more challenging
4	with respect to ATWS response and ATWS results.
5	When they proposed 85 percent to us, it
6	was based on that consideration. We evaluated the
7	preliminary analysis that they had performed for us
8	and concluded that we believed there was some
9	additional margin available.
10	And we kind of proposed the 83 percent
11	value in part because it did coincide with where we
12	were previously. And would make operations
13	basically take them back to where they were prior to
14	EPU.
15	And
16	MEMBER BANERJEE: Why were you there
17	previously?
18	MR. OLSON: The
19	MEMBER BANERJEE: Pre EPU.
20	Mr. Olson: Pre EPU. So, MELLLA
21	implemented prior to power uprate provided for a
22	lower flow value of 75 percent. The stretch uprate
23	and the MUR uprate is performed preserving the
24	MELLLA line.
25	And so, in order to increase power, you
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	43
1	are forced to slide up the line. And as you slide
2	up the line, you come further to the right higher in
3	core flow.
4	So, as you increase licensed power under
5	MELLLA operation, you slowly constrain your flow
6	window because the lower end of the window becomes
7	higher in flow rate.
8	So, we started at 75 percent. We did
9	stretch uprate that took us to 81 percent. We then
10	did the MUR and that took us to essentially 83
11	percent.
12	And that's where we were prior to EPU.
13	MEMBER BANERJEE: I understand.
14	MR. OLSON: Does that answer your
15	questions?
16	CHAIRMAN REMPE: Yes. Thank you.
17	MR. BORTON: All right, we're on slide
18	12. Peach Bottom is based on the GE approved
19	topicals as were the previous industry applications.
20	So, therefore pressure, max thermal power, max core
21	flow and feed water rates and temperatures do not
22	change with MELLLA+.
23	Also, balance of plant equipment is not
24	required to be modified is per
25	MEMBER BANERJEE: So, just going back to
	NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. (202) 234-4433 WASHINGTON, D.C. 20005-3701 (202) 234-4433

	44
1	the point you were making. If you did take it to 80
2	percent, would that have substantially impacted the
3	operator action time for at risk?
4	MR. OLSON: We just
5	MEMBER BANERJEE: Did you do a
6	sensitivity analysis of that?
7	MR. OLSON: No. We took a very critical
8	look at the core flow rate we wanted to use for the
9	analysis. We knew 80 percent was available.
10	Upon the recommendation of the vendor,
11	we did not pursue that because it was felt that we
12	would not meet the ATWS criteria. Not just ATWS-I,
13	but ATWS itself in terms of pressure response and
14	other characteristics.
15	And so, we chose to go with 83. And we
16	didn't investigate any further beyond that.
17	MEMBER BANERJEE: Did they give you any
18	evidence to that effect? Or to that concept?
19	MR. OLSON: We had some basic
20	sensitivity studies that they had performed. We had
21	calculations at 85 percent flow that showed
22	sufficient margin available to allow us to go down
23	in flow and achieve a higher rod line.
24	And but based on their past experience,
25	they recommended no lower then that. So, we worked
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	45
1	back and forth with the vendor to conclude that 83
2	was supportable and provided assurance that we
3	wouldn't have to redo the work and reconsider a
4	different value.
5	MEMBER BANERJEE: Okay. So it was a
6	judgment call?
7	MR. OLSON: Yes.
8	MR. BORTON: So, moving from slide 13
9	onto slide 14. This talks about what changes are
10	required for MELLLA+. It does require some physical
11	changes at set point changes.
12	However, the majority of changes listed
13	here are related to operator aids, tech spec changes
14	and reporting. So, this is something I think is
15	familiar to the Committee.
16	Moving onto the next slide,
17	implementation. The installation of DSS-CD firmware
18	and testing is now completed on both Units. At both
19	Unit Two and Three at Peach Bottom.
20	After NRC approval, tech specs will be
21	implemented and the DSS-CD will be enabled and
22	tested at that point. Procedures and updating the
23	3D Monicore Databank and COLR will also be performed
24	during implementation.
25	So this really ends our quick overview
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	46
1	of the scope of our implementation. So, if there's
2	no questions, I'd like to turn this over to Andy.
3	MEMBER BANERJEE: You have no plans to
4	change to type of fuel?
5	MR. BORTON: I'm sorry?
6	MEMBER BANERJEE: You have no plans to -
7	-
8	MR. BORTON: Not at this time. No.
9	We're going to stay with the fuel that we have in
10	both Units.
11	So, I'd like to turn it over to Andy.
12	CHAIRMAN REMPE: Actually, I do have a
13	question. And again, I didn't I don't know if
14	I'm doing this out of order because I didn't see the
15	slides until this morning.
16	But, in the last couple of these, we've
17	had an issue of or a discussion about the safety
18	relief valves and their propensity for drifting.
19	The statement that's in the actual document that you
20	have is almost identical to one we've seen before.
21	But it doesn't actually cite what the
22	tolerances are when you test the relief valves. And
23	do you have that information?
24	The statement is something about a
25	propensity to drift more then 3 percent. But it
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	47
1	doesn't state that they don't have a propensity to
2	draft more then 3 percent.
3	MR. BORTON: Yes, it's 3 percent is what
4	we have.
5	CHAIRMAN REMPE: But what is the actual
6	test data? Is what I want to know. And is this the
7	good place to if there's another place where
8	you're planning to talk about that?
9	MR. NAVIN: Well, Peach Bottom used to
10	have a tighter tech spec requirement, it was plus or
11	minus 1 percent.
12	CHAIRMAN REMPE: Um-hum.
13	MR. NAVIN: We recently implemented the
14	change. We did our challenges maintaining the 1
15	percent criteria.
16	CHAIRMAN REMPE: Okay.
17	MR. NAVIN: We did a tech spec change to
18	support the plus or minus 3 percent, which is the
19	industry standard.
20	CHAIRMAN REMPE: Okay.
21	MR. NAVIN: And with that 3 percent
22	change, we have not had historically problems
23	maintaining that 3 percent margin to set point. Is
24	what you're referring to?
25	CHAIRMAN REMPE: Right.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	48
1	MR. NAVIN: Yes. That has not been a
2	problem at Peach Bottom.
3	CHAIRMAN REMPE: And what is the actual
4	data? I guess it says here, as found SRV left set
5	point tests do not show a propensity for set point
6	drift higher then the 3 percent drift tolerance.
7	So, what is the value? Is it around 1
8	percent? Two percent? Less then 2 percent?
9	MR. BORTON: We could call that up from
10	the station and have that to you before we close.
11	CHAIRMAN REMPE: That's fine. It's
12	something I would like to check if you don't mind.
13	MR. BORTON: Yes.
14	MR. NAVIN: Based on our previous tech
15	spec requirement of 1 percent, normally they were in
16	with 1 percent. But we did have, it was not usual
17	to have one or two SRVs test outside the 1 percent,
18	but within 3.
19	CHAIRMAN REMPE: Okay.
20	MR. NAVIN: So I think 2 would normally
21	be probably a boundary number for where we normally
22	sit.
23	CHAIRMAN REMPE: Less then 2 percent
24	would be nice to hear. Thank you.
25	MEMBER BALLINGER: Are these two or
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	49
1	three staged target rocks?
2	MR. NAVIN: These are I believe two
3	staged. Three? Ours are three? Thanks.
4	MEMBER BALLINGER: Three staged? Okay.
5	MR. OLSON: Good morning. My name is
6	Andy Olson. I am a Safety Analysis Engineer in the
7	Nuclear Fields Department at Exelon.
8	I have been supporting Peach Bottom
9	station as a Safety Analysis Engineer for over 30
10	years now. I'm going to provide some general
11	information about our MELLLA+ application.
12	Including our experience with increased
13	core flow. Which was a question raised a little
14	earlier.
15	Peach Bottom is licensed for a maximum
16	core flow of 110 percent. We actually licensed to
17	110 percent core flow back in 1995 in conjunction
18	with the stretch up rate. And at the time we were
19	able to achieve 110 percent core flow.
20	With the various uprates and over time,
21	our ability to achieve 110 percent core flow has
22	become somewhat constrained. We can achieve
23	approximately 109.5 percent core flow at end of
24	cycle conditions.
25	However, earlier in the operating cycle,
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	50
1	particularly near the beginning of cycle when axial
2	power shape is strongly bottom peaked and core flow
3	resistence is high, we can achieve about 104
4	percent.
5	As we proceed through the cycle, for the
6	majority of the cycle, that core flow capability
7	increases slightly. And we see roughly 105.5
8	percent maximum core flow capability through most of
9	the operating cycle.
10	And then as we proceed towards the end
11	of the operating cycle and the power shape begins to
12	move towards the top of the reactor core, core
13	pressure drop is reduced and flow capability
14	increases naturally.
15	And we can achieve higher core flows as
16	we implement end of cycle extension strategies like
17	feed water temperature reduction and coast down.
18	The core flow capability increases. And we can
19	again, achieve roughly 109.5 percent.
20	In practical operation, that results in
21	a flow operating window at Peach Bottom of
22	approximately 101 percent to 105.5 percent. The 101
23	percent limitation is driven by our requirement to
24	maintain operational margin to the MELLLA boundary.
25	Which under EPU conditions begins at 99
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	51
1	percent core flow. And of course, we do use higher
2	core flows as we approach the end of cycle.
3	So, you can see the practical flow
4	window currently without MELLLA+ on the order of 4
5	to 5 percent. It's fairly tight.
6	MEMBER SKILLMAN: Andy is that one half
7	percent between 109.5 to 110 an issue or a problem?
8	MR. OLSON: I'm sorry, repeat the
9	question please?
10	MEMBER SKILLMAN: Is that half a
11	percent, EPU allows 110, you can achieve 109.5 at
12	end of cycle. Is that half a percent important?
13	MR. OLSON: A problem? No. It has a
14	very modest impact on overall fuel cycle economy.
15	But operationally it's not a problem or a concern,
16	no.
17	MEMBER SKILLMAN: Thank you.
18	MR. OLSON: Okay. So, for Peach Bottom
19	we have produced MELLLA+ supplemental licensing
20	report. And that has been previously submitted to
21	the NRC as supplemental information to the license
22	amendment request.
23	The current core design for Unit Two and
24	Unit Three as well, is based on the presumption that
25	we will utilize MELLLA+ during the cycle. MELLLA+
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	52
1	does introduce some modest thermal limit increases.
2	In particular SLMCPR for operation.
3	That's as a result of the increase in the safety
4	limit MCPR that occurs with MELLLA+ due to
5	limitations and conditions.
6	There's a safety limit adder that we
7	have to consider as well as the implementation of a
8	larger uncertainties for core flow conditions. And
9	we'll discuss that in a little more detail during
10	the closed session.
11	There is no impact on the linear heat
12	generation rate limits. Nor the
13	MEMBER BANERJEE: Isn't that just based
14	on the conditions that took place on the LTR, right?
15	MR. OLSON: That's correct.
16	MEMBER BANERJEE: Yes.
17	MR. OLSON: It's based on the conditions
18	placed on the LTR. Otherwise, there would be very
19	little change
20	MEMBER BANERJEE: Right.
21	MR. OLSON: or none. And yes, that
22	and no change in our map or hydro limits as well.
23	The new supplemental relo licensing
24	report also reflects the transition to the new DSS-
25	CD stability solution. That section of the SLAR
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	53
1	previously addressed the utilization of the option
2	three detect and suppress solution.
3	It now provides generic confirmation of
4	our DSS-CD set points. As well as provides the
5	manual backup stability protection and automated
6	backup stability protection limits and information.
7	The SLAR also includes Appendix F, which
8	provides and address the limitations and conditions
9	from the interim methods licensing topical report
10	that apply to the core. And a new Appendix G has
11	been added that does the same for the applicable
12	limitations and conditions from the MELLLA+ LTR.
13	So, that's the changes that we see in
14	the SLAR as a result of the implementation of
15	MELLLA+. And that's the end of my presentation if
16	there's any questions.
17	MR. KOVALCHICK: Yes, good morning, I'm
18	Jim Kovalchick. To discuss my background, I started
19	at Peach Bottom, like Pat, 31 years ago.
20	And most of my time has been in
21	Operations. And 15 years of that time as a Senior
22	Reactor Operator.
23	And my latest assignment as a Senior
24	Manager in Operations has been to focus on our power
25	uprate. And also a subset of that, the MELLLA+, in
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	54
1	particular operations and training.
2	And that's what I'll be discussing this
3	morning. Starting with slide 21, I can discuss
4	license conditions.
5	So, operations in the MELLLA+ domain
6	will be prohibited when we have either of the
7	following plant conditions occur. One is that when
8	we're in single loop operation, we'll not be in
9	MELLLA+.
10	And the other is when we have a feed
11	water heater out of service. Now, I'll define feed
12	water heater out of service a little bit.
13	Because we wanted to make sure that we
14	didn't have minor equipment malfunctions limit us
15	unnecessarily. But also, we wanted to make sure
16	that that is a term that the operators would be able
17	to easily recognize and understand.
18	And so we determined that a 10-degree
19	reduction in feed water temperature below our design
20	would be appropriate. So, that's something that we
21	know that we'll be able to see both in power and in
22	feed water temperature.
23	And then we'll be able to implement
24	operations appropriate for that out of our already
25	existing positive reactivity insertion procedure.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	55
1	Next slide please.
2	For our tech specs, to accommodate
3	changes for our OPRM upscale function, we'll revise
4	the required operability threshold and set points
5	for the enabled region to make them a larger region.
6	We'll have new conditions, required
7	actions and completion times do to the addition of
8	the automated backup stability protection for when
9	the OPRM upscale function is inoperable.
10	And we'll eliminate a surveillance
11	requirement that's no longer necessary because the
12	DSS-CD implementation specifically on that, DSS-CD
13	automatically arms. And so we no longer need to
14	verify that the OPRM is not bypassed.
15	We'll change the allowable value of the
16	APRM simulated thermal power and high trip function
17	to preserve the margin to trip. And then we'll
18	revise our single loop operations at LCO to make
19	sure that we're exiting the MELLLA+ region
20	immediately if that occurs.
21	And then finally, our tech spec
22	administration section will include changes that
23	will specify what kind of items are required each
24	time that we make our quota operating limit report.
25	Next slide please.
	NEAL R. GROSS

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	56
1	Okay. Now I'd like to discuss the time
2	critical operator actions. I've already mentioned
3	these a couple of different times.
4	And an important part of our
5	implementation, three time critical operator actions
6	for ATWS and stability One, that we initiate
7	reactor water level reduction in 120 seconds.
8	We'll initiate poison injection in 120
9	seconds. And initiate suppression pool cooling in
10	660 seconds. The new one in that trio is the
11	reactor water level reduction.
12	So, examining implementation of that,
13	the coincidence of that new one, with the existing
14	one for standby liquid control injection, we wanted
15	to make sure that number one, we would maintain our
16	existing EOP strategy. But also make sure that each
17	time we have an ATWS, that the steps will be
18	executed in that timely way.
19	So, we implemented new rapid response
20	cards for ATWSs. We already have rapid response
21	cards to help the operators and other transient and
22	emergency operation situations.
23	But we've added new ones for the ATWS.
24	And what
25	MEMBER STETKAR: Jim, before we get too
	NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. (202) 234-4433 WASHINGTON, D.C. 20005-3701 (202) 234-4433

	57
1	much in details there. You had feed water run back
2	under just plain MELLLA before or not?
3	You never had feed water run back? So
4	this is a brand you say it's changed for MELLLA+.
5	You mean that's a new action? You never had feed
6	MR. KOVALCHICK: The new time critical
7	action. So, for ATWSs, it was not it wasn't a
8	required in 120 seconds for previous ATWS analysis.
9	MEMBER STETKAR: Okay. Was it
10	MR. KOVALCHICK: It was already an
11	action inside of our EOPs if that's your question.
12	MEMBER STETKAR: Yes. But it was
13	expected to be taken some time some time.
14	MR. KOVALCHICK: We never put a
15	timeliness on it within the generic aspects. So,
16	remember, we have symptom days procedures.
17	MEMBER STETKAR: Yes.
18	MR. KOVALCHICK: So, the supervisor is
19	going to make decisions on how he goes through it
20	each time. And you know, we wanted to make sure
21	that we expeditiously got to that set of
22	instructions each time we do an ATWS anytime moving
23	forward.
24	That's the only difference. The actual
25	EOP strategy of if we have a power ATWS, we are
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	58
1	taking the mode switch to shut down. We are
2	injecting poison.
3	And we are going to go reduce level to
4	limit the possibility of cold water injection.
5	MEMBER STETKAR: That's that's
6	but, what you were just getting to, is what I wanted
7	to hear from you. The operators until this point in
8	time thought, were trained in that sequence.
9	Mode switch to shut down. Shoot the
10	boron and then and then run back feed water.
11	MR. KOVALCHICK: Yes. And some other
12	little things in there.
13	MEMBER STETKAR: Yes, yes.
14	MR. KOVALCHICK: For example, we're
15	going to do ARI
16	MEMBER STETKAR: Sure, sure. But I'm
17	taking big picture steps here. That's right. Okay.
18	MR. KOVALCHICK: Big picture. That's
19	what we're going to do.
20	MEMBER STETKAR: Okay. Okay.
21	MR. KOVALCHICK: And that's not going to
22	change. But what's going
23	MEMBER STETKAR: It's only going to
24	change in the sense that now you have made the feed
25	water run back equally critical with injection
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	59
1	with water injection.
2	MR. KOVALCHICK: We have developed a
3	pattern in our rapid response cards that it's going
4	to happen the same way every time to make sure that
5	the timeliness is there.
6	MEMBER STETKAR: Okay. I'll let you
7	consider on continue now on the rapid response
8	card.
9	MR. KOVALCHICK: Okay. Okay, thanks.
10	MEMBER STETKAR: Thank you.
11	MR. KOVALCHICK: Okay. All right.
12	Moving on, I think we can go to, let's see, we're up
13	to slide 24.
14	The talk a little bit more about the
15	rapid response cards. I did mention the content of
16	them. One thing I want to do, reinforce that with
17	respect to the supervisor command and control.
18	One of the things that we've done is to
19	make sure that the supervisor does not lose command
20	and control by just issuing a set of instructions
21	and isn't in the decision making process during
22	certain critical times.
23	So, even within the implementation of
24	the rapid response cards, we have built in at
25	decision points where their communications must
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	60
1	happen. For example, immediately prior to injection
2	of poison, the reactor operator will report that I'm
3	ready to inject.
4	And then he will get a final he or
5	she will get a final command from the shift
6	supervisor, inject poison or not to do so. The same
7	with a reduction of reactor level.
8	So, within the packaging of instructions
9	that we have, we've made sure that we aren't taking
10	command and control away from the senior reactor
11	operator.
12	MEMBER SKILLMAN: Jim, how formally is
13	the instruction that you just described, codified?
14	And how often are the crews trained to do this?
15	MR. KOVALCHICK: The formality is as
16	formal as instructions you will see in the control
17	room. They're all three-parted. And the step
18	itself is listed for that communication in the rapid
19	response card.
20	Now, as far as ATWS training, John
21	McClintock, one of our training leads can discuss
22	how often we train on ATWSs. It's a good question.
23	And I think he can speak to it.
24	MR. McCLINTOCK: Hi, my name is John
25	McClintock. I am the License Operator Requal
	NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. (202) 234-4433 WASHINGTON, D.C. 20005-3701 (202) 234-4433

	61
1	Training Lead at Peach Bottom. I'm also a former
2	Licensed Senior Reactor Operator for many years at
3	Peach Bottom and Shift Manager.
4	As far as the training goes, the
5	operators receive routine rigorous training
6	obviously on all aspects of, you know, power plant
7	operation. Which includes all of the normal
8	accident and transient sequences.
9	Of which failure scram is, you know, one
10	of the more significant. So, they receive training
11	on a routine basis every five weeks they're over in
12	training.
13	And a training week typically always
14	includes some training in failure to scram. I don't
15	know if that answered your question. It's
16	MEMBER SKILLMAN: Every five weeks you
17	run an at risk?
18	MR. McCLINTOCK: No.
19	MEMBER SKILLMAN: No?
20	MR. McCLINTOCK: No. They are in
21	training every five weeks.
22	MEMBER SKILLMAN: Okay.
23	MR. McCLINTOCK: The training, you know,
24	is done through the systematic approach to training.
25	ATWS, you know, encompasses
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	62
1	MEMBER SKILLMAN: Once a year? Once
2	every couple of years?
3	MR. McCLINTOCK: No. It would be more
4	like several times a year.
5	MEMBER SKILLMAN: Okay. Thank you.
6	MR. KOVALCHICK: Does that answer your
7	question?
8	MEMBER SKILLMAN: Answered my question.
9	Thank you.
10	MR. KOVALCHICK: Okay. So, Mr. Ennis
11	mentioned that they got a chance to look at the
12	implementation of that in the audit of May 2015.
13	So, all of our operating crews have been trained on
14	the MELLLA+ ATWS instability time critical actions.
15	We did our latest initial license
16	training class in March 2015. And our license
17	operator requal training all of the crews have
18	received that now as of August 2015.
19	And all of the operating crews
20	demonstrated satisfactory completion within the time
21	critical actions that we have. Next slide please.
22	So, in discussing the time critical
23	actions, you know, I can present some data. And I
24	think there's some interest here.
25	For the audit crew, I want to make sure
	NEAL R. GROSS

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	63
1	we understand that the audit crew's purpose was to
2	demonstrate our ability to do it. So this is in the
3	initial generation of our rapid response cards.
4	We had incentive to demonstrate to
5	ourselves. But also to the audit team that this was
6	something that could be accomplished.
7	So, we had hand-picked reactor operators
8	and supervisors that had some level of training and
9	proficiency at the time that it was demonstrated.
10	And very clearly, we demonstrated that it was a
11	feasible strategy.
12	Now getting into the operating crews
13	MEMBER SKILLMAN: Well, just before you
14	go ahead.
15	MR. KOVALCHICK: Sure.
16	MEMBER SKILLMAN: Hand-picked
17	individuals is what you just said.
18	MR. KOVALCHICK: Yes, sir.
19	MEMBER SKILLMAN: Does that mean you
20	chose the best of the best? The sharpest knives in
21	the box?
22	MR. KOVALCHICK: Not necessarily. They
23	were picked specifically because of their
24	availability within outside of crews. They were
25	working with me.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	64
1	And one of them was on the shift that we
2	managed to use. But the other two were working with
3	me on the uprate stuff.
4	They were very good operators.
5	MEMBER SKILLMAN: Let me ask the
6	question a little bit differently. Why should we
7	believe that an audit crew is representative of an
8	operating crew?
9	MR. KOVALCHICK: And that's why I'm
10	going to present to you the operating crew data. So
11	remember, the first part was to go show that the
12	strategy works.
13	So, you know, the 120 second time is a
14	viable time. So, it's not wiped out with respect to
15	the analysis. So, it can be accomplished.
16	So but, your question with the
17	operating crews is very relevant. And that's why
18	we're presenting both sets of data.
19	So, the operating crews, the data is
20	there. It also shows that they meet the time.
21	Now, each of those crews received what
22	is more what I would call more traditional
23	training with respect to an introduction to the
24	rapid response cards in a cycle. And in the next
25	cycle after that, we had them demonstrate the times.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	65
1	Each of the crews was able to
2	demonstrate the times. The difference between the
3	audit and the operating crew, you know, is
4	important.
5	And I agree with you, that why, you
6	know, I need to be able to go demonstrate that.
7	MEMBER SKILLMAN: Um-hum.
8	MR. KOVALCHICK: So, that's why the
9	operating crew is there.
10	MEMBER SKILLMAN: I understand what you
11	did with the audit crew. The operating crews on
12	this graphic, did they know they were going to have
13	an ATWS event?
14	MR. KOVALCHICK: They do they did.
15	MEMBER SKILLMAN: So this was not 3:00
16	in the morning on a Monday morning?
17	MR. KOVALCHICK: It was not.
18	MEMBER SKILLMAN: After how many years
19	have you operated without an automatic scram?
20	MR. NAVIN: Ten years.
21	MEMBER SKILLMAN: Ten years on each
22	Unit.
23	MR. KOVALCHICK: Yes, and that's
24	MEMBER SKILLMAN: Okay.
25	MR. KOVALCHICK: That's a I'll take
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	66
1	the fact that we don't have ten year, you know, we
2	have ten years without a scram. I'll take that any
3	day.
4	But it does present a challenge in
5	making sure that your operating crews are not
6	complacent. And actually can, you know, implement
7	the training in the field.
8	For example, we did have a recert pump
9	trip this year. In early was it, Pat? It was like
10	in?
11	MR. NAVIN: Yes, earlier this year, yes.
12	MR. KOVALCHICK: Yes. Earlier this
13	year. The crews the crew, you know, implemented
14	that perfectly in the field.
15	So, we have evidence that shows that our
16	training is effective in doing that. I expect that
17	in a I can go ahead and if you go back to the
18	slide.
19	MEMBER SCHULTZ: Jim, before you go
20	forward.
21	MR. KOVALCHICK: Sure.
22	MEMBER SCHULTZ: Either for you or for
23	John. What is the average deviation represented
24	here? That you're showing for the crew response?
25	MR. KOVALCHICK: You mean what is it
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	67
1	probably telling us?
2	MEMBER SCHULTZ: How is it evaluated?
3	What's it how is it determined?
4	MR. KOVALCHICK: The deviation was
5	determined simply by time, you know, from one crew
6	to the next, the deviation.
7	MEMBER SCHULTZ: How many the average
8	of how many crews? You mentioned that
9	MR. KOVALCHICK: There's five crews.
10	MEMBER SCHULTZ: Five crews.
11	MR. KOVALCHICK: Five crews.
12	MEMBER SCHULTZ: For the operating crews
13	and for the audit crew the same?
14	MR. KOVALCHICK: The audit crew was just
15	one.
16	MEMBER SCHULTZ: That was just one.
17	MR. KOVALCHICK: And their deviation was
18	on multiple occasions to do it during the audit. We
19	tested
20	MEMBER SCHULTZ: Several opportunities.
21	MR. KOVALCHICK: Yes. We did several
22	scenarios for the audit demonstration.
23	MEMBER SCHULTZ: Okay. And the other
24	was the average of five crews?
25	MR. KOVALCHICK: That's right.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

```
(202) 234-4433
```

	68
1	MEMBER SCHULTZ: Thank you.
2	MR. KOVALCHICK: Yes.
3	CHAIRMAN REMPE: Somewhere I thought I
4	read in some of the information that we were given
5	that the maximum time that they took was 105
6	seconds. Am I misreading something?
7	There was no place that they ever came
8	out to 120 or anything like that. Is that true?
9	MR. KOVALCHICK: That's correct.
10	CHAIRMAN REMPE: Okay.
11	MR. KOVALCHICK: Correct. I also expect
12	that the times will improve. As John mentioned,
13	ATWSs are something that we do with frequency in the
14	simulator.
15	And I expect that these times will start
16	to come closer to what you saw the audit crew do.
17	You know, with the familiarity of it.
18	The operators are actually like these
19	rapid response cards very much. They have in the
20	past always executed ATWS strategies the way we
21	expect.
22	And they've developed a very good
23	understanding of what they wanted to do. This
24	actually gives them a more expeditious path to where
25	they wanted to go in the first place.
	NEAL R. GROSS

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	69
1	So, they're responding to it very well.
2	And they're actually, you know, they like this
3	change.
4	MEMBER STETKAR: Jim, who does each of
5	these actions? Initiates standby local control and
6	runs back feed water?
7	MR. KOVALCHICK: The supervisor will
8	direct the reactor operator to inject poison.
9	MEMBER STETKAR: Um-hum.
10	MR. KOVALCHICK: So that's all at the
11	controls right there. I call it the five panel.
12	So, all your attitude is controlled there.
13	Reactor operator is mostly stationed
14	there anyway. He'll do it. The second reactor
15	operator, the plant reactor operator we call him,
16	will be assigned to level reduction.
17	MEMBER STETKAR: Remedy that. Thank
18	you.
19	MR. KOVALCHICK: You're welcome.
20	MEMBER SKILLMAN: Jim, let me ask this.
21	For the average completion time for reactor water
22	level reduction is a minute and a half.
23	MR. KOVALCHICK: Um-hum.
24	MEMBER SKILLMAN: Is there data from
25	crew debriefs of why that isn't faster? For
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	70
1	example, is it because there is a lack of
2	recognition?
3	Is it because there isn't sufficient
4	instrumentation to tell them what to do? Or is it
5	because they chose to have another two or three sips
6	of coffee and finish their sea story before they
7	take action?
8	MR. KOVALCHICK: I don't think it's any
9	of those. And what I'd like to do is turn this over
10	to some of the folks that watched a lot of that.
11	Tony or John, do you guys have any
12	thoughts on that?
13	MR. HIGHTOWER: Jim, this is Tony
14	Hightower, Peach Bottom Operations. I have some
15	insights.
16	One of the factors in the time are the
17	other actions, the other ATWS actions that need to
18	be performed. The plant reactor operator has an
19	action to inhibit ADS prior to initiating the water
20	level reduction.
21	So that does take a finite amount of
22	time. There's also the shear mechanics of the
23	communications. So, a few seconds are used in
24	recognizing the ATWSs.
25	And few seconds are used in the
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

71 1 supervisor providing the direction to the team to 2 enter the appropriate procedures. And to perform the rapid response cards. 3 4 So, that time is there. That will 5 improve with proficiency as we use these rapid There will still be a finite 6 response cards more. 7 amount of time required to get there. 8 The use of the rapid response cards 9 eliminates substantial amount of the а 10 communication. Ιt allows to perform us ATWS 11 required steps without the same number of three-part 12 communications prior to initiating that level 13 reduction. That's where we've gained an advantage. 14 KOVALCHICK: 15 MR. And Ι think the 16 variance that you asked about, I think is somewhat 17 related to individual skill level to the new communications that came in. 18 19 In part, which I would just point out 20 that there is -- initiating standby liquid is a 21 single switch the operators operate to make that 22 happen. Terminating the level injection or it takes 23 multiple actions. 24 There are three steam driven feed pump 25 turbines. Each need to be secured individually.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

	72			
1	The high pressure injection cooling system also			
2	needs to be secured.			
3	So there are more actions that the			
4	operator needs to take that will inherently take			
5	more time. Then if you look at the times for the			
6	audit team to the operating crews on that, that's			
7	actually a fairly small delta from 79 seconds to 84			
8	seconds.			
9	MEMBER SKILLMAN: Okay. Thank you.			
10	MEMBER STETKAR: The first I'll call			
11	them the person on the standby liquid control, the			
12	first operator the first operator is the person			
13	that throws the mode switch also?			
14	MR. KOVALCHICK: That's correct.			
15	MEMBER STETKAR: Because they're sitting			
16	at the			
17	MR. KOVALCHICK: That's correct.			
18	MEMBER STETKAR: Okay. And all they do			
19	basically in an ATWS is mode switch to shut down.			
20	And wait for a command			
21	MR. KOVALCHICK: They'll load for			
22	standby.			
23	MEMBER STETKAR: For standby control?			
24	They have other			
25	MR. KOVALCHICK: They'll attempt a			
	NEAL R. GROSS			

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	73	
1	manual scram.	
2	MEMBER STETKAR: Yes. Okay. They're	
3	going to do all of that stuff.	
4	MR. KOVALCHICK: They'll also be, you	
5	know, reporting out on power pressure level. And	
6	also initiating our ARI system, the alternate rod	
7	insertion system.	
8	MEMBER STETKAR: Okay. And then the	
9	second operator, as you said, they've got to inhibit	
10	ADS and then do everything to run back feed do	
11	they have does that person have any other things	
12	that they need to do?	
13	MR. KOVALCHICK: Depending on what power	
14	is doing, they maybe responsible to go and make sure	
15	the electrical plant is being taken care of.	
16	MEMBER STETKAR: Oh. That's	
17	interesting.	
18	MR. KOVALCHICK: In other words, do we	
19	need to trip the main turbine yet?	
20	MEMBER STETKAR: So, do you run these	
21	guys through a loss of offsite ATWS?	
22	MR. KOVALCHICK: No. I don't know that	
23	we've done that then.	
24	MEMBER STETKAR: Okey dokey then.	
25	MR. KOVALCHICK: With the rapid did	
	NEAL R. GROSS	

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	74
1	we do it with the rapid response cards yet?
2	MR. HIGHTOWER: So, we didn't do a loss
3	of offsite power ATWS. But if it with the loss
4	of offsite power ATWS, the actions to stabilize the
5	plant would take priority over dealing with the loss
6	of offsite power.
7	I think what Jim's speaking to is
8	actions to transfer house loads
9	MR. KOVALCHICK: Yes.
10	MR. HIGHTOWER: With the electric
11	plants.
12	MEMBER STETKAR: That's still I mean,
13	I only have so many hands that I
14	MR. KOVALCHICK: There it is
15	MEMBER STETKAR: An electrical board is
16	typically over there somewhere.
17	MR. KOVALCHICK: You're right. And
18	you're right. So, you know, that will inherently
19	add a there's like a finite time that
20	MEMBER STETKAR: And don't I know you
21	have turbine driven feed water pumps. So, don't get
22	me into the full loss of offsite power. Because
23	I'll walk you into the partial loss up front.
24	MR. HIGHTOWER: But I do have another
25	piece of information to go to the transfer of house
	NEAL R. GROSS

NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	75
1	loads that Jim's speaking of.
2	Initially, we had captured those actions
3	in the rapid response cards
4	MEMBER STETKAR: Um-hum.
5	MR. HIGHTOWER: As plant rapid plant
6	reactor operator actions. Because that's part of
7	their normal process for mitigating a scram event.
8	But we recognize the amount of time that
9	that takes. Transferring house loads during an ATWS
10	is not essential.
11	MEMBER STETKAR: Right.
12	MR. HIGHTOWER: And that's been removed
13	from the procedures for the plant reactor operator
14	to deal with an ATWS. Because it's recognized if
15	the turbine is
16	MEMBER STETKAR: Once you recognize
17	you're in an ATWS. Once you recognize but their
18	normal instinct if they had a, I'll call it the
19	plain vanilla power failure would be to head for the
20	electrical pump.
21	MR. KOVALCHICK: Yes. And this is one
22	of the benefits of the rapid response cards.
23	MEMBER STETKAR: Yes. Yes.
24	MR. KOVALCHICK: Is it goes to
25	streamline those activities to go make sure that
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	76
1	you're minimizing those other distractions and
2	making sure you're setting the priorities.
3	MEMBER STETKAR: Okay. Thank you.
4	MR. KOVALCHICK: Okay. The next slide
5	please?
6	So, this kind of sums up a little bit
7	about some of what we've been talking about. About
8	the we do have some margin demonstrated by even
9	in the introductory phase, we know that we've done
10	with the new, you know, procedures and rapid
11	response cards.
12	It accounts for possible variation
13	between training and actual ATWS events. In other
14	words, you know if I I can accomplish this as you
15	guys noted in about a minute and a half.
16	That's not the 30 seconds that I'm
17	willing to go give to the analysis folks to go use.
18	I want to maintain that margin. And we're pretty
19	comfortable with that.
20	Comparing the audit and training crew
21	results was useful with respecting with respect
22	to some of that same uncertainty. You know, the
23	what's the difference between a crew that, you know,
24	knows everything about what's coming. Lots of
25	practice versus maybe some crews that have a little
	NEAL R. GROSS

NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	77
1	bit of extra to accomplish.
2	And we also discuss that this is going
3	to be part of recurring training. And it will
4	always be part of our ATWS strategy.
5	And then finally just summing this up.
6	This couples together with the conservatisms that
7	realistic inputs give us within the analysis piece.
8	For example, what we know, and I think Andy will
9	can talk to this later.
10	Things like realist inputs for feed
11	water temperature reduction, et cetera. That all
12	build together to what I know is a conservatism with
13	respect to the critical time, critical actions.
14	Are there any questions before I turn it
15	back over to Kevin? Okay, thanks. Go ahead Kevin.
16	MR. BORTON: Okay. And just a
17	conclusion of our open session here. Just to touch
18	on what we talked about is the significant benefits
19	for the operators for flexibility and the finite
20	adjustments that they have with core flow.
21	Increasing the station capacity factor
22	during operating cycles. And of course are we
23	gaining that margin that we lost with the EPU?
24	We're ready to implement MELLLA+, the
25	license amendment. The installations in the firm
	NEAL R. GROSS

NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	78
1	are in testing or completed.
2	Our training is completed. And our tech
3	specs and procedure and the implementation testing
4	is what's needed for us to go to that as well.
5	And just again, to touch on, thank you
6	for the consideration for an early January 2016
7	implementation as well.
8	CHAIRMAN REMPE: Thank you. And I'm
9	glad that you did complete the training on the
10	operators. Thank you for reporting the results to
11	us.
12	At this point, we're going to have
13	public comments and going before we go into
14	closed session and have a break.
15	So, if I could ask you to open up the
16	public line, we'll first look around the room and
17	see if anyone wants to come up to the mic and
18	provide any comments? And then we'll just wait
19	until the line is there.
20	The folks that are out on the licencing
21	line like you Kord. Do you have any comments that
22	you wanted to make at this time too? While we're
23	waiting for the public line?
24	(No response)
25	CHAIRMAN REMPE: I guess it's a no. It
	NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	79
1	sounds like the public line is open. But the only
2	way we can confirm it is to ask the
3	MR. LEWIS: Marvin Lewis. Member of the
4	public.
5	CHAIRMAN REMPE: Thank you, Marvin, for
6	confirming the line is open. Do you or does anyone
7	else on that line have any comments?
8	MR. LEWIS: Yes, I do. In fact some of
9	my comments are positive.
10	CHAIRMAN REMPE: Okay. Actually we're
11	getting a lot of noise. It sounds like heavy
12	breathing.
13	I don't know if it's from you Marvin or
14	someone else on the public line. But, could whoever
15	it is step back away from your phone, okay?
16	And then go ahead and provide your
17	comments Marvin.
18	MR. LEWIS: Okay. I hope that's better.
19	CHAIRMAN REMPE: That's much better.
20	MR. LEWIS: Okay. Well look, I am glad
21	to hear that ATWS is back in the realm of interest
22	in participated changing without scram.
23	I haven't heard that term I swear since
24	the '60s. But, it also bothers me. Because I also
25	heard the term WASH 1400 yesterday on another
	NEAL R. GROSS

NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	80		
1	meeting on another ACRS meeting.		
2	And what I'm worried is, are you now		
3	taking the same positions that you took back 40		
4	years ago that led us to Three Mile Island? I'm not		
5	liking that idea.		
6	So, although I'm fairly pleased with		
7	what you're looking at. And fairly pleased at the		
8	things that you're bringing out, I'm a little		
9	worried that you're taking those old stances back		
10	that really kept a lot of people out of it. And a		
11	lot of say technology out of it.		
12	My second point is this. I'm glad		
13	you're bringing the operators in. The reactor		
14	operators are the guys that actually will have to		
15	flip the switch.		
16	I am worried that you're bringing them		
17	in in such a way that they cannot tell their full		
18	feelings about what the heck's going on. In other		
19	words, are is everything going to be		
20	traditionally blamed on the operator if something		
21	goes wrong?		
22	And you know, look at the information,		
23	yes. In the past everything has been blamed on the		
24	operator rightly or wrongly.		
25	So, maybe we ought to bring in Union		
	NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. (202) 234-4433 WASHINGTON, D.C. 20005-3701 (202) 234-4433		

	81
1	reps to explain some stuff that might have been
2	given to them in confidence. Just an idea. Thank
3	you.
4	CHAIRMAN REMPE: Thank you for your
5	comment. Is there anyone else on the public line
6	that would like to make their comment?
7	(No response)
8	CHAIRMAN REMPE: So, not hearing any
9	other comments, let's close the public line. And
10	we're going to take a break and go into closed
11	session.
12	And let's come back at 10 after 10:00
13	with the closed session. Does that sound good?
14	Thank you.
15	(Whereupon, the above-entitled matter
16	went off the record at 9:53 a.m. and
17	resumed at 10:18 a.m.)
18	
19	
20	
21	
22	
23	
24	
25	
	NEAL R. GROSS

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

Peach Bottom Atomic Power Station Units 2 and 3

MELLLA+

Maximum Extended Load Line Limit Analysis Plus

Advisory Committee on Reactor Safeguards Power Uprate Subcommittee Meeting

December 2, 2015

Introductions

Kevin Borton Licensing Manager, Power Uprates

Licensee Presenters

Pat Navin **Plant Manager Exelon/PBAPS Kevin Borton** Licensing Manager Exelon/PUR Andy Olson Sr. Staff Engineer, Fuels Exelon /Corp Jim Kovalchick **Exelon/PBAPS Operations Manager**

Licensee Support

- John Rommel Engr. Director
- Jim Armstrong
- James Tusar Nuclear Fuels Mgr.
- Alex Psaros Reactor Eng. Mgr.
- John McClintock Operations Training

Exelon/PUR Exelon/PBAPS Exelon/Corp Exelon/PBAPS Exelon/PBAPS

GEH

Bruce Hagemeier MELLLA+ Project Manager GEH

Reg. Assurance Mgr.

- Shawn Lamb GEH Technical Leader GEH
- Mike Cook
 GEH Technical Leader

Presentation Objectives

- Show the Need for MELLLA+
- Describe Key Aspects and Answer Questions
- Demonstrate Exelon Readiness
- Ask for Schedule that will Support Early January 2016 Implementation

Agenda

• PBAPS Station History / Overview

Pat Navin

- MELLLA+ Project Overview
- MELLLA+ Design and Analyses
- Operator Actions, and Training

Kevin Borton

Andy Olson

Jim Kovalchick

PBAPS Station Overview

Pat Navin PBAPS Plant Manager

Station Overview

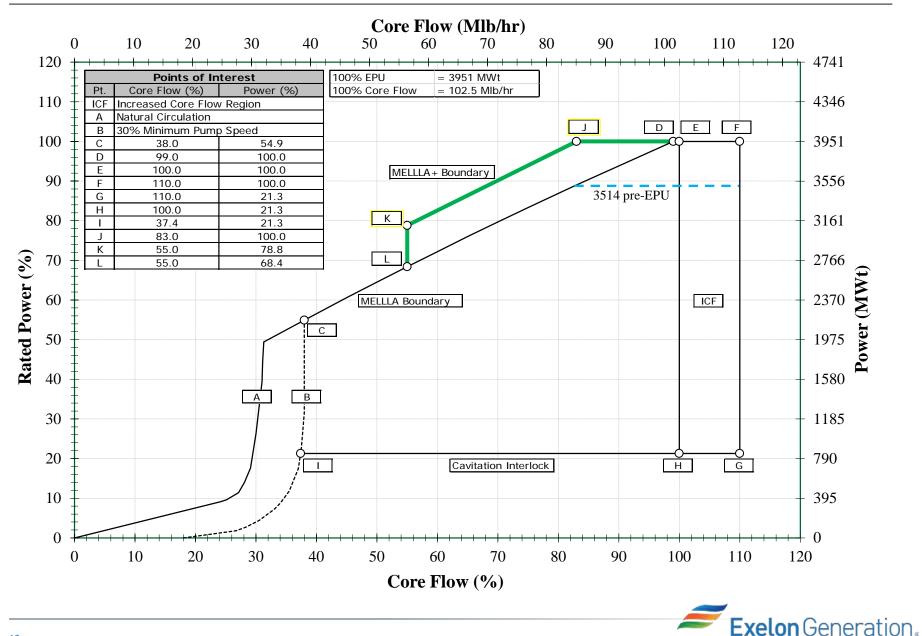
- General Electric BWR-4, Mark I Containment
- Containment design pressure 56 psig
- Began commercial operation in 1974, OLTP 3293 MWt
- EPU 3951 MWt implemented U2 2014, in progress for U3
 - Enriched Boron improves Standby Liquid Control system margin for ATWS
 - Elimination of CAP Credit
- 24 month operating cycle
- GNF2 full core
- Steam-driven feedwater pumps
- Licensed for Increased Core Flow (ICF) (110%)

PBAPS History

Key Milestones	Year	MWth
Full Power Operating License (Original Licensed Thermal Power - OLTP)	1973 (U2) 1974 (U3)	3293 3293
Stretch Power Uprate (105% OLTP)	1994 (U2) 1995 (U3)	3458 3458
MUR Uprate (1.62% increase)	2002 (U2) 2002 (U3)	3514 3514
MELLLA Operating Domain	1995	N/A
Renewed Operating License	2003	N/A
Option III Stability Solution	2005	N/A
GNF2 Fuel Introduction	2010	N/A
Extended Power Uprate (120% OLTP) (* Currently performing EPU Power Ascension)	2014 (U2) 2015 (U3)*	3951 3951

MELLLA+ Project Overview

Kevin Borton



MELLLA+ Benefits

- Expands nominal core flow window at 100% EPU power by 16% of rated flow
 - Fewer control rod manipulations
 - Reduction in End-of-Cycle down-powers
- Detect and Suppress Solution Confirmation Density (DSS-CD) provides improved core instability detection algorithm
- Will increase the station capacity factor during the operating cycle

MELLLA+ Power-to-Flow Map

MELLLA+ Project Scope

- MELLLA+ does not change:
 - Operating Pressure
 - Maximum Licensed Thermal Power
 - Maximum Licensed Core Flow
 - Feedwater Flow Rate or Temperature
- MELLLA+ does not require modifications to balance of plant equipment

MELLLA+ Project Scope

- MELLLA+ requires changes to:
 - Operating Power/Flow Map
 - Stability Solution and associated
 Oscillation Power Range Monitor (OPRM) settings
 - Average Power Range Monitor Simulated Thermal Power
 Flow Biased Set-points
 - Power Range Neutron Monitor (PRNM) Control Room
 Human-System interfaces
 - Core Operating Limits Report (COLR)
 - Technical Specifications

MELLLA+ Implementation Plan

- Phase 1 Outage Related Plant Modifications (Prior to MELLLA+ Approval)
 - DSS-CD Installation (Complete)
 - Units 2 and 3 have operated with Option III since 2005
 - DSS-CD Firmware Installed and Functionally Tested on Unit 2 and Unit 3
 - Unit 2 and Unit 3 CDA RPS Trip Bypassed until MELLLA+ Approval / Implementation
 - Phase 2 On-line Installation / Testing (After MELLLA+ Approval)
 - MELLLA+ Technical Specifications Implementation
 - MELLLA+ Modification Implementation
 - Enable DSS-CD APRM/OPRM Settings
 - Remove Bypasses and Test
 - MELLLA+ Reload Analysis Updated
 - 3D Monicore Databank
 - COLR
 - Procedure Revisions
 - Perform MELLLA+ Operational Testing

MELLLA+ Design and Analyses

Andy Olson

EPU Operating Experience

- For EPU power the maximum licensed core flow is 110 %
 - 105.5% core flow achievable during normal conditions (not EOC or BOC)
 - 109.5% core flow achievable at End-of-Cycle (EOC) conditions
 - 104% core flow achievable during Beginning-of-Cycle (BOC) conditions
- The practical core flow operating window at EPU rated conditions is from 101.0% to 105.5%.
 - Operational margin to the MELLLA boundary at 99.0% flow
 - Higher core flows used at EOC conditions.

MELLLA+ SRLR

- MELLLA+ Supplemental Reload Licensing Report (SRLR) submitted to NRC as supplemental information to MELLLA+ License Amendment Request
 - Reload analysis based on currently operating core design
 - Minor thermal limit increase reflects SLMCPR adder and additional uncertainty for Two Loop Operation (TLO) and small changes to limiting transients for MELLLA+
 - No impact on Linear Heat Generation Rate (LHGR),
 Maximum Average Planar Linear Heat Generation Rate (MAPLHGR) limits

MELLLA+ SRLR (Continued)

- Stability section reflects move to DSS-CD solution
 - Manual Backup Stability Protection (BSP) and Automated Backup Stability Protection (ABSP) tables, information provided
- Appendix F addresses/updates applicable Limitations and Conditions (L&C) from NEDC-33173P- A Rev. 4 (Interim Methods Licensing Topical Report (LTR))
- New Appendix G addresses applicable L&C from NEDC-33006P-A Rev 3 (MELLLA + LTR)

MELLLA+ Operator Procedures and Training

Jim Kovalchick

License Conditions

Operation in the MELLLA+ domain is prohibited when operating with one of the following plant configurations:

- Reactor Recirculation System Single Loop Operation
- Feedwater Heater Out of Service A feedwater heater out of service resulting in more than a 10° F reduction in feedwater temperature below the design feedwater temperature
 - 10°F feedwater temperature reduction results in a recognizable change in reactor power
 - Allows operators to promptly recognize feedwater temperature change and reduce power to exit the MELLLA+ region
 - Uses existing "Positive Reactivity Insertion" abnormal operating procedure

Tech Spec Changes

- OPRM Upscale Function
 - Revise required operability threshold and set-points for OPRM enabled region (larger region)
 - New Conditions/Required Actions/Completion Times due to addition of Automated Backup Stability Protection (OPRM Upscale Function Inoperable)
 - Eliminate surveillance requirement that is no longer required due to DSS-CD implementation
- Change the Allowable Value for APRM Simulated Thermal Power High trip function
- Revise Single Loop Operation LCO Exit M+ Region Immediately
- Changes to TS Administrative Section

ATWS-I Time Critical Operator Actions

TCOA	MELLLA+
Initiate Reactor Water Level Reduction	120 seconds (change for MELLLA+)
Initiate Standby Liquid Control System (SLCS) Injection	120 seconds (unchanged for MELLLA+)
Initiate Suppression Pool Cooling	660 seconds (unchanged for MELLLA+)

- Existing EOP strategy retained
- Use of new ATWS Rapid Response Cards (RRC) to streamline communications
- Control Room Supervisor (CRS) retains Command and Control for EOP strategy

ATWS-I Time Critical Actions

- ATWS Rapid Response Cards RRC directs:
 - SLCS injection
 - Reactor water level reduction
- NRC Audit observed use of RRC and time critical action in May 2015
- All operating crews have been trained on MELLLA+ ATWS-I time critical actions
 - Initial License Training Class completed in March 2015
 - Licensed Operator Requalification Training completed in August 2015
- All operating crews have demonstrated satisfactory completion of the ATWS-I time critical actions

ATWS-I Time Critical Actions

• Audit Crew

Action	Required Time (sec)	Average Completion Time (sec)	Average Deviation (sec)
SBLC Injection	120	54	2
Reactor Water Level Reduction	120	79	5

Operating Crews

Action	Required Time (sec)	Average Completion Time (sec)	Average Deviation (sec)
SBLC Injection	120	73	12.9
Reactor Water Level Reduction	120	84	11.3

- The Audit crew and all operating crews have demonstrated ability to complete SBLC injection and water level reduction within required times
- 120 sec TCA Licensing Bases is practical and conservative

Conservatism of ATWS-I Time Critical Actions

• Ample Operator Action and Analytical Margin Exists

<u>Actions</u>

- Average training performance demonstrates 30% margin to action times assumed in licensing bases
 - Accounts for possible variation between training and during an actual ATWS event
 - Comparing the audit and training crew results useful when assessing uncertainty
 - Operator actions are similar for every ATWS
 - 5 week training cycle reinforces familiarity
- Systematic approach to ATWS-I is very well suited to repeatability
 <u>Analysis</u>
- Analytical sensitivity runs indicate that assuming 120 seconds for SBLC injection and RPV water level reduction meet regulatory criteria.

Exelon Generation.

Realistic inputs demonstrates further conservatisms

Conclusions

- Implementation of MELLLA+ will provide significant benefits:
 - PBAPS operators will have greater flexibility in using core flow adjustments to control reactivity
 - Increasing the station capacity factor during the operating cycle
 - MELLLA+ will regain margin to the Load Line boundary
- PBAPS is ready to implement the MELLLA+ License Amendment
 - Completed installation of the DSS-CD, firmware and testing
 - Completed training on required operator actions
 - Technical Specification, procedure, and implementation testing ready
- Ask for early January 2016 implementation

